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Preface

The 14th International Conference on Practice and Theory in Public Key Cryp-
tography (PKC 2011) was held March 6–9, 2011 in Taormina, Italy. PKC 2011
was sponsored by the International Association for Cryptologic Research (IACR).

The conference received 103 submissions and each submission was assigned to
at least three committee members. Submissions co-authored by members of the
Program Committee were assigned to at least five committee members. Due to
the large number of high-quality submissions, the review process was challenging
and we are deeply grateful to the 30 committee members and the 96 external
reviewers for their outstanding work. After extensive discussions, the Program
Committee selected 28 submissions for presentation during the conference: these
are the articles that are included in this volume. The review process was run
using Shai Halevi’s software, and we are indebted to him for his help in setting
it up and running it.

The program also included one invited talk: “New Developments in Leakage-
Resilient Cryptography” given by Vinod Vaikuntanathan, whom we thank for
accepting our invitation and for contributing to the success of the conference.

Our thanks go also to Springer for publishing the proceedings in the Lecture
Notes in Computer Science series.

March 2011 Rosario Gennaro
Nelly Fazio

Antonio Nicolosi
Dario Catalano
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Linearly Homomorphic Signatures over Binary Fields
and New Tools for Lattice-Based Signatures

Dan Boneh� and David Mandell Freeman��

Stanford University
{dabo,dfreeman}@cs.stanford.edu

Abstract. We propose a linearly homomorphic signature scheme that authenti-
cates vector subspaces of a given ambient space. Our system has several novel
properties not found in previous proposals:

• It is the first such scheme that authenticates vectors defined over binary
fields; previous proposals could only authenticate vectors with large or
growing coefficients.

• It is the first such scheme based on the problem of finding short vectors in
integer lattices, and thus enjoys the worst-case security guarantees common
to lattice-based cryptosystems.

Our scheme can be used to authenticate linear transformations of signed data,
such as those arising when computing mean and Fourier transform or in networks
that use network coding. Our construction gives an example of a cryptographic
primitive — homomorphic signatures over F2 — that can be built using lattice
methods, but cannot currently be built using bilinear maps or other traditional
algebraic methods based on factoring or discrete log type problems.

Security of our scheme (in the random oracle model) is based on a new hard
problem on lattices, called k-SIS, that reduces to standard average-case and worst-
case lattice problems. Our formulation of the k-SIS problem adds to the “toolbox”
of lattice-based cryptography and may be useful in constructing other lattice-
based cryptosystems.

As a second application of the new k-SIS tool, we construct an ordinary signa-
ture scheme and prove it k-time unforgeable in the standard model assuming the
hardness of the k-SIS problem. Our construction can be viewed as “removing the
random oracle” from the signatures of Gentry, Peikert, and Vaikuntanathan at the
expense of only allowing a small number of signatures.

Keywords: Lattice-based cryptography, homomorphic signatures.

1 Introduction

A linearly homomorphic signature scheme signs n-dimensional vectors v1, . . . ,vk de-
fined over some finite field Fp and outputs one signature per vector. The linear homo-
morphic property is that given these k signatures, anyone can produce a signature on

� Supported by NSF.
�� Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 1–16, 2011.
c© International Association for Cryptologic Research 2011



2 D. Boneh and D.M. Freeman

any vector v in the Fp-linear span of v1, . . . ,vk. The signature is secure if it is difficult
to produce a signature on any vector v ∈ Fn

p outside the linear span of v1, . . . ,vk. We
give precise definitions in Section 2.

The original motivation for linearly homomorphic signatures comes from the net-
work coding routing mechanism [12, 11, 25, 4, 13]. In a computer network that uses
network coding, a message sender signs a number of “augmented” message vectors and
transmits the resulting vector-signature pairs through the network to a recipient. Each
router along the way receives a number of signed vectors and creates a random linear
combination v of the vectors it receives. The router uses the homomorphic property to
derive a signature on v and forwards v and its signature to the next router, which then
does the same with the signed vectors it receives. The ultimate recipient obtains several
random linear combinations of the original message vectors, discards all vectors that
are not properly signed, and recovers the original message by solving a full-rank linear
system over Fp. Security of the signature scheme ensures that the recipient obtains the
originally transmitted message vectors. In implementations there is a desire to use net-
work coding with addition over F2, so that computations on messages are simple XORs
and decoding amounts to solving a linear system over F2.

Beyond network coding, linearly homomorphic signatures enable linear computa-
tions on authenticated data. For example, consider a server that stores signed data sam-
ples s1, . . . , sn in Fp. The signature on sample si is actually a signature on the vector
(si|ei) ∈ Fn+1

p , where ei the ith unit vector in Fn
p . The server stores (i, si) and a signa-

ture on (si|ei). (The vector ei need not be stored with the data and can be reconstructed
from i when needed.) Using the homomorphic property, the server can compute a sig-
nature σ on the sum (

∑n
i=1 si, 1, . . . , 1). If σ reveals no other information about the

original samples, then the server can publish the sum
∑n

i=1 si and the signature σ on
the sum while maintaining privacy of the original data. The “augmentation” (1, . . . , 1)
proves that the published message really is the claimed sum of the original samples.1

More generally, the server can publish an authenticated inner product of the samples
s := (s1, . . . , sn) with any known vector c ∈ Fn

p without leaking additional informa-
tion about the samples. This is needed, for example, to publish an authenticated Fourier
coefficient from the Fourier transform of s. It can also be used to compute an authenti-
cated least squares fit for a set of signed data.

Previous results on linearly homomorphic signatures make use of groups in which
the discrete logarithm problem is hard [18, 11, 25, 4] or the RSA assumption holds [13].
In the former case, signatures are linearly homomorphic over Fp for some large p, while
in the latter case, signatures are homomorphic over the integers (with some bound on
the size of the coefficients allowed in linear combinations). In particular, no previous
scheme can support linear operations over a small field such as F2. This appears to be
an inherent limitation of discrete log-type systems, since the discrete log problem is not
hard in F2. A similar limitation prevents an RSA-based system over F2.

More distantly related to our work is the notion of “redactable” signatures [24, 16,
15, 3, 22, 21, 10, 8, 7]. These schemes have the property that given a signature on a
message, anyone can derive a signature on subsets of the message. Our focus here is

1 Strictly speaking, in order to prevent mix-and-match attacks between different data sets one
needs to link the n samples with a random tag that uniquely identifies the data set.
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quite different — we look at linear operations on tuples of authenticated vectors rather
than a subset operation on a single message.

Our Contributions

• Homomorphic signatures over F2: We construct the first unforgeable linearly ho-
momorphic signature scheme that authenticates vectors with coordinates in F2. Our
construction gives an example of a cryptographic primitive that can be built using
lattice methods, but cannot currently be built using bilinear maps or other tradi-
tional algebraic methods based on factoring or discrete log type problems. Our
scheme can be easily modified to authenticate vectors with coefficients in other
small fields, including prime fields and extension fields such as F2d . In addition,
our scheme is private, in the sense that a derived signature on a vector v leaks no
information about the original signed vectors beyond what is revealed by v.

• A simple k-time signature without random oracles: We describe a stateless sig-
nature scheme and prove it secure in the standard model when used to sign at most
k messages, for small values of k. The public key of our scheme is significantly
smaller than that of any other stateless lattice-based signature scheme that can sign
multiple large messages and is secure in the standard model. Our construction can
be viewed as “removing the random oracle” from the signature scheme of Gentry,
Peikert, and Vaikuntanathan [14], but only for signing k messages.

• New tools for lattice-based signatures: Unforgeability of both of our schemes is
based on a new hard problem on lattices, which we call the k-Small Integer Solu-
tions (k-SIS) problem. We show that k-SIS reduces to the standard Small Integer
Solution (SIS) problem, which is known to be as hard as standard worst-case lattice
problems [20].

Unforgeability of our k-time signature scheme depends on bounds for the length
of vectors sampled from discrete Gaussian distributions. We prove both upper and
lower bounds that are essentially as tight as possible. Our upper bound improves on
a result of Micciancio and Regev [20, Lemma 4.4], and our lower bound is (to our
knowledge) the first such bound in the literature.

Privacy of our linearly homomorphic scheme depends on a new result on discrete
Gaussian distributions, namely, that the distribution of a sum of samples from a dis-
crete Gaussian is statistically close to a discrete Gaussian distribution that depends
only on the sum and not on the individual samples. While the analogous result for
continuous Gaussians is well known, this is (to our knowledge) the first such result
for discrete Gaussians.

Overview of the Homomorphic Signature Scheme. Our construction builds on the
signature scheme of Gentry, Peikert, and Vaikuntanathan [14], in which signatures are
short vectors σ in lattices defined modulo some large integer q. The key idea in our
construction is to use short vectors σ in (cosets of) lattices defined modulo 2q, which
allows us to encode different information modulo 2 and modulo q: σ mod 2 encodes
information about the vector being signed, while σ mod q encodes a solution to a hard
problem, ensuring that an adversary cannot forge the signature.
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The fact that σ is a short integer vector ensures that the two parts cannot be attacked
independently. Specifically, applying the Chinese remainder theorem to two vectors
σ2 and σq that are correct mod 2 and mod q, respectively, does not produce a short
integer vector. This property appears to be unique to lattice- based cryptography: if we
attempted a similar construction in discrete log groups of order 2q, we would easily be
able to attack the order 2 and order q parts independently.

Concretely, our construction works as follows. Let q be an odd prime. To sign a
vector subspace V = span(v1, . . . ,vk) of Fn

2 , we define a matrix AV ∈ Zm×n
2q and

then sign each basis vector vi. A signature on vi ∈ Fn
2 is a low-norm vector σi ∈ Zm

such that AV · σi = q · vi mod 2q. A signature σ ∈ Zm on a vector y ∈ Fn
2 is valid if

σ has small norm and AV · σ = q · y mod 2q.
Producing such a signature requires knowing a short basis for the integer lattice

defined by the kernel of AV ; to obtain such a basis we combine the trapdoor genera-
tion algorithm of Alwen and Peikert [2] with the basis delegation mechanism of Cash,
Hofheinz, Kiltz, and Peikert [9].

The homomorphic property of our scheme is now immediate: if we are given arbi-
trary vector-signature pairs (vj , σj) ∈ Fn

2 × Zm for j = 1, . . . , �, we can create a
signature on v = v1 + · · · + v� ∈ Fn

2 by computing σ = σ1 + · · · + σ� ∈ Zm. Since
the σj are all valid signatures on the vj , we see that AV · σ = q · v mod 2q and σ has
low norm (if � is sufficiently small), so σ is a valid signature on v.

Security and the k-SIS Problem. To prove unforgeability, we need to show that given
signatures on basis vectors of V , it is impossible to generate a signature on a vector
outside of V . To do so we define the k-SIS problem, which, roughly speaking, is as
follows:

Given a matrix A ∈ Zn×m
q and k short vectors e1, . . . , ek ∈ Zm satisfying A·ei =

0 mod q, find a short vector e ∈ Zm satisfying A · e = 0 mod q, such that e is not
in Q-span({e1, . . . , ek}).

When k = 0 this is the standard SIS problem [20].
In Section 5 we show that an adversary that breaks the homomorphic signature

scheme (defined mod 2q) in the random oracle model can be used to solve the k-SIS
problem (defined mod q). In Section 4 we show that the k-SIS problem is as hard as
the SIS problem. Our reduction degrades exponentially in k, which forces us to use
a constant-size k if we want our linearly homomorphic scheme to be provably secure
based on worst-case lattice problems. It is an important open problem to give either a
tighter reduction to SIS or a direct reduction from k-SIS to worst-case lattice problems.

For some applications of linearly homomorphic signatures it is desirable that the de-
rived signatures be private; that is, a derived signature on a vector v in span(v1, . . . ,vk)
should not leak information about the original vectors v1, . . . ,vk beyond what is re-
vealed by v. For our construction, to prove privacy it suffices to show that the distribu-
tion obtained by summing independent discrete Gaussians depends only on the coset
of the sum and the linear combination being computed. We prove this statement in
Section 4.

Overview of the k-Time Signature Scheme. Our goal is to use the same mechanism
as in the homomorphic signature scheme to construct an ordinary signature scheme.
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Since homomorphic signatures are not existentially unforgeable, we must find a way
to remove the homomorphic property. To do this, we impose the requirement that the
length of a valid signature σ ∈ Zm be very close to the expected length of the vector
produced by the signing algorithm. We then show that any linear combination of valid
signatures will be too long to satisfy this tight bound, so the homomorphic property is
of no use to an adversary.

As with the homomorphic scheme, the security of our k-time signature scheme fol-
lows from hardness of the k-SIS problem. We prove security (in the standard model)
against a static attacker, who submits all of his message queries before receiving the
public key. By a standard transformation using chameleon hashes [17], this implies the
existence of a scheme secure against an adaptive attacker, also in the standard model.
Our security proof requires tight bounds on the length of a vector sampled from a dis-
crete Gaussian distribution. We use new upper and lower bounds that are essentially as
tight as possible.

Lyubashevsky and Micciancio [19] give a lattice-based one-time signature scheme
secure in the standard model and show how it can be converted to sign k messages. For
small values of k, our construction gives a more efficient stateless k-time signature than
is produced by this conversion.

Outline of the Paper. Section 2 gives a formal definition and security model for lin-
early homomorphic signatures. In Section 3 we review facts about lattices. Section 4
describes the new tools we use in our constructions, including the k-SIS problem and
our reduction of k-SIS to SIS. In Section 5 we present our homomorphic scheme, and
in Section 6 we present our k-time signature scheme. Finally, in Section 7 we describe
extensions of our scheme and open questions. Because of space considerations, proofs
have been omitted and can be found in the full version of this paper [6].

2 Linearly Homomorphic Signatures

We define linearly homomorphic signatures over any principal ideal domain R. These
signatures authenticate tuples (a.k.a. vectors) of elements of R. This definition encom-
passes the homomorphic signatures over finite fields defined by Boneh et al. [4] as well
as the signatures over Z and ZN defined by Gennaro et al. [13]. While we describe the
system in terms of a fixed ring R, it may be that R is determined by the Setup algorithm,
as in the case where the size of R depends on the system’s security parameter.

To prevent “mix-and-match” attacks, each set of vectors signed is given a unique
identifier id, which serves to tie together all vectors that belong to the same file or data
set. Our security model requires that this identifier be unpredictable; in our scheme it is
chosen at random by the signer.

Definition 1 (adapted from [4]). Let R be a principal ideal domain. A linearly ho-
momorphic signature scheme over R is a tuple of probabilistic, polynomial-time algo-
rithms (Setup, Sign,Combine,Verify) with the following functionality:

– Setup(n, params). On input a security parameter n (in unary) and additional public
parameters params that include the dimension N of the ambient space and the
dimension k of subspaces to be signed, this algorithm outputs a public key pk and
a secret key sk.
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– Sign(sk, id,v). On input a secret key sk, an identifier id ∈ {0, 1}n, and a vector
v ∈ RN , this algorithm outputs a signature σ.

– Combine(pk, id, {(αi, σi)}�
i=1). On input a public key pk, an identifier id, and a set

of tuples {(αi, σi)}�
i=1 with αi ∈ R, this algorithm outputs a signature σ. (This σ

is intended to be a signature on
∑�

i=1 αivi.)

– Verify(pk, id,y, σ). On input a public key pk, an identifier id ∈ {0, 1}n, a vector
y ∈ RN , and a signature σ, this algorithm outputs either 0 (reject) or 1 (accept).

We require that for each (pk, sk) output by Setup(n, params), we have:

1. For all id and y ∈ RN , if σ ← Sign(sk, id,y) then Verify(pk, id,y, σ) = 1.

2. For all id ∈ {0, 1}n and all sets of triples {(αi, σi,vi)}�
i=1, if it holds that

Verify(pk, id,vi, σi) = 1 for all i, then

Verify
(
pk, id,

∑
i αivi, Combine

(
pk, id, {(αi, σi)}�

i=1

))
= 1.

In our lattice-based linearly homomorphic signature scheme, we cannot combine arbi-
trarily many valid signatures and still guarantee successful verification. We capture this
property by saying that the scheme is L-limited if correctness property (2) holds for all
� ≤ L whenever the σi are output by the Sign algorithm.

Unforgeability. The security model for linearly homomorphic signatures allows an ad-
versary to make adaptive signature queries on files of his choosing, with the signer ran-
domly choosing the identifier id for each file queried. The winning condition captures
the fact that there are two distinct types of forgeries: a vector-signature pair (y∗, σ∗)
that verifies for some file not queried to the signer (a type 1 forgery), or a pair (y∗, σ∗)
that verifies for some file that was queried to the signer, but for which y∗ is not a linear
combination of the vectors queried (a type 2 forgery).

Definition 2 (adapted from [4]). A homomorphic signature scheme S = (Setup,
Sign,Combine,Verify) over R is unforgeable if the advantage of any probabilistic,
polynomial-time adversary A in the following security game is negligible in the se-
curity parameter n:

Setup: The challenger runs Setup(n, params) to obtain (pk, sk), and gives pk to A.

Queries: Proceeding adaptively, A specifies a sequence of k-dimensional subspaces
Vi ⊂ RN , represented as a k-tuples of basis vectors vi1, . . . ,vik . For each i, the chal-
lenger chooses idi uniformly from {0, 1}n and gives to A the identifier idi and the j
signatures σij ← Sign(sk, idi,vij) for j = 1, . . . , k.

Output: A outputs id∗ ∈ {0, 1}n, a non-zero vector y∗ ∈ RN , and a signature σ∗.

The adversary wins if Verify(pk, id∗,y∗, σ∗) = 1, and either (1) id∗ �= idi for all i (a
type 1 forgery), or (2) id∗ = idi for some i but y∗ �∈ Vi (a type 2 forgery). The advantage
HomSig-Adv[A,S] of A is defined to be the probability that A wins the game.
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Privacy. Given signatures on vectors v1, . . . ,vk in RN , it is desirable that derived
signatures on a vector v in span(v1, . . . ,vk) not leak any information about v1, . . . ,vk

beyond what is revealed by v. We are not trying to hide the fact the derivation took
place or the function that was used to compute v, merely the inputs to the function.

More precisely, we define privacy for linearly homomorphic signatures using a vari-
ation of a definition from [8]. The definition captures the idea that given signatures on
a number of derived vectors in one of two different vector spaces, the attacker cannot
tell which space the derived signatures came from. This indistinguishability holds even
if the secret key is leaked. We call signatures with this property weakly context hiding.
The reason for “weak” is that we are not hiding the fact that derivation took place or
the computed function and we assume the original signatures are not public. Ahn et
al. [1] define a stronger notion of privacy, called strong context hiding, that requires that
derived signatures be distributed as independent fresh signatures on the same message;
this requirement ensures privacy even if the original signatures are exposed.

Definition 3. A homomorphic signature scheme S = (Setup, Sign,Combine,Verify)
over R is weakly context hiding if the advantage of any probabilistic, polynomial-time
adversary A in the following security game is negligible in the security parameter n:

Setup: The challenger runs Setup(n, params) to obtain (pk, sk) and gives pk and sk
to A.

Challenge: A outputs (V0, V1, f1, . . . , fs) where V0 and V1 are linear spaces over RN

represented as k-tuples of vectors (v(b)
1 , . . . ,v(b)

k ) for b = 0, 1. The functions f1, . . . , fs

are R-linear functions2 on (RN )k satisfying

fi

(
v(0)

1 , . . . ,v(0)
k

)
= fi

(
v(1)

1 , . . . ,v(1)
k

)
for all i = 1, . . . , s.

In response, the challenger generates a random bit b ∈ {0, 1} and a random tag τ ∈
{0, 1}n and signs the vector space VB using the tag τ . Next, for i = 1, . . . , s the chal-
lenger uses Combine to derive signatures σi on fi(v

(b)
1 , . . . ,v(b)

k ) and sends σ1, . . . , σs

to A. The functions f1, . . . , fs can be output adaptively after V0, V1 are output.

Output: A outputs a bit b′.

The adversary A wins the game if b = b′. The advantage of A is the probability that A
wins the game.

Winning the context hiding game game means that the attacker was able to determine
whether the challenge signatures were derived from signatures on V0 or from signatures
on V1. We note that for discrete log-based linearly homomorphic signatures such as
those of [4], weak context hiding follows from the uniqueness of the signature.

3 Background on Lattices

In this section we describe the lattices we will be using and their properties. Precise
statements of these results can be found in the full version of this paper [6].

2 If the scheme is L-limited, we require the fi to have at most L nonzero coefficients.
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Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. When
q is prime, Zq is a field and is sometimes denoted Fq. We let Zn×m

q denote the set of
n × m matrices with entries in Zq . We denote matrices by capital boldface letters and
vectors by lowercase boldface letters. We say a function f : Z → R+ is negligible if it
is O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. The
function lg x is the base 2 logarithm of x.

Lattices. An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. We will
be interested in integer lattices Λ, i.e., those whose points have coordinates in Zm. For
any integer q ≥ 2 and any A ∈ Zn×m

q , we define

Λ⊥
q (A) :=

{
e ∈ Zm : A · e = 0 mod q

}
, Λu

q (A) :=
{
e ∈ Zm : A · e = u mod q

}
.

Alwen and Peikert [2, Theorem 3.2] describe an algorithm TrapGen that outputs an
(almost) uniformly random matrix A ∈ Zn×m

q along with a “short” basis for Λ⊥
q (A).

Cash et al. [9, Lemma 3.2] give an algorithm ExtBasis that “delegates” a basis: given
two matrices A,A′ in Zn×m

q and a short basis for Λ⊥
q (A), the algorithm computes a

short basis for Λ⊥
q (A‖A′). The length of a basis T is measured by the Gram-Schmidt

norm and denoted by ‖T̃‖.
For any real ε > 0, the smoothing parameter ηε(Λ) is defined to be the smallest

positive s such that ρ1/s(Λ∗ \ {0}) ≤ ε [20].

Gaussian Distributions. Let L be a subset of Zm. For any vector c ∈ Rm and any
positive parameter σ ∈ R>0, let ρσ,c(x) := exp

(
−π‖x− c‖2/σ2

)
be a Gaussian

function on Rm with center c and parameter σ. Let Dσ,c be the continuous Gaussian
distribution over Rm with center c and parameter σ, with Dσ,c(x) = ρσ,c(x)/σn. Let
ρσ,c(L) :=

∑
x∈L ρσ,c(x) be the discrete integral of ρσ,c over L. Finally, let DL,σ,c be

the discrete Gaussian distribution over L with center c and parameter σ. In particular,
for all y ∈ L, we have DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) . For notational convenience, ρσ,0 and
DL,σ,0 are abbreviated as ρσ and DL,σ, respectively.

Gentry, Peikert, and Vaikuntanathan [14, Theorems 4.1 and 5.9] describe algorithms
SampleGaussian and SamplePre that output vectors sampled from distributions statisti-
cally close to DΛ⊥

q (A),σ,c and DΛu
q (A),σ , respectively.

Hardness Assumption. The security of our signature schemes is based on the problem
of finding short vectors in Λ⊥

q (A) for random A. This is known as the Small Integer
Solution (SIS) problem, and is defined as follows.

Definition 4. An instance of the SISq,m,β problem is a matrix A ∈ Zn×m
q . A solution

to the problem is a nonzero vector v ∈ Zm such that ‖v‖ ≤ β and A·v = 0 mod q (i.e.,
v ∈ Λ⊥

q (A)). If B is an algorithm that takes as input a matrix A ∈ Zn×m
q , we define

SIS-Adv[B, (q,m, β)] to be the probability that B outputs a solution to a uniformly
random SISq,m,β problem instance A.

Micciancio and Regev [20] and Gentry et al. [14] show that the (average case) SIS
problem for β = poly(n) is hard assuming worst-case hardness of certain standard
approximation problems on lattices.
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4 New Tools

4.1 A “One-More” SIS Problem

The security of most lattice-based signature schemes depends on the adversary’s inabil-
ity to find a short vector in Λ⊥

q (A) for some public matrix A. However, for our linearly
homomorphic signatures this criterion is insufficient. Roughly speaking, an adversary in
our scheme will be given several short vectors e1, . . . , ek ∈ Λ⊥

q (A) and must produce
a short vector in Λ⊥

q (A) that is not in the span of the ei. This is a “one-more” variant
of the standard SIS problem, analogous to the “one-more discrete logarithm” problem
in group-based cryptography (see e.g., [23]). We will see in Section 4.3 that for certain
choices of parameters the problem is equivalent to finding any short vector in Λ⊥

q (A)
distinct from {±ei}, making the “one-more” analogy even more appropriate. We now
formally define the problem.

Definition 5. For any integer k ≥ 0, an instance of the k-SISq,m,β,σ problem is a matrix
A ∈ Zn×m

q and a set of k vectors e1, . . . , ek ∈ Λ⊥
q (A). A solution to the problem is a

nonzero vector v ∈ Zm such that

1. ‖v‖ ≤ β,
2. A · v = 0 mod q (i.e., v ∈ Λ⊥

q (A)), and
3. v �∈ Q-span({e1, . . . , ek}).

If B is an algorithm that takes as input a matrix A ∈ Zn×m
q and vectors ei ∈ Zm for

i = 1, . . . , k, we define k-SIS-Adv[B, (q,m, β, σ)] to be the probability that B outputs
a solution to a k-SISq,m,β,σ problem instance (A, e1, . . . , ek) over uniformly random
A in Zn×m

q and ei drawn from the distribution DΛ⊥
q (A),σ .

The main result of this section is to show that an adversary A that solves the k-SIS
problem in dimension m can be used to solve the SIS problem in dimension m − k.
More precisely, we have the following:

Theorem 6. Let q be a prime, and let m, β, σ, and k, be polynomial functions of a
security parameter n. Suppose that m ≥ 2n lg q, m/k > n, σ > ω(

√
logm), t >

ω(
√

logn), and q > σ · ω(
√

logm).
Let β′ = β · (k3/2 + 1)k!(tσ)k . Let A be a polynomial-time adversary for the

k-SISq,m,β,σ problem. Then there exists a polynomial-time algorithm B that solves
SISq,m−k,β′ , such that

SIS-Adv[B, (q,m− k, β′)] ≥ k-SIS-Adv[A, (q,m, β, σ)] − negl(n).

Since the SIS problem is only assumed to be hard for parameters β = poly(n), the
fact that the above reduction degrades exponentially in k means that k must be chosen
to be small enough so that β′ is still polynomial in n. In our application the parameter
σ is ω(

√
n), which means that k must be chosen to be O(1). In this case, if we take

t = O(log σ) and β′ = β ·O(σk logk σ), then Theorem 6 shows that if the SISq,m−k,β′

problem is hard, then the k-SISq,m,β,σ problem is also hard.
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The idea of the proof of Theorem 6 is as follows: given an SIS challenge A′ ∈
Z

n×(m−k)
q , we can choose k random vectors ei from a Gaussian distribution over Zm

and append k columns to A′ to create a matrix A ∈ Zn×m
q such that the ei are in

Λ⊥
q (A). If the k-SIS adversary A outputs a short vector e∗ ∈ Λ⊥

q (A) that is Q-linearly
independent of the {ei}, then we can use Gaussian elimination over Z (via Cramer’s
rule) to compute a short vector v ∈ Λ⊥

q (A) with zeroes in the last k entries. Reading
off the first m− k entries of v gives us a short vector in Λ⊥

q (A′). Details can be found
in the full version of this paper [6].

4.2 Tight Bounds on the Length of Gaussian Samples

Signatures in our schemes will be “short” vectors sampled from Gaussian distributions
over cosets of a particular lattice. To quantify what “short” means, we must demonstrate
an upper bound on the length of a vector sampled from a Gaussian.

Micciancio and Regev [20, Lemma 4.4] show that if σ is larger than the smoothing
parameter of the n-dimensional lattice Λ, then with overwhelming probability the length
of a vector sampled from DΛ,σ,c is at most σ

√
n. They also show that the expected

length of such a sample is at most σ
√

n/2π + negl(n). Our result below “bridges
the gap” between the upper bound and the expected length. Furthermore, we show an
equally strong lower bound on the length of the Gaussian sample.

Proposition 7. Let Λ ⊂ Rn be a lattice. Suppose σ ≥ ηε(Λ) for some negligible ε. Let
c ∈ Rm be any vector. Then for any constant α > 0 we have

Pr
[
(1 − α)σ

√
n
2π ≤ ‖x − c‖ ≤ (1 + α)σ

√
n
2π : x R← DΛ,σ,c

]
≥ 1 − negl(n).

4.3 Removing Linear Independence from the k-SIS Problem

We now show that for small values of k and tight length bounds, we can relax the linear
independence condition in the statement of the k-SIS problem. Specifically, if we can
find any nonzero vector e∗ of the required length not equal to ±ei for any of the k
vectors ei in the problem statement, then with overwhelming probability e∗ is not in
the linear span of the ei.

Proposition 8. Suppose m ≥ 2n lg q and k · ω(
√

log n) < min(σ,m1/4). Let
(A, e1, . . . , ek) be a k-SIS challenge with A chosen uniformly at random from Zn×m

q

and ei sampled from DΛ⊥
q (A),σ. Then with overwhelming probability, the only nonzero

vectors of length at most 1.1 ·σ
√

m/2π in Q-span(e1, . . . , ek) are the vectors ±ei for
i = 1, . . . , k.

4.4 Linear Combinations of Discrete Gaussians

The privacy property of our linearly homomorphic scheme will follow from the fact that
the distribution obtained by summing independent discrete Gaussian samples is itself a
discrete Gaussian distribution that depends only on the coset of the sum and the linear
combination being computed.
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Theorem 9. Let Λ ⊆ Zm be a lattice and σ ∈ R. For i = 1, . . . , k let ti ∈ Zm

and let Xi be mutually independent random variables sampled from DΛ+ti,σ . Let c =
(c1, . . . , ck) ∈ Zk, and define

g := gcd(c1, . . . , ck), t :=
∑k

i=1 citi.

Suppose that σ > ‖c‖·ηε(Λ) for some negligible ε. Then Z =
∑k

i=1 ciXi is statistically
close to DgΛ+t,‖c‖σ .

In the full version of this paper [6] we generalize this theorem to Z̄ = A · X̄ , where
X̄ = (X1, . . . , Xk) and A is an s× k matrix.

5 A Linearly Homomorphic Signature Scheme over F2

We now describe our linearly homomorphic signature scheme over F2. Our construction
is inspired by the signature scheme of Gentry, Peikert, and Vaikuntanathan [14]. In the
GPV scheme, signatures are short vectors in Λu

q (A), where u is the hash of the message
to be signed. The key idea in our construction of homomorphic signatures is to work
simultaneously modulo 2 and modulo an odd prime q. Specifically, a signature on a
vector v ∈ Fn

2 is a short vector e ∈ Zm such that e is in both Λ⊥
q (A) and Λv

2 (A).
The mod 2 part ties the signature to the message, while the mod q part ensures that the
signature cannot be forged. By the Chinese remainder theorem, such a vector e is in the
lattice Λq·v

2q (A).
In order to be able to sign multiple files, the matrix A must be different for every

file, yet still have a trapdoor that allows us to generate signatures using the SamplePre
algorithm. To achieve this, we divide A into two parts. The left half is a public matrix
generated by the TrapGen algorithm; the right half depends on the identifier of the
file being signed. Given the secret basis output by TrapGen, we can use the ExtBasis
algorithm to compute a short basis for Λ⊥

2q(A).
Our scheme is as follows:

Setup(n, params). Given a security parameter n and parameters params =
(N, k, L,m, q, σ), where N = n is the dimension of vectors to be signed, k < n is
the dimension of subspaces to be signed, L ≥ 1 is the maximum number of linear com-
binations that can be authenticated, m(n,L) > n is an integer, q(n,L) is an odd prime,
and σ(n,L) is a real number, do the following:

1. Run TrapGen(n,m, 2q) to generate a matrix A ∈ Zn×m
2q and a basis T of Λ⊥

2q(A)
such that ‖T̃‖ ≤ 30

√
n lg 2q.

2. Let H : {0, 1}∗ → Zn×m
2q be a hash function, viewed as a random oracle.

3. Output the public key pk ← (A, H), and the private key sk ← (A, H,T).

Sign(sk, id,v). Given secret key sk = (A, H,T), identifier id ∈ {0, 1}n, and a vector
v ∈ Fn

2 , do the following:

1. Set B ← A‖H(id) ∈ Zn×2m
2q .

2. Let S ← ExtBasis(T,B) be a basis for Λ⊥
2q(B) with ‖S̃‖ = ‖T̃‖.

3. Output e ← SamplePre(B,S, σ, q · v).
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Combine(pk, id, {(αi, ei)}�
i=1). Given a public key pk, an identifier id, and pairs

{(αi, ei)}�
i=1 with αi ∈ F2 = {0, 1}, output e ←

∑�
i=1 αiei ∈ Z2m.

Verify(pk, id,y, e). Given a public key pk = (A, H), an identifier id, a signature e ∈
Z2m, and a vector y ∈ Fn

2 , do the following:

1. Set B ← A‖H(id) ∈ Zn×2m
2q .

2. If (a) ‖e‖ ≤ L ·σ
√

2m and (b) B · e = q ·y mod 2q, output 1. Otherwise output 0.

Proposition 10. Suppose σ ≥ 30
√
n lg 2q · ω(

√
logn). Then the scheme described

above is an L-limited linearly homomorphic signature scheme over F2.

Unforgeability. We prove unforgeability of our linearly homomorphic signature
scheme over F2 in the random oracle model. Given an adversary that breaks the sig-
nature scheme over Z2q , we construct an adversary that simulates the signature scheme
and the hash function H and solves the k-SIS problem over Zq . By Theorem 6, this
adversary can in turn be used to solve the SIS problem over Zq .

Our simulation begins by guessing which of the adversary’s signature and hash
queries will correspond to the file identifier id∗ associated with the adversary’s forgery
and outputting a public key A derived from the k-SIS challenge matrix. For queries not
associated with id∗, the simulator “swaps the roles” of the public key and hash func-
tion as follows: we use TrapGen to program the random oracle with a matrix H(id)
for which we know a short basis, and we use ExtBasis to compute a short basis for
A‖H(id). We can then compute the signatures as in the real system.

For the query id∗, we construct H(id∗) so that the k-SIS challenge vectors are valid
signatures for the vectors queried by the adversary. We construct the mod q part of
H(id∗) using the fact that valid signatures are elements of Λ⊥

q (A‖H(id∗)), and we
construct the mod 2 part of H(id∗) using the fact that the k-SIS challenge vectors are
statistically close to random mod 2.

With this setup, a forged signature is exactly a solution to the k-SIS problem mod q.
We now give the theorem; the proof appears in the full paper [6].

Theorem 11. Let N be the linearly homomorphic signature scheme over F2 described
above. Suppose that m = �6n lg 2q and σ = 30

√
n lg 2q logn. Let β = L · σ

√
2m.

Then N is unforgeable in the random oracle model assuming that k-SISq,2m,β,σ is
infeasible.

Since the SIS problem is only assumed to be hard for β′ = poly(n), by Theorem 6 our
choice of σ forces k to be O(1) to ensure security based on SIS.

Privacy. In our linearly homomorphic signature scheme, one derives a signature on a
linear combination v of messages by taking a linear combination of the signatures on
the original messages v1, . . . ,vk. Hence, the derived signature on v is a linear combi-
nation of short vectors in cosets of some lattice Λ. To show that this derived signature
does not leak information about the original signatures, we use Theorem 9 to show that
a linear combination of k signatures generated by our signing algorithm is itself a short
vector sampled from a distribution that depends only on the function computed and the
message v output by the function. In particular, the derived signature does not depend
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on the original vectors v1, . . . ,vk (up to negligible statistical distance). It follows that
the derived signature does not leak any information about v1, . . . ,vk beyond what is
revealed by v. We note that the length of σ reveals information about the computed
linear function, but not about the original messages.

The above argument implies that a single derived signature is private; for multiple
signatures we use a similar argument with an appropriate generalization of Theorem 9.
The proof of our privacy theorem can be found in the full paper [6].

Theorem 12. Let N be the linearly homomorphic signature scheme over F2 described
in Section 5. Suppose that k is constant, m = �6n lg 2q and σ = 30

√
n lg 2q logn.

Then N is weakly context hiding.

6 k-Time GPV Signatures without Random Oracles

In this section we give a second application of the k-SIS mechanism described in Sec-
tion 4, namely, a stateless variant of the the signature scheme of Gentry, Peikert, and
Vaikuntanathan [14] that is k-time unforgeable in the standard model. The notion of k-
time security means that a signing key can only be used to sign k messages. In particular,
a forger is allowed at most k signing queries.

The main idea is to construct signatures as in our homomorphic scheme of Section 5,
but remove the homomorphic property by setting the bound on the length of a valid sig-
nature to be very close to the expected length of the signature. Since we expect a small
number of such vectors to form a set that is nearly orthogonal, any linear combination
of signatures will produce a vector that is too long to be accepted as a valid signature.

We prove our signature scheme weakly unforgeable; i.e., unforgeable under a static
chosen-message attack, in which the adversary must submit all signature queries before
seeing the public key. A standard transformation using chameleon hashes [17] produces
a scheme that is unforgeable under the usual notion of adaptive chosen-message attack.

We now describe our weakly unforgeable signature scheme, which is essentially a
GPV signature in which hashing is replaced with the Chinese remaindering of the mes-
sage (viewed as a vector in Fn

2 ) with the zero vector in Zn
q .

Setup(n, params). Given a security parameter n that is also the bit length of messages
to be signed, do the following:

1. Choose an odd prime q. Set m ← �6n lg 2q. Set σ ← 30
√
n lg 2q logn.

2. Run TrapGen(n,m, 2q) to generate a matrix A ∈ Zn×m
2q and a basis T of Λ⊥

2q(A)
such that ‖T̃‖ ≤ σ/ logn.

3. Output the public key pk ← (A, σ) and the private key sk ← (A, σ,T).

Sign(sk,v). Given secret key sk = (A, σ,T), and a message v (interpreted as a vector
in Fn

2 ), output e ← SamplePre(A,T, σ, q · v).

Verify(pk, e,v). Given a public key pk = (A, σ), a signature e ∈ Zm, and a message
v ∈ Fn

2 , output 1 if (a) 0 < ‖e‖ ≤ 1.1 · σ
√

m/2π and (b) A · e = q · v mod 2q.
Otherwise output 0.
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Correctness of our scheme follows from Proposition 7 (with α = 0.1), using [14,
Lemma 5.3] to bound the smoothing parameter. In our fully unforgeable scheme, the
vector v used in signing is not the message but rather H(M, r), where M is the mes-
sage, r is random, and H is a chameleon hash function. The signature includes the
randomness r in addition to the vector e. For a discussion of lattice-based chameleon
hash functions, see [9, §2.2].

An adversary attacking our k-time signature scheme requests k signatures ei on mes-
sages of his choice, receives a public key and the signatures, and then outputs a message
v∗ and a signature e∗. The adversary wins the game if Verify(pk, e∗,v∗) = 1 and v∗ is
not equal to any of the messages queried.

As was the case for our homomorphic scheme of Section 5, a valid forgery is a short
vector e∗ in Λ⊥

q (A). The key idea in our security proof is that the length bound on a
valid e∗ is so tight that by Proposition 8, the only nonzero integer vectors of comparable
length in the Q-span of the requested signatures ei are the vectors ±ei. (Since −ei

authenticates the same message as ei, the signature −ei is not a valid forgery.) Thus
e∗ is outside the linear span of the ei, and we can use it to solve the k-SIS instance in
which the ei are the challenge vectors.

Our security theorem is as follows; the proof appears in the full paper [6].

Theorem 13. Let S be the signature scheme described above. Suppose k is constant
and β = 1.1 · σ

√
m/2π. Then S is a weakly unforgeable k-time signature scheme

assuming that k-SISq,m,β,σ is infeasible.

7 Further Directions

Extending the Linearly Homomorphic System. While our linearly homomorphic
scheme in Section 5 authenticates vectors with coordinates in F2, the same construction
works for any field Fp where p is a small prime. We simply set m = �6n lg pq and
σ = 30

√
n lg pq logn, and sign a vector v ∈ Fn

p using the lattice Λq·v
pq (A). If p is odd

and we identify Fp with {−(p− 1)/2, . . . , (p− 1)/2}, then the output of Combine on
� vectors can be up to �(p− 1) times as long as the largest input vector. An argument as
in Proposition 10 shows that the resulting system is L/(p− 1)-limited.

More interestingly, our system can also be used to authenticate vector spaces defined
over non-prime fields. Suppose for concreteness that our vectors live in (F2d)n. If we
fix a basis for F2d over F2, then when computing signatures we may view the vectors as
elements of (F2)nd and compute signatures in exactly the same manner as above. The
difference comes when computing linear combinations over F2d : in our representation
multiplying an element x ∈ F2d by an element α ∈ F2d consists of multiplying the
corresponding vector x ∈ Fd

2 by a matrix Mα ∈ Fd×d
2 . To compute this action on

the signature vector e ∈ Zm, we lift Mα to an integer matrix with entries in {0, 1}
and group the elements of e into d-tuples corresponding to the underlying elements of
F2d . Multiplying each d-tuple by Mα now has the effect of multiplying the underlying
elements of F2d by α. We see that this action increases the length of e by a factor of
at most d, so combining � vectors gives an output that is up to �d times as long as the
largest input vector. By the same argument as above, the system over F2d is L/d-limited.
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Open Problem. An important open problem inspired by our construction is to find
a tight reduction of k-SIS to worst-case lattice problems, either by improving on the
reduction to SIS given by Theorem 6 or by a direct argument. An improved reduction
would support the use of the k-SIS problem in developing cryptosystems for other ap-
plications and would also allow us to implement our systems with smaller parameters.

An Alternative Construction. In recent work [5], we have developed a different con-
struction of linearly homomorphic signatures over small fields. Unforgeability of the
new scheme (in the random oracle model) reduces directly to the SIS problem, without
going through the intermediate k-SIS reduction. As a result, the new scheme can au-
thenticate linear combinations of polynomially many vectors, whereas the one in this
paper requires the number of vectors combined to be constant. Signatures in the two
schemes are of comparable length.

Acknowledgments. We thank Chris Peikert for helpful discussions, and in particular
for providing the idea of using continuous Gaussians to prove Proposition 7. We thank
Susan Hohenberger, Hugo Krawczyk, Daniele Micciancio, and Brent Waters for useful
conversations. We also thank the anonymous reviewers for helpful suggestions.
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Abstract. Network coding is known to provide improved resilience to
packet loss and increased throughput. Unlike traditional routing tech-
niques, it allows network nodes to perform transformations on packets
they receive before transmitting them. For this reason, packets cannot
be authenticated using ordinary digital signatures, which makes it dif-
ficult to hedge against pollution attacks, where malicious nodes inject
bogus packets in the network. To address this problem, recent works in-
troduced signature schemes allowing to sign linear subspaces (namely,
verification can be made w.r.t. any vector of that subspace) and which
are well-suited to the network coding scenario. Currently known network
coding signatures in the standard model are not homomorphic in that
the signer is forced to sign all vectors of a given subspace at once. This
paper describes the first homomorphic network coding signatures in the
standard model: the security proof does not use random oracles and, at
the same time, the scheme allows signing individual vectors on-the-fly
and has constant per-packet overhead in terms of signature size. The
construction is based on the dual encryption technique introduced by
Waters (Crypto’09) to prove the security of hierarchical identity-based
encryption schemes.

Keywords: Network coding, homomorphic signatures, provable
security, standard model.

1 Introduction

Network coding [1,18] is an attractive paradigm that offers an interesting alterna-
tive to traditional routing mechanisms. Instead of merely storing and forwarding
packets in transit, intermediate nodes are allowed to modify them: typically, at
each node, outgoing packets contain vectors that are calculated as linear com-
binations of vectors conveyed by incoming packets. In random linear network
coding, packets are combined using coefficients which each node chooses at ran-
dom, independently of its neighbors. Still, receiving nodes are able to recover
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the original file from any set of, say m > 1, valid packets containing linearly
independent vectors and without a priori knowing the coefficients chosen by
intermediate nodes on the road. This technique has been shown (see [10] for
instance) to provide many advantages such as an improved resilience to random
packet loss or a substantially increased throughput in certain topologies.

Unfortunately, network coding is highly sensitive to pollution attacks, where
malicious nodes inject invalid packets (i.e., nodes outside the linear span of the
received packets) in the network in order to prevent target nodes from recover-
ing the original file. Since network nodes perform linear transformations over all
their incoming packets, even a single faulty packet is likely to contaminate the
entire network and eventually hinder the decoding process. To address this con-
cern, intermediate good nodes need a method to verify the validity of incoming
packets and sieve out bad ones. Obviously, the problem cannot be resolved by or-
dinary digital signatures since transmitted packets are modified by the network
and cannot be merely signed by the source. For this reason, cryptographic ap-
proaches rely on techniques allowing to authenticate packets using homomorphic
hash functions [16,13,25] or homomorphic signatures [9,7,12]. These primitives
are designed in such a way that a signature (resp. a hash value) of a vector v
can be obtained from signatures (resp. hash values) of several vectors that v is
a linear combination of.

In contrast to information-theoretic approaches (like [14,15]) that defend
against network faults by introducing redundancies in packets, cryptographic
techniques do not place restrictions on the adversary’s behavior (e.g. by limiting
his ability to eavesdrop the network or the fraction of nodes he can corrupt):
as long as the receiver obtains sufficiently many correct packets, he can always
recover the file regardless of the number of faults. On the other hand, these
techniques typically require computational assumptions and sometimes appeal
to idealizations such as the random oracle model [4]. This paper aims at making
another step towards eliminating the latter.

Related Work. Homomorphic signatures were first suggested by Johnson,
Molnar, Song and Wagner [20]. Their definition was adapted to the network
coding scenario by Boneh, Freeman, Katz and Waters [7] who designed an effi-
cient homomorphic NCS scheme in the random oracle model using bilinear maps.
At the expense of losing the homomorphic property, they also showed how to
build a network coding signature in the standard model. In [7], signature sizes
were proved asymptotically optimal since a signature on any subspace necessarily
grows with the dimension of that subspace. Recently, Gennaro, Katz, Krawczyk
and Rabin gave a homomorphic signature [12] based on the RSA assumption
(in the random oracle model) and showed how to work with small coefficients
over the integers (instead of finite fields) in networks of bounded size. At the
same time, Agrawal, Boneh, Boyen and Freeman [3] considered the situation of
network nodes mixing packets from multiple distinct sources and described a
multi-source network coding signature (without the homomorphic property) in
the standard model.
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In the secret-key setting, Agrawal and Boneh [2] considered how to improve
upon the speed of network coding public key signatures and designed message
authentication codes with homomorphic properties. Assuming that a bounded
number of verifiers may collude, they also showed how intermediate nodes can
verify the integrity of network-coded data. More recently, Li et al. [19] gave a
MAC-based approach supporting in-network verification and resisting an arbi-
trary number of collusions.

Our Contribution. To the best of our knowledge, in the public key setting,
known homomorphic network coding signatures [7,12] all rely on random oracles
in their security proof. Indeed, existing NCS schemes in the standard model (i.e.,
the second scheme of [7] and the multi-source system in [3]) can only be used to
sign all the base vectors of a subspace at once. This requires the source to be
aware of the entire file before sending the first packet.

This paper describes the first homomorphic NCS scheme with a security proof
outside the random oracle methodology. Our construction is based on the dual
encryption paradigm, introduced by Waters [24] and developed in [17], the pur-
pose of which was initially to build fully secure (hierarchical) identity-based
encryption [22,6] schemes. We pinpoint an intuitive connection between NCS
schemes and the spatial encryption primitive of Boneh and Hamburg [8], where
the receiver’s ability to decrypt is made contingent on his knowledge of a private
key for a subspace containing the vector assigned to the ciphertext. We explain
that such a scheme can be turned into a (not necessarily homomorphic) NCS
scheme when the file identifier can be suitably tied up to the signed subspace.
The homomorphic property is then achieved by carefully re-using the signer’s
random coins across all vectors of the same linear subspace: by deriving these
coins from the file identifier using a pseudorandom function, the signer can start
transmitting packets before the file to be sent is completely known.

In order to prove security in the sense of the definition of Boneh et al. [7],
we use groups of composite order and apply the technique of Lewko and Waters
[17] in the context of signatures. One difficulty to deal with is that, unlike pre-
vious homomorphic NCS schemes [7,12], the system uses a randomized signing
algorithm and signatures on distinct vectors must be generated using partially
identical randomness in order to be linearly combinable. We thus have to take
special precautions to prevent malicious nodes from re-randomizing signatures
and wrongly accuse the signer of flooding the network with signatures that can-
not be combined.

Since we work in groups of composite order N , vector coordinates and net-
work coefficients must be chosen in a ring ZN instead of a prime field as in
[7]. Nevertheless, the scheme has counterparts in prime order groups. While
Freeman’s framework [11] does not seem to apply (given that it does not apply
to the Lewko-Waters techniques [17], as mentioned in [11]) to generically trans-
form the scheme into an instantiation in prime-order groups, the system can be
adapted in asymmetric pairing-friendly groups of prime order in the same way
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as the Lewko-Waters IBE [17]. It is also translatable in groups with symmetric
pairings using the techniques of [24]. In the paper, we chose to describe it in
composite order groups for simplicity.

Organization. In the following, we first review the notion of network coding
signatures in section 2. Our homomorphic scheme and its proof are detailed in
sections 3.1 and 3.2, respectively.

2 Background and Definitions

2.1 Network Coding

This section briefly recalls the idea of linear network coding. Consider a network
with one source node and a subset of nodes called “target nodes”. The purpose
is to have the source transmit a file to all target nodes, where a file is represented
as a matrix containing the m row vectors v1, . . . , vm ∈ Zk

N over a ring or a field
ZN . The source node first creates m augmented vectors w1, . . . , wm ∈ Zn

N , with
n = k + m, by setting⎛⎜⎜⎜⎝

—w1—
—w2—

...
—wm—

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
—v1— 1 0 · · · 0
—v2— 0 1 · · · 0

...
. . .

—vm— 0 0 · · · 1

⎞⎟⎟⎟⎠ . (1)

The source then sends these augmented vectors to its neighbor nodes.
We notice that the span of row vectors of the above matrix will generate a

vector subspace V ⊂ Zn
N of dimension m with the basis w1, . . . , wm. As defined in

[7], when the basis is in the above form (in the right-hand side of Equation (1)),
it is called a properly augmented basis.

Each honest intermediate node in the network processes the incoming packets
as follows. Upon receiving vectors y1, . . . , y� ∈ Zn

N on its � incoming edges,
it computes a new vector for each outgoing edge as a linear combination of
the vectors it received. Namely, at the jth outgoing edge, the vector zj ∈ Zn

N

will have the form zj =
∑�

i=1 αi,jyi, for some (typically random) coefficients
(α1,j , . . . , α�,j) ∈ Z�

N .
A target node will recover the file using a set of vectors from its incoming

edges. This can be done if they consist of m vectors {yi = (xi||ui)}m
i=1 where

u1, . . . , um are linearly independent (here, xi ∈ Zk
N , ui ∈ Zm

N ). The original file
is then recovered as⎛⎜⎜⎜⎝

—v1—
—v2—

...
—vm—

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
—u1—
—u2—

...
—um—

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

—x1—
—x2—

...
—xm—

⎞⎟⎟⎟⎠ ,

which is computable thanks to to the linear independence of u1, . . . , um.
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2.2 Definitions

We first recall the definition of network coding signatures from [7].

Definition 1. A network coding signature (NCS) scheme consists of a triple of
efficient algorithms Σ = (Keygen, Sign,Verify) with the following specifications.

Keygen(λ, n): is a probabilistic algorithm that takes as input a security param-
eter λ ∈ N and an integer n ∈ poly(λ) denoting the length of vectors to be
signed. It outputs a positive integer N ∈ N, a public key pk, the corresponding
private key sk and the description of an efficiently samplable file identifier
space I.

Sign(sk, id, V ): is a (possibly probabilistic) algorithm that takes as input a private
key sk, a file identifier id ∈ I and a vector subspace V (described as a set
of linearly independent vectors v1, . . . , vm ∈ Zn

N ) of dimension m < n. It
outputs a signature σ.

Verify(pk, id, y, σ): is a deterministic algorithm that takes as input a public key
pk, a file identifier id ∈ I, a vector y and a signature σ. It outputs 1 or 0.

Correctness requires that, for all λ ∈ N, all integers n ∈ poly(λ) and all triples
(pk, sk, I) ← Keygen(λ, n), it holds that for all id ∈ I and all vector subspace
V ⊂ Zn

N , if σ = Sign(sk, id, V ), then Verify(pk, id, y, σ) = 1 for all y ∈ V .
In what follows, we define homomorphic network coding signature schemes.

Unlike previous homomorphic schemes [7,12], the construction in this paper uses
a probabilistic signing algorithm. To make it possible to publicly combine sig-
natures on distinct vectors from the same file, the signer has to re-use part of
his random coins to sign all vectors of the subspace. As long as these signatures
are generated using the appropriate coins, network nodes can always combine
them. However, attention must be paid to the fact that anyone can attempt to
re-randomize signatures so as to prevent them from being combinable later on
and disrupt the system. For this reason, network nodes have to make sure that
valid signatures of vectors from the same file were produced using compatible
randomness before combining them. We thus slightly modify the specification of
homomorphic NCS schemes [7] and add a compatibility-checking algorithm that
allows testing whether signatures are indeed combinable.

Definition 2. A homomorphic network coding signature scheme is a tuple of
efficient algorithms Σ = (Keygen, Sign,CompatibilityCheck,Combine,Verify)

Keygen(λ, n): is a probabilistic algorithm that takes as input a security param-
eter λ ∈ N and an integer n ∈ poly(λ) denoting the length of vectors to be
signed. It outputs a key pair (pk, sk) and the description of a file identifier
space I.

Sign(sk, id, v): is a possibly randomized algorithm that takes in a private key sk,
a file identifier id ∈ I and a vector v. It outputs a signature σ.

CompatibilityCheck(pk, id, {σi}�
i=1): takes as input a public key pk, a file iden-

tifier id and a set of � signatures {σi}�
i=1. It outputs 1 if these signatures are

deemed compatible for combination and 0 otherwise.
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Combine(pk, id, {(βi, σi)}�
i=1): is a (possibly randomized) algorithm that takes

as input a public key pk, a file identifier id and � tuples (βi, σi), each one of
which consists of a weight βi and a signature σi. Intuitively, the output is a
signature σ on the vector y =

∑�
i=1 βivi, where σi is a signature on vi.

Verify(pk, id, y, σ): is a deterministic algorithm that takes as input a public key
pk, a file identifier id ∈ I, a signature σ and a vector y. It outputs 0 or 1.

Correctness is formulated by mandating that, for all security parameters λ ∈ N,
all integers n ∈ poly(λ) and all triples (pk, sk, I) ← Keygen(λ, n), the following
holds.

1. For all id ∈ I and all n-vectors y, if σ = Sign(sk, id, y), then we necessarily
have Verify(pk, id, y, σ) = 1.

2. For all id ∈ I, any � > 0 and any set of vectors {vi}�
i=1, if σi = Sign(sk, id, vi)

for i = 1 to �, then CompatibilityCheck(pk, id, {σi}�
i=1) = 1.

3. For all id ∈ I, any � > 0 and any set of triples {(βi, σi, vi)}�
i=1, if the following

two conditions are satisfied
a. Verify(pk, id, vi, σi) = 1 for each i ∈ {1, . . . , �},
b. CompatibilityCheck(pk, id, {σi}�

i=1) = 1,
then it must hold that Verify

(
pk, id,Combine(pk, id, {(βi, σi)}�

i=1), σ
)

= 1.

In the following, we say that signatures {σi}�
i=1 are compatible if they correspond

to the same id ∈ I and if it holds that CompatibilityCheck(pk, id, {σi}�
i=1) = 1.

When {σi}�
i=1 is a set of compatible signatures, we say that σ is compatible

with {σi}�
i=1 if {σ} ∪ {σi}�

i=1 forms a set of compatible signatures. In particu-
lar, when a signature σ̃ of a subspace V consists of signatures (σ1, . . . , σm) on
independent vectors v1, . . . , vm ∈ V , we say that σ is compatible with σ̃ if it is
compatible with all {σi}m

i=1.

Conversion. We recall how a homomorphic network coding signature allows
signing vector subspaces, as noted in [7]. Let scheme Σ2 = (Keygen2, Sign2,
CompatibilityCheck2,Combine2,Verify2) be a homomorphic NCS scheme. An or-
dinary network coding signature Σ1 = (Keygen1, Sign1,Verify1) can be obtained
as follows.

Keygen1(λ, n) = Keygen2(λ, n)
Sign1(sk, id, V ) = (σ1, . . . , σm), where σi = Sign2(sk, id, vi) for i = 1 to m and

v1, . . . , vm is a properly augmented basis of V ⊆ Zn
N .

Verify1(pk, id, y, σ) = outputs 1 if and only if{
CompatibilityCheck2(pk, id, {σi}m

i=1) = 1
Verify2(pk, id, y,Combine2(pk, id, {(yn−m+i, σi)}m

i=1)) = 1.

Security. The security definition hereafter slightly generalizes the one of [7].
It requires that it be infeasible to publicly destroy the “combinability” of valid
signatures without rendering them invalid when they are considered individually.
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Our goal is to guarantee that, if valid signatures of several vectors from the same
file have incompatible randomness, the signer is necessarily deviating from the
specification of the scheme. When such a bogus or misbehaving signer is detected,
honest network nodes may simply stop processing their packets.

Definition 3. A network coding signature scheme Σ = (Keygen, Sign,Verify)
is secure if no probabilistic polynomial time (PPT) adversary has non-negligible
advantage (as a function of the security parameter λ ∈ N) in the following game:

1. The adversary A chooses an integer n ∈ N and sends it to the challenger
who runs Keygen(λ, n) and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions, A chooses a linear subspace Vi ⊂ Zn
N of

dimension mi < n. The challenger replies by choosing a file identifier idi ∈ I
from the identifier space I and returns idi and σi = Sign(sk, idi, Vi) to A.

3. A outputs an identifier id�, a signature σ� and a vector y ∈ Zn
N . The ad-

versary A is deemed successful if Verify(pk, id�, y�, σ�) = 1 and either of the
following holds:
◦ (Class i): id� �= idi for any i and y� �= 0.
◦ (Class ii): id� = idi for some i ∈ {1, . . . , q} and the signature σ� is not

compatible with σi.
◦ (Class iii): id� = idi for some i ∈ {1, . . . , q} and y� �∈ Vi.

A’s advantage is defined as his probability of victory taken over all coin tosses.
As in [7], a homomorphic NCS scheme Σ′ is said to be secure if the network

coding signature constructed via the conversion presented above is secure.

2.3 Complexity Assumptions

We consider groups (G,GT ) of composite order N = p1p2p3 for which a bilinear
map e : G × G → GT is computable. In the following, for each i ∈ {1, 2, 3}, we
denote by Gpi the subgroup of order pi. Also, for all distinct i, j ∈ {1, 2, 3}, we
call Gpipj the subgroup of order pipj .

An important property of composite order groups is that pairing two elements
of order pi and pj , with i �= j, always gives the identity element 1GT .

In this setting, we rely on the following assumptions introduced in [17].

Assumption 1. Given g R← Gp1 , X3
R← Gp3 , and T , it is infeasible to efficiently

decide if T ∈R Gp1p2 or T ∈R Gp1 .
Assumption 2. Let g,X1

R← Gp1 , X2, Y2
R← Gp2 , Y3, Z3

R← Gp3 . Given a tuple
(g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R G or T ∈R Gp1p3 .

Assumption 3. Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and α, s R← ZN .
Given (g, gαX2, X3, g

sY2, Z2), it is infeasible to compute e(g, g)αs.

We note that, while Lewko and Waters rely on the decisional variant of Assump-
tion 3 (according to which e(g, g)αs is indistinguishable from a random element
of GT ), its computational counterpart suffices here.
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3 Homomorphic NCS Scheme in the Standard Model

Intuitively, the construction is based on an observation that network coding sig-
natures can be seen as an implication of the spatial encryption primitive intro-
duced by Boneh and Hamburg [8] in the same way as identity-based encryption
implies digital signatures (according to an observation by Naor reported in [6]).
In spatial encryption, private keys are associated with affine subspaces while
ciphertexts correspond to vectors. Decryption is possible when the ciphertext’s
vector lies in the subspace of the key. By applying Naor’s transformation to the
spatial encryption scheme of [8], one readily obtains a sort of selectively secure
network coding signature, modulo some twist to bind the file identifier to the
subspace which is being signed. By itself, this transformation does not provide
the homomorphic property that we are after. To obtain it, we need to start from
a specific variant of the NCS scheme derived from the spatial encryption sys-
tem of [8] and carefully re-use the same randomness to separately sign vectors
of the same subspace. Full security (as opposed to selective security [5]) is ob-
tained using the Lewko-Waters techniques to build (hierarchical) identity-based
encryption schemes [17].

More precisely, the public key comprises the description of bilinear groups
(G,GT ) of order N = p1p2p3, a number of Gp1 elements (g, u, {hi}n

i=0) as well
as e(g, g)α for some α R← ZN . The first two components of each signature form a
selectively-secure Boneh-Boyen signature [5] (σ1, σ2) = (gα · (u · hid

0 )r, gr) on the
file identifier id. As implicitly showed in [17], this signature can be proved fully
secure if g, u and h0 live in the subgroup of order p1 and if σ1, σ2 are multiplied
by a random element of Gp3 . This signature (σ1, σ2) is then augmented with an
element σ3 = (

∏n
j=1 h

vj

j )r, where (v1, . . . , vn) ∈ Zn
N is the vector to be signed. If

all the vectors of span(v1, . . . , vm) were signed altogether (by introducing one σ3
per base vector), signatures would have nearly the same shape as private keys
in the spatial encryption scheme of [8]: the only difference is the introduction of
a file identifier in σ1. Fortunately, base vectors can be signed separately as long
as they are signed using the same exponent r. In this case, anyone can publicly
compute a signature on any linear combination of v1, . . . , vm.

To save the signer from maintaining a state and remember which random
exponents were used to sign the vectors of all subspaces, r ∈ ZN can be de-
rived by applying a pseudorandom function to the file identifier id so as to be
re-computable later on. We emphasize that the use of a PRF is not meant to
de-randomize the scheme in an attempt to obtain unique signatures. The goal is
simply to render the signer stateless.

To achieve security in the sense of definition 3, we need to keep signatures
from being publicly re-randomizable in their Gp1 components. A simple solu-
tion is to compute (σ1, σ2) as a signature on a hash value of both id and e(g, g)r,
which prevents from altering the underlying r without invalidating the signature.
Although this simple trick would not work with Waters signatures [23] (because
their security proof would cease to go through), it is compatible with the dual
encryption technique [24,17] which is used to prove security. In addition, anyone
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can detect if vectors of the same file are signed using different values of r and
only the signer can be blamed in such a situation.

3.1 Construction

Keygen(λ, n): given a security parameter λ ∈ N and an integer n ∈ poly(λ),
choose bilinear groups (G,GT ) of order N = p1p2p3, where pi > 2λ for each
i ∈ {1, 2, 3}. Choose α R← ZN , g R← Gp1 , Xp3

R← Gp3 , b, ai
R← ZN for i = 0

to n. Then, select a collision-resistant hash function H : {0, 1}∗ → ZN , an
identifier space I and pick a random seed κ R← {0, 1}τ for a pseudorandom
function Ψ : {0, 1}τ × I → ZN , where τ ∈ poly(λ). The private key is
sk :=

(
gα, κ

)
while the public key is

pk :=
(
(G,GT ), g, e(g, g)α, u = gb, {hi = gai}i=0,...,n, Xp3 , H

)
.

Sign(sk, id, v): on input of a vector v = (v1, . . . , vn) ∈ Zn
N , a file identifier

id ∈ I and the private key sk =
(
gα, κ

)
, conduct the following steps.

First, compute a pseudorandom scalar r = Ψ(κ, id) ∈ ZN . Then, compute
id′ = H(id, e(g, g)r) ∈ ZN , choose R3, R

′
3, R

′′
3

R← Gp3 and compute a signa-
ture σ = (σ1, σ2, σ3) as

σ1 = gα · (u · hid′
0 )r · R3, σ2 = gr · R′

3, σ3 =
(
hv1

1 · · ·hvn
n

)r · R′′
3

CompatibilityCheck(pk, id, {σi}�
i=1): parses σi as (σi,1, σi,2, σi,3) ∈ G3 for i = 1

to �. The algorithm will return 1 if and only if all σi,2 have the same Gp1

component: for i = 2 to �, it checks if e(σ1,2/σi,2, g) = 1GT and returns 0
otherwise. If all checks succeed, it returns 1.

Combine(pk, id, {(βi, σi)}�
i=1): given pk, a file identifier id and � tuples (βi, σi),

parse σi as σi = (σi,1, σi,2, σi,3) for i = 1 to �. Set σ1 = σ1,1 ·R3, σ2 = σ1,2 ·R′
3

for randomly chosen R3, R
′
3

R← Gp3 . Then, compute σ3 =
∏�

i=1 σβi

i,3 ·R′′
3 , with

R′′
3

R← Gp3 , and output (σ1, σ2, σ3).
Verify(pk, id, y, σ): given a public key pk =

(
g, e(g, g)α, u, {hi}n

i=0, Xp3

)
, a sig-

nature σ = (σ1, σ2, σ3) and a vector y = (y1, . . . , yn) ∈ (ZN )n, compute
id′ = H(id, e(σ2, g)) and return 1 if and only if

e(σ1, g) = e(g, g)α · e(u · hid′
0 , σ2) and e(σ3, g) = e(σ2, h

y1
1 · · ·hyn

n ). (2)

Verifying the correctness of the scheme is straightforward since pairing an ele-
ment of Gp1 with an element of Gp3 always gives the identity element in GT .

Efficiency. Signatures only consist of 3 group elements. Without optimiza-
tions, verifying individual signatures entails to compute four pairings. However,
when multiple signatures must be checked before being combined, a constant
number of pairing evaluations suffices when randomized batch verification tech-
niques are used.
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Indeed, when network nodes process � signatures {(σi,1, σi,2, σi,3)}�
i=1 from

the same file identified by id ∈ I, they can first check that all {σi,2}�
i=1 have the

same Gp1 component by testing if e
(∏�

i=2(σ1,2/σi,2)ωi , g
)

= 1GT for randomly
chosen ω2, . . . , ω�

R← ZN . If this test is satisfied, σ1,2, . . . , σ�,2 all correspond
to the same r, with overwhelming probability, and the same σ1,2 can be used to
verify equations (2) for i = 1 to �. Namely, if σi = (σi,1, σi,2, σi,3) pertains to
vi = (vi,1, . . . , vi,n), signatures are all valid if e(σi,1, g) = e(g, g)α · e(u ·hid′

0 , σ1,2)
and e(σi,3, g) = e(σ1,2,

∏n
k=1 h

vi,k

k ) for i = 1 to �. Then, if the network node picks
randomizers δi, δ

′
i

R← ZN , for i = 1 to �, all signatures can be batch-verified by
testing if

e
(
g,

�∏
i=1

σδi

i,1 ·
�∏

j=1

σ
δ′

j

j,3

)
= e(g, g)α·∑ �

i=1 δi · e
(
σ1,2, (u · hid′

0 )
∑ �

i=1 δi ·
n∏

k=1

h
∑ �

j=1 δ′
jvjk

k

)
.

When verification fails, recent techniques [21] can be adapted to determine which
signatures are bad and which packets should be filtered.

As in earlier standard model constructions [7,3], the public key size is linear
in the dimension n of vectors. We leave it as an interesting open problem to
avoid this dependency without resorting to random oracles.

Converted Scheme. From the homomorphic network coding signature, one
can obtain an ordinary network coding signature via the generic conversion given
by Boneh et al. [7] (and recalled in section 2.2). Applying this conversion to our
scheme results in the signature of the form {(σi,1, σi,2, σi,3)}m

i=1. This scheme
is redundant and we can reuse the first two elements for all i. Indeed to sign
a subspace V where v1, . . . , vm is the properly augmented basis, the signing
algorithm outputs σ = (σ1, σ2, {σ3,i}m

i=1) where

σ1 = gα · (gb+a0id′
)r · R3, σ2 = gr · R′

3, σ3,i = (g〈�a,�vi〉)r ·R′′
3,i,

where R3, R
′
3, R

′′
3,i ∈R Gp3 and we denote a = (a1, . . . , an). In the next section,

we will prove the security of this scheme instead of the scheme converted with
the generic conversion.

3.2 Security Proof

We first give a simple lemma describing the general form of signatures that are
accepted by the verification of the proposed NCS scheme (with redundancy cut
as mentioned above).

Lemma 1. Foranyidentifier-vector-signaturetuple(id, y, σ = (σ1, σ2, {σ3,i}m
i=1)),

if it holds that Verify(pk, id, y, σ) = 1, then we have

σ1 = gα · (gb+a0 id′)r · Z1, σ2 = gr · Z2, σ3,i = (g〈�a,�vi〉)r · Z3,i, (3)



Homomorphic Network Coding Signatures in the Standard Model 27

where id′ = H(id, e(σ2, g)), for some r ∈ ZN , Z1, Z2, Z3,i ∈ Gp2p3 and some
vectors v1, . . . , vm ∈ Zn

N such that

a(U(yR)
 − y
) = 0, where U =

⎛⎝v
1 · · · v
m

⎞⎠ (4)

where we write y = yL||yR with yL ∈ Zn−m
N , yR ∈ Zm

N .

Proof. Let an id-vector-signature tuple (id, y, σ = (σ1, σ2, {σ3,i}m
i=1)) be a valid

tuple, that is Verify(pk, id, y, σ) = 1. We will prove that σ will have the form of
equation (3). First, since the tuple is accepted, we have

e(σ1, g) = e(g, g)α · e(gb · (ga0)id
′
, σ2) (5)

e(
m∏

i=1

σ
yn−m+i

3,i , g) = e(σ2, g
〈�a,�y〉), (6)

where id′ = H(id, e(σ2, g)). Since σ2 ∈ G, we can write σ2 = grZ2 for some
r ∈ ZN and Z2 ∈ Gp2p3 . Equation (5) then implies σ1 = gα · (gb+a0id′

)r · Z1 for
some Z1 ∈ Gp2p3 , as claimed. Similarly, we have σ3,i = (gβi)r · Z3,i for some
βi ∈ ZN . It remains to prove the property of βi. Equation (6) implies that∑

i=1 βiyn−m+i = 〈a, y〉. If we write βi = 〈a,vi〉 for some vi ∈ Zn
N , then the

equation (4) is obtained. This concludes the proof. ��

Theorem 1. The scheme is a secure homomorphic network coding signature if
Ψ is a secure pseudorandom function, if H is a collision-resistant hash function
and if Assumption 1, Assumption 2 and Assumption 3 all hold.

Proof. The proof follows the dual system methodology used in [24,17]. From
Lemma 1, any valid identifier-vector-signature triple (id, y, σ) will have the fol-
lowing generic form:

σ1 = gα · (gb+a0id′
)r · gw1

2 · R1, σ2 = gr · gw2
2 · R2, (7)

σ3,i = (g〈�a,�vi〉)r · gw3,i

2 ·R3,i, (8)

where id′ = H(id, e(σ2, g)), for some r ∈ ZN , w1, w2, w3,i ∈ ZN , some group
elements R1, R2, R3,i ∈ Gp3 and vectors v1, . . . , vm ∈ Zn

N which satisfied Eq. (4).
We will distinguish two types of signatures as follows.

◦ Type A: (w1, w2, w3,1, . . . , w3,n) = (0, 0, 0, . . . , 0) mod p2.
◦ Type B: (w1, w2, w3,1, . . . , w3,n) �= (0, 0, 0, . . . , 0) mod p2.

We will call Type A forgery (resp. Type B forgery) a fake signature of Type A
(resp. Type B) which is produced by the forger in the game of definition 3.

The proof considers a sequence of q + 3 games. It starts with the real at-
tack game Gamereal followed by Game1,Game2,Game3,Game4.1, . . . ,Game4.q.
In the following we let V (j) be the j-th query where j ∈ {1, . . . , q} and let
(σ(j)

1 , σ
(j)
2 , {σ(j)

3,i }m
i=1) be the answer to the query.
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Game1: Replacing r with random. This game is identical to as Gamereal

with the difference that the challenger generates all signatures using truly
random exponents r R← ZN (and care is taken to use the same r to sign all
vectors of the same subspace) instead of pseudorandom values. Clearly, the
security of the PRF implies that Game1 is computationally indistinguishable
from Gamereal.

Game2: Eliminating collision. It is as Game1 but the game will abort if

– Adversary A outputs a class-(i) forgery (i.e., id� �= idj for any j and
y� �= 0) or a class-(ii) forgery (i.e., id� = idj for some j ∈ {1, . . . , q}
and e(σ�

2 , g) �= e(σ(j)
2 , g)) but for which id′� = id′j . In other words, the

collision of H occurs as H(id�, e(σ�
2 , g)) = H(idj , e(σ

(j)
2 , g)), for some

index j ∈ {1, . . . , q}.
It is straightforward to show that under the collision-resistance of H the
difference between Game1 and Game2 is negligible.

Game3: Restriction modulo p2. It is as Game2 but the game will further
abort if either of the following event occurs.

– Adversary A outputs a class-(i) forgery (i.e., id� �= idj for any j and
y� �= 0) or a class-(ii) forgery (i.e., for which id� = idj for some j and
e(σ�

2 , g) �= e(σ2,j , g)) but id′� = id′j mod p2 (even if id′� �= id′j) for some
index j ∈ {1, . . . , q}.

– Adversary A outputs a class-(iii) forgery (i.e., id� = idj for some j
and y� �∈ Vj) but for which y� mod p2 ∈ Vj mod p2. Here, we denote
by V mod p2 the subspace V reduced in Zn

p2
. More precisely, for any

subspace V = span(v1, . . . , vm) ⊂ Zn
N , the notation V mod p2 denotes

span(v1 mod p2, . . . , vm mod p2) ⊂ Zn
p2

.

Lemma 2 shows that, under Assumption 1 and Assumption 2, the difference
between Game2 and Game3 is negligible. Then, Lemma 3 shows that, if A
can output a Type B forgery in Game3, Assumption 1 is false.

Game4.0: Simplification. This is a reformulation of Game3 for ease of reading.
The game will accept only the following forgery. (Otherwise, it will abort).

– Adversary A outputs a forgery with id′� �= id′j mod p2 for any j and
y� �= 0.

– AdversaryA outputs a forgery for which id� = idj , for some j ∈ {1, . . . , q},
and y� mod p2 �∈ Vj mod p2.

We note that in this game, as in Gamereal, A is only given Type A signatures.

Game4.k (1 ≤ k ≤ q): Hybrid types. It is as Game0 but the adversary ob-
tains Type B signatures at the first k signing queries whereas the challenger
answers the remaining q−k signing queries by returning Type A signatures.
Lemma 4 shows that, if the adversary has noticeably higher probability to
output a Type A forgery in Game4.(k+1) than in Game4.k, there must be a
breach in Assumption 2.
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Game4.q: All type B. The forger A only obtains Type B signatures and it
becomes easy to prove that any Type A forgery allows breaking Assumption
3, as shown by Lemma 5.

Denote negl as a negligible function in λ. Let Wi,W
A
i ,W

B
i be the probability that

the adversary successfully outputs a forgery in game i of either type, type A,
and type B respectively. We then have that |Wreal − W3| ≤ negl guaranteed by
the security of PRF, collision-resistance hash, and Lemma 2. Also WB

3 ≤ negl,
|WA

4,0 − WA
4,q| ≤ negl, and WA

4,q ≤ negl are implied by Lemma 3, 4, and 5,
respectively. Combining the above, we obtain

Wreal ≤ |Wreal − W3| + WB
3 + |WA

4,0 − WA
4,q| + WA

4,q ≤ negl,

where we recall that W3 = W4,0 and see that W3 = WA
3 + WB

3 . This concludes
the proof. ��

Lemma 2. Any significant difference between the adversary’s behaviors in Game2
and Game3 contradicts either Assumption 1 or Assumption 2.

Proof. The two games are identical unless the adversary A outputs a forgery
involving a pair (id′�, y�) such that either: (1) id′� = id′j mod p2 whereas we
have id′� �= id′j mod N for some j ∈ {1, . . . , q}; (2) there exists j ∈ {1, . . . , q}
such that id′� = id′j mod N but det(M) = 0 mod p2 and det(M) �= 0 mod N ,
where M ∈ Zn×n

N is the matrix

M =

⎛⎝ Rn×(n−mj−1) v
j,1 · · · v
j,mj
y�


⎞⎠ ,

with mj = dim(Vj) < n, such that Rn×(n−mj−1) is a n × (n − mj − 1) ma-
trix whose columns are orthogonal to span(vj,1, . . . , vj,mj , y

�) (such a matrix
can be obtained via the Gram-Schmidt process). The matrix has the desired
properties since y� mod p2 ∈ V mod p2 although y� �∈ V . The simulator B can
extract a non-trivial factor of N by computing gcd(id′� − id′j , N) in case (1) or
gcd(det(M), N) in case (2). As shown in [17][Lemma 5], this allows breaking ei-
ther Assumption 1 or Assumption 2 depending on which factor is extracted. ��

Lemma 3. Under Assumption1 1, no PPT adversary can output a Type B
forgery in Game3.

Proof. We show that, if the adversary outputs a Type B forgery in Game3, there
is an algorithm B that, given (g,X3, T ), decides if T ∈R Gp1 or T ∈R Gp1p2 .

The distinguisher B sets up the public key pk as e(g, g)α, Xp3 = X3, u = gb,
hi = gai for i = 0 to n. Denote a = (a1, . . . , an). It answers all private key queries
according to the specificationof the signing algorithmsince it knows theprivatekey.
1 We note that the lemma holds under a weaker assumption which is the hardness of

finding an element of order p2 or p2p3 given (g,X3).
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At the end, A outputs a file identifier id�, a Type-B signature (σ�
1 , σ

�
2 , {σ�

3,i}m
i=1)

and a vector y�. The algorithm B then computes

η1 =
σ�

1

gα · σ�
2

b+a0 id′� , η2 =

∏m
i=1 σ�

3,i
yn−m+i

σ�
2
〈�a,�y�〉 .

The Gp1 components of these terms are necessarily canceled out due to equa-
tions (3)-(4). Recall that a Type-B signature is in the generic form (7) with
(w1, w2, w3,1, . . . , w3,n) �= (0, 0, 0, . . . , 0) mod p2. For this reason, the Gp2 com-
ponents in η1, η2 will be g

w1−w2(b+a0 id′�)
2 and g

∑m
i=1 w3,iyn−m+i−w2〈�a,�y�〉

2 , respec-
tively. Hence, as long as b, a0,a mod p2 are information theoretically hidden to
the adversary, there must be an element of Gp2p3 with non-trivial Gp2 com-
ponent among η1, η2. But this is true since b, a0,a mod p2 is uncorrelated to
b, a0,a mod p1, which is the only information available from the public key.
Therefore, our distinguisher B can conclude that T ∈ Gp1p2 if and only if ei-
ther e(T, η1) �= 1GT or e(T, η2) �= 1GT . ��
Lemma 4. The adversary outputs a Type A forgery with negligibly different
probabilities in Game4.k and Game4.(k+1) if Assumption 2 holds.

Proof. Let us assume that a forger A has significantly better probability of
outputting a Type A forgery in Game4.(k+1) than in Game4.k. We outline a
distinguisher B that breaks Assumption 2 with non-negligible advantage.

Algorithm B takes as input (g,X1X2, Z3, Y2Y3, T ) and uses its interaction with
A to decide if T ∈ G or T ∈ Gp1p3 . Recall that A must obtain Type B signatures
at her first k signing queries and Type A signatures at the last q− k− 1 queries.
We will simulate the interaction so that the kth-query will be a Type A signature
(hence Game4.k) if T ∈ Gp1p3 and a Type B signature (hence Game4.(k+1)) if
T ∈ G. We then show that the distinguisher B can indeed distinguish whether
A’s forgery will be of Type A or Type B with overwhelming probability.

To this end, B prepares the public key pk by choosing α, b R← ZN , ai
R← ZN ,

for i = 0 to n, and setting u = gb, hi = gai for i = 0 to n. The public key
pk = {g, e(g, g)α, u, h0, h1, . . . , hn, Z3} is given to A. Then, B answers A’s queries
depending on the index j ∈ {1, . . . , q} of the query.

[Case j < k]. To sign the jth vector space V (j) = span(v(j)
1 , . . . , v

(j)
m ) chosen

by A, B first chooses a random file identifier idj
R← I and a random exponent

r R← ZN . It then chooses w1, w2, {w3,i}m
i=1

R← ZN , Z3, Z
′
3, {Z ′′

3,i}m
i=1

R← Gp3 . Let
id′j = H(idj , e(g, g)r). It finally computes a Type-B signature (σ1, σ2, {σ3,i}m

i=1)
on V (j) as

σ1 = gα · (u · hid′j
0 )r · (Y2Y3)w1 · Z3, σ2 = gr · (Y2Y3)w2 · Z ′

3,

σ3,i = (g〈�a,�v
(j)
i 〉)r · (Y2Y3)w3,i · Z ′′

3,i.

[Case j > k]. In this case, A simply computes a Type A signature using the
private key gα as specified by the signing algorithm (except that, as in Game1,
r is chosen at random in ZN rather than as a pseudorandom value).
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[Case j = k]. To answer the kth private key query V (j) = span(v(j)
1 , . . . , v

(j)
m ), B

first picks a random file identifier idj
R← I. It then chooses w1, w2, {w3,i}m

i=1
R←

ZN , Z3, Z
′
3, {Z ′′

3,i}m
i=1

R← Gp3 . It uses its input T to compute a hash value
id′j = H(idj , e(T, g)). It finally computes the signature (σ1, σ2, {σ3,i}m

i=1) on the
subspace V (j) as

σ1 = gα · T b+a0id′j · Z3, σ2 = T · Z ′
3, σ3,i = T 〈�a,�v

(j)
i 〉 · Z ′′

3,i.

It is easy to observe that, in the situation where T ∈R G, if we let gx
2 be the

Gp2 component of T for some x ∈ Z∗
p2

, we obtain a Type B signature where
w1 = x(b + a0id

′
j) mod p2, w2 = x mod p2, and w3,i = x(〈a,v(j)〉) mod p2 for

i = 1 to m. In contrast, if T ∈R Gp1p3 , the above forms a Type A signature.

At the end of the game, A outputs a forgery σ� = (σ�
1 , σ

�
2 , {σ�

3,i}m
i=1) and a

vector y� and a file identifier id� such that the property stated in the Game0
holds. That is either

– a forgery with id′� �= id′j mod p2 for any j and y� �= 0.
– a forgery with id� = idj for some j and y� mod p2 �∈ V (j) mod p2.

At this stage, B halts and checks whether the forgery is of Type A or B. If the
forgery is of Type A, it returns 0 (meaning that T ∈R Gp1p3). If the forgery is
believed to be of Type B, B rather bets on T ∈R Gp1p2p3 and outputs 1.

In order to decide which kind of forgery A comes up with, B uses the input
value X1X2 as follows. The algorithm B computes id′� = H(id�, e(σ�

2 , g)) and

η1 =
σ�

1

gα · σ�
2

b+a0 id′� , η2 =

∏m
i=1 σ�

3,i
yn−m+i

σ�
2
〈�a,�y�〉 .

The Gp1 component of each term is canceled out due to equations (3)-(4). If
e(X1X2, η1) = 1 and e(X1X2, η2) = 1, then the algorithm B deduces that σ�

is of Type A. Otherwise, it is seen as a Type B signature. To see why this test
works with overwhelming probability, we note that, since σ� properly verifies,
it must be of the form of equation (7) with (w�

1 , w
�
2 , w

�
3,1, . . . , w

�
3,m) so that we

have

e(X1X2, η1) = e(X2, g2)w�
1−w�

2(b+a0 id′�),

e(X1X2, η2) = e(X2, g2)
∑m

i=1 w�
3,iyn−m+i−w�

2(〈�a,�y�〉).

If σ� is of Type B, it can only be interpreted as a Type A signature if and only
if

w�
1 − w�

2(b + a0id
′�) = 0 mod p2, and (9)

m∑
i=1

w�
3,iyn−m+i − w�

2(〈a, y�〉) = 0 mod p2. (10)



32 N. Attrapadung and B. Libert

We show that this occurs with negligible probability as follows.

– If the forgery is of the first class, that is id� �= idj for any j ∈ {1, . . . , q},
then b + a0id

′� mod p2 is independent of A’s view which consists only of
b + a0idk mod p2. Therefore equation (9) occurs with negligible probability.

– If the forgery is of the second class, that is y� mod p2 �∈ V (j) mod p2 for any j,
then 〈a, y�〉 mod p2 is independently of A’s view. Indeed, let us consider what
A knows in the information theoretic sense about the values (a1, . . . , an)
taken modulo p2. It amounts to the right-hand side of the following system
of linear equations:⎛⎜⎜⎝

—v
(k)
1 —
...

—v
(k)
m —

⎞⎟⎟⎠
⎛⎜⎝a1

...
an

⎞⎟⎠ =

⎛⎜⎝ t1
...
tm

⎞⎟⎠ mod p2,

where we let gti
2 be the Gp2 component of σ(k)

3,i . Since y� mod p2 �∈ V (k) mod
p2, y� is not in the row space of the above matrix. Therefore, 〈a, y�〉 mod p2
is independently of A’s view. ��

Lemma 5. Any PPT algorithm A outputting a Type A forgery in Game4.q al-
lows breaking Assumption 3.

Proof. We outline an algorithm B that takes as input
(
g, gαX2, X3, g

sY2, Z2
)

and aims at computing T = e(g, g)αs using its interaction with A. To this end,
B generates the public key pk =

(
g, e(g, g)α, u, {hi}i=0,...,n, Xp3

)
by choosing

b, a0, . . . , an
R← ZN and setting Xp3 = X3, e(g, g)α = e(gαX2, g) as well as

u = gb and hi = gai for i = 0 to n.
When the forger A makes a private key query V (j) = span(v(j)

1 , . . . , v
(j)
n ),

B chooses id R← I, r R← ZN , w1, w2
R← ZN , R3, R

′
3, R

′′
3

R← Gp3 , w3,i
R← ZN ,

R3,i
R← Gp3 , for i = 1 to n. It defines id′ = H(id, e(g, g)r) ∈ ZN and computes

σ1 = (gαX2) · (u · hid′
0 )r · Zw1

2 ·R3, σ2 = gr · Zw2
2 · R′

3,

σ3,i = (g〈a,�v
(j)
i 〉)r · Zw3,i

2 · R3,i

which has the distribution of a Type B signature.
At the end of the game, A outputs a valid tuple of a file identifier id�, a

signature σ = (σ�
1 , σ

�
2 , {σ�

3,i}m
i=1) of Type-A and a vector y�. Algorithm B then

computes

T = e
(
gsY2,

σ�
1

σ�
2

b+a0 id′�

)
= e
(
gsY2,

gα · (gb+a0 id′�)r · Z1

(grZ2)
b+a0 id′�

)
= e(g, g)αs.

where the second equation is due to lemma 1 (Z1, Z2 ∈ Gp2p3). Since σ is of Type
A signature, therefore σ�

1 , σ
�
2 has no Gp2 component. Hence, the component Y2 is

canceled out in the pairing computation. This yields T = e(g, g)sα. To conclude,
in Game4.q, A’s advantage is thus negligible if Assumption 3 holds. ��
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Abstract. This paper presents a fully secure (adaptive-predicate un-
forgeable and private) attribute-based signature (ABS) scheme in the
standard model. The security of the proposed ABS scheme is proven un-
der standard assumptions, the decisional linear (DLIN) assumption and
the existence of collision resistant (CR) hash functions. The admissible
predicates of the proposed ABS scheme are more general than those of
the existing ABS schemes, i.e., the proposed ABS scheme is the first to
support general non-monotone predicates, which can be expressed using
NOT gates as well as AND, OR, and Threshold gates, while the exist-
ing ABS schemes only support monotone predicates. The proposed ABS
scheme is efficient and practical. Its efficiency is comparable to (several
times worse than) that of the most efficient (almost optimally efficient)
ABS scheme the security for which is proven in the generic group model.

1 Introduction

1.1 Background

The concept of digital signatures was introduced in the seminal paper by Diffie
and Hellman in 1976. In this concept, a pair comprising a secret signing key, sk,
and public verification key, pk, is generated for a signer, and signature σ of mes-
sage m generated using sk is verified by the corresponding pk. Hence, the signer
of (m,σ) using sk is identified through pk. Although it is one of the requirements
of signatures, there is no flexibility or privacy in the relationship between signers
and claims attested by signatures due to the tight relation between sk and pk.

Recently, versatile and privacy-enhanced variants of digital signatures have
been studied, where the relation between a signing key and verification key is
more flexible or sophisticated. In this class of signatures, the signing key and
verification key are parameterized by attribute x and predicate v, respectively,
and signed message (m,σ) generated by the signing key with parameter x, skx,
is correctly verified by public-key pk and parameter v, (pk,v), iff predicate v
accepts attribute x, i.e., v(x) holds. The privacy of signers in this class of signa-
tures requires that a signature (for predicate v) generated by skx (where v(x)
holds) release no information regarding attribute x except that v(x) holds.

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 35–52, 2011.
c© International Association for Cryptologic Research 2011
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When predicate v is the equality with parameter v (i.e., v(x) holds iff x = v),
the class of signatures for this predicate is identity-based signatures (IBS) [25].
Here note that there is no room for privacy in IBS, since predicate v uniquely
identifies attribute x of the signer’s secret key, skx, such that x = v.

Group signatures [9] are also in this class of signatures with another type of
predicate v, where v(x) holds iff predicate parameter v is the group identity (or
pkv is a public key identifying group v) and attribute x is a member identity
of group v (or skx is a secret key of member x of group v). Due to the privacy
requirement, signatures generated using skx release no information regarding
member identity x except that x is a member of group v (Note that the concept
of group signatures traditionally requires the privacy-revocation property as well
as the above-mentioned privacy).

Recently, this class of signatures with more sophisticated predicates, attribute-
based signatures (ABS), has been extensively studied [11–13, 16–19, 24, 27],
where x for signing key skx is a tuple of attributes (x1, . . . , xi), and v for verifi-
cation is a threshold or access structure predicate. The widest class of predicates
in the existing ABS schemes are monotone access structures [18, 19], where pred-
icate v is specified by a monotone span program (MSP), (M,ρ), along with a
tuple of attributes (v1, . . . , vj), and v(x) holds iff MSP (M,ρ) accepts the truth-
value vector of (T(xi1 = v1), . . . ,T(xij = vj)). Here, T(ψ) := 1 if ψ is true, and
T(ψ) := 0 if ψ is false (For example, T(x = v) := 1 if x = v, and T(x = v) := 0
if x �= v). In general, such a predicate can be expressed using AND, OR, and
Threshold gates.

An example of such monotone predicate v for ABS is (Institute = Univ. A)
AND (TH2((Department = Biology), (Gender = Female), (Age = 50’s)) OR
(Position = Professor)), where TH2 means the threshold gate with threshold
value 2. Attribute xA of Alice is ((Institute := Univ. A), (Department := Biol-
ogy), (Position := Postdoc), (Age := 30), (Gender := Female))), and attribute
xB of Bob is ((Institute := Univ. A), (Department := Mathematics), (Position
:= Professor), (Age := 45) (Gender := Male))). Although their attributes, xA

and xB, are quite different, it is clear that v(xA) and v(xB) hold, and that
there are many other attributes that satisfy v. Hence Alice and Bob can gener-
ate a signature on this predicate, and due to the privacy requirement of ABS,
a signature for v releases no information regarding the attribute or identity of
the signer, i.e., Alice or Bob (or other), except that the attribute of the signer
satisfies v.

There are many applications of ABS such as attribute-based messaging (ABM),
attribute-based authentication, trust-negotiation and leaking secrets (see [18, 19]
for more details).

The security conditions for ABS are given hereafter (see Section 3.2 for the
formal definitions).

Unforgeability: A valid signature should be produced only by a single signer
whose attribute x satisfies the claimed predicate v, not by a collusion of users
who pooled their attributes together. More formally, no poly-time adversary
can produce a valid signature for a pair comprising predicate and message
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(v,m), even if the adversary adaptively chooses (v,m) after executing secret-
key and signing oracle attacks, provided that x where v(x) holds is not
queried to the secret-key oracle and (v,m) is not queried to the signing
oracle (We simply call this unforgeability “adaptive-predicate unforgeability”
or more simply “unforgeability”).

We can also define a weaker class of unforgeability, ‘selective-predicate
unforgeability,’ where an adversary should choose predicate v for the forgery
signature before executing secret-key and signing oracle attacks.

Privacy: A signature for predicate v generated using secret key skx releases no
information regarding attribute x except that v(x) holds.

More formally, for any pair of attributes (x1,x2), predicate v and mes-
sage m, for which v(x1) and v(x2) hold simultaneously, the distributions
of two valid signatures σ(m,v, skx1) and σ(m,v, skx2) are equivalent, where
σ(m,v, skx) is a correctly generated signature for (m,v) using correct secret
key skx with attribute x (We simply call this condition “privacy”).

Full Security: We say that an ABS scheme is fully secure if it satisfies adaptive-
predicate unforgeability and privacy.

Maji, Prabhakaran, and Rosulek [18, 19] presented ABS schemes for the widest
class of predicates among the existing ABS schemes, monotone access structure
predicates, which cover threshold predicates as special cases. The scheme shown
in [18] is an almost optimally efficient ABS scheme, but the security was only
proven in the generic group model. The scheme shown in [19] is the only existing
ABS scheme for which (full) security was proven in the standard model. It is,
however, much less efficient and more complicated than the scheme in [18] since
it employs the Groth-Sahai NIZK protocols [10] as building blocks.

Li, Au, Susilo, Xie and Ren [16], Li and Kim [17], and Shahandashti and
Safavi-Naini [24] presented ABS schemes that are proven to be secure in the stan-
dard model. However, the proven security is not the full security, but a weaker
level of security with selective-predicate unforgeability. Moreover, the admissible
predicates in [17] are limited to conjunction or (n, n)-threshold predicates, and
those of [16, 24] are limited to (k, n)-threshold predicates.

Guo and Zeng [11] and Yang, Cao and Dong [27] presented ABS schemes for
threshold predicates, but their security definitions do not include the privacy
condition of ABS.

Khader [12, 13] presented ABS schemes for monotone access structure predi-
cates. These schemes, however, do not satisfy the privacy condition of ABS, since
they only conceal the identity of the signer. They also reveal the attributes that
the signer used to generate the signature. In addition, the security is proven in
a non-standard model, the random oracle model.

Based on this background, there are two major problems in the existing ABS
schemes.

1. No ABS scheme for non-monotone predicates, which can be expressed using
NOT gates as well as AND, OR and Threshold gates, has been proposed
(even in a weaker security notion or a non-standard model).
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2. The only fully secure ABS scheme in the standard model [19] is much less
efficient than the (almost optimally efficient) ABS scheme in the generic
group model [18].

Non-monotone predicates should be used in many ABS applications. For exam-
ple, annual review reports in the Mathematics Department of University A are
submitted by reviewers, and these reports are anonymously signed by the review-
ers through ABS with some predicates. The predicates may be selected freely by
them (signers) except that it should be in the following form: NOT((Institute =
Univ. A) AND (Department = Mathematics)) AND (· · · ).

1.2 Our Results

This paper addresses these problems simultaneously.

– This paper proposes the first fully secure (i.e., adaptive-predicate unforge-
able and perfectly private) ABS scheme for a wide class of predicates, non-
monotone access structures, where x for signing key skx is a tuple of
attributes (x1, . . . , xi), non-monotone predicate v is specified by a span pro-
gram (SP) (M,ρ) along with a tuple of attributes (v1, . . . , vj), and v(x) holds
iff SP (M,ρ) accepts the truth-value vector of (T(xi1 = v1), . . . ,T(xij = vj)).
Our scheme can be generalized using non-monotone access structures com-
bined with inner-product relations (see Definition 5 and the remark). More
precisely, attribute x for signing key skx is a tuple of attribute vectors
(e.g., (−→x 1, . . . ,

−→x i) ∈ F n1+···+ni
q ), and predicate v for verification is a non-

monotone access structure or span program (SP) (M,ρ) along with a tuple
of attribute vectors (e.g., (−→v 1, . . . ,

−→v j) ∈ F
n1+···+nj
q ), where the component-

wise inner-product relations for attribute vectors (e.g., {−→x iι · −→v ι = 0 or not
}ι∈{1,...,j}) are input to SP (M,ρ). Namely, v(x) holds iff the truth-value
vector of (T(−→x i1 · −→v 1 = 0), . . . ,T(−→x ij · −→v j = 0)) is accepted by SP (M,ρ).

Remark: In our scheme (Section 4), attribute x is expressed by the form
Γ := {(t, xt) | t ∈ T ⊆ {1, . . . , d}} in place of just an attribute tuple
(x1, . . . , xi), where t identifies a sub-universe or category of attributes, and
xt is an attribute in sub-universe t (examples of (t, xt) are (Name, Alice)
and (Age, 38)). Predicate v is expressed by S := (M,ρ), where ρ is abused
as ρ (defined by SP) combined with {(ti, vi) | i = 1, . . . , �} (see Definitions 4
and 5 for the difference regarding ρ in SP and S).

– The proposed ABS scheme is proven to be fully secure under standard as-
sumptions, the decisional linear (DLIN) assumption (over prime order pair-
ing groups) and the existence of collision resistant (CR) hash functions, in
the standard model.

– In contrast to the ABS scheme in [19] that employs the Groth-Sahai NIZK
protocols, our ABS scheme is more directly constructed without using any
general subprotocols like NIZK. Our construction is based on the dual pairing
vector spaces (DPVS) proposed by Okamoto and Takashima [14, 20–22],
which can be realized from any type of (e.g., symmetric or asymmetric)
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prime order bilinear pairing groups. See Section 2.1 for the concept and
actual construction of DPVS.

– To prove the security (especially the unforgeability), this paper employs
the techniques for fully secure functional encryption (FE) [14, 22], which
elaborately combine the dual system encryption methodology proposed by
Waters [26] and DPVS.

Note that although the techniques for the FE schemes in [14, 22] can be
employed for ABS, it is still a challenging task to construct a fully secure
ABS scheme, since the security requirements of ABS and FE differ in some
important points, for example, the privacy condition is required in ABS
but there is no counterpart notion in FE. This paper develops several novel
techniques for our ABS scheme. See Section 4.1 for more details.

– The efficiency of the proposed ABS scheme is comparable to that of the most
efficient ABS scheme in the generic group model [18], and better than that
of the only existing fully secure ABS scheme in the standard model [19]. See
Section 4.4 for a comparison.

– This paper also presents an extension, multi-authority (MA) setting, of the
proposed ABS scheme in Section 5. One of the merits of our MA-ABS scheme
is that it is seamlessly extended from the original (single-authority (SA)) set-
ting, in which the signing and verification algorithms of the MA-ABS scheme
are essentially the same as those of the original ABS (SA-ABS) scheme.

In MA-ABS, each authority called an attribute authority is responsible
for a category of attributes, and a user obtains a part of secret key for each
attribute from an attribute authority responsible for the category of the at-
tribute. We follow the model of MA-ABS introduced in [18, 19], where a cen-
tral trustee in addition to attribute authorities is required but no interaction
among attribute authorities (and the trustee) is necessary, and different at-
tribute authorities may not trust each other, nor even be aware of each other.

We prove that the proposed MA-ABS scheme is fully secure (in the sense
of the MA-ABS model of [18, 19]) under the DLIN assumption and CR hash
functions in the standardmodel (see the full version of this paper for the proof).
Our MA-ABS scheme is almost as efficient as the original SA-ABS scheme.

1.3 Related Works

– Ring and mesh signatures: Ring and mesh signatures [4, 23] are related
to ABS.

In the ring signatures, the claimed predicate on a signature of message
m is that m is endorsed by one of the users identified by the list of public
keys (pk1, pk2, . . .), or the predicate is a disjunction of a list of public keys.
A valid ring signature can be generated by one of the listed users.

The mesh signatures are an extension of ring signatures, where the predi-
cate is an access structure on a list of pairs comprising a message and public
key (mi, pki), and a valid mesh signature can be generated by a person who
has enough standard signatures σi on mi, each valid under pki, to satisfy
the given access structure.
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A crucial difference between mesh signatures and ABS is the security
against the collusion of users. In mesh signatures, several users can collude
by pooling their signatures together and create signatures that none of them
could produce individually. That is, such collusion is considered to be legiti-
mate in mesh signatures. In contrast, the security against collusion attacks is
one of the basic requirements in ABS and MA-ABS, as described in Section
1.1 and Section 5.

– Anonymous credentials (ACs): Another related concept is ACs [2, 3, 5–
8]. The notion of ACs also provides a functionality for users to demonstrate
anonymously possession of attributes, but the goals of ACs and ABS differ
in several points.

As mentioned in [19], ACs and ABS aim at different goals: ACs target
very strong anonymity even in the registration phase, whereas under less
demanding anonymity requirements in the registration phase, ABS aims to
achieve more expressive functionalities, more efficient constructions and new
applications. In addition, ABS is a signature scheme and a simpler primitive
compared with ACs.

1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y

U← A denotes
that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N → R
is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \ {0} by F×
q . A vector sym-

bol denotes a vector representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ F n
q .

For two vectors −→x = (x1, . . . , xn) and −→v = (v1, . . . , vn), −→x · −→v denotes the
inner-product

∑n
i=1 xivi. The vector

−→
0 is abused as the zero vector in F n

q

for any n. XT denotes the transpose of matrix X . A bold face letter denotes
an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace gener-
ated by b1, . . . , bn (resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN ) and B∗ :=
(b∗1, . . . , b

∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i .

2 Preliminaries

2.1 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1.
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Let Gbpg be an algorithm that takes input 1λ and outputs a description of
bilinear pairing groups (q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [14, 20–22] constructed by using symmetric bilinear pairing groups given
in Definition 1.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G × · · · × G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V × V → GT .
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . ,

GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj)=ai and φi,j(ak)=

0 if k �= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0) where

x := (G1, . . . , GN ). We call φi,j “canonical maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and

outputs a description of paramV := (q,V,GT ,A, e) with security parameter λ
and N -dimensional V. It can be constructed by using Gbpg.

The asymmetric version of DPVS, (q,V,V∗,GT ,A,A∗, e), is given in the full
version of [22]. The above symmetric version is obtained by identifying V = V∗

and A = A∗ in the asymmetric version. (For another construction of DPVS using
higher genus Jacobians, see [20].)

2.2 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN Assumption). The DLIN problem is to guess β ∈ {0, 1},
given (paramG, G, ξG, κG, δξG, σκG, Yβ) R← GDLIN

β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e) R← Gbpg(1λ),

κ, δ, ξ, σ
U← Fq, Y0 := (δ + σ)G, Y1

U← G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β
U← {0, 1}. For a probabilistic machine E, we define the advantage of E for

the DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, �)→1

∣∣∣ � R←GDLIN
0 (1λ)

]
−

Pr
[
E(1λ, �)→1

∣∣∣ � R←GDLIN
1 (1λ)

]∣∣∣ . The DLIN assumption is: For any probabilis-

tic polynomial-time adversary E, the advantage AdvDLIN
E (λ) is negligible in λ.
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2.3 Collision Resistant (CR) Hash Functions

Let λ ∈ N be a security parameter. A collision resistant (CR) hash function
family, H, associated with Gbpg and a polynomial, poly(·), specifies two items:

– A family of key spaces indexed by λ. Each such key space is a probabil-
ity space on bit strings denoted by KHλ. There must exist a probabilistic
polynomial-time algorithm whose output distribution on input 1λ is equal
to KHλ.

– A family of hash functions indexed by λ, hk
R← KHλ and D := {0, 1}poly(λ).

Each such hash function Hλ,D
hk maps an element of D to an element of F×

q

with q that is the first element of output paramG of Gbpg(1λ). There must
exist a deterministic polynomial-time algorithm that on input 1λ, hk and
� ∈ D, outputs Hλ,D

hk (�).

Let E be a probabilistic polynomial-time machine. For all λ, we define
AdvH,CR

E (λ) := Pr[(�1, �2) ∈ D2 ∧ �1 �= �2 ∧ Hλ,D
hk (�1) = Hλ,D

hk (�2)], where

D := {0, 1}poly(λ), hk
R← KHλ, and (�1, �2)

R← E(1λ, hk,D). H is a collision resis-
tant (CR) hash function family if for any probabilistic polynomial-time adversary
E , AdvH,CR

E (λ) is negligible in λ.

3 ABS for Non-monotone Predicates

3.1 Span Programs and Non-monotone Access Structures

Definition 4 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables.
A span program over Fq is a labeled matrix, M̂ := (M,ρ), where M is a (�×r) ma-
trix over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1,
. . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For
every input sequence δ ∈ {0, 1}n define submatrix Mδ of M consisting of those
rows whose labels are set to 1 by the input δ, i.e., either rows labeled by some
pi such that δi = 1 or rows labeled by some by some ¬pi such that δi = 0.
(i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

Span program M̂ accepts δ if and only if
−→
1 ∈ span〈Mδ〉, i.e., some linear

combination of the rows of Mδ gives the all one vector,
−→
1 . (The row vector has

the value 1 in each coordinate.) A span program computes boolean function f if
it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive
literals {p1, . . . , pn}. Monotone span programs compute monotone functions. (So,
a span program in general is “non”-monotone.)

We assume that access structure matrix M (of type �×r) satisfies the condition:
Mi �=

−→
0 for i = 1, . . . , �.
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We now introduce a non-monotone access structure with evaluating map γ
by using the inner-product of attribute vectors in a general form. Although we
will show the notion, security definition and security proof of the proposed ABS
scheme in this general form, we will describe the proposed ABS scheme in a
simpler form in Section 4.2. We will show this simpler form of Definition 5 in
the remark.

Definition 5 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes,
each of which is expressed by a pair of sub-universe id and nt-dimensional vector,
i.e., (t,−→v ), where t ∈ {1, . . . , d} and −→v ∈ F nt

q \ {−→0 }.
We now define such an attribute to be a variable, p, of span program M̂ :=

(M,ρ) i.e., p := (t,−→v ). Access structure S is span program M̂ := (M,ρ) along
with variables p := (t,−→v ), p′ := (t′,−→v ′), . . ., i.e., S := (M,ρ) such that ρ :
{1, . . . , �} → {(t,−→v ), (t′,−→v ′), . . ., ¬(t,−→v ),¬(t′,−→v ′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t,−→x t) | −→x t ∈ F nt
q \ {−→0 }, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span
program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = (t,−→v i)] ∧[(t,−→x t) ∈ Γ ] ∧[−→v i ·−→x t = 0] or [ρ(i) = ¬(t,−→v i)] ∧[(t,−→x t) ∈ Γ ]
∧[−→v i · −→x t �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff
−→
1 ∈ span〈(Mi)γ(i)=1〉.

Remark: A simpler form of the inner-product relations in the above-mentioned
access structures is a special case when nt = 2 for all t ∈ {1, . . . , d}, and −→x :=
(1, x) and −→v := (v,−1). Hence, (t,−→x t) := (t, (1, xt)) and (t,−→v i) := (t, (vi,−1)),
but we often denote them shortly by (t, xt) and (t, vi). Then, S := (M,ρ) such
that ρ : {1, . . . , �} → {(t, v), (t′, v′), . . . ¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and
Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span
program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) =
(t, vi)] ∧[(t, xt) ∈ Γ ] ∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ ] ∧[vi �= xt]. Set
γ(i) = 0 otherwise.

We now construct a secret-sharing scheme for a (non-monotone) access struc-
ture (span program).

Definition 6. A secret-sharing scheme for access structure S := (M,ρ) is:

1. Let M be an � × r matrix, and column vector
−→
f T := (f1, . . . , fr)T

U← F r
q .

Then, s0 :=
−→
1 · −→f T =

∑r
k=1 fk is the secret to be shared, and −→s T :=

(s1, . . . , s�)T := M · −→f T is the vector of � shares of secret s0 and share si

belongs to ρ(i).
2. If access structure S := (M,ρ) accepts Γ , i.e.,

−→
1 ∈ span〈(Mi)γ(i)=1〉 with

γ : {1, . . . , �} → {0, 1}, then there exist constants {αi ∈ Fq | i ∈ I} such
that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these

constants {αi} can be computed in time polynomial in the size of matrix M .
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3.2 Definitions and Security of ABS

Definition 7 (Attribute-Based Signatures : ABS). An attribute-based sig-
nature scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter
and format −→n := (d;n1, . . . , nd) of attributes. It outputs public parameters
pk and master key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes,
Γ := {(t,−→x t)|−→x t ∈ F nt

q \ {−→0 }, 1 ≤ t ≤ d}, pk and sk. It outputs signature
generation key skΓ .

Sig This is a randomized algorithm that takes as input message m, access struc-
ture S := (M,ρ), signature generation key skΓ , and public parameters pk
such that S accepts Γ . It outputs signature σ.

Ver This takes as input message m, access structure S, signature σ and public
parameters pk. It outputs boolean value accept := 1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk)
R← Setup(1λ,−→n ), all messages m, all attribute sets Γ , all signing keys skΓ

R←
KeyGen(pk, sk, Γ ), all access structures S such that S accepts Γ , and all signatures
σ

R← Sig(pk, skΓ ,m, S), it holds that Ver(pk,m, S, σ) = 1 with probability 1.

Definition 8 (Perfect Privacy). An ABS scheme is perfectly private, if, for
all (sk, pk) R← Setup(1λ, −→n ), all messages m, all attribute sets Γ1 and Γ2, all
signing keys skΓ1

R← KeyGen(pk, sk, Γ1) and skΓ2

R← KeyGen(pk, sk, Γ2), all access
structures S such that S accepts Γ1 and S accepts Γ2, distributions Sig(pk, skΓ1 ,m,
S) and Sig(pk, skΓ2 ,m, S) are equal.

For an ABS scheme with prefect privacy, we define algorithm AltSig(pk, sk,m, S)
with S and master key sk instead of Γ and skΓ : First, generate skΓ

R← KeyGen

(pk, sk, Γ ) for arbitrary Γ which satisfies S, then σ
R← Sig(pk, skΓ , m, S).

return σ.
Since the correct distribution on signatures can be perfectly simulated with-

out taking any private information as input, signatures must not leak any such
private information of the signer.

Definition 9 (Unforgeability). For an adversary, A, we define AdvABS,UF
A (λ)

to be the success probability in the following experiment for any security param-
eter λ. An ABS scheme is existentially unforgeable if the success probability of
any polynomial-time adversary is negligible:

1. Run (sk, pk) R← Setup(1λ,−→n ) and give pk to the adversary.
2. The adversary is given access to oracles KeyGen(pk, sk, ·) and AltSig(pk, sk, ·, ·).
3. At the end, the adversary outputs (m′, S′, σ′).

We say the adversary succeeds if (m′, S′) was never queried to the AltSig oracle,
S′ does not accept any Γ queried to the KeyGen oracle, and Ver(pk,m′, S′, σ′) = 1.
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4 Proposed ABS Scheme

4.1 Construction Ideas

Here, we will show some basic ideas to construct the proposed ABS scheme. Our
ABS scheme is constructed on a ciphertext policy (CP) functional encryption
(FE) scheme [22], which is adaptively payload-hiding against chosen-plaintext
attacks. The description of the CP-FE scheme is given in the full version of [22].

Roughly speaking, a secret signing key, skΓ , with attribute set Γ and a veri-
fication text, −→c , with access structure S (for signature verification) in our ABS
scheme correspond to a secret decryption key, skΓ , with Γ and a ciphertext, −→c ,
with S in the CP-FE scheme, respectively. No counterpart of a signature, −→s ∗, in
the ABS exists in the CP-FE, and the privacy property for signature −→s ∗ is also
specific in ABS. Signature −→s ∗ in ABS may be interpreted to be a decryption
key specialized to decrypt a ciphertext with access structure S, that is delegated
from secret key skΓ .

The algorithms of the proposed ABS scheme can be described in the light of
such correspondence to the CP-FE scheme:

Setup. Almost the same as that in the CP-FE scheme except that {B̂∗
t }t=1,...,d+1

are revealed as a public parameter in our ABS, while they are secret in the
CP-FE scheme. They are published in our ABS for the signature generation
procedure Sig to meet the privacy of signers (for randomization). This implies
an important gap between CP-FE and ABS.

KeyGen. Almost the same as that in the CP-FE scheme except that a (7 di-
mensional) space with basis B∗

d+1 is additionally introduced in our ABS and
two elements k∗

d+1,1 and k∗
d+1,2 in this space are included in a secret signing

key in order to embed the hash value, Hλ,D
hk (m || S), of message m and access

structure S in signature −→s ∗.
Sig. Specific in ABS. To meet the privacy condition for −→s ∗, a novel technique

is employed to randomly generate a signature from skΓ and {B̂∗
t }t=1,...,d+1.

Ver. Signature −→s ∗ in the ABS is an endorsement to message m by a signer
with attributes accepted by access structure S. The signature verification in
our ABS checks whether signature (or specific decryption key) −→s ∗ works as
a decryption key to decrypt a verification text (or a ciphertext) associated
with S and Hλ,D

hk (m || S).

Security proofs. Roughly speaking, the adaptive-predicate unforgeability of
the ABS under the KeyGen oracle attacks can be guaranteed by the adaptive
payload-hiding property of the CP-FE, since a forged signature implies a
decryption key specified for the challenge ciphertext to break the payload-
hiding. Note that there are many subtleties in the proof of unforgeability for
the ABS, e.g., the unforgeability should be ensured in the ABS even when
publishing {B̂∗

t }t=1,...,d+1 for the privacy requirement, while they are secret
in the CP-FE. We develop a novel technique to resolve the difficulty. See the
full version of this paper for more details.
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4.2 Construction

For simplicity, here, we describe our ABS scheme for a specific parameter −→n :=
(d; 2, . . . , 2) (see the remark of Definition 5). A general form of our ABS scheme
is given in the full version.

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, v) or
ρ(i) = ¬(t, v), where ρ is given in access structure S := (M,ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M,ρ). The full version of this
paper shows how to relax the restriction.

Setup(1λ, −→n := (d; 2, . . . , 2)) : paramG := (q,G,GT , G, e) R← Gbpg(1λ),

hk
R← KHλ, ψ

U← F×
q , N0 := 4, Nt := 7 for t = 1, . . . , d + 1,

for t = 0, . . . , d + 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (X−1

t )T,

bt,i := (χt,i,1, . . . , χt,i,Nt)At , Bt := (bt,1, . . . , bt,Nt),
b∗t,i := (ϑt,i,1, . . . , ϑt,i,Nt)At , B∗

t := (b∗t,1, . . . , b
∗
t,Nt

),

gT := e(G,G)ψ , param−→n := ({paramVt
}t=0,...,d+1, gT ),

B̂0 := (b0,1, b0,4), B̂t := (bt,1, bt,2, bt,7) for t = 1, . . . , d + 1,

B̂∗
t := (b∗t,1, b

∗
t,2, b

∗
t,5, b

∗
t,6) for t = 1, . . . , d + 1,

sk := b∗0,1, pk := (1λ, hk, param−→n , {B̂t}t=0,...,d+1, {B̂∗
t }t=1,...,d+1, b

∗
0,3).

return sk, pk.

KeyGen(pk, sk, Γ := {(t, xt) | 1 ≤ t ≤ d}) :

δ
U← F×

q , ϕ0, ϕt,ι, ϕd+1,1,ι, ϕd+1,2,ι
U← Fq for t = 1, . . . , d; ι = 1, 2;

k∗
0 := ( δ, 0, ϕ0, 0 )B∗

0
,

k∗
t := (δ( 1, xt ), 0, 0, ϕt,1, ϕt,2, 0)B∗

t
for (t, xt) ∈ Γ,

k∗
d+1,1 := ( δ( 1, 0 ), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0 )B∗

d+1
,

k∗
d+1,2 := ( δ( 0, 1 ), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0 )B∗

d+1
,

T := {0, (d + 1, 1), (d + 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t, xt) ∈ Γ},
return skΓ := (Γ, {k∗

t }t∈T ).
Sig(pk, skΓ , m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {(t, xt)}, then

compute I and {αi}i∈I such that
∑

i∈I αiMi =
−→
1 , and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },

ξ
U← F×

q , (βi)
U← {(β1, . . . , β�) |

∑�
i=1 βiMi =

−→
0 },

s∗
0 := ξk∗

0 + r∗
0 , where r∗

0
U← span〈b∗0,3〉,

s∗
i := γi · ξk∗

t +
∑2

ι=1 yi,ι · b∗t,ι + r∗
i for 1 ≤ i ≤ �,
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where r∗
i

U← span〈b∗t,5, b∗t,6〉, and γi,
−→y i := (yi,1, yi,2) are defined as

if i ∈ I ∧ ρ(i) = (t, vi), γi := αi,
−→y i := βi(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt
, −→y i :=

βi

vi − yi
(1, yi),

where yi
U← Fq\{vi},

if i �∈ I ∧ ρ(i) = (t, vi), γi := 0, −→y i := βi(1, vi),

if i �∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, −→y i :=
βi

vi − yi
(1, yi),

where yi
U← Fq\{vi},

s∗
�+1 := ξ(k∗

d+1,1 + Hλ,D
hk (m || S) · k∗

d+1,2) + r∗
�+1,

where r∗
�+1

U← span〈b∗d+1,5, b
∗
d+1,6〉,

return −→s ∗ := (s∗
0, . . . , s

∗
�+1).

Ver(pk, m, S := (M,ρ),−→s ∗) :
−→
f

U← F r
q ,

−→s T := (s1, . . . , s�)T := M · −→f T,

s0 :=
−→
1 · −→f T, η0, η�+1, θ�+1, s�+1

U← Fq,

c0 := ( −s0 − s�+1, 0, 0, η0 )B0 ,

for 1 ≤ i ≤ �,

if ρ(i) = (t, vi), return 0 if s∗
i �∈ Vt, else

ci := ( si + θivi, −θi, 0, 0, 0, 0, ηi )Bt , where θi, ηi
U← Fq,

if ρ(i) = ¬(t, vi), return 0 if s∗
i �∈ Vt, else

ci := ( si( vi, −1 ), 0, 0, 0, 0, ηi )Bt , where ηi
U← Fq,

c�+1 := ( s�+1 − θ�+1 · Hλ,D
hk (m || S), θ�+1, 0, 0, 0, 0, η�+1 )Bd+1 ,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1

i=0 e(ci, s
∗
i ) = 1, return 0 otherwise.

[Correctness]
∏�+1

i=0 e(ci, s
∗
i )

= e(c0,k
∗
0)

ξ ·
∏

i∈I e(ci,k
∗
t )γiξ ·

∏�
i=1
∏2

ι=1 e(ci, b
∗
t,ι)

yi,ι · e(c�+1, s
∗
�+1)

= g
ξδ(−s0−s�+1)
T ·

∏
i∈I gξδαisi

T ·
∏�

i=1 gβisi

T · gξδs�+1
T

= g
ξδ(−s0−s�+1)
T · gξδs0

T · gξδs�+1
T = 1.

4.3 Security

Theorem 1. The proposed ABS scheme is perfectly private.

Theorem 2. The proposed ABS scheme is unforgeable (adaptive-predicate un-
forgeable) under the DLIN assumption and the existence of collision resistant
hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2,h, E2,h+1 (h =

0, . . . , ν1−1), E3,h, E4,h (h = 1, . . . , ν2), whose running times are essentially the
same as that of A, such that for any security parameter λ,



48 T. Okamoto and K. Takashima

AdvABS,UF
A (λ) ≤ AdvDLIN

E1
(λ) +

∑ν1−1
h=0

(
AdvDLIN

E+
2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)
)

+ ε,

where ν1 is the maximum number of A’s KeyGen queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d + 16)ν1 + 18ν2 + 2d + 18)/q.

The proofs of Theorems 1 and 2 are given in the full version of this paper.

4.4 Performance

In this section, we compare the efficiency and security of the proposed ABS
scheme with the existing ABS schemes in the standard model (two typical in-
stantiations) [19] as well as the ABS scheme in the generic group model [18] (as
a benchmark). Since all of these schemes can be implemented over a prime order
pairing group, the size of a group element can be around the size of Fq (e.g., 256
bits). In Table 1, � and r represent the size of the underlying access structure
matrix M for a predicate, i.e., M ∈ F �×r

q . For example, some predicate with 4
AND and 5 OR gates as well as 10 variables may be expressed by a 10 × 5 ma-
trix, and a predicate with 49 AND and 50 OR gates as well as 100 variables may
be expressed by a 100 × 50 matrix (see the appendix of [15]). λ is the security
parameter (e.g., 128).

Table 1. Comparison with the Existing ABS Schemes

MPR08 [18] MPR10 [19] MPR10 [19] Proposed
(Boneh-Boyen

based)
(Waters
based)

Signature size
(# of group elts)

� + r + 2 51� + 2r + 18λ�
36� + 2r
+9λ + 12

7� + 11

Model
generic group

model
standard
model

standard
model

standard
model

Security full full full full

Assumptions CR hash
q-SDH and

DLIN DLIN
DLIN and
CR hash

Predicates monotone monotone monotone non-monotone
Sig. size example 1

(� = 10, r = 5,
λ = 128)

17 23560 1534 81

Sig. size example 2
(� = 100, r = 50,

λ = 128)
152 282400 4864 711
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5 Multi-Authority ABS (MA-ABS)

5.1 Definitions and Security of MA-ABS

We follow the model and security definitions of MA-ABS in [18, 19].

Definition 10 (Multi-Authority ABS : MA-ABS). A multi-authority ABS
scheme consists of the following algorithms/protocols.

TSetup. This is a randomized algorithm. The signature trustee runs algorithm
TSetup(1λ) which outputs trustee public key tpk and trustee secret key tsk.

UserReg. This is a randomized algorithm. When a user with user id uid regis-
ters with the signature trustee, the trustee runs UserReg(tpk, tsk, uid) which
outputs public user-token tokenuid. The trustee gives tokenuid to the user.

ASetup. This is a randomized algorithm. Attribute authority t (1 ≤ t ≤ d) who
wishes to issue attributes runs ASetup(tpk) which outputs attribute-authority
public key apkt and attribute-authority secret key askt. The attribute author-
ity, t, publishes apkt and stores askt.

AttrGen. This is a randomized algorithm. When attribute authority t issues user
uid a secret key associated with attribute xt, first it obtains (from the user)
her user-token tokenuid, and runs token verification algorithm TokenVerify(tpk,
uid, tokenuid). If the token is verified, then it runs AttrGen(tpk, t, askt, tokenuid,
xt) that outputs attribute secret key uskt. The attribute authority gives uskt

to the user.
Sig. This is a randomized algorithm. A user signs message m with claim-predicate

(access structure) S := (M,ρ), only if there is a set of attributes Γ such
that S accepts Γ , the user has obtained a set of keys {uskt | (t, xt) ∈
Γ} from the attribute authorities. Then signature σ can be generated using
Sig(tpk, tokenuid, {apkt, uskt | (t, xt) ∈ Γ},m, S), where uskt

R← AttrGen(tpk,
t, askt, tokenuid, xt).

Ver. To verify signature σ on message m with claim-predicate (access structure)
S, a user runs Ver(tpk, {apkt},m, S, σ) which outputs boolean value accept :=
1 or reject := 0.

The definition of perfect privacy for the multi-authority (MA) ABS is essentially
the same as that of the single-authority (SA) ABS (Definition 8). The major
difference of the unforgeability of MA-ABS and SA-ABS is that adversary A
can corrupt an arbitrary subset of attribute authorities provided that adversary
A cannot make a trivial forgery attack. These definitions are given in the full
version of this paper.

5.2 Construction

The key idea of our construction of MA-ABS scheme is to share Guid := δG1 as
well as G0 and G1 among attribute authorities to generate δb∗t,i by each authority
t. Hence, G0 and G1 are included in tpk and Guid := δG1 is shared with attribute
authorities through the user’s token tokenuid.
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For matrix X := (χi,j)i,j=1,...,N ∈ F N×N
q and element v in N -dimensional

V, X(v) denotes
∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps {φi,j} (Definition
2). Similarly, for matrix (ϑi,j) := (X−1)T, (X−1)T(v) :=

∑N,N
i=1,j=1 ϑi,jφi,j(v). It

holds that e(X(x), (X−1)T(y)) = e(x,y) for any x,y ∈ V.
Moreover, (GSIG, S,V) is a (conventional) unforgeable signature scheme.

TSetup(1λ) : paramG := (q,G,GT , G, e) R← Gbpg(1λ),

hk
R← KHλ, (verk, sigk) R← GSIG(1λ) N0 := 4, Nd+1 := 7, κ, ξ

U← F×
q ,

for t = 0, d + 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (X−1

t )T,

bt,i := κ(χt,i,1, . . . , χt,i,Nt)At , Bt := (bt,1, . . . , bt,Nt),
b∗t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt)At , B∗

t := (b∗t,1, . . . , b
∗
t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ,

B̂0 := (b0,1, b0,4), B̂d+1 := (bd+1,1, bd+1,2, bd+1,7),

B̂∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6),

tsk := (b∗0,1, sigk),

tpk := (1λ, hk, {paramVt
, B̂t}t=0,d+1, b

∗
0,3, B̂

∗
d+1, gT , G0, G1, verk),

return (tsk, tpk).

UserReg(tpk, tsk, uid) : δ
U← F×

q , ϕ0, ϕd+1,1,ι, ϕd+1,2,ι
U← Fq, Guid := δG1,

k∗
0 := ( δ, 0, ϕ0, 0 )B∗

0
,

k∗
d+1,1 := ( δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0 )B∗

d+1
,

k∗
d+1,2 := ( δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0 )B∗

d+1
,

usk0 := (k∗
0 ,k

∗
d+1,1,k

∗
d+1,2), σuid := S(sigk, (uid, Guid)),

return tokenuid := (uid, Guid, σuid, usk0).

ASetup(tpk) : uj,i := (0i−1, Gj , 07−i) for j=0, 1; i=1, .., 7, Xt
U← GL(7,Fq),

Bt := (bt,i)i=1,...,7 := (Xt(u0,1), . . . , Xt(u0,7)),
B∗

t := (b∗t,i)i=1,...,7 := ((X−1
t )T(u1,1), . . . , (X−1

t )T(u1,7)),

B̂t := (bt,1, bt,2, bt,7), B̂∗
t := (b∗t,1, b

∗
t,2, b

∗
t,5, b

∗
t,6),

return (askt := Xt, apkt := (B̂t, B̂
∗
t )).

TokenVerify(tpk, uid, tokenuid) holds iff V(verk, (uid, Guid), σuid) = 1.

AttrGen(tpk, t, askt, tokenuid, xt ∈ Fq) : ϕt,1, ϕt,2
U← Fq,

k∗
t := (X−1

t )T(( Guid, xtGuid, 0, 0, ϕt,1G1, ϕt,2G1, 0 )),
that is, k∗

t = ( δ, δxt, 0, 0, ϕt,1, ϕt,2, 0 )B∗
t
,

return uskt := k∗
t .
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Sig(tpk, tokenuid, {apkt, uskt
R← AttrGen(tpk, t, askt, tokenuid, xt) | (t, xt) ∈ Γ},

m, S := (M,ρ)) and Ver(tpk, {apkt}t=1,...,d, m, S := (M,ρ),−→s ∗) are
essentially the same as those in Section 4.2.

5.3 Security

Theorem 3. The proposed MA-ABS scheme is perfectly private.

Theorem 4. The proposed MA-ABS scheme is unforgeable (adaptive-predicate
unforgeable) under the DLIN assumption and the existence of collision resistant
hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2,h, E2,h+1 (h =

0, . . . , ν1−1), E3,h, E4,h (h = 1, . . . , ν2), whose running times are essentially the
same as that of A, such that for any security parameter λ,

AdvMA-ABS,UF
A (λ) ≤ AdvDLIN

E1
(λ) +

∑ν1−1
h=0

(
AdvDLIN

E+
2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)
)

+ ε,

where ν1 is the maximum number of A’s UserReg queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d + 16)ν1 + 18ν2 + 2d + 18)/q.

The proofs of Theorems 3 and 4 are given in the full version of this paper.
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Abstract. We present a newmethodology for realizing Ciphertext-Policy
Attribute Encryption (CP-ABE) under concrete and noninteractive
cryptographic assumptions in the standard model. Our solutions allow any
encryptor to specify access control in terms of any access formula over
the attributes in the system. In our most efficient system, ciphertext size,
encryption, and decryption time scales linearly with the complexity of the
access formula. The only previous work to achieve these parameters was
limited to a proof in the generic group model.

We present three constructions within our framework. Our first system
is proven selectively secure under a assumption that we call the decisional
Parallel Bilinear Diffie-Hellman Exponent (PBDHE) assumption which
can be viewed as a generalization of the BDHE assumption. Our next
two constructions provide performance tradeoffs to achieve provable se-
curity respectively under the (weaker) decisional Bilinear-Diffie-Hellman
Exponent and decisional Bilinear Diffie-Hellman assumptions.

1 Introduction

Public-Key encryption is a powerful mechanism for protecting the confidentiality
of stored and transmitted information. Traditionally, encryption is viewed as a
method for a user to share data to a targeted user or device. While this is
useful for applications where the data provider knows specifically which user he
wants to share with, in many applications the provider will want to share data
according to some policy based on the receiving user’s credentials.

Sahai and Waters [35] presented a new vision for encryption where the data
provider can express how he wants to share data in the encryption algorithm
itself. The data provider will provide a predicate f(·) describing how he wants
to share the data and a user will be ascribed a secret key associated with their
credentials X ; the user with credentials X can decrypt a ciphertext encrypted
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D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 53–70, 2011.
c© International Association for Cryptologic Research 2011



54 B. Waters

with predicate f if f(X) = 1. Sahai and Waters [35] presented a particular for-
mulation of this problem that they called Attribute-Based Encryption (ABE),
in which a user’s credentials is represented by a set of string called “attributes”
and the predicate is represented by a formula over these attributes. Several
techniques used by SW were inspired by prior work on Identity-Based Encryp-
tion [36, 13, 23, 18, 10]. One drawback of the Sahai-Waters approach is that their
initial construction was limited to handling formulas consisting of one threshold
gate.

In subsequent work, Goyal, Pandey, Sahai, and Waters [27] further clarified
the concept of Attribute-Based Encryption. In particular, they proposed two
complementary forms of ABE. In the first, Key-Policy ABE, attributes are used
to annotate the ciphertexts and formulas over these attributes are ascribed to
users’ secret keys. The second type, Ciphertext-Policy ABE, is complementary
in that attributes are used to describe the user’s credentials and the formulas
over these credentials are attached to the ciphertext by the encrypting party. In
addition, Goyal et al. [27] provided a construction for Key-Policy ABE that was
very expressive in that it allowed the policies (attached to keys) to be expressed
by any monotonic formula over encrypted data. The system was proved selec-
tively secure under the Bilinear Diffie-Hellman assumption. However, they left
creating expressive Ciphertext Policy ABE schemes as an open problem.

The first work to explicitly address the problem of Ciphertext-Policy Attribute-
Based Encryption was by Bethencourt, Sahai, and Waters [7]. They described an
efficient system that was expressive in that it allowed an encryptor to express an
access predicate f in terms of any monotonic formula over attributes. Their system
achieved analogous expressiveness and efficiency to the Goyal et al. construction,
but in the Ciphertext-Policy ABE setting. While the BSW construction is very
expressive, the proof model used was less than ideal — the authors only showed
the scheme secure in the generic group model, an artificial model which assumes
the attacker needs to access an oracle in order to perform any group operations1.

Recently, ABE has been applied in building a variety of secure systems [34,
40, 9, 8]. These systems motivate the need for ABE constructions that are both
foundationally sound and practical.

Ciphertext Policy ABE in the Standard Model. The lack of satisfaction with
generic group model proofs has motivated the problem of finding an expressive
CP-ABE system under a more solid model. There have been multiple approaches
in this direction.

First, we can view the Sahai-Waters[35] construction most “naturally” as
Key-Policy ABE for a threshold gate. In their work, Sahai and Waters describe
how to realize Ciphertext-Policy ABE for threshold gates by “grafting” so called
“dummy attributes” over their basic system. Essentially, they transformed a KP-
ABE system into a CP-ABE one with the expressiveness of a single threshold

1 Alternatively, we could derive a concrete, but interactive and complicated assump-
tion directly from the scheme itself and argue that the scheme is secure under this
assumption. However, this view is also not very satisfactory.
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gate2. Cheung and Newport[22] provide a direct construction for constructing
a policy with a single AND gate under the Bilinear Diffie-Hellman assumption.
Their approach has the drawbacks that it only allows a fixed number of sys-
tem attributes and is limited to an AND gate (does not enable thresholds). In
retrospect these two limitations actually make it less expressive than the SW
transformation, although this wasn’t necessarily immediately apparent.

Most recently, Goyal, Jain, Pandey, and Sahai [26] generalized the transfor-
mational approach to show how to transform a KP-ABE system into a CP-ABE
one using what they call a “universal access tree”. In particular, they provided a
mapping onto a “universal” (or complete) access tree of up to depth d formulas
consisting of threshold gates of input size m, where m and d are chosen by the
setup algorithm. They applied a similar ”dummy attribute” approach.

In order to accommodate a general access formula of size n, their scheme first
translates this into a balanced formula. Under standard techniques a formula of
size n can be “balanced” such that any formula (tree) of size n can be covered
by a complete tree of size approximately O(n3.42). Their work was the first
feasibility result for expressive CP-ABE under a non-interactive assumption.
Unfortunately, the parameters of ciphertext and private key sizes add encryption
and decryption complexity blow up (in the worst case) by an n3.42 factor limiting
its usefulness in practice. For instance, in a system with U attributes defined
and n nodes the ciphertext overhead will be approximately a factor of U · n2.42

greater than that of the BSW system. To give a concrete example, for the modest
parameters of universe size U = 100 attributes and a formula of 20 nodes the
blowup factor relative to BSW is approximately 140, 000.

Our Contribution. We present a new methodology for realizing Ciphertext-
Policy ABE systems from a general set of access structures in the standard model
under concrete and non-interactive assumptions. Both the ciphertext overhead
and encryption time scale with O(n) where n is the size of the formula. In addi-
tion, decryption time scales with the number of nodes.

Our first system allows an encryption algorithm to specify an access formula
in terms of any access formula. In fact our techniques are slightly more general.
We express access control by a Linear Secret Sharing Scheme (LSSS) matrix M
over the attributes in the system. Previously used structures such as formulas
(equivalently tree structures) can be expressed succinctly [6] in terms of a LSSS.
We do not lose any efficiency by using the more general LSSS representation
as opposed to the previously used tree access structure descriptions. Thus, we
achieve the same performance and functionality as the Bethencourt, Sahai, and
Waters construction, but under the standard model.

In addition, we provide two other constructions that tradeoff some performance
parameters for provable security under the respective weaker assumptions of
decisional-Bilinear Diffie-Hellman Exponent (d-BDHE) and decisional-Bilinear
Diffie-Hellman assumptions. In Table 1 we summarize the comparisons between
our schemes and the GJPS and BSW CP-ABE systems in terms of ciphertext and

2 The Sahai-Waters construction was given prior to the Key-Policy and Ciphertext-
Policy distinction; our interpretation is a retrospective one.
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key sizes and encryption and decryption times. Taken all together our first scheme
realizes the same efficiency parameters as the BSW encryption scheme, but un-
der a concrete security assumption. At the same time, our d-BDH construction is
proved under the same assumption as the GJPS system and achieves significantly
better performance.

Our Techniques. Our techniques provide a framework for directly realizing prov-
ably secure CP-ABE systems. In our systems, the ciphertext distributes shares
of a secret encryption exponent s across different attributes according to the
access control LSSS matrix M .

A user’s private key is associated with a set S of attributes and he will be able to
decrypt a ciphertext iff his attributes “satisfy” the access matrix associated with
the ciphertext. As in previous ABE systems, the primary challenge is to prevent
users from realizing collusion attacks. Our main tool to prevent this is to random-
ize each key with an freshly chosen exponent t. During decryption, each share will
be multiplied by a factor t in the exponent. Intuitively, this factor should “bind”
the components of one user’s key together so that they cannot be combined with
another user’s key components. During decryption, the different shares (in the ex-
ponent) that the algorithm combines are multiplied by a factor of t. Ultimately,
these randomized shares are only useful to that one particular key.

Our construction’s structures and high level intuition for security is similar to
the BSW construction. The main novelty in our paper is provide a method for
proving security of such a construction. The primary challenge one comes across
is (in the selective model) how to create a reduction that embeds a complex
access structure in a short number of parameters. All prior ABE schemes follow
a “partitioning” strategy for proving security where the reduction algorithm
sets up the public parameters such that it knows all the private keys that it
needs to give out, yet it cannot give out private keys that can trivially decrypt
the challenge ciphertext. In prior KP-ABE schemes the challenge ciphertext
was associated with a set S∗ of attributes. This structure could fairly easily
be embedded in a reduction as the public parameter for each attribute was
simply treated differently depending whether or not it was in S∗. In CP-ABE,
the situation is much more complicated as ciphertexts are associated with a
potentially large access structure M∗ that includes attributes multiple times. In
general, the size of M∗ is much larger than the size of the public parameters3.
Consequently, there is not a simple “on or off” method of programming this into
the parameters. Arguably, it is this challenge that lead the BSW paper to apply
the generic group heuristic and GJPS paper to translate the problem back to
KP-ABE.

In this paper, we create a method for directly embedding any LSSS structure
M∗ into the public parameters in our reduction. In the proofs of our system a
simulator can “program” the LSSS matrix M∗ of the challenge ciphertext (in
the selective model of security). Consider a LSSS matrix M∗ of size l∗ × n∗.
For each row i of M∗ the simulator needs to program in � pieces of information

3 Here we roughly mean size to be number of rows in the LSSS system or nodes in an
access tree.
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(M∗
i,1, . . . ,M

∗
i,�) into the parameters related to the attribute assigned to that

row. In our most efficient system we program in M∗ using the d-Parallel BDHE
assumption; however, in Section 5 we show variations of our construction that
are provably secure using similar ideas, but under weaker assumptions.

Our methodology of creating a system and proof that directly addresses CP-
ABE stands in contrast to the approach of GJPS which essentially maps CP-ABE
requirements onto a KP-ABE scheme.

Table 1. Comparison of CP-ABE systems in terms of ciphertext size, private key size,
encryption and decryption times and assumptions. We let n be the size of an access
formula , A be the number of attributes in a user’s key, and T be (minimum needed)
number of nodes satisfied of a formula by a user’s attributes, and U be the number of
attributes defined in the system. For our d-BDHE construction of the system defines a
parameter kmax, which is the maximum number of times a single attribute will appear
in a particular formula. In the GJPS construction and our d-BDH one of Section 5 the
systems define nmax as a bound on the size any formula. The ciphertext and private
key sizes are given in terms of the number of group elements, encryption time in terms
of number of exponentiations, and decryption in terms of number of pairing operations.

System Ciphetext Size Private Key Size Enc. Time Assumption
BSW[7] O(n) O(A) O(n) Generic Group

GJPS[26] O(U · n3.42
max) O(A · n3.42

max) O(U · n3.42
max) d-BDH

Section 3 O(n) O(A) O(n) d-Parallel BDHE
Full version [42] O(n) O(kmax · A) O(n) d-BDHE

Section 5 O(n2) O(kmax · A + nmax) O(n2) d-BDH

1.1 Related Work

Some of the roots of ABE can be traced back to Identity-Based Encryption [36,
13, 23, 18, 10, 41, 24, 14] (IBE). One can view IBE as a very special case of
ABE.

Different authors [38, 32, 4, 17, 3, 5] have considered similar problems without
considering collusion resistance. In these works a data provider specifies an access
formula such that a group of users can decrypt if the union of their credentials
satisfies the formula. By only requiring the union of the credentials one does not
worry about collusion attacks. In these schemes a setup authority simply assigns
a separate public key to each credential and gives the corresponding secret key to
each user that possesses the credential. Encryption is done by splitting secrets
and then encrypting each share to the appropriate public key. Some of these
schemes were inspired by earlier work [21, 20].

Since the introduction of Attribute-Based Encryption by Sahai and Waters [35],
there have been several papers [27, 7, 19, 33, 26] that have proposed different
varieties of ABE. Most of them have been for monotonic access structures over
attributes; one exception is the work of Ostrovsky, Sahai, and Waters [33] that
showed how to realize negation by integrating revocation schemes into the GPSW
ABE cryptosystem.
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Most work on ABE is focused on complex access controls for hiding an en-
crypted payload of data. A related line of work called predicate encryption or
searching on encrypted data attempts to evaluate predicates over the encrypted
data itself [39, 12, 1, 16, 15, 37, 29]. These systems have the advantages of hid-
ing the associated access structures themselves and thus providing a level of
“anonymity”. The concept of predicate encryption is more general than the one
we consider. However, the predicate encryption systems realized thus far tend
to be much less expressive than access control systems that leave the access
structures in the clear.

Other examples of encryption systems with more “structure” added include
Hierarchical Identity-Based Encryption [28, 25] and Wildcard IBE [2].

Finally, Lewko et. al. [31] recently leveraged the encoding technique from our
work to build an ABE system that achieves adaptive (non-selective) security.
The system of Lewko et. al. is based in composite order groups, which results
in some loss of practical efficiency compared to our most efficient system. In
addition, our BDH system is based off of more standard assumptions than those
used in Lewko et al.

2 Background

We first give formal definitions for access structures and relevant background on
Linear Secret Sharing Schemes (LSSS). Then we give the security definitions of
ciphertext policy attribute based encryption (CP-ABE). Finally, we give back-
ground information on bilinear maps.

2.1 Access Structures

Definition 1 (Access Structure [6]). Let {P1,P2,. . .,Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and
B ⊆ C then C ∈ A. An access structure (respectively, monotone access struc-
ture) is a collection (respectively, monotone collection) A of non-empty subsets
of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the access
structure A will contain the authorized sets of attributes. We restrict our atten-
tion to monotone access structures. However, it is also possible to (inefficiently)
realize general access structures using our techniques by having the not of an
attribute as a separate attribute altogether. Thus, the number of attributes in
the system will be doubled. From now on, unless stated otherwise, by an access
structure we mean a monotone access structure.

2.2 Linear Secret Sharing Schemes

We will make essential use of linear secret-sharing schemes. We adapt our defi-
nitions from those given in [6]:
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Definition 2 (Linear Secret-Sharing Schemes (LSSS) ). A secret-sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix an M with � rows and n columns called the share-

generating matrix for Π. For all i = 1, . . . , �, the i’th row of M we let the
function ρ defined the party labeling row i as ρ(i). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared,
and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of � shares
of the secret s according to Π. The share (Mv)i belongs to party ρ(i).

It is shown in [6] that every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, there
exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s
according to Π , then

∑
i∈I ωiλi = s.

Furthermore, it is shown in [6] that these constants {ωi} can be found in time
polynomial in the size of the share-generating matrix M .

Note onConvention. We note thatwe use the convention that vector (1, 0, 0, . . . , 0)
is the “target” vector for any linear secret sharing scheme. For any satisfying set
of rows I in M , we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is not in the span of the rows
of the set I. Moreover, there will exist a vector w such that w · (1, 0, 0 . . . , 0) = −1
and w ·Mi = 0 for all i ∈ I.

Using Access Trees. Prior works on ABE (e.g., [27]) typically described access for-
mulas in terms of binary trees. Using standard techniques [6] one can convert any
monotonic boolean formula into an LSSS representation. An access tree of � nodes
will result in an LSSS matrix of � rows. We refer the reader to the appendix of [30]
for a discussion of how to perform this conversion.

2.3 Ciphertext-Policy ABE

A ciphertext-policy attribute based encryption scheme consists of four algorithms:
Setup, Encrypt, KeyGen, and Decrypt.

Setup(λ, U). The setup algorithm takes security parameter and attribute universe
description as input. It outputs the public parameters PK and a master key MK.

Encrypt(PK,M,A). The encryption algorithm takes as input the public param-
eters PK, a message M , and an access structure A over the universe of attributes.
The algorithm will encrypt M and produce a ciphertext CT such that only a user
that possesses a set of attributes that satisfies the access structure will be able to
decrypt the message. We will assume that the ciphertext implicitly contains A.

Key Generation(MK, S). The key generation algorithm takes as input the master
key MK and a set of attributes S that describe the key. It outputs a private key
SK.
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Decrypt(PK,CT, SK). The decryption algorithm takes as input the public param-
eters PK, a ciphertext CT, which contains an access policy A, and a private key
SK, which is a private key for a set S of attributes. If the set S of attributes satisfies
the access structure A then the algorithm will decrypt the ciphertext and return
a message M .

We now describe a security model for ciphertext-policy ABE schemes. Like
identity-based encryption schemes [36, 13, 23] the security model allows the ad-
versary to query for any private keys that cannot be used to decrypt the challenge
ciphertext. In CP-ABE the ciphertexts are identified with access structures and
the private keys with attributes. It follows that in our security definition the ad-
versary will choose to be challenged on an encryption to an access structure A∗

and can ask for any private key S such that S does not satisfy A∗. We now give the
formal security game.

Security Model for CP-ABE.

Setup. The challenger runs the Setup algorithm and gives the public parameters,
PK to the adversary.

Phase 1. The adversary makes repeated private keys corresponding to sets of
attributes S1, . . . , Sq1 .

Challenge. The adversary submits two equal length messages M0 and M1. In
addition the adversary gives a challenge access structure A∗ such that none of
the sets S1, . . . , Sq1 from Phase 1 satisfy the access structure. The challenger
flips a random coin b, and encrypts Mb under A∗. The ciphertext CT∗ is given
to the adversary.

Phase 2. Phase 1 is repeated with the restriction that none of sets of attributes
Sq1+1, . . . , Sq satisfy the access structure corresponding to the challenge.

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 . We

note that the model can easily be extended to handle chosen-ciphertext attacks by
allowing for decryption queries in Phase 1 and Phase 2.

Definition 3. A ciphertext-policy attribute-based encryption scheme is secure if
all polynomial time adversaries have at most a negligible advantage in the above
game.

We say that a system is selectively secure if we add an Init stage before setup where
the adversary commits to the challenge access structure A∗. All of our construc-
tions will be proved secure in the selective security model.

2.4 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear maps
and then give our number theoretic assumptions.

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e has
the following properties:
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1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation inG and the bilinear map e :
G×G → GT are both efficiently computable. Notice that the map e is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption. We
define the decisional q-parallel Bilinear Diffie-Hellman Exponent problem as fol-
lows. Choose a group G of prime order p according to the security parameter. Let
a, s, b1, . . .,bq ∈ Zp be chosen at random and g be a generator of G. If an adversary
is given y=

g, gs, ga, . . . , g(aq), , g(aq+2), . . . , g(a2q)

∀1≤j≤q gs·bj , ga/bj , . . . , g(aq/bj), , g(aq+2/bj), . . . , g(a2q/bj)

∀1≤j,k≤q,k =j ga·s·bk/bj , . . . , g(aq·s·bk/bj)

it must remain hard to distinguish e(g, g)aq+1s ∈ GT from a random element in
GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional
q-parallel BDHE in G if∣∣∣∣Pr

[
B
(
y, T = e(g, g)aq+1s) = 0

]
− Pr

[
B
(
y, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 1. We say that the (decision) q parallel-BDHE assumption holds if no
polytime algorithm has a non-negligible advantage in solving the decisional
q-parallel BDHE problem.

We give a proof that the assumption generically holds in the full version of our
paper [42].

3 Our Most Efficient Construction

We now give our main construction that both realizes expressive functionality and
is efficient and is provably secure under a concrete, non-interactive assumption.

In our construction the encryption algorithm will take as input a LSSS access
matrix M and distribute a random exponent s ∈ Zp according to M . Private keys
are randomized to avoid collusion attack.

Setup(U). The setup algorithm takes as input the number of attributes in the
system. It then chooses a group G of prime order p, a generator g and U random
group elements h1, . . . , hU ∈ G that are associated with the U attributes in the
system. In addition, it chooses random exponents α, a ∈ Zp.

The public key is published as

PK = g, e(g, g)α, ga, h1, . . . , hU .

The authority sets MSK = gα as the master secret key.
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Encrypt(PK, (M,ρ),M ). The encryption algorithm takes as input the public pa-
rameters PK and a message M to encrypt. In addition, it takes as input an LSSS
access structure (M,ρ). The function ρ associates rows of M to attributes.

Let M be an � × n matrix. The algorithm first chooses a random vector v =
(s, y2, ..., yn) ∈ Zn

p . These values will be used to share the encryption exponent s.
For i = 1 to �, it calculates λi = v · Mi, where Mi is the vector corresponding to
the ith row of M . In addition, the algorithm chooses random r1, . . . , r� ∈ Zp.

The ciphertext is published as CT =

C = Me(g, g)αs, C′ = gs

(C1 = gaλ1h−r1
ρ(1), D1 = gr1), . . . , (C� = gaλ�h−rn

ρ(�) , D� = gr�)

along with a description of (M,ρ).

KeyGen(MSK, S). The key generation algorithm takes as input the master secret
key and a set S of attributes. The algorithm first chooses a random t ∈ Zp. It
creates the private key as

K = gαgat L = gt ∀x ∈ S Kx = ht
x.

Decrypt(CT,SK). The decryption algorithm takes as input a ciphertext CT for
access structure (M,ρ) and a private key for a set S. Suppose that S satisfies the
access structure and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then,
let {ωi ∈ Zp}i∈I be a set of constants such that if {λi} are valid shares of any secret
s according to M , then

∑
i∈I ωiλi = s. (Note there could potentially be different

ways of choosing the ωi values to satisfy this.)
The decryption algorithm first computes

e(C′,K)/
(∏

i∈I(e(Ci, L)e(Di,Kρ(i)))ωi
)

=

e(g, g)αse(g, g)ast/
(∏

i∈I e(g, g)taλiωi
)

= e(g, g)αs

The decryption algorithm can then divide out this value from C and obtain the
message M.

3.1 Proof

An important step in proving our system secure will be for the reduction to “pro-
gram” the challenge ciphertext into the public parameters. One significant obstacle
that we will encounter is that an attribute may be associated with multiple rows in
the challenge access matrix (i.e. the ρ function is not injective). This is analogous
to an attribute appearing in multiple leafs in an access tree.

For example, suppose that in our reduction we want to program our parameters
such that for hx based on the i-th row of M∗ if ρ∗(i) = x. However, if there exist
i �= j such that x = ρ(i) = ρ(j) then there is an issue since we must program both
row i and row j in the simulation. Intuitively, there is a potential conflict in how
to program the parameters.
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In this reduction we resolve this by using different terms from the parallel BDHE
assumption to program multiple rows ofM∗ into one group element corresponding
to an attribute. The extra terms provided allow us to do so without ambiguity4.
In Section 5 we show a tradeoff where our reduction can program the information
using just the decisional Bilinear Diffie-Hellman assumption, but at some loss of
efficiency.

We prove the following theorem.

Theorem 1. Suppose the decisional q-parallel BDHE assumption holds. Then no
polytime adversary can selectively break our system with a challenge matrix of size
�∗ × n∗, where �∗, n∗ ≤ q.

Suppose we have an adversary A with non-negligible advantage ε =AdvA in the
selective security game against our construction. Moreover, suppose it chooses a
challenge matrix M∗ where both dimensions are at most q. We show how to build
a simulator, B, that plays the decisional q-parallel BDHE problem.

Init. The simulator takes in a q-parallel BDHE challenge y, T . The adversarygives
the algorithm the challenge access structure (M∗, ρ∗), where M∗ has n∗ columns.

Setup. The simulator chooses random α′ ∈ Zp and implicitly sets α = α′ + aq+1

by letting e(g, g)α = e(ga, gaq

)e(g, g)α′
.

We describe how the simulator “programs” the group elements h1, . . . , hU . For
each x for 1 ≤ x ≤ U begin by choosing a random value zx. Let X denote the set
of indices i, such that ρ∗(i) = x. The simulator programs hx as:

hx = gzx

∏
i∈X

gaM∗
i,1/bi · ga2M∗

i,2/bi · · · gan∗
M∗

i,n∗/bi .

Note that if X = ∅ then we have hx = gzx . Also note that the parameters are
distributed randomly due to the gzx value.

Phase I. In this phase the simulator answers private key queries. Suppose the sim-
ulator is given a private key query for a set S where S does not satisfy M∗.

The simulator first chooses a random r ∈ Zp. Then it finds a vector w =
(w1, . . . , wn∗) ∈ Zp

n∗
such that w1 = −1 and for all i where ρ∗(i) ∈ S we have

that w ·M∗
i = 0. By the definition of a LSSS such a vector must exist. Note that if

such a vector did not exist then the vector (1, 0, 0, . . . , 0) would be in the span of S.
See the discussion in Section 2.

The simulator begins by implicitly defining t as

r + w1a
q + w2a

q−1 + · · · + wn∗aq−n∗+1.

It performs this by setting L = gr
∏

i=1,...,n∗(gaq+1−i

)wi = gt.

4 We note that certain assumptions have been leveraged to “program” a large amount
of information into single group elements in other contexts. Gentry’s reduction [24]
embeds a degree q polynomial into a single group element.
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We observe that by our definition of t, we have that gat contains a term of g−aq+1
,

which will cancel out with the unknown term in gα when creatingK. The simulator
can compute K as:

K = gα′
gar

∏
i=2,...,n∗

(gaq+2−i

)wi .

Now we must calculate Kx ∀x ∈ S. First, we consider x ∈ S for which there is no
i such that ρ∗(i) = x. For those we can simply let Kx = Lzx .

The more difficult task is to create key components Kx for attributes x ∈ S,
where x is used in the access structure. For these keys we must make sure that
there are no terms of the form gaq+1/bi that we can’t simulate. However, we have
that M∗

i · w = 0; therefore, all of these terms cancel.
Again, let X be the set of all i such that ρ∗(i) = x. The simulator creates Kx in

this case as follows.

Kx = Lzx

∏
i∈X

∏
j=1,...,n∗

⎛⎜⎜⎝g(aj/bi)r
∏

k=1,...,n∗
k =j

(gaq+1+j−k/bi)wk

⎞⎟⎟⎠
M∗

i,j

Challenge. Finally, we build the challenge ciphertext. The adversary gives two
messages M0,M1 to the simulator. The simulator flips a coin β. It creates C =
MβT · e(gs, gα′

) and C′ = gs.
The tricky part is to simulate the Ci values since this contains terms that we

must cancel out. However, the simulator can choose the secret splitting, such that
these cancel out. Intuitively, the simulator will choose random y′2, . . . , y

′
n∗ and the

share the secret using the vector

v = (s, sa + y′2, sa
2 + y′3, . . . , sa

n−1 + y′n∗) ∈ Zp
n∗

.

In addition, it chooses random values r′1, . . . , r
′
�.

For i = 1, . . . , n∗, we define Ri as the set of all k �= i such that ρ∗(i) = ρ∗(k). In
other words, the set of all other row indices that have the same attribute as row i.
The challenge ciphertext components are then generated as

Di = g−r′
ig−sbi

Ci = h
r′

i
ρ∗(i)

( ∏
j=2,...,n∗

(ga)M∗
i,jy′

j

)
(gbi·s)−zρ∗(i) ·

⎛⎝ ∏
k∈Ri

∏
j=1,...,n∗

(gaj·s·(bi/bk))M∗
k,j

⎞⎠
Phase II. Same as phase I.

Guess. The adversary will eventually output a guess β′ of β. The simulator then
outputs 0 to guess that T = e(g, g)aq+1s if β = β′; otherwise, it outputs 1 to indi-
cate that it believes T is a random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
y, T = e(g, g)aq+1s

)
= 0
]

=
1
2

+ AdvA.
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When T is a random group element the message Mβ is completely hidden from
the adversary and we have Pr[B(y,T = R) = 0] = 1

2 . Therefore, B can play the
decisional q-parallel BDHE game with non-negligible advantage.

4 Constructions from Weaker Assumptions

Our first construction provided a very efficient system, but under a strong (but
still non-interactive) assumption. To bridge this gap we introduce two additional
constructions that provide a tradeoff of performance versus strength of assump-
tions. We effectively explore a spectrum between system efficiency and strength of
assumption. The final construction is proven secure under the simple decisional-
BDH assumption.

Overview. The primary obstacle in achieving security from weaker assumptions
is that we must be able to reflect the challenge access structure M∗ in the param-
eters during the reduction. We create two different constructions using the same
framework.

In our full version [42] we give a construction provably secure under the existing
d-BDHE assumption introduced by Boneh, Boyen and Goh [11]. To accommodate
a weaker assumption we introduce a parameter kmax which is the maximum num-
ber of times any one attribute can appear in an access formula. A private key in
this system will be a factor of kmax larger than our main construction.

Next, in Section 5 we give a construction provably secure under the much more
standard decisional Bilinear Diffie-Hellman assumption. To realize security under
this assumption our system must additionally introduce a parameter nmax, where
performance parameters will be a factor of nmax larger than our most efficient
construction.

5 Bilinear Diffie-Hellman Construction

While our unrestricted construction realizes a potentially ideal type of efficiency,
we would like to also show that secure CP-ABE systems can be realized from static
assumptions. Here we show how to realize our framework under the decisional Bi-
linear Diffie Hellman d-(BDH) assumption.

The primary challengewith realizing a construction provably secure under BDH
is we need a way for a reduction to embed the challenge matrix M∗ in the param-
eters. Since the BDH assumption gives the reduction less components to embed
this, there is no obvious path for reducing the previous constructions to d-BDH.
We surmount this obstacle by expanding our ciphertexts and public parameter
space. By doing this we enable our reduction to embed the challenge matrix.

Our construction is parametrized by a integer nmax that specifies the maximum
number of columns in a ciphertext policy. The public parameters, keys and cipher-
text size will all grow linearly in this parameter5.
5 One could achieve smaller ciphertexts by creating multiple systems with different nmax

values and use the one that fit the actual policy most tightly.
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Like our first construction we restrict ρ() to be an injective function, but can
alleviate this restriction by applying a similar transformation to allow an attribute
to appear kmax times for some specified kmax. Our construction follows.

Setup(U, nmax). The setup algorithm takes as input, U , the number of attributes
in the system U and nmax the maximum number of columns in an LSSS matrix (or
number of nodes in an access formula). It then creates a group G of prime order
p and a generator g and chooses random elements (h1,1, . . . , h1,U ), . . . , (hnmax,1 ,
. . .,hnmax,U ) In addition, it chooses random exponents α, a ∈ Zp.

The public key is published as

PK = g, e(g, g)α, ga,

(h1,1, . . . , h1,U ), . . . , (hnmax,1, . . . , hnmax,U )

The authority sets MSK = gα as the master secret key.

Encrypt(PK, (M,ρ),M ). The encryption algorithm takes as input the public pa-
rameters PK and a message M to encrypt. In addition, it takes as input an LSSS
access structure (M,ρ). The function ρ associates rows of M to attributes. In this
construction we limit ρ to be an injective function, that is an attribute is associated
with at most one row of M .

Let M be an �×nmax matrix. (If one needs to create a policy for n < nmax, then
one can simply “pad out” the rightmost nmax − n columns with all zeros.) The
algorithm first chooses a random vector v = (s, y2, ..., ynmax) ∈ Zn

p . These values
will be used to share the encryption exponent s.

The ciphertext is published as

CT = C = Me(g, g)αs, C′ = gs, ∀ i=1,...,�
j=1,...,nmax

Ci,j = gaMi,jvjh−s
j,ρ(i)

along with a description of M,ρ.

KeyGen(MSK, S). The key generation algorithm takes as input the master secret
key and a set S of attributes. The algorithm first chooses a random t1, . . . , tnmax ∈
Zp. It creates the private key as

K = gαgat1 L1 = gt1 , . . . , Ln = gtnmax

∀x ∈ S Kx =
∏

j=1,...,nmax

h
tj

j,x.

Decrypt(CT,SK). The decryption algorithm takes as input a ciphertext CT for
access structure (M,ρ) and a private key for a set S. Suppose that S satisfies the
access structure and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, let
{ωi ∈ Zp}i∈I be a set of constants such that, if {λi} are valid shares of any secret
s according to M , then

∑
i∈I ωiλi = s. (Note there could potentially be different

ways of choosing the ωi values to satisfy this.)
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The decryption algorithm first computes

e(C′,K)/

⎛⎝ ∏
j=1,...,nmax

e(Lj,
∏
i∈I

Cωi

i,j)

⎞⎠∏
i∈I

e(Kωi

ρ(i), C
′)

= e(C′,K)/
( ∏

j=1,...,nmax

e(gtj , g
∑

i∈I aMi,jvjωi) ·

e(gtj ,
∏
i∈I

h−sωi

j,ρ(i))
)∏

i∈I

e(Kωi

ρ(i), g
s)

= e(C′,K)/
∏

j=1,...,nmax

e(gtj , g
∑

i∈I aMi,jvjωi)

= e(C′,K)/e(gt1, g
∑

i∈I aMi,1v1ωi)
= e(gs, gαgat1)/e(g, g)at1s

= e(g, g)αs

The decryptor can then divide out this value from C and obtain the message M.

5.1 Proof

We prove the following theorem.

Theorem 2. Suppose the decisional BDH assumption holds. Then no polytime ad-
versary can selectively break our system.

Due to space limitations we defer the proof of the system to our full version [42].

6 Large Universe of Attributes

One aspect of our main construction is that it defines the set of attributes to be used
in the parameters. One useful feature is to be able to dynamically use any string
as an attribute. In our full version [42] we show how in the random oracle we can
realize any number of attributes with constant size parameters by simply hashing
the attribute string. Also in our full version provide a large universe construction
in the standard model.
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

[27] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

[28] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

[29] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

[30] Lewko, A., Waters, B.: Decentralizing attribute-based encryption. Cryptology
ePrint Archive, Report 2010/351 (2010), http://eprint.iacr.org/

[31] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

[32] Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
VLDB, pp. 898–909 (2003)

[33] Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communica-
tions Security, pp. 195–203 (2007)

[34] Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: ACM Conference on Computer and Communications Security, pp. 99–112
(2006)

[35] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

[36] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

[37] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy,
pp. 350–364 (2007)

http://eprint.iacr.org/


70 B. Waters

[38] Smart, N.P.: Access Control Using Pairing Based Cryptography. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)

[39] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

[40] Traynor, P., Butler, K.R.B., Enck, W., McDaniel, P.: Realizing massive-scale con-
ditional access systems through attribute-based cryptosystems. In: NDSS (2008)

[41] Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

[42] Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. Cryptology ePrint Archive, Report 2008/290
(2008), http://eprint.iacr.org/

http://eprint.iacr.org/


Generic Constructions for Chosen-Ciphertext
Secure Attribute Based Encryption

Shota Yamada1, Nuttapong Attrapadung2, Goichiro Hanaoka2,
and Noboru Kunihiro1

1 The University of Tokyo
{yamada@it.,kunihiro@}k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST)
{n.attrapadung,hanaoka-goichiro}@aist.go.jp

Abstract. In this paper we propose generic conversions for transform-
ing a chosen-plaintext (CPA) secure attribute-based encryption (ABE)
to a chosen-ciphertext (CCA) secure ABE. The only known generic con-
version, to the best of our knowledge, was presented by Goyal et al.
in ACM-CCS 2006, which itself subsumes the well-known IBE-to-PKE
conversion by Canetti, Halevi, and Katz proposed in Eurocrypt 2004.
The method by Goyal et al. has some restrictions that it assumes the
delegatability of the original ABE and can deal only with the key-policy
type of ABE with large attribute universe. In contrast, our methodology
is applicable also to those ABE schemes without known delegatability.
Furthermore, it works for both key-policy or ciphertext-policy flavors
of ABE and can deal with both small and large universe scheme. More
precisely, our method assumes only either delegatability or a newly intro-
duced property called verifiability of ABE. We then exhaustively check
the verifiability of existing ABE schemes and found that most of them
satisfy such a property, hence CCA-secure versions of these schemes can
be obtained automatically.

1 Introduction

Background. Attribute-based encryption (ABE) is a generalized cryptographic
primitive from normal public key encryption (PKE) that provides an access con-
trol mechanism over encrypted data using access policies and ascribed attributes
among private keys and ciphertexts. ABE was introduced first by Sahai and Wa-
ters [30]. In an ABE system, a user in the system possesses a key associated with
an access policy, stating what kind of ciphertext that she can decrypt. On the
other hand, a ciphertext is associated with a set of attributes. The decryption can
then be done if the policy associated to the key is satisfied by the attribute set
associated to the ciphertext. This setting of ABE is called key-policy ABE (KP-
ABE) since a key is associated with a policy. Its dual notion in which the role of
policy and attribute set is swapped is called ciphertext-policy ABE (CP-ABE).
In this setting, a policy will be associated to a ciphertext while an attribute set
will be associated to a key.

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 71–89, 2011.
c© International Association for Cryptologic Research 2011
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Most of the proposed ABE schemes [21,5,29] in the literature focused on the
aspect of extending the expressiveness of policies so as to achieve fine-grained
access control (see below). Some other schemes focused on extending to the
multi-authority setting [13,14,3,25], while the most recent achievements in this
research area were the schemes that attain adaptive security [26,28].

In this paper we focus on another important issue namely the aspect of attain-
ing security against chosen-ciphertext attack (CCA) for ABE in the standard
model. The first CCA-secure KP-ABE has already appeared in the seminal paper
for the first expressive KP-ABE scheme by Goyal et al. [21]. Their CCA-secure
scheme extends the methodology of converting any identity-based encryption
(IBE) scheme to CCA-secure PKE scheme Canetti, Halevi, and Katz [12]. Such
a technique relies on delegatability, which is the property that allows using a
key of one policy A to construct a key for another policy A′ that is more re-
stricted than A. Their construction is generic: it is a conversion that transforms
any CPA-secure KP-ABE with delegation to a CCA-secure one. For the case
of CCA-secure CP-ABE, Bethencourt, Sahai, and Waters [5] mentioned that a
similar methodology can be used but they omitted to describe the details. We
note that [5] also uses another method for their CCA-secure CP-ABE namely
the Fujisaki-Okamoto conversion [18] but this can be proven only in the random
oracle model. Some specific CCA-secure construction for CP-ABE with only
AND-gates was proposed in [15].

To the best of our knowledge, the only generic and standard-model construc-
tion for CCA-secure ABE available in the literature is the aforementioned one
by Goyal et al. [21]. The scheme works for the key-policy flavor and can deal only
with the scheme for a large attribute universe. It works roughly as follows. To
encrypt to an attribute set S, Bob first generates a signing and verification key
pair (sk, vk) of a one-time signature scheme. Bob then constructs a ciphertext
for S ∪ {vk} of the original scheme, where vk is treated as a dummy attribute,
and signs this with sk. Upon receiving, Alice checks the validity of signature and
then delegates her key from policy A to policy A and vk. Alice then uses the
latter key to decrypt the ciphertext.

Our Contributions. We propose eight generic conversions that transform
CPA-secure ABE to CCA-secure ABE. The eights conversions comprise all the
combinations by three categorization: (1) whether we consider CP-ABE or KP-
ABE, (2) the original scheme deals with a small or large universe of attributes,
and (3) the conversion uses which methodology out of two that we propose. One
methodology is based on delegatability of ABE, while the other is based on a new
property called verifiability of ABE. The former methodology is a reminiscent
of the method by Goyal et al. [21] as described above. On the other hand, the
latter can be considered as its “dual”. Roughly speaking, while the delegatability-
based method utilizes the and functionality of ABE, the new verifiability-based
method uses the or functionality.

Before moving further, we point out an apparent strength of our thesis: one
methodology has an advantage over the other in the sense that it requires only
either one of the two additional properties. The new verifiability-based one does
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not require delegatability of ABE. It thus applies to those ABE without known
delegation, such as the linear secret sharing based KP-ABE of Goyal et al. [21]
and non-monotonic KP-ABE of Ostrovsky et al. [29] for instances.

Another advantage is that our methodology is generic: it converts the under-
lying CPA-secure ABE in the black-box manner. Readers who are familiar with
ABE may argue that CCA-secure version of any ABE can be rather easy to
construct since, to the best of our knowledge, all the available schemes so far
were based on bilinear pairing and with this tool there are some well-known,
but specific, techniques such as [12,9] (in the context of IBE) to attain CCA se-
curity. However, using such specific techniques requires researchers to construct
and prove the security individually each time a new ABE is proposed, which is
not quite convenient. Besides, we believe that some new ABE which is not based
on pairing will be proposed in the future.

Our Approach. The new verifiability-based method works roughly as follows.
We briefly describe here for the case of KP-ABE (with a large universe). The
scheme is indeed similar to the aforementioned method, where Bob encrypts to
S ∪ {vk}, while Alice holds a key for a policy A, with the only difference in
decryption algorithms. Instead of delegating the key, Alice will use the verifia-
bility to check a kind of well-formed-ness of ciphertext before decrypting. Such a
verifiability allows to check whether a ciphertext will decrypt to the same result
when using either a key for policy A or a key for the singleton policy {{vk}}. The
latter key will be used only in the proof. The ability to use either key to decrypt
can be considered intuitively as an (implicit) or functionality. For the case of
CP-ABE, the utilization of or will become more clear: there, we explicitly use
a policy of the form A or vk.

The use of or and some form of verifiability to attain CCA security can
be traced back to the classic Naor-Yung two-key paradigm [27] in the context
of CCA-secure PKE. However, their scheme poses a strong requirement: the
existence of non-interactive zero knowledge proofs, and thus, enhanced trapdoor
permutations. In contrast, our newly defined verifiability for ABE is indeed quite
a weak requirement. Regarding this, we show the gap between our verifiability
and the commonly defined public verifiability. Furthermore, for pairing-based
schemes, the verifiability comes for almost free in many schemes.

Finally, we note that the described methods assume that the original ABE can
deal with large universe (super-polynomial size). This is since we have to treat
vk as dummy attributes. In our methodology, we further propose how to deal
with small universe schemes by introducing a twist similar to the well-known
technique by Dwork, Dolev, and Naor [17] (in the context of PKE).

Related Works on ABE. ABE was first introduced by Sahai and Waters [30]
in the context of a generalization of IBE called Fuzzy IBE, which is an ABE
that allows only single threshold access structures. The first KP-ABE scheme
that allows any monotone access structures was proposed by Goyal et al. [21].
The first such CP-ABE scheme which allows the same expressiveness was pro-
posed by Bethencourt, Sahai, and Waters [5], albeit the security of their scheme
was only proved in the generic bilinear group model. Ostrovsky, Sahai, and
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Waters [29] then subsequently extended both schemes to handle also any non-
monotone structures. Towards constructing a CP-ABE in the standard model,
Cheung and Newport [15] proposed a CP-ABE scheme that allows only AND
gate, while Goyal et al. [20] proposed a CP-ABE scheme which allows only a-
priori bounded size of gates (bounded CP-ABE). Waters [31] then proposed
the first fully expressive CP-ABE in the standard model. Herranz et al. [23]
proposed the first constant-size ciphertext scheme for CP-ABE allowing thresh-
old gates. Recently, Attrapadung and Libert [1] proposed the first fully expres-
sive KP-ABE with constant-size ciphertexts. All of these works were limited
to deal with selective adversaries [11,6] until only two recent works by Lewko
et al. [26] and Takashima and Okamoto [28], where they obtained adaptively
secure ABE schemes. The aforementioned ABE schemes deal only with single
authority, which is the setting that we focus here as well. Some extensions to
multi-authority schemes were considered in [13,14,3,25]. It is also worth mention-
ing that dual-policy ABE, which is a combination of the mentioned two flavors
of ABE, was proposed in [2].

Organization of the Paper. In the rest of this paper, we first give syntax and
security notion of FE in Sec. 2, give the definition of verifiability and delegata-
bility of FE in Sec. 3, show our general construction in Sec. 4, prove the security
of our constructions for the case of CP-ABE in Sec. 5, 6, show instantiations
of our generic construction in Sec. 7, show that our definition of verifiability is
strictly weaker notion than usual public verifiability in Sec. 8.

2 Definitions

We capture notions of CP-ABE and KP-ABE by providing a unified definition
and security notion for functional encryption1 here and then instantiating to
both primitives in the next subsection.

2.1 Syntax and Security Definition for Functional Encryption

Syntax. Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe

denote “key attribute” and “ciphertext attribute” spaces. A functional encryp-
tion (FE) scheme for R consists of the following algorithms: Setup, KeyGen,
Encrypt, Decrypt.

Setup(λ, des) → (PK,MSK): The setup algorithm takes as input a security
parameter λ and a scheme description des and outputs a public key PK and
a master secret key MSK.

KeyGen(MSK,PK,X) → SKX : The key generation algorithm takes in the
master secret key MSK, the public key PK, and a key attribute X ∈ Σk.
It outputs a private key SKX .

1 Our definition of FE is not the fully generalized one, as recently defined in [10]. It
can be considered as the class of predicate encryption with public index in [10].
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Encrypt(PK,M, Y ) → CT : The encryption algorithm takes as input a public
key PK, the message M , and a ciphertext attribute Y ∈ Σe. It will output
a ciphertext CT . We assume that Y is implicitly included in CT .

Decrypt(PK,CT, SKX) → M or ⊥: The decryption algorithm takes in the
public parameters PK, a ciphertext CT , and a private key SKX . It out-
puts the message M or ⊥ which represents that the ciphertext is not in a
valid form.

We require the standard correctness of decryption: that is, for allλ, all (PK,MSK)
outputbySetup(λ, des),allX ∈ Σk,allSKX outputbyKeyGen(MSK,PK,X),
and Y ∈ Σe,

− If R(X,Y ) = 1, then Decrypt(PK,Encrypt(PK,M, Y )), SKX) = M .
− If R(X,Y ) = 0, then Decrypt(PK,Encrypt(PK,M, Y )), SKX) = ⊥.

Security Notion. We now give the definition of indistinguishability under
chosen ciphertext attack (CCA-security) for FE scheme Π . This is described by
a game between a challenger and attacker A. The game proceeds as follows:
Setup. The challenger runs the setup algorithm and gives PK to A.
Phase1. A may adaptively make queries of the following types:
− Key-extraction query. A submits X to the challenger. If the challenger
already extracted a private key SKX for X , then returns it. Otherwise the
challenger runs SKX ← KeyGen(MSK,PK,X) and returns it.
− Decryption query. A submits (CT,X) to the challenger and ask for the
decryption result of ciphertext CT under private key for X . If the challenger
has not previously extracted a private key SKX for X , then extract it by
SKX ← KeyGen(MSK,PK,X). Then, the challenger returns the output of
Decrypt(PK,CT, SKX) to A.
Challenge. A declares two equal length messages M0 and M1 and target ci-
phertext attribute Y ∗ ∈ Σe. Y ∗ cannot satisfy R(X,Y ∗) = 1 for any attribute
sets X such that A already queried private key for X . Then the challenger flips a
random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ, Y

∗) → CT ∗ and gives challenge
ciphertext CT ∗ to A.
Phase2. A may adaptively make queries as the same as in Phase1 with fol-
lowing added restriction. A cannot query to extract a private key SKX for X
such that R(X,Y ∗) = 1. A cannot submit (CT,X) such that R(X,Y ∗) = 1 and
CT = CT ∗.
Guess. A outputs a guess β′ for β.
We say that A succeeds if β′ = β and denote the probability of this event by
PrFE

A,Π . The advantage of an attacker A is defined as AdvFE
A,Π = PrFE

A,Π − 1
2 .

Definition 1. We say that an FE scheme Π is (τ, ε, qD, qE) CCA-secure if for
all τ-time algorithms A who make a total of qD decryption queries and a total of
qE key-extraction queries, we have that AdvFE

A,Π < ε. We say that an FE scheme
Π is CCA-secure if for all polynomial τ , qD, qE and for all nonnegligible ε, Π
is (τ, ε, qD, qE) CCA-secure.
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Definition 2. We say that an FE scheme Π is (τ, ε, qE) CPA-secure if Π is
(τ, ε, 0, qE) CCA-secure. We say that an FE scheme Π is CPA-secure if for all
polynomial τ , qE, for all nonnegligible ε, Π is (τ, ε, qE) CPA-secure.

We say that the FE scheme is selectively CCA/CPA-secure if we add an Initial
stage Init before the setup where the adversary submits the ciphertext attribute
Y ∗ ∈ Σe.

2.2 Definitions for Attribute-Based Encryption

Definition 3 (Access Structures). Consider a set of parties P =
{P1, P2, . . . , Pn}. A collection A ⊆ 2P is said monotone if for all B,C we have
that if B ∈ A and B ⊆ C then C ∈ A. An access structure (resp., monotonic
access structure) is a collection (resp., monotone collection) A ⊆ 2P \ {∅}. The
sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

Definition 4 (KP-ABE). Let U be an attribute space. A key-policy attribute-
based encryption (KP-ABE) for a collection A of access structures over U is a
functional encryption for RKP : A × 2U → {0, 1} defined by RKP(A, ω) �→ 1 iff
ω ∈ A. Furthermore, the description des consists of the attribute universe U ,
Σk = A, and Σe = 2U .

Definition 5 (CP-ABE). A ciphertext-policy attribute-based encryption (CP-
ABE) is the dual variant of KP-ABE. More precisely, if we let U be the attribute
space, a CP-ABE for a collection A of access structures over U is a functional
encryption for RCP : 2U × A → {0, 1} defined by RCP(ω,A) �→ 1 iff ω ∈ A.
Furthermore, the description des consists of the attribute universe U , Σk = 2U ,
and Σe = A.

Some Terminologies. We define some terminologies and properties related to
access structures here. Any monotonic (resp., non-monotonic) access structure
A can be represented by a corresponding boolean formula (resp., with negation),
which we denote by ψ(A), over variables in U . This is naturally defined in the
sense that S ∈ A holds iff the evaluation of ψ(A) with the assignment that sets
all variables in S to 1 and other variables outside S to 0 yields the value 1.

Consider the case where A is a monotonic access structure over U . If we
denote a minimal representation of A by min(A) = {S ∈ A | there exists no B ∈
A such that B ⊂ S} . Then, it is straightforward to see that ψ(A) = ∨S′∈min(A)
(∧P∈S′P ).

Next we consider the case where A that is a non-monotonic access structure
over U . We proceed similarly to Ostrovsky et al. [29]. For each P ∈ U we define
another primed attribute P ′. Let Ū = {P ′ | P ∈ U}. As in [29], we define a
monotonic access structure Ã over U ∪ Ū in such a way that S ∈ A ⇔ S ∪{P ′ ∈
Ū | P ∈ U \ S} ∈ Ã. Then, it is not hard to see that ψ(A) can be written as
ψ(Ã) with each primed variable P ′ being replaced by the negation of P .

For simplicity, we will use the access structure A and its corresponding boolean
formula ψ(A) interchangeably when specifying a policy.
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3 Two Properties: Verifiability and Delegatability

In our constructions, we need FE (CP/KP-ABE) to have either verifiability or
delegatability. In this section we define both properties. While the former is a
new one defined in this paper, the latter one was already defined in [21,5,7]
for the KP-ABE, CP-ABE and general FE cases respectively. We note that the
notion of delegation for FE subsumes that of hierarchical IBE [22,6]. We also
note that similar notion to the verifiability ”committing” is defined in the IBE
setting in [19].

Verifiability. Intuitively, we say that an FE scheme has verifiability if it is
possible to verify whether a ciphertext will be recovered into the same decryption
result under two different decryption keys with two specific attributes.

Definition 6. An FE scheme Π = (Setup,KeyGen,Encrypt,Decrypt), is
said to have verifiability if there also exists a polynomial time algorithm Verify
that takes as inputs PK,CT,X,X ′ and outputs 0 or 1 or ⊥ according to the
following properties. Let Y be obtained from parsing CT . We require that first if
R(X,Y ) = 0 or R(X ′, Y ) = 0, then Verify outputs ⊥.

Second if R(X,Y ) = R(X ′, Y ) = 1 then if we let Setup(λ, des) → (PK,
MSK) then we have the following.

(Soundness). For all CT in the ciphertext space (which might be invalid),

Pr

⎡⎢⎣Decrypt(PK,CT, SKX) =
Decrypt(PK,CT, SKX′)

∣∣∣∣∣
Verify(PK,CT,X,X ′) = 1,
SKX ← KeyGen(PK,MSK,X),
SKX′ ← KeyGen(PK,MSK,X ′)

⎤⎥⎦ = 1.

(Completeness). For all M in the message space,

Pr [Verify(PK,CT,X,X ′) = 1 | CT ← Encrypt(PK,M, Y )]=1.

Note that our definition of verifiability is weaker notion than usual public veri-
fiability. Namely, in our definition, validity of the ciphertext is not needed to be
checked. See Sec. 8 for the gap between the (standard) public verifiability and
our verifiability. Moreover, for our conversion, the above definition of verifiability
is sufficient but not necessary. See Appendix B for a weaker (but complicated)
variant of our verifiability.

Delegatability. Intuitively, delegatability is the capability to use a key for
some key attribute X to derive another key for key attribute X ′ which is possible
if X ′ is inferior than X when considering a well-defined partial order relation
� over the key attribute domain Σk. More precisely, one can derive SKX′ from
SKX if X � X ′. In the both of CP-ABE and KP-ABE cases, we define the
partial order relation as X � X ′ iff X ⊇ X ′. The formal definition is as follows.

Definition 7. An FE scheme Π = (Setup,KeyGen,Encrypt,Decrypt), is
said to have delegatability if there also exists a polynomial time algorithm
Delegate such that the output of Delegate(PK,SKX , X,X ′) and of
KeyGen(MSK,PK,X ′) have the same probability distribution for all X,X ′ ∈
Σk such that X ′ � X and for all SKX output by KeyGen(MSK,PK,X).
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Indeed, this definition is stronger than needed to apply our conversion for the
KP-ABE case. In such a case, it suffices to require only that the output of
Delegate(PK,SKA, ψ(A), ψ(A) ∧ P ) and of KeyGen(MSK,PK,ψ(A) ∧ P )
have the same probability distribution for all access structure A, an attribute P ,
and all SKψ(A) output by KeyGen(MSK,PK,ψ(A)).

4 General Constructions of CCA-Secure ABE

In this section, we show eight conversions to convert a CPA-secure FE scheme
Π to a CCA-secure FE scheme Π ′. The eight conversions consist of the combi-
nations of whether the original FE scheme Π is CP-ABE or KP-ABE, Π has
verifiability or delegatability, and Π deals with a small or large universe. To
describe all conversions in a concise way, we write them all in one construction
template below. Each conversion then differs in only the definitions of specific
variables in Π ′ namely X ′ for key attribute, Y ′ for ciphertext attribute, W for
dummy attribute universe, and a procedure called Subroutine used in decryp-
tion algorithms. We define W below, while the rest are given in Table 1.

Attribute Universes. ABE can be categorized by the size of the attribute
universe that such a scheme can deal with: whether it is of polynomial or super-
polynomial size. These are called small and large universe scheme respectively.
In our conversions, the converted scheme Π ′ will be able to deal with the same
type as that of its original scheme Π . Suppose that we construct a scheme Π ′

to work with a universe U , we will utilize a set W of dummy attributes, which is
disjointed from U . The original scheme Π is then required to deal with universe
U ∪ W . A set of dummy attributes will then be associated to a verification key
vk of a one-time signature scheme used in the conversion (see Appendix C.2).
We assume that for all vk, vk ∈ {0, 1}�. The set W is defined as follows.

– If Π is a small universe scheme, we set W = {P1,0, P1,1, P2,0, P2,1, . . . , P�,0,
P�,1}. We set a dummy attribute set Svk⊂W by setting Svk = {P1,vk1 , P2,vk2 ,
. . . , P�,vk�

}, where we denote by vkj the j-th bit of vk.
– If Π is a large universe scheme, we set W = {0, 1}�. We set a dummy

attribute set Svk ⊂ W by simply letting Svk = {vk}.

Construction Template. Given a CPA-secure FE scheme Π = (Setup,
KeyGen,Encrypt,Decrypt) with verifiability or delegatability, we construct
another FE scheme Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) which is
CCA-secure as follows. Let Σ = (G,S,V) be a one-time signature scheme.

Setup′(λ, U). It outputs Setup(λ, U ∪W ) → (PK,MSK).
KeyGen′(MSK,PK,X). It outputs KeyGen(MSK,PK,X ′) → SKX′ .

Hence SK ′
X = SKX′ .

Encrypt′(PK,M, Y ). It first creates a one-time signature key pair by running
G(λ) → (vk, sk). It then runs Encrypt(PK,M, Y ′) → CT and S(sk, CT ) →
σ. It outputs CT ′ = (vk, CT, σ).
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Table 1. How to setup X ′, Y ′ and Subroutine in each case

Conversion CP-ABE1 Conversion KP-ABE1
CPA CP-ABE w/ verifiability

⇒ CCA CP-ABE

CPA KP-ABE w/ verifiability

⇒ CCA KP-ABE
Attribute set X ′ = X
Policy Y ′ = Y ∨ (∧P∈SvkP )

Policy X ′ = X
Attribute set Y ′ = Y ∪ Svk

Subroutine
If Verify(PK, CT, X, Svk) = 0 or ⊥

Return ⊥.
Else

Return Decrypt(PK,CT, SKX′).

Subroutine
If Verify(PK, CT, X,∧P∈SvkP ) = 0 or ⊥

Return ⊥.
Else

Return Decrypt(PK,CT, SKX′).
Conversion CP-ABE2 Conversion KP-ABE2

CPA CP-ABE w/ delegation

⇒ CCA CP-ABE

CPA KP-ABE w/ delegation

⇒ CCA KP-ABE
Attribute set X ′ = X ∪ W
Policy Y ′ = Y ∧ (∧P∈SvkP )

Policy X ′ = X
Attribute set Y ′ = Y ∪ Svk

Subroutine
Run
Delegate(PK,SK′

X , X ∪ W, X ∪ Svk)
→ SKX∪Svk .

Return
Decrypt(PK, CT, SKX∪Svk).

Subroutine
Run
Delegate(PK,SK′

X , X, X ∧ (∧P∈SvkP ))
→ SKX∧(∧P∈Svk

P ).
Return
Decrypt(PK, CT, SKX∧(∧P∈Svk

P )).

Decrypt′(PK,CT ′, SK ′
X). It parses the ciphertext CT ′ as (vk, CT, σ). If V(vk,

CT, σ) = 0, then it outputs ⊥. Otherwise, it runs a subroutine Subroutine
and outputs its returned value.

Theorem 1. Let Π be (τ, εABE , q) CPA-secure CP/KP-ABE scheme with ver-
ifiability/delegatability, and Σ be a (τ, εOTS) secure one-time signature scheme,
then Π ′ constructed as above is (τ − o(τ), εABE + εOTS , qD, qE) CCA-secure
CP/KP-ABE scheme where q ≥ qD + qE.

The theorem can be proven from Lemma 1, 2.

Correctness. We prove the correctness of all the conversions as follows.
− In the case of CP-ABE1 and CP-ABE2, assume that the attribute set X

satisfies the policy Y (that is RCP(X,Y ) = 1). In CP-ABE1, Verify out-
puts 1 since Svk trivially satisfies ∧P∈Svk

P therefore both X and Svk satisfy
Y ∨ (∧P∈Svk

P ). The correctness then follows from that of the original ABE.
In CP-ABE2, since X∪W ⊇ X∪Svk, Delegate outputs secret key for X∪Svk

correctly and it can be easily seen that X ∪Svk satisfies Y ∧ (∧P∈Svk
P ). The

correctness follows similarly.
− In the case of KP-ABE1 and KP-ABE2, assume that the attribute set Y sat-

isfies the policy X (that is RKP(X,Y ) = 1). In KP-ABE1, Verify outputs 1
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since ∧P∈Svk
P is trivially satisfied by Svk therefore both X and ∧P∈Svk

P is
satisfied by Y ∪ Svk. The correctness then follows from that of the original
ABE. In KP-ABE2, since X � X ∧ (∧P∈Svk

P ), Delegate outputs secret key
for X ∧ (∧P∈Svk

P ) correctly and it can be easily seen that X ∧ (∧P∈Svk
P ) is

satisfied by Y ∪ Svk. The correctness follows similarly.

Remark. We propose another two variants which are conversions for CP-ABE
and KP-ABE based on verifiability in Appendix A. We also note that the con-
version KP-ABE2 for the large universe case is exactly the one in [21]. We include
it here to cover the big picture of the whole framework.

Efficiency Consideration. We first consider the expansion of attribute sets.
This only occurs in CP-ABE2, where we define a key for set X ′ = X ∪ W . A
problem may occur for the large universe case, since W is of super-polynomial
size the key size may also expand enormously depending on the underlying ABE.
If such a problem occurs, we use W as defined in the small universe case.

Next we consider the expansion of policies. In all of available constructions of
ABE in the literature, an access structure is represented by either of two methods
namely an access tree ([21,5]) or a linear-secret sharing scheme (LSSS) matrix
([21,29,31,26,28]). The efficiency, in particular, key sizes and ciphertext sizes, of
these respective ABE schemes tend to depend on the size of access trees or LSSS
matrices used in such schemes. (See the definition of LSSS in Appendix C.1).
Our conversions particularly use policies of the form ψ(A) ∨ (∧P∈Svk

P ) and
ψ(A) ∧ (∧P∈Svk

P ). Therefore, we have to check whether ψ(A) when augmented
to each of both forms still can be represented efficiently or not. To this end, the
efficiency is guaranteed from the following two observations.

Proposition 1. Let access structures A and B be expressed by access trees using
the method in [21] with ha, hb nodes and �a, �b leaves respectively. Then access
structure corresponding to ψ(A) ∧ ψ(B) and ψ(A) ∨ ψ(B) can be expressed by
access trees both with ha + hb + 1 nodes and �a + �b leaves.

Proposition 2. Let access structures A and B be expressed by an �a ×ma and
an �b × mb LSSS matrix by using the LSSS of [4] respectively. Then the LSSS
matrix corresponding to ψ(A) ∧ ψ(B) and ψ(A) ∨ ψ(B) can be expressed by an
(�a + �b)× (ma +mb) and an (�a + �b−1)× (ma +mb) LSSS matrix respectively.

To conclude, since |Svk| = � = poly(λ) in the large-universe construction and
|Svk| = 1 in the small-universe construction, our conversions can be efficiently
implementable.

Selective security. We remark that our conversion can be also applied to
selectively (CPA-)secure ABE schemes, and in such cases, resulting CCA-secure
schemes are only selectively (CCA-)secure as well.

5 Security of Our Constructions from Verifiability

Security of our constructions from verifiability, i.e. CP-ABE1 and KP-ABE1 is
addressed as follows:
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Lemma 1. Let Π be (τ, εABE , q) CPA-secure CP/KP-ABE scheme with veri-
fiability and Σ be a (τ, εOTS) secure one-time signature scheme, then Π ′ con-
structed as in Sec. 4 (CP/KP-ABE1) is (τ − o(τ), εABE + εOTS , qD, qE) CCA-
secure CP/KP-ABE scheme where q ≥ qD + qE.

In the rest of this section, we prove Lemma 1 for the case of CP-ABE. The
lemma can also be proven similar way in the case of KP-ABE.

Proof of Lemma 1 for the case of CP-ABE. Assume we are given an adversary
A which breaks CCA-security of the scheme Π ′ (CP-ABE1) with running time
τ , advantage ε, q extraction queries, and, qD decryption queries. We use A to
construct another adversary B which breaks CPA-security of the scheme Π .
Define adversary B as follows:
Setup. The challenger runs Setup(λ, U ∪W ) → (PK,MSK). Then B is given
PK and gives it to A. B also runs G(λ) → (vk∗, sk∗).
Phase1. A may adaptively make queries of the following types:
− Key-extraction query. When A submits S, then B submits same S to
challenger. B is given private key SKS for S and gives it to A.
− Decryption query. When A submits (CT ′, S) such that CT ′ = (vk, CT, σ),
B respond to A as follows. First, B checks whether V(vk, CT, σ) = 1 holds. If
it does not hold, then B returns ⊥. If it holds and vk∗ = vk, then B aborts.
Otherwise, B checks whether Verify(PK,CT, Svk, S) = 1. If it does not hold,
then B returns ⊥. Otherwise B submits Svk to the challenger and is given SKSvk

.
Then B returns output of Decrypt(PK,CT, SKSvk

) to A.
Challenge. A declares two equal length messages M0 and M1 and an access
structure A∗. Then B declares the same messages M0, M1 and A∗′ for the chal-
lenger, where A∗′ is an access structure such that ψ(A∗′) = ψ(A∗)∨(∧P∈Svk∗ P ).
The challenger flips a random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ, ψ(A∗′)) →
CT ∗ and gives CT ∗ to B. Then B runs S(sk∗, CT ∗) → σ∗, and gives CT ∗′ =
(vk∗, CT ∗, σ∗) to A as challenge ciphertext.
Phase2. B responds to A’s query as the same as in Phase1.
Guess. Finally, A outputs a guess β′ for β. Then B outputs β′ as its guess.
Let Win denote the event that A correctly guess β, Abort denote the event
that B aborts. If Abort does not occur, from the verifiability of the scheme,
B’s simulation is perfect. So, B’s advantage for guessing β is estimated as
Pr[B correctly guesses β] − 1

2 = Pr[Win|Abort]Pr[Abort] − 1
2 ≥ Pr[Win] −

Pr[Abort] − 1
2 ≥ ε − Pr[Abort]. Since Pr[Abort] ≤ εOTS holds due to un-

forgeability of the one-time-signature, the proof is completed. �

6 Security of Our Construction from Delegatability

Security of our constructions from delegatability, i.e. CP-ABE2 and KP-ABE2 is
addressed as follows. In this section, we prove Lemma 2 for the case of CP-ABE.
The lemma can also be proven by similar way in the case of KP-ABE.
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Lemma 2. Let Π be a (τ, εABE , q) CPA-secure CP/KP-ABE scheme with del-
egatability and Σ be (τ, εOTS) secure one-time signature, then Π ′ constructed
as in section4 (CP/KP-ABE2) is (τ − o(τ), εABE + εOTS , qD, qE) CCA-secure
CP/KP-ABE scheme where q ≥ qD + qE.
Proof of Lemma 2 for the case of CP-ABE. Assume we are given an adversary
A which breaks CCA-security of the scheme Π ′ (CP-ABE2) with running time
τ , advantage ε, qE key-extraction queries, and, qD decryption queries. We use A
to construct another adversary B which breaks CPA-security of the scheme Π .
Define adversary B as follows:
Setup. The challenger runs Setup(λ, U ∪W ) → (PK,MSK). Then B is given
PK and gives it to A. B also runs G(λ) → (vk∗, sk∗).
Phase1. A may adaptively make queries of the following types:
− Key-extraction query. When A submits S, then B submits S ∪ W to the
challenger. B is given private key SKS∪W for S ∪W and gives it to A.
− Decryption query. When A submits (CT ′, S) such that CT ′ = (vk, CT, σ),
B respond to A as follows. First, B checks whether V(vk, CT, σ) = 1 holds. If
it does not hold, then B returns ⊥. If it holds and vk∗ = vk, then B aborts.
Otherwise B submits S ∪ Svk to the challenger and is given SKS∪Svk

. Then B
rerandomize it by SKS∪Svk

← Delegate(PK,SKS∪Svk
, S ∪ Svk, S ∪ Svk) and

returns output of Decrypt(PK,CT, SKS∪Svk
) to A.

Challenge. A declares two equal length messages M0, M1 and A∗. Then B
declares the same messages M0, M1, and A∗′ for the challenger, where A∗′ is an
access structure such that ψ(A∗′) = ψ(A∗) ∧ (∧P∈Svk∗P ). The challenger flips a
random coin β ∈ {0, 1}, runs Encrypt(PK,Mβ, ψ(A∗′)) → CT ∗ and gives CT ∗

to B. Then B runs S(sk∗, CT ∗) → σ∗ and gives CT ∗′ = (vk∗, CT ∗, σ∗) to A as
challenge ciphertext.
Phase2. B responds to A’s query as the same as in Phase1.
Guess. Finally, A outputs a guess β′ for β. Then B outputs β′ as its guess.
Similar analysis to the previous section shows that Pr[B correctly guess β]− 1

2 ≥
ε− εOTS . �

7 Applications to Existing Schemes

7.1 The Case of ABE by Lewko et al.

In this section, we show some applications of our conversions to the recent CPA-
secure CP-ABE by Lewko et al. [26] to achieve CCA-secure schemes. We observe
first that neither delegation was presented nor verifiability is available in their
ABE. However, we show here that only a slight modification will allow both
properties. For self-containment, we briefly describe their scheme here.

Description for CP-ABE of [26]. The scheme works in a bilinear group of
composite order N = p1p2p3. Denote Gpj the subgroup of order pj of G. The
master key is MSK = (α ∈ ZN , X3 ∈ Gp3), while the public key is of the form
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PK = N, g, ga, e(g, g)α, {Ti = gsi}i∈U where g ∈ Gp1 , a, si ∈ ZN . Note that the
scheme works with a small universe U . A secret key for set S ⊂ U is of the form
SKS = (S, K = gαgatR0, L = gtR′

0, {Ki = T t
i Ri}i∈S) for random R0, R

′
0, Ri ∈

Gp3 , t ∈ ZN . Denote B(A) = ∪S∈AS. A ciphertext for policy A is of the form
CT = (C = Me(g, g)sα, C′ = gs, {Cx = gaAx·vT−rx

ρ(x) , Dx = grx}x∈B(A)) for
some random s, rx ∈ ZN and where Ax · v is the random share for x of the
secret s in the LSSS scheme representing the policy A. Decryption can be done
if S ∈ A by recovering e(C′,K)/

∏
ρ(x)∈S(e(Cx, L)e(Dx,Kρ(x)))ωx = e(g, g)αs

where {ωx} is the reconstruction coefficient of the LSSS scheme.

Slight Modification. The above scheme seems not to have neither delegata-
bility nor verifiability. This is mainly due to the fact that one cannot check
whether a ciphertext consists of only elements in Gp1p2 or not. Thus, for achiev-
ing delegatability and verifiability, we modify the above ABE scheme by simply
including also the generator X3 ∈ Gp3 in PK. We argue that this modified
scheme is still CPA-secure. This can be easily seen since all the three underly-
ing hard problems in [26] that the scheme is based on contains a generator of
Gp3 as an input. In the following, we show verifiability and delegatability of the
resulting scheme.

Delegatability. We define Delegate of the modified scheme as follows.
Delegate(PK,SKS, S

′(⊆ S)) It chooses random u ∈ ZN and random elements
R0, R

′
0, Ri ∈ Gp3 . It computes the key for S′ as SKS′ = (S′, K ′ = KgauR0,

L′ = LguR′
0, {K ′

i = KiT
u
i Ri}i∈S′).

It is straightforward to see that the output of Delegate(PK,SKS, S
′(⊆ S)) and

that of KeyGen(MSK,PK, S′) have the same probability distribution.

Verifiability. We define Verify of the modified scheme as follows.
Verify(PK,CT, S, S′) It parses PK = (N, g, ga, e(g, g)α, {Ti}i∈U , X3) and

CT = (A, C, C′, {Cx, Dx}x∈B(A)) then outputs V as

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if S �∈ A or S′ �∈ A.

1 if
∏

ρ(x)∈S

(e(Cx, g)e(Dx, Tρ(x)))wx,S

=
∏

ρ(x)∈S′
(e(Cx, g)e(Dx, Tρ(x)))wx,S′ = e(ga, C′),

and e(C′, X3) = 1, e(Cx, X3) = e(Dx, X3) = 1 for all x ∈ B(A).
0 otherwise.

(1)

(2)

Here ωx,S and ωx,S′ are reconstruction coefficients in the LSSS. Hence we have∑
ρ(x)∈S ωx,SAx =

∑
ρ(x)∈S′ ωx,S′Ax = (1, 0, . . . , 0). We now prove that Verify

algorithm defined as above satisfies soundness and completeness properties.

Proving Soundness. Consider S, S′∈A. Assume that Verify(PK,CT, S, S′)=
1 and that SKS, SKS′ are correctly generated. We will prove that Decrypt
(PK,CT, SKS) = Decrypt(PK,CT, SKS′) holds. To this end, we parse
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SK = (S,K,L, {Ki}i∈S), and see that Decrypt(PK,CT, SKS) outputs the
following.(

C ·
∏

ρ(x)∈S
(e(Cx, L)e(Dx,Kρx))ωx

)
/e(C′,K) by def

=

(
C ·
∏

ρ(x)∈S(e(Cx, g
t · R′

0)e(Dx, T
t
ρ(x)Rρ(x)))ωx

)
e(C′, gα · gat · R0)

by def of SKS

=
(
C ·
∏

ρ(x)∈S
(e(Cx, g)e(Dx, Tρ(x)))tωx

)
/e(C′, gα · gat) by (2)

= C · e(g, C′)at/(e(C′, g)αe(g, C′)at) = C/e(g, C′)α. by (1)

Now since S is arbitrary, the same result holds for S′, which concludes the proof.

Proving Completeness. Assume that a ciphertext CT is correctly generated.
We will prove that Verify(PK,CT, S, S′) = 1. A correctly generated ciphertext
is the form of CT = (C = Me(g, g)sα, C′ = gs, {Cx = gaAx·vT−rx

ρ(x) , Dx =
grx}x∈B(A)). Since all elements are in Gp1p2 , (2) holds. Equation (1) also holds
by straightforward calculation.

Resulting CCA-secure Schemes. We now compare the two CCA-secure CP-
ABE constructions converted from the above (slightly modified) CP-ABE of [26]
by using the CP-ABE1 (required verifiability) and CP-ABE2 (required delegata-
bility). As for the public key length, ciphertext length, and encryption cost, it
seems that former is as efficient as latter. (Ciphertext length and encryption cost
depend on the underlying LSSS matrix.) Secret key length of former is shorter
than that of latter. As for the decryption cost, latter is more efficient than former
since the Verify algorithm contains many pairing computation as opposed to
the Delegate algorithm.

Table 2. ABE with delegatability or verifiability. In the table, “Deleg.” and “Verif.”
denote delegatability and verifiability respectively.

Schemes KP/CP Universe Deleg. Verif. Security Assumption

Goyal et al. [21, Sect.4] KP small U � selective DBDH
Goyal et al. [21, Sect.5] KP large � � selective DBDH
Goyal et al. [21, Sect.A] KP small U � selective DBDH
Ostrovsky et al. [29, Sect.3] KP large U � selective DBDH
Bethencourt et al. [5] CP large � � selective Generic group
Goyal et al. [20] CP small U � selective DBDH
Waters [31, Sect.3] CP small � � selective DPBDHE
Lewko et al. [24, Sect.6] KP large U � selective q-MEBDH
Attrapadung et al.[1] KP large U � selective DBDHE
Lewko et al. [26, Sect.2] CP small U U full 3 assumptions
Section 7.1 (modified from [26]) CP small � � full 3 assumptions
Lewko et al. [26, Sect.A] KP small U U full 3 assumptions
Okamoto et al. [28] KP large U U full DLIN
Slightly modified [28] KP large � � full DLIN
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We remark that KP-ABE scheme in [26] also could be modified to have veri-
fiability by similar technique to the case of CP-ABE.

7.2 Summary for Applications to Existing Schemes

In Table 2, we give an overview of existing ABE schemes and their properties,
and from this table, one can see that many of these schemes satisfy verifia-
bility and/or delegatability. We remark that similarly to [26], Okamoto and
Takashima’s scheme [28] can be also modified to have both delegatability and
verifiability. See the full version of our paper for details. In the table, � denotes
there is verify or delegate algorithm that satisfies our definition, “U” denotes
there is unknown such algorithm.

8 Remark on Verifiability

Our definition of verifiability is considered weaker than that of the standard
public verifiability where roughly speaking, we say that an encryption scheme
satisfies public verifiability if any third party (who does not have any secret)
can always verify whether a given ciphertext is one of possible outputs of the
encryption algorithm or not. To see this, we show an FE scheme which has ver-
ifiability, but does not have public verifiability. We construct such FE scheme
Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′,Verify′) from FE scheme Π =
(Setup,KeyGen,Encrypt,Decrypt,Verify) with verifiability, an one-way
function f : {0, 1}n → {0, 1}n′

, and a hardcore function h : {0, 1}n → {0, 1} for
f . Here, n and n′ are polynomials of λ. Setup′ and KeyGen′ are the same as
Setup and KeyGen respectively. Encrypt′ is slightly different from Encrypt.
Encrypt′(PK,M, Y ) first runs Encrypt(PK,M, Y ) → CT and picks a ran-
dom x ← {0, 1}n independently. Then it compute (f(x), h(x)) ∈ {0, 1}n′+1

and returns final ciphertext CT ′ = (CT, f(x), h(x)). Decrypt′(PK,CT ′, SKX)
first parses CT ′ as (CT, y, b) and returns Decrypt(PK,CT, SKX) where y ∈
{0, 1}n′

, b ∈ {0, 1}. Verify′(PK,CT ′, X,X ′) first parses CT ′ as (CT, y, b) as
the same as above, then returns Verify(PK,CT,X,X ′).

It is clear that Π ′ has verifiability since Verify algorithm defined as above
works correctly. However, Π ′ does not have public verifiability since for verifying
validity of a ciphertext in the sense of public verifiability, one has to correctly
guess the hardcore bit h(x) from only f(x).
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A Variants of CP-ABE2 and KP-ABE2

In Table 3, we show CP-ABE3 and KP-ABE3 which are variants of CP-ABE2
and KP-ABE2, respectively. These schemes are very similar, differences are that
CP-ABE3 and KP-ABE3 are constructed from verifiability whereas CP-ABE2 and
KP-ABE2 are constructed from delegatability.

Table 3. How to setup X ′, Y ′ and Subroutine in CP/KP-ABE3

Conversion CP-ABE3 Conversion KP-ABE3
CPA CP-ABE w/ verifiability

⇒ CCA CP-ABE

CPA KP-ABE w/ verifiability

⇒ CCA KP-ABE
Attribute set X ′ = X ∪ W
Policy Y ′ = Y ∧ (∧P∈SvkP )

Policy X ′ = X
Attribute set Y ′ = Y ∪ Svk

Subroutine
If Verify(PK, CT, X ∪ W, X ∪ Svk) = 0
or ⊥

Return ⊥.
Else

Return Decrypt(PK, CT, SKX′).

Subroutine
If Verify(PK, CT, X, X ∧P∈Svk P ) = 0
or ⊥

Return ⊥.
Else

Return Decrypt(PK, CT, SKX′).
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B Weaker Verifiability

Our conversion still works even if the underlying FE scheme does not satisfy our
verifiability but a weaker notion than it. This weaker variant of our verifiability
is defined as follows.

Definition 8. A FE scheme Π is said to have weaker verifiability if there exists
a polynomial time algorithm Verify that takes as We require that if R(X,Y ) = 0
or R(X ′, Y ) = 0, then Verify outputs ⊥. Here, Y is obtained from parsing CT .

1. If SK ′
X is output of KeyGen(PK,MSK,X), then Pr[Decrypt

(PK,CT, SKX) = Decrypt(PK,CT, SKX′)|
SKX ← KeyGen(PK,MSK,X), SKX′KeyGen(PK,MSK,X ′),
Verify(PK,CT,X,X ′, SK ′

X) = 1] = 1 always holds.
2. If R(X,Y ) = R(X ′, Y ) = 1, then it holds that for all correctly generated PK

and for all CT (which might be invalid),
Pr[Verify(PK,CT,X,X ′, SKX) = Verify(PK,CT,X ′, X, SKX′)|
SKX ← KeyGen(PK,MSK,X), SKX′ ← KeyGen(PK,MSK,X ′)] =
1.

3. If SKX is output of KeyGen(PK,MSK,X) and R(X,Y ) = R(X ′, Y ) = 1,
then It holds that Pr[Verify(PK,CT,X,X ′, SKX) = 1|
SKX ← KeyGen(PK,MSK,X), CT ← Encrypt(PK,M, Y )] = 1

C Some Omitted Definitions and Descriptions

C.1 Linear Secret Sharing Schemes

Definition 9 (Linear Secret Sharing Scheme). Let P be a set of parties.
Let M be a �×k matrix. Let π : {1, . . . , �} → P be a function that maps a row to
a party for labeling. A secret sharing scheme Π for access structure A over a set
of parties P is a linear secret-sharing scheme (LSSS) in Zp and is represented
by (M,π) if it consists of two efficient algorithms:

Share(M,π): The algorithm takes as input s ∈ Zp which is to be shared. It
chooses a2, . . . , ak ∈ Zp and let a = (s, a2, . . . , ak)
. It outputs M · a as
the vector of � shares. The share λi := 〈Mi,a〉 belongs to party π(i), where
Mi


 denotes the ith row of M .
Recon(M,π): The algorithm takes as input an access set S ∈ A. Let I ={i| π(i) ∈

S}. It outputs a set of constants {(i, μi)}i∈I which has a linear reconstruction
property:

∑
i∈I μi · λi = s.

C.2 One-Time-Signature

A one-time-signature scheme consists of the following three algorithms, G, S,
and V . The key generation algorithm G(λ) takes as input the security parameter
λ, and outputs a verification key vk and a signing key sk. The sign algorithm
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S(sk,m) takes as input sk and a message m, and outputs a signature σ. The
verify algorithm V(vk,m, σ) takes as input vk, m, and σ, and outputs a bit
b ∈ {0, 1}. We require that for all honestly generated sk, all m in the message
space, and all σ, output by S(sk,m), we have V(vk,m, σ) = 1. Next, we define
strong unforgery of a (one-time) signature scheme Σ against chosen message
attacks. Security is defined using the following game between an attacker A and
a challenger. Both the challenger and attacker are given λ as input. First, the
challenger runs G(λ) to obtain vk and sk. It gives A vk. Next, A may issue
at most one signing query m∗. The challenger responds with σ∗ = S(sk,m∗).
Finally, A outputs (m,σ). We say that A succeeds to forge if A outputs (m,σ)
such that (m,σ) �= (m∗, σ∗) and V(vk,m, σ) = 1, and denote the probability of
this event by AdvOTS

A,Σ .

Definition 10. We say that a one-time-signature scheme Σ is (τ, ε)-secure if
for all τ-time algorithms A we have that AdvOTS

A,Σ < ε.
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Abstract. Attribute-based encryption (ABE), as introduced by Sahai
and Waters, allows for fine-grained access control on encrypted data. In
its key-policy flavor, the primitive enables senders to encrypt messages
under a set of attributes and private keys are associated with access
structures that specify which ciphertexts the key holder will be allowed
to decrypt. In most ABE systems, the ciphertext size grows linearly with
the number of ciphertext attributes and the only known exceptions only
support restricted forms of threshold access policies.

This paper proposes the first key-policy attribute-based encryption
(KP-ABE) schemes allowing for non-monotonic access structures (i.e.,
that may contain negated attributes) and with constant ciphertext size.
Towards achieving this goal, we first show that a certain class of identity-
based broadcast encryption schemes generically yields monotonic KP-
ABE systems in the selective set model. We then describe a new efficient
identity-based revocation mechanism that, when combined with a par-
ticular instantiation of our general monotonic construction, gives rise to
the first truly expressive KP-ABE realization with constant-size cipher-
texts. The downside of these new constructions is that private keys have
quadratic size in the number of attributes. On the other hand, they re-
duce the number of pairing evaluations to a constant, which appears to
be a unique feature among expressive KP-ABE schemes.
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1 Introduction

It frequently happens that sensitive data must be archived by storage servers in
such a way that only specific parties are allowed to read the content. In these
situations, enforcing the access control using ordinary public key encryption
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To address these concerns, Sahai and Waters [29] introduced attribute-based
encryption (ABE), which refines identity-based encryption [30,8] by associating
ciphertexts and private keys with sets of descriptive attributes. Decryption is
then possible when there is a sufficient overlap between the two sets. These re-
sults were extended by Goyal, Pandey, Sahai and Waters [20] into richer kinds
of attribute-based encryption, where decryption is permitted when the attribute
set satisfies a more complex boolean formula specified by an access structure.
This paper describes truly expressive ABE systems featuring compact cipher-
texts, regardless of the number of underlying attributes.

Related Work. Attribute-based encryption comes in two flavors. In key-policy
ABE schemes (KP-ABE), attribute sets are used to annotate ciphertexts and
private keys are associated with access structures that specify which ciphertexts
the user will be entitled to decrypt. Ciphertext-policy ABE (CP-ABE) proceeds
in the dual way, by assigning attribute sets to private keys and letting senders
specify an access policy that receivers’ attribute sets should comply with.

The ciphertext-policy scenario was first studied in [5, 18]. The construction
of [18] only handles AND gates while the first expressive construction [5] was
only analyzed in the generic group model. Goyal, Jain, Pandey and Sahai [21]
gave a construction in the standard model but its large parameters and key sizes
make it impractical for reasonably expressive policies. Efficient and expressive
realizations in the standard model were subsequently put forth by Waters [32]
and one of them was recently extended by Lewko et al. [25], and subsequently by
Okamoto and Takashima [31], into schemes providing adaptive security whereas
all prior works on ABE were limited to deal with selective adversaries [13,14, 6]
– who have to make up their mind about their target before having seen public
parameters – in their security analysis.

In both CP-ABE and KP-ABE schemes, expressivity requires to go beyond
what monotonic access structures can express. Ostrovsky, Sahai and Waters [28]
considered access structures that may contain negative attributes without blow-
ing up the size of shares or ciphertexts. Their initial construction was recently
improved by Lewko, Sahai and Waters [24] who used techniques from revocation
systems (which can be seen as negative analogues of identity-based broadcast
encryption) to design the most efficient non-monotonic KP-ABE to date.

Our Contributions. So far, the research community has mostly focused on
the design of expressive schemes – where access structures can implement as
complex boolean formulas as possible – without trying to minimize the size of
ciphertexts. Indeed, most schemes [20, 28, 32, 25, 24] feature linear-size cipher-
texts in the maximal number of attributes that ciphertexts can be annotated
with. In the ciphertext-policy setting, Emura et al. suggested a scheme with
short ciphertexts [19] but policies are restricted to a single AND gate. More
recently, Herranz et al. [22] described a scheme with threshold access policies
and constant-size1 ciphertexts. Yet, their scheme is still not as expressive as one
1 By “constant”, we mean that the size only depends on the security parameter λ (the

number of transmitted bits is typically O(λ)) and not on the number of ciphertext
attributes.
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could hope for. In particular, it seems difficult to extend it to support general
linear-secret-sharing-realizable (or LSSS-realizable for short) access structures.

In the context of key-policy attribute-based encryption, this paper aims at
devising schemes with constant-size ciphertexts2 (regardless of the number of
ciphertext attributes) allowing for as expressive policies as possible. To this
end, we first show that a certain class of identity-based broadcast encryption
(IBBE) schemes readily yields KP-ABE schemes with monotonic (though LSSS-
realizable) access structures via a generic transformation. The latter preserves
the ciphertext size and guarantees the resulting scheme to be selectively secure
(as defined in [13, 6]) as long as the underlying IBBE system is itself selectively
secure. At the expense of quadratic-size private keys (which comprise O(t · n)
elements, where n is the maximal number of ciphertext attributes and t is the
maximal number of leaf attributes in access trees), this transformation directly
provides us with monotonic KP-ABE schemes with O(1)-size ciphertexts.

In a second step, we use a particular output of the aforementioned transfor-
mation to design a scheme supporting non-monotonic access structures without
sacrificing the efficiency. In the resulting construction, the ciphertext overhead
reduces to three group elements, no matter how many attributes ciphertexts
are associated with. As in the monotonic case, private keys are inflated by a
factor of n in comparison with [28,24]. Nevertheless, these new schemes remain
attractive for applications where bandwidth is the primary concern. In mobile
Internet connections for instance, users are charged depending on the amount of
transmitted messages; while in contrast, the storage is becoming much cheaper
nowadays even for a large amount, as evidently in many smart phones.

As an intermediate step towards the new non-monotonic ABE, we design a
new identity-based revocation (IBR) mechanism (as defined by Lewko, Sahai
and Waters [24]) with O(1)-size ciphertexts and a similar structure to that of
the monotonic KP-ABE schemes provided by our general construction. This was
necessary since prior IBR systems with short ciphertexts [4] were not directly
amenable to fulfill these requirements. We believe this new IBR realization to be
of independent interest since it performs noticeably better than previous schemes
featuring short ciphertexts [4] and still relies a natural (though “q-type”) in-
tractability assumption.

The security of our schemes is proved against selective adversaries (that
are not allowed to choose their target attribute set adaptively) under a non-
interactive assumption. We leave it as an open problem to obtain KP-ABE
schemes with compact ciphertexts that can be proven secure against adaptive
adversaries (as in the work of Lewko et al. [25]).

Other Related Work. The aforementioned realizations all assume ABE
schemes with a single authority and we focus on this context as well. Extensions
to the multi-authority scenario were investigated in [15, 16] for a conjunctive

2 As in the literature on broadcast encryption (see, e.g., [9]) where the list of receivers
is not included in the ciphertext, we do not count the description of ciphertext
attributes as being part of the ciphertext. Indeed, many ciphertexts may have to be
encrypted under the same attribute set.
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setting and in [3] for a disjunctive setting. Besides the two usual flavors of ABE,
another recently considered kind of ABE schemes [2], called dual-policy ABE,
mixes features from both KP-ABE and CP-ABE systems.

Organization. In the following, we first review various primitives in section 2.
Section 3 describes our general construction of monotonic KP-ABE. The new
revocation scheme is depicted in section 4. Section 5 finally presents the non-
monotonic ABE realization with compact ciphertexts.

2 Background and Definitions

Notation. We will treat a vector as a column vector, unless stated otherwise.
Namely, for any vector α = (α1, . . . , αn)
 ∈ Zn

p , gα stands for the vector of group
elements (gα1 , . . . , gαn)
 ∈ Gn. For a, z ∈ Zn

p , we denote their inner product
as 〈a, z〉 = a
z =

∑n
i=1 aizi. Given ga and z, (ga)z := g〈a,z〉 is computable

without knowing a. We denote by In the identity matrix of size n. For a set U ,
we define 2U = {S | S ⊆ U} and

(
U
<k

)
= {S | S ⊆ U, |S| < k} for k ≤ |U |.

2.1 Syntax and Security Definition for Functional Encryption

We capture notions of KP-ABE, IBBE, IBR by providing a unified definition
and security notion for functional encryption3 here and then instantiating to
these primitives in the next subsections.
Syntax. Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe

denote “key index” and “ciphertext index” spaces. A functional encryption (FE)
scheme for the relation R consists of algorithms: Setup, KeyGen, Encrypt, Decrypt.

Setup(λ, des) → (mpk,msk): The setup algorithm takes as input a security pa-
rameter λ and a scheme description des and outputs a master public key
mpk and a master secret key msk.

KeyGen(msk, X) → skX : The key generation algorithm takes in the master secret
key msk and a key index X ∈ Σk. It outputs a private key skX .

Encrypt(mpk,M, Y ) → C: This algorithm takes as input a public key mpk, the
message M, and a ciphertext index Y ∈ Σe. It outputs a ciphertext C.

Decrypt(mpk, skX , X,C, Y ) → M or ⊥: The decryption algorithm takes in the
public parameters mpk, a private key skX for the key index X and a cipher-
text C for the ciphertext index Y . It outputs the message M or a symbol ⊥
indicating that the ciphertext is not in a valid form.

Correctness mandates that, for all λ, all (mpk,msk) produced by Setup(λ, des),
all X ∈ Σk, all keys skX returned by KeyGen(msk, X) and all Y ∈ Σe,

− If R(X,Y ) = 1, then Decrypt(mpk,Encrypt(mpk,M, Y )), skX) = M.
− If R(X,Y ) = 0, then Decrypt(mpk,Encrypt(mpk,M, Y )), skX) = ⊥.
3 The term “functional encryption” was defined in slightly different manners in [25,4,

31] before recently fully formalized in [11]. Our definition of FE here and throughout
the paper refers to the class of predicate encryption with public index of [11].
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Security Notion. We now give the standard security definition for FE
schemes.

Definition 1. A FE scheme for relation R is fully secure if no probabilistic
polynomial time (PPT) adversary A has non-negligible advantage in this game:
Setup. The challenger runs (mpk,msk) ← Setup(λ, des) and gives mpk to A.
Phase 1. On polynomially-many occasions, A chooses a key index X and gets

skX = Keygen(msk, X). Such queries can be adaptive in that each one may
depend on the information gathered so far.

Challenge. A chooses messages M0,M1 and a ciphertext index Y � such that
R(X,Y �) = 0 for all key indexes X that have been queried at step 2. Then,
the challenger flips a fair binary coin d ∈ {0, 1}, generates a ciphertext
C� = Encrypt(mpk,Md, Y

�), and hands it to the adversary.
Phase 2. A is allowed to make more key generation queries for any key index

X such that R(X,Y �) = 0.
Guess. A outputs a bit d′ ∈ {0, 1} and wins if d′ = d.
The advantage of the adversary A is measured by Adv(λ) := |Pr[d′ = d] − 1

2 |.

A weaker notion called selective security [13, 6] can be defined as in the above
game with the exception that the adversary A has to choose the challenge ci-
phertext index Y � before the setup phase but private key queries X1, . . . , Xq

can still be adaptive. A dual notion called co-selective security [4], in contrast,
requires A to declare q key queries for key indexes X1, . . . , Xq before the setup
phase, but A can adaptively choose the target challenge ciphertext index Y �.

2.2 Key-Policy Attribute-Based Encryption

Before describing the definition of KP-ABE, we first recall the definitions of
access structures and linear secret sharing schemes, as defined in [20].

Definition 2 (Access Structures). Consider a set of parties P = {P1, P2, . . . ,
Pn}. A collection A ⊆ 2P is said to be monotone if, for all B,C, if B ∈ A and
B ⊆ C, then C ∈ A. An access structure (resp., monotonic access structure) is
a collection (resp., monotone collection) A ⊆ 2P \ {∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 3 (Linear Secret Sharing Scheme). Let P be a set of parties.
Let L be a �× k matrix. Let π : {1, . . . , �} → P be a function that maps a row to
a party for labeling. A secret sharing scheme Π for access structure A over a set
of parties P is a linear secret-sharing scheme (LSSS) in Zp and is represented
by (L, π) if it consists of two efficient algorithms:
Share(L,π): takes as input s ∈ Zp which is to be shared. It chooses β2, . . . , βk

R←
Zp and let β = (s, β2, . . . , βk)
. It outputs L · β as the vector of � shares.
The share λi := 〈Li,β〉 belongs to party π(i), where Li


 is the ith row of L.
Recon(L,π): takes as input an access set S ∈ A. Let I = {i| π(i) ∈ S}. It outputs

a set of constants {(i, μi)}i∈I such that
∑

i∈I μi · λi = s.
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In a key-policy attribute-based encryption scheme, ciphertexts are associated
with a set of attributes ω and private keys correspond to access structures A.
Decryption is possible when the attribute set ω is authorized in the access struc-
ture A (i.e., ω ∈ A). We formally define it as an instance of FE as follows.

Definition 4 (KP-ABE). Let U be an attribute space. Let n ∈ N be a bound
on the number of attributes per ciphertext. A key-policy attribute-based encryp-
tion (KP-ABE) for a collection AS of access structures over U is a functional
encryption for RKP : AS ×

(
U

<n

)
→ {0, 1} defined by RKP(A, ω) = 1 iff ω ∈ A

(for ω ⊆ U such that |ω| < n, and A ∈ AS). Furthermore, the description des
consists of the attribute universe U , ΣKP

k = AS, and ΣKP
e =

(
U

<n

)
.

Definition 4 conforms with the original definition of KP-ABE, as in [20, 28, 24,
25, 11]. There is another variant of KP-ABE recently used in [31], that we call
KP-ABE with labeling. We re-formalize it in appendix A, for the purpose of
comparison in Table 2. We remark that normal KP-ABE implies KP-ABE with
labeling.

We note that chosen-ciphertext secure versions of our proposed KP-ABE
schemes in this paper can be obtained from recent generic results of [33].

2.3 Identity-Based Broadcast Encryption and Revocation Scheme

An ID-based broadcast encryption, as formalized in [1], allows a sender to en-
crypt a message to a set of identities, say S = {ID1, . . . , IDq}, where q < n for
some a-priori fixed bound n ∈ N, so that a user who possesses a key for ID ∈ S
can decrypt. In contrast, an ID-based revocation scheme [24] allows a sender to
specify a revoked set S so that only a user with ID �∈ S can decrypt.

Definition 5. Let I be an identity space. An ID-based broadcast encryption
scheme (IBBE) with the maximal bound n for the number of receivers per ci-
phertext is a functional encryption for RIBBE : I ×

( I
<n

)
→ {0, 1} defined by

RIBBE(ID, S) = 1 iff ID ∈ S.

Definition 6. Let I be an identity space. An ID-based revocation (IBR) with the
maximal bound n for the number of revoked users per ciphertext is a functional
encryption for RIBR : I ×

( I
<n

)
→ {0, 1} defined by RIBR(ID, S) = 1 iff ID �∈ S.

Remark 1. Although selective and co-selective security are incomparable in gen-
eral, we remark that, in IBR schemes, co-selective security implies selective se-
curity. To see why, we first recall that selective security for IBR requires the
adversary A to declare the target revoked set S� before seeing the public key
mpk. Here, phase 1 can be simplified by letting the challenger hand over all the
private keys for identities in S� at once (along with mpk). On the other hand,
co-selective IBR security requires A to declare the set S̃ of identities that will
be queried for private key generation before seeing mpk whereas the target revo-
cation set S� does not have to be fully determined before the challenge phase.
At the same time as mpk, the challenger then reveals all keys for identities in
S̃ at once. Later, the adversary can choose any S� ⊆ S̃ in the challenge phase.
Selective security corresponds to the special case where S� = S̃.
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2.4 Complexity Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable mapping
e : G × G → GT s.t. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G, a, b ∈ Z and
e(g, h) �= 1GT whenever g, h �= 1G. We rely on the DBDHE assumption intro-
duced in [9]. This assumption is shown to hold in the generic group model [7].
In addition, it is non-interactive and falsifiable [26].

Definition 7. In (G,GT ), the q-Decision Bilinear Diffie-Hellman Expo-
nent (q-DBDHE) problem is, given (g, gγ, g(γ2), . . . , g(γq), g(γq+2), . . . , g(γ2q), h, T )
where γ R← Zp, g, h R← G and T ∈R GT , to decide if T = e(g, h)(γ

q+1) or if T is
a random element of GT .

3 Monotonic KP-ABE with Short Ciphertexts

Our first goal is to construct monotonic KP-ABE with short ciphertexts. We
do so by showing a general transformation that automatically turns any IBBE
scheme fitting a certain template into a KP-ABE in the selective security model.

The construction is somewhat similar to the one described by Boyen [12],
which transforms IBE in the exponent-inversion framework to ABE. The ap-
proach of [12] took advantage of certain linearity properties in a family of IBE
schemes. Our approach also exploits some linearity properties, albeit instead of
IBE, we use IBBE as the underlying primitive. In contrast to [12], our transfor-
mation preserves the ciphertext size, hence using IBBE with short ciphertexts
will yield KP-ABE with the same ciphertext size.

3.1 Linear ID-Based Broadcast Encryption Template

We define a template that IBBE schemes should comply with in order to give rise
to (selectively secure) KP-ABE schemes. We call this a linear IBBE template.
Let (G,GT ) be underlying bilinear groups of order p. A linear IBBE scheme is
determined by parameter n1, n2 ∈ N, a family F of vectors of functions, and a
function D, of which the latter two are specified by

F ⊂
{
(f1, f2, F ) | f1 : Z∗

p → G, f2 : Z∗
p → Gn1 , F : (Z∗

p)
≤n−1 → G≤n2

}
,

D : Gn1+2 × I × G≤n2+1 ×
( I
<n

)
→ GT ,

with requirements specified below. A linear IBBE scheme works as follows.

� Setup(λ, n): Given a security parameter λ ∈ N and a bound n ∈ N on the
number of identities per ciphertext, the algorithm selects bilinear groups (G,GT )
of prime order p and a generators g R← G. It computes e(g, g)α for a random
α R← Z∗

p and chooses functions (f1, f2, F ) R← F . The master secret key consists
of msk := gα while the public key is mpk :=

(
g, e(g, g)α, f1, f2, F, n, n1, n2

)
.

� Keygen(msk, ID): It picks r R← Z∗
p and computes

skID = (d1, d2, d3) =
(
gα · f1(ID)r, gr, f2(ID)r

)
∈ Gn1+2.



Expressive KP-ABE with Constant-Size Ciphertexts 97

� Encrypt(mpk,M, S): It parses S as S = {ID1, . . . , IDq}, where q < n. To encrypt
M ∈ GT , it chooses a random exponent s R← Z∗

p and computes the ciphertext as

C = (C0, C1, C2) =
(
M · e(g, g)α·s, gs, F (ID1, . . . , IDq)s

)
.

� Decrypt(mpk, skID, ID, C, S): It parses skID = (d1, d2, d3) and C = (C0, C1, C2)
then runs

D
(
(d1, d2, d3), ID, (C1, C2), S

)
→ e(g, g)α·s,

and obtains M = C0/e(g, g)α·s. We are now ready to state the requirements: for
all (f1, f2, F ) ∈ F , the following two properties must hold.

1. Correctness. For all α, r, s ∈ Z∗
p, ID ∈ I, S = {ID1, . . . , IDq} ∈

( I
<n

)
and

ID ∈ S, we have

D
((

gαf1(ID)r, gr, f2(ID)r
)
, ID, (gs, F (ID1, . . . , IDq)s), S

)
= e(g, g)α·s.

2. Linearity. For all γ ∈ Z∗
p, ID ∈ I, S ∈

( I
<n

)
, ID ∈ S, (d1, d2, d3) ∈ Gn1+2,

and (C1, C2) ∈ G≤n2+1, we have

D
(
(d1, d2, d3)γ , ID, (C1, C2), S

)
= D

(
(d1, d2, d3), ID, (C1, C2), S

)γ

.

3.2 Generic Conversion from Linear IBBE to KP-ABE

Let ΠIBBE = (Setup′,Keygen′,Encrypt′,Decrypt′) be a linear IBBE system. We
construct a KP-ABE scheme from ΠIBBE as follows.

� Setup(λ, n): It simply outputs Setup′(λ, n) → (msk,mpk).
� Keygen(msk, (L, π)): The algorithm computes a private key for an access struc-
ture that is associated with LSSS scheme (L, π) as follows. Let L be �×k matrix.
First, it generates shares of 1 with the LSSS (L, π). Namely, it chooses a vector
β = (β1, β2, . . . , βk)
 R← (Zp)k subject to the constraint β1 = 1. Then for each
i = 1 to �, it calculates λi = 〈Li,β〉, picks r′ R← Zp and sets Di as follows.

Keygen′(msk, π(i)) → (di,1, di,2, di,3),

Di =
(
dλi

i,1 · f1(π(i))r′
, dλi

i,2 · gr′
, dλi

i,3 · f2(π(i))r′)
.

It then outputs the private key as sk(L,π) = {Di}i=1,...,�.
� Encrypt(mpk,M, ω): It simply outputs Encrypt′(mpk,M, ω) → (C0, C1, C2).
� Decrypt(mpk, sk(L,π), (L, π), C, ω): Assume first that the policy (L, π) is satis-
fied by the attribute set ω, so that decryption is possible. Let I = {i| π(i) ∈ ω}.
It calculates the reconstruction constants {(i, μi)}i∈I = Recon(L,π)(ω). It parses
C as (C0, C1, C2) and sk(L,π) as {Di}i=1,...,� where Di = (d′i,1, d

′
i,2, d

′
i,3). For each

i ∈ I, it computes

D
(
(d′i,1, d

′
i,2, d

′
i,3), ID, (C1, C2), S

)
→ e(g, g)α·s·λi , (1)

which we prove correctness below. It computes e(g, g)α·s =
∏

i∈I

(
e(g, g)α·s·λi

)μi

and finally obtains M = C0/e(g, g)α·s, where we recall that
∑

i∈I λiμi = 1.
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Correctness. We now verify that equation (1) is correct. First from a property
of keys in linear IBBE, we have that (di,1, di,2, di,3) will be in the form

(
gα ·

f1(π(i))ri , gri , f2(π(i))ri
)

for some ri ∈R Zp. Therefore, we have

Di =
(
gαλi · f1(π(i))r̃iλi , gr̃iλi , f2(π(i))r̃iλi

)
=
(
dλi
1 , dλi

2 , dλi
3

)
,

with r̃i = ri + r′/λi and (d1, d2, d3) = skπ(i) with randomness r̃i. Hence,

D
(
(d′i,1, d

′
i,2, d

′
i,3), ID, (C1, C2), S

)
= D

(
(d1, d2, d3), ID, (C1, C2), S

)λi

=
(
e(g, g)α·s)λi

,

where each equality holds from linearity and correctness of D respectively.
The construction only guarantees selective security for the resulting KP-ABE.

It does not extend to the adaptive scenario because the proof relies on the fact
that the reduction knows the forbidden attribute set from the beginning.

Theorem 1. If the underlying IBBE scheme is selectively secure, then the re-
sulting KP-ABE system is also selectively secure. (The proof is given in the full
version of the paper).

Instantiation Example. The large-universe construction of KP-ABE in [20]
falls into our framework here. Its underlying IBBE system can be seen as a
particular instance of the linear IBBE template with n2 = n, f2(ID) = ∅,
F (ID1, . . . , IDq) = (f1(ID1), . . . , f1(IDq)), and the form of f1 can be straightfor-
wardly deduced from [20]. Since the size of an output from F is linear, ciphertexts
in the KP-ABE of [20] are also of linear size.

3.3 IBBE Instantiation with Short Ciphertexts

This subsection presents an IBBE scheme with short ciphertexts and shows how
to apply the KP-ABE conversion. This specific IBBE can be seen as an instance
of the functional encryption (FE) for zero inner-product proposed in [4, Sect.4.1],
which itself is implied by spatial encryption of [10]. A FE system for zero inner-
product is defined by a relation RZIP : Zp × Zp → {0, 1} where RZIP(X ,Y ) = 1
iff 〈X ,Y 〉 = 0. The technique of deriving an IBBE scheme from a FE scheme
for zero inner-product can be traced to [23]. A private key for an identity ID
is defined by setting X = (x1, . . . , xn)
, with xi = IDi−1. To encrypt to a set
S = {ID1, . . . , IDq}, one defines Y = (y1, . . . , yn)
 as a coefficient vector from

PS [Z] =
q+1∑
i=1

yiZ
i−1 =

∏
IDj∈S

(Z − IDj), (2)

where, if q + 1 < n, the coordinates yq+2, . . . , yn are set to 0. By doing so, we
note that PS [ID] = 〈X ,Y 〉 evaluates to 0 iff ID ∈ S. We now describe the IBBE
instantiated from the FE system of [4]. Its selective security is an immediate
consequence of [4], where it is proved under the DBDHE assumption.
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� Setup(λ, n): It chooses bilinear groups (G,GT ) of prime order p > 2λ with
g R← G. It randomly chooses α, α0

R← Zp, α = (α1, . . . , αn)
 R← Zn
p . It then sets

H = (h1, . . . , hn)
 = gα. The master secret key is msk = α, and the public key
is mpk =

(
g, e(g, g)α, h0 = gα0 , H = gα

)
.

� Keygen(msk, ID): The algorithm first defines a vector X = (x1, . . . , xn)
 such
that xi = IDi−1 for i = 1 to n. It chooses r R← Zp and outputs the private key
as skID = (D1, D2,K2, . . . ,Kn) where

D1 = gα · hr
0, D2 = gr,

{
Ki =

(
h
− xi

x1
1 · hi

)r}
i=2,...,n

.

� Encrypt(mpk,M, S): To encrypt M to the receiver set S (where |S| < n),
the algorithm defines Y = (y1, . . . , yn)
 as the coefficient vector of PS [Z] from
equation (2). It then picks s R← Zp and computes the ciphertext as

C = (C0, C1, C2) =
(
M · e(g, g)αs, gs,

(
h0 · hy1

1 · · ·hyn
n

)s)
.

� Decrypt(mpk, skID, ID, C, S): It defines the vector Y = (y1, . . . , yn)
 from the
polynomial PS [Z] as usual. It then computes

e(g, g)α·s =
e(C1, D1 ·Ky2

2 · · ·Kyn
n )

e(C2, D2)
, (3)

and recovers M = C0/e(g, g)α·s.

Correctness. If 〈X,Y 〉 = 0, then decryption recovers M since

D1 ·
n∏

i=2

Kyi

i = gα ·
(
h0 · h

− 1
x1

(〈X,Y 〉−x1y1)
1

n∏
i=2

hyi

i

)r

= gα ·
(
h0 ·

n∏
i=1

hyi

i

)r

,

so that e(C1, D1 ·
∏n

i=1 Kyi

i ) = e(g, g)αs · e(h0 ·
∏n

i=1 hyi

i , grs) equals the product
e(g, g)αs · e(C2, D2).

Applying the KP-ABE Conversion. The above IBBE can be considered as
a linear IBBE system with n1 = n − 1, n2 = 1 and the family F is defined by
taking all functions of the following forms ranging over h0, h1, . . . , hn ∈ G:

f1(ID) = h0, f2(ID) =
(
h−ID

1 h2, . . . , h
−IDn−1

1 hn

)
, F (ID1, . . . , IDq) = h0

q+1∏
i=1

hyi

i ,

where the vector Y = (y1, . . . , yn)
 is defined from the polynomial PS [Z] in
equation (2) as usual. In addition, the function D is the computation in equa-
tion (3), which can be shown to have linearity as required.

The resulting KP-ABE has constant-size ciphertexts. This comes with the
expense of longer private keys of size O(t ·n), where t is the number of attributes
in the access structure. It is also worth mentioning that we can obtain another
IBBE with short ciphertexts from the spatial encryption scheme of [10] since it
also falls into our framework and thus produces another KP-ABE scheme.

Our goal in this paper is to construct KP-ABE with non-monotonic structures.
We will combine the monotonic KP-ABE system in this subsection with new ID-
based revocation in the next section.
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4 Revocation Scheme with Very Short Ciphertexts

This section describes a new ID-based revocation system which is tailored to
the needs of our application. Analogously to the case of IBBE, an IBR scheme
can be instantiated from a FE system for non-zero inner-product relations. Two
such existing IBR schemes [4, Sect. 5.1 and 5.2] already provide constant-size ci-
phertexts. When it comes to construct a non-monotonic KP-ABE however, these
schemes seem hardly compatible with the monotonic KP-ABE of section 3.3 as
they rely on different assumptions. We thus describe a new IBR scheme for this
purpose. Its structure is similar to that of revocation schemes given in [4] but it
provides a better efficiency and relies on the DBDHE assumption.

� Setup(λ, n): It chooses bilinear groups (G,GT ) of prime order p > 2λ and a
generator g R← G. It randomly picks α R← Zp, α = (α1, . . . , αn)
 R← Zn

p and sets
H = (h1, . . . , hn)
 = gα. The master secret key is msk = α, while the public
key is mpk =

(
g, e(g, g)α, H = gα

)
.

� Keygen(msk, ID): The algorithm first defines a vector X = (x1, . . . , xn)
 such
that xi = IDi−1 for i = 1 to n. It chooses r R← Zp and outputs the private key
as skID = (D1, D2,K2, . . . ,Kn) where

D1 = gα · hr
1, D2 = gr,

{
Ki =

(
h
− xi

x1
1 · hi

)r}
i=2,...,n

.

Indeed, we can also write KX = (K2, . . . ,Kn) = gr·M�
Xα, where the matrix

MX ∈ (Zp)n×(n−1) is defined by MX =
(− x2

x1
−x3

x1
··· − xn

x1
In−1

)
.

� Encrypt(mpk,M, S): To encrypt M with the revoked set S (where |S| < n),
the algorithm defines Y = (y1, . . . , yn)
 as the coefficient vector of PS [Z] from
equation (2). It then picks s R← Zp and computes the ciphertext as

C = (C0, C1, C2) =
(
M · e(g, g)α·s, gs,

(
hy1

1 · · ·hyn
n

)s)
.

� Decrypt(mpk, skID, ID, C, S): It defines X from ID and Y from S as usual. It
then successively computes elements K=

∏n
i=2 Kyi

i =
(
h
−〈X,Y 〉/x1
1 ·hy1

1 · · ·hyn
n

)r,
τ =

(
e
(
K,C1)

e(C2,D2)

)− x1
〈X,Y 〉

= e(g, h1)rs, and then obtains M = C0 · e(C1, D1)−1 · τ.

Correctness. We first observe that

K =
(
h
−(〈X,Y 〉−x1y1)/x1
1

n∏
i=2

hyi

i

)r =
(
h
−〈X,Y 〉/x1
1

n∏
i=1

hyi

i

)r
so that whenever 〈X,Y 〉 �= 0 (i.e., ID �∈ S), the following computation can be
done.

τ =
( e(K,C1)
e(C2, D2)

)− x1
〈X,Y 〉

=
(e(h−〈X,Y 〉/x1

1
∏n

i=1 hyi

i , grs)
e(
∏n

i=1 hyi

i , grs)

)− x1
〈X,Y 〉

= e(g, h1)rs.
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Finally, we have e(C1, D1)·τ−1 = e(g, g)α·s ·e(gs, hr
1)·e(g, h1)−rs = e(g, g)α·s. We

note that the decryption algorithm can be optimized by computing the plaintext
as M = C0 · e

(
C2, D

x1/〈X,Y 〉
2

)
· e
(
C1, D

−1
1 ·K−x1/〈X,Y 〉).

At a high level, it shares the same structure (including the form of the pub-
lic key and the ciphertext) as the IBBE in section 3.3 and relies on the same
assumption. Intuitively, these similarities make it possible to assemble both con-
structions in the design of a non-monotonic ABE system in section 5.

We now prove the co-selective security of the scheme. It is also worth recalling
that co-selective security for IBR also implies selective security.

Theorem 2. The above ID-based revocation scheme with the maximal bound
n for the number of revoked users (i.e., |S| < n) is co-selectively secure if the
n-DBDHE assumption holds in (G,GT ).

Proof. We show an algorithm B that receives (g, h, z1, . . . , zn, zn+2, . . . , z2n, T )
in G2n+1 × GT , where zi = g(γi), and decides if T = e(g, h)(γ

n+1) using the
co-selective adversary A.

At the outset of the game, the adversaryA declares the set S̃ = {ID1, . . . , IDq},
where q ≤ n − 1, of identities for which she wishes to obtain private keys. Let
X1, . . . ,Xq the corresponding vectors. That is, Xk = (1, IDk, ID

2
k, . . . , ID

n−1
k ).

To prepare the public key, B chooses δ0
R← Zp and computes e(g, g)α =e(z1, zn)δ0 ,

which implicitly defines α = γ(n+1) ·δ0. Elements H = (h1, . . . , hn)
 are then de-
fined as follows. For each k ∈ [1, q], B considers the vector Xk = (xk,1, . . . , xk,n)


and selects bk ∈ Zn
p such that

b 

k ·MXk = b 


k ·
(−xk,2

xk,1
− xk,3

xk,1
· · · − xk,n

xk,1

In−1

)
= 0. (4)

The simplest candidate consists of the vector bk = (1, xk,2
xk,1

,
xk,3
xk,1

, . . . ,
xk,n

xk,1
)
.

Then, B considers the n × n matrix B =
(
b1| . . . |bq|0| . . . |0

)
whose kth col-

umn consists of bk, for k = 1 to q, and where the n − q remaining columns
are 0. It defines a = (a1, . . . , an)
 ∈ (Zp)n such that ai = γn+1−i by setting
ga = (zn, . . . , z1)
. Then, it implicitly sets α = B · a + δ by randomly choosing
δ R← Zn

p and defining H = gB·a · gδ, which is uniformly distributed as required.
Due to (4), the matrix B is defined in such a way that, for each k ∈ [1, q], the

kth column of M

Xk

·B ∈ (Zp)(n−1)×n is 0, so that M

Xk

·B ·a does not contain
ak = γn+1−k. Then, a private key for the identity IDk (and thus the vector Xk)
can be obtained by implicity defining r̃k = rk − δ0γ

k for a random rk
R← Zp.

Indeed, with the above choice of B, the first coordinate of α = δ +
∑q

j=1 ajbj

equals α1 = δ1 +
∑q

j=1 aj = δ1 +
∑q

j=1 γ(n+1−j), so that B is able to compute

D1 = gα · hr̃k
1 = g(γn+1)δ0 · hrk

1 ·
(
gδ1 ·

q∏
j=1

zn+1−j

)−δ0γk

= hrk
1 ·
(
zδ1

k ·
q∏

j=1,j =k

zn+1−j+k

)−δ0
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and D2 = grk · z−δ0
n+1−k. As for the delegation component KXk

= gr̃kM�
Xk

α, B is
also able to compute it from available values since M


Xk
α = M


Xk
·B ·a+M


Xk
·δ

is independent of ak = γn+1−k (recall that the kth column of M

Xk

·B is 0) and
no term γn+1 appears in the exponent in KXk

.
In the challenge phase, B chooses M0,M1 ∈ GT and a revocation set S corre-

sponding to a vector Y = (y1, . . . , yn)
 that must satisfy 〈Xk,Y 〉 = 0 for k = 1
to q. This amounts to say that Y = MXk

·w, where w = (y2, . . . , yn)
, for each
k ∈ [1, q]. We claim that Y 
 · B · a = 0. Indeed,

Y 
 · B · a = Y 
 ·
( q∑

k=1

ak · bk

)
=

q∑
k=1

ak · Y 
 · bk =
q∑

k=1

ak · w
 ·M

Xk

· bk

and M

Xk

· bk = 0 for each k ∈ [1, q]. Therefore, it comes that 〈Y ,α〉 = 〈Y , δ〉,
so that B can generate a challenge ciphertext (C0, C1, C2) as

C0 = Md · T δ0, C1 = h, C2 = h〈Y ,δ〉,

for a random bit d R← {0, 1}. If T = e(g, h)(γ
n+1), C = (C0, C1, C2) forms a valid

encryption of Md. If T is random, A’s advantage is clearly zero. ��

Efficiency Comparisons. We believe this IBR scheme to be of interest in
its own right. If we compare it with the scheme of [4, Sect.5.2] (called AL2
here), which also features short ciphertexts, it relies on a stronger assumption
(since no “q-type” assumption is needed in [4] or in LSW2 [24]) but provides
significantly shorter ciphertexts (as the ciphertext overhead is decreased by more
than 75%)4 and requires fewer pairing evaluations to decrypt (only 2 instead of
9). Another IBR scheme (dubbed AL1 in the table) with a better efficiency than
AL2 was described in [4, Sect.5.1]. Still, the new scheme is slightly more efficient
and relies on a weaker assumption since q-DBDHE is weaker and appears more
natural than the q-type assumption (MEBDH) used in [24,4].

Table 1. Performances of revocation systems

Schemes Ciphertext overhead Private key size Decryption cost Assumption
|G| |G| pair. exp.

LSW1 [24] (2n̄ + 1) 3 3 O(n̄) n-MEBDH
LSW2 [24] (2n̄ + 7) 7 9 O(n̄) DLIN, DBDH
AL1 [4] 3 (n + 2) 3 O(n) n-MEBDH
AL2 [4] 9 (n + 2) 9 O(n) DLIN, DBDH
This work 2 (n + 2) 2 O(n) n-DBDHE
† n̄ = # of revoked users = |S|; n = the maximal bound for n̄. (i.e., |S| < n).
‡ pair.,exp. shows # of pairing and exponentiation computation.

4 We compare by simple element counting. In a stricter sense, one may want to also
consider the compensation due to the attack on q-type assumptions by Cheon [17].
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In comparison with the schemes of Lewko, Sahai and Waters, the disadvantage
lies in that a bound on the number of revocations must be chosen when the
system is set up. A comparative efficiency of known IBR schemes is given in the
table hereafter.

5 Non-monotonic KP-ABE with Short Ciphertexts

Ostrovsky, Sahai and Waters [28] suggested a technique to move from monotonic
to non-monotonic access structures without incurring an immoderate private key
size. They assume a family {ΠA}A∈AS of linear secret-sharing schemes for a set
of monotone access structures A. For each such access structure A ∈ AS, the
set P of underlying parties is defined in such a way that parties’ names can be
normal (like x) or primed (like x′). Prime attributes are conceptually seen as the
negation of unprimed attributes. In addition, it is required that, if x ∈ P , then
x′ ∈ P and vice versa.

A family AS of non-monotone access structures can be defined as follows. For
each access structure A ∈ AS over a set of parties P , one defines a possibly
non-monotonic access structure NM(A) over the set P̃ of all unprimed parties
in P . An operator N(.) is then defined as follows. For every set S̃ ⊂ P̃ , one
imposes S̃ ⊂ N(S̃). Also, for each x ∈ P̃ such that x �∈ S̃, x′ ∈ N(S̃). Finally,
NM(A) is defined by saying that S̃ is authorized in NM(A) if and only if N(S̃)
is authorized in A (so that NM(A) has only unprimed parties in its access sets).
For each access set X ∈ NM(A), there is a set in A containing the elements in
X and primed elements for each party not in X .

In [28], the above technique was combined with the Naor-Pinkas revocation
method [27] to cope with non-monotonic access structures. Lewko, Sahai and
Waters provided improvements using a revocation system with short keys [24]
instead of [27]. In the following, we apply the same technique to our revocation
mechanism and combine it with the monotonic KP-ABE derived from the IBBE
scheme of section 3.3 in order to handle non-negated attributes.

� Setup(λ, n): Given a security parameter λ ∈ N and a bound n ∈ N of the
number of attributes per ciphertext, it chooses bilinear groups (G,GT ) of prime
order p > 2λ and g R← G. It defines H = (h1, . . . , hn)
 and U = (u0, . . . , un)


such that hi = gαi , uj = gβj for each i ∈ {1, . . . , n} and j ∈ {0, . . . , n} where
α = (α1, . . . , αn)
 R← Zn

p and β = (β0, β1, . . . , βn)
 R← Zn+1
p . It then picks

α R← Z∗
p and computes e(g, g)α. The master secret key is msk = α and the

master public key is mpk =
(
g, e(g, g)α, H = gα, U = gβ

)
.

� Keygen(msk, Ã): Given a non-monotonic access structure Ã such that we have
Ã = NM(A) for some monotonic access structure A over a set P of attributes
and associated with a linear secret sharing scheme Π , the algorithm applies Π
to obtain shares {λi} of the master secret key α. The party corresponding to
share λi is denoted by x̆i ∈ P , where xi is the underlying attribute, and can
be primed (i.e., negated) or unprimed (non-negated). For each i, the algorithm
chooses ri

R← Zp, defines ρi = (ρi,1, . . . , ρi,n)
 = (1, xi, x
2
i , . . . , x

n−1
i )
. That is

ρi,j = xj−1
i . It then does as follows.
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• For each i such that x̆i is unprimed (i.e., non-negated), the algorithm com-
putes a tuple Di = (D(1)

i,1 , D
(2)
i,2 ,K

(3)
ρi,i

) ∈ Gn+1 where the first two elements

are (D(1)
i,1 , D

(1)
i,2 ) =

(
gλi · uri

0 , gri
)

and

K
(1)
ρi,i

= (K(1)
i,2 , . . . ,K

(1)
i,n ) =

((
u
− ρi,2

ρi,1
1 · u2

)ri
, . . . ,

(
u
− ρi,n

ρi,1
1 · un

)ri
)

= gri·M�
ρi

β,

where Mρi
∈ (Zp)n×(n−1) is the matrix Mρi

=
(

− ρi,2
ρi,1

− ρi,3
ρi,1

··· − ρi,n
ρi,1

In−1

)
.

• For each i such that x̆i is primed (i.e., negated), one computes a tuple
Di = (D(2)

i,1 , D
(2)
i,2 ,K

(2)
ρi,i

) ∈ Gn+1 where (D(2)
i,1 , D

(2)
i,2 ) =

(
gλi · hri

1 , gri
)

and

K
(2)
ρi,i

= (K(2)
i,2 , . . . ,K

(2)
i,n ) =

((
h
− ρi,2

ρi,1
1 · h2

)ri
, . . . ,

(
h
− ρi,n

ρi,1
1 · hn

)ri
)

= gri·M�
ρi

α.

The private key is sk
Ã

= {Di}x̆i∈P ∈ G�×(n+1).
� Encrypt(mpk,M, ω): To encrypt M for a set ω (with |ω| < n), it first defines
Y = (y1, . . . , yn)
 as the vector whose first q +1 coordinates are the coefficients
of the polynomial Pω[Z] =

∑q+1
i=1 yiZ

i−1 =
∏

j∈ω(Z − j). If q + 1 < n, set yj = 0
for q + 2 ≤ j ≤ n. Then it picks s R← Zp and computes

C = (C0, C1, C2, C3) =
(
M · e(g, g)α·s, gs,

(
u0 ·

n∏
i=1

uyi

i

)s
,
( n∏

i=1

hyi

i

)s)
.

� Decrypt(mpk, sk
Ã
, Ã, C, ω): It parses C as (C0, C1, C2, C3) and the private key

sk
Ã

as sk
Ã

= {Di}x̆i∈P ∈ G�×(n+1). The algorithm outputs ⊥ if ω �∈ Ã. Oth-
erwise, since Ã = NM(A) for some access structure A associated with a linear
secret sharing scheme Π , we have ω′ = N(ω) ∈ A and we let I = {i : x̆i ∈ ω′}.
Since ω′ is authorized in A, the receiver can efficiently compute coefficients
{μi}i∈I such that

∑
i∈I μiλi = α (although the shares are not known to the

receiver). Let Y = (y1, . . . , yn)
 be the vector containing the coefficients of the
polynomial Pω[Z] =

∏
j∈ω(Z − j) =

∑q+1
i=1 yiZ

i−1.
• For every positive attribute x̆i ∈ ω′ (for which xi ∈ ω), the decryption

procedure computes D̃
(1)
i,1 = D

(1)
i,1 ·

∏n
j=2 K

(1)
i,j

yj

= gα ·
(
u0 ·uy1

1 · · ·uyn
n

)ri
, and

then e(g, g)λis = e(C1, D̃
(1)
i,1 )/e(C2, D

(1)
i,2 ).

• For each negated attribute x̆i ∈ ω′ (for which xi �∈ ω), the receiver sets
ρi = (1, xi, . . . , x

n−1
i )
 and successively computes

K
(2)
i =

n∏
j=2

K
(2)
i,j

yj

=
(
h
−〈ρi,Y 〉/x1
1 · hy1

1 · · ·hyn
n

)ri
,

τi =
(e(K(2)

i , C1)

e(C3, D
(2)
i,2 )

)− ρi,1
〈ρi,Y 〉

= e(g, h1)ris

and then e(g, g)λis = e(C1, D
(2)
i,1 )−1 · τ−1

i .
Finally, decryption computes M = C0 ·

∏
i∈I e(g, g)−μiλis.
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If we split I into I0 ∪ I1, where I0 and I1 correspond to unprimed and primed
attributes, respectively, decryption can more efficiently compute

e(g, g)α·s = e
(
C1,

∏
i∈I0

D̃
(1)μi

i,1 ·
∏
i∈I1

(
D

(2)
i,1 ·K(2)

i

μi·ρi,1
〈ρi,Y 〉 ))

· e
(
C2,

∏
i∈I0

D
(1)μi

i,2

)
· e
(
C3,

∏
i∈I1

D
(2)
i,2

μi·ρi,1
〈ρi,Y 〉

)
,

so that only three pairing evaluations are necessary.

Theorem 3. The above KP-ABE system with the maximal bound n for the
number of attributes per ciphertext (i.e., |ω| < n) is selectively secure if the n-
DBDHE assumption holds. (The proof is given in the full version of the paper).

6 Comparisons

Table 2 compares efficiency among available expressive KP-ABE schemes that
support non-monotonic access structures. Comparisons are made in terms of ci-
phertext overhead, private key size as well as in the number of pairing evaluations
and exponentiations (in G and GT ) upon decryption.

We remark that the functionality of KP-ABE in [31] is slightly different from
the original one [20]. For self-containment, we re-formalize it in appendix A,
where we also briefly propose a modification of KP-ABE [31] so as to have the
same functionality as the original ABE. We also include this modified scheme in
Table 2. Note that [31] has a unique feature of being adaptively secure.

Table 2. Efficiency of non-monotonic KP-ABE schemes

Schemes Ciphertext overhead Private key size Decryption cost Assumption
|G| |G| pair. exp.

OSW [28] O(n̄) O(t · log n) O(t) O(t · n̄) DBDH
LSW [24] O(n̄) O(t) O(t) O(t · n̄) n-MEBDH
OT [31] O(n̄ · ϕ) O(t · ϕ) O(t · ϕ) O(t) DLIN
OTmodified O(n̄ · n) O(t · n) O(t · n) O(t) DLIN
This work 3 O(t · n) 3 O(t) n-DBDHE

† n̄ = |attribute set| = |ω| for a ciphertext; n =the maximal bound for n̄ (i.e., |ω| < n); t = #
of attributes in an access structure for a key; ϕ =maximum size for repetition of attribute label
per key (only for the KP-ABE with labeling, formalized in appendix A).

‡ pair., exp. shows # of pairing and exponentiation computation (in G or GT ), respectively.

7 Concluding Remarks

This paper presented the first results for expressive KP-ABE schemes with
constant-size ciphertexts. In the future, it will be interesting to see if shorter
private keys can be obtained without affecting the expressivity or the size of ci-
phertexts and to construct adaptively secure such schemes. Another challenging
problem is to achieve similar results in the expressive ciphertext-policy setting.
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A Variant: KP-ABE with Labeling

We re-formalize the KP-ABE definition of [31] in our context as follows. Intu-
itively, the difference from normal KP-ABE is that an attribute is required to
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be labeled with a number j ∈ [1, n] and that each attribute in the set associated
to a ciphertext is required to be labeled uniquely, namely 1 to n. The scheme
of [31] further restricts the maximum repetition allowed for labels in one policy,
which we denote by ϕ in Table 2.

Definition 8 (KP-ABE with labeling). Let U be an attribute space and let
an integer n ∈ N. Define U ′ = {(j, u) | j ∈ [1, n], u ∈ U}. Define the ciphertext
index domain as ΣKP′

e = {{(1, u1), . . . , (n, un)} | u1, . . . , un ∈ U}. A KP-ABE
with labeling for a collection AS ′ of access structures over U ′ is a functional
encryption for RKP′

: AS ′ ×ΣKP′
e → {0, 1} defined by RKP′

(A, ω) = 1 iff ω ∈ A
(for ω ∈ ΣKP′

e ,A ∈ AS ′).

We observe that KP-ABE with large universe U = {0, 1}∗, e.g., [20, 28] and
ours, implies KP-ABE with labeling. This is since U ′ ⊂ U , ΣKP′

e ⊂ ΣKP
e , ΣKP′

k ⊂
ΣKP

k , and RKP′ ⇔ RKP holds and the implication comes from the embedding
lemma [10,4]. To the best of our knowledge, the converse is yet known to hold.

We now briefly propose a KP-ABE that conforms with the normal definition
by modifying [31]. We construct by instantiating the general KP-FE scheme
of [31] with d = 1, and with the inner product relation being instantiated to
IBBE, similarly as we did in section 3.3, and setting the bound ϕ = n.
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Abstract. We describe new algorithms for performing scalar multiplica-
tion on supersingular elliptic curves in characteristic three. These curves
can be used in pairing-based cryptography. Since in pairing-based proto-
cols besides pairing computations also scalar multiplications are required,
and the performance of the latter is not negligible, improving it is clearly
important as well. The techniques presented here bring noticeable speed
ups (up to 30% for methods using a variable amount of memory and up
to 46.7% for methods with a small, fixed memory usage), while at the
same time bringing substantial memory reductions – factors like 3 to 8
are not uncommon.

The starting point for our methods is a structure theorem for unit
groups of residue classes of a quadratic order associated to the Frobe-
nius endomorphism of the considered curves. This allows us to define new
digit sets whose elements are products of powers of certain generators of
said groups. There are of course several choices for these generators: we
chose generators associated to endomorphisms for which we could find
efficient explicit formulae in a suitable coordinate system. A multiple-
base-like scalar multiplication algorithm making use of these digits and
these formulae brings the claimed speed up.

Keywords: Supersingular elliptic curves, pairing-friendly elliptic curves,
scalar multiplication, Frobenius expansion, explicit formulae.

1 Introduction

The following elliptic curves over fields of characteristic three

E3,μ : Y 2 = X3 −X − μ with μ ∈ {±1} (1)
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are supersingular with embedding degree 6. They thus offer less security per bit
than ordinary curves for DL-based applications. However, in 1998 Koblitz [20]
studied their arithmetic and found their performance to be competitive with
other public-key cryptosystems even after the security parameters were adjusted
accordingly. Recently, pairing-based cryptography has revived the interest in
these curves (together with all other types of pairing-friendly curves [16]). Most
of the current research is devoted to the optimization of the field arithmetic and
the pairing operation (just a few examples are [1,9,7,8]).

The performance gap between pairing operations and scalar multiplication
has steadily decreased in the last years. In some cases the two operations have
comparable performance: In [1] variable base point scalar multiplication takes
between a half and a third of the time for a Tate pairing; in [9] a ηT pairing
over F397 is computed in 678 field multiplications, whereas a scalar multiplication
requires, with current state-of-the art methods, at least 230 multiplications using
normal bases and 296 using polynomial bases (cf. Tables 1 and 2 on page 125
under the columns labeled “BMX”, that correspond to the current state of the
art [10]); one of the fastest implementations of characteristic three arithmetic
and of pairings in general, due to Mitsunari [22], requires 0.181 μsec, resp. 0.149
μsec for a field multiplication, resp. an ηT pairing (single threaded) over F397 –
with our operation counts for [10] we extrapolate a timing of about 53.5 μsec for
a scalar multiplication; over the field F3193 the same implementation takes 0.624
μsec, resp. 975 μsec for the two operations – similarly we extrapolate 314.2 μsec
for a scalar multiplication in this case.

For other characteristics, in [12] extensive experiments are reported not only
for trace-zero varieties but also for elliptic curves, and in many cases a ηT pairing
evaluation is even faster than a scalar multiplication on the same curve.

Now, most pairing-based protocols – for instance Direct Anonymous Attesta-
tion [11] – also require scalar multiplications, the latter being often performed in
computationally restricted environments, such as TPM modules. Since in these
cases the pairings are usually computed on faster architectures, the question of
the performance of scalar multiplication becomes more, not less, severe. Thus it
is an important question whether one can either speed up this operation and/or
reduce its memory requirements. This is the problem studied in this paper: We
show how to perform scalar multiplication on supersingular Koblitz curves in
characteristic three with extremely reduced memory requirements with respect to
the state of the art while attaining better performance.

Usually, scalar multiplication on supersingular Koblitz curves in characteristic
three is done by a base three expansion [18] or by an expansion to the base of
τ [20,10], where τ is a complex number associated to the Frobenius endomor-
phism of the curve. Double base methods have been suggested in this context,
for instance in [2], but only with the rational bases 2 and 3.

For the characteristic two case, it has been suggested to use the so-called
Verschiebung endomorphism besides τ , as in [3,4]. This is the endomorphism
associated to the algebraic conjugate τ̄ of τ . In characteristic two τ and τ̄ can
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be used as a double bases, but, as we shall see in the next section, this cannot
extended to the case considered here.

Our goal to reduce memory requirements and speeding-up scalar multiplication
on the curves (1), is attained by finding alternative endomorphisms that can serve
as additional bases to be used beside τ .

This is essentially done in Section 2 by Theorem 1, that describes the structure
of the group of units in the ring of residue classes of Z[τ ] modulo powers of the
prime ideal generated by τ ; the generators of this group are chosen in such a way
that they can be implemented efficiently, as explained in Section 4. Their usage
in practice is described in Sections 3 and 5. The techniques presented here bring
noticeable speed ups – from a few percent to a near halving of computational time
– while often bringing substantial memory reductions at the same time: reducing
the memory requirement to just a third or even one eighth of the memory usage
of the current state of the art is not uncommon. Detailed comparisons can be
found in Section 5 and concluding remarks are in Section 6.

2 Digit Sets and the Structure of the Unit Group

We begin by recalling some facts on the Frobenius endomorphism τ and the
associated ring Z[τ ].

For cryptographic applications one works in the group E3,μ(F3m) of the F3m-
rational points of the curve E3,μ, where m is an integer not divisible by either 2
or 3, and it is usually assumed that E3,μ(F3m) contains a unique large subgroup
G of prime order p. Cryptographic computations then take place in G.

The Frobenius endomorphism

τ : E3,μ(F3m) → E3,μ(F3m) , (x, y) �→ (x3, y3)

is such that τ2(P ) − 3μ τ(P ) + 3 · P = 0 for all points P on the curve; in other
words, the relation

τ2 − 3μ τ + 3 = 0 (2)

holds in the endomorphism ring of the curve. Prompted by this, we can identify
τ with a imaginary quadratic solution of the last equation

3μ +
√
−3

2
, (3)

which we also call τ . This induces an isomorphism (of rings with unit) between
the ring Z[τ ] and the endomorphism ring of E3,μ, which also maps 1 to the
identity map on the curve and any rational integer n to the multiplication-by-
n isogeny. This endomorphism allows for a fast scalar multiplication based on
expansions of scalars to the base of τ .

We recall that Z[τ ] is a factorial ring (it is a quadratic order of class number
1). Also, since τ is prime, an element of Z[τ ] is coprime to τ if and only if τ does
not divide it. Let

ζ :=
1 − μ

√
−3

2
, (4)
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such that ζ is a primitive sixth root of unity. The complex conjugate of τ will be
denoted by τ̄ , and τ̄ = ζτ holds. These numbers act as follows as endomorphisms
on the curve:

ζ : (x, y) �→ (x + μ,−y) ,

τ̄ : (x, y) �→ (x3 + μ,−y3) .

Since 3 = τ τ̄ = ζτ2, tripling is an efficient operation as well:

3 : (x, y) �→ (x9 + μ,−y9) .

We see that τ and τ̄ are conjugated in the sense that their ratio is a unit, hence
they are essentially the same base and they cannot be used in a double-base or
in a double-loop scalar multiplication methods such as those from [2,4].

Now we consider the construction of useful digit sets using the algebraic num-
bers we have just defined.

Similarly to Solinas [24], one can take one representative from each residue
class modulo τw which is relatively prime to τ (a reduced residue system modulo
τ) together with the zero to form a digit set D for expansions of integers z ∈ Z[τ ]:

z =
�∑

i=0

diτ
i . (5)

If, for a given scalar z, such an expansion exists, we can use it to design a scalar
multiplication method on E3,μ(F3m): First, we precompute and store all elements
of the form d ·P for P ∈ E3,μ(F3m), and then we can compute z ·P by a Horner
scheme:

τ
(
τ
(
· · · τ

(
τ
(
τ(d�P ) + d�−1P

)
+ d�−2P

)
+ · · · + d2P

)
+ d1P

)
+ d0P .

An important desirable property for expansions (5) is that each block of w
consecutive digits di, di+1, ..., di+w−1 contains at most one non-zero. Such an
expansion is called a D-w-NAF and a digit set D is called a w-Non-Adjacent-
Digit-Set, or w-NADS, if every integer z ∈ Z[τ ] admits a D-w-NAF. In analogy
to the characteristic two case (cf. Solinas [24]), we can choose the elements of
the digit set to be of minimal norm in their residue classes modulo τw . However,
this only guarantees the existence of expansions for w � 2. Smart [23] works
in a more general setting with, essentially, w = 1 and smallest rational integer
digits (and works in general odd characteristic): in characteristic three, in order
to guarantee termination, he needs an expansion with digits {0,±1,±2} where
at most one digit is exceptionally allowed to take value 2 or −2. In fact, Blake,
Kumar Murty and Xu [10], observed that {0,±1} is not a 1-NADS: Indeed, if
we try to expand ζ we obtain the infinite expansion

ζ = −1 − μτ − τ2 − μτ3 − τ4 − μτ5 − . . . .

In what follows we shall therefore assume w � 2. Blake, Kumar Murty and Xu
proved that a digit set of minimal norm representatives is a w-NADS. One of
Koblitz’ results can be formulated as saying that {0} ∪ 〈ζ〉 is a 2-NADS.
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A big difference with respect to the characteristic two case is that in a given
residue class modulo τw an element of minimal norm is not necessarily unique
(in [5] it is fully explained when this happens, but we do not need this here).
However, one is not forced to take an element from each of the 6× 3w−2 residue
classes coprime to τ and store all the corresponding precomputations: Blake,
Kumar Murty and Xu [10, Section 4.2] use a signed expansion to reduce the
memory requirement by a factor of 2, i.e., to 3w−1 points.

But, there are other ways of constructing digit sets, and their structure can be
used to design alternative scalar multiplication schemes. To achieve this, we first
prove a structure theorem for the unit group of Z[τ ] modulo τw, for each natural
number w. In particular we shall prove that this group is the direct product of
(up to) three cyclic subgroups. Clearly, taking representatives of each class in
this group will yield a reduced residue system modulo τw . Since the digit sets
we consider in this paper consist of zero and of a reduced residue system modulo
τw, the structure theorem will allow us to construct digit sets whose elements
are products of powers of three fixed elements.

The decomposition of (Z[τ ]/τwZ[τ ])× can also be derived, with some effort,
from Nakagoshi’s much more general results for generic unit groups of residue
classes of orders of number fields modulo powers of arbitrary prime ideals [21] or
from Halter-Koch’s classification [17] for quadratic orders. However, the proof
we give here is direct and much simpler, the expressions for the generators are
explicit, and the generators also enjoy the property that they correspond to
endomorphisms of E3,μ that lend themselves to efficient evaluation.

Theorem 1. We have(
Z[τ ]
τZ[τ ]

)×
= 〈−1〉 � Z

2Z
,(

Z[τ ]
τwZ[τ ]

)×
= 〈ζ〉 ×

〈
1 + μτ3〉× 〈−2〉 � Z

6Z
× Z

3�w/2�−1Z
× Z

3�w/2�−1Z
, w � 2 .

Here 〈α〉 denotes the group generated by α in (Z[τ ]/τwZ[τ ])×.

Remark 1. For w = 2, the subgroups generated by 1 + μτ3 and −2 in the unit
group (Z[τ ]/τwZ[τ ])× are degenerated, i.e., they are the trivial group with one
element, and for w = 3 only

〈
1 + μτ3

〉
is trivial. For w � 4 all three factor

subgroups are not trivial.
Once the structure of (Z[τ ]/τwZ[τ ])× is given, a digit set for integer expansions

can be built in such a way that we take one element from each residue class
modulo τw that is not divisible by τ . It suffices to take each d = d1d2d3 with
d1 ∈ 〈ζ〉, d2 ∈

〈
1 + μτ3

〉
, and d3 ∈ 〈−2〉. The resulting digit set is invariant

by multiplication by ζ, i.e., under rotation of the complex plane by π/3. The
structure of this digit set will be exploited in the scalar multiplication algorithms
that will be introduced in Sections 3 and 5.

In order to prove Theorem 1 we need first to compute the orders of the asserted
generators modulo τw.
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Lemma 1. Let k � 2, a ∈ Z[τ ] with τ � a and w � k − 1. Then

ordτw(1 + aτk) = 3�(w−k)/2� . (6)

In particular, we have

(a) ordτw(1 + μτ3) = 3�w/2�−1 for w � 2,
(b) ordτw(−2) = 3�w/2�−1 for w � 1,
(c) ordτw(1 + μτ) = 3�w/2�−1 for w � 3,
(d) ordτw(ζ) = 6 for w � 2,

where ordτw(α) denotes the order of α in (Z[τ ]/τwZ[τ ])×, i.e., the least positive
exponent r such that αr ≡ 1 (mod τw).

Proof (Lemma 1). We first prove

(1 + aτk)3
� ≡ 1 + aζ�τk+2� (mod τ2k+2�) . (7)

by induction on � � 0. For � = 0, (7) holds trivially. Assume that

(1 + aτk)3
�

= 1 + aζ�τk+2� + bτ2k+2�

for some b ∈ Z[τ ]. Then we have

(1 + aτk)3
�+1

= (1 + aζ�τk+2� + bτ2k+2�)3 ≡ 1 + 3aζ�τk+2�

≡ 1 + aζ�+1τk+2�+2 (mod τ2+2k+2�) ,

as 3 = ζτ2, which concludes the proof of (7).
We set � =

⌈
w−k

2

⌉
, which results in k + 2(� − 1) < w � k + 2�. As τ � aζ�−1

(note that ζ is a unit in Z[τ ]), this leads to

(1 + aτk)3
�

≡ 1 (mod τw) , (1 + aτk)3
�−1

�≡ 1 (mod τw) .

Thus ordτw(1 + aτk) divides 3�, but does not divide 3�−1. We conclude that
ordτw(1 + aτk) = 3�(w−k)/2�, as requested.

The assertion for the special case 1 + μτ3 follows immediately from (6) by
noting that

⌈
w−1

2

⌉
=
⌊

w
2

⌋
.

In order to determine the order of −2, we note that −2 = 1 − 3 = 1 − ζτ2,
from which the result follows immediately.

Next, we have (1+μτ)3 = 1+(4−2μτ)τ4. Thus ordτw((1+μτ)3) = 3�w/2�−2

for w � 3, which implies ordτw(1 + μτ) = 3�w/2�−1 for w � 3.
Finally, as ζ is a primitive sixth root of unity, we have ζ6 ≡ 1 (mod τw). As

ζ3 = −1 and τ � 2, we have ζ3 �≡ 1 (mod τw). Finally, ζ2 − 1 = −μτ is divisible
by τ , but not τ2, whence ζ2 �≡ 1 (mod τw) for w � 2. Thus ordτw(ζ) = 6 for
w � 2. Of course, this is also a consequence of D2 being a 2-NADS. ��

We are now able to prove the theorem.
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Proof (Theorem 1). We prove the assertion by induction on w. We set α1 = ζ,
α2 = 1 + μτ3 and α3 = −2.

For w = 1, there is nothing to show. As 〈ζ〉 is known to be a reduced residue
system modulo τ2 and 〈α2〉 and 〈α3〉 are both the trivial group, we are done for
w = 2.

Assume that the result holds for some w � 2. We first prove that α1, α2, α3
are independent modulo τw+1. So we assume that

αa1
1 αa2

2 αa3
3 ≡ 1 (mod τw+1) (8)

for some aj with 0 � aj < ordτw+1(αj) for j ∈ {1, 2, 3}. Reducing the relation
modulo τw , i.e.,

αa1
1 αa2

2 αa3
3 ≡ 1 (mod τw) ,

yields ordτw(αj) | aj for all j ∈ {1, 2, 3}.
As ordτw+1(α1) = ordτw(α1) = 6 by Lemma 1, we immediately get a1 = 0.
By Lemma 1 we also have

ordτw+1(αj) = ordτw(αj)
ordτw+1(αk) = 3 · ordτw(αk)

where {j, k} = {2, 3}, the appropriate permutation depending on the parity of
w. More precisely, it is (j, k) = (2, 3) for even w and (j, k) = (3, 2) for odd w.

Thus we also have aj = 0 and (8) reduces to αak

k ≡ 1 (mod τw+1), which
immediately implies ak = 0, too. This concludes the proof of the independence
of α1, α2, α3 modulo τw+1.

As

|〈α1〉 × 〈α2〉 × 〈α3〉| = 6 · 3�(w+1)/2�−1 · 3�(w+1)/2�−1 = 2 · 3w =

∣∣∣∣∣
(

Z[τ ]
τwZ[τ ]

)×∣∣∣∣∣ ,

the generated group has the right cardinality, so α1, α2, α3 do generate the unit
group. ��

Remark 2. (i) For w � 3, the generator −2 can be replaced by 1 + μτ . This
results from

(1 + μτ) = ζ4(1 + μτ3)(−2)−1 (9)

and ordτw(1 + μτ) = ordτw(−2) for w � 3.
(ii) For even values of w only,

(Z[τ ]/τwZ[τ ])× = 〈ζ〉 × 〈1 + μτ〉 × 〈−2〉 ,

but not for odd w. This also follows from (9) and from the fact that
ordτw(1 + μτ) = ordτw(−2). For odd w these elements generate a sub-
group of index 3 of the unit group.

(iii) Further choices of generators are possible, beside −2, 1 + μτ and 1 + μτ3.
These elements have been chosen for two reasons: (a) their relatively small
norm leads to an overall well bounded norm of the digit set elements, and
(b) we were able to find efficient explicit for them, cf. Section 4.
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3 Scalar Multiplication Using a Factored Digit Set

Our next goal is to use the digit sets implied by the decomposition of the unit
group of Theorem 1 in a precomputationless scalar multiplication algorithm
similar to the one presented in [3] for Koblitz curves in characteristic two. In that
case the unit group had a much simpler structure than in the present context,
that will require a deeper study. From Theorem 1 we know that for w � 2 a
decomposition (Z[τ ]/τwZ[τ ])× = 〈ζ〉×〈φ〉×〈ψ〉 � Z/6Z×Z/3aZ×Z/3bZ exists,
where φ and ψ are suitable elements of Z[τ ] identified with the corresponding
elements of the endomorphism ring of E3,μ. Clearly, a+b = w−2. Assume further
that we can write a scalar z in the form

z =
m∑

i=0

εi

(
φfiψgi

)
τ i (10)

where 0 � fi < 3a, 0 � gi < 3b, and εi = 0 or εi = ζ� with 0 � � < 6. This is a
τ -adic expansion where the digit set is factored as the product of three subgroups
〈ζ〉, 〈φ〉 and 〈ψ〉.

We can thus perform a scalar multiplication by means of scalar multiplication
Algorithm 1 on the next page, whose correctness is an easy fact, as it simply
consists of three nested Horner schemes, the two outer ones looping on the
exponents of φ and ψ, the inner one on the exponents of τ . Note that for w = 2
we must have a = b = 0 and for w = 3 one of a, b must be zero (cf. Remark 1),
in which cases the algorithm simplifies because there will be less nested loops.

By an easy generalization of Koblitz’ arguments (cf. the end of the proof
of Theorem 1 in [20]) it can be proved that the expected density of a w-NAF
expansion is 2/(2w + 1). Note that these arguments do not apply exclusively to
expansions using minimal norm digits.

The expansion (10) can also be viewed as a triple base representation of the
scalar z. Double base representations have been already considered for supersin-
gular Koblitz curves, see for instance [2], where the possibility of using the bases
2 and 3 is mentioned but not analyzed, and in particular a rotational symmetry
of the digit set, such as the one that we exploit in our algorithms, is not present.

From Theorem 1 and Remark 2 we know that we can take ζ, −2 and, depend-
ing on the parity of w, either 1 + μτ or 1 + μτ3 to generate a reduced residue
set modulo τw , and thus a digit set Dw. In order to guarantee that any τ -adic
expansion terminates, we follow the same approach as in [3,4], which consists
in reducing the value of the parameter w if the norm of the input becomes too
small. As in [3,4] it is easy to verify that this has a minimal and asymptotically
negligible impact on the weight of the expansion.

In the next section we consider the efficient implementation of the endomor-
phisms associated to the ring elements −2, 1+μτ and 1+μτ3. Since the innermost
loops of Algorithm 1 are performed more often, it is a good idea to place the
most expensive operation in the outermost loop and the computationally cheap-
est one in the innermost loop – in other words ψ should be less expensive than
φ. In Section 5 we shall reconsider Algorithm 1 and some variants, and estimate
the costs of scalar multiplication.
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Algorithm 1. Low-memory τ -adic Scalar Multiplication on Koblitz Curves

INPUT: P = (x, y) ∈ E3,μ(F3m), scalar z represented as in Equation (10)
OUTPUT: zP

1. Q ← 0
2. for j = 3a − 1 to 0 do

3. Q ← φQ [skip first time]
4. R ← 0
5. for k = 3b − 1 to 0 do

6. R ← ψR [skip first time]
7. S ← 0
8. for i = m − 1 to 0 do

9. S ← τS [skip first time]
10. if (εi 
= 0 and fi = j and gi = k) then

11. let εi = ζ� with 0 � � � 5
12. switch �

13. case 0: S ← S + (x, y)
14. case 1: S ← S + (x + μ,−y)
15. case 2: S ← S + (x − μ, y)
16. case 3: S ← S + (x,−y)
17. case 4: S ← S + (x + μ, y)
18. case 5: S ← S + (x − μ,−y)
19. R ← R + S

20. Q ← Q + R

21. return Q

4 Group Operations on the Curve

In this section we show how to evaluate 1 +μτ efficiently when the curve E3,μ is
represented using different coordinate systems. We could not find an optimized
evaluation of 1 + μτ3, that is, just adding P and μτ3(P ) together seems to be
the most efficient way of evaluating this endomorphism.

The costs of the various operations on the curve in different coordinate systems
are compared § 4.5, in order to choose the best coordinate system for our scalar
multiplication algorithms.

4.1 Explicit Formulae for (1 + μτ) in Affine Coordinates

In this subsection as well as in the following three we discuss how to explic-
itly compute the image of a point P on E3,μ(F3m) \ E3,μ(F3) under the
endomorphism (1 + μτ)P using different coordinate systems. We begin with
affine coordinates.
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For three points Pi := (xi, yi), i = 1, 2, 3 on the curve, in the case that
P1 �= ±P2, the expression P1 + P2 = P3 holds with

x3 =
(

y2 − y1

x2 − x1

)2

− (x1 + x2) and y3 = y1 + y2 −
(

y2 − y1

x2 − x1

)3

. (11)

If we take P2 = μτP1, then (x2, y2) = (x3
1, μy

3
1). For simplicity let us now omit

the index 1 in what follows. We obtain

x3 =
(
μy3 − y

x3 − x

)2

− (x + x3) and y3 = y + μy3 −
(
μy3 − y

x3 − x

)3

.

Making use of the facts that x3 − x = y2 + μ and μ2 = 1 and that we are
over a field of characteristic three, after a few manipulations we obtain compact
expressions for x3 and y3,

x3 = x+μ− x3 − x− μ

(x3 − x)2
= x+μ− y2

(x3 − x)2
and y3 = y− y3

(x3 − x)3
, (12)

that will be the starting point to obtain explicit formulae in different coordinate
systems.

4.2 Projective Coordinates

This is a standard coordinate system for elliptic curves, where a finite point
(x, y) is represented as [X :Y :Z] with x = X/Z and y = Y/Z. For the purpose
of computing on supersingular elliptic curves over fields of characteristic three
it has been first used by Koblitz [20]. Koblitz’ formulae have been improved by
Barreto, Kim, Lynn, and Scott [6].

To obtain an explicit formula consider expressions (12), first replace x, y
with X/Z and Y/Z in the two formulae for x3 and in the formula for y3. Upon
simplification, two rational expressions are obtained. Making their denominators
equal and taking this value as the Z-coordinate Z3 finally yields:⎧⎪⎨⎪⎩

X3 = ((X + μZ)(X3 −XZ2)2 − Y 2Z5)(X3 −XZ2) ,

Y3 = Y (X3 −XZ2)3 − Y 3Z7 ,

Z3 = Z(X3 −XZ2)3 .

This gives us the following operation sequence, where the symbols M, C, I shall
denote a multiplication, a cubing and an inversion in F3m . (We do not distinguish
between multiplication and squaring.)

Computing (1 + μτ) in projective coordinates
Input: [X :Y :Z] – Output: [X3:Y3:Z3] = (1 + μτ)[X :Y :Z]
Operation Cost Remark
A ← X3 −XZ2 2 M+ 1 C save Z2

B ← A3 1 C —
Z3 ← ZB 1 M —
Y3 ← Y B − (Y Z2)3Z 3 M+ 1 C save Y Z2

X3 ← XB + μZ3 − (Y Z2)2ZA 4 M —
Total cost: 10 M+ 3 C
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4.3 Jacobian Coordinates

These coordinates have been introduced in the context of curves in characteristic
three by Harrison, Page and Smart in [18], where they are called projective, but
they are long known, see for instance [13] and, for cryptographic applications [14].
In order to distinguish them from those described in § 4.2 and in accordance with
the rest of the literature on elliptic curves we instead call them Jacobian. In
Jacobian coordinates the affine point (x, y) is represented as 〈X :Y :Z〉 = (x, y),
where x = X/Z2 and y = Y/Z3.

As in the projective case our starting point are the addition formulae (11)
specialized for the case where P2 = μτP1 and simplified, i.e., (12). Putting
x = X/Z2 and y = Y/Z3 in the formulae for x3 and in the formula for y3 and
proceeding as above we obtain⎧⎪⎨⎪⎩

X3 = ((X + μZ2)(X3 −XZ4)2 − Y 2Z8)Z(X3 −XZ4) ,

Y3 = Y (X3 −XZ4)3 − Y 3Z12 ,

Z3 = Z3(X3 −XZ4)3 .

We obtain the following operation sequence:

Computing (1 + μτ) in Jacobian coordinates
Input: 〈X :Y :Z〉 – Output: 〈X3:Y3:Z3〉 = (1 + μτ)〈X :Y :Z〉
Operation Cost Remark
A ← X3 −XZ4 2 M + 2 C save Z4

B ← A3 1 C —
Z3 ← (ZA)3 1 M + 1 C save ZA
Y3 ← Y B − (Y Z4)3 2 M + 1 C save Y Z4

X3 ← [(X + μZ2)A2 − (Y Z4)2](ZA) 5 M —
Total cost: 10 M+ 5 C

4.4 Modified Jacobian Coordinates

With these coordinates, introduced by Kim and Negre [19], an affine point (x, y)
on E3,μ is represented by the quadruple 〈X :Y :Z:T 〉, where x = X/Z2 and y =
Y/Z3 as before, and T = Z2. The explicit formula in this case is obtained by
modifying the formula in § 4.3.

Computing (1 + μτ) in modified Jacobian coordinates
Input: 〈X :Y :Z:T 〉 – Output: 〈X3:Y3:Z3:T3〉 = (1 + μτ)〈X :Y :Z:T 〉
Operation Cost Remark
A ← X3 −XT 2 2 M+ 1 C save T 2

B ← A3 1 C —
Z3 ← (ZA)3 1 M+ 1 C save ZA
Y3 ← Y B − (Y T 2)3 2 M+ 1 C save Y T 2

X3 ← [(X + μT )A2 − (Y T 2)2](ZA) 4 M —
T3 ← Z2

3 1 M —
Total cost: 10 M+ 4 C
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4.5 Costs of Operations in Different Systems

We now tabulate the costs of several operations on an elliptic curve E3,μ.

Coordinates → Affine Projective Jacobian Modified
↓ Operation Jacobian
ADD 1 I+ 3 M 14 M+ 1 C 12 M+ 4 C 11 M+ 4 C
mADD NA 9 M+ 2 C 8 M+ 3 C 7 M + 3 C
DBL (also −2) 1 I+ 2 M 11 M+ 1 C 7 M+ 2 C 6 M + 4 C
TPL 4 C 6 C 1 M+ 6 C 8 C
τ 2 C 3 C 3 C 4 C
1 + μτ 1 I + 2 M+ 3 C 10 M+ 3 C 10 M+ 5 C 10 M+ 4 C
1 + μτ3 1 I + 3 M+ 6 C 14 M+ 10 C 12 M+ 13 C 11 M+ 16 C

ADD, DBL, and TPL denote addition of two different points, doubling and
tripling of a point, respectively. The prefix m is used to denote a mixed addi-
tion, i.e., addition of a point given in affine coordinates to a point in a non-affine
coordinate system (in other words, Z2 = 1), with a result in the same coordinate
system of the second point. We did not find gains with repeated additions, i.e.
when a given point is added to several inputs, except with standard Jacobian
coordinates, where one M can be saved in the ADD. In Jacobian and modified
Jacobian coordinates we save a cubing for the generic addition and nothing for
the mixed addition. As symbols, τ , 1 + μτ , and 1 + μτ3 denote the application
of the corresponding endomorphisms.

Remark 3. (i) The costs for the projective operations have been inferred from
the formulae in [20] (with some obvious simplifications) and [6].

(ii) For mADD in Jacobian coordinates we started with the formula for ADD
in [18], which we report here for the reader’s convenience:

λ1 ← X1Z
2
2 , λ2 ← X2Z

2
1 , λ3 ← λ1 − λ2 , λ4 ← Y1Z

3
2 ,

λ5 ← Y2Z
3
1 , λ6 ← λ4 − λ5 , λ7 ← λ1 + λ2 , λ8 ← λ4 + λ5 ,

Z3 ← Z1Z2λ3 , X3 ← λ2
6 − λ7λ

2
3 , Y3 ← λ8λ

3
3 − λ3

6 .

Putting Z2 = 1 we save 1 M + 1 S in first step, then 1 M + 1 C in the fourth
step. Note that λ1 = X1 and λ4 = Y1, but no further savings come from
this. However, in the computation of Z3 one last M is saved. This brings
the total cost to 8 M+ 3 C.

(iii) The formulae and relative costs for ADD, DBL, and TPL in modified Jacobian
coordinates have been taken from [19].

Modified Jacobian coordinates are then the fastest system, as long as a field
inversion is slow. In fact, according to [18] and [1], a field inversion costs more
than ten field multiplications already for relatively small fields. Therefore, we
shall use the modified Jacobian coordinate system in the sequel.
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5 Further Improvements to Scalar Multiplication

Let us have another look at Algorithm 1: it will be the starting point for a few
additional scalar multiplication methods.

Trading Frobenius Operations for Basis Conversions: If cubings are not
extremely inexpensive or even essentially for free (such as with normal bases)
they can easily become the dominant operation in Algorithm 1. In fact, there
are 2 · 3w m of them.

Therefore one can envision the alternative approach of converting the coordi-
nates of S to a normal basis representation before applying a power of τ (that in
normal basis representation has nearly no computational cost) and then convert-
ing back to polynomial basis representation before adding ζ�P to it. By means of
this, 2 ·3wm cubings are replaced by two basis conversion per coordinate of S for
each non-zero digit, i.e., about 8 · 2

2w+1 m basis conversions (assuming modified
Jacobian coordinates). However, there is a more efficient approach based on the
same idea: Instead of applying powers of τ to S and adding P , we convert instead
the base point P to normal basis representation and apply τ i before converting
it back, applying ζ� and adding the resulting point to S. This is Algorithm 2.
Only 2 basis conversions at the beginning plus 2 more for each non-zero digit
in the expansion are necessary, i.e., about 2 + 2 · 2

2w+1 m. This is similar to the
method used in [4] for elliptic Koblitz curves in characteristic two. This approach
can be advantageous, but only for relatively large values of m and w, since a
basis conversion can be quite expensive: Whereas for characteristic two one such
operation takes about the same time as one polynomial basis multiplication [15],
in characteristic three the cost can be between two and three polynomial basis
multiplications.

A Different Kind of Tradeoff: The biggest advantages of Algorithms 1 and 2
lie in their minimal memory requirements, but if cubings or basis conversions
are not completely negligible, performance will not be their biggest strength.
However, one can exploit the structure of the unit group in a more subtle way,
to store only about O(3w/2) precomputed points instead of O(3w) to perform a
width-w windowed scalar multiplication.

In the notation of Section 3 and in particular of Equation (10), this idea
consists in (i) precomputing and storing all the points φj(P ) for 0 � j < 3a,
and then (ii) using a double Horner scheme on double base representation z =∑m

i=0

(
εiφ

fi
)
ψgiτ i with bases τ and ψ, and digits εiφ

fi , in place of the triple
Horner scheme of Algorithm 1. It is clear now how to write down the methods:
Algorithms 3 and 4 on page 124 are the “square root sized digit set” variants of
Algorithms 1 and 2, respectively.

Comparisons: We now compare the performance and memory consumption
of these algorithms to other methods presented in the scientific literature. The
results are summarized in Tables 1 and 2 on page 125. We now describe our
approach to the comparisons:

(i) We consider here the simple τ -adic scalar multiplication from Koblitz [20],
corresponding to a τ -adic 2-NAF with digit set {0} ∪ 〈ζ〉, the windowed
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Algorithm 2. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with basis
conversions

INPUT: P = (x, y) ∈ E3,μ(F3m), scalar z represented as in Equation (10)
OUTPUT: zP

1. Q ← 0
2. P̂ ← normal basis(P )
3. for j = 3a − 1 to 0 do

4. Q ← φQ [skip first time]
5. R ← 0
6. for k = 3b − 1 to 0 do

7. R ← ψR [skip first time]
8. S ← 0
9. for i = 0 to m − 1 do

10. if (εi 
= 0 and fi = j and gi = k) then

11. S ← S + εi polynomial basis
(
τ iP̂

)
12. R ← R + S

13. Q ← Q + R

14. return Q

method from [10] for w � 3, and our four algorithms. Note that we extend
the method from [10] also to w = 5 (since, for large m, w = 3 or w = 4 are
no longer optimal). For completeness we also report the operation counts
for Smart’s method [23] specialized to characteristic three.

(ii) Seven different field sizes F3m with m = 97, 163, 193, 239, 509, 773 and
1223, and two representations of the fields – normal basis and polynomial
basis – are considered. The first five are fields already considered in the
literature, the last two have been chosen to see how the methods scale with
the field size, but are not necessarily tied to particular applications.

(iii) All the computational costs are expressed in field multiplications. The cost
of a field inversion is taken to be equal to 15, 17, 20, 30, 40, 60 and 80
multiplications, respectively for the seven chosen values of m, and a cubing
is equal to 0.15, 0.10, 0.09, 0.07, 0.045, 0.037 and 0.033 multiplications,
respectively. Whereas using normal bases a cubing is essentially for free,
the cost cannot be ignored when using a polynomial basis, because of the
cost of the reduction of a polynomial of degree up to 3(m − 1) modulo the
defining polynomial of the field extension. These values are approximate
distillates of the values found in [18,1] and of our own implementation
experiments, and checked against Mitsunari’s code [22].

(iv) For each scalar multiplication algorithm parametrized by a “window width”
w, the cost corresponding to the optimal value of w is given.

(v) For all our algorithms the generators are chosen following the considera-
tions in Remark 2: For even w, we take {φ, ψ} = {−2, 1 + μτ} and from
Lemma 1 we get a = b = 3w/2−1. For odd w we take {φ, ψ} = {−2, 1+μτ3};
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from Lemma 1 we know that ordτw(−2) = 3(w−1)/2, ordτw(1 + μτ3) =
3(w−3)/2. If ψ = −2, then a = (w − 1)/2, b = (w − 3)/2, otherwise (i.e., if
φ = −2) a = (w − 3)/2, b = (w − 1)/2.
When different choices of the generators affect the performance, as in Al-
gorithms 3 and 4, we make further case distinctions in the comparisons.

(vi) Memory consumption is given as the number of registers that are required
for storing input-dependent points: The method from [10] needs to store
the precomputed points other than the base point P itself, and uses an
extra variable in the Horner scheme; Algorithm 1 needs to store Q, R and
S and Algorithm 2 also storage P̂ and a copy of τ iP̂ in polynomial basis
(cf. in Step 11); Algorithm 3 needs storage for the 3a − 1 points φjP with
j > 0, as well as R, S; with respect to Algorithm 3, Algorithm 4 needs one
register for P in normal basis as well, and one for the point converted in
Step 7.

We do not consider the memory conversion matrices (that only apply to
Algorithms 2 and 4) since they can be stored statically.

(vii) Algorithms 2 and 4 are not relevant for the normal basis comparison.

A comparison to expansions to the base of three, such as those in [18], seems due.
A tripling requires twice as many cubings as a Frobenius operation. Since the
density of a simple base-three expansion is 1/2 – higher than the 2/5 of Koblitz’
espansion – the method is slower than Koblitz’ τ -adic method. Similarly, their
nonary method requiring 7 precomputations is slower than the method of Blake,
Kumar, and Xu already for w = 3, with comparable memory requirements.

Double base chains with bases (2, 3) such as those presented in [2] make sense
when the doubling and tripling operation have both non-trivial costs. While
computing the operation chain for a given scalar z one observes that it may end
it with: (a) a doubling if 2 | z; (b) a tripling if 3 | z; (c) a doubling and an
addition if 2 � z; or (d) a tripling and an addition/subtraction if 3 � z. The rest
of the chain is the one associated to integers z/2, z/3, (z ± 1)/2 and (z ± 1)/3
respectively. Now, tripling in our case is always very efficient, but not doubling.
Hence, options (c) and (d) are almost always more convenient than (a) also by
virtue of of the faster reduction of the intermediate results. Therefore, double
base chains almost always degenerate to base-three expansions, which we have
just considered.

6 Conclusions and Final Remarks

It is clear from Tables 1 and 2 on page 125 that the new methods provide a
substantial improvement w.r.t. the state of the art.

1. In the case of fields represented with a polynomial basis, we see that speedups
are attained already for small curves. If w = 97, for instance For instance,
the method from [10] is already beaten by Algorithm 2 with a much lower
memory usage. For m = 509, we obtain similar or slightly better performance
using Algorithms 3 and 4, but the memory reduction goes from a factor
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Algorithm 3. Square-root memory usage τ -adic Scalar Multiplication on Koblitz
Curves

INPUT: P = (x, y) ∈ E3,μ(F3m), scalar z represented as in Equation (10)
OUTPUT: zP

1. for j = 0 to 3a − 1 do Precompute and store φjP

2. R ← 0
3. for k = 3b − 1 to 0 do

4. R ← ψR, S ← 0
5. for i = m − 1 to 0 do

6. S ← τS [skip first time]
7. if (εi 
= 0 and gi = k) then

8. S ← S + εi

(
φfj P

)[
Use idea from Algo. 1, Steps 11–18 with (x, y) = φfj P from table

]
9. R ← R + S

10. return R

Algorithm 4. Square-root memory usage Scalar Multiplication on Koblitz Curves
with basis conversions

INPUT: P = (x, y) ∈ E3,μ(F3m), scalar z represented as in Equation (10)
OUTPUT: zP

1. for j = 0 to 3a − 1 do Precompute and store normal basis(φjP )
2. R ← 0
3. for k = 3b − 1 to 0 do

4. R ← ψR, S ← 0
5. for i = 0 to m − 1 do

6. if (εi 
= 0 and gi = k) then

7. S ← S + εi polynomial basis
(
τ i(φfjP )

)
8. R ← R + S

9. return R

2.25 = 27/12 to 6.75 = 27/4. For even larger fields, such as m = 1223, the
method from [10] with w = 5 uses 81 registers and has similar performance
to Algorithm 3, but the latter uses only 10 memory registers, which therefore
is about one eighth than the previous state of the art. Speed improvements
are often up to 7% for variable memory usage methods (but with reduced
memory usage) to 24% for methods with fixed memory usage (i.e., then
comparing our first two algorithms to Koblitz’ algorithm).

We also note that whereas Algorithm 4 needs static storage for basis con-
version matrices, these are not needed in Algorithm 3, that is usually just a
bit slower and still faster than previous methods.
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Table 1. Cost – expressed in field multiplications – and random access memory us-
age – expressed as the number of precomputed and intermediate points – of scalar
multiplication on curves over fields represented in polynomial basis. In each entry the
computational cost is above, memory usage and, if applicable, the value of w between
parentheses, are below.

Previous methods New methods

m
Smart Koblitz BMX [10] Algo. 1 Algo. 2 Algorithm 3 Algorithm 4
[23] [20] extended ψ=−2 ψ=−2 φ=−2 ψ=−2 φ=−2

97 535.6 339.2 296.1 392.4 331.7 278.1 385.0 278.1 278.1
1 1 9 (3) 3 (3) 5 (3) 4 (3) 2 (3) 6 (4) 6 (4)

163 854.4 533.5 436.5 547.5 494.2 418.5 493.3 408.8 432.0
1 1 9 (3) 3 (3) 5 (4) 4 (3) 4 (4) 6 (4) 6 (5)

193 1001.9 624.1 503.6 621.3 567.9 483.6 553.5 468.7 492.1
1 1 9 (3) 3 (3) 5 (4) 4 (3) 4 (4) 6 (5) 6 (5)

239 1211.8 748.7 595.5 705.3 679.2 572.5 616.9 566.0 566.0
1 1 27 (3) 3 (3) 5 (4) 4 (3) 4 (4) 12 (6) 12 (6)

509 2509.0 1537.0 1035.4 1325.0 1300.5 1032.5 1115.0 1024.1 1024.1
1 1 27 (4) 3 (3) 5 (5) 10 (5) 4 (4) 12 (6) 12 (6)

773 3775.2 2305.9 1528.4 1926.4 1830.4 1439.8 1597.8 1419.6 1472.9
1 1 81 (5) 3 (3) 5 (5) 10 (5) 4 (4) 12 (6) 12 (7)

1223 5923.8 3608.0 2177.4 2930.4 2733.8 2113.5 2400.3 2111.6 2111.7
1 1 81 (5) 3 (3) 5 (5) 10 (5) 4 (4) 30 (8) 30 (8)

Table 2. Computational costs and memory consumption as in Table 1 but when using
a normal basis

Previous methods New methods

m
Smart Koblitz BMX [10] Algo. 1 Algorithm 3
[23] [20] extended ψ=−2 φ=−2

97 449.2 264.6 230.0 207.1 183.9 183.9
1 1 9 (3) 3 (3) 4 (4) 4 (4)

163 757.2 449.4 362.0 339.0 286.6 286.6
1 1 9 (3) 3 (3) 4 (4) 4 (4)

193 897.2 533.4 410.2 388.2 333.2 316.6
1 1 27 (4) 3 (3) 4 (4) 4 (4)

239 1111.8 662.2 487.7 466.5 399.2 375.2
1 1 27 (4) 3 (4) 10 (5) 4 (5)

509 2371.8 1418.2 947.8 885.8 701.2 701.2
1 1 27 (4) 3 (4) 10 (6) 10 (6)

773 3603.8 2157.4 1395.8 1246.8 985.5 985.5
1 1 81 (5) 3 (5) 10 (6) 10 (6)

1223 5703.8 3417.4 2008.5 1819.6 1470.0 1410.0
1 1 81 (5) 3 (5) 10 (6) 10 (7)
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2. With a normal basis the improvements are even more impressive, going from
20% when m = 97 to 26% for m = 509 and then reaching nearly 30% for
m = 1223, in all cases with vastly reduced memory usage.

3. If we compare methods with fixed memory consumption, we see that Algo-
rithm 2 consistently outperforms the method of Koblitz, the speed up ranging
from a few percent to 26.4% for m = 509 and even 46.7% for m = 1223 in
the normal basis case (the price to pay being the usage of three intermediate
registers in place of just one).

The techniques introduced in this paper therefore bring substantial speedups to
scalar multiplication on supersingular Koblitz curves in characteristic three, at
the same time reducing the memory footprint – by a factor roughly up to 8 in
the examples we explicitly computed.

For extremely restricted environments, with no additional memory for code,
the simple simple τ-adic method by Koblitz may of course still be preferable.
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Abstract. Bos, Kaihara, Kleinjung, Lenstra, and Montgomery recently
showed that ECDLPs on the 112-bit secp112r1 curve can be solved in
an expected time of 65 years on a PlayStation 3. This paper shows how
to solve the same ECDLPs at almost twice the speed on the same hard-
ware. The improvement comes primarily from a new variant of Pollard’s
rho method that fully exploits the negation map without branching, and
secondarily from improved techniques for modular arithmetic.
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1 Introduction

In July 2009, Bos, Kaihara, Kleinjung, Lenstra, and Montgomery announced
breaking a discrete-logarithm problem on an elliptic curve over a 112-bit prime
field using a cluster of 214 PlayStation 3 (PS3) game consoles. The initial an-
nouncement was [3]; more details on the same computation were published in [5],
[4], and [6]. The overall attack costs were estimated to be about 60 PS3 years.
This computation was, and still is, the largest ECDLP for which a successful
solution has been publicly announced.

Our main result is that discrete-logarithm problems on the same curve (or
any other curve of the form y2 = x3 − 3x + b over the same field) can be
solved at almost twice the speed on exactly the same hardware. We performed
extensive computational experiments to verify our scalability and performance
claims; details of these experiments appear in Section 6.
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This result combines several different optimizations. A large part of our work
consists of faster algorithms for arithmetic modulo the prime (2128 − 3)/76439
that defines this field; these algorithms use a different approach from the previ-
ous papers, and we describe this approach in detail. We also introduce several
smaller refinements in rho computations, often co-designing our choice of iter-
ation function with our lower-level optimizations. However, the largest part of
our improvement, gaining a factor of almost

√
2, comes from careful use of the

negation map.
The conventional wisdom is that the negation map has been known for ten

years and trivially gains a factor of
√

2. However, [3] said “We did not use the
common negation map since it requires branching and results in code that runs
slower in a SIMD environment.” SIMD (single instruction, multiple data) is a
critical feature of modern CPU designs, including the Cell processor used in the
PS3.

Similarly, [5] said that the benefit of negation was outweighed by “the con-
ditional branches required to check for fruitless cycles.” The paper [6] observed
that most of the negating rho algorithms stated in the literature were non-
functional (i.e., had negligible chance of succeeding in the claimed amount of
time); considered a huge array of 126 different combinations of negation options;
and concluded that the best option did save time for non-SIMD architectures,
but with a speedup far below

√
2. The paper continued to dispute the possibility

of a negation speedup for SIMD architectures:

If the Pollard rho method is parallelized in SIMD fashion, it is a challenge
to achieve any speedup at all. . . . Dealing with cycles entails adminis-
trative overhead and branching, which cause a non-negligible slowdown
when running multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD environments.

This paper resolves this dispute by explaining how to use the negation map
without branching and without significant overhead handling cycles. We demon-
strate a speedup very close to

√
2 on the PS3. We comment that the speedup

on non-SIMD architectures would be even closer to
√

2.

2 Review of Pollard’s rho Method

This section gives an overview of Pollard’s rho method. In this paper we will
use this method to compute discrete logarithms on elliptic curves but the first
subsections apply to any finite cyclic group G = 〈P 〉 and Q ∈ G. Computing the
discrete logarithm of Q to the base P means computing an integer k such that
Q = kP . The integer k is unique modulo � where � is the order of P ; we assume
for simplicity that � is an odd prime.

The generic rho method. Pollard’s rho method [17] is a low-memory algo-
rithm that finds a discrete logarithm by finding a collision in the map

(a, b) �→ aP + bQ where a, b ∈ Z.
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Finding a collision usually reveals the discrete logarithm k of Q to the base P :
if aP + bQ = a′P + b′Q and b �≡ b′ (mod �) then k ≡ (a− a′)/(b′ − b) (mod �).

A generic way to find this collision is to iterate this function. Define maps a
and b from 〈P 〉 to Z and compute Wi+1 = f(Wi) = a(Wi)P + b(Wi)Q, starting
from some initial combination W0 = a0P + b0Q. If any Wi and Wj collide then
also Wi+1 = Wj+1, Wi+2 = Wj+2, etc. This means that the sequence enters a
cycle. This can be detected efficiently using, e.g., Floyd’s cycle-finding method.

If the functions a(R) and b(R) are random modulo � then the iterations per-
form a random walk in 〈P 〉. The random walk can be modeled as drawing ob-
jects with repetition from an urn containing � elements. A collision corresponds
to drawing the same element twice. A standard birthday-paradox calculation
implies that a collision occurs after approximately

√
π�/2 iterations on average.

Use of group automorphisms. If the functions a and b are chosen such that
f(Wi) = f(−Wi) then the walk is actually defined on equivalence classes under
±. There are only ��/2 different classes. This reduces the average number of
iterations by a factor of almost exactly

√
2.

More generally, Pollard’s rho method can be combined with any easily com-
puted group automorphism σ of small order. One chooses a and b so that
f(Wi) = f(σ(Wi)) = f(σ2(Wi)) = · · · . The walk is then defined on equivalence
classes under the automorphisms, reducing the average number of iterations
accordingly. However, for most elliptic curves the only easily computed group
automorphism of small order is the negation map.

The parallel rho method. To spread the computations in Pollard’s rho method
across multiple computers one replaces the long walk by a collection of short
walks, as proposed by van Oorschot and Wiener in [16]. Some fixed subset of
〈P 〉 is declared to be the set of distinguished points. Whenever a walk reaches a
distinguished point it reports this to a central server and the server stores the
distinguished point along with the values for a and b. If two walks reach the
same distinguished point the server notices a collision.

This parallelization requires the server to receive, store, and sort all distin-
guished points. Tradeoffs are possible. If distinguished points are chosen to be
rare then a small number of very long walks will be performed, reducing the
number of distinguished points sent to the server but increasing the delay before
a collision is recognized. If distinguished points are frequent then many shorter
walks will be performed.

Additive walks. The generic rho method described above requires two scalar
multiplications for each iteration. One can merge the two scalar multiplications
into a 2-scalar multiplication, and further merge the 2-scalar multiplications
across several parallel iterations, to reduce the number of group additions re-
quired for each iteration; but it is much simpler to use an additive walk, requiring
only one addition for each iteration.

An additive walk is defined as Wi+1 = f(Wi) = Wi + Rh(Wi). Here h maps
from 〈P 〉 to {0, 1, . . . , r − 1}, and R0, R1, . . . , Rr−1 are precomputed as known
combinations of P and Q: say Rj = cjP + djQ for each j ∈ {0, 1, . . . , r − 1}.
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One then also knows that Wi = aiP + biQ, where a and b are defined recursively
as follows: ai+1 = ai + ch(Wi) and bi+1 = bi + dh(Wi).

Additive walks have disadvantages. The walks are noticeably nonrandom and
need more iterations than the generic rho method to find a collision. This effect
disappears as r grows, but if r is large then the precomputed table R0, . . . , Rr−1
does not fit into fast memory. Additive walks also have trouble with automor-
phisms; see the discussion of fruitless cycles below.

Pollard’s original proposal was to use r = 3. Instead of 3 different precom-
puted points, Pollard mixed 2 points with a doubling Wi+1 = 2Wi; note that
Pollard was computing discrete logarithms in multiplicative groups, where a dou-
bling (i.e., a squaring) is faster than a general addition (i.e., a multiplication).
Experiments by Teske in [21] showed that larger values of r, such as r = 20,
are much closer to random walks. A general heuristic due to Brent and Pollard
implies that nonrandomness slows down this type of walk by a factor

√
1 − 1/r;

for further discussion of such heuristics see, e.g., [1].

Eliminating coefficients. In all of the discrete-logarithm computations de-
scribed above, coefficients ai, bi are stored and used to compute the final dis-
crete logarithm. In the parallel rho method these coefficients are communicated
along with each distinguished point sent from a client to the server. Computing
these coefficients in additive walks requires each client to implement arithmetic
modulo � or at least to allocate space for counters to keep track of how often
each Rj is used.

An alternative approach, introduced recently as part of the ECC2K-130 attack
[1], eliminates the coefficients ai and bi. Clients compute Wi without keeping
track of ai and bi. When a client encounters a distinguished point Wi, it reports
the point (or a hash of the point) along with a seed identifying the start of
the walk, and then starts a new walk. This saves code in the clients, storage in
the clients, communication between the clients and the server, and storage on
the server. When the server encounters a collision, it recomputes the two walks
involved in the collision, starting from the same seeds but now computing ai and
bi. This is done only rarely, ideally just once.

Fruitless cycles. Fast negation on elliptic curves reduces the number of iter-
ations in the generic rho method by a factor

√
2, as discussed above. However,

a non-negating additive walk is faster than a negating generic walk: the extra
speed of each iteration in the non-negating additive walk outweighs the smaller
number of iterations in the negating generic walk.

One might think that a negating additive walk combines the advantages of a
small number of iterations and a very fast iteration function. It is easy to make
a canonical choice |Wi| between Wi and −Wi; to define h(Wi) as a function of
|Wi|, so that h(Wi) = h(−Wi); and to define f(Wi) = |Wi|+Rh(Wi). Then f is a
walk on equivalence classes under ±, and computing f takes only one addition.

The problem is that a negating additive walk does not behave randomly:
it quickly enters short fruitless cycles. For example, if |Wi+1| = −Wi+1 and
h(Wi+1) = h(Wi) then Wi+2 = f(Wi+1) = −Wi+1 + Rh(Wi) = −(|Wi| +
Rh(Wi)) + Rh(Wi) = −|Wi| so |Wi+2| = |Wi|. One expects this to occur with
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probability 1/(2r) at each step, and if it does occur then the walk enters a 2-
cycle. Subsequent iterations will not proceed to a distinguished point; subsequent
computations will be wasted.

It is also possible to have fruitless cycles of larger lengths, although these are
less frequent. Heuristics are given in [9]. Choosing a larger r reduces the chance
of entering fruitless cycles, but for large-scale computations the cycles will occur
and will occur frequently.

There are many different attempts in the literature to work around this prob-
lem. The first proposals were introduced independently by Harley and Singer
in [12], Wiener and Zuccherato in [23], and Gallant, Lambert, and Vanstone
in [10]; further analyses appeared in [9] and much more recently in [6]. A de-
tailed review of these proposals appears in the full version of this paper. Some
of the proposals are successful in eliminating fruitless cycles, but all of these
proposals involve frequent conditional operations and, as stated in [6], perform
poorly in a SIMD environment.

3 How to Use Negation in Pollard’s rho Method

This section presents an efficient branchless negating rho algorithm to compute
elliptic-curve discrete logarithms. For simplicity we restrict to curves of the form
y2 = x3 − 3x + b over large prime fields Fp.

This algorithm uses, on average, (1 + o(1))
√

π�/4 iterations for a group of
prime order �, assuming standard heuristics; here o(1) means something that
converges to 0 as � → ∞. Each iteration uses 5 multiplications mod p, 1 squaring
mod p, and an asymptotically negligible amount of extra work.

We emphasize that we use a branchless sequence of iterations, always per-
forming the same operations in the same order. This is of theoretical interest:
any bounded-time algorithm can be made branchless by standard conversions,
but these conversions usually lose efficiency. This is also of practical interest: the
algorithm is well suited for modern SIMD CPUs such as the Cell CPU in the
PS3, as discussed in subsequent sections of the paper.

We also emphasize that the number of iterations is (1 + o(1))
√

π�/4, not
(1 + o(1))

√
π�/2. We use the fast elliptic-curve negation map to save a factor

of
√

2; we do this without branching, and we do it with asymptotically zero
compromise in iteration speed.

Eliminating fruitless cycles. We begin with the simplest type of negating
additive walk stated in the literature. The walk starts at the point W0 = |b0Q|
where b0 is chosen randomly, and then computes W1,W2, . . . by the rule Wi+1 =
|Wi + Rh(Wi)|. Here |(x, y)| means (x, y) for y ∈ {0, 2, 4, . . . , p− 1} or (x,−y)
for y ∈ {1, 3, 5, . . . , p− 2}; the hash function h maps points to elements of
{0, 1, 2, . . . , r − 1}; and the points R0, R1, . . . , Rr−1 are known multiples of P .

We modify this walk by occasionally checking for fruitless cycles of length 2.
Specifically, for a sparse pattern of indices i discussed below, we change the defi-
nition of Wi as follows. After computing Wi−1, we check whether Wi−1 = Wi−3.
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In the common case that Wi−1 �= Wi−3, we define Wi = Wi−1. In the unusual
case that Wi−1 = Wi−3, we define Wi = |2 min{Wi−1,Wi−2}|, where min means
lexicographic minimum and 2 means doubling.

We further modify this walk by occasionally, with even lower frequency, check-
ing for fruitless cycles of length 4. Specifically, for an even more sparse pattern
of indices i discussed below, we redefine Wi as Wi−1 if Wi−1 �= Wi−5, and we
redefine Wi as |2 min{Wi−1,Wi−2,Wi−3,Wi−4}| if Wi−1 = Wi−5.

We continue with analogous modifications for fruitless cycles of lengths 6, 8,
etc., up to the smallest even length that exceeds (log �)/(log r).

Eliminating branches. The sequence of iterations described above might seem
to include branches: a branch to replace y by −y if y is odd, for example, and a
branch to conditionally compute Wi = |2 min{Wi−1,Wi−2}|. However, one can
easily simulate all of these branches by a straight-line program with negligible
loss of efficiency, as described in the following paragraphs.

First, |(x, y)| is the same as (x, (1 − 2ε)y) where ε = y mod 2. The implicit
reduction modulo p here is not an asymptotic bottleneck: it takes linear time
(even without branching), while all known multiplication algorithms take super-
linear time. We prefer to make the implicit reduction explicit, computing |(x, y)|
as (x, y + ε(p− 2y)); the addition and subtraction take linear time.

Second, we amortize min computations such as min{Wi−1,Wi−2,Wi−3,Wi−4}
across all relevant iterations: after computing Wi−3 we initialize a running min-
imum Wmin as min{Wi−4,Wi−3}, then replace it with min{Wmin,Wi−2} after
computing Wi−2, then replace it with min{Wmin,Wi−1} after computing Wi−1.
These computations are performed for only a small fraction of all indices i, so
the loss of efficiency is negligible. See below for a more detailed cost analysis.

Third, we compute doublings such as Di = 2 min{Wi−1,Wi−2,Wi−3,Wi−4} =
2Wmin for all of the selected indices, whether or not the doublings will actually
be used. We then compute Wi without branches by selecting between Wi−1 and
|Di|, the same way that |(x, y)| selects between (x, y) and (x,−y). The selection
bit is the output of a branch-free comparison between Wi−1 and Wi−5, or in
general between Wi−1 and Wi−1−c for detecting fruitless cycles of length c.

Note that each of these selections and comparisons takes linear time per iter-
ation, and is therefore asymptotically negligible compared to a multiplication.

Eliminating inversions. The bottleneck in each iteration is now exactly one
elliptic-curve operation: usually an elliptic-curve addition, but an elliptic-curve
doubling for occasional iterations.

The standard formulas for elliptic-curve addition in affine coordinates are as
follows. Let P = (x1, y1), R = (x2, y2) with x1 �= x2. Then P+R = (x3, y3) where
λ = (y1 − y2)/(x1 − x2), x3 = λ2 − x1 − x2, and y3 = λ(x1 − x3) − y1. These
formulas use 1 inversion, 2 multiplications, 1 squaring, and 6 subtractions. The
formulas for a doubling, where R = P , are very similar; only the computation
of λ = 3(x2

1 − 1)/(2y1) is different. We ignore, without further comment, the
extraordinarily unlikely event that R = −P .

Inversions are the most expensive operations in finite fields. Standard practice
in rho computations is to perform m independent walks in parallel, and to use
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Montgomery’s trick [15], which computes a batch of m inversions using just 1
inversion and 3(m− 1) multiplications.

We choose a branchless inversion method, specifically computing the (p−2)nd
power using O(lg p) multiplications. We then choose m to grow asymptotically
more quickly than lg p: in other words, lg p ∈ o(m). A batch of m elliptic-curve
additions then costs 5m− 3 multiplications, m squarings, 6m subtractions, and
1 inversion. The subtractions and inversion are negligible, so each elliptic-curve
addition costs 5 multiplications and 1 squaring.

A batch of m elliptic-curve doublings is slightly more expensive (costing m
extra squarings), but occurs for only a small fraction of iterations, as discussed
below. Each iteration therefore uses 5 multiplications and 1 squaring.

Analysis and optimization. Fruitless cycles of length 2 appear with prob-
ability approximately 1/(2r). These cycles persist after they appear, wasting
subsequent iterations (in the sense that new points and new collision opportuni-
ties do not occur), until we check for them. If we check every w iterations then
we expect a cycle to appear with probability approximately w/(2r), and for it
to waste approximately w/2 iterations on average if it does appear.

This does not mean that w should be chosen as small as possible. If a cycle
has not appeared then checking for it wastes an iteration. The overall loss is
approximately 1 +w2/(4r) iterations out of w. To minimize the quotient 1/w +
w/(4r) we take w ≈ 2

√
r.

More generally, fruitless cycles of small length 2c appear with probability ap-
proximately proportional to 1/rc, so the optimal checking frequency is approxi-
mately proportional to 1/rc/2. The loss here rapidly disappears as c increases.

To summarize, fruitless cycles slow down this algorithm by a factor 1 +
Θ(1/

√
r). This negation overhead Θ(1/

√
r) is on a larger scale than the overhead

Θ(1/r) from the nonrandomness of r-adding walks, but both overheads become
asymptotically negligible if r is chosen so that r → ∞ as p → ∞.

As an illustration of these optimizations, our PS3 software takes r = 2048,
checks for 2-cycles every 48 iterations, and checks for larger cycles much less
frequently. To simplify the software we unify the checks for 4-cycles and 6-cycles
into a check for 12-cycles every 49152 iterations. If we had instead taken r = 512
then we would have checked for 2-cycles every 24 iterations. In general, the
Θ(1/

√
r) asymptotic means that the negation overhead approximately doubles

when the table size is reduced by a factor of 4.

Storage reduction. The storage overhead for detecting and escaping a fruitless
cycle consists of storing Wmin and Wi−1−c. For the latter it is enough to store
one of the coordinates.

We further reduce storage by avoiding having all iterations check for cycles at
the same time. For example, with a batch of 224 iterations running in parallel,
we have just 14 iterations checking for 2-cycles and consuming extra space.
All iterations perform 2 addition steps, and then these 14 iterations perform a
masked doubling while the remaining 210 iterations perform another addition.
We then rotate the batch so that the next 14 iterations check for 2-cycles.
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4 Low-Cost Arithmetic in Z/(2128 − 3)

Elements of the prime field Fp, where p = (2128 − 3)/76439, can be represented
redundantly as elements of the ring Z/(2128 − 3). Instead of reducing sums and
products modulo p one reduces them modulo 2128 − 3. This representation re-
quires about 15% more space per field element, but the sparsity of 2128−3 makes
reductions much faster.

The prime p was chosen with this small sparse multiple precisely to allow
this speedup for cryptographic operations on the secp112r1 curve; see [7, page
3, bottom, and page 6, bottom]. The same type of redundant representation can
of course also be used by the cryptanalyst attacking the ECDLP on secp112r1,
as in [3], [5], [4], and this paper. The critical problem is then to perform fast
arithmetic modulo 2128 − 3.

This section explains how to efficiently decompose multiplications and squar-
ings modulo 2128 − 3 into operations on 16-bit integers and 32-bit integers. Here
a b-bit integer is an integer in the interval [−2b−1, 2b−1 − 1]. The next section
applies this decomposition to the Cell, obtaining faster arithmetic than [3] et al.

Model of computation. This section uses a simplified model of computa-
tion that counts 16 × 16 → 32 multiplications and certain other operations.
Specifically, algorithms in this section are branchless sequences of the following
operations:

– multiplication: a, b �→ ab where a, b are 16-bit integers and ab is a 32-bit
integer;

– multiply-add: a, b, c �→ ab + c where a, b are 16-bit integers and c, ab + c are
32-bit integers;

– 16-bit addition: a, b �→ a + b where a, b, a + b are 16-bit integers;
– 32-bit addition: a, b �→ a + b where a, b, a + b are 32-bit integers;
– 32-bit subtraction: a, b �→ a− b where a, b, a− b are 32-bit integers;
– 32-bit right shift by 12 bits: a �→

⌊
a/212

⌋
where a is a 32-bit integer;

– 32-bit right shift by 13 bits: a �→
⌊
a/213

⌋
where a is a 32-bit integer;

– 32-bit mask clearing 12 bits: a �→ 212
⌊
a/212

⌋
where a is a 32-bit integer; and

– 32-bit mask clearing 13 bits: a �→ 213
⌊
a/213

⌋
where a is a 32-bit integer.

We assign cost 1 to each of these operations, except that we assign cost 0.5 to
the 16-bit addition operation. The next section explains how this cost model is
related to PS3 speed.

Note that these operations are not defined for all pairs of inputs. For example,
32-bit addition is not permitted to add 230 to 230, because 231 is too large to be a
32-bit integer. One could of course define an extended 32-bit addition operation
that handles all cases, working modulo 232 to handle overflows, but there are
no overflows in the algorithms in this section. One could also define shifts (and
masks) for distances other than 12 and 13, but the only distances used in this
section are 12 and 13.

Representing integers modulo 2128 − 3. We represent an element f of the
ring Z/(2128 − 3) as a sequence of 10 coefficients (f0, . . . , f9) such that f =∑

0≤i≤9 fi2�i·12.8�; i.e.,
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f = f0 + f1213 + f2226 + f3239 + f4252 + f5264 + f6277 + f7290 + f82103 + f92116.

Note that the exponents 0, 13, 26, 39, 52, 64, 77, 90, 103, 116 are not exactly evenly
spaced. Our non-integer radix 212.8 follows the use of radix 225.5 by Bernstein in
[2], and follows ideas from Costigan and Schwabe in [8] on making best use of
SIMD instructions.

We call a coefficient fi reduced if |fi| ≤ 1.01 · 212. We call (f0, . . . , f9) reduced
if all coefficients are reduced.

Polynomial multiplication and polynomial reduction. It is easy to check
that if f =

∑
0≤i≤9 fi2�i·12.8� and g =

∑
0≤i≤9 gi2�i·12.8� then the product fg

equals
∑

0≤i≤9 ri2�i·12.8� in Z/(2128 − 3) where

r0 = f0g0+3(2f9g1+2f8g2+2f7g3+2f6g4+ f5g5+2f4g6+2f3g7+2f2g8+2f1g9),
r1 = f1g0+ f0g1+3(2f9g2+2f8g3+2f7g4+ f6g5+ f5g6+2f4g7+2f3g8+2f2g9),
r2 = f2g0+ f1g1+ f0g2+3(2f9g3+2f8g4+ f7g5+ f6g6+ f5g7+2f4g8+2f3g9),
r3 = f3g0+ f2g1+ f1g2+ f0g3+3(2f9g4+ f8g5+ f7g6+ f6g7+ f5g8+2f4g9),
r4 = f4g0+ f3g1+ f2g2+ f1g3+ f0g4+3( f9g5+ f8g6+ f7g7+ f6g8+ f5g9),
r5 = f5g0+2f4g1+2f3g2+2f2g3+2f1g4+ f0g5+3(2f9g6+2f8g7+2f7g8+2f6g9),
r6 = f6g0+ f5g1+2f4g2+2f3g3+2f2g4+ f1g5+ f0g6+3(2f9g7+2f8g8+2f7g9),
r7 = f7g0+ f6g1+ f5g2+2f4g3+2f3g4+ f2g5+ f1g6+ f0g7+3(2f9g8+2f8g9),
r8 = f8g0+ f7g1+ f6g2+ f5g3+2f4g4+ f3g5+ f2g6+ f1g7+ f0g8+3(2f9g9),
r9 = f9g0+ f8g1+ f7g2+ f6g3+ f5g4+ f4g5+ f3g6+ f2g7+ f1g8+ f0g9.

The factors of 2 arise from the uneven exponent spacing mentioned above: for
example, the product of f1213 and g4252 is 2f1g4264, contributing 2f1g4 to r5264.
The factors of 3 arise from reducing 2128 in Z/(2128 − 3).

If (f0, . . . , f9) and (g0, . . . , g9) are reduced then a sum of any 10 products of the
form figj can be computed with cost 10: specifically, 1 multiplication followed
by 9 multiply-add operations in any convenient order. The sums r0, r1, . . . , r9
are slightly more expensive because of the extra factors of 2 and 3. We pre-
compute 3g1, 3g2, . . . , 3g9 and 2f1, 2f2, 2f3, 2f4, 2f6, 2f7, 2f8, 2f9 (skipping 2f5);
recall that a 16-bit addition costs only 0.5, so these 26 additions cost only 13.
Each ri is then a sum of 10 products of known 16-bit quantities, costing 100, for
a total cost of 113.

Each ri, and each intermediate result in this multiplication algorithm, is
bounded in absolute value by 10 · 3 · 2 · (1.01 · 212)2 < 0.96 · 230. The same
algorithm also works if (f0, . . . , f9) is a sum or difference of two reduced vectors
while (g0, . . . , g9) is reduced: then each result is bounded in absolute value by
0.96 · 231, still safely below 231.

Coefficient reduction. The product coefficients r0, r1, . . . , r9 constructed above
are usually not reduced. Some extra work is required to compute a reduced prod-
uct suitable for use as input to subsequent multiplications.
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For i ∈ {0, 1, 2, 3, 5, 6, 7, 8} we reduce ri by carrying from ri to ri+1. This
means changing (ri, ri+1) into (ri − 213c, ri+1 + c) where c =

⌊
(ri + 212)/213

⌋
.

This leaves the sum ri2�i·12.8� + ri+12�(i+1)·12.8� unaffected, and increases the
maximum possible ri+1 only slightly, while guaranteeing that the new ri is be-
tween −212 and 212. This costs 5: an addition, a right shift, a mask, another
addition, and a subtraction.

We similarly reduce r4 by carrying from r4 to r5. This has a slightly different
definition, to accommodate the uneven spacing of exponents: it means changing
(r4, r5) into (r4 − 212c, r5 + c) where c =

⌊
(r4 + 211)/212

⌋
. This guarantees that

the new r4 is between −211 and 211.
The most expensive step is to reduce r9 by carrying from r9 to r0. This means

changing (r9, r0) into (r9 − 212c, r0 +3c) where c =
⌊
(r9 + 211)/212

⌋
. This leaves

r0 + r92116 unaffected modulo 2128 − 3, while guaranteeing that the new r9 is
between −211 and 211. This costs 7 rather than 5: the computation of 3c uses
two extra additions.

We use the carry chain r0 → r1 → r2 → r3 → r4 → r5 → r6 → r7 →
r8 → r9 → r0 → r1 → r2: we first carry from r0 to r1, then from r1 to r2, etc.,
then from r9 to r0, then again from r0 to r1, then again from r1 to r2. Tracing
the bounds on each ri shows that the final r2 is reduced, and therefore that
(r0, r1, . . . , r9) is reduced.

This carry chain costs 62. The complete multiplication algorithm, taking re-
duced representations of f and g as input and producing a reduced representation
of fg as output, costs 175.

Squaring. Squaring in Z/(2128 − 3) is very similar to multiplication except
that several intermediate results are reused: for example, f1g0 + f0g1 becomes
just 2f0f1. We begin with a cost-10 computation of 2f0, . . . , 2f9; 3f5, . . . , 3f9;
6f5, . . . , 6f9. We then obtain r0, . . . , r9 straightforwardly at cost 55, and apply
the same carry chain as for multiplication. The complete squaring algorithm
costs 127.

5 Fast Iterations on the PlayStation 3

This section analyzes and optimizes the performance of rho iterations modulo
p = (2128 − 3)/76439 on the PS3. This optimization makes some changes to
the iteration function; we take advantage of the flexibility of co-designing our
iteration function with our arithmetic algorithms.

The Cell SPEs. The CPU in the PS3 is the Cell Broadband Engine. The main
computational power of the Cell is in 8 Synergistic Processor Elements (SPEs).
These SPEs are arranged around a central 64-bit PowerPC core. The PS3 makes
only 6 of these SPEs available for computations.

We report the performance that we achieve with 6 SPEs, leaving the central
PowerPC core mostly idle. This does not make full use of the Cell—performing
some iterations on the PowerPC core would noticeably reduce the overall com-
putation time—but it simplifies comparisons: the speeds reported for the same
ECDLP in [3], [5], and [4] also left the central PowerPC core mostly idle.
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Our implementation runs independently on each SPE. Each SPE has 256 KB
of fast local storage; this storage holds all code and data, including a batch of
parallel walks and a table of precomputed points. Communication between the
SPE and main memory is very small in this algorithm: a few words of data for
every million iterations. Performance is therefore determined almost completely
by how well we make use of the computational power of the SPE.

Arithmetic on the SPE. The following description summarizes only the SPE
features that are relevant to our implementation. See [13] and [19] for more
information about the SPE.

The SPE has a register file consisting of 128 128-bit vector registers. Typi-
cal arithmetic instructions are SIMD instructions operating on these registers
as vectors of 4 independent 32-bit integers or vectors of 8 independent 16-bit
integers. There is a multiplication instruction that multiplies 4 pairs of 16-bit
integers in parallel, producing 4 32-bit integers. There is also a fused multiply-
add instruction that adds the results into another vector of 4 32-bit integers.

Each SPE cycle carries out at most one of these arithmetic instructions: i.e., 4
32-bit operations or 8 16-bit operations. An algorithm that costs n in the model
of Section 4 therefore uses at least n/4 cycles on the SPE. There are, however,
several reasons that the SPE can take many more cycles than this:

– In-order execution. An arithmetic instruction must wait until 1 cycle after
the previous arithmetic instruction in the program.

– Arithmetic latency. An instruction cannot begin until its results are ready.
The result of an arithmetic instruction is not ready until several cycles later.

– Load latency. Loads are handled by a separate instruction pipeline but can
still delay arithmetic instructions that use the load results.

There are also various function-call overheads, typically consuming 70 cycles
per function call. One can eliminate these overheads by inlining and merging
functions, but this also increases code size, putting pressure on the SPE’s local
storage.

Digitsliced multiplication on the SPE. We use 8-way vectorization of our
iterations: we repeat our inputs, computations, and outputs 8 independent times.
We store 8 independent elements of the ring Z/(2128 − 3) in 10 128-bit vector
registers r0, . . . , r9, where coefficient i of ring element j is in 16-bit component j
of register ri. We convert each 16-bit operation into a 128-bit vector operation,
and we convert each 32-bit operation into two 128-bit vector operations.

Scheduling instructions carefully then works around all arithmetic latency.
The multiplication algorithm fits comfortably into the SPE registers: loads and
stores are not a bottleneck. (Replacing 8-way vectorization with 16-way vector-
ization would remove the need for careful instruction scheduling but would put
more pressure on registers and, more importantly, would cut in half the number
of walks that fit easily into local storage without reshuffling.) The 32-bit results
at the end of the algorithm are known to be reduced, so they fit into 16 bits; 10
extra instructions are required to shuffle the results into 10 vectors of 8 16-bit
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integers, but these extra instructions are handled by the SPE’s load/store pipeline
and are effectively free when they are interleaved with arithmetic instructions.

Overall our software for vectorized multiplication of 8 pairs of ring elements
takes exactly 350 SPE arithmetic instructions, i.e., 43.75 arithmetic instructions
per multiplication (1/4 of the cost 175 in the previous section). Our software
for vectorized squaring of 8 ring elements uses exactly 254 SPE arithmetic in-
structions, i.e., 31.75 arithmetic instructions per squaring. Each of our iterations
performs 5 multiplications and 1 squaring, in total consuming 250.5 arithmetic
instructions, at least 250.5 cycles.

Inversion. To invert modulo p = (2128−3)/76439 we simply compute a (p−2)nd
power. Our addition chain for p − 2 uses 107 squarings and 32 multiplications.
Essentially the same speed would also be achieved by an addition chain for the
larger but sparser exponent 2128 − 76443 = p − 2 + 76439(p − 1), using 126
squarings and just 18 multiplications.

Of course, we actually perform 8 independent inversions in parallel, using
8 · 107 squarings and 8 · 32 multiplications modulo 2128 − 3. Each inversion uses
107 · 31.75 + 32 · 43.75 = 4797.25 arithmetic instructions, consuming at least
4797.25 cycles.

Our 8-inversion function actually uses 43293 cycles, i.e., 5411.625 cycles per
inversion. The gap is almost entirely explained by the overhead of 64 function
calls, half to multiplication and half to an n-squaring function that computes
r ← r2n

for variable n.
To reduce code size we rejected the possibility of more complicated Euclid-

type inversion as used in [5]. In context (see below) inversion is already quite
fast, only 6.6% of our final iteration cost.

Canonicalizing the y-coordinate. Redundant representations cause trouble
for two parts of the algorithm stated in Section 3. First, because y ∈ Fp has
multiple representations, checking whether y ∈ {0, 2, 4, . . . , p− 1} is not a simple
matter of inspecting the bottom bit of the representation of y. Second, because
x ∈ Fp has multiple representations, finding the hash of x is not a simple matter
of extracting bits from the representation of x.

We address both problems by canonicalizing y. We use the canonicalized ver-
sion of y to decide whether to negate y. Rather than canonicalizing and hashing
x, we extract some bits from the canonicalized version of y as a table index.
Note that there can be as many as 3 points having the same y-coordinate, but
hashing all of those points to the same table index does not merge walks. We
also use the canonicalized version of y to define distinguished points.

The most obvious way to canonicalize y is to replace it with y mod p; but
reductions modulo p are expensive. We instead compute s = 76439y mod (2128−
3). One can think of this s as a unique representative y mod p, but represented
as 76439(y mod p). An alternative is to use Montgomery reduction to compute
y · 2−16 (mod p) with precomputed 2−16 (mod p), as in [4].

To compute s we multiply y by the cofactor 76439 and then perform a slightly
longer reduction chain than the one we use after multiplication. The polynomial-
multiplication step here, producing unreduced coefficients s0, s1, . . . , s9, uses only
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5 arithmetic instructions (cost 20) instead of 25 (cost 100), because 76439 is
represented in just two reduced coefficients: 76439 = 2711 + 9 · 213. The usual
precomputations of 3g1, 2f1, etc. also disappear: all we need are the constants
5422 = 2 · 2711 and 16266 = 6 · 2711.

To reduce the result we carry s6 → s7 → s8 → s9 → s0 → s1 → s2 →
s3 → s4 → s5 → s6 → s7 → s8 → s9 → s0 → s1. This uses 19.75 arithmetic
instructions. The overall cost of canonicalization is 24.75 arithmetic instructions
per iteration.

We do not claim that the resulting (s0, s1, . . . , s9) is always completely de-
termined by the image of y in Fp. What matters is that the probability of non-
uniqueness for random y’s is so small that two colliding walks have negligible
probability of diverging before they hit a distinguished point. We computer-
verified this as explained in Section 6.

Subtraction. The easy part of subtracting two ring elements is performing 10
subtractions of 16-bit integers. The problem is that the output is usually not
reduced. Carries would reduce the output but would make subtraction much
more expensive.

We use two standard techniques to avoid carries after subtractions. First, we
skip unnecessary reductions before multiplications; recall from Section 4 that
the multiplication algorithm can safely multiply f by g − g2, where f, g, g2 are
reduced. The elliptic-curve addition formulas involve three subtractions of this
type: the denominator x − x2, which is multiplied by a reduced product inside
Montgomery’s batch-inversion method (except for one product at the beginning
of a batch); the numerator y− y2, which is multiplied by the reduced reciprocal
of x− x2; and x2 − x3, which is multiplied by the reduced quotient λ.

Second, we combine multiply-reduce-subtract-reduce into multiply-subtract-
reduce. In particular, to compute λ2 − x − x2, we first add x to x2, and then
subtract the sum from λ2 before reducing the coefficients of λ2. Similarly, we
subtract y2 from λ(x2 − x3) before reducing the coefficients of λ(x2 − x3). This
makes the subtractions more expensive (32-bit instead of 16-bit), but still much
less expensive than extra carries.

Overall these 6 subtractions use 10 arithmetic instructions: 5 instructions for
40 subtractions of 16-bit integers, and another 5 instructions for 20 subtractions
of 32-bit integers.

Table lookups. Our iteration function uses a precomputed table of 2048 mul-
tiples of P . Each multiple uses 16 bytes for an x-coordinate and 16 bytes for a
y-coordinate, for a total of 64 KB of local storage. If we were concerned with
defining an iteration function to perform well on many platforms simultaneously
then we would use a smaller table, say 16 KB, to avoid L1 cache misses on
typical CPUs. However, the analysis in Section 3 shows that this would slightly
increase the number of iterations. In this paper our goal is purely to maximize
Cell performance, so we keep r = 2048.

Normally a precomputed x-coordinate in reduced form (x0, x1, . . . , x9) would
occupy 20 bytes. We instead represent each precomputed x-coordinate in reduced
form (x0, x1, . . . , x7, 0, 0), stored as a contiguous 16-byte vector (x0, x1, . . . , x7).
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Each y-coordinate is stored similarly. The final zeros mean that this represen-
tation is limited to approximately 2103 different integers; it cannot handle all
elements of Z/(2128 − 3), or even all elements of Fp. We find 2048 representable
multiples of P by generating approximately 400 million random multiples of P ;
this precomputation has negligible cost.

This table representation also allows lookups with very little arithmetic (but
with many load/store instructions, which we carefully interleave with other com-
putations), as explained in the following paragraph. We could further compress
the table entries in several ways, but we are not aware of further compression
techniques that avoid extra arithmetic. We comment that scaling the same type
of precomputation to larger ECDLPs, squeezing the precomputed points as far
as we can with a negligible precomputation, reduces the space for rho tables by
asymptotically 25%.

The table entry for a point (x, y) has index s0 mod 2048 where (s0, s1, . . . , s9)
is the canonicalization of y. We perform 8 table lookups in parallel as follows.
We perform one arithmetic instruction to obtain 8 parallel table indices; this
instruction is a mask of the vector (2047, 2047, 2047, 2047, 2047, 2047, 2047, 2047)
with a vector of canonicalizations. We shift the result left by 5 bits (since table
entries have 32 bytes) to obtain 8 addresses in memory; this 128-bit shift is
handled by the SPE’s load/store pipeline. We then shuffle the result into 8
separate registers, perform 8 x-coordinate loads, and perform 8 y-coordinate
loads. Finally we use 24 shuffle instructions to convert to digitsliced format.

Batching inversions. We use Montgomery’s trick to batch the inversions in 224
independent iterations, replacing them by 669 multiplications and 1 inversion.
This batching is on top of the 8-way parallelism of all of our arithmetic opera-
tions. Overall the SPE handles 1792 = 224 · 8 walks at once. At each moment
we watch 1/16th of the walks for fruitless cycles.

Each walk uses 70 bytes of storage: 20 for x, 20 for y, 20 for s, 8 for the
seed used to start the walk, and 2 for a table index. Each watched walk uses an
extra 102 bytes of storage: 20 for the first s to detect a cycle, 60 for the smallest
(s, x, y) to escape a cycle, 20 as extra storage needed for conditional doubling,
and 2 for a flag indicating whether the walk needs a doubling to escape a cycle.
Overall the walks use 1792(70 + 102/16) = 136864 bytes of local storage.

Overall performance. The most important arithmetic instructions in each
iteration are as follows:

– 5 multiplications: 218.75 arithmetic instructions (43.75 each);
– 1 squaring: 31.75 arithmetic instructions;
– 1 canonicalization: 24.75 arithmetic instructions;
– 6 subtractions: 10.00 arithmetic instructions;
– 1/224 inversion minus 3/224 multiplications: ≈ 20.83 arithmetic instructions.

These add up to 306.08 arithmetic instructions per iteration, implying a lower
bound of 306.08 cycles per iteration for our software. Our software actually takes
362 cycles per iteration, about 18% more than this lower bound.
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Under 4% of the cycles per iteration are spent on operations that can be
blamed on negation: specifically, negating s and y, detecting fruitless cycles, and
resolving fruitless cycles by doubling. The rest of the gap between 306 and 362
is explained by detection of distinguished points, loop control, and function-call
overhead.

There is, outside the iterations, an extra cost for communicating the occasional
distinguished points that do appear (and in setting up replacement points). We
made no effort to optimize this cost, since it is multiplied by the distinguished-
point probability. With the rather large distinguished-point probability used in
our experiments, namely 2−20, and with all 6 SPEs running in parallel and com-
peting for communication resources, this cost effectively added 15 cycles to each
iteration, slowing the computation down by about 4%. A smaller distinguished-
point probability would reduce this penalty below 1%.

Comparison to previous work. Bos, Kaihara, Kleinjung, Lenstra, and Mont-
gomery state in [4, Appendix A] that they use 456 SPE cycles per iteration for
the same ECDLP, including 322 cycles for 6 multiplications, 30 cycles for 6
subtractions, 12 cycles for 1/400 inversions, 24 cycles for canonicalization (with
Montgomery reduction), and 68 cycles for miscellaneous overhead. Bos, Kaihara,
and Montgomery report 453 cycles per iteration in [5, Section 5], with 318 cy-
cles instead of 322 for the multiplications, and 69 cycles instead of 68 for the
miscellaneous overhead.

Each of our multiplications is faster than the multiplications in [4] and [5], by
a factor of approximately 1.23. This speedup can be traced directly to our use of
the non-integer radix 212.8, while [4] et al. used the conventional radix 216. Most
of our other operations are also faster than the operations in [4]. We pay a slight
penalty for negation but overall gain the same factor of approximately 1.23 in
the number of cycles per iteration. Our overall speedup in solving the ECDLP
is much larger, because we use far fewer iterations, as discussed in Section 6.

6 Experimental Results and Evaluation

We do not have access to the cluster of 1284 SPEs used for many months by the
authors of [3], [4], [5], and [6]. However, a few SPEs at the Jülich and Barcelona
supercomputer centers were enough for us to perform some reasonably large
discrete-logarithm experiments, demonstrating clearly that our code works and
runs at the expected speed. This section presents the details of our experiments.

Scaling elliptic-curve challenges without changing the prime. Our soft-
ware is dedicated to the prime p = (2128 − 3)/76439, and is designed to break
the ECDLP on the curve secp112r1 over Fp. However, the same software works
without modification for points P,Q on any curve of the form y2 = x3 − 3x + b
over this Fp.

By counting points on y2 = x3 − 3x + b for various b we found group orders
having many different prime divisors. For example, there are points
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– of prime order 1195174242772417≈ 1.0615 · 250 on y2 = x3 − 3x + 2382;
– of prime order 36817627222637377 ≈ 1.0219 · 255 on y2 = x3 − 3x + 3722;

and
– of prime order 1186848158152955759≈ 1.0294 · 260 on y2 = x3 − 3x + 2402.

For each of these prime-order groups we generated a challenge P,Q and then
repeatedly solved the challenge, collecting statistics on the distribution of the
time needed to solve the challenge.

Distinguished points per second. We used the same distinguished-point
property for all of the challenges, inspecting 20 bits of s4 and s9. The probability
of a point being distinguished is almost exactly 2−20.

We predicted that we would need slightly more than 220 iterations on average
to find a distinguished point, for two reasons. The first reason is that a small per-
centage of the iterations are wasted by fruitless cycles, as discussed in Section 3.
This percentage is under 1% and is independent of the group order �.

The second reason is that a walk can enter a long cycle that does not contain a
distinguished point. We predicted that this would occur with probability roughly
240/� for each seed, i.e., roughly once for every �/240 seeds: certainly not an issue
for a single-shot experiment with � ≈ 2112, but a serious concern for a careful
statistical analysis studying many seeds with � ≈ 250.

To prevent our software from running forever in case of long cycles, we added
a few lines of code to abort each walk after approximately 47 · 218 iterations. A
walk that is not in a long cycle has probability only about 2−17 of surviving for
so many iterations and of therefore being aborted. We could also have modified
our software to extract discrete logarithms from the long cycles, but there would
have been no cryptanalytic benefit from doing so, since long cycles disappear as
� grows.

We also reduced our batch size from 224 to 192 (watching 12 instead of 14)
to make room in local storage for keeping track of various statistics. This made
each iteration slightly slower, 366 cycles instead of 362 cycles. The extra cost
of communicating distinguished points adds 15 cycles per iteration as discussed
in the previous section, so we predicted that 6 SPEs running in parallel would
produce 6 · 3.192 · 109/(381 · 220) ≈ 47.94 distinguished points per second.

We ran 6 SPEs on the original curve secp112r1 and found 48134 distinguished
points in 1000 seconds, with no aborted walks. We also ran various experiments
on our 50-bit, 55-bit, and 60-bit challenge curves, and in each case found dis-
tinguished points at the expected rate. We found 1 aborted walk for every 212.9

distinguished points for the 55-bit challenge curve y2 = x3 − 3x + 3722 with
� ≈ 1.0219 · 255.

The number of distinguished points needed for a discrete logarithm. We
performed the following experiment for our 50-bit challenge. Take a seed, and
find the corresponding distinguished point. Take the next seed, and find the cor-
responding distinguished point. Continue this process until finding two colliding
distinguished points. Compute a discrete logarithm from this collision, and ver-
ify that it matches the secret scalar used to generate the challenge in the first
place.
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Our software handles many seeds at once and produces distinguished points
out of order, so we sorted the outputs back into the original order of seeds.
Skipping this step would have introduced a bias into our experiment, favoring
distinguished points that use relatively few iterations.

We then performed this experiment again, starting from the first seed that
was not used in the first experiment. We continued in the same way through
32237 experiments, using disjoint seeds for each experiment. We did not verify
the discrete logarithms for every experiment, but we verified it for a large random
sample of experiments, and encountered no failures. The number of distinguished
points used in the experiments was on average 31.526 ≈ 1.0789

√
π�/4/220, with

standard deviation 0.558
√

π�/4/220. The median was 29 ≈ 1.0565
√
� log 2/220.

A graph of the distribution of the number of distinguished points appears in the
full version of this paper.

We then ran 257241 experiments for our 55-bit challenge. The number of
distinguished points was on average 163.37 ≈ 1.0074

√
π�/4/220, with standard

deviation 0.527
√

π�/4/220. The median was 152 ≈ 0.9977
√
� log 2/220.

We similarly ran 33791 experiments for our 60-bit challenge. The number of
distinguished points was on average 920.36 ≈ 0.9996

√
π�/4/220, with standard

deviation 0.525
√

π�/4/220. The median was 864 ≈ 0.9989
√
� log 2/220.

Performance extrapolations. On the basis of these experiments we
confidently predict that our software would solve the secp112r1 ECDLP in, on
average, 37.3 years on a PS3, using 235.71 distinguished points, requiring un-
der 1 terabyte of storage. Here 235.71 is calculated as

√
π�/4/220 with � ≈ p ≈

2128/76439, and 37.3 is calculated as
√

π�/4/(220 · 47.94 · 86400 · 365.25).
The software runs in parallel on many PS3s without trouble, and will easily

scale beyond the size of the cluster used in [5]. The computation time is inversely
proportional to the number of machines, except for a few minutes at the end
of the computation (by all machines while the final collision walks towards a
distinguished point, and by a central machine recomputing the walks involved
in the collision).

One can trivially reduce the storage and communication requirements by, e.g.,
a factor of 16 by changing the definition of distinguished points to use 24 bits
instead of 20. This increases the final few minutes by a factor of 16, but it also
saves almost 15 cycles of communication cost for each iteration, as discussed in
the previous section, reducing the total time to just 35.6 years on a PS3.

Comparison to previous work. Our speed is directly comparable to, and
almost twice as fast as, the speed previously reported by Bos, Kaihara, Kleinjung,
Lenstra, and Montgomery.

Specifically, [3, Appendix A] reports an expected number of “
√

πq/2 ≈ 8.4 ·
1016” iterations to solve a secp112r1 ECDLP, with each iteration consuming 456
cycles, totalling “about 60 PS3 years”. This iteration count (also appearing in
[5, Section 5.3]) is slightly too optimistic: the additive walk in [3] uses r = 16,
creating a noticeable nonrandomness penalty of approximately 1/

√
1 − 1/16.

The Cell runs at 3.192 GHz, so a better estimate is
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456
√

π�/2
6 · 3.192 · 109 · 86400 · 365.25 ·

√
1 − 1/16

≈ 65.16

PS3 years. We have shown how to solve the same ECDLP using just 35.6 PS3
years.
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Abstract. At TCC 2005, Groth underlined the usefulness of working
in small RSA subgroups of hidden order. In assessing the security of
the relevant hard problems, however, the best attack considered for a
subgroup of size 22� had a complexity of O(2�). Accordingly, � = 100
bits was suggested as a concrete parameter.

This paper exhibits an attack with a complexity of roughly 2�/2 oper-
ations, suggesting that Groth’s original choice of parameters was overly
aggressive. It also discusses the practicality of this new attack and vari-
ous implementation issues.

Keywords: rsa moduli, hidden order, subgroup, cryptanalysis.

1 Introduction

In 2005, Jens Groth [7] proposed a collection of cryptographic primitives based
on small RSA subgroups of Z∗

N of hidden orders. The motivation behind these
constructions is improved efficiency and tighter security reductions.

The RSA moduli N used in [7] are of the form:

N = p · q = (2p′r + 1) · (2q′s + 1)

where p, p′, q, q′ are prime integers and r, s are random integers. Then there
exists a unique subgroup G of Z∗

N of order p′q′. Letting g be a random generator
of G, the pair (N, g) is made public whereas everything else including the group
order p′q′ is kept secret.
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The best attack considered in [7] has complexity O(p′). Therefore, when
proposing concrete parameters, the author suggests to take the bit-lengths �p′

and �q′ of the primes p′ and q′ as �p′ = �q′ = 100.
This paper does not consider any specific scheme from [7]. Instead, it describes

an attack that recovers the secret factors of N from the public data (N, g) in
Õ(

√
p′). This results in a 250 attack making the choice �p′ = �q′ = 100 potentially

insecure. We analyze the practicality of our attack with an implementation, for
which we provide the source code in the full version of this paper [5].

Remark 1. In [7], Groth also considers RSA subgroups where r and s are smooth
integers (i.e. all prime factors of r and s are smaller than some bound B). For this
specific variant an attack in complexity O(

√
p′) is given in [7], and consequently

larger parameters (�p′ = �q′ = 160) are suggested. In this paper we do not
consider this variant but directly focus on the general case.

Remark 2. Other works have proposed schemes based on small subgroups of
Z∗

n. The attack introduced in this paper applies to some, but not all of them.
In particular, the scheme proposed by Damg̊ard et al. in [6] uses a subgroup of
prime order v of Z∗

n, where v is a factor of both p− 1 and q − 1 (of around 160
bits). Since the group has the same order modulo p and q, the attack presented
herein does not apply to this scheme. On the other hand, it does, in principle,
apply to the subgroup variant of the Paillier cryptosystem [11]. The parameter
choice from the original paper was more conservative than that of Groth, however
(320-bit subgroup), making it out of reach of our new attack.

2 The New Attack

Using the notations above, we factor N in time Õ(
√
p′) and memory O(

√
p′) as

follows. Recall that the RSA modulus N = pq is such that:

N = p · q = (2p′r + 1) · (2q′s + 1)

where p′ and q′ are prime; besides, g is a generator of the subgroup G of order
p′q′. From gp′q′

= 1 mod N we get:

gp′
= 1 mod p (1)

Let � denote the bit-length of p′, which we assume is even without loss of gen-
erality, and write Δ = 2�/2. We then have

p′ = a + Δ · b

with 0 ≤ a, b < 2�/2. From (1), we get:

ga = (gΔ)−b mod p
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If the prime factor p was known, one could carry out a baby-step giant-step
attack by generating the following two lists:

Lp = {gi mod p : 0 < i < 2�/2}
L′

p = {(gΔ)−j mod p : 0 ≤ j < 2�/2}

and finding a collision between Lp and L′
p, which would reveal a, b and thus p′

in total time and space O(2�/2).
Obviously p is unknown, so instead of computing Lp and L′

p, we generate the
two following lists modulo N :

L = {xi = gi mod N : 0 < i < 2�/2}
L′ = {yj = (gΔ)−j mod N : 0 ≤ j < 2�/2}

One could then compute gcd(xi − yj , N) for all xi ∈ L and all yj ∈ L′. Since we
have

xa − yb = 0 mod p

this would reveal the factors of N for i = a and j = b. However, the complexity
of this naive approach is quadratic in Δ, and will thus require 2� computations,
not 2�/2. Hence we proceed as follows instead:

1. Generate the polynomial:

f(x) =
∏

xi∈L

(x− xi) mod N

2. For all yj ∈ L′, evaluate f at yj and compute gcd(f(yj), N).

Since we have

f(yb) =
∏

xi∈L

(yb − xi) = (yb − xa) ·R = 0 mod p

computing gcd(f(yj), N) reveals the factors of N for j = b.

Algorithm 1. Attack overview
1: Let Δ ← 2�/2.
2: for i = 0 to Δ − 1 do
3: xi ← gi mod N
4: yi ← (gΔ)−i mod N
5: end for
6: Generate the polynomial

f(x) ←
Δ−1∏
i=1

(x − xi) mod N

7: for i = 0 to Δ − 1 do
8: Evaluate f(yi) ∈ ZN

9: Attempt to factor N by computing gcd(f(yi), N).
10: end for
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The attack is summarized in Algorithm 1. In the next section we show that
it can be carried out in time quasi-linear in the cardinalities of L and L′.

3 Attack Complexity

This attack involves the computation and evaluation of a polynomial of the form:

f(x) =
d−1∏
i=1

(x− xi) mod N

with d = 2�/2. It is a classical fact [1] that the coefficients of such a polynomial
can be computed using a product tree, with a total number of operations in ZN

which is quasilinear in d (namely O(M(d) log d), where M(d) is the complexity
of the multiplication of two polynomials of degree d). Similarly, with a remainder
tree, this polynomial can be evaluated at all points yj, 0 ≤ j < d in O(M(d) log d)
operations.

In our case, however, both (xi) and (yj) are geometric progressions, hence
even more efficient algorithms exist: the Newton basis conversion algorithms of
Bostan and Schost [4] make it possible to compute f using O(d) precomputations
and a single middle product of polynomials of degree d, and to evaluate f(yj)
for all j using O(d) precomputations, a product of polynomials of degree d and
a middle product of polynomials of degree d. See the next section for details.
This results in an overall complexity of 3M(d) + O(d) for the complete attack,
with a small constant in the O. Space requirements are also O(d), to store a few
polynomials of degree d.

Thus, for typical parameter sizes, the attack is essentially linear in
√
p′ both

in time and space.

4 Algorithmic Details

As discussed above, we can break down the attack in two steps: first compute
the coefficients of the polynomial f(x) =

∏d−1
i=1 (x− xi) mod N , and then eval-

uate f mod N at each of the points yj. Since both (xi) and (yj) are geometric
progressions, both of these steps reduce to a variant of the discrete Fourier trans-
form, called the “chirp transform” (or its inverse) [12,2]. In our implementation,
we carry out these computations using the particularly efficient algorithms of
Bostan and Schost [4], as described in [3, §5.5]. More precisely, Bostan gives
pseudocode, reproduced as Algorithms 3 and 4 in Appendix A, to compute
polynomial interpolation and polynomial evaluation at a geometric progression.

In our case, a number of futher simplifications are possible in the interpolation
stage. Indeed, f(xi) = 0 for 1 ≤ i ≤ d− 1 and f(1) =

∏d−1
i=1 (1 − xi), so with the

notations of Algorithm 3, v0 = (−1)n−1sn−1 and vi = 0 for i > 0. This means
in particular that the polynomial multiplication of Algorithm 3, Step 9 reduces
to a simple scalar multiplication, and that the computations of Steps 10–12 can
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Algorithm 2. Detailed attack
1: function Attack(g, n, N)
2: p ← 1; q ← 1; s ← 1; u ← 1; z ← 1; w ← 1
3: Initialize U, Z, S, W as zero polynomials of degree n − 1
4: U0 ← u; Z0 ← z; W0 ← w
5: for i = 1 to n − 1 do
6: p ← p · g mod N
7: q ← q · p mod N
8: s ← s · (p − 1) mod N
9: u ← u · p/(1 − p) mod N

10: z ← (−1)iu/q mod N
11: w ← q/(s · u) mod N
12: Ui ← u; Zi ← z; Wi ← w
13: end for
14: Z ← (−1)n−1sn−1 · Z mod N
15: W ← mult (n − 1, U, W )
16: for i = 0 to n − 1 do
17: Wi ← Wi · Zi mod N
18: end for
19: g ← 1/(p · g) mod N � g ← g−Δ

20: p ← 1; q ← 1; s ← 1; u ← 1; z ← 1; w ← 1
21: U ← 0; Z ← 0
22: U0 ← u; Z0 ← z; S0 ← s
23: for i = 1 to n − 1 do
24: p ← p · g mod N
25: q ← q · p mod N
26: s ← s/(p − 1) mod N
27: u ← u · p/(1 − p) mod N
28: z ← (−1)iu/q mod N
29: Si ← s; Ui ← u; Zi ← z
30: Wi ← Wi/z mod N
31: end for
32: W ← mult (n − 1, Z, W )
33: for i = 0 to n − 1 do
34: Wi ← (−1)iWi · Ui mod N
35: end for
36: W ← W · S
37: for i = 0 to n − 1 do
38: if gcd(Wi, N) 
= 1 then return gcd(Wi, N) � Factor found!
39: end if
40: end for
41: end function

be carried out in the main loop. We can also have a slightly more conservative
memory management, with only 4 polynomials of degree n− 1 kept in memory
for both the interpolation and the evaluation step. Finally, the multiplications
by si in Algorithm 4, Step 14 can be skipped altogether as we search for a factor
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of N with GCD computations, since the si’s are prime to N by construction.
We obtain the detailed procedure described in Algorithm 2.

The attack can again be broken down in three stages: interpolation in Steps 2–
18, evaluation in Steps 19–36 and factor search in Steps 37–40. Complexity is
dominated by the three quasi-linear multiplication steps: the middle products of
Steps 15 and 32, and the polynomial multiplication of Step 36.

5 Implementation

We provide the source code of our attack in the full version of this paper [5].
The implementation of polynomial interpolation and evaluation using Newton
basis conversions largely follows the pseudocode from [3] (Figure 5.1 and 5.2),
implemented in C using the FLINT library [9].

In Table 1, we provide the observed running time of our attack on an Intel
Core2 Duo E8500 3.12 GHz, for 1024-bit RSA moduli. The program was linked
to the following libraries: FLINT 1.6 (prerelease), MPIR 2.1.3 and MPFR 3.0,
and ran on a single CPU core.

Table 1. Experimental attack running times for 1024-bit moduli

� = �log2 p′� running time

26 bits 1.9 seconds
28 bits 4.0 seconds
30 bits 8.1 seconds
32 bits 16.5 seconds
34 bits 33.5 seconds
36 bits 68.9 seconds

From Table 1 we see that, as expected, running times are essentially linear in√
p′. Direct extrapolation yields the following estimates:

Table 2. Estimated attack running times for 1024-bit moduli

� = �log2 p′� running time estimated number of clock cycles

60 bits 3 days 250

80 bits 9 years 260

100 bits 9000 years 270

Thus, even the parameter � = 100 suggested in Groth’s paper [7] would re-
quire a large but not unachievable amount of computation, even by academic
standards. As a comparison, the recent factorization of RSA 768 [10] required
about 2000 CPU-years.

However, it is not obvious how the algorithm can be efficiently parallelized
to distribute the computation. A naive parallelization strategy is to reduce the
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number of xi’s and increase the number of yi’s by some factor 2k, but this only re-
duces time and memory by a factor of about 2k while requiring 22k parallel nodes.
It would be desirable to be able to distribute the full size computation—both the
FFT steps (multiplication and middle product) and the precomputations—but
this appears to be nontrivial.

Most importantly, it is difficult to deal with larger parameters because the
attack is heavily memory-bound: the O(

√
p′) memory requirement is a serious

hurdle. In experiments, we encountered memory problems as early as � ≈ 38
for a 1024-bit modulus, and even with much more careful memory management
and the use of mass storage rather than RAM, it seems unlikely that parameters
larger than � ≈ 60 can be attacked unless storage can be efficiently distributed
as well.

6 Conclusion

We have described an attack against the RSA subgroup of hidden order described
in [7] that works in time Õ(

√
p′) while the best attack considered in [7] had

complexity O(p′). We have implemented our attack and assessed its practicality.
As expected, our attack exhibits a time complexity quasi-linear in

√
p′. In terms

of CPU time alone, the parameters suggested in [7] appear to be within reach
for a resourceful attacker. However, due to heavy memory requirements and
parallelization problems, these parameters may remain unchallenged.

An interesting open question is to decrease the memory requirement: an algo-
rithm similar to Pollard rho or Pollard lambda with constant memory would be
the most convenient type of attack on this problem if it exists. If not, a method
for distributing the computation and storage efficiently would be the simplest
way to make the attack practical for larger parameters.
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A Bostan’s Algorithms

Algorithm 3. Polynomial interpolation: compute the polynomial F of degree
< n such that F (pi) = vi, where pi = qi, 0 ≤ i ≤ n− 1
1: function InterpGeom(p0, . . . , pn−1; v0, . . . , vn−1)
2: q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; w0 ← v0

3: for i = 1 to n − 1 do
4: qi ← qi−1 · pi

5: si ← si−1 · (pi − 1)
6: ui ← ui−1 · pi/(1 − pi)
7: zi ← (−1)iui/qi

8: end for
9: H ← (∑n−1

i=0 vi/six
i
) · (∑n−1

i=0 (−x)iqi/si

)
10: for i = 1 to n − 1 do
11: wi ← (−1)i Coeff(H, i)/ui

12: end for
13: G ← mult (n − 1,

∑n−1
i=0 uix

i,
∑n−1

i=0 wix
i)

14: return
∑n−1

i=0 zi Coeff(G, i)xi

15: end function

http://www.flintlib.org
http://www.sagemath.org/
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Algorithm 4. Polynomial evaluation: evaluate the polynomial F at all points
pi = qi, 0 ≤ i ≤ n− 1
1: function EvalGeom(p0, . . . , pn−1; F )
2: q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; g0 ← 1
3: for i = 1 to n − 1 do
4: qi ← qi−1 · pi

5: si ← si−1 · (pi − 1)
6: ui ← ui−1 · pi/(1 − pi)
7: zi ← (−1)iui/qi

8: end for
9: G ← mult (n − 1,

∑n−1
i=0 zix

i,
∑n−1

i=0 Coeff(F, i)/zix
i)

10: for i = 1 to n − 1 do
11: gi ← (−1)iui Coeff(G, i)
12: end for
13: W ← (∑n−1

i=0 gix
i
) · (∑n−1

i=0 s−1
i xi

)
14: return s0 Coeff(W, 0), . . . , sn−1 Coeff(W,n − 1)
15: end function
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Abstract. Modern society is increasingly dependent on, and fearful of,
the availability of electronic information. There are numerous examples
of situations where sensitive data must be – sometimes reluctantly –
shared between two or more entities without mutual trust. As often hap-
pens, the research community has foreseen the need for mechanisms to
enable limited (privacy-preserving) sharing of sensitive information and a
number of effective solutions have been proposed. Among them, Private
Set Intersection (PSI) techniques are particularly appealing for scenarios
where two parties wish to compute an intersection of their respective sets
of items without revealing to each other any other information. Thus far,
"any other information" has been interpreted to mean any information
about items not in the intersection.

In this paper, we motivate the need for Private Set Intersection with a
stronger privacy property of hiding the size of the set held by one of the
two entities ("client"). We introduce the notion of Size-Hiding Private
Set Intersection (SHI-PSI) and propose an efficient construction secure
under the RSA assumption in the Random Oracle Model. We also show
that input size-hiding is attainable at very low additional cost.

1 Introduction

Operations that involve sharing sensitive or private information are increasingly
encountered in everyday life. A typical scenario involves two entities: one that
seeks certain information, and the other – that possibly has this information and
is either willing or is compelled to share it. At the same time, each entity wants
to maximize privacy of its information, beyond the minimum disclosure neces-
sary to complete the required operation. To motivate the problem, we present
three concrete (and only slightly contrived) examples illustrating nuanced re-
quirements of such privacy-preserving operations.

Example 1. U.S. Department of Homeland Security (DHS) maintains a dynamic
database of suspected terrorists (TWL: Terror Watch List). For every flight, DHS
needs to know whether the flight passenger manifest and TWL have any names in
common. Airlines are reluctant to unconditionally share passenger information.
Some airlines are foreign and some flights might be transit, i.e., they merely fly
over, but not land in, United States. At the same time, compliance with DHS
is mandatory, meaning that names of any flight passengers that also appear
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in TWL must be supplied to DHS. For its part, DHS treats TWL as secret
information and is absolutely unwilling to reveal it to any airline.

Example 2. U.S. Central Intelligence Agency (CIA) has a requirement to peri-
odically (e.g., every year) check whether any of its agents have been arrested or
convicted any crimes. It thus needs to approach every state and, ideally, com-
pare its list of employees against the state’s list of arrestees and/or convicted
offenders. A state (e.g., South Dakota) is unwilling to reveal its information for
fear of misuse and legal liability. Whereas, CIA is mandated by law not to reveal
the names of any of its agents.

Example 3. U.S. Center of Disease Control and Prevention (CDC) maintains
a list of people, per city, afflicted by certain contagious diseases, e.g., the H1N1
virus. CDC needs to monitor high or unusual concentrations of infected people
in schools, since that might indicate the start of an epidemic. To this end, it peri-
odically needs to cross-check its list with student rosters in each school district.
Privacy regulations prevent schools from granting wholesale access to student
data. However, information regarding students with highly infectious diseases
needs to be disclosed.

1.1 Why Size Matters?

All examples above have some features in common: neither party can reveal its
information in its entirety. What they are willing to reveal is limited to common
information, i.e., items appearing on both parties’ lists. Specifically, our examples
involve only one-way information sharing, i.e., airlines allow DHS to learn names
that appear on both lists, whereas, DHS does not allow airlines to learn the same.

Another important, but more subtle, feature common to our examples is the
need to keep client input size secret. Specifically, DHS does not reveal the number
of names on the TWL. This list is dynamic (names can be added and removed
frequently) and revealing its size would leak sensitive information. Likewise, by
law, CIA cannot divulge the number of its agents, for obvious reasons. Finally,
the number of infected school-kids in a city (school district) is extremely sensi-
tive: its disclosure can cause wide-spread panic and/or prompt a health insurance
rate hikes for that location.

We conclude that there are solid reasons for parties in certain privacy-pre-
serving operations to keep sizes of their inputs secret. The most common reason
is that input size represents sensitive information. A related reason is that, given
multiple interactions between the same two parties, fluctuations in input size are
equally (or even more) sensitive. Another factor motivating input size secrecy is
related to the amount of computation imposed on the other party; we discuss it
later, in Section 6.

We note, from the outset, that there are limits to input size hiding. For in-
stance, both parties cannot hide their respective input sizes. One obvious reason
is that, in all examples above, (at least) one party learns the intersection of its
input with that of the other party. The intersection itself is a list (or a set) and
its size leaks information about overall input size.
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In this paper, we focus on privacy-preserving interactions characterized by
the examples above, where one party (client, the one that learns the intersec-
tion) aims to keep the size of its input secret. Next, we argue that no current
cryptographic primitive, (including generic secure two-party computation [18])
supports input size-hiding for private set intersection. We also discuss the inad-
equacy of some trivial approaches.

1.2 Size Hiding with Current Tools?

Private Set Intersection (PSI) is a cryptographic primitive, introduced in [13],
that allows two parties: server S and client C, to interact on their respective
private input sets: S and C, such that, C learns (S ∩C, |S|) and S learns nothing
beyond |C|.1 Over the last few years, the research community has devised a num-
ber of PSI techniques that vary in costs, security assumptions and adversarial
models. We discuss prior work on PSI in Section 2. One common feature of all
current PSI protocols is that client input size (# of elements in client set) is
revealed to server. It is unclear whether they can be extended or amended to
support client input size-hiding. Also, generic secure multi-party computation
tools [35] are not applicable as they provide all players with the sizes of other
players’ inputs.

One trivial approach is for client to employ fixed-size input, i.e., pad its in-
put with chaff up to a certain fixed size. However, this has several drawbacks.
First and foremost, this always leaks the upper bound of input size. Second, if
client input is a dynamic set, the fixed size must reflect the maximum possible
set size (otherwise, fluctuations would leak information), which entails wasted
computation and communication.

1.3 Roadmap and Contributions

In this paper, we introduce the concept of Size-Hiding Private Set Intersec-
tion (SHI-PSI).We then present the first concrete SHI-PSI construction, offering
provable security and efficient operation. Next, we discuss possible extensions
to reduce protocol overhead and adapt SHI-PSI to scenarios where client needs
to learn data records associated withe each item in the intersection. Finally, we
compare costs of our SHI-PSI approach to prior work (on non size-hiding PSI)
and show that size-hiding is attainable at very low additional costs.

Notable SHI-PSI features include:

1. It offers a superset of privacy properties of prior PSI protocols: SHI-PSI ad-
ditionally hides client input size from server. Client input is hidden uncondi-
tionally, without relying on any computational assumption – a contribution
in its own right.

2. It is secure under the standard RSA assumption in the Random Oracle Model
(ROM).

1 This is sometimes referred to as one-way PSI; a mutual version involves each party
learning the intersection.
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3. It is very efficient: (1) communication overhead is linear in server input size
only, (2) server computation complexity is linear in the size of its input only,
(3) client computation complexity is almost linear – O(v · log v) – in the size
of its input. (We note that this is remarkably low, since the most efficient
PSI offers linear complexity; hence, the only “penalty” for size-hiding is a
small increase in client computation: O(v · log v) vs O(v).)

4. It is particularly attractive for scenarios where server is mandated (e.g.,
by law) to take part in the interaction with client(s). In such scenarios, it
makes sense to minimize burden on server, especially, when client input is
large. Current PSI schemes involve server computation proportional to client
input size. Whereas, in SHI-PSI, server computation depends only on its own
input size.

Organization. After reviewing related work in Section 2, Section 3 defines SH-
PSI as a concept and specifies its desired properties. Then, Section 4 presents a
concrete SHI-PSI protocol and argues its security. Section 5 discusses possible
extensions and Section 6 considers performance issues. The paper concludes with
a laundry-list of future work items in Section 7.

2 Related Work

We now overview related cryptographic primitives and prior work.

Two-Party Computation (2PC). Private set operations can be performed
using secure two-party computation [18,35]. 2PC allows two parties, each with
its own private input, to privately evaluate a generic public function, such that
nothing else is revealed. However, standard 2PC definitions (see [17]) provide
both parties with the length of the other party’s input. This contradicts our in-
put size-hiding goal. Furthermore, 2PC incurs several rounds and relatively high
computational overhead. Recent techniques, such as [33] and [22], proposed effi-
cient tools for 2PC. However, special-purpose protocols for private set operations
are still much faster. For instance, [22] reports the overhead of 12.8 seconds for
computing the intersection of two sets with only 100 items using their 2PC-based
techniques. In contrast, [11] shows the overhead of only 6 seconds for computing
private set intersection for two sets with 5, 000 items (on comparable hardware),
using specialized PSI tools.

Private Set Intersection (PSI). Freedman, et al. [13] devised a suite of private
set operation protocols based on Oblivious Polynomial Evaluations (OPE-s) [31].
The main idea is to represent a set as a polynomial, and set elements – as its
roots. Client uses an additively homomorphic cryptosystem (e.g., Paillier [32])
to encrypt coefficients, that are then evaluated by server, such that client learns
the intersection (and nothing else) upon decrypting.

Assuming that client and server sets contain v and w items, respectively, their
respective computation overheads amount to O(v + w) and O(w log log v) expo-
nentiations. The protocol is secure against semi-honest adversaries in the stan-
dard model, and against malicious adversaries in ROM (with increased cost).
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There are several improvements to this construction against malicious adver-
saries in the standard model, with linear communication and quadratic com-
putation [7], and linear communication and O(w log log v) computation in [20]
(all under DDH). Also, [27] extends OPE-s to more than two players, all learn-
ing the intersection, with quadratic computational and linear communication
complexities.

Other PSI constructs rely on Oblivious Pseudo-Random Functions (OPRF-
s) [12]. An OPRF is a two-party protocol that securely evaluates a pseudorandom
function fk(·) on key k contributed by sender and input x contributed by receiver,
such that the former learns nothing from the interaction, and the latter only
learns fk(x). OPRF-s can be used to obtain linear complexity PSI, e.g., [19] and
[24], secure in the standard model against, respectively, covert [1] and malicious
adversaries. Recent PSI results in the Random Oracle Model (ROM) yielded very
efficient constructs with linear complexity and short exponentiations. They re-
place OPRF-s with unpredictable functions [25] and blind signatures [11]. These
techniques are secure under One-More-DH and One-More-RSA assumptions [2],
respectively. Very recent work in [10] achieves linear computational and commu-
nication complexity (also using short exponents) against malicious adversaries,
under the DDH assumption in ROM.

Branching Programs (BP). Ishai and Paskin [23] consider the following prob-
lem: given a branching program P (held by server) and encryption c of input
x (held by client), is it possible to compute ciphertext c′ from which P (x) can
be decoded using the secret key? Note that size of c′ depends, polynomially, on
sizes of x and P . Thus, neither client computation nor protocol communication
overhead depends on server input size P , that remains secret to client. Although
one can implement PSI with a branching program and thus hide server input
size (whereas, we focus on hiding client input size), we argue that this generic
construction would involve much higher computational overhead – polynomial
in the size of inputs. Also, it would require v parallel executions, where v is client
input size.

Secure Pattern Matching. Some recent work addressed a somewhat related
problem: secure computation of pattern matching [19,16,26,21]. One party (P1)
holds a pattern and the other party (P2) holds a text string. The goal of P1 is to
learn where the pattern appears in the text, without revealing it to P2 or learn-
ing anything else about P2’s input. However, the size of P1’s pattern is always
revealed to P2. [21] sketches a possible way to hide pattern size, however, only
by means of random padding. (As discussed earlier, this is an unsatisfying ap-
proach that exposes the upper bound.) It also imposes a substantial performance
penalty: from linear to quadratic complexity.

Zero-Knowledge Sets. The only cryptographic primitive in the context of
which the need for hiding input sizes was discussed is Zero-Knowledge Sets [30].
In it, server publishes a short snapshot of its private database, i.e., a commit-
ment. Later, client can request server to prove whether a given item belongs
to the committed set. Note that neither the commitment nor the proof reveals
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server database. However, the problem addressed by ZK-Sets is quite different
from (size-hiding) PSI. In fact, in ZK-Sets, client input is not private.

3 Definitions

We now formalize the concept of Size-Hiding Private Set Intersection (SHI-PSI).
Informally, SHI-PSI extends PSI with an additional privacy feature that client
input size must not be revealed to server. Clearly, SHI-PSI implies (one-way)
PSI. For ease of presentation, instead of first defining PSI and then adding size-
hiding, we begin by defining SHI-PSI directly.

Definition 1. (SHI-PSI.) A scheme satisfying correctness, server privacy and
client privacy (per Definitions 2, 3 and 4 below), involving two parties: C and
S, and two components: {Setup,Interaction}, where:

– Setup: an algorithm that selects all global parameters.
– Interaction: a protocol between S and C on respective inputs: S={s1, · · · , sw}

and C = {c1, · · · , cv}.

Definition 2. (Correctness.) If both parties are honest, at the end of Interac-
tion, run on inputs (S, C), S outputs ⊥, and C outputs (|S|,S ∩ C), or |S| the
intersection is empty.

We assume semi-honest parties and use general definitions of secure computation
[17]. Specifically, we define SHI-PSI as a secure two-party protocol realizing func-
tionality described above. Our client and server privacy definitions follow from
those in related work [28,13,12,19]. In particular, Goldreich ([17], Sec. 7.2.2)
states that, in case of semi-honest parties, the general “real-versus-ideal” defi-
nition framework is equivalent to a much simpler framework that extends the
formulation of honest-verifier zero-knowledge. Informally, a protocol privately
computes certain functionality if whatever can be obtained from one party’s
view of a protocol execution can be obtained from input and output of that
party. In other words, the view of a semi-honest party (including C or S, all
messages received during execution, and the outcome of that party’s internal
coin tosses), on each possible input (C,S), can be efficiently simulated consider-
ing only that party’s own input and output. This is equivalent to the following
formulation:

Definition 3. (Client Privacy.) For every PPT S∗ that plays the role of S, for
every S, and for any client input set (C(0), C(1)), two views of S∗ corresponding
to C’s inputs: (1) C(0) and (2) C(1), are computationally indistinguishable.
Client privacy is guaranteed if no information is leaked about client input.
That is, S∗ cannot distinguish between C(0) and C(1). S∗ cannot even deter-
mine whether |C(0)| �= |C(1)|. In fact, Definition 3 is strictly stronger than client
privacy definition for standard PSI protocols that reveal client input size. In this
case, indistinguishability would be relaxed by the constraint |C(0)| = |C(1)|.
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Definition 4. (Server Privacy.) Let ViewC(C,S) be a random variable repre-
senting C’s view during execution of SHI-PSI with inputs C,S. There exists a
PPT algorithm C∗ such that:

{C∗(C,S ∩ C)}(C,S)
c≡ {ViewC(C,S)}(C,S)

In other words, on each possible pair of inputs (C,S), C’s view can be efficiently
simulated by C∗ on input: C and S ∩ C. Thus, as in [17], we claim that the two
distributions implicitly defined above are computationally indistinguishable.

Remark. As mentioned earlier, we consider security in the presence of semi-
honest parties, i.e., parties that faithfully follow protocol specifications. How-
ever, during or after protocol execution, they might (passively) attempt to infer
additional information about the other party’s input. Note that this models pre-
cisely the class of adversaries considered in our applications. For instance, in
our Example 1 in Section 1, DHS and airlines have no incentive to deviate from
protocol specifications, because they might be subject to auditing and could
face severe penalties for non-compliance. Nonetheless, airline personnel, system
administrators, or other malicious insiders might seek to surreptitiously obtain
information about contents or size of the DHS Terror Watch List (TWL).

The RSA Assumption on safe moduli. Let τ be a security parameter and
let RSA.Setup(τ) be an algorithm that outputs so-called safe RSA instances,
i.e., pairs (N, e), where: (1) N = pq where p and q are random distinct τ -bit
primes, such that p = 2p′ + 1 and q = 2q′ + 1 for distinct primes p′, q′, and (2)
e < φ(N) is a random positive integer, such that GCD(e, φ(N)) = 1. The RSA
problem is (τ, t)-hard on 2τ -bit safe RSA moduli, if, for each algorithm A that
runs in time t, it holds that:

Pr[(N, e)←r RSA.Setup(τ), y←r Z∗
N :A(N, e, y)=β s.t. βe= ymodN ] ≤ negl(τ).

We later assume that y is chosen uniformly at random from QRN (the set of
quadratic residues in Z∗

N ). Thus, the order of y is p′q′. In this case, we let e be
a random integer (chosen independently of y) such that gcd(e, p′q′) = 1 with
overwhelming probability. If e = 2tu for an odd integer u, then, if t ≥ 1, A
would compute square root of y, which is infeasible if the factoring assumption
holds. If t = 0, then e is odd and A would solve an instance of the standard RSA
problem.

4 SHI-PSI Construction

We now present our SHI-PSI protocol. Its two main building blocks are: (1)
tools similar to RSA accumulators [4], and (2) unpredictable function fX,p,q(y) =
(X1/y) mod N (under the RSA assumption on safe moduli).2

2 A function (family) fk(·) is an (t, qf , ε)−unpredictable if, for any t-time algorithm A
and any auxiliary information z, it holds that: Pr[(x∗, fk(x∗) ←r Afk(·)(z)) ∧ x∗ /∈
Q] ≤ ε where A makes at most qf queries to fk(·), and Q is the set of queries.
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Specifically, client computes a global witness for its input C = {c1, · · · , cv} in
the form of an RSA accumulator: (g

∏v
i=1 H(ci)) mod N , where g is a generator

of QRN and H(·) is a full-domain hash function [3]. Then, client securely blinds
the accumulator with a random exponent and sends the result (denoted as X)
to server. The latter learns no information about client input, not even its size.
For its part, for each item sj ∈ S, server computes unpredictable function f over
client message X . Server then applies a one-way function (in practice, a suitable
cryptographic hash function) to each output of f . The results are a set of tags,
one for each sj. These tags are then returned to client for matching (details
below). We note that the outer hash is crucial, since server privacy is based on
the fact that, in ROM, a hash of an unpredictable function is a PRF.

In the above, H(·) is a standard random oracle that does not have to output
large primes. Also, we obviate the technical issue of computing the inverse of
H(sj) “in the exponent" by selecting the RSA modulus N as a product of safe
primes to ensure that the order of X is itself a product of large and unknown
primes (see proof for details).

Client learns the set intersection as well as |S|) since it can only match tags
corresponding to the items in the intersection. The intuition is that client com-
putation of g(

∏
l 	=i H(cl)) leads to it finding a matching tag only if ci ∈ S ∩ C.

Before presenting the actual protocol, we introduce the notation in Table 1.

Table 1. Notation

a ←r A variable a is chosen uniformly at random from set A
τ security parameter

τ1, τ2 security parameters that depend on τ
p, q two τ -bit safe primes, i.e., p = 2p′ + 1, q = 2q′ + 1

N = pq, e, d RSA modulus, public and private exponents
g generator of QRN

H(·) random oracle H : {0, 1}∗ → {0, 1}τ1

F (·) random oracle F : {0, 1}∗ → {0, 1}τ2

C,S client and server sets, respectively
v, w sizes of C and S , respectively

i ∈ [1, v] indices of elements of C
j ∈ [1, w] indices of elements of S

ci, sj i-th and j-th elements of C and S , respectively
hci, hsj H(ci) and H(sj), respectively

π random permutation

4.1 Protocol Description

Fig. 1 shows our SHI-PSI protocol. Common input is extracted from the output
of RSA.Setup(τ). Primes p′ and q′ are provided exclusively to server. Client must
treat its exponents as large integers. We emphasize that arithmetic operations
in the exponent are performed in Z∗

p′q′ . (In particular, squaring is a permutation
of QRN , in our setting).
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Common input: N, g, H(·), F (·)
Client C on input: Server S on input:,
C = {hc1, · · · , hcv} p′, q′,S = {hs1, · · · , hsw},
where hci = H(ci) where hsj = H(sj)

For 1 ≤ i ≤ v

PCHi =
Qv

l=1,l�=i hcl

PCH =
Qv

i=1 hci

A = (gPCH) mod N

Rc ←r {1, . . . , N2}
X = (ARc) mod N

X
�� Rs ←r {0, . . . , p′q′ − 1}
Z = (gRs) mod N

For 1 ≤ j ≤ w

Ks:j = (XRs·(1/hsj)) mod N

{t1, . . . , tw}=π(F (Ks:1), . . . , F (Ks:w))

For 1 ≤ i ≤ v

Z, {t1, . . . , tw}
��

Kc:i = (ZRc·PCHi) mod N

t′i = F (Kc:i)
OUTPUT:

{t′1, . . . , t′v} ∩ {t1, . . . , tw}

Fig. 1. SHIPSI protocol secure under RSA assumption in ROM (notation from
Table 1)

Theorem 1. Under the RSA assumption on safe moduli, the protocol in Fig. 1 is
a server- and client-private SHI-PSI, satisfying Definitions 1-4. in the Random
Oracle Model (ROM).

Proof. We show that the protocol satisfies correctness as well as client and
server privacy, defined in Section 3. We assume that all server elements are
distinct.3 Hash functions H(·) and F (·) are modeled as random oracles.

Correctness. We note that: ∀ci ∈ S ∩ C, ∃ j s.t.ci = sj . Hence, hci = hsj and:
Kc:i = ZRc·PCHi = gRcRsPCH(1/hsj)

Ks:j = XRs·(1/hsj) = gRcRsPCH(1/hsj)

Consequently, t′i = F (Kc:i) = F (Ks:j) = tj ; thus, client learns: ci ∈ S ∩ C as
well as |S| = |{t1, . . . , tw}|.
Client Privacy. Since client’s only message to server is X = g(PCH·Rc) mod N ,
we claim that the distribution of X is essentially equivalent to that of random
elements in QRN , which is a cyclic group of order p′q′. Since PCH and p′q′ are

3 However, we can remove this assumption by adding a counter to the input of H(·).
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relatively prime (with overwhelming probability), we assume that A= gPCH mod
N is a generator of QRN . Moreover, Rc is chosen uniformly at random from
{1, . . . , N2}. Thus, if Rc = r1p

′q′ + r2 with r2 ∈ {0, . . . , p′q′ − 1}, we have that
the distribution of r2 is statistically indistinguishable from the uniform distribu-
tion on {0, . . . , p′q′−1} and r1 and r2 are essentially independent (see, e.g., [6]).
Therefore, X = ARc mod N is essentially distributed as a random quadratic
residue independent of PCH even if factorization of N is known.

Server Privacy. To show that client’s view can be efficiently simulated by a
PPT algorithm, we follow a hybrid argument: The entire client’s view is gradually
transformed by replacing values (received by client) that are outside the set
intersection, with elements chosen uniformly and independently at random. It
then suffices to show that this progressive substitution cannot be detected by
any efficient algorithm.

Let I = C ∩ S, and |I| = t. For any (C,S), we show that two distributions:

D0 =
{

(Rc, T ) : Rc ←r {1, . . . , N2}, T = π
(
F (XRs(1/hsj1)), · · · , F (XRs(1/hsjw))

)}
and

Dw−t =
{
(Rc, T ) : Rc ←r {1, . . . , N2}, T = π

(
F (XRs(1/hsj1)), · · · , rt+1, · · · , rw

)}
,

are computationally indistinguishable, where (hsj1, · · · , hsjt) ∈ I and values in
(rt+1, · · · , rw) are chosen uniformly and independently at random from {0, 1}τ2

(i.e., the co-domain of the random oracle F (·)).
Our proof follows the standard hybrid argument: Let z = w − t. We define

a series of intermediate distributions Di, for 0 < i < z, where T is constructed
by replacing the first i outputs of items NOT in I with random values in the
co-domain of F (·).

After fixing index i and probabilistic polynomial-time distinguisher D, we
define:

ε(τ) = |Pr[D = 1|Di+1] − Pr[D = 1|Di]|

Our claim is that ε(τ) is negligible in τ . Let us assume that this claim is false.
The only difference between Di and Di+1 is the way T is defined. Specifically,
(i+1)-st item of T not in I is F (XRs(1/hsl)) for Di and a random value for Di+1.

Since F (·) is a random oracle, distinguisher D must compute XRs(1/hsl) =
gRsRcPCH/hsl for hsl /∈ I. Then, we can build an efficient algorithm A that, given
a challenge (N, e, y), returns y1/e mod N . (We assume that y is chosen uniformly
at random from QRN . Thus, the order of y is p′q′.) The simulation proceeds as
follows: First, A sets g = y and, by programming the random oracle H(·), A as-
signs random values to outputs of H(·) and computes d = gcd(RsRcPCH, hsl),
for some integers e and b with hsl = ed and RsRcPCH = bd. Since F (·)
is a random oracle, A sees gRsRcPCH/hsl = gb/e. Given that (gb/e)e = gb

and gcd(e, b) = 1, A can use the extended Euclidean algorithm to compute
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g1/e = y1/e via the well-known Shamir’s trick4. Thus, under the RSA assumption
on safe moduli, formulated for a random exponent, ε(τ) is negligible in τ .

Remarks. We stress that exponents in our scheme (i.e., outputs of H(·)) do not
have to be prime, unlike related reductions, such as [34,4,29,15]. This is because
client cannot compute gRsRcPCH/hsl , for l ∈ {1, . . . , w}, unless RcPCH/hsl is an
integer. (Recall that Rc is generated honestly). Clearly, if hsl /∈ I, RcPCH/hsl

is, – with negligible probability – an integer as long as hsl is sufficiently large:
random oracles are indeed division intractable, as shown in [15,5] (in particular,
[5] presents an algorithm for finding division collisions sub-exponential in τ1, the
digest size).

We readily acknowledge that our construction assumes both semi-honest play-
ers and the Random Oracle Model. Nevertheless, on a positive side, it is inter-
esting to observe that generic 2PC techniques, following traditional definitions
that also apply to malicious adversaries, do not achieve size-hiding of client in-
put. Goldreich [17] remarks that the program of each party (in a protocol for
computing the desired functionality) must either depend only on the length of
that party’s input or obtain information on the counterpart’s input length. One
intuitive argument against the feasibility of input size-hiding protocols secure in
the malicious model is that proving well-formed-ness of client input is only pos-
sible by considering each client input set element separately (e.g., via some ZK
proofs). Thus, combined proofs would have to reveal at least the upper bound
on client input size.

Computational and Communication Complexity. The protocol in Fig. 1
incurs the following computational complexity (in terms of modular exponenti-
ations). In each interaction, server needs to compute O(w) exponentiations, one
for each of its items. Whereas, client operations are divided into off-line and
on-line categories. Client off-line work amounts to O(v) exponentiations for the
computation of A = gPCH mod N , since PCH is the non-modular product of
v values. Additionally, client computes Kc:i = ZRc·PCHi mod N for each item.
As each of these operations requires O(v) exponentiations, on-line client com-
plexity amounts to O(v2) exponentiations.5 Communication complexity in each
interaction is dominated by O(w) outputs of F (·) sent from S to C in the sec-
ond message. (The first message involves the transmission of a single log(N)-bit
value).

4 Note that this is similar to the reduction in [15]. However, in contrast to Theorem
5 in [15], our reduction is not based on the strong RSA assumption, but on the
standard RSA assumption in ROM. This is because e is generated independently
of base y and, thus, e is effectively provided as input to the adversary. Indeed, the
signature scheme in [15] is actually secure under the standard RSA assumption in
ROM; this was confirmed via private communication [14].

5 Note that, if client knew the factorization of N , it could compute PCH and PCHi’s
using multiplication modφ(N), thus significantly reducing complexity of each expo-
nentiation. However, as discussed earlier, the fact that client does not know φ(N) is
crucial to server privacy.



(If) Size Matters: Size-Hiding Private Set Intersection 167

Z’

1:v/2 v/2+1:v

1:8 9:16

1:4 5:8 9:12 13:16

1:2 3:4 5:6 7:8 9:10 11:12 13:14 15:16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 vLevel 0

Level 1

Level 2

Level 3

Level log(v) − 1

Fig. 2. Tree-based strategy to reduce client computation

4.2 Reducing Client Complexity

We now discuss a simple technique to reduce client computation. Note that the
naïve computation of Kc:i leads to O(v2) exponentiations. However, this can be
reduced to O(v log(v)) via dynamic programming. Our intuition is as follows: For
any (i, j), Kc:i and Kc:j only differ by one exponent, since PCHi =

∏v
l=1,l =i hcl,

whereas, PCHj =
∏v

l=1,l =j hcl.

We define Z ′ = ZRc, and i:j = Z ′[∏ l/∈[i,j] hcl] mod N . We illustrate this tech-
nique using a tree in Fig. 2. The leaves contain values Kc:i, for 1 ≤ i ≤ v, e.g.,
i = Z ′[∏ l 	=i hcl] mod N = ZRc·PCHi mod N = Kc:i.

We now sum up the total number of exponentiations needed to compute all
these values. Note that, from a node with value i:j, one can obtain the children,
i:h and h+1:j, as follows:

i:h =
(
i:j
)(∏ j

l=h+1 hcl) (modN)

h+1:j =
(
i:j
)(∏h

l=i hcl) (modN)

For h = i + (j − i + 1)/2, each of these operations involves exactly (j − i + 1)/2
exponentiations.

At level 0, there are v values, each obtained with a single exponentiation
from the parents at level 1. At level 1, there are v/2 values, each obtained with
2 exponentiations from nodes at level 2. In general, at level i, there are v/2i

values, each obtained with 2i exponentiations from nodes at level i+1. Thus,
client overhead can be estimated as:

# exponentiations =
log(v)−1∑

i=0

(
2i v

2i

)
= v log(v).
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5 Extensions

In this section, we discuss possible extensions to our SHI-PSI construction pre-
sented above.

5.1 Linear-Complexity SHI-PSI

In many scenarios, parties engage in multiple interactions, and it is important to
hide (from client) any changes in server input. This feature is sometimes referred
to as unlinkability: client cannot determine whether any two server interactions
are related, i.e., executed on the same input (e.g., see unlinkability definitions
in [9]).

The SHI-PSI construct in Fig. 1 clearly guarantees unlinkability: server tags
are unlinkable across multiple interactions, since server computes a new random
Rs and a new Z ∈ QRN , in each execution. However, although we clearly value
unlinkability, it is worth considering scenarios where it might be reasonable to
trade off unlinkability for better efficiency.

To this end, we sketch a modified SHI-PSI protocol that reduces the number of
client on-line exponentiations to linear. The main intuition is that removing Rs

allows client to pre-compute the exponentiations involving (long) PCHi values.

Common input: N, g, H(·), F (·)
Client C on input: Server S on input:,
C = {hc1, · · · , hcv} p′, q′,S = {hs1, · · · , hsw},
where hci = H(ci) where hsj = H(sj)

(Off-line)
For 1 ≤ i ≤ v

PCHi =
Qv

l=1,l�=i hcl

ai = gPCHi mod N

PCH =
Qv

i=1 hci

A = (gPCH) mod N

(On-line)
Rc ←r {1, . . . , N2}
X = (ARc) mod N

X
�� For 1 ≤ j ≤ w

For 1 ≤ i ≤ v Ks:j = (X(1/hsj)) mod N

Kc:i = (aRc
i ) mod N

t′i = F (Kc:i) {t1, · · · , tw}=π(F (Ks:1), · · · , F (Ks:w)){t1, · · · , tw}
��

OUTPUT:
{t′1, . . . , t′v} ∩ {t1, . . . , tw}

Fig. 3. Modified construction of the SHI-PSI protocol to achieve linear client complex-
ity. (Notation is from Table 1).
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We illustrate the resulting protocol in Fig. 3. Note that security arguments in
Theorem 1 also apply to this protocol variant. Indeed, given assuming semi-
honest client, X = gPCH·Rc , similar to XRs in protocol of Fig. 1, is also uniformly
distributed in QRN , for Rc ←r {1, . . . , N2}. A more formal treatment of the
problem as well as complete formal proofs are deferred to the full version of this
paper.

Correctness. Observe that ∀ci ∈ S ∩ C, ∃ js.t.ci = sj . Hence, hci = hsj and:

Ks:j = X1/hsj = gRcPCH(1/hsj) = gRc·PCHi = Kc:i

Consequently, t′i = F (Kc:i) = F (Ks:j) = tj , and client learns ci ∈ S ∩ C.
Also, note that client learns |S| = |{t1, . . . , tw}|.

Computational and Communication Complexity. The amended SHI-PSI
construct in Fig. 3 incurs the following computational complexity: Server
overhead is unaltered from Fig. 1, i.e., O(w) exponentiations. However, client
performs O(v log(v)) exponentiations off-line, and only O(v) exponentiations
on-line. Communication overhead is the same as in the protocol of Fig. 1.

5.2 SHI-PSI with Data Transfer

We now show how to extend proposed SHI-PSI constructs to support data trans-
fer. Informally, in SHI-PSI with Data Transfer, client additionally obtains data
records associated with the items in the intersection. The main idea is to let
server encrypt records using a symmetric key (using a secure symmetric cipher,
such as AES [8], used with a proper mode of operation to guarantee CPA secu-
rity) derived from the output of the unpredictable function. For example, keys
can be derived by computing a one-way function (e.g., a cryptographic hash)
over the unpredictable function output. Correctness and server privacy of SHI-
PSI guarantee that client can derive the decryption keys only for items with
matching tags, i.e., those in the intersection.

Let Fenc(·) be a secure cryptographic hash function (modeled as a random
oracle): Fenc : {0, 1}∗ → {0, 1}τ2, chosen at setup. For every j, server computes
ks:j = Fenc(Ks:j) and encrypts associated data using ks:j . For its part, client, for
every i, computes kc:i = Fenc(Kc:i) and decrypts only ciphertexts corresponding
to matching tags. (Note that ks:j = kc:i iff sj = ci and tj = t′i). As long as
the underlying encryption scheme is CPA-secure, this extension does not affect
security or privacy arguments for any protocol discussed thus far. Finally, note
that this extension leaves the complexity of both protocols unaltered.

6 Cost of Hiding Size

Although prior work produced a number of PSI protocols with different security
assumptions and complexities, we presented the first PSI protocol that hides
client input size. Therefore, it seems somewhat counterintuitive to compare our
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SHI-PSI constructs with prior PSI protocols. Nonetheless, we provide an estimate
of the slow-down incurred by client input size-hiding.

We consider prior PSI techniques and evaluate their asymptotic computation
and communication complexities in the RAM computational model (i.e., using a
single-processor machine). We estimate computation overhead as the number of
on-line modular exponentiations performed by server and client. Note that, in
order to make the comparison as fair as possible, all protocols are instantiated
to provide similar degrees of security in the same model, i.e., semi-honest play-
ers and ROM. For instance, we do not count zero-knowledge proofs of protocol
compliance in protocols secure against malicious adversaries. Results, reflected
in Table 2, summarize: security model (standard or ROM), adversaries (honest-
but-curious or malicious), availability of client input size-hiding, communication
overhead, number of modular exponentiations by server and client, size of ran-
dom exponents (i.e., whether they can be selected from subgroups).

Table 2. Performance Comparison of PSI and SHI-PSI constructions

Protocol Model Adv Size Comm. Server Client Exp-s
Hiding Overhead Exp-s Exp-s Length

[13] Std HbC No O(w+v) O(w(log log v)) O(w+v) Short
[20] Std Mal No O(w+v) O(w(log log v)) O(w+v) Short
[27] Std HbC No O(w+v) O(w · v) O(w+v) Long
[24] Std Mal No O(w+v) O(w+v) O(v) Long
[25] ROM Mal No O(w+v) O(w+v) O(v) Short

[11] (Fig.3) ROM HbC No O(w+v) O(w+v) O(v) Short
[11] (Fig.4) ROM HbC(*) No O(w+v) O(w+v) O(v) mults Long

[10] ROM Mal No O(w+v) O(w+v) O(v) Short
Our Fig.1 ROM HbC Yes O(w) O(w) O(v log v) Long
Our Fig.3 ROM HbC Yes O(w) O(w) O(v) Long

(*) This construct actually achieves malicious security with one-sided simulatability.

Observe that the most efficient PSI-s secure in the random oracle model incur
linear computational complexities, i.e., O(w + v) for server and O(v) for client,
and involve short exponents (e.g., 160-bit) in prime order groups. Whereas, our
SHI-PSI protocol (Fig. 1) uses exponents with length close to the RSA modulus
(e.g., 1024-bit) and incurs O(v log v) client complexity. However, such a drawback
is experienced by one player – client – that benefits from additional privacy, as
its set size is hidden from server. Also, note that our second SHI-PSI construct
(Fig. 3) reduces client complexity to O(v).

Finally, we remark that our SHI-PSI constructs achieve better server com-
plexity than PSI-s, in settings where v (the size of client’s set) is not negligible.
In fact, server’s computational load in SHI-PSI is independent of client’s input
size. Also, protocols not hiding sizes incur higher communication overhead: client
sends a number of values proportional to its set size (as opposed to a single value
in SHI-PSI).
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7 Conclusions and Future Work

This paper motivated the importance, and introduced the concept, of Size-Hiding
Private Set Intersection (SHI-PSI). It also presented two secure and efficient SHI-
PSI constructs, Since this work represents an initial foray into SHI-PSI protocols,
much remains to be done. Items for future work, include (but are not limited
to):

1. Amending proposed SHI-PSI constructs to eliminate the random oracle.
2. Exploring SHI-PSI secure against fully malicious (rather than semi-honest)

participants.
3. Investigating SHI-PSI variants that provide authorization of client input,

i.e., requiring each item in client set to be pre-authorized by some trusted
authority.

4. Extending SHI-PSI to support multiple clients to obtain private computation
of size-hiding a multi-party set intersection.
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Abstract. The classic problem in the field of secure computation is
Yao’s millionaires’ problem; we consider two new protocols solving a
variation of this: a number of parties, P1, . . . , Pn, securely hold two �-
bit values, x and y – e.g. x and y could be encrypted or secret shared.
They wish to obtain a bit stating whether x is greater than y using only
secure arithmetic; this should be done without revealing any information,
even the output should remain secret. The present setting is special in
the sense that it is assumed that two specific parties, referred to as
Alice and Bob, are non-colluding. Though this assumption is not satisfied
in general, it clearly is for the main example of this work: two-party
computation based on Paillier encryption.

The first solution requires O(log(�)(κ + loglog(�))) secure arithmetic
operations in O(log(�)) rounds, where κ is a correctness parameter. The
second solution requires only a constant number of rounds, but increases
complexity to O(

√
�(κ + log(�))) arithmetic operations.

For the motivating setting, each arithmetic operation requires a con-
stant number of Paillier encryptions to be exchanged between Alice and
Bob. This implies that both solutions require only a sub-linear number
of invocations (in the bit-length, �) of the cryptographic primitives. This
does not imply sub-linear communication, though, as the size of each
encryption transmitted is more than � bits.

Keywords: Secure computation, Yao’s Millionaires’ problem.

1 Introduction

The concept of secure multiparty computation was introduced by Yao with the
now classic millionaires’ problem, [Yao82]: two millionaires meet in the street
and wish to determine who is richer without revealing their net worths. Since
then, this problem – along with variations of it – has received much interest in
the research community. Not only is it the original problem, it is also a quite
fundamental primitive for secure computation. Auctions are an immediate appli-
cation, e.g. as considered in [NPS99]. Indeed, they are the motivating examples
of many of the papers on secure comparison mentioned below. The problem –
and extensions such as determining the minimal of multiple inputs – also plays
an important role elsewhere, e.g. in secure data mining such as [LP00] or [JW05]
and secure optimization such as [Tof09].

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 174–191, 2011.
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Secure arithmetic modulo some integer M can be seen as secure integer com-
putation when no overflows modulo M occur. Augmenting such primitives with
a protocol for secure comparison provides a setting which allows general inte-
ger computation. This approach is often used, when considering applications as
those mentioned above. Thus, improving comparison – as the present work –
implies improvement of a whole range of applications. These are the first such
protocols which invoke the cryptographic primitives o(�) times, where � is the
bit-length of the inputs.

1.1 Related Work

As the problem of secure comparison has received so much interest, there is a
large body of related work, which solves the problem in various settings and with
focus on different properties. Some solutions focus on theoretical efficiency – low
round complexity (constant or even single round), as well as low communication
or computation complexity. Others consider practice, attempting to obtain a fast,
real-world solution by balancing the different resources. There are also many
variations of the problem. For example: where do the inputs come from; are
they known to any of the parties or are they the result of previous computation?
Should the result be public, should simple actions be performed based on the
outcome, or should the result be private to allow it to be used in arbitrary further
computation?

There are essentially two different settings. The two-party case contains Yao
circuits, [Yao86], but also includes [Fis01, BK06, DGK07, GSV07, LL07]. The
latter are generally not limited to known inputs and public output. The multi-
party setting can be split into the cryptographic and the information theoretic
(i.t.) settings. [DFK+06, NO07] consider constant rounds solutions in the i.t. set-
ting, while [ST06] considers computationally efficient solutions based on Paillier
encryption [Pai99], i.e. the cryptographic setting. Hybrids such as [BCD+09], are
also possible: their protocol is based on secret sharing, but the focus is entirely
on practice, and primitives guaranteeing only computational security are applied
to improve efficiency.

Though radically different, the comparison protocol of Feige et al., [FKN94],
is in a sense the closest related work as it uses quadratic residues at its core.
However, the basic protocol only allows comparison of integers between zero and
two. Though it can be generalized, comparing anything but very small values
appears highly impractical.

1.2 Contribution

This paper considers a novel approach at secure comparison. The setting consists
of n players, P1, . . . , Pn that jointly hold two secret, �-bit inputs x, y ∈ ZM to be
compared – ordering is obtained by viewing the inputs as �-bit integers. Two of
the parties, Alice and Bob, are guaranteed by assumption to be non-colluding.
I.e. the adversary cannot corrupt both simultaneously. The desired outcome is for
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the parties to hold (in a secure fashion) a bit stating whether or not x > y. The
motivating setting is the two-party setting; for threshold schemes the protocols
are limited to the case when the threshold is 1. When there are few parties
(say three or four), this is completely acceptable, however, the protocols are not
generally applicable.

This clearly solves the “standard” millionaires’ problem: the millionaires sim-
ply provide their inputs (e.g. encrypt and send them to the relevant parties).
Once the result has been determined, it can be revealed (e.g. decrypted). How-
ever, having such a comparison protocol realizes the secure integer computation
setting from above – the outcome of a comparison could equally well be used in
subsequent computation.

Two protocols are presented here, both based on arbitrary secure arithmetic
modulo M , where M is either an RSA-modulus (e.g. Paillier encryption) or a
prime (e.g. secret sharing over FM where M is prime). The first solution requires
O(log(�)(κ + loglog(�))) arithmetic operations in O(log(�)) rounds, where κ is
a correctness parameter. The second solution is constant-rounds, but increases
complexity to O(

√
�(κ + log(�))). With the exception of [FKN94], all previous

solutions known to the author utilize access to the binary representation of the
inputs (or the binary representation of random values related to the inputs).
Hence, this is the first solution that requires less than a linear number of invo-
cations of the primitives in the bit-length of the inputs.

Security against passive adversaries follows almost entirely from the security
of the underlying arithmetic. However, this is not the case with respect to active
adversaries. The problem is that the protocol specifies Alice and Bob to provide
inputs of bounded size, which cannot be verified efficiently using only arithmetic.
Fortunately such a primitive exists in many settings including Paillier based ones
as well as based on Shamir sharing over a prime field, FM .

1.3 An Overview of This Paper

Section 2 introduces the setting and primitives in the form of an ideal function-
ality; Sect. 3 then explains how this can be realized. Secure equality testing is
then presented in Sect. 4; this is needed for both solutions. The two contribu-
tions are then presented in Sect. 5 and Sect. 6. Finally, two variations are noted
in Sect. 7, before the concluding remarks of Sect. 8.

2 Primitives and Notation

The basic setting will consist of an ideal functionality providing the underlying
primitives, the main one being secure ZM arithmetic, i.e. it is an arithmetic
black-box (ABB), [DN03]. This approach ensures that it is possible to ignore the
details of the underlying primitives; focus is on the required properties rather
than on specific solutions.
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2.1 The Arithmetic Black-Box

The arithmetic black-box allows n parties, P1, . . . , Pn, to securely store and
retrieve elements of a ring ZM . Here, M will be either a prime or an RSA-
modulus, i.e. the product of two odd primes.

The secure storage (input/output) can be thought of as secret sharing, and
we borrow that notation, writing stored values in square brackets, [x]. However,
as noted other solutions are also possible, and the notation could equally well
represent encryption: secure storage could be obtained by having one or more
parties store encryptions under some public key. Input then means “encrypt and
send to these parties,” while output means “decrypt and broadcast.” Naturally
the decryption key itself must not be held by anyone also holding the encryptions,
however, it could be secret shared or held by a different party. The ABB can
also provide an output to only a single party. This is always achievable, e.g. by
additively masking the output with a random value provided by the receiving
party. For specific primitives, other solutions may be preferable, though.

In addition to secure storage, the ideal functionality allows arithmetic com-
putation on the stored values. Such computation is written using infix notation
in the “plaintext” space, e.g.

[x · y + z] ← [x] · [y] + [z] .

The actual operations to be performed depend on the details of the realiza-
tion. Presently it does not matter whether an operation is a protocol invoca-
tion (e.g. the multiplication protocol of Ben-Or et al. [BGW88]) or simply local
computation by one or more parties (e.g. multiplying two Paillier encryptions
provides an encryption of the sum of the two plaintexts).

Complexity of a protocol based on the ABB is found by simply counting the
number of operations (input/output or arithmetic1) performed. It is assumed
that the ABB allows operations to be performed concurrently (representing
e.g. executing multiple multiplication protocols in parallel), thus, round com-
plexity will be the number of sequential operations performed.

2.2 Required Extensions of the ABB

The ABB-setting considers n parties, P1, . . . , Pn. The present work requires two
of these – denoted Alice and Bob – to be mutually incorruptible, i.e. at least
one of them will remain honest. We do not specify the corruption sets further.
Indeed, the remaining n − 2 parties are ignored. The ideas are best explained
by focusing on Alice, Bob, and the ABB. Including the “helper parties”2 would
complicate the explanation unnecessarily.
1 Similarly to other work, we focus on communication complexity and assume that

the underlying primitives are additively homomorphic. Thus, only multiplications
are counted.

2 Denoting the remaining n − 2 parties as “helpers” is not completely fair. They may
only be assisting during the present comparison protocols, but could have an equal
stake in the overall computation.
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As noted above, the present protocols do not provide active security based
only on the arithmetic black-box. Even when actively secure arithmetic is given,
malicious parties can still deviate. Two extensions to the ABB are therefore
needed in order to eliminate these issues. First, given an input, it must be ver-
ifiable (using only constant work) that it is less than some public bound. This
allows the protocol to specify that an input must come from a small, specified
range. Second, it must be verifiable that two held values are indeed equal.

Finally, to improve readability we introduce a bit of syntactic sugar, writing

[b] ? [x] : [y]

to denote conditional selection between two secret values, [x] and [y], based on
an secret bit, [b]. This can be achieved using arithmetic only, and the expression
is simply shorthand for

[b] ([x] − [y]) + [y]

which clearly equals either x or y depending on b ∈ {0, 1}.

3 Realizing the Arithmetic Black-Box

The arithmetic black-box can be realized in different settings and be based on
various primitives. However, as the present setting requires two of the parties to
be mutually incorruptible, our prime example is two-party computation based on
Paillier encryption [Pai99]. The realization is sketched in Sect. 3.1. It is stressed
that realizations with more than two parties are also relevant. Two possibili-
ties are presented in Sect. 3.2; both provide security against active adversaries.
The realizations of the extensions needed to provide active security below are
provided in Sect. 3.3.

3.1 Passively Secure, Two-Party Paillier-Based Arithmetic

Paillier’s encryption scheme [Pai99] is a semantically secure, additively homo-
morphic, public-key cryptosystem over ZN , where N = pq is an RSA-modulus.
In the simple, two-party setting, Bob holds a copy of Alice’s public key. To pro-
vide an input means to hand Bob a fresh encryption of it. Output is realized
by sending the relevant encryption to Alice (rerandomizing it first); she then
decrypts and returns the plaintext to Bob. At this point both parties know the
value in question.

Regarding the realization of the secure arithmetic, the homomorphic property
allows Bob to compute linear combinations of encryptions that he holds. How-
ever, he is unable to obtain encryptions of products without the help of Alice.
For this he uses the standard protocol seen in Fig. 1, where subtraction simply
means “invert and add.” (In the ciphertext domain this means “multiply by the
multiplicative inverse.”) Correctness follows from

xy = (xy + ryx + rxy + rxry) − ryx− rxy − rxry

= (x + rx)(y + ry) − ryx− rxy − rxry

= x′y′ − ryx− rxy − rxry .



Sub-linear, Secure Comparison with Two Non-colluding Parties 179

Alice: sk pk = N Bob: [x],[y]

rx∈RZN

ry∈RZN

[x′] ← [x] + rx

[y′] ← [y] + ry

[x′] , [y′]←−−−−−−−−−−−−−−−−−−−−−
x′ ← decr ([x′])
y′ ← decr ([y′])

[x′y′]−−−−−−−−−−−−−−−−−−−−−→
[σ] ← rx [y] + ry [x] + rxry

[xy] ← [x′y′] − [σ]

Fig. 1. Multiplication of two encryptions

On the intuitive level, this clearly realizes the arithmetic black-box. For in-
put/output Alice’s view consists only of the encryptions of outputs she receives,
while Bob only sees the outputs and encryptions under Alice’s key. For the
multiplication protocol, Alice receives two encryptions of masked (i.e. uniformly
random) values, while Bob simply receives two additional encryptions. Neither
provides any information.

Formally simulating these views is simple. Sketching the ideas, Alice must be
handed fresh encryptions, either of the output to be received (which the simulator
knows) or a random value in the case of the multiplication protocol. Bob on the
other hand expects to see encryptions of the values in question. The simulator
cannot generate these, but from Bob’s point of view they are indistinguishable
from arbitrary encryptions, as the scheme is semantically secure. Hence any fresh
encryptions under Alice’s (simulated) key will do.

3.2 The Multiparty Case

The arithmetic black-box can also be realized in a multiparty setting. Note that
both of the options mentioned are secure against active adversaries, but may be
simplified, if it is assumed that the adversary is honest-but-curious only, i.e. if
the corrupt parties follow the protocol as specified.

The first candidate consists of using Shamir’s secret sharing scheme over the
prime field FM along with the protocols of Ben-Or et al. [Sha79, BGW88]. This
results in a threshold scheme, which is not applicable in general. However, if
the threshold is 1, then at most one party will be corrupt. In that case any two
parties can take the role of Alice and Bob.

A multiparty solution based on Paillier encryption is also possible using the
techniques of Cramer et al. [CDN01]. In that setting, all parties hold all cipher-
texts, while the key is secret shared among them. Again, a threshold solution
allowing at most one corrupt party is a possible setting. Note that though not
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presented so, it is possible to use the protocols of [CDN01] with a threshold
t ≥ n/2; this provides an alternative, two-party setting, which is more suited
when considering active adversaries.

3.3 Active Security

Both solutions of the previous section realize the arithmetic black-box in the
presence of active adversaries. It remains to provide the required extensions,
i.e. to describe how to verify that two values are equal, and how to demonstrate
that an input is of bounded size.

Equality of two values is easily verified using only arithmetic by outputting
their difference. This is of course not secure in general, however, in the present
setting, one of the secret values depends only on inputs from one party (who of
course knows the actual value). It can therefore be viewed as coming directly
from that party. For an honest party, the output is always 0, while for a corrupt
party, the adversary will know the output in advance. Hence no new information
can be obtained. It is noted that for specific primitives, more direct solutions
may be more efficient.

The second problem is to verify that an input provided by some party is
indeed of bounded size. This can be done by taking a detour over the integers,
as any non-negative integer can be written as the sum of the squares of four
integers. For a Paillier based setting, Schoenmakers and Tuyls [ST06] note that
this can be achieved using integer commitments [Bou00, Lip03, DJ02]. For the
setting based on Shamir sharing, a similar proof that a value is of bounded size
can be obtained using linear integer secret sharing, [Tho09]. Sketching the latter
solution, the key idea is to first verify that a value (shared over the integers) is
of the desired size (i.e. provide the four integers). This sharing is then converted
to a Shamir sharing over FM .

4 Secure Equality Testing

An additional primitive is needed before the comparison protocols can be pre-
sented: securely determining a secret bit stating if two values, [x] and [y], are
equal. The protocol is a variation of the secure equality testing of secret shared
values, [NO07, Tof07]; the latter work notes that the ideas generalize to the
case of multiparty computation based on Paillier encryption. Note that in spe-
cific settings, specialized variations of the present protocols will most likely be
preferable to the general solution presented here.

The main idea is seen in Fig. 2. To test equality of two values, it suffices
to test if their difference, [d], is 0. If this is the case, then adding a random
square, [r]2, results in a value with Jacobi symbol jd+r2 =

(
d+r2

M

)
= 1. If

[d] �= 0, however, then the Jacobi symbol is −1 with probability roughly 1/2,
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Alice ABB: [x],[y] Bob

[d] ← [x]− [y]
rA∈RZ∗

M rB∈RZ∗
M

[rA]−−−−→ [rB]←−−−−
[r] ← [rA] [rB]

s∈RZ∗
M

[s]←−−−−
[t] ← ([d] + [r]2) [s]

t←−−−−
jt ←

(
t

M

)
js ← (

s
M

)
[jt]−−−−→ [js]←−−−−

[jd+r2 ] ← [jt] · [js][
j̃
]← [jd+r2 ] + 1[

x
?= y
]
← 2−1

[
j̃
]

Fig. 2. Testing equality (with error probability ≈ 1/2)

[Per52, Tof07]. The Jacobi symbol can therefore be used as a test of equality3.
As the Jacobi symbol of a product is the product of the Jacobi symbols of the
factors, and the multiplicative inverse of ±1 is itself, [jd+r2 ] is correctly computed
when [js] and [jt] are the Jacobi symbols of [s] and [t] respectively. The final
computation simply maps −1 to 0 while preserving a 1.

A false positive – an incorrect 1 – occurs with a probability of roughly 1/2.
However, if the protocol is repeated κ times on the same input, the probability
that all executions provide false positives is negligible. Determining if all invo-
cations have returned 1 can be done by computing the κ-ary fan-in AND of the
test results. This can be done in O(1) rounds using O(κ) arithmetic operations
as described in [DFK+06]. The basic idea is to compute the sum of the bits
plus one, [σ], and use this as input to the known, (κ + 1)-degree polynomial
mapping 1, . . . , κ to 0 and κ + 1 to 1. The powers of [σ] – [σ] ,

[
σ2
]
, . . . ,

[
σκ+1

]
– can be computed in constant rounds using O(κ) multiplications by utilizing
(a simple variation of) the unbounded fan-in multiplication protocol of Bar-Ilan
and Beaver, [BB89].

Correctness. Correctness follows by the intuition above: each test always returns
an encryption of 1 when x = y, and the logical AND of these bits is therefore 1
as well. When x �= y, then except with negligible probability in κ, at least one
of the tests will successfully determine this, i.e. return 0. In this case the logical
AND is also 0.
3 As M is either the product of large primes or a large prime itself, jd+r2 = 0 occurs

with negligible probability. In some settings, the issue can be eliminated using arith-
metic, e.g. by considering

(
d2+r2

M

)
when M ≡ 3 mod 4 is prime. There the additive

inverse of a quadratic residue will never be a quadratic residue itself.
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Passive security. In Fig. 2, Alice receives t. This is the only potential information
leak, as the arithmetic black-box is secure by definition. As M only has large
prime factors, d + r2 is in Z∗

M , except with negligible probability. This implies
that [s] completely blinds it, hence Alice learns nothing. More generally, Alice
and Bob are mutually incorruptible and s and t are known only to them, so no
adversary will learn both s and t.

Active security. To ensure security against active adversaries, the actions of
the parties must be verified. The only issues are the inputs, as security of the
arithmetic is immediate. I.e. the parties must verify that the values provided by
Alice and Bob are as specified. There are two issues:

1. Demonstrate that an input is in Z∗
M .

2. Verify that an input is the Jacobi symbol of a stored, inputter-known value.

Note that this suffices; [r] is uniformly random as either Alice or Bob is honest.
For Alice or Bob to demonstrate that an input is invertible, it suffices to

provide an additional uniformly random invertible value, and have the product
of the two revealed. All parties can then verify that that the product is invertible,
which implies the same of both factors. This reveals no other information, as the
second element masks the real value.

The second issue is slightly more difficult. For Alice to demonstrate that [jt]
is the Jacobi symbol of [t] she provides uniformly random pairs, ([ji] , [ti]) for
1 ≤ i ≤ k, such that ji =

(
ti

M

)
. Bob then flips k coins, b1, . . . , bk; the ABB is then

asked to compute and reveal either the pair ([ji]·[jt] , [ti]·[t]) if bi is 1 or ([ji] , [ti])
otherwise. All parties then verify that the Jacobi symbol of each revealed pair
matches the element. To cheat, Alice would have to guess all of Bob’s coin flips
– this can only occur with probability negligible in k. Note that no information
is revealed when Alice is honest: the parties merely see random pairs, ([ji] , [ti]),
or maskings of [t] and its Jacobi symbol. For Bob to demonstrate the same, the
roles are simply reversed.

It is often possible to do better than the general solution. When, for example,
M is prime, elements with known Jacobi symbol can be efficiently constructed
using only arithmetic:

[x] ← [x′]2 ·
(
2−1([jx] + 1) ? 1 : ω

)
,

where ω is a fixed element with Jacobi symbol −1, [NO07, Tof07].
A similar calculation is possible when M is the product of two primes both

congruent to 3 modulo 4. In this case −1 is a non-residue with Jacobi symbol 1,
hence any element [x] can be written as

([b] ? 1 : −1) [x′]2 ·
(
2−1([jx] + 1) ? 1 : ω

)
where [b] is a bit. (If Alice cannot compute b, i.e. distinguish quadratic residue
from non-residues, she can instead provide a uniformly random value with the
same Jacobi symbol. The parties can then reveal the product of this and the
actual value to Bob, who verifies that its Jacobi symbol is 1).
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Complexity. For passive security, when M is prime, or when M is the product of
two primes both congruent to 3 modulo 4, executing κ copies of Fig. 2 in parallel
and performing the κ-ary fan-in AND requires O(κ) ABB-operations executed in
O(1) rounds. In other settings – i.e. when it is not possible to efficiently verify a
Jacobi symbol – arithmetic complexity increases by a factor of k. For simplicity
we can view this as being incorporated into κ – say k =

√
κ – though strictly

speaking it should be treated separately.

5 The log-Rounds Protocol

Based on the arithmetic black-box presented in Sect. 2 – including extensions
such as the equality test – the log-rounds protocol can now be explained. In a
sense, this paper follows the same overall strategy as many of the previous solu-
tions: transform the problem to a comparison of “known” values and determine
their most significant differing bit-position; this provides the result. What differs
are the means to achieve this goal.

On the intuitive level, the approach can be viewed as a binary search, though
strictly speaking, this is not the case. The full protocol is seen in Fig. 3 and is
explained during the argument of correctness. Assume for simplicity that � is
a power of two. This can always be ensured by viewing x and y as numbers of
larger (but less than double) size. Further, assume that the modulus of the ABB
is much larger than than the input size, M%2�+κ′

for security parameter κ′.

Correctness. Correctness of the protocol is quite simple, once the intuition is
understood. Therefore, rather than presenting the protocol from beginning to
end, we present the ideas. This requires starting at both the end and the be-
ginning at the same time, and working our way towards the middle. It explains
why a given computation is performed by showing how it helps solve the original
problem.

Initially the arithmetic black-box is used to compute the value [z]. As x ≥
y ⇔ z ≥ 2�, we find that if [z�] really is an encryption of the �’th bit of z,
then the result is correct. This is the case if z̄ = z mod 2�: z − (z mod 2�) sets
all the � least significant bits of the (� + 1)-bit z to 0 leaving only the top bit.
The multiplication by 2−� (modulo M) simply shifts this down to the desired
position.

To perform the modulo reduction of [z], Bob provides a (2�+κ′
)-bit mask, [r],

which is added to [z]. The outcome, [c], is then revealed to Alice. As it was
assumed that M%2κ′+�, the computation of c can be viewed as occurring over
the integers. Therefore

z ≡ c− r mod 2�.

Both c and r are easily reduced modulo 2�. Alice knows the former and Bob the
latter, so they may simply supply these values, [c̄] and [r̄]. Subtracting the latter
from the former provides the desired result, however, this subtraction must occur
modulo 2�, not modulo M .
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Alice ABB: [x],[y] Bob

r∈RZ2�+κ′

[r]←−−−−
[z] ← 2� + [x] − [y]
[c] ← [z] + [r]

c←−−−−
c̄ ← c mod 2� r̄ ← r mod 2�

c⊥ ← c mod 2�/2 r⊥ ← r mod 2�/2

c	 ← �c/2�/2� mod 2�/2 r	 ← �r/2�/2�mod 2�/2

[c̄]−−−−→ [r̄]←−−−−
[c⊥]−−−−→ [r⊥]←−−−−
[c	]−−−−→ [r	]←−−−−

[b] ← [r	] ?= [c	]
[c̃] ← [b] ? [c⊥] : [c	]
[r̃] ← [b] ? [r⊥] : [r	]

[u] ← 1 −
(

[c̃]
?≥ [r̃]

)
// Note: recursion

[z̄] ← ([c̄]−[r̄])+2� [u]
[z�] ← 2−�([z] − [z̄])
[x ≥ y] ← [z�]

Fig. 3. The log(�)-rounds comparison protocol

However, by considering two cases, the desired operation can be simulated
with ZM arithmetic:

1. If c̄ ≥ r̄, then subtraction modulo M provides the correct result.
2. If c̄ < r̄, then subtracting r̄ results in an underflow modulo M . Adding 2� at

this point provides the correct result.

Unfortunately the parties do not know which case they are in – nor should they
learn it – and therefore do not know if they should instruct the ABB to add 2�.

This leaves us with the problem of comparing [c̄] and [r̄], and while it seems
as if we are back at the initial problem, this is not the case, as Alice and Bob
each know one of these values. Thus, they can be decomposed into the top and
bottom halves – the �/2 least significant and most significant bits – by having
the parties input them. These are denoted [c
], [c⊥], [r
], and [r⊥].

Again there are two cases to consider, and again the parties do not know
which is the case:

1. If c
 = r
, i.e. if the most significant half of the bits are equal, then it
suffices to compare the values representing the least significant bits.
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2. If c
 �= r
, i.e. if the top halves differ, then the least significant bits can be
ignored, and it suffices to compare c
 and r
.

Using the equality test, the parties can determine a secret bit stating which is
the case. Based on this, they obliviously choose between the top and bottom
halves of [c̄] and [r̄] – i.e. [r
], [c
] and [r⊥], [c⊥] – storing the results as [r̃]
and [c̃].

The concluding computation consists of determining which of [r̃] and [c̃] con-
tains the larger value. This is the original problem, however, the bit-length of
the numbers is now only �/2. If �/2 > 1, then the protocol calls itself recursively.
Otherwise – i.e. if the values to be compared are single-bit – it is straightforward
to compute an encryption of r̃ > c̃ using only secure arithmetic:

(c̃⊕ r̃)r̃ = r̃ − c̃r̃.

To see that this is the correct result, note that it is 1 exactly when the bits differ
and r̃ is set.

Security. As the arithmetic black-box is secure by definition, an adversary can
only obtain information or affect the computation through the input/output.
Leakage can only occur through the value, c, received by a corrupt Alice. How-
ever, this is statistically indistinguishable (in κ′) from a uniformly random
(� + κ′)-bit value, as [z] is masked by [r] provided by the honest Bob.

Similarly, an adversary can only affect the computation through incorrect
inputs. Hence, if it is verified that [c̄], [c
], [c⊥], [r̄], [r
], and [r⊥] are indeed
the correct “sub-strings” of [c] and [r] (and that [r] is indeed � + κ′ bits long),
then no adversarial behavior is possible.

This verification can be performed by having Alice and Bob provide [cI ] and
[rI ], the (ignored) top κ′ bits of [c] and [r], as well. Initially it is verified that
[c
], [c⊥], [r
], and [r⊥] are all �/2 bits, and that [cI ] and [rI ] are κ′ bits. Then,
the parties check that [c̄] = 2�/2 [c
]+[c⊥], [r̄] = 2�/2 [r
]+[r⊥], [c] = 2� [cI ]+[c̄],
and [r] = 2� [rI ]+[r̄]. At this point it has been ensured that the decomposition of
[c] and [r] are correct. Note that there is no need to explicitly verify that [c̄] and
[r̄] are � bits, nor that [r] is �+ κ′ bits. This has already been verified implicitly.

Complexity. For a reduction of the problem to one of half size – Fig. 3 except
for the recursive invocation – one invocation of the equality test and a constant
amount of input/output and arithmetic is required. Overall this means O(κ)
arithmetic and input/output operations are needed, where κ is the correctness
parameter for the equality test. These can be performed in O(1) rounds. Each
iteration reduces the problem to one of half size, thus only log(�) steps are
required until the bit-length reaches 1, at which point the remaining work is
constant. This implies that the overall complexity is O(κ log(�)) operations in
O(log(�)) rounds.

Note that to ensure correctness of the full protocol, all invocations of the equal-
ity test must succeed. As the number of tests depends on �, so must κ. Adding
loglog(�) provides the desired error probability, as (1− 2−κ)log(�) ≈ 1− log(�)2−κ
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(since 2−κ is negligible)4. This implies O(log(�)(κ+loglog(�))) operations overall,
to ensure correctness except with probability negligible in κ.

Theorem 1. Given two mutually incorruptible parties, Alice and Bob, and two
�-bit values, [x] and [y], stored within an arithmetic black-box providing secure
arithmetic in ZM (where M > 2�+κ′+loglog(�) is prime or an RSA-modulus and
κ′ is a security parameter), the parties may obtain a bit, [b], such that b is 1 iff
x ≥ y (except with probability negligible in the correctness parameter κ) using
O(log(�)(κ + loglog(�))) ABB-operations in O(log(�)) rounds.

6 The Constant-Rounds Protocol

Decreasing the round complexity to constant without considering the individ-
ual bits is achieved by combining the ideas of the previous section with earlier
approaches. Rather than going over all details, we present the overall protocol
in Fig. 4, and only reference existing sub-protocols in the analysis. This avoids
muddling the presentation with details of existing protocols.

Correctness. The protocol starts and ends exactly as the log-rounds solution,
hence if [u] correctly states if an underflow occurs in the subtraction, then the
correct result is determined. In difference to above, [c̄] and [r̄] are split into√
� blocks rather than two (the bit-length can be padded to ensure that it is

a square). This can be viewed as writing the numbers in 2
√

�-ary notation. As
in the previous section, it suffices to only compare the most significant differing
block. There are more of them, but the goal remains the same: the parties must
obliviously find and select the block in question using only the ABB.

To do this, an equality test is performed for each block: [bi] states if the i’th
block of the numbers are equal.

[
b̃i

]
is the logical AND of the top blocks, i.e.

from the most significant one down to the i’th. It is 1 exactly when all these
blocks are equal. Thus, the most significant differing block will be the first one
containing a 0 (starting with the most significant one). The

[
b̃i

]
of the less

significant blocks will of course also be 0, as there is a more significant, differing
position. The value [b′i] =

[
b̃i+1

]
−
[
b̃i

]
states if the i’th block is the desired one.

For the most significant, differing block it will be 1 = 1 − 0, while the rest have
b′i = 0, either from 1 − 1 or 0 − 0. Thus, the [b′i] that is set can be viewed as a
pointer to the correct block position, i, and

[
r(i)
]

and
[
c(i)
]

are selected by the
sums5.

Concluding, the
√
�-bit [c̃] and [r̃] must be compared. This time, we cannot

proceed recursively, as this would not result in a constant-rounds protocol. In-
stead, the parties transform the problem to one where Alice holds one input and
4 A similar increase is needed for the security parameter, κ′. This does not change com-

plexity though.
5 If the inputs are equal this is not true, but as we get c̃ = r̃ = 0 which provides the

same result, it is acceptable.
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Alice ABB: [x],[y] Bob

r∈RZ2�+κ′

[r]←−−−−
[z] ← 2� + [x] − [y]
[c] ← [z] + [r]

c←−−−−
c̄ ← c mod 2� r̄ ← r mod 2�

[c̄]−−−−→ [r̄]←−−−−
for i = 0..

√
� − 1 do for i = 0..

√
� − 1 do

ĉ(i) ← �c/2i
√

�� r̂(i) ← �r/2i
√

��
c(i) ← ĉ(i) mod 2

√
� r(i) ← r̂(i) mod 2

√
�[

c(i)
]

−−−−→

[
r(i)
]

←−−−−
od od

for i = 0..
√

� − 1 do

[bi] ← [r(i)] ?= [c(i)]
od[
b̃√�

]
← 1

for i =
√

� − 1..0 do[
b̃i

]
← ∧√

�−1
j=i [bj ]

[b′i] ←
[
b̃i+1

]
−
[
b̃i

]
od

[c̃] ←
√

�−1∑
i=0

[b′i]
[
c(i)
]

[r̃] ←
√

�−1∑
i=0

[b′i]
[
r(i)
]

[u] ← 1 −
(

[c̃]
?≥ [r̃]

)
[z̄] ← ([c̄]−[r̄])+2� [u]
[z�] ← 2−�([z] − [z̄])
[x ≥ y] ← [z�]

Fig. 4. The constant-rounds comparison protocol

Bob the other – the initial step of the present protocols. Then, these numbers
are bit-decomposed – Alice and Bob provide the binary representation of the
numbers – and the problem is brute-forced, e.g. using [DFK+06]. As there are
only

√
� bits, linear work is acceptable at this point.

Security. Privacy of the protocol follows by the exact same argument as above:
leakage can only happen through c, which is statistically indistinguishable from
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a uniformly random (� + κ′)-bit value. Further, as above, an active adversary
can only affect the protocol through inputs. To avoid malicious behavior, it must
merely be verified that [r] is indeed of the proper bit-length; that [r] and [c] are
decomposed properly into the

[
c(i)
]

and
[
r(i)
]
; and that [c̄] and [r̄] are correct.

In addition to this, it must be verified that the bit-decomposition needed in the
comparison of [c̃] and [r̃] is correct. All this can be performed analogously to the
constructions of the previous section – the difference is that a 2

√
�-ary or binary

representation is considered rather than a 2�/2-ary one.

Complexity. Initially, Bob provides the mask, [r], after which Alice obtains c,
the masking of [z]. They decompose these to their 2

√
�-ary representations and

provide these as inputs to the ABB. Complexity of this is clearly O(
√
�) in-

put/output operations. Moreover, only three rounds are needed as all elements
of the decompositions may be input concurrently.

Regarding the work performed by the ABB, clearly the computation of [z]
and [c] is constant. Following this,

√
� equality tests are performed; each of

these requires O(κ) operations implying O(
√
� · κ) operations overall. Round

complexity remains constant, though: no test depends on the output of another,
so they may be executed in parallel. The next step is to compute the “pointer,”
[b′i]. The most expensive part of this is the

√
�
√
�-ary logical AND’s. The naive

solution requires Ω(�) operations which is too expensive. However, the AND-
gates share the same inputs – overall it is simply a prefix-AND of the bi. Thus,
the computation can be performed with linear work in a constant number of
rounds by applying the techniques of [DFK+06]. Concluding the computation
are the selection of [r̃] and [c̃] each requiring O(

√
�) arithmetic operations. This is

followed by the brute-force (linear in
√
�) comparison and the final, constant-size

computation.
The dominating term of all of this is the equality tests, due to their factor of κ.

Thus, the overall complexity is O(
√
�(κ+log(�))), where the log(�)-term is needed

to ensure that the error probability remains negligible in κ when performing all√
� tests.

Theorem 2. Given two mutually incorruptible parties, Alice and Bob, and two
�-bit values, [x] and [y], stored within an arithmetic black-box providing secure
arithmetic in ZM (where M > 2�+κ′

is prime or an RSA-modulus and κ′ is a
security parameter), the parties may obtain a bit, [b], such that b is 1 iff x ≥ y
(except with probability negligible in the correctness parameter κ) using O(

√
�(κ+

log(�))) ABB-operations in O(1) rounds.

7 Variations

Handling arbitrary inputs of ZM . Protocols allowing arbitrary inputs in ZM

are also possible. This involves comparing both inputs, [x] and [y], as well as
[x− y] to 'M/2(, [NO07]. The answer can be determined using a small arithmetic
circuit. Comparison with 'M/2( is equivalent to doubling and extracting the
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least significant bit, which translates to a comparison of values held by Alice
and Bob. At this point the present ideas may be applied.

Improved complexity in the constant-rounds case. Complexity of the constant-
rounds protocol can be improved slightly. The idea is to split the numbers into√

�/κ blocks of size
√
�κ. Determining and selecting the relevant block requires

only O(
√
�κ) arithmetic operations, and while the new comparison problem

grows to size
√
�κ, it is still acceptable to brute-force this.

A second approach allows complexity to be reduced further at the cost of
extra rounds. Splitting the numbers into 3

√
� blocks results in a new problem

of size ( 3
√
�)2, which may be solved with O( 3

√
� · κ) work. This amount is also

needed to reduce the size of the problem, thus, it is also the overall complexity.
The idea generalizes to O(c)-round O( c

√
� · κ) solutions for any c.

Hybrid protocols for practice. Due to the blowup of κ in the complexity, theo-
retically worse solutions may be preferable to the log-rounds protocol for small
inputs. This suggests that a hybrid approach will be best in practice: Initially the
log-rounds solution can be applied repeatedly to reduce the size of the problem,
but at some point (when the problem is small enough) another solution will be
better. At this point, that solution may be applied instead of continuing with
the recursive approach.

8 Concluding Remarks

The protocols presented demonstrate that in order to perform secure compari-
son, the explicit binary representation does not have to be considered. Rather,
by testing equality of “sub-strings” of the full problem (where this test occurs
on elements of the ring or field), the size of the problem can be reduced with-
out having to consider each bit-position individually. This implies an improved
theoretic complexity over all previous solution (regarding the number of crypto-
graphic invoked).

A sub-linear comparison protocol for the general multiparty setting is left
as an open problem. One obvious possibility would be to generate encryptions
or sharings of uniformly random values of bounded size, say k-bit, which are
unknown to all. It is not clear how to do this without also generating the binary
representation as well, though.

The author would like to thank Ivan Damg̊ard, Martin Geisler, and the anony-
mous referees for their many remarks and suggestions.
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Abstract. Consider a database where each record has different access control
policies. These policies could be attributes, roles, or rights that the user needs to
have in order to access the record. Here we provide a protocol that allows the users
to access the database record while: (1) the database does not learn who queries a
record; (2) the database does not learn which record is being queried, nor the ac-
cess control policy of that record; (3) the database does not learn whether a user’s
attempt to access a record was successful or not; (4) the user can only obtain
a single record per query; (5) the user can only access those records for which
she has the correct permissions; (6) the user does not learn any other information
about the database structure and the access control policies other than whether he
was granted access to the queried record, and if so, the content of the record; and
(7) the users’ credentials can be revoked.

Our scheme builds on the one by Camenisch, Dubovitskaya and Neven
(CCS’09), who consider oblivious transfer with access control when the access
control policies are public.

Keywords: Privacy, Oblivious Transfer, Anonymous Credentials, Access
Control.

1 Introduction

When controlling access to a sensitive resource, it is clear that the applicable access
control policies can already reveal too much information about the resource. For exam-
ple, consider a medical database containing patient records, where the access control
policy (ACP) of each record lists the names of the treating doctors. The fact that a pa-
tient’s record has certain specialists in its ACP leaks information about the patient’s
disease. Many patients may want to hide, for example, that they are being treated by
a plastic surgeon or by a psychiatrist. Also, doctors treating a celebrity may want to
remain anonymous to avoid being approached by the press.

As another example, in a multi-user file system, it may be desirable to hide the owner
of a file or the groups that have access to it to prevent social engineering attacks, coer-
cion, and bribery. In a military setting, knowing which files are classified “top secret”,
or even just the percentage of “top secret” files in the system, may help an attacker to
focus his attack.

Confidentiality of the stored data and associated ACPs is not the only security con-
cern. Privacy-aware users accessing the database may be worried about malicious
database servers prying information from the query traffic. For example, the frequency
that a patient’s record is accessed gives a good estimate of the seriousness of his

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 192–209, 2011.
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condition, while the identity of the doctors that access it most frequently may be an in-
dication of the nature of the disorder. Users may therefore prefer to query the database
anonymously, i.e., hiding their identity, roles, permissions, etc. from the database server,
as well as hiding the index of the queried record. At the same time, the database server
wants to rest assured that only permitted users have access to the data, and that they
cannot find out who else has access to the data.

1.1 Our Contribution

In this paper we consider access to a database where each record is protected by a
(possibly) different access control policy, expressed in terms of the attributes, roles, or
rights that a user needs to have to obtain access. To provide the maximal amount of
privacy to both users and the database server, we propose a protocol guaranteeing that
(1) the database does not learn who queries a record; (2) the database does not learn
the index nor the ACP of the queried record; (3) the database does not learn whether
a user’s attempt to access a record was successful or not; (4) users can only obtain a
single record per query, (5) users can only access those records for which they satisfy
the ACP; (6) at each query, users learn no more information about the applicable access
control policy other than whether they satisfy it or not; and (7) the users’ credentials
can be revoked. Our ACP structure can be used to implement many practical access
control models, including access control matrices, capability lists, role-based access
control, and hierarchical access control. This work extends the work of Camenisch,
Dubovitskaya, and Neven [8] who consider oblivious transfer with access control when
the access control policies are public, i.e., they do not satisfy properties (6) and (7).

1.2 Related Work

Oblivious transfer protocols in their basic form [24,21,11] offer users access to a database
without the server learning the contents of the query, but place no restrictions on who
can access which records. After Aiello et al. suggested priced oblivious transfer [28],
Herranz [18] was the first to add access control restrictions to records, but has users
authenticate openly (i.e., non-anonymously) to the server. Later, Coull et al. [9] and Ca-
menisch et al. [8] proposed OT protocols with anonymous access control. In all of these
works, however, the access control policies are assumed to be publicly available to all
users, and the server notices when a user’s attempt to access a record fails.

There is also a line of work devoted to access control with hidden policies and hidden
credentials, but none of them consider oblivious access to data, meaning that the server
learns which resource is being accessed. In trust negotiation systems [19,26,27], two
parties establish trust through iterative disclosure of and requests for credentials. Hidden
credentials systems are designed to protect sensitive credentials and policies [4,17]. Nei-
ther provide full protection of policies, however, in the sense that the user learns (par-
tial) information about the policy if her credentials satisfy it. The protocol of Frikken et
al. [15] does provide full protection, but for arbitrary policies it requires communication
exponential in the size of the policies.

Finally, one could always implement a protocol with all desired properties by evalu-
ating an especially designed logical circuit using generic two-party computation
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techniques [25], but the cost of this approach would be prohibitive. In particular, the
computation and communication cost of each record transfer would be linear in the
number of records in the database N , whereas the efficiency of our transfer protocol is
independent of N .

2 Definition of OT with Hidden Access Control Policies

An oblivious transfer protocol with hidden access control policies (HAC-OT) is run
between an issuer, a database, and one or more users. The issuer provides access cre-
dentials to users for the data categories that they are entitled to access. The database
hosts a list of records and associates to each record an access control policy (ACP).
Users can request individual records from the database, and the request will succeed
provided they have the necessary credentials. The ACPs are never revealed.

In a nutshell, a HAC-OT protocol works as follows. The issuer generates its key pair
for issuing credentials and publishes the public key as a system-wide parameter. The
database server initializes a database containing records protected by access control
policies. It generates the encrypted database, which also contains the encrypted access
control policies, and makes it available to all users, e.g., by posting it on a website or
by distributing it on DVDs. Each user contacts the issuer to obtain a credential that lists
all data categories that the user is entitled to access. When she wants to access a record
in the database, the user proves to the database in zero-knowledge that her credential
contains all the data categories required by the access control policy associated to the
record. She performs computations on the encrypted access control rule associated to
the desired record so that, with the help of the database, she will obtain the record key
if and only if she satisfies the (encrypted) ACP. The database learns nothing about the
index of the record that is being accessed, nor about the categories in the access control
policy. The database does not even learn whether the user’s attempt to obtain a record
was successful.

2.1 Setting and Procedures

If κ ∈ N, then 1κ is the string consisting of κ ones. The empty string is denoted ε. If A

is a randomized algorithm, then y
$← A(x) denotes the assignment to y of the output of

A on input x when run with fresh random coins.
Unless noted, all algorithms are probabilistic polynomial-time (PPT) and we im-

plicitly assume they take an extra parameter 1κ in their input, where κ is a security
parameter. A function ν : N → [0, 1] is negligible if for all c ∈ N there exists a κc ∈ N
such that ν(κ) < κ−c for all κ > κc.

We consider a limited universe of data categories C = {C1, . . . , C�} ⊆ {0, 1}∗. An
access control policy ACP ⊆ C contains those data categories that a user needs to have
access to in order to obtain the record. We will usually encode access control policies
as vectors c = (c1, . . . , c�) ∈ {0, 1}�, where ci = 1 iff Ci ∈ ACP . A database consists
of a list of N pairs ((R1,ACP1), . . . , (RN ,ACPN )) of records Ri ∈ {0, 1}∗ and their
associated access control policies ACP i ⊆ C .

Users hold credentials that certify the list of categories that the user is entitled to ac-
cess. The list is encoded as a vector d = (d1, . . . , d�) ∈ {0, 1}�, where di = 1 iff the
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user is granted access to category Ci. Letting c ·d =
∑�

i=1 cidi and |c| =
∑�

i=1 ci, we
say that a user’s credential d covers an access control policy c iff c ·d = |c|. This essen-
tially means that users need to have access to all categories in the ACP in order to have
access to the record. This fits nicely to a number of real-world access control models.
For example, to implement role-based access control, where each database record can be
accessed by users with one particular role, one sets � to be the number of roles in the sys-
tem, one sets ci = 1 for the required role i and cj = 0 for all j �= i, and one sets di = 1
in the users’ credentials for all roles i that a user owns. In a hierarchical access control
system, users are granted access if their access level is at least that of the resource. For
example, in a military context, the levels may be “top secret”, “secret”, “restricted”, and
“declassified”, so that someone with “top secret” clearance has access to all records. To
implement this in our system, one would set � to be the number of levels, set ci = 1 for
the level i of the resource, and set dj = 1 for all levels j lower than or equal to i.

Alternatively, one could use a coverage definition where d covers c iff c · d = |d|,
effectively meaning that all of a user’s categories have to appear in the ACP in order
to be granted access. Our protocol is easily adapted to implement these semantics. This
definition of coverage could be useful to implement simple access control matrices: if
� is the number of users, then user i would have a credential with di = 1, and the ACP
sets cj = 1 for all users j that are allowed access.

An oblivious transfer protocol with hidden access control policies (HAC-OT) is six
polynomial-time algorithms and protocols, i.e., HAC -OT = (ISetup, Issue,Revoke,
DBSetup,DBVerify,Transfer).

• ISetup(C ) $→ (pk I, sk I,RL). The issuer runs the randomized ISetup algorithm to
generate a public key pk I, the corresponding secret key sk I, and an initial revocation
list RL for security parameter κ and category universe C . The public key and revocation
list are published as system-wide parameters.
• Issue: Common input: pk I, uid ,d; Issuer input: sk I; User output: creduid or ⊥. A

user obtains an access credential for a vector of categories d = (d1, . . . , d�) ∈ {0, 1}�

by engaging in the Issue protocol with the issuer. The issuer’s public key pk I, the user’s
identity uid , and the vector d are common inputs. The issuer also uses his secret key
sk I as an input. At the end of the protocol, the user obtains the credential creduid .
• Revoke(sk I,RL, uid) $→ RL′. To revoke the credential of user uid , the issuer runs

the Revoke algorithm to create an updated revocation list RL′ and publishes it as a
system-wide parameter.
• DBSetup

(
pk I,DB = (Ri,ACP i)i=1,...,N

) $→
(
(pkDB,ER1, . . . ,ERN ), skDB

)
.

The database server runs the DBSetup algorithm to create a database containing records
R1, . . . , RN protected by access control policies ACP1, . . . ,ACPN . This algorithm
generates the encrypted database consisting of a public key pkDB and the encrypted
records along with their encrypted access control policies ER1, . . . ,ERN . The en-
crypted database is made available to all users, e.g., by posting it on a website.1 The
database server keeps the secret key skDB for itself.

1 We assume that each user obtains a copy of the entire encrypted database. It is impossible
to obtain our strong privacy requirements with a single database server without running into
either computation or communication complexity that is linear in the database size.
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• DBVerify
(
pkDB,EDB

)
→ b. Upon receiving an encrypted database EDB , all

users perform a one-time check to test whether EDB is correctly formed (b = 1) or not
(b = 0).
• Transfer: Common input: pk I,RL, pkDB; User input: uid , i,ERi, creduid ; Data-

base input: skDB; User output: Ri or ⊥. When the user wants to access a record
in the database, she engages in a Transfer protocol with the database server. Com-
mon inputs are the issuer’s public key pk I, the revocation list RL, and the database’s
public key pkDB. The user has as a secret input her identity uid , her selection index
i ∈ {1, . . . , N}, the encrypted record with encrypted ACP, and her credential creduid .
The database server uses its secret key skDB as a private input. At the end of the pro-
tocol, the user obtains the database record Ri if her credential satisfies the ACP, or
receives ⊥ if not.

We assume that all communication links are private. We also assume that the commu-
nication links between a user and the issuer are authenticated, so that the issuer always
knows to which user it is issuing a credential. The communication links between a user
and the database are assumed to be anonymous, so that the database does not know
which user is making a record query. (Authenticated communication channels between
users and the database would obviously ruin the strong anonymity properties of our
protocol).

2.2 Security Definitions

We define security of an HAC-OT protocol through indistinguishability of a real-world
and an ideal-world experiment as introduced by the UC framework [5,6] and the reac-
tive systems security models [22,23]. The definitions we give, however, do not entail
all formalities necessary to fit one of these frameworks; our goal here is solely to prove
our scheme secure.

We summarize the ideas underlying these models. In the real world there are a num-
ber of players, who run some cryptographic protocols with each other, an adversary A,
who controls some of the players, and an environment E . The environment provides the
inputs to the honest players and receives their outputs and interacts arbitrarily with the
adversary. The dishonest players are subsumed into the adversary.

In the ideal world, we have the same players. However, they do not run any crypto-
graphic protocols but send all their inputs to and receive all their outputs from an ideal
all-trusted party T. This party computes the output of the players from their inputs,
i.e., applies the functionality that the cryptographic protocol(s) are supposed to realize.
The environment again provides the inputs to and receives the output from the honest
players, and interacts arbitrarily with the adversary controlling the dishonest players. A
set of cryptographic protocols is said to securely implement a functionality if for every
real-world adversary A and every environment E there exists an ideal-world simulator
A′ controlling the same parties in the ideal world as A does in the real world, such that
the environment cannot distinguish whether it is run in the real world interacting with
A, or whether it is run in the ideal world interacting with the simulator A′.

Definition 1. Let RealE,A(κ) denote the probability that E outputs 1 when run in the
real world with A and let IdealE,A′(κ) denote the probability that E outputs 1 when
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run in the ideal world with A′, then the set of cryptographic protocols is said to securely
implement functionality T if RealE,A(κ) − IdealE,A′(κ) is a negligible function in κ.

THE REAL WORLD. We first describe how the real-world algorithms presented in §2.1
are orchestrated when all participants are honest, i.e., honest real-world users U1, . . . ,
UM , an honest issuer I, and an honest database DB. If parties are controlled by the
real-world adversary A, they can arbitrarily deviate from the behavior described below.

All begins with I generating a key pair and an initial revocation list (pk I, sk I,RL) $←
ISetup(C ) and sending (pk I,RL) to all users U1, . . . ,UM and the database DB.

When the environment E sends a message (initdb,DB = (Ri,ACP i)i=1,...,N) to

the database DB, the latter encrypts DB by running (EDB , skDB) $← DBSetup(pk I,
DB), and sends the encrypted database EDB = (pkDB,ER1, . . .ERN ) to all users
U1, . . . ,UM . All users execute a DBVerify protocol with the database and, if it returns 1,
return a message (initdb, N) to the environment.

When E sends a message (issue,d) to user Uuid , she engages in an Issue protocol
with I on common input pk I, uid , and a vector d indicating which categories the user
is allowed to access, with I using sk I as its secret input. Eventually, Uuid obtains the
access credential creduid . User Uuid returns a message (issue, b) to the environment
indicating whether the issue protocol succeeded (b = 1) or failed (b = 0). Each user
will engage in an Issue protocol only once; if she receives a second message (issue,d)
from the environment, she simply returns (issue, 0).

When E sends a message (revoke, uid) to the issuer I, it creates a new revocation

list RL′ $← revoke(sk I,RL, uid) based on the old revocation list RL and the user
identity uid to be revoked. The issuer returns (revoke, uid) to the environment.

When E sends a message (transfer, i) to user Uuid , then Uuid engages in a Transfer
protocol with DB on common input pk I and pkDB, on Uuid ’s private input i and her
credential creduid , and on DB’s private input skDB. As a result of the protocol Uuid

obtains the record Ri, or ⊥ indicating failure. If the transfer succeeded the user returns
(transfer, i, Ri) to the environment; if it failed she returns (transfer, i,⊥). We note
that DB does not return any outputs to the environment.

THE IDEAL WORLD. In the ideal world, all participants communicate through a trusted
party T which implements the functionality of our protocol. We describe the behavior
of T on the inputs of the ideal-world users U′

1, . . . ,U
′
M , the ideal-world issuer I′, and

the ideal-world database DB′.
The trusted party T maintains an initially empty vector ε for each user U′

uid , an
initially empty list of revoked users RL, and sets DB ← ⊥. It responds to queries from
the different parties as follows.

• Upon receiving (initdb, N) from DB′, T sets DB ← (εi, εi)i=1,...,N and sends
the message (initdb, N) to all users. All users send the message (initdb, N) to the
environment.
• Upon receiving (issue,d) from U′

uid for the first time, T sends (issue,U′
uid ,d)

to I′ who sends back a bit b. If b = 1 then T initializes the category vector duid ← d
for the user U′

uid and sends (issue, 1) to U′
uid ; otherwise it simply sends (issue, 0) to

U′
uid . T responds to all subsequent messages (issue,d) from the same user U′

uid with
(issue, 0).
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• Upon receiving (revoke, uid) from I′, T adds U′
uid to the list of revoked users by

setting RL ← RL ∪ {uid}.
• Upon receiving (transfer, i) from U′

uid , T proceeds as follows. If DB = ⊥, it
sends (transfer,⊥) back to U′

uid . If DB = (εi, εi)i=1,...,N it sends (transfer, ε)
to DB′ who sends back a bit b. If b = 1 it also sends the whole database DB =
(Ri,ACP i)i=1,...,N , and the T sets DB = (Ri,ACP i)i=1,...,N . If the database DB
already contained records, T sends transfer to DB′, who sends back just a bit b. If
b = 1, duid covers ACP i, and uid �∈ RL, then it sends (transfer, Ri) to U′

uid ;
otherwise, it sends (transfer,⊥) to U′

uid .

The ideal-world parties U′
1, . . . ,U

′
M , I′,DB′ simply relay inputs and outputs between

the environment E and the trusted party T.

SECURITY PROPERTIES. It is easy to see that the ideal world definition implies that the
users’ privacy is protected:

An adversary, controlling all parties except some honest users, cannot tell which of
the users access which record nor whether the attempt was successful.

Also, the database is guaranteed that (potentially malicious) users can only access
the records for which they were issued credentials and that users do not learn any infor-
mation about the access control lists apart from the fact whether or not their credentials
allow them to access a record. We note that colluding users cannot pool their credentials
nor can they obtain access with revoked credentials.

3 Randomizing and Extending Groth-Sahai Proofs

Let Pg(1κ) be a pairing group generator that on input 1κ outputs descriptions of mul-
tiplicative groups G1,G2,GT of prime order p where |p| > κ. Let Pg(p) be a pairing
group generator that on input a prime p outputs descriptions of multiplicative groups
G1, G2, and GT of order p. Let G∗

1 = G1 \ {1},G∗
2 = G2 \ {1} and let g1 ∈ G∗

1, g2 ∈
G∗

2. The generated groups are such that there exists an admissible bilinear map e :
G1×G2 → GT, meaning that (1) for all a, b ∈ Zp it holds that e(ga

1 , g
b
2) = e(g1, g2)ab;

(2) e(g1, g2) �= 1; and (3) the bilinear map is efficiently computable. The group setting
GroupSet is a tuple (G1,G2,GT , p, e).

Groth and Sahai [16] present non-interactive witness-indistinguishable proofs of
knowledge for three types of equations involving bilinear groups. These are: (i) pair-
ing product equations, (ii) multi-exponentiation equations, and (iii) quadratic equations
modulo the group order. Our protocol primarily uses proofs of the second type of equa-
tion, which can be made zero knowledge (ZK).

Belenkiy et al. [3] show that the Groth-Sahai proofs can be randomized such that
they still prove the same statement but different proofs for the same statement are in-
distinguishable. In this paper, we extend these ideas: we take a proof for one statement
and transform and randomize it into a proof of a related statement.

Independently of our work, Dodis et al. [12] also suggest to use GS-proofs of an old
statement to construct a GS-proof for a modified statement. However, their approach
only exploits the additive homomorphism of the GS-proof scheme, i.e., it allows one
to modify an old witness by adding a new value to it and construct a proof for the new
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witness, without knowledge of the old one. We suggest a modification scheme for the
GS proof that enables modifying the witness in a more general way using multiplication
and addition.

We describe how this is done in the following. We start with the descriptions of
the basic algorithms of an instantiation of the Groth-Sahai proof system for multi-
exponentiation equations for the prime-order groups in the group setting GroupSet =
(G1,G2,GT , p, e), i.e., the proof system

NIZKPGS

{
((xij)i=1,...,M, j=1,...,�) :

M∧
i=1

yi =
�∏

j=1

g
xij

j

}
,

where the yi’s and gj’s are public group elements of G1 (cf. [7]). In the following
let stmt = ((xij)j=1,...,�;i=1,...,M ) :

∧M
i=1 yi =

∏�
j=1 g

xij

j . The proof system for
GroupSet consists of three algorithms GSSetup, GSProve, and GSVerify. A trusted
third party generates the common (public) reference string by running
CRS ← GSSetup(GroupSet). A prover generates a proof as π ← GSProve(CRS ,
stmt , (yi), (gj), (xij)) and a verifier checks it via b ← GSVerify(CRS , π, stmt , (yi),
(gj)), where b = 1 if π is true w.r.t. stmt and b = 0 otherwise. We now present these al-
gorithms in detail, based on the XDDH assumption [16,7]. (For ease of notation, we will
denote by (yi), (gj), and (xij) the lists (y1, . . . yM ), (g1, . . . , g�), and (x11, . . . , xM�)
whenever the indices are clear from the context).

GSSetup(G1,G2,GT , p, e) $→ CRS : Return CRS = (χ1, χ2, γ1, γ2)
$← G4

2.

GSProve(CRS , stmt , (yi), (gj), (xij))
$→ π:

1. Pick rij
$← Zp for i = 1 . . .M and j = 1, . . . , �.

2. For each xij in (xij) compute the set of commitments

C
(1)
ij ← γ

xij

1 χ
rij

1 ; C
(2)
ij ← γ

xij

2 χ
rij

2 .

3. For each yi in (yi) compute pi =
∏�

j=1 g
rij

j .

4. Return π ← (pi, (C
(1)
ij , C

(2)
ij )j=1,...�)i=1...M .

GSVerify(CRS , π, stmt , (yj), (gi))
$→ b:

1. If for all i = 1 . . .M we have
(
∏�

j=1 e(gj, C
(1)
ij ) = e(yi, γ1)e(pi, χ1))∧(

∏�
j=1 e(gj , C

(2)
ij ) = e(yi, γ2)e(pi, χ2))

then return b ← 1, else return b ← 0.

For the security properties of these algorithms we refer to Groth and Sahai [16] and
Camenisch et al. [7].

Now, like Belenkiy et al. [3], we extend this basic system with a fourth algorithm
GSRand which allows anyone to take a proof π and randomize it to obtain a proof π′

for the same statement without knowledge of the witnesses (xij). Still, the proofs π and
π′ have the same distribution. This algorithm is as follows.

GSRand(CRS , π, stmt, (yi), (gj))
$→ π′:

1. If 0 = GSVerify(CRS , π, stmt , (yi), (gj)) abort.

2. Pick r′ij
$← Zp for i = 1 . . .M and j = 1, . . . , �.
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3. Re-randomize all commitments:
For every xij compute C

′(1)
ij = C

(1)
ij χ

r′
ij

1 ;C′(2)
ij = C

(2)
ij χ

r′
ij

2 .
4. Re-randomize pi (consistent with the new randomness), by computing

pi = pi

∏�
j=1 g

r′
ij

j .

5. Return π′ ← (p′i, (C
′(1)
ij , C

′(2)
ij )j=1,...�)i=1...M .

It is not hard to see that the proof π′ has the same distribution as π and will be accepted
by GSVerify. Also note that all the security properties of the proof system are retained
(the algorithm essentially only randomizes, cf. [7]).

We now extend the above ideas to a fifth, and new algorithm GSRMod, which allows
us not only to re-randomize the proof π for the statement stmt but also to extend it to a
proof π̂ for the related statement

stmt ′ = ((x̂ij)j=1,...,�;i=1,...,M ) :
M∧
i=1

ŷi =
�∏

j=1

g
x̂ij

j

where ŷi =
∏M

j=1 y
x′

j

j

∏�
j=1 g

x′
ij

j . Similarly to just randomizing a proof, it is sufficient
to know x′

j and x′
ij to do this proof modification, i.e., knowledge of x̂ij is not required.

Note that x̂ij = x′
ij +

∑M
k=1 xkj · x′

k will hold w.r.t. the original witnesses xij .

GSRMod(CRS , π, stmt ′, stmt , (ŷi), (yi), (gj), (x′
k)(x′

ij))
$→ π′:

1. If 0 = GSVerify(CRS , π, stmt , (yi), (gj)) abort.

2. Pick r′ij
$← Zp for i = 1, . . . ,M and j = 1, . . . , �.

3. Create commitments for each x̂ij using old commitments:

Ĉ
(1)
ij =

∏M
k=1(C

(1)
kj )x′

kγ
x′

ij

1 χ
r′

ij

1 ; Ĉ
(2)
ij =

∏M
k=1(C

(2)
kj )x′

kγ
x′

ij

2 χ
r′

ij

2 .
4. Re-randomize and modify pi (consistent with the new witnesses and randomness),

by computing

p̂i =
∏M

j=1(pj)x′
j
∏�

j=1 g
r′

ij

j .

5. Return π̂ ← (p̂i, (Ĉ
(1)
ij , Ĉ

(2)
ij )j=1,...�)i=1...M .

Again, it is not hard to see that all security properties are retained (cf. [7]).

4 Our Construction

The main ideas underlying our protocol are as follows: the database server starts by
encrypting each record with a key that is at the same time a signature on the index
of the record and on the access control policy for the record. Furthermore, the server
ElGamal-encrypts the access control policy for each record and creates a commitment
to the policy. It then provides a non-interactive GS proof that the commitment and
the encryptions are consistent. All of these values are then published as the encrypted
database.

To be able to access the records, users are issued credentials for the list of data cat-
egories they are allowed to access. To revoke a user’s credential, we use ideas from
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the revocation scheme by Nakanishi et al. [20] about revocable group signatures, where
the revoked user identities are sorted in lexicographical order and the revocation list
contains signatures on each pair of neighboring revoked user identities. To prove that
her credential is not revoked, the user needs to show that her identity lies within the
open interval defined by one of the signed identity pairs in the current revocation list.
For this purpose the issuer signs all possible “distances” within such intervals, called
“revocation distances”. The user then proves that she possesses a valid signed pair of
revoked user identities and valid signatures on the distances to the edges of the revoca-
tion interval. We note that to improve efficiency, one could make the maximal interval
sizes smaller by revoking a number of dummy user identities by default.

When the user wants to access a record i, she re-encrypts the encrypted ACP for that
record under her own freshly generated public key. She also randomizes the commit-
ment to the ACP and then modifies the original GS proof into a new one proving that
the new encryptions and the new commitment are consistent. The user also blinds the
database server’s signature on the ACP. Using the homomorphism of ElGamal encryp-
tion, the user computes an encryption of δ =

∑
cijdj −

∑
cij . Note that δ is 0 if the

user is allowed access and non-zero otherwise. Finally, the user sends these values to
the database server and proves in zero-knowledge that 1) she computed the encryption
of δ correctly from the modified encryptions and w.r.t. the dj that appear in her creden-
tial, that 2) the blinded signature is a valid signature by the database on the ACP values
in the randomized commitment (without knowing these values of course), and that 3)
her credential was not revoked.

If all of these proofs verify correctly, the database server uses the blinded signature
to compute the blinded key of the record and “folds it into” the encryption of δ so that
it contains the blinded key if δ = 0 and contains a random plaintext otherwise. The
server sends these values to the user and proves that they were computed correctly.
Upon receipt, the user decrypts and unblinds the record key, and decrypts the record.

4.1 Issuer Setup

We now describe each step of our scheme in detail. We begin with the setup procedures
of the issuer and the database provider. Users do not have their own setup procedure.

To set up its keys, the issuer runs the randomized ISetup algorithm displayed in
Figure 1. This will generate groups of prime order p, a public key pk I and corresponding
secret key sk I for security parameter κ and category universe C .

The values gI , yI , h0, . . . , h�+1, u, w from the issuer’s public key and the corre-
sponding xI from the secret key are used to issue credentials. The values ĝ, ĝ1, ĝ3, ĝ4, yr

(G1, G2, GT, p) $← Pg(1κ) ; gI , h0, . . . , h�+1, u, w, ĝ, ĝ1, ĝ2, ĝ3, ĝ4
$← G1 ;

hI , hr, hΔ
$← G2 ; gt, ht

$← GT ; xI , xΔ, xr
$← Zp ; yI ← hxI

I ; yΔ ← hxΔ
Δ ; yr ← hxr

r ;
r, s

$← Zp ; S ← (ĝĝ1
1 ĝ0

2 ĝΔmax+1
3 ĝr

4)1/(xr+s) .
For i = 1, . . . , Δmax do y

(i)
Δ ← g

1/(xΔ+i)
I .

Return (sk I = (xI , xΔ, xr), pk I = (gI , h0, . . . , h�+1, u, w, ĝ, ĝ1, ĝ3, ĝ4, hI , hΔ, hr, gt, ht, yI ,

yr, yΔ, y
(1)
Δ , . . . , y

(Δmax)
Δ ),RL = (1, {0, Δmax + 1}, {(0, Δmax + 1, S, r, s)})) .

Fig. 1. Issuer Setup algorithm ISetup(C )
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and xr are used to sign pairs of the revoked user identities in the revocation list. And, fi-
nally, the issuer uses the Boneh-Boyen signature scheme with secret key xΔ and public
key yΔ to sign all possible “revocation distances” and makes the set of these signatures
(y(i)

Δ )Δmax
i=1 a part of its public key. It will later become apparent what these revocation

distances are (users will need them for proving that her credential is not on the list of
revoked credentials).

He publishes the public key as a system-wide parameter.

4.2 Issuing Credentials

To be able to make database queries, a user needs to obtain a credential for the categories
that she is allowed to access. To this end, the user runs the Issue protocol with the issuer
as depicted in Figure 2. How the issuer determines which user has access to which
categories is of course out of scope of the scheme.

U(pk I, uid , d) : I(pk I, uid , d, sk I) :

r, s
$← Zp

A ← (gIh
uid
0 hd1

1 · · · hd�
� hr

�+1)
1

xI+s

A, r, s�
If e(A, hs

IyI) = e(gIh
uid
0 hd1

1 · · ·hd�
� hr

�+1, hI) then
return cred ← (d, A, r, s).

Fig. 2. Issue protocol Issue()

As a result of the issuing protocol, the user will obtain an access credential for the
vector d. This credential is a triple (A, r, s), which is a signature on the user’s identity
uid and the messages d, using the signature scheme proposed and proved secure by Au
et al. [1]. It is based on the schemes of Camenisch and Lysyanskaya [10] and of Boneh
et al. [2].

4.3 Revoking Credentials

To revoke a user uid ’s credential, the issuer runs the revocation algorithm Revoke(pk I,
sk I,RL, uid). Recall that in our model each user has only one credential, in which
the user’s identity uid is embedded. We implement this revocation list with the ideas
of Nakanishi et al. [20] for revocation in the context of group signatures. Thus the
revocation list RL = (t, R1, R2) consists of its current version number t, a set R1 con-
taining the identities of all revoked users, and a set R2 of signatures on each pair of
neighboring uid ’s in R1 (according to their lexicographic order). When the issuer re-
vokes a credential, it takes the latest revocation list RL = (t, R1, R2) and constructs
the updated revocation list by setting the version number to t′ = t + 1, by adding the
revoked user identity uid to R1, by sorting this list lexicographically, and by issuing
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Parse RL as (t, R1, R2) ; t′ ← t + 1 ; R′
1 ← R1 ∪ {uid} ; R′

2 ← ∅.
Sort R′

1 lexicographically as (uid1, . . . , uidn).
For i = 1, . . . , n − 1 do

r̂, ŝ
$← Zp ; S ← (ĝĝt′

1 ĝuidi
2 ĝ

uidi+1
3 ĝr̂

4)1/(xr+ŝ) ; R′
2 ← R′

2 ∪ {(t′, uid i, uid i+1, S, r̂, ŝ)}.
Return RL′ = (t′, R′

1, R
′
2).

Fig. 3. Revocation algorithm Revoke(pk I, sk I,RL, uid)

a new set R′
2 of signatures on each pair of neighboring revoked user identities in the

updated set R′
1. This algorithm is described in detail in Figure 3.

4.4 Database Setup

To set up the database, the database server runs the algorithm shown in Figure 4. That is,
it uses the issuer’s public key and a pairing group generator to create groups of the same
order p and generate keys for encrypting records. First the database provider generates
its public and private keys to encrypt records.

Then the database creates a signature σi to bind the ACP and index to the encrypted
record and “randomizes” it with value vi. It also computes a commitment Vi to the
index, ACP and vi. The commitment Vi will be used for signature verification.

Next it encrypts each record Ri as (σi, Fi), each with its own key σi. In fact, these
keys are verifiably pseudo random values [13], but are at the same time signatures under
the the database provider’s secret key (xDB) on the index of the record (i) and the

1. Generate system parameters and keys

(G1, G2, GT ) $← Pg(p) ; g, h, hDB
$← G∗

1 ; g′ $← G∗
2 ; H ← e(hDB, g′) ;

xe, xDB
$← Zp ; ye ← gxe ; yDB ← gxDB ; CRS ← GSSetup(G1, G2, GT , p, e) ;

For i = 1, . . . , � + 1 do {xi
$← Zp ; yi ← gxi };

skDB ← (hDB, xe, xDB, x1, . . . , x�+1) ; pkDB ← (g, g′, H, h, ye, yDB, y1, . . . , y�+1).
2. Create an encrypted database

For i = 1, . . . , N do
2.1 Parse ACP vector ci as (ci1, . . . ci�);
2.2 Sign and encrypt records:

vi
$← Zp ; Vi ← giyci1

1 . . . y
ci�
� yvi

�+1 ; σi ← g′
1

xDB+i+
∑�

j=1 xj ·cij+x�+1vi ;
Fi ← e(hDB, σi) · Ri.

2.3 Encrypt categories from the record’s ACP:

For each bit cij generate rij
$← Zp, j = 1 . . . � ;

E
(1)
ij = gcijy

rij
e ; E

(2)
ij = grij ; Eij = (E(1)

ij , E
(2)
ij )

2.4 Generate GS proof that all keys, signatures and encryptions were computed correctly
πi = GSProve

(
CRS , stmt i, ((Eij), Vi), (g, ye, (yj)), (vi, (cij), (rij))

)
2.5 ERi ← (σi, Vi, Fi, (Ei1, . . . , Ei�), πi)

3. Publish an encrypted database and public key
Return EDB ← (

(pkDB,ER1, . . . ,ERN), skDB

)
Fig. 4. Database Setup algorithm DBSetup

(
pk I,DB = (Ri, ci)i=1,...,N

)
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categories defined in the access control policy for the record (ci). The pairs (σi, Fi) can
be seen as an ElGamal encryption [14] in GT of Ri under the public key H . During the
transfer phase, this verifiability allows the database to check that the user is requesting
the decryption key for a record with an access control policy satisfied by the user’s
credential.

To hide the records’ ACPs, the database generates ElGamal encryptions of each bit
cij and provides a NIZK GS-proof πi to prove knowledge of the plaintexts. The state-
ment for this proof for record i is

stmti = (vi, cij , rij) : Vi = giyci1
1 . . . ycil

l yvi

l+1

�∧
j=1

(
E

(1)
ij = gcijyrij

e ∧ E
(2)
ij = grij

e

)
.

4.5 Accessing a Record

After having obtained the encrypted database, the user verifies it for correctness by
running for each record Ri the step, denoted as DBVerify(pkDB,EDB) and defined as:

GSVerify(CRS , πi, stmt i, ((Eij), Vi), (g, ye, (yj))) ∧ (e(yDBVi, σi)
?= e(g, g′)).

When the user wants to access a record in the database, she engages in a Transfer
protocol (Figure 5) with the database server.

The input of the database server is its secret and public key as well as the public key
of the issuer. The input of the user is the public keys of the issuer and the database,
the index i of the record she wants to access, her credential, and the encrypted record
ERi = ((σi, Vi, Fi, (Ei1, . . . , Ei�), πi)).

At a high level, the protocol has three main steps. First, the user takes the encrypted
ACP for the record she wants to access and adds a second layer of encryption to it, using
a freshly generated key pair (xu, yu). Using the homomorphic properties of the encryp-
tion scheme, the user’s categories in her credential and ACP for the record are compared
by constructing a ciphertext (D(1)

i , D
(2)
i ) that encrypts zero if the user’s credential sat-

isfies the ACP, and a non-zero value if it does not. Then, the resulting ciphertext is sent
to the database together with a proof PK1 by the user that she constructed it correctly
w.r.t. to the credential she possesses and the encrypted database. If that proof is valid,
the database removes one layer of encryption and returns the result to the user. Finally,
the user removes the remaining layer of encryption to recover the key for the record (or
a random value if access is not granted).

Now we describe each step in greater detail. The user takes the ElGamal encryp-
tions of each category bit for the record she wants to access and re-encrypts them
with her own key. Then, using these values, she calculates an ElGamal encryption of
δ = (

∑�
j=1 cijdj −

∑�
j=1 cij), which will be 0 if and only if cij = dj . She then

re-randomizes and modifies the GS proof π into the new one π′ for the statement

stmt ′i = (vi, i, (cij), (rij), (r′ij), xV ) : V ′
i = giyci1

1 . . . yci�

� yvi

�+1h
xV

�∧
j=1

(
E

′(1)
ij = gcij (yeyu)rij+r′

ij ∧ E
′(2)
ij = g

rij+r′
ij

e

)
to prove that the new encryptions are consistent with the new commitment V ′

i .
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U (i, cred, pk I, pkDB, ERi, RL) : DB(skDB, pkDB, pk I, RL) :

1. Parse the encrypted record:ERi ← (σi, Vi, Fi, (Ei1, . . . , Ei�), πi) ;
2. Re-encrypt categories with fresh user’s key

xu
$← Zp ; yu ← gxu ;

For j = 1, . . . , � : r′
ij

$← Zp; E
′(1)
ij ← E

(1)
ij (E(2)

ij )xu (yeyu)r′ij ;

E
′(2)
ij ← E

(2)
ij g

r′ij xV
$← Zp ; V ′

i = Vih
xV

π′
i ← GSRMod

(
CRS, π, stmt′, stmt, ((E′(1)

ij , E
′(2)
ij ), V ′

i ),
((E(1)

ij , E
(2)
ij ), Vi), (g, ye, yu, (yi), h), (xu, (rij), xV )

)
3. Create an encryption of δ =

∑
cijdj −∑

cij

rd
$← Zp ; D

(1)
i ←

∏�
j=1(E′(1)

ij
)
dj∏�

j=1 E
′(1)
ij

y
rd
e y

rd
u ;

D
(2)
i ←

∏�
j=1(E′(2)

ij
)
dj∏�

j=1 E
′(2)
ij

grd

4. Blind σi kσ
$← Zp ; σ′

i ← σi
kσ

yu, (E′(1)
ij , E

′(2)
ij )j=1,...�, π′

i, (D
(1)
i , D

(2)
i ), σ′

i�
PK1{Correct(σ′

i, V ′
i , Di, cred)} ��

1. Verify all proofs: b ← (
PK1∧

GSVerify(π′
i, stmt′, ((E′(1)

ij , E
′(2)
ij ), V ′

i )),
(g, ye, yu, (yi), h))

)
2. Remove DB encryption from Di

L
(1)
i ← D

(1)
i

(D(2)
i

)xe
; L

(2)
i ← D

(2)
i

3. Re-randomize remaining user’s encryption Li

kδ, kL
$← Zp ; L

′(1)
i ← (L(1)

i )kδ y
kL
u ;

L
′(2)
i ← (L(2)

i )kδ gkL

4. Compute M ← e(hDB , σ′
i) · e(L′(1)

i , g′)
M, L

′(2)
i�

PK2{Correct(M, L
′(2)
i )} ��

Ri ← Fi/(M · e(L′(2)
i , g′)−xu )1/kσ

Return Ri Return ε

Fig. 5. The Transfer() protocol. The details of the proof protocols PK1 and PK2 are described
in the text, as are the definitions of the statements stmt and stmt ′ of the GS proofs. The latter
essentially say that the encryptions (Eij) and (E′

ij) are consistent with Vi and V ′
i , respectively.

Then, the user blinds σi and sends this blinded version σ′
i to the database server.

Note that σi is derived from the database provider’s secret key, the index of the records,
and, most importantly, all the categories associated to the record. Next, the user proves
to the database interactively that σ′

i is correctly formed as a randomization of some
σi for which she possesses all necessary credentials, that V ′

i is consistent with σ′
i, and

that Di is is correctly formed from the re-encrypted ACP and her credentials. That is,
she executes with the database server the step we refer to as PK1{Correct(σ′

i, V
′
i , Di,

cred)} in Figure 5. For this proof, the user first searches in the current revocation list
RL = (t, R1, R2) for a tuple (uid left, uidright, S, r̂, ŝ) ∈ R2 such that uid left < uid <
uid right. Let Δleft and Δright such that uid left + Δleft = uid = uid right − Δright

and let y(Δleft)
Δ and y

(Δright)
Δ be the issuer’s signatures on these distances. The user next

blinds y
(Δleft)
Δ and y

(Δright)
Δ and her credentials, i.e., she computes t1, t

′
1

$← Zp ; Ã ←
Aut1 ; B ← wt1ut′1 , t2, t′2

$← Zp ; S̃ ← Sut2 , and S̃1 ← wt2ut′2 to blind her credentials
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and computes t3, t′3
$← Zp; Ỹ ← (y(Δleft)

Δ )t3 ; Ỹ1 ← (y(Δright)
Δ )t′3 to blind the revocation

distance signatures.
The user sends Ã, B, S̃, S̃1, Ỹ , and Ỹ1 to the database server and then executes the

following proof of knowledge:

PK1{(uid , uid left, uid right, kσ, xV , rd, r, α, β, αr, βr, t1, t
′
1, t2, t

′
2, t3, t

′
3, d1, . . . , d�,

s, ŝ, r̂, c1, . . . , c�, vi) : V ′
i = gi

�∏
i=1

yci

i yvi

�+1h
xV ∧ 1 = B−swαuβ ∧B = wt1ut′1

∧ e(yDBV ′
i , σ

′
i) = e(g, g′)kσe(h, σ′

i)
xV ∧ S̃1 = wt2ut′2 ∧ 1 =

wαruβr

S̃ ŝ
1

∧

e(Ã, yI)
e(gI , hI)

= e(Ã, hI)−se(u, yt1
I hα

I )e(h0, hI)uide(h�+1, hI)r
�∏

k=1

e(hk, hI)dk∧

e(S̃, yr)
e(ĝ, hr)

= e(S̃, hr)−ŝe(u, yt2
r hαr

r )e(ĝ1, hr)te(ĝ2, hr)uid lefte(ĝ3, hr)uidrighte(ĝ4, hr)r̂

∧ e(Ỹ , yΔ) = e(Ỹ , hΔ)−(uid−uidleft)e(gI , hΔ)t3∧

e(Ỹ1, yΔ) = e(Ỹ1, hΔ)−(uidright−uid)e(gI , hΔ)t′3∧

D
(1)
i ·

�∏
j=1

E
′(1)
ij =

�∏
j=1

(E′(1)
ij )djyrd

e yrd
u ∧D

(2)
i ·

�∏
j=1

E
′(2)
ij =

�∏
j=1

(E′(2)
ij )djgrd}

If the proof is successful, the database removes its layer of encryption from Di and then
randomizes the remaining encryption of δ (using the user’s temporary public key yu).
This ensures that if δ �= 0 holds, then the encryption will contain a random value and
is not related to the decryption key for the record. The database then proves to the user
that it had computed everything correctly by executing with with her the protocol we
referred to as PK2{Correct(M,L

′(2)
i )} in Figure 5. More precisely, it is the following

proof that the values M and L
′(2)
i were computed correctly (whereby γ = −xekδ):

PK{(hDB, xe, kL, kδ, γ) : H = e(hDB, g′) ∧ ye = gxe ∧ L
′(2)
i = (D(2)

i )kδgkL∧

1 = ykδ
e gγ ∧M = e(hDB, σ′

i) · e(D
(1)
i , g′)kδ · e(D(2)

i , g′)γe(g, g′)kL} .

When the user gets L from the database, removes all randomness and decrypts, the
decrypted value Ri is correct if and only if δ = 0.

We finally remark that the database has to calculate encryptions of all ACPs and en-
crypt all records (1, . . . , N) only once at the setup phase, and the user has to download
and verify the entire encrypted database only once as well. So the communication and
computation complexity of the protocol depend on the number of the records in the
database only in the setup and verify phases. The other parts of the protocol (issue and
transfer) require only O(�) group elements to be sent and exponentiations and pairings
to be computed, where � is the size of ACP vector.
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5 Security Analysis

The security of our protocol is analyzed by proving indistinguishability between adver-
sary actions in the real protocol and in an ideal scenario that is secure by definition.

Given a real-world adversary A, we construct an ideal-world adversary A′ such that
no environment E can distinguish whether it is interacting with A or A′. We organize
the proof in sub-lemmas according to which subset of parties are corrupted. We do not
consider the cases where all parties are honest, where all parties are dishonest, where
the issuer is the only honest party, or where the issuer is the only dishonest party, as
these cases have no real practical interest.

For each case we prove the indistinguishability between the real and ideal worlds by
defining a sequence of hybrid games Game-0, . . . ,Game-n. In each game we define
a simulator Simi that runs A as a subroutine and that provides E’s entire view. We
define HybridE,Simi

(κ) to be the probability that E outputs 1 when run in the world
provided by Simi. The games are always constructed such that the first simulator Sim0
runs A and all honest parties exactly like in the real world, so that HybridE,Sim0

(κ) =
RealE,A(κ) , and such that the final simulator Simn is easily transformed into an ideal-
world adversary A′ so that HybridE,Simn

(κ) = IdealE,A′(κ) . By upper-bounding
and summing the mutual game distances HybridE,Simi

(κ) − HybridE,Simi+1
(κ) for

i = 0, . . . , n − 1, we obtain an upper bound for the overall distance RealE,A(κ) −
IdealE,A′(κ) .

Theorem 2. If the (N+2)-BDHE and XDDH assumptions hold in G1,GT, the (N+1)-
SDH assumption holds in G1, and M -SDH assumption holds in G1 then the HAC -OT
protocol in Section 4 securely implements the HAC-OT functionality, where N is the
number of database records, and M is the number of the users.

We prove the theorem by separately proving it for all relevant combinations of corrupted
parties in four lemmas.

Due to lack of space, the detailed proof is found in the full version of this paper.

6 Conclusion

We have provided a set of efficient protocols and thereby shown that it is possible to
build an access control system for a database with the maximal possible privacy for
all involved parties: users can access records they are authorized to access without the
server obtaining any information whatsoever about which records they access, which
authorizations they users have, or whether the access was successful. Indeed, the data-
base only learns that some user attempted to access the database. At the same time the
database server is guaranteed that users can only access a single record and do not get
any other information including information about other records or any access control
list. Indeed, the user only learn whether or not their current credentials are sufficient to
access the record they try to access.

The protocols we provide are fairly practical and we believe applications where
records are relatively valuable, e.g., keys to decrypt some media such as movies or
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a particular DNA-sequence of many people, then our protocol could be used in prac-
tice. Still, it remains an open question whether more efficient protocols exist. One way
to achieve this, could be using attribute based encryption instead of using anonymous
credentials. Our initial investigation of such protocols makes us believe that such an ap-
proach would lead to less efficient protocols. Nevertheless, further research along this
lines could be fruitful.
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Abstract. In Eurocrypt 2009, Hofheinz and Kiltz proposed a practical
chosen ciphertext (CCA) secure public key encryption under factoring
assumption based on Rabin trapdoor one-way permutation.

We show that when the modulus is special such that Z∗
N has semi-

smooth order, the instantiation of Hofheinz-Kiltz 09 scheme (HK09) over
a much smaller subgroup of quadratic residue group (Semi-smooth Sub-
group) is CCA secure as long as this type of modulus is hard to be fac-
tored. Since the exponent domain of this instantiation is much smaller
than the original one, the efficiency is substantially improved.

In addition, we show how to construct a practical CCA secure encryp-
tion scheme from ElGamal trapdoor one-way function under factoring
assumption. When instantiated over Semi-smooth Subgroup, this scheme
has even better decryption efficiency than HK09 instantiation.

Keywords: public key encryption, chosen ciphertext secure, semi-smooth
subgroup, factoring assumption.

1 Introduction

Chosen ciphertext security is now widely accepted as the standard security no-
tion for the public key encryption. The first practical CCA secure public key en-
cryption scheme without random oracle was proposed by Cramer and Shoup [6].
Their construction was later generalized to hash proof system [7]. However, the
Cramer-Shoup encryption scheme and all its variants [20,16] inherently rely on
decisional assumptions, e.g., the Decisional Diffie-Hellman (DDH) assumption,
Decisional Composite Residuosity (DCR) assumption, and Decisional Quadratic
Residuosity (DQR) assumption. In [24], Peikert and Waters proposed a general
framework of constructing CCA secure encryption from the lossy trapdoor func-
tion. In [27], Rosen and Segev proposed a general way under the correlated inputs
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function. However, all the concrete constructions of lossy trapdoor function and
correlated inputs function are also based on decisional assumptions.

It is widely believed that computational assumptions are more standard than
their decisional versions. Canetti, Halevi and Katz [3] proposed the first prac-
tical public key encryption under a computational assumption, namely the Bi-
linear Diffie-Hellman assumption. In Eurocrypt 2008, Cash, Kiltz and Shoup
[5] (CKS08) proposed a practical CCA secure scheme under the Computational
Diffie-Hellman (CDH) assumption. Later in the same year, Hanaoka and Karo-
sawa (HK08) proposed a more efficient CCA secure scheme under the CDH
assumption [15]. Very recently, Haralambiev et al.[14], further improved the ef-
ficiency of CKS08 and HK08.

Even though the CCA secure schemes under CDH assumption are already
fairly practical, since the pseudo-random generator for CDH problem can only
extract one bit (or O(log(λ)) with loose reduction), the encryption/decryption
require O(λ) (or O(λ/log(λ)) respectively) modular exponentiations, where λ
denotes the security lever parameter.

Hofheinz and Kiltz proposed a practical CCA secure PKE in Eurocrypt 2009
[17]. The Hofheinz-Kiltz 2009 scheme (HK09) [17] is constructed from the Blum-
Goldwasser encryption [2], which itself is based on the Rabin encryption scheme
[25] and Blum-Blum-Shub (BBS) generator[1]. The noticeable property of HK09
is that it only add a group element in Z∗

N to BG scheme and can be proved
under factoring assumption (instead of the related decisional assumption). Since
the BBS generator extracts one bit with only one modular multiplication, both
the encryption and decryption require only O(1) modular exponentiations.

However, in original HK09, the exponent is chosen from [(N − 1)/4]. For the
secure level of 80, the bits length of N , �N , needs to be chosen at least as 1024.
For higher security, the length needs to be chosen even larger. A natural problem
is that can we choose smaller domain of the exponent to improve the efficiency
under factoring assumption?

In HK09, its security proof heavily relies on the fact that Rabin encryption is
a trapdoor one-way permutation. The same technique seems hard to be directly
used to construct CCA encryption from another factoring based encryption,
ElGamal encryption over composite modulus, since the latter is only a trap-
door one-way function. In TCC 2010, Cramer, Hofheinz and Kiltz obtained an
efficient CCA encryption from the EIGamal encryption over composite mod-
ulus under RSA assumption [4] (For convenience, throughout this paper, we
will refer their scheme under RSA assumption as CHK10). However, the secu-
rity of CHK10 could not be proved under factoring assumption. In addition,
since the authors did not give an efficient pseudo-random bits generator, the en-
cryption/decryption require O(λ) modular exponentiations. It is interesting to
construct practical CCA encryption such that the encryption/decryption only
require O(1) modular exponentiations from ElGamal encryption over composite
modulus under factoring assumption.
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1.1 Contributions

We present a HK09 instantiation over the much smaller subgroup than QRN for
a special modulus, i,e., Z∗

N has semi-smooth order. We prove that as long as this
type of modulus is hard to be factored, this instantiation is CCA secure. Com-
pared to the original HK09, the domain of the exponent is much smaller, thus,
the efficiency is substantially improved. More precisely, this type of modulus is
of the form N = PQ = (2pp′ + 1)(2qq′ + 1), where p′ and q′ are primes large
enough but much smaller than P and Q respectively, p and q are product of some
distinct odd primes smaller than a low bound B. We instantiate HK09 over the
unique subgroup G of QRN with order p′q′. For the convenience, we call this
subgroup as Semi-smooth Subgroup throughout this paper. In this instantiation,
the domain of the exponent is set as [2�p′+�q′+λ], where a useful property for our
proof is that a uniform element has almost the same distribution as the uniform
element of [p′q′]. We prove a simple but crucial lemma: computing the square
roots resides of uniformly chosen element in G can be reduce to the factoring
assumption about this type of modulus.

Another contribution of ours is that we construct a practical CCA secure
encryption from ElGamal encryption over composite modulus under factoring
assumption. As in HK09, the ciphertext only consists of two group elements
in Z∗

N . Taking account of efficiency, we present the instantiation over Semi-
smooth Subgroup. The decryption of this instantiation is more efficient than
the decryption of HK09 instantiation. First of all, we need an efficient pseudo-
random generator for ElGamal encryption over composite modulus to transform
it from one-wayness secure encryption to indistinguishability secure one under
factoring assumption. This can be achieved since, adapting the proof technique
of [23], we are able to prove that, under factoring assumption, BBSr(gxy) is
pseudo-random even given (gx, gy). To explain how to transform it into CCA
secure, we describe our attempts towards the final scheme step by step. The
first attempt is directly applying Kiltz 07 [19] to the composite modulus case:
the public key is (g,X ′ = gρ′

, X = gρ), private key is (ρ′, ρ); the ciphertext
is (R = gμ, S = (X ′tX)μ); the encapsulated key is BBSr(X ′μ)(= BBSr(gρ′μ)).
This scheme could not be proved CCA secure under factoring assumption using
known techniques since the simulator could not answer the DDH oracle and
could not compute exponent inversion modulo unknown order. Inspired by a
fact proved in [18], i.e., factoring assumption imply the strong Diffie-Hellman
assumption over the signed quadratic residue group, QR+

N , we make our second
attempt by instantiating Kiltz 07 over QR+

N so that the simulator is able to
answer the DDH oracle. But the simulator still could not compute exponent
inversion modulo unknown order. Inspired by the method of HK09, we further
modify the scheme as follows: the public key is (g,X ′ = gρ′

, X = g2νρ), private
key is (ρ′, ρ); the ciphertext is (R = |gμ2ν |, S = |(X ′tX)μ|); the encapsulated key
is BBSr(|(X ′)2

νμ|)(= BBSr(|Rρ′ |) = BBSr(|g2νρ′μ)|). Recall that, in HK09, they
implicitly used the following fact: Given A,B ∈ Z∗

N , x, y ∈ Z, from the equation
Ax = By, any one can efficiently compute Ac/y, where c = gcd(x, y). But when
we attempt to directly apply the proof method of HK09 to our case, we find
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that the simulator does not know one of bases, without of loss generality, we
denote it as A. To overcome this problem, we construct another simulator such
that he knows both B′ = B2k

and A′ = A2k

for some suitable k ∈ Z+. Basing
on the underlying fact used in [18] to prove factoring assumption imply strong
DH assumption, i.e., if U and V both belong to QR+

N , then the equation U = V

is equivalent to the equation U2k

= V 2k

for any k ∈ Z+, this simulator is able
to verify the equivalent equation A′x = B′y and then compute the encapsulated
key from this equation. In the real proof, instead of black-box reducing the CCA
security of the encryption to the pseudo-randomness of the generator, we prove
the pseudo-randomness of the generator and the CCA security of the encryption
simultaneously.

Both our schemes presented in this paper are actually CCA secure key encap-
sulation mechanism, from which it is easy to obtain full CCA secure public key
encryption [28].

2 Preliminaries

2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists of three algorithms: Key generation
Gen(1λ), Encapsulation Enc(PK), Decapsulation Dec(SK,C).

Gen(1λ): A probabilistic polynomial-time key generation algorithm takes as
input a security parameter λ and outputs a public-key PK and secret key SK.

Enc(PK): A probabilistic polynomial-time encryption algorithm takes public-
key PK as input, and outputs a pair (K,C), where K is the key and C is a
ciphertext.

Dec(SK,C): A decryption algorithm takes a ciphertext C and the secret key
SK as input. It returns a key K.

We require that for all (PK,SK) output by Gen(1λ), all (K,C) output by
Enc(PK), we have Dec(SK,C) = K.

Definition 1. (CCA Secure KEM) A key encapsulation mechanism is indistin-
guishable against chosen ciphertext attacks if any PPT adversary M has negli-
gible advantage in the game defined between the adversary M and the challenger
D as follows:

1. When M queries a key generation oracle, D invokes Gen(1λ) to obtain
(PK,SK), responds with PK.

2. When M queries a challenge oracle. D invokes Enc(PK) to obtain C∗,K0,
and chooses a random bits string K1 with the same length as K0, chooses a
random bit b, set K∗ = Kb, responds with (C∗,K∗).

3. When M makes a sequence of calls to the decryption oracle. For each decryp-
tion oracle query, M submits a ciphertext C, and D invokes Dec(SK,C) to
obtain K, responds with the K. The only restriction is that the adversary
M can not request the decryption of C∗.

4. Finally, the adversary outputs a guess b′.
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The adversary’s advantage in the above game is

AdvCCA
KEM,M(λ) = |Pr[M(K0) = 1] − Pr[M(K1) = 1]|

2.2 Target Collision Resistant Hash Function

Informally, we say that a function H : X → Y is a target-collision resistant
(TCR) hash function, if, given a random pre-image x ∈ X , it is hard to find
x′ �= x with H(x′) = H(x).

Definition 2. Let H : X → Y be a function. For an adversary M , define

AdvTCR
H,M (λ) = Pr[x ← X,x′ ← M(x,H) : x′ �= x ∧ H(x′) = H(x)]

We say that H is target-collision resistant if for any PPT adversary M,
AdvTCR

H,M (λ) is negligible.

2.3 Semi-smooth Subgroup

In [13], the author introduced the definition of semi-smooth subgroup.
Let IGen(1λ) be a probability polynomial-time algorithm such that on input

security parameter λ, randomly chooses two m(λ)-bit primes P and Q satisfying
P = 2p′p + 1, Q = 2q′q + 1, outputs N = PQ, where p′ and q′ are m′(λ)-bit
primes, both p and q are product of some distinct odd primes smaller than a low
bound B. We call such integer N as semi-smooth integer.

Definition 3. Let N = (2p′p + 1)(2q′q + 1) be a random output of IGen(1λ),
the unique subgroup G of order p′q′ is called the semi-smooth subgroup of Z∗

N .

Factoring Assumption about Semi-smooth Integer. We assume that there
exists no probabilistic polynomial-time algorithm such that given only N , the
random output of IGen(1λ), can factor N with non-negligible probability.

In [13], at secure level of 80, parameters are suggest to be �p′ = �q′ = 160,
�N = 1024, and B = 215.

Here, we describe some properties that will be used later.

Property 1. Let h be a uniform element of Z∗
N , PB =

∏
1<p<B, p is prime p,

and g = hPB . Then, g is a uniform element of G.
Property 2. With probability 1 − O(2−m′(λ)), a uniform element in G is a

generator of G.
Property 3. Any element z of G is a quadratic residue, the unique quadratic

residue u such that u2 = z lies in G.
Property 4. For any element z of G, the unique quadratic residue u such that

z = u2k

lies in G for any k ∈ Z+.
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2.4 Signed Quadratic Residues

The signed quadratic residues[18], QR+
N , are defined as the group QR+

N = {|x| :
x ∈ QRN}, where |x| is the absolute value when representing elements of Z∗

N as
the set {−(N − 1)/2, · · · , (N − 1)/2}, N is a Blum integer. The group operation
◦ is defined by a ◦ b = |ab mod N |. For simplification, we denote |ab| instead of
|ab mod N |.

An attractive property is that the membership in QR+
N can be efficiently

verified since QR+
N = J+

N = JN

⋂
[(N − 1)/2], where J+

N denotes {|x| : x ∈ JN},
and JN denotes the group of elements with Jacobi symbol 1.

2.5 Some Lemmas

Lemma 1. Let g be a generator of G, μ is chosen uniformly from [2�p′+�q′+λ],
k is any integer, then both μ mod p′q′ and (μ+k)mod p′q′ are statistically close
to the uniform distribution of [p′q′], both gμ and gμ+k are statistically close to
the uniform distribution of G.

Proof. Write 2�p′+�q′+λ as k1p
′q′ + k2 over Z, where 0 < k2 < p′q′. If μ is

uniformly chosen from [k1p
′q′], then both μ mod p′q′ and (μ + k) mod p′q′

are uniform in [p′q′], and then both gμ and gμ+k are uniform in G. But a
uniformly chosen element from 2�p′+�q′+λ belongs to [k1p

′q′] with probability
k1p

′q′/2�p′+�q′+λ = 1 − k2/2�p′+�q′+λ ≥ 1 −O(2−λ).

The following lemma states that computing the square root residue of random
element in semi-smooth subgroup can be reduced to the factoring algorithm for
the modulus N .

Lemma 2. Let G be the semi-smooth subgroup of Z∗
N , z is a uniformly chosen

element of G, if there exists an adversary A can compute the unique quadratic
residue u such that u2 = z with non-negligible probability, then there exists an
adversary C can factor N with non-negligible probability.

Proof. Given N , C chooses h uniformly from Z∗
N , set P ′

B =
∏

2<p<B, p is prime p,
and h′ = h2, z = h′P ′

B (= hPB ). So z is a uniform element of G. If A can compute
u such that u2 = z, then C can compute h̃ such that h̃2 = h2: compute a, b
over Z such that aP ′

B + 2b = gcd(P ′
B , 2) = 1, set h̃ = uah′b. If h̃ �= ±h, then C

outputs gcd(h̃− h,N). With probability 1/2, h̃ �= ±h, and so gcd(h̃− h,N) is a
non-trivial factor of N .

From lemma 2 and the Goldreich-Levin lemma[12], it is easy to see that given
z = u2 over G, the Goldreich-Levin predicate, Br(u), is a hard-core. Using the
hybrid argument,we have:

Lemma 3. Let G be the semi-smooth subgroup of Z∗
N , given a uniform element

z of G, then BBSr(u) is indistinguishable from the uniform bits string U from
[2�K ] under the assumption factoring N is hard, where u is the unique quadratic
residue such that z = u2�K , BBSr(u) def= (Br(u), Br(u2), · · · , Br(u2�K−1

)), r is a
random element with bits-size �N .
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Lemma 4. Given A, B in some subgroup F of Z∗
N , along with x, y in Z, such

that Ax = By, gcd(x, y) = z, gcd(y, ord(F )) = 1. Then one can efficiently
compute Az/y, where the inversion in the exponent is computed modulo ord(F ).

Proof. Since gcd(x, y) = z, using the extended Euclidean algorithm, one can
compute a, b over Z such that ax + by = z. Let B′ = AbBa. Since A, B be-
longs to F , so B′ belongs to F . It is easy to verify that Az = (B′)y. Since
gcd(y, ord(F )) = 1, so B′ = Az/y.

Lemma 5. If A,B ∈ QR+
N , then A2 = B2 mod N ⇔ A = B. More generally,

A2k

= B2k

mod N (k ∈ Z+) ⇔ A = B.

Lemma 6. If A,B ∈ QRN ∪QR+
N , then |AB| =

∣∣|A||B|
∣∣.

3 The Instantiation of HK09 over Semi-smooth Subgroup

3.1 Scheme Description

Gen(1λ) : Run IGen(1λ) to get the modulus N . Then, Gen chooses a target-
collision resistant hash function H : ZN → [2�H − 1]. Next, Gen randomly
chooses an element g of G, a bit string r of length �N , and ρ from [2�p′+�q′+λ].
Finally, Gen sets X = gρ2ν

(ν = �H+�K). The public key is PK = (N, g,X, r,
H), and the private key is SK = ρ.

Enc(PK) : Enc randomly chooses μ ∈ [2�p′+�q′+λ], and computes

R = gμ2ν

, t = H(R), S = |(gtX)μ|.

Set the ciphertext as C = (R,S). Compute the encapsulation key as K =
BBSr(gμ2�H ).

Dec(SK,C) : Dec writes C as C = (R,S), verifies both R,S belong to Z∗
N ×

(Z∗
N

⋂
[(N − 1)/2]) and rejects it if not. Then Dec computes t = H(R),

verifies:
(S2)2

ν

= (R2)t+ρ2ν

(1)

Reject it if it not. Dec computes a, b, c ∈ Z such that

2c = gcd(t, 2ν) = at + b2ν (2)

Then Dec computes

T = ((S2)a · (R2)b−aρ)2
�H−c−1

(3)

and K = BBSr(T ), outputs K
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Correctness: Notice that, in Dec, even R, S may not sit in the subgroup G,
as long as they pass the verification, they must sit in Z∗

N . So from the proof
of the original HK09, the computed T is equal to (R2)1/(2�K+1) mod ord(QRN ).
If R = gμ2�K+�H ∈ G ⊂ QRN , then, we have (R2)1/(2�K+1) mod ord(QRN ) =
(R2)1/(2�K+1) mod ord(QRN ) mod ord(G) = (R2)1/(2�K+1) mod ord(G) = gμ2�H .

Efficiency comparison with original HK09. The encapsulation and decap-
sulation of both the original HK09 and this variant need 3�exp + �K + 2.5�H and
1.5�exp + 4�K + 6.5�H multiplications respectively, where both �K and �H can be
set as λ. The difference is that, in original HK09, �exp equals to �N , instead,
in this variant, �exp equals to �p′ + �q′ + λ. For 80-bits security, �N = 1024,
�p′ = �q′ = 160, λ = 80. In original HK09, the encapsulation requires 3352
multiplications, the decapsulation requires 2376 multiplications. In this variant,
the encapsulation requires 1480 multiplications, the decapsulation requires 1440
multiplications.

3.2 Security Proof

Theorem 1. If factoring the modulus N is hard and H is target-collision resis-
tant, then the above key encapsulation mechanism is chosen ciphertext secure.

Proof. To prove this theorem, from lemma 3, it is enough to reduce the CCA
security of this scheme to the pseudo-randomness of the BBS generator over the
Semi-smooth Subgroup.

Assume there exists an adversary A on KEM’s IND-CCA security. We de-
fine an adversary D on the pseudo-randomness of the BBS generator. On input
(N, z, V ), the goal of D is to distinguish whether V is BBSr(u) or a uniform bits
string with equal length, where u is the unique quadratic residue in G such that
z = u2�K , z is a uniform element in G.

Prepare the public key. D chooses a target-collision resistant hash func-
tion H : ZN → [2�H − 1], a bits string r of length �N , a random element g ∈ G,
as well as β ∈ [2�p′+�q′+λ], sets

R∗ = z, t∗ = H(R∗), X = gβ2ν−t∗ .

The public key is set as PK = (N, g,X, r,H). The private key is implicitly
defined as ρ = β − t∗/2ν mod p′q′.

Prepare the challenge cipertext and key. Next, we assume g is a generator
of G. So we can write R∗ = gμ∗2ν

, though μ∗ is unknown to D. D defines

S∗ = |R∗β | (= |gμ∗β2ν | = |(gt∗X)μ∗ |).

The real corresponding key K∗ is defined as

K∗ = BBSr(gμ∗2�H ) = BBSr(R∗ 1
2�K ) = BBSr(z

1
2�K ) = BBSr(u)
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The challenge ciphertext is C∗ = (R∗, S∗), the challenge key is V . Note that,
as in the IND-CCA2 game, if V is BBSr(u), then V is a real key , else V is a
uniform string.

We claim that the distribution of the public key and the challenge ciphertext
C∗ is almost identical in simulation and IND-CCA game. Firstly, in public key,
g,N, r and H are perfectly simulated. From Property 2, with overwhelming prob-
ability, g is a generator of G. From Lemma 1, we know that if g is a generator of
G, then X in the real game and in simulation are both statistically close to the
uniform element in G. So X is simulated perfectly with overwhelming probabil-
ity. Similarly, with overwhelming, R∗ is also perfectly simulated. Conditioned on
X , R∗, g, r, N are simulated perfectly, from the simulation, we know that S∗

and K∗ are also perfectly simulated. As required.

Answer the decryption queries. When A submit a ciphertext (R,S), D
does as following.

Check (R,S) ∈ Z∗
N × (Z∗

N

⋂
[(N − 1)/2]), reject if not. Compute t = H(R).

For the case t �= t∗. Verify:

(S2)2
ν

= (R2)t−t∗+β2ν

(4)

Reject it if it not.
Note that the equation (4) is equivalent to

(R2)(t−t∗) = (R−2βS2)2
�H+�K

Since R2 and R−2βS2 belong to QRN , using lemma 4, the simulator can compute
B′ = (R2)2

c′/2�H+�K , where 2c′ = gcd(t− t∗, 2�H+�K), the inversion in the expo-
nent is computed modulo ord(QRN ). Then Dec can compute T = (R2)1/2�K+1

=
(B′)2

�H−1−c′
since �H−1−c′≥0. If R=gμ2�K+�H , then(R2)1/(2�K+1)mod ord(QRN ) =

(R2)1/(2�K+1)mod ord(G) = gμ2�H . Concretely, the simulator compute a′, b′, c′ ∈ Z
such that

2c′ = gcd(t− t∗, 2ν) = a′(t− t∗) + b′2ν (5)

Then compute
T = ((S2)a′ · (R2)b′−a′β)2

�H−c′−1
(6)

D answer with BBSr(T ).
For the case t = t∗. If R = R∗ and the ciphertext is valid , it will satisfy

(S2) = (R2)(t−t∗)/2ν+β = (R2)β = S∗2.

Therefore, S2 = S∗2. Furthermore, (R,S) �= (R∗, S∗) implies that |S| = S �=
S∗ = |S∗|, so that S �= ±S∗ and (S +S∗)(S−S∗) = S2 −S∗2 = 0 mod N yields
a non-trivial factor of N .

If t = t∗ and R �= R∗, then it will contradict the target-collision resistance of
H, so D can safely give up this type of ciphertext.
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So with overwhelming probability, D perfectly simulates the CCA game.
D outputs what A outputs.
Therefore, D can use A as an oracle to distinguish whether V is BBSr(u) or

a uniform bits string.

4 Scheme Based on ElGamal Encryption over Composite
Modulus

In this section, we show how to construct a practical CCA secure KEM from
ElGamal encryption over composite modulus. Taking account of efficiency, we
present the instantiation over semi-smooth subgroup. This scheme implicitly uses
the signed quadratic residues group [18].

4.1 Scheme Description

Gen(1λ) : Run IGen(1λ) to get the modulus N . Then, choose a target-collision
resistant hash function H : ZN → [2�H − 1]. Next, randomly choose an el-
ement g of the semi-smooth subgroup G, a bit string r of length �(N−1)/2,
and ρ, ρ′ ∈ [2�p′+�q′+λ]. Finally, set X = gρ2ν

(ν = �H −1) and X ′ = gρ′
. The

public key is PK = (N, g,X,X ′, r,H), and the private key is SK = (ρ, ρ′).

Enc(PK) : Enc randomly chooses μ ∈ [2�p′+�q′+λ], and computes

R = |gμ2ν

|, t = H(R), S = |(X ′tX)μ|, T = |X ′μ2ν

|,

K = BBS+
r (T ) def= (Br(|T |), Br(|T 2|), · · · , Br(|T 2�K−1

|)).

Set the ciphertext as C = (R,S) and the encapsulation key as K.

Dec(SK,C) : Dec writes C as C = (R,S), verifies both R and S belong to
QR+

N = JN

⋂
[(N − 1)/2]. If it holds, then Dec computes t = H(R), verifies:

|S2ν

| = |Rρ′t+ρ2ν

|

If it holds, then Dec computes

T = |Rρ′ |, K = BBS+
r (T ).

Correctness: If R and S are computed according to the encapsulation, then
both R and S belong to G+. Since G+ ⊆ QR+

N , so R,S ∈ QR+
N . From lemma

5, we know that |AB| = ||A||B|| as long as A,B ∈ QRN ∪QR+
N , then

|S2ν | = ||(X ′tX)μ|
2ν

| = |g(ρ′t+ρ2ν)μ2ν | = |Rρ′t+ρ2ν |.

The fact that |Rρ′ | equals to |X ′μ2ν

| follows from:
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|X ′μ2ν

| = |gρ′μ2ν | = ||gμ2ν |ρ′ | = |Rρ′ |

Efficiency: The ciphertext of this KEM consists of two group element (No-
tice that for the known CCA secure KEM schemes based on the ElGamal en-
cryption over prime modulus under CDH assumption, the ciphertexts consist
of at least three group elements). If we choose �q1 = �p1 = 160, λ = 80, then
�ρ = �ρ′ = �exp = 400. We assume �H = 80. As in original HK09, we assume
one regular exponentiation with an exponent of length � requires 1.5� modular
multiplications and that one squaring takes the same time as one multiplication.
Notice that we can compute gρ′

and gρ with about 1.2 exponentiations since they
share the same base g. The encapsulation requires 4.5�exp + 2.5�H + �K = 2080
multiplications. The decapsulation requires 1.5 × 1.2�exp + 2.5�H + �K = 1000
multiplications.

4.2 Security Proof

Theorem 2. If factoring the modulus N is hard and H is target-collision resis-
tant, then the above key encapsulation mechanism is chosen ciphertext secure.

High level of the proof: In HK09 instantiation (and the original HK09), the
proof consists of two steps: firstly, the pseudo-randomness of the BBS generator
BBSr(u) is reduced to the factoring assumption; then, the CCA security is black
box reduced to the pseudo-randomness of the BBS generator BBSr(u). But, in
this scheme, if we directly reduce the CCA security to the pseudo-randomness
of BBS+

r (gμρ′
) (even gμ and gρ′

is given), then the simulator could not an-
swer DDH oracle that is needed for the verification and could not compute
the inversion modulo the unknown order p′q′ which is needed to compute the
encapsulated key. Instead, we prove the CCA security of this scheme and the
pseudo-randomness of BBS+

r (gμρ′
) simultaneously. Adapting the proof idea of

[23], we firstly reduce the security (both the CCA security of this scheme and
the pseudo-randomness of BBS+

r (gμρ′
)) to a hardcore distinguisher; next, we re-

duce the hardcore distinguisher to a hardcore predictor; finally, we reduce the
hardcore predictor to a factoring algorithm. In the first step, the distinguisher
could compute ρ′2�K mod p′q′, so he could compute |Rρ′2�K |. The distinguisher
does not directly verify the equation |S2ν | = |Rρ′t+ρ2ν |, instead, he verify a
equivalent equation S2ν+�K = Rρ′t2�K+ρ2ν+�K (Before this, he should verify both
R and S belong to QR+

N , from lemma 5, we know that the two equations are
equivalent. Note that, in [18], this technique has been used for proving the fac-
toring assumption implies the strong DH assumption over QR+

N ). Then, by
using lemma 4, the distinguisher is able to efficiently compute the encapsulated
key from the latter equation.

Proof. The theorem is the consequence of the following three lemmas.

Reduce to the hard-core distinguisher D(v2, N, r, α)
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Lemma 7. If there exists a PPT adversary M such that AdvCCA
KEM,M(λ) equals to

ε(λ), then there exists a PPT adversary D(v2, N, r, α) that distinguishes whether
α is equal to B+

r (|uw|) or a random bit b with advantage ε′(λ), where v2 is a
uniformly chosen element of G, u is the unique square root residue of v2, w is de-

termined by v2 and D’s internal coin tosses, and ε′(λ) = ε(λ)−O(2−λ)−AdvTCR
H,M (λ)

�K
.

Proof. On input (v2, N, r, α), D works as follows.

Prepare the public key: Choose a target-collision resistant hash function
H : ZN → [2�H − 1]. Randomly choose J = k from {0, 1, · · · �K − 1}. Se-
lect at random bits string (b0, b1, · · · , bk−1). Randomly and independently se-
lect 2 elements ξi(i = 1, 2) from [2�p′+�q′+λ], denote

−→
ξ = (ξ1, ξ2). Set s =

2�K − k, g = v2s

mod N , and ai = (ξi + 2−�K) mod p′q′ (i = 1, 2). Set
X ′ = ga1 = gξ1+2−�K mod p′q′

(implicitly define ρ′ = (ξ1 + 2−�K) mod p′q′). Set
B = ga2 = gξ2+2−�K mod p′q′

(implicitly define B = gμ∗2ν

). Set t∗ = H(|B|).
Randomly choose β ∈ [2�p′+�q′+λ], and set X = gβ2ν

X ′−t∗ ( implicitly define
ρ = (β − ρ′t∗/2ν) mod p′q′). The public key is set as (N, g,X ′, X, r,H).

( D can efficiently compute X ′ = ga1 = gξ1+2−�K mod p′q′
= v2(�K−k)

v2(2�K−k)ξ1

since �K > k and v2 is given. Similar, D can be efficiently computed too. It is easy
to see that other elements of the public key can be efficiently simulated by D).

Prepare the challenge ciphertext and key: The challenge ciphertext is
set as:

R∗ = |B| (= |gμ∗2ν |); S∗ = |R∗β | (= |(X ′t∗X)μ∗ |)
And the challenge key is set as

K∗ = (b0, b1, · · · , bk−1, α,Br(|g2k+1a1a2 |), · · · , Br(|g2�K−1a1a2 |))

Define w: We define w = (v22�K )ξ1ξ2(v2�K )ξ1+ξ2 . Given the values of ξ1, ξ2 and v2,
D is able to efficiently compute w. It is easy to see that, w is a quadratic residue in
G (recall that v2 ∈ G)and is determined by v2 and D’s internal coin tosses.

Claim 1. Let a1, a2, g, u, w be defined as above respectively, then g2ka1a2 = uw.

Proof.

g2ka1a2 = g2k(ξ1+2−�K )(ξ2+2−�K ) = g2k(ξ1ξ2+(ξ1+ξ2)2−�K+2−2�K )

= v22�K (ξ1ξ2+(ξ1+ξ2)2−�K+2−2�K ) = uw.

Claim 2. D is able to compute g2k+ja1a2 for j = 1, . . . �K − k − 1.

Proof. From Claim 1, we have g2ka1a2 = uw, so each g2k+ja1a2 equals to (uw)2
j

for j = 1, . . . �K − k− 1. Furthermore, since D knows v2 and w2, so he is able to
compute (uw)2

j

for j = 1, . . . �K − k − 1, as required.

From claim 1 and 2, it is easy to see that, D is able to efficiently prepare the
challenge ciphertext and key.
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Answer the decryption queries: For the query ciphetext (R,S), D verifies
both R and S belong to QR+

N . If it holds, D computes t = H(R).
If t �= t∗, D verifies if

(S2�K )2
ν

= (R(2�Kξ1+1))t−t∗(R2�K )β2ν

(7)

(Note that the right side equals to

(R(2�Kρ′))t−t∗(R2�K )β2ν

= (R2�K )ρ′t−ρ′t∗+β2ν

= (R2�K )ρ′t+ρ2ν

From Lemma 5, we know that verifying |S2ν | = |Rρ′t+ρ2ν | is equivalent to veri-
fying (S2�K )2

ν

= (R2�K )ρ′t+ρ2ν

, as required).
Equation (7) is equivalent to (R(2�Kξ1+1))t−t∗=(SR−β)2

�K+ν

. Since R(2�Kξ1+1),
SR−β belong to QR+

N , using lemma 4, D is able to compute (R(2�Kξ1+1))2
c′/2�K+ν

,
where 2c′ = gcd(t−t∗, 2ν+�K), the inversion in the exponent is computed modulo
ord(QR+

N )(= ord(QRN )). Furthermore, since both t and t∗ are smaller than 2�H ,
then c′ ≤ �H − 1 = ν. Therefore, D is able to compute

T = |((R(2�Kξ1+1))2
c′/2�K+ν

)2
ν−c′

|(= |(R(2�Kξ1+1))1/2�K | = |Rρ′
|)

Concretely, if (7) holds, D computes a′, b′, c′ ∈ Z such that:

2c′ = gcd(t− t∗, 2ν+�K) = a′(t− t∗) + b′2ν+�K

Then D computes

T = |((SR−β)a′
Rb′(2�Kξ1+1))2

ν−c′ |

Response the oracle with BBS+
r (T ).

If t = t∗, D rejects the query ciphetext (R,S). (If H(R) = t = t∗ = H(R∗)
and R �= R∗, then M has broken the target-collision resistance of H. If t = t∗

and R = R∗, and the ciphertext is valid, then we have

S = |S| = |((R(2�Kξ1+1))t−t∗(R2�K )β2ν

)1/(2ν+�K )| = |Rβ | = |(R∗)β | = S∗

which means that (R,S) = (R∗, S∗), so this query will be rejected, as required).
When M outputs a bit, D outputs the same bit.

The running time of D: It is easy to see that D can run in polynomial time.

The success-probability of D. To find the success probability of D, we prove
that the distribution of the public key, challenge ciphetext, and the decryption
in the simulated game is statistically close to that in the real game.

Since v2 is a uniformly chosen element of G, and squaring is a permutation, so
the above defined g is a uniformly distributed element in G. Thus, g is perfectly
simulated. Obviously, N , r and H are perfectly simulated. From property 2, we
know that with probability 1−O(2−m′(λ)) ≥ 1−O(2−λ), g is a generator. From
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Lemma 1, we know that with probability 1 − O(2−λ), X ′ in simulation and in
real game are both statistically close to the uniformly distributed element in
G. So, with probability 1 − O(2−λ), X ′ is perfectly simulated. With the same
analysis, with probability 1 −O(2−λ), X and R∗ are perfectly simulated.

Therefore, the statistical distance between distribution of the public key in
the simulated game and that in the real game is O(2−λ).

Note that, conditioned on the public key is simulated perfectly, the challenge
ciphertext is perfectly simulated, and the decryption oracle is simulated perfectly
except the case that M finds a target collision, which occurs with negligible
probability AdvTCR

H,M (λ).
For convenience, we denote some hybrid experiments HJ(J = 0, · · · , �K) the

same as the real game except the way the challenge key is responded with: the
first J bits are chosen randomly, while the other �K − J bits are computed as
in K0. So in the experiment H0, the distribution of the key that the adversary
sees is the same as K0, whereas in the experiment H�K , the distribution of the
key is the same as K1.

From Claim 1, we know that, if α = B+
r (|uw|), then the distribution that M

sees is the simulated HJ , while if α is a random bit b, then the distribution
that M sees is the simulated HJ+1. We denote the simulated Hk as Hk

S for each
k ∈ {0, 1, · · · , �K}, and still denote real Hk as Hk. So the advantage of D is:

|Pr[D(B+
r (|uw|)) = 1] − Pr[D(b) = 1]|

= 1
�K

|
∑�K−1

j=0 {Pr[D(B+
r (|uw|)) = 1|J = j] − Pr[D(b) = 1|J = j]}|

= 1
�K

|
∑�K−1

j=0 {Pr[M(Hj
S) = 1] − Pr[M(Hj+1

S ) = 1]}|
= 1

�K
|Pr[M(H0

S) = 1] − Pr[M(H�K
S ) = 1]|

≥ 1
�K

{|Pr[M(H0) = 1] − Pr[M(H�K) = 1]| −O(2−λ) − AdvTCR
H,M (λ)}

=
ε(λ)−O(2−λ)−AdvTCR

H,M (λ)
�K

This completes the proof of Lemma 7.

Reduce to the hard-core predictor D′
N,ξ1,ξ2,v2

Since D defined in Lemma 7 chooses ξ1, ξ2 itself and w depends on v2 and ξ1, ξ2 ,
then the value of w potentially changes each time D is invoked. Furthermore, D is
not a predictor for B+

r (|uw|) but rather a distinguisher. So D is not suitable to be
used as an oracle for the Goldreich-Levin reconstruction algorithm [12]. The first
problem can be solved by fixing the value ξ1, ξ2 in advance. The second problem
can be addressed by reducing the hard-core distinguisher to a suitable hard-
core predictor. On input < r >, the hard-core predictor D′

N,ξ1,ξ2,v2 is defined as
follows:

1. Uniformly choose random bits α and β .
2. Invoke D on input < v2, N, r, α >, and feed it with ξ1, ξ2 .
3. If D outputs 1, then output α, else if D outputs 0, then output β.

Note that now, the value of w does not change with the invoking of D′
N,ξ1,ξ2,v2 .

So it is possible to use D′
N,ξ1,ξ2,v2 as an oracle to reconstruct |uw|.
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Lemma 8. If there exists a PPT adversary M such that AdvCCA
KEM,M(λ) equals to

ε(λ), then there exists a PPT hard-core predictor, D′
N,ξ1,ξ2,v2 , with the probability

ε′(λ)/2 ( over the choice of N, v2, and ξ1, ξ2), can predict the value of B+
r (|uw|)

with advantage ε′(λ)/4, where u is the unique square root residue of v2, w is

determined by v2 and ξ1, ξ2, and ε′(λ) =
ε(λ)−O(2−λ)−AdvTCR

H,M (λ)
�K

.

Proof. By Lemma 7, M has ε′(λ)-advantage in distinguishing B+
r (|uw|) from

a random bit b. Then for at least ε′(λ)/2 fraction of the choices of N, v2, and
ξ1, ξ2, M has ε′(λ)/2-advantage in distinguishing B+

r (|uw|) from the random bit
b . So it is straightforward that D′

N,ξ1,ξ2,v2 can predict the value of B+
r (|uw|)

with advantage ε′(λ)/4.

Reduce to the factoring algorithm A(N)

Lemma 9. If there exists a PPT adversary M such that AdvCCA
KEM,M(λ) equals to

ε(λ), then there exists a PPT algorithm A factoring N with success probability

Ω(ε′(λ)2), where ε′(λ) equals to ε′(λ) = ε(λ)−O(2−λ)−AdvTCR
H,M (λ)

�K
.

Proof. From lemma 2, it is enough to prove that there exists another adversary
A′(N, v2), using M as oracle, is able to compute the unique quadratic residue
u such that u2 = v2 with probability Ω(ε′(λ)2), where v2 is a uniform element
of G.

On input (N, v2), A′ is defined as follows:

1. Choose ξ1, ξ2 uniformly from [2�p′+�q′+λ].
2. Compute w = (v22�K )ξ1ξ2(v2�K )ξ1+ξ2 .
3. Invoke the Goldreich-Levin reconstruction algorithm, R(1λ):

(a) Whenever asked for Bri(z), invoke D′
N,ξ1,ξ2,v2 on input < ri >, and give

its output as an answer. (Recall that D′
N,ξ1,ξ1,v2 invokes M and answers

its queries).
(b) Denote by z the output of R.

4. Compute u′ = zw−1. Given that R outputs the correct value, i.e., z = |uw|,
then z = uw or z = −uw.

The successful probability of A′: Sincewith theprobability ε′(λ)/2,D′
N,ξ1,ξ2,v2

predicts the value of B+
r (|uw|) with advantage ε′(λ)/4, then by Goldreich-Levin

theorem [12], we have that R retrives the value of |uw| with probability at least
Ω(ε′(n)2). Given that R outputs the correct value, with probability 1/2, u′ = u.
Therefore, A′ compute u with probability Ω(ε′(n)2), as required.
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A Proof of Some Properties and Lemmas

Property 1. Let h be a uniform element of Z∗
N , PB =

∏
1<p<B, p is prime p, and

g = hPB . Then, g is a uniform element of G.

Proof. Notice that order of h is one of the factors of 2pqp′q′, and 2pq|PB,
gcd(p′q′, PB) = 1. Then the order of g must be one of the factors of p′q′. Thus g
lies in the unique subgroup of order p′q′, G. On the other hand, for every element
g of G, there must exists an element h belongs to Z∗

N , such that g = hPB (Rea-
son: since gcd(p′q′, PB) = 1, then there exists a, b ∈ Z such that aPB +bp′q′ = 1.
Then g = gaPB+bp′q′

= (ga)PB ). Therefore, G = {g|g = hPB , h ∈ Z∗
N}. Observe

that the mapping f(x) = xPB is a 4pq to 1 mapping from Z∗
N to G, that is, for ev-

ery z in G, there exists exactly 4pq solutions in Z∗
N such that z = xPB (Reason:

We firstly consider the set XI = {x|x ∈ Z∗
N , xPB = 1}. Let the number of

XI ,|XI |, be m. Let y′ be an element of G, x′ be an element of Z∗
N such that

y′ = (x′)PB . For every element x of XI , it must be that y′ = (x′x)PB . For every
x does not belong to XI , it must be that y′ �= (x′x)PB . So it must be that for
every z of G, the equation z = xPB has exactly m solutions in Z∗

N . Since the
number of G ,|G|, equals to p′q′. So it must be mp′q′ = 4pqp′q′. So m equals to
4p′q′). When x is chosen uniformly from Z∗

N , z = xPB is uniformly distributed
in G. So g is a uniformly random element of G.
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Property 2. With probability 1 − O(2−m′(λ)), a uniform element in G is a
generator of G.
Proof. The order of G is p′q′, there are (p′− 1)(q′− 1) elements of order p′q′. So
with probability 1− (p′ − 1)(q′ − 1)/p′q′ = 1−O(2−m′(λ)),a uniform element in
G is a generator of G.
Property 3. Any element z of G is a quadratic residue, the unique quadratic
residue u such that u2 = z lies in G.
Proof. From property 1 and 2, with overwhelming probability, g = hPB = (hP ′

B )2

is a generator of G, where P ′
B =

∏
2<p<B, p is prime p . Obviously, g is a quadratic

residue. So any element of G =< g > is a quadratic residue. Since N is a Blum
integer, then the equation u2 = z has unique solution in QRN . Furthermore,
the order of G, p′q′, is odd, then gcd(2, p′q′) = 1, so 2−1mod p′q′ exists. Since
z lies in G, then z2−1mod p′q′

lies in G. Finally, since (z2−1mod p′q′
)2 = z, then

z2−1mod p′q′
which lies in G is the unique solution of the equation u2 = z.

Property 4. For any element z of G, then the unique quadratic residue u such
that z = u2k

lies in G for any k ∈ Z+.
Proof. Since gcd(2, p′q′) = 1 and so gcd(2k, p′q′) = 1, then 2−kmod p′q′ exists,
thus z2−kmod p′q′

lies in G and is a quadratic residue. Since N is a Blum integer,
then squaring in quadratic residue group, QRN , is a permutation. Then u2 = z

has unique solution in QRN . By induction, z = u2k

has unique solution in QRN .
Since (z2−kmod p′q′

)2
k

= z, then u = z2−kmod p′q′
is the unique quadratic residue

satisfies z = u2k

and lies in G.
Lemma 5. If A,B ∈ QR+

N , then A2 = B2 mod N ⇔ A = B. More generally,
A2k

= B2k

mod N (k ∈ Z+) ⇔ A = B.

Proof. The necessity is obvious. We only prove the sufficiency.
Since A ∈ QR+

N , then there exists u ∈ Z∗
N such that A = u2 if 0 ≤ u2 < N/2

or else A = −u2. Similarly, there exists v ∈ Z∗
N such that B = v2 if 0 ≤ v2 < N/2

or else B = −v2. Now

A2 = B2 mod N ⇒ u4 = v4 mod N

From the uniqueness of square quadratic root (recall that N is a Blum integer),
we have u2 = v2 mod N .

So if 0 ≤ u2 < N/2 then A = u2 = v2 = B; else if −N/2 < u2 < 0 then
A = −u2 = −v2 = B.

The general case can be proved by induction.

Lemma 6. If A,B ∈ QRN ∪QR+
N , then |AB| =

∣∣|A||B|
∣∣.

Proof. If A ∈ QRN∪QR+
N , then exists u such that A = u2 or A = −u2. Similarly,

if B ∈ QRN ∪QR+
N , then exists v such that B = v2 or B = −v2. On one hand,

we have |AB| = |u2v2| or |AB| = |−u2v2|. So, we have |AB| = |±u2v2| = |u2v2|.
On the other hand, we also have ||A||B|| = | ± u2v2| = |u2v2| since |A| equals
to u2 or −u2 and |B| equals to v2 or −v2. The Lemma follows since both |AB|
and ||A||B|| equal to |u2v2|.
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Abstract. In STOC’08, Peikert and Waters introduced a new powerful
primitive called lossy trapdoor functions (LTDFs) and a richer abstrac-
tion called all-but-one trapdoor functions (ABO-TDFs). They also pre-
sented a black-box construction of CCA-secure PKE from an LTDF and
an ABO-TDF. An important component of their construction is the use
of a strongly unforgeable one-time signature scheme for CCA-security.

In this paper, we introduce the notion of chameleon ABO-TDFs,
which is a special kind of ABO-TDFs. We give a generic as well as a
concrete construction of chameleon ABO-TDFs. Based on an LTDF and
a chameleon ABO-TDF, we presented a black-box construction, free of
one-time signature, of variant of the CCA secure PKE proposed by Peik-
ert and Waters.

Keywords: Chosen Ciphertext Security, Lossy Trapdoor Functions,
Chameleon All-But-One Trapdoor Functions.

1 Introduction

Chosen-ciphertext security (CCA-security, for short) [33,14] is now considered
as a standard notion of security for public key encryption (PKE) in practice.
Numerous CCA-secure PKE schemes in the standard model, under both specific
hardness assumption and general assumption, have been constructed over the
years following several structural approaches.

The first approach for constructing CCA-secure PKE schemes was put for-
ward by Naor and Yung [28]. As explained in [17], the approach employs a
“two key” construction, where the well-formedness of a ciphertext is guaran-
teed by a (simulation-sound) non-interactive zero knowledge (NIZK) proof. The
two-key/NIZK paradigm has led to CCA-secure PKE schemes based on general
assumption [14], such as trapdoor permutations, and efficient schemes based
on specific number theoretic assumptions [12,13], such as the decisional Diffie-
Hellman (DDH) and composite residuosity assumptions.

Canetti, Halevi, and Katz [10] presented another approach for constructing
CCA-secure PKE schemes using identity-based encryption (IBE) as a building

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 228–245, 2011.
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Chameleon All-But-One TDFs and Their Application 229

block. The idea is to use, for each encryption, a fresh random verification key
of a strongly unforgeable one-time signature scheme as the “identity” for IBE
encryption. In order to tie the IBE ciphertext to this verification key, the cipher-
text is signed using the corresponding signing key. Boneh and Katz [7] improved
the efficiency of the scheme by using a MAC instead of a strongly unforgeable
one-time signature. Some other efforts [8,25] further improved the efficiency.

The PKE schemes in [10,7,8,25] follow a similar method in the proof simula-
tion. After the setup phase there is a certain set of well-formed ciphertexts that
the simulator can decrypt corresponding to “identities” that the simulator knows
the private keys. The remaining well-formed ciphertexts, that the simulator can-
not decrypt corresponding to “identities” for which the simulator does not know
the private keys, can be used as challenge ciphertexts in the simulation.

Recently, Peikert and Waters [31] introduced a new primitive called lossy
trapdoor functions (LTDFs) and a richer abstraction called all-but-one trapdoor
functions (ABO-TDFs). Peikert and Waters [31] constructed an elegant CCA-
secure PKE scheme in a black-box manner based on an LTDF and an ABO-TDF.
The scheme can be viewed as an application of the two-key paradigm [28], and the
proof of security is similar to that of the IBE-based schemes [10]. An important
component of their construction is the use of a strongly unforgeable one-time
signature scheme for CCA-security, similar to that of Canetti, Halevi, and Katz
[10]. This paper is motivated by improving the CCA-secure PKE construction
of Peikert and Waters [31].

1.1 Our Contributions

Chameleon all-but-one TDFs. We introduce the notion of chameleon all-
but-one TDFs (ABO-TDFs), which is a special kind of ABO-TDFs.

In an ABO-TDFs collection [31], each function has several branches. Almost
all the branches are injective trapdoor functions, except for one branch which is
lossy. Freeman et al. [18] generalized the definition of ABO trapdoor functions
by allowing possibly many lossy branches (other than one).

As for chameleon ABO-TDFs, each function has many lossy branches just as
the generalized definition in [18], but each branch is now represented by a pair
(a, b). The “chameleon” property requires that for each a, it is easy to determine
a unique b to come up with a lossy branch (a, b) with a trapdoor, while it is
computationally indistinguishable to tell a lossy branch (a, b0) from an injective
branch (a, b1) without the trapdoor.

Based on any CPA-secure PKE scheme with some additional property (mostly
additively homomorphism), we propose a generic construction of chameleon
ABO-TDFs. We can construct a chameleon ABO-TDF from any ABO-TDF
in the sense of [31] and a chameleon hash function [24] targeting to the branch
set. Yet the properties of the chameleon hash are a bit overkill for what we need
and we build the needed properties directly into the constructions for better effi-
ciency. In our construction, each chameleon ABO-TDF takes as input ((a, b), x),
and outputs a ciphertext, which is an encryption of x(axa + bxb + xd), where
xa, xb, xd are the trapdoor and the encryptions of xa, xb, xd using the CPA-secure
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PKE scheme are the public parameters of the function. Note that, due to the
homomorphism of the CPA-secure PKE scheme, the chameleon ABO-TDF can
be computed publicly. If (a, b) is a lossy branch, the chameleon ABO-TDF out-
puts an encryption of 0. Given a, with the trapdoor xa, xb, xd, one can compute
b = (−axa −xd) ·xb

−1, where (a, b) is a lossy branch. This computation requires
that the message space of the PKE scheme is a finite field. In previous construc-
tions of ABO-TDFs [31,18], each ABO-TDF takes as input (b, x), and outputs a
ciphertext, which is an encryption of x(b− b∗), where an encryption of b∗ is the
public parameter. The only lossy branch is b = b∗, and the ABO-TDF outputs
an encryption of 0.

We also show how to instantiate the generic construction based on the
Damg̊ard-Jurik encryption scheme [15]. In fact, it is easy to transform the
DDH-based all-but-one trapdoor function proposed by Freeman et al. [18] into
a chameleon ABO-TDF using the same technique in our generic construction of
chameleon ABO-TDFs.

CCA-secure PKE. We present a black-box construction of CCA-secure PKE
based on an LTDF and a chameleon ABO-TDF. Our construction does not re-
quire strongly unforgeable one-time signature scheme, but a collision-resistant
hash function, making it more efficient than that of Peikert and Waters [31].

The security proof of the construction does not rely on random oracles (RO)
[5]. We follow a similar method of Peikert and Waters [31] in the proof simulation.
In the security proof of Peikert and Waters’s construction, when the adversary
issues decryption queries, with overwhelming probability, the ABO-TDF works
as an injective trapdoor function and the simulator uses the corresponding trap-
door to respond. In the challenge phase, the ABO-TDF works in lossy branch
and the encrypted message is information hidden from the adversary. Because
the ABO-TDF of Peikert and Waters has only one lossy branch, the simula-
tor needs to know the lossy branch before the challenge phase and it resorts to
strongly unforgeable one-time signature scheme.

In our CCA-secure PKE construction, the ABO-TDF is replaced by a
chameleon ABO-TDF. Each chameleon ABO-TDF has many lossy branches
(other than one) and each branch is represented by a pair (a, b). In our scheme,
the first component of a branch a is correlated with the encrypted message, but
b is independent of the message. Now, in the proof simulation, when the adver-
sary submits the challenge messages, the simulator first computes a∗, which is
correlated with the challenge messages, and computes b∗ with the trapdoor of
the chameleon ABO-TDF to make the branch (a∗, b∗) lossy. In other words,
the simulator does not need to know the lossy branch before the challenge
phase and it can generate a lossy branch after the adversary submits the chal-
lenge messages, which allows us to remove the requirement of strongly unforge-
able one-time signature scheme. In our proof simulation, the simulator uses the
same method of Peikert and Waters [31] to answer the adversary’s decryption
queries.
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1.2 Related Work

Lossy trapdoor functions (LTDFs) were introduced by Peikert and Waters in
[31]. Since their introduction, LTDFs have found many uses in cryptography.
In particular, Peikert and Waters showed that any LTDF with enough lossiness
can be used to construct an ABO-TDF, which can then be used to achieve
CCA-security. In addition to CCA-secure encryption, LTDFs have been used in
achieving deterministic encryption [3], lossy encryption [30], hedged public key
encryption [2], security against selective opening attacks [4].

Peikert and Waters [31] presented constructions of LTDFs from the Decisional
Diffie-Hellman (DDH) assumption and lattice assumptions. Boldyreva et al. [6]
and Freeman et al. [18] gave (identical) efficient constructions of LTDFs from
Paillier’s decisional composite residuosity (DCR) assumption [29]. Freeman et
al. [18] also gave efficient constructions of LTDFs based on composite residu-
osity assumption and d-Linear assumption [19,34]. Hemenway and Ostrovsky
[20] showed that smooth homomorphic hash proof systems imply LTDFs. Kiltz
et al. [23] showed that the RSA trapdoor function is lossy under the Φ-Hiding
assumption of Cachin et al. [11]. Recently, Boyen and Waters [9] proposed two
new discrete-log-type LTDFs, which are more efficient than earlier comparable
constructions.

Rosen and Segev [32] showed that any collection of injective trapdoor func-
tions that is secure under very natural correlated products can be used to con-
struct a CCA-secure PKE scheme, and demonstrated that any collection of
LTDFs with sufficient lossiness yields a collection of injective trapdoor functions
that is secure under natural correlated products.

Mol and Yilek [27] extended the results of [31] and [32] and showed that
only a non-negligible fraction of a single bit of lossiness is sufficient for building
CCA-secure PKE schemes.

Hemenway and Ostrovsky [21] studied under which condition a homomor-
phic encryption implies CCA. They showed that a homomorphic encryption
with cyclic plaintexts implies a family of LTDFs, and henceforth a CCA-secure
encryption using the results of Peikert and Waters [31]. Our paper focuses on
efficient construction of CCA-secure systems from families of LTDFs, compared
with the construction of Peikert and Waters [31]. Our result is that we can do
that with a special kind of LTDFs, namely, chameleon ABO-TDFs. A homo-
morphic encryption with cyclic plaintexts is not enough to construct a family of
chameleon ABO-TDFs.

Recently, Kiltz et al. [22] introduced the notion of adaptive trapdoor functions
(ATDFs) and a natural generalization they called tag-based adaptive trapdoor
functions (TB-ATDFs). They showed that ATDFs and TB-ATDFs can be con-
structed directly using lossy+ABO-TDFs. They also showed that ATDFs and
TB-ATDFs are strictly weaker than correlated-product trapdoor functions [32]
and LTDFs [31]. They gave black-box constructions of CCA-secure PKE from
both ATDFs and TB-ATDFs. The construction of CCA-secure PKE from TB-
ATDFs is similar to the construction of Peikert and Waters [31]. But, compared
with [31], one-time signature can be replaced by a MAC using the transform of
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Boneh et al. [7]. They used the hardcore bit of the ATDF to construction one-bit
PKE. But, if the given ATDF is a permutation or has linearly many simulta-
neous hardcore bits, they can use the ATDF as a key-encapsulation mechanism
(KEM) for an CCA-secure symmetric encryption scheme to construction a CCA-
secure PKE. In their construction of ATDF from lossy+ABO-TDF, the branch
of ABO-TDF is the output of a target collision-resistant hash function, which
takes the output of LTDF as input. The branch of ABO-TDF in their construc-
tion of TB-ATDF from lossy+ABO-TDF is a tag chosen randomly. As opposed
to their construction, the first component of a branch (a, b) of chameleon ABO-
TDF in our scheme a is chosen randomly, and the second component b is the
output of a collision-resistant hash function, which takes the output of LTDF
and h(x) ⊕ m as inputs, where m is the encrypted message. (Note that, our
construction needs a fully collision resistant hash as opposed to target collision
resistant as in [22].) This technique, which has already used in the RO model
to construct CCA-secure PKE schemes [1], allows us to avoid using one-time
signature, MAC, or other symmetric-key primitives.

Our works are also related to chameleon hash function [24]. Roughly speak-
ing, chameleon hash functions are randomized collision-resistant hash functions
with the additional property that given a trapdoor, one can efficiently generate
collisions. Mohassel showed in [26] how to construct one-time signature from
chameleon hash functions, which can be used in the construction of Peikert and
Waters [31].

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we review some
standard notations and cryptographic definitions. We introduce the notion of
chameleon ABO-TDFs and present a generic construction and a concrete con-
struction in Section 3. In Section 4, we present black-box constructions of CCA-
secure PKE based on an LTDF and a chameleon ABO-TDF. Finally, we state
our conclusion in Section 5.

2 Preliminaries

If S is a set, then |S| denotes its size and s
$← S denotes the operation of picking

an element s uniformly at random from S . Let N denote the natural numbers.
If λ ∈ N then 1λ denotes the string of λ ones. Let z ← A(x, y, . . .) denote the
operation of running an algorithm A with inputs (x, y, . . .) and output z. Let
U� denote the uniform distribution on �-bit binary strings. A function f(λ) is
negligible if for every c > 0 there exists an λc such that f(λ) < 1/λc for all
λ > λc.

2.1 Hashing

Formally, a function H : X → Y is a collision-resistant (CR) hash function, if
for all probabilistic polynomial-time (PPT) algorithm A, AdvCR

A (λ) is negligible
in λ, where
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AdvCR
A (λ) = Pr[x, x′ ← A(H) : x′ �= x ∧H(x′) = H(x)].

A family of function H = {hi : X → Y } is pairwise independent, if for every
distinct x, x′ ∈ X and every y, y′ ∈ Y , Pr

h
$←H[h(x) = y and h(x′) = y′] =

1/|Y |2.

2.2 Extracting Randomness

The min-entropy H∞(X) of a random variable X is − log(maxx Pr(X = x)).
Dodis, Reyzin and Smith [16] defined average min-entropy of X given Y to be
the logarithm of the average probability of the most likely value of X given Y :
H̃∞(X |Y ) = − log

(
Ey←Y

[
2−H∞(X|Y =y)

])
. They proved that if Y has 2� possible

values and Z is any random variable, then H̃∞(X |(Y, Z)) ≥ H∞(X |Z) − �.
The statistical distance between two probability distributions X and Y is

SD(X,Y ) = 1
2

∑
v |Pr(X = v)−Pr(Y = v)|. Dodis, Reyzin and Smith [16] proved

that if X,Y are random variables such that X ∈ {0, 1}n and H̃∞(X |Y ) ≥ k,
and H is a family of pairwise independent hash functions from {0, 1}n to {0, 1}�,

then for h
$← H, SD((Y, h, h(X)), (Y, h, U�)) ≤ ε as long as � ≤ k − 2 log(1/ε).

2.3 Public Key Encryption

A PKE scheme is a tuple of algorithms described as follows:

Kg(λ) takes as input a security parameter λ. It outputs a public/private key
pair (PK, SK).

Enc(PK,m) takes as input a public key PK and a message m. It outputs a
ciphertext.

Dec(SK, c) takes as input a private key SK and a ciphertext c. It outputs a
plaintext message or the special symbol ⊥ meaning that the ciphertext is
invalid.

We insist that all public key encryption schemes satisfy the obvious correctness
condition (that decryption “undoes” encryption).

The strongest and commonly accepted notion of security for a PKE scheme is
that of indistinguishability against an adaptive chosen ciphertext attack (CCA).
It is defined using the following game between an adversary A and a challenger.

Setup. The challenger runs Kg(λ) to obtain a public/private key pair (PK, SK).
It gives the public key PK to the adversary.

Query phase 1. The adversary A adaptively issues decryption queries c. The
challenger responds with Dec(SK, c).

Challenge. The adversary A submits two (equal length) messages m0,m1. The
challenger selects a random bit β ∈ {0, 1}, sets c∗ = Enc(PK,mβ) and sends
c∗ to the adversary as its challenge ciphertext.

Query phase 2. The adversary continues to adaptively issue decryption queries
c, as in Query phase 1, but with the natural constraint that the adversary
does not request the decryption of c∗.
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Guess. The adversary A outputs its guess β′ ∈ {0, 1} for β and wins the game
if β = β′.

We define A’s advantage in attacking the public key encryption scheme PKE
with the security parameter λ as AdvPKE

A (λ) = |Pr[β = β′] − 1
2 |.

Definition 1. A public key encryption scheme PKE is CCA secure, if for all
polynomial-time adversary A, the advantage AdvPKE

A (λ) is negligible.

The chosen-plaintext security CPA for a public key encryption scheme can be
defined as the preceding game, except that adversary A is disallowed to issue
any decryption query.

2.4 Lossy Trapdoor Functions

Informally, a collection of LTDFs is a collection of functions with two computa-
tionally indistinguishable branches: an injective branch with a trapdoor and a
lossy branch losing information about its input.

Definition 2 (Lossy Trapdoor Functions). A collection of (n, k)-lossy trap-
door functions is a 3-tuple of (possibly probabilistic) polynomial-time algorithms
(G,F,F−1) such that:

1. Sampling an injective function: G(1λ, injective) outputs (s, td) where s is
a function index and td is its trapdoor. The algorithm F(s, ·) computes a (de-
terministic) injective function fs(·) over the domain {0, 1}n, and F−1(s, td, ·)
computes f−1

s (·).
2. Sampling a lossy function: G(1λ, lossy) outputs s where s is a function

index. The algorithm F(s, ·) computes a (deterministic) function fs(·) over
the domain {0, 1}n whose image has size at most 2n−k.

3. Hard to distinguish injective from lossy: The ensembles {s : (s, td) ←
G(1λ, injective)}λ∈N and {s : s ← G(1λ, lossy)}λ∈N are computationally indis-
tinguishable.

3 Chameleon ABO-TDFs and Its Constructions

In this section, we first introduce our notion of chameleonABO-TDFs. Then,based
on a CPA-secure pubic key encryption scheme with some additional property, we
propose a generic construction of chameleon ABO-TDFs. Finally, we instantiate
the generic construction using the Damg̊ard-Jurik encryption scheme [15].

3.1 Chameleon ABO-TDFs

The notion of ABO-TDFs, introduced by Peikert and Waters [31], is a richer
abstraction of LTDFs. In an ABO collection, each function has several branches.
Almost all the branches are injective trapdoor functions, except for one branch
which is lossy. Freeman et al. [18] generalized the definition of ABO-TDFs by
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allowing possibly many lossy branches (other than one). Let B = {Bλ}λ∈N be
a collection of sets whose elements represent the branches, and we recall the
definition of ABO-TDFs [18].

Definition 3(All-But-One Trapdoor Functions). A collection of (n, k)-all-but-
one trapdoor functions is a 3-tuple of (possibly probabilistic) polynomial-time
algorithms (Gabo,Fabo,F

−1
abo) such that:

1. Sampling a function: For any λ ∈ N and b∗ ∈ Bλ, Gabo(1λ, b∗) outputs
(s, td, S̃) where s is a function index, td is its trapdoor and S̃ is a set of lossy
branches with b∗ ∈ S̃ ⊂ Bλ.

2. Evaluation of injective functions: For any b ∈ Bλ, if b /∈ S̃ where
(s, td, S̃) ← Gabo(1λ, b∗), then Fabo(s, b, ·) computes a (deterministic) injec-
tive function fs,b(·) over the domain {0, 1}n, and F−1

abo(s, td, b, ·) computes
f−1

s,b (·).
3. Evaluation of lossy functions: For any b ∈ Bλ, if b ∈ S̃ where (s, td, S̃) ←

Gabo(1λ, b∗), then Fabo(s, b, ·) computes a (deterministic) function fs,b(·) over
the domain {0, 1}n whose image has size at most 2n−k.

4. Security: The ensembles {s : (s, td, S̃) ← Gabo(1λ, b∗1)}λ∈N,b∗1∈Bλ
and {s :

(s, td, S̃) ← Gabo(1λ, b∗2)}λ∈N,b∗2∈Bλ
are computationally indistinguishable.

5. Hard to find one-more lossy branch: Any probabilistic polynomial-time
algorithm A that receives (s, b) as input, where (s, td, S̃) ← Gabo(1λ, b∗) and

b
$← S̃, has only a negligible probability of outputting an element b′ ∈ S̃\{b}.

We are now ready to introduce the notion of chameleon ABO-TDFs, which is a
specific kind of ABO-TDFs with two variable (a, b) as a branch. The property
we require is that given any a, it is easy to determine a unique lossy branch
(a, b) with the help of a trapdoor, while (a, b0) from a lossy branch family is
computationally indistinguishable from (a, b1) from an injective branch family
with the trapdoor. We can construct a chameleon ABO-TDF from any ABO-
TDF in the sense of [31] and a chameleon hash function [24] targeting to the
branch set. Yet the properties of the chameleon hash are a bit overkill for what
we need and we build the needed properties directly into the constructions for
better efficiency.

Let A × B = {Aλ × Bλ}λ∈N be a collection of sets whose elements represent
the branches.

Definition 4 (Chameleon All-But-One Trapdoor Functions). A collection of
(n, k)-chameleon all-but-one trapdoor functions is a 4-tuple of (possibly proba-
bilistic) polynomial-time algorithms (Gch,Fch,F

−1
ch ,CLBch) such that:

1. Sampling a function: For any λ ∈ N, Gch(1λ) outputs (s, td, S̃) where s
is a function index, td is its trapdoor and S̃ ⊂ Aλ × Bλ is a set of lossy
branches.

Note that, a lossy branch is specified as a parameter to the function
sampler of an ABO collection, but we have no such requirement.
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2. Evaluation of injective functions: For any (a, b) ∈ Aλ ×Bλ, if (a, b) /∈ S̃
where (s, td, S̃) ← Gch(1λ), then Fch(s, a, b, ·) computes a (deterministic) in-
jective function gs,a,b(·) over the domain {0, 1}n, and F−1

ch (s, td, a, b, ·) com-
putes g−1

s,a,b(·).
3. Evaluation of lossy functions: For any (a, b) ∈ Aλ×Bλ, if (a, b) ∈ S̃ where

(s, td, S̃) ← Gch(1λ), then Fch(s, a, b, ·) computes a (deterministic) function
gs,a,b(·) over the domain {0, 1}n whose image has size at most 2n−k.

4. Chameleon property:
(a) Computing a lossy branch: For any a ∈ Aλ, CLBch(s, td, a) computes

a unique b ∈ Bλ to result in a lossy branch (a, b). The uniqueness of b
for a given a implies that any randomly chosen branch from Aλ ×Bλ is
injective with overwhelming probability.

(b) Hard to distinguish a lossy branch from an injective branch: Any
probabilistic polynomial-time algorithm A that receives s as input, where
(s, td, S̃) ← Gch(1λ), has only a negligible probability of distinguishing
a pair (a, b0) ∈ S̃ from (a, b1) /∈ S̃, even a is chosen by A. Formally, Let
A = (A1,A2) be a CH-LI distinguisher and define its advantage as

AdvCH-LI
A (λ) =

∣∣∣∣∣∣∣Pr

⎡⎢⎣β = β′ :
(s, td, S̃) ← Gch(1λ); a ← A1(s);

b0 = CLBch(s, td, a); b1
$← Bλ;

β
$← {0, 1};β′ ← A2(s, a, bβ)

⎤⎥⎦− 1
2

∣∣∣∣∣∣∣ .
Given a collection of chameleon all-but-one trapdoor functions, it is hard
to distinguish a lossy branch from an injective branch, if AdvCH-LI

A (·) is
negligible for every PPT distinguisher A. This property implies that
given a, without the trapdoor, the component b of the lossy branch (a, b)
is distributed uniformly.

5. Hard to find one-more lossy branch: Any probabilistic polynomial-time
algorithm A that receives (s, a, b) as input, where (s, td, S̃) ← Gch(1λ) and

(a, b) $← S̃, has only a negligible probability of outputting a pair (a′, b′) ∈
S̃\{(a, b)}. This property implies that the size of S̃ should not be too small.

In [31], Peikert and Waters also introduced a slightly relaxed definition of LTDFs,
which they called almost-always LTDFs. Namely, there is only a negligible prob-
ability that fs(·) is not injective or that F−1(s, td, ·) incorrectly computes f−1

s (·)
for some input.

Similarly, we define almost-always chameleon ABO-TDFs. In a almost-always
chameleon ABO-TDFs, with overwhelming probability, F−1

ch (s, td, a, b, ·) inverts
correctly on all values in the image of gs,a,b(·) if (a, b) /∈ S̃, and CLBch(s, td, a)
outputs b such that (a, b) ∈ S̃.

3.2 Generic Construction

Let (Kg,Enc,Dec) be a CPA-secure PKE scheme, which is additively homomor-
phic. For the PKE scheme, we also assume that
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1. M is its message space and R is its randomness space. Both spaces are large
enough and |M| > |R|.

2. M is a finite field. For constructing almost-always chameleon ABO-TDFs,
we only require that, M is a commutative ring with multiplicative identity
and, with overwhelming probability, each element in M has multiplicative
inverse (See the concrete construction in Section 3.3.).

3. Enc(PK,m)*Enc(PK,m′) = Enc(PK,m+m′), where (PK, SK) ← Kg(λ),m,
m′ ∈ M, and * denotes coordinate-wise multiplication of ciphertexts.

4. For a,m ∈ M, (Enc(PK,m))a = Enc(PK, am), where exponentiation of a
ciphertext is also coordinate-wise.

Now, we define a 4-tuple algorithms (Gch,Fch,F
−1
ch ,CLBch) as follows:

1. Sampling a function: Gch takes as input 1λ, where λ is a security pa-
rameter. It first generates a keypair for the public key encryption scheme:
(PK, SK) ← Kg(λ). It then chooses xa, xb, xd

$← M and computes

ca = Enc(PK, xa), cb = Enc(PK, xb), cd = Enc(PK, xd).

The function index is s = (PK, ca, cb, cd), the trapdoor is td = (SK, xa, xb, xd)
and the set of lossy branches S̃ is all pairs (a, b) ∈ M × M such that
axa + bxb + xd = 0.

2. Evaluating a function: Fch takes as input (s, a, b, x), where s = (PK, ca, cb,
cd) is a function index and x ∈ M. It computes y =

(
(ca)a * (cb)b * cd

)x
,

and outputs y.
3. Inverting an injective function: F−1

ch takes as input (s, td, a, b, y), where
s = (PK, ca, cb, cd) is a function index, td = (SK, xa, xb, xd) is the trap-
door and (a, b) /∈ S̃. It computes x = Dec(SK, y) · (axa + bxb + xd)−1, and
outputs x.

4. Computing a lossy branch: CLBch takes as input (s, td, a), where s =
(PK, ca, cb, cd) is a function index and td = (SK, xa, xb, xd) is the trapdoor.
It computes b = (−axa − xd) · xb

−1, and outputs b.

Theorem 1. The algorithms described above give a collection of (log |M|,
log |M| − log |R|)-chameleon all-but-one trapdoor functions.

Proof. We observe that, if (a, b) is not a lossy branch, namely b �= CLBch(s, td,
a) = (−axa − xd) · xb

−1, then Fch(s, a, b, x) computes

y =
(
(ca)a * (cb)b * cd

)x
=
(
(Enc(PK, xa))a * (Enc(PK, xb))

b * Enc(PK, xd)
)x

= Enc(PK, x(axa + bxb + xd)),

and F−1
ch (s, td, a, b, y) computes

Dec(SK, y) · (axa + bxb + xd)−1 = Dec(SK,Enc(PK, x(axa + bxb + xd)))
·(axa + bxb + xd)−1

= x(axa + bxb + xd) · (axa + bxb + xd)−1 = x.
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So, we have shown invertibility for injective functions via the trapdoor informa-
tion. Next, we show that if (a, b) is a lossy branch, namely b = CLBch(s, td, a) =
(−axa−xd) ·x−1

b , then Fch evaluates a lossy function. In this case, Fch computes(
(ca)a * (cb)b * cd

)x
=
(
(Enc(PK, xa))a * (Enc(PK, xb))

b * Enc(PK, xd)
)x

= Enc(PK, 0),

and most of the information on the input is lost. The function Fch(s, a, b, ·)
is defined over the domain M, and if (a, b) ∈ S̃, Fch is a lossy function and
the image size is at most |R|. Therefore the amount of lossiness is at least
log |M| − log |R|.

Given the public key encryption scheme (Kg,Enc,Dec) is CPA secure, it is easy
to see that any probabilistic polynomial-time algorithm A has only a negligible
probability of distinguishing a pair (a, b0) ∈ S̃ from (a, b1) /∈ S̃, even a is chosen
by A.

Finally, we show that any probabilistic polynomial-time algorithm A that
receives (s, a, b) as input, where (a, b) ∈ S̃, has only a negligible probability of
outputting a pair (a′, b′) ∈ S̃\{(a, b)}. To see this, observe that the values xa, xb

and xd are initially hidden by the CPA secure public key encryption scheme.
A could obtain the information that axa + bxb + xd = 0. However, there are
exactly |M|2 pairs that satisfy this equation and each of them are equally likely.
Thus, the adversary can output a pair (a′, b′) satisfying (a′, b′) �= (a, b) and
a′xa + b′xb + xd = 0 with negligible probability.

The formal proofs of the hardness of distinguishing a lossy branch from an
injective branch of the chameleon ABO-TDFs, which can be reduced to the CPA
security of the PKE scheme, and the hardness of finding one-more lossy branch,
which can be reduced to the one-wayness of the PKE scheme, will be given in
the full version of the paper.

3.3 A Concrete Construction

Based on the Damg̊ard-Jurik encryption scheme [15], which is additively homo-
morphic, we present a concrete construction of almost-always chameleon ABO-
TDFs by instantiating the generic construction. We begin with a brief description
of the Damg̊ard-Jurik encryption scheme [15], and then describe our construction.

Consider a modulus N = PQ, where P and Q are odd primes and
gcd(N,φ(N)) = 1. Such an N is called admissible by Damg̊ard and Jurik [15].
The following theorem was proved in [15]:

Theorem 2. For any admissible N and a natural number � < P,Q, the map
ψ� : ZN� × Z∗

N → Z∗
N�+1 defined by ψ�(x, r) = (1 + N)xrN�

mod N �+1 is an
isomorphism, where

ψ�(x1 + x2 mod N �, r1r2 mod N) = ψ�(x1, r1) · ψ�(x2, r2) mod N �+1.

Moreover, it can be inverted in polynomial time given lcm(P − 1, Q− 1).
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The following describes the Damg̊ard-Jurik encryption scheme [15].

DJ.Kg(λ) Given the security parameter λ, choose an admissible modulus N =
PQ and a natural number � < P,Q. The published public key is PK = (N, �),
and the private key is SK = lcm(P − 1, Q− 1).

DJ.Enc(PK,m) Given PK and a message m ∈ ZN� , choose r
$← Z∗

N and output
c = (1 + N)mrN�

mod N �+1.
DJ.Dec(SK, c) Given SK = lcm(P − 1, Q − 1) and a ciphertext c, apply the

inversion algorithm provided by Theorem 2 to compute (m, r) = ψ−1
� (SK, c),

and output m.

Damg̊ard and Jurik [15] also proved that based on decisional composite residu-
osity assumption, the encryption scheme described above is CPA secure.

Now, given a Damg̊ard and Jurik encryption scheme with algorithms DJ.Kg,
DJ.Enc and DJ.Dec, we define a 4-tuple algorithms (Gch,Fch,F

−1
ch ,CLBch) as

follows:

1. Sampling a function: Gch takes as input 1λ, where λ is a security pa-
rameter. It runs (PK, SK) ← DJ.Kg(λ), where PK = (N, �), and chooses

xa, xb, xd
$← ZN� . Next, it computes

ca = DJ.Enc(PK, xa), cb = DJ.Enc(PK, xb), cd = DJ.Enc(PK, xd).

The function index is s = (PK, ca, cb, cd), the trapdoor is td = (SK, xa, xb, xd)
and the set of lossy branches S̃ is all pairs (a, b) ∈ ZN� × ZN� such that
axa + bxb + xd = 0 mod N �.

2. Evaluating a function: Fch takes as input (s, a, b, x), where s = (N, �, ca,
cb, cd), a, b, x ∈ ZN� . It computes y =

(
(ca)a · (cb)b · cd

)x mod N �+1, and
outputs y.

3. Inverting an injective function: F−1
ch takes as input (s, td, a, b, y), where

s = (N, �, ca, cb, cd), td = (SK, xa, xb, xd) and (a, b) /∈ S̃. It computes

x′ = DJ.Dec(SK, y),

and outputs x = x′ · (axa + bxb + xd)−1 mod N �.
Note that, with overwhelming probability, (axa + bxb + xd) mod N � has

multiplicative inverse.
4. Computing a lossy branch: CLBch takes as input (s, td, a), where s =

(N, �, ca, cb, cd), td = (SK, xa, xb, xd) and a ∈ ZN� . It computes

b = (−axa − xd) · xb
−1 mod N �,

and outputs b.

Theorem 3. Under the composite residuosity assumption, the algorithms de-
scribed above give a collection of ((n−1)�, (n−1)�−n)-almost-always chameleon
all-but-one trapdoor functions.
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Proof. The CPA security of the Damg̊ard-Jurik encryption scheme and Theorem
1 guarantee that the algorithms described above give a collection of almost-
always chameleon ABO-TDFs. Thus, it only remains to bound the amount of
lossiness.

The function Fch(s, a, b, ·) is defined over the domain {0, 1}(n−1)�, and if
(a, b) ∈ S̃, Fch is a lossy function and the image size is at most 2n. Therefore
the amount of lossiness is at least (n− 1)�− n.

4 CCA-Secure PKE Scheme

Let (G,F,F−1) be a collection of (n, k1)-lossy trapdoor functions, and let
(Gch,Fch,F

−1
ch ,CLBch) be a collection of (n, k2)-chameleon all-but-one trapdoor

functions having branches A×B = {Aλ×Bλ}λ∈N. Let H be a family of pairwise
independent hash functions from {0, 1}n to {0, 1}�.

We assume that the public key encryption scheme has message space {0, 1}�.
We also require that k1+k2−n ≥ k for some k = ω(logn), and � ≤ k−2 log(1/ε)
for some negligible ε (in λ).

Our PKE scheme consists of the following algorithms:

Kg(λ) Given the security parameter λ, generate an injective trapdoor func-
tion: (s, td) ← G(1λ, injective). Then generate a chameleon all-but-one trap-
door function:(s′, td′) ← Gch(1λ). Finally, choose a collision-resistant hash

function H : {0, 1}∗ → Aλ and h
$← H. The published public key is

PK = (s, s′, H, h), and the private key is SK = (td, td′).
Enc(PK,m) Given PK and a message m ∈ {0, 1}�, choose x

$← {0, 1}n, r
$← Bλ

and compute c0 = h(x) ⊕ m, c1 = F(s, x), c2 = Fch(s′, t, r, x), where t =
H(c0, c1). Finally, output the ciphertext c = (c0, c1, c2, r).

Dec(SK, c) Given SK = (td, td′) and a ciphertext c = (c0, c1, c2, r), compute
x = F−1(s, td, c1) and t = H(c0, c1). Then check whether

c1 = F(s, x) and c2 = Fch(s′, t, r, x).

If not, output ⊥, else output m = c0 ⊕ h(x).

It is clear that the above construction satisfies correctness. Our construction does
not require strongly unforgeable one-time signature scheme. Compared with the
scheme of Peikert and Waters [31], the ciphertext is compact without attached
signature and decryption does not require performing signature verification. We
now turn to security.

Theorem 4. The algorithms (Kg,Enc,Dec) described above are a public key en-
cryption scheme secure against adaptive chosen ciphertext attack.

Proof. The proof is a sequence of games [35], Game0,Game1, . . . ,Game5, where
Game0 is the original adaptive chosen ciphertext attack game. Then we show
that for all i = 0, . . . , 4, Gamei and Gamei+1 are (computationally) indistin-
guishable. Finally, we make an unconditional argument that an adversary must
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have negligible advantage in Game5. It follows that the public key encryption
scheme is CCA-secure.

Game1. We modify the way that the challenger computes the challenge cipher-
text c∗ = (c∗0, c

∗
1, c

∗
2, r

∗) as

c∗0 = h(x∗) ⊕mβ, c∗1 = F(s, x∗), c∗2 = Fch(s′, t∗, r∗, x∗),

where x∗ $← {0, 1}n, t∗ = H(c∗0, c
∗
1) and r∗ = CLBch(s′, td′, t∗).

Game2. We modify the decryption oracle so that it rejects all ciphertexts c =
(c0, c1, c2, r), such that r = r∗ and t = H(c0, c1) = t∗.

Game3. We modify the decryption oracle so that it applies the following special
rejection rule: if the adversary submits a ciphertext c = (c0, c1, c2, r) for
decryption, such that r = CLBch(s′, td′, t), where t = H(c0, c1), then the
decryption oracle immediately outputs reject and halts.

Game4. This game is identical to Game3, except for a small modification
to the decryption oracle. When the adversary submits a ciphertext c =
(c0, c1, c2, r) for decryption, the challenger computes x = F−1

ch (s′, td′, c2) and
t = H(c0, c1). Then it checks whether

c1 = F(s, x) and c2 = Fch(s′, t, r, x).

If not, it outputs ⊥, else outputs m = c0 ⊕ h(x).
Game5. In this game, we replace the injective function with a lossy one. For-

mally, in the Setup phase, we replace (s, td) ← G(1λ, injective) with s ←
G(1λ, lossy).

Claim 1. Game0 and Game1 are computationally indistinguishable, given the
hardness of distinguishing a lossy branch from an injective branch of the
chameleon all-but-one trapdoor functions collection.

Proof. We prove this claim by describing a CH-LI distinguisher algorithm A =
(A1,A2) that receives s′ as input where (s′, td′) ← Gch(1λ). The distinguisher
A interacts with the adversary as follows.

In the Setup phase, A runs (s, td) ← G(1λ, injective), and chooses a collision-

resistant hash function H and h
$← H. The public key is PK = (s, s′, H, h).

We point out that A knows the injective trapdoor td, but does not know the
trapdoor td′ corresponding to s′.

When the adversary issues decryption queries, A responds using the injective
trapdoor td. Note that, the only secret information that the decryption oracle
needs to operate is td, which A knows.

When the adversary submits two (equal length) messages m0,m1, A flips a
fair coin β ∈ {0, 1} and constructs the challenge ciphertext as follows:

1. It chooses x∗ $← {0, 1}n and computes

c∗0 = h(x∗) ⊕mβ , c∗1 = F(s, x∗), t∗ = H(c∗0, c
∗
1).
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2. Next, A1 submits t∗ and sets the response as r∗. Then, it computes c∗2 =
Fch(s′, t∗, r∗, x∗).

3. Finally, it outputs the ciphertext c∗ = (c∗0, c
∗
1, c

∗
2, r

∗).

When r∗ = CLBch(s′, td′, t∗), A simulates Game1 perfectly; otherwise, it simu-
lates Game0. Therefore, any difference in behavior between Game0 and Game1
immediately breaks the hardness of distinguishing a lossy branch from an injec-
tive branch of the chameleon all-but-one trapdoor functions collection.

Claim 2. Game1 and Game2 are computationally indistinguishable, given the
collision-resistant property of the hash function H.

Proof. We observe that Game1 and Game2 behave equivalently unless an event
E happens, which is that the adversary makes a legal (i.e., not equal to c∗)
decryption query of the form c = (c0, c1, c2, r = r∗), where t∗ = H(c0, c1). We
show that event E happens with negligible probability.

If event E happens, then because c �= c∗ we must have (c0, c1) �= (c∗0, c
∗
1) and

H(c0, c1) = H(c∗0, c
∗
1) = t∗. Therefore, we find a collision of the hash function H .

Because the hash function H is collision-resistant, we conclude that E happens
with negligible probability.

Claim 3. Game2 and Game3 are computationally indistinguishable, given the
hardness of finding one-more lossy branch of the chameleon all-but-one trapdoor
functions collection.

Proof. We define the event F to be the event that the adversary makes a legal
(i.e., not equal to c∗) decryption query of the form c = (c0, c1, c2, r), such that
r = CLBch(s′, td′, t), where t = H(c0, c1). It is clear that Game2 and Game3
proceed identically until event F occurs. We show that event F happens with
negligible probability.

Note that, if c �= c∗ and (t, r) = (t∗, r∗), the decryption oracle rejects the
ciphertext in both games. Therefore, if even F happens, then (t, r) is a new
lossy branch of the chameleon all-but-one trapdoor function.

Because of the hardness of finding one-more lossy branch of the chameleon
all-but-one trapdoor functions collection, we conclude that F happens with
negligible probability.

Claim 4. Game3 and Game4 are equivalent.

Proof. The only difference between Game3 and Game4 is in the implementation
of decryption oracle. We show that decryption oracle is equivalent in the two
games.

In both games, when the adversary makes a legal (i.e., not equal to c∗) de-
cryption query of the form c = (c0, c1, c2, r), where t = H(c0, c1), the challenger
checks that c1 = F(s, x) and c2 = Fch(s′, t, r, x) for some x that they compute
(in different ways), and outputs ⊥ if not.

Note that, if r = CLBch(s′, td′, t), the decryption oracle outputs rejects and halts
in both games. Therefore, F(s, ·) and Fch(s′, t, r, ·) are both injective, and there is
a unique x such that (c1, c2) = (F(s, x),Fch(s′, t, r, x)). Game3 finds that x by
computing F−1(s, td, c1), while Game4 finds it by computing F−1

ch (s′, td′, t, r, c2).
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Claim 5. Game4 and Game5 are computationally indistinguishable, given the
hardness of distinguishing injective functions from lossy functions of the lossy
trapdoor functions collection.

Proof. The only difference between Game4 and Game5 is in the Setup phase. In
the Setup phase of Game4, the challenger proceeds as in the original CCA game,
outputting the public key PK = (s, s′, H, h) where (s, td) ← G(1λ, injective)
and (s′, td′) ← Gch(1λ). In Game5, Setup generates a lossy function instead,
outputting PK = (s, s′, H, h) where s ← G(1λ, lossy) and (s′, td′) ← Gch(1λ).

We point out that the challenger knows the trapdoor td′ of the chameleon
all-but-one trapdoor function, but does not know the trapdoor td corresponding
to s (if it even exists). The only secret information that the decryption oracle
needs to operate is td′, which the challenger knows.

It is straightforward to show that the adversary’s views in the two games are
indistinguishable, using the indistinguishability of injective and lossy functions.

Claim 6. No (even unbounded) adversary has more than a negligible advantage
in Game5.

We prove this claim by showing the fact that the value h(x∗) is a nearly uniform
and independent “one-time pad”, and therefore the adversary has negligible
advantage in guessing which message was encrypted.

Note that, in Game5, both F(s, ·) and Fch(s′, t∗, r∗, ·) are lossy functions, and
its image size is at most 2n−k1 and 2n−k2 , respectively. By the hypothesis that
k1 + k2 −n ≥ k, we have that the random variable (c∗1, c

∗
2) = (F(s, x∗),Fch(s′, t∗,

r∗, x∗)) can take at most 22n−k1−k2 ≤ 2n−k values.
Because x∗ and h are independent, We also have H̃∞(x∗|(c∗1, c∗2, h)) ≥

H∞(x∗|h) − (n − k) = k. Therefore, we have that (c∗1, c
∗
2, h, h(x∗))

and(c∗1, c
∗
2, h, U�) are within ε in statistical distance by our requirement that

� ≤ k − 2 log(1/ε), and we are done.

5 Conclusions

We introduced a new primitive called chameleon ABO-TDFs, which is a special
kind of ABO-LTDFs. Given a CPA-secure public key encryption scheme with some
additional property (mostly additively homomorphism), we also gave a generic
and concrete construction of chameleon ABO-TDFs. Based on an LTDF and a
chameleon ABO-TDF, we proposed a black-box construction of CCA-secure PKE
which is more efficient than that of Peikert and Waters [31]. A future direction is
to find other constructions and applications of chameleon ABO-TDFs.
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Abstract. Whether it is possible to construct a chosen ciphertext se-
cure (CCA secure) public key encryption (PKE) scheme only from a
chosen plaintext secure (CPA secure) one is a fundamental open prob-
lem, and the best known positive results regarding this problem are the
constructions of so-called bounded CCA secure schemes. Since we can
achieve the best possible security in the bounded CCA security notions,
in order to further tackle the problem, we would need other new secu-
rity notions that capture intermediate security notions that lie between
CPA and CCA security. Motivated by this situation, we focus on “paral-
lel” decryption queries (originally introduced by Bellare and Sahai) for
the extension of bounded CCA security, and introduce a new security
notion which we call mixed CCA security. It captures security against
adversaries that make single and parallel decryption queries in a prede-
termined order, where each parallel query can contain unboundedly many
ciphertexts. Moreover, how the decryption oracle is available before and
after the challenge is also taken into account in this new security defi-
nition, which enables us to capture existing major security notions that
lie between CPA and CCA security in a unified security notion. We in-
vestigate the relations among mixed CCA security notions, and show a
necessary and sufficient condition of implications/separations between
any two notions in mixed CCA security. We also show two black-box
constructions of PKE schemes with improved security only using CPA
secure schemes as building blocks.

Keywords: public key encryption, bounded CCA security, parallel de-
cryption query, relations among security notions, black-box construction.

1 Introduction

Background. Studies on constructing and understanding public key encryption
(PKE) schemes that satisfy security against chosen ciphertext attacks (CCA)
[22,27], which is nowadays considered as a standard security notion needed in
most practical applications/situations where PKE schemes are used, are impor-
tant research topics in the area of cryptography. We can roughly categorize the
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approaches for constructing CCA secure PKE schemes into two types: Construc-
tions from specific number-theoretic assumptions and constructions from gen-
eral assumptions. (In the following, we write IND-CCA1 to denote non-adaptive
CCA security [22] and IND-CCA2 to denote adaptive CCA security [27]).

The approaches of the first type have been successful so far from both theo-
retical and practical points of view. After the first novel practical scheme based
on the decisional Diffie-Hellman (DDH) assumption by Cramer and Shoup [10],
many practical IND-CCA2 secure PKE schemes that pursue smaller ciphertext
size and/or base security on weaker assumptions have been constructed so far,
e.g. [20,6,17,7,14,18,15,30].

The approaches of the second type have also been successful, mainly from a
theoretical point of view. Especially, it is known that if there exists an (enhanced)
trapdoor permutation, which is one of the most fundamental primitives, then
we can construct an IND-CCA2 secure PKE schemes generically [22,4,11]. There
are also several elegant generic constructions of IND-CCA2 secure PKE schemes
from primitives with some “stronger” functionality and/or security, such as con-
structions from identity-based encryption [5], and from special types of injective
trapdoor functions and trapdoor relations [25,29,19,30].

However, one of the most fundamental problems still remains open: Is it possi-
ble to generically construct a CCA ( IND-CCA1 or IND-CCA2) secure PKE scheme
from any semantically secure [13] (i.e. IND-CPA secure) one?

So far, there are several negative and positive results related to this problem.
Gertner et al. [12] showed that constructing an IND-CCA1 secure PKE scheme
only from IND-CPA secure PKE schemes in a black-box manner is impossible,
if the construction satisfies the property called shielding, where a PKE-to-PKE
construction is said to be shielding if the decryption algorithm of the construction
does not call the encryption algorithm of the building block PKE scheme.

Pass et al. [23] showed how to construct a PKE scheme that is non-malleable
against chosen plaintext attacks (NM-CPA) from any IND-CPA secure PKE scheme.
Their construction uses a certain class of NIZK proofs and was non-black-box.

Cramer et al. [9] introduced the notion of bounded CCA security which is
defined in exactly the same way as ordinary IND-CCA2 security, except that the
number of decryption oracle queries that an adversary can ask is bounded by
some predetermined value (say, q) that is known a priori (we denote this no-
tion by q-CCA2). Then they showed that for any polynomial q it is possible to
construct an IND-q-CCA2 secure PKE scheme from any IND-CPA secure one in a
black-box and shielding manner. They furthermore showed that for any polyno-
mial q it is possible to construct a PKE scheme that satisfies non-malleability
against q-bounded CCA (NM-q-CCA2) in a non-black-box manner.

Recently, Choi et al. [8] showed the constructions of PKE schemes from any
IND-CPA secure scheme both in a black-box and shielding manner. Their first
construction achieves NM-CPA security, and their second construction, which is
essentially the same as the first construction but needs larger parameters, can
achieve NM-q-CCA2 security.
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These previous results show that we can achieve the best possible security
notion (NM-q-CCA2) in the bounded CCA framework. This suggests that in or-
der to proceed from the current situation, we would need new security notions
which are intermediate between CPA and CCA security in a different sense from
bounded CCA security. The motivation of this paper is to introduce and study
such intermediate security notions as an extension of the bounded CCA security
as a foundation for tackling the above fundamental problem.

Extending Bounded CCA Security with Parallel Decryption Queries. For the pur-
pose mentioned above, we focus on and use the concept of the parallel chosen
ciphertext attacks which is originally introduced by Bellare and Sahai [3] in the
context of non-malleability [11] for PKE schemes, and consider parallel queries
in the bounded CCA security framework. More specifically, as an extension of
bounded CCA security, we introduce a new security notion, which we call mixed
CCA security, that captures security against adversaries that make single (i.e.
ordinary) decryption queries and parallel decryption queries in a predetermined
order, where each parallel query can contain unboundedly many ciphertexts.
(The name “mixed” is because we consider a mix of single and parallel queries).
Moreover, the difference among decryption queries that are only allowed to make
before/after the challenge and those that are allowed to make both before and
after the challenge (an adversary can decide “flexibly” how to issue queries as
long as it follows the predetermined order of queries and types) is also taken into
account in our definition, which enables us to capture existing major security
notions that lie between CPA and CCA security, including slightly complex no-
tions such as non-malleability against bounded CCA (NM-q-CCA2) that considers
“stage-specific” decryption queries, in a unified security notion. As a natural and
interesting special class of mixed CCA security, we also introduce the notion of
bounded parallel CCA security. For more details, see Section 3. We believe that
the mixed CCA security provides a theoretical foundation for discussion of the
problem of whether constructing (unbounded) CCA secure PKE schemes from
any CPA secure PKE schemes is possible or not, and for intermediate results
towards the problem.

1.1 Our Contributions

Relations among Mixed CCA Security Notions. We investigate the relations
among mixed CCA security notions for PKE schemes and for key encapsulation
mechanisms (KEMs) in Section 4. As one of the main results, we show necessary
and sufficient conditions for implications/separations between any two notions
in mixed CCA security. Interestingly and perhaps somewhat surprisingly, the
relations for PKE schemes differ depending on its plaintext space size. More
specifically, the relations among security notions for PKE schemes with super-
polynomially large plaintext space size and those with polynomially bounded
plaintext space size are different. Therefore, this difference suggests that when
we consider the relations among security notions for PKE schemes, we have
to be also careful about the plaintext space size, though seemingly unrelated.
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The relations for KEMs are the same as those of PKE schemes with polynomially
bounded plaintext space size.

Black-Box Feasibility Results from CPA-Security. Using the notion of mixed
CCA security, in Section 5, we show two new black-box constructions of PKE
schemes (which can encrypt plaintexts of polynomial length, and thus have ex-
ponentially large plaintext space size) from an IND-CPA secure PKE scheme.
The first one is constructed based on the construction by Choi et al. [8] which
is NM-q-CCA2 secure, and achieves slightly but strictly stronger security notion
than NM-q-CCA2. Our approach for the first construction is to use the Choi et al.
scheme as a KEM and combine it with an IND-CCA2 secure data encapsulation
mechanism (DEM), and thus is a very simple extension. In order for this sim-
ple approach to work, we show some implication result for mixed CCA security
of KEMs (and PKE schemes with polynomially bounded plaintext space size).
The second one is constructed based on the above result and the construction
of PKE scheme by Cramer et al. [9], and achieves yet another security notion
which cannot be directly compared with the security notion achieved by our
other constructions and with NM-q-CCA2 security.

As will be explained later, one of the important and interesting observations
that our results suggests, combined with previously known results, is that the
difficulty of constructing an IND-CCA1 secure PKE scheme only from IND-CPA
secure one lies not in whether the number of decryption results that an adver-
sary can see is bounded or not, but in whether the number of the adversary’s
“adaptive” decryption queries is bounded. To the best of our knowledge, this
observation has not been explicitly stated before.

2 Preliminaries

In this section, we review the basic notations and definitions of primitives used
in this paper. Due to space limitation, the definitions for key encapsulation
mechanism (KEM) and data encapsulation mechanism (DEM) are omitted and
are provided in the full version. (They can also be found in [10,16], for example).

Basic Notations. If q is a natural number, then [q] = {1, . . . , q}. “x ← y” denotes
that x is chosen uniformly at random from y if y is a finite set, x is output from
y if y is a function or an algorithm, or y is assigned to x otherwise. “|x|” denotes
the size of the set if x is a finite set or bit length of x if x is an element of some
set. “PPTA” denotes a probabilistic polynomial time algorithm. AO denotes an
algorithm A with oracle access to O. Unless otherwise stated, k denotes the
security parameter. A function f : N → [0, 1] is said to be negligible if for any
positive polynomial p(k) and for all sufficiently large k, we have f(k) < 1

p(k) .

Public Key Encryption. A PKE scheme Π consists of the following three PPTAs
(PKG,PEnc,PDec): A key generation algorithm PKG takes 1k (security param-
eter k) as input, and outputs a public/private key pair (pk, sk); An encryp-
tion algorithm PEnc takes pk and a plaintext m ∈ MΠ (the plaintext space
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of Π) as input, and outputs a ciphertext c; A deterministic decryption algo-
rithm PDec takes sk and c as input, and outputs a plaintext m (or a sym-
bol ⊥ meaning “decryption error”). As a correctness requirement, we require
PDec(sk,PEnc(pk,m)) = m for all (pk, sk) output from PKG and all m ∈ MΠ .

Conventional Security Notions. The security notions for PKE schemes are ex-
pressed by a combination of a GOAL and an attack type (ATK) of an adversary. For
conventional security notions for PKE schemes, we consider indistinguishability
(IND) and non-malleability (NM) for security goals and chosen plaintext attacks
(CPA), non-adaptive chosen ciphertext attacks (CCA1), adaptive chosen ciphertext
attacks (CCA2), and q-bounded chosen ciphertext attacks (q-CCA2) [9] for attack
types of an adversary. Non-malleability for PKE schemes we treat in this pa-
per is the so-called parallel chosen-ciphertext attack based definition [3], which
is equivalent to the indistinguishability based definition used in [23,24]1. Since
these conventional GOAL-ATK security notions can be expressed as special cases
of mixed CCA security defined in Section 3, here we omit the definitions.

Implications and Separations of Security Notions. We will show several impli-
cations and separations of security notions, and thus we recall here. Though we
write only the definition for PKE schemes, the same is defined for KEMs.

Definition 1. Let X and Y be security notions for PKE schemes. We say that
X security implies Y security if any X secure PKE scheme is also Y secure. We
say that X security does not imply Y security if, under the assumption that X
secure PKE schemes exist, there exists a PKE scheme which is X secure but is
not Y secure. We say that X security and Y security are equivalent if we have
implications for both directions (i.e. from X to Y and from Y to X).

Shielding Black-Box Constructions. We briefly recall the definition of a shielding
black-box construction of an X secure PKE scheme from a Y secure scheme. The
notion of black-box constructions we mention in this paper is classified as fully-
black-box ones [28], but specified for PKE-to-PKE constructions. (for details, see
[28]). The notion of the shielding constructions is from [12].

Definition 2. Let X and Y be security notions for PKE schemes. We say that
there exists a shielding black-box construction of an X secure PKE scheme from
a Y secure one, if there exist oracle PPTAs Π = (PKG,PEnc,PDec) and B with
the following properties. For all algorithms π = (G, E, D) and A (each algorithm
can be of arbitrary complexity), the following two conditions are satisfied:

(Correctness:) If π = (G,E,D) satisfies correctness as a PKE scheme, so does
ΠG,E,D = (PKGG,E,D, PEncG,E,D, PDecG,D).

(Security:) If A breaks X security of ΠG,E,D = (PKGG,E,D, PEncG,E,D, PDecG,D)
then BA,G,E,D breaks Y security of π.

(Note that PDec does not have access to E).
1 Pass et al. [24] prove that many-message (indistinguishability-based) non-

malleability, which considers multiple challenge messages, and single-message non-
malleability, considered in this paper, are equivalent.
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3 Extending Bounded CCA: Mixed CCA Security

In order to deal with and discuss existing security notions for PKE schemes
and KEMs that lie between IND-CPA and IND-CCA2 security in a unified way, in
this section we introduce an extension of conventional bounded CCA security
[9], which we call security against mixed chosen ciphertext attacks (mixed CCA
security), where the decryption oracle in the security experiment accepts both
single decryption queries and parallel decryption queries in a predetermined
order, and “how” the decryption oracle is available before/after the challenge is
also taken into account.

Preliminary Definitions. We first formally define the notion of a parallel query
to an oracle.

Definition 3. Let O : {0, 1}∗ → {0, 1}∗ be an oracle. A parallel query to O is
a vector −→x = (x1, x2, . . . ) of inputs for O, where the size of the vector −→x is not
predetermined, and a response to the parallel query −→x is a vector of the output
values −→y = (y1, y2, . . . ) where yi = O(xi) for every 1 ≤ i ≤ |−→x |.
We stress that the number of inputs in each parallel query −→x is unbounded and
can be dependent only on an algorithm that uses the oracle.

To define mixed CCA security, we need to introduce several notations. The
symbols “s” and “p” denote one single query and one parallel query, respectively.
Let q ≥ 0 be an integer. “sq” and “pq” denote q single queries and q parallel
queries, respectively. We define s0 = p0 = ∅.

If we write “(sq1pq2 . . . )” with some integers q1, q2, ... ≥ 0, then it denotes
a query sequence. This query sequence will define how the decryption oracle in
the mixed CCA experiment accepts the queries. For example, (s2p3) denotes
two single decryption queries followed by three parallel decryption queries. We
denote by “unbound” a special sequence that indicates “unboundedly” many
single queries, i.e. unbound = s∞.

“QS” denotes a set consisting of all possible query sequences with the restric-
tion that the total number of queries in each sequence is bounded to be polyno-
mial (in the security parameter). We furthermore define QS∗ = QS∪{unbound}.
We refer to queries following the query sequence seq ∈ QS∗ as “seq-queries”.

If seq ∈ QS, then we denote by “|seq|” the length of the query sequence. For
example, if seq = (s2p) then |seq| = 3. We define |unbound| = ∞.

We define a concatenation operation “||” for query sequences naturally. For
example, if seq1 = (s2p) and seq2 = (p2s3), then (seq1||seq2) = (s2pp2s3) =
(s2p3s3). For any seq ∈ QS∗, we define (seq||∅) = (∅||seq) = seq and
(seq||unbound) = (unbound||seq) = unbound.

3.1 Definition of Mixed CCA Security

Now we define mixed CCA security for a PKE scheme Π = (PKG,PEnc,PDec)
as IND-ATK-like security parameterized by three query sequences B, F, A ∈ QS∗,
denoted by 〈B : F : A〉-mCCA security, via the 〈B : F : A〉-mCCA experiment
Expt

〈B:F:A〉-mCCA
Π,A (k) that an adversary A = (A1,A2) runs in:
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Expt
〈B:F:A〉-mCCA
Π,A (k) : [(pk, sk) ← PKG(1k); (m0,m1, st) ← AO

1 (pk); b ← {0, 1};
c∗ ← PEnc(pk,mb); b′ ← AO

2 (c∗, st) : If b′ = b then return 1 else return 0]

where O(·) = PDec(sk, ·) is a decryption oracle. However, how the decryption
oracle is available is determined depending on the query sequences B,F,A in
the following way: A1 can issue decryption queries following the sequence B,
and after all B-queries are completed, A1 can further issue decryption queries
following the sequence F. However, A1 need not complete all F-queries, and the
ability to issue F-queries can be “shared” with A2. That is, as long as the order,
the types, and the number of queries are maintained, the F-queries that A1 has
not been completed can be taken over by A2. A2 can issue the remaining F-
queries that A1 has left for A2, and after all F-queries are completed, A2 can
further issue decryption queries following the sequence A.2 Moreover, as usual,
A2’s queries must not contain the challenge ciphertext c∗.

We refer to B, F, and A as “Before-challenge” queries, “Flexible” queries (in
the sense that A can “flexibly” decide how it issues queries before/after the chal-
lenge), and “After-challenge” queries, respectively. For notational convenience,
if F = ∅ then we write 〈B :: A〉-mCCA, instead of 〈B : ∅ : A〉-mCCA.
Definition 4. Let B,F,A ∈ QS∗. We say that a PKE scheme Π is 〈B : F :
A〉-mCCA secure if Adv

〈B:F:A〉-mCCA
Π,A (k) = |Pr[Expt

〈B:F:A〉-mCCA
Π,A (k) = 1] − 1

2 | is negli-
gible for any PPTA A.

We define mixed CCA security for KEMs in exactly the same way as above.
With the mixed CCA security notions, we can express all the security notions

mentioned in Section 2. These are summarized in Table 1. As noted earlier, for
non-malleability, we adopt the characterization using a parallel query by Bellare
and Sahai [3]. (In the table, we also include the bounded parallel CCA security
notions defined below).

We remark that we can also define a parallel decryption query in mixed CCA
security experiment (i.e. the 〈B : F : A〉-mCCA experiment) so that the num-
ber of ciphertexts contained in each parallel query is also bounded to be some
predetermined value (say, t). However, such security definition is implied by
(|(B||F||A)| · t)-Bounded CCA security, which is already achieved by the exist-
ing PKE schemes that are constructed only from IND-CPA secure schemes by
the previous results [9,8]. Therefore, we think that studying security with such
limitation is less interesting than studying mixed CCA security defined in this
section, and is not treated in this paper.

Previously to this paper, Phan and Pointcheval [26] defined a similar notion
which they call (i, j)-IND security and (i, j)-NM security, which are equivalent to
〈si :: sj〉-mCCA security and 〈si :: sjp〉-mCCA security in our definition, respectively
(for NM, we interpret it with parallel CCA-based characterization in [3]). They
did not consider the “flexible” F-queries.
2 In other words, in the 〈B : F : A〉-mCCA experiment, A1 can issue (B||F1)-queries,

and A2 can issue (F2||A)-queries, for any pair of query sequences (F1, F2) satisfying
(F1||F2) = F, and how F is split into F1 and F2 can be decided adaptively by A in
the experiment.
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Table 1. Compatibility with Existing Security Notions

Existing Notions Notation in Mixed CCA Security
IND-CPA 〈∅ :: ∅〉-mCCA
NM-CPA 〈∅ :: p〉-mCCA
IND-q-CCA2 〈∅ : sq : ∅〉-mCCA
NM-q-CCA2 〈∅ : sq : p〉-mCCA
IND-q-pCCA1 〈pq :: ∅〉-mCCA
NM-q-pCCA1 〈pq :: p〉-mCCA
IND-q-pCCA2 〈∅ : pq : ∅〉-mCCA
NM-q-pCCA2 〈∅ : pq : p〉-mCCA
IND-CCA1 〈unbound :: ∅〉-mCCA
NM-CCA1 〈unbound :: p〉-mCCA
IND-CCA2 〈unbound :: unbound〉-mCCA

Bounded Parallel CCA Security. Here, we define a natural and interesting spe-
cial class of mixed CCA security which we call bounded parallel CCA security.
This captures security against adversaries whose decryption queries are always
parallel, and is a natural extension from the original bounded CCA security [9].

Depending on how the decryption oracle is available for an adversary, we define
pCCA1 and pCCA2 as natural analogue of CCA1 and CCA2, respectively. Moreover,
as is similar to the existing security notions, we define indistinguishability (IND)
and non-malleability (NM).

Definition 5. Let q ≥ 0 be an integer. We say that a PKE scheme is IND-q
-pCCA1 (resp. IND-q-pCCA2, NM-q-pCCA1, and NM-q-pCCA2) secure if it is 〈pq ::
∅〉-mCCA (resp. 〈∅ : pq : ∅〉-mCCA, 〈pq :: p〉-mCCA, and 〈∅ : pq : p〉-mCCA) secure.

We define the bounded parallel CCA security notions for KEMs in the same way.

3.2 General Properties of Mixed CCA Security

Here, we show two general implication results about the mixed CCA security
notions. (In this section, we always assume B,F,A ∈ QS∗, and do not write it
explicitly).

Firstly, by noticing the property of the “flexible” queries F, we obtain the
following.

Theorem 1. For both PKE schemes and KEMs, 〈B : F : A〉-mCCA security and
“the combination of all security notions of the form 〈(B||F1) :: (F2||A)〉-mCCA
satisfying (F1||F2) = F” are equivalent.

The implication from the former to the latter is immediate by definition. Since
the proof for the other direction is almost trivial, we omit the proof and only
mention the intuition using the simplest case F = s. It is easy to see that 〈B :
s : A〉-mCCA adversary can be divided into two types: The first type that makes
(B||s)-queries before the challenge, and A-queries after the challenge, and the
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second type that makes B-queries before, and (s||A)-queries after the challenge.
Then, the experiment for the first type can be simulated by a 〈(B||s) :: A〉-
mCCA adversary while that for the second type can be simulated by a 〈B ::
(s||A)〉-mCCA adversary. This is easily extended to any F ∈ QS case. Note that
if F = unbound, then the statement is again trivial because we can have F1 =
F2 = unbound (since unbound = (unbound||unbound)), and thus in this case
〈(B||F1) :: (F2||A)〉-mCCA security is equivalent to 〈unbound :: unbound〉-mCCA =
IND-CCA2 security, which implies all the mixed CCA security notions.

Next, we show that for PKE schemes with polynomially bounded plaintext space
size and for KEMs, the A-queries, which is intended to be only available after
the challenge, can actually be issued “flexibly” without destroying security.

Theorem 2. For PKE schemes with polynomially bounded plaintext space size
and for KEMs, 〈B : F : A〉-mCCA security and 〈B : (F||A) : ∅〉-mCCA security are
equivalent.

The implication from the latter notion to the former is immediate by definition.
The proof for the other direction is given in the full version. Very roughly, show-
ing the implication from the former notion to the latter is possible because the
challenge ciphertext can be made “in advance” for PKE schemes with polyno-
mially bounded plaintext space size and for KEMs. (In particular, for the PKE
case, since the plaintext space size is polynomially bounded, the adversary’s
two challenge plaintexts can be guessed correctly with probability 1/poly(k)).
Therefore, we can construct a reduction algorithm B that can successfully at-
tack 〈B : F : A〉-mCCA security using a successful 〈B : (F||A) : ∅〉-mCCA adversary
A. Actually, in showing the proof, we have to be careful about the situation
in which some of A’s flexible decryption queries (i.e. (F||A)-queries) issued by
A before “A’s” challenge contains B’s challenge ciphertext (which will be later
used as A’s challenge). However, the statistical property of PKE schemes and
KEMs called smoothness, formalized in [2], guarantees that the probability of
such a problematic situation occurring is negligible. For more details, we refer
the reader to the full version.

4 Relations among Mixed CCA Security Notions

Due to its stage-specific queries and the difference between single and parallel
queries, given two mixed CCA security notions, it is not always easy to tell if
one notion implies the other. Therefore, a natural and yet non-trivial question
is: given two mixed CCA security notions 〈B : F : A〉-mCCA and 〈B̃ : F̃ : Ã〉-mCCA,
under what conditions on B,F,A, B̃, F̃, Ã are there implications/separations?

In this section, we fully answer this question and show a necessary and suf-
ficient condition for implications/separations between any two mixed CCA se-
curity notions. Interestingly, it turns out that for PKE schemes, the relations
among security notions are different depending on its plaintext space size. The re-
lations among mixed CCA security notions for PKE schemes with polynomially
bounded plaintext space size and those for KEMs are always the same.



Parallel Decryption Queries in Bounded Chosen Ciphertext Attacks 255

The rest of this section is organized as follows: In Section 4.1 we introduce
a relation over query sequences which plays a key role for our results. Then in
Sections 4.2 and 4.3 we show separation results and implication results, respec-
tively. Finally in Section 4.4, we summarize the results by showing the necessary
and sufficient conditions. For notational convenience, throughout this section we
always assume B,F,A, B̃, F̃, Ã ∈ QS∗. Due to space limitation, most of the proofs
in this section are omitted and are given in the full version, and for theorems
whose proofs are omitted, we provide some ideas for the proofs.

4.1 “is-Simulatable-by” Relation for Query Sequences

We first introduce the following relation over symbols.

Definition 6. We define a partial order “⊆1” over symbols {s, p} by s ⊆1 s,
s ⊆1 p, and p ⊆1 p.

Intuitively, the meaning of “⊆1” is that the former type oracle query “is-
simulatable-by” the latter type of oracle query. The subscript “1” of “⊆1” de-
notes that it is a relation for one symbol, and it should not be mixed up with
the relation for query sequences below (although the meaning is essentially the
same).

Now, we extend the “is-simulatable-by” relation to query sequences:

Definition 7. Let seq, s̃eq ∈ QS∗. We define a binary relation “⊆qs” over QS∗

as follows. “s̃eq ⊆qs seq” if and only if one of the following is satisfied:

– seq = unbound or s̃eq = ∅
– seq = (a1 . . . am), s̃eq = (b1 . . . bn) ∈ QS\{∅} where ai, bj ∈ {s, p} for each

i ∈ [m], j ∈ [n], and there exists a strictly increasing function f : [n] → [m]
such that bj ⊆1 af(j) holds for all j ∈ [n].

If seq and s̃eq do not satisfy the above, we write “s̃eq ��⊆qs seq”.

The subscript “qs” of ⊆qs stands for query sequence. It is easy to see that the
above relation “⊆qs” is a natural extension from ⊆1. Suppose s̃eq ⊆qs seq. Con-
sider two PPTA adversaries A and B attacking a same PKE scheme, where A
makes seq-queries and B makes s̃eq-queries, and a situation in which A simu-
lates the experiment for B. If s̃eq = ∅, then B makes no query. If seq = unbound,
then A can use unbounded oracle access, and thus B’s decryption oracle can
be simulated. Otherwise, (i.e. seq, s̃eq ∈ QS\{∅}), then i-th query from B can
be simulated by A’s f(i)-th query (where f is a strictly increasing function
guaranteed to exist by definition) for all i ∈ [n].

Now, given two sequences seq, s̃eq ∈ QS∗ we can tell if s̃eq ⊆qs seq or s̃eq �⊆qs

seq.3 For example, (s2p) ⊆qs (psps); (sp2) �⊆qs (s2ps2); sr ⊆qs sq iff q ≥ r.

3 Note that “⊆qs” forms a partial order over QS∗. However, it is not a total order.
For example, we have both (sp) 
⊆qs (ps) and (ps) 
⊆qs (sp).
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4.2 Separation Results

A common approach for showing a separation of a security notion X from a
security notion Y for PKE schemes is to construct a “separating” PKE scheme
from a building block X-secure PKE scheme: the decryption algorithm of the
separating scheme typically has some “backdoor” mechanism, which leads to
some “critical information” v (e.g. secret key for the building block PKE scheme)
for breaking Y security so that Y-adversary can, by using a decryption oracle,
reach for v and break Y-security of the separating PKE scheme while an X-
adversary cannot reach for v or simply v is useless for breaking X-security of the
scheme. We also follow this approach.

Useful Tool for Separation: Backdoor-Sequence Scheme. In order for the above
approach to work, what to use as the critical information and how to implement
such backdoor mechanism are the main issues. We wish to implement a backdoor
mechanism so that given two sequences seq, s̃eq ∈ QS∗, if s̃eq �⊆qs seq,4. then
an adversary making s̃eq-queries can finally reach for a critical information (and
break some security of a separating PKE scheme) while an adversary making
seq-queries cannot. This is indeed possible. We can implement such backdoor
mechanism as a sequence of backdoor information (u1, . . . , u|s̃eq|+1) and a strategy
for “how to release next backdoor information”, based on seq, s̃eq, and the critical
information v. Specifically, let s̃eq = (b1 . . . bn) such that bi ∈ {s, p} for i ∈ [n].

– The sequence of backdoor information (u1, . . . , un+1) is set up so that u1 =
1k (any publicly known value will do), u2, . . . , un are random values (which
must be hard to guess), and un+1 is the critical information v.

– The strategy for “how to release next backdoor information”, depending on
s̃eq = (b1 . . . bn), is set up so that: If bi = s, this “release strategy” on input ui

outputs ui+1 directly; If bi = p, this “release strategy” on input ui (together
with some index j) outputs a (j-th) “secret-share” of ui+1, so that if we
collect the shares more than a threshold which is set to be a value greater
than |seq|, we can reconstruct ui+1.

(Intuitively, such a release strategy is implemented into a decryption algorithm
of a separating PKE scheme so that if the decryption algorithm takes some spe-
cial information indicating “backdoor mode” as input, the output of the release
strategy is used instead of decrypting as a ciphertext). Constructed as above, an
adversary making s̃eq-queries to the release strategy can finally obtain un+1 = v.
In particular, if bi = p then an adversary can make a parallel query to the release
strategy to obtain all the share of ui+1 at once, and thus can reconstruct ui+1.
It is actually possible to show that if s̃eq �⊆qs seq, then no adversary who is
only allowed to make seq-queries to the release strategy can reach for un+1 = v,
and thus we can make a difference in the information available for an adversary
making s̃eq-queries and that making seq-queries.

4 As we have seen in Section 4.1, if s̃eq ⊆qs seq, then any information available for
adversaries making s̃eq-queries is also available for those making seq-queries.
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In order to make it easier to analyze PKE schemes used to show separations,
in the full version we formalize this “backdoor mechanism” as a “stand alone”
primitive. We call it a backdoor-sequence scheme, and use it as one of main
building blocks for constructing the separating schemes that are used to establish
the separations in the following paragraphs in this subsection.

Separation by Total Query Sequence.

Theorem 3. For both PKE schemes and KEMs, if (B̃||F̃||Ã) �⊆qs (B||F||A), then
〈B : F : A〉-mCCA security does not imply 〈B̃ : F̃ : Ã〉-mCCA security.

The idea for building the separating PKE scheme for showing Theorem 3 is
straightforward. We use the secret key sk for the building block scheme of
the separating PKE scheme as a critical information, and setup the backdoor-
sequence scheme appropriately. That is, a 〈B̃ : F̃ : Ã〉-mCCA adversary who can
(in total) make (B̃||F̃||Ã)-queries can finally reach for sk and decrypt the chal-
lenge ciphertext. However, since (B̃||F̃||Ã) �⊆qs (B||F||A), the property of the
backdoor-sequence scheme guarantees that a 〈B : F : A〉-mCCA adversary who
is only allowed to make (B||F||A)-queries in total cannot reach for it, and thus
the separating PKE scheme remains 〈B : F : A〉-mCCA secure. The same proof
strategy works for the KEM case.

Separation by After-challenge Queries.

Theorem 4. For both PKE schemes and KEMs, if (F̃||Ã) �⊆qs (F||A), then 〈B :
F : A〉-mCCA security does not imply 〈B̃ : F̃ : Ã〉-mCCA security.

For an explanation here, consider the extreme case: the separation of 〈∅ :: Ã〉-
mCCA security from 〈unbound :: A〉-mCCA security under the condition Ã �⊆qs A.
Note that a 〈unbound :: A〉-mCCA adversary can make unbounded single queries
before the challenge while a 〈∅ :: Ã〉-mCCA adversary can make no query. There-
fore, the critical information for breaking 〈∅ :: Ã〉-mCCA security must be some-
thing that is useful and available only after the challenge. We set the critical
information to be the decryption result of a ciphertext (which can be a chal-
lenge ciphertext) that is input together with the backdoor information into the
decryption algorithm of the separating scheme, and use a pseudorandom func-
tion F to realize the separating PKE scheme that has a “ciphertext-dependent”
backdoor sequence. More specifically, a seed K for F is picked as a part of a secret
key of the separating PKE scheme. The decryption algorithm of the separating
scheme, on input a ciphertext c together with backdoor and some information
that indicates “backdoor mode”, derives a pseudorandom value R = FK(c) and
use this R as a randomness for deriving the sequence of backdoors, and then
outputs a corresponding “next backdoor”. Since the backdoor-sequence scheme
is set up so that an adversary that can make Ã-queries can finally reach for the
critical information (decryption of any ciphertext), a 〈∅ :: Ã〉-mCCA adversary can
finally reach for the decryption result of the challenge ciphertext by appropri-
ately making decryption queries after the challenge. However, since Ã �⊆qs A,
the same does not apply to a 〈unbound :: A〉-mCCA adversary that can make only
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A-queries after the challenge. Therefore, to break 〈unbound :: A〉-mCCA security
of the separating scheme, the adversary has to essentially break 〈unbound :: A〉-
mCCA security of the building block scheme (unless it breaks security of the
pseudorandom function or the backdoor-sequence scheme). Essentially the same
proof strategy works for proving the KEM case. Using a pseudorandom function
to set up “ciphertext-dependent” backdoor information was previously used in
[1] to separate NM-CCA2 = IND-CCA2 security from NM-CCA1 security.

Separation by Before-challenge Queries.

Theorem 5. For PKE schemes with superpolynomially large plaintext space
size, if (B̃||F̃) �⊆qs (B||F), then 〈B : F : A〉-mCCA security does not imply 〈B̃ : F̃ : Ã〉-
mCCA security.

Note that this theorem is only true for PKE schemes with superpolynomially
large plaintext space size. For an explanation here, consider the extreme case:
the separation of 〈B̃ :: ∅〉-mCCA security from 〈B :: unbound〉-mCCA security under
the condition B̃ �⊆qs B. This time, the critical information for breaking 〈B̃ ::
∅〉-mCCA security must be something that is useful only before the challenge,
because 〈B̃ :: ∅〉-mCCA adversary can make no query after the challenge. We use
a one-way function f to construct the separating PKE scheme so that it has
“weak” plaintexts, which are not encrypted at all by the encryption algorithm
of the separating PKE scheme. (Similar ideas are used in [26,24,2]). A public key
of the separating PKE scheme contains V = f(m∗) for some random element
m∗ chosen from the plaintext space of the underlying PKE scheme, and weak
plaintexts m are the ones satisfying f(m) = V . We set the critical information
to be m∗ itself, where the backdoor-sequence scheme will finally release m∗ if
B̃-queries are appropriately performed, and thus m∗ can be used as one of two
challenge plaintexts to break 〈B̃ :: ∅〉-mCCA security. However, since B̃ �⊆qs B,
the property of the backdoor-sequence scheme guarantees that a 〈B :: unbound〉-
mCCA adversary cannot reach for m∗ before the challenge (unless it break one-
wayness of f). Moreover, the weak plaintext m∗ is useless even if it is found
after the challenge. Therefore, in order to break 〈B :: unbound〉-mCCA security of
the separating scheme, the adversary essentially has to attack 〈B :: unbound〉-
mCCA security of the building block scheme.

4.3 Implication Results

A combination of Theorems 3, 4, and 5 shows that given two mixed CCA security
notions 〈B : F : A〉-mCCA and 〈B̃ : F̃ : Ã〉-mCCA, the latter notion is separated from
the former if (B̃||F̃||Ã) �⊆qs (B||F||A), (B̃||F̃) �⊆qs (B||F), or (F̃||Ã) �⊆qs (F||A) holds
for PKE schemes with superpolynomially large plaintext space. We show that if
none of the above conditions are satisfied, then we actually have an implication
from the former notion to the latter, where this implication is also true for all
PKE schemes and KEMs.

Theorem 6. For both PKE schemes and KEMs, if (B̃||F̃||Ã) ⊆qs (B||F||A),
(B̃||F̃) ⊆qs (B||F), and (F̃||Ã) ⊆qs (F||A) hold simultaneously, then 〈B : F : A〉-
mCCA security implies 〈B̃ : F̃ : Ã〉-mCCA security.
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This theorem holds because it can be shown that if the three conditions regarding
query sequences are satisfied, then whatever strategy regarding the “flexible”
queries an 〈B̃ : F̃ : Ã〉-mCCA adversary may take, the 〈B̃ : F̃ : Ã〉-mCCA experiment
can be perfectly simulated by an 〈B : F : A〉-mCCA adversary.

Combining Theorem 6 with Theorem 2, we obtain the following corollary.

Corollary 1. For PKE schemes with polynomially bounded plaintext space size
and for KEMs, if (B̃||F̃||Ã) ⊆qs (B||F||A) and (F̃||Ã) ⊆qs (F||A) hold simultane-
ously, then 〈B : F : A〉-mCCA security implies 〈B̃ : F̃ : Ã〉-mCCA security.

Proof. By Theorem 2, we know that for PKE schemes with polynomially
bounded plaintext space size and for KEMs, 〈B : F : A〉-mCCA security implies
〈B̃ : F̃ : Ã〉-mCCA security if and only if 〈B : (F||A) : ∅〉-mCCA security implies 〈B̃ :
(F̃||Ã) : ∅〉-mCCA security. Then, Theorem 6 tells us that the sufficient condition
of the implication from the former notion to the latter is: “(B̃||(F̃||Ã)||∅) ⊆qs

(B||(F||A)||∅), (B̃||(F̃||Ã)) ⊆qs (B||(F||A)), and ((F̃||Ã)||∅) ⊆qs ((F||A)||∅) hold
simultaneously.” Simplifying this condition yields Corollary 1. ��

4.4 Necessary and Sufficient Conditions for Implication/Separation

As a summarization of the results in this section, we show the following necessary
and sufficient conditions for implication/separation among mixed CCA security.

Theorem 7. For PKE schemes with superpolynomially large plaintext space
size, 〈B : F : A〉-mCCA security implies 〈B̃ : F̃ : Ã〉-mCCA security if and only if
(B̃||F̃||Ã) ⊆qs (B||F||A), (B̃||F̃) ⊆qs (B||F), and (F̃||Ã) ⊆qs (F||A) hold
simultaneously.

Proof. This follows from a combination of Theorems 3, 4, 5, and 6. ��
Theorem 8. For PKE schemes with polynomially bounded plaintext space size
and for KEMs, 〈B : F : A〉-mCCA security implies 〈B̃ : F̃ : Ã〉-mCCA security if and
only if (B̃||F̃||Ã) ⊆qs (B||F||A) and (F̃||Ã) ⊆qs (F||A) hold simultaneously.

Proof. This follows from a combination of Theorems 3, 4, and Corollary 1. ��
We believe the relations among security notions shown in this section are useful
for future studies on PKE schemes and KEMs whose security notions can be
expressed in mixed CCA security notions. For example, by utilizing the above
theorems, we can fully establish the relations among bounded parallel CCA
security and other existing security notions in Table 1. We also note that the
previously established relations among security notions [1,9,16] can be re-proved
as corollaries from the above theorems.

Importance of Plaintext Space Size in Relations among Security Notions for PKE
Schemes. As our results in this section have clarified, it is important to care
about the size of the plaintext space size for relations among security notions
for PKE schemes. Specifically, Theorems 7 and 8 tell us that given 〈B : F : A〉-
mCCA and 〈B̃ : F̃ : Ã〉-mCCA security notions, the implication/separation from the
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former notion to the latter notion differs if (B̃||F̃||Ã) ⊆qs (B||F||A), (F̃||Ã) ⊆qs

(F||A), and (B̃||F̃) �⊆qs (B||F) hold simultaneously.

5 Feasibility Results from IND-CPA Secure PKE Schemes

By adopting the notion of mixed CCA security, in this section we show two black-
box constructions of PKE schemes, which can encrypt plaintexts of polynomial
length (thus, exponentially large plaintext space), from IND-CPA secure schemes.

The first result is the following.

Theorem 9. For any polynomial q ≥ 0, there exists a shielding black-box con-
struction of a 〈∅ : sqp : ∅〉-mCCA secure PKE scheme which can encrypt plaintexts
of polynomial length from an IND-CPA secure PKE scheme.

Proof. This theorem is proved by combining the existing results and Theorem 2
in Section 3.2. The following statement is due to the result by Choi et al. [8].

Lemma 1. [8] For any polynomial q ≥ 0, there exists a shielding black-box
construction of an NM-q-CCA2 secure PKE scheme which can encrypt plaintexts
of polynomial length from an IND-CPA secure PKE scheme.

Recall that NM-q-CCA2 = 〈∅ : sq : p〉-mCCA (see Table 1). Since any 〈B : F :
A〉-mCCA secure PKE scheme can be trivially used as a KEM with the same
security by encrypting a uniformly random string K and using it as a session-
key, Lemma 1 implies that we can construct a 〈∅ : sq : p〉-mCCA secure KEM (we
call it the CDMW KEM ) from any IND-CPA secure PKE scheme in a black-box
and shielding manner. Then, by Theorem 2 for KEMs, we can immediately say
that the CDMW KEM is 〈∅ : sqp : ∅〉-mCCA secure. Finally, by combining the
CDMW KEM with an IND-CCA2 secure DEM, we obtain the desired result. (It
is implicit from the works by Cramer and Shoup [10] and by Herranz et al. [16]
that if we combine a 〈B : F : A〉-mCCA secure KEM and an IND-CCA2 secure
DEM in a straightforward manner, we can obtain a 〈B : F : A〉-mCCA secure PKE
scheme). Note that we can construct an IND-CCA2 secure DEM even without any
computational assumption (see e.g. [10, Section 7.2.2]). Moreover, the “shielding”
and “black-box” properties are trivially preserved by our construction. This
completes the proof of Theorem 9. ��
〈∅ : sqp : ∅〉-mCCA security implies NM-q-CCA2 = 〈∅ : sq : p〉-mCCA security
by definition, while by Theorem 7 we know that for PKE schemes with su-
perpolynomially large plaintext space size, 〈∅ : sq : p〉-mCCA security does not
imply 〈∅ : sqp : ∅〉-mCCA security. Therefore, for these types of PKE schemes,
〈∅ : sqp : ∅〉-mCCA security is strictly stronger than NM-q-CCA2 security.

We remark that Theorem 2 actually implies that the original CDMW PKE
scheme [8] already achieves the shielding black-box construction of 〈∅ : sqp : ∅〉-
mCCA secure PKE schemes if it is used with short plaintexts (so that the plaintext
space size is bounded to be polynomial). However, the Choi et al. result itself does
not imply Theorem 9, because it is not obvious how to construct 〈∅ : sqp : ∅〉-
mCCA secure PKE schemes which can encrypt plaintexts of polynomially length
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from PKE schemes that satisfies the same security but has only polynomially
bounded plaintext space size, in a black-box and shielding manner5.

We also remark that the original CDMW PKE scheme [8] might be shown to
be 〈∅ : sqp : ∅〉-mCCA secure as it is for large plaintext space size, using the same
assumptions used to show its NM-q-CCA2 security. However, our main purpose
here is to show the improved feasibility rather than the concrete construction
and efficiency, and thus we did not try proving directly that the CDMW PKE
is 〈∅ : sqp : ∅〉-mCCA secure.

Theorem 9 implies the following corollary.

Corollary 2. There exists a shielding black-box construction of an IND-1-pCCA2
secure PKE scheme which can encrypt plaintexts of polynomial length from an
IND-CPA secure PKE scheme.

Our second result on black-box constructions is the following.

Theorem 10. For any polynomials q, q′ ≥ 0, there exists a shielding black-box
construction of a 〈sqp : sq′

: ∅〉-mCCA secure PKE scheme which can encrypt
plaintexts of polynomial length from an IND-CPA secure PKE scheme.

Proof. To prove this theorem, we will use the following result which is implicit
from [9, Lemma 1]6:

Lemma 2. (Implicit from [9]). For any B ∈ QS∗ and any polynomial q′ ≥ 0,
there exists a shielding black-box construction of a 〈B : sq′

: ∅〉-mCCA secure PKE
scheme from a 〈B :: ∅〉-mCCA secure PKE scheme.

We call the construction by Cramer et al. [9] the CHH+ PKE scheme. Due
to Theorem 9 above, for any polynomial q ≥ 0, we can construct a 〈∅ : sqp :
∅〉-mCCA secure PKE scheme, which is also 〈sqp :: ∅〉-mCCA secure, from any
IND-CPA secure PKE scheme. Then, by using this PKE scheme as a building
block of the CHH+ PKE scheme, due to Lemma 2, we have a PKE scheme
which satisfies the claimed security. The CHH+ PKE construction is shielding
and black-box. Since the construction of the PKE scheme in Theorem 9 is also
shielding and black-box, so is the construction as a whole. The size of the plain-
text space is maintained as well. This completes the proof of Theorem 10. ��

We note that by Theorem 7, for PKE schemes with superpolynomially large
plaintext space size, 〈sqp : sq′

: ∅〉-mCCA security achieved in Theorem 10 cannot
be directly compared with the notion achieved in Theorem 9 (actually even with
NM-CPA= 〈∅ :: p〉-mCCA security). However, the security achieved in Theorem 10

5 Recently, Myers and Shelat [21] showed a black-box construction of multi-bit
IND-CCA2 secure PKE schemes from 1-bit IND-CCA2 secure PKE schemes. Though
it seems that their result can be extended (with some modification) to any mixed
CCA security, we remark that their construction is non-shielding.

6 The original statement of Lemma 1 in [9] shows a special case of Lemma 2 in which
B = ∅. Moreover, the special case of Lemma 2 in which B = unbound is also men-
tioned in [9]. See Remark 2 after the proof of Lemma 1 in [9].
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allows the bounded number of “flexible” single queries before and after the chal-
lenge, after the parallel query in the first stage, while the security achieved by
Theorem 9 does not allow any query after one parallel query for an adversary.
Thus we believe that Theorem 10 is also interesting as a feasibility result.

Handling Decryption of Unboundedly Many Ciphertexts before the Challenge.
Previous to our work, none of the constructions of PKE schemes that use only
IND-CPA secure ones have achieved security against adversaries that can observe
unboundedly many decryption results (via the decryption oracle) in the first
stage, i.e., before choosing two challenge plaintexts, regardless of whether the
construction is black-box or non-black-box. On the other hand, the construc-
tions in Theorems 9 and 10 (and also the combination of [8] and Theorem 2)
achieve security against adversaries that can observe unboundedly many decryp-
tion results by one parallel decryption query before the challenge.

Thus, due to the results in this section, it has been clarified that the difficulty
of constructing an IND-CCA1 secure PKE scheme only from IND-CPA secure ones
lies not in whether the number of decryption results that the adversary can see
before the challenge is bounded or not, but in whether the number of the adver-
sary’s “adaptive” decryption queries is bounded.

6 Open Problems

Constructions Secure against Two or More Parallel Queries. None of our fea-
sibility results achieves mixed CCA security in which we can handle more than
one parallel decryption query, and whether we can construct a PKE scheme
with such security only using IND-CPA secure schemes is still unclear. Therefore,
we would like to leave it as an open problem. Since any (unbounded) CCA se-
cure PKE construction from IND-CPA secure ones must first be secure against
adversaries who make two or more parallel decryption queries, we believe that
overcoming this barrier of “two parallel queries” is worth tackling.

We notice that if we can, by only using an IND-CPA secure PKE scheme as a
building block, construct a (strong) designated verifier (DV) NIZK proof system
[23,9] for any NP language with q-bounded “parallel” strong soundness, which is
a natural extension of a (strong) DV-NIZK with q-bounded strong soundness [9]
in the soundness experiment of which an adversary can ask verification of many
theorem/proof pairs in a parallel manner, then by using the DV-NIZK proof
system in the Dolev-Dwork-Naor construction [11,23,9] (resp. the Naor-Yung
construction [22]) we will be able to construct an IND-(q + 1)-pCCA2 (resp.
IND-(q + 1)-pCCA1) secure PKE scheme. However, how to construct such a DV-
NIZK proof system only from IND-CPA secure PKE schemes is not known so far.
This might be worth looking at towards the next step from our results.

Stronger Black-Box Impossibility Results. Since the constructions in Theorems 9
and 10 are shielding and black-box, according to the impossibility result of [12]
and the transitivity of black-box constructions, we have that there exists no
shielding black-box construction of an IND-CCA1 secure PKE scheme from PKE
schemes which satisfy any security notion achieved in Theorems 9 and 10.
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It would also be interesting to clarify if we can show a stronger impossibility
result than [12] such that constructing IND-q-pCCA1 secure PKE schemes from
IND-CPA secure one in a shielding and black-box manner for some q > 1 is
impossible. (Or more generally, we can also consider the impossibility of some of
mixed CCA security notion). Note that this strengthening of the impossibility
result of [12] can make sense only if we consider parallel decryption queries,
because the result by Choi et al. [8] already shows that it is possible to achieve
the strongest form of (ordinary) bounded CCA security, namely, NM-q-CCA2, in
a black-box and shielding manner.
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Abstract. In this work we construct public key encryption schemes that
admit a protocol for blindly decrypting ciphertexts. In a blind decryp-
tion protocol, a user with a ciphertext interacts with a secret keyholder
such that the user obtains the decryption of the ciphertext and the key-
holder learns nothing about what it decrypted. While we are not the
first to consider this problem, previous works provided only weak secu-
rity guarantees against malicious users. We provide, to our knowledge,
the first practical blind decryption schemes that are secure under a strong
CCA security definition. We prove our construction secure in the stan-
dard model under simple, well-studied assumptions in bilinear groups.
To motivate the usefulness of this primitive we discuss several applica-
tions including privacy-preserving distributed file systems and Oblivious
Transfer schemes that admit public contribution.

1 Introduction

The past several years have seen a trend towards outsourcing data storage to
remote data stores and cloud-based services. While much attention has been
paid to securing this data, relatively little has been given to the problem of
securing the data’s access pattern. This is a real problem for some systems
where users’ access histories are more sensitive than the data itself, for example
patent databases. Even in business there are many practical applications where
users’ access history is sensitive. For example, the data access patterns of a major
corporation’s executives could be worth millions of dollars to the right person,
particularly in advance of a merger or acquisition.

To address these concerns, many recent works have proposed tools that allow
users to transact online without sacrificing their privacy. These tools include (but
are not limited to) efficient adaptive oblivious transfer protocols [15,28,29,44],
anonymous credential schemes [13,4], and group signature schemes [16,7]. One
recent application for these tools is to the construction of oblivious databases
that provide strong access control while preventing the operator from learning
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which records its users access [20,12]. Despite this progress, there are still many
primitives that we do not know how to implement efficiently using the techniques
available to us.

Blind Decryption. In this work we consider one such primitive, which we
refer to as blind decryption. A blind decryption scheme is a public-key encryp-
tion (PKE) scheme that admits an efficient protocol for obliviously decrypting
ciphertexts. In this protocol a User who possesses a ciphertext interacts with a
Decryptor who holds the necessary secret key. At the conclusion of the protocol,
the User obtains the plaintext while the Decryptor learns nothing about what it
decrypted. Given that the fundamental purpose of a blind decryption protocol
is to decrypt ciphertexts, it seems reasonable to analyze any such protocol with
malicious adversaries in mind. Specifically, since such an adversary can implicitly
use the blind decryption protocol to decrypt chosen ciphertexts, we will restrict
out investigation to secure blind decryption schemes that retain their security
even under (adaptive) chosen ciphertext attack.

Blind decryption has many applications to privacy-preserving protocols and
systems. For example, blind decryption implies k-out-of-N oblivious transfer [11],
which is important theoretically as well as practically for its applications to the
construction of oblivious databases [15, 20, 12]. Moreover, blind decryption has
practical applications to distributed cryptographic filesystems and for supporting
rapid deletion [43].

We are not the first to consider the problem of constructing blind decryption
schemes. The primitive was originally formalized by Sakura and Yamane [45] in
the mid-1990s, but folklore solutions are thought to have predated that work
by more than a decade. Despite an abundance of research in this area, most
proposed constructions are insecure under adaptive chosen ciphertext attack [24,
49,41,23,47,42]. Several protocols have recently been proposed containing “blind
decryption-like” techniques (see e.g., the simulatable oblivious transfer protocols
of [15,29,44, 30, 33]). However, these protocols use symmetric (or at least, non-
public) encryption procedures, and it does not seem easy to adapt them to the
public-key model.

Of course, blind decryption is an instance of secure multi-party computation
(MPC) and can be achieved by applying general techniques (e.g., [50, 26, 34])
to the decryption algorithm of a CCA-secure PKE scheme. However, the pro-
tocols yielded by this approach are likely to be quite inefficient, making them
impractical for real-world applications.

Our Contributions. In this paper we present what is, to our knowledge, the
first practical blind decryption scheme that is IND-CCA2-secure in the standard
model. We prove our scheme secure under reasonable assumptions in bilinear
groups. At the cost of introducing an optional Common Reference String, the
protocol can be conducted in a single communication round.

To motivate the usefulness of this new primitive we consider several appli-
cations. Chief among these is the construction of privacy-preserving encrypted
filesystems (and databases), where a central authority manages the decryption
of many ciphertexts without learning users’ access patterns. This is important
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in situations where the access pattern might leak critical information about
the information being accessed. Unlike previous attempts to solve this prob-
lem [15, 20, 12], our encryption algorithm is public, i.e., users can encrypt new
messages offline without assistance from a trusted party. By combining blind
decryption with the new oblivious access control techiques of [20,12] (which use
anonymous credentials to enforce complex access control policies) we can achieve
strong proactive access control without sacrificing privacy.

Of potential theoretical interest, blind decryption can be used as a building
block in constructing adaptive k-out-of-N Oblivious Transfer protocols [15, 29,
44, 30, 33, 37]. In fact, it is possible to achieve a multi-party primitive that is
more flexible than traditional OT, in that any party can commit messages to
the message database (rather than just the Sender). We refer to this enhanced
primitive as Oblivious Transfer with Public Contribution (OTPC). We discuss
these applications in Section 5.

1.1 Related Work

The first blind decryption protocol is generally attributed Chaum [19], who
proposed a technique for blinding an RSA ciphertext in order to obtain its de-
cryption cd mod N . Since traditional RSA ciphertexts are malleable and hence
vulnerable to chosen ciphertext attack, this approach does not lead to a se-
cure blind decryption scheme. Furthermore, standard encryption padding tech-
niques [5] do not seem helpful.

Subsequent works [45,24,49] adapted Chaum’s approach to other CPA-secure
cryptosystems such as Elgamal. These constructions were employed within var-
ious protocols, including a 1-out-of-N Oblivious Transfer scheme due to Dodis
et al. [24]. Unfortunately, since the cryptosystems underlying these protocols
are not CCA-secure, security analyses of those protocols frequently required
strong assumptions such as honest-but-curious adversaries1. Mambo, Sakurai
and Okamoto [41] proposed to address chosen ciphertext attacks by signing the
ciphertexts to prevent an adversary from mauling them. Their transformable
signature could be blinded in tandem with the ciphertext. The trouble with this
approach and other related approaches [15,29, 30, 33,44] is that the encryption
scheme is no longer a PKE, since encryption now requires a knowledge of a secret
signing key (furthermore, these transformable signatures were successfully crypt-
analyzed [23]). Schnorr and Jakobsson [47] proposed a scheme secure under the
weaker one-more decryption attack and used this to construct a PIR protocol.
Unfortunately, their protocol is secure only for random messages, and further-
more cannot be extended to construct stronger primitives such as simulatable
OT [15].

Recently, Green and Hohenberger [28] proposed a technique for blindly ex-
tracting decryption keys in an Identity-Based Encryption scheme. Subsequently,
Ogata and Le Trieu [42] used this tool to obtain a weak blind decryption scheme

1 For example, Dodis et al. [24] analyzed their 1-out-of-N oblivious transfer construc-
tion in the honest-but-curious model.
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(by encrypting ciphertexts under a random identity, then blindly extracting the
appropriate secret key). The resulting protocol is efficient, but the ciphertexts
are malleable and thus vulnerable to adaptive chosen ciphertext attack.

1.2 Intuition

Ideally the development of a blind decryption scheme would begin with an ex-
isting CCA-secure PKE, and would only require us to develop an efficient two-
party protocol for computing the decryption algorithm. Indeed, the literature
provides us with many candidate PKE constructions that can be so adapted if
we are willing to accept the costs associated with general multi-party computa-
tion techniques [50,26,34].

However, in this work we are interested in protocols that are both secure and
practical. This rules out inefficient gate-by-gate decryption protocols, limiting us
to a relatively small collection of techniques that can be used to build efficient
protocols. This toolbox includes primitives such as homomorphic commitment
schemes, which we might combine with zero knowledge proofs for statements
involving algebraic relations among cyclic group elements, e.g., [46, 31]. While
these techniques have been deployed successfully to construct other privacy-
preserving protocols, there are strict limitations on what they can accomplish.

To illustrate this point, let us review several of the most popular encryp-
tion techniques in the literature. Random oracle paradigms such as OAEP [5]
and Fujisaki-Okamoto [25] seem fundamentally difficult to adapt, since these
approaches require the decryptor to evaluate an ideal hash function on a partially-
decrypted value prior to outputting a result. Even the more efficient standard-
model CCA-secure paradigms such as Cramer-Shoup [22] and recent bilinear
constructions (e.g., [8, 10, 35]) require components that we cannot efficiently
adapt. For example, when implemented in a group G of order p, the Cramer-
Shoup scheme assumes a collision-resistant mapping H : G × G × G → Zp. We
know of no efficient two-party technique for evaluating such a function2.

Our approach. Rather than adapt an existing scheme, we set out to design a new
one. Our approach is based on the TBE-to-PKE paradigm proposed indepen-
dently by Canetti et al. [18] and MacKenzie et al. [40]. This technique converts
a Tag-Based Encryption (TBE) scheme into a CCA-secure public PKE with the
assistance of a strongly unforgeable one-time signature (OTS). In this generic
transform, encryption is conducted by first generating a keypair (vk , sk) for the
OTS, encrypting the message using the TBE with vk as the tag, then signing the
resulting ciphertext with sk . Intuitively the presence of the signature (which is
verified at decryption time) prevents an adversary from mauling the ciphertext.

To blindly decrypt such a ciphertext, we propose the following approach:
the User first commits to the ciphertext and vk using a homomorphic commit-
ment or encryption scheme. She then efficiently proves knowledge of the associ-
ated signature for these committed values. If this proof verifies, the Decryptor
2 Conceivably it might be possible to develop one, however it might be tied to the

specific construction of G and thus be be quite inflexible.
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may then apply the TBE decryption algorithm to the (homomorphically) com-
mitted ciphertext, secure in the knowledge that the commitment contains an
appropriately-distributed value. Finally, the result can be opened by the User.

For this protocol to be efficient, we must choose our underlying primitives
with care. Specifically, we must ensure that (1) the OTS verification key maps
to the tag-space of the TBE, (2) and the TBE ciphertext maps to the message
space of the OTS. Of course, the easiest way to achieve these goals is to use an
OTS that directly signs the TBE ciphertext space, with a TBE whose tag-space
includes the OTS verification keyspace. These primitives must admit efficient
protocols for the operations we will conduct with them. Finally, we would like
to avoid relying on complex or novel complexity assumptions in order to achieve
these goals.

Our proposed construction is based on a variant of Cramer-Shoup that was
adapted by Shacham [48] for security in bilinear groups.We first modify Shacham’s
construction into a TBE with the following ciphertext structure. Let α ∈ Z∗

p be
an arbitrary ciphertext tag and m ∈ G a message to be encrypted. Given a pub-
lic key g, g1, g2, g3, h1, h2, c1, c2, d1, d2 ∈ G an encryptor selects random elements
r1, r2 ∈ Z∗

p and outputs the ciphertext:

(u1, u2, u3, e, v, vk) = (gr1
1 , gr2

2 , gr1+r2
3 ,m · hr1

1 hr2
2 , (c1dα

1 )r1 · (c2dα
2 )r2 , gα)

An important feature of this construction is that the decryptor does not need
to know the tag value α3. Therefore, in constructing our PKE we can “dual-
purpose” α as both the ciphertext tag and as the secret key of a one-time sig-
nature (OTS) scheme. Specifically, our encryption process will select a random
α, encrypt the message using the TBE with α as the tag, and finally sign the
resulting elements (u1, u2, u3, e, v) under α. The resulting ciphertext contains
(u1, u2, u3, e, v, vk) along with the signature on those values.

The remaining challenge is therefore to construct an efficient OTS that can
sign multiple bilinear group elements, yet admits an efficient proof-of-knowledge
for a signature on committed elements. To address this we propose a new multi-
block one-time “F -signature” that we believe may be of independent interest4.
Interestingly, our signing algorithm does not actually operate on elements of
G, but rather signs message vectors of the form (m1, . . . ,mn) ∈ Z∗n

p (for some
arbitrary vector length n). Once a message is signed, however, the signature can
be verified given the tuple (gm1 , . . . , gmn) ∈ Gn, rather than the original message

3 This differs from many other candidate TBE and IBE schemes, e.g., Boneh and
Boyen’s IBE [6] and Kiltz’s TBE [35] where the tag/identity is an element of Z∗

p

and must be provided at decryption time (or in the case of IBE, when a secret key
is extracted). This requirement stems from the nature of those schemes’ security
proofs.

4 F -signature is a contraction of F -unforgeable signature, which is a concept proposed
by Belinkiy et al. [4], and later developed by Green and Hohenberger [30]. In this
paradigm, the signing algorithm operates on a message m, but there exists a sig-
nature verification algorithm that can operate given only F (m) for some one-way
function F .
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vector. Strictly speaking, this construction does not meet our requirements—an
encryptor won’t always know the discrete logarithm base g of (u1, u2, u3, e, v).
Our key insight is to show that encryptors can produce an identically distributed
“workalike” signature even when the discrete logarithms are not known. We
prove that, in the context of our encryption scheme, no adversary can forge these
workalike signatures. Our signature construction is presented independently in
Appendix 2.4.

2 Technical Preliminaries

2.1 Bilinear Groups and Cryptographic Assumptions

Let λ be a security parameter. We define BMsetup as an algorithm that, on input
1λ, outputs the parameters for a bilinear mapping as γ = (p,G,GT , e, g ∈ G),
where g generates G, the groups G,GT each have prime order p, and e : G×G →
GT . For 〈g〉 = 〈h〉 = G the efficiently-computable mapping e must be both non-
degenerate (〈e(g, h)〉 = GT ) and bilinear (for a, b ∈ Z∗

p, e(g
a, hb) = e(g, h)ab).

The Decision Linear Assumption (DLIN) [7]. Let G be a group of prime
order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is 1/2
plus an amount negligible in λ: Pr[f, g, h, z0

R← G; a, b R← Z∗
p; z1 ← ha+b; d R←

{0, 1}; d′ ← A(f, g, h, fa, gb, zd) : d = d′].

The Flexible Diffie-Hellman Assumption (FDH) [36,30]. Let G be a group
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the following probability is
negligible in λ: Pr[g, ga, gb; a, b R← Z∗

p; (w,w′) ← A(g, ga, gb) : w �= 1 ∧ w′ = wab].

This assumption was previously described as the 2-out-of-3 CDH assumption by
Kunz-Jacques and Pointcheval [36]. We adopt the name Flexible Diffie-Hellman
for consistency with recent work [39,30]. To instill confidence in this assumption,
Green and Hohenberger [30] showed that a solver for the Flexible Diffie-Hellman
problem implies a solver for a related decisional problem, the Decisional 3-Party
Diffie-Hellman assumption (3DDH) which has been used several times in the
literature [38, 9, 32, 30].

2.2 Proofs of Knowledge

We use several standard results for proving statements about the satisfiability of
one or more pairing-product equations. For variables {X}1...n ∈ G and constants
{A}1...n ∈ G, ai,j ∈ Z∗

p, and tT ∈ GT , these equations have the form:

n∏
i=1

e(Ai,Xi)
n∏

i=1

n∏
j=1

e(Xi,Xj)ai,j = tT

The proof-of-knowledge protocols in this work can be instantiated using one
of two approaches. The first approach is to use the interactive zero-knowledge
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proof technique of Schnorr [46], with extensions due to e.g., [21, 14, 17, 2, 15].
Note that this may require that the proofs be executed sequentially (indeed,
this requirement is explicit in our security definitions). For details, see the work
of Adida et al. [2], which provides a taxonomy of interactive proof techniques
for pairing-based statements.

Alternatively, the proofs can be instantiated using the Groth-Sahai proof sys-
tem [31] which permits efficient non-interactive proofs of the satisfiability of
multiple pairing product equations. In the general case these proofs are witness
indistinguishable. However a subset of special cases (including where tT = 1)
may be conducted in zero-knowledge5. The Groth-Sahai system can be instan-
tiated under the Decision Linear assumption in the Common Reference String
model.

We refer the reader to the cited works for formal security definitions of ZK and
WI proof systems. In our security analysis we will assume some generic instanti-
ation ΠZK that is secure under the Decision Linear assumption in G. Either of
the techniques mentioned above can satisfy this requirement. When referring to
WI and ZK proofs we will use the notation of Camenisch and Stadler [16]. For
instance, WIPoK{(g, h) : e(g, h) = T ∧ e(g, v) = 1} denotes a witness indistin-
guishable proof of knowledge of elements g and h that satisfy both e(g, h) = T
and e(g, v) = 1. All values not in enclosed in ()’s are assumed to be known to
the verifier.

2.3 Linear Encryption

Our blind decryption protocol employs a multiplicatively homomorphic scheme
that encrypts elements of G. We instantiate this scheme with the Linear En-
cryption scheme of Boneh, Boyen and Shacham [7] which is semantically secure
under the Decision Linear assumption. Ciphertexts in this scheme have the form
(c1, c2, c3) ∈ G3, and the homomorphic operation is simple pairwise multiplica-
tion. Exponentiation by a scalar z can be performed as cz

1, c
z
2, c

z
3. To re-randomize

a ciphertext one multiplies it by LE.Enc(pk , 1). Our protocols also require an effi-
cient ZK proof-of-knowledge of the plaintext m underlying a ciphertext C, which
we denote by ZKPoK{(m) : C ∈ LE.Enc(pk ,m)}. We refer the reader to the full
version [27] for formal algorithm descriptions.

2.4 A One-Time F -Signature on Multiblock Messages

Our constructions require a strongly unforgeable one-time F -signature scheme
that signs messages of the form (m1, . . . ,mN ) ∈ Z∗n

p (for arbitrary values of
n), but can verify signatures given only a function of the messages, specifically,
(gm1

1 , . . . , gmn
n ) ∈ Gn for fixed g1, . . . , gn ∈ G. Note that g1, . . . , gn need not be

distinct.
5 In many cases it is easy to re-write pairing products equation as a composition of

multiple distinct equations having tT = 1 (see [31]). Although we do not explicitly
perform this translation in our protocols, we note that it can be applied to all of the
ZKPoKs used in our constructions.



272 M. Green

To construct FS, we adapt a weakly-unforgeable signature due to Green and
Hohenberger [30] to admit multi-block messages, while simplifying the scheme
into a one-time signature. The latter modification has the incidental effect of
strengthening the signature to be strongly unforgeable. Let us now describe FS:

FS.KG. On input group parameters γ, a vector length n, select g, g1, . . . , gn,

v, d, u1, . . . , un
R← G and a

R← Z∗
p. Output vk = (γ, g, ga, v, d, g1, . . . , gn,

u1, . . . , un, n) and sk = (vk , a).
FS.Sign. Given sk and a message vector (m1, . . . ,mn) ∈ Z∗n

p , first select r
R← Z∗

p

and output the signature σ = ((
∏n

i=1 umi

i · vr d)a, gam1
1 , . . . , gamn

n , um1
1 ,

. . . , umn
n , r).

FS.Verify. Given pk, (gm1
1 , . . . , gmn

n ), parse σ = (σ1, e1, . . . , en, f1, . . . , fn, r),
output 1 if the following check holds: e(σ1, g) = e(

∏n
i=1 fi · vrd, ga) ∧

{e(gmi

i , ga) = e(ei, g) ∧ e(gmi

i , ui) = e(gi, fi)}i∈[1,n].

Note that verification is a pairing product equation. Thus we can efficiently
prove knowledge of a signature using the techniques described in Section 2.2.
We denote such a proof by e.g., WIPoK{(σ) : Verify(vk , (gm1 , . . . , gmn), σ) = 1}.
Note that vk or the messages may reside within a commitment. In the full
version of this paper [27] we provide details on these proofs of knowledge, as
well as definitions of security and a proof that FS is strongly unforgeable under
the Flexible Diffie-Hellman assumption.

Workalike signatures. Our blind decryption constructions make use of the
“workalike” algorithms (WAKG,WASign). While the public outputs of these
algorithms are identically distributed those of KG and Sign, the WASign al-
gorithm operates on messages of the form (g1, . . . , gn) ∈ Gn. We stress that
(WAKG,WASign,Verify) is not a secure signature scheme on arbitrary group ele-
ments, but can be used securely under the special conditions of our
constructions..

FS.WAKG. Select x1, . . . , xn
R← Z∗

p and set (u1, . . . , un) = (gx1 , . . . , gxn). Com-
pute the remaining elements as in KG and set sk = (vk , a, x1, . . . , xn).

FS.WASign. Given a message vector (h1, . . . , hn) ∈ Gn, first select r
R← Z∗

p and
output the signature σ = ((

∏n
i=1 hxi

i · vrd)a, ha
1 , . . . , h

a
n, h

x1
1 , . . . , hxn

n , r).

3 Definitions

Notation: Let M be the message space and C be the ciphertext space. We write
P (A(a),B(b)) → (c, d) to indicate the protocol P is between parties A and B,
where a is A’s input, c is A’s output, b is B’s input and d is B’s output. We will
define ν(·) as a negligible function.

Definition 1 (Blind Decryption Scheme). A public-key blind decryption
scheme consists of a tuple of algorithms (KG,Enc,Dec) and a protocol BlindDec.
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KG(1λ). On input a security parameter λ, the key generation algorithm KG
outputs a public key pk and a secret key sk .

Enc(pk ,m). On input a public key pk and a message m, Enc outputs a ciphertext
C.

Dec(pk , sk , C). On input pk , sk and a ciphertext C, Dec outputs a message m
or the error symbol ⊥.

The two-party protocol BlindDec is conducted between a user U and a decryptor
D:

BlindDec({U(pk , C)}, {D(pk , sk)}) → (m, nothing). On input pk and a cipher-
text C, an honest user U outputs the decryption m or the error symbol ⊥.
The decryptor D outputs nothing or an error message.

We now present the standard definition of adaptive chosen ciphertext security
for public key encryption.

Definition 2 (IND-CCA2). A public key encryption scheme Π = (KG,Enc,Dec)
is IND-CCA2 secure if every p.p.t. adversary A = (A1,A2) has advantage ≤ ν(λ)
in the following experiment.

IND-CCA2(Π,A, λ)
(pk , sk) ← KG(1λ)
(m0,m1, z) ← AOdec(pk ,sk,·)

1 (pk ) s.t. m0,m1 ∈ M
b ← {0, 1}; c∗ ← Enc(pk ,mb)
b′ ← AO′

dec(pk ,sk,·)
2 (c∗, z)

Output b′

Where Odec is an oracle that, on input a ciphertext c, returns Dec(pk , sk , c)
and O′

dec operates identically but returns ⊥ whenever c = c∗. We define A’s
advantage in the above game by:

|Pr [ b = b′ ] − 1/2|

Additional security properties. A secure blind decryption scheme must pos-
sess the additional properties of leak-freeness and blindness. Intuitively, leak-
freeness [28] ensures that an adversarial User gains no more information from the
blind decryption protocol than she would from access to a standard decryption
oracle. Blindness prevents a malicious Decryptor from learning which ciphertext
a User is attempting to decrypt. Let us now formally state these properties.

Definition 3 (Leak-Freeness [28]). A protocol BlindDec associated with a
PKE scheme Π = (KG,Enc,Dec) is leak free if for all p.p.t. adversaries A, there
exists an efficient simulator S such that for every value λ, no p.p.t. distinguisher
D can distinguish the output of Game Real from Game Ideal with non-negligible
advantage:
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Game Real: Run (pk , sk) ← KG(1λ) and publish pk . As many times as D
wants, A chooses a ciphertext C and atomically executes the BlindDec pro-
tocol with D:

BlindDec({U(pk , C)}, {D(pk , sk)}). A’s output (which is the output of the
game) includes the list of ciphertexts and decrypted plaintexts.

Game Ideal: A trusted party runs (pk , sk) ← KG(1λ) and publishes pk . As
many times as D wants, S chooses a ciphertext C and queries the trusted
party to obtain the output of Dec(pk , sk , C), if C ∈ C and ⊥ otherwise. S’s
output (which is the output of the game) includes the list of ciphertexts and
decrypted plaintexts.

In the games above, BlindDec and Dec are treated as atomic operations. Hence
D and A (or S) may communicate at any time except during the execution of
those protocols. Additionally, while we do not explicitly specify that auxiliary
information is given to the parties, this information must be provided in order
to achieve a sequential composition property.

Definition 4 (Ciphertext Blindness). Let OU(pk , C) be an oracle that, on
input a public key and ciphertext, initiates the User’s portion of the BlindDec
protocol, interacting with an adversary. A protocol BlindDec(U(·, ·) A(·, ·)) is
Blind secure if every p.p.t. adversary A = (A1,A2) has advantage ≤ ν(λ) in the
following game.

Blind(BlindDec,A, λ)
(pk , C0, C1, z) ← A1(1λ)
b ← {0, 1}; b′ ← AOU (pk ,Cb),OU(pk ,Cb−1)

2 (z)

We define A’s advantage in the above game as: |Pr [b′ = b] − 1/2|. Note that a
stronger notion of blindness is selective-failure blindness, which was proposed by
Camenisch et al. [15]. While our constructions do not natively achieve this defi-
nition, in section 4.1 we discuss techniques for achieving this stronger definition.

Definition 5 (CCA2-secure Blind Decryption). A blind decryption scheme
Π = (KG, Enc, Dec, BlindDec) is IND-CCA2-secure if and only if: (1) (KG, Enc,
Dec) is IND-CCA2-secure, (2) BlindDec is leak free, and (3) BlindDec possesses
the property of ciphertext blindness.

4 Constructions

We now present a blind decryption scheme BCS that is secure under the Decision
Linear and Flexible Diffie-Hellman assumptions. BCS is based on a variant of
Cramer-Shoup that was proposed by Shacham [48], with significant extensions
to permit blind decryption.

The core algorithms. We now describe the algorithms (KG,Enc,Dec), which
are responsible for key generation, encryption and decryption respectively. BCS
encrypts elements of G, which may necessitate an encoding scheme from other
message spaces (see e.g., [3]).
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BCS.KG(1λ). First sample γ = (p,G,GT , ê, g ∈ G) ← BMsetup(1λ). Choose
g, g1, g2, g3, v

′, d′, u′
1, . . . , u

′
5

R← G, and x1, x2, x3, y1, y2, y3, z1, z2, z3
R← Z∗

p and
compute:

c1 ← gx1
1 gx3

3 d1 ← gy1
1 gy3

3 h1 ← gz1
1 gz3

3

c2 ← gx2
2 gx3

3 d2 ← gy2
2 gy3

3 h2 ← gz2
2 gz3

3

Output pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v
′, d′, u′

1, . . . , u′
5), sk = (x1,

x2, x3, y1, y2, y3, z1, z2, z3).

BCS.Enc(pk ,m∈G). Select α, r1, r2, c, ψ
R← Z∗

p. Construct a FS keypair (vk1, sk1)
and a second “workalike” keypair (vk2, sk2) as follows:

vk1←(γ, g, gα, v′, d′, g1, g2, g3, g, g, u
′
1, . . . , u

′
5, 5) vk2 = (γ, g, gψ, v′, d′, g, gc, 1)

sk1 ← (vk1, α) sk2 = (vk2, ψ, c)

Next, compute the ciphertext C = (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2) as:

u1 ← gr1
1 u2 ← gr2

2 u3 ← gr1+r2
3 e ← m · hr1

1 hr2
2 v ← (c1dα

1 )r1 · (c2dα
2 )r2

vk ← gα e1 ← uα
1 e2 ← uα

2 e3 ← uα
3 f1 ← gc f2 ← gψ

σ1 ← FS.Sign (sk1, (r1, r2, r1 + r2, c, ψ)) σ2 ← FS.WASign (sk2, e)

BCS.Dec(pk , sk , C). Parse sk and C as above. Assemble vk1 ← (γ, g, vk , v′, d′,
g1, g2, g3, g, g, u

′
1, . . . , u′

5, 5) and vk2 ← (γ, g, f2, v
′, d′, g, f1, 1). Now, verify the

relations:

{ê(vk , ui) = ê(ei, g)}i∈[1,3] ∧
FS.Verify (vk1, (u1, u2, u3, f1, f2), σ1) = 1 ∧ FS.Verify (vk2, (e), σ2) = 1}

(1)

If this check fails, output ⊥. Otherwise, parse sk = (x1, x2, x3, y1, y2, y3, z1, z2,

z3) and select z
R← Z∗

p. Compute the decryption m′ as:

m′ = e · (ux1
1 ey1

1 · ux2
2 ey2

2 · ux3
3 ey3

3 )z

uz1
1 uz2

2 uz3
3 · vz

(2)

Ciphertexts consist of approximately 25 elements of G and two element of Z∗
p.

While at first glance these ciphertexts may seem large, note that the scheme can
be instantiated in asymmetric bilinear settings such as the MNT group of elliptic
curves, where group elements can be represented in as little as 170 bits at the
80-bit security level. In this setting we are able to achieve a relatively ciphertext
size of approximately 5100 bits. While this is large compared to RSA, a 640-
byte per file overhead is quite reasonable for many practical applications. Also
note that in our description the KG algorithm samples a unique set of bilinear
group parameters γ for each key; however, it is perfectly acceptable for many
keyholders to share the same group parameters.

The Blind Decryption Protocol. The blind decryption protocol BlindDec
with respect to BCS is shown in Figure 1. The protocol requires a multiplicatively
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homomorphic IND-CPA-secure encryption scheme, which we instantiate using the
Linear Encryption scheme (LE) of Boneh et al. [7].6

The protocol employs the homomorphic property of LE to construct a a two-
party implementation of the Dec algorithm, with ZKPoKs used to ensure that
both the User and Decryptor’s contributions are correctly formed. Note that for
security reasons it is critical that the Decryptor re-randomize the ciphertext that
it sends back to the User in its portion of the protocol. In the LE scheme this
can be accomplished by multiplying a ciphertext with a fresh encryption of the
identity element.

Security. Let ΠZK be a zero-knowledge (and, implicitly, witness indistin-
guishable) proof system secure under the Decision Linear assumption (possibly
in the Common Reference String model). In the following theorems we will show
that if the Decision Linear and Flexible Diffie-Hellman assumptions hold in G
then BCS = (KG,Enc,Dec,BlindDec) implemented with ΠZK is a secure blind
decryption scheme in the sense of Definition 5. To accomplish this we must show
that: (1) the algorithms (KG,Enc,Dec) comprise an IND-CCA2-secure encryp-
tion scheme, (2) the BlindDec protocol is leak-free, and (3) BlindDec achieves
ciphertext blindness.

Theorem 1. If the Decision Linear and Flexible Diffie-Hellman assumptions
hold in G, then (BCS.KG, BCS.Enc, BCS.Dec) comprise an IND-CCA2-secure
public-key encryption scheme secure in the standard model.

Due to space concerns, we must leave a full proof of Theorem 1 to the full version
of this work [27]. Here we will sketch the intuition behind the proof, which
employs techniques from the Cramer-Shoup variant proposed by Shacham [48].
As in that scheme, our simulator knows the scheme’s secret key, and can use
it to answer decryption queries. The exceptions to this rule are certain queries
related to the challenge ciphertext. Specifically, we must be careful with queries
that are (a) “malformed”, i.e., the queried value v �= ux1

1 ey1
1 · ux2

2 ey2
2 · ux3

3 ey3
3 , or

that (b) embed the value vk∗ from the challenge ciphertext.
Note that equation (2) of the Dec algorithm ensures that malformed cipher-

texts decrypt to a random element of G, so the first case is easily dealt with in
our simulation. The adversary cannot maul the ciphertext due to the presence
of the checksum v. Thus it remains to consider well-formed ciphertexts with
vk = vk∗. We argue that the challenge ciphertext itself is the only ciphertext
that will pass all of our checks.

Intuitively our simulation accomplishes this by setting vk = gα∗
as the public

key of a strongly unforgeable OTS which is secure under the Flexible Diffie-
Hellman assumption. In principle we use this key to sign the challenge ciphertext
components (u∗

1, u
∗
2, u

∗
3, e

∗), which produces all of the remaining components of
the ciphertext. When the adversary submits a decryption query with vk = vk∗

6 In asymmetric bilinear groups where the Decisional Diffie-Hellman problem is hard,
this can easily be replaced with Elgamal encryption, resulting in a significant effi-
ciency improvement.
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U(pk , C) D(pk , sk)

1. Parse C as (u1, u2, u3, e, v, vk , e1, e2, e3, f1, f2, σ1, σ2),
and parse pk = (γ, g, g1, g2, g3, c1, c2, d1, d2, h1, h2, v′, d′, u′

1, . . . , u′
5).

Verify that C satisfies equation (1) of the Dec algorithm. If not, abort
and output ⊥.

2. Generate (pkU , skU ) ← LE.KG(γ) and select z̄
R← Z∗

p. Compute:
c1 ← LE.Enc(pkU , uz̄

1), c2 ← LE.Enc(pkU , uz̄
2), c3 ← LE.Enc(pkU , uz̄

3),
c4 ← LE.Enc(pkU , ez̄

1), c5 ← LE.Enc(pkU , ez̄
2), c6 ← LE.Enc(pkU , ez̄

3),
c7 ← LE.Enc(pkU , vz̄) and set vk1 ← (γ, g, vk , v′, d′, g1, g2, g3, g, g, u′

1, . . . , u
′
5, 5),

vk2 ← (γ, g, f2, v
′, d′, g, f1, 1)

3. Send pkU , c1, . . . , c7 to D and conduct the following PoK with D:
WIPoK{(u1, u2, u3, v, vk , e1, e2, e3, f1, f2, σ1, σ2, vk1, vk2, z̄):
c1 = LE.Enc(pkU , uz̄

1) ∧ c2 = LE.Enc(pkU , uz̄
2) ∧ c3 = LE.Enc(pkU , uz̄

3) ∧
c4 = LE.Enc(pkU , ez̄

1) ∧ c5 = LE.Enc(pkU , ez̄
2) ∧ c6 = LE.Enc(pkU , ez̄

3) ∧
c7 = LE.Enc(pkU , vz̄) ∧ ê(vk , ui) = ê(ei, g)}i∈[1,3] ∧
FS.Verify (vk1, (u1, u2, u3, f1, f2), σ1) = 1 ∧ FS.Verify (vk2, (e), σ2) = 1}

4. If the proof does not verify, abort.
5. Compute c′ = LE.Enc(pkU , 1), z̄′ R← Z∗

p.
6. Using the homomorphic property of LE,

compute: c′′ ← (c
x1
1 c

y1
4 ·cx2

2 c
y2
5 ·cx3

3 c
y3
6 )z̄′

c
z1
1 c

z2
2 c

z3
3 ·cz̄′

7
· c′.

7. Return c′′ and conduct the following proof:
ZKPoK{(x1, x2, x3, y1, y2, y3, z1, z2, z3, z̄

′, c′) :
c′ = LE.Enc(pk , 1) ∧
c′′ = (c

x1
1 c

y1
4 ·cx2

2 c
y2
5 ·cx3

3 c
y3
6 )z̄′

c
z1
1 c

z2
2 c

z3
3 ·cz̄′

7
· c′}

8. If the proof does not verify, abort and return ⊥.
9. Compute m′ = e · (LE.Dec(sk , c′′))1/z̄.

Output m′. Output nothing.

Fig. 1. The Blind Decryption protocol BlindDec(U(pk , C),D(pk , sk)) → (m′, nothing).
For compactness of notation we represent the homomorphic operation on two LE ci-
phertexts c1, c2 using simple multiplicative notation (c1c2), and exponentiation by a
scalar z as cz

1.

we can be assured that the query is identical to the challenge ciphertext, as any
other result would require the adversary to forge the OTS.

It remains to separately argue that the signatures σ1, σ2 are unforgeable. This
is non-trivial, since the OTS operates on messages of the form m1, . . . ,mn ∈ Z∗

p.
In a separate simulation we could select the elements u∗

1, u
∗
2, u

∗
3 such the simulator

knows their discrete logarithm base g. Unfortunately, even this is not sufficient,
since our simulator cannot always know the discrete logarithm of the value e∗

which is based on a message chosen by the adversary. The core intuition of our
proof is to give two separate simulations: in one the signing key α∗ is known
and we can simulate the signature, producing a correctly-distributed (but not
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unforgeable) signature over arbitrary group elements. In the second simulation
the signing key is unknown: the simulator chooses (u∗

1, u
∗
2, u

∗
3, e

∗) at random
such that it knows the discrete logarithm (base g) of each value. Although the
resulting ciphertext does not encrypt either m0 or m1, an adversary is unable
to detect this condition under the Decision Linear assumption.

Theorem 2. If the Decision Linear assumption holds in G and ΠZK is se-
cure under the Decision Linear assumption, then the BCS protocol BlindDec is
leak-free.

We present a proof sketch of Theorem 2 in the full version of this work [27].
Intuitively this proof is quite simple: we show that for any real-world adversary
A we can construct an ideal-world adversary S that, whenever A initiates the
BlindDec protocol, operates as follows: (1) S uses the extractor for the PoK
system to obtain A’s requested ciphertext, (2) queries this result to the trusted
decryption oracle, (3) re-blinds and returns the correctly formulated result to
the adversary, simulating the necessary ZK proofs. We show that under the
Decision Linear assumption no p.p.t. distinguisher can differentiate the output
of S playing the Ideal-World game from the output of A in the Real-World game
except with negligible probability.

Theorem 3. If the Decision Linear assumption holds in G and ΠZK is secure
under the Decision Linear assumption, then the BCS protocol BlindDec satisfies
the property of Ciphertext Blindness (Blind).

We sketch a proof of Theorem 3 in the full version of this work [27]. Intuitively, we
show that an adversarial Decryptor who distinguishes the User’s exection of the
blind decryption protocol on two distinct (and adversarially-chosen) ciphertexts
C0 and C1 must imply a distinguisher for the witness indistinguishable proof
system, or a CPA adversary against the LE encryption scheme.

4.1 Extensions

Tag-Based Encryption. Tag-Based Encryption (TBE) allows encryptors to
apply a tag (label) to each ciphertext. This tag is used during the decryption
process. The BCS construction is in fact natively based on a TBE scheme, but
this functionality is lost as part of the TBE-to-PKE transform we use. In the full
version of this work [27] we show that with some minor extensions it is possible
to retain the scheme’s full TBE functionality.

Selective-failure blindness. Camenisch et al. [15] propose a stronger defini-
tion of blindness (for signature schemes) that they refer to as “selective-failure”
blindness. Intuitively, this definition captures the notion that an adversarial De-
cryptor might attempt to induce failures in the protocol (e.g., by generating
malformed ciphertexts) in order to deprive the User of privacy. Unfortunately
our protocols do not natively achieve this definition because the Decryptor can
create ciphertexts with an improperly formed check value v. Unfortunately, due
to the nature of our scheme this check cannot be verified independently by the
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user. One potential solution to this problem is to add to each ciphertext a non-
interactive proof that v is correctly formed. Such a proof could be constructed
using the Fiat-Shamir heuristic in the random oracle model, or using the Groth-
Sahai system in the Common Reference String model. Note that this approach
would not require any changes to the blind decryption protocol. We elaborate
on this approach in the full version of this work [27].

5 Applications

Blind decryption has applications to a number of privacy-preserving protocols.
Several applications have already been proposed in the literature, e.g., [43,24].
Below we propose two specific applications motivated by our construction.

Privacy-preserving Distributed Filesystems. Many organizations are re-
sponding to the difficulty of securing data in a distributed network, where stor-
age locations can include semi-trusted file servers, desktop computers and mobile
devices. An increasingly popular approach is to employ cryptographic access con-
trol to restrict and monitor file access in these environments. In this approach
(e.g., [1]), access control is performed by encrypting files at rest; authorized users
contact a centralized server in order to decrypt them when necessary.

A concern with this approach is that the server gains a great deal of informa-
tion regarding users’ access patterns. In some cases, knowing which content a user
is accessing may by itself leak confidential information. For example, the pattern
of file accesses by executives during a corporate merger might have enormous
financial value to an investor. While it is desirable to centralize access control,
it may also be important to restrict this centralized party from learning which
information is being managed. While these goals seems contradictory, Coull et
al. [20] and Camenisch et al. [12] recently showed how to construct sophisticated
access control mechanisms using anonymous credentials. In these protocols a
server provides strong, and even history-dependent access control without ever
learning user’s access pattern. Our blind decryption protocols are amenable to
integration with these access control techniques. In particular, by extending BCS
to include encryption tags as in Section 4.1, data can be explicitly categorized
and policies can be defined around these categories.

Oblivious Transfer with Public Contribution. In an adaptively-secure k-
out-of-N Oblivious Transfer protocol (OTN

k×1) a Receiver obtains up to k items
from a Sender’s N -item database, without revealing to the Sender which mes-
sages were transferred. There has been much recent interest in OTN

k×1 [15,28,29,
33,44,20,12], as it is particularly well suited for constructing privacy-preserving
databases in which the user’s query pattern is cryptographically protected (this
is critical in e.g., patent and medical databases).

For practical reasons, there are situations in which it is desirable to distribute
the authorship of records, particularly when database updates are performed
offline. Unfortunately, existing OTN

k×1 protocols seem fundamentally incapable
of supporting message contributions by third parties without the explicit co-
operation of the Sender. Our blind decryption constructions admit new OTN

k×1
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protocols that support public contribution. Intuitively, contributors simply en-
crypt their messages using the Enc algorithm under the Sender’s public key and
send the resulting ciphertexts directly to the Receiver. The Receiver can then
obtain up to k decryptions by running BlindDec with the Sender. Proving this
intuitive protocol secure under a strong simulation-based definition [15, 28] re-
quires some additional components that are easily achieved using the techniques
available to us.

Acknowledgements. The author would like to thank Susan Hohenberger for her
helpful comments.
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Abstract. Much of modern cryptography is predicated on the assump-
tion that users have secrets which are generated using perfect random-
ness, and kept perfectly secret from an attacker. The attacker is then
constrained to black-box (input/output) access to the user’s program. In
reality, neither assumption holds, as evidenced by numerous side-channel
attacks that have surfaced over the last few decades.

This leads naturally to the question – is it possible to secure cryp-
tography against general types of information leakage at a fundamental,
algorithmic level (as opposed to, say, solutions for specific attacks)? This
is the goal of leakage-resilient cryptography.

In this talk, we will survey recent developments in leakage-resilient
cryptography, including definitions and constructions of various crypto-
graphic primitives secure against general forms of leakage. We will place
particular emphasis on the new tools and techniques that we have de-
veloped to handle information leakage, as well as the relation between
leakage-resilience and other questions in cryptography.
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Abstract. In ACM CCS 2007, Canetti and Hohenberger left an inter-
esting open problem of how to construct a chosen-ciphertext secure proxy
re-encryption (PRE) scheme without bilinear maps. This is a rather in-
teresting problem and has attracted great interest in recent years. In
PKC 2010, Matsuda, Nishimaki and Tanaka introduced a novel prim-
itive named re-applicable lossy trapdoor function, and then used it to
construct a PRE scheme without bilinear maps. Their scheme is claimed
to be chosen-ciphertext secure in the standard model. In this paper, we
make a careful observation on their PRE scheme, and indicate that their
scheme does not satisfy chosen-ciphertext security. The purpose of this
paper is to clarify the fact that, it is still an open problem to come up
with a chosen-ciphertext secure PRE scheme without bilinear maps in
the standard model.

Keywords: bilinear map, proxy re-encryption, chosen-ciphertext
security, standard model.

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss [3] in Eu-
rocrypt’98, allows a semi-trust proxy to translate a ciphertext intended for Alice
into another ciphertext intended for Bob. The proxy, however, can not learn
anything about the underlying messages. According to the direction of trans-
formation, PRE can be categorized into bidirectional PRE, in which the proxy
can transform ciphertexts from Alice to Bob and vice versa, and unidirectional
PRE, in which the proxy cannot transform ciphertexts in the opposite direction.
PRE can also be categorized into multi-hop PRE, in which the ciphertexts can
be transformed from Alice to Bob and then to Charlie and so on, and single-hop
PRE, in which the ciphertexts can only be transformed once.
� Corresponding author.
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In their seminal paper, Blaze et al. [3] proposed the first bidirectional PRE
scheme. Ateniese et al. [1, 2] presented unidirectional PRE schemes from bilin-
ear maps. All of these schemes are only secure against chosen-plaintext attacks
(CPA). However, applications often require security against chosen-ciphertext
attacks (CCA).

To fill this gap, Canetti and Hohenberger [7] presented the first CCA-secure
bidirectional multi-hop PRE scheme in the standard model. Libert and Vergnaud
[14, 13] proposed a unidirectional single-hop PRE scheme, which is replayable
CCA-secure [8] in the standard model. Recently, Weng et al. [18] presented a
unidirectional single-hop PRE scheme, which is CCA-secure against adaptive
corruption of users in the standard model. These schemes rely on bilinear maps.
In spite of the recent advances in implementation technique, compared with
standard operations such as modular exponentiation in finite fields, the bilinear
map computation is still considered as a rather expensive operation. It would be
desirable for cryptosystems to be constructed without relying on pairings, espe-
cially in computation resource limited settings. Thus, in ACM CCS’07, Canetti
and Hohenberger [7] left an open problem of how to construct a CCA-secure
PRE scheme without bilinear maps.

Deng et al. [10, 19] presented a bidirectional single-hop PRE scheme without
bilinear maps, and proved its CCA-security in the random oracle model. Shao et
al. [17] presented a unidirectional single-hop PRE scheme without bilinear maps
in the random oracle model, but their scheme was later identified a security
flaw in [9]. Sherman et al. [9] presented a CCA-secure unidirectional single-hop
PRE scheme without bilinear maps, again in the random oracle model. It is
well-known [5, 6] that a proof in the random oracle model can only serve as an
argument, which does not imply the security for real implementations. Thus, it
is more desirable to come up with a CCA-secure PRE scheme without bilinear
maps in the standard model.

In PKC 2010, Matsuda, Nishimaki and Tanaka made an important step and
tried to construct such a scheme. They first introduced a new cryptographic
primitive named re-applicable lossy trapdoor functions (re-applicable LTDFs),
which are specialized lossy trapdoor functions [16, 11,4, 12], and then used this
primitive to construct a PRE scheme without bilinear maps. They claimed that
their scheme is CCA-secure in the standard model. However, in this paper, we
present a concrete attack, and indicate that their PRE scheme does not achieve
the CCA-security. However, we stress that Matsuda et al.’s work is still consid-
ered as an important step in this research area. Namely, due to their scheme, we
can figure out one of main difficulties for constructing CCA-secure PRE without
using bilinear maps, and this would enable us to further design novel schemes
which overcome the same problem.

2 Preliminaries

The Matsuda-Nishimaki-Tanaka PRE scheme involves the primitives of all-but-
one trapdoor function and re-applicable (n, k) lossy trapdoor functions (LTDFs).
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Thus in this section, we shall review the definitions of these two primitives (for
more details, the reader is referred to [15] and [16]). We shall also review the
definition and security notion for bidirectional multi-hop PRE.

2.1 All-but-One Trapdoor Function

Let B = {Bλ}λ∈N be a collection of sets whose elements represents the branches.
A collection of (n, k)-all-but-one trapdoor functions is a tuple of probabilis-
tic polynomial time (PPT) algorithms (Gabo,Fabo,F

−1
abo) having the following

properties:

– All-but-one property: Given a lossy branch b∗∈Bλ, algorithm Gabo(1λ,b∗)
outputs a pair (s, td), where s is a function index and td is its trapdoor. For
any b ∈ Bλ\{b∗}, the algorithm Fabo(s, b, ·) computes an injective function
fs,b(·) over {0, 1}n, and F−1

abo(td, b, ·) computes f−1
s,b (·). For the lossy branch

b∗, Fabo(s, b∗, ·) computes a lossy function fs,b∗(·) over the domain {0, 1}n,
where |fs,b∗({0, 1}n)| ≤ 2n−k.

– Indistinguishability: For every b∗1 and b∗2 ∈ Bλ, the first output s0 of
Gabo(1λ, b∗0) and the first output s1 of Gabo(1λ, b∗1) are computationally
indistinguishable.

2.2 Re-applicable (n, k)-Lossy Trapdoor Functions

A collection of re-applicable (n, k)-lossy trapdoor functions (LTDFs) with respect
to function indices is a tuple of PPT algorithms (ParGen, LossyGen, LossyEval,
LossyInv,ReIndex,ReEval, PrivReEval,Trans,FakeKey) such that:

Injectivity: For every public parameter par ← ParGen(1λ) and every tag τ ∈
T \{τlos}, LossyGen(τ) outputs a pair of a function index and its trapdoor
(s, td), LossyEval(s, ·) computes an injective function fs,τ (·) over {0, 1}n, and
LossyInv(td, τ, ·) computes f−1

s,τ (·). (We represent the function fs,τ , not fs, in
order to clarify a tag τ . If we do not need to clarify a tag, we represent a
function as fs,�).

Lossiness: For every public parameter par ← ParGen(1λ), LossyGen(τlos) out-
puts (s,⊥) and LossyEval(s, ·) computes a function fs,τlos(·) over {0, 1}n,
where |fs,τlos({0, 1}n)| ≤ 2n−k.

Indistinguishability between injective and lossy indices: Let Xλ denote
the distribution of (par, sinj, τ), and Yλ denote the distribution of (par, slos, τ

′),
where par is a public parameter from ParGen(1λ), τ and τ ′ are random ele-
ments in T , and the function indices sinj and slos are the first element output
from LossyGen(τ) and LossyGen(τlos) respectively. Then, {Xλ} and {Yλ} are
computationally indistinguishable.

Re-applying with respect to function indices: Let τi and τj be any tags
with τi �= τlos and τj �= τlos. The algorithm ReIndex(tdi, tdj) outputs si↔j ,
where tdi and tdj are the second elements of LossyGen(τi) and LossyGen(τj).
Then, for any x ∈ {0, 1}n, x=LossyInv(tdj , τi,ReEval(si↔j , LossyEval(si, x))).
Note that LossyInv takes τi as one of the inputs, not τj .
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Generating proper outputs: Let c be an output from ReEval(si↔j ,
LossyEval(si, x)), where si↔j and si have the same meaning as that in the
above paragraph. Then, PrivReEval(x, τi, τj , sj) outputs the same c, where x,
τi, τj , and sj have the same meaning as that in the above paragraph. That
is, ReEval(si↔j , LossyEval(si, ·)) and PrivReEval(·, τi, τj , sj) are equivalent as
a function (i.e. any output of ReEval(si↔j , LossyEval(si, ·)) is independent
of si).

Transitivity: Let (si, tdi), (sj , tdj) and (sk, tdk) be outputs from LossyGen(τi),
LossyGen(τj), and LossyGen(τk), and let si↔j and si↔k be the outputs from
ReIndex(tdi, tdj) and ReIndex(tdi, tdk), respectively. Then, Trans(si↔j , si↔k)
outputs sj↔k which is the same output from ReIndex(tdj , tdk).

Fake key statistical indistinguishability: ThealgorithmFakeKey(si, τi)out-
puts (s′j , s

′
i↔j , τ

′
j), where si is the first element of an output from LossyGen(τi).

LetXλ denote the distribution of (par, si, sj , si↔j , τi, τj), and let Yλ denote the
distribution of (par, si, s

′
j , s

′
i↔j , τi, τ

′
j), where each par, sj , si↔j , and τj has the

same meaning as that in the above paragraph. Then, {Xλ} and {Yλ} are sta-
tistically indistinguishable.

Generation of injective functions from lossy functions: Let s be the first
element of an output from FakeKey(slos, τ), where τ is a tag and slos is the first
element of an output from LossyGen(τlos). Then, for every τ , LossyEval(s, ·)
represents an injective function fs,� with overwhelming probability, where a
random variable is the randomness of FakeKey(slos, τ). (We do not require
other properties of index s if fs,� is injective. The function fs,� cannot have
any trapdoor information).

2.3 Realization of Re-applicable LTDFs

Based on Peikert and Waters’ LTDFs [16], Matsuda, Nishimaki and Tanaka [15]
gave a realization of re-applicable LTDFs, which is specified as below (for more
details, the reader is referred to [15]):

ParGen: This algorithm first generates a cyclic group G with prime order p, and
then chooses a random generator g ∈ G. Next, it selects random numbers
r1, · · · , rn ∈R Zp, and outputs the public parameters C1 as

C1 =

⎛⎜⎝ c1
...
cn

⎞⎟⎠ =

⎛⎜⎝ gr1

...
grn

⎞⎟⎠ .

LossyGen: Taking as input the public parameter C1 and a tag τ ∈ G (note
that if τ is the identity element e of G, it means execution of the lossy
mode; otherwise, execution of the injective mode), this algorithm first selects
random elements z1, z2, · · · , zn ∈R Zp, and then computes a function index
as
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C2 =

⎛⎜⎝ c1,1 · · · c1,n

...
. . .

...
cn,1 · · · cn,n

⎞⎟⎠ =

⎛⎜⎝ cz1
1 · τ · · · czn

1
...

. . .
...

cz1
n · · · czn

n · τ

⎞⎟⎠ =
{

ci,j = c
zj

i · τ, if i = j;
ci,j = c

zj

i , otherwise.

Finally, it outputs the function index s = (C1,C2) and the trapdoor td =
z = (z1, · · · , zn).

LossyEval: Taking as input a function index s = (C1, C2) and an n-bit input
x = (x1, · · · , xn) ∈ {0, 1}n, this algorithm outputs (y1,y2) such that

y1=xC1 =
n∏

i=1

cxi

i ,

y2=xC2 =

(
n∏

i=1

cxi

i,1, · · · ,
n∏

i=1

cxi

i,n

)
=

(
(

n∏
i=1

cz1xi

i )τx1 , · · · , (
n∏

i=1

cznxi

i )τxn

)
.

LossyInv: Taking as input (td, τ, (y1,y2)), where the trapdoor information td
consists of z = (z1, · · · , zn), the tag τ is an element in G\{e}, and y2 =
(y2,1, · · · , y2,n) ∈ G1×n, this algorithm computes w = (y2,1 · y−z1

1 , y2,2 ·
y−z2
1 , · · · , y2,n · y−zn

1 ). Then, if j-th element of w is the identity element of
G, then it sets xj = 0; else if the j-th element of w is τ then it sets xj = 1;
otherwise, it outputs ⊥. Finally, it outputs x = (x1, · · · , xn).

ReIndex: Taking as input trapdoors tdi = (z1, · · · , zn) and tdj = (z′1, · · · , z′n),
this algorithm outputs si↔j = tdj−tdi =(z′1−z1, · · · , z′n−zn) = (z1,i↔j , · · · ,
zn,i↔j).

ReEval: On input (si↔j , (y1,y2)), where si↔j = (z1,i↔j , z2,i↔j, · · · , zn,i↔j) and
(y1,y2) = (y1, (y2,1, y2,2, · · · , y2,n)), this algorithm computes y′

2 =(y′2,1, y
′
2,2,

· · · , y′2,n) = (y2,1 · yz1,i↔j

1 , y2,2 · yz2,i↔j

1 , · · · , y2,n · yzn,i↔j

1 ). Then it outputs
(y1,y′

2).
PrivReEval: Taking as input x, τi, τj and sj, where x = (x1, · · · , xn) is n-bit

input, this algorithm first computes (ŷ1, ŷ2) ← LossyEval(sj ,x). Next, it
makes ŷ′

2 from ŷ2 in the following process: for each i ∈ [1, n], if xi = 1 then
ŷ′2,i = ŷ2,iτ

−1
j τi; else ŷ′2,i = ŷ2,i, where ŷ2,i and ŷ′2,i are the i-th elements of

ŷ2 and ŷ′
2 respectively. Finally, it outputs (ŷ1, ŷ′

2).
Trans: Taking as input si↔j and si↔k, this algorithm outputs si↔k − si↔j =

(tdk − tdi) − (tdj − tdi) = tdk − tdj = si↔k.
FakeKey: Taking as input a function index si = (C1,C2) and a tag τi ∈ G, this

algorithm first chooses a random element t ∈ G. Next, it chooses random
numbers si↔j = (z1,i↔j , · · · , zn,i↔j) ∈R Zn

p . Then it makes a new matrix
C′

2 as follows:

C′
2 =

⎛⎜⎝ c1,1 · cz1,i↔j

1 · t · · · c1,n · czn,i↔j

1
...

. . .
...

cn,1 · cz1,i↔j
n · · · cn,n · czn,i↔j

n · t

⎞⎟⎠=
{

c′k,� = ck,� · cz�,i↔j

k · t, if k = �;
c′k,� = ck,� · cz�,i↔j

k , otherwise,

where ck is the k entry of C1, and ck,� is the (k, �) entry of C2. Finally, it
outputs sj = (C1,C′

2), si↔j = (z1,i↔j , · · · , zn,i↔j) and τj = τi · t.
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3 Bidirectional Multi-hop PRE

A bidirectional PRE scheme Π = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec)
consists of the following six algorithms:

– Setup(1λ): Given a security parameter 1λ, this setup algorithm outputs a
public parameter PP . Denote this by PP ← Setup(1λ).

– KeyGen(PP ): Given the public parameter PP , this key generation algorithm
outputs a public key pk and a secret key sk. Denote this by (pk, sk) ←
KeyGen(PP ).

– Enc(PP, pk,m): Given the public parameter PP , a public key pk and a
message m in the message space M, this encryption algorithm outputs a
ciphertext C. Denote this by C ← Enc(PP, pk,m).

– ReKeyGen(PP, ski, skj): Given the public parameter PP , a pair of secret keys
ski and skj where i �= j, this re-encryption key generation algorithm outputs
a re-encryption key rki↔j . Denote this by rki↔j ← ReKeyGen(PP, ski, skj).

– ReEnc(PP, rki↔j , Ci): Given the public parameter PP , a re-encryption key
rki↔j and a ciphertext Ci intended for user i, this re-encryption algorithm
outputs another ciphertext Cj for user j or the error symbol ⊥. Denote this
by Cj ← ReEnc(PP, rki↔j , Ci).

– Dec(PP, sk, C): Given the public parameter PP , a public key sk and a ci-
phertext C, this decryption algorithm outputs a message m or the error
symbol ⊥.

Next, we review the definition of chosen-ciphertext security for bidirectional
multi-hop PRE scheme as defined in [15, 7]. Let λ be the security parameter,
A be an oracle TM, representing the adversary, and ΓU and ΓC be two lists
which are initially empty. The game consists of an execution of A with the
following oracles, which can be invoked multiple times in any order, subject to
the constraints specified as below:

Setup Oracle: This oracle can be queried first in the game only once. This
oracle generates the public parameters PP ← Setup(1λ), and gives PP
to A.

Uncorrupted key generation: This oracle first generates a new key pair by
running (pk, sk) ← KeyGen(PP ). Next, it adds pk in ΓU , and gives pk to A.

Corrupted key generation: This oracle generates a new key pair by running
(pk, sk) ← KeyGen(PP ). Next, it adds pk in ΓC , and gives (pk, sk) to A.

Challenge oracle: This oracle can be queried only once. On input (pki∗ ,m0,
m1), this oracle randomly chooses a bit b ∈ {0, 1} and gives Ci∗ = Enc(PP,
pki∗ ,mb) to A. Here it is required that pki∗ ∈ ΓU . We call pki∗ the challenge
key and Ci∗ the challenge ciphertext.

Re-encryption key generation: On input (pki, pkj) from the adversary, this
oracle gives the re-encryption key rki↔j = ReKeyGen(PP, ski, skj) to A,
where ski and skj are the secret keys corresponding to pki and pkj , respec-
tively. Here it is required that pki and pkj are both in ΓC , or alternatively
are both in ΓU .
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Re-encryption oracle: On input (pki, pkj , Ci), if pkj ∈ ΓC and (pki, Ci) is a
derivative of (pki∗ , Ci∗), this oracle give A a special symbol ⊥, which is not
in the domain of messages or ciphertext. Otherwise, it gives the re-encrypted
ciphertext Cj = ReEnc(PP,ReKeyGen(PP, ski, skj), Ci) to A. Derivatives of
(pki∗ , Ci∗) are defined inductively as follows:
– (pki∗ , Ci∗) is a derivative of itself.
– If (pk, C) is a derivative of (pki∗ , Ci∗), and (pk′, C′) is a derivative of

(pk, C), then (pk′, C′) is a derivative of (pki∗ , Ci∗).
– If A has queried the re-encryption oracle on input (pk, pk′, C) and ob-

tained the response C′, then (pk′, C′) is a derivative of (pk, C).
– If A has queried the re-encryption key generation oracle on input (pk, pk′)

or (pk′, pk), and C′ = ReEnc(PP,ReKeyGen(PP, sk, sk′), C), then
(pk′, C′) is a derivative of (pk, C), where sk and sk′ are the secret keys
corresponding to pk and pk′, respectively.

Decryption oracle: On input (pk, C), if the pair (pk, C) is a derivative of
the challenge key and ciphertext (pki∗ , Ci∗), or pk is not in ΓU ∪ ΓC , this
oracle returns the special symbol ⊥ to A. Otherwise, it returns the result of
Dec(PP, sk, C) to A, where sk is the secret key with respect to pk.

Decision oracle: This oracle can be queried at the end of the game. On input
b′, if b′ = b and the challenge key pki∗ ∈ ΓU , this algorithm output 1; else
output 0.

We describe the output of the decision oracle in the above CCA-security defini-
tional game as Exptbid-PRE-CCA

Π,A (λ) = b for an adversary A and a scheme Π . We
define the advantage of adversary A as

Advbid-PRE-CCA
Π,A (λ) def=

∣∣∣∣Pr[Exptbid-PRE-CCA
Π,A (λ) = 1] − 1

2

∣∣∣∣ ,
where the probability is over the random choices of A and oracles. We say that
the scheme Π is secure under the bidirectional PRE-CCA attack, if for any
PPT adversary A, his advantage Advbid-PRE-CCA

Π,A (λ) is negligible in the security
parameter λ (for sufficiently large λ).

4 Review of the Matsuda-Nishimaki-Tanaka PRE Scheme

In this section, we shall review the Matsuda-Nishimaki-Tanaka bidirectional
multi-hop PRE scheme.

Let λ be the security parameter, and let n, k, k′, k′′ and v be parameters de-
pended on λ. Let (SigGen, SigSign, SigVer) be a strongly unforgeable one-time sig-
nature scheme where the verification keys are in {0, 1}v. Let (ParGen, LossyGen,
LossyEval, LossyInv,ReEval,PrivReEval, Trans,FakeKey) be a collection of reappli-
cable (n, k)-LTDFs and T be a set of tags. Let (Gabo,Fabo,F

−1
abo) be a collection

of (n, k′)-ABO trapdoor functions with branches Bλ = {0, 1}v, which contains
the set of signature verification keys. Let H be a family of pairwise independent
hash functions from {0, 1}n to {0, 1}k′′

. It is required that the above parameters
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satisfy (k+k′)− (k′′+n) ≥ δ = δ1 +δ2 for some δ1 = ω(logλ) and δ2 = ω(logλ).
The message space of the system is {0, 1}k′′

. The Matsuda-Nishimaki-Tanaka
PRE scheme [15] is specified by the following algorithms:

Setup(1λ): This algorithm first generates an index of all-but-one trapdoor func-
tions with lossy branch 0v: (sabo, tdabo) ← Gabo(1λ, 0v). Then, it generates
a public parameter of re-applicable LTDFs: par ← ParGen(1λ). Next, it
chooses a hash function h from H. Finally, it outputs a public parameter
as PP = (sabo, par, h).

Note that the algorithm Setup erases the trapdoor tdabo because the fol-
lowing algorithms do not use tdabo.

KeyGen(PP ): Taking as input the pubic parameters PP = (sabo, par, h), this
algorithm first chooses a tag τ ∈ T \{τlos} and generates an injective index of
re-applicable LTDFs: (srltdf, tdrltdf) ← LossyGen(τ). Finally, it outputs the
public key pk = (srltdf, τ) and the secret key sk = (tdrltdf, srltdf, τ).

Enc(PP, pk,m): Taking as input the public parameters PP = (sabo, par, h),
public key pk = (srltdf, τ) and a message m ∈ {0, 1}k′′

, this encryption
algorithm first chooses x ∈ {0, 1}n uniformly at random. Next it generates
a key-pair for the one-time signature scheme: (vk, skσ) ← SigGen(1λ), and
computes

c1 = LossyEval(srltdf, x), c2 = Fabo(sabo, vk, x), c3 = h(x) ⊕m.

Then it signs a tuple (c2, c3, τ) as σ ← SigSign(skσ, (c2, c3, τ)). Finally, it
outputs the ciphertext C = (vk, c1, c2, c3, τ, σ).

ReKeyGen(PP, ski, skj): On public parameter PP = (sabo, par, h), the secret
keys ski = (tdi, si, τi) and skj =(tdj , sj , τj), this algorithm computes si↔j ←
ReIndex(tdi, tdj), and then outputs a re-encryption key rki↔j = si↔j .

ReEnc(PP, rki↔j , Ci): Taking as input the public parameter PP =(sabo, par, h),
the re-encryption key rki↔j =si↔j and a ciphertext Ci =(vk, c1,i, c2, c3, τ, σ),
this algorithm computes c1,j ← ReEval(si↔j , c1,i). It then outputs Cj =
(vk, c1,j , c2, c3, τ, σ) as a new ciphertext for the user with skj .

Dec(PP, sk, C): Taking as input the public parameter PP = (sabo, par, h), a
secret key sk = (tdrltdf, srltdf, τ) and a ciphertext C = (vk, c1, c2, c3, τ ′, σ),
this decryption algorithm acts as follows:

1. Check whether SigVer(vk, (c2, c3, τ ′), σ) = 1 holds. If not, output ⊥.
2. Compute x=LossyInv(tdrltdf, τ

′, c1). If τ =τ ′, it checks LossyEval(srltdf, x)
= c1; else it checks PrivReEval(x, τ ′, τ, srltdf) = c1. If not, it outputs ⊥.
It also checks Fabo(sabo, vk, x) = c2. If not, it outputs ⊥.

3. Finally, output m = c3 ⊕ h(x).

5 Security Analysis

In this section, we shall present a concrete attack against the Matsuda-Nishimaki-
Tanaka PRE scheme. Before presenting its details, we first identify the potential
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weakness in their scheme: for a ciphertext Ci = (vk, c1,i, c2, c3, τ, σ), their ReEnc
algorithm simply transforms the ciphertext component c1,i into c1,j , without ver-
ifying the validity of c1,i. Then there might exist an adversary who can break the
CCA-security of their scheme as follows: Given the challenge ciphertext Ci∗ =
(vk, c1,i∗ , c2, c3, τ, σ), the adversary canfirstmodify the ciphertext component c1,i∗

to obtain a new (ill-formed) ciphertextC′
i∗ and then ask the re-encryption oracle to

re-encryptC′
i∗ into another ciphertext C′

j for a corrupted user j (note that accord-
ing to the security model, it is legal for the adversary to issue such a query); next,
the adversary can modify C′

j to obtain the right re-encrypted ciphertext Cj of the
challenge ciphertext, and thus he canderive the underlying plaintext bydecrypting
Cj with user j’s secret key.

Below we give the attack details. For an easy explanation of how the adversary
can modify C′

j to obtain the right transformed ciphertext Cj , when describing
the underlying re-applicable LTDFs we shall take Matsuda et al.’s concrete real-
ization (recalled in Section 2.3) as the example. Concretely, the adversary works
as follows:

1. The adversary first obtains the public parameters PP from the setup oracle.
2. The adversary obtains a public key pki∗ from the uncorrupted key generation

oracle. Note that pki∗ will be added in ΓU by the oracle.
3. The adversary obtains a public/secret key pair (pkj , skj) from the corrupted

key generation oracle. Note that pkj will be added in ΓC by the oracle.
4. The adversary submits (pki∗ ,m0,m1) to the challenge oracle, and then is

given the challenge ciphertext Ci∗ = (vk∗, c1,i∗ , c
∗
2, c

∗
3, τ

∗, σ∗), where c1,i∗

is the output of function LossyEval. Here we use Matsuda et al.’s concrete
realization of LossyEval as an example. Wlog, suppose c1,i∗ = (y1,y2) =
(y1, (y2,1, · · · , y2,n)).

5. The adversary first randomly picks ỹ2,1, · · · , ỹ2,n from G, and modifies the
challenge ciphertext to obtain a new (ill-formed) ciphertext C′

i∗ = (vk∗, c′1,i∗ ,
c∗2, c

∗
3, τ

∗, σ∗), where c′1,i∗ = (y1, (ỹ2,1, · · · , ỹ2,n)). Then, the adversary sub-
mits (pki∗ , pkj , C

′
i∗) to the re-encryption oracle. Note that, although pkj ∈

ΓC , it is legal for the adversary to issue this query, since (pki∗ , C
′
i∗) is not a

derivative of (pki∗ , Ci∗). Note that the re-encryption algorithm ReEnc can-
not check the validity of the ciphertext component c′1,i∗ . So, it will return
the re-encrypted ciphertext C′

j = ReEnc(PP,ReKeyGen(PP, ski∗ , skj), C′
i∗)

to the adversary.
According to the re-encryption algorithm, we get C′

j = (vk∗, c′1,j , c
∗
2, c

∗
3, τ

∗,
σ∗), where c′1,j = ReEval(si∗↔j , c

′
1,i∗). According to Matsuda et al.’s concrete

realization of ReEval, we have

c′1,j = (y1, (ỹ′2,1, · · · , ỹ′2,n)) =
(
y1,
(
ỹ2,1 · y

z1,i∗↔j

1 , · · · , ỹ2,n · yzn,i∗↔j

1

))
.

Now, from c′1,j = (y1, (ỹ′2,1, · · · , ỹ′2,n)), the adversary can compute the
following
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c1,j=
(
y1, (

ỹ′2,1y2,1

ỹ2,1
, · · · ,

ỹ′2,ny2,n

ỹ2,n
)
)

=
(
y1, (

ỹ2,1 · y
z1,i∗↔j

1 y2,1

ỹ2,1
, · · · , ỹ2,n · yzn,i∗↔j

1 y2,n

ỹ2,n
)
)

=
(
y1, (y2,1 · y

z1,i∗↔j

1 , · · · , y2,n · yzn,i∗↔j

1 )
)
.

Observe that c1,j is indeed equivalent to the result of ReEval(si∗↔j , c1,i∗).
Thus, we have Cj = (vk∗, c1,j , c

∗
2, c

∗
3, τ

∗, σ∗) is indeed the result of ReEnc(PP,
ReKeyGen(PP, ski∗ , skj), Ci∗), which is an encryption of mb. Now, the adver-
sary can obtain the underlying plaintext mb by decrypting the re-encrypted
ciphertext Cj using the secret key skj , and obviously can break CCA-security
of the Matsuda-Nishimaki-Tanaka PRE scheme.

The above attack can also be simply extended to the case that the user j is uncor-
rupted. In this case, the adversary A directly request (pkj , Cj) to the decryption
oracle, which will return the plaintext mb to A.

6 Discussions and Conclusion

The authors constructed 11 games, Game-0 to Game-10, to prove the CCA-
security of the PRE scheme developed in [15], where Game-0 is just the CCA
definitional game of PRE (recalled in Section 3) and Game-10 is a game which
any adversary can win with only probability 1/2. They also discussed that dif-
ference of advantage between any two successive games is negligible, and hence
any adversary cannot win Game-0 with a better probability than 1/2 plus a
negligible value. However, as we observed in the previous section, there exists an
adversary which can always win Game-0, and this implies that for at least one
of pairs of two successive games, difference of advantage between them is non-
negligible. If we correctly understand the security proof in [15], such two games
seem Game-7 and 8. This is basically due to the fact that until Game-7, the chal-
lenger generates all re-encryption keys for all users (including both uncorrupted
and corrupted users), and by using these re-encryption keys, the challenger sim-
ulates both the re-encryption key generation oracle and the re-encryption oracle.
In contrast, in Game-8, the challenger generates re-encryption keys among un-
corrupted users in a specific manner without knowing these users’ secret keys
(see [15] for detail), and therefore, the same strategy for simulating these two or-
acles as in Game-7 cannot be immediately applied to this game. Namely, we see
that in Game-8, it is still straightforward to generate re-encryption keys among
uncorrupted users or those among corrupted users, but it seems hard to generate
any re-encryption key between an uncorrupted user and a corrupted user. This
also implies that the re-encryption key generation oracle can be still simulated,
but the re-encryption oracle can not as long as the same simulation technique
as in Game-7 is used.
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The PRE scheme developed in [15] is based upon the CCA-secure public-
key encryption (PKE) scheme of Peikert and Waters (that is in turn based
upon LTDFs) [16], which can be viewed as an extension of the Peikert-Waters
PKE scheme into the proxy re-encryption setting. One key difference between
the Peikert-Waters PKE construction and the PRE construction of [15] is that:
all components in the ciphertext of the Peikert-Waters PKE are signed by the
one-time signature (under the verification key vk), but the key component c1
is not signed in the ciphertext of the PRE of [15]. Of course, signing c1 can
prevent our concrete attack, but the resultant scheme is not a PRE scheme
any longer (particularly, the proxy cannot translate ciphertexts among players,
as the underlying signing key w.r.t. vk is unknown to the proxy). From our
view, constructing CCA-secure proxy re-encryption without bilinear maps in
the standard model may need significantly new ideas and techniques. It is still
an open problem to come up with a (bidirectional or unidirectional) proxy re-
encryption scheme without bilinear maps in the standard model.
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Abstract. The problem of trust is one of the biggest concerns in any
identity-based infrastructure where the key-generation authority (called
the PKG) must choose secret keys for participants and therefore be
highly trusted by all parties. While some abilities of the PKG are intrin-
sic to this setting, reducing this trust as much as possible is beneficial to
both user and authority as the less trust is placed in it, the less an honest
authority can be accused of abusing that trust. Goyal (CRYPTO 2007)
defined the notion of Accountable-Authority IBE in which a dishonest
PKG who had leaked a user’s private key could be proven guilty. Later,
Goyal et al. (CCS 2008) asked whether it would be possible to implicate
a PKG who produced an unauthorized decoder box, enabling decryption
with a noticeable probability but which may not actually grant access
to a well-formed key. Formally, would it be possible for a tracing al-
gorithm to implicate a dishonest PKG given only black-box access to
such a decoder? Goyal et al. could only provide such a scheme in the
weaker setting of selective security, where an adversary must declare at
the start of the game which identity it intends to target. In this work,
we provide the first fully secure accountable-authority IBE scheme. We
prove security from the standard DBDH assumption while losing none
of the functionality or security of the original proposal.

Keywords: Identity-Based Encryption, Accountable Authority,
Tracing.

1 Introduction

Since its introduction by Shamir [24] and first constructions by Boneh and
Franklin [4] and Cocks [7], identity-based encryption (IBE) has been one of
the most active areas of cryptographic research, with numerous applications to
computer security and privacy (e.g. [3,2,9,25]). Many concepts of independent
interest sprang from this topic such as Fuzzy IBE and Attribute Based Encryp-
tion [23,14,12,22] which allow encryption to groups of users whose credentials
(a.k.a. attributes) satisfy a given access policy, and Hierarchical IBE [10,11,17]
which allows key generation in a leveled fashion.

Despite its applications and practicality, the security of an IBE scheme relies
heavily on trusting the key generation authority. Despite the tremendous prac-
tical security benefits of not having to manage a public-key infrastructure (PKI)

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 296–316, 2011.
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based on individual public keys, trusting any single authority is very troubling.
It is a natural and important question to ask how one can reduce the trust one
must have in the private key generator. One proposed method to reduce this
trust is to employ multiple PKGs such that no single entity can compromise
security [2]; however, the question of widespread collusion naturally remained.

This left open the problem of reducing trust in a single central authority.
Note that such a central authority can clearly decrypt all messages in the sys-
tem. However, in many practical situations, users may not be worried that the
authority would have the inclination or resources to specifically eavesdrop on
their communications. On the other hand, users would want some assurance
that the authority doesn’t issue their secret keys to other potentially malicious
users, who might have a lower profile and have less to lose if caught. This is
precisely the problem proposed and addressed by the work of Goyal [13] by in-
troducing the notion of Accountable-Authority IBE (A-IBE). If a user finds a key
for his identity being disseminated without permission (e.g. the user finds that
his secret key is being put up for auction on EBay), Goyal proposed a system
where the user can prove that it would have been computationally impossible
for the user to have created this compromised key. Since the only other entity
with access to keys to the user’s identity is the PKG, this allowed the user to
successfully implicate a malicious PKG of malfeasance.

Goyal’s first construction relied heavily on seeing the actual compromised
key, and as-such this first construction is called only white-box secure. Such
white-box security leaves a great deal to be desired, for instance, while able
to still decrypt, the key may have been manipulated in some way. A natural
extension is to ask whether it would be possible to implicate a PKG who has
disseminated a decoder “box” which allows decryption of ciphertexts encrypted
to some identity rather than simply leaking a key itself in the clear (e.g. selling
such a box or a heuristically obfuscated piece of decryption software). Since
the exact information used to create this decoder box may be hidden, this is
called black box security and is the strongest current proposed notion of A-IBE.
If we can trace a PKG who issues decoder boxes, it forces a user attempting to
dishonestly acquire decryptions to continually interact with the PKG (who may,
for example, be acting as a decryption oracle). Such a setting is much riskier for
the dishonest PKG since it requires a much greater level of communication with
the dishonest user.

Giving a black-box secure A-IBE scheme was specifically labeled the most im-
portant problem left open in Goyal’s original work. The first work made some
progress towards obtaining black-box security, which was later refined [15,19] (the
latter of which proves security if a cheating authority is denied a decryption or-
acle); however, major shortcomings remained. The only known black-box secure
constructions are in a very weak model of security called “selective security” where
the adversary must designate the identity which it will create a decoder box for
before even seeing the public parameters. While selective security was useful for
exploring these concepts, it is a completely unreasonable requirement for security
since real-world adversaries have the ability to pick targets adaptively.
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In fact, selective security is especially troubling in the A-IBE setting since
selective security is only a reasonable benchmark if there are only a few high
value targets whom an adversary would be interested in attacking (making the
prospect of picking a target adaptively during the attack less appealing). How-
ever, in a subscription service handled through decoder boxes (one of the most
natural applications for a black-box A-IBE scheme), there would be many targets
of equal value, making selective-security particularly troubling.

1.1 Our Contributions

In this work, we provide the first fully secure black-box accountable-authority
IBE scheme. We are able to prove security based on the standard DBDH number-
theoretic intractability assumption while losing none of the functionality or se-
curity of the original proposal of Goyal [13].

A limitation of previous work [15] which obtained selective black-box security
was that it obtained functionality from established Attribute-Based Encryption
schemes without modifying the scheme to better suit the A-IBE framework.
A main contribution of this work is that we can obtain A-IBE by only moving
“halfway” between basic IBE and Attribute-Based Encryption, in a setting where
identities do have attributes, but these attributes are assigned randomly. We call
such a scheme a Dummy-IBE scheme and use it to construct black-box A-IBE.
We then give a construction of a Dummy-IBE scheme by combining mechanics
of Waters’ IBE scheme [25] and the Attribute-Based Encryption scheme due
to Sahai and Waters [23]. We note that a fully secure ABE scheme would not
directly suffice to make the previous construction work, in particular, ciphertext
and key-sanity checks (to be defined later) would also be necessary. Indeed in
contrast to recent findings in fully secure ABE [18,21], we are able to follow the
framework of previous selectively secure ABE constructions [23] to achieve full
black-box security, and as a result inherit these schemes’ improved efficiency and
analytic simplicity.

2 Preliminaries

We will often use the notation [a, b] to denote all integers between a and b,
inclusive and bold font (e.g. x, A) to denote vectors. A bracketed index (e.g.
x[j], A[i]) will denote the value at that index of the relevant vector. A negligible
value is one that grows slower than any inverse polynomial of a certain parameter
(usually the security parameter) and a probability is said to be overwhelming if
it is within an additive negligible probability of 1.

2.1 Bilinear Maps

Let G,GT be two multiplicative groups of prime order p. Let g be a generator
of G and e : G × G → GT . We assume e satisfies bilinearity (for all u, v ∈ G1
and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab) and non-degeneracy (e(g, g) �= 1).
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2.2 Security Assumption

Definition 1 (Decisional BilinearDiffie-Hellman (DBDH) Assumption)
Suppose the values a, b, c, z ← Zp, β ← {0, 1} are chosen at random. The DBDH
assumption states that no probabilistic polynomial-time algorithm can distinguish
the tuple (g,A = ga, B = gb, C = gc, e(g, g)abc) from the tuple (g,A = ga, B =
gb, C = gc, e(g, g)z) with more than a negligible advantage.

2.3 Fully-Simulatable Oblivious Transfer

Informally, a k-out-of-n oblivious transfer protocol [8] is a two-party protocol
in which n strings are stored by one party and at the end, the other party has
received exactly k of them with the requirements that the receiving party gains
no more information than the k strings it received and the sending party gains
no information about which k the receiving party acquired.

Formally, by a fully-simulatable OT protocol, we will refer to one that meets
Canetti’s requirements for universal composability [6]. If an adversary A′ is in-
teracting with a challenger and has non-negligible success probability ε in a game
which includes some Fully-Simulatable OT protocol, there also exists an adver-
sary A with probability of success within a negligible factor of ε which instead
uses the ideal-world OT protocol where A directly queries the indices of the k
values it will receive from the challenger. We will often transfer our adversaries
into ones which engage in the ideal-world OT protocol. For examples of fully
simulatable Oblivious Transfer using only the DDH and DBDH assumptions
please refer to the following papers: [20,16,5].

2.4 Accountable Authority IBE (A-IBE)

We now recall what it means for an IBE scheme to be A-IBE secure. First, the
scheme must function as a good IBE scheme. Traditionally, it is assumed that the
Key Generation algorithm simply outputs a key, however, since the key received
by each party should not be available to the central authority, we instead assume
it is generated through an interactive protocol.

Definition 2 (Identity Based Encryption (IBE) Scheme). An Identity
Based Encryption Scheme consists of the following four probabilistic polynomial
time algorithms:

– Setup(1λ) → PK, MK. The setup takes as input 1λ with λ the security
parameter and outputs public parameters PK and master secret key MK.

– KeyGen(PK, MK,ID)(→) KID. The user key generation algorithm takes as
inputs PK, MK and an identity ID and engages in an interactive protocol
with the recipient. At the end, the recipient receives a key for ID, KID.
We use the notation (→) to highlight the fact that KeyGen may not know
exactly which key the user receives (for example, if KeyGen is implemented
using an oblivious transfer protocol).
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– Encrypt(M, PK, ID)→ CID. The encryption algorithm takes as input PK,
ID and a message M and outputs a ciphertext CID.

– Decrypt(CID, KID, PK) → M. The decryption algorithm outputs the orig-
inal message with overwhelming probability assuming it is given as input a
key to the identity ID.

We will assume that ID is included in the plain as part of CID and KID during
our analysis for notational simplicity.

Definition 3 (ε-Useful Decoder Box). For non-negligible ε, a probabilistic
polynomial time algorithm DID is an ε-useful decoder box for the identity ID
if:

Pr[M ← M : DID(Encrypt(M,PK, ID) = M ] ≥ ε

The main additional functionality required of an A-IBE scheme follows:

– TraceDID(PK, ID, KID) outputs either User or PKG. Given oracle access to
an ε-useful decoder box DID, PK, ID and a key KID, the tracing algorithm
will decide if DID was created by the trusted authority or by the user who
supplied KID.

Intuitively the tracing algorithm allows a user who has recovered a decoder box
for its identity to reveal its secret key to prove that it could not have generated
this decoder box. This would be impossible if all keys could decrypt perfectly,
which is why we allow decryption a small probability of failure. Additionally, it
has proven very useful to include two more algorithms in most A-IBE schemes for
use in tracing. A term is said to be valid if it is a possible output of the relevant
generation algorithm (in other words, a key KID is valid if it is a possible output
of the key generation algorithm on inputs PK, MK and a ciphertext is valid if
it is the encryption of some M to the relevant identity):

– KeySanity(KID,PK) tests if KID is a proper key for identity ID and outputs
Valid or Not-Valid.

– CiphertextSanity(CID,PK) tests if CID is a proper ciphertext for ID and
outputs Valid or Not-Valid.

2.5 Security Requirements

An A-IBE scheme is called black-box secure if it satisfies the following require-
ments. First, it must satisfy IND-ID-CPA security. Second, if a decoder box DID
was created by the central authority, the tracing algorithm should implicate the
PKG and when it was created by the colluding users, it should implicate the
users. This security requirement is captured in the following games.

Definition 4 (IND-ID-CPA Security). An A-IBE scheme is IND-ID-CPA
secure if the advantage of any probabilistic polynomial time adversary B is neg-
ligible in the game below:



Fully Secure Accountable-Authority Identity-Based Encryption 301

1. Setup. The challenger runs the Setup algorithm and sends PK to B.
2. Phase 1. B engages in a KeyGen protocol with the challenger with adap-

tively chosen IDi and receives KIDi . This may be repeated multiple times
for different identities.

3. Challenge. B submits two messages M0, M1 and an identity ID which it
did not query during Phase 1. The challenger flips a coin b and encrypts Mb

to the identity ID and sends the encryption C to B.
4. Phase 2. Same as Phase 1 except B may not query a decryption key for ID.
5. Guess. The adversary outputs b′ ∈ {0, 1}.

The advantage of B is defined as Pr[b′ = b] − 1
2 .

Definition 5 (Dishonest-User Security). An A-IBE scheme is Dishonest-
User secure if the advantage of any probabilistic polynomial time adversary B is
negligible in the game below:

1. Setup. The challenger runs the Setup algorithm and sends PK to B.
2. Key Generation. The adversary adaptively queries keys for distinct IDi,

and receives KIDi . This may be repeated multiple times for different identi-
ties.

3. Create Decoder Box. The adversary outputs an ε-useful decoder box DID
and K ′

ID for some identity ID queried during the Key-Generation phase.
4. Tracing Failure. Finally, success is defined as the event that: TraceDID(PK,

ID, K ′
ID) = PKG.

At this point it may seem artificial to have the requirement that ID was queried
once in the Key Generation phase of the game, however since the scheme is
required to be IND-ID-CPA secure, outputting a key for an identity which has not
been queried would contradict the previous security requirement and therefore
adding this additional requirement does not weaken security.

Definition 6 (Dishonest-PKG Security). An A-IBE scheme is Dishonest-
PKG secure if the advantage of any probabilistic polynomial time adversary B is
negligible in the game below:

1. Setup. The adversary B generates and passes public parameters PK and ID
to the challenger. The challenger checks PK and ID are well-formed, aborts
if not.

2. Key Generation. The challenger and B engage in the key generation pro-
tocol for an identity ID. If neither party aborts, the challenger receives KID
as output.

3. Decryption. The adversary adaptively queries ciphertexts Ci to the chal-
lenger and the challenger replies with the decryption under KID. This may
be repeated multiple times for different ciphertexts.

4. Create Decoder Box.. The adversary outputs an ε-useful decoder box
DID.

5. Tracing Failure. Finally, success is defined as the event that TraceDID(PK,
ID, KID) = USER.
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If our scheme has a CiphertextSanity check we can always assume decryption
is preceded with verification that the ciphertext is well-formed and if it is not
well-formed, the decryption process can just output ⊥. Informally, this will al-
low us to argue that the PKG gains no information from its decryption queries
since the decryption oracle will only decrypt well-formed ciphertexts, which the
PKG could have decrypted without using the oracle (since the PKG can already
generate a key for any identity).

3 Preliminary Reduction

The first key step in our proof is realizing that A-IBE can be built from an
encryption scheme which falls somewhere between usual IBE and Attribute-
Based Encryption. For this, we introduce the notion of Dummy-IBE in which
every user is assigned a set of attributes which restricts the ciphertexts that can
be decrypted but the user has no control over which attributes are assigned. We
stress again that because of the importance of the sanity checks in our setting,
a fully secure attribute based encryption scheme by itself would not suffice for
our purposes.

3.1 Dummy Identity-Based Encryption

The intuition for Dummy IBE (D-IBE) comes from previous work [15] which
achieves full Dishonest-PKG security (but not full Dishonest-User security).
Keys for identities and ciphertexts will have k attributes and decryption will
only succeed if the encryption was to the target identity and the attribute sets
overlap in at least d indices.

Definition 7 (Dummy Identity-Based Encryption (D-IBE) Scheme).
A D-IBE Encryption scheme D with parameters d ≤ k ≤ n ∈ Θ(λ) consists of
the following four poly-time algorithms:

– Setup(1λ, d, k, n) → PK, MK public and master keys.
– KeyGen(PK, MK) → KID(S) The key generation algorithm selects S ⊂

[1, n] a random subset of size k, generates1 Kα
ID for all α ∈ [1, n] and outputs

KID(S) = {Kα
ID | α ∈ S}.

– Encrypt(M , PK, ID, S)→ CID(S).
– Decrypt(CID(S),KID(S′),PK)→ M where CID(S) is an encryption of M if

|S ∩ S′| ≥ d.
– KeySanity(K∗

ID(S), PK) outputs Valid or Not-Valid depending on whether
the key is a valid key for the implied identity and attribute set.

1 The fact that the key generation algorithm is able to generate all key components
will be important for our reduction. To formalize the above notion, we could have
the key generation algorithm output all key components and only send the ones
corresponding to members in S to the user but we present it as above for notational
simplicity.
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– CiphertextSanity(C∗
ID(S), PK) outputs either Valid or Not-Valid depend-

ing on whether the ciphertext is a valid encryption of some message for the
implied identity and attribute set.

We will assume that correctly formatted keys and ciphertexts will include a de-
scription of the relevant identity and dummy-attribute set. In the above notation
α are called the dummy attributes and S is called a dummy attribute set. Cor-
rectness of a Dummy-IBE scheme is as expected, decryption should succeed with
overwhelming probability if the identities of the key and ciphertext match and
the dummy attribute sets overlap in at least d indices.

Definition 8 (Dummy-IBE Security). A Dummy-IBE scheme is said to be
D-IBE secure if the advantage of any probabilistic polynomial time adversary B
is negligible in the game below:

1. Setup. The challenger runs the Setup algorithm and sends PK to B.
2. Queries. B adaptively queries keys for distinct IDi, the challenger returns

KIDi
(Si). This may be repeated multiple times for different identities.

3. Challenge. The adversary specifies M0, M1 and an identity IDj which has
been queried during the Queries phase and a dummy attribute set S such
|S ∩ Sj | < d where Sj is from the Queries phase. The challenger picks
b ∈ {0, 1} at random and sends B, Encrypt(Mb, PK, IDj , S).

4. Guess. The adversary outputs a guess b′ for b.

3.2 D-IBE Implies Dishonest-User Security

We describe how to transform a Dummy-IBE scheme D into a Dishonest-User
Secure A-IBE scheme A. The overall structure of our construction can be consid-
ered a generalization of the construction in [15] where the role of our Dummy-IBE
scheme is instead replaced by a ABE scheme which is not able to satisfy all the
required notions of security. The similarities in structure will allow us to reuse
an information theoretic result for Dishonest-PKG security from previous work
[15]. We will from now on assume that the message space is a group of size super-
polynomial in the security parameter, as is the case for our construction (notice
that making a ε-useful decoder box is trivial if the size is not superpolynomial).

Let d ≤ k ≤ n ∈ Θ(λ), we give concrete bounds k, d and n should satisfy at
the end of this section.

– Setup(1λ) = D.Setup(1λ, n, k, d)
– KeyGen(MK, PK, ID) Using MK, PK, ID, generate K = {Kα

ID : α ∈ [1, n]}
and randomly permute them (call this permutation σ) and engage in a non-
adaptive k-out-of-n oblivious transfer protocol with the user querying the
permuted set as the set of possible values to be transferred. After the OT
protocol concludes send the user σ in the clear. The user now has access to
KID(S) for some random S ⊂ [1, n] and runs a KeySanity check on KID(S)
and terminates the protocol if it fails.
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– Encryption(M, PK, ID) Pick S ⊂ [1, n] at random of size k, output D.
Encrypt(M, PK, ID, S).

– Decrypt(CID(S), PK, KID(S’)) If the ciphertext sanity check of CID(S)
passes output:
D.Decrypt(CID(S),KID(S′),PK), else output ⊥.

Notice that at the moment we only have a guarantee that the decryption algo-
rithm will decrypt if |S ∩ S′| ≥ d. Therefore, pick k and d such that given some
S ⊂ [1, n], |S| = k (the decryption dummy-atributes) a random set S′ ⊂ [1, n]
(the dummy-atributes used during encryption),

Pr[|S ∩ S′| ≥ d] > 1 − μ(λ)

for some negligible function μ. If we pick k = cn, d = (c2−δ)n for some constant
c ∈ (0, 1) and δ ∈ (0, c2) by Chernoff bounds, two sets of size k will intersect in
at least d locations with overwhelming probability. From this point, assume k
and d are initialized thusly and c < 1/4.

3.3 Tracing Algorithm

The overarching idea is that if a message has been encrypted to identity ID under
dummy attribute set A, it should only be decryptable by someone holding a key
KID(A′) where |A ∩A′| ≥ d. Therefore, the tracing algorithm, which has oracle
access to DID will repeatedly query ciphertexts the user ID should not be able
to decrypt given the attribute set that was assigned during the key generation
phase. If the decoder box decrypts such a ciphertext, we will be able to conclude
that the decoder box was not created by the user, proving malfeasance on the
part of the PKG.

On input KID(S) with oracle access to DID, the tracing algorithm will run
a KeySanity check to verify the validity of the input key. Then, it will repeat
the following experiment ν(ε) ∈ poly(λ) times (we will choose ν(ε) after the
analysis):

– Select a dummy attribute set Si with |Si ∩ S| < d.
– Select a random message M and encrypt M using Si as the dummy

attributes.
– The decoder box outputs some M ′ = DID(CID(Si)).

If for any iteration M ′ = M , implicate the PKG otherwise, implicate the User.

Theorem 1. If D is a secure Dummy-IBE scheme, the A-IBE construction A
is Dishonest-User secure.

Proof. Assume p.p.t. A′ succeeds in the Dishonest-User game above with non-
negligible probability δ. Since KeyGen is implemented with a fully-simulatable
k-out-of-n oblivious transfer scheme, we can work in the OT-hybrid model by
Canetti’s [6] theorem on composability, which implies there exists p.p.t. A which
also succeeds in the game with non-negligible probability such that A queries
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indices during the OT protocol directly from the challenger and the challenger
simply sends the values stored in these indices to A. With this new A which
simply requests indices for messages to receive from the challenger as in the
OT-Hybrid model, the reduction is as follows:

– Setup. Send the public key of the D-IBE scheme to the adversary A.
– Key Generation. On each of the adversary’s queries for an identity to IDj

and indices (for the OT protocol) I ⊂ [1, n], |I| = k, query the D-IBE scheme
for a key on identity IDj and receive KID(Sj) = {Kαi

ID}i∈[1,k]. Now pick a
random σ such that σ(I) = Sj. Send A: {Kα

ID, α ∈ Sj} and σ.
– Create Decoder Box. The adversary outputs a decoder box DIDj along

with a key KIDj (S) with an identity IDj queried at some point in the
key generation phase. Run a KeySanity check to make sure KIDj (S) is a
valid key. If S �= Sj run New Attributes phase, otherwise proceed to the
Tracing Failure phase.

– New Attributes. Since S �= Sj , pick a d element subset S∗ of S which
does not overlap with Sj in more than d − 1 indices (recall both are of size
k) and k − d element subset A ⊂ [1, n] \ (S ∪ Sj) (this is why we assume
d ≤ k < n/4) and initiate the challenge query with M0,M1 ← M with
identity IDj and attribute set S∗ ∪ A. Since the challenger has a key which
overlaps the challenge attribute set in more than d−1 indices with the same
identity, it can trivially decrypt and output b. This is a valid challenge since
|(S∗ ∪A) ∩ Sj | < d.

– Tracing Failure. Pick some d ∈ [1, ν(ε)] at random. Then, run the tracing
algorithm normally d − 1 times. For the dth iteration, choose M0,M1 at
random and initiate the challenge phase of the D-IBE scheme by outputting
both messages, the challenge identity ID and a random dummy attribute
set S′ such that |S′ ∩ S| < d. Receive C from the D-IBE scheme, either an
encryption of M0 or M1 under identity ID under the attribute set A and
compute DID(CID(S′)). If DID(CID(S′)) = M0 output 0, if DID(CID(S′)) =
M1 output 1, otherwise, guess randomly.

Now, notice that if the New-Attributes phase is initiated, the challenger de-
crypts and breaks the Dummy-IBE security trivially. Also, since the tracing algo-
rithm only ever queries messages encrypted under dummy-attribute sets which
do not overlap with the key dummy-atribute set in more than d − 1 indices,
if the tracing algorithm outputs PKG with non-negligible probability, for some
d ∈ [1, ν(ε)] it must succeed in correctly decrypting with non-negligible prob-
ability. Since the challenge ciphertext the challenger returns to it is from the
exact distribution that it expects, with non-negligible probability (since ν(ε) is
polynomial in the security parameter) it will succeed in decrypting the challenge
ciphertext, breaking semantic security. Since DID is oblivious to the second mes-
sage in the challenge phase, with probability within a negligible function of 1,
whenever we do not guess randomly, we will be correct. Since we have at least a
1/ν(ε) probability of not guessing randomly if the decoder decrypts on a single
query and we assume the decoder will decrypt some query with non-negligible
probability, we succeed in breaking semantic security.
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3.4 Running in Parallel for PKG Security

To achieve Dishonest-PKG security, we actually will have to modify our construc-
tion slightly by running it in parallel m times where m ∈ Θ(λ). In this setting,
if we call the A-IBE candidate above A, we will call our new scheme A, where
A[1], . . . , A[m] denote the m different instantiations of A. The public key and
master secret key are simply the collection of public and master secret keys of
each of the individual instantiations.

A private key is obtained for identity ID by running KeyGen in parallel m
times and giving the output of each to the user. The user’s dummy attribute
set is now S, with each S[i] a random k element subset of [1, n]. Encryption
is handled by splitting M into m shares, M = M1 ⊕ M2 ⊕ . . . ⊕ Mm where
M1, . . .Mm−1 are chosen are random and each Mi is encrypted under A[i] with
a dummy attribute set S′[i], with each S′[i] a k element subset of [1, n]. Now
CID(S′) should be decrypted only by keys KID(S) where |S[i]∩S′[i]| ≥ d for each
i ∈ [1,m]. KeySanity and CiphertextSanity checks of A work by checking
each of the individual components with the existing sanity checks for A. We now
describe the tracing algorithm:

3.5 Tracing Algorithm for the Parallel Scheme

On input KID(S), the tracing algorithm will run a KeySanity check to verify
the validity of the input key. Then, it will then repeat the following experiment
ν ∈ polym(λ) times:

– Pick j ∈ [1,m] at random,
– If i �= j, choose S′[i] a k element subset of [1, n],
– If i = j include the additional restriction that |S′[i] ∩ S[i]| < d,
– Select a random message M and encrypt M using S′ as the dummy

attributes,
– The decoder box outputs some M ′ = DID(CID(S′)).

If for any iteration M ′ = M output PKG otherwise, output User.

Theorem 2. If D is a secure Dummy-IBE scheme, A is Dishonest-User secure.

Proof. The proof for this is identical to the proof for the proof of security for A,
first pick i ∈ [1,m] at random and for all j �= i, the challenger will instantiate A[j]
itself and use D, the Dummy-IBE scheme its trying to break to instantiate the jth

index. Since there are only polynomially many choices for j, with non-negligible
probability, the adversary which outputs KID(S′) and DID will either have S′[j]
overlap the queried keys S[j] less than d locations or, the tracing algorithm will
decrypt a message whose dummy attribute set S∗ has |S∗[j] ∩ S[j]| < d.

Theorem 3. If D is a secure Dummy-IBE scheme, A is Dishonest-PKG secure.

Proof. Since the setup of A is very closely related to the construction in Goyal
et al.[15], (which is fully secure in the Dishonest-PKG game) we will be able
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to reuse their combinatorial results for the security of A. They also compose m
sets of dummy-attributes in parallel and use fully-simulatable OT during the key
generation phase in the same manner we do. In their result, by using the cipher-
text and key sanity checks they are able to prove a purely information theoretic
bound on the fraction of dummy-attribute sets that will implicate the PKG with
access to a decoder box DID. They show that as long as KeyGen does not ter-
minate with non-negligible probability, with overwhelming probability the PKG
will not query a ciphertext the user is unable to decrypt. Since all ciphertexts
which the user can decrypt decrypt to the same value by the ciphertext sanity
check and the PKG can decrypt to this value by itself, this allows analysis in
the Dishonest-PKG game where the PKG has no decryption capabilities.

Their result (Lemma 5 in the original paper)2 gives us precisely the second
information theoretic guarantee we need, namely that any tracing algorithm
with an ε-useful decoder box will output PKG for all but a negligible fraction
of possible dummy attributes. We refer the reader to the original paper for the
proof of the lemma below. Assume m is super-logarithmic and n is linear in the
security parameter λ, k = c1n, d = c2n positive constants less than 1 such that
c2 < c21 (which ensures decryption with overwhelming probability the Chernoff
bound).

Lemma 1. Let ε be non-negligible and DID an ε-useful decoder box. Let S be a
dummy attribute set for the user and consider the following experiment:

– Select a dummy attribute set S′ such that |S′[i]∩S[i]| < d for some i ∈ [1,m]
– Select a random message M and encrypt it using S′ as the dummy attributes

and outputs the ciphertext C
– The decoder box outputs M ′ = D(C)
– Output PKG if M ′ = M

Then, for all but a negligible fraction of choices of S, the above experiment
has probability of outputting PKG greater than ε/(24m).

By the above lemma, if we consider ideal OT functionality and reduce to the case
where the PKG has no decryption capabilities, the tracing algorithm will output
PKG with overwhelming probability by only running in polynomial time in the
Dishonest-PKG game as desired as long as S does not come from a exceptional set
which forms a negligible fraction of all possible S. Since full Dishonest-PKG se-
curity is obtained information theoretically for an identical abstract construction
in [15] we refer to their paper for a rigorous treatment of the above argument.

3.6 A Modification for IND-ID-CPA Security

After we have a Dishonest-User and Dishonest-PKG secure A-IBE scheme, we
may use the same method as the previous selective secure construction [15]. We
will achieve IND-ID-CPA security by using the above A-IBE scheme and a secure
2 Note that the proof of Lemma 5 is not in the original, but instead in the full version

of the cited paper.
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IBE scheme together. For any M , we will secret share M into M1 ⊕ M2 where
M1 was chosen at random and encrypt M1 with the A-IBE scheme and M2 with
the IBE scheme. Since Waters’ IBE scheme [25] achieves IND-ID-CPA security
using the DBDH assumption, we may combine it with our Dummy-IBE scheme
to achieve full A-IBE with no additional security assumptions.

4 A Dummy-IBE Scheme

The main technical contribution of this paper is the construction of a secure
Dummy-IBE scheme, which as described, provides a fully secure A-IBE scheme.
For our construction, we will reuse many of the methods introduced by Waters
[25]. As such, we will use Waters’ hash extensively. Given an identity ID ∈ {0, 1}n

and u[i] ∈ G for i ∈ [0, n] where ID[j] is the jth bit of ID:

H(u, ID) = u[0]
∏

j∈[1,n]

u[j]ID[j]

We use x
$←− X to denote x being picked at random from a set X and S ⊂$ X a

set S being picked at random as a subset of X . We describe the scheme below
with |p|, n, d, k ∈ Θ(λ) and d ≤ k ≤ n/4. The terms e,G1,G2, g, p are parameters
of the common bilinear map.
Setup (1λ). Pick a

$←− Zp, g1 = ga. g2
$←− G, T[i] $←− G,u[i] $←− G for i ∈ [0, n].

The public key is (g1, g2,u,T). The master secret key is ga
2 .

KeyGen. (PK, ID) Pick S ⊂$ [1, n] of size k, ∀ i ∈ S, ri
$←− Zp and output3:

KID(S) =
(
ID, S, (ga

2 [H(u, ID)Ti]
ri , gri)i∈S

)
.

Encrypt. (M, ID, S) Pick c
$←− Zp. Select a d− 1-degree polynomial q in Zp at

random with q(0) = c,

CID(S) =
(

ID, S,Me(g1, g2)c,
(
gq(i), [H(u, ID)Ti]q(i)

)
i∈S

)
.

Where the entries in the third component are given in ascending order of
i ∈ [1, n] to avoid ambiguity.

Decrypt(CID(S′),KID(S)). Take I ⊂ S′ ∩ S of size d. For all i ∈ I, compute:

e([H(u, ID)Ti]q(i), gri)
e(ga

2 [H(u, ID)Ti]
ri , gq(i))

=
1

e(g, ga
2)q(i) =

1
e(g1, g2)q(i) ,

Me(g1, g2)c
∏
i∈I

(
1

e(g1, g2)q(i)

)Δi,I (0)

= M.

Where Δi,I(j) is the Lagrange coefficient (Δi,I(j) =
∏

k∈I\{i}
k−j
i−j ).

3 Notice it is possible to generate Kα
ID for all α ∈ [1, n] as necessary for the previous

reduction.
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CiphertextSanity(CID(S), PK). First check the input is formatted as a valid
ciphertext (|S| = k): (

ID, S, C,
(
C

(1)
i , C

(2)
i

)
i∈S

)
Assuming H(u, ID)Ti �= 1 ∈ G, since G,GT are of prime order, write the last
two components for a single i ∈ S as gwi , [H(u, ID)Ti]yi for some constants
wi, yi ∈ Zp. If H(u, ID)Ti = 1 ∈ G, unless the second component above is also
1 output Not-Valid. The ciphertext is well formed if for all components with
second entry not 1 the wi = yi and the wi values fall on the same d − 1 degree
polynomial q (note that the value q(0) is actually completely irrelevant to the
ciphertext sanity check since as long as all the wi are on the same d− 1 degree
polynomial, if q(0) = c, it will be a valid encryption of Ce(g, g)−c). To check
that wi = yi, notice:

e
(
H(u, ID)Tj), C

(1)
i

)
?= e
(
C

(2)
i , g

)
⇔

e ((H(u, ID)Tj)wi , g) ?= e (H(u, ID)Tj , g
yi) ⇔

e (H(u, ID)Tj), g)
wi ?= e (H(u, ID)Tj , g)

yi ⇔ wi
?= yi.

The final implication follows from the fact that both numbers being paired are
not 1 in their original group of prime order and so the target group element is
not 1 with non-trivial pairing. Now, to check that all the wi lie on the same d−1
degree polynomial, pick a subset I ⊂ S with |J | = d. Then, interpolate C

(1)
i to

all the other x ∈ S \ I values. In other words, for all x ∈ S \ I, check that:∏
i∈I

C
(1)
i

Δi,I (x)
=
∏
i∈I

gwiΔi,I (x) ?= gwx = C(1)
x .

It’s now clear that this process will only accept if all wi lie on some polynomial q
of degree not exceeding d−1. This suffices to show that the interpolation to q(0)
is unique no matter which d points are picked, showing this is a valid ciphertext
(can only be decrypted to one value).

KeySanity(KID(S), PK). First check that the key is formatted correctly. If
H(u, ID)Ti = 1 ∈ G, checking this component is valid is trivial (the user then
should have access to the master secret key and can check this with one pairing
from the PK). We can now write each key component as:

(H(u, ID)Ti)
r
ga
2 , g

r′
.

This will now be a valid key component if r = r′ (for elements in Zp we write
equality as elements in this group). Check (recall g1 = ga):

e [(H(u, ID)Ti)
r ga

2 , g]
?= e
(
H(u, ID)Ti, g

r′)
e(g2, g1) ⇔

e [(H(u, ID)Ti) , g]
r ?= e [(H(u, ID)Ti) , g]

r′
.

Which is equivalent with r
?= r′ since g, H(u, ID)Ti are not 1.



310 A. Sahai and H. Seyalioglu

4.1 Proof of Security

We will now prove the Dummy-IBE security of the given construction. Let q
be an upper bound on the number of queries an adversary A makes to succeed
in the Dummy-IBE security game with non-negligible probability ε. We now
describe how to use this simulator to succeed in the DBDH game with non-
negligible probability. Below m will be a value polynomial in an upper bound of
the number of queries the adversary makes that will be initialized later in the
analysis. We now describe the simulator S that will be given as input (A,B,C, Z)

where (g, g1, g2, C) = (g, ga, gb, gc) and Z = e(g, g)abc or Z
$←− GT . Generate Φ a

random k element subset of [1, n], which will serve as the dummy attribute set
of the challenge query and:

x[i] $←− [0,m− 1] for i ∈ [1, n] , x[0] $←− [−n(m− 1), 0]

y[i] $←− Zp for i ∈ [0,m− 1].

Define the following two functions:

F ′(x, ID) = x[0] +
n∑

i=1

x[i]ID[i]

G′(y, I) = y[0] +
n∑

i=1

y[i]ID[i].

Our simulator S will abort unless for exactly one key query ID[i], F ′(x, ID[i]) =
0 and for all others F ′(x, ID[j]) �∈ {0, 1}. Additionally, S will abort and guess
randomly unless ID[i] as specified above is not the challenge identity (recall
that by the definition of Dummy-IBE security, we may assume that the chal-
lenge identity has been queried once during the key queries phase and that the
challenge dummy-attribute set overlaps the dummy-attribute set the adversary
received during the key generation phase in no more than d−1 indices). We now
describe how S will generate the public key and answer key queries.

Simulated Public Key Generation. S.Setup(1λ) is defined as follows: For

i ∈ [1, n], B[i] $←− Zp and,

T[j] =
{

g2g
B[j], if j ∈ Φ;

gB[j], otherwise.

Related to T, define G(y, ID, j) = G′(y, ID) + B[j] and,

F (x, ID, Φ, j) =
{

F ′(x, ID) + 1, if j ∈ Φ;
F ′(x, ID), otherwise.

Output PK = (g1, g2,u,T). Notice if u[i] = g
x[i]
2 gy[i] then, H(u, ID)T[i] =

g
F (x,ID,Φ,i)
2 gG(y,ID,j). Observe the output is completely independent of Φ and the
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output distribution is precisely that of the true public key generation
algorithm.

Simulated KeyGen Queries. If F ′(x, ID) �∈ {−1, 0}, S.KeyGen(ID) is de-

fined as follows: Pick S ⊂$ [1, n] of size k. For j ∈ S: r
$←− Zp and let w =

F (x, ID, Φ, j)−1 (which exists since F ′(x, ID) �= 0). Set:

(K(1)
j ,K

(2)
j ) = (gF (x,ID,Φ,j)·r

2 gG(y,ID,Φ)·rg−G(y,ID,Φ)·w
1 , grg−w

1 )

For all j ∈ S. Output KID(S) =
(
ID, S, (K(1)

j ,K
(2)
j )j∈S

)
. Notice for j ∈ S:

g
F (x,ID,Φ,j)·r
2 gG(y,ID,Φ)·rg

−G(y,ID,Φ)·w
1 = ga

2 (gF (x,ID,Φ,j)
2 gG(y,ID,Φ))−a·w(gF (x,ID,Φ,j)

2 gG(y,ID,Φ))r

= ga
2 (gF (x,ID,Φ,j)

2 gG(y,ID,Φ))r−a·w .

And similarly grg−w
1 = gr−a·w. Therefore, this is a valid key component with

randomness r − a · w, which is also distributed uniformly over Zp. So, every
key component is generated from the correct distribution if F (x, ID) �∈ {−1, 0}.
This is where the main divergence with Waters’ proof occurs, we must be able
to handle one query to the identity that will later be challenged on. For this,
we notice that if j ∈ Φ, and F ′(x, ID) = 0 then, F (x, ID, Φ, j) �= 0 and we can
repeat the above process by taking S = Φ.

If F ′(x, ID) = 0, S.KeyGen(ID) is the same as the above except instead of
S ⊂$ [1, n], take S = Φ.

Recall that S aborts if there is ever more than one query with F ′(x, ID) = 0
and that the output of the simulated public key is independent of Φ. Therefore,
if Φ is only used once during the key queries phase, as the dummy-attribute set
of a single query, the view of the adversary interacting with S is still identical
to the view of the adversary interacting with the true Dummy-IBE scheme.

Simulated Challenge Ciphertext. Assume F ′(x, ID) = 0 and |S ∩ Φ| < d
then,
S.Challenge(M0,M1, ID, S) is defined as follows: Pick γ

$←− {0, 1} and let
C1 = Z ·Mγ and choose S ⊃ K ⊃ S ∩ Φ, with |K| = d− 1 and:

For i ∈ K :

ri
$←− Zp , C

(1)
i = gri , C

(2)
i =

(
g

F (x,ID,Φ,i)
2 gG(y,ID,i)

)ri

.

For i �∈ K :

C
(1)
i = (gc)Δ0,K (i)

∏
j∈K

(grj )Δj,K(i)
, C

(2)
i =

(
C

(1)
i

)G(y,ID,i)
.

Respond to the query with:

CID(S) =
(

ID, S, C1,
(
C

(1)
i , C

(2)
i

)
i∈S

)
.
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Remark (1). Notice the encryption is valid with the implied polynomial q(x)

in the exponent being defined by q(i) = ri
$←− Zp for all i ∈ K and q(0) = c

where C = gc. Since choosing a d− 1 degree polynomial at random is equivalent
to specifying its value randomly at d points, the encryption is valid and uniform
(since ri are generated at random during the simulated challenge and the view
of the adversary has been independent of c which was chosen at random in
the DBDH initialization). This shows that the C

(1)
i components are correctly

generated from the stated distribution for i ∈ K.

Remark (2). Additionally, since F ′(x, ID) = 0, we have that for all i �∈ K(⇒
i �∈ Φ if i ∈ S), F (x, ID, Φ, i) = 0 and therefore H(u, ID)Ti = gG(y,ID,i) which
shows the second component is also generated correctly with implied polynomial
q. Therefore, as long as F ′(x, ID) = 0 the C

(b)
i values are drawn from the correct

distribution.
Therefore, if Z is e(g1, g2)c we have the above is a uniform encryption of Mγ .

Otherwise, Z is a random element of GT and the ciphertext gives no information
on the choice of γ.

To remind the reader of the relevant security game, the adversary A will
make q distinct key queries ID[i] to which the simulator will respond with keys
KID[i](S[i]) where S[i] is a k element subset of [1, n] consisting of the dummy
attributes of the key. Finally, the adversary will make a challenge query with
M0,M1, S

∗, ID[j] where ID[j] with j ∈ [1, q] was queried before and |S∗∩S[j]| <
d. Our simulator will not abort if and only if:

1. F ′(x, ID[i]) �∈ {0, 1} for all i ∈ [1, q] \ {j} for some j ∈ [1, q],
2. F ′(x, ID[j]) = 0,
3. The challenge identity is ID[j].

This is very similar to the requirement in Waters’ IBE, where it is required that
F ′(x, ID[i]) �= 0 for all key queries and F ′(x, ID[j]) = 0 for the challenge identity
ID[j]. Here, we require that the challenge identity be queried once before, with
the small caveat that for most key queries we are aborting on two values instead
of one, but the impact of this on analysis is minimal. Notice that if our algorithm
does not abort, it is drawing from the same distribution as the real Dummy-IBE
scheme since while Φ is used as the dummy attribute set for a single query,
the view of the adversary otherwise is independent of Φ (the requirement that
|Φ∩S| < d is automatically fulfilled since A was given Φ as the dummy attribute
set of ID[j] and therefore, by the rules of the Dummy-IBE security game, the
dummy attribute set of the challenge must overlap the dummy attribute set
received during the key generation phase in less than d indices). It only remains
to bound below the probability of aborting naturally and introduce an artifical
abort step to make sure the success probability of the simulator is not correlated
with the probability of aborting. We defer bounding the abord probability to
Appendix A. If for any sequence of queries, our simulation has a non-negligible
probability of perfectly simulating the behavior of Dummy-IBE security game
in the case where the fourth member of the DBDH tuple is Z = e(g, g)abc and
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in the other case, all information on the challenge message is lost, we can use
the advantage of a distinguishing adversary to discern which of the above two
possibilities the fourth member of the DBDH tuple is, since its advantage can
only be maintained (information theoretically) in the case where Z = e(g, g)abc.

5 Conclusion

We have demonstrated the first provably secure black-box accountable authority
IBE scheme, answering the primary question posed in multiple previous works
[13,15] using the standard DBDH assumption. To achieve this goal, we intro-
duced the notion of Dummy-IBE encryption, a hybrid between usual IBE and
Attribute-Based Encryption where the exact attributes given to an identity are
not important but which should exist for some added functionality (in this case
tracing), which may be of independent interest.
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A Bounding the Abort Probability

Artificial Abort. Additionally to the probability of aborting naturally, we must
make sure that if the simulator S’s probability of success is not correlated with
its probability of aborting. Since this method is standard by now, we refer the
reader to Waters’ original work [25] for more in depth analysis of the necessity
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of this step. Our application differs little from the analysis in [25] except for a
factor of 2 due to the fact that we have two restricted values but include the
analysis for completeness4.

As in Waters’ scheme we can now define a second simulator which first gen-
erates the secret key ga

2 before initializing x and y. With the master secret key,
it is now able to perfectly respond to all key generation queries. Now, this sec-
ond simulator will abort and guess randomly unless ID[j], the challenge identity
(which has been queried once before) satisfies F ′(x, ID[j]) = 0 and for all other
identities keys are queried for ID[i] �= ID[j], F ′(x, ID[j]) �∈ {0, 1}.

As long as we can show the second simulator has a non-negligible probability
of not aborting for any set of queries, by using artificial aborts, we can get a
near-uniform, non-negligible probability to abort and guess randomly for any
set of identity queries. Then, our first simulator works as a distinguisher in the
DBDH game since if for a given set of queries our simulator has not aborted,
the adversary will have a non-negligible advantage of guessing the correct b if
Z = e(g, g)abc and no advantage in guessing b if Z is random since b is information
theoretically masked in the ciphertext.

Analysis of Abort Probability: We now give a lower bound on the probability
for a set of identities {ID[i]}i∈[1,q] with ID[j], j ∈ [1, q] the challenge identity
that the second simulator does not abort.

Pr[abort] = Pr[
∧

i∈[1,q]\{j}
F ′(x, ID[i]) ∈ {0, 1}] ∧ F ′(x, ID[j]) = 0

=
(
1 − Pr[

∨
i∈[1,q]\{j}

F ′(x, ID[i]) ∈ {0, 1}]) × Pr[F ′(x, ID[j]) = 0|
∧

i∈[1,q]\{j}
F ′(x, ID[i]) ∈ {0, 1}]

≥ (1 −
∑

i∈[1,q]\{j}
Pr[F ′(x, ID[i]) ∈ {0, 1}]) × Pr[F ′(x, ID[j]) = 0|

∧
i∈[1,q]\{j}

F
′(x, ID[i]) ∈ {0, 1}]

≥ (1 − 2q

(n + 1)m
) Pr[F ′(x, ID[j]) = 0|

∧
i∈[1,q]\{j}

F ′(x, ID[i]) ∈ {0, 1}]

As in lines (1e) through (1i) in Waters’ derivation [25] we can simplify the
probability on the right to:

=
Pr[F ′(x, ID[j]) = 0]

Pr[
∧

i∈[1,q]\{j}
F ′(x, ID[i]) ∈ {0, 1}]

×
⎛⎝1 − Pr[

∨
i∈[1,q]\{j}

F ′(x, ID[i]) ∈ {0, 1}|F ′(x, ID[j]) = 0]

⎞⎠

Which can be bounded below by:

1
(n + 1)m

(1 −
∑

i∈[1,q]\{j}
Pr[F ′(x, ID[i]) ∈ {0, 1}|F ′(x, ID[j]) = 0]).

4 Note that it is possible to prove our main result in a fashion similar to Bellare and
Ristenpart’s recent simplification [1] of Waters’ proof using game playing techniques
but we include this proof due to its transparency. A version of this paper which
includes a game playing proof of security is available from the authors.
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Notice we can replace F ′(x, ID[i]) ∈ {0, 1} with F ′(x, ID[i]) ∈ {0, 1} mod m
to get a lower bound. Now, for each ID[i] with i �= j, F ′(x, ID[i]) modulo
m is independent from F ′(x, ID[j]) by the properties of the Waters hash, and
therefore, using this substitution the above is bounded below by:

1
(n + 1)m

(
1 − 2q

m

)
.

Substituting back to the original inequality yields:(
1 − 2q

(n + 1)m

)
1

(n + 1)m

(
1 − 2q

m

)
≥ 1

(n + 1)m

(
1 − 4q

m

)
.

Which can be taken to be non-negligible with m = 8q. This shows for any
sequence of queries, the probability that the simulator does not abort can be
bounded below by a non-negligible amount. As discussed before, using artificial
aborts, this suffices to prove security.
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Abstract. Consider the task of asymmetric key-wrapping, where a key-
management server encrypts a cryptographic key under the public key of
a client. When used in storage and access-control systems, it is often the
case that the server has no knowledge about the client (beyond its public
key) and no means of coordinating with it. For example, a wrapped
key used to encrypt a backup tape may be needed many years after
wrapping, when the server is no longer available, key-wrapping standards
have changed, and even the security requirements of the client might have
changed. Hence we need a flexible mechanism that seamlessly supports
different options depending on what the original server was using and
the current standards and requirements.

We show that one-pass HMQV (which we call HOMQV) is a perfect fit
for this type of applications in terms of security, efficiency and flexibility.
It offers server authentication if the server has its own public key, and
degenerates down to the standardized DHIES encryption scheme if the
server does not have a public key. The performance difference between the
unauthenticated DHIES and the authenticated HOMQV is very minimal
(essentially for free for the server and only 1/2 exponentiation for the
client). We provide a formal analysis of the protocol’s security showing
many desirable properties such as sender’s forward-secrecy and resilience
to compromise of ephemeral data. When adding a DEM part (as needed
for key-wrapping) it yields a secure signcryption scheme (equivalently a
UC-secure messaging protocol).

The combination of security, flexibility, and efficiency, makes HOMQV
a very desirable protocol for asymmetric key wrapping, one that we be-
lieve should be incorporated into implementations and standards.

1 Introduction

Key management is an essential component of secure systems, it is used in many
systems both for confidentiality and for enforcing access-control policies. In this
work we deal with settings where we have a key-server that needs to securely send
a symmetric key to a client. The symmetric key could be a freshly generated one
(to be used later by Alice) or it could be a pre-set key (e.g., to let Alice decrypt
a previously encrypted file). We call the server Bob (or the sender) and call the
client Alice (or the receiver). We specifically focus on settings where the protocol
must be one-way, with the server sending a single message to the client.

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 317–334, 2011.
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For example, consider a typical tape-encryption setting, where backup tapes
are encrypted and then stored for future need by a potential client Alice who may
need them one day. To enable decryption, Bob “wraps” the encryption key under
some public key and stores the wrapped key to the tape itself. Note that Alice
is off-line (or perhaps does not even exist) when the encryption key is wrapped,
so no interaction can take place. Later, when Alice comes to need the backup
tape, she asks her key-management module for the private key corresponding
to the public key used by Bob, and then she can unwrap the decryption key
and decrypt the backup tape. Such one-way communication can be viewed as
one-pass key-exchange protocols with implicit client authentication (and in some
cases also server authentication). In the case that a pre-set key is transmitted
(as in the tape encryption example), the operation is referred to as key wrapping.

Key-wrapping (and key-management in general) is a topic of intensive activity
in the industry, with many competing services and many standardization efforts
(e.g., PKCS #11, FIPS SP 800-57 and 800-130, IETF KeyProv, OASIS KMIP,
IEEE 1619.3, IEEE P1363, etc). Symmetric key-wrapping was addressed in the
work of Rogaway and Shrimpton [16] and later Gennaro and Halevi [8], with a
focus on using deterministic encryption for this purpose. In this work, however,
we focus on asymmetric key-wrapping, where Bob uses Alice’s public key to wrap
the symmetric key. In this context the added complexity of using randomization
is insignificant in comparison to the public-key operations that are needed. Hence
we just use standard encryption, and view key-wrapping as a target application
rather than a separate security goal.

Many real-world implementations of asymmetric key wrapping are based on
RSA, but the increase in the use of elliptic-curve cryptosystems suggest that they
will be useful for key wrapping as well. The leading mechanisms in this respect is
the “elliptic-curve integrated encryption scheme” (ECIES) [12], which is based on
the “Diffie-Hellman integrated encryption scheme” (DHIES) encryption scheme
of Abdalla et al. [1]. DHIES is an Elgamal-based encryption scheme, proven CCA
secure under the “hashed Diffie-Hellman” assumption. (Alternatively, under the
Gap Diffie-Hellman assumption in the random-oracle model).

On a high level, in DHIES Alice has a secret exponent a, and the corresponding
public key is the group element A = ga (where g is a generator in a prime-
order group). To encrypt a message M , Bob chooses a random exponent y and
computes Y = gy, then computes the Diffie-Hellman value σ = Ay and uses
K = H(σ, Y ) as a key in a symmetric-key authenticated-encryption scheme to
encrypt M . Note that DHIES is an instance of the KEM/DEM paradigm [17].

When used for key-wrapping (i.e., when M is a cryptographic key), this
encryption scheme can also be viewed as a key-exchange protocol where only
the client is implicitly authenticated. However, there are applications where the
server too should be authenticated. For example, consider the tape-backup ap-
plication from above where Alice is a third party that provides backup/restore
services. When Alice gets a tape with a wrapped key on it, she wants to consult
the policy of the original server Bob to know if decryption is permitted. So in
particular Alice needs to be able to authenticate the source of the wrapped key.
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A natural solution is for Bob to sign the ciphertext (e.g. with ECDSA signa-
ture if we want an elliptic-curve scheme), but this solution has some drawbacks.
For one thing, it adds non-trivial complexity. We need to implement the signa-
ture scheme and use additional bandwidth to communicate the signatures. Also,
in some cases this does not even provide adequate authentication, since it allows
an adversary Charlie to strip the original Bob signature from the wrapped key
and replace it with a signature by Charlie. (This may enable Charlie to later ask
Alice to unwrap the key and decrypt the tape for him).

Instead, one would like a solution that (a) ensures that the identity of Bob
cannot be stripped from the key, and (b) remains as close as possible to the
base DHIES scheme. A good candidate to achieve this goal has been suggested
in [13], namely the one-pass HMQV protocol. However, while a main appeal
of HMQV is its provable security, the one-pass variant of HMQV has not been
proven. Here we give a full specification of a one-pass HMQV protocol, with a full
proof of security. We call this protocol HOMQV (for Hashed-One-pass-MQV,
pronounced “Home-Queue-Vee”). We note that HOMQV is different than the
one-pass HMQV protocol in [13, Sec. 9] in that HOMQV hashes the session
identifier while deriving the session key (as suggested in [14]).

Roughly speaking, the only difference between HOMQV and (the KEM part
of) DHIES is the way the Diffie-Hellman value σ is computed. Whereas in DHIES
we set σ = Ay = Y a, here Bob also has public and secret keys (B = gb) so we use
them in the computation. Roughly, we compute a half-size exponent e = H̄(Y )
and then set σ = (Y Be)a = Ay+be and K = H(σ, Y ). (In the actual protocol
we also add the identities of Alice and Bob inside the hashing and use cofactor
exponentiation, see Table 1 for an overview and Section 3 for a precise definition
of HOMQV).

We also show that slight variations of the same base protocol can handle a
large variety of scenarios in the key transmission and key wrapping settings.
For example, a server Bob that does not have a public key can just use the
dummy public key B = 1, and then the protocol reverts to (the KEM part
of) the underlying DHIES. Other variants of the protocol offer increased se-
curity at a minimal cost in computation and communication. In all cases the
schemes provide forward secrecy for the server, namely the compromise of the
sender’s private key (if any) does not expose past transmissions1. This property
has particular importance for our setting, since in key-management and storage
applications some of the keys may have a very long lifetime. In some variants
this property is achieved in a weak sense, namely, as long as the attacker was
passive during these transmissions, but we also show inexpensive variants that
provide full sender forward secrecy, even against active attacks.

Remarkably, all the variants except the (degenerate) case of DHIES enjoy the
security property that leakage of the ephemeral Diffie-Hellman exponent y does
not compromise security; the function of this exponent is to provide forward-
secrecy capabilities. We call this property y-security. The significance of this

1 On the other hand, it is easy to see that one-pass protocols inherently cannot offer
PFS for the receiver.
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Table 1. One-pass modes. In all Y = gy, σ = (Y Be)a = Ay+be, e = H̄(Â, Y ),
K = H(σ, B̂, Â, Y ), B̂, Â represent the identities of sender and receiver. In DHIES we
use B = 1, b = 0. Last column counts number of exponentiations per sender/receiver.

KEM modes B̂ sends to Â Key-derivation impl.auth. y-secure Sender FS #exp (s/r)

DHIES KEM Y SK = K Â only No No 2/1

HOMQV Y SK = K B̂, Â Yes weak 2/1.5

HOMQV Y, SK = PRFK(0) B̂, Â Yes full 2/1.5

+ key-conf. MACKa(1) Ka = PRFK(1)

ENC. modes B̂ sends to Â Key-derivation DEM security #exp (s/r)

DHIES Y,C, T Ka = PRFK(1) C = EncKe(M) CCA 2/1

Ke = PRFK(2) T = MACKa(C)

HOMQV Y,C, T Ka = PRFK(1) C = EncKe(M) signcryption 2/1.5

+ DEM Ke = PRFK(2) T = MACKa(C)

property is that it allows pre-computing (y, gy) pairs, even if they are stored in
less secure media.

We have three variants for the basic setting of a one-pass KEM-only proto-
col: From the “degenerate” DHIES (that offers only CCA security), via plain
HOMQV (that offers server-authentication and server-PFS against passive at-
tacks), to a variant with key-confirmation that adds server-PFS also against
active attacks. When adding the DEM part, we get two variants of encryption
(or key-wrapping): Without server authentication we only get the CCA-secure
DHIES encryption, and with server authentication we get a secure signcryption
scheme (equivalently, UC-secure replayable message transmission). These vari-
ants (with a slight simplification) are summarized in Table 1, detailed description
are found in Sections 3, 4, and 5.4.

We note that the precise connection between key-exchange and signcryption
was established in the work of Gorantla et al. [10], and a comprehensive theory
of KEM/DEM for signcryptions was developed by Dent [5,6,7]. See Section 4.

As all these schemes are one-pass protocols, they are all inherently open to
replay attacks. This can be addressed by having the sender and receiver maintain
synchronized state via counters or timestamps, or having the receiver store all
past communication (or a combination of both). Alternatively, in Section 6 we
show that HOMQV extends smoothly to the interactive setting, where we can
prevent replay and offer full PFS for both sides.

In this paper we analyze all these variants and prove their security in the
Canetti-Krawczyk model of key exchange [3] (specialized to the case of one-
pass protocols). We prove both “basic security” of these variants as well as
the additional properties of forward security and y-security (i.e., resilience to
leakage of the ephemeral Diffie-Hellman exponents). Importantly, using these
additional features we can appeal to the connections proven in [10] to conclude
that HOMQV+DEM is a secure signcryption scheme (which is also a secure UC
realization of the functionality of replayable message transmission, see [9]).
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We highlight some advantages of HOMQV that make it attractive for ap-
plications such as key-wrapping for storage. One advantage is its very minimal
overhead as compared to DHIES. For the sender Bob there is essentially no added
cost, the only change is that it computes the Diffie-Hellman value as σ = Ay+be

rather than σ = Ay . This only entails an additional hashing (to compute e) and
an addition and multiplication modulo the group order, but no additional expo-
nentiations. For the receiver there is an additional 1/2 exponentiation, since it
now computes the Diffie-Hellman value as σ = (Y Be)a rather than σ = Y a. We
mention that as described in Table 1, HOMQV and DHIES require a check that
the elements belong to a prime-order sub-group (which can be as costly as one
full exponentiation). In Section 3 we show how this check can often be avoided.

2 Security Model for One-Pass Key-Exchange Protocols

We specialize the Canetti-Krawczyk (CK) security model [3] to one-pass key-
exchange protocols. A key-exchange (KE) protocol is run in a network of con-
nected parties, where each party can be activated to run an instance of the
protocol called a session. During the session, a party creates and maintains a
session state, may send and receive messages, and eventually completes the ses-
sion by outputting a session key and erasing the session state. A session may also
be aborted without generating a session key. A KE session is associated with its
holder or owner (the party at which the session exists), a peer (the party with
which the session key is intended to be established), and a session identifier. In
one-pass protocols a peer to a session is either a sender or a receiver.

For simplicity we assume below that a session is always activated with the name
of the intended peer (this is called “pre-specified peer” in [4]) and the session iden-
tifier is a triple (B̂, Â, Y ) where B̂ is the sender identity, Â the receiver identity,
and Y is the message sent in the protocol. Two sessions with the same identifier
are called matching. Matching sessions play a fundamental role in the definition
of security.

Each party owns a long-term pair of private and public keys, and other parties
can verify the binding between an identity and a public key (e.g., using a CA or
manually, the exact mechanism is outside the scope of this paper). A corrupted
party can choose at any point to “register” any public key of its choice, including
public keys equal or related to keys of other parties in the system (and there is no
requirement that it knows the corresponding private key). In this paper, a public
key will always be a group element, and the private key its secret exponent.

Notations and identities. A “hat” on top of a capital letter denotes an
identity; without the hat the letter denotes the public key of that party, and the
same letter in lower case denotes a private key. For example, Alice has identity
Â and a public key A = ga with a as the private key2.
2 This notation assumes that there is a unique public key associated with each identity.

In the real world, where a party may have more than one public key, the symbol Â
is assumed to include an indication of a unique public key.
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Attacker Model. The attacker, denoted M, is an active “Man-in-the-Middle”
adversary with full control of the communication links between parties. M can
read, modify, inject, delete, or delay messages at will. (Formally, it is M to whom
parties hand their outgoing messages for delivery). M also schedules all session
activations and session-message delivery. In addition, in order to model potential
disclosure of secret information, the attacker is allowed access to secret informa-
tion via session exposure attacks of three types: state-reveal queries, session-key
queries, and party corruption. A state-reveal query is directed at a single session
while still incomplete (i.e., before outputting the session key) and its result is
that the attacker learns the session state for that particular session (such as the
secret exponent of an ephemeral public DH value). A session-key query can be
performed against a single session after completion and the result is that the
attacker learns the corresponding session-key (this models leakage on the ses-
sion key either via usage of the key by applications, cryptanalysis, break-ins,
known-key attacks, etc).. Finally, party corruption means that the attacker learns
all information in the memory of that party (including the long-term private
key of the party as well all session states and session keys stored at the party);
in addition, from the moment a party is corrupted all its actions are controlled
by the attacker. Indeed, note that the knowledge of the private key allows the
attacker to impersonate the party at will.

Sessions against which any one of the above attacks is performed (including
sessions compromised via party corruption) are called exposed. In addition, a
session is also exposed if the matching session has been exposed (since matching
sessions must output the same session key, the compromise of one inevitably
implies the compromise of the other).

Note on state-reveal queries. “State-reveal queries” in the CK model is
meant to capture the distinction between secrets whose exposure will derail se-
curity “forever” (such as long-term keys, or the ephemeral exponent in a DSA
signature) and secrets whose exposure only compromises the current session.
Data that can be accessed via such state-reveal queries is thought of as “less se-
cret”, its exposure only compromises the current session (and thus is can perhaps
be stored in less secure memory in a real implementation). Data not accessible
via state-reveal is assumed to get the same protection of long-term secrets, such
data is revealed to the adversary only upon full compromise of a party.

Basic security. The security of session keys generated in unexposed sessions
is captured via the inability of the attacker M to distinguish the session key of
a test session (chosen by M) from a random value. When M chooses the test
session, a random bit b is tossed and M gets either the real value of the session
key (if b = 1), or an unrelated random value (if b = 0). The attacker can continue
with the regular actions against the protocol also after the test session; at the
end of its run M outputs a guess b′ for the value of b. The attacker succeeds in
its distinguishing attack if (1) the test session is not exposed, and (2) it guessed
correctly, b = b′. The protocol satisfies the basic notion of security if feasible
attackers cannot succeed with probability significantly better than 1/2.
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Definition 1 ([3]). A polynomial-time attacker with the above capabilities is
called a KE-attacker. A key-exchange protocol π is called secure if for all KE-
attackers M running against π it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol
π under attacker M then they output the same key (except for a negligible
probability).

2. M succeeds (in its test-session distinguishing attack) with probability not
more that 1/2 plus a negligible fraction.

Sender’s forward secrecy. An important property that is not captured by
basic security is perfect forward secrecy (PFS) [15], namely the assurance that
a session key which is erased from memory cannot be learned by the attacker
even if the long-term key of that party is later exposed. This is captured for-
mally in [3] via the notion of session-key expiration (which represents the erasure
of a session key from memory). A key-exchange protocol is secure with PFS if
Definition 1 holds even when the attacker is allowed to corrupt a peer to the
test session after the test-session key expired at that peer. In the case of one-
pass protocols, forward secrecy cannot be provided in general (since exposing
the receiver’s private key clearly lets the attacker decrypt all incoming traffic),
but the sender can still enjoy forward secrecy. As we will see, the basic HOMQV
protocol provides sender’s forward secrecy against passive attackers, and adding
key-confirmation provides forward secrecy also against active attackers.

Replay attacks. A one-pass key-exchange protocol where parties do not main-
tain evolving state between sessions is always open to replay attacks, where the
attacker forces the establishment of the same session at a receiver by replaying
old incoming messages to that party. The model deals with this issue by defining
all instances of such replayed sessions to be matching. This means that all these
sessions have the same session key and also that for the attacker to be consid-
ered successful in attacking a session it should have not exposed any one of the
session copies.

3 The Basic HOMQV Protocol

On groups and supergroups. The protocol uses a cyclic group G of prime
order q generated by a given generator g. There is no particular requirement from
the cyclic group G = 〈g〉 except for its prime order. However, in cases where G
is a subgroup of another group G′ and testing membership in G′ is easier than
testing membership in G, we will exploit this property in the protocol. For this
we define f as the “cofactor” f = |G′|/|G|. For example, if g is an element of Z∗

p

of prime order q, then G′ is Z∗
p and f = (p−1)/q. If g is an element in an elliptic

curve group E then f = |E|/q. We always assume that f, q are co-primes.
Using the cofactor, we describe a protocol where one only needs to verify that

the various elements are in G′ (an efficient test in the above two examples). Note
that it can be the case that f = 1. The property of the cofactor f that we use
is that Xf ∈ G for any X ∈ G′.
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Hash functions. The protocol uses two hash functions (which are viewed as two
independent random oracles): one, denoted H̄ , hashes strings into {0, 1, . . . ,√q}
and is used to compute exponents of size |q|/2, the other, denoted H , hashes
into {0, 1}k where k is the length of the output key K.

Protocol HOMQV. Let Â, B̂ be two different parties with keys A = ga,
B = gb, respectively. To exchange a key with Â, sender B̂ checks that A ∈ G′

(if not it aborts), then chooses random y ∈R Zq, and sends Y = gy to Â. B̂

computes the key as H(σ, B̂, Â, Y ) where σ = Af ·(y+eb) and e = H̄(Y, Â). On
incoming value Y and peer’s identity B̂, Â checks that Y and B̂’s public key B
are in G′ (if not, it aborts) and then computes the session key as H(σ′, B̂, Â, Y )
where σ′ = (Y Be)f ·a. Both parties compute the same session key since σ = σ′,
and the session-id is the triple (B̂, Â, Y ).

Performance. For the sender, the protocol requires just two exponentiations
and a membership test in G′ (the latter has negligible cost for the typical Z∗

p

and elliptic curve cases). The exponentiations are for computing Y = gy and for
computing σ = Af ·(y+eb) (In the latter case we first set t = f ·(y+eb) mod ord(G′)
and then σ is set to At. If ord(G′) is not much larger than q — as in the case
of elliptic curves — then the cofactor exponentiation is essentially for free). The
group element Y can be computed offline, even before knowing the identity of
the peer.

The cost for the receiver Â is 1.5 on-line exponentiations: a half exponen-
tiation when computing (Y Be), and a full exponentiation for raising it to the
power fa. (As before, computing t′ = fa mod ord(G′) is essentially for free when
ord(G′) ≈ q). Comparing it with the cost of the unauthenticated DHIES, we see
that authentication is for free for the sender, and only costs 1/2 exponentiation
for the receiver!

Note, in particular, that there are no hidden costs in the protocol such as
the need to test group elements for membership in the prime order subgroup G,
only inexpensive G′-membership tests are needed. Also in contrast to some other
protocols, HOMQV does not need the CA to checks that parties know the secret
key for the public key that they want to register, thus avoiding complex proof-
of-possession protocols.

A variant without the cofactor. In cases where ord(G′) % q (as typically
happens when working over Z∗

p with q|p− 1), using the cofactor as above result
in having to compute long multiplications in G′, which could be much more
expensive than exponentiations in the subgroup G. In these cases it may be
better to use a variant without cofactor, and instead directly verify that the
different elements are in the subgroup G: The sender B̂ must verify that the
receiver’s public key A is in the subgroup G while the receiver Â needs to test
Y Be ∈ G (there is no need to check Y and B separately). We also remark
that verification of the receiver’s public key A by the sender is only needed
to get y-security; if we assume that the y value is never exposed then one can
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prove security even without that verification step, see more discussion in the full
version [11].

3.1 Notes on Security

Session-state exposure. For the HOMQV protocol, one can readily see that
disclosure of both the Diffie-Hellman value σ as well as of the exponent y from
the same session leads to the exposure of the value Ab = Ba, which suffices for
impersonating B̂ to Â and vice versa. So clearly, these two pieces of session-
specific data should not be stored together in less secure memory.

How about disclosing any one of these values but not the other? For reasons
similar to the above, if one discloses σ at the receiver then an attacker can do the
following: chooses y, sends Y = gy to Â purporting to be B̂ (an honest player),
then it finds σ at Â and derives from it Ab which as said allows to impersonate
Â and B̂ to each other. As for the secret exponent y, we show in Section 5.3 that
its disclosure does not even compromise the session in which it is used. To have
a negative effect, the attacker needs to find either the σ value of that session or
the private key of the party that generated this exponent. This is an important
property of HOMQV, since it means that the pair (y, Y = gy) can be generated
in an off-line phase (even before knowing the identity of Â) and stored for later
use. An exposure of such pair does not cause any real damage as long as the
long-term key is not disclosed.

Replay. Being a one-pass protocol, HOMQV is obviously open to replay. This
can be prevented by including synchronized timestamps (or a shared increasing
counter). The timestamp or counter becomes part of the session-id together
with (B̂, Â, Y ) and hence included under H when computing the session key
K. Another option is to use an interactive protocol in which Â sends to B̂ a
nonce, which is then included in the computation of e. Note that the resulting
interactive protocol is weaker than HMQV (e.g., it does not provide receiver
PFS), but it is cheaper and prevents replay. See Section 6.

On Forward Secrecy. The protocol HOMQV as above provides forward se-
curity for the sender, namely, the guarantee that the disclosure of the private
key of the sender B̂ does not expose past sessions created by B̂. However, an
active attacker can choose Y = gy and send it to a receiver Â, purporting to be
B̂. Later, if the attacker find B̂’s private key then it can compute the session.
Hence forward secrecy is only ensured against passive attackers. We can get full
sender’s forward secrecy by adding a key confirmation field in B̂’s message, see
Section 5.4. Receiver’s forward secrecy is impossible in one-pass key exchange,
since the receiver does not contribute any session-specific values.

KCI attacks. In a Key Compromise Impersonation attack (KCI), knowing the
private key of a party Â allows the attacker to impersonate other parties to Â.
This is obviously possible in HOMQV.
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4 Using HOMQV for Encryption and Key-Wrapping

On its own, HOMQV is used to establish a new secret key between the client and
server. To get encryption or key-wrapping we need to add a “data encapsulation
module” (DEM), where the new key is used in a symmetric encryption mode
in order to encrypt (or wrap) the transmitted message/key. Specifically, we use
the DEM part of DHIES, where the new key from HOMQV is expanded into
encryption and authentication keys, which are then used in an Encrypt-then-
Authenticate mode to send the message.

Namely, after computing K = H(σ, B̂, Â, Y ) we set Ka = PRFK(1) and
Ke = PRFK(2) (where 1,2 can be replaced by any two different fixed mes-
sages that are publicly determined by the protocol flow). Then to encrypt a
message M we compute C = EncKe(M) where Enc is a CPA-secure sym-
metric encryption scheme and then T = MACKa(C) where MAC is a secure
message-authentication code. The DEM part (C, T ) — which is an authenticated
encryption of M under the shared key (Ke,Ka) — is then added to the HOMQV
flow to make the composite ciphertext (Y,C, T ).

Regarding security, if we use the “degenerate case” of HOMQV where the
public key B is set to 1 then we get exactly the DHIES encryption scheme,
which was proven CCA secure by Abdalla et al. [1]. When adding the DEM part
to the HOMQV scheme from Section 3 (with server authentication) we get a
signcryption scheme [18], whose security can be argued as follows:

Step 1: signcryption-KEM. Gorantla et al. proved in [10, Thm 3] that a one-
pass key-exchange protocol Π which is secure in the Canetti-Krawczyk model
and offers sender forward secrecy, is also a signcryption-KEM scheme secure in
the sense of insider confidentiality and outsider unforgeability in the multi-user
setting. See [10] for the definitions of these notions of security. Roughly speaking
this means that CCA-security of the encryption part holds even against an at-
tacker that knows the sender’s private key, while unforgeability of the signature
holds only against an attacker that does not know the receiver’s private key.

Moreover, one can verify that the proof from [10] works even if the proto-
col Π offers sender forward secrecy only against passive attackers. (Roughly
speaking, this is because this property is only used with respect to the challenge
ciphertext in the KEM-CCA game, which is generated honestly according to
the signcryption algorithm). Since we prove in Theorem 2 and Lemma 3 that
HOMQV is secure in the Canetti-Krawczyk model and it offers sender forward
secrecy against passive attackers, it follows that it is also a signcryption-KEM
scheme secure in the sense of insider confidentiality and outsider unforgeability3.

Step 2: adding the DEM. A signcryption-KEM secure as above can be
transformed into regular signcryption (secure in the same sense) by adding an
authenticated-encryption DEM. Such results were proven by Dent [5] in slightly
different models, and the same proofs work for our case as well. Namely, we have:

3 Gorantla et al. already suggested using one-pass HMQV to get a secure signcryption
KEM, but did not prove security for the variant of one-pass HMQV that they used.
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Lemma 1. The combination of a signcryption KEM with insider confidentiality
and outsider unforgeability in the multi-user setting, together with an
authenticated-encryption DEM, yields a signcryption scheme with insider confi-
dentiality and outsider unforgeability in the multi-user setting.

Proof. (sketch) The confidentiality part against insider attacks is identical to the
case of standard hybrid encryption. The integrity part against outsider attacks
follows roughly from these arguments: (i) An outside attacker cannot generate
a valid KEM for any symmetric key except those that were included in one
of the ciphertexts that the attacker obtained from its oracle, due to the KEM
integrity against outside attackers; (ii) The KEM confidentiality implies that
the keys included in the ciphertext from the oracle are indistinguishable from
random; and (iii) The integrity-of-ciphertext property of the DEM implies that
the attacker cannot generate new valid DEM ciphertexts under these pseudo-
random keys.

It therefore follows that augmenting HOMQV with DEM as above gives a
signcryption scheme secure in the sense of insider confidentiality and outsider
unforgeability in the multi-user setting. These arguments can be made formal
via a standard sequence-of-games proof. ��

Gjøsteen and Kr̊akmo proved in [9] that a signcryption scheme secure as above
can be used in conjunction with PKI to realize a secure messaging functional-
ity in the UC framework. (The messaging functionality is similar to Canetti’s
secure-message-transmission functionality from [2], except that signcryption does
not prevent replay). We thus conclude that when used in conjunction with
PKI, the protocol HOMQV with the DEM part can UC-realize secure mes-
saging. This UC-secure-messaging, in turn, can be used to transport keys from
server to client, providing as much security as can be obtained from a one-pass
protocol.

Why use HOMQV for Key-Wrapping? The main advantage of HOMQV
over the underlying DHIES is server authentication: We let the client verify
that wrapped keys indeed arrive from the correct server without adding much
complexity or making any changes in the data path. Another advantage is
the “y-security” of HOMQV. Recall that HOMQV remains secure even if the
ephemeral secret exponent y is exposed, as long as the long-term secret key of
B̂ is protected. On the other hand, DHIES is clearly broken in this case. This
provides a significant line of defense in settings where exposure of y is a real
concern, such as when pairs (y, Y = gy) are precomputed and stored in less
secure memory.

At the same time, the fact that HOMQV degenerates back to DHIES by using
server public key B = 1 means that a HOMQV client can be used to unwrap
legacy DHIES-wrapped keys with very little added complexity (if at all). In this
case of course we would have to fall back to out-of-band authentication, but
otherwise the legacy support is nearly transparent.
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5 Security Analysis of HOMQV

5.1 XCR Signatures and Gap-DH

XCR signatures are challenge-response signature where only the challenger can
verify the signature. Specifically, the signer B̂ has a private key b ∈R Zq and a
public key B = gb. On input a message m and “challenge” X = gx, the signature
of B̂ on m and challenge X is a pair (Y = gy, σ) where y is chosen by B̂ at random
in Zq and σ is defined as Xf ·(y+H̄(Y,m)b). The challenger, who knows x, verifies
the signature by checking that Y is in G′ and that σ = (Y BH̄(Y,m))f ·x.

Security of XCR signatures. XCR is called secure if it is secure under a
chosen-message (and chosen-challenge) attack in the following game between a
forger F and a signing oracle B̂. The input to F is B̂’s public key B ∈R G
and a challenge X0 ∈R G. F provides queries (X,m) to B̂ which responds
with a valid XCR signature (Y, σ). After polynomially many adaptive queries
the forger wins if it outputs a valid signature (Y0, σ0) on any message m0
using the (input) challenge X0. The only requirement is “strong” existential
unforgeability, namely, that either B̂ was not queried for a signature on mes-
sage m0 or, if it was queried on m0 it output a signature different than the pair
(Y0, σ0).

Theorem 1 ([13]). Under the CDH assumption, XCR signatures are secure in
the random oracle model.

The Gap-DH Assumption. The security of XCR is proved under the Compu-
tational Diffie-Hellman (CDH) Assumption over G, namely, given U, V ∈R G = 〈g〉
it is infeasible to compute DHg(U, V ) (the Diffie-Hellman function, with gener-
ator g, applied to U and V ). To prove HOMQV we need the stronger Gap-DH
assumption. We say that a decision algorithm O is a Decisional Diffie-Hellman
(DDH) Oracle for a group G and generator g if on input a triple (U, V,W ), for
U, V ∈ G, oracle O outputs 1 if and only if W = DHg(U, V ). We say that G sat-
isfies the Gap-Diffie-Hellman (GDH) assumption if no feasible algorithm exists to
solve the CDH problem, even when the algorithm is provided with a DDH-oracle
for G.

5.2 Proof of Basic Security

Theorem 2. In the random oracle model and under the Gap-DH assumption,
HOMQV is a secure one-pass key-exchange protocol as per Definition 1.

Proof. We need to prove that (1) Any two matching sessions with honest peers
output the same session key; and (2) A KE-attacker has negligible advantage
in winning a test-session experiment. Since sessions are matching if and only if
they have the same session id (B̂, Â, Y ), condition (1) follows from the fact that
these three values determine a unique value for σ and hence for the session key.
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The proof of (2) works by reduction to the security of XCR signatures, assuming
a decisional Diffie-Hellman oracle as in the Gap-DH assumption. That is, given
an assumed KE-attacker M against HOMQV and a decisional DH oracle we
build a (0-message) forger F against XCR.

Let N be such that the adversaryM has non-negligible advantage in attacking
the KE-security of HOMQV when used with N honest parties. F gets as input
a public key B and challenge X0 (both random elements in G). It starts by
simulating a run of HOMQV with N honest parties, and selects two different
parties at random among these N honest parties which we denote by Â and B̂;
this is F ’s guess for the receiver and sender, respectively, of the test session to be
chosen by M. Using its inputs B and X0, F sets Â’s public key to A = X0 and
B̂’s public key to B (note that F does not know the private keys corresponding
to these public keys). For all other honest parties, F chooses their private and
public keys. (Corrupted parties have their PKs chosen by the attacker M who
also manages all their actions). M controls all activations, traffic and delivery
of messages. Invocations of the random oracle (H̄ and H) are usually answered
by F by choosing a random response from the appropriate range, except as
described in the special cases below. (If the same query is made more then once,
then it gets the same answer every time). In any case in which a corruption
query is issued by M against Â or B̂, or if M chooses a test session with peers
other than Â as receiver and B̂ as sender, F aborts its run (in both cases F
failed to guess correctly the peers to the test session).

Any query (activation) of an honest party other than Â or B̂ is answered by
F just as in the protocol, which F can do since it knows the secret keys of all
these honest parties. Similarly, corruption of honest parties other than Â or B̂
are answered by F using the secret keys that it knows. It is left to show how to
simulate queries to Â and B̂.

Send-query (potentially followed later by a session-key reveal query). Assume
that the sender is B̂, the case where the sender is Â is handled in exactly the
symmetric way. Denote the session’s receiver by Ĉ and its public key by C. If
Ĉ = B̂ of if C /∈ G′ then F aborts the session. Otherwise F chooses y at random
and sets Y = gy as the outgoing value to be sent.

If the receiver Ĉ is an honest party other than Â then F computes the session
key using Ĉ’s secret key (as done in the protocol), and uses that value to answer
secret-key reveal query against this session of B̂ (if any). Otherwise (i.e., Ĉ is
either Â or a corrupted party), F chooses at random K ∈R {0, 1}k and uses
this K for future secret-key reveal queries against this session of B̂. From this
point on, F will use its DDH oracle to check for each new H-query of the form
(Q, B̂, Ĉ, Y ) (for some Q), whether Q = DHg(Y BH̄(Y,Ĉ), Cf ). If so, F responds
to that random-oracle query with the value K.

Note that due to the hashing of the session id in the computation of a session
key, the value K is independent of any other session key except for the possible
matching session held in this case by a corrupted party or Â. Thus, F ’s responses
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to other session-key queries (or corruption queries) are independent of K except
if Ĉ = Â in which case the matching session at Â is set to K as well4.

Receive-query (potentially followed later by a session-key reveal query). As-
sume that the receiver is Â, the case where the receiver is B̂ is handled in exactly
the symmetric way. Denote the session’s sender by Ĉ and its public key by C,
and denote the incoming value in this session by Z.

If Ĉ = Â or if C or Z are not in G′ then F aborts the session. If (C,Z)
was used before to activate Â as receiver (because replay is possible), F sets the
session key to its previous value. If Ĉ is an honest party other than B̂, and Z was
previously generated by an instance of this honest Ĉ in the role of a sender (so
F knows z s.t. Z = gz), then F computes the session key using this z together
with Ĉ’s secret key as done in the protocol, and uses that session key to answer
secret-key reveal query against this session of Â (if any).

Otherwise, we know that Ĉ is either B̂ or a corrupted party, or Ĉ is honest
but Z was never generated by an instance of Ĉ in the role of a sender. Then for
each H-query of the form (Q, Ĉ, Â, Z) (for some Q) ever issued by M, F uses
its DDH oracle to check whether Q = DHg((ZCH̄(Z,Â))f , A). If such Q is found
then F sets the session key to K = H(Q, Ĉ, Â, Z). Else, if Ĉ = B̂ and Z was
indeed sent by a simulated session of B̂ then F sets the session key to be the
same value K that it chose when processing that previous Send query at B̂. Else
F sets the session key K as a new random �-bit string. Thereafter, each time
a session key reveal query is performed at a session (Ĉ, Â, Z), F responds with
K. (As said, there may be more than one because of replay). From now on, F
uses its DDH oracle to check for any H-query of the form (Q, Ĉ, Â, Z) (for any
Q) whether Q = DHg((ZCH̄(Z,Â))f , A) and if so it answers that query with K.

Test session. In any case where the test session is chosen with peers other than
Â as receiver and B̂ as sender, F aborts its run. When the test session is chosen
with Â as receiver and B̂ as sender, F returns to M with probability 1/2 the
same answer K that it would have returned in a session-key reveal query (say,
against the session in B̂), and with probability 1/2 F returns just an independent
random value K ′.

As long as M does not query H(σ, B̂, Â, Y ) with the values σ, Y corresponding
to the test session, it has only probability 1/2 to answer correctly. This is because
no session (B̂, Â, Y ) was compromised and all other sessions have keys that are
independent of K (since they were generated via H calls with different inputs).
Therefore both K and K ′ are random values independent of M’s view. By
assumption M succeeds with non-negligible advantage, thus implying that M
computes the correct σ with non-negligible probability.

Finally, whenever F guesses correctly the peers to the test session and M
successfully generates the σ value corresponding to the test session (F identifies
it via the decisional oracle), F stops its run and outputs the pair (Y, σ) where

4 Without hashing the session id, a UKS attack is possible where different, non-
matching, sessions have the same key.
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Y is the test session’s outgoing value and σ = Ay+be with e = H̄(Y, Â). But this
pair (Y, σ) is a valid XCR signature of B̂ on message Â and challenge A = X0;
since F has never queried B̂ for any signature, F wins the forgery game. Since
this happens with non-negligible probability, we obtain a contradiction to the
security of XCR signatures, thus proving the theorem. ��

Note regarding the Gap-DH queries. A valid query to a decisional oracle
is one where the two inputs are elements of G. In the above proof, this is indeed
the case for the Q

?= DHg(Y BH̄(Y,Ĉ), Cf ) query since Y,B and Cf are all in G
(Y by F ’s choice, B as an input to F , and Cf since F checks that C ∈ G′).
The same is the case for the query Q

?= DHg((ZCH̄(Z,Â))f , A) since both Z and
C are checked to be in G′ thus the value (ZCH̄(Z,Â))f is necessarily in G. Note
that if the cofactor f is not used in the protocol then the sender needs to check
explicitly that the receiver’s public key C is in G (i.e., an element of G′ of order
q) and the receiver needs to check that the value ZCH̄(Z,Â) is in G.

Beyond basic security. Below we show that HOMQV is strongly resilient
to the disclosure of ephemeral DH exponents and also that it provides sender’s
forward secrecy in case of the disclosure of the private key of a party.

5.3 Resilience of HOMQV to Disclosure of Ephemeral Exponents

We prove that HOMQV has maximal resilience to the leakage of the ephemeral
DH exponents y used by a sender to produce outgoing DH values Y = gy (we
referred to this property as y-security). Indeed knowledge of these y’s by an
attacker (even ahead of their use) does not even compromise the security of the
sessions where they are used, except of course if the attacker also learns the
private key of the sender. The practical meaning is that it is as safe as possible
to compute pairs (y, Y = gy) offline and store them for later use even if this
storage is less protected than the more sensitive long-term private key.

Lemma 2. Protocol HOMQV remains secure even when making the ephemeral
DH exponents y available to the attacker via state reveal queries. Moreover, even
sessions for which y is known remain secure (formally, the attacker is allowed
to choose a test session for which it knows y).

Proof. We show an even stronger property: Let B̂ be an honest party and assume
that M gets to see all pairs {(yi, Yi = gyi)} to be used by B̂ for all its sessions
at the onset of the protocol run. We claim that all of B̂’s unexposed sessions
(where learning the yi exponent is not considered exposure) are still secure. In
other words, even if the test session chosen by M is one of these outgoing sessions
of B̂ (or one of the matching sessions at the peer) the attacker cannot win the
distinguishing game with non-negligible advantage. The proof is essentially the
same as the one for Theorem 2; all we need to observe is that in the simulation in
that proof the forger F chooses (and hence knows) all exponents y corresponding
to outgoing DH values Y at B̂. Hence, F can provide these values to M, even
before they are used.
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For this, the description of F when simulating a Send query to Â or B̂ needs
to be slightly changed. Specifically, it needs to use its DDH oracle to test all
previous query to H , just as it is done for a Receive query. This is needed here
since M, knowing y from the start, could have made a query that depends on
this value even before it was used by B̂. ��

5.4 Sender’s Forward Secrecy

We show that HOMQV ensures sender’s forward secrecy against passive attack-
ers. Specifically, we show that the exposure of the private key of a party does not
compromise any of the past sessions where that party acted as sender. More-
over, this is the case even for sessions established after the disclosure of the
private key, provided that the attacker does not control the session’s Y or knows
its exponent y. This property, however, does not guarantee forward secrecy for
sessions where the attacker actively chose the value Y prior to the private key
exposure. For example, an attacker can choose y, set Y = gy, and activate party
Â as receiver with incoming Y and sender’s identity B̂. Later, if the attacker
finds B̂’s private key, it can compute the value of the session key generated by
Â using Y . In other words, the protocol provides weak forward secrecy against
passive attackers, but not full PFS against active attacks. Fortunately, we will
see below that one can slightly change HOMQV by adding a (key confirmation)
field to the message from B̂ to Â and then achieve full sender’s forward secrecy.

Lemma 3. HOMQV enjoys sender’s forward secrecy against passive attackers.

Proof. (sketch) Let B̂ be an honest party and assume that at some point M
learns B̂’s private key b. We claim that even in this case M cannot win the
test session experiment for any session in which B̂ acted as sender provided that
the outgoing value Y for the session was indeed generated by B̂ and that the
session was not exposed via a session-key query or via a state-reveal query. We
informally outline the proof of this property.

For contradiction we assume an attacker M that wins the test-session ex-
periment with non-negligible advantage in a session as above after learning the
sender’s private key. We use M to build an algorithm S that solves CDH given a
decisional oracle as in the Gap-DH setting. Let X,Y ∈R G be an instance of the
CDH problem. S will run a simulation similar to the one F runs in the proof of
Theorem 2; in particular, it will try to guess the peers to the test session (call B̂
the guess for sender and Â the guess for receiver) as well as which of the sessions
between B̂ and Â will be chosen as the test. S chooses public keys for all honest
parties including B̂ but excluding Â. For Â it sets the public key to X . The rest
of the simulation is similar except that B̂’s private key is known (chosen by S)
so B̂ is treated as any other uncorrupted party. The simulation of Â for whom
the private key is unknown is same as in the proof of Theorem 2 (in particular,
it uses the decisional oracles). When the guessed test session is activated at B̂,
S will use the value Y from the CDH input as the outgoing value from B̂. When
M corrupts B̂, S provides it with B̂’s private key b which S knows. As before,
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to win the test experiment M needs to be able to compute with non-negligible
probability the value σ = (Y Be)a which S learns from the H-queries. From σ, S
computes Z = Y a (where A = ga) by setting Z = σ/Aeb. Since Z = DHg(X,Y ),
S solved the CDH challenge contradicting the Gap-DH assumption. ��

Full Sender’s Forward Secrecy. As said, HOMQV does not achieve forward
secrecy for sessions activated at a receiver Â where the incoming value Y was
chosen by the attacker M. To fix this we need to assure that Â will not accept an
incoming Y that has not been generated by the purported sender. For this, add
to the protocol’s message key confirmation field. First, we define a key derivation
step that from the key K, as defined in HOMQV, derives two keys K∗,Ka. The
former is output as the session key while Ka is used as a key to a MAC function.
The key confirmation field (included in the message sent from B̂ to Â) is a
tag MACKa(1) (where 1 can be replaced by any fixed message that is publicly
determined by the protocol flows). It is not hard to see that in this way a session
at a honest receiver will only be established if the MAC was successful hence
proving that Y was generated by the claimed sender. (Formally, one shows that
if a MAC verification succeeds for a value not generated by the claimed sender
then the security of the original HOMQV protocol is broken, or more specifically,
that a successful XCR forgery occurs). We have:

Lemma 4. The modified HOMQV protocol with B̂’s key confirmation provides
full sender’s forward secrecy (against active attacks).

6 Extensions in the Interactive Setting

In settings where interaction between server and client is possible, the HOMQV
protocol smoothly “extends up” to provide better security at a very low cost.
Replay attacks can be prevented simply by having Â send a nonce to B̂ in the
first flow, and then incorporate that nonce in the final hash calculation, setting
K = H(σ, B̂, Â, Y, n) (with n the nonce sent by Â). This simple variant does
not offer receiver forward secrecy or protection against KCI attacks, but it does
prevent replay attacks without incurring any additional computational cost. Note
also that by making the nonce n default to null in an implementation of this
variant, we get “transparent” support also for the non-interactive HOMQV.

To get also receiver forward secrecy and protection against KCI attacks, we
can move up to two- or three-pass HMQV, where Â sends X = gx to B̂ and
σ is computed as σ = (XAd)f(y+eb) = (Y Be)f(x+da) = gf(x+da)(y+eb), with
d = H̄(X, B̂) and e = H̄(Y, Â). The price we pay for this added security over
the previous variant is another 1/2 exponentiation for the sender (to compute
(XAd)) and another full exponentiation for the receiver (to compute X = gx).
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Abstract. Multivariate public key cryptography is one of the main
approaches to guarantee the security of communication in the post-
quantum world. Due to its high efficiency and modest computational
requirements, multivariate cryptography seems especially appropriate for
signature schemes on low cost devices. However, multivariate schemes are
not much used yet, mainly because of the large size of their public keys.
In [PB10] Petzoldt et al. presented an idea how to create a multivariate
signature scheme with a partially cyclic public key based on the UOV
scheme of Kipnis and Patarin [KP99]. In this paper we use their idea to
create a multivariate signature scheme whose public key is mainly given
by a linear recurring sequence (LRS). By doing so, we are able to reduce
the size of the public key by up to 86 %. Moreover, we get a public key
with good statistical properties.

Keywords: Multivariate Cryptography, UOV Signature Scheme, Key
Size Reduction, Linear Recurring Sequences.

1 Introduction

When quantum computers arrive, cryptosystems based on number theoretic
problems such as integer factoring or discrete logarithms will become insecure,
since such problems can be efficiently solved via Shor’s algorithm [Sh97] [BB08].
So, to guarantee the security of communication in the post-quantum world, al-
ternatives to classical public key schemes are needed. Besides lattice-, code- and
hash-based cryptosystems, multivariate public key cryptography [DG06] is one
of the main approaches to achieve this goal. Since they require only modest
computational resources, multivariate schemes seem to be appropriate for the
use on low cost devices like RFID’s and smartcards. However, these schemes are
not widely used yet, mainly because of the large size of their public and private
keys.

The basic idea behind multivariate cryptography is to choose a system Q of m
quadratic polynomials in n variables which can be easily inverted (central map).

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 335–350, 2011.
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After that one chooses two affine invertible maps S and T to hide the structure of
the central map. The public key of the cryptosystem is the composed quadratic
map P = S ◦Q ◦ T which should be difficult to invert. The private key consists
of S, Q and T and therefore allows to invert P .

In the last years, a lot of work has been done to find ways how to reduce
the key size of multivariate schemes. Thereby, most researchers concentrated
on reducing the size of the private key. One way to achieve this is by choosing
the coefficients of the private maps out of smaller fields (e.g. GF (16) instead of
GF (256)). However, this increases the signature length [CC08]. Another way to
reduce the size of the private key is by using sparse central polynomials, which
is done for example in the TTS schemes of Yang and Chen [YC05]. By using a
strategy called ”similar keys” Hu et al. [HW05] produced interesting results in
this direction, too.

In [PB10] Petzoldt et al. presented an idea how to reduce the public key size
of the UOV signature scheme of Kipnis and Patarin [KP99]. They achieved this
by inserting a partially circulant matrix into the coefficient matrix of the public
key polynomials. By doing so, they were able to reduce the public key size of
the standard UOV scheme by a large factor.

In this paper we use their idea to create a multivariate signature scheme whose
public key is mainly given by a linear recurring sequence (LRS). Despite of the
fact that until now no attack against the partially cyclic scheme is known, we aim
at replacing the partially cyclic key by a key which is statistically more random
(see Subsection 4.2) without increasing the key size. So, it should become more
difficult to develop a dedicated attack against the scheme. We also get closer to
the ”provably secure” UOV scheme of [BP10].

As in [PB10], we are not able to create a scheme whose public key is completely
given by an LRS. So, we will have MP = (B|E), where B is generated by an LRS
and E is a matrix with no apparent structure. Thus we have to store only the
parameters of the LRS and the matrix E, which reduces the size of the public
key by up to 86 %.

The rest of the paper is organized as follows:
In Section 2 we describe the Unbalanced Oil and Vinegar (UOV) signature

scheme, which is the basis of our construction. Section 3 reviews the approach
of [PB10] to create a UOV-based scheme with a partially cyclic public key. In
Section 4 we repeat results from the theory of linear recurring sequences (LRS’s)
needed in the following sections and make some remarks about randomness mea-
surements of sequences. Section 5 describes the construction and presents our
new scheme in detail. In Section 6 we answer the question how to choose the pa-
rameters of the LRS, whereas Section 7 studies the security of our scheme under
known attacks. Parameter proposals for our scheme can be found in Section 8,
and Section 9 concludes the paper.

2 The (Unbalanced) Oil and Vinegar Signature Scheme

One way to create easily invertible multivariate quadratic systems is the principle
of Oil and Vinegar, which was first proposed by J. Patarin in [Pa97].
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Let Fq be a finite field. Let o and v be two integers and set n = o + v. We
set V = {1, . . . , v} and O = {v + 1, . . . , n}. Of the n variables x1, . . . , xn we
call x1, . . . , xv the Vinegar variables and xv+1, . . . , xn Oil variables. We define o
quadratic polynomials q(k)(x) = q(k)(x1, . . . , xn) by

q(k)(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑
i,j∈V, i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k) (1 ≤ k ≤ o)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar
in a salad dressing.

The map Q = (q(1)(x), . . . , q(o)(x)) can be easily inverted. First, we choose
the values of the v Vinegar variables x1, . . . , xv at random. Therefore we get a
system of o linear equations in the o Oil variables xv+1, . . . , xn which can be
solved by Gaussian Elimination. (If the system does not have a solution, one has
to choose other values of x1, . . . , xv and try again).

To hide the structure of Q in the public key one concatenates it with an affine
invertible map T : Fn → Fn. So, the public key of the UOV signature scheme is
given as

P = Q ◦ T (1)

Remark 1: In opposite to other multivariate schemes the second affine map S
is not needed for the security of UOV. So it can be dropped.

Signature generation and verification. To sign a message with a hash value
h ∈ Fo

q, one computes recursively y = Q−1(h) and z = T −1(y). The signature
of the message is z ∈ Fn

q . Here Q−1(h) means finding one pre-image of h ∈ Fo
q

under Q, which we get by choosing the Vinegar variables at random and solving
the resulting linear system for the Oil variables. To verify a signature z ∈ Fn

q , one
computes w = P(z) ∈ Fo

q. If w = h holds, the signature is accepted, otherwise
rejected.

In the original paper [Pa97], Patarin suggested to use o = v (Balanced Oil and
Vinegar (OV)). After this scheme was broken by Kipnis and Shamir in [KS98],
it was suggested in [KP99] to use v > o (Unbalanced Oil and Vinegar (UOV)).

The UOV signature scheme over GF (28) is commonly believed to be secure
for o ≥ 26 equations and v = 2 · o Vinegar variables [BF08].

3 The Approach of [PB10]

In this section we review the approach of [PB10] to create a UOV-based scheme
with a partially cyclic public key.

Remember that, in the case of the Unbalanced Oil and Vinegar signature
scheme [KP99], the public key P is given as the concatenation of the central
UOV-map Q and an affine invertible map T = ((tij)n

i,j=1, cT ), i.e.

P = Q ◦ T . (2)
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The authors of [PB10] observed, that this equation (after fixing the affine map
T ), leads to a linear relation between the coefficients of the quadratic monomials
of P and Q of the form

p
(k)
ij =

n∑
i=1

n∑
j=i

αrs
ij · q(k)

rs , (3)

where p
(k)
ij and q

(k)
ij are the coefficients of xixj in the k-th component of P and

Q respectively and the αrs
ij are given as

αrs
ij =

{
tri · tsi (i = j)
tri · tsj + trj · tsi otherwise . (4)

Let D := v·(v+1)
2 + o · v be the number of non-zero quadratic terms in any

component of Q and D′ := n·(n+1)
2 be the number of quadratic terms in the

public polynomials. Let MP and MQ be the Macaulay matrices of P and Q
respectively (in graded lexicographical order). The matrices MP and MQ are
divided into submatrices as shown in Figure 1. Note that, due to the absence of
oil × oil terms in the central polynomials, we have a block of zeros in the middle
of MQ.

Furthermore, the authors of [PB10] defined the so called transformation ma-
trix A ∈ FD×D

q containing the coefficients αrs
ij of equation (3)

A =
(
αrs

ij

)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ v, i ≤ j ≤ n

for the columns), i.e.

A =

⎛⎜⎜⎜⎝
α11

11 α11
12 . . . α11

vn

α12
11 α12

12 . . . α12
vn

...
...

αvn
11 αvn

12 . . . αvn
vn

⎞⎟⎟⎟⎠ . (5)

With this notation, equation (3) yields

B = Q ·A (6)

If the matrix A is invertible, this relation becomes bijective.

Q

B

0

H

Qlin

Plin

D D′

MP

MQ

Fig. 1. Layout of the matrices MP and MQ
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By solving equation (6) for Q, the authors of [PB10] were able to insert a
partially circulant matrix into the UOV public key. By doing so, they reduced
the public key size of the scheme by a large factor.

4 Preliminaries

4.1 Linear Recurring Sequences (LRS)

In this subsection we repeat briefly results from the theory of linear recurring
sequences (LRS’s) needed in the following sections. For a more detailed intro-
duction and the proofs we refer to [LN86].

Definition 1. Let L be a positive integer and γ1, . . . , γL be given elements of
a finite field Fq. A linear recurring sequence (LRS) of length L is a sequence
{s1, s2, . . . } of Fq-elements satisfying the relation

sj = γ1 · sj−1 + γ2 · sj−2 + · · · + γL · sj−L =
L∑

i=1

γi · sj−i (∀j > L). (7)

The values s1, . . . , sL are called the initial values of the LRS.

Definition 2. The connection polynomial of an LRS is defined as

C(x) = γLx
L + γL−1x

L−1 + · · · + γ1 ·X + 1 =
L∑

i=1

γiX
i + 1.

The LRS S is uniquely determined by its initial values s1, . . . , sL and the con-
nection polynomial C (due to equation (7)). Therefore we denote the LRS by
S(s1, . . . , sL, C).

Definition 3. An irreducible polynomial f(x) ∈ Fq[x] of degree d is called a
primitive polynomial if one of the roots of f(x) is a generator of F�

qd , the multi-
plicative group of all the non-zero elements of Fqd .

Lemma 1. The irreducible polynomial f(x) ∈ Fq[x] of degree d is a primitive
polynomial if and only if f(x) divides xk − 1 for k = qd − 1 and for no smaller
positive integer k.

Definition 4. A sequence {σ1, σ2, . . . } of Fq-elements is said to be periodic with
minimal period k, if k is the smallest integer such that σi = σi+t·k (∀i, t ∈ N).

Lemma 2. An LRS of length L with primitive connection polynomial C(x) ∈
Fq[x] and (s1, . . . , sL) ∈ FL

q \ {0} is periodic with minimal period qL − 1.

Definition 5. An LRS as in Lemma 2 is called an m-sequence.

Definition 6. Let Σ = {σ1, σ2, . . . } be a (finite or infinite) sequence of Fq-
elements. The linear complexity LC(Σ) is defined as the length of the shortest
LRS S such that σi = si ∀i.
Lemma 3. Let S = S(s1, . . . , sL, C) be an LRS of length L with irreducible
connection polynomial C. Then, the linear complexity of S is equal to L.
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4.2 Golomb’s Randomness Postulates [Go67]

In this subsection we look at sequences over a finite field Fq. We cite from [GG05]
some criteria a sequence Σ must fulfill to be considered a random sequence.

Definition 7. Let λ, η, ζ ∈ Fq with λ �= η and λ �= ζ. A subsequence σ̄ of
Σ = {σ1, σ2, . . . } of the form

η, λ, . . . , λ︸ ︷︷ ︸
k−times

, ζ

is called a run of λ of length k.

Definition 8. The auto-correlation function of a sequence Σ = {σ1, σ2, . . . }
with period qn − 1 is defined as

ACΣ(τ) =
qn−2∑
i=0

χ(σi) · χ(σi+τ ) (0 ≤ τ ≤ qn − 2),

where χ is given by
χ(x) = e2πi Tr(x)/p

with Tr being the standard trace function between Fq and its prime field Fp.

Golomb formulated three postulates a sequence must fulfill to be considered a
random sequence. Let Σ be a sequence with period qn − 1.

R-1. In every period, every non-zero element occurs qn−1 times and the zero
element occurs qn−1 − 1 times.

R-2. In every period,
1. for 1 ≤ k ≤ n−2, the runs of each element of length k occur (q−1)2 ·

qn−k−2 times.
2. the runs of each non-zero element of Fq of length n − 1 occur q − 2

times.
3. the runs of the zero element of length n− 1 occurs q − 1 times.
4. the run of every non-zero element of length n occurs once.

R-3. The auto-correlation function ACΣ is two valued with

ACΣ(τ) =
{

qn − 1 if τ ≡ 0 mod (qn − 1)
−1 if τ �≡ 0 mod (qn − 1)

Remark 2: The auto-correlation function ACΣ measures the amount of simi-
larity between the sequence Σ and its shift by τ positions. Postulate R-3 states
that for τ ≥ 1 the value ACΣ(τ) should be quite small.

Postulate R-1 can be extended as follows

R-4. In every period, each non-zero n-tuple (λ1, . . . , λn) ∈ Fn
q appears exactly

once.
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Lemma 4. Any m-sequence fulfills the postulates R-1 to R-4 (for n = L).

Remark 3: In the partially cyclic approach of [PB10], the rows of the matrix
B are given as b(i) = Ri−1(b) (i = 1, . . . , o), where R is the cyclic right shift
and b is a randomly chosen vector. The sequence obtained by this construction
clearly doesn’t fulfill these postulates. For example, for most of the λ ∈ Fq the
2-run (λ, λ) does not appear in such a sequence (contradiction to postulate R-2).

Remark 4: Because of the good statistical properties of m-sequences, linear
recurring sequences are used to bring randomness into a large number of ar-
eas, for example digital broadcasting and the Global Positioning System (GPS).
However, an m-sequence can’t be said to be a truely random sequence. For ex-
ample, the linear complexity of an m-sequence obtained by an LRS of length L
is L, whereas the linear complexity of a random sequence of length N should
be about N/2. Therefore, the elements of an m-sequence are easily predictable.
Hence, for cryptographic applications like stream ciphers, one has to add some
non-linearity features.

5 Description of the Scheme

In this section we deal with the construction of our scheme and describe it in
detail.

Additionally to the matrix A defined in Section 3 we define a matrix A′ ∈
FD×D′

q by

A′ =
(
αrs

ij

)
(1 ≤ r ≤ v, r ≤ s ≤ n for the rows, 1 ≤ i ≤ j ≤ n for the columns), (8)

whose entries αrs
ij are given by equation (4). The order in which the αrs

ij appear in
A′ is given by the graded lexicographical ordering (for both rows and columns).
Note that the matrix A (as defined in Section 3) is a submatrix of A′.

5.1 Construction

At the beginning of our construction we choose randomly an affine invertible map
T (given as a matrix MT = (tij)n

i,j=1 and an n−vector cT ) and compute the cor-
responding transformation matrix A (using equations (4) and (5)). Furthermore,
we choose an LRS of length L with initial values s1, . . . , sL and primitive con-
nection polynomial C(X) =

∑L
i=1 γiX

i + 1 and compute its first o ·D elements
(using equation (7)).

We define the o×D-matrix B (see Figure 1) as

B = (bij) with bij = sD·(i−1)+j (i = 1, . . . o, j = 1, . . . , D) (9)

As in [PB10] equation (3) yields

B = Q ·A (10)

and we get
(B|H) = Q ·A′ (11)
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Under the assumption of A being invertible we can invert equation (10) and
compute the homogeneous quadratic part of the central map.

Remark 5: To justify the assumption of A being invertible, we carried out a
number of experiments. For different values of o and v we created 1000 matrices
MT each time and tested, how many of the corresponding matrices A were
invertible. Table 1 shows the results.

Table 1. Percentage of the matrices A being invertible

(28,o,v) (2,4) (5,10) (10,20) (15,30) (20,40)
% invertible 99.3 99.6 99.7 99.5 99.4

As the table shows, the condition of A being invertible is nearly always
complied.

5.2 The Scheme

Key Generation

1. Choose randomly a vector (s1, . . . , sL) ∈ FL
q \{0} and a primitive connection

polynomial C(X) =
∑L

i=1 γiX
i + 1.

2. Compute the first o · D elements of the LRS S = S(s1, . . . , sL, C) using
equation (7).

3. Compute the matrix B using equation (9).
4. Choose an affine map T = (MT , cT ) : Fn

q → Fn
q at random. If MT is not

invertible, choose again.
5. Compute for T the corresponding transformation matrix A (using equations

(4) and (5)). If A is not invertible, go back to step 4.
6. Solve the linear systems given by equation (10) to get the matrix Q and

therewith the homogeneous quadratic part of the central map Q.
7. Choose the coefficients of the linear terms of the central polynomials at

random.
8. Compute the public key as P = Q ◦ T .

Signature generation and verification work as in the case of the standard UOV
scheme (see Section 2).

The public key consists of the last
(

o·(o+1)
2 + o + v + 1

)
columns of the matrix

MP , the initial values s1, . . . , sL and the connection polynomial C of the LRS.
The private key consists of the maps Q and T .
The size of the public key is given as

o ·
(
o · (o + 1)

2
+ o + v + 1

)
+ 2 · L field elements,

the size of the private key is

o ·
(
v · (v + 1)

2
+ o · v + o + v + 1

)
field elements.
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We denote the scheme by UOVLRS(q, o, v, L), where q is the cardinality of the
underlying field.

6 Choice of the Parameter L

In this section we look at the question how to choose the length of the LRS.

6.1 General Remarks
Proposition 1. Let the o×D matrix B be generated by an LRS of length L ≤ o
(as described in Subsection 5.2). Then we have rank(B) ≤ L.

Proof. We denote B′ to be the upper left L × L submatrix of B. Its rows we
denote by b′(1), . . . ,b′(L).

Let’s assume that we have already found L linear independent rows of B.
W.l.o.g. these are the first L rows of B, namely b(1), . . . ,b(L). Due to Lemma 5
B′ is then invertible. We have to show, that all the other rows b(L+1), . . . ,b(o)

can be written as linear combinations of the rows b(1), . . . ,b(L).
Let L < i ≤ o. First we show that the vector b′(i) (consisting of the first L ele-

ments of b(i)) can be written as a linear combination of the vectors b′(1), . . . ,b′(L).
In other words, we need to find a vector β(i) ∈ FL

q such that b′(i) = B′ · β(i).
Since B′ is invertible, β(i) can be computed by β(i) = B′−1 · b′(i).

To finish the proof, it remains to show that the vector β(i) fulfills the relation
b(i) =

∑L
j=1 β

(i)
j · b(j). Remember that β(i) was chosen in such a way that the

relation is fulfilled for the first L elements of b(i). In the following we show this
equality for every element b(i)

r with (L < r ≤ D) by induction. Note that, due to
the recurrence relation (7), we have b(i)

r =
∑L

j=1 γjb
(i)
r−j (i = 1, . . . , o, r > L).

r = L + 1:

b(i)
L+1 =

L∑
j=1

γj · b(i)
L+1−j =

L∑
j=1

γj ·
(

L∑
l=1

β
(i)
l · b(l)

L+1−j

)

=
L∑

l=1

β
(i)
l ·

⎛⎝ L∑
j=1

γj · b(l)
L+1−j

⎞⎠ =
L∑

l=1

β
(i)
l · bl

L+1

r ← r + 1:

b(i)
r =

L∑
j=1

γj · b(i)
r−j =

L∑
j=1

γj ·
(

L∑
l=1

β
(i)
l · b(l)

r−j

)

=
L∑

l=1

β
(i)
l ·

⎛⎝ L∑
j=1

γj · b(l)
r−j

⎞⎠ =
L∑

l=1

β
(i)
l · bl

r ��

Lemma 5. If the first L rows of B are linearly independent, then the matrix B′

is invertible.

Proof. Let’s assume that B′ doesn’t have full rank. Then there exists a linear
relation of the form

∑L
i=1 βi · B′

i = 0, where B′
i (i = 1, . . . , L) are the columns
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of B′. In other words, there exists an index j ∈ {1, . . . , L} such that B′
j =∑L

i=1, i=j δi ·B′
i.

Let L + 1 ≤ k ≤ D. If we denote by B′′
k the k-th column of the matrix B′′,

which we define to be given by the first L rows of B, we get due to the recurrence
relation (7)

B′′
k =

L∑
i=1

ηi ·B′
i =

L∑
i=1, i=j

ηi ·B′
i + ηj ·

L∑
i=1, i=j

δi ·B′
i =

L∑
i=1, i=j

(ηi + ηj · δi) ·B′
i.

Therefore, the rank of the matrix B′′ would be less than L and the vectors
b(1), . . . ,b(L) would be linearly dependent. ��

Remark 6: To study the question, which values of rank(B) occur in practice,
we carried out a number of experiments. For different parameter sets we created
10000 matrices B and computed their rank. Table 2 shows the results.

Table 2. Number of matrices B with rank L

(o, v, L) GF(2) GF(3) GF(4) GF(5) GF(7) GF(8) GF(16) GF(31) GF(256)

(8, 16, 5)
rank(B) = L 9037 9118 9722 9871 9974 10000 10000 10000 10000
B′ invertible 9037 9118 9722 9871 9974 10000 10000 10000 10000

(8, 16, 8)
rank(B) = L 9973 9980 9983 9984 9995 10000 10000 10000 10000
B′ invertible 9973 9980 9983 9984 9995 10000 10000 10000 10000

(20, 40, 15)
rank(B) = L 9981 9998 10000 10000 10000 10000 10000 10000 10000
B′ invertible 9981 9998 10000 10000 10000 10000 10000 10000 10000

(20, 40, 20)
rank(B) = L 9962 9983 9995 10000 10000 10000 10000 10000 10000
B′ invertible 9962 9983 9995 10000 10000 10000 10000 10000 10000

The experiments seem to show that for fields of cardinality ≥ 8 the rank of the
matrix B is always equal to L. Furthermore, the matrix B′ was always invertible
for these fields.

Proposition 2. Let (P ,Q, T ) be a UOV-scheme, whose public key is generated
by an LRS of length L ≤ o. Then we have rank(Q) = rank(B) ≤ L.

Proof. According to our assumption the matrix A is invertible. Therefore, the
proposition follows directly from equation (10). ��

Remark 7: Despite of the relation between the rows of Q, there is no obvious
relation between the columns of Q. In particular, there exists no LRS of small
length which creates Q.

Theorem 1. Let (P ,Q, T ) be a UOV scheme generated by an LRS of length
L ≤ o. Then we have rank(B|H) = rank(B) ≤ L.

Proof. Since B is a submatrix of (B|H), the rank of (B|H) can’t be less than
that of B. But, according to equation (11), the rank of (B|H) can’t be larger
than rank(Q) = rank(B), too. ��
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Theorem 1 states that for L < o the homogeneous quadratic parts of the public
polynomials are linearly dependent. In particular, of the o quadratic polynomi-
als of a public key generated by an LRS of length L < o, only L have linear
independent homogeneous quadratic parts. So, solving the equation P(x) = h
(o equations) is only as difficult as solving a system of L quadratic equations.
As a consequence of this, to achieve the maximal possible security, we should
choose the length of the LRS at least o1.

To check the correctness of these theoretical considerations, we carried out
a number of experiments with MAGMA [BC97]. For different parameter sets
(28, o, v, L) we created instances of our scheme and solved the corresponding
systems using the MAGMA command GroebnerBasis. Table 3 shows the results.

Table 3. Running time of the direct attack for different values of L

(28, o, v) (10, 20) (11, 22) (12, 24) (13, 26) (14, 28)
L = o 67 s 384 s 3071 s 23528 s 186382 s
L = o − 1 8.3 s 68 s 395 s 3215 s 24652 s
L = o − 2 1.7 s 8.4 s 67 s 408 s 3249 s

As the table shows, solving a UOV system with o equations generated by an
LRS of length L < o is only as difficult as solving a system with L equations.

6.2 Choice of L for Smaller Fields

For small fields (e.g. GF (16)) it might be useful to choose L < o. The reason
for this is that for small fields the needed number of equations is determined
by the length of the hash value and not by attacks against the scheme itself.
For example, for GF (16) one needs 40 equations to achieve a hash length of 160
bit. However, only 30 equations are needed to defend the scheme against direct
attacks [BF08]. So, it might be useful to choose the homogeneous quadratic part
of the last 10 public equations to be a linear combination of the quadratic parts
of the previous ones. The fact that the linear part of the public equations is
independent of the homogeneous quadratic part, guarantees the functionality of
the scheme. This strategy decreases the sizes of both public and private key by
about 25 %. Furthermore, key generation and signature generation/ verification
become faster.

We plan to study this idea (especially its effects on the security of the scheme)
further.

7 Security

In this section we look at known attacks against the UOV signature scheme and
study the effect of the special structure of our public key.
1 For smaller fields (e.g. GF (24)) it might be useful to choose L < o. (see Subsection 6.2).
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7.1 Direct Attacks

The most straightforward method to forge a signature for a message h is by
trying to solve the system P(x) = h directly, i.e. by an equation solver like XL
or a Gröbner Basis method like Buchbergers algorithm or Faugère’s F4/F5. We
carried out a number of experiments with MAGMA, which contains an efficient
implementation of the F4 algorithm [Fa99]. Before using the MAGMA command
GroebnerBasis, we had to fix some of the variables to create a determined
system. Since the number of solutions of an underdetermined UOV system is
approximately qv, it can be expected that, after fixing v of the variables, the
determined system has a solution. Table 4 shows the results of our experiments
on UOV-like schemes and random systems.

Table 4. Results of our experiments with direct attacks

(28, o, v, L) (10, 20, 10) (11, 22, 11) (12, 24, 12) (13, 26, 13) (14, 28, 14)
UOVLRS 67 s 384 s 3071 s 23528 s 186382 s
UOV 68 s 386 s 3068 s 23677 s 186425 s
random system 68 s 386 s 3072 s 23725 s 186483 s

As the table shows, the running time of direct attacks against our scheme
is nearly the same as for the standard UOV scheme and for random systems.
So, for o ≥ 26 equations [BF08] our scheme seems to be secure against direct
attacks.

Definition 9. Let p(x) = p(x1, . . . , xn) be a quadratic multivariate polynomial
and

dp(x, c) = p(x + c) − p(x) − p(c) + p(0)

its discrete differential. We define Hp to be the symmetric matrix such that

dp = xT ·Hp · c

For the matrix Hpi representing the quadratic part of the i-th public polyno-
mial we write in short Hi. Analogous, we denote the symmetric matrix rep-
resenting the homogeneous quadratic part of the i-th central polynomial by Qi

(i = 1, . . . , o).

7.2 UOV-Reconciliation

The goal of the UOV-Reconciliation attack is to find a change of variables which
brings the matrices Hi into UOV-form, which means that the lower right o × o
submatrix is the zeromatrix. By doing so, the attacker creates an equivalent
private key and therefore is able to forge signatures for arbitrary messages.

To achieve this goal, the attacker has to solve several multivariate quadratic
systems. The complexity of the attack is mainly determined by the complexity
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Table 5. Running time of the UOV-Reconciliation attack

(28,o,v,L) (10,20,10) ( 11,22,11) (12,24,12) (13,26,13) (14,28,14)
UOVLRS 66 s 385 s 3072 s 23526 s 186380 s
UOV 68 s 384 s 3074 s 23534 s 186423 s

of the first step which is the solving of a quadratic system of o equations in v
variables. Table 5 shows the time MAGMA needs for solving this initial system
for our scheme and the standard UOV scheme.

As the table shows, the special structure of our public key has only a negligible
effect on the running time of the UOV-Reconciliation attack.

Since, for the parameters proposed in Section 2, the UOV scheme is believed
to be secure against the UOV-Reconciliation attack, we can assume the same
for our scheme.

7.3 Rank Attacks

In this paragraph we look at the behavior of Rank attacks against the stan-
dard UOV and our scheme. To do this, we carried out experiments with 10000
instances of our scheme for different parameters (28, o, v, o). We observed that,
just as in the case of the standard UOV scheme, all the matrices Qi representing
the homogeneous quadratic parts of the central equations have full rank n. This
prevents the MinRank attack. Furthermore, all the variables x1, . . . , xn appear
in every of the o central equations, which prevents HighRank attacks.

7.4 UOV Attack [KP99]

The goal of this attack is to find the pre-image of the oil subspace O = {x ∈
Kn : x1 = · · · = xv = 0} under the affine invertible transformation T . To achieve
this, one forms a random linear combination P =

∑o
j=1 βjHj , multiplies it with

the inverse of one of the Hi and looks for invariant subspaces of this matrix.
For each parameter set (28, o, v, L) listed in the table we created 100 instances
of both schemes. Then we attacked these instances by the UOV-attack to find
out the number of trials we need to find a basis of T −1(O). Table 6 shows the
results.

Table 6. Average number of trials in the UOV-attack

(28,o,v,L) (5,7,5) (8,11,8) (12, 15,12) (15, 18,15)
UOVLRS 1725 530826 851836 1178392
UOV 1734 531768 852738 1183621

As the table shows, there is only a negligible difference between the number
of trials we need between our scheme and the standard UOV. Since for the
parameters proposed in Section 2 UOV is believed to be secure against this
attack, we can say the same for our scheme.
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7.5 Summary

As the previous four subsections showed, known attacks against the UOV signa-
ture scheme do not work significantly better in our case, which means that they
can not use the special structure of our public key. So, in this sense our scheme
seems to be secure and we do not have to adapt our parameter sets.

However, in the future we are going to study the security of our scheme under
other attacks, e.g. decomposition attacks [FP09]. It might also be possible that
dedicated attacks against our scheme exist. Still, since the statistical properties
of the public key are rather strong due to the use of m-sequences, we believe
that the development of such an attack is a hard task.

8 Parameters

Based on our security analysis (see previous section) we propose for our scheme
the same parameters as for the standard UOV signature scheme (see Section 2).
According to our considerations in Section 6, the length of the LRS should be
at least o. Such we get

q = 28, o = 26, v = 52, L = 26.

Table 7 compares our scheme with the scheme of [PB10] and the standard UOV
for this and a more conservative parameter set.

Table 7. Comparison of different UOV based schemes

public key private key hash size signature reduction
size (kB) size (kB) (bit) size (bit) factor (%)

UOV(28,26,52) 80.2 71.3 208 624 -
cyclicUOV(28,26,52) 13.6 71.3 208 624 83.0
UOVLRS(28,26,52,26) 11.0 71.3 208 624 86.3
UOV(28,28,56) 99.9 88.8 224 672 -
cyclicUOV(28,28,56) 16.5 88.8 224 672 83.4
UOVLRS(28,28,56,28) 13.5 88.8 224 672 86.4

As the table shows, the public key size of our scheme is only slightly smaller
than that of the cyclicUOV scheme of [PB10]. However, due to the good statis-
tical properties of our public key, we believe our scheme to be more secure.

9 Conclusion

In this paper we proposed a multivariate signature scheme whose public key is
mainly generated by a linear recurring sequence (LRS). By doing so, we were
able to reduce the public key size of the standard UOV scheme by up to 86 %.
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Moreover, the so obtained public keys have good statistical properties, which
makes it difficult to develop dedicated attacks against our scheme. We think
that our approach is an interesting idea on reducing the key size of multivariate
schemes. Points of research we want to address in the future include

– Exhaustive security analysis (including decomposition attacks).
– Extension of the strategy to other underlying fields. While in this paper we

have concentrated on an underlying field of 256 elements, we are planning
to use our strategy for other fields (especially GF(16) or GF(31)). Here, the
main points of our construction stay the same, while one has to study the
invertibility of the matrix A and the security of the scheme. Furthermore,
we are going to study the impact of the idea mentioned in Subsection 6.2.

– Use of pseudo-random number generators (PRNG’s) for generating the pub-
lic key. By the use of PRNG’s (for example AES in the OFB mode) we
will get public keys with even better statistical properties. Moreover, we
hope that this will bring us closer to the ”provably secure” UOV scheme of
[BP10].

Acknowledgements

The first author is supported by the Horst Görtz Foundation within the project
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Abstract. In this paper we consider the problem of securely instantiat-
ing Probabilistic Signature Scheme (PSS) in the standard model. PSS,
proposed by Bellare and Rogaway [3] is a widely deployed randomized
signature scheme, provably secure (unforgeable under adaptively chosen
message attacks) in Random Oracle Model.

Our main result is a black-box impossibility result showing that one
can not prove unforgeability of PSS against chosen message attacks using
blackbox techniques even assuming existence of ideal trapdoor permuta-
tions (a strong abstraction of trapdoor permutations which inherits all
security properties of a random permutation, introduced by Kiltz and
Pietrzak in Eurocrypt 2009) or the recently proposed lossy trapdoor per-
mutations [20]. Moreover, we show onewayness, the most common secu-
rity property of a trapdoor permutation does not suffice to prove even
the weakest security criteria, namely unforgeability under zero message
attack. Our negative results can easily be extended to any randomized
signature scheme where one can recover the random string from a valid
signature.

Keywords: PSS, Blackbox Reductions, Randomized Signature,
Standard Model.

1 Introduction

Probabilistic Signature Scheme (PSS) is one of the most known and widely de-
ployed provably secure randomized signature schemes. It was designed by Bel-
lare and Rogaway [3] as a generic scheme based on a trapdoor permutation (like
RSA). In [3], Bellare and Rogaway showed the scheme is secure in Random Ora-
cle (RO) Model [2]. Coron improved the previous security bound in [7]. Recently
in [8], PSS is proven secure even against fault attacks exploiting the Chinese
Remainder Theorem (CRT) implementation of RSA . However, all the previous
security proofs are valid only in RO model, where one assumes the existence of
ideal, truly random hash functions. Unfortunately truly random functions do not
exist and in practice, the “ideal” functions are instantiated with some efficient
hash functions. Hence it is important that the proofs are valid while replacing
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random oracles by a standard hash functions. Otherwise such proofs merely pro-
vide heuristic evidence that breaking the scheme may be hard (or there is no
generic attack against the scheme).

A number of papers [6,9,14,18], starting from famous results of Canetti et.
al. [6], showed that there are schemes secure in the Random Oracle model,
which are uninstantiable under standard model. Naturally, these results raise
concerns about the soundness of the schemes proven secure in random oracle
model. Particularly for widely deployed scheme like PSS, it is especially im-
portant to have an secure instantiation by a standard, efficiently computable
hash function so that we do not build our technology in vacuum. In this paper,
we ask essentially this particular question about PSS: Whether it is possible,
to securely instantiate PSS based on reasonable assumptions to the underlying
trapdoor permutation.

1.1 Our Results

Our main result is a general negative result to the above question. Roughly, we
extend all the negative results by Dodis et. al. [9] for Full Domain Hash (FDH)
to PSS. Specifically, we show the following

– There is no instantiation of PSS such that, unforgeability under chosen mes-
sage attack can be reduced to any security property of a random permutation
using black-box reduction techniques. As a random permutation satisfies al-
most all reasonable security notions, our result covers many of the standard
security notions, like inverting trapdoor permutation on a random point
(one-way), finding some bits of pre-image of a random point (partial domain
one-wayness), finding correlated inputs etc. Our result is perfectly valid even
if the hash functions used in PSS can query the trapdoor permutation and
digests are arbitrarily related to the responses.

– We also rule out any black box reduction from recently proposed Lossy
Trapdoor Permutations [20]. In Crypto 2010, Kiltz et. al. [17] has proven
IND-CPA security of OAEP based on Lossy Trapdoor Permutation. Hence
it is important to analyze whether positive result could be possible for
PSS.

– We also show that even the weakest security criteria , namely unforgeability
under no message attack cannot be black-box reduced to the one-wayness
of the trapdoor permutation if the randomness space in PSS is “super-
polynomial” in security parameter.

– All our results can easily be extended to the scenario when the adversary can
invert some points of his choice (with some restrictions) for a fixed bounded
number of times.

We would like to mention that our results does not completely rule out the pos-
sibility of instantiating PSS in standard model. A “whitebox” reduction, using
the code of the adversary, may still exist. On the other hand, it may be possible
to show a reduction from other cryptographic functions like homomorphic en-
cryption. Still, we believe our result is important from theoretical point of view



On the Impossibility of Instantiating PSS in the Standard Model 353

as it shows PSS requires special property of underlying trapdoor permutation
as opposed to “Only randomness of hash is sufficient” notion of random oracle
model.

1.2 Overview of Our Technique

We use the technique of two oracles due to Hsio and Reyzin [15] for our separation
results. We construct two oracles T and G such that T implements a ideal
trapdoor permutation and G can be used to forge the PSS scheme. However, G
does not help the attacker to break any security property of the ideal trapdoor
permutation. Informally, this ensures that a black-box security proof cannot exist
as any such proof should be valid against our T and G.

On a very high level our technique can be seen as an extension of the technique
of Dodis et. al. [9] to rule out black box reduction of FDH. Separation from a
random permutation is achieved in two steps. As the first step, we instantiate T
by permutation chosen uniformly at random from the set of exponentially many
permutations. Intuitively, G, the main forger oracle, should output a forgery
after checking whether the adversary truly has access to a signer by sending
polynomially many challenge messages. However the reduction could design the
underlying hash function in such a way, so that the digests of the messages
either collide with each other (hence reducing the number of points on which
inversion is needed) or the digest is the result one of the evaluation queries made
to the trapdoor permutation ( hence the reduction can get the signature from the
corresponding query by evaluating the hash function). For this reason we define
G to output the forgery only if the adversary can produce distinct signatures,
which were not a query to the trapdoor permutation during the computation of
digests, for all the challenge messages.

In the second step we show that a reduction algorithm (which does not have
access to inversion oracle ) can not produce valid, signature meeting both the
conditions with non-negligible probability. Hence to win any hard game, G is
of no use to the adversary. However, we construct an efficient adversary with
an access to a valid sign oracle (available in an unforgeability game) that can
either find a forgery on its own or can construct signatures satisfying all the
conditions of G. We stress that the efficient algorithm in [9], which precom-
putes all the hash values to check for the conditions, does not work efficiently
when the signature scheme is randomized. Specifically, when the random strings
are of super-logarithmic length, it is no longer possible for a polynomial time
algorithm to compute all possible hash values for even a single message. It might
very well happen that the computed digests meet the conditions but the digests
on which signer generated the signature do not meet the condition. To solve this
problem we use an elegant adaptive “evaluate on the fly” technique where we
sample polynomially many random strings and check for the conditions. If the
conditions are satisfied for the sampled digests, we repeatedly query the signer
with fresh random coins for multiple signatures of same message. We show that,
with probability exponentially close to 1, one gets either a set of valid signatures
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maintaining the conditions from the signer or could find a forgery during the
sampling stage.

1.3 Previous Results

A rich body of work [11,12,13,14,16,21] on blackbox separation exists in the liter-
ature starting from the seminal work of Impagliazzo and Rudich [16]. Regarding
the separation of random oracle from the standard model, the first result was
due to Canetti, Goldreich and Halevi [5,6] who showed an artificial albeit valid
signature scheme that can not be securely instantiated by standard hash func-
tions. Many such results [9,10,14,18] were subsequently published. To obtain our
separation results we use the two oracle technique of Hsiao and Reyzin[15]. The
most relevant results to our paper is the work of Dodis et. al. [9] and of Kiltz
and Pietrzak [18]. In [9], Dodis, Oliviera and Pietrzak showed that the popu-
lar Full Domain Hash (FDH) signature scheme can not be instantiated (using
blackbox technique) in standard model by a ideal trapdoor permutation. Kiltz
and Pietrzak [18] established that there is no blackbox reduction of any padding
based CCA secure encryption scheme from ideal trapdoor permutations. In [19],
Paillier showed impossibility of reduction of many RSA based signatures includ-
ing PSS from different security assumptions of RSA. However, their result is
based on an additional assumption (namely, instance non-malleability) of RSA.
In comparison, our result is more generic as we rule out blackbox reduction from
any property of random permutation.

1.4 Differences from Dodis et al’s Crypto’05 Paper [9]

Although our definition of oracles are quite similar to that in [9], difference comes
in when finally implementing a forgery. The technique of [9] is not readily ap-
plicable for randomized signatures. Specifically in case of PSS the forger cannot
force the signer to choose any particular random string. On the other hand, if
the randomness space is super-polynomial the forger cannot pre-compute all the
possible value of the hashes of any message. As a result the forger, as defined in
[9], cannot output a forgery when G aborts. Our contribution is in constructing
adaptive forger that can forge PSS with overwhelming probability even when
the randomness space is super-polynomial. Moreover, our technique to rule out
black-box reduction to one way trapdoor permutation is completely different.
Looking ahead, we show that when the randomness space is of super-polynomial
size, no Probabilistic Polynomial-Time Turing Machine (PPTM) can use a ran-
dom signature (over the choice of random string during signing) of any fixed
message to invert the one way trapdoor permutation.

2 Preliminaries
2.1 Notations

Throughout the paper, if x is a string, |x| denotes the length of the string. 1n

denotes the string of n many 1s. If S is a set |S| denotes the cardinality of the
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set. We use negl(n) to denote any function γ : N → [0, 1] where for any constant
c > 0 there exist n0 such that for all n > n0; γ(n) < 1/nc. We call a function
f(n) to be super-polynomial if for any constant c > 0, there exists n0 such that
for all n > n0, f(n) > nc.

2.2 Trapdoor Permutations (TDPs)

Definition 1. A trapdoor permutation family is a triplet of PPTM (Tdg, F
, F−1). Tdg is probabilistic and on input 1n outputs a key-pair (pk, td) ←R

Tdg(1n). F (pk, .) implements a permutation fpk over {0, 1}n and F−1(td, .) im-
plements the corresponding inverse f−1

pk .

The most standard security property of TDP is one-wayness which says that it
is hard to invert a random element without knowing the trapdoor. Formally, for
any PPTM A

Pr[(pk, td) ←R Tdg(1n), x ←R {0, 1}n : A(fpk(x)) = x] ≤ negl(n).

Many other security notion for Trapdoor Permutations are known. Like [9,18],
we consider a wide class of security properties using the notion of δ-hard games.

2.3 Hard Games

A cryptographic game consists of two PPTMs C (Challenger) and A (Prover)
who can interact over a shared tape. After the interaction, C finally outputs a bit
d. We say, A wins the game if d = 1 and denote it, following [9], by 〈C,A〉 = 1.

Definition 2. A game defined as above is called δ-hard game if for all PPT A
(in the security parameter n) the probability of win , when both C and A has
oracle access to t uniform random permutations π1, π2, · · · , πt over {0, 1}n, is at
most negligible more than δ. Formally C is a δ-hard game if for all PPTM A

AdvC(A, n) = Pr[〈Cπ1,π2,··· ,πt , Aπ1,π2,··· ,πt〉 = 1] ≤ δ + negl(n)

The hardness of the game C (denoted by δ(C)) is the minimum δ such that C is
δ-hard.

For cryptographic games like one-wayness, partial one-wayness, claw-freeness;
δ = 0. For the game of pseudo-randomness δ = 1/2. The notion of δ-hard game
was considered in [18] as a generalization of hard games considered in [9]. It was
pointed out in [18] that the result of [9] can easily be extended to this notion.

2.4 Ideal Trapdoor Permutations

The notion of Ideal Trapdoor permutation was coined in [18]. To remain consis-
tent with literature, we follow the same notion.

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. We say that TDP is
secure for δ-hard game C if for all PPTM A, AdvC(A, n) − δ(C) is negligible
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even when the random permutations in the definition of hard game is replaced
by TDP . Formally, TDP is secure iff,

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt)〉 = 1] ≤ δ + negl(n),

where (pki, tdi) ←R Tdg(1n) for i = 1, · · · t.

Definition 3. TDP is said to be an ideal trapdoor permutation if it is secure
for any δ-hard game C.

We stress that, ideal trapdoor permutation does not exist (see [9] for proof).
However as we are proving negative result, showing that PSS cannot be re-
duced to ideal trapdoor permutation (hence to any hard game) makes our result
stronger. This implies that PSS cannot be black-box reduced to security notions
like collision resistant hashing, pseudo-random functions, IND-CCA secure public
key encryption schemes etc.

2.5 Lossy Trapdoor Permutations(LTDPs)

Lossy Trapdoor Functions were introduced by Peikert et. al. in [20]. In this
paper we consider a straightforward generalization to permutations. A family of
(n, l) Lossy Trapdoor Permutations (LTDPs) is given by a tuple (S,F ,F ′) of
PPTMs. S is a sampling algorithm which on input 1 invokes F and on input
0 invokes F ′. F (called “Injective Mode”) describes a usual trapdoor permuta-
tion; i.e. it outputs (f, f−1) where f is a permutation over {0, 1}n and f−1 is
the corresponding inverse. F ′ (called “Lossy Mode”) outputs a function f ′ on
{0, 1}n with range size at most 2l. For any distinguisher D, LTDP-Advantage is
defined as

Advltdp
(F ,F ′),D =

∣∣∣Pr[Df (.) = 1 : (f, f−1) ←R F ] − Pr[Df ′
(.) = 1 : f ′ ←R F ′]

∣∣∣.
We call F “lossy” if it is the first component of some lossy LTDP.

3 Signature Schemes

A signature scheme (Gen, Sign, Verify) is defined as follows:
- The key generation algorithm Gen is a probabilistic algorithm which given

1k, outputs a pair of matching public and private keys, (pk, td).
- The signing algorithm Sign takes the message M to be signed, the public

key pk and the private key td, and returns a signature σ = Signtd(M). The
signing algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate signa-
ture σ′ and pk. It returns a bit Verifypk(M,σ′), equal to one if the signa-
ture is accepted, and zero otherwise. We require that if σ ← Signtd(M), then
Verifypk(M,σ) = 1.
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3.1 Security of a Signature Scheme

In the existential unforgeability under an adaptive chosen message attack sce-
nario, the forger can dynamically obtain signatures of messages of his choice and
attempts to output a valid forgery. A valid forgery is a message/signature pair
(M,x) such that Verifypk(M,x) = 1 whereas the signature of M was never
requested by the forger.

3.2 Probabilistic Signature Scheme(PSS)

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. PSS uses a triplet H =
(h, g1, g2) of hash functions such that, h : {0, 1}∗ → {0, 1}k1, g1 : {0, 1}k1 →
{0, 1}k0 and g2 : {0, 1}k1 → {0, 1}k−k0−k1−1, where k, k0 and k1 are parameters.

Gen(1k)

1. Return (pk, td) = Tdg(1k)

Signtd(m)

1. r ← {0, 1}k0

2. ω ← h(m‖r)
3. r∗ ← g1(ω) ⊕ r
4. y ← 0‖ω‖r∗‖g2(ω)
5. Return σ = F−1(td, y).

Verifypk(m,σ)

1. Let y = F (pk, σ)
2. Parse y as 0‖ω‖r∗‖γ. If the parsing

fails return 0.
3. r ← r∗ ⊕ g1(ω)
4. If h(m‖r) = ω and g2(ω) = γ return

1.
5. else return 0.

Any PSS signature scheme can be instantiated by specifying the triplet of hash
functions H = (h, g1, g2) and the trapdoor permutation TDP . PSSTDP

H be the
PSS signature scheme instantiated by H and TDP . For any H = (h, g1, g2), the
PSS transformation described above is defined as

m r

ω

h

0 r∗ g2(ω)

g1(ω)

g1

g2

Fig. 1. PSSTDP
H : The components of the image y = 0‖ω‖r∗‖g2(ω) are darkened. The

signature of m is F−1(td, y).
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PSS
fpk

H (m‖r) = 0‖h(m‖r)‖(r ⊕ g1(h(m‖r))‖g2(h(m‖r)).

PSS
fpk

H (m‖r) is in fact the darkened area in Figure 1, y = 0‖ω‖r∗‖g2(ω). Note,
h, g1, g2 can be oracle circuits with oracle access to fpk. For the rest of the paper,
PSSTDP

H denotes the signature scheme, where as PSS
fpk

H (·) is the PSS transfor-
mation during Sign procedure before applying the trapdoor permutation. From
the context these two notations are easily distinguishable.

The following observation is very important to our technique.

Observation 1. A collision after the PSS transformation implies collision in
the random space. In other words,

PSS
fpk

H (M1‖r1) = PSS
fpk

H (M2‖r2)

implies r1 = r2.

As both the digests are same, ω1‖r∗1‖γ1 = ω2‖r∗2‖γ2; we have ω1 = ω2 and
r∗1 = r∗2 . This leads to r1 = r2. So for two distinct random strings r1 and r2,
the digests of PSS

fpk

H and hence the signatures are always different (irrespective
of whether the messages are same or not)! As a side note, all our results are
valid not only for PSS, but for any randomized signature scheme where the
randomness is recoverable and hence the Observation 1 holds true.

4 No Blackbox Reduction from One Way Trapdoor
Permutations

One-wayness is the most common security property of a trapdoor permutation.
All the previous security proofs of PSS in Random Oracle model are based on one
wayness of underlying trapdoor permutation (specifically RSA). In this section
we consider the possibility of reducing security of PSS from one-wayness of a
trapdoor permutation, but in standard model. We show that when k0 = ω(logn),
one cannot prove PSS secure via a blackbox reduction from one way trapdoor
permutation even if the forger is never allowed to query the signer.

Recall that, r1 �= r2 implies PSS
fpk

H (0‖r1) �= PSS
fpk

H (0‖r2). So the set
{PSS

fpk

H (0‖r)|r ∈ {0, 1}k0} is of super-polynomial size. Even if G returns one
random signature (from a choice of superpolynomially many) of message 0, it
is unlikely to be of any use of the adversary intended to invert TDPT on a
uniformly chosen element z.

Following [15], Proposition 1, to rule out blackbox reductions, it is enough to
construct two oracles T and G such the following holds:

– There exists an oracle PPTM TDP such that TDPT implements a trapdoor
permutation.

– There exist an oracle PPTM A such that AT,G finds a forgery under chosen
message attack for PSSTDP T

H .
– TDPT is an one-way trapdoor permutation relative to the oracles T and

G. That is, TDPT is an one-way permutation even if the adversary is given
oracle access to T and G.
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Definition of T. For any n ∈ N, Choose 2n + 1 permutations f0, f1, f2, · · · ,
f2n−1 and g uniformly at random from the set of all permutations over {0, 1}n.
Now the oracle T is defined as follows:

– T1(td) → g(td) (generate public key from the trapdoor)
– T2(pk, y) → fpk(y) (evaluate)
– T3(td, z) → f−1

g(td)(z) (inversion)

ImplementingTDP T . We use T =(T1, T2, T3) in the following way to construct
(in the functional sense)the trapdoor permutation TDPT =(Tdg, FT , F−1

T ).

– Tdg(1n) chooses a uniform random td ← {0, 1}n and computes the corre-
sponding public key as pk = T1(td) and outputs (td, pk).

– FT (pk, y) returns T2(pk, y).
– F−1

T (td, z) returns T3(td, z).

It is easy to check that as TDPT implements a trapdoor permutation, as g(td) =
pk.

Description of G. The oracle G takes as input k ∈ N and H ∈ {0, 1}∗. G

selects an r ∈R {0, 1}k0 and returns f−1
pk (PSS

fpk

H (0‖r)). Here pk is the public
key generated by Tdg(1k).

As G always outputs a forgery for message 0, we get the following result.

Lemma 1. There is a PPTM A such that AG outputs a forgery for PSS signa-
ture scheme.

G Does Not Break Security of TDP T

Next we shall prove that TDPT is one way, even relative to G. This is not at
all obvious as G always provides forgery of the form f−1

pk (PSS
fpk

H (.)) for a H of
our choice! But we note that G(.) samples one z′ from a set of superpolynomial
size and outputs f−1

pk (z). Even if the adversary sets PSS
fpk

H (0, r) for one r to
be the challenge z she received, probability that fpk(G(.)) = z is negligible.
On the other hand if fpk(G(.)) �= z, then knowledge of inverse of some other
point does not help the adversary to find f−1

pk (z) with significant probability for
a pseudorandom fpk. Following the above discussion we have Lemma 2, whose
detailed proof is given in the full version [4].

Lemma 2. A random permutation π : {0, 1}n → {0, 1}n is one way even if
adversary is allowed to make one inverse query on any input except the challenge.

Now, we can claim that TDPT is one way even relative to G.

Lemma 3

Pr[AT,G(pk, z) = x : FT (pk, x) = z] ≤ negl(n),

where x ←R {0, 1}n and (pk, td) ← Tdg(1n).
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For a proof of the above lemma, see [4].
We get the main result of this section as follows

Theorem 1. There is no blackbox reduction of Security under no message attack
of Probabilistic Signature Scheme with superpolynomial randomness space from
Oneway Trapdoor Permutations.

5 No Blackbox Reduction from an Ideal Trapdoor
Permutation

The following theorem states that there is no adversary that can break the secu-
rity of the TDPT using any adversary (in black-box way) breaking PSSTDP T

H

by chosen message attack when TDPT is an ideal permutation.

Theorem 2. There is no black-box reduction from a family of ideal trapdoor
permutations to the existential unforgeability against chosen message attack of
the PSS signature scheme.

Like the previous section, we shall construct a oracle G such that there exist a
PPTM B such that BG can forge PSS although TDPT is secure even relative
to G. We define, T and TDPT as in section 4.

Definition of G. The oracle G works as follows. On input the description of
the hash function triplet H = (h, g1, g2), and the security parameter n, it selects
t = max(|H |, n) messages m1,m2, · · ·mt uniformly at random from {0, 1}∗ \ {0}
and outputs them as a set of challenge messages. G expects valid and distinct
signatures of all the messages. G also keeps a list (initially empty) of description
of input hash functions, the challenge messages and the forgery it returns. If the
description of the hash matches then G outputs the same challenge messages.
If it gets valid signatures (as described below) then it outputs the previously
returned forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · ,
σt), G checks for the following conditions.

1. σ1, · · · , σt are valid signatures for m1, · · · ,mt. Recover r1, · · · , rt such that,

PSS
fpk

H (m1‖r1) = fpk(σ1), · · · , PSS
fpk

H (mt‖rt) = fpk(σt).

2. σi �= σj (or equivalently PSS
fpk

H (mi‖ri) �= PSS
fpk

H (mj‖rj) ) for all 1 ≤ i <
j ≤ t.

3. {PSS
fpk

H (m1‖r1), · · · , PSS
fpk

H (mt‖rt)} ∩ Y PSSH

fpk
(r1, · · · , rt) = ∅ where

Y PSSH

fpk
(r1, · · · , rt) ={fpk(x)|∃i, 1 ≤ i ≤ t,

PSS
fpk

H (mi‖ri) makes the oracle query x}.

If all the above conditions are satisfied then G chooses one r uniformly at random
from {0, 1}k0 and returns f−1

pk (PSS
fpk

H (0‖r)). Here pk is the public key generated
by Tdg(1k).
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G Breaks the Security of PSST DP T

H

Lemma 4. There is a PPTM BG that can mount existential forgery by chosen
message attack on PSS with overwhelming probability.

Proof. The goal of BG is to either generate a forgery on it’s own or use the sign
oracle to get signatures of m1, · · · ,mt such that Condition 1, Condition 2 and 3
get satisfied. Then BG can use output of G to produce forgery for the message
0. We describe two constructions of BG depending on size of the randomness
space or k0.

Case I: k0 = O(log n). In this case BG precomputes PSS
fpk

H (mi‖r) for all
r ∈ {0, 1}k0 and i = 1 · · · t and checks whether the Condition 3 from Section 5
would get satisfied or not for any possible choice of r by the Sign oracle. If not
B can find some mi,mj , ri, rj , x such that

PSS
fpk

H (mi‖ri) = fpk(x),

where PSS
fpk

H (mj‖rj) makes the oracle query fpk(x). In this case B can easily
produce the forged signature x for the message mi.

Otherwise to take care of Condition 2, BG calls the Sign oracle to get valid
signatures for message mi’s one by one for i = 1 to t. After receiving the ith

signature σi it always recovers the randomness ri and checks whether

PSS
fpk

H (mi‖ri) = PSS
fpk

H (mj‖ri)

for some i < j ≤ t. Because of Observation 1 it is sufficient to check with the
fixed ri for collision detection purposes. If the above condition gets true again BG

can readily output a forged signature for message mj as σi. Otherwise, BG ends
up with σ1, · · · , σt such that all the three conditions in Section 5 are satisfied. So
BG can easily use G to produce a forgery for the message 0. Hence BG succeeds
to forge PSS with probability 1.

Case II: k0 = ω(log n). In this case the randomness space is of superpolyno-
mial size, hence BG cannot precompute all the possible outputs of PSS

fpk

H (m‖·)
even for a single message m. However, we observe that the “no collision” re-
quirement or Condition 2 can easily be taken care of by a technique similar to
the previous one. To take care of Condition 3, we adopt a sampling procedure.
BG works in two phases. In Phase-I, B samples some random r’s from {0, 1}k0

uniformly and simulate the signing procedure by the real Sign oracle that would
be queried in Phase-II. Then the probabilities that Condition 3 gets satisfied in
Phase-I or in Phase-II are essentially the same. We set our parameters such a
way, with high probability either Condition 3 does not hold in Phase I (hence
direct forgery) or it holds in Phase-II (forgery via oracle G, provided Condition
2 holds).
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Algorithm 1. BG : Phase-I
1: rk

i ←R {0, 1}k0 : 1 ≤ i ≤ t, 1 ≤ k ≤ t

2: V = {PSS
fpk

H (mi‖rk
i ) : 1 ≤ i ≤ t, 1 ≤ k ≤ t}

3: Y = {fpk(x)| ∃i, k, 1 ≤ i ≤ t, 1 ≤ k ≤ t

s. t. PSS
fpk

H (mi, r
k
i ) makes oracle query fpk(x)}

4: if V ∩ Y 
= ∅ then
5: Output Direct Forgery
6: end if

Success Probability of BG in Case II. In Line 21 of Algorithm 2, Condition
1 and Condition 2 are always satisfied. So BG can abort only in two ways.

1. In Line 16 of Algorithm 2, Σi becomes empty for some i, 1 ≤ i ≤ t.
2. In Line 21 of Algorithm 2, Condition 3 gets violated. r1, · · · , rt be the random

strings recovered from σ1, · · · , σt. Violation of Condition 3 over here implies
there exists some i, j, 1 ≤ i, j ≤ t, i �= j such that

PSS
fpk

H (mi‖ri) = fpk(x),

where PSS
fpk

H (mj‖rj) makes the oracle query x.

Moreover, in both the cases no forgery was found in Algorithm 1.
Let us consider the case where for some i, Σi is empty. It implies for some i,

for all k = 1, · · · , t, σk
i ∈ Xi,k and hence was removed from Σi . Fix some i . Let

us call the set of r for which PSS
fpk

H (mi, r) = fpk(x) and x was queried while
computing PSS

fpk

H (mi, r) as BAD. Suppose

Prr[r ∈ BAD] = θ.

Now the event Σi = ∅ and no forgery was found in Phase-I implies that the
random strings r(i), sampled in Phase 1 were not from the BAD set and all of
r1
i , r

2
i , · · · , rt

i was from BAD. As Sign and B samples independently, probability
of Σi = ∅ is θt(1−θ)t ≤ 2−t. Taking union bound over all i, the probability that
for some i, Σi is empty is at most t/2t.

For the second case, the chosen σis were not queried while computing them;
rather one σi was queried while computing some other σj . Recall that maximum
number of fpk queries (made by PSS

fpk

H ) while computing one signature is |H |.
As, for any j Σj ≤ t, for each j = 1, 2, · · · , t; j �= i, maximum number of fpk

queries made while computing Σj is at most t|H |. So overall, for all j �= i, total
number of fpk queries made by the PSS

fpk

H was t2|H |. As, there are 2|r| choices
of random string, implying 2|r| choices for each σk

i , and Sign runs each time
with independent random coins, probability that at least one σk

i was from those
t2|H | many fpk queries is at most t4

2k0 .
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Algorithm 2. BG : Phase-II
1: for i = 1 to t do
2: σ1

i ← Sign(mi), · · · , σt
i ← Sign(mi)

3: Σi = {σ1
i , · · · , σt

i}
4: Recover r1

i , · · · , rt
i from σ1

i , · · ·σt
i using Verify.

5: for j = i + 1 to t do

6: if PSS
fpk

H (mi‖rk
i ) == PSS

fpk

H (mj‖rk
i ) for some 1 ≤ k ≤ t then

7: Output Direct Forgery (mj , σ
k
i )

8: end if
9: end for

10: for k = 1 to t do
11: Xi,k ← {x|PSS

fpk

H (mi‖rk
i ) makes oracle query fpk(x)}

12: if σk
i ∈ Xi,k then

13: Σi ← Σi \ {σk
i }

14: end if
15: end for
16: if Σi = ∅ then
17: Output ⊥
18: end if
19: Pick any σi ∈ Σi

20: end for
21: if σ1, · · · , σt satisfy Condition 1, Condition 2 and Condition 3 from Section 5

then
22: Output forgery via G
23: else
24: Output ⊥
25: end if

Hence we get that

Pr[BG →⊥]
≤ Pr[∃i;Σi = ∅] + Pr[∃i, j;σi ∈ { fpk queries made while computing σj }]

≤ t

2t
+

t4|H |
2|r|

Putting t = max(|H |, n), |r| = ω(logn) and |H | ≤ nc for some constant c,
Pr[BG →⊥] is negl(n). ��

G Does Not Break the Security of TDP T

Lemma 5. For any oracle PPTM B and any δ-hard game C (with t = t(n)
implicitly defined by C),

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt),G〉 = 1] ≤ δ + negl(n),

where (pki, tdi) ←R Tdg(1n) for i = 1, · · · t.
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Proof. The proof of the above lemma is essentially same as in proof of Lemma
2 in [9], where one argues in the absence of oracle G the claim holds because of
computational indistinguishability of fpk from a random permutation. Moreover,
Lemma 6 below states the accepting condition of oracle G can only be satisfied
with a negligible probability. ��

Lemma 6. Let f be a random permutation on {0, 1}n and c ≥ 1 be a constant,
m1, · · · ,mt be n-bit values with t = max(|H |, n). For any oracle TM A which
makes at most nc oracle queries, we have (the probability is over randomness of
f)

Pr[Af → (H,x1, · · · , xt)] = negl(n)

where, |H | ≤ nc and the output satisfies the following conditions for some k0-bit
r1, · · · , rt

1. f−1(PSSf
H(m1‖r1)) = x1, · · · , f−1(PSSf

H(mt‖rt)) = xt .
2. f−1(PSSf

H(mi‖ri)) �= f−1(PSSf
H(mj‖rj)) for all 1 ≤ i < j ≤ t.

3. {PSSf
H(m1‖r1), · · · , PSSf

H(mt‖rt)} ∩ Y PSSH

f (r1, · · · , rt) = ∅, where

Y PSSH

f (r1, · · · , rt) ={f(x)|∃i, 1 ≤ i ≤ t,

PSSf
H(mi‖ri) makes the oracle query x}.

Lemma 6 can proved following the same technique of Lemma 3 of [9]. For a
proof, we refer the reader to the full version of this paper [4].

6 No Reduction from Lossy Trapdoor Permutations

Lossy Trapdoor Functions, introduced by Peikert et. al. has gained considerable
attention in recent years. In a recent work [17], has proven IND-CPA security
of OAEP under Lossy Trapdoor Permutation. Moreover different constructions
like IND-CCA secure encryption, which cannot be reduced to standard trapdoor
permutation using blackbox techniques, were proven reducible to Lossy Trap-
door Permutations. In this section we show that there is no blackbox reduction
of existential unforgeability of PSS against chosen message attack from Lossy
Trapdoor Permutations as well. Specifically, Let LTDP = (S, F, F ′) be a family
of Lossy Trapdoor Permutation. We define the output of PSS based on LTDP as
σ = f−1(PSSH(m||r)) where (f, f−1) ∈ F . Note that, while instantiating PSS
by a lossy TDP, we consider the trapdoor permutation to be the injective mode
of the TDP.

Theorem 3. There is no blackbox reduction of existential unforgeability against
chosen message attack of Probabilistic Signature Scheme from Lossy Trapdoor
Permutations.

Proof. To prove Theorem 3, we need new definitions of the oracles.
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Definition of T . T is defined as a pair (T, T ′). Choose 2n + 1 permutations
f0, · · · , f2n−1 and g uniformly at random from the set of all permutations over
{0, 1}n. Moreover choose 2n functions e0, · · · , e2n−1 uniformly at random from
the set of all functions from {0, 1}n to {0, 1}l.

Oracle T works as follows:

– T1(td) → g(td) (generate public key from the trapdoor)
– T2(pk, y) → fpk(y) (evaluate)
– T3(td, z) → f−1

g(td)(z) (inversion)

On the other hand T ′ is defined as follows

– T ′(pk, x) = fpk(1n−l||epk(x))

Now we define the LTDPT,T ′
= (S, (F, F−1), F ′) as follows

– S(b) If b = 1, choose a uniform random td ← {0, 1}n computed pk = T1(td)
and return (pk,td), otherwise choose a uniform random pk ← {0, 1}n and
return (pk,⊥).

– F (pk, y) returns T2(pk, y).
– F−1(td, z) returns T3(td, z).
– F ′(pk, y) returns T ′(pk, x).

Lemma 7. LTDPT,T ′
implements a secure (n, l) Lossy Trapdoor Permutation

when l = O(n
1
c ) for a positive constant c.

Proof. Recall that, to show the security of LTDPT,T ′
, we need to argue that

for any efficient distinguisher D, |Pr[DF = 1] − Pr[DF ′
= 1]| is negligible.

Consider a random function e′ : {0, 1}n → {0, 1}l and a random permutation π :
{0, 1}n → {0, 1}n. It is easy to check that π(1n−l||e′()) has the same distribution
of a random permutation until a collision in e′. e′ being a random function, the
collision probability is q2/2l, which is negligible for q = O(nc1)) for some constant
c1 > 0.

Now using the fact that a function (permutation) chosen uniformly at random
from the set of exponentially many functions (permutations) is indistinguishable
form a random function (permutation), the lemma follows. ��

Definition of G. Informally, G will work exactly the same way as in the pre-
vious case when the underlying permutation is in injective mode. When the
permutation is lossy G can abort instead of returning a forgery. So effectively,
when instantiated by the lossy mode G always aborts and in injective mode G
aborts if the conditions are not satisfied.

In more detail, G works in the following way. On input the description of the
hash functions h, g1 and g2, it selects t (to be fixed later) messages m1,m2, · · ·mt

uniformly at random from {0, 1}∗ \ 0 and outputs them as a set of challenge
messages. G expects valid and distinct signatures of all the messages. G also
keeps a list (initially empty) of description of input hash functions, the challenge
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messages and the forgery it returns. If the description of the hash matches then
G outputs the same challenge messages. If it gets valid signatures (as described
below) then it outputs the same forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · ,
σt), G first checks whether the signatures are valid and distinct.

– F (pk, σi) = PSS
fpk

H (mi‖r) for some r. This signature verification is to make
sure that that calling algorithm has access to signing oracle.

– σi �= σj for all i �= j.

If the above two conditions are satisfied then G finds the random strings used
in the signatures. Let r1, r2, · · · , rt be the random strings

– {F (pk, σ1), F (pk, σ2), · · · , F (pk, σt)} ∩ YT = ∅ where

YT = {F (pk, x)|∃i, 1 ≤ i ≤ t, PSS
fpk

H (mi‖ri) queries F (pk, x)}.
Finally G checks whether F is the lossy mode1, if yes it aborts; otherwise G

chooses one r uniformly at random from {0, 1}k0 and computes the PSS hash of
0‖r as y = 0‖h(0‖r)‖g1(h(0‖r))⊕ r‖g2(h(0‖r)). Finally it returns the forgery as
(0, F−1(td, y)).

In order to use G to distinguish the lossy and the injective mode, any dis-
tinguisher has to construct a satisfying assignment of G in injective mode. By
Lemma 6, it happens with negligible probability and we get the following result.

Lemma 8. Suppose k = O(n
1
c ) for a positive constant c. LTDPT,T ′

implements
a secure (n, k) Lossy Trapdoor Permutation even relative to G.

Existence of a forger BG for PSS using the injective mode of the LTDP is satisfied
by Lemma 4. This completes the proof of Theorem 3. ��

7 No Reduction from Hard Games with Inversion

Like [9], our result can also be extended to the hard games with inversions.
Informally, in a hard game with bounded inversion C, the adversary is allowed
to make polynomial q(n) many inversion queries except on some points defined
in the game (for one way game adversary is not allowed to make inversion queries
on the challenge she received). Following [9], if we modify G to ask for signatures
of |H | + q(n) messages and modify Lemma 6 accordingly, we get the following
two theorems.

Theorem 4. There is no blackbox reduction of security against existential
forgery under chosen message attack for PSS from any hard game with poly-
nomial number of inversion queries.

Theorem 5. There is no blackbox reduction of security against existential
forgery against zero message attack for PSS from an oneway trapdoor permuta-
tion, even with polynomial number of inversion queries.
1 As description of F can be hardwired in G, G can easily check the mode of F by

finding the possible inverses.
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8 Conclusion

Following the negative results, on generic insecurity of FDH by Dodis et. al [9] and
of OAEP by Kiltz and Pietrzak [18] in standard model, we show security ofPSS also
can not be black box reduced to any property of an ideal trapdoor permutation.
Moreover, we also show one can not even hope to achieve security of PSS based on
Lossy Trapdoor Permutations. On the contrary recently a secure instantiation of
OAEP has been realized based on Lossy Trapdoor Permutations [17].
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Abstract. Undeniable signatures, introduced by Chaum and van
Antwerpen, and designated confirmer signatures, introduced by Chaum,
allow a signer to control the verifiability of his signatures by requiring
a verifier to interact with the signer to verify a signature. An impor-
tant security requirement for these types of signature schemes is non-
transferability which informally guarantees that even though a verifier
has confirmed the validity of a signature by interacting with the signer,
he cannot prove this knowledge to a third party. Recently Liskov and
Micali pointed out that the commonly used notion of non-transferability
only guarantees security against an off-line attacker which cannot influ-
ence the verifier while he interacts with the signer, and that almost all
previous schemes relying on interactive protocols are vulnerable to on-
line attacks. To address this, Liskov and Micali formalized on-line non-
transferable signatures which are resistant to on-line attacks, and pro-
posed a generic construction based on a standard signature scheme and
an encryption scheme. In this paper, we revisit on-line non-transferable
signatures. Firstly, we extend the security model of Liskov and Micali
to cover not only the sign protocol, but also the confirm and disavow
protocols executed by the confirmer. Our security model furthermore
considers the use of multiple (potentially corrupted or malicious) con-
firmers, and guarantees security against attacks related to the use of
signer specific confirmer keys. We then present a new approach to the
construction of on-line non-transferable signatures, and propose a new
concrete construction which is provably secure in the standard model.
Unlike the construction by Liskov and Micali, our construction does not
require the signer to issue “fake” signatures to maintain security, and
allows the confirmer to both confirm and disavow signatures. Lastly, our
construction provides noticeably shorter signatures than the construction
by Liskov and Micali.

Keywords: signatures, on-line non-transferability, standard model.

1 Introduction

An ordinary signature scheme provides public verifiability i.e. anyone is able
to verify the validity of a given signature using the public key of the signer.
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While this property is useful in many scenarios, it might not always be desirable.
For example, a signer who signs a sensitive message might prefer to be able to
control who can verify the validity of his signature. Chaum et al. [5] addressed
this problem with their proposal of undeniable signatures in which a verifier
is required to interact with the signer to verify a signature. Furthermore, to
preserve non-repudiation, the signer is also able to prove invalidity of a signature
through a disavow protocol. Hence, in a dispute, the signer will either be able
to confirm or disavow a purported signature. However, in some scenarios, a
signer might become unavailable or might refuse to cooperate with a verifier, in
which case the validity of a signature cannot be determined. To address this,
Chaum [4] introduced designated confirmer signatures in which a third party,
the confirmer, can interact with a verifier to confirm or disavow a signature on
behalf of the signer. Furthermore, the confirmer can, in the case of a dispute,
extract a publicly verifiable signature (of the signer) from a valid designated
confirmer signature. Since their introduction, a number of undeniable schemes
and designated confirmer schemes have been proposed, e.g. see [3,7,12,14,2,8].

Off-line and On-line Non-transferability. An important security notion for these
types of signature schemes is non-transferability. Intuitively, non-transferability
guarantees that once a verifier has verified a signature and is convinced about
its validity, he cannot transfer this conviction to a third party. This is achieved
by ensuring that a verifier is able to simulate a transcript of the interaction with
the signer/confirmer i.e. any “evidence” of validity obtained through the inter-
action, could have been generated by the verifier himself. A scheme providing
this property is said to be off-line non-transferable. However, Liskov and Micali
[13] pointed out that almost all1 previous schemes relying on interactive proto-
cols to provide off-line non-transferability are vulnerable to on-line attacks, i.e.
an attacker who is present while the verifier interacts with a signer/confirmer
might be able to determine the validity of a signature by influencing messages
sent by the verifier. A scheme preventing these types of attacks is said to be on-
line non-transferable and is constructed by enabling the verifier to interactively
simulate the interaction with a signer/confirmer. To preserve soundness of the
scheme, only the verifier should be able to simulate a proof, and to facilitate
this, Liskov and Micali [13] assumed the verifier holds a public/private key pair
i.e. to simulate the interaction between the signer/confirmer and a verifier, the
private key of the verifier is required. Note that this approach to on-line non-
transferability requires that the verifier knows the private key corresponding to
his public key to maintain security. More specifically, if it is possible for a verifier
to convince a third party that he does not know his private key (e.g. by gener-
ating his public key by applying a hash function to a random seed pkV = H(x),
and then presenting x to the third party), the scheme will no longer provide on-
line non-transferability. To prevent this type of malicious behavior, verifier key
registration is required i.e. a verifier should prove knowledge of his private key
when registering his public key (see [13] for further discussion of this). In this

1 See Related Work below for a few exceptions in the random oracle model.
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paper, we adopt the same general approach as [13], assume verifiers are equipped
with public/private key pairs, and will furthermore explicitly model verifier key
registration in our security model2.

In [13], Liskov and Micali illustrated the feasibility of constructing an on-
line non-transferable signature scheme under the above described assumption of
verifier key registration. More specifically, they proposed a generic construction
based on ind-cpa secure public key encryption and uf-cma secure signatures.
The resulting scheme provides on-line non-transferability of an interactive sign
protocol through which the signer both constructs and proves validity of a sig-
nature. Furthermore, the scheme supports the use of confirmers and is proved
secure in the standard model. However, to achieve on-line non-transferability, a
signer has to be willing to issue “fake” signatures to anyone requesting them.
This is essential since a verifier will not be able to simulate the sign protocol
without the ability to ask the signer for fake signatures. This drawback limits the
practical applicability of the scheme. Furthermore, the functionality and security
guarantees of the confirmer are somewhat limited. More specifically, a confirmer
can disavow but not confirm the validity of a signature, and neither off-line nor
on-line non-transferability are considered for the disavow protocol3.

Our Contribution. In this paper, we address many of the limitations of the ap-
proach by Liskov and Micali. Firstly, we extend the security model to model not
only the on-line non-transferability of the sign protocol, but also of the confirm
and disavow protocols executed by the confirmer. Furthermore, we introduce
two additional security notions, confirmer soundness and key unforgeability, re-
quired by the added ability of the confirmer to confirm signatures and to prevent
attacks related to the forgery of signer specific confirmer keys which are used
both in our construction and in [13] (see Section 3 for details). Unlike [13], our
security model also allows the signer to make use of multiple confirmers and
ensures unforgeability even against malicious confirmers, which will guarantee
security in a more realistic usage scenario.

We then propose a new general approach to the construction of on-line non-
transferable signatures. More specifically, we show how a simple core confirmer
signature scheme, which essentially implements the non-interactive functional-
ity of an on-line non-transferable signature scheme, can be extended to a fully
secure scheme with the additional use of ordinary signatures, sigma protocols,
and trapdoor commitments with an enhanced binding property. Based on this
approach, we propose a concrete instantiation which is provably secure in the
standard model assuming the computational Diffie-Hellman problem and the
decisional linear problem are hard.

Compared to the approach taken by Liskov and Micali, our scheme has sev-
eral advantages. Besides implementing additional confirmer functionality and
2 Note that while the security definitions in [13] does not explicitly describe verifier

key registration, this is a requirement to ensure basic security, and we argue that
our security models are fundamentally the same.

3 The defined disavow protocol in [13] is non-interactive and provides a publicly
verifiable proof of invalidity.
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providing security in our extended security model, our scheme allows a verifier
to independently simulate the sign, confirm and disavow protocols, and does not
require the signer to issue “fake” signatures to maintain security. Lastly, our
concrete instantiation provides efficient protocols and short signatures consist-
ing of four group elements and an integer, whereas the scheme by Liskov and
Micali requires signatures consisting of more than 3k encryptions, where k is the
security parameter. However, we note that our concrete scheme requires large
public keys due to the use of the techniques by Waters [19].

Related Work. Jakobsson et al. [10] introduced an alternative approach to lim-
iting the verifiability of signatures with their proposal of designated verifier sig-
natures in which only a specific verifier chosen by the signer will be convinced
about the validity of a signature. This concept was extended by Steinfeld et
al. [17] who introduced universal designated verifier signatures which allow any
user to convert a publicly verifiable signature into a designated verifier signa-
ture for a chosen verifier. Since this type of schemes do not rely on interactive
protocols for signature confirmation, on-line attacks are not a concern. However,
these schemes do not provide a mechanism to determine the validity of a (con-
verted) signature in a dispute, and most of the recently proposed schemes will
in fact enable the designated verifier to construct signatures which are perfectly
indistinguishable from signatures constructed by the signer. Hence, unlike unde-
niable and designated confirmer signatures, non-repudiation cannot be enforced
in these schemes which make them unsuitable for a number of applications.

A few existing schemes, which are provably secure in the random oracle model,
implicitly provide protection against on-line attacks. For example, the undeni-
able signature schemes by Kudla et al. [11] and Huang et al. [9] provide non-
interactive proofs which are simulatable by the verifier, and hence avoid the
problem of on-line attacks. Furthermore, Monnerat et al. [15] proposed an unde-
niable signature scheme with interactive 2-move confirm and disavow protocols.
While the used definition of non-transferability in [15] only guarantees transcript
simulatability (i.e. defines off-line non-transferability), the concrete scheme al-
lows a verifier to use his private key to simulate proofs interactively, and hence
the scheme provides on-line non-transferability. However, we emphasize that all
of the above schemes are only provable secure in the random oracle model, and
that the schemes furthermore do not support the use of confirmers to ensure
non-repudiation if the signer becomes off-line or refuses to cooperate.

2 On-line Non-transferable Signatures

An on-line non-transferable signature (ONS) scheme involves a signer S, a con-
firmer C, and a verifier V , and is given by the following probabilistic polynomial
time (PPT) algorithms:

– Setup which, given a security parameter 1k, returns the public parameters
par.
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– KeyGenS , KeyGenC , and KeyGenV which, given par, return public/private
key pairs (pkS , skS), (pkC , skC), and (pkV , skV ) for a signer, a confirmer,
and a verifier, respectively.

– CSetup which on input par, skC and pkS , returns a signer specific pub-
lic/private confirmer key pair (pkC,S , skC,S). This algorithm is run once by
the confirmer for each signer S, and the confirmer stores skC,S for later
use. The public key pkC,S is given to the signer who is to use this when
constructing signatures with confirmer C.

– CKeyValid which, on input par, pkS , pkC , and pkC,S , outputs either accept
or reject.

– (Sign, Receive) which is a pair of interactive algorithms with common in-
put (par, pkS , pkC , pkC,S , pkV ,m). Sign is run by the signer and is given skS

as private input, and Receive is run by the verifier. At the end of the in-
teraction, both Sign and Receive will output a signature, σS and σR, and
Receive will in addition output either accept or reject.

– Convert which, on input par, pkS , m, σ, and skC,S , returns a verification
token tkσ.

– TkVerify which, on input par, pkS , pkC , pkC,S , m, σ, and tkσ, returns either
accept or reject.

– (Confirm, VC) which is a pair of interactive algorithms with common in-
put (par, pkS , pkC , pkC,S , pkV ,m, σ). Confirm is run by the confirmer and is
given skC,S as private input, and VC is run by the verifier. At the end of the
interaction, VC outputs either accept or reject.

– (Disavow, VD) which is also a pair of interactive algorithms. Input for Disavow
and VD is exactly as in (Confirm, VC) above, and the output of VD is either
accept or reject.

Like Liskov and Micali [13], we require that before signer S makes use of a
confirmer C, he will approach C to obtain a signer specific confirmer key pkC,S

which C generates by running CSetup. This process can be seen as a registration
procedure in which the confirmer agrees to act as a confirmer for this specific
signer. Note that this does not require a confidential channel between the signer
and confirmer. Our definition differs slightly from that of [13] in that we explicitly
define a key validation algorithm CKeyValid for signer specific confirmer keys4,
and introduce (Confirm, VC) to allow C to confirm signatures. Furthermore, we
do not include a fake signature algorithm which is required to maintain the
security of the scheme in [13].

Using the above defined algorithms, a confirmer can verify a signature by
first computing a verification token using Convert and then verifying the signa-
ture using TkVerify. To simplify notation, we define an algorithm Valid which
performs these two steps:

– Valid: given the input (par, pkS , pkC , pkC,S ,m, σ, skC,S), compute the ver-
ification token tkσ ← Convert(par, pkS ,m, σ, skC,S) and return the output
of TkVerify(par, pkS , pkC , pkC,S ,m, σ, tkσ).

4 This algorithm is required by our extended security model. More specifically, it is
required to define key unforgeability (see Section 3).
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We will use the notation {Sign(skS) ↔ Receive}(par, pkS , pkC , pkC,S , pkV ,m)
to denote the interaction between Sign and Receive on the common input
(par, pkS , pkC , pkC,S, pkV ,m) and private input skS to the Sign algorithm. To
shorten this notation, we will sometimes use PK = (pkS , pkC , pkC,S , pkV ) to
represent the public keys. We furthermore use (σS , (σR, z)) ← {Sign(skS) ↔
Receive}(par, PK,m) to denote the output of Sign and Receive, respectively,
and use (σR, z) ←2 {Sign(skS) ↔ Receive}(par, PK,m) when we are only
considering the output of Receive. Similar notation is used for the confirm and
disavow protocols.

Correctness. We require that for all honestly generated public parameters par
and key pairs (pkS , skC), (pkC , skC), (pkV , skV ), and (pkC,S , skC,S), that z ←
CKeyValid(par, pkC , pkS , pkC,S) yields z = accept and that, for all messages m,
the signature generation (σS , (σR, zR)) ← {Sign(skS) ↔ Receive}(par, PK,m),
where PK ← (pkS , pkC , pkC,S , pkV ), yields that zR = accept and σR = σS , that
Valid(par, pkS , pkC , pkC,S, skC,S ,m, σ) = true and that zC ← {Confirm(skC,S)
↔ VC}(par, PK,m, σ) results in zC = accept. Furthermore, for all (m′, σ′)
such that Valid(par, pkS , pkC , pkC,S , skC,S ,m

′, σ′) = false, we require that
zD ←2 {Disavow(skC,S) ↔ VD}(par, PK,m′, σ′) yields zD = accept.

3 Security Model

An ONS scheme is required to satisfy the security notions unforgeability, key un-
forgeability, soundness, non-repudiation and non-transferability to be considered
secure. However, before we can formally define these security notions, we require
a scheme to define the verifier simulation algorithms SimSign(par, PK,m, skV ),
SimCon(par, PK,m, σ, skV ) and SimDis(par, PK,m, σ, skV ) which simulates the
Sign, Confirm and Disavow algorithms, respectively. While these algorithms are
not part of the basic functionality of an ONS scheme, they must be defined to en-
sure that a verifier can simulate the interactive protocols of the scheme as required
by the non-transferability notion defined below. Furthermore, since an adversary
might observe the execution of these algorithms while attempting to mount at-
tacks against other security properties of the scheme, we must provide the adver-
sary with oracle access to these algorithms in the relevant security definitions.

Unforgeability. Our notion of unforgeability requires that, even for a maliciously
chosen confirmer key, an adversary with oracle access to an honest signer cannot
produce a new message/signature pair and convince a verifier about the validity
of this pair, either by interacting with the verifier in the confirm protocol or by
producing a token such that TkVerify outputs accept. Our definition allows
the adversary to obtain signatures using any confirmer key, and thereby ensures
security in a scenario where a signer makes use of multiple potentially mali-
cious confirmers. In comparison, the unforgeability notion defined by Liskov and
Micali only considers a signer using a single honest confirmer. Formally, we de-
fine unforgeability of an ONS scheme N via the experiment Expuf-cmaN,A shown in
Figure 1. In the experiment, A has access to the oracles O = {OV KeyReg ,OSign,
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OSimSign,OSimCon, OSimDis} which are defined below. The oracle OV KeyReg

implements verifier key registration and maintains a list, LV KeyReg, of regis-
tered keys. It is assumed that it can be verified that a key pair (pkV , skV ) is
valid i.e. that (pkV , skV ) lies in the range of KeyGenV .

– OV KeyReg: given (pkV , skV ), this oracle stores (pkV , skV ) in the list LV KeyReg

and returns - to A if (pkV , skV ) is a valid key pair. Otherwise, the oracle
returns ⊥ to A. In the following, if a query to an oracle involves a verifier
key pkV , it is assumed that A has previously submitted pkV to this oracle
as part of a valid key pair. If this is not the case, the relevant oracle will
return ⊥ to A.

– OSign: given input (pkC , pkC,S , pkV ,m), this oracle interacts with A by run-
ning Sign with common input (par, pkS , pkC , pkC,S , pkV ,m) and secret input
skS . Local output of Sign will be a signature σ, and (pkC , pkC,S ,m, σ) is
added to LSign.

– OSimSign: given input pkS , pkC , pkC,S , and m, this oracle interact with A
by running the simulation algorithm SimSign(par, pkS , pkC , pkC,S ,m, skV ).

– OSimCon: given input pkS , pkC , pkC,S , m and σ, this oracle interacts with
A by running the algorithm SimCon(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ).

– OSimDis: given the same input as OSimCon, this oracle interacts with A by
running the algorithm SimDis(par, pkS , pkC , pkC,S , pkV ,m, σ, skV ).

Definition 1. An ONS scheme N is said to be unforgeable, if no PPT algorithm
A with non-negligible advantage Advuf-cmaN,A (k) = Pr[Expuf-cmaN,A (1k) = 1] exists.

Key unforgeability. The use of the confirmer setup, CSetup, warrants additional
security requirements. Key unforgeability requires that an adversary without
access to the private confirmer key, cannot produce a new valid signer specific
confirmer key i.e. a new key which is accepted by CKeyValid. The security
model in [13] does not have a similar security requirement and does in fact
not rule out the possibility that a signer is able to forge a signer specific con-
firmer key and then use this forged key in the sign protocol. This would leave
the confirmer unable to either confirm, disavow or convert the signature. How-
ever, such concerns are eliminated by explicitly requiring key unforgeability.
Formally, key unforgeability of an ONS scheme N is defined via the experiment
Expkey-ufN,A (1k) shown in Figure 1. In the experiment, A has access to the oracles
O = {OV KeyReg ,OCSetup,OConvert,OCon,ODis} where OV KeyReg is defined as
above, and the remaining oracles are defined as follows:

– OCSetup: given pkS , this oracle runs (pkC,S , skC,S) ← CSetup(par, pkS , skC),
stores (pkS , pkC,S , skC,S) in LCSetup, and returns pkC,S to A.

– OConvert: given pkS , pkC,S , m, and σ, this oracle searches for a matching
tuple (pkS , pkC,S, skC,S) in LCSetup, and returns ⊥ if no such tuple is found.
Otherwise, the oracle returns tkσ ← Convert(par, pkS ,m, σ, skC,S).

– OCon: given pkS , pkC,S , pkV , m, and σ, the oracle searches for a tuple
(pkS , pkC,S , skC,S) in LCSetup. If no such tuple is found the oracle returns
⊥. Otherwise, the oracle interacts with A by running Confirm with common
input (par, pkS , pkC , pkC,S , pkV ,m, σ) and secret input skC,S .
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Expuf-cmaS,A (1k)
LSign ← {}; LV KeyReg ← {}
par ← Setup(1k)
(pkS, skS) ← KeyGenS(par)
(pkV , skV ) ← KeyGenV (par)
(pkC , pkC,S, m, σ, tkσ, st)

← AO(par, pkS, pkV )
PK ← (pkS, pkC , pkC,S, pkV )
z ←2 {AO(st) ↔ VC(par,PK, m, σ)}
z′ ← TkVer(par, pkS, pkC , pkC,S, m, σ, tkσ)
if (pkC , pkC,S, m, σ) 
∈ LSign∧

(z = accept ∨ z′ = accept)
output 1

else output 0

Exp
key-uf
S,A (1k)

LCSetup ← {}; LV KeyReg ← {}
par ← Setup(1k)
(pkC , skC) ← KeyGenS(par)
(pkS, pkC,S) ← AO(par, pkC)
z ← CKeyValid(par, pkS, pkC , pkC,S)
if (pkS, pkC,S, ∗) 
∈ LCSetup∧

z = true

output 1
else output 0

Exp
non-rep

S,A (1k)
par ← Setup(1k)
(pkV , skV ) ← KeyGenV (par)
(pkS, pkC , pkC,S, m, st) ← AO(par, pkV )
PK ← (pkS, pkC , pkC,S, pkV )
(st′, (σ, z1)) ← {AO(st) ↔ Receive(par,PK, m)}
z2 ←2 {AO(st′) ↔ VD(par,PK, m, σ)}
if z1 = z2 = accept output 1
else output 0

Fig. 1. Unforgeability, key unforgeability and non-repudiation security experiments

– ODis: given the same input as OCon, this oracle returns ⊥ to A if there is
no tuple (pkS , pkC,S , skC,S) in LCSetup. Otherwise, the oracle interacts with
A by running Disavow with common input (par, pkS , pkC , pkC,S , pkV ,m, σ)
and secret input skC,S .

Definition 2. An ONS scheme N is said to be key unforgeable if no PPT
algorithm A with non-negligible advantage Advkey-ufN,A (k) = Pr[Expkey-ufN,A (1k) = 1]
exists.

Non-repudiation. Informally, non-repudiation requires that, even if a malicious
signer and confirmer collude, it is not possible for the signer to make an hon-
est verifier accept a message/signature pair as valid in the sign protocol, while
the confirmer is able to disavow the validity of the message/signature pair. Our
definition of non-repudiation is slightly weaker than the definition given in [13]
in that we allow the adversary a negligible success probability whereas [13] re-
quires the success probability to be zero. However, we highlight that [13] makes
use of a non-interactive disavow protocol which is both off-line and on-line trans-
ferable which allows the slightly stronger non-repudiation property, whereas our
constructions will rely on interactive non-transferable protocols with negligible
soundness error. We define non-repudiation of an ONS scheme N via the exper-
iment Expnon-repN,A (1k) shown in Figure 1. In the experiment, A has access to the
oracles O = {OSimSign,OSimCon,OSimDis} which are defined as above.
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Exp
snd-sign
N,A (1k)

par ← Setup(1k); (pkC , skC) ← KeyGenC(par)
(pkV , skV ) ← KeyGenV (par)
(pkS, m, st) ← AO(par, pkC , skC , pkV )
(pkC,S, skC,S) ← CSetup(par, pkS, skC)
PK ← (pkS, pkC , pkC,S , pkV )
(σ, z1) ←2 {AO(st, pkC,S, skC,S) ↔ Receive(par,PK, m)}
z2 ← Valid(par, pkS, pkC , pkC,S, m, σ, skC,S)
if z1 = accept ∧ z2 = reject output 1
else output 0

Expsnd-confN,A (1k)
par ← Setup(1k); (pkV , skV ) ← KeyGenV (par)
(pkS, pkC , pkC,S, m, σ, tkσ, st) ← AO(par, pkV )
PK ← (pkS, pkC , pkC,S, pkV )
z1 ←2 {AO(st) ↔ VD(par,PK, m, σ)}
z2 ←2 {AO(st) ↔ VC(par,PK, m, σ)}
z3 ← TkVerify(par, pkS, pkC , pkC,S, m, σ, tkσ)
if z1 = accept ∧ (z2 = accept ∨ z3 = accept) output 1
else output 0

Fig. 2. Soundness security experiments

Definition 3. An ONS scheme N is said to provide non-repudiation if no PPT
algorithm A with non-negligible advantage Advnon-repN,A (k) = Pr[Expnon-repN,A (1k) = 1]
exists.

Soundness. We consider two soundness notions – signer soundness and confirmer
soundness. The first notion, signer soundness, guarantees that a signer cannot
make a verifier accept a message/signature pair as valid through the sign protocol
without the confirmer being able to confirm the validity of this pair as well as
compute a verification token showing validity. Our definition guarantees signer
soundness even if the confirmer is corrupted since the adversary is allowed to
access the private confirmer key, and implies the soundness notion by Liskov
and Micali which only grants the adversary access to the public confirmer key.
Formally, we define signer soundness of an ONS scheme N via the experiment
Expsnd-signN,A (1k) shown in Figure 2. In the experiment, A will have access to the
oracles O = {OSimSign,OSimCon,OSimDis} defined as above.

Definition 4. An ONS scheme N is said to provide signer soundness if no PPT
algorithm A with non-negligible advantage Advsnd-signN,A (k) = Pr[Expsnd-signN,A (1k) =
1] exists.

The second notion, confirmer soundness, guarantees that even if both signer and
confirmer key is maliciously generated, a confirmer cannot produce a message/
signature pair which he can successfully disavow by completing the disavow pro-
tocol, while still being able to confirm validity of this pair, either by completing
the confirm protocol or by producing a token that will make TkVerify output
accept. Since Liskov and Micali do not consider the confirmer’s ability to confirm



378 J.C.N. Schuldt and K. Matsuura

a signature, an equivalent security notion is not defined in [13]. We define con-
firmer soundness of an ONS scheme N via the experiment Expsnd-confN,A (1k) shown
in Figure 2. In the experiment, A has access to the oracles O = {OSimSign,
OSimCon,OSimDis} defined as above.

Definition 5. An ONS scheme is said to provide confirmer soundness if no
PPT algorithm A with non-negligible advantage Advsnd-confN,A (k) = Pr[Expsnd-confN,A
(1k) = 1] exists.

On-line Non-transferability. Intuitively, on-line non-transferability of a protocol
requires that an adversary cannot distinguish between a real execution of the
protocol and a simulated execution by the verifier. Note that since we are con-
sidering the on-line non-transferability of both the sign, confirm and disavow
protocols, a verifier must be able to provide a consistent response, even if the
adversary first obtains a signature through the (simulated) sign protocol and
later try to re-confirm the validity through the (simulated) confirm protocol. We
define a single non-transferability notion covering the non-transferability of all
three interactive protocols. More specifically, we require that an adversary can-
not distinguish between a scenario in which he obtains a valid signature through
the sign protocol, confirms the validity through the confirm protocol, and then
interacts in the simulated disavow protocol, and a scenario in which he obtains
a signature through the simulated sign protocol, confirms the validity through
the simulated confirm protocol, and then interacts in the disavow protocol. Our
non-transferability notion implies a similar type of non-transferability of the sign
protocol as defined by Liskov and Micali, but does not involve fake signature
generation. Formally, we define on-line non-transferability of a ONS scheme N
via the experiment Expnon-transN,A (1k) shown in Figure 3. In the experiment, A has

Expnon-transN,A (1k)
LV KeyReg ← {}; par ← Setup(1k); (pkS, skS) ← KeyGenS(par)
(pkC , skC) ← KeyGenC(par); (pkC,S, skC,S) ← CSetup(par, pkS, skC)
(pkV , skV ) ← KeyGenV (par); PK ← (pkS, pkC , pkC,S , pkV )
(m,st) ← AO(par,PK, skV )
b ← {0, 1}
if b = 0

(σ, st′) ← {Sign(par,PK, m, skS) ↔ A(st)}
st′′ ←2 {Confirm(par,PK, m, σ∗, skC,S) ↔ A(st′)}
st′′′ ←2 {SimDis(par,PK, m, σ, skV ) ↔ A(st′′)}

else (b = 1)
(σ∗, st′) ← {SimSign(par,PK, m, skV ) ↔ A(st)}
st′′ ←2 {SimCon(par,PK, m, σ, skV ) ↔ A(st′)}
st′′′ ←2 {Disavow(par,PK, m,σ, skC,S) ↔ A(st′′)}

b′ ← AO′
(st′′′)

if b = b′ output 1
else output 0

Fig. 3. On-line non-transferability security experiment



On-line Non-transferable Signatures Revisited 379

access to the oracles O = {OV KeyReg ,OCSetup,OSign,OConvert,OCon,ODis} de-
fined as in the unforgeability and the key unforgeability experiments. The oracles
O′ are defined exactly as O, except that OConvert will not respond to the query
consisting of the challenge (pkS , pkC,S), m∗ and σ∗, and OCon and ODis will
not respond to queries on the challenge (pkS , pkC,S), m∗, σ∗ and any pkV . Note
that OSign allows the adversary to obtain signatures under any confirmer key,
and that OConvert, OCon and ODis accepts any signer key. This ensures security
in a scenario where multiple confirmers service multiple signers. Note also that
the adversary is given the private key of the verifier. This will ensure that even
if the verifier is compromised, the non-transferability is still maintained.

Definition 6. An ONS scheme N is said to be on-line non-transferable if no
PPT algorithm A with non-negligible advantage Advnon-transN,A (k)= |Pr[Expnon-transN,A
(1k) = 1] − 1

2 | exits .

4 Construction of an ONS Scheme

In this section we will present a construction of an ONS scheme based on four
simpler building blocks: a standard signature scheme, a core confirmer signature
scheme, sigma protocols, and a trapdoor commitment scheme with an enhanced
binding property. In the following, we will formally define a core confirmer sig-
nature scheme as well as the needed security requirements, motivate and define
the enhanced binding property of a trapdoor commitment scheme, and finally
show how the above mentioned primitives can be combined into a secure ONS
scheme. Formal definitions of standard signatures, sigma protocols and trapdoor
commitments can be found in the full version.

4.1 Core Confirmer Signature Scheme

A core confirmer signature scheme is essentially an ONS scheme without any of
the interactive algorithms. More specifically, a core confirmer signature scheme
is defined by CS = {CS.Setup, CS.KeyGenS , CS.KeyGenC , CS.Sign, CS.Convert,
CS.TkVerify} where the algorithms CS.Setup, CS.KeyGenS , and CS.KeyGenC are
defined as in a full ONS scheme, and the CS.Sign, CS.Convert and CS.TkVerify
algorithms are defined as follows:

– CS.Sign: given par, pkC , m, and skS , this algorithm returns a signature σ.
– CS.Convert: given par, pkS , m, σ and skC , this algorithm returns a verifi-

cation token tkσ.
– CS.TkVerify: given par, pkS , pkC , m, σ and tkσ, this algorithm returns

either accept or reject.

Both CS.Convert and CS.TkVerify are assumed to be deterministic. Note that
all algorithms are non-interactive and that no specific confirmer keys pkC,S or
verifier keys pkV are required. Like for an ONS scheme, we define an algorithm
CS.Valid as
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– CS.Valid: given par, pkS , pkC , m, σ and skC , this algorithms computes the
verification token tkσ ← CS.Convert(par, pkS ,m, σ, skC) and returns the
output of CS.TkVerify(par, pkS , pkC ,m, σ, tkσ).

We require that a scheme is correct i.e. for all par ← CS.Setup(1k), (pkS , skS) ←
CS.KeyGenS(par), (pkC , skC) ← CS.KeyGenV (par), all messages m and all σ ←
CS.Sign(par, pkC ,m, skS), we require that z ← CS.Valid(par, pkS , pkC ,m, σ, skC)
yields z = accept. Furthermore, we require that a core confirmer signature
scheme has unique private confirmer keys i.e. for any pkC , there exists at most
one skC such that (pkC , skC) ∈ {CS.KeyGenC(par)} where {CS.KeyGenC(par)}
denotes the set of all possible confirmer key pairs generated by CS.KeyGenC

5.

Security Requirements. For a core confirmer signature scheme to be secure, we
require that the scheme provides unforgeability, invisibility and token soundness.
However, due to the reduced functionality of a core confirmer signature scheme,
these definitions will be much simpler compared to the security definitions of a
full ONS scheme.

We define unforgeability of a core confirmer signature scheme CS via the
experiment Expcs-uf-cmaCS,A (1k) shown in Figure 4. In the experiment, A has access
to the oracle OSign defined as follows:

– OSign: given pkC , and m, this oracle computes σ ← CS.Sign(par, pkC ,m, skS),
adds (pkC ,m, σ) to LCSSign, and returns σ.

Definition 7. A core confirmer signature scheme CS is said to be unforge-
able if no PPT algorithm A with non-negligible advantage Advcs-uf-cmaCS,A (k) =
Pr[Expcs-uf-cmaCS,A (1k) = 1] exists.

Invisibility of a core confirmer signature scheme CS, which captures the prop-
erty that valid signatures cannot be distinguished from random elements of the
signature space, is defined via the experiment Expcs-inv-cmaCS,A shown in Figure 4. In
the experiment, S denotes the signature space of the scheme, and A has access
to the oracles O = {OSign,OConvert} where OSign is defined as in the above
unforgeability experiment, and OConvert is defined as follows:

– OConvert: given m and σ, this oracle returns the verification token tkσ ←
CS.Convert(par, pkS , pkC ,m, σ, skC).

Note that OConvert will only convert signatures from the signer pkS and is not
required to work for maliciously generated public signer keys for which the adver-
sary might know the corresponding private key. Hence, intuitively, this security
requirement only requires the scheme to be secure in a “single user” setting
in which a confirmer only services a single signer. This weaker requirement is
important for the security proof of our concrete construction.

Definition 8. A core confirmer signature scheme CS is said to be invisible if
there exists no PPT algorithm A with non-negligible advantage Advcs-inv-cmaCS,A (k) =
|Pr[Expcs-inv-cmaCS,A (1k) = 1] − 1

2 | exists.

5 This property is needed to prove confirmer soundness (Theorem 15) of the
construction presented in Section 4.3.
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Expcs-uf-cmaCS,A (1k)
LCSSign ← {}
par ← CS.Setup(1k)
(pkS, skS) ← CS.KeyGenS(par)
(pk∗

C , m∗, σ∗, tk∗
σ) ← AO(par, pkS)

z ← CS.TkVerify(par, pkS, pk∗
C , σ∗, m∗, tk∗

σ)
if (pk∗

C , m∗, σ∗) 
∈ LCSSign ∧ z = accept

output 1
else output 0

Expcs-inv-cmaCS,A (1k)
par ← CS.Setup(1k)
(pkS, skS) ← CS.KeyGenS(par)
(pkC , skC) ← CS.KeyGenC(par)
(m∗, st) ← AO(par, pkS, pkC)
b ← {0, 1}
if b = 0 σ∗ ← S
else σ∗ ← CS.Sign(par, pkC , m, skS)
b′ ← AO(st, σ∗)
if b = b′ output 1
else output 0

Expcs-tk-sndCS,A (1k)
par ← CS.Setup(1k)
(pk∗

S, pk∗
C , sk∗

C , m∗, σ∗, tk∗
σ) ← A(par)

z1 ← CS.TkVerify(par, pk∗
S, pk∗

C , σ∗, m∗, tk∗
σ)

z2 ← CS.Valid(par, pk∗
S, pk∗

C , σ∗, m∗, sk∗
C)

if (pk∗
C , sk∗

C) ∈ {CS.KeyGenC(par)} ∧ z1 = accept ∧ z2 = reject

output 1
else output 0

Fig. 4. Unforgeability, invisibility and token soundness experiments for a core confirmer
signature scheme

Lastly, we consider token soundness which intuitively captures the property
that an accepting verification token cannot be constructed for an invalid sig-
nature. Formally, we define token soundness of a scheme CS via the experiment
Expcs-tk-sndCS,A shown in Figure 4. In the figure, {CS.KeyGenC(par)} denotes the set
of all possible key pairs generated by CS.KeyGenC .

Definition 9. A core confirmer signature scheme CS is said to provide token
soundness if there exists no PPT algorithm A with non-negligible advantage
Advcs-tk-sndCS,A (k) = Pr[Expcs-tk-sndCS,A (1k) = 1].

Compatible Sigma Protocols. In our full ONS scheme, we will base the construc-
tion of on-line non-transferable protocols on sigma protocols. For this purpose,
we require that a set of sigma protocols compatible with the core confirmer sig-
nature scheme exists. More specifically, we say that a triple of sigma protocols,
ΣS , ΣC and ΣC , and a core confirmer signature scheme CS are compatible if
the sigma protocols are defined for the common input x = (par, pkS , pkC ,m, σ)
and the following relations.

ΣS{(x, (skS , r)) : (pkS , skS) ∈ {CS.KeyGenS(par)}∧
σ = CS.Sign(par, pkC ,m, skS ; r)}

ΣC{(x, skC) : (pkC , skC) ∈ {CS.KeyGenC(par)}∧
CS.Valid(par, pkS , pkC ,m, σ, skC) = accept}
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ΣC{(x, skC) : (pkC , skC) ∈ {CS.KeyGenC(par)}∧
CS.Valid(par, pkS , pkC ,m, σ, skC) = false}

In the above, we use the notation Σ{(x,w) : R(x,w) = 1} to denote the sigma
protocol Σ for relation R with common input x and witness w. For simplicity,
we assume that the challenge space of ΣS , ΣC and ΣC are of the same size.

4.2 On-line Non-transferable Protocols

Our construction of on-line non-transferable protocols is based on a simple and
intuitive approach inspired by the construction of designated verifier proofs by
Jakobsson et al. [10] and is furthermore closely related to the construction of
efficient zero-knowledge proofs in the auxiliary string model [6]. More specifically,
we modify the compatible sigma protocols using a trapdoor commitment scheme,
and let a prover and a verifier interact as follows:

1. The prover computes the first message a of the sigma protocol and the com-
mitment com ← Comm(ck, a, r) for random r, and sends com to the verifier.

2. The verifier then sends a random challenge c to the prover.
3. The prover computes the last message z of the sigma protocol and sends

the opening (a, r) together with z to the verifier. The verifier checks that
com = Comm(ck, a, r), and accepts if (a, c, z) is an accepting transcript of the
sigma protocol.

The commitment key and trapdoor (ck, td) will be used as the public/private
key pair (pkV , skV ) of the verifier. Hence, using skV , the verifier will be able to
open com to any message a of his choice, and can therefor postpone generating
a until after the challenge c is revealed which allows him to simulate the proof
interactively. We use the notation NT(ck)-Σ to denote the non-transferable pro-
tocol obtained by modifying the sigma protocol Σ as described above using the
commitment key ck.

However, the above approach is not sufficient for proving our constructions
secure. Essentially the problem is that an adversary can request to interact with
SimSign, SimCon and SimDis in many of the security notions defined in Section
3, choosing any message or message/signature pair (valid or invalid) as input.
This type of query can be difficult to handle for a simulator not knowing the
trapdoor of the commitment scheme, whereas a simulator knowing the trapdoor
might not gain sufficient information from an adversary breaking the security
of the scheme. To address this problem, we introduce a commitment scheme
with a stronger binding property. Specifically, we consider the advantage of an
adversary A against a scheme T defined by

Advbind
T,A (k) = Pr[(ck, td) ← G(1k); (w, r, w′, r′) ← AOc,Oo(ck) :

w �= w′ ∧ Comm(ck, w, r) = Comm(ck, w′, r′)]

where A has access to a commit and an open oracle, Oc and Oo, which behave
as follows: upon request, Oc computes (com, aux) ← TdComm, stores aux and
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returns com to A. Given a commitment com returned by Oc and a value w,
Oo retrieves the corresponding aux and returns r ← TdOpen(aux,w, td) such
that com = Comm(ck, w, r). The adversary is only allowed to query Oo with a
commitment com obtained from Oc, and is not allowed to make more than one
query to Oo for a given commitment com.

Definition 10. A trapdoor commitment scheme T is said to be binding under
selective trapdoor openings if no PPT algorithm A with non-negligible advantage
Advbind

T,A (k) exists.

Pedersen’s commitment scheme [16] can be shown to be binding under selective
trapdoor openings assuming the one more discrete logarithm problem is hard.
However, to obtain a commitment scheme which can be shown secure only as-
suming the ordinary discrete logarithm problem is hard, we can make use of
the “double trapdoor” extension also used to strengthen the security of ordinary
signatures [18]. In the full version, we recall this scheme and prove it binding
under selective trapdoor openings.

4.3 Combined Scheme

We now show how to combine the above mentioned primitives into a full ONS
scheme. More specifically, letCS = {CS.Setup, CS.KeyGenS , CS.KeyGenC , CS.Sign,
CS.Convert, CS.TkVerify} be a core confirmer signature scheme with compatible
sigma protocols ΣS , ΣC and ΣC , let T = {T.G, T.Comm, T.TdComm, T.TdOpen} be a
trapdoor commitment scheme, and letS = {S.Setup, S.KeyGen, S.Sign, S.Verify}
be an ordinary signature scheme. We construct an ONS scheme N as follows:

– Setup(1k): Compute parS ← S.Setup(1k) and parCS ← CS.Setup(1k), and
return the parameters par ← (parS , parCS). It is assumed that parCS include
a description of the randomness space R used by the CS.Sign algorithm.

– KeyGenS(par): Return (pkS , skS) ← CS.KeyGenS(parCS).
– KeyGenC(par): Return (pkC , skC) ← S.KeyGen(parS).
– KeyGenV (par): Return (pkV , skV ) ← T.G(1k).
– CSetup(par, pkS , skC): Compute the key pair (pk′

C , sk′
C) ← CS.KeyGenC

(parCS) and the signature δ ← S.Sign(parS , “pkS||pk′
C”, skC), and return

pkC,S ← (pk′
C , δ) and skC,S ← sk′

C .
– CKeyValid(par, pkS , pkC , pkC,S) Let pkC,S = (pk′

C , δ) and return the result
of the verification S.Verify(parS , pkC , “pkS ||pk′

C”, δ).
– (Sign, Receive): The common input is (par, pkS , pkC , pkC,S , pkV ,m) where

pkC,S = (pk′
C , δ) and the signer is given skS as private input. The signer

picks r ∈ R and computes σ ← CS.Sign(parCS , pk
′
C , skS , pkC ||pkC,S ||m; r).

Then the signer sends σ to the verifier, and interacts with the verifier in
the protocol NT(pkV )-ΣS using (par, pkS , pk

′
C , pkC ||pkC,S ||m,σ) as common

input and (skS , r) as secret input6.
6 Note that this construction of the sign protocol is slightly more flexible than required

by the definition in Section 2 in that a signer is able to re-confirm a signature by
running NT(pkV )-ΣS. This, however, requires the signer to remember the randomness
used to construct the signature.
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– Convert(par, pkS ,m, σ, skC,S): Return the core confirmer signature verifica-
tion token tkσ ← CS.Convert(parCS , pkS ,m, σ, skC,S).

– TkVerify(par, pkS , pkC , pkC,S,m, σ, tkσ): Firstly, verify the validity of pkC,S

by computing z ← CKeyValid(par, pkS , pkC , pkC,S), and return reject if
z = reject. Otherwise, let pkC,S = (pk′

C , δ) and return the output of
CS.TkVerify(parCS , pkS , pk

′
C , pkC ||pkC,S ||m,σ, tkσ).

– (Confirm, VC): The common input is given by (par, pkS , pkC , pkC,S , pkV ,
m, σ) where pkC,S = (pk′

C , δ) and the signer is given skC,S as private input.
Firstly, the verifier checks validity of pkC,S by running CKeyValid(par, pkS ,
pkC , pkC,S), and aborts if the output is reject. The confirmer then interacts
with the verifier in the protocol NT(pkV )-ΣC with private input skC,S and
common input (parS , pkS , pk

′
C , pkC ||pkC,S ||m,σ).

– (Disavow, VD): Having the same input as in (Confirm, VC), the verifier firstly
checks if CKeyValid(par, pkS , pkC , pkC,S) = accept, and aborts if this is not
the case. The verifier and signer then interact in the protocol NT(pkV )-ΣC

with common input (parS , pkS , pk
′
C , pkC ||pkC,S ||m,σ) and private input skC,S

to the confirmer.

Security. We will now state the theorems showing that the above constructed
ONS scheme satisfies the security definitions given in Section 3 assuming the
underlying primitives are secure. Due to space limitation, the proofs are not
included here, but can be found in the full version.

Theorem 11. Assume that CS is unforgeable, that ΣS is honest verifier zero-
knowledge and has special soundness, and that T is perfectly hiding and binding
under selective trapdoor openings. Then the above ONS scheme N is unforgeable.

Theorem 12. Assume that S is strongly unforgeable. Then the above ONS
scheme N has key unforgeability.

Theorem 13. Assume that ΣS and ΣC have special soundness, and that T
is binding under selective trapdoor openings. Then the above ONS scheme N
provides non-repudiation.

Theorem 14. Assume that ΣS have special soundness, and that T is binding
under selective trapdoor openings. Then the above ONS scheme N provides signer
soundness.

Theorem 15. Assume that CS has unique private confirmer keys and provides
token soundness, that ΣC and ΣC have special soundness, and that T is bind-
ing under selective trapdoor openings. Then the above ONS scheme N provides
confirmer soundness.

Theorem 16. Assume that CS is invisible, that ΣS, ΣC and ΣC are honest
verifier zero-knowledge, and that T provides a perfect trapdoor property. Then
the above ONS scheme N provides on-line non-transferability.
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4.4 Concrete Instantiation

To instantiate the above construction, we can use the strongly unforgeable
signature scheme by Boneh et al. [1] and the double trapdoor Pedersen com-
mitment scheme mentioned above. In the full version, we define and prove
secure a core confirmer signature scheme and compatible sigma protocols to
complete the instantiation. The scheme is essentially based on a linear en-
cryption of the first component of a Waters signature [19] combined with the
technique of Boneh et al. [1] to obtain a strongly unforgeable scheme. More
specifically, the public/private key pairs of the signer and confirmer is given
by (pkS , skS) = ((gα, g2, h, F ), α) and (pkC , skC) = ((u, v), (x, y)) where F is
a Waters hash function and ux = vy = g, and a signature is of the form σ =
(ua, vb, ga+b+r, gα

2 H(M)r, s) where M = gths, t = H(pkC ||ua||vb||ga+b+r||m),
and H is a collision resistant hash function. The scheme is invisible assuming
the decisional linear problem is hard, and is strongly unforgeable assume the
discrete logarithm problem is hard, H is collision resistant and Waters signa-
tures are (weakly) unforgeable. Furthermore, the structure of the scheme allows
the compatible sigma protocols to be implemented using well-know techniques
for proving equality and inequality of discrete logarithms. We refer the reader
to the full version for the details.

5 Comparison

The generic construction by Liskov and Micali [13] provides many instantiation
options due to their use of standard primitives, whereas our approach relies on
special building blocks. However, our concrete instantiation has several advan-
tages compared to any instantiation of the scheme by Liskov and Micali, both
in terms of functionality, efficiency and security. More specifically, our scheme
allows a confirmer to both confirm and disavow signatures, provides short sig-
natures compared to the O(k) size signatures of [13] which furthermore allows a
more efficient sign protocol, and lastly, all interactive protocols are on-line non-
transferable, security is guaranteed when multiple (potentially malicious) con-
firmers are used, and the signer is not required to engage in any “fake” signing
protocols to maintain security. As mentioned in the introduction, these security
properties are not enjoyed by [13]. We note, however, that our scheme requires
large public keys whereas [13] can be instantiated to provide compact public
keys, and that the non-interactive disavow protocol of [13] allows perfect non-
repudiation whereas our scheme only achieves computational non-repudiation.

References

1. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)



386 J.C.N. Schuldt and K. Matsuura

2. Camenisch, J., Michels, M.: Confirmer signature schemes secure against adaptive
adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–
258. Springer, Heidelberg (2000)

3. Chaum, D.: Zero-knowledge undeniable signatures. In: Damg̊ard, I.B. (ed.)
EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)

4. Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

5. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

6. Damg̊ard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

7. Galbraith, S.D., Mao, W., Paterson, K.G.: RSA-Based Undeniable Signatures for
General Moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217.
Springer, Heidelberg (2002)

8. Gentry, C., Molnar, D., Ramzan, Z.: Efficient Designated Confirmer Signatures
Without Random Oracles or General Zero-Knowledge Proofs. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 662–681. Springer, Heidelberg (2005)

9. Huang, X., Mu, Y., Susilo, W., Wu, W.: Provably Secure Pairing-Based Convertible
Undeniable Signature with Short Signature Length. In: Takagi, T., Okamoto, T.,
Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 367–391.
Springer, Heidelberg (2007)

10. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

11. Kudla, C., Paterson, K.G.: Non-interactive Designated Verifier Proofs and Unde-
niable Signatures. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 136–154. Springer, Heidelberg (2005)

12. Kurosawa, K., Heng, S.-H.: 3-Move Undeniable Signature Scheme. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 181–197. Springer, Heidelberg
(2005)

13. Liskov, M., Micali, S.: Online-Untransferable Signatures. In: Cramer, R. (ed.)
PKC 2008. LNCS, vol. 4939, pp. 248–267. Springer, Heidelberg (2008)

14. Michels, M., Stadler, M.: Generic Constructions for Secure and Efficient Confirmer
Signature Schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
406–421. Springer, Heidelberg (1998)

15. Monnerat, J., Vaudenay, S.: Short 2-Move Undeniable Signatures. In: Nguyên, P.Q.
(ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 19–36. Springer, Heidelberg (2006)

16. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

17. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal Designated-Verifier Sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003)

18. Teranishi, I., Oyama, T., Ogata, W.: General Conversion for Obtaining
Strongly Existentially Unforgeable Signatures. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)

19. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)



Round-Efficient Sub-linear Zero-Knowledge
Arguments for Linear Algebra

Jae Hong Seo

Department of Mathematical Sciences and ISaC-RIM,
Seoul National University, Seoul, 151-747, Korea

jhsbhs0@snu.ac.kr

Abstract. The round complexity of interactive zero-knowledge argu-
ments is an important measure along with communication and compu-
tational complexities. In the case of zero-knowledge arguments for linear
algebraic relations over finite fields, Groth proposed (at CRYPTO 2009)
an elegant methodology that achieves sub-linear communication over-
heads and low computational complexity. He obtained zero-knowledge
arguments of sub-linear size for linear algebra using reductions from lin-
ear algebraic relations to equations of the form z = x ∗′ y, where x,
y ∈ Fn

p are committed vectors, z ∈ Fp is a committed element, and
∗′ : Fn

p × Fn
p → Fp is a bilinear map. These reductions impose addi-

tional rounds on zero-knowledge arguments of sub-linear size. We fo-
cus on minimizing such additional rounds, and we reduce the rounds
of sub-linear zero-knowledge arguments for linear algebraic relations as
compared with Groth’s zero-knowledge arguments for the same relations.
To reduce round complexity, we propose a general transformation from a
t-round zero-knowledge argument, satisfying mild conditions, to a (t−2)-
round zero-knowledge argument; this transformation is of independent
interest.

Keywords: Round-efficient zero-knowledge arguments, sub-linear
zero-knowledge arguments, linear algebra.

1 Introduction

The round complexity of interactive zero-knowledge arguments is an important
measure along with communication and computation complexities. In computer
networks, interactions between entities consume the most time; hence, it is im-
portant to reduce the round complexity of protocols, and many researches have
attempted devise round-efficient protocols [1,4,6,8,13,3,17,2,5,14,18,7].

To optimize round complexity, interactive zero-knowledge arguments can be
usually transformed into non-interactive zero-knowledge arguments by using the
Fiat-Shamir heuristic, i.e., a cryptographic hash function is used by the prover to
compute the verifier’s challenges. To prove the soundness property in such non-
interactive zero-knowledge arguments, we should assume the so-called random
oracle model such that the cryptographic hash functions are viewed as random
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oracles. Recently, non-interactive zero-knowledge arguments have been proposed
without the random oracle model [10,11]; however, they require communication
overheads of quasi-linear size or non-standard assumptions in bilinear groups.

Groth proposed interactive zero-knowledge arguments of sub-linear size for lin-
ear algebra [9]. They attain sub-linear communication size and require fewer as-
sumptions than the non-interactive zero-knowledge arguments mentioned above,
i.e., they require only the discrete logarithm assumption and common reference
strings. Therefore, we start from [9] to obtain round-efficient zero-knowledge ar-
guments of sub-linear size under minimal assumptions.

The techniques used in [9] yield zero-knowledge arguments of sub-linear size;
however, they require several additional rounds. We believe that such additional
rounds are not necessary to obtain zero-knowledge arguments of sub-linear size
for statements involving linear algebra. In addition, we attempt to obtain round-
efficient zero-knowledge arguments of sub-linear size for linear algebraic relations.

Our Contributions. The proposed method for obtaining round-efficient zero-
knowledge arguments of sub-linear size for linear algebraic relations involves two
steps.

First, we reduce arguments for linear algebra to two types of equations that
use two different types of bilinear maps; one bilinear map is defined from Fn

p ×
Matn×n(Fp) to Fn

p , and the other, from Fn
p × Fn

p to Fn
p . In [9], all arguments are

reduced to one type of bilinear equations. On the other hand, we do not try to
reduce one type of bilinear equations to the other; however, we construct specific
short-round zero-knowledge arguments for each type of bilinear equations. Thus,
we can obtain shorter rounds than those of [9]. As a result we reduce the three-
to-one rounds of zero-knowledge arguments, as compared with those of [9].

Second, we propose a general transformation from a t-round zero-knowledge
argument A to a (t − 2)-round zero-knowledge argument A′ if A satisfies some
mild conditions that are satisfied by our zero-knowledge arguments and vir-
tually the zero-knowledge arguments in [9]. We show that the rounds of all
zero-knowledge arguments in [9] can be reduced by two using the proposed trans-
formation for the same relation. Although the proposed transformation reduces
the round complexity of zero-knowledge arguments, it increases the communica-
tion and computational complexities. However, for each reduction, the proposed
transformation requires, at most 3 times more communication overheads than
the original zero-knowledge arguments in [9].

Outline. In the next section, we introduce the notations, useful tools, and basic
definitions used in this paper. In Section 3 we construct zero-knowledge argu-
ments for two types of bilinear equations. In Section 4, we present a general
transformation from t-round zero-knowledge arguments to (t − 2)-round argu-
ments with conditions when zero-knowledge arguments are eligible for transfor-
mation. In Section 5, we apply the general transformation to the zero-knowledge
arguments obtained in Section 3. Finally, in Section 6, we compare the results
with the zero-knowledge arguments of [9].
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2 Preliminaries

Notation. We use [a, b] to denote a set of integers, at least a and at most b. For

a set S and an element a ∈ S, a $← S implies that a is randomly chosen from S.
For an algorithm A, A(x) → s implies that A outputs s when its input is x.

Generalized Pedersen Commitment. We use the generalization of the Ped-
ersen commitment scheme [16]. To commit to a vector in Fn

p , we use a gener-
alized Pedersen commitment Com(·; ·) : Fn

p × Fp → G, where p is a prime, Fp

is a finite field of characteristic p, and G is a group of order p. The generalized
Pedersen commitment scheme consists of two algorithms, the key generation al-
gorithm K and the commitment algorithm C. K takes the security parameter
λ as input, and it outputs (G, g1, · · · , gn, h), where G is a cyclic group of or-
der p and g1, · · · , gn, h are randomly chosen generators of G. C takes a vector
x = (ζ(1), · · · , ζ(n)) ∈ Fn

p and a randomizer r ∈ Fp as input, and it outputs

Com(x; r) := hr
∏n

j=1 gζ(j)

j . The generalized Pedersen commitment scheme is a
perfectly hiding and computationally binding commitment scheme under the
discrete logarithm assumption in G.

The usefulness of the generalized Pedersen commitment scheme is attributed
to its homomorphic property: For ∀x,y ∈ Fn

p and r, s ∈ Fp,

Com(x + y; r + s) = Com(x; r) · Com(y; s).

Schwartz-Zippel Lemma. We use the Schwartz-Zippel lemma to prove the
soundness property of arguments. The schwartz-Zippel lemma enables us to
carry out a useful equality test for two multi-variate polynomials. Given two
multi-variate d-degree polynomials, f1(x1, · · · , xk) and f2(x1, · · · , xk), we can
test whether f1(e1, · · · , ek) ?= f2(e1, · · · , ek) for randomly chosen e1, · · · , ek from
Fp. If f1 = f2, then the equality will always hold for all e1, · · · , ek; however, if
f1 �= f2, then the equality will hold with probability at most d/p.

Lemma 1. Let f(x1, · · · , xk) be a non-zero multivariate polynomial of degree d
over Fp. Then,

Pr[f(e1, · · · , ek) = 0] ≤ d

p
,

where the probability goes over e1, · · · , ek randomly chosen from Fp.

Special Honest Verifier Zero-Knowledge Arguments. In this paper, we
are interested in Special Honest Verifier Zero-Knowlege (SHVZK) arguments of
knowledge in the common reference string model. SHVZK arguments feature
completeness, the SHVZK property, and witness-extended emulation. In partic-
ular, all the SHVZK arguments proposed in this paper have perfect complete-
ness and perfect SHVZK. We refer to [12] for the formal definition of SHVZK
arguments.
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3 SHVZK Arguments for Equations with Vectors and
Matrices

In this section we consider 6 types of equations over committed matrices Xi, Yi, Z
∈ Matn×n(Fp), committed vectors xi,yi, z ∈ Fn

p , and committed elements z ∈
Fp, with public ai ∈ Fp.

Z =
∑m

i=1 aiXiYi, Z =
∑m

i=1 aiXi ◦ Yi, z
 =
∑m

i=1 aiXiy

i ,

z =
∑m

i=1 aixiYi, z =
∑m

i=1 aixi ◦ yi, z =
∑m

i=1 aixiy

i ,

where ◦ is a entry-wise product, the so-called Hadamard product.
We propose SHVZK arguments for committed vectors and matrices of ele-

ments from Fp satisfying the equations stated above, which are typically used
in linear algebra. In particular, we focus on the three lower equations because
we can consider the three upper equations as a set of n equations of the cor-
responding types below. More precisely, there exists an 1-round reduction from
several equations of the upper form to the corresponding lower equations with-
out a public coefficient ai [9]. Going a further, we can consider the last two lower
equations as a bilinear equation of the form

z =
m∑

i=1

aixi ∗ yi,

where ∗ : Fn
p × Fn

p → Fn
p is a bilinear map. One example of ∗ is the Hadamard

product of two vectors in Fn
p , and another example of ∗ is the standard inner

product of two vectors in Fn
p , obtained by filling zeros in Fn−1

p of the range
Fn

p . That is, x ∗ y := (〈x,y〉, 0, · · · , 0), where 〈, 〉 is the standard inner product.
Similarly, we can consider a product of a vector and a matrix as a bilinear map
defined from Fn

p × Matn×n(Fp) to Fn
p . For simplification, we assume that all

public coins ai are 1 because both the prover and the verifier can compute the
commitment to aixi from the committed x and public ai.

First, we consider an equation z =
∑m

i=1 xiYi, and next, we will consider a
bilinear equation z =

∑m
i=1 xi ∗ yi. Let us consider an equation z =

∑m
i=1 xiYi.

We provide a 3-round SHVZK argument for a minimal case z = xY ; then, we
provide a 2-round reduction from a general case to the minimal case.

3.1 SHVZK Arguments for z =
∑m

i=1 xiYi

The Minimal Case. As the first step, we consider the statement z = xY . Let
y(j) be the j-th row vector of Y , and x = (ζ(1), · · · , ζ(n)).
Common Input (CI): Cx = Com(x; r), Cy(i) = Com(y(i); s(i)) for i ∈ [1, n],
Cz = Com(z; t) where x,y(1), · · · ,y(n) ← Fn

p and s(1), · · · , s(n), t ← Fp.
Prover Input (PI): x,y(1), · · · ,y(n), z, r, s(1), · · · , s(n) and t where z ← Fn

p and
t ← Fp.
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Goal: Prove the knowledge of x, Y and z such that z = xY .

Prover Verifier

Choose x̂ = (ζ̂(1), · · · , ζ̂(n)),y(0) $← Fn
p , r̂, s(0), t̂

$← Fp.
Compute Cx̂ := Com(x̂; r̂),

Cy(0) := Com(y(0); s(0)),

Cẑ := Com(0; t̂)
∏n

j=1(Cy(j) )ζ̂(j)
.

Send
Cx̂,C

y(0) ,Cẑ−→
Choose e

$← Fp.
e←− Send

Compute x̃ := x̂ + ex,
r̃ := r̂ + er,

ỹ :=
∑n

j=0 ejy(j),

s̃ :=
∑n

j=0 ejs(j),

t̃ := t̂ + e(t −∑n
j=1 ζ(j)s(j)).

Send x̃,r̃,ỹ,s̃,t̃−→

The verifier accepts the argument if

(1) Com(x̃; r̃) = Cx̂C
e
x,

(2) Com(ỹ; s̃) =
∏n

j=0(Cy(j))ej

,

(3) Com(0; t̃)
∏n

j=1(Cy(j))ζ̃(j)
= CẑC

e
z ,

where x̃ = (ζ̃(1), · · · , ζ̃(n)).

Theorem 1. the above argument has perfect completeness, perfect SHVZK and
witness-extended emulation.

The proof of Theorem 1 is deferred to the full version of this paper.
2-Round Reduction to Minimal Case. We consider the statement z =∑m

i=1 xiYi. We follow Groth’s 2-round reduction methodology from the general
case z =

∑m
i=1 xiyi to the minimal case z = xy. Let us briefly explain key

idea before describing the argument in detail. First, we consider the product of
following elements.

x′ =
m∑

k=1

ek−1xk and y′(j) =
m∑

i=1

em−iy(j)
i for j ∈ [1, n],

where e is a random element in Fp and y(j)
i be the j-th row vector of Yi. Let

xi = (ζ(1)
i , · · · , ζ(n)

i ). Then, the product is as follows:

x′Y ′ =
n∑

j=1

(y′(j)
m∑

k=1

ek−1ζ
(j)
k ) =

∑
�∈[0,2m−2]

e�(
n∑

j=1

∑
i,j:

�=m−i+k−1

y(j)
i ζ

(j)
k )
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In the above equation, the part corresponding to � = m − 1 is exactly equal
to
∑m

i=1 xiYi. The prover sends commitments to z� which is suppose to be∑n
j=1

∑
i,j:

�=m−i+k−1
y(j)

i ζ
(j)
k (set zm−1 by z) before receiving the challenge e.

Next, both the prover and the verifier compute commitments to x′, Y ′, and∑
�∈[0,2m−2] e

�z� by using Com’s additive homomorphic property; then, they run
the minimal case with them as input. If the verifier accepts the transcript of the
argument, then it means that the following equality holds with overwhelming
probability:

∑
�∈[0,2m−2]

e�(
n∑

j=1

∑
i,j:

�=m−i+k−1

y(j)
i ζ

(j)
k ) =

∑
�∈[0,2m−2]

e�z�.

Since all commitments are chosen by the prover before he see the random chal-
lenge e, by Schwartz-Zippel lemma all coefficients of e� in the left side of above
equality are equal to corresponding coefficients of the right side of above equality
without probability at most 2m−2

p . Therefore, z =
∑

i∈[1,m] xiYi with overwhelm-
ing probability.

Now, we provide the complete description of 2-round reduction from z =∑m
i=1 xiYi to the minimal case z = xY .

Common Input: Cxi = Com(xi; ri), Cy(1)
i

= Com(y(1)
i ; s(1)

i ) for i ∈ [1,m], j ∈
[1, n], Cz = Com(z; t).
Prover Input: xi, ri,y

(j)
i , s

(j)
i for i ∈ [1,m], j ∈ [1, n], and z, t.

Goal: Prove the knowledge of xi, Yi and z such that z =
∑m

i=1 xiYi.

Prover Verifier

Choose For � ∈ [0,m− 2] ∪ [m, 2m− 2], t�
$← Fp.

Set tm−1 := t−∑m
i=1

∑n
j=1 ζ

(j)
i s

(j)
i .

Compute C� := Com(0; t�)
∏

�=m+k−i−1

∏n
j=1(Cy

(j)
i

)ζ
(j)
k .

Then, Cm−1 = Cz.

Send
C0,··· ,C2m−2−→

Choose e
$← Fp.

e←− Send

Define Cx′ :=
∏m

k=1(Cxk )
ek−1

, Define Cx′ ,

Cy′(j) :=
∏m

i=1(Cy
(j)
i

)e
m−i

, Cy′(j) ,

Cz′ :=
∏2m−2

�=0 (C�)
e� . Cz′

Compute an opening of Cx′ ,

x′ =
∑m

k=1 e
k−1xk, r′ =

∑m
k=1 e

k−1rk,
an opening of Cy′(j) ,

y′(j) =
∑m

i=1 e
m−iy

(j)
i , s

′(j)
i =

∑m
i=1 e

m−is
(j)
i ,

and a randomizer of Cz′ ,

t′ =
∑2m−2

�=0 e�(t� +
∑

�=m+k−i−1

∑n
j=1 ζ

(j)
k s

(j)
i ).

Run minimal case with Cx′ , Cy′(j) and Cz′
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Theorem 2. The above argument has perfect completeness, perfect SHVZK and
witness-extended emulation.

Sketch of proof. Let x′ be an opening vector of Cx′ , y′(j) be an opening vector of
Cy′(j) , and Y ′ be a matrix consisting of y′(j) as its j-th row. Then, the product
of a vector x′ and a matrix Y ′ is equal to

x′ · Y ′ =
n∑

j=1

((
m∑

k=1

ek−1ζ
(j)
k ) · (

m∑
i=1

em−iy(j)
i )) =

n∑
j=1

2m−2∑
�=0

e�(
∑

�=m+k−i−1

ζ
(j)
k y(j)

i ).

The right side of equality is equal to an opening vector of Cz′ ; hence, the above
argument has perfect completeness by perfect completeness of the SHVZK ar-
gument for the minimal case.

Now, we show that the above argument has perfect SHVZK. We describe a
simulator S with inputs CI = (Cxi , Cy(j)

i
, Cz) and challenges, e1 and e2, that

outputs the simulated argument with the same probability distribution to the
real argument. First, S chooses C1, · · · , C2m−2 as random commitment to 0
except Cm−1 = Cz, and it computes Cx′ , Cy′(j) and Cz′ by using e1 according
to their definition. Second, S feeds Cx′ , Cy′(j) , Cz′ , and e2 to the simulator for
the SHVZK argument for the minimal case. The simulated argument by S is
identical to the real argument due to perfect SHVZK property of the minimal
case and perfectly hiding property of Com,.

As the last step, we show that the argument has a witness-extended emu-
lation. We can respectively obtain opening vectors x′, y′(1), · · · ,y′(n) and z′

of Cx′ , Cy′(1) , · · · , Cy′(n) and Cz′ on random challenge e by using a witness-
extended emulation for the SHVZK argument for the minimal case, so that
these opening vectors satisfy z′ = x′ · Y ′. By definition of Cx′ , Cy′(1) , · · · , Cy′(n)

and Cz′ , we have following equalities.

Cx′ =
m∏

k=1

(Cxk
)ek−1

, Cy′(j) =
m∏

i=1

(Cy(j)
i

)em−i

, Cz′ =
2m−2∏
�=1

(C�)e�

.

By binding property of Com,

x′ =
m∑

k=1

ek−1xk, y′(j) =
m∑

i=1

em−iy(j)
i , z′ =

2m−2∑
�=0

e�z�,

where xk, y(j)
i , and z� are openings vectors of Cxk

, Cy(j)
i

, and C�, respectively.

We consider a vector (1, e, · · · , e2m−2) for random challenge e. When we have
2m− 1 such vectors for random challenge e, they are linearly independent with
overwhelming probability, so that we can extract all z0, · · · , z2m−2 from 2m− 1
equations on random e. Similarly, we can extract xk, y(j)

i for all k, i ∈ [1,m], j ∈
[1, n] since m equations of (1, e, · · · , em−1) for random e are linearly independent
with overwhelming probability.

Now, we show that the extracted values xk, y(j)
i and z satisfy z =

∑m
i=1 xiYi.

We already know that the extracted values satisfy x′ =
∑m

k=1 ek−1xk, y′(j) =
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∑m
i=1 em−iy(j)

i , and z′ =
∑2m−2

�=0 e�z�. The Schwartz-Zippel Lemma tells us the
em−1’s coefficient of x′Y ′ should be equal to that of z′ with overwhelming prob-
ability when we consider both x′Y ′ and z′ as polynomials of e. The coefficient of
em−1 in x′Y ′ is

∑n
j=1

∑m
i=1 ζ

(j)
i y(j)

i and the coefficient of em−1 in z′ is zm−1 = z.
Therefore, we conclude that

z =
n∑

j=1

m∑
i=1

ζ
(j)
i y(j)

i =
m∑

i=1

xiYi �

3.2 SHVZK Arguments for z =
∑m

i=1 xi ∗ yi

We consider a SHVZK argument for z =
∑m

i=1 xi∗yi, where ∗ : Fn
p×Fn

p → Fn
p is a

bilinear map. Groth [9] proposed a SHVZK argument for z =
∑m

i=1 xi∗′yi, where
∗′ : Fn

p × Fn
p → Fp is a bilinear map. By simple extension from Groth’s SHVZK

argument for z =
∑m

i=1 xi ∗′ yi, we can obtain 5-round SHVZK arguments for
z =

∑m
i=1 xi ∗ yi. In particular, if we restrict z =

∑m
i=1 xi ∗ yi to the case that

z =
∑m

i=1 xiy

i , then it is totally same to that of [9]. Our key observation of this

bilinear equation is that Hadamard product is already a bilinear map. In [9], the
case that z =

∑
i∈[1,m] xi ◦ yi is reduced to of the form z =

∑
i∈[1,m] xi ∗′ yi,

where ∗′ is a bilinear map, so that it requires total 6-round; however, we need
just 5-round for zero-knowledge arguments.1 We leave details of arguments in
the full version of this paper.

4 General Transformation for Reducing Rounds of
SHVZK Arguments

In this section, we present a general transformation from a t-round SHVZK
argument A = (K,P,V), satisfying some condition, to a (t − 2)-round SHVZK
argument A′, where K is a common reference string generator, and P and V
are polynomial time interactive algorithms called the prover and the verifier,
respectively. In Definition 1 we formally define the condition that is required to
reduce an argument A to A′.

First, let us define the terms used in Definition 1. We write < P(x),V(y) >→
tr for the public transcript tr produced by P and V with inputs x and y. The
transcript tr can be written as tr = (p0; e1; p1; · · · ; em; pm), where pi is a value
sent by the prover and ei is a value sent by the verifier. We assumed that P
is an interactive algorithm; hence, we can set pi as an output of some function
Pi(PI,CI, ρ, e1, · · · , ei−1), where PI is the input prover’s input PI, CI is the
1 In [9], Groth constructed a SHVZK argument for the standard inner product and

the Hadamard product by building a SHVZK argument for a bilinear equation z =∑
i=1 xi ∗ yi where ∗ : Fn

p × Fn
p → Fp is a bilinear map. That is, ∗ can be considered

as the standard inner product, or it can be considered as x ∗y = x(y ◦ t)	, where t
is a public vector chosen by the verifier. This approach requires one additional round
for transmitting t to prove a SHVZK argument for the Hadamard product.
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common input, ρ is the randomness of the prover, e1, · · · , ei−1 are the challenges
sent by V, and p0 is an output of the function P0(PI,CI, ρ). Further, we assume
that all ei are independently and randomly chosen because we only consider
SHVZK arguments. At the end of the interactions between P and V, the verifier
accepts or rejects the statement. We write this procedure of the verifier as an
algorithm with inputs CI and tr, Ver(CI, tr) → {0, 1}, where 0 and 1 correspond
to V rejecting and accepting the statements, respectively.

Definition 1. Let A = (K,P,V) be an argument for a relation R with complete-
ness and soundness. For A, we use following notation:{

< P,V > → tr = (p0; e1; p1; · · · ; em; pm)
Ver(CI, tr) → {0, 1}

If there exist functions Fi and P ′
i such that Fi(p′i, ei) = Pi(PI,CI, ρ, e1, · · · , ei)

for some i ∈ [1,m], where p′i = P ′
i (PI,CI, ρ, e1, · · · , ei−1), then we define the

reduced argument of A, A′ = (K ′,P′,V′) of A at i with Fi and P ′
i for the relation

R as follows:

⎧⎨⎩
K ′ = K
< P′,V′ > → tr′ = (p0; · · · ; ei−1; pi−1, p

′
i; ei, ei+1; pi+1; · · · ; pm)

Ver′(CI, tr′) = Ver(CI, (p0; · · · ; pi−1; ei;Fi(p′i; ei); ei+1; · · · ; pm))

The following lemma shows that a reduced argument also has the complete-
ness and soundness if the original argument has. Although the reduced argu-
ments have completeness and soundness, we need additional requirements for
the reduced arguments to have the SHVZK property. We will consider the extra
requirements for the SHVZK property after we state Lemma 2.

Lemma 2. Let A be an argument for a relation R with completeness and sound-
ness, and let A′ be a reduced argument of A at i with Fi and P ′

i for the relation R.
Then, A′ has completeness and soundness. Moreover, if A has a witness-extended
emulation, then A′ also has the same.

Proof. Since Ver′(CI, tr′) = Ver(CI, tr) and A has completeness, A′ also has
completeness.

Let us consider the soundness of the argument A′. Assume that there exists
a cheating prover P̃

′
of argument A′, with success probability ε. We construct

a simulator S using P̃
′
to cheat the verifier V of the argument A, with success

probability ε. Now, we explain the role of S. S interacts with P̃
′

on behalf of
the verifier of A′, and it simultaneously interacts with a verifier V on behalf of
the prover of A. S transfers P̃

′
’s message pk to V and V’s challenge ek+1 to P̃

′

in order for k ∈ [0, i − 2]. Then, S receives pi−1 and p′i from P̃
′
, sends pi−1 to

V, receives ei from V, computes pi = F (p′i, ei), and sends it to V. V sends a
challenge ei+1 to S; then, S sends ei and ei+1 to P̃

′
. Next, S transfers all the

messages between P̃
′
and V. The operations of S’ is shown below.
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P̃
′ S V

p0−→ p0−→
...

...
pi−1,p′

i−→ pi−1−→
Compute ei←−

pi = F (p′i, ei)
pi−→

ei,ei+1←− ei+1←−
...

...

In P̃
′
’s view, simulated challenges are identical to real arguments. Therefore, the

transcript tr′ between P̃
′
and S is accepted with probability ε, i.e., Ver′(CI, tr′) =

1 with probability ε. As aforementioned Ver′(CI, tr′) = Ver(CI, tr); hence V
accepts with probability ε.

Now, we show that A′ has a witness-extended emulation whenever A has a
witness-extended emulation. We showed that we can construct a simulator S
that performs the role of the prover of A by using the prover P′ of A′. There-
fore, the witness-extended emulation of A can extract a witness of A from S.
A and A′ are arguments for the same relation R; hence, the lemma is complete. �

Now, we consider the SHVZK property of the reduced argument A′ of A at i with
Fi and P ′

i . To show that A′ has the SHVZK property, we should construct a simu-
lator that can generate the prover’s output (p0, · · · , p′i, · · · , pm) according to the
randomness ρ of the prover from given the common input CI and all challenges
e1, · · · , em. The following lemma shows the requirements for the SHVZK prop-
erty of A′. We introduce the simple notations used to concisely state Lemma 3.
For fixed PI ,CI, and e1, · · · , em, we define two probabilities X(p0,··· ,pi,··· ,pm) and
Y(p0,··· ,p′

i,··· ,pm).X(p0,··· ,pi,··· ,pm) denotes the probability that the prover of the orig-
inal argument A outputs (p0, · · · , pi, · · · , pm) for fixed PI,CI, e1, · · · , em. Simi-
larly, Y(p0,··· ,pi,··· ,pm) denotes the probability that the prover of the reduced argu-
mentA′ outputs (p0, · · · , p′i, · · · , pm) for fixedPI,CI, e1, · · · , em. The probability
of X(p0,··· ,pi,··· ,pm) and Y(p0,··· ,p′

i,··· ,pm) goes over the prover’s randomness ρ.

Lemma 3. The reduced argument A′ of A at i with Fi and P ′
i has the SHVZK

property if the original argument A has the SHVZK property, and there exists
an algorithm Alg which runs as follows:

Alg with input CI, e1, · · · , en, and (p0, · · · , pi, · · · , pm) outputs p′i satisfying
pi = Fi(p′i, ei), with probability

Y(p0,··· ,p′
i,··· ,pm)

X(p0,··· ,pi,··· ,pm)
,

where Alg uses independent randomness.
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Proof. We construct a simulator SimA′
that generates all the output of the

prover of argument A′, (p0, · · · , p′i, · · · , pm). Thereafter, we show that for each
(p0, · · · , p′i, · · · , pm), the probability that SimA′

outputs (p0, · · · , p′i, · · · , pm),
Pr[SimA′

→ (p0, · · · , p′i, · · · , pm)], is equal to Y(p0,··· ,p′
i,··· ,pm). Then, the proof

is complete.
The original argumentA has the SHVZK property; hence, there exists a simula-

tor SimA that can generate all the output of the prover of A, (p0, · · · , pi, · · · , pm),
from the given common input CI and challenges e1, · · · , em with the probability
X(p0,··· ,pi,··· ,pm). Now, we construct SimA′

by using SimA and Alg. First, SimA′

runs SimA with inputs CI and e1, · · · , em, and (p0, · · · , pi, · · · , pm) is obtained.
Then, it runs Alg with inputs CI, e1, · · · , em, and (p0, · · · , pi, · · · , pm), and it
receives Alg’s output p′i. Lastly, SimA′

outputs (p0, · · · , p′i, · · · , pm).
We consider Pr[SimA′

→ (p0, · · · , p′i, · · · , pm)] for each (p0, · · · , p′i, · · · , pm);

Pr[SimA′
→ (p0, · · · , p′i, · · · , pm)]

= Pr[SimA → (p0, · · · , pi, · · · , pm) such that pi = Fi(p′i, ei), and Alg → p′i]
= Pr[SimA → (p0, · · · , pi, · · · , pm) such that pi = Fi(p′i, ei)]
· Pr[Alg(CI, e1, · · · , em, (p0, · · · , pm)) → p′i]

= X(p0,··· ,pi,··· ,pm) ·
Y(p0,··· ,p′

i,··· ,pm)

X(p0,··· ,pi,··· ,pm)

= Y(p0,··· ,p′
i,··· ,pm).

The probabilities go over all the randomness used by SimA and Alg. The sec-
ond equality holds because the two algorithms SimA and Alg use independent
randomness. �

5 Applying Transformation to SHVZK Arguments for
Linear Algebra

5.1 Application I: SHVZK Arguments for z =
∑m

i=1 xiYi

In this section, we apply the general transformation to SHVZK arguments for
z =

∑m
i=1 xiYi presented in Section 3.1. Before applying the general transforma-

tion, we modify SHVZK arguments for z =
∑m

i=1 xiYi. This modification does
not affect the argument itself; however, it adds redundant computations on the
prover side, thereby enabling us to easily apply the general transformation. Let
us briefly review 5-round SHVZK arguments for z =

∑m
i=1 xiYi. P and V per-

form the 2-move reduction to the minimal case; then, P starts the minimal case
SHVZK by sending Cx̂, Cy′(0) , Cẑ, where

Cx̂ = Com(x̂; r̂), Cy′(0) = Com(y′(0); s′(0)) for x̂,y′(0) $← Fn
p , r̂, s

′(0) $← Fp,

Cẑ = Com(0; t̂)
n∏

j=1

(Cy′(j) )ζ̂(j)
for t̂

$← Fp, where x̂ = (ζ̂(1), · · · , ζ̂(n)).
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This process is shown below.

P V
C1,··· ,C2m−2−→

e1←−
Define Cx′ , Cy′(j) , Cz′ for j ∈ [1, n]

Cx̂,C
y′(0) ,Cẑ

−→
e2←−

x̃,r̃,ỹ,s̃,t̃−→

We modify this process by computing Cx̂, Cy(0) , and Cẑ as follows:
Step (1). Compute Cx̂k

, Cy′(0) , and C′
� as

Cx̂k
= Com(x̂k, r̂k) for k ∈ [1,m], where x̂k

$← Fn
p , r̂k

$← Fp,

Cy′(0) = Com(y′(0); s′(0)) where y′(0) $← Fn
p , s

′(0) $← Fp,

C′
� = Com(0; t̂�)(

∏
i,k:�=m+k−i−1

n∏
j=1

C
ζ̂
(j)
k

y(j)
i

), where x̂k = (ζ̂(1)
k , · · · , ζ̂(n)

k ).

Step (2). Compute Cx̂ and Cẑ using Cx̂k
, C′

�, and the first challenge e1 as
follows:

Cx̂ =
m∏

k=1

(Cx̂k
)ek−1

1 , Cẑ =
2m−2∏
�=0

C
′e�

1
� .

Then, Cx̂ =
∏m

k=1(Cx̂k
)ek−1

1 = Com(
∑m

k=1 ek−1
1 x̂k;

∑m
k=1 ek−1

1 r̂k).
∑m

k=1 ek−1
1 x̂k

and
∑m

k=1 ek−1
1 r̂k are uniformly distributed; hence, Cx̂ has the same distribution

as that before modification. The Cẑ case is slightly complicated.

Cẑ =
2m−2∏
�=0

C
′e�

1
�

=
2m−2∏
�=0

Com(0; t̂�)e�
1 (

∏
i,k:�=m+k−i−1

n∏
j=1

C
ζ̂
(j)
k

y(j)
i

)e�
1

= Com(0;
2m−2∑
�=0

e�
1t̂�)

2m−2∏
�=0

∏
i,k:�=m+k−i−1

n∏
j=1

(C ζ̂
(j)
k

y(j)
i

)e�
1

= Com(0;
2m−2∑
�=0

e�
1t̂�)

m∏
i=1

m∏
k=1

n∏
j=1

C
ζ̂
(j)
k em+k−i−1

1

y(j)
i

= Com(0;
2m−2∑
�=0

e�
1t̂�)

n∏
j=1

(
m∏

i=1

C
em−i
1

y(j)
i

)
∑m

k=1 ek−1
1 ζ̂

(j)
k
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= Com(0;
2m−2∑
�=0

e�
1t̂�)

n∏
j=1

(Cy′(j) )ζ̂(j)
,

where x̂ = (ζ̂(1), · · · , ζ̂(n)).
∑2m−2

�=0 e�
1t̂� is uniformly distributed; hence, Cẑ’s

distribution in this modification is identical to the original distribution.
Now, we are ready to apply the general transformation to this modified

SHVZK argument. In the modified argument, we consider the third move as an
output of the function P1(PI,CI, ρ, e1), and we can separate P1(PI,CI, ρ, e1)
into two steps. All the computations associated with the challenge e1 are con-
tained in Step (2) and not in Step (1); thus, the function P1(PI,CI, ρ, e1) can be
rewritten as F1(P ′

1(PI,CI, ρ), e1), where P ′
1 is a function that denotes Step(1 )

and F1 is a function that denotes Step(2 ). Therefore, we can apply the general
transformation in Definition 1 so that the reduced argument at 1 with F1 and P ′

1
for the relation z =

∑m
i=1 xiYi has perfect completeness and witness-extended

emulation by Lemma 2.
Next, to show that the reduced argument has perfect SHVZK, we construct

an algorithm Alg satisfying the condition in Lemma 3. First, we consider the
probabilities X(p0,p1,p2) and Y(p0,p′

1,p2) that are defined in Lemma 3. Since we use
the perfect hiding commitment scheme, p0 and p1 are independent. Similarly, p0
and p′1 are independent. Therefore, we obtain

Y(p0,p′
1,p2)

X(p0,p1,p2)
=

Pr[P0 = p0] · Pr[P ′
1 = p′1] · Pr[P2 = p2|p0, p

′
1]

Pr[P0 = p0] · Pr[P1 = p1] · Pr[P2 = p2|p0, p1]

=
Pr[P ′

1 = p′1]
Pr[P1 = p1]

= Pr[P ′
1 = p′1|P1 = p1],

where Pi and P ′
1 are functions with input PI, CI, the randomness ρ, and appro-

priate verifier’s challenges, and the probabilities go over ρ. The second equality
holds since Pr[P2 = p2|p0, p

′
1] = Pr[P2 = p2|p0, p1], and the last equality holds

since the event P ′
1(PI,CI, ρ) = p′1 implies P1(PI,CI, ρ, e1) = F1(p′1, e1) = p1.

Now, we construct an algorithm Alg that outputs p′1 = (Cx̂k
, Cy′(0) , C′

�) with
above probability. Alg takes Cx̂, Cẑ and e1 as inputs, and it outputs uniform
Cx̂k

, Cy′(0) and C′
� satisfying the equalities of Step(2 ). More precisely, Alg ran-

domly chooses Cy′(0) , Cx̂k
and C′

� for k ∈ [2,m] and � ∈ [1, 2m − 2], and it
computes Cx̂1 = Cx̂

∏m
k=1(Cx̂k

)−ek−1
1 and C′

0 = Cẑ
∏2m−2

�=1 (C′
�)

−e�
1 . Then, Cx̂k

and C′
� for k ∈ [1,m], and � ∈ [0, 2m − 2] are uniformly distributed with the

restrictions Cx̂ =
∏m

k=1(Cx̂k
)ek−1

1 and Cẑ =
∏2m−2

�=0 C
′e�

1
� . We can easily check

that Alg satisfies the condition in Lemma 3, and the original argument has
the SHVZK property so that, by Lemma 3, the reduced argument has perfect
SHVZK.

Therefore, we obtain the following theorem. The complete description of the
3-round SHVZK for z =

∑m
i=1 xiYi is provided in the full version of this paper.
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Theorem 3. The reduced 3-round argument obtained by applying the general
transformation to the 5-round SHVZK argument of the knowledge of committed
values xi, Yi, and z such that z =

∑m
i=1 xiYi has perfect completeness, perfect

SHVZK, and witness-extended emulation.

Complexity. The proposed argument requires 3 moves. The prover sends 5m−2
commitments and 2n+3 field elements to the verifier. The prover’s computation
is dominated by C� and C′

� for � ∈ [0, 2m−2], Cxk
for k ∈ [1,m], and y′(j). If we

naively compute them, they require 2m2n+mn group exponentiations and mn2

field multiplications. However, if we sue the multi-exponentiation technique [15]
for group exponentiation, they require less than 4m2nκ

log m2n + 2mnκ
log n multiplications in

G and mn2 field multiplications, where κ is the size of p. The verifier computes
12mκ
log m group multiplications to define Cx′ , Cz′ , Cx̂, and Cẑ, 2mnκ

log m group multipli-
cations to define Cy′(j) for j ∈ [1,m], and 8nκ

log n group multiplications during the
verification procedure. We can use the batch verification technique for reduction
from 8nκ

log n to 6nκ
log n group multiplications.

5.2 Application II: SHVZK Arguments for z =
∑m

i=1 xi ∗ yi

We can apply the general transformation to the 5-round SHVZK argument for
z =

∑m
i=1 xi ∗yi to reduce the 3-round SHVZK argument for the same relation.

The basic strategy is similar to that in the case of SHVZK arguments for z =∑m
i=1 xi ∗ Yi. The details are provided in the full version of this paper.

Theorem 4. The reduced 3-round argument obtained by applying the general
transformation to the 5-round SHVZK argument of the knowledge of committed
values xi, Yi and z such that z =

∑m
i=1 xi ∗ yi has perfect completeness, perfect

SHVZK, and witness-extended emulation.

6 Comparison

We compare our results with the SHVZK arguments in [9]. First, we briefly
explain the results of [9]. In [9], several SHVZK arguments for linear algebraic
equations as well as the 6 types of equations considered in this paper are pro-
posed. For example, an equation where the product of two committed matrices is
equal to the identity matrix, an equation where one committed matrix is (known
or hidden) a permutation of another committed matrix, the satisfiability of an
arithmetic circuit, etc. All such SHVZK arguments for linear algebraic equations
need at least one SHVZK argument for one of three types of equations mainly
considered in this paper, i.e.,

z =
m∑

i=1

xiYi, z =
m∑

i=1

xi ◦ yi, z =
m∑

i=1

xiy

i .

In particular, an SHVZK argument for z =
∑m

i=1 xiy

i is used in all the SHVZK

arguments for the linear algebraic equations in [9] since all the SHVZK arguments
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are reduced to the case where z =
∑m

i=1 xiy

i . In cases where z =

∑m
i=1 xiYi and

z =
∑m

i=1 xi ◦ yi, 3-round reduction and 1-round reduction to the case where
z =

∑m
i=1 xiy


i are used, respectively.
For the three types of equations stated above, we obtain 3-round SHVZK

arguments that have smaller rounds than those in [9]; however, their communi-
cation overheads are similar to those in [9]. In the case where z =

∑m
i=1 xiy


i

we built a 3-round SHVZK argument with four times the communication and
computational overheads of those in [9]. Therefore, we can reduce 2 rounds of
each SHVZK argument for the linear algebraic equations in [9] with four times
communication and computational overheads of those in [9]. Furthermore, in
cases where z =

∑m
i=1 xiYi and z =

∑m
i=1 xi ◦ yi, we reduced one and three

more rounds than z =
∑m

i=1 xiy

i , respectively, by trading small additional

computational overheads. Exact comparisons are provided in Table 1.

SHVZK Rounds Communication
Argument Ours [9] Ours [9]

z =
∑m

i=1 xiYi 3 8 5mκ′ + 2nκ 7mκ′ + 2nκ

z =
∑m

i=1 xi ◦ yi 3 6 8mκ′ + 2nκ 2mκ′ + 2nκ

z =
∑m

i=1 xiy�
i 3 5 8mκ′ + 2nκ 2mκ′ + 2nκ

Table 1. Comparisons

Prover Computation Verifier Computation
Ours [9] Ours [9]

mn2 + 2mnκτ
log n + 4m2nκτ

log mn 9m2n + 12mκτ + 4mnκτ
log n

12mκ
log m + 2mnκ

log m + 6nκ
log n 2mκτ + 24mκτ

log m + 2mnκτ
log n

4m2n + 16mnκτ
log n 2m2n + 4mκτ + 4nκτ

log n
20mκ
log m + 2nκ

log n
8mκτ
log m + 2nκτ

log n

4m2n + 12mκτ + 4mnκτ
log n m2n + 4mκτ + 4nκτ

log n
20mκτ
log m + 2nκτ

log n
8mκτ
log m + 2nκτ

log n

xi, yi, z ∈ F
n
p , z ∈ Fp, Yi ∈ Matn×n(Fp),

κ′: size of group element in G, κ: size of field element in Fp,
τ : cost of multiplication in G measured in multiplication in Fp.
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Abstract. Randomizable encryption allows anyone to transform a ci-
phertext into a fresh ciphertext of the same message. Analogously, a
randomizable signature can be transformed into a new signature on the
same message. We combine randomizable encryption and signatures to
a new primitive as follows: given a signature on a ciphertext, anyone,
knowing neither the signing key nor the encrypted message, can ran-
domize the ciphertext and adapt the signature to the fresh encryption,
thus maintaining public verifiability. Moreover, given the decryption key
and a signature on a ciphertext, one can compute (“extract”) a signature
on the encrypted plaintext. As adapting a signature to a randomized en-
cryption contradicts the standard notion of unforgeability, we introduce
a weaker notion stating that no adversary can, after querying signatures
on ciphertexts of its choice, output a signature on an encryption of a new
message. This is reasonable since, due to extractability, a signature on
an encrypted message can be interpreted as an encrypted signature on
the message.

Using Groth-Sahai proofs and Waters signatures, we give several in-
stantiations of our primitive and prove them secure under classical as-
sumptions in the standard model and the CRS setting. As an application,
we show how to construct an efficient non-interactive receipt-free univer-
sally verifiable e-voting scheme. In such a scheme a voter cannot prove
what his vote was, which precludes vote selling. Besides, our primitive
also yields an efficient round-optimal blind signature scheme based on
standard assumptions, and namely for the classical Waters signature.

1 Introduction

Homomorphic cryptographic primitives have already found numerous applica-
tions. A nice side effect of homomorphic encryption is that ciphertexts can be
randomized : given a ciphertext, anyone can—without knowing the encrypted
message—produce a fresh ciphertext of the same message. E-voting schemes
make use of homomorphic encryption: users encrypt their votes under such a
scheme (and add proofs and signatures), so combining the ciphertexts leads to
an encryption of the election result. All signed encryptions are then made public
and verifiable, enabling the users to check that their vote was counted, and any-
body to verify the correctness of the final tally. Now, if instead of directly using
� Work done while at École normale supérieure, Paris, France.

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 403–422, 2011.
c© International Association for Cryptologic Research 2011
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a user’s ciphertext, the voting center first randomizes it and proves that it did so
correctly, in a non-transferable way, then users are prevented from proving the
content of their vote by opening it. This deters from vote selling, since someone
buying a vote has no means to check whether the user voted as told.

However, such a (non-transferable) proof of correct randomization is costly,
and the randomization breaks most of the proofs of validity of the individual
ciphertexts and signatures, and thus universal verifiability. More efficient tech-
niques are thus desirable, and this is precisely the motivation for our new primi-
tive: it allows to adapt signatures and proofs on the content of a ciphertext when
the ciphertext is randomized, that is, when the content itself is not modified.
This makes proofs of correct randomization obsolete, since after receiving an
encrypted vote with a validity proof and a signature from a user, the voting cen-
ter can randomize the ciphertext as well as the proof and signature accordingly,
which preserves universal verifiability. However, because of the randomization of
the encryption of the vote, the voter is not able to open nor link this encrypted
ballot to anything: no receipt can be built.

In contrast to e-voting, there are situations where encryption and signing are
not performed by the same person; consider a user that encrypts a message and
asks for a signature on the ciphertext. Assume now that the user can compute
from this an actual signature on the message (rather than on an encryption
thereof). The signature on the ciphertext could then be seen as an encrypted
signature on the message, which can be decrypted by the user. This resembles a
blind signature, as the signer made a signature on an unknown message; but not
quite, since he may later recognize the signature (knowing the random coins he
used) and thus break blindness. A possible remedy are randomizable signatures,
which allow to transform a given signature into a new one on the same message.
Such signatures, a classical example being Waters signatures [Wat05], do not
satisfy strong unforgeability, which requires that it be impossible even to create
a new signature on a signed message. As we show, this apparent weakness is
actually a feature, as it can be exploited to achieve unlinkability: the blindness
property is achieved by randomizing a signature after reception.

Fischlin [Fis06] gives a generic construction of round-optimal blind signatures
which has been efficiently instantiated recently [Fuc09,AFG+10]. To prevent the
signer from linking a blind signature to the signing session, they define a blind
signature as a (non-interactive) proof of knowledge of a signature. This makes
blind signatures significantly longer than signatures of the underlying scheme,
which can be avoided using randomizable signatures. In Fischlin’s scheme a blind
signature is a proof of knowledge of a signature on a ciphertext together with a
proof that the ciphertext decrypts to the message. In the scheme in [Fuc09], the
user obtains an actual signature on the message, of which he proves knowledge.
We go one step further: again, the user can extract a signature on the message;
but instead of making a proof of knowledge, it suffices to simply randomize it
to make it unlinkable. A blind signature has therefore the same format as the
underlying signatures and, in addition to being round-optimal, is thus short.
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Getting back to the receipt-free voting schemes, unlinkability of ciphertexts
after randomization is guaranteed by the semantic security of the encryption
scheme. If at the same time of randomizing the ciphertext, the voting center
adapts the proofs (validity of the ciphertext and signature by the voter), the ci-
phertexts remain unlinkable, under the conditions that they are valid ciphertext
and signed by a given voter. As a consequence, two valid encrypted votes signed
by the same voter are unlinkable: there is no way to know nor prove (even for
the voter) if they contain the same vote or any specific vote, which prevents the
voter from selling his vote.

Our contribution. We first introduce the notion of signatures on randomiz-
able ciphertexts: given a signature on a ciphertext, anyone, knowing neither the
signing key nor the encrypted message, can randomize the ciphertext and adapt
the signature to the fresh encryption. A pair of a ciphertext and a signature on
it can thus be randomized simultaneously and consistently.

Since adapting a signature on one ciphertext to a signature on another cipher-
text contradicts the standard notion of unforgeability for signatures, we define
a weaker notion, which still implies the security of our applications: unforge-
ability of signatures on randomizable ciphertexts means that the only thing an
adversary can do is produce signatures on encryptions of messages of which he
already knows a signature on an encryption; but he cannot make a signature
on an encryption of a new message. Formally, no adversary can, after querying
signatures on ciphertexts of its choice, output a signature on a ciphertext whose
decryption is different from the decryptions of all queried ciphertexts.

We then extend our primitive to extractable signatures on randomizable ci-
phertexts: given the decryption key, from a signature on a ciphertext one can
extract a signature on the encrypted plaintext. This enables the user in a blind-
signature scheme to recover a signature on the message after the signer has
signed an encryption of it.
Instantiations. We give several instantiations of extractable signatures on ran-
domizable ciphertexts, all of which are based on weak assumptions. Our construc-
tions use the following building blocks, from which they inherit their security:
Witness-indistinguishable Groth-Sahai proofs for languages over pairing-friendly
groups [GS08] and Waters signatures derived from the scheme in [Wat05] and
used in [BW06]. Since verification of Waters signatures is a statement of the lan-
guage for Groth-Sahai proofs, these two building blocks combine smoothly. The
first instantiation of our new primitive is in symmetric pairing-friendly elliptic
curves and additionally uses linear encryption [BBS04]. Both unforgeability and
semantic security of this construction rely solely on the decision linear assump-
tion (DLin). Due to space limitations, an instantiation with improved efficiency,
in asymmetric bilinear groups, using ElGamal encryption and the SXDH vari-
ant of Groth-Sahai proofs is available in the full version [BFPV11]. This setting
requires to transfer Waters’ signature scheme to asymmetric groups. Whereas
standard Waters signatures are secure under the computational Diffie-Hellman
assumption (CDH), we prove our variant secure under a slightly stronger as-
sumption, we term CDH+, where some additional elements in the second group
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are given to the adversary. The following table details the size of a ciphertext-
signature pair, where the parameter k denotes the bit length of a message:

Symmetric Pairing G
Waters + Linear 9k + 33

Asymmetric Pairing G1 G2

Waters + ElGamal 6k + 15 6k + 7

Applications. Using our new primitive, we immediately obtain a reasonably ef-
ficient round-optimal blind-signature scheme based on standard assumptions.
Moreover, exploiting the fact that our encryption is homomorphic, we construct
a non-interactive receipt-free universally verifiable e-voting scheme as follows:
the user encrypts his vote, proves its validity, and sends the encryption, a signa-
ture on it, and the proof to the voting center. The latter can now randomize the
ciphertext, adapt both the proof and the user’s signature, and publish them. Af-
ter the results are announced, the user can verify his signature, which convinces
him that the randomized ciphertext still contains his original vote due to our
notion of unforgeability; however he cannot prove to anyone what his vote was.

Related work. The issue of signing messages that are only available as an
encryption was already addressed by Fuchsbauer in [Fuc10]. He introduced com-
muting signatures and verifiable encryption where, given a ciphertext, a signer
can produce a verifiably encrypted signature on the plaintext. These encrypted
signatures can be randomized and used to construct the first delegatable anony-
mous credentials [BCC+09] with a non-interactive delegation protocol.

We avoid (randomizable) verifiable encryption of signatures by using signa-
tures that are themselves randomizable. In our instantiation of round-optimal
blind signatures, the blind signature is an actual signature rather than a verifi-
able encryption of it. Moreover, our construction is based on standard assump-
tions, whereas [Fuc10] relies on a “q-type” assumption. The efficiency of the two
approaches is comparable when signing short messages, as required by our ap-
plication to e-voting—since votes typically consist of only a few bits. We note
however that the size of our ciphertexts is linear in the bit length of the message.

Organization. In the next section, we present the primitive and the security
model. We then give two instantiations in symmetric bilinear groups based on
the decision linear assumption. We first fix ideas using standard Waters sig-
natures and then define a variant which yields a significant efficiency improve-
ment of our instantiation, proven secure under the same assumptions. Due to
space limitations, our instantiation in asymmetric groups based on ElGamal en-
cryption and an asymmetric variant of Waters signatures is deferred to the full
version [BFPV11]. In the last section, we illustrate applications of our primitive.

2 Definitions

This section presents the global framework and the security model for our new
concept of signatures on ciphertexts (or commitments). We thus first briefly
recall the basics of signatures and encryption. We then combine both into a
single scheme.
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2.1 Notations for Signature and Encryption

Definition 1 (Encryption Scheme). E = (Setup, EKeyGen, Encrypt, Decrypt):

– Setup(1k), where k is the security parameter, generates the global parameters
param of the scheme;

– EKeyGen(param) generates a pair of keys, the public (encryption) key pk and
the associated private (decryption) key dk;

– Encrypt(pk, m; r) produces a ciphertext c on the input message m ∈ M and
the public key pk, using the random coins r ∈ Re;

– Decrypt(dk, c) decrypts the ciphertext c under the private key dk; it outputs
the plaintext, or ⊥ if the ciphertext is invalid.

Definition 2 (Signature Scheme). S = (Setup, SKeyGen, Sign, Verif):

– Setup(1k), where k is the security parameter, generates the global parameters
param of the scheme;

– SKeyGen(param) generates a pair of keys, the public (verification) key vk and
the private (signing) key sk;

– Sign(sk, m; s) produces a signature σ on the input message m, under the
signing key sk, and using the random coins s ∈ Rs;

– Verif(vk, m, σ) checks whether σ is a valid signature on m, w.r.t. the public
key vk; it outputs 1 if the signature is valid, and 0 otherwise.

In Waters’ signature scheme, the signing algorithm first transforms the message
to F = F(M), where F is a hash function. Given F , the value of M is not
required for signing and verification, but for the security guarantee. We could
thus replace M by the pair (F, ΠM ), where ΠM is a proof of knowledge of a
preimage of F under the function F (which we assume implicitly). We define
Sign(sk, (F, ΠM ); s) and Verif(vk, (F, ΠM ), σ) that extend the above definitions.

2.2 Signatures on Ciphertexts

We now define a scheme of signatures on ciphertexts. Note that this definition
can be adapted for commitments, when one uses a perfectly binding commitment
scheme, which uniquely defines the committed input.

Definition 3 (Signatures on Ciphertexts). SC=(Setup, SKeyGen, EKeyGen,
Encrypt, Sign, Decrypt, Verif) is defined as follows:

– Setup(1k), where k is the security parameter, generates the global parameters
parame and params for the associated encryption and signature schemes;

– EKeyGen(parame) generates a pair of keys, the encryption key pk and the
associated decryption key dk;

– SKeyGen(params) generates a pair of keys, the verification key vk and the
signing key sk;

– Encrypt(pk, vk, m, r) produces a ciphertext c on input the message m ∈ M
and the encryption key pk, using the random coins r ∈ Re. This ciphertext is
intended to be later signed under the signing key associated to the verification
key vk (the field for vk can be empty if the signing algorithm is universal and
does not require a ciphertext specific to the signer);
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Expuf
SC,A(k)

(parame, params) ← Setup(1k); SM := ∅
{(pki, dki)} ← EKeyGen(parame); (vk, sk) ← SKeyGen(params)
(pkj , c, σ) ← ASign(sk,·,·)(params, parame, vk, {(pki, dki)});
m ← Decrypt(dkj , vk, c)
IF m = ⊥ OR m ∈ SM OR Verif(vk, pkj , c, σ) = 0 RETURN 0
RETURN 1

Fig. 1. Unforgeability of signatures on ciphertexts

– Sign(sk, pk, c; s), on input a ciphertext c and a signing key sk, using the ran-
dom coins s ∈ Rs, produces a signature σ, or ⊥ if the ciphertext c is not
valid (w.r.t. pk, and possibly vk associated to sk);

– Decrypt(dk, vk, c) decrypts the ciphertext c under the private key dk. It out-
puts the plaintext, or ⊥ if c is invalid (w.r.t. pk, and possibly vk);

– Verif(vk, pk, c, σ) checks whether σ is a valid signature on c, w.r.t. the public
key vk. It outputs 1 if the signature is valid, and 0 otherwise (possibly because
of an invalid ciphertext c, with respect to pk, and possibly vk).

Classical security notions could still be applied to this signature scheme, but
we want ciphertexts and signatures to be efficiently malleable, as long as the
plaintext is not affected. This will be useful for probabilistic schemes, and even
more so for the randomizable scheme we will present below. In the classical
definition of existential unforgeability (EUF) [GMR88], a new signature on an
already signed message is not considered a valid forgery—as opposed to strong
unforgeability (SUF). When signing ciphertexts, EUF would consider a signature
on a randomized ciphertext as a valid forgery. But if the ciphertext is equivalent
to an already signed ciphertext (i.e. it encrypts the same plaintext), this may
not be critical in some applications; in particular if we decrypt later anyway
and a decrypted message-signature pair is unforgeable. We thus define the most
appropriate unforgeability (UF) notion for signatures on ciphertexts:
SC is unforgeable if, for any polynomial-time adversary A, the advantage

Succuf
SC,A(k) := Pr[Expuf

SC,A(k) = 1] is negligible, with Expuf
SC,A defined in Fig-

ure 1. There, Sign(sk, ·, ·) is an oracle that takes as input a previously generated
encryption key pki and a ciphertext c, and generates a signature σ on it (if
the ciphertext is valid). It also updates the set SM of signed plaintexts with
m = Decrypt(dki, vk, c), if the latter exists.

Unforgeability in the above sense thus states that no adversary is able to
generate a new valid ciphertext-signature pair for a ciphertext that encrypts a
new message, i.e. different to those encrypted in ciphertexts that were queried
to the signing oracle.
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2.3 Signatures on Randomizable Ciphertexts

Our primitive is based on an encryption scheme and a signature scheme. Since we
want randomizability, we start by enhancing these schemes with randomization
algorithms satisfying certain properties.

Definition 4 (Randomizable Encryption Scheme). Let (Setup, EKeyGen,
Encrypt, Decrypt) be an encryption scheme with the following additional
algorithm:

– Random(pk, c; r′) produces a new ciphertext c′, equivalent to the input cipher-
text c, under the public key pk, using the additional random coins r′ ∈ Re.

An encryption scheme is called randomizable if for any param ← Setup(1k),
(pk, dk)← EKeyGen(param), message m ∈ M, coins r ∈ Re, and ciphertext c =
Encrypt(pk, m; r), the following distributions are statistically indistinguishable:
D0 = {r′ $← Re : Encrypt(pk, m; r′)} and D1 = {r′ $←Re : Random(pk, c; r′)}.

Definition 5 (Randomizable Signature Scheme). Let (Setup, SKeyGen, Sign,
Verif) be a signature scheme, with the following additional algorithm:

– Random(vk, (F, ΠM ), σ; s′) produces a new signature σ′ valid under vk from
σ on a message M given as F = F(M) and a proof ΠM of knowledge of M ,
using the additional random coins s′ ∈ Rs.

A signature scheme is called randomizable if for any param← Setup(1k),
(vk, sk)← SKeyGen(param), message M ∈ M, proof of knowledge ΠM of the
preimage M of F = F(M), random s ∈ Rs, signature σ = Sign(sk, (F, ΠM ); s),
the following distributions are statistically indistinguishable: D0 = {s′ $← Rs :
Sign(sk, (F, ΠM ); s′)} and D1 = {s′ $←Rs : Random(vk, (F, ΠM ), σ; s′)}.

The usual unforgeability notions apply (except strong unforgeability, since the
signature is malleable, by definition). We now extend the randomization to sig-
natures on randomizable ciphertexts:

Definition 6 (Randomizable Signature on RandomizableCiphertexts).
Let (Setup, SKeyGen, EKeyGen, Encrypt, Sign, Decrypt, Verif) be a scheme of signa-
tures on ciphertexts, with the following additional algorithm:

– Random(vk, pk, c, σ; r′, s′) outputs a ciphertext c′ that encrypts the same mes-
sage as c under the public key pk, and a signature σ′ on c′. Further inputs
are a signature σ on c under vk, and random coins r′ ∈ Re and s′ ∈ Rs.

A signature on ciphertexts is called randomizable if for any global parameters
(parame, params)← Setup(1k), keys (pk, dk)← EKeyGen(parame) and (vk, sk)←
SKeyGen(params), m ∈ M, and random coins r ∈ Re and s ∈ Rs, for c =
Encrypt(pk, vk, m; r) and σ = Sign(sk, pk, c; s) the following distributions D0 are
statistically indistinguishable:

D0 = {r′ $←Re; s′
$←Rs : (c′ = Encrypt(pk, vk, m; r′), σ′ = Sign(sk, pk, c′; s′))}

D1 = {r′ $←Re; s′
$←Rs : (c′, σ′) = Random(vk, pk, c, σ; r′, s′)}
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We will denote by 1e and 1s the neutral elements in Re and Rs that keep the
ciphertexts and/or signatures unchanged after randomization. If Re and Rs are
groups (which will be the case for all our schemes, with addition being the group
operation) and if we show that it is possible to additively update the randomness
then this proves that the schemes are randomizable. The same unforgeability
notion as above applies. If an additional extraction algorithm exists for the
signature, we get extractable signatures on ciphertexts (defined below). Then,
our above unforgeability notion for signatures on ciphertexts follows from the
standard unforgeability notion on signatures.

2.4 Extractable Signatures on Randomizable Ciphertexts

For a scheme of signatures on randomizable ciphertexts (SRC) SC, we define the
following additional algorithm:

– SigExtSC(dk, vk, σ), which is given a decryption key, a verification key and a
signature, outputs a signature σ′.

Let us assume that there is a signature scheme S where SetupS is the projection
of SetupSC on the signature component and SKeyGenS = SKeyGen. The scheme
SC is extractable if the following holds: for any (parame, params)← SetupSC(1k),
(pk, dk)← EKeyGen(parame), (vk, sk)← SKeyGen(params) = SKeyGenS(params),
m ∈ M, random coins r ∈ Re, s ∈ Rs, for c = EncryptSC(pk, vk, m; r) and
σ = SignSC(sk, pk, c; s), the output σ′ = SigExtSC(dk, vk, σ) is a valid signature
on m under vk, that is, VerifS(vk, m, σ′) is true.

An extractable SRC scheme SC allows the following: a user can encrypt a
message m and obtain a signature σ on the ciphertext c. From (c, σ) the owner
of the decryption key can now not only recover the encrypted message m, but also
a signature σ′ on the message m, using the functionality SigExtSC . The signature
σ on the ciphertext c could thus be seen as an encryption of a signature on the
message m: for extractable signatures on ciphertexts, encryption and signing can
thus be seen as commutative (see Figure 2).

2.5 Strong Extractability

We can immediately apply the notion of extractable signatures on randomizable
ciphertexts to build a one-round classical blind signature scheme, but we can even
consider more complex scenarios, such as three-player blind signature schemes
(see Section 5) with applications to e-cash systems.

As already sketched above, we may have an additional property: as for en-
cryption, knowing the random coins used for encryption may suffice to decrypt.
After encrypting a message m as c, one knows the random coins r used for the
encryption. In all our instantiations we have that σ is the encryption of σ′ with
the same coins r used to encrypt the message. The user who encrypted m is
thus able to extract σ′, and not only the owner of the decryption key. A system
(SC,S) with such a property will be called a Strong Extractable (Randomizable)
Signature on Ciphertexts (augmented by the dotted lines in Figure 2).
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Fig. 2. (Strong) extractable signatures on randomizable ciphertexts

3 A First Instantiation

Our first construction combines linear encryption [BBS04] and Waters signatures
[Wat05] as follows: given an encryption of the “Waters hash” F(M) of a message
M (and some additional values), the signer can make an encryption of a signature
on M . Decrypting the latter leads thus to a classical Waters signature on M ,
which will provide extractability.

Before presenting the final scheme in Section 4, we first fix ideas by combining
linear encryption and standard Waters signatures. We then modify the Waters
signature to significantly improve efficiency of the scheme. The constructions we
give here make all use of a symmetric pairing, whereas we give an instantiation
for (more efficient) asymmetric pairings in the full version [BFPV11].

3.1 Assumptions

Our constructions rely on classical assumptions: CDH for the unforgeability of
signatures and DLin for the semantic security of the encryption scheme, as well
as soundness of the proofs:

Definition 7 (Computational Diffie-Hellman assumption (CDH)). Let G
be a cyclic group of prime order p. The CDH assumption in G states that for a
generator g of G and random a, b ∈ Zp, given (g, ga, gb) it is hard to compute gab.

Definition 8 (Decision Linear assumption (DLin)). Let G be a cyclic group
of prime order p. The DLin assumption states that given (g, gx, gy, gxa, gyb, gc)
for random scalars a, b, x, y, c ∈ Zp, it is hard to decide whether c = a + b.
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When (g, u = gx, v = gy) is fixed, a tuple (ua, vb, ga+b) is called a linear tuple
w.r.t. (u, v, g), whereas a tuple (ua, vb, gc) for a random and independent c is
called a random tuple.

3.2 Basic Primitives

We briefly sketch the basic building blocks: commitments, linear encryption
and the Waters signature. They are described in more detail in the full ver-
sion [BFPV11]. They need a pairing-friendly environment (p, G, GT , e, g), where
e : G×G→ GT is an admissible bilinear map, for two groups G and GT , of prime
order p, generated by g and gt = e(g, g) respectively. From the basic descriptions,
it follows immediately that the three primitives are randomizable.

Groth-Sahai Commitments. In the following, we will commit to values
(group elements or scalars) and do proofs that they satisfy certain relations.
We will use Groth-Sahai commitments that are secure under the DLin assump-
tion: The commitment key is of the form (u1 = (u1,1, 1, g),u2 = (1, u2,2, g),u3 =
(u3,1, u3,2, u3,3)) ∈ (G3)3 and is set up by choosing u1,1, u2,2

$← G and λ, μ
$← Z∗

p

and setting u3 = uλ
1 � uμ

2 = (u3,1 = uλ
1,1, u3,2 = uμ

2,2, u3,3 = gλ+μ), which makes
u3 a linear tuple w.r.t. (u1,1, u2,2, g).

– To commit a group element X ∈ G, choose random s1, s2, s3
$← Zp and set

C(X) := (1, 1, X)�us1
1 �us2

2 �us3
3 = (us1

1,1 · us3
3,1, u

s2
2,2 · us3

3,2, X · gs1+s2 · us3
3,3).

– To commit a scalar x ∈ Zp, choose random coins γ1, γ2 ∈ Zp and set

C′(x) := (ux
3,1, u

x
3,2, (u3,3g)x)�uγ1

1 �uγ2
3 = (ux+γ2

3,1 ·uγ1
1,1, u

x+γ2
3,2 , ux+γ2

3,3 ·gx+γ1).

When u3 is a linear tuple these commitments are perfectly binding and the
proofs will be perfectly sound. The committed values can even be extracted if
the randomness of the commitment key is known (a scalar commitment allows
extraction of x for small x only). However, if u3 is a random tuple (which is
indistinguishable under DLin), the commitments become perfectly hiding and
the proofs perfectly witness-indistinguishable.

Waters Signatures. The public parameters are a generator h
$← G and a

vector u = (u0, . . . , uk) $← Gk+1, which defines the Waters hash of a message
M = (M1, . . . , Mk) ∈ {0, 1}k as F(M) = u0

∏k
i=1 uMi

i . A public key is of the
form vk = Y = gy, with corresponding secret key sk = Z = hy, for a random
y

$← Zp.
The signature on M is σ =

(
σ1 = Z · F(M)s, σ2 = g−s

)
, for some random

s
$← Zp. It can be verified by checking e(g, σ1) · e(F(M), σ2) = e(Y, h). We

note that signing and verifying can be performed without knowing the mes-
sage M itself; it suffices to know F = F(M). However, existential unforgeabil-
ity [Wat05] (against chosen-message attacks under the CDH assumption) is for
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the pair (M, σ). As a consequence, if we work directly with F(M), we will need
to add a proof of knowledge ΠM of M to guarantee unforgeability. Since our
goal is to construct randomizable signatures and encryption, we will use Groth-
Sahai proofs for a commitment CM of M (bit-by-bit to make it extractable:
CM = (C′(M1), . . . , C′(Mk))) and a proof that F is actually the evaluation of F
on the committed M . Such a proof can be found in (the full version of) [FP09].

Linear Encryption. The secret key dk is a pair of random scalars (x1, x2) and
the public key is pk = (X1 = gx1 , X2 = gx2). One encrypts a message M ∈ G

as c =
(
c1 = Xr1

1 , c2 = Xr2
2 , c3 = gr1+r2 ·M

)
, for random scalars r1, r2

$← Zp.
To decrypt, one computes M = c3/(c1/x1

1 c
1/x2
2 ). As shown by Boneh, Boyen and

Shacham [BBS04], this scheme is semantically secure against chosen-plaintext
attacks (IND-CPA) under the DLin assumption.

3.3 Waters Signature on Linear Ciphertexts

Using Waters signatures, we will sign a linear encryption of F = F(M). We note
that from a “ciphertext” using the decryption key, one can only extract F(M)
(from which M can be obtained for small message spaces). As mentioned before,
signatures remain unforgeable on F if in addition a proof ΠM of knowledge of
M such that F = F(M) is given. The keys are independent Waters signature
keys (vk = Y = gy and sk = Z = hy), and linear encryption keys (dk = (x1, x2),
pk = (X1 = gx1 , X2 = gx2)). A first idea would be to define a signature on
an encrypted message c =

(
c1 = Xr1

1 , c2 = Xr2
2 , c3 = gr1+r2 · F(M)

)
as σ =

(cs
1, c

s
2, Z · cs

3). However, there are two problems:

– While the randomization of the signing coins s into s+ s′ is easy from c, the
randomization of the encryption coins r into r + r′ requires the knowledge
of the values Xs

1 , Xs
2 and gs (see Section 4.2 for how to randomize). We

therefore include them in the signature.
– For the reduction of our notion of unforgeability to the security of Waters’

scheme, we need to simulate the oracle returning signatures on ciphertexts
having a Waters signature oracle. We can first extract M from the proof of
knowledge ΠM and submit M to our oracle. From a reply (Z · F(M)s, g−s),
we then have to generate σ = (cs

1, c
s
2, Z · cs

3; X
s
1 , Xs

2 , gs) for an unknown s.
We could do so if we knew the randomness (r1, r2) for c1, c2 and c3; hence
we add another proof to the extended ciphertext: Πr proves knowledge of
r1 and r2, used to encrypt F(M), which consists of bit-by-bit commitments
C1 = (C′(r1,1), . . . , C′(r1,�)) and C2 = (C′(r2,1), . . . , C′(r2,�)), where � is the
bit-length of the order p, and proofs that each sub-commitment is indeed a
bit commitment.

The global proof on the message and the randomness, which we denote by
Π = (ΠM , Πr), can be done with randomizable commitments and proofs, using
the Groth-Sahai methodology [GS08,FP09], and consists of 9k + 18� + 6 group
elements (where k and � are the respective bit lengths of messages and of the
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order of G). Such an extended ciphertext (c, Π) can then be signed, after a test
of validity of the proof Π . Decryption and verification follow straight from the
corresponding algorithms for Waters signatures and linear encryption. More in-
terestingly, the above signature on randomizable ciphertexts is extractable: on a
valid signature, if one knows the decryption key dk = (x1, x2), one can compute
Σ = (Σ1 = σ3/(σ1/x1

1 σ
1/x2
2 ), Σ2 = σ−1

6 ), which is a valid signature on M :

Σ1 = σ3/(σ1/x1
1 σ

1/x2
2 ) = Z · gs(r1+r2) · F(M)s/(gsr1gsr2) = Z · F(M)s

Σ2 = σ−1
6 = g−s

Note that without knowing the decryption key, the same can be obtained from
the coins (r1, r2) used for encryption: Σ = (Σ1 = σ3/σr1+r2

6 , Σ2 = σ−1
6 ).

From the randomization formula of the basic schemes, we easily get the ran-
domization property of the above Waters signature on linear ciphertexts. One
shows unforgeability in the UF sense under the CDH assumption in G: ex-
tractability provides a forgery on a new message, but only known as F = F(M).
Since one also has to provide a valid proof ΠM that contains commitments to the
bits of message M , the knowledge of the trapdoor (λ, μ) for the commitments
allows to recover M too, which leads to an existential attack of the basic Waters
signature scheme. The complete description and security analysis can be found
in the full version [BFPV11].

4 An Efficient Instantiation

The construction in the previous section is a concrete and feasible signature
on randomizable ciphertexts, which is furthermore extractable, and even in a
strong way. We have thus achieved our goal, and all the applications we had in
mind can benefit from it. The main drawback, from an efficiency point of view,
are the bit-by-bit commitments CM , C1 and C2 of M, r1 and r2, respectively.
Whereas the message M to be signed could be short (and even a single bit for
voting schemes), r1 and r2 are necessarily large (the bit length of the order of
the group). For a k-bit long message M , ΠM (composed of CM and a proof)
consists of 9k + 2 group elements. The random coins r1 and r2 being �-bit long,
Πr (which includes C1, C2 and the proof) requires 18� + 4 group elements. We
now revisit the Waters signature scheme, which will allow us to remove the costly
bit-by-bit commitments C1 and C2.

The main idea for the construction is to build a scheme which is unforgeable
against a stronger kind of chosen-message attack under the same assumption:
the adversary can submit “extended messages” (M, R1 := gr1 , R2 := gr2 , T :=
vkr1+r2) and the oracle replies with the tuple (sk·(F(M)R1R2)s, g−s, R−s

1 , R−s
2 ).

We name this attack chosen-extended-message attack and note that this security
notion implies the classical one, since querying (M, 1G, 1G, vk) yields a signature
on M . Intuitively, the extra parameters (R1, R2) will allow simulation of the
signature on the ciphertext without having to know the random coins r1 and r2
explicitly.
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4.1 Revisited Waters Signature

Our variant is defined by the four algorithms.

– Setup(1k): The scheme is defined over a bilinear group (p, G, GT , e, g), where
e : G×G→ GT is an admissible bilinear map, G and GT are groups of prime
order p, generated by g and e(g, g) respectively.

We will sign messages M = (M1, . . . , Mk) ∈ {0, 1}k. The parameters are
a randomly chosen generator h

$← G and a vector u = (u0, . . . , uk) $← Gk+1,
which defines the Waters Hash as F(M) = u0

∏k
i=1 uMi

i . We set param :=
(p, G, GT , e, g, h, u).

– SKeyGen(param): Choose a random scalar y
$← Zp, which defines the public

key vk = Y = gy, and the secret key as sk = Z = hy.
– Sign(sk = Z, M, R1, R2, T ; s): First check the consistency of (R1, R2, T ): if

e(R1R2, Y ) = e(g, T ) then this guarantees that there exists (r1, r2) such that
R1 = gr1 , R2 = gr2 , T = Y r1+r2 . Choose a random s

$← Zp and define the
signature as σ =

(
σ1 = Z · (F(M)R1R2)s, σ2 = g−s, σ3 = R−s

1 , σ4 = R−s
2

)
.

Again, we may replace the input message M by the pair (F(M), ΠM ).
– Verif(vk = Y, M, R1, R2, T, σ): Check whether e(g, σ1) · e(F(M)R1R2, σ2) =

e(Y, h), e(g, σ3) = e(σ2, R1) and e(g, σ4) = e(σ2, R2), as well as the consis-
tency of (R1, R2, T ), via e(R1R2, Y ) = e(g, T ).

To randomize a signature, we define Random(vk, (F, ΠM ), R1, R2, T, σ = (σ1, σ2,

σ3, σ4); s′) to output σ′ = (σ1 · (FR1R2)s′
, σ2 · g−s′

, σ3 · R−s′
1 , σ4 · R−s′

2 ), for a
random s′ $← Zp. This simply changes the initial randomness s to s + s′ mod p.
Hence, if s′ is uniform then the internal randomness of σ′ is uniform in Zp.

Theorem 9. Our variant of the Waters signature scheme is randomizable, and
existentially unforgeable under chosen-extended-message attacks if the CDH as-
sumption holds.

The proof of unforgeability is similar to that for the original Waters scheme and
can be found in the full version [BFPV11].

4.2 Signatures on Encrypted Messages

In our new scheme, we will sign a linear encryption of F = F(M) using our
Revisited Waters signatures:

– Setup(1k): The scheme is based on a bilinear group (p, G, GT , e, g), which
constitutes the parameters parame for encryption. For the signing part, we
require moreover a vector u = (u0, . . . , uk) $← Gk+1, and a generator h

$← G
and define params := (p, G, GT , e, g, h, u).

– EKeyGen(parame): Choose two random scalars x1, x2
$← Zp, which define the

secret key dk = (x1, x2), and the public key as pk = (X1 = gx1 , X2 = gx2).
– SKeyGen(params): Choose a random scalar y

$← Zp, which defines the public
key as vk = Y = gy, and the secret key as sk = Z = hy.
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– Encrypt
(
pk = (X1, X2), vk = Y, M ; (r1, r2)

)
: For a message M ∈ {0, 1}k and

random scalars r1, r2 ∈ Zp, define the ciphertext as c =
(
c1 = Xr1

1 , c2 =
Xr2

2 , c3 = gr1+r2 · F(M)
)
. To guarantee our notion of unforgeability of sig-

natures on ciphertexts, we add proofs of knowledge of M and an image of
r1 and r2:
• Proof Πr contains the commitments Cr = (C1 = C′(r1), C2 = C′(r2),

C3 = C(Y r1+r2)), from which the simulator can extract R1, R2 and T in
the reduction (see below). Πr moreover contains proofs of consistency:
C3 is a commitment to Y raised to the values r1 and r2 committed in
C1 and C2, which in turn are the coins for the encryption: c1 = X

〈r1〉
1 ,

c2 = X
〈r2〉
2 , and 〈Y r1+r2〉 = Y 〈r1〉+〈r2〉. These equations are multi-scalar

multiplication equations, from which only the last one is non-linear. We
require 9 group elements for the commitments and 13 for the proofs,
thus 22 group elements instead of 18� + 4 in the previous construction.
• Proof ΠM proves knowledge of M s.t. F(M) is encrypted in c. It consists

of a bit-by-bit commitment CM = (C′(M1), . . . , C′(Mk)) and proofs that
each committed value is a bit (6k group elements); moreover, a proof
that c3 is well-formed: c3 = (u0

∏
i∈{1,...,k} u

〈Mi〉
i ) · g〈r1〉+〈r2〉, which is a

linear multi-scalar multiplication equation (2 additional group elements).
ΠM is therefore composed of 9k + 2 group elements.

The global proof (containing the commitments) Π consists therefore of 9k+
24 group elements (instead of 9k + 18� + 6 when using the original Waters
scheme), where k and � are the bit lengths of the message M and elements
of G, respectively.

– Sign
(
sk = Z, pk = (X1, X2), (c = (c1, c2, c3), Π); s

)
: To sign a ciphertext

c = (c1, c2, c3), first check if Π is valid, and if so, output

σ = (cs
1, cs

2, Z · cs
3; Xs

1 , Xs
2 , gs) .

– Decrypt
(
dk = (x1, x2), vk = Y, (c = (c1, c2, c3), Π)

)
: On a valid ciphertext

(verifiable via Π), knowing the decryption key dk = (x1, x2), one can obtain
F = F(M) since F = c3/(c1/x1

1 c
1/x2
2 ).

– Verif
(
vk = Y, pk = (X1, X2), (c = (c1, c2, c3), Π), σ = (σ1, σ2, σ3; σ4, σ5, σ6)

)
:

In order to verify the signature, one verifies Π and checks whether the fol-
lowing pairing equations hold: e(σ3, g) = e(h, Y ) · e(c3, σ6) and

e(σ1, X1) = e(c1, σ4) e(σ2, X2) = e(c2, σ5)
e(σ1, g) = e(c1, σ6) e(σ2, g) = e(c2, σ6)

– Random
(
vk = Y, pk = (X1, X2), (c = (c1, c2, c3), Π), σ; r′1, r

′
2, s

′): In order to
randomize the signature and the ciphertext, the algorithm outputs:

c′ =
(
c1 ·Xr′

1
1 , c2 ·Xr′

2
2 , c3 · gr′

1+r′
2
)

σ′ =
(
σ1 · cs′

1 · σ
r′
1

4 ·X
r′
1s′

1 , σ2 · cs′
2 · σ

r′
2

5 ·X
r′
2s′

2 , σ3 · cs′
3 · σ

r′
1+r′

2
6 · g(r′

1+r′
2)s

′

σ4 ·Xs′
1 , σ5 ·Xs′

2 , σ6 · gs′)
together with a randomization Π ′ of Π .
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– SigExt
(
dk = (x1, x2), vk, (c = (c1, c2, c3), Π), σ

)
: Return the following: Σ =(

Σ1 = σ3/(σ1/x1
1 σ

1/x2
2 ), Σ2 = σ−1

6

)
, which is a valid signature on M :

Σ1 = σ3/(σ1/x1
1 σ

1/x2
2 ) = Z · gs(r1+r2) · F(M)s/gsr1gsr2 = Z · F(M)s,

Σ2 = σ−1
6 = g−s.

The same can be obtained from the coins (r1, r2) used for encryption.

Theorem 10. The above scheme is randomizable and unforgeable (in the UF
sense) under the CDH assumption in G.

Proof. Correctness of Random follows from inspection of the construction of c′

and σ′ and the fact that Groth-Sahai proofs are randomizable.
Since we have proved that our variant of Waters signatures is secure under a

stronger kind of attack, we can use it for an appropriate simulation of the signing
oracle. The full proof can be found in the full version [BFPV11]. As motivated
when introducing the additional elements in the signature query, from a valid
signing query, our simulator can extract M , but also R1 = gr1 , R2 = gr2 and
T = Y r1+r2 from the commitments (but not the scalars r1 and r2). It adds M
to the set SM and then queries SignS(sk, M, R1, R2, T ) to the extended-message
signing oracle to obtain σ′ = (σ′

1 = sk · (F(M)R1R2)s, σ′
2 = g−s, σ′

3 = R−s
1 , σ′

4 =
R−s

2 ). It then returns the following to the adversary:

σ =
(

σ1 = σ′
3
−x1 = Xsr1

1 , σ2 = σ′
4
−x2 = Xsr2

2 , σ3 = σ′
1 = skF(M)sgs(r1+r2)

σ4 = σ′
3
−x1 = Xs

1 , σ5 = σ′
4
−x2 = Xs

2 , σ6 = σ′
2
−1 = gs

)
.

Finally, if the adversary wins by outputting a ciphertext and a signature, we
can extract a signature on the plaintext and the plaintext from the proof of
knowledge. 	


5 Applications

We have introduced extractable signatures on randomizable ciphertexts (ESRC),
a new primitive that has many applications to anonymity. A first straightforward
application is to blind signatures, which yields a similar (yet more efficient) result
to [MSF10,GK08]; however, this does not exploit all the power of our new tool.
A more interesting application is to receipt-free voting schemes. We discuss this
in the following and then show how to construct variants of blind signatures
from our primitive.

5.1 Non-interactive Receipt-Free E-voting

In voting schemes, anonymity is a crucial property: nobody should be able to
learn the content of my vote. This can be achieved with encryption schemes.
However, this does not address the problem of vote sellers : a voter may sell his
vote and then reveal/prove the content of his encrypted vote to the buyer. He
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could do so by simply revealing the randomness used when encrypting the vote,
which allows to verify that a claimed message was encrypted.

A classical approach to prevent vote selling uses heavy interactive techniques
based on randomizable encryption schemes and designated-verifier zero-
knowledge proofs: the voter encrypts his vote v as c and additionally signs it
to bar any modification by the voting center. But before doing so, the voting
center randomizes c into c′ (which cannot be opened by the voter anymore since
he no longer knows the random coins) and then proves that c and c′ contain the
same plaintext. This proof must be non-transferable, otherwise the voter could
open c (by revealing the random coins) and transfer the proof to the buyer, which
together yields a proof of opening for c′. The used proof is thus a designated-
verifier zero-knowledge proof. Finally, after receiving c′ and being convinced by
the proof, the voter signs c′.

Signatures on ciphertexts that can be randomized allow to avoid interactions
altogether: all a voter does is encrypt his vote v as c and make a signature σ
on c. The voting center can now consistently randomize both c and σ as c′ and
σ′, so that the randomness used in c′ is unknown to the signer, who is however
guaranteed that the vote was not modified by the voting center because of the
unforgeability notion for ESRC: nobody can generate a signature on a ciphertext
that contains a different plaintext. We have thus constructed a non-interactive
receipt-free voting scheme.

Since our ESRC candidates use not only randomizable but homomorphic en-
cryption schemes (the encryption of the vote is actually the bit-commitments of
the Mi’s, which are either linear encryptions or ElGamal encryptions of gMi),
classical techniques for voting schemes with homomorphic encryption and thresh-
old decryption can be used [BFP+01]: there is no risk for the signature on the
ciphertext to be converted into a signature on the plaintext if the board of au-
thorities uses the decryption capability on the encrypted tally only.

If the vote consists of one box to be checked, the size of the ballot is only 42
group elements in the instantiation with linear encryption, and even smaller for
the instantiation using ElGamal detailed in the full version [BFPV11]: 21 G1
elements and 13 G2 elements. Furthermore, if the vote consists of several (say k)
boxes to be checked or not, with various constraints, the ballot size grows only
slowly in k, since while the votes are committed bit by bit, the proofs can be
global. Hence, the size basically corresponds to the signature on a ciphertext of a
k-bit message. The extended ciphertexts already contains proofs that plaintexts
are bits only, and all the proofs are randomizable.

5.2 Blind Signatures and Variants

Since the beginning of e-cash, blind signatures have been their most important
tool. They provide an interactive protocol between a bank and a user, letting
a user have a message signed by the bank without revealing it. Moreover, the
message-signature pair obtained by the user is uncorrelated to the view of the
protocol execution by the bank, which enables the user to withdraw anonymous
coins. Several signature schemes have been turned into blind signature schemes.
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The best-known is the first scheme by Chaum [Cha83], which is derived from
RSA signatures [RSA78], and has been proven secure [BNPS01] under the one-
more RSA assumption in the random-oracle model [BR93]. As defined in [PS96,
PS00], for e-cash, the security requirement is the resistance to one-more forgeries:
after interacting q times with the signer, an adversary should not be able to
output more than q valid signed messages.

With ESRC, one can build a computationally blind signature scheme: the user
encrypts the message m into the ciphertext c under his own key, and asks for a
signature on c. He gets back a signature on the ciphertext c from which he can
then extract σ, a valid signature on m. This signature is not yet blind, since the
signer knows the coins used to compute it, and can thus link σ to the transcript.
However, due to the randomizability of the signature, the user can randomize σ
into σ′ that is a secure blind signature:

– the blindness property relies on the semantic security of the encryption
scheme (here DLin) and the randomization, which is information-theoretic;

– the one-more unforgeability relies on unforgeability of the signature scheme
(here CDH), since the user cannot generate a signature for a message that
has not been asked, encrypted, to the signer. Of course, we do not obtain
strong one-more unforgeability (where several signatures on the same mes-
sage would be counted several times), which is impossible with randomizable
signatures.

This construction is similar to [GK08] but with better efficiency and much less
bandwidth consumption since the latter relies on inefficient NIZK techniques
[DFN06].

One-Round Fair Blind Signatures. With a strong extractable randomizable
signature on ciphertexts, we get more than just standard blind signatures: we
have fair blind signatures [SPC95]. Using a strong ESRC scheme, the user does
not need to encrypt m under his own key, since the random coins suffice to extract
the signature. He can thus encrypt the message m under a tracing authority’s
key. Using the decryption key, the authority can extract the message from c (or
at least check if c encrypts a purported message) w.r.t. the signed message and
thus revoke anonymity in case of abuse.

One-Round Three-Party Blind Signatures. Our primitive also allows to
design a three-party blind signature scheme, which we define as follows: a party
A makes a signer C sign a message m for B so that neither A nor C can later
link the final message-signature pair (for A among all the signatures for the
message m, and for C among all the valid message-signature pairs). To realize
this primitive, the party A encrypts the message m under the key of B, and
sends it to the signer C, who signs the ciphertext and applies the randomization
algorithm to the ciphertext-signature pair (this is useful only in case A and B are
distinct, as then A does not know the randomness for encryption and therefore
cannot extract a signature). C sends the encrypted signature to B (possibly via
A, who cannot decrypt anyway) and B also applies the randomization algorithm
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(so that C does not know the random coins used for signing) and then extracts
the signature. With such a 2-flow scheme, B can obtain a signature, unknown
to A, on a message chosen by A, unknown and even indistinguishable from any
message-signature pair to C. Applied to group signatures, such a primitive allows
a group manager A to add a new member B without learning his certificate
provided by the authority C: A can define the rights in the message, but only
B receives the certificate generated by C.

Additional Properties. Using our instantiation of ESRC, we can define an
additional trapdoor: the extraction key for the commitments. It is not intended
to be known by anybody (except the simulator in the security analysis), since
the commitment key is in the CRS, but one could consider a scenario where it
is given to a trusted authority that gets revocation capabilities.

Our construction is similar to previous efficient round-optimal blind signa-
tures [Fuc09, AFG+10] in that it uses Groth-Sahai proofs. However, we rely
on standard assumptions only, and our resulting blind signature is a standard
Waters signature, which is much shorter (2 group elements!) than the proof of
knowledge of a signature used in all previous constructions.
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Abstract. This paper introduces and formalizes homomorphic proofs
that allow ‘adding’ proofs and proof statements to get a new proof of
the ‘sum’ statement. Additionally, we introduce a construction of ho-
momorphic proofs, and show an accumulator scheme with delegatable
non-membership proofs (ADNMP) as one of its applications with prov-
able security. Finally, the proposed accumulator method extends the BC-
CKLS scheme [1] to create a new provably secure revocable delegatable
anonymous credential (RDAC) system. Intuitively, the new accumula-
tor’s delegatable non-membership (NM) proofs enable user A, without
revealing her identity, to delegate to user B the ability to prove that A’s
identity is not included in a blacklist that can later be updated. The
delegation is redelegatable, unlinkable, and verifiable.

1 Introduction

Proof systems play important roles in many cryptographic systems, such as sig-
nature, authentication, encryption, anonymous credential and mix-net. In a proof
system between a prover and a verifier, an honest prover with a witness can con-
vince a verifier about the truth of a statement but an adversary cannot convince
a verifier of a false statement. Groth and Sahai [2] proposed a novel class of
non-interactive proof systems (GS) with a number of desirable properties which
are not available in previous ones. They are efficient and general. They do not
require the random oracle assumption [3]. They can be randomized, i.e. one
can generate a new proof from an existing proof of the same statement without
knowing the witness. In this paper, we unveil another valuable feature of GS
proofs: homomorphism.

Proof systems are used to construct accumulators [4,5,6,7,8]. An accumulator
allows aggregation of a large set of elements into one constant-size accumulator
value. The ‘membership’ proof system proves that an element is accumulated.
An accumulator is universal if it has ‘non-membership’ proof system to prove
that a given element is not accumulated in the accumulator value [9,10]. An
accumulator is dynamic if the costs of adding and deleting elements and updating
the accumulator value and proof systems’ witnesses do not depend on the number
of elements aggregated. Applications of accumulators include space-efficient time
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stamping, ad-hoc anonymous authentication, ring signatures, ID-Based systems,
and membership revocation for identity escrow, group signatures and anonymous
credentials [6].

In anonymous credential systems, a user can prove some credentials without
revealing any other private information such as her identity. There have been
several proposals [11,12,1]; applications such as in direct anonymous attestation
(DAA) [13] and anonymous electronic identity (eID) token [14,15]; and imple-
mentations such as U-prove [15], Idemix [14] and java cards [16]. An anonymous
credential system is delegatable [1] if its credential can be delegated from one
user to another user so that a user can anonymously prove a credential which is
delegated some levels away from the original issuer. Delegation is important for
efficient credential management in organizations, as a person typically delegates
certain authorities to colleagues to execute tasks on her behalf. Revocation is
indispensable in credential systems in practice, as dispute, compromise, abuse,
mistake, identity change, hacking and insecurity can make any credential become
invalid before its expiration. The anonymity and delegation properties make re-
vocation more challenging: the user must prove anonymously that her whole
credential chain is not revoked. The primary revocation methods are based on
accumulators [17,10], offering a constant cost for an unrevoked proof. However,
the current schemes do not work for delegated anonymous credentials.

Contributions. We present three contributions in this paper, incrementally
building on each other: (i) formal definition of homomorphic proofs and a con-
struction based on GS proofs, (ii) dynamic universal accumulators with del-
egatable non-membership proof (ADNMP), and (iii) a revocable delegatable
anonymous credential system (RDAC).

We first introduce and formally define the new notion of homomorphic proofs,
which means there is an operation that ‘adds’ proofs, their statements and wit-
nesses to produce a new proof of the ‘sum’ statement and the ‘sum’ witness. We
present and prove a construction for homomorphic proofs from GS proofs [2].
The general nature of GS proofs partly explains the reason behind its numerous
applications: group signatures, ring signatures, mix-nets, anonymous credentials,
and oblivious transfers. Our homomorphic construction uses the most general
form of GS proofs to maximize the range of possible applications.

Homomorphic proofs can be applied to homomorphic signatures [18], homo-
morphic authentication [19], that found applications in provable cloud storage
[19], network coding [20,21], digital photography [22] and undeniable signatures
[23]. Another possible application area is homomorphic encryption and commit-
ment schemes that are used in mix-nets [24], voting [25], anonymous credentials
[1] and other multi-party computation systems. Gentry’s recent results on fully
homomorphic encryption [26] allow computing any generic function of encrypted
data without decryption and can be applied to cloud computing and searchable
encryption.

Section 3.3 compares this work to the DHLW homomorphic NIZK (Non In-
teractive Zero Knowledge) recently proposed in [27]. While the DHLW scheme
takes the traditional homomorphism approach, we employ Abelian groups and



Revocation for Delegatable Anonymous Credentials 425

introduce a more general definition where proof systems satisfying the DHLW
definition are a subset of the new proof systems. We note that DHLW’s homo-
morphic NIZK definition and construction do not cover the new homomorphic
proofs to build ADNMP and RDAC. From an application point of view, DHLW
homomorphic NIZK targets leakage-resilient cryptography, and the new homo-
morphic proofs target accumulators and revocation.

Secondly, we introduce and build an accumulator with delegatable non-member-
ship proof (ADNMP) scheme based on homomorphic proofs. We define security
requirements for ADNMP, and give security proofs for the ADNMP scheme. The
constructions in the SXDH (Symmetric External Diffie Hellman) or SDLIN (Sym-
metric Decisional Linear) instantiations of GS proofs allow the use of the most
efficient curves for pairings in the new accumulator scheme [28].

To our knowledge, this is the first accumulator with a delegatable non-member-
ship proof. Previously, there were only two accumulators with non-membership
proofs, i.e. universal accumulators LLX [9] and ATSM [10]; both are not dele-
gatable. Delegability allows us to construct delegatable revocation for delegatable
anonymous credentials. Our accumulator uses GS proofs without random oracles
where LLX and ATSM rely on the random oracle assumption for non-interactive
proofs. LLX is based on the Strong RSA assumption and defined in composite-
order groups, and ATSM is based on the Strong DH assumption and defined in
prime-order bilinear pairing groups. Our scheme is also built in prime-order bilin-
ear pairing groups that require storage much smaller than RSA composite-order
groups. The new non-membership prover requires no pairing compared to ATSM’s
four pairings.

The main challenge in blacklisting delegatable anonymous credentials that can
further be delegated is to create accumulators satisfying the following require-
ments. First, user A, without revealing private information, can delegate the abil-
ity to prove that her identity is not accumulated in any blacklist to user B so that
such proofs generated by A and B are indistinguishable and the blacklist may
change anytime. Second, the delegation must be unlinkable, i.e. it must be hard
to tell if two such delegations come from the same delegator A. Third, user B is
able to redelegate the ability to prove that A’s credential is not blacklisted to user
C, such that the information C obtains from the redelegation is indistinguishable
from the information one obtains from A’s delegation. Finally, any delegation in-
formation must be verifiable for correctness. The new ADNMP scheme satisfies
these requirements.

By employing the ADNMP approach, our final contribution is to create the first
delegatable anonymous credential system with delegatable revocation capability; an
RDAC system. Traditionally, blacklisting of anonymous credentials relies on accu-
mulators [8]. The identities of revoked credentials are accumulated in a blacklist,
and verification of the accumulator’s NM proof determines the credential’s revo-
cation status. A natural rule in a revoked delegatable credential, that our scheme
also follows, is to consider all delegated descendants of the credential revoked. Ap-
plying that rule to delegatable anonymous credentials, a user must anonymously
prove that all ancestor credentials are not revoked, evenwhen the blacklist changes.
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Homomorphic proofs bring delegability of proofs to another level. A proof’s
statement often consists of commitments of variables (witnesses) and conditions.
Randomizable and malleable proofs introduced in [1] allows generation of a new
proof and randomization of the statement’s commitments without knowing the
witness, but the statement’s conditions always stay the same. Homomorphic
proofs allow generating a new proof for a new statement containing new condi-
tions, without any witness. A user can delegate her proving capability to another
user by revealing some homomorphic proofs. A linear combination of these proofs
and their statements allows the delegatee to generate new proofs for other state-
ments with different conditions (e.g., an updated blacklist in ADNMP). In short,
the BCCKLS paper [1] deals with delegating proofs of the same statements’ con-
ditions, whereas this paper deals with delegating proofs of changing statements’
conditions.

2 Background

Tech Report [29] provides more details of existing cryptographic primitives:
Bilinear Map Modules, R-module, Bilinear pairings, SXDH, Composable zero-
knowledge (ZK), Randomizing proofs and commitments, Partial extractability,
Accumulator, and Delegatable anonymous credentials.

Notation. PPT stands for Probabilistic Polynomial Time; CRS for Com-
mon Reference String; Pr for Probability; NM for non-membership; ADNMP for
Accumulator with Delegatable NM Proofs; RDAC for Revocable Delegatable
Anonymous Credential; and ← for random output. For a group G with identity
O, let G∗ := G\{O}. Matm×n(R) is the set of matrices with size m × n in R.
For a matrix Γ , Γ [i, j] is the value in ith row and jth column. A vector z of
l elements can be viewed as a matrix of l rows and 1 column. For a vector z,
z[i] is the ith element. For a function ν : Z → R, ν is negligible if |ν(k)| < k−α,
∀α > 0, ∀k > k0, ∃k0 ∈ Z+, k ∈ Z.

Proof System. Let R be an efficiently computable relation of (Para, Sta,
Wit) with setup parameters Para, a statement Sta, and a witness Wit . A non-
interactive proof system for R consists of 3 PPT algorithms: a Setup, a prover
Prove, and a verifier Verify. A non-interactive proof system (Setup, Prove, Verify)
must be complete and sound.Completenessmeans that for everyPPT adversaryA,
|Pr[Para ← Setup(1k); (Sta,Wit) ← A(Para); Proof ← Prove(Para,Sta,Wit) :
Verify(Para,Sta,Proof ) = 1 if (Para ,Sta,Wit) ∈ R]− 1| is negligible. Soundness
means that for every PPT adversary A, |Pr[Para ← Setup(1k); (Sta,Proof ) ←
A(Para) : Verify(Para,Sta,Proof ) = 0 if (Para ,Sta,Wit) /∈ R, ∀Wit ] − 1| is
negligible.

GS Proofs. Tech Report [29] provides a comprehensive summary of GS
proofs and its instantiation in SXDH. Briefly, the GS setup algorithm generates
Gk and CRS σ. Gk contains L tuples, each of which has the form (A1, A2, AT , f)
where A1, A2, AT are R-modules with map f : A1 × A2 → AT . L is also
the number of equations in a statement to be proved. CRS σ contains L cor-
responding tuples of R-modules and maps (B1, B2, BT , ι1, ι2, ιT ), where ιj :
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Aj → Bj . A GS statement is a set of L corresponding tuples (a ∈ An
1 , b ∈

Am
2 , Γ ∈ Matm×n(R), t ∈ AT ) satisfying a · y + x · b + x · Γy = t; where

(x ∈ Am
1 , y ∈ An

2 ) is the corresponding witness (there are L witness tuples),
and denote a · y =

∑n
j=1 f(a[j], y[j]). The proof of the statement includes

L corresponding tuples, each of which consists of commitments c ∈ Bm
1 of

x and d ∈ Bn
2 of y with values π and ψ. In the SXDH instantiation of GS

proofs, Para includes bilinear pairing setup Gk = (p, G1, G2, GT , e, P1, P2) and
CRS σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p

′
1, ι

′
2, p′2, ιT , pT , u, v) where B1 = G2

1,
B2 = G2

2 and BT := G4
T . The maps are ιj : Aj → Bj , pj : Bj → Aj , ι′j : Zp → Bj

and p′j : Bj → Zp. Vectors u of u1, u2 ∈ B1 and v of v1, v2 ∈ B2 are commitment
keys for G1 and G2.

3 Homomorphic Proofs

3.1 Formalization

Recall that an Abelian group must satisfy 5 requirements: Closure, Associativity,
Commutativity, Identity Element and Inverse Element.

Definition 1. Let (Setup, Prove, Verify) be a proof system for a relation R and
Para ← Setup(1k). Consider a subset Π of all (Sta,Wit ,Proof ) such that
(Para,Sta,Wit) ∈ R and Verify(Para,Sta,Proof ) = 1, and an operation +Π :
Π × Π → Π. Π is a set of homomorphic proofs if (Π, +Π) satisfies the 3
requirements: Closure, Associativity and Commutativity.

Consider an IΠ := (Sta0,Wit0,Proof 0) ∈ Π. Π is a set of strongly homo-
morphic proofs if (Π, +Π , IΠ) forms an Abelian group where IΠ is the identity
element.

Note that if Π is strongly homomorphic, then Π is also homomorphic. If +Π

((Sta1,Wit1,Proof 1), (Sta2,Wit2,Proof 2)) → (Sta,Wit ,Proof ), we have the
following notations:

(Sta,Wit ,Proof ) ← (Sta1,Wit1,Proof 1) +Π (Sta2,Wit2,Proof 2), Sta ←
Sta1 +Π Sta2, Wit ←Wit1 +Π Wit2, and Proof ← Proof 1 +Π Proof 2.

We also use the multiplicative notation n(Sta,Wit ,Proof ) for the self addi-
tion for n times of (Sta,Wit ,Proof ). Similarly, we also use

∑
i ni (Stai, Witi,

Proofi) to represent linear combination of statements, witnesses and proofs.
These homomorphic properties are particularly useful for randomizable proofs:
one can randomize a proof computed from the homomorphic operation to get
another proof, which is indistinguishable from a proof generated by Prove.

3.2 GS Homomorphic Proofs

Consider a GS proof system (Setup,Prove,Verify) of L equations. Each map ιi :
Ai → Bi satisfies ιi(x1 + x2) = ιi(x1) + ιi(x2), ∀x1, x2 ∈ A1 and i ∈ {1, 2}.

We first define the identity IGS = (Sta0,Wit0,Proof 0). Sta0 consists of L GS
equations (a0, b0, Γ0, t0), Wit0 consists of L corresponding GS variables (x0, y0),
Proof 0 consists of L corresponding GS proofs (c0, d0, π0, ψ0), and there are L
tuples of corresponding maps (ι1, ι2). They satisfy:
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� Let m be the dimension of b0, x0 and c0. ∃M ⊆ {1, ..., m} such that ∀i ∈M ,
b0[i] = 0; ∀j ∈ M̄ , x0[j] = 0 and c0[j] = ι1(0), where M̄ := {1, ..., m}\M .

� Let n be the dimension of a0, y0 and d0. ∃N ⊆ {1, ..., n} such that ∀i ∈ N ,
a0[i] = 0; ∀j ∈ N̄ , y0[j] = 0 and d0[j] = ι2(0), where N̄ := {1, ..., n}\N .

� For both (∀i ∈ M̄, ∀j ∈ N̄) and (∀i ∈M, ∀j ∈ N): Γ0[i, j] = 0.
� t0 = 0, π0 = 0, and ψ0 = 0.

We next define a set ΠGS of tuples (Sta, Wit , Proof ) from the identity IGS .
Sta consists of L GS equations (a, b, Γ, t) (corresponding to Sta0’s (a0, b0, Γ0, t0)
with m, n, M , N); Wit consists of L corresponding GS variables (x, y); Proof
consists of L corresponding GS proofs (c, d, π, ψ); satisfying:

� ∀i ∈M , x[i] = x0[i] and c[i] = c0[i]. ∀j ∈ M̄ , b[j] = b0[j].
� ∀i ∈ N , y[i] = y0[i] and d[i] = d0[i]. ∀j ∈ N̄ , a[j] = a0[j].
� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] = Γ0[i, j]. That means ∀i ∈ M̄, ∀j ∈ N̄ :

Γ [i, j] = 0.

We finally define operation +GS : ΠGS × ΠGS → ΠGS . For i ∈ {1, 2} and
(Stai,Wit i,Proof i) ∈ ΠGS , Stai consists of L GS equations (ai, bi, Γi, ti) corre-
sponding to Sta0’s (a0, b0, Γ0, t0), Wit i consists of L corresponding GS variables
(xi, yi), and Proof i consists of L corresponding GS proofs (ci, di, πi, ψi). We
compute (Sta, Wit , Proof ) ← (Sta1,Wit1,Proof 1) +GS (Sta2,Wit2,Proof 2) of
corresponding (a, b, Γ, t), (x, y) and (c, d, π, ψ) as follows.

� ∀i ∈ M : x[i] := x1[i]; c[i] := c1[i]; b[i] := b1[i] + b2[i]. ∀j ∈ M̄ : b[j] := b1[j];
x[j] := x1[j] + x2[j]; c[j] := c1[j] + c2[j].

� ∀i ∈ N : y[i] := y1[i]; d[i] := d1[i]; a[i] := a1[i] + a2[i]. ∀j ∈ N̄ : a[j] := a1[j];
y[j] := y1[j] + y2[j]; d[j] := d1[j] + d2[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] := Γ1[i, j]. Otherwise, Γ [i, j] := Γ1[i, j] +
Γ2[i, j].

� t = t1 + t2, π = π1 + π2, and ψ = ψ1 + ψ2.

Theorem 1. In the definitions above, ΠGS is a set of strongly homomorphic
proofs with operation +GS and the identity element IGS .

Proof of theorem 1 can be found in Tech Report [29]. The proof validates the
closure, associativity, commutativity, identity element, and inverse element prop-
erties of abelian groups.

3.3 Comparison with the DHLW Homomorphic NIZK

We compare our homomorphic proof approach with the independently pro-
posed DHLW homomorphic NIZK [27]. Intuitively, DHLW defines that a NIZK
proof system is homomorphic if for any (Para ,Sta1,Wit1), (Para ,Sta2,Wit2) ∈
R: Prove(Para,Sta1,Wit1)Rand1 + Prove(Para ,Sta2,Wit2)Rand2 = Prove(Para ,
Sta1 + Sta2, Wit1 + Wit2)Rand1+Rand2 , where Prove(. . .)Rand is the output of
Prove() with randomness Rand . The new definition in this paper requires homo-
morphism for a subset of proofs generated by Prove, and differs from DHLW’s
homomorphism requirement for all such proofs, covering more proof systems.
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The DHLW’s homomorphic NIZK construction a special case of our con-
struction above. It is for statements of ‘one-sided’ GS equations {xk · bk =
tk}Lk=1 whereas our construction generalizes to statements of ‘full’ GS equa-
tions {ak · yk + xk · bk + xk · Γyk = tk}Lk=1. As shown later, the ADNMP
and RDAC are based on a GS homomorphic proof system of ‘full’ equations
{(y1 + y2)Xj1 + yj3A1 = Tj1 ∧Xj3 − yj3A2 = 0 ∧ yj3Xj2 = Tj2}mj=1.

4 Accumulator with Delegatable NM Proofs - ADNMP

We refer to a universal accumulator as (Setup, ProveNM, VerifyNM, CompNMWit,
Accu), that consists of only algorithms for setup; generating, verifying and com-
puting witnesses for non-membership proofs; and accumulating, respectively.
This paper does not deal with membership proofs. Tech Report [29] provides
more details on accumulators.

The delegating ability to prove statements allows another user to prove the
statements on one’s behalf without revealing the witness, even if the statements’
conditions change over time. For privacy reasons, adversaries should not be able
to distinguish different delegations from different users. The delegatee can ver-
ify a delegation and unlinkably redelegate the proving ability further to other
users. Thus, delegating an accumulator’s NM proofs should meet 4 conditions
formalized in Definition 2. Delegability means that an element Ele’s owner can
delegate her ability to prove that Ele is not accumulated without trivially reveal-
ing Ele. Even if the set of accumulated elements change overtime, the delegatee
does not need to contact the delegator again to generate the proof. The owner
gives the delegatee a key De generated from Ele. The proof generated from De
by CompNMProof is indistinguishable from a proof generated by ProveNM. Un-
linkability means that a delegatee should not be able to distinguish whether or
not two delegating keys originate from the same element. It implies that it is
computationally hard to find an element from its delegating keys. Redelegability
means that the delegatee can redelegate De as De′ to other users, and still main-
tains indistinguishability of De and De′. Verifiability means that one is able to
validate that a delegating key De is correctly built.

Definition 2. Auniversalaccumulator (Setup,ProveNM,VerifyNM,CompNMWit,
Accu) is a secure ADNMP (Accumulator with Delegatable NM Proofs) if there exist
PPT algorithms

– Dele: takes public parameters Para and an element Ele and returns its del-
egating key De;

– Rede: takes Para and a delegating key De and returns another delegating
key De′;

– Vali: takes Para and a delegating key De and returns 1 if De is valid or 0
otherwise;

– CompNMProof: takes Para, De, an accumulator set AcSet and its accumula-
tor value AcV al and returns an NM proof that the element Ele corresponding
to De is not accumulated in AcSet;



430 T. Acar and L. Nguyen

satisfying:

– Delegability:ForeveryPPTalgorithm (A1 ,A2), |Pr[ (Para,Aux)←Setup(1k);
(Ele, AcSet, state) ← A1(Para); AcV al ← Accu( Para, AcSet); Wit ←
CompNMWit(Para, Ele, AcSet, AcV al); Proof0 ← ProveNM(Para, AcV al,
Wit); De ← Dele(Para, Ele); Proof1 ← CompNMProof(Para, De, AcSet,
AcV al); b ← {0, 1}; b′ ← A2(state, AcV al, Wit, De, Proofb): (Ele /∈
AcSet) ∧ b = b′]− 1/2| is negligible.

– Unlinkability: For every PPT algorithm A, |Pr[ (Para, Aux) ← Setup(1k);
(Ele0, Ele1) ← DomPara; De ← Dele (Para, Ele0); b ← {0, 1}; Deb ←
Dele(Para, Eleb); b′ ← A(Para, De, Deb): b = b′]− 1/2| is negligible.

– Redelegability: For every PPT algorithms (A1,A2), |Pr[ (Para, Aux) ←
Setup(1k); (Ele, state) ← A1(Para); De ← Dele(Para, Ele); De0 ← Dele(
Para, Ele); De1 ← Rede (Para, De); b← {0, 1}; b′← A2(state, De, Deb) :
b = b′]− 1/2| is negligible.

– Verifiability: For every PPT algorithm A, |Pr[ (Para, Aux) ← Setup(1k);
Ele ← A(Para); De ← Dele(Para, Ele): Vali(Para, De) = 1 if Ele ∈
DomPara] − 1| and |Pr[(Para, Aux) ← Setup(1k); De′ ← A
(Para) : Vali(Para, De′) = 0 if De′ /∈ {De|De ← Dele(Para, Ele′); Ele′ ∈
DomPara}]− 1| are negligible.

Unlinkability combined with Redelegability generalizes the Unlinkability defini-
tion allowing an adversary A access an oracle O(Para, De) that returns another
delegating key De′ of the same element corresponding to De. That means A can
get several delegating keys of Ele0 and of Eleb using O. Rede can be used for
such an oracle.

For any ADNMP, given an element Ele and a delegating key De, one can tell
if De is generated by Ele as follows. First, she does not accumulate Ele and
uses De to prove that De’s element is not accumulated. Then she accumulates
Ele and tries to prove again that De’s element is not accumulated. If she cannot
prove that anymore, she can conclude that Ele is De’s element. Due to this
restriction, in ADNMP’s applications, Ele should be a secret that only its owner
knows. This is related to the discussion in Tech Report [29] about the general
conflict between delegability and anonymity.

5 An ADNMP Scheme

We propose a dynamic universal ADNMP. Its Setup, Accu and UpdateVal are
generalized from [7,10].

� Setup: We need GS instantiations where GS proofs of this accumulator are
composable ZK. We can use either the SXDH or SDLIN (Symmetric DLIN)
[28] instantiations. We use SXDH as an example. Generate parameters (p, G1,
G2, GT , e, P1, P2) and CRS σ with perfectly binding keys for the SXDH in-
stantiation of GS proofs (Sections 2), and auxiliary information Aux = δ ←
Z∗

p. For the proof, generate A ← G1 and τ := ι′2(δ). For efficient accu-
mulating without Aux, a tuple ς = (P1, δP1, . . . , δ

q+1P1) is needed, where
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q ∈ Z∗
p. The domain for elements to be accumulated is D = Z∗

p\{−δ}. We
have Para = (p, G1, G2, GT , e, P1, P2, A, σ, ς, τ).

� Accu: On input AcSet = {a1, ..., aQ} ⊂ D, compute m = �Q/q�. If Aux = δ
is available, the output AcV al is a set of m component accumulator val-
ues {Vj}mj=1 computed as Vj =

∏jq
i=(j−1)q+1;i<Q(δ + ai)δP1. If Aux is not

available, AcV al is efficiently computable from ς and AcSet.
� UpdateVal: In case a′ ∈ D is being accumulated; from 1 to m, find the first Vj

that hasn’t accumulated q elements, and update V ′
j = (δ + a′)Vj ; if such Vj

isn’t found, add Vm+1 = (δ + a′)δP1. In case a′ is removed from AcV al, find
Vj which contains a′ and update V ′

j = 1/(δ + a′)Vj .

In previous accumulators [7,10], the accumulator value is a single value V =∏
ai∈AcSet(δ + ai)δP1 and they require that q of ς is the upper bound on the

number of elements to be accumulated, i.e. m = 1. The above generalization,
where the accumulator value is a set of V instead, relaxes this requirement and
allows the ADNMP scheme to work even when q is less than the number of
accumulated elements. It also allows smaller q at setup.

5.1 NM Proof

We need to prove that an element y2 ∈ D is not in any component accumulator
value Vj of AcV al {Vj}mj=1. Suppose Vj accumulates {a1, ..., ak} where k ≤ q,
denote Poly(δ) :=

∏k
i=1(δ+ai)δ, then Vj = Poly(δ)P1. Let yj3 be the remainder

of polynomial division Poly(δ) mod (δ + y2) in Zp, and Xj1 be scalar product
of the quotient and P1. Similar to [10], the idea for constructing NM proofs is
that y2 is not a member of {a1, ..., ak} if and only if yj3 �= 0. We have the follow-
ing equation between δ, y2, yj3 and Xj1: (δ + y2)Xj1 + yj3P1 = Vj . Proving this
equation by itself does not guarantee that yj3 is the remainder of the polynomial
division above. It also needs to prove the knowledge of (yj3P2, yj3A) and the fol-
lowing Extended Strong DH (ESDH) assumption. It is a variation of the Hidden
Strong DH (HSDH) assumption [30], though it is not clear which assumption is
stronger. It is in the extended uber-assumption family [31] and can be proved in
generic groups, similar to HSDH.

Definition. q-ESDH: Let (p, G1, G2, GT , e, P1, P2) be bilinear parameters,
A← G∗

1 and δ ← Z∗
p. Given P1, δP1, . . . , δq+1P1, A, P2, δP2, it is computation-

ally hard to output ( y3
δ+y2

P1, y2, y3P2, y3A) where y3 �= 0.
We will show later that if one can prove the knowledge of (yj3P2, yj3A) sat-

isfying (δ + y2)Xj1 + yj3P1 = Vj and y2 is accumulated in Vj but yj3 �= 0, then
she can break the assumption. To prove the knowledge of (yj3P2, yj3A), we need
equation Xj3 − yj3A = 0. To verify yj3 �= 0, we need equation Tj = yj3Xj2 and
the verifier checks Tj �= 0. We now present the NM proof and its security in
theorem 2. Proof of theorem 2 can be found in Tech Report [29].

� CompNMWit takes y2, and for each component accumulator value Vj of AcV al
{Vj}mj=1, computes remainder yj3 of Poly(δ) mod (δ + y2) in Zp which is
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efficiently computable from {a1, ..., ak} and y2. It then computes
Xj1 = (Poly(δ) − yj3)/(δ + y2)P1, which is efficiently computable from
{a1, ..., ak}, y2 and ς. The witness includes y2 and {(Xj1, Xj3 = yj3A, yj3)}mj=1.
UpdateNMWit is for one Vj at a time and similar to [10] with the extra task
of updating Xj3 = yj3A.

� ProveNM generates Xj2 ← G∗
1 and outputs Tj = yj3Xj2 for each Vj and a GS

proof for the followingequationsofvariablesy1=δ, y2,{(Xj1, Xj3, Xj2, yj3)}mj=1.∧m
j=1((y1 + y2)Xj1 + yj3P1 = Vj∧Xj3 − yj3A = 0∧ yj3Xj2 = Tj).

Note that the prover does not need to know y1. From τ , it is efficient to generate
a commitment of δ and the proof.

� VerifyNM verifies the proof generated by ProveNM and checks that Tj �= 0,
∀j ∈ {1, . . . , m}. It accepts if both of them pass or rejects otherwise.

Theorem 2. The proof system proves that an element is not accumulated. Its
soundness depends on the ESDH assumption. Its composable ZK depends on the
assumption underlying the GS instantiation (SXDH or SDLIN).

The proof in [29] follows the GS SXDH instantiation and shows that the NM
proof system for this accumulator is composable ZK. The completeness comes
from GS, and soundness relies on the ESDH assumption.

5.2 NM Proofs Are Strongly Homomorphic

We can see that for the same constant A, the same variables δ, y2 and Xj2
with the same commitments, the set of NM proofs has the form of strongly
homomorphic GS proofs constructed in Section 3. For constructing delegatable
NM proofs, we just need them to be homomorphic. More specifically, ’adding’ 2
proofs of 2 sets of equations (with the same commitments for δ, y2 and Xj2)∧m

j=1((δ + y2)X
(1)
j1 + y

(1)
j3 P1 = V

(1)
j ∧X

(1)
j3 − y

(1)
j3 A = 0 ∧ y

(1)
j3 Xj2 = T

(1)
j ) and∧m

j=1((δ + y2)X
(2)
j1 + y

(2)
j3 P1 = V

(2)
j ∧X

(2)
j3 − y

(2)
j3 A = 0 ∧ y

(2)
j3 Xj2 = T

(2)
j ) form a

proof of equations∧m
j=1((δ + y2)Xj1 + yj3P1 = Vj ∧Xj3 − yj3A = 0 ∧ yj3Xj2 = Tj)

where Xj1 = X
(1)
j1 +X

(2)
j1 , Xj3 = X

(1)
j3 +X

(2)
j3 , yj3 = y

(1)
j3 + y

(2)
j3 , Vj = V

(1)
j +V

(2)
j

and Tj = T
(1)
j + T

(2)
j .

5.3 Delegating NM Proof

We first explain the idea behind the accumulator’s delegatable NM proof con-
struction. We write the component accumulator value V =

∏k
i=1(δ + ai)δP1 as

V =
∑k

i=0 biδ
k+1−iP1 where b0 = 1 and bi =

∑
1≤j1<j2<...<ji≤k

∏i
l=1 ajl

. Thus,
V can be written as a linear combination of δP1, . . . , δ

k+1P1 in ς.
Next, we construct homomorphic proofs for (δ + y2)X

(i)
1 + y

(i)
3 P1 = δiP1 ∧

X
(i)
3 − y

(i)
3 A = 0 ∧ y

(i)
3 X2 = T (i) where i ∈ {1, ..., k + 1}. Using the same

linear combination of δP1, . . . , δ
k+1P1 for V , we linearly combine these proofs

to get a proof for (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T , where
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X1 =
∑k

i=0 biX
(k+1−i)
1 , X3 =

∑k
i=0 biX

(k+1−i)
3 , y3 =

∑k
i=0 biy

(k+1−i)
3 and T =∑k

i=0 biT
(k+1−i). This is the same as the NM proof for each of the component

accumulator value provided above.
We now provide the algorithms for delegating NM proofs and its security

theorem. We also add UpdateProof to be used in place of CompNMProof when
possible for efficiency.

� Dele(Para, Ele). For each i ∈ {1, ..., q + 1}, compute remainder y
(i)
3 of δi

mod (δ + y2) in Zp, and X
(i)
1 = (δi − y

(i)
3 )/(δ + y2)P1, which are efficiently

computable from y2 and ς. In fact, we have y
(i)
3 = (−1)iyi

2 and X
(i+1)
1 =∑i

j=0(−1)jyj
2δ

i−jP1 = δiP1 − y2X
(i)
1 (so the cost of computing all X

(i)
1 , i ∈

{1, ..., q + 1} is about q scalar products). Generate X2 ← G∗
1, the delegation

key De includes {T (i) = y
(i)
3 X2}q+1

i=1 and a GS proof of equations∧q+1
i=1 ((δ + y2)X

(i)
1 + y

(i)
3 P1 = δiP1 ∧X

(i)
3 − y

(i)
3 A = 0 ∧ y

(i)
3 X2 = T (i)).

� Rede(Para, De). For each i ∈ {1, ..., q + 1}, extract proof Proofi of y
(i)
3 X2 =

T (i) in De. In each Proofi, for the same y
(i)
3 and its commitment, Proofi is

of homomorphic form. So generate r ← Z∗
p and compute Proof ′

i = rProofi

which is a proof of y
(i)
3 X ′

2 = T ′(i), where X ′
2 = rX2 and T ′(i) = rT (i). Note

that commitments of y
(i)
3 stay the same. For every i ∈ {1, ..., q + 1}, replace

T (i) by T ′(i) and Proofi by Proof ′
i in De to get a new GS proof, which is

then randomized to get the output De′.
� Vali(Para, De). A simple option is to verify the GS proof De. An alternative

way is to use batch verification: Divide De into proofs NMProofi of (δ +
y2)X

(i)
1 +y

(i)
3 P1 = δiP1∧X

(i)
3 −y

(i)
3 A = 0∧y

(i)
3 X2 = T (i) for i ∈ {1, ..., q+1}.

Generate q + 1 random numbers to linearly combine NMProofis and their
statements and verify the combined proof and statement.

� CompNMProof(Para, De, AcSet, AcV al). Divide De into proofs NMProofi

as in Vali. For each component accumulator value V of {a1, ..., ak}, compute
bi for i ∈ {0, ..., k} as above. NMProofis belong to a set of homomorphic
proofs, so compute NMProof =

∑k
i=0 biNMProofk+1−i, which is a proof

of (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T where X1, X3, y3, T
and V are as explained above.

Extract proof SubProof of y3X2 = T in NMProof . For the same y3 and
its commitment, SubProof is of homomorphic form. So generate r ← Z∗

p

and compute SubProof ′ = rSubProof which is a proof of y3X
′
2 = T ′, where

X ′
2 = rX2 and T ′ = rT . Note that y3’s commitment stays the same. Replace

T by T ′ and SubProof by SubProof ′ in NMProof to get a new proof
NMProof ′.

Concatenate those NMProof ′ of all V in AcV al and output a random-
ization of the concatenation.

� UpdateProof(Para,De,AcSet,AcV al,Proof ,Opens). Proof is the proof to be
updated and Opens contains openings for randomizing commitments of
y1 = δ and y2 from De to Proof . Suppose there is a change in accumu-
lated elements of a component value V , we just compute NMProof ′ for the
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updated V as in CompNMProof. Randomize NMProof ′ so that its commit-
ments of y1 and y2 are the same as those in Proof and put it in Proof in
place of its old part. Output a randomization of the result.

To prove that this construction provides an ADNMP, we need the following
Decisional Strong Diffie Hellman (DSDH) assumption, which is not in the uber-
assumption family [31], but can be proved in generic groups similarly to the
PowerDDH assumption [32]. Proof of theorem 3 is in Tech Report [29].

Definition. q-DSDH: Let (p, G1, G2, GT , e, P1, P2) be bilinear parameters,
B0, B1 ← G∗

1, x0, x1 ← Z∗
p and b← {0, 1}. Given B0, x0B0, . . . , xq

0B0, B1, xbB1,
. . . , xq

bB1, no PPT algorithm can output b′ = b with a probability non-negligibly
better than a random guess.

Theorem 3. The accumulator is a secure ADNMP, based on ESDH, DSDH
and the assumption underlying the GS instantiation (SXDH or SDLIN).

6 Revocable Delegatable Anonymous Credentials -
RDAC

6.1 Model

This is a model of RDAC systems, extended from BCCKLS [1] which is briefly
described in Tech Report [29]. Participants include users and a Blacklist Au-
thority (BA) owning a blacklist BL. For each credential proof, a user picks a
new nym indistinguishable from her other nyms. We need another type of nym
for revocation, called r-nym, to distinguish between two types of nyms. When
an r-nym is revoked, its owner cannot prove credentials anymore. The PPT
algorithms are:

– Setup(1k) outputs public parameters ParaDC , BA’s secret key SkBA, and
an initially empty blacklist BL. Denote BLe an empty blacklist.

– KeyGen(ParaDC) outputs a secret key Sk and a secret r-nym Rn for a user.
– NymGen(ParaDC , Sk, Rn) outputs a new nym Nym with an auxiliary key

Aux(Nym). A user O can become a root credential issuer by publishing a
nym NymO and a proof that her r-nym RnO is not revoked that O has to
update when BL changes.

– Issue(ParaDC , NymO, SkI , RnI , NymI , Aux(NymI), Cred, DeInf , NymU ,
BL, L)↔ Obtain(ParaDC , NymO, SkU , RnU , NymU , Aux(NymU ), NymI ,
BL, L) lets user I issue a level L + 1 credential to user U . SkI , RnI , NymI

and Cred are the secret key, r-nym, nym and level L credential rooted at
NymO of issuer I. SkU , RnU and NymU are the secret key, r-nym and nym
of user U . I gets no output and U gets a credential CredU .

Delegation information DeInf is optional. When it is included, U also gets
delegation information DeInfU to later prove that r-nyms of all delegators
in her chain are not revoked. If L = 0 then Cred is omitted and DeInf = 1
is optionally included.
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– Revoke(ParaDC , SkBA, Rn, BL) updates BL so that a revoked user Rn can
no longer prove, delegate or receive credentials. Denote Rn ∈ BL or Rn /∈
BL that Rn is blacklisted or not, respectively.

– CredProve(ParaDC , NymO, Cred, DeInf , Sk, Rn, Nym, Aux(Nym), BL, L)
takes a level L credential Cred, Sk, Rn and optionally DeInf to output
CredProof , which proves that: (i) a credential level L is issued to Nym’s
owner. (ii) Nym’s Rn is not revoked. (iii)(optional, when DeInf is included)
all r-nyms on the credential’s chain are not revoked.

– CredVerify(ParaDC , NymO, CredProof, Nym, BL, L) verifies if CredProof
is a valid proof of the above statements.

The differences with the model for delegatable anonymous credentials without
revocation [1] are the introductions of BA with SkBA and BL; r-nyms; delegation
information DeInf ; Revoke; and the two CredProof ’s conditions (ii) and (iii).
Note that DeInf ’s inclusion in the algorithms is optional and allows a user the
choice to either just prove that she is not blacklisted or fully prove and delegate
that all users on her credential chain are not blacklisted. We can use one of
traditional methods for BA to obtain r-nyms to revoke (Tech Report [29]).

Tech Report [29] formally defines RDAC security. Briefly, there are 3 require-
ments extended from the security definition of delegatable anonymous credentials
[1]: Correctness, Anonymity and Unforgeability. Tech Report [29] discusses the
trade offs between delegability and anonymity.

7 An RDAC Scheme

7.1 Overview

We first describe intuitions of the BCCKLS delegatable anonymous credential
scheme in [1], and then show how ADNMP extends it to provide revocation.

BCCKLS uses an F -Unforgeable certification secure authentication scheme
AU of PPT algorithms AtSetup, AuthKg, Authen, VerifyAuth. AtSetup(1k) returns
public parameters ParaAt, AuthKg(ParaAt) generates a key Sk, Authen(ParaAt,
Sk, m) produces an authenticator Auth authenticating a vector of messages m,
and VerifyAuth(ParaAt, Sk, m, Auth) accepts if and only if Auth validly authen-
ticates m under Sk. The scheme’s security requirements include F -Unforgeability
[12] for a bijective function F , which means (F (m), Auth) is unforgeable with-
out obtaining an authenticator on m; and certification security, which means
no PPT adversary, even after obtaining an authenticator by the challenge se-
cret key, can forge another authenticator. An adversary can also have access
to two oracles. OAuthen(ParaAt, Sk, m) returns Authen(ParaAt, Sk, m) and
OCertify(ParaAt, Sk∗, (Sk, m2, . . . , mn)) returns Authen(ParaAt, Sk∗, (Sk, m2,
. . . , mn)). BCCKLS also uses a secure two party computation protocol (AuthPro)
to obtain a NIZKPKof an authenticator onmwithout revealing anything aboutm.

In BCCKLS, a user U can generate a secret key Sk← AuthKg(ParaAt), and
many nyms Nym = Com(Sk, Open) by choosing different values Open. Suppose
U has a level L+1 credential from O, let (Sk0 = SkO, Sk1, ... , SkL, SkL+1 = Sk)
be the keys such that Ski’s owner delegated the credential to Ski+1, and let H :
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{0, 1}∗ → Zp be a collision resistant hash function. ri = H(NymO, atributes, i)
is computed for a set of attributes for that level’s credential. U generates a proof
of her delegated credential as
CredProof ← NIZKPK[SkO in NymO, Sk in Nym]
{(F (SkO), F (Sk1), ..., F (SkL), F (Sk), auth1, ..., authL+1) :
VerifyAuth(SkO, (Sk1, r1), auth1) ∧
VerifyAuth(Sk1, (Sk2, r2), auth2) ∧ ... ∧
VerifyAuth(SkL−1, (SkL, rL), authL) ∧
VerifyAuth(SkL, (Sk, rL+1), authL+1)}.
Now we show how ADNMP extends BCCKLS to provide revocation. Using
ADNMP, BA’s blacklist BL includes an accumulated set of revoked Rns and
its accumulator value. Beside a secret key Sk, user U has a secret r-nym Rn
in the accumulator’s domain, and generates nyms Nym = (Com(Sk, OpenSk),
Com(Rn, OpenRn)). ADNMP allows delegation and redelegation of a proof that
an Rn is not accumulated in a blacklist Rn /∈ BL. U generates a proof of her
delegated credential and validity of the credential’s chain as follows.

CredProof ← NIZKPK[SkO in NymO[1], Sk in Nym[1], Rn in Nym[2]]
{(F (SkO), F (Sk1), F (Rn1), ..., F (SkL), F (RnL), F (Sk), F (Rn),

auth1, ..., authL, authL+1) :
VerifyAuth(SkO, (Sk1, Rn1, r1), auth1) ∧ (Rn1 /∈ BL)∧
VerifyAuth(Sk1, (Sk2, Rn2, r2), auth2) ∧ (Rn2 /∈ BL) ∧ ...∧
VerifyAuth(SkL−1, (SkL, RnL, rL), authL) ∧ (RnL /∈ BL)∧
VerifyAuth(SkL, (Sk, Rn, rL+1), authL+1) ∧ (Rn /∈ BL)}.

Delegability allows a user, on behalf of the user’s delegators without any witness,
to prove that the user’s ancestor delegators are not included in a changing black-
list. The proofs a user and a delegator generates are indistinguishable from each
other. Redelegability allows a user to redelegate those proofs on the delegators to
the user’s delegatees. Unlinkability prevents colluding users to link delegations
of the same delegator. Verifiability allows a user to validate the correctness of a
delegation token.

7.2 Description

The RDAC scheme has several building blocks. (i) An ADNMP with a malleable
NM proof system (NMPS) of AcSetup, ProveNM, VerifyNM, CompNMWit, Accu,
Dele, Rede, Vali, CompNMProof, with commitment ComNM. (ii) Those from
BCCKLS, including AU ; AuthPro; H ; and a malleable NIPK credential proof
system (CredPS) of PKSetup, PKProve, PKVerify, RandProof, with commitment
Com. (iii) A malleable proof system (EQPS), with PKSetup and AcSetup in setup,
to prove that two commitments Com and ComNM commit to the same value.

Assume that a delegating key De contains a commitment of element Ele.
CompNMProof and Rede randomize the commitment in De and generate Ele’s
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commitment. Elements of the accumulator domain and the authenticator’s key
space can be committed by Com. The following algorithm inputs are the same
as in the model and omitted.

– Setup: Use PKSetup(1k), AtSetup(1k) and AcSetup(1k) to generate ParaPK ,
ParaAt, and (ParaAc, AuxAc). The blacklist includes an accumulated set
of revoked r-nyms and its accumulator value. Output an initial blacklist BL
with an empty accumulator set and its initial accumulator value, ParaDC =
(ParaPK , ParaAt, ParaAc, H), and SkBA = AuxAc.

– KeyGen: Run AuthKg(ParaAt) to output a secret key Sk. Output a random
r-nym Rn from the accumulator’s domain.

– NymGen: Generate random OpenSk and OpenRn, and output nym Nym =
(Com(Sk, OpenSk),Com(Rn, OpenRn)) and Aux(Nym) = (OpenSk, OpenRn).

– The credential originator O publishes a NymO and a proof NMProofO that
RnO is not revoked. O updates the proof when BL changes.

– Issue ↔ Obtain: If L = 0 and NymO �= NymI , aborts. Issue aborts if
NymI �= (Com(SkI , OpenSkI ), Com(RnI , OpenRnI )) or PKVerify(ParaPK ,
(Nym0, (Com(SkI , 0), Com(RnI , 0))), Cred) rejects, or RnI ∈ BL, or NymU

is invalid. Obtain aborts if NymU �= (Com(SkU , OpenSkU ), Com( RnU ,
OpenRnU )) or RnU ∈ BL. Otherwise, each of Issue and Obtain generates
a proof and verifies each other’s proofs that RnI /∈ BL and RnU /∈ BL using
(ProveNM, VerifyNM) with EQPS (to prove that Com(RnI) in NymI and
ComNM(RnI) generated by ProveNM commit to the same value RnI , and
similarly for RnU ). They then both compute rL+1=H(NymO,attributes, L+
1) for a set of attributes for that level’s credential. They run AuthPro for the
user U to receive: ProofU ← NIZKPK[SkI in NymI [1], SkU in Com(SkU ,
0), RnU in Com(RnU , 0)] {(F (SkI),F (SkU ),F (RnU ), auth) : VerifyAuth(SkI ,
(SkU , RnU , rL+1), auth)}. U ’s output is CredU = ProofU when L = 0.
Otherwise, suppose the users on the issuer I’s chain from the root are 0
(same as O), 1, 2,..., L (same as I). I randomizes Cred to get a proof
CredProofI (containing the same NymI) that for every Nymj on I’s chain
(j ∈ {1, ..., L}), Skj and Rnj are authenticated by Skj−1 (with rj). U veri-
fies that PKVerify(ParaPK , (Nym0, NymI), CredProofI ) accepts, then con-
catenates ProofU and CredProofI and projects NymI from statement to
proof to get CredU .

The optional DeInf includes a list of delegating keys Dejs generated
by the accumulator’s Dele to prove that each Rnj is not accumulated in
the blacklist, and a list of EQProofj for proving that two commitments of
Rnj in Cred and Dej commit to the same value Rnj , for j ∈ {1, ..., L −
1}. Verifying DeInf involves checking Vali(ParaAc, Dej) and EQProofj ,
for j ∈ {1, ..., L − 1}. When DeInf is in the input, Issue would aborts
without interacting with Obtain if verifying DeInf fails. Otherwise, it uses
CompNMProof to generate a proof NMChainProof that each Rnj’s on
I’s chain of delegators is not accumulated in the blacklist. U aborts if its
verification on NMChainProof fails. Otherwise, I Redes these delegating
keys, randomizes EQProofj to match commitments in the new delegating
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keys and CredU , and adds a new delegating key DeI to prove that RnI is not
revoked and a proof EQProofI that two commitments of RnI in NymI [2]
and DeI commit to the same value. The result DeInfU is sent to and verified
by U .

– Revoke: Add Rn to the accumulated set and update the accumulator value.
– CredProve: Abort if Nym �= (Com(Sk, OpenSk), Com(Rn, OpenRn)), or

PKVerify(ParaPK , (Nym0, (Com(Sk, 0), Com(Rn, 0))), Cred) rejects, or ver-
ifying DeInf fails. Otherwise, use ProveNM to generate a proof NMProof
that Rn is not blacklisted. Generate EQProof ′

L that Rn’s commitments in
NMProof and in Nym[2] both commit to the same value. Randomize Cred
to get a proof which contains Nym. Concatenate this proof with NMProof
and EQProof ′

L to get CredProof ′. If the optional DeInf is omitted, just
output CredProof ′.

Otherwise, use CompNMProof to generate a proof NMChainProof that
each Rnj ’s on the user’s chain of delegators is not accumulated in the black-
list. For j ∈ {1, ..., L − 1}, update and randomize EQProofj of DeInf to
get EQProof ′

j which proves Rnj ’s commitments in NMChainProof and
CredProof ′ both commit to the same value. Concatenate NMChainProof ,
CredProof ′ and EQProof ′

j for j ∈ {1, ..., L− 1} to output CredProof as
described in (1).

– CredVerify runsPKVerifyontherandomizationofCred,VerifyNMonNMProof
and

NMChainProof , and verifies EQProof ′
j for j ∈ {1, ..., L} to output ac-

cept or reject.

Theorem 4. If the authentication scheme is F-unforgeable and certification-
secure; the ADNMP is secure; CredPS, NMPS and EQPS are randomizable and
composable ZK; CredPS is also partially extractable; and H is collision resistant,
then this construction is a secure revocable delegatable anonymous credential
system.

Proof of theorem 4 is given in Tech Report [29]. Instantiation of the building
blocks are given in Tech Report [29]. Briefly, a secure ADNMP is presented in
Section 5; the BCCKLS building blocks can be instantiated as in [1]; and an
EQPS can be constructed from [12,1].
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Abstract. We investigate the security of a generalization of HFE (mul-
tivariate and odd-characteristic variants). First, we propose an improved
version of the basic Kipnis-Shamir key recovery attack against HFE. Sec-
ond, we generalize the Kipnis-Shamir attack to Multi-HFE. The attack
reduces to solve a MinRank problem directly on the public key. This leads
to an improvement of a factor corresponding to the square of the degree of
the extension field. We used recent results on MinRank to show that our
attack is polynomial in the degree of the extension field. It appears that
multi-HFE is less secure than original HFE for equal-sized keys. Finally,
adaptations of our attack overcome several variants (i.e. minus modifier
and embedding). As a proof of concept, we have practically broken the
most conservative parameters given by Chen, Chen, Ding, Werner and
Yang in 9 days for 256 bits security. All in all, our results give a more pre-
cise picture on the (in)security of several variants of HFE proposed these
last years.

Keywords: Hidden Field Equations, MinRank, Gröbner bases.

1 Introduction

Multivariate Public-Key Cryptography (MPKC) is the set of public-key schemes
using multivariate polynomials. The concept of MPKC is very appealing since
its security is related to the hardness of a post-quantum problem, namely solv-
ing a quadratic system of algebraic equations [23]. In addition, the encryp-
tion/decryption procedures are very efficient and can be done in constrained
environments [6,10]. Among these cryptosystems, the Hidden Field Equations
cryptosystem (HFE) is probably the most studied one. It has been proposed
by Patarin [29] after his cryptanalysis [28] of the historical multivariate scheme
C∗ [27]. In [26] Kipnis and Shamir proposed a key recovery attack on HFE, which
reduces to the so-called MinRank [12] problem. Although the attack is not practi-
cal for the proposed parameters, it was conjectured to be sub-exponential. Later,
Faugère and Joux [17,19] proposed an efficient message recovery attack based
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on Gröbner bases. This attack, which is “quasi-polynomial” [24], raises serious
doubt about the security of HFE. To thwart both attacks on HFE, it has been
proposed to use a multivariate system as the secret key [5] or odd-characteristic
fields [14] or even both in a recent paper [11]. This new family of schemes is
called multi-HFE in the rest of the paper.

Our contributions. We propose here a key recovery attack on HFE, multi-HFE
and some of its variants. Our attack is an adaptation and improvement of the
Kipnis-Shamir attack [26]. Precisely, we reduce the attack to the problem of find-
ing a linear combination of the public quadratic forms of low rank. This problem
is known as the MinRank (MR) problem (MR is usually defined for matrices,
but the problem can be defined equivalently on quadratic forms). The coeffi-
cients in the linear relation that we are looking for are strongly related to one
of the affine transforms used to hide the (multi-)HFE structure. We show that
the MinRank can be expressed in the small field, which allows to considerably
speed-up solving by approximately a factor corresponding to the square of the
degree of the extension field. Thanks to recent results on MinRank [20,21] and
bilinear systems [22], we conjecture that the attack is polynomial in the degree
of the extension. Using this complexity analysis, we can prove that, for the same
size of keys (a precise definition of this notion is given in Sect. 3.6), multi-HFE
is always less secure than HFE. In addition, the large number of equivalent keys
allows to attack the minus variant (this amounts to remove some equations in
the public key) using the induced degrees of freedom of the MinRank. Finally,
we present an attack on the embedding variant of (multi-)HFE. This variant
consists in instantiating some variables of the public system. However, a low
rank linear combination of the quadratic forms can still be found. In this case,
solving the corresponding MinRank on truncated quadratic forms allows us to
recover only a rectangular sub matrix of the linear transform; to overcome this
difficulty we need to extend this matrix in a special way (details can be found
in Sect. 5) to make it invertible. As a proof of concept, we practically broke
several parameters proposed in [11], supposed to have up to 256 bits security
(experiments are given in Sect. 6). We also mention that the second part of the
attack of Kipnis and Shamir as presented in [26] does not apply in characteristic
2. It is possible to overcome this problem but due to space limitation, this will
be presented in an extended version of this paper. Consequently, we assume in
the rest of the paper that q (the size of the small field) is odd.

2 Multivariate HFE

Throughout this paper, we use the following conventions: an underlined letter
denotes a vector, e.g. v = (v1, . . . , vn). A capital bold font letter denotes a matrix,
e.g. M = [mi,j ]. A calligraphic capital letter denotes a general mapping, e.g. F .

For Multi-HFE, the parameters considered are (q, N, d, D) ∈ N4. Here, q
(odd) denotes the size of the ground field Fq, d is the degree of the extension
field Fqd , N is the number of variables and equations of the secret polynomi-
als in the ring Fqd [X1, . . . , XN ], and D their degree. Throughout the paper,
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we use capital letters for elements relative to the big field Fqd (e.g. Vi ∈ Fqd ,
Fi ∈ Fqd [X1, . . . , XN ]), and small letters for elements relative to Fq (e.g. vi ∈ Fq,
fi ∈ Fq[x1, . . . , xn]). The secret internal transformation is F∗ : (V1, . . . , VN ) ∈
(Fqd)N →

(
F1(V1, . . . , VN ), . . . , FN (V1, . . . , VN )

)
∈ (Fqd)N with deg (Fi) � D.

The degree D is chosen such that F∗ is easy to invert. In addition, the polyno-
mials F1, . . . , FN are constructed in a specific way:

Fk =
∑

1�i�j�N

∑
0�u,v<d
qu+qv�D

Ak,i,u,
j,v

Xqu

i Xqv

j +
∑

1�i�N

∑
0�u<d
qu�D

Bk,i,uXqu

i + Ck.

From now on, we say that such systems have (multi-)HFE-shape. For conve-
nience, we denote n = N d. Let ϕN be the natural morphism (Fqd)N → (Fq)n and
F be the small field representation of the secret polynomials F = ϕN ◦F∗ ◦ϕ−1

N

with F : (v1, . . . , vn) ∈ (Fq)n → (f1(v1, . . . , vn), . . . , fn(v1, . . . , vn)) ∈ (Fq)n.
Due to the HFE-shape, each polynomial fi has total degree 2. For the secret
key, the mapping F∗ is supplemented by two affine maps S, T ∈ Aff(n, Fq) rep-
resented by matrices S and T which hide the internal structure. The public key
G = T ◦F◦S : (v1, . . . , vn) ∈ (Fq)n → (g1(v1, . . . , vn), . . . , gn(v1, . . . , vn)) ∈ (Fq)n

is then composed of polynomials g1, . . . , gn ∈ Fq[x1, . . . , xn] of total degree 2.
To encrypt, we evaluate g1, . . . , gn in the message m = (m1, . . . , mn) ∈ (Fq)n.

With the knowledge of the private key, the decryption of a ciphertext c =
(c1, . . . , cn) ∈ (Fq)n is done by computing S−1 ◦ ϕN ◦ F∗−1 ◦ ϕ−1

N ◦ T −1(c).
As each part can be inverted efficiently, the decryption is done efficiently.

The original HFE scheme [29] is mostly used over F2 with a single univariate
polynomial as a secret map. It is then an instantiation of multi-HFE with q = 2
and N = 1. The construction PHFE (for projected HFE) of [14] is an odd char-
acteristic univariate HFE that uses the embedding modifier (see Sect. 5). The
scheme IFS (for Intermediate Field System) from [5] is a multi-HFE in character-
istic 2 and THFE from [11] is a multi-HFE in odd characteristic (possibly with
embedding modifier). To make the decryption efficient, all instances of multi-
HFE with N > 1 use quadratic polynomials as internal secret transformations.
Parameters examples from the literature are given in the tables below.

q N d D security

HFE [29] 2 1 128 513 128
PHFE [14] 7 1 67 56 201

q N d D security

IFS [5] 2 8 16 2 128
THFE [11] 31 3 10 2 150

We now review two attacks on the original HFE: the direct algebraic attack
(message recovery) of [19] and the key recovery attack of [26].

2.1 Direct Algebraic Attack

Let (c1, . . . , cn) ∈ (Fq)n be a ciphertext, a message-recovery reduces to solve a sys-
tem of quadratic equations, i.e. {g1−c1 = 0, . . . , gn−cn = 0}. A classical method
to solve algebraic systems is to compute a Gröbner basis [8,1,13]. The historical
method for computing Gröbner bases has been proposed by Buchberger in his PhD
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thesis [8]. The algorithms F4 [15] and F5 [16] by Faugère permit to improve the ba-
sic Buchberger’s algorithm. A good measure of the complexity for Gröbner bases
is the so-called “degree of regularity” of a system. This is the maximum degree of
the polynomials appearing during the computation (see [2,3]).

It appeared [17,19] that inverting the public key of the original HFE is much
easier than expected (i.e. in comparison to a random system of the same size).
For original HFE, the degree of regularity has been experimentally shown to be
roughly logq(D) (see [19]). This makes the attack sub-exponential in the number
of variables. Further analysis of the Gröbner basis approach [24] confirmed this
result. Note that the field equations (i.e. xq

1 − x1 = . . . = xq
n − xn = 0) are

mandatory to achieve this complexity. Their role is to force the solutions to
be only in the base field Fq. To prevent a direct algebraic attack, it has been
proposed [14] to use a field with a bigger characteristic. Field equations only
intervene in degree at least q. Typically, a HFE system with q > n seems very
hard to solve with a direct approach (for n sufficiently big). Note that the hybrid
approach described in [4] has been designed to solve such systems. However, for
n = 28 and q = 31 the complexity of the hybrid approach is 282. It is better than
a direct solving (2115) but the attack remains exponential. For multi-HFE, the
situation is almost similar. On characteristic 2, multi-HFE can still be attacked
similarly. This confirms that the algebraic attack is somehow “optimal” over F2.
However, the direct algebraic attack does not affect instantiations of multi-HFE
with bigger odd characteristic as adding the field equations would not be useful.

2.2 Original Kipnis-Shamir (KS) Attack

We now describe the key recovery attack proposed in [26] for the original HFE
scheme (N = 1, n = d). The starting idea is to remark that polynomials of the
public key – as well as the transformations S, T – can be viewed as mappings
G∗,S∗, T ∗ : Fqn → Fqn and represented by the univariate polynomials G, S, T ∈
Fqn [X ]. The public key relation then becomes G = G∗(X) = T ∗(F∗(S∗(X))).
Kipnis and Shamir [26] proposed interpolation to recover a univariate represen-
tation of the public key. We present a more efficient and simpler way in Sect. 3
to perform this step.

Kipnis and Shamir [26] also showed that the univariate polynomials can be
written as a “non-standard quadratic form”. For instance, we have:

G =
n−1∑
i=0

n−1∑
j=0

gi,jX
qi+qj

= XGXt, where X = (X, Xq, . . . , Xqn−1
)

and G = [gi,j ] is a symmetric matrix. Similarly, we define F = [fi,j ] the sym-
metric matrix representation of the secret univariate polynomial.

The Kipnis-Shamir attack is based on the remark that Rank
(
F
)

� logq (D).
Indeed, the degree of the secret polynomial is smaller than D and the only non-
zero entries in F are fi,j , if i, j � logq (D). In addition, if we write T ∗−1(X) =∑n−1

k=0 tkXqi

and S∗(X) =
∑n−1

k=0 skXqi

the equation G∗(X) = T ∗(F∗(S∗(X)))
implies this so-called “Fundamental Equation” (see [26] for the proof).
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n−1∑
k=0

tkG∗k = G′ = W̃FW̃t (1)

where W̃ = [w̃i,j ] is a specified invertible matrix (with w̃i,j = sqi

j−i) and G∗k the

matrix such that its (i, j)-th entry is gqk

i−k,j−k. As the rank of F is bounded, so
is the rank of G′. Recovering the tk’s reduces to solve a MinRank problem:
MinRank (MR) in a finite field K
Input: n, r, k ∈ N and matrices M1, . . . ,Mk ∈ Kn×n.
Question: is there a k-tuple (λ1, . . . , λk) ∈ Kk such that Rank

(∑k
i=1 λi Mi

)
� r.
The MinRank problem is NP-complete [9]. From an algorithmic point of view,
Kipnis and Shamir proposed to model the problem as a system of overdeter-
mined quadratic equations and then to solve it with the so-called relinearization
method [26]. This Kipnis-Shamir modeling – which turns to be a set of bilin-
ear equations [21] – as well as the so-called Minors modeling have been further
studied and improved in [20,21]. In both modelings, solving MinRank reduces
to compute the solutions of a system of structured algebraic equations.

Once the tk’s of equation (1) are known, the sk’s are recovered by solving a
linear system. From (1), we see that ker(G′) = ker(W̃F) and thus ker(G′)W̃ =
ker(F). Due to the special shape of F, the first � = logq(D) columns of its left
kernel are 0. This gives rise to a linear system of equations of � (n− �) equations
in n2 variables. Since wi+1,j+1 = wq

i,j , Kipnis and Shamir proposed to reinterpret
the equations over Fq. This gives n � (n − �) equations in n2 variables over Fq.
Solving this overdetermined system completes the key recovery.

3 Improvement and Generalization of KS Attack

3.1 Improving the Univariate Case

To generalize the KS attack, it is convenient to interpret it as vector/matrix
operations. In this paper, we denote by Frobk the function raising all the com-
ponents of a vector or a matrix to the power qk in any field K of characteristic
q. For example Frobk(v) = (vqk

1 , . . . , vqk

m ), for a vector v = (v1, . . . , vm) ∈ Km

and Frobk(A) = [aqk

i,j ], for a matrix A = [ai,j ].

Proposition 1. Let (θ1, . . . , θn) ∈ (Fqn)n be a vector basis of Fqn over Fq and
Mn be the n× n matrix whose columns are the Frobenius powers of the basis:

Mn =

⎛⎜⎜⎜⎜⎜⎝
θ1 θq

1 . . . θqn−1

1

θ2 θq
2

...
...

. . .
...

θn θq
n . . . θqn−1

n

⎞⎟⎟⎟⎟⎟⎠ .
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We can express the morphism ϕ1 : Fqn → (Fq)n as

V → (V, V q, . . . , V qn−1
)M−1

n

and its inverse ϕ−1
1 : (Fq)n → Fqn as

(v1, . . . , vn) → V1, with (V1, . . . , Vn) = (v1, . . . , vn)Mn.

Furthermore, we have that V q
(i mod n)+1 = V(i+1 mod n)+1.

Proof. The i-th entry of (v1, . . . , vn)Mn is (
∑n

j=1 vjθj)qi

, the qi-th power of the
representation of (v1, . . . , vn) in Fqn with respect to the basis (θ1, . . . , θn). 	


The matrix Mn allows to go back and forth from the big (Fqn) to the small field
(Fq). It can be used to have the univariate representation of the public key in a
simpler way than in [26]; we replace interpolation by matrix multiplication. For
the sake of simplicity, from now on, we consider only linear transformations and
homogeneous polynomials. What follows can easily be adapted to the affine case
(as pointed in [26]).

Let F∗k be the matrix such that its (i, j)-th entry is f qk

i−k,j−k. The matrix F∗k

is the “matrix representation” of the qk-th power of the univariate polynomial
F . Indeed, since F =

∑n−1
i=0

∑n−1
j=0 fi,jX

qi+qj

, we have

n−1∑
i=0

n−1∑
j=0

fqk

i−k,j−kXqi+qj

=
n−1∑
i=0

n−1∑
j=0

fqk

i,j Xqi+k+qj+k

= F qk

.

Then, F qk

= XF∗kXt.
Consider now the symmetric matrices (G1, . . . ,Gn) such that gi = xGix

t for
all i, 1 � i � n, where x = (x1, . . . , xn). Using the definition of ϕ1 with the
matrix Mn, the equation G = T ◦ F ◦ S becomes

(G1, . . . ,Gn) = (SMnF∗0Mt
nSt, . . . ,SMnF∗n−1Mt

nSt)M−1
n T.

As T and Mn are invertible, we have

(G1, . . . ,Gn)T−1Mn = (SMnF∗0Mt
nSt, . . . ,SMnF∗n−1Mt

nS
t). (2)

In other words, we have a direct relation between the polynomials of the public
key written as quadratic forms and the secret polynomial F or more precisely
its matrices F∗i. From now on, we denote by U the matrix T−1Mn and W the
matrix SMn and rewrite (2) as

(G1, . . . ,Gn)U = (WF∗0Wt, . . . ,WF∗n−1Wt). (3)

By construction, ui,j+1 = uq
i,j and wi,j+1 = wq

i,j . Thus, we only need to know
one column of U to recover the whole matrix. By considering (u0,0, . . . , un−1,0)t,
the first column of U, we have

n−1∑
k=0

uk,0Gk+1 = WF∗0Wt = WFWt. (4)
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The equation is similar to (1), but we have not used the univariate representation
of G. Here again, as the rank of F is logq(D), so is the rank of WFWt. Contrarily
to the initial attack, Gi are the public matrices and not matrices with coefficients
in the big field. This leads to the following theorem.

Theorem 1. For HFE, recovering U reduce to solve a MinRank with k = n and
r = logq(D) on the public matrices G1, . . . ,Gn whose entries are in Fq.

Computing a Gröbner basis of a system over a smaller field (Fq instead of Fqn

is faster as the cost of arithmetic operations is decreased. The expected gain is
a factor M(n) (the cost of the multiplication of two univariate polynomials of
degree n) over the KS attack. In the table below, we compare the original KS
Minrank attack and the new MinRank attack on HFE (N = 1) with parameters
q = 31, D = 312 + 31 = 992. The implementation used is the same as in Sect. 6.

n 8 9 10 11 12 13 14 15 16

KS attack (in s.) 15.3 20.4 76.9 391 680 1969 2439 3197 13407
new attack (in s.) 0.75 1.25 2.05 4.45 8.80 16.9 30.2 68.5 103

ratio 20.4 16.3 37.5 87.9 77.3 117 80.8 46.7 130

3.2 Attacking Multi-HFE

The Kipnis-Shamir attack uses the univariate representation of the public key.
In multi-HFE the degree of the univariate representation of the secret key is not
bounded. This was in fact the initial motivation for the design of IFS [5]. As a
consequence, there is no linear combination of the G∗k leading to a small rank,
making the MinRank attack impossible. The hidden field structure exists but it
can only be unveiled by working in the right field. To have the correct analogy
with the univariate case, we introduce a new change of basis between the small
field vector space (Fq)n and the big field vector space (Fqd)N .

Proposition 2. Let (θ1, . . . , θd) ∈ (Fqd)d be a vector basis of Fqd over Fq. Let
MN,d be the (n × n)-matrix such that MN,d = Diag(Md, . . . ,Md︸ ︷︷ ︸

N

). We can

express the morphism ϕN : (Fqd)N → (Fq)n as

(V1, . . . , VN ) → (V1, V
q
1 , . . . , V qd−1

1 , . . . . . . , VN , V q
N , . . . , V qd−1

N )M−1
N,d

and its inverse ϕ−1
N : (Fq)n → (Fqd)N as

(v1, . . . , vn) → (V1, Vd+1, . . . , Vd(N−1)+1) with (V1, . . . , Vn) = (v1, . . . , vn)MN,d.

Furthermore, we have that V q
i d+(j mod d)+1 = Vi d+(j+1 mod d)+1.

Proof. The (d (i− 1)+ j)-th entry of (v1, . . . , vn)MN,d is
(∑d

�=1 vd (i−1)+�θ�

)qj

.

Each N block of d values represents the vector (Vi, V
q
i , . . . , V qd−1

i ), for all i,
1 � i � N . Thus (v1, . . . , vn)MN,d is (V1, V

q
1 , . . . , V qd−1

1 , . . . , VN , V q
N , . . . , V qd−1

N )
with respect to the basis (θ1, . . . , θd). 	
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Note that M1,d = Md which generalizes Proposition 1. When N > 1, the
qk-th power of a polynomial Fi ∈ Fqd [X1, . . . , XN ] is represented by the ma-

trix Fi
∗d,k = [f qk

d 	i/d
+(i−1 mod d),d 	j/d
+(j−1 mod d)] (this definition matches

the case N = 1). Equation (3) can be generalized for multi-HFE. Let Fi
(j) =

WFi
∗d,jWt, with i, 1 � i � N , and j, 0 � j < d. We have the relation:

(G1, . . . ,Gn)U = (F1
(0), . . . ,F1

(d−1), . . . . . . ,FN
(0), . . . ,FN

(d−1)).

Similarly to (4), as Fi
∗d,0 = Fi, when we consider the (i d)-th columns of U for

0 � i < N we have
n−1∑
k=0

uk,0Gk+1 = WF1Wt, . . . ,

n−1∑
k=0

uk,NdGk+1 = WFNWt. (5)

As in the univariate case, the problem of finding correct values for U turns to
be a simultaneous MinRank problem.

Theorem 2. For multi-HFE, recovering U reduce to simultaneously solve N
MinRank problems with k = n and r = N logq(D) on the public matrices
G1, . . . ,Gn whose entries are in Fq.

Proof. Each polynomial Fi has degree bounded by D, thus each variable Xi has
at most degree D. By construction of the matrix M of Proposition 2, the only
non-zero entries of the matrix Fi = Fi

∗d,0 are the ones in the upper-left logq(D)
square of each N diagonal (d × d) block. The rank of Fi is then N logq(D). By
construction, the rank of Fi

∗d,j is left unchanged. 	


Before discussing of the complexity of the MinRank attack for Multi-HFE, we
introduce equivalent keys.

3.3 About Equivalent Keys and Induced Degrees of Freedom

Two keys are equivalent if they have the same public key. The subject has already
been treated for original HFE [31,30]. It has been shown to have (at least)
(n q2n(qn − 1)2) equivalent keys. A larger number of equivalent keys in multi-
HFE induces a degree of freedom when solving the MinRank that can be used to
attack the minus variant. Due to space limitations, proofs of Propositions 3, 4,
and 5 will be given in an extended version of this paper.

Definition 1. Let (F∗,S, T ) be a multi-HFE private key with parameters (q, N,
d, D). We say that (F∗′,S′, T ′) is an equivalent key iff F∗′ has a HFE-shape,
and T ′ ◦ ϕN ◦ F∗′ ◦ ϕ−1

N ◦ S′ = G = T ◦ ϕN ◦ F∗ ◦ ϕ−1
N ◦ S (same public key).

Wolf and Preneel [31] introduced the notion of sustaining transformations which
is a couple of affine transformations (A∗,B∗) such that B∗ ◦ F∗ ◦ A∗ preserves
the “shape” of F∗. For HFE, the “big sustainer” (multiplication in the big field),
the “additive sustainer” and the “Frobenius sustainer” keep the HFE-shape un-
changed. In multi-HFE, not only multiplication keeps the HFE-shape. We also
have any affine transformation on the N variables. Thus, the two first sustainers
can be generalized as follows.
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Lemma 1. Let (q, N, d, D) ∈ N4 and F∗ : (Fqd)N → (Fqd)N a mapping with
HFE-shape. Let A∗,B∗ be invertible affine transformations over (Fqd)N . Then
B∗ ◦ F∗ ◦ A∗ has the HFE-shape.

Proof. The only exponents occurring in a single variable Xi is a power of q. The
transformation A∗ mixes the variables X1, . . . , XN by affine combinations. Thus
by linearity of the Frobenius, we know that no other exponents can appear and
the system keeps its HFE-shape. Trivially, as B∗ only performs affine combina-
tions of the polynomials F1, . . . , FN the shape is also unchanged. 	


With lemma 1, we can produce HFE internal maps while keeping the same
property. To build equivalent keys, we look at these affine transformations in
the small field Fq.

Proposition 3. Let (F∗,S, T ) be a multi-HFE private key with parameters
(q, N, d, D). For any invertible affine transformations A∗,B∗ over (Fqd)N , let
A = ϕN ◦A∗◦ϕ−1

N and B = ϕN ◦B∗◦ϕ−1
N , then

(
B∗ ◦ F∗ ◦ A∗,A−1 ◦ S, T ◦ B−1

)
is an equivalent key.

The following proposition gives the structure of one of these transformations in
the linear case. It has to be slightly adapted in the affine case.

Proposition 4. Let A∗ = [ai,j ] be the matrix representing a linear transforma-
tion A∗ over (Fqd)N . A∗ can be represented in the field Fq as A = MN,dÃ∗M−1

N,d

where MN,d is the matrix of Proposition 2 and Ã∗ is a matrix of N ×N blocks
of Frobenius powers of elements of A∗, i.e.

Ã∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣
a0,0

aq
0,0

...
aqd−1
0,0

∣∣∣∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣∣∣

a0,N−1

aq
0,N−1

...
aqd−1

0,N−1

∣∣∣∣∣∣∣∣∣
...

...∣∣∣∣∣∣∣∣∣
aN−1,0

aq
N−1,0

...
aqd−1

N−1,0

∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣
aN−1,N−1

aq
N−1,N−1

...
aqd−1

N−1,N−1

∣∣∣∣∣∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In addition, for any k, 0 � k < d, the components polynomials of (Frobk ◦F∗ ◦
Frobd-k)(X1, . . . , XN) =

(
F∗(Xqd−k

1 , . . . , Xqd−k

N )
)qk

have the same monomials as
F∗(X1, . . . , XN ) but their coefficients are raised to the power of qk. That is, if
F∗(X1, . . . , XN ) has HFE-shape, so is (Frobk ◦F∗ ◦ Frobd-k)(X1, . . . , XN ).

Proposition 5. Let (F∗,S, T ) be a multi-HFE private key with parameters
(q, N, d, D) ∈ N4. For all k, 0 � k < d,(

Frobk ◦F∗ ◦ Frobd-k, ϕN ◦ Frobk ◦ϕ−1
N ◦ S, T ◦ ϕN ◦ Frobd-k ◦ϕ−1

N

)
is an equivalent key.
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According to Proposition 5, we can derive (d−1) other equivalent keys from any
valid private key. This refers to the so-called Frobenius sustainer of [31]. We can
count the number of equivalent keys.

Theorem 3. For any multi-HFE private key (F∗,S, T ) with given parameters

(q, N, d, D) ∈ N4, there are at least
(
qdN

∏N−1
i=0 (qdN − qd i)

)2
equivalent keys

coming from affine transformations in Aff(N, Fqd).

Proof. There are exactly
∏N−1

i=0

(
(qd)N − (qd)i

)
invertible (N×N)-matrices over

Fqd . We have to multiply this by (qd)N to include the affine transformations.
From Proposition 3, one can choose 2 invertible affine transformations over the
big field to build an equivalent key, thus the previous value is squared. 	


This number may actually be bigger (at most d times) using the Frobenius
sustainer. An interesting particularity of the MinRank arising in HFE/multi-
HFE is that the kernel of the matrices in (5) is independent on which equivalent
key is used up to Frobenius transforms.

Theorem 4. Let (F∗,S, T ) and (F∗′,S′, T ′) be equivalent multi-HFE private
keys and (G1 . . .Gn) be the matrices of their associated public key. Let S, T,
S′, and T′ be the matrix representation of respectively S, T , S′, and T ′. Let
U = T−1MN,d = [ui,j ], K = ker(

∑n
i=0 ui,0Gi), U′ = T′−1MN,d = [u′

i,j ] and
K′ = ker(

∑n
i=0 u′

i,0Gi), then ∃k, 0 � k < d,K′ = Frobk (K).

Proof. By construction of equivalent keys, u′
i,j are linear combinations of the uqk

i,�

for a given k. Linear combinations of ui,j do not change the kernel. By linearity,

u′
i,j =

∑
� α�u

qk

i,� =
(∑

� α�ui,�

)qk

. Consequently, K′ = Frobk(K). 	


We discuss the complexity of our attack in the next section.

3.4 Complexity Analysis of the Attack

In this section, we study the particularities of the MinRank problems coming
from (5). Here again we consider only linear maps and homogeneous polynomials
for the sake of simplicity.

Let an instance of HFE with parameters (q, N, d, D) ∈ N4, and � = �log D�.
We have to solve the MinRank problem on the (n × n)-matrices G1 . . .Gn
whose entries lie in Fq with target rank N�. Using the Kipnis-Shamir model-
ing described in [26,20,21], it is equivalent to solve the algebraic system of the
(n (n−N�)) bilinear equations in (N� (n−N�)+n) variables given by the entries
of the matrix ⎛⎜⎝1 x1,1 ... x1,N�

.. .
...

...
1 xn−N�,1 ... xn−N�,N�

⎞⎟⎠ ·( n∑
i=1

λiGi

)
. (6)

Note that we are looking for solutions in the field Fqd rather than in Fq.
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From now on, and similarly to [20], these equations are called the KS (Kipnis-
Shamir) equations. We denote by IKS the ideal generated by the KS equations
and VKS ⊂ Fqd its associated variety.

Theorem 5. The MinRank problem associated to HFE (resp. multi-HFE) can
be solved by fixing one (resp. N) coefficients to random values. That is, the
dimension of IKS ∩ Fq[λ1, . . . , λn] is at least one (resp. N).

Proof. We know that any column of U = T−1MN,d is a solution of MinRank for
(λ1, . . . , λn). From Proposition 3, for any invertible matrix A∗, the columns of
the matrix UÃ∗ give a solution (λ1, . . . , λn) for the MinRank. As each column of
Ã∗ has N non-zero entries, this allows to choose N coefficients λi arbitrarily. 	

This means that for valid values xi,j , there are (qd)N possible vectors (λ1, . . . , λn)
such that the kernel of

(∑n
i=1 λiGi

)
is the one induced by the xi,j ’s. Therefore,

the values of N components (say λ1, . . . , λN ) can be randomly chosen. The new
system still has (n (n−N�)) equations but only (N� (n−N�)+n−N) variables.
As described in Sect. 3.1, the coefficients are in the small field Fq. To keep
this property, we fix variables with values over the small field. Experimentally,
fixing one variable to 1 (or any value from Fq) and the (N − 1) others to 0
gives the best results. After N variables (λ1, . . . , λN ) have been fixed, VKS has
at least d elements. This property already noticed in [25] for HFE is a direct
consequence of theorem 4. Once K = ker (

∑n
k=1 λkGk) is recovered, finding

a valid transformation U′ is done by solving a linear system as entries of (6)
become linear. Some experimental results of our attack are presented in Sect. 6.

It is interesting to remark that the degree of regularity experimentally ob-
served seems to be constant when d grows. This behavior can be explained the-
oretically using the bound on the degree of regularity of MinRank given in [21].

Proposition 6 (Faugère, Safey El Din, Spaenlehauer [21]). Let (n, r, k)
be the parameters of a MinRank instance. Let A = [ai,j ] be the (r × r)-matrix
defined by ai,j(t) =

∑n−max(i,j)
�=0

(
n−i

�

)(
n−j

�

)
t�. The degree of regularity of the

system associated to MinRank instance is bounded from above by 1+deg (HS(t))
where HS(t) is the polynomial obtained from the first positive terms of the series
(1− t)(n−r)2−k detA(t)

t(
r
2)

.

Back to our specific MinRank problem, we have instantiate this theoretical
bound with multi-HFE parameters for values of N � 20 and � � 10. When
d, is sufficiently bigger than �, we always obtain (N� + 1) (verified for N d up to
500). Since the parameter d is not involved we state the following conjecture.

Conjecture 1. The degree of regularity of the MinRank problem associated to
a multi-HFE instance does not depend on d. When d grows to infinity, it is
bounded from above by (N� + 1).

The degree of regularity depends only in the number N of secret variables and
the degree D of the secret polynomials. This is consistent with the observations
on simple HFE where dreg was observed to be log (D). We have the necessary
material to evaluate the difficulty of MinRank involved in HFE/multi-HFE.
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Proposition 7. Assuming Conjecture 1, for N and � fixed, the complexity of
solving the multi-HFE MinRank problem is O

(
d(N�+1) ω

) (
2 � ω < 3 being the

linear algebra constant
)

and thus polynomial in d.

Proof. According to Conjecture 1, the degree of regularity is (N� + 1) and
thus independent of the degree of the extension d. When d grows to infinity,
the complexity of the Gröbner basis computation [2,3] is O

((
Nd+N�+1

N�+1

)ω) ∼
O
(
(Nd)(N�+1) ω

)
∼ O

(
d(N�+1) ω

)
. 	


Once the matrix U has been found with the MinRank attack, we need to recover
the matrix W.

3.5 Recovering the Transformation on the Variables

Kipnis and Shamir [26] originally proposed a method for this step by solving
an overdetermined system of (n � (n − �)) linear equations in n2 variables over
Fq. Applied to multi-HFE, it would give (n � (n−N�)) equations in n2 variables
over Fq. We propose here an alternative method which reduces the number of
variables and equations by a factor d while it is done over the big field.

Lemma 2. Let (G1, . . . ,Gn) be a multi-HFE public key and � = �logq(D)�.
Suppose that Rank(

∑n
k=1 λkGk) = N� and let K = ker (

∑n
k=1 λkGk). Once K

is known, then we can recover a matrix W′ = S′MN,d such that S′ is a valid
matrix for the private key by solving a linear system of (N� (n−N�)) equations
in (N (n−N)) variables.

Proof. To find the coefficients wi,j , it is enough to remark that from (5) one has
KW′ = ker (Fi). We know by construction of the private key that ker (Fi) has
N� columns set to zero. By construction of W′, N columns are needed to build
the whole matrix. We build the corresponding linear system of

(
N (n − N�)

)
equations in Nn variables. Proposition 3 tells us that one can randomly fix N
variables on each of the N columns which gives (N (n − N)) variables left. If
� > 1, the system is underdetermined. To find the matrix, we have to add the(
(� − 1)N (n − N�)

)
equations coming from Frobj(K)W′ = ker(Fi

∗d,j). For j,
(d − � + 1) � j < d, it can be verified that ker(Fi

∗d,j) has also N� columns set
to zero. The system has

(
N� (n−N�)

)
linear equations. 	


Recovering the polynomial system. Once the matrices T′ = MN,dU′−1 and
S′ = W′M−1

N,d are recovered, we only need to reconstruct a private transforma-
tion. It is done simply by computing F∗′ = ϕ−1

N ◦ T ′−1 ◦ G ◦ S′−1 ◦ ϕN . By
construction of its components, the transformation F respects the HFE-shape.

3.6 Weaknesses of Multi-HFE Relative to the Original HFE

In order to compare instances of HFE/multi-HFE, we introduce the notion of
“similarity” between instances. Two similar instances share the same size of
public key and private key.
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Definition 2. Two (multi-)HFE instances of resp. parameters (q1, N1, d1, D1)
and (q2, N2, d2, D2) are similar iff q1 = q2 and N1d1 = N2d2 and N1 logq1

(D1) =
N2 logq2

(D2) holds.

The KS equations of two similar instances have the same number of variables and
equations as the target rank is the same N logq(D). According to the complexity
of the MinRank given in Proposition 7, the bigger is d, the harder it is to mount
our attack. In particular, the case N = 1 (original HFE) is the more resistant.
This behavior has been verified experimentally. For similar keys, choosing N = 1
seems to be the optimal value for security. With respect to our attack, multi-HFE
is then less secure than HFE.

As a side remark, speed of decryption has to be taken into account when
designing a scheme. Choosing N = 1 and a big degree D of the inner univariate
polynomial can sometimes dramatically slow down the decryption process for
similar keys. Multi-HFE construction could still be competitive if a modification
can prevent attacks. To this end, the minus modifier and the embedding modifier
have been proposed. We study these variants in the next sections.

4 Multivariate HFE-

In this section, we study a classical variant of multivariate schemes, the so-called
“minus” modifier. It consists in removing some polynomials from the public key.
This construction is only suitable for signature as the decryption (signature
generation) is not unique.

Description. Let (F∗,S, T ) be a multi-HFE private key as defined in Sect. 2 with
parameters (q, N, d, D) ∈ N4. We define the parameter s ∈ N and the projection
π : (Fq)n → (Fq)n−s. The public key is the mapping G = π ◦T ◦ϕ−1

N ◦F∗ ◦ϕN ◦S
viewed as (n−s) polynomials in n variables. To sign, s random values from Fq are
appended to a message m = (m1, . . . , mn−s) before applying the basic decryption
process. Verifying a signature consists in its evaluation in G.
Attack. The goal is to find a valid private key with only (n− s) public polyno-
mials. Usually the minus modification is enough to prevent classical attacks as
some information is missing. In particular it is the case for basic HFE (N = 1).
In Sect. 3.4, we have shown that the problem has N degrees of freedom. In-
deed, only (n − N + 1) matrices are needed to recover the kernel. This means
that if s < N , the kernel matrix K can still be found with no additional cost.
Still, the recovering step has to be adapted. We know that there exists a vector
(λ1, . . . , λn) and symmetric (n× n)-matrices (Γ1, . . . ,Γs) such that

ker

(
n−s∑
i=1

λiGi +
s∑

i=1

λn−s+iΓi

)
= K.

The Γi’s matrices are unknown and correspond to the removed polynomials.
If we fix N values λi, we still have solutions to our system. For instance, let
(λn−N+1, . . . , λn) = (�1, . . . , �N ). We write
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K ·
(

n−N∑
i=1

λiGi +
N−s∑
i=1

�iGn−N+i +
s∑

i=1

�N−s+iΓi

)
= 0. (7)

The resulting system has n (n − N�) linear equations in
(
(n − N) + sn (n+1)

2

)
variables. The system is greatly underdetermined and hence have many solutions.
To find the correct entries, we use the following remark:

Proposition 8. For any j, 0 � j < d, we have Frobj(K) ·
(∑n

i=1 λqj

i Gi

)
= 0.

Proof. By definition, Frobj
(
K·(

∑n
i=1 λiGi)

)
= 0. By linearity of the Frobenius,

this is equal to Frobj (K) ·
(∑n

i=1 λqj

i Frobj (Gi)
)
. As Gi has its entries in Fq,

we also have that Frobj (Gi) = Gi. 	


Solving together equations (7) and their Frobenius images forces the entries of
Γi to be in Fq. To avoid carrying equations of degree qj (coming from λqj

i ), we
add (d − 1)(n − N) new variables (λ(1)

1 , . . . , λ
(1)
n−N , . . . , λ

(d−1)
1 , . . . , λ

(d−1)
n−N ). The

new system then becomes:

Frobj(K) ·
(

n−N∑
i=1

λ
(j)
i Gi +

N−s∑
i=1

�qj

i Gn−N+i +
s∑

i=1

�qj

N−s+iΓi

)
= 0,

for all j, 0 � j < d. The resulting system is overdetermined and has a solution
if (�1, . . . , �N) �= (0, . . . , 0). We have to solve N times this linear system with
different values for (�1, . . . , �N) to get a valid matrix U. With this technique,
the private key of a multi-HFE− can be recovered almost as efficiently as the
standard construction if the number of withdrawn equations is less than (N−1).
Experimental results are presented in Sect. 6.

5 Multivariate HFE with Embedding

In [14], it has been proposed to use a variant of HFE with embedding. This
so-called PHFE construction consists in removing few variables of the public
key and is claimed to resist Kipnis-Shamir’s attack. The authors of [11] use the
same modification on multi-HFE and claim that it prevents a possible “big-field”
based attack. Still, for both PHFE and its multivariate version a key recovery
attack is possible.

Description. Let (F∗,S, T ) be a multi-HFE private key as defined in Sect. 2
with parameters (q, N, d, D) ∈ N4. We define a new parameter r ∈ N and the
embedding ρ : (Fq)n−r → (Fq)n which is part of the private key. Then the public
key is the mapping G = T ◦ϕ−1

N ◦F∗ ◦ϕN ◦S ◦ρ. To encrypt a plaintext, we still
evaluate G. To decrypt, as in the standard scheme, one inverts each component
separately. To simplify, we can assume w.lo.g. that the embedding is always
ρ0 : (x1, . . . , xn−r) ∈ (Fq)n−r → (x1, . . . , xn−r, 0, . . . , 0) ∈ (Fq)n. Indeed, from
any embedding ρ and any invertible transformation S, one can find an invertible
transformation S′ such that S ◦ ρ = S′ ◦ ρ0; this gives equivalent keys.
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Attack. The matrix representation Gi of the public key polynomials have (n−r)
rows and columns. However, the rank of

∑n
i=0 ui,0Gi+1 remains bounded by

N logq(D) (i.e. removing rows or columns does not increase the rank).
Let K = ker (

∑n
i=0 ui,0Gi+1). As usual a matrix U′ can still be recovered by

solving a MinRank as soon as K is known. The problem appears when trying
to recover the matrix W′ = S′MN,d where S′ is an equivalent matrix for the
private key. By following the method described in Sect. 3.5, we get a system
having N� (n − r − N�) equations with only N (n − r − N) variables. Let the
following matrix be a solution of this linear system

W′ =

⎛⎜⎜⎝
w0,0 wq

0,0 . . . wqd−1

0,0 . . . . . . w0,N−1 wq
0,N−1 . . . wqd−1

0,N−1
...

... . . .
... . . . . . .

...
... . . .

...
wn−r,0 wq

n−r,0 . . . wqd−1

n−r,0 . . . . . . wn−r,N−1 wq
n−r,N−1 . . . wqd−1

n−r,N−1

⎞⎟⎟⎠ .

The matrix W′ has (n − r) rows and thus is not invertible. However, such W′

needs to be inverted in order to compute a full private key.
The first idea is to build a new invertible matrix Wr by appending to W′

a (r × n)-matrix V = [vi,j ] such that vq
i,j = vi,j+1. The secret transformation

is reconstructed by computing Gi
′ = Wr

−1GiWr
−t. As the matrix Wr

−1 has
non-zero coefficients in its r last rows, so is G′

i. Since the MinRank was done over
(n− r×n− r)-matrices, when we finally compute

∑n
i=0 ui,0Gi+1

′, monomials in
the last variables (xn−r+1, . . . , xn) are mixed with the other monomials, which
eventually leads to polynomials that are not in HFE-shape (and then hard to
invert). To circumvent this issue, we no longer append a random matrix to W′,
we construct an invertible matrix Wz by appending vertically to W′ the matrix

Z =

⎛⎜⎝0 . . . . . . . . . . . . 0 1
...

...
. . .

0 . . . . . . . . . . . . 0 1

⎞⎟⎠ .

We ensure the property that Wz is invertible. The variables (xn−r+1, . . . , xn)
do not appear when we build Gi

′ = Wz
−1GiWz

−t, and the rank property is
preserved. The only difference is that the relation wq

i,j = wi,j+1 only holds for
all i, 0 � i < n − r. The consequence is that S′ = WzM−1

N,d has coefficients in
the big field Fqd . Still, S′ can be inverted and a mapping F∗ with HFE-shape
can be recovered. Experimental results are given in Sect. 6.

6 Experimental Results

We present some experimental results for our attacks implemented in Magma [7]
(V2.16-10). All the timings have been obtained on a 2.93 GHz Intel R© Xeon R©

CPU. The MinRank’s have been solved using the Kipnis-Shamir modeling.
The degree of regularity experimentally observed is noted dreg. The theoretical

degree of regularity is denoted by dtheo
reg . We applied our attack to the real-scale
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parameters proposed in [10] (multi-HFE with embedding). They are not secure
since they are practically broken (9 days for the most conservative, i.e. 256 bits
claimed security). One may get even better results using the minors modeling
of MinRank and the F5 implementation available in the FGb software [18]. The
following results are obtained on the same computer.

q N d D security dtheo
reg

time
Magma

mem
Magma

time
FGb dreg

31 2 15 2 150 bits 3 2 min 27 s 434 MB 21.1 s 3
31 3 10 2 150 bits 4 1 h 38 min 1500 MB 24 min 56 s 3
31 3 15 2 192 bits 4 2 days 1 h 12 GB 3
31 3 18 2 256 bits 4 9 days 16 h 33 GB 3

We also compare the different steps of our attack to the minus and the embedding
variants for multi-HFE with parameters q = 31, N = 3, d = 8, D = 2 (≈ 120 bits
security). The minus modifier does not change the time of the MinRank attack
but recovering W will be slower. In practice, multi-HFE with the embedding
takes more time to break but the degree of regularity is the same.

MR time MR dreg Finding U Finding W

No variant (ref. time) 23.3 s 3 0.01 s 7.29 s

Minus (s = 1) 23.2 s 3 0.01 s 16.71 s
Minus (s = 2) 23.4 s 3 0.01 s 35.24 s
Minus (s = 3) Not possible

Embedding (r = 1) 788 s 3 0.01 s 6.14 s
Embedding (r = 2) 2811 s 3 0.01 s 5.25 s
Embedding (r = 3) 401 s 3 0.01 s 4.44 s

7 Conclusion

Multi-HFE over an odd-characteristic field seems to fix the weaknesses of HFE.
The embedding modifier was also proposed to better hide the big field structure
in the public key. These properties turn out to be weaknesses. Not only does our
attack allow to do a complete key recovery in polynomial time, it is also more
efficient on multi-HFE than on original HFE. On multi-HFE, key recovery on
real-size parameters becomes practical. We broke parameter sets from [11] up to
claimed 256 bits security. It is therefore insecure to use multi-HFE. Increasing
the number N of secret variables/equations or their degree D may lead to a set
of parameters out of reach of our attack but then, the rightful decryption would
be very slow or infeasible. With respect to our attacks, among the studied con-
structions, only the minus variants of HFE/multi-HFE are secure if the removed
equations is bigger than (N − 1). Note that vinegar variants of HFE are not
concerned.
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cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

20. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008)

21. Faugère, J.-C., Safey El Din, M., Spaenlehauer, P.J.: Computing loci of rank defects
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Abstract. Ten years ago, Ko et al. described a Diffie-Hellman like pro-
tocol based on decomposition with respect to a non-commutative semi-
group law. Instantiation with braid groups had first been considered,
however intense research on braid groups revealed vulnerabilities of the
group structure and of the braid based DH problem itself.

Recently, Boucher et al. proposed a similar scheme based on a partic-
ular non-commutative multiplication of polynomials over a finite field.
These so called skew polynomials have a well-studied theory and have
many applications in mathematics and coding theory, however they are
quite unknown in a cryptographic application.

In this paper, we show that the Diffie-Hellman problem based on skew
polynomials is susceptible to a very efficient attack. This attack is in fact
general in nature, it uses the availability of a one-sided notion of gcd and
exact division. Given such tools, one can shift the Diffie-Hellman prob-
lem to a linear algebra type problem.

Keywords: Diffie-Hellman key exchange, skew polynomials.

1 Introduction

Since the proposal of the original Diffie-Hellman key exchange [5], many vari-
ations around the same principle have been proposed. The core structure of a
Diffie-Hellman-like key exchange is as follows. Let K and D denote fixed domains
and let F be a function from D ×K to D such that

1. for any z in D, F (z, ·) is a one-way function,
2. the set of functions Fa = F (·, a), a in K is commutative for the composition

of maps, that is, for any a, b in K, Fa ◦ Fb = Fb ◦ Fa.
In a Diffie-Hellman like protocol the function F and a particular element z of D
are public information. In a first pass, each party chooses a random element on
his own in the set K (a for Alice’s and b for Bob’s), encrypts z with it and sends
the result to the other party. Then each party encrypts again the received data
with his element of K. In the end, they both hold

Fa(Fb(z)) = Fb(Fa(z)).

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 459–472, 2011.
c© International Association for Cryptologic Research 2011
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The security of the protocol assumes that given Fa(z) and Fb(z) it is infeasible
to compute this common data (computational DH assumption). Of course, the
assumption cannot be true if F (·, z) is not a one-way function since one can (for
instance) recover a from Fa(z) and stand in the same position as Alice.

The original proposal by Diffie and Hellman was to set F to the exponentiation
of z by a in a multiplicative group [5]. When z is a fixed group element, its
powers describe a cyclic (hence commutative) subgroup. The one-wayness of
F (z, ·) means the infeasability of identifying the power (discrete logarithm) of
z corresponding with an arbitrary element of 〈z〉. This proposal seems to find
satisfactory instantations and is by far the most widely used. On the other hand,
there has been several attempts at building functions F for a Diffie-Hellman
protocol from non-commutative algebraic structures. In general, these schemes
rely on a particular factorization problem rather than on discrete logarithms.
Furthermore, they all appear as variations of the following construction [6].

Generic Diffie-Hellman protocol based on a non-commutative semigroup. Let
(D, �) be a non-commutative semigroup (that is, it needs not have either a neu-
tral element nor all elements to have an inverse). Elements of D may decompose
in a large number of ways in general. Therefore it is assumed that given ele-
ments z, z′ of D such that z′ admits a factorization of the shape u � z � v, it
is intractable to find such left and right factors u, v. Hence, one defines the set
K to be ordered pairs [u, v] and one defines F : (z, [u, v]) �→ u � z � v. When
the aforementioned decomposition problem is intractable, F has Property 1. For
Property 2 to be fulfilled too, we need functions F (·, [u, v]) to commute. This
is ensured by choosing elements u, v in a commutative sub-semigroup S. Hence,
K = S × S. Note that this specialization modifies the one-wayness property of
F . It becomes: given an element z of D and an element z′ in S � z � S where S
is a commutative sub-semigroup, find u and v in S such that z′ = u � z � v.

At this point, it is not clear whether picking left and right factors in a com-
mutative sub-semigroup weakens the decomposition problem. Either way, the
cryptosystem can hardly save such a property. Encountered variations of the
above description are choosing u and v in distinct subsets L,R that are either
both commutative or commute the one with the other (in this case, one party of
the Diffie-Hellman protocol uses L×R while the other one uses R×L). A more
general setting may not require the commutative semigroup S to be a subset of
D: it simply needs to act in a different way on the left and on the right of D.
This is even more analogous to a general discrete log scheme where D may be
an arbitrary cyclic group while S is a set of modular integers.

Instantiations. A well-known example of such a scheme based on a full group
structure is the one on braid groups [6]. In this setting, pairs of the shape [u, u−1]
are considered and the associated decomposition problem is called conjugacy
problem. There had already been partial (still exponential) attacks on the general
conjugacy problem in braid groups (see for instance [7] for a survey). It turned
out a specific polynomial time algorithm exists to attack the Diffie-Hellman
assumption in braid groups [3]. The attack uses the property that braid group
elements can be represented by invertible matrices over some (complicated) ring.
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For any element z of the braid group, we denote by Z the associated matrix.
Then, the conjugacy problem arising in the DH-like protocol rewrites to finding U
in the representation of the particular commutative set S such that Z ′ = UZU−1

where Z,Z ′ are public matrices such that at least one such solution U exists.
Candidate solutions can be found by solving the linear algebraic problem: find a
matrix U such that Z ′U −UZ = 0 and SiU −USi = 0 for any generator si of S.
The above system in general has many solutions that are not representatives of
elements of the braid groups. When it is not possible to sieve them, it does not
solve the conjugacy problem. However, the authors further observed that any
invertible solution of the above linear system (a random solution is invertible
with high probability) has the property of commuting with the elements of S,
and as a consequence is equally useful to uncover the shared output of the Diffie-
Hellman protocol. Albeit polynomial, this attack did not yield a practical break
as is. Yet, instantiation of the Diffie-Hellman protocol with braid groups does
not seem to be still investigated.

Recently, Boucher et al. proposed a Diffie-Hellman scheme (and a companion
ElGamal scheme) based on so called skew polynomials [1]. Skew polynomials are
polynomials over a finite field with a particular non-commutative multiplication
which uses the Frobenius field automorphism. They were introduced by Ore in
1933 [8] and have found many applications in applied mathematics and coding
theory. The proposed Diffie-Hellman scheme follows the previous description
with multiplication of skew polynomials as the non-commutative law. Hence, it
is an instantiation of the non-commutative Diffie-Hellman protocol which is not
based on a full group law.

Our contribution. In this paper, we show that the scheme of Boucher et al. is
susceptible to a very efficient attack. The attack in fact only remotely uses the
structure of skew polynomials, it only uses the availability of a notion of left (or
right) gcd and of a related exact division procedure in the underlying domain.
In any such setting, one can shift solving the relevant decomposition problem to
a linear algebra type problem.

Similarly to the attack on the braid DH scheme, not all solutions of the linear
type problem are solutions of the initial decomposition problem. Real solutions
satisfy one additional condition (such as invertibility in the case of the braid DH
scheme). Particular heuristics must be used, then, to find real solutions among
the solutions of the linear problem. Based on an assumption which is satisfied in
practice for skew polynomials, one can very easily get a real solution by means
of gcds, and the attack is completely polynomial time.

We first describe the precise setting and working of the attack without refer-
ence to skew polynomials and then describe application to this particular case.
Then we consider a possible variation of the scheme based on modular skew
polynomials. While our attack seems unfit to this case, we show that density of
invertible elements makes it completely weak. Finally we point out that exam-
ples based on matrix multiplication can be reduced to modular skew polynomials.
Hence, although the attack looks general in nature, we could not produce another
case of application of this attack, and we must leave it as an open problem.
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2 General Strategy of the Attack

2.1 The Invertible Case

As a preliminary, let us consider the case when the commutative subsemigroup
S is a group, that is, all its elements are invertible. In this case, a pair [u, v]
in S × S is a solution to the Diffie-Hellman decomposition problem for given
z in D and z′ in S � z � S if and only if z′ = u � z � v, that is u′ � z′ =
z � v where u′ = u−1. (Let us denote public variables in bold letters.) As a
consequence, when S is a group, the quadratic looking equation z′ = u�z�v with
unknown (u, v) can be directly turned into a linear looking equation u′ � z′ =
z � v with unknown (u′ = u−1, v). Of course it is the case in braid groups,
where one additionally has u′ = v. Then, representing braid groups elements
by matrices (see [3]), the linear looking equation is turned into a linear relation
on matrices (over a ring), which can be solved as shown in [3]. Note that the
attack may not solve the DH conjugacy problem. The same approach can also be
used to find a linear invertible change of variables mapping two sets of quadratic
multivariate equations over a field (which is a particular instance of the problem
of ‘isomorphism of polynomials’ [9]). Quadratic multivariate polynomials can be
represented by upper triangular matrices (with the same number of non-zero
coefficients), and whenever a linear invertible change of coordinates U maps a
quadratic polynomial p to a polynomial p′, it translates into the matrix identity
P ′ = U tPU (where superscript t denotes transposition). Since U is invertible,
one can attack this problem by solving the linear equation V P ′ −PU = 0 with
unknown (V = (U t)−1, U). It can easily be seen that roughly 3 independent
pairs (p,p′) with the same U only are heuristically needed to directly solve this
problem (i.e. find a one-dimensional space of solutions). Higher degree cases can
be attacked as well from the identity between degree 2 homogeneous parts. A less
immediate attack to this problem was also developed in [10]. A similar attack
was independently developed in [2].

2.2 The Setting of Our Attack

In this paper, we consider cases where the elements of S are not invertible, but
breaking the Diffie-Hellman problem can also be shifted to solving a commutator-
type (linear looking) equation. The basic structure of D that we need is that of
a domain with a computable notion of left (or right) gcd and computable left
(right) exact division (and S is a multiplicative commutative sub-semigroup).
Here, domain means that it has no divisors of zero: u�v = 0⇒ u or v = 0. Note
that it needs not be a form of Euclidean ring.

Before we describe the attack, let us recall the problem hierarchy on which
the protocol relies. The Diffie-Hellman problem is: given zA = uA � z � vA and
zB = uB � z � vB, compute

zAB = uA � zB � vA = uB � zA � vB.
A sufficient way of breaking the DH problem is the one of solving the decom-
positional problem arising in the Diffie-Hellman protocol: given z in D and z′
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in S � z � S, compute u, v in S such that z′ = u � z � v. However, it was noted
in [3,12] that breaking a relaxed variant of this problem is enough to break the
DH problem: given z in D and z′ in S � z � S, compute u, v commuting with
the elements of S such that z′ = u � z � v. Indeed, if an attacker can recover
u′A, v

′
A commuting with the elements of S and such that zA = u′A � z � v′A, she

can compute

u′A � zB � v′A = uB � u′A � z � v′A � vB = uB � zA � vB = zAB.

Hence, with obvious notation, the problem hierarchy is

DH ≤ RelaxedDecomposition-DH ≤ Decomposition-DH.

2.3 The Attack

Now we describe the attack. Assume that D is a domain such that the left
(or right) greatest common divisor of two elements always exists and can be
computed efficiently and left (or right) exact division can performed efficiently.
The attack originates from the following observation. Elements in the set S�z�S
are changed in a particular way when multiplying on the left (or on the right)
by an element of S. This property is used to create the Diffie-Hellman protocol.
Here we use it to attack the scheme. Let indeed λ be an arbitrary element of S.
Then,

λ � (u � z � v) = u � λ � z � v.
Hence, we obtain another element which too has u as a left divisor. As a conse-
quence, taking the left gcd of z′ = u � z � v and λ � z′, one obtains a (non-zero)
multiple of u. The same can be done for any element λ of S. Let λ1, . . . ,λs
be generators of S. For S to be transmittable data, these generators must be
in very practical number (which we do not consider). Let g be the left gcd of
{z′,λ1 � z′, . . . ,λs � z′}, obtained iteratively from pairwise left gcds. Hopefully,
relying on the non-commutativity of z with the elements of S, g might be u
itself. It can happen that we actually have a way to distinguish between u and
its non-trivial multiples. In this case and if g actually equals u, then we use
the left exact division algorithm and get v, and the decomposition problem is
already broken. Otherwise, let anyway a be such that g = u � a. By using the
exact division algorithm, we obtain m and mi, i = 1, . . . , s such that{

z′ = g �m
λi � z′ = g �mi.

(1)

Since there are no divisors of zero in D, this system of equations rewrites{
z � v −a �m = 0

λi � z � v −a �mi = 0. (2)

Hence we obtain a set of linear looking equations in the unknown (v, a). Since
relevant solutions v commute with S, one has the additional linear looking equa-
tions λi � v − v � λi for any i = 1, . . . , s.
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Not all solutions to these linear conditions, however, are solutions of the initial
decomposition problem. This is because when shifting from the initial system
(1) to the linear system (2), one loses the information that z �v is a right divisor
of z′. For instance, any linear combination of such solutions satisfies the linear
conditions while not necessarily satisfying the divisibility condition.

Let divisor solutions refer to the linear solutions (v, a) such that z � v is a
right divisor of z′. We first show that any divisor solution is enough to break the
relaxed decomposition problem. Assume indeed that the linear-looking system
can be solved, and let (v′, a′) be an arbitrary divisor solution. By using the exact
division algorithm, we get u′ such that z′ = u′ � z � v′. From z � v′ = a′ �m,
we find z′ = u′ � a′ �m, and therefore we also have g = u′ � a′. Furthermore, u′
commutes with all generators of S: from λi � z � v′ = a′ �mi, we get

u′ � λi � z � v′ = g �mi = λi � z′ = λi � u′ � z � v′,

and therefore u′�λi = λi�u′. As a consequence, (u′, v′) is a pair of elements that
both commute with S and satisfy z′ = u′�z�v′. Hence the relaxed decomposition
problem is broken.

The only unproven step in the attack is the one of finding a divisor solution
among the solution linear space. This part may only be heuristically approached.
We first need to understand the structure of the solution linear space itself.
Observe the following property.

Property 1. Let C̃(z) denote the set of pairs (c, c′) such that z � c = c′ � z. For
any solution (v, a) of the linear looking equation z � v − a �m = 0 and any
(c, c′) in C̃(z), the pair (c � v, c′ � a) is also a solution. As a consequence, the
solutions of the equation z �v−a�m = 0 are closed under left (coordinate-wise)
multiplication by C̃(z). Of course, they are also closed under addition.

One easily sees that the property generalizes to solutions (v, a) of the complete
linear system and left multiplication by I = C̃(z) ∩i C̃(λi � z) ∩ (·, S̄) where S̄
is the elements that commute with S. One easily checks that I = C̃(z) ∩ (S̄, S̄).
Also note that I is a ring for coordinate-wise addition and multiplication.

Additivity and left multiplication by I are degeneracies that are independent
of the existential solution. Save these degeneracies, we expect the system of
equations to be characteristic of the existential solution. Hence, we expect:

Claim. the solutions of the linear system are all spanned by a single generator
through addition and left multiplication by I. Let (vg, ag) denote this generator.

Then, since I is a ring, the linear solutions write simply I � (vg, ag). For the
existential solution (v̂, â) in particular, there exists (ĉ, ĉ′) in I such that (v̂, â) =
(ĉ, ĉ′) � (vg, ag). This means that (vg, ag) is (v̂, â) purged out of its factors in I.
This shows that (vg, ag), just like (v̂, â), is a divisor solution. The other ones
are spanned by factors (c, c′) related to left factors c of v or right factors c′ of
u. Finally note that (vg , ag) is a common right factor of all linear solutions and
since it includes itself, it is in fact the right gcd of the linear solutions.
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3 Application to Skew Polynomials Cryptosystems

Diffie-Hellman and ElGamal-like schemes based on skew polynomials were re-
cently presented at PQCrypto 2010 [1]. The Diffie-Hellman protocol follows the
general construction described in the introduction and developed by the earlier
group-based proposals. We first recall the particularities of skew polynomials and
review the setting up of the cryptosystem. Then, we describe unrolling the attack
in this particular case. Since the ElGamal scheme relies on the DH problem, we
only consider the DH protocol.

3.1 Skew Polynomials

Skew polynomials are polynomials over a finite field with a particular non-
commutative inner product. Let Fq denote the finite field with q elements, and p
be the characteristic of the field. Automorphisms of Fq are the so-called Frobe-
nius maps which are powering to a power of p. Let θ be such an automorphism.
We denote by � the inner product of skew polynomials. It is defined inductively
for all a ∈ Fq by X � a = θ(a)X . The ring of skew polynomials is sometimes
denoted Fq[X, θ].

The ring of skew polynomials is a left and right Euclidean domain, that is,
there are both a left and a right Euclidean division algorithm. Using the Eu-
clidean algorithms one can thus compute left and right greatest common divisors,
and also perform exact division.

As priorly addressed, due to the non-commutativity of the inner product, skew
polynomials admit many factorizations instead of a single one. The cardinality of
the number of possible factorizations is expected to be exponential in the degree
of the polynomial.

3.2 Generation of the Scheme

For the sake of completeness, we recall part of the specification given in [1].
However the attack is not tied to any particular key generation.

A brute-force approach is suggested to construct the commutative subset S.
One iteratively constructs a set of generators G0, . . . , Gs of small degree δ. At
each step, a polynomial of degree δ is picked at random and tested for com-
muting with the current set of generators. If it does, it increments the set of
generators, otherwise repeat. The set S is the commutative algebra spanned by
these generators.

Let d be the security parameter of the protocol. A public polynomial Z of
degree d is generated. At the execution of the Diffie-Hellman protocol, each
participant selects two elements U and V in S with degree d through combination
of the generators of S. More precisely, any picked element is a product of sums
of products of the generators.

All tasks performed during the protocol can clearly be made practical, however
the cost of generating a set of generators for S is quoted as a long computation
without further detail. The proposed instantiation is with skew polynomials over
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F4, generators of S have degree δ = 8 or 9, and the protocol uses polynomials
of degree d = 600. For these parameters, they give two examples of S through
generator sets with ≥ 90 polynomials.

3.3 Commutativity among Skew Polynomials

Before we go on with the attack, it is useful to investigate commutation proper-
ties of skew polynomials.

There are particular skew polynomials that commute with any other. This
subset is called the center and we denote it by C. A characterization of these
elements can be found in [1]. Let m be the order of θ (say the degree of Fq over
Fp to simplify). Then, the center polynomials are the polynomials over Fp and
in the only powers of Xm.

C = Fp[Xm].
Also, for any polynomial P , let CP denote the set of polynomials that commute
with P . Of course, P commutes with itself and the elements of the center. As a
consequence, CP contains the algebra generated by P and C, that is, the set of
sums and multiples of elements of C and P . This algebra is a vector space over
Fp. On the other hand, if P has all its coefficients in Fp, it commutes with any
polynomial with coefficients in Fp, not only itself and C. Hence,

{
if P ∈ Fp[X ], CP ⊇ Fp[X ]
otherwise, CP ⊇ 〈C, P 〉 = C[P ].

On the other hand, for any degree bound r, one can easily compute the elements
of CP with degree ≤ r. Indeed, the equation P � Q = Q � P in the degree ≤ r
indeterminate Q is a linear system over Fp, and one can find its solutions through
linear algebra. We ran experiments for many random choices of P (not with all
coefficients in Fp) of degree � δ = 8 and we found that at least up to degree
r = 30 the elements of CP in fact all were in C[P ]. It suggests that when one picks
generators for S during the key generation, one actually obtains polynomials in
C[P0], where P0 is any smallest degree polynomial in S modulo C (modulo is
well defined for central polynomials). Hence it is pointless to generate this set
by brute force. This is confirmed for the proposals of S in [1]: we respectively
found P0 = X5 +X3 + α and P0 = X3 +X + α.

3.4 Unrolling the Attack

Let Z ′ = U � Z � V be the data transmitted by one of the participants of the
protocol. Our first step is to take the gcd of Z ′ and Λi � Z ′ over all generators
Λi of S. Due to our previous comment on these generators having a common
generator P0, we actually take the gcd of Z ′ and P0�Z

′. We find a polynomial G
which is a right multiple of U : there exists a polynomial A such that G = U �A.
Also we compute M ,M0 such that{

Z ′ = G �M
P0 �Z ′ = G �M0.
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Since the ring is a domain, one deduces from these equations,
{

Z � V = A �M
P0 �Z � V = A �M0.

In addition, one has P0 � V = V � P0 since V commutes with S. These three
equations are not linear over Fq, as it would be with the usual product of poly-
nomials, however they are linear alright over Fp. Expanding these equations over
Fp, and degree bounding the search space according to the expected degree of
the existential (V,A), we can solve the system through linear algebra.

The output of the previous phase is a degree bounded restriction of the entire
solution subspace of the linear system. Recall from Section 2.3 that the entire so-
lution space is closed under left multiplication by I = C̃(Z) ∩ (S̄, S̄). If the entire
solution space indeed is monogeneous under linearity and left multiplication by I,
then this generator is the lowest degree solution (V,A). Then, it can also be found
as the right gcd of a linear basis of the bounded degree solution subspace.

We checked the previous expectations in practice with the recommended pa-
rameters and beyond. In any tested case, the bounded degree solution admitted
only one lowest degree solution (up to Fp multiples) and any other solution was
a multiple of it by a central factor. It incidentally shows that I = C � (1, 1) up
to the fixed degree bound. Let (Vg, Ag) denote the found generator. We verified
that it is a divisor solution and also that it is the right gcd of a linear basis
of the bounded degree solutions. We also checked that (Vg , Ag) is the greatest
central factor of the original solution (V̂ , Â). This greatest central factor can be
extracted by taking the left gcd of (V̂ , Â) and arbitrary left multiples of it.

The attack has theoretical complexity in (md)3. It takes about a minute with
the recommended parameters and with a straightforward implementation in C++
using the NTL library [11].

4 The Case of Modular Skew Polynomials

We consider a possible variation of the Diffie-Hellman protocol based on modular
skew polynomials.

4.1 Constructing Modular Skew Polynomial Rings

Let R denote a skew polynomial ring Fq[X, θ] and let N be an arbitrary element
of R. Let �N denote the set of left multiples of N . Congruence modulo �N is
an equivalence relation over R and the associated partition elements are called
left classes modulo N . Obviously right classes can be defined all the same from
N�. Reduction modulo �N (resp. N�) can be performed by using the left (resp.
the right) Euclidean division algorithm.

One awkward property of left classes is that they cannot be multiplied the
ones with the others unless N commutes with their elements in a certain sense.
Indeed, let U+Λ�N and V +Λ′ �N be arbitrary reprensentatives of two classes.
Their product



468 V. Dubois and J.-G. Kammerer

(U + Λ � N) � (V + Λ′ � N) = U � V + Λ � N � V + (U � Λ′ + Λ � N � Λ′) � N
does not equal U � V modulo �N unless Λ �N � V is right divisible by N . Since
Λ may be chosen arbitrarily, it means N � V is right divisible by N , or again
that there exists W such that N � V = W � N . When such a W exists, we say
that N quasi-commutes with V .

When we want the set of classes to itself be a (non-commutative) ring, we need
N to quasi-commute with all elements of R. Let N denote the set of such N ’s;
we call it the quasi-center of R. Observe that the elements with which N quasi-
commutes is closed under the ring operations. Therefore,N quasi-commutes with
all elements of R if and only it quasi-commutes with X and all the constants.
This yields an easy characterization of such polynomials N . If a constant a quasi-
commutes with N , because of the degree, its dual element is also a constant b.
For any a,

N � a =
∑
i niθ

i(a)X i = b � N =
∑
i nibX

i

implies that there is k such that all non-zero terms are at i ≡ k mod m (where
m is the order of θ, assumed equal to the degree of Fq over Fp). Next, we do the
same with X : there are constants a, c such that

N �X =
∑
i niX

i+1 = (aX + c) � N =
∑
i(aθ(ni) + cni+1)X i+1 + cn0 .

Let j be the smallest i such that ni �= 0. Then, c.nj = 0 implies c = 0, and
for any i such that ni �= 0, a = ni/θ(ni). Let ā satisfy ā/θ(ā) = a. Finally the
quasi-center N is the union of the sets Nk,a = āXkC, k ∈ {0, . . . ,m−1}, a ∈ Fq,
where C = Fp[Xm] is the center of R. More concisely, this is ∪m−1

k=0 FqX
kC.

For any polynomial N of the quasi-center, left and right multiples of N are
just the same sets and classes modulo these sets are simply said classes modulo
N . These classes form a ring, which we denote by RN .

4.2 The Modified Scheme

Modular skew polynomial rings might be considered at the basis of a non-
commutative Diffie-Hellman protocol following exactly the same construction
as proposed in [1]. Let d denote the degree of N . Any class admits a unique
representative with degree < d. Multiplication of classes is realized through
multiplication of canonical representatives and subsequent reduction mod N .
We denote this operation by ◦.

A commutative set S may again be constructed by selecting commuting classes
with canonical representatives of small degree δ. Since δ is a small constant while
d is the security parameter, one can assume 2δ < d. In this case, the picked
canonical representatives in fact commute without modulo. Then, following 3.3,
these representatives are spanned over the center by a single polynomial P0.
Elements of S are arbitrary combinations of P0 over C reduced mod N .

4.3 First Remarks

It is immediate that RN is not a domain: for any pairwise factorization U � V
of N , we get U � V = 0 mod N while neither U or V is divisible by N .
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Now, by definition a class Ū is a left factor of a class P̄ if P̄ lies in the image
space of the map

μ(Ū) : RN −→ RN
V̄ �−→ Ū ◦ V̄ .

Recall the product Ū ◦ V̄ equals U � V mod N where U and V are arbitrary
elements of Ū and V̄ . Observe that the set U � +N� is independent of the
particular U in Ū . As a consequence, the left gcd G of U and N is independent
of U in Ū . Now, from U �+N� = G�, we get that right multiples of U and G are
the same mod N . As a consequence, the image of μ(Ū) is the set Ḡ◦. Finally,
Property 2. the set of left factors of a class P̄ is the set of classes Ū whose left
gcd G with N is a left factor of the canonical representative P̂ of P̄ .
In particular, classes that are left coprime with N are left factors of any class
(they are the units of the ring). As one can see, the relationship between divisors
and multiples is very loose in RN . Then, the fact that a class Z̄ ′ is computed
as Ū ◦ Z̄ ◦ V̄ hardly carries information on the particular Ū and V̄ . Therefore,
there is not much information to be obtained in using gcds on Z̄ ′ and P̄0 ◦ Z̄ ′.
Instead, since P̄ is loosely related to the initial (Ū , V̄ ), one may take advantage
of the many equivalent pairs (Ū , V̄ ).

4.4 Attacking the Modular Decomposition

Given a class Z̄ ′, we search for a decomposition Ū ◦ Z̄ ◦ V̄ where Ū and V̄ are
in S̄ (that is, commute with P0 mod N). At least one exists by construction of
Z̄ ′ and we expect many others.

We target pairs (Ū , V̄ ) in S̄ × S̄ such that (e.g.) Ū is left coprime with N .
Before going on, observe that being left or right coprime with N is the same
when N is in the quasi-center. From Ū being left coprime with N , we get W̄
such that Ū ◦ W̄ = 1̄. Then right multiplication by Ū is clearly injective (right
multiply by W̄ ), and therefore bijective, and Ū is right coprime with N . Using
associativity, one also gets that the left and right inverses are the same.

Now, for any (Ū , V̄ ) in S̄ × S̄ where Ū is coprime with N ,

Z̄ ′ = Ū ◦ Z̄ ◦ V̄ ⇐⇒ W̄ ◦ Z̄ ′ = Z̄ ◦ V̄ .
Also, Ū commutes with P̄0 iff W̄ commutes with P̄0. Therefore, the decomposi-
tional pairs (Ū , V̄ ) in S̄ × S̄ with Ū invertible are in bijection with the solutions
(W̄ , V̄ ) in S̄ × S̄ of the linear equation W̄ ◦ Z̄ ′ = Z̄ ◦ V̄ with W̄ invertible.

For the attack to be successful, we simply need to extract a pair (W̄ , V̄ ) with
an invertible W̄ from the solutions of the linear system. For this, we rely on the
density of such pairs. First observe that restricting elements of pairs in S̄ can
only negligibly impact the density of invertible elements. Indeed, the modular
condition is exact for all classes whose canonical representative has degree under
deg(N) − deg(P0). Since deg(P0) asymptotically remains a small constant, the
fraction of classes for which the condition involves N is negligible. Besides, we
see no reason why the density of W̄ among solution pairs (W̄ , V̄ ) (not restricted
to S̄) of the equation W̄ ◦ Z̄ ′ = Z̄ ◦ V̄ should differ from the global density.
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Claim. The density of invertible W̄ among solutions (W̄ , V̄ ) in S̄×S̄ of W̄ ◦Z̄ ′ =
Z̄ ◦ V̄ is the same as the density of invertible classes in RN .

Although N can have many distinct irreducible left factors, these are a sub-
collection of all possible irreducible left factors of degree deg(N) polynomials.
As a consequence, we expect the fraction of classes left coprime with N to be
asymptotically a constant close to 1. For the sake of intuition, for any u < d, the
fraction of right multiples of degree u monic polynomial L among degree < d
polynomials is q−u. Then, the probability that two degree < d polynomials be
both right multiples of L is q−2u. Then, the probability that they not share a
common left multiple of degree u is 1−quq−2u = 1−q−u. We estimate the prob-
ability of they be coprime by the probability not to share degree 1 left factors:
1− 1/q. This is our expectation of the density of invertible elements.

We checked the above properties in practice. We checked (through sampling)
the density of invertible classes both among the left coordinates W̄ of the solution
space and among all classes. We found densities of the same order in both cases:
equal in large characteristic and indeed close to 1 − 1/q, but slightly different
in small characteristic. Hence, we could in any case extract a decompositional
solution almost at once.

Interestingly, the attack can be slightly generalized. We may more generally
target decompositional solutions (Ū , V̄ ) such that Ū has a right gcd with N not
necessarily 1 but a target right factor G of N which commutes with P0 (for
instance a central polynomial). Then, for any such Ū , there exist W̄ such that
W̄ ◦ Ū = Ḡ. Since both Ū and Ḡ commute with P0, the same holds for W̄ . Then,
we simply compute solutions (W̄ , V̄ ) in S̄ ×S̄ of W̄ ◦ Z̄ ′ = Ḡ◦ Z̄ ◦ V̄ , and extract
W̄ such that the left gcd of W̄ and N is G.

5 Beyond the Case of Skew Polynomials?

Another usual example of a non-commutative algebra are square matrices over
a finite field. Then, the question arises as to whether this algebra can be used to
build a non-commutative Diffie-Hellman protocol. We answer this question neg-
atively by simply describing a well-known connection between square matrices
over a finite field and modular skew polynomials (see for instance [4]): square
matrices are modular skew polynomials with particular moduli.

Let Fp be an arbitrary finite field and let Fq = Fpn be the degree m extension
field of Fp. It is well-known that Fq is an m-dimensional vector space over Fp.
Hence, fixing arbitrary basis elements of Fq over Fp, one can encode any element
of Fq into an n-dimensional vector. This correspondence also induces a one-to-
one correspondence between Fp-linear maps on Fq and Fp-linear maps on (Fp)m.
The latter simply are represented bym×mmatrices over Fp. Hence, composition
of Fp-linear maps on Fq is the same as matrix multiplication. We can now regard
the ring of m ×m matrices over Fp as the ring of Fp-linear maps on Fq for +
and the composition of maps, which we denote by Lp(Fq).

We now describe a generator basis for Lp(Fq). It is well-known that powerings
to the power of p are Fp-linear bijections on Fq called the Frobenius maps. We let



Cryptanalysis of Cryptosystems 471

θ be the first Frobenius map. Multiplication by an element of Fq is also Fp-linear.
Therefore, linear combinations over Fq of Frobenius maps (powers of θ) also are
Fp-linear. It can be seen that this representation is injective and finally, by a
simple cardinality argument, one-to-one. As a consequence, Lp(Fq) is the set of
linear combinations over Fq of the Frobenius maps,

∑m−1
i=0 ai ◦ θi. These maps

can be identified with polynomials
∑m−1
i=0 aiX

i. Mapping the ring structure of
Lp(Fq) to these polynomials, one obtains the usual + law but multiplication
following the identities X ◦a = θ(a)X and Xn = 1. This is exactly the identities
defining skew polynomials Fq[X, θ] modulo the center polynomial Xm − 1.

{m×m matrices over Fp} = Lp(Fq) = Fq[X, θ]/(Xm − 1).
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Abstract. This paper presents a practical cryptanalysis of the Identification
Scheme proposed by Patarin at Crypto 1996. This scheme relies on the hardness
of the Isomorphism of Polynomial with One Secret (IP1S), and enjoys shorter
key than many other schemes based on the hardness of a combinatorial problem
(as opposed to number-theoretic problems). Patarin proposed concrete parameters
that have not been broken faster than exhaustive search so far. On the theoretical
side, IP1S has been shown to be harder than Graph Isomorphism, which makes
it an interesting target. We present two new deterministic algorithms to attack the
IP1S problem, and we rigorously analyze their complexity and success probabil-
ity. We show that they can solve a (big) constant fraction of all the instances of
degree two in polynomial time. We verified that our algorithms are very efficient
in practice. All the parameters with degree two proposed by Patarin are now bro-
ken in a few seconds. The parameters with degree three can be broken in less than
a CPU-month. The identification scheme is thus quite badly broken.

1 Introduction

Multivariate cryptography is concerned with the use of multivariate polynomials over
finite fields to design cryptographic schemes. The use of polynomial systems in cryp-
tography dates back to the mid eighties with the design of C∗ [33], and many others
proposals appeared afterwards [37,38,39,28,47]. The security of multivariate schemes
is in general related to the difficulty of solving random or structured systems of multi-
variate polynomial equations. This problem has been proved to be NP-complete [22],
and it is conjectured [2] that systems of random polynomials are hard to solve in prac-
tice. As usual when a trapdoor must be embedded in a hard problem, easy instances are
transformed into random-looking instances using secret transformations. In multivariate
cryptography, it is common to map an easily-invertible collection of polynomials a into
an apparently random one b. It is then assumed that, being supposedly indistinguish-
able from random, b should be hard to solve. The structure-hiding transformation is

D. Catalano et al. (Eds.): PKC 2011, LNCS 6571, pp. 473–493, 2011.
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very often the composition with linear (or affine) invertible mappings S and T , namely
b = T ◦ a ◦ S. The matrices S and T are generally part of the secret-key.

The Isomorphism of Polynomials (IP) is the problem of recovering the secret
transformations S and T given a and b. It is a fundamental problem of multivariate
cryptography, since its hardness implies the difficulty of the key-recovery for various
multivariate cryptosystems. Notorious examples include C∗ [33], the traitor tracing
scheme proposed by Billet and Gilbert [8], the SFLASH signature scheme [38], the
�-IC signature scheme [12], the square-vinegar signature scheme [1] and the Square
encryption scheme [11]1. All these schemes have been broken, because the structure of
the central map was not hidden well enough. The corresponding IP problem was then
not random, but structured. However, when no apparent structure exists in both a and
b, then the IP problem is fairly difficult. This motivated Patarin to introduce it as an
intractable assumption by itself in [35]. So far only exponential algorithms [40,17] are
known to attack the general IP problem.

An important special case of IP is the IP problem with one secret (IP1S for short),
where T is the identity matrix. Patarin suggested in 1996 [36] to construct a zero-
knowledge identification scheme relying on the hardness of IP1S, inspired by the Zero-
Knowledge proof system for Graph Isomorphism of [25]. The proposed parameters
lead to relatively small key sizes (for instance to secret and public keys of 256 bits each
and no additional information), as the complexity of the problem was believed to be
exponential. The proposed parameters have not been broken so far, and no technique
better than exhaustive search is known to attack the scheme. The IP1S problem is also
interesting from a complexity-theoretic point of view. It has been proved in [40] that
IP1S is Graph Isomorphism-hard (GI-hard for short). This leads Patarin et al. to claim
that IP1S is unlikely to be solvable in polynomial time, because no polynomial algo-
rithm is known for GI in spite of more than forty years of research. On the other hand,
GI is not known to be NP-complete. Generating hard instances GI is pretty non-trivial,
and there are powerful heuristics as well as expected linear time algorithms for random
graphs [19]. This compromises the use of GI as an identification mechanism, and was
part of the motivation for introducing IP1S as an alternative. Moreover, when used in
this context, instances of the IP problem are random, which presumably avoids all the
attacks on the cryptographic schemes mentioned above.

Previous and Related Work. The identification scheme based on IP1S is not based on
number-theoretic assumptions, unlike for instance the well-known Fiat-Shamir proto-
col [18]. Many other identification schemes are not based on number theoretic assump-
tions [42,43,44,45,31]. However, the IP1S-based identification scheme enjoys shorter
keys than most others.

To our knowledge, the first algorithm dedicated to IP1S can be found in Geisel-
mann et al. [23]. The authors of [23] remarked that each row of a matrix solution of
IP1S verifies an algebraic system of equations. They then used an exhaustive search
to find the solutions of such system. Soon after, this technique has been improved by
Levy-dit-Vehel and Perret [13] who replaced this exhaustive search by a Gröbner basis

1 In the description of some of these schemes, the easily-invertible central map contains param-
eters that are part of the secret-key. However, in this case there exists an equivalent secret key
where these parameters have a fixed value. This is notoriously the case of C∗.
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computation. This still yields exponential algorithms, and the improvement induced by
this replacement is is as significant as the gain obtained when comparing Gröbner basis
and exhaustive search for solving random algebraic systems. It is negligible over small
field (i.e., typically, F2), but significant for instances of IP1S over large fields. However,
the complexity of those algorithms remains exponential by nature.

Finally, Perret [41] shows that the affine and linear variants of IP1S are equivalent,
i.e., one can without loss of generality restrict our attention to the case where S is linear
(as opposed to affine). In addition, a new approach for solving IP1S using the Jacobian
matrix was proposed. The algorithm is polynomial when the number u of polynomials
in a and b is equal to the number of variables n. However, when u < n, the complexity
of this approach is not well understood. Moreover, when the number of polynomials is
very small, for instance u = 2, this algorithm is totally inefficient.

The main application of IP1S is the identification scheme proposed in [40]. The
public key being composed of two sets of u polynomials, it is interesting to keep the
number of polynomials as small as possible (1 or 2). For such parameters, the authenti-
cation mechanism based on IP1S looks appealing in terms of key size. Additionally, it
does not require hash functions or commitments.

All in all, the existing literature on the IP and IP1S problem can be split in two cat-
egories: heuristic algorithms with (more or less vaguely) “known” complexity and un-
known success probability [40], and rigorous algorithms that always succeeds but with
unknown complexity [17,41,13,23]. This situation makes it very difficult, if not plainly
impossible to compare these algorithms based on their theoretical features. The class
of instances that can be solved by a given algorithm of the first type is in general not
known. Conversely, the class of instances over which an algorithm of the second type
terminates quickly are often not known as well. This lead the authors of IP/IP1S algo-
rithms to measure the efficiency of their techniques in practice, or even not to measure
it at all. Several sets of concrete parameters for IP and IP1S were proposed by Patarin
in [36], and can be used to measure the progress accomplished since their introduction.
The techniques presented in this paper allow to break all these challenges in practice.

Techniques. The algorithms presented here are deterministic, and rely on the two
weapons that have dealt a severe blow to multivariate cryptography: linear algebra and
Gröbner bases. Our ideas borrow to the recent differential cryptanalysis of multivariate
schemes. While the algorithms are not very complicated, analyzing their running time
is fairly non-trivial, and requires the invocation of not-so-well-known results about lin-
ear algebra (such as the dimension of the commutant of a matrix, or the properties of
the product of two skew-symmetric matrices), as well as known results about random
matrices, most notably the distribution of the rank and the probability of being cyclic.
The two most delicate steps of the analysis involve lower-bounding the dimension of the
kernel of a homogeneous system of matrix equations, and upper-bounding the degree
of polynomials manipulated by a Gröbner-basis algorithm.

Our Results. We present two new “rigorous” and deterministic algorithms. On the
practical side, these algorithms are efficient: random quadratic IP1S instances and ran-
dom cubic inhomogeneous IP1S instances can be broken in time O

(
n6
)

for any size
of the parameters. In particular, all the quadratic IP1S challenges proposed by Patarin
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are now broken in a few seconds. The biggest homogeneous cubic IP1S challenge can
be broken in less than 1 CPU-month. The IP1S identification scheme is thus broken
beyond repair in the quadratic case. In the case of cubic IP1S, our attack runs in time
O
(
n6 · qn

)
, and the security parameter have to be seriously reconsidered, which makes

the scheme much less attractive, since the key size is cubic in n.
A rigorous analysis of our algorithms is both necessary and tricky. When generating

linear equations, special care has to be taken to count how many of them are indepen-
dent. The recent history of algebraic cryptanalysis taught us that failure to do so may
have drastic consequences. Additionally, the complexity of Gröbner bases computation,
even though a bit more well-understood now in the generic case, is still often a delicate
matter for structured systems.

A unique and distinctive feature of our algorithms compared to the previous state of
affairs, and one of our main theoretical contribution, is that we characterize the class
of instances that can be solved by our techniques in polynomial time. We show, for
instance, that a (big) constant fraction of all quadratic IP1S instances can be solved in
polynomial time.

This break however has little consequences in the multivariate cryptology ecosys-
tem, except that it brings the IP1S-based identification scheme down. The security of
UOV [27] in particular is not related to the hardness of IP1S, because in UOV the vector
of polynomial composed with a linear change of variable (the “a” part) is kept secret.

Organisation of the paper. In section 2, we recall some useful facts about the IP1S
problem. Then, in section 3, we introduce the identification scheme based on the hard-
ness of IP1S and compare it to other non-number theoretic based ID schemes. We then
introduce our algorithms to break IP1S in the quadratic case in section 4, and in the
cubic case in section 5.

2 The IP1S Problem

We recall the definition of the IP1S problem. Given two families of u polynomials a
and b in Fq[x1, . . . , xn] the task is to find an invertible matrix S ∈ GLn (Fq) and a
vector c ∈ (Fq)

n such that:
b(x) = a(S · x + c). (1)

We will denote by f (k) the homogeneous component of degree k of f , and by ex-
tension a(k) denotes the vector of polynomials obtained by taking the homogeneous
components of degree k of all the coordinates of a. We define the derivative of a in c to
be the function ∂a

∂c : x → a(x+ c)−a(x). The following lemma, which is very similar
to [17, lemma 4] is very useful.

Lemma 1. i) For all k ≥ 1, we have:

b(k) =
(
a +

∂a
∂c

)(k)

◦ S.
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ii) If d is the degree of a and b, then b(d) = a(d) ◦ S.
iii) S transforms the set of common zeroes of a(d) into the set of common zeroes of b(d).

Proof. It follows from the definition of the derivative that:

b =
(
a +

∂a
∂c

)
◦ S

This equality also holds if only the degree-k homogeneous component is considered.
The point is that since S is linear (and thus not “degree-changing”), if P is a multivariate
polynomial we have:

(P ◦ S)(k) = P (k) ◦ S

This establishes the first statement of the lemma. The second statement follows from
the fact that if a is of degree d, then the function ∂a

∂c is of degree d − 1. Thus the
homogeneous component of degree d of ∂a

∂c is identically zero. The third statements is
a direct consequences of the second one. 	


A useful consequence of lemma 1 is that without loss of generality we may assume c to
be the null vector2. A consequence of point ii) is that from any instance of the problem
we can deduce a linear homogeneous instance by considering only the homogeneous
component of highest degree. If this instance can be solved, and S can be retrieved, then
recovering c is not difficult, using a slight generalization of the idea shown in [24]. If S
is known, then ∂a

∂c can be explicitly computed, and c can usually be deduced therefrom.
More specifically, focusing on the homogeneous component of degree one yields a
system of u ·n linear equations in n variables that admits c as a solution. In most cases,
it will in fact admit only c as a solution, which enables recovering c.

It was pointed out in [40] that if there is only one quadratic polynomial, then the
problem is easily solved in polynomial time. This follows from the fact that quadratic
forms admit a canonical representation (see for instance [30]). The change of coordinate
can then be easily computed. We will therefore focus on the case of u ≥ 2 when the
polynomials are quadratic.

For various reasons, the IP1S problem becomes easier when u is close to n, and
harder when u is small. For instance, the algorithm given in [41] deals with the case
u = n in polynomial time, but cannot tackle the case where u = 2 and n is big, which
prevented it from breaking the parameters proposed by Patarin. Additionally, small val-
ues of u leads to smaller public keys. Therefore, we will restrict our attention to the
case where u = 2 when the polynomials are quadratic, and where u = 1 when they are
cubic. These are the most cryptographically relevant cases, and the most challenging.
We will also consider the case where Fq is a field of characteristic two. It can be shown
that this makes the problem a bit harder, but again this is the most cryptographically
relevant case. The quadratic and cubic IP1S problems are very different and lead to
specific approaches, therefore we will discuss them separately.

2 This was already observed in [41].
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3 Patarin’s IP1S-Based Identification Scheme

Zero-Knowledge proofs were introduced in 1985 by Goldwasser, Micali and Rackoff
in [26]. Soon afterwards, Fiat and Shamir [18] used the hardness of quadratic resid-
uosity to build an efficient identification scheme. Many other identification schemes
appeard afterwards, all relying on the hardness of number-theoretic assumptions. Some
cryptographers took a different line of research, and tried to design identification scheme
from different computational assumptions, not relying on number theory, but instead on
the NP-hardness of some specific combinatorial problems.

One of the very-first combinatorial identification scheme was proposed by Shamir
[43], and relied on the hardness of the Permuted Kernel Problem (PKP). Later on,
Stern proposed in [44] a scheme based on the intractability of Syndrome Decoding
(SD), and in [45] a scheme based on the intractability of Constrained Linear Equa-
tions (CLE). Finally, Pointcheval [42] proposed a scheme related to the hardness of the
Perceptron Problem, originating from the area of learning theory. All these problems
are NP-complete (as opposed to IP1S). The designers proposed practical parameters,
aiming for a security level of 264 or more, which are summarized in table 1. In all
these schemes, it is required that all users share a public common set of information,
a “common setting”, usually describing the instance of the hard problem. For instance,
in number-theoretic problems, the description of the curve, or of the group over which
a discrete logarithm problem is considered is a common public information. While this
information is not a “key” stricto sensu, it must nevertheless be stored by the prover
and by the verifier, leading to higher memory requirements. However, in some case it
can be chosen randomly, or generated online from a small seed using a PRNG.

Table 1. Key sizes in bits corresponding to practical parameters proposed in [42,43,44,45,36] in
order to obtain a security level of roughly 264

Scheme Common Setting Public Key Secret Key

PKP
2048 256 374
7992 512 808

SD
131 072 256 512
524 288 512 1024

CLE
3600 80 80
3600 96 96

Perceptron 10807 144 117

IP1S 0 256 272

On the contrary, the IP1S-based identification scheme proposed by Patarin in [35,36]
does not need the prover and the verifier to share additional information (except maybe
the description of the finite field, which is very small). It works very similarly to the
original identification scheme based on a zero-knowledge proof system for Graph-
Isomorphism (GI) by Goldreich, Micali and Wigderson [25]. One of the reasons for
replacing GI by IP1S is the existence of efficient heuristic algorithms for GI, capable
of solving efficiently random instances. The generation of hard instances of GI is a del-
icate matter [19]. Replacing the GI problem by IP1S yields shorted key, and random
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Table 2. Concrete parameters for IP1S. Patarin proposed challenges A,B,C and D in [36]. We
introduce challenge E.

Challenge n q Degree Polynomial(s) Public Key Private Key

A 16 2 2 2 272 bits 256 bits
B 16 2 3 1 816 bits 256 bits
C 6 16 2 2 168 bits 144 bits
D 6 16 3 1 224 bits 144 bits
E 32 2 2 2 1056 bits 1024 bits

instances of IP1S were a priori secure. Patarin proposed concrete parameters, which
are shown in table. 2. The PKP and SD schemes lead to bigger keys than IP1S, while
the Perceptron scheme leads to comparable key-sizes, and CLE yields smaller keys than
IP1S, if we neglect the additional memory requirement imposed by the common string
shared between all the participants.

Additionnaly, the IP1S-based identification scheme does not makes use of either
hash functions or commitment schemes. This is in strong contrast with all the other
proposals.

The IP1S challenges described in table 2 cannot be attacked using the existing tech-
niques [17,23,41]. As such, the best attack remains exhaustively searching for the secret
key. As a final note, let us mention that Lyubashevsky recently proposed in [31] to build
an identification scheme using the hardness of lattice problems, but did not propose
concrete parameters.

4 Cryptanalysis of Quadratic IP1S

The main observation underlying our quadratic IP1S algorithm is that by differentiating
equation (1), it is possible to collect linear equations between the coefficients of S and
those of S−1.

We denote by Df : (Fq)
n×(Fq)

n → Fq
u the differential of a function f : Fn

q → Fu
q .

Df is defined by:

Df(x,y) = f(x + y)− f(x)− f(y) + f(0)

It is easy to see that Df(x,y) = Df(y,x). If f is a polynomial of total degree d, then
Df is a polynomial of total degree d, but of degree d − 1 in x and y. Thus, when f is
quadratic, then Df is a symmetric bilinear mapping.

Going back to the quadratic IP1S problem, for all vectors x,y ∈ (Fq)
n, we have:

∀x,y ∈ (Fq)
n

, Db(x,y) = Da (S · x, S · y) .

Using the change of variable y′ = S · y, this equation becomes:

∀x,y′ ∈ (Fq)
n

, Db(x, S−1 · y′) = Da(S · x,y′). (2)

Since a and b are of total degree 2, then Da and Db are bilinear (symmetric) mappings.
In this case, since equation (2) is valid for all x and y, then in particular it is valid on
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a basis of (Fq)
n × (Fq)

n, and substituting fixed basis vectors for x and y yields linear
equations between the coefficients of S and those of S−1.

This idea for obtaining linear equations can also be described relatively simply using
the usual theory of quadratic forms. If Fq is a field of even (resp. odd) characteristic,
then the set of homogeneous quadratic polynomials in n variables over Fq is in one-
to-one correspondance with the set of symmetric matrices with zero diagonal (resp.
of symmetric matrices). Let P (ak) denote the matrix of the symmetric bilinear form
associated with ak (it is related to the polar form of ak in odd characteristic). Recall
that the coefficient of index (i, j) of P (ak) is Dak (ei, ej), where (ei)1≤i≤n is a basis
of (Fq)

n. We then have:

S :

⎧⎪⎨⎪⎩
S−1 · P (b1) = P (a1) · tS

...
S−1 · P (bu) = P (au) · tS

(3)

Each one of these u matrix equations yields n2 linear homogeneous equations between
the 2n2 coefficients of S and those of S−1. These last u ·n2 homogeneous linear equa-
tions cannot be linearly independent as they admit a non-trivial solution

(
S−1, S

)
. The

kernel of S is thus non-trivial, and our hope would be that it describes only one so-
lution. When u is strictly greater than two, we then have much more linear equations
than unknowns, and we empirically find only one solution (when the polynomials are
randomly chosen). When u = 2, which is again the most relevant case, the situation is
unfortunately not as nice; Theorem 1 below shows that the kernel of S is of dimension
higher that 2n in characteristic two (at least n in odd characteristic). This means that
solving the linear equations cannot by itself reveal the solution of the IP1S problem,
because S admits at least qn solutions, out of which only very few are actual solutions
of the IP1S instance3. However, the linear equations collected this way can be used to
simplify the resolution of the IP1S problem.

When looking at one coordinate of (1), we have an equality between two multivariate
polynomials that holds for any value of the variables. Therefore the coefficients of the
two polynomials can be identified (this is essentially the algorithm presented in [17]).
This yields a system Squad of u ·n2/2 quadratic equations in n2 unknown over Fq . With
u = 2, this precisely gives n2 equations in n2 unknown, which cannot be solved by any
existing techniques faster than exhaustive search.

However, we now know that
(
S, S−1

)
lives in the kernel of S, and therefore S can

be written as the sum of k = dim kerS matrices that can be easily computed using
standard linear algebra. Identifying coefficients in (1) then yields a system Squad of
u · n2/2 quadratic equations in k unknown. Our hope is that k is small enough for
the system to be very overdetermined, so that computing a Gröbner basis of Squad is
polynomial in theory, and feasible in practice.

The analysis of the attack then proceeds in two steps:

1. Estimate the rank of S (i.e., the value of k).
2. Estimate the complexity of the Gröbner basis computation.

3 We note that this contradicts the hope expressed in section 9 of [40].
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Fig. 1. Experimental distribution of dim kerS

For the sake of simplicity, we will analyze the attack algorithm under some assump-
tions on the input system. For instance, we will assume that that n is even, and that
one of the two quadratic forms we are dealing with is non-degenerate. We will then
argue that a random instance satisfies this assumption with high probability, but we are
well aware that some structured instance may not. This is in fact quite logical, because
a worst-case polynomial algorithm for IP1S would imply a worst-case polynomial for
Graph-Isomorphism (a fact that would be quite surprising). The situation of the IP1S
problem is in this respect quite similar to that of GI: heuristics are capable of dealing
efficiently with the random case, while some very special instances make them fail (in-
terestingly, hard instances for GI are transformed into hard instances for IP1S through
the reduction). Lastly, we mention that our algorithm does not necessarily fail on an in-
stance that does not meet our assumptions. However, we no longer have a guarantee on
its running time. Random instances fail to meet the assumption with a small probability,
but we empirically observed that the algorithm solves them in reasonable time as well.

4.1 Counting Linearly Independent Equations

Obtaining guarantees on the number of linearly independent equations in S is the most
important and the most delicate part of the attack. Since dim kerS is a function of the
instance, it makes sense to consider the random variable giving dim kerS assuming the
instance was randomly chosen. Fig. 1 above shows its (experimentally observed) distri-
bution for various sizes of the base field. We immediately see that in odd characteristic,
dim kerS is often n, while in characteristic two it is often 2n. In the sequel we provide
mathematical arguments to back this observation up. We will focus on the (harder) case
of fields of characteristic two, since this is the more cryptographically relevant case.

Our results are expressed in terms of the similarity invariants P1, . . . , Ps of a matrix
M . Their product is the characteristic polynomial of M , Ps is the minimal polynomial
of M , and Pi divides Pi+1. The main technical result needed to understand the rank of
S is the following theorem.

Theorem 1. Let A1, A2, B1, B2 be four given matrices of size n×n with coefficients in
Fq. Let us consider the set of all pairs (X, Y ) of n×n matrices satisfying the following
linear equations:
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S :
{

B1 = X · A1 · Y
B2 = X · A2 · Y

Let us assume that S admits at least one solution (X0, Y0) with both X0 and Y0 invert-
ible, and that A1 is also invertible.

i) There is a vector-space isomorphism between the kernel of S and the commutant
of C = A2 · A−1

1 .
ii) n ≤ dim kerS.

iii) Let P1, . . . , Ps be the similarity invariants of C. Then:

dim kerS =
s∑

j=1

(2s− 2j + 1) · deg Pj

Proof. Because a solution of S exists, then B1 is invertible. Thanks to this, we can
write:

S :
{

Y = A−1
1 ·X−1 ·B1

B2 ·B−1
1 ·X = X · A2 ·A−1

1

Using the particular solution X0 then gives:

S :

{
Y = A−1

1 ·X−1 · B1

C ·
(
X−1

0 ·X
)

=
(
X−1

0 ·X
)
· C

From there, it is not difficult to see that the kernel of S is in one-to-one correspondance
with the commutant of C, the isomorphism being (X, Y ) → X−1

0 ·X . The second point
of the theorem follows from the well-known fact that n lower-bounds the dimension
of the commutant of any endomorphism on a vector space of dimension n (see for
instance [7, Fact 2.18.9]). The third point follows from a general result on the dimension
of the commutant [20, chapter 6, exercise 32]. 	


Theorem 1 directly applies to our study of the rank of S with Ai = P (ai) and Bi =
P (bi). However, it holds only if P (a1) or P (a2) is invertible (we may swap them
if we wish, or even take a linear combination). Note that since P (a1) is a random
skew-symmetric matrix, it cannot be invertible if n is odd, and the analysis is more
complicated in that case. This is why we focus on the case where n is even, and where
one of the two quadratic forms is non-degenerate. The following lemma gives us the
probability that P (ai) (or P (bi)) is invertible.

Lemma 2 ([32], theorem 3). Let N0(n, r) denote the number of symmetric matrices
of size n× n over Fq with zeros on the diagonal and of rank r.

N0(n, 2s) =
s∏

i=1

q2i−2

q2i − 1
·
2s−1∏
i=1

(
qn−i − 1

)
N0(n, 2s + 1) = 0
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If n is even, the probability that P (a1) is invertible if q = 2 is about 0.419 (this
probability increases exponentially with q). The probability that eitherP (a1) or P (a2)
is invertible is then about 0.662 when q = 2.

Theorem 1 is then applicable in more than half of the cases when q = 2 (and we ex-
pect this proportion to grow very quickly with q). When it is applicable, what guarantee
does it exactly offer? We would need to know something about the similarity invariants
of C. An easy case would be when the minimal and characteristic polynomials are the
same (then there is only one invariant factor, and it is precisely the characteristic poly-
nomial). Then Theorem 1 tells us that the dimension of kerS is n. For random matrices,
the probability of this event is given by the following lemma.

Lemma 3 ([21], theorem 1). Let c(n, q) be the proportion of cyclic n × n matrices
(i.e., matrices for which the minimal polynomial is of degree n). We have:

1
q2(q + 1)

< 1− c(n, q) <
1

(q2 − 1)(q − 1)

And asymptotically, we have:

lim
n→∞ c(n, q) =

q5 − 1
q2(q − 1)(q2 − 1)

·
∞∏

i=1

(
1− 1

qi

)
For random matrices over F2, and for n big enough, the proportion of cyclic matrices
approaches 0.746. Unfortunately, C is hardly a random matrix. In odd characteristic it
is the product of two symmetric matrices, while in characteristic two it is the product
of two symmetric matrices with null diagonal (and these are in fact skew-symmetric
matrices). The product of two skew-symmetric matrices is very far from being random,
and it is in fact never cyclic, as the following result shows.

Theorem 2 ([6]). Let M be a non-singular matrix of even dimension. Then the two
following conditions are equivalent:

i) M can be written as the product of two skew-symmetric matrices .
ii) M has an even number of similarity invariants P1, . . . P2�, and P2i+1 = P2i+2.

Corollary 1. In characteristic two, if n is even and C is invertible, then kerS has di-
mension at least 2n.

Proof. By theorem 2, C has at least two invariants, both equal to the minimal polyno-
mial of C (which thus happens to be of degree n/2). Then theorem 1, point iii) shows
that kerS has dimension 2n. If C has more invariants, kerS can only be of higher di-
mension. 	


Corollary 1 shows that with a constant probability (when the two quadratic forms are
non-degenerate) dim kerS is greater than 2n, which sounds like bad news. When C is
not invertible, theorem 2 no longer holds (there are counter-examples), but what does
apparently still hold is the fact that the minimal polynomial of C has degree at most n/2,
and this would be sufficient to show that in all cases dim kerS ≥ 2n, in accordance
with Fig. 1.
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What we would in fact need to know is the probability that kerS is exactly of di-
mension 2n. Theorem 1 still connects this dimension to the similarity invariants of C,
even though C is not a uniformly random matrix. It seems plausible that C is unlikely to
have a very high number of similarity invariants, and that the most common situation is
that it has only two invariants (twice the minimal polynomial). We could not compute
explicitly this probability, and we could not find ways to obtain it in the available lit-
erature. We measured it experimentally and found 0.746 (after 105 trials) when q = 2.
This is strikingly close to the result brought by lemma 3 in the random case. Under the
conjecture that C has two invariant factors with this probability, then theorem 1 tells us
that in about 75% of the cases, dim kerS = 2n. The empirical probability seems to be
even higher, as shown by Fig. 1.

4.2 Solving Very Overdefined Quadratic Systems

The solution of the IP1S instance (1) is systematically the solution of a system Squad of
n2 quadratic equations. In the previous section, we argued that we can reduce this sys-
tem to n2 equations in 2n unknowns with high probability, and (much) more unknowns
with negligible probability. The system is so overdefined that it can almost be resolved
by linearization. Indeed, it has N2/4 equations in N unknowns. In practice, computing
a Gröbner basis of the ideal generated by Squad terminates very quickly, and allows to
recover the actual solutions of the problem.

This last fact can be theoretically justified. It is well-known that Gröbner basis al-
gorithms [15,16] are more efficient on overdefined systems. The complexity of most
algorithms strongly depend on a parameter of the ideal called the degree of regularity.
Indeed, the cost of computing a Gröbner basis is polynomial in the degree of regularity
Dreg of the system when the ideal has dimension zero, i.e., when the number of solu-
tions is finite. The computation of a Gröbner basis essentially amounts to solve a system
of M sparse linear equations in M variables, where M is the number of monomials of
degree Dreg in N variables. The complexity of this process is roughly O

(
Nω·Dreg

)
,

with 2 < ω ≤ 3 the linear algebra constant, and N the number of variables of ideal
considered (in our case, N = 2n).

The behavior of the degree of regularity is well understood for “random” systems of
equations [3,4,5] (i.e., regular or semi-regular systems). It is conjectured that the pro-
portion of semi-regular systems on N variables goes to 1 when N goes to +∞. There-
fore, we can assume that for large N a random system is almost surely semi-regular.
This is to some extent a worst-case assumption, as it usually means that our system is
not easier to solve than the others. The coefficients of the Hilbert series associated with
the ideal generated by a semi-regular sequence of m equations in N variables coincide
with those of the series expansion of the function f(z) =

(
1− z2

)m
/(1 − z)N , up

to the degree of regularity. The degree of regularity is the smallest degree d such that
the coefficient of degree d in the series expansion of f(z) is not strictly positive. This
property enables an explicit computation of the degree of regularity for given values of
m and N .

Furthermore, the available literature readily provide asymptotic estimates of the de-
gree of regularity for semi-generic ideals of N + k or α ·N equations in N variables,
but unfortunately not for the case of α · N2 in N variables, which is the situation we



Practical Cryptanalysis of the Identification Scheme 485

Table 3. Degree of regularity of random with the same parameters as those occuring in our attack

n 2 3 4 5 6 7 8 . . . 16 . . . 32
N 4 6 8 10 12 14 16 . . . 32 . . . 64
m 4 9 16 25 36 49 64 . . . 256 . . . 1024

Dreg 5 4 3 3 3 3 3 . . . 3 . . . 3

are facing here. We thus tabulated in table. 3 the degree of regularity for semi-regular
systems of equations having the same number of equations and unknowns as those oc-
curring in our attack. From this table, we conclude that for any reasonable value of the
parameters, the degree of regularity will be 3, and thus computing a Gröbner basis of
Squad should have complexity at mostO

(
n9
)
. In practice, the maximal degree reached

by the F4 algorithm on our equations is two, which is even better.

4.3 Implementation

We demonstrated that the algorithm described in this section terminates in timeO
(
n6
)

on a constant fraction of the instances. This reasoning is backed up by empirical evi-
dence: we implemented the algorithm using the computer algebra system MAGMA [9].
Solving the equations of Squad is achieved by first computing a Gröbner basis of these
equations for the Graded-Reverse Lexicographic order using the F4 algorithm [15], and
then converting it to the Lexicographic order using the FGLM algorithm [14]. This im-
plementation breaks the random instances of IP1S in very practical time. For instance,
Challenges A and C are solved in a few seconds. Random instances with n = 24, u = 2
require about a minute. Challenge E takes about 10 minutes, but the dominating part
in the execution of the algorithm is in fact the symbolic manipulation of polynomials
required to write down the equations of Squad. Actually solving the resulting quadratic
equations turns out to be easier than generating them. We never generated a random
instance that we could not solve with our technique, for any choice of the parameters.

There are only public parameter sets, and no public challenges to break, so we un-
fortunately cannot provide the solution of an open challenge to prove that our algorithm
works. However, the source code of our implementation is available on the webpage of
the first author.

5 Cryptanalysis of Cubic IP1S

In this section, we focus on the case where a and b are composed of a single cubic
polynomial. We assume that a and b are given explicitly, i.e.:

a =
n∑

i=1

n∑
j=i

n∑
k=j

Ai,j,k · xixjxk, b =
n∑

i=1

n∑
j=i

n∑
k=j

Bi,j,k · xixjxk.

As already explained, we can restrict our attention to the homogenous case. The tech-
niques developed previously for the quadratic case cannot directly applied in this
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setting. Indeed, the differential is no longer a bilinear mapping, and then there is no
obvious linear equations between the coefficients of a solution and those of its inverse.
However, we can combine the use of the differential together with the Gröbner basis
approach proposed in [17]. We denote by S0 = {s0

i,j}1≤i,j≤n a particular solution of
IP1S between a and b, i.e., it holds that b = a ◦ S0. For all vectors x,y ∈ (Fq)

n, we
have:

Da(S0 · x,y) = Db(x, S−1
0 · y).

a and b being of total degree 3, the coefficients of S0 and S−1
0 appear with degree two in

the expression of Da and Db above. Let R be the ring K[s1,1, . . . , sn,n, u1,1, . . . , un,n].
We consider the algebraAs of all n×n matrices over R. Let S = {si,j} and U = {ui,j}
inAs be symbolic matrices. We denote by Ia,b the ideal generated by all the coefficients
in R of the equations:

Da(S ·x,y)−Db(x, U ·y) = 0, U ·S−1n = 0n, S ·U−1n = 0n.

It is easy to see that U = S−1
0 and S = S0 is a particular solution of this system, and

also a solution of IP1S between b and a. Our goal is to provide an upper bound on the
maximum degree reached during a Gröbner basis computation of Ia,b.

We prove here that Dreg = 2 for Ia,b under the hypothesis that we know one row
of a particular solution S0, i.e., we assume then that we know the following ideal J =〈
s1,j − s

(0)
1,j | j = 1, . . . , n

〉
.

Theorem 3. The degree of regularity of Ia,b+J is 2. Therefore, computing a Gröbner
basis of this ideal takes time O

(
n6
)
.

Proof. We use the fact that the degree of regularity of an ideal is generically left in-
variant by any linear change of the variables or generators [29]. In particular, we con-
sider the ideal I ′a,b generated by all the coefficients in K[x1, . . . , xn, y1, . . . , yn] of the
equations:

Da(S0(S+In)x,y)−Db(x, (U+In)S−1
0 y) = 0, U ·S = 0n, S·U = 0n.

It is clear that I ′a,b is obtained from Ia,b by replacing S (resp. U ) by S0(In + S) (resp.

(U +In)S−1
0 ). Thus, the degree of regularity of I ′a,b and Ia,b are equal. Using the same

transformation, the ideal J becomes

J ′ = 〈s1,j | j = 1, . . . , n〉 .

We now estimate the degree of regularity of the ideal I′a,b + J ′. For a reason which
will become clear in the sequel, it is more convenient to work with I′a,b + J ′. In what
follows, F will denote the generators of I′a,b +J ′. We will show that many new linear
equations appear when considering equations of degree 2. To formalize this, we intro-
duce some definitions related to the F4 algorithm [16]. In particular, we will denote by
Id,k the linear space generated during the k-th step of F4 when considering polynomials
of degree d.
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Definition 1. We have the following recursive definition of Id,k:

Id,0(F ) = VectK (F )
Id,1(F ) = VectK (si,jf | 1 � i, j � n and f ∈ Id,0(F ))

+VectK (ui,jf | 1 � i, j � n and f ∈ Id,0(F ))
Id,k(F ) = VectK (si,jf | 1 � i, j � n and f ∈ Id,k−1(F ) and deg(f) ≤ d− 1)

+VectK (ui,jf | 1 � i, j � n and f ∈ Id,k−1(F ) and deg(f) ≤ d− 1) .

Roughly speaking, the index k is the number of steps in the F4/F5 [16] algorithm to
compute an element f ∈ Id,k(F ). We show that I2,1(F ) contains exactly n2+2n linear
equations. This means that we have already many linear equations generated during the
first step of a Gröbner basis computation of F .

Lemma 4. I2,1(F ) contains the following linear equations:

{u1,j | j = 1, . . . , n}. (4)

Proof. From the first row of the following zero matrix S · U we obtain the following
equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s1,1 u1,1 + s1,2 u2,1 + s1,3 u3,1 + · · ·+ s1,n un,1 = 0,

s1,1 u1,2 + s1,2 u2,2 + s1,3 u3,2 + · · ·+ s1,n un,2 = 0,

s1,1 u1,3 + s1,2 u2,3 + s1,3 u3,3 + · · ·+ s1,n un,3 = 0,

· · ·
s1,1 u1,n + s1,2 u2,n + s1,3 u3,n + · · ·+ s1,n un,n = 0

Using the equations s1,j = 0 from the ideal J ′, we obtain then u1,1 = 0, u1,2 =
0, . . . , u1,n = 0. 	

We can also predict the existence of other linear equations in I2,1(F ).

Lemma 5. For all (i, j) ∈ {1, . . . , n}2 the coefficient of y1yixj in Da(S0(S +
In)x,y) − Db(x, (U + In)S−1

0 y) is a non zero4 linear equation modulo the equa-
tions of the ideal J ′ and (4). Among these equations, there are n which depend only of
the variables {sk,� | 1 ≤ k, � ≤ n}.
Proof. We consider the coefficient of the monomial m = y1yixj in the expression

Δ = Δa −Δb = Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y).

Since the monomial m is linear in xj it is clear that the corresponding coefficient in
Δa = Da(S0(S + In)x,y) is also linear in the variables si,j ; moreover this coefficient
is non zero. We have now to consider the coefficient of m in Δb. Since Db(x,y) is the
differential of an homogenous polynomial of degree 3 we can always write:

Db(x,y) =
n∑

i=1

n∑
j=i

�i,j(y1, . . . , yn)xixj +
n∑

i=1

qi(y1, . . . , yn)xi (5)

4 More precisely, generically non zero.
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where �i,j (resp. qi) is a polynomial of degree 1 (resp. 2). Consequently, the coefficient
of m in Db is also the coefficient of y1yi in qj((U + In)S−1

0 y). That is to say, in
qj(y) we have now to replace y = (y1, . . . , yn) by ((U + In)S−1

0 y). Thus, modulo the
equations of the ideal J ′ and (4), we can write the product ((U + In)S−1

0 y) as

=

⎛⎜⎜⎜⎜⎝
y1
...
...

yn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
u2,1 · · · · · · u2,n

... · · · · · ·
...

un,1 · · · · · · un,n

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
y1
...
...

yn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∗ ∗ ∗ ∗
(∗u2,1 + · · ·+ ∗u2,n) · · · · · · (∗u2,1 + · · ·+ ∗u2,n)

... · · · · · ·
...

(∗un,1 + · · ·+ ∗un,n) · · · · · · (∗u2,1 + · · ·+ ∗un,n)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

...
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

⎞⎟⎟⎟⎠
Hence the coefficient of y1yi in qj((U + In)S−1

0 y) is linear in the variables uk,l when
i �= 1 and the coefficient of y2

1 is a constant. 	


To summarize:

Lemma 6. I2,1(F ) contains exactly n2 + 2n linear equations.

Proof. In I2,1(F ), we have n linear equations from lemma 5, n linear equations from
the very definition of J ′, and n2 linear equations from lemma 5 	


As explained before, we obtain n2 +2n linear equations for I2,1(F ). However, we have
2n2 variables. So, we have to consider I2,2(F ), i.e., the equations generated at degree
2 during the second step. Thanks to lemma 6, we can reduce the original system to a
quadratic system in 2n2 − (2n + n2) = (n − 1)2 variables. W.l.o.g we can assume
that we keep only the variable ui,j where 2 ≤ i, j ≤ n. Let F ′ be the system obtained
from F after substituting the 2n + n2 linear equations of lemma 6. All the monomials
in K[x1, . . . , xn, y1, . . . , yn] of Da(S0(S + In)x,y)−Db(x, (U + In)S−1

0 y) have the
following shape:

xiyjyk or yixjxk with 1 ≤ i, j, k ≤ n.

Hence the number of such monomials is 2nn(n+1)
2 = n2(n + 1) ≈ n3, which implies

that the number of equations in F ′ is also n3.
Thanks to this remark, we will now prove that we can linearize F ′. Let T (F ′) be the

set of all monomials occurring in F ′. We can assume that T (G′) = [t1 < t2 < · · · <
tN ]. It is important to remark that t1 = u2,2 up to t(n−1)2 = un,n are in fact variables.
Now, let M be the matrix representation of G′ w.r.t. T (G′). Since we know precisely
the shape of the equations from the proof of lemma 5, it is possible to establish that:
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1. most of the equations are very sparse, namely each equation contains about n2

non-zero terms.
2. all the variables t1, . . . , t(n−1)2 occur in all the equations.

After a Gaussian elimination of the matrix M , we obtain the following shape:

M̃ =

⎡⎢⎢⎢⎢⎣
1(n−1)2 0 0 0

0 × · · · · · ·

0 × . . .
...

0 × · · · . . .

⎤⎥⎥⎥⎥⎦
Hence, we obtain after a second step of computation in degree 2 the equations u2,2 =
· · · = un,n = 0. This means that after 2 steps of computation at degree 2, we obtain
(n − 1)2 + 2n + n2 = 2n2 linear equations in 2n2 unknowns. This explains why
the maximum degree reached during the Gröbner basis computation of I′a,b + J ′ is
bounded by 2, and concludes the proof of theorem 3. 	


5.1 Application to the Linear Inhomogeneous Case

If c = 0 in equation (1), and if a has a non-trivial homogeneous component of degree
one, then looking at the homogeneous component of degree one yields the image of S
on one point. We are then in a situation where theorem 3 is applicable, and S can be
determined though a Gröbner basis computation which terminates in time O

(
n6
)
.

5.2 Implementation and Application to the Other Cases

All the other cases reduce to the linear homogeneous case, as mentioned in section 2.
In this setting, the problem is that we do not have enough knowledge on S to make the
Gröbner basis computation efficient. A simple idea would be to guess a column of S
then compute the Gröbner basis. This approach has complexityO

(
n6 · qn

)
as explained

before. It is possible to reduce this complexity by a factor of q, by discarding guesses
for the column of S that yields different values of a and b on the corresponding points.

The biggest proposed cubic IP1S challenge (Challenge C in fig. 2) has u = 1, n = 16
and q = 2. Given one relation on S, the computation of the Gröbner basis takes 90
seconds on a 2.8Ghz Xeon computer using the publicly available implementation of
F4 in MAGMA. Since this has to be repeated 215 times, the whole process takes about
one CPU-month (and can be parallelized at will). For challenge D, the Gröbner basis is
computed in 0.1 second, and the whole process takes about 2 hours.

5.3 An Interesting Failure

We conclude this section with a simple idea that could have lead to an improvement,
by efficiently giving a relation on S, but which fails in an interesting manner. Let us
assume that a and b are homogeneous, and that c = 0 (in that setting, if c �= 0, then c
can be retrieved following the observation of [24]). Let us denote by Za (resp. Zb) the
set of zeroes of a (resp. b). Because of lemma 1, and since S is linear, we have:
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S

(∑
x∈Za

x

)
=
∑
y∈Zb

y

This yields a relation on S, which is enough to use theorem 3. a and b may be assumed
to have about qn−1 zeroes. Finding them requires time O (qn). The complexity of the
attack could thus be improved to O

(
n6 + qn

)
. Surprisingly, this trick fails systemat-

ically, and this happen to be consequence of the Chevalley-Warning theorem [10,46].

Lemma 7. The sum of the zeroes of a cubic form on 5 variables or more over Fq is
always zero.

Proof. Let us consider the elements of Za having α as their first coordinate, and let us
denote by nα their number. These are in fact the common zeroes of (a, x1 −α). By the
Chevalley-Warning theorem [10,46], if a has at least 5 variables, then the characteristic
of the field divides nα. Therefore, their sum has zero on the first coordinate. Applying
this result for all values of α shows that the sum of zeroes of a has a null first coordinate.
We then just consider all coordinates successively. 	


6 Conclusion

In this paper, we present algorithms for the IP problem with one secret for two ran-
dom quadratic equations and one cubic equation. As already explained, there are the
most cryptographically relevant instances. Moreover, we explain the complexity, suc-
cess probability and give sufficient conditions so that the algorithms work. We combine
the use of the differential and the computation of Gröbner bases of very overdefined
systems. All the proposed IP1S challenges can be broken in practice by the technique
we describe, as the following table shows.

Challenge Attack time on one core

A 3 seconds
B 1 month
C 0 seconds
D 1 hours
E 3 minutes

In view of these results, we conclude that Patarin’s IP1S-Based identification scheme
is no longer competitive with respect to others combinatorial-based identification
schemes [42,43,44,45].
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