
Chapter 6

Physical Optimization

Abstract Different algorithms exist to compute the result of a logical operator like

AND, OPT, or SORT. A physical operator implements one of the algorithms to

compute the result of a logical operator. The different physical operators sometimes

have different constraints on the input data like that the input data must be sorted, or

are faster than others for special types of input data, for example, when the input

data fit into main memory. The context of an operator can be described by the

estimations of properties of its input data. For each (logical) operator in the

operatorgraph, physical optimization aims to choose the physical operator with

the best estimated execution times in the operator’s context.

As well as describing the physical operators, we in this chapter present our new

approaches to efficient RDF data management and join optimization for small

datasets and for large-scale datasets with over one billion triples.

For small datasets, where the data can be indexed in main memory, in-memory

indices can significantly speed up query processing because (after loading the data)

no disk accesses need to be done for query processing. B+-trees are optimized for

disk indices of large-scale datasets, as they are optimized for blockwise sequential

accesses of disks. For main-memory indices, hash indices are preferable as an index

access can be done in constant time, as only a hash function must be applied to the

key to retrieve the (main memory) address of the indexed element. Therefore, we

use hash indices to manage small RDF datasets. Based on the triple nature of RDF

data, we create seven hash indices in order to retrieve in-memory RDF data quickly.

On the basis of the SPARQL-specific properties and the seven indices, we develop a

new, efficient approach to computing join by dynamically restricting triple patterns.

A performance evaluation demonstrates that the new approach outperforms other

state-of-the-art in-memory databases.

Since the Semantic Web datasets are becoming increasingly large, developing

efficient techniques to speeding up querying large-scale Semantic Web data is a key

issue for Semantic Web applications. When data are already sorted, from relational

database research, merge joins are known to be the fastest join algorithms on large-

scale data. Therefore, recent approaches focus on the presorting of Semantic Web

data during index construction, and thus the fast merge join can be used without a

sorting phase at runtime for some joins. When data for succeeding joins become

unsorted, the hash join is typically used. In this chapter, we propose a sorting
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numbering scheme for large RDF datasets, based on which we can fast sort any

intermediate and final querying results. Applying our sorting numbering scheme, all

joins can be computed using the merge join with a fast sorting phase. Besides being

a significant benefit to merge joins, our fast sorting technique can also remarkably

speed up the elimination of duplicates. Our experiments show that a merge join

using our fast sorting technique outperforms greatly the hash join and that our

sorting numbering scheme integrated into any index approaches significantly

speeds up querying large-scale Semantic Web data.

6.1 Motivation

Semantic Web ontologies and RDF knowledge bases are becoming increasingly

large. The examples of large RDF data with millions and even billions of facts

include the UniProt comprehensive catalogue of protein sequence, function, and

annotation data (Swiss Institute of Bioinformatics 2009), the RDF data extracted

from Wikipedia (Auer et al. 2007), the Princeton University’s WordNet (Assem

et al. 2006), and the Billion Triples Challenge (Semantic web challenge 2009).

Examples of other RDF data include RSS 1.0 (Beged-Dove et al. 2001) and FOAF

(Brickley and Miller 2007). Therefore, an important research task is developing

efficient approaches to processing SPARQL queries over very large RDF data.

An amount of work (e.g., Chong et al. 2005; Guha 2010; Harris and Gibbins

2003; Pan and Heflin 2003; Volz et al. 2003; Wilkinson 2006) maps the RDF data

format to the format of relational databases and SPARQL queries to SQL queries,

thus leveraging the proved database technologies. However, the relational optimi-

zations do not specialize on the data model of RDF triples and the usage of

SPARQL triple patterns. Furthermore, this kind of approach also fails to handle

very large RDF databases (see Abadi et al. 2007; Neumann and Weikum 2008,

2009; Weiss et al. 2008).

As well as the common and similar properties between the RDF data and the

relational tables, and between SPARQL and SQL, RDF and SPARQL also have

their own properties. Relational optimization techniques do not specialize on the

data model of triples and the usage of triple patterns in query languages. These

RDF- and SPARQL-specific features have attracted the attention and interests of

researchers to develop new optimization techniques, for example, Abadi et al.

(2007) and its generalization in Weiss et al. (2008) and Neumann et al. (2008).

Weiss et al. (2008) and Neumann and Weikum (2008) use six indices according to

the six possibilities SPO, SOP, PSO, POS, OSP, and OPS to order RDF triples. For

example, the SPO collation order regards the subject (S) of an RDF triple as

primary order criterion, the predicate (P) as secondary, and the object (O) as tertiary

order criterion. However, (Weiss et al. 2008; Neumann and Weikum 2008) still

apply conventional relational merge join algorithms to compute the joins of triple

patterns. These contributions do not fully exploit RDF- and SPARQL-specific

properties for optimizations of, for example, in-memory join computation, which
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are also studied in this work. The approaches (Abadi et al. 2007; Neumann and

Weikum 2008, 2009; Weiss et al. 2008) avoid costly self-joins in one large triple

table and can handle quite large-scale Semantic Web data. For the first several joins,

the fast merge joins can be directly applied on already sorted data. However, in

general, not all joins can be computed with the merge join algorithm without

requiring extra sorting phases at runtime. This happens already for nonbushy

queries with only three triple patterns, for example, (?a < origin >
<DLC>.), (?a < records > ?c.) and (?c < type > ?b.). When

data become unsorted for succeeding joins, hash joins are used in these approaches.

From the relational database research, hash joins are known to be the fastest

approach to computing joins, which do not require sorted input data. Hash joins

are very efficient and cheap if at least one of two operands of the join can fit into

main memory. However, when querying the very large Semantic Web databases,

one cannot assume that the data for hash joins can always or even often fit into main

memory.

In this chapter, we suggest a sorting numbering scheme for efficiently querying

large-scale Semantic Web databases. On the basis of our sorting numbering

scheme, we develop a fast sorting approach. When the data for succeeding joins

become unsorted and are too large to fit into memory, using the merge joins

with our fast sorting technique is more efficient than using a hash join on the

unsorted data. Furthermore, our fast sorting technique is of great benefit to the

queries, which require duplicate elimination. The sorting numbering scheme can

be integrated into any index approaches like the ones of (Neumann and Weikum

2008, 2009; Weiss et al. 2008) to speed up querying the very large Semantic Web

databases.

Overall, the contributions of our work to large-scale datasets include as follows:

l A sorting numbering scheme based on the RDF- and SPARQL-specific proper-

ties for managing and efficiently querying large-scale Semantic Web databases
l A fast sorting technique based on the sorting numbering scheme for computing

any joins using the fast merge join approach, and for eliminating duplicates

efficiently
l Integration of our sorting numbering scheme into index approaches for speeding

up querying very large Semantic Web data
l The idea of using integer identifiers of RDF terms as presorting numbers for fast

sorting intermediate and final results of queries, such that our approach of sorting

numbering can efficiently support updates and does not need any additional

storage space
l A concept-proof prototype, including the implementations of our sorting num-

bering schemes and fast sorting algorithms, reimplementations of several exist-

ing approaches, and integration of our approach into these existing approaches,

in order to compare different approaches
l A performance analysis, which demonstrates that the application of our fast

sorting technique significantly speeds up the join computation and duplicate

elimination when querying large-scale Semantic Web databases

6.1 Motivation 105



Besides increasingly larger datasets, the main memory sizes of typical computer

configurations increase continually. Therefore, more and more datasets used in

real-world applications can be managed completely in main memory, and thus also

in-memory databases become increasingly important. Just applying optimizations

for large-scale datasets in in-memory databases lead to suboptimal query proces-

sing, that is, special optimizations using the elements in main memory that can be

directly addressed away from constraints of sequential disk accesses can boost

query evaluation. Our approach for in-memory databases joins triple patterns

by dynamically restricting triple patterns, that is, joining one triple pattern to the

solution of the previous triple pattern or of the join of previous triple patterns. In

order to compute the join of two triple patterns, we first compute one triple pattern

and then use the resultant data to replace the corresponding variables in another

triple pattern. In this way, the join computation only involves retrieving from the

given RDF data. Therefore, we only need to create seven hash indices (S, SP, SPO,

SO, P, PO, and O using keys on the subject (S), predicate (P), and/or object (O)) on

the original RDF data in order to fast retrieve data specified by any triple pattern. In

comparison with the indices described in (Weiss et al. 2008; Neumann andWeikum

2008), where accessing the index requires time-consuming searches in B+-trees and

sorted lists, using our indices, we can access the result of any triple pattern with one
index access in main memory.

The contributions of this chapter for in-memory databases include as follows:

l An approach to manage and access RDF data efficiently using seven indices
l An approach to efficiently compute joins for in-memory database engines
l An experimental evaluation, which shows that our approach is faster than in-

memory adaptations of disk-based approaches (e.g., Weiss et al. 2008) and other

existing state-of-the-art in-memory engines for SPARQL processing

6.2 Related Work

Several index approaches are developed to manage RDF data for efficient

query processing. Abadi et al. (2007) suggest a vertical partitioning approach

to storing RDF data. In this scheme, the RDF triples are stored in two-column

tables, and each table manages one property and contains a subject and an

object column. Each table is sorted by subject, and thus particular subjects

can be accessed quickly, such that fast merge joins can be applied while joins

are processed on the subject. Abadi et al. (2007) employ a column-oriented

DBMS (e.g., Stonebraker et al. 2005) to manage these property tables in order

to leverage its benefits of compressibility and performance. The property

tables in (Abadi et al. 2007) have considerable advantages for the SPARQL

triple patterns, where the predicate is a RDF term but not a variable. However,

this approach does not sufficiently support the efficient processing of the

(continued)
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triple patterns, where the predicate is a variable (see Neumann and Weikum

2008, 2009; Weiss et al. 2008).

For efficient processing of more general queries, Hexastore (Weiss et al.

2008) and RDF3X (Neumann and Weikum 2008, 2009) use six indices

corresponding to the six collation orders SPO, SOP, PSO, POS, OSP, and

OPS to manage RDF triples. Depending on which positions in a triple pattern

contain RDF terms (e.g., the subject and the object), one of the indices (e.g.,

SOP) is used to efficiently retrieve the data by using a prefix search. Using

these collation orders, some joins can be computed using the fast merge join

approach over sorted data. In comparison, our approach optimizes the evalu-

ation of remaining joins, when data become unsorted.

For every collation order, for example, SPO, (Weiss et al. 2008) proposes

to associate a subject key si to a sorted vector of ni property keys, {p
i
1, p

i
2, . . .,

pini}. Each property key pij is, in its turn, linked to an associated sorted list of
ki,j object keys. These object lists are shared in indices for corresponding

collation orders; for example, the object lists for SPO are also shared by the

index for PSO. RDF3X (Neumann and Weikum 2008, 2009) uses a more

elegant solution to store data sorted according to the six collation orders:

employing just B+-trees and prefix searches and thus gaining a simpler and

faster index structure than (Weiss et al. 2008).

RDF3X (Neumann and Weikum 2008, 2009) and Hexastore (Weiss et al.

2008) use sophisticated data structures to compress their index structures.

RDF3X (Neumann and Weikum 2008, 2009) also supports additional special

aggregated indices for fast processing of a special kind of queries. However,

important features of SPARQL like data types are currently not supported by

RDF3X. Neumann and Weikum (2008, 2009) also describe some cardinality

estimation techniques of SPARQL join results and a sophisticated plan

generator. Furthermore, (Neumann and Weikum 2009) introduce the Side-

ways Information Passing (SIP) strategy for optimizing query processing.

If meta nodes are ignored, the approaches described in (Harth and Decker

2005) and in (Groppe et al. 2009a) use the seven indices S, SP, SPO, SO, P,

PO, and O for retrieving the result of a triple pattern within one index access.

When B+-trees and prefix searches are used, then the number of indices can

be reduced to four (accesses to the S and SP indices can be answered by a

prefix search in the SPO index; accesses to the P index by the PO index).

While (Harth and Decker 2005) show that four B+-tree indices work well for

disk-based Semantic Web applications, (Groppe et al. 2009a) demonstrate

that seven hash indices perform well for in-memory SPARQL engines.

(Groppe et al. 2009a) first compute one triple pattern and then use the

resultant values to replace the corresponding variables in the following triple

patterns. In this way, the join computation only involves the retrieving from

the given RDF data, and thus the 7 indices on the original data are enough,

and neither sorting nor hashing of the solutions are needed. However, this join

(continued)
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approach becomes inefficient when the data do not fit into memory any more

because it causes extra disk accesses.

The SPARQL-engine Kowari (Wood et al. 2005) envisions statement-

based queries. A statement-based query lacks one or two parts of a triple,

and its answer is a set of resources that complement the missing parts. If meta

nodes are ignored, the number of required indices of the Kowari solution is 3,

defined by the three cyclic orderings SPO, POS, and OSP. Since the other

three indices SOP, PSO, and OPS are missing, Kowari cannot efficiently

process general queries.

Other SPARQL engines such as Jena (see Wilkinson 2006), 3store (Harris

and Gibbins 2003), DLDB (Pan and Heflin 2003), KAON (Volz et al. 2003),

Oracle (Chong et al. 2005), and rdfDB (Guha 2010) utilize a traditional

relational database or Berkeley DB as their underlying persistent data store

(Matono et al. 2005). Most of these SPARQL engines store RDF triples

directly in relational or hash tables, and thus simple statement-based queries

can be satisfactorily processed by such systems. However, the conventional

approaches are not efficient for more complex queries (Matono et al. 2005)

involving, for example, multiple filtering steps.

Some systems such as Jena (Wilkinson 2006) attempt to create relational-

like property tables out of RDF data, and these tables gather together infor-

mation about multiple properties over a list of subjects. Still, these schemes

do not perform well for queries that need to combine data from several tables

(Abadi et al. 2007). A relational-like structure on RDF data results in a sparse

representation with many NULL values in the formed property tables.

Handling such sparse tables, as opposed to denser ones, requires a significant

computational overhead (Abadi et al. 2007).

Angles and Gutiérrez (2005) and Hayes and Gutiérrez (2004) deal with the

possibility of storing RDF data as a graph, but do not sufficiently address the

scalability questions either. Matono et al. (2003) and Kim et al. (2005) propose

a path-based approach for managing RDF data and store subgraphs into

distinct relational tables. These systems do not provide the scalability neces-

sary for querying large-scale data. As well as (Neumann and Weikum 2008,

2009; Bernstein et al. 2007) also use selectivity estimation techniques for

query optimization. However, this approach focuses on small RDF graphs,

which fit into main memory, and thus also faces scaling problems. Liarou et al.

(2007) investigate SPARQL extensions for handling continuous queries.

6.3 Indexing

An index stores key-value pairs in such a datastructure that a value can be efficiently

retrieved for a given key. Query processing is often speeded up by storing the input

data in indices and by accessing the results of query subexpressions using these
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indices. In the following subsections, we describe in-memory and disk-based

indices for the processing of SPARQL queries.

6.3.1 Building In-Memory Indices

In this section, we first focus on in-memory indices, where the input data fits intomain

memory. Inmainmemory, spread elements can be addressed directly via, for example,

hash tables and we do not need to consider sequential disk-based accesses. We

describe the usage of seven indices in order to retrieve the result of any triple pattern

with one index access. RDF is a set of triples (s, p, o)2(I [ B) � I � (I [ B [ L).
Triple patterns of SPARQL queries contain either constant values or variables, for

example, (?article rdf:type bench:Article). In order to access the result of any triple

pattern (s p o) efficiently, we use the sequence of constant values in triple patterns as
keys to create indices. Therefore, for any RDF data and SPARQL queries, we only

need to construct seven indices using s, p, o, sp, so, po, and spo as keys, respectively.
The seven indices are enough for any triple pattern in SPARQL queries to retrieve

RDF data quickly.As our experiments show, constructing andmanaging seven indices

is also practical even for large RDF data, which still fit into main memory.

Example 1 (Index with sp as key). The following RDF graph is the input RDF graph:

D={ (:article1, rdf:type, bench:Article), 
(:article1, rdf:type, bench:JournalArticle), 
(:article1, dc:creator, :person1),
(:inproc1, rdf:type, bench:Inproceedings)  }

The following table presents the index with sp as key and the triples for the

corresponding key:

Key sp Triples

:article1 rdf:type {(:article1, rdf:type, bench:Article),
(:article1,rdf:type,bench:JournalArticle)}

:article1 dc:creator {(:article1, dc:creator, :person1)}
:inproc1 rdf:type {(:inproc1,rdf:type,bench:Inproceedings)}

If we use indices, which allow a prefix search like supported by B+-trees but not

by hash tables, then we can reduce the number of indices to four, as a s-index access
and a sp-index access can be answered by a prefix search on the spo index, and a

p-index access by a prefix search on the po index. While B+-trees or variants of

B+-trees seem to be the best choice for indices of disk-based approaches (see Weiss

et al. 2008; Neumann and Weikum 2008), our experimental evaluation shows that

hash tables are the best choice for in-memory databases, as one index access can be

done in constant time.

The seven indices are generated only once when reading the input data and can

be afterward used for the evaluation of any SPARQL query during the lifetime of
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the in-memory database engine process. As we will see later on, for joining the

results of any triple patterns, we need only these seven indices.

6.3.2 Building Disk-Based Indices

Most Semantic Web query evaluators use B+-trees to store large-scale RDF datasets

on disks (e.g., Weiss et al. 2008; Neumann and Weikum 2008, 2009). B+-trees can

be built very efficiently from a sorted list of data by avoiding expensive node

splitting. Among a number of sorting algorithms, merge sort scales well for very
large data and performs especially well for external sorting. Therefore, our

SPARQL engine uses the merge sort technique to sort data for constructing indices

efficiently. In the merge sort algorithm, our SPARQL engine uses a sort&merge-

heap (Groppe and Groppe 2010) with replacement selection (Friend 1956) in order

to increase the size of the initial runs. We now describe the internals of our

SPARQL engine for large-scale datasets. Note that the internals of other SPARQL

engines may slightly differ, but the main principles are the same. Three different

types of indices are created and maintained in our SPARQL engine: dictionary

indices, evaluation indices, and histogram indices.

6.3.2.1 Dictionary Indices

Semantic Web query evaluators such as RDF3X (Neumann and Weikum 2008,

2009) and Hexastore (Weiss et al. 2008) as well as our SPARQL engine use

dictionary indices to map RDF terms into integer ids. One advantage of ids is

lower space requirements in the evaluation indices storing the input RDF triples as

an integer is stored instead of a possibly large string. Furthermore, more space can

be saved by avoiding storing leading zero bytes and using difference encoding,

which we will explain in detail in the section about the evaluation indices. Solutions

using ids consume less space such that the memory footprint is smaller and/or more

solutions can be processed without swapping to hard disks and thus improving the

performance. Using ids have disadvantages in seldom cases when operations like

sorting or relational comparisons like <, <¼, >¼, and > require the RDF terms

instead of the ids causing high costs for large intermediate results because of the

materializations of the RDF terms. Furthermore, displaying the final query result

has also high costs whenever the query result is large. However, the advantages

typically outweigh the disadvantages of using ids for large-scale datasets.

One dictionary index maps RDF terms into integer ids; one translates integer ids

back into RDF terms. The dictionary indices do not fit into main memory for large-

scale datasets such that our SPARQL engine uses B+-trees for the dictionary

indices. When storing RDF terms in the dictionaries, we use difference encoding

in order to save storage space: we determine common left substrings of the current
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and previously stored strings and store only the length of the common left substring

together with the remaining right substring of the current string. Furthermore, after

transforming id values of query results back to RDF terms, we cache the RDF terms

with their ids together in order to avoid multiple materializations. We use the

strategy of least recently used (LRU) caches for the accesses to the B+-tree nodes

in order to further improve the performance of these materializations.

The dictionary indices are used to transform RDF triples into id triples, which

are consisting of ids instead of RDF terms and are then stored in the evaluation

indices: Id triples are obtained from RDF triples by using the dictionary index from

strings to ids and mapping the RDF terms of the subject, predicate, and object from

the triples to their ids. If many RDF triples must be transformed into id triples like

when importing a large dataset into the database, then it is not efficient to query the

dictionary index for every single RDF term accessing a path from the root to a leaf

of the B+-tree for mapping RDF terms into ids. It is more efficient to use three

passes through the RDF triples, where first the subjects, then the predicates, and

finally the objects are transformed into ids. In each pass, the triples are first sorted

according to the component (subject, predicate, or object) to be transformed into

ids. Afterward, we iterate through the sorted RDF triples and simultaneously

through the sorted RDF terms of the dictionary index. We read RDF terms from

the dictionary index until we have found the entry for the current component of the

RDF triple and replace this component with the corresponding id. Afterward, we

read the next RDF triple and proceed as before. In this way, we only need one pass

through the sorted RDF triples to be imported and the dictionary index to transform

one component of the RDF triples into their ids. Furthermore, we can also use

SIP strategies as we have discussed when introducing B+-trees to increase the

performance during iterating through the dictionary index. Afterward, we sort our

(partly) transformed triples to be imported according to the next component and

replace their RDF terms with the corresponding ids like before until all components

are transformed into ids.

6.3.2.2 Evaluation Indices

These indices are used for the evaluation of SPARQL queries. They are constructed

from sorted id triples according to the six collation orders SPO, SOP, PSO, POS,

OSP, and OPS of RDF. Large-scale datasets are hard to manage without compres-

sion. Using (integer) ids instead of RDF terms already compresses the indices

much. We can compress such indices further by storing only the different compo-

nents of a triple in comparison to the last stored triple. For example, assuming

the collation order SPO and a last stored triple (<a>, <b>, <c>), we only need

to store the object <d> for a triple (<a>, <b>, <d>). Of course, we have to

additionally store two bits for distinguishing if all three components of a triple must

be stored, two components, or only one component. An integer id of an RDF term is

typically represented by four bytes. For small integer ids, some leading bytes of

these four bytes are zero. We can now store two bits for distinguishing if no, one,
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two, or three leading bytes are zero, and only store the bytes without leading zeros.

We further know that the id i1 of the triple’s object must be larger than the id i2 of

the last triple’s object in our example because of the SPO collation order. Therefore,

we only need to store the difference i1–i2, which may have more leading zero bytes.

However, for the object of triples, where numerical values and language-tagged

literals can occur, we must consider special RDF properties, which we explain in

the following paragraph:

In RDF data, typed literals like integer values of XML Schema can have

several representations, for example, 2 and +2. During query processing, they

are treated as value-equal integer values. Therefore, they should be assigned with

the same id. Otherwise, some processing, like the computation of join, might

create wrong results. However, the W3C test cases (Feigenbaum 2008) show that

the query results must contain the original representation. Similar remarks

also apply to language-tagged literals. For example, “Text”@DE and

“Text”@de are treated as equal values, but the original representation must

be maintained for the final result. Therefore, we additionally store an id, which

refers to the original representation in the index, additionally to the id for value-

equal literals, if necessary. Different representations of equal values are only

possible for typed literals and language-tagged literals, which can only occur in

objects of triples. Therefore, we only need to store an additional id for the objects

if the original representation differs from the indexed one. In comparison, the

original RDF3X prototype (Neumann and Weikum 2008, 2009) does not support

data types, and considers, for example, the same integer values 2 and +2 to be

two different literals.

Furthermore, every node in our B+-trees has an integer id, which allows us to

highly compress references to B+-tree nodes as well. Figures 6.1 and 6.2 present

the stored bits and bytes for a leaf in a B+-tree, when an id triple is stored (see

Fig. 6.1) or a reference to the next B+-tree node (see Fig. 6.2). Figure 6.3 presents

the stored bits and bytes for a B+-tree interior node, when a key in form of an id

triple with a reference to its B+-tree child node is stored. The last entry of a B+-tree

interior node contains only a reference to a B+-tree child node. For this last entry,

we use the same stored bits and bytes as presented in Fig. 6.2 for a B+-tree leaf:

We just store the reference to the B+-tree child node instead of the reference to the

next B+-tree leaf.

The original RDF3X prototype (Neumann and Weikum 2008, 2009) supports

additional special aggregated indices for fast processing a special kind of queries.

For example, the two triples (<a>, <b>, <C>) and (<a>, <b>, <D>) are

aggregated as (<a>,<b>,2) in the aggregated SP index in order to represent two

triples with a common subject <a> and a common predicate <b> (but with

different objects). The SP index can be used to fast retrieve the result of a triple

pattern <a> ?p ?o, if the variable ?o is neither further used nor occurs in the

final result. Considering that such cases occur seldom in real world and the

additional costs for maintaining the aggregated indices, aggregated indices are

not supported by our SPARQL engines.
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6.3.2.3 Histogram Indices

Our plan generator uses equi-depth histograms (Piatetsky-Shapiro and Connell

1984) for estimating the cardinality of results of triple patterns and for calculating

the overall cost of a plan. A histogram is created for a triple pattern and a specific

0 for entry contains id triple
1 for the reference to next B+-tree leaf node

How many leading components are the same in 
comparsion to the last stored triple?
00 all components are different
01 one leading component is the same
10 two leading components are the same
11 no last triple

0 to 4Bytes
for subject

0 to 4Bytes
for predicate

0 to 4Bytes
for object

0 to 4Bytes
for original

representation
of object

0 

0 or 2 bits for storing the number of  bytes necessary to 
store the difference of the three components and the
original representation of the object
00 = 1Byte, 01 = 2Bytes, 10 = 3Bytes, 11 = 4bytes

Header 6-12 Bits (1-2 Bytes)

0 for original representation
of object m

ust be stored
1 otherw

ise

Fig. 6.1 Entry for id triple in B+-tree leaf

Header
3 Bits

(1Byte)

1 to 4Bytes
for integer id of 

the next B+-tree leaf node

1 

0 for entry contains id triple
1 for the reference to next B+-tree leaf node

2bits for storing the number of bytes necessary to
store the integer id for the next B+-tree leaf node
00 = 1Byte, 01 = 2Bytes, 10 = 3Bytes, 11 = 4bytes

Fig. 6.2 Entry for integer id

for next B+-tree leaf node
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variable of it. Each interval in the histogram contains the number of the triples

allocated in this interval and the numbers of distinct values. In order to speed up the

generation of equi-depth histograms, we use a special B+-tree for each collation

order. In each inner node of this special B+-tree, we store the number of triples, the

number of distinct subjects, predicates, and objects, and three bits. The three bits

indicate whether the subject, predicate, or object of the first triple F in the subtree is

different from the triple before F.
Using this special B+-tree and especially its additional information, we can very

quickly find the corresponding information related to a triple pattern by not only

passing leaf nodes, but also jumping over whole subtrees. Therefore, histograms of

triple patterns can be constructed very efficiently from these histogram indices. This

is also shown by our experimental results. Figure 6.4 illustrates how to construct

the histogram for the variable ?v and the triple pattern (3, ?v, ?o) from

a histogram index. Since these additional B+-trees are only needed for efficiently

computing histograms, their updates can be delayed to the times with low workload.

Once a histogram has been calculated, it is stored in a separate index and can be

reused for the triple patterns with the same RDF terms and variables at the same

positions, but independent from the names of variables. While histogram computa-

tions using histogram indices need some seconds for large-scale datasets like the

one from the Billion Triples Challenge (Semantic web challenge 2009), reusing

a histogram by retrieving it from the separate index only consumes milliseconds.

Other contributions to Semantic Web databases do not use histogram indices:

(Weiss et al. 2008) do not use any histograms for query optimization, which leads to

inefficient query plans. Neumann and Weikum (2008) compute histograms using

How many leading components are the
same in comparsion to the last stored triple?
00 all components are different
01 one leading component is the same
10 two leading components are the same
11 no last triple

00 = 1Byte, 01 = 2Bytes, 10 = 3Bytes, 11 = 4bytes

0 to 4 
Bytes
for

subject

0 to 4 
Bytes
for

predicate

0 to 4 
Bytes
for

object

0 to 4Bytes
for original

representation
of object

0 

0 to 4Bytes
for B+-tree
child node

0 for entry contains id triple and B+-tree child node
1 for only reference to B+-tree child node

0 or 2 bits for storing the number of bytes necessary to
store B+-tree child node, the difference of the three components
and the original representation of the object

Header 8-14Bits (1-2Bytes)

0 for original representation
of object m

ust be stored
1 otherw

ise

Fig. 6.3 Entry for id triple and B+-tree child node in B+-tree inner node
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the evaluation indices, which is too slow for large datasets. Neumann and Weikum

(2009) precompute all possible joins facing problems with efficiency and cost

estimations behind joining only two triple patterns.

6.4 Pipelining Versus Materialization

Many physical operators can determine first solutions after some and not all input

data come in and can deliver these solutions early to its succeeding operators, which

is called pipelining. For the support of pipelining, an operator has to support the

iterator concept. The iterator concept requires the support of the methods open() for
starting the computation, next() to retrieve the first (just after an open() call) as well
as the next result, and close() to end computing and to free resources. The open()
method of an operator calls the open() methods of its operands. The next() method

gets solutions of the operator’s operands by calling their next() methods until

a solution can be determined, which is then returned. Thus, next() returns the

solutions of an operator one by one. The close() method calls the close() methods

of its operands before freeing its own resources.

The opposite materialization strategy first finishes the computation of an opera-

tor and determines the whole result and then proceeds to the next one. Few solutions

may fit into main memory, but a large number of solutions must be stored on disk.

Consequently, the costs for disk accesses slow down the performance. Contrary to

the materialization strategy, pipelining does not require any materialization of

intermediate results, as the solutions of operator results are computed one by one

on demand of the parent’s operator when calling the next() method avoiding huge

costs for disk accesses.

6.4.1 Pipeline-Breaker

Some operators like the Sort operator cannot start the computation until all the data

come in. These operators are called pipeline-breaker. Nevertheless, these operators
can still support the iterator concept by just reading all the input data after an open()
call, computing its result, and returning them one by one after next() calls. Thus, an
operator does not need to know if its parent’s operator is a pipeline-breaker or not

and can just use the iterators for accessing its input.

6.4.2 Sideways Information Passing

SIP passes information from one operand to the other sideways in the operator-

graph. For example, a merge join algorithm requires the input of its operands to be

116 6 Physical Optimization



sorted. Furthermore, if a solution A is read from one of the operands, then solutions

of the other operand are read by the merge join algorithm until a solution equal to or

larger than A is read. In a more intelligent way, we can pass A to the other operand

and the other operand may optimize retrieving a solution equal to or larger than A.
For this purpose, we extend the iterator concept for SIP, such that a next(lower-
Limit) method must be supported. next(lowerLimit) methods return a solution equal

to or larger than lowerLimit for sorted results. Note that this method has been

already introduced for prefix searches in B+-trees, such that index scans retrieving

the result of triple patterns are already optimized for processing next(lowerLimit)
method calls. Furthermore, the information lowerLimit may be passed not only

between the operands of an operator, but also to their operands, such that the

optimization potential is enormous.

6.5 Join Algorithms

We first review the traditional join algorithms Nested-Loop, Merge, Index, and

Hash Join. Afterward, we present our new approaches to join computation for the

in-memory and large-scale RDF databases.

6.5.1 Nested-Loop Join

The nested-loop join is one of the simplest join algorithms and performs well for

very small unsorted data. Therefore, this join algorithm is often used as part of other

more complex join algorithms like the hash join.

In its simplest form, the nested-loop join contains a nested loop iterating through

the solutions of its left and right operand. In each iteration, if the two solutions of the

left and right operands can be joined, the joined result is returned. Otherwise, the

loops proceed. Let R and S contain the solutions of its left and right operands,

joinable(r, s) be a function to check if r and s can be joined, and join(r, s) computes

the join between r and s. The following pseudo code presents the nested-loop join

algorithm:

FOR EACH s IN S DO
FOR EACH r IN R DO

IF(joinable(r, s)) {
OUTPUT join(r, s); 

}

The runtime complexity is O(|S|*|R|). If the results of both operands of a join do

not have any variables in common, then every solution of one operand must be

combined with every solution of the other operand; that is, the join degenerates to

a Cartesian product. Therefore, the worst case runtime complexity is O(|S|*|R|) for
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any join algorithm. However, the average runtime complexity for typical input data

is often better for other join algorithms up to linear complexity O(|S| + |R|) for
merge joins, which may be O(min(|S|, |R|)) or even better when using SIP strategies.

6.5.1.1 Iterator Version

In this subsection, we describe the iterator version of the nested-loop join algorithm.

We therefore present the pseudo code of the three methods open(), next(), and
close() here as follows:

open() {
R.open();
S.open();
s = S.next();

next() {

}

DO {
r = R.next();
IF(r == null){ // R is exhausted for the current r

R.close();
s = S.next();
IF(s==null){ // both R and S are exhausted!

return null;
{
R.open();
r = R.next();

}
} WHILE (!joinable(r, s));
RETURN join(r, s);

}

close(){
R.close();
S.close();

}

The new main ideas and principles of the other physical operators can be under-

stood from the materialization versions of these physical operators. Therefore and

due to simplicity of presentation, we will not present the iterator version for the other

physical operators and discuss only the version for the materialization strategy.

6.5.1.2 Block-Based Nested-Loop Join

Database systems usually work on pages, which are arrays of bytes with fixed

length (typically 8 kb). A page contains input data, metainformation, and solutions.

Pages are stored on disk and loaded into main memory (using a buffer manager) for

reading and manipulating. Solutions (and data) are typically organized in pages to
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be controlled by the buffer manager. The buffer manager holds frequently accessed

pages in main memory, such that the page(s) containing solutions (and data) may be

never (temporarily) stored on disk if they fit completely into main memory.

The design of some physical operators pays attention to the page-oriented

organization of data and optimizes the number of page accesses. These operators

assume that a part of the main memory with the size for m pages is available for

them.

The block-based nested-loop join reserves k pages for the result R of its first join

operand and thus m � k pages for the result S of its second join operand (see

Fig. 6.5). According to the iterator concept, the solutions of the join are computed

one by one after each call of next(). Thus, the join operator does not reserve any

page for the result of the join. However, the operator calling next() of the join may

reserve a page for the result of the join and may temporarily store the result on disk

if necessary.

The block-based nested-loop join works as follows (see Fig. 6.6): First of all, it

loads m � k pages of S and k pages of R into main memory and then joins the

m � k pages of S with the k pages of R using, for example, the “normal” nested-

loop join algorithm discussed in the previous subsections. Afterward, it loads the

next k pages of R into main memory and joins these k pages of R with the already

loaded m � k pages of S. The process is repeated until all pages of R are joined

with the first m � k pages of S. Note that in the last round � k pages are joined

with the firstm � k pages of S. The nextm � k pages of S are then loaded into main

memory and joined with R in the same way as the first m � k pages of S. The
process is repeated until all pages of R are joined one time with all pages of S, and
therefore whole R is joined with whole S.

We have an exercise at the book webpage http://www.ifis.uni-luebeck.de/

~groppe/SemWebDBBook/ for analyzing the number of pages accessed by this

variant of the nested-loop join.

After each round joining m � k pages of S, k pages of R are still in main

memory, which are then replaced with the first k pages of R to be joined with the

next m � k pages of S. An optimization of the presented block-based nested-loop

m-k
pages
for S

Main Memory:

k
pages
for R

Fig. 6.5 Reserving pages for

S and R in main memory
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join uses these k pages of R from the last round and joins them with the next m � k
pages of S before this optimization proceeds joining with the first k pages of R. In
this way, k pages are less loaded in each round (except of the initial round).

6.5.2 Merge Join

Let VL be the set of bound variables of the left operand of a join, and VR be the set of

bound variables of the right operand. We call the variables in VL \ VR the join
variables. The merge join requires the solutions of its operands sorted in the same

way according to its join variables. We assume that the input is sorted in descendant

order, such that the solutions of an operand are equal to or larger than the previous

solutions. Note that the merge join algorithm can be easily adapted to consume

sorted data in ascendant order by exchanging larger than comparisons in the pseudo

code given below with smaller than comparisons. For an example of the merge join

algorithm applied to the solutions of its operands, see Fig. 6.7. The merge join

algorithm first reads the solutions from both operands and checks if they are

joinable (i.e., the bound values of the join variables are the same). If they are not
joinable, the next solution of the operand with the smaller values is read, because

we are sure that the remaining solutions of the other operand are equal or larger

values according to the sort criterion and thus cannot be joined with the smaller

value. In the case that they are joinable, the merge join algorithm reads the next

solutions from both operands until the bound values of the join variables differ from

k k k

k k k

k
k

1 2 3 PS

kk k k

1.1 2.1 3.1

2.2 3.21.2

S:

R:

m-k
pages

m-k
pages

m-k
pages

m-k
pages

VI VI VI VI

V
I

Joins between blocks of S and R:

1 –1.1
1 –1.2
   …
1 –1.PR
2 –2.1
2 –2.2
   …
2 –2.PR
3 –3.1
3 –3.2
   …
3 – 3.PR
    …
PS – PS.1
PS – PS.2
     …
PS – PS.PR2.PR 3.PR1.PR PS.PR

PS.2

PS.1

Fig. 6.6 Block-based nested-loop join
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the first read solution. All the read solutions with the same bound values of the join

variables of both operands must now be joined and returned. The pseudo code for

the materialization strategy variant of the merge join algorithm is therefore as

follows:

S.open();
R.open();
s=S.next();
r=R.next();
WHILE(s!=null && r!=null){

IF(s < r){
s=S.next();

} ELSE IF(r < s){
r=R.next();

} ELSE {
s1=s;
r1=r;
operand1 = {};
operand2 = {};
WHILE(joinable(r1, s)){

operand1 = operand1 È {s};
s=S.next();

}
WHILE(joinable(r, s1)){

operand2 = operand2 È {r};
r=R.next();

}
FOREACHs2 IN operand1 DO

FOR EACH r2 IN operand2 DO
OUTPUT join(s2, r2);

}
}

We will analyze the average runtime complexity in an exercise at the book

webpage http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/.

Result of join

?a ?b ?b ?c ?a ?b ?c

10 1 1 3 10 1 3

5 2 4 9 6 4 9

7 2 5 20 2 6 7

6 4 5 45 8 6 7
2 6 6 7 2 6 4

8 6 6 4 8 6 4

7 7

Solutions of operands sorted
according to join variable ?b

Fig. 6.7 Merge join example
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6.5.2.1 Merge Join and Sideways Information Passing

When using SIP strategies, we can use the next(lowerLimit) method to retrieve

directly an element equal to or larger than lowerLimit. The merge join can obvi-

ously benefit from the SIP strategy, because for unequal solutions of both operands,

we already know that the larger solution lowerLimit is the lower limit for the next

solution of the other operand retrieved by calling next(lowerLimit). The following
pseudo code contains the SIP version of the merge join algorithm, where SIP related

code is marked with boldface:

S.open();
R.open();
s=S.next();
r=R.next();
WHILE(s!=null && r!=null){

IF(s < r){
s=S.next(r);

} ELSE IF(r < s){
r=R.next(s);

} ELSE {
s1=s;
r1=r;
operand1 = {};
operand2 = {};
WHILE(joinable(r1, s)){

operand1 = operand1 È {s};
s=S.next();

}
WHILE(joinable(r, s1)){

operand2 = operand2 È {r};
r=R.next();

}
FOR EACH s2 IN operand1 DO

FOR EACH r2 IN operand2 DO
OUTPUT join(s2, r2);

}
} 

When using the iterator versions of the operators, a SIP information may be

passed through many operators until an index scan for retrieving the solutions of a

triple pattern is reached. The index scan then can use the next(lowerLimit) method

of a B+-tree to jump over possibly huge data. This will lead to enormous reduction

in the runtime especially for large-scale datasets.

6.5.3 Index Join

The index join utilizes a given index of one of its join operands to optimize join

processing: The index join iterates through the solutions of one join operand and
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searches for relevant join partners, that is, solutions with the same bound values for

the join variables, from the other join operand by using its index. An operand

typically provides an index like a B+-tree if it is an index scan operator for

retrieving the result of a triple pattern. We express the index join in pseudo code

as follows:

FOR EACH s IN S DO
FOR EACH r IN index(R, s) DO

OUTPUT join(s, r);

The function index(R, s) is a function using a given index of the operator R to

determine relevant join partners for the solution s. This join algorithm is typically

used whenever one operand R provides an index and the solutions of the other

operand S are not sorted according to the join variables, such that amerge join cannot

be used without a preceding sorting phase. Let g(|R|) be the costs of an index access
on data with size |R|, then the index join has the runtime complexity O(|S|*g(|R|))
under the assumption that the data R has the property that index(R, s) never returns
large sets of data, but only one or few solutions. Theoretically, g(|R|) is in O(log(|R|))
for B+-trees, but practically B+-trees are typically quite flat with a height below 5

even for large data; that is, an index access is done in (nearly) constant time.

Therefore, we can achieve a (nearly) linear complexity O(|S|) for the index join for

such kind of data, which is often the case for real-world data.

If both operands of a join are not index scans, but their solutions fit into main

memory, then it is also efficient to first index the results of one operand R using an

in-memory hash table and then apply the index join using the just created index. For

indexing the solutions of R, a hash function over the join variables must be used,

which maps bound values of the join variables in a solution to an integer, and such

that the join partners for the solutions of S can be found within one index access.

This type of index join is often also called in-memory hash join. The in-memory

hash join is very efficient, because creating the index can be done in linear time to

the results of R, that is, O(|R|), and retrieving the join partners of R can be done in

constant time. Under the assumption that we only have one or a few join partners for

each solution of S in R, the average runtime complexity for joining is O(|S|) and thus
the overall average runtime complexity is O(|R| + |S|).

6.5.4 Hash Join

We have presented the in-memory hash join, but we now describe the hash join for

large data. Like the in-memory hash join, we use again hash functions over the join

variables. The large data hash join first distributes the input data into smaller

partitions using hash functions over the join variables. After the partitions become

small enough, a general-purpose join algorithm, like the block-based nested-loop

join, is used to join corresponding partitions of both operands.
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In detail, we first determine the operand Awith fewer solutions: If the sizes of the

operands’ solutions are not known, then the query optimizer can estimate which

operand has fewer solutions. The results of the operand A is then partitioned into

several partitions, that is, the solutions with the same result using the hash function

are stored in the same partition. If the hash join operator can obtain m pages in main

memory for its computations, then the hash join uses m � 1 partitions stored in

m � 1 pages in main memory, and the remaining one page for reading in the data to

be distributed (see Fig. 6.8). If one page of these m � 1 pages for the partitions is

filled up, then the page is swapped to disk. When this partition round is finished,

then the (not necessarily full) pages in main memory are stored on disk.

If one partition is larger than m � 1 pages, then another partition round for this

large partition is performed using another hash function over the join variables. The

process is repeated, until the size of each partition of A is less than m pages. For the

reason of finishing the partitioning phase more early, we first distribute the solutions

of the operand A, which has fewer solutions. We now distribute the solutions of the

other operand B into partitions using the same hash functions as for A and in the

same way as for A: If a partition was distributed for A, then we redistribute

the partition for B using the same hash function, too. Unlike the partitions of A,
the partitions of B do not need to fit into m � 1 pages. In the joining phase, we first

load m � 1 pages of A into main memory and join them with the pages of B’s
corresponding partition one by one by a block-based nested-loop join. Figure 6.9

presents an overview of the different phases of the hash join approach. Two

partitioning rounds are performed in Fig. 6.9.

This hash join is known to be the fastest general-purpose join algorithm when-

ever the input data are neither sorted nor an already existing index can be used for

joining.

We will analyze the number of pages accessed by the hash join algorithm in an

exercise at the book webpage http://www.ifis.uni-luebeck.de/~groppe/SemWeb

DBBook/.

However, the hash join algorithm as described before can run into an infinity

loop whenever a partition of A does not become smaller during redistributions,

Main Memory:

m-1 pages
for

partitions
of A

1 page
for

reading A

Fig. 6.8 Pages in main

memory for distributing the

solutions of the operand A
during the partitioning phase
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as the solutions of this partition contain only the same bound values for the join

variables. Fortunately, other general-purpose join algorithms than the block-based

nested-loop join having the solutions of one operand completely in main memory

can be used for joining this partition after several redistributions do not result in

smaller partitions.

6.5.4.1 Hash Join and Sideways Information Passing

The hash join first reads in all solutions of one operand A for partitioning before any

solutions of the other operand B is read. Thus, we already know the join partners,

that is, solutions with the same bound values for the join variables, of the solutions

of B in A and could filter out irrelevant solutions of B early, which do not have any

join partners in A. Using all the join partners of A for this purpose is neither practical

nor scalable because of a possibly large set of join partners. However, we can use a

bloom filter for discarding irrelevant solutions early. The bloom filter uses a bit

vector and sets those bits, which are returned by a given hash function for the

…
…

…

hash
function

f1

A

…
…

…

hash
function

f2

hash
function

f1

B

1. Building partitions of A 2. Building partitions of B

hash
function

f2

3. joining
partitions

of A and B

≤ m-1 pages

Fig. 6.9 Phases of hash join
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solutions of A. The bloom filter can be calculated during reading in the results of A.
In our LUPOSDATE SPARQL engines, bloom filters are constructed in the SIP-

FilterOperator (Iterator) operators. Afterward, the bloom filter can be attached to

those operators in B, which bind values to join variables. These operators –

typically index scans for determining the solutions of triple patterns – can now

check by using the bloom filter if a corresponding join partner in B can exist. For

determining the corresponding bit in the bit vector, the same hash function as when

creating the bloom filter on the bound value of the join variables is applied to the

solution of the triple pattern. If the bit is cleared, then we can surely discard this

solution as it does not have any join partner in A. Due to the fact that hash functions
may map several different values to the same integer, the bit for a solution without

any join partners in A may be nevertheless set, such that we may have some

false drops.
We have learned that a B+-tree offers the next(lowerLimit)method, which returns

the next value equal to or larger than lowerLimit for a prefix search. B+-trees can

optimize the application of the next(lowerLimit) method using interior nodes of the

B+-tree. However, a bloom filter does not contain the information for such lowerLimit
parameter, but we can determine a lower limit of the distance from the current value.

We assume that the hash function hwas used to construct a bloom filter. For example,

we discard a solution with an id 10 bound to the join variable, because in our

example, h(10) returns a bit position, which is cleared in the bloom filter. Further-

more, the bits h(11), h(12), until h(50) are also cleared in the bloom filter, but the bit h
(51) is set in the bloom filter. Therefore, we know that a lower limit for a relevant

solution not to be discarded has a value with id 51 or higher, and we can call next(51)
to retrieve it. Thus, in more general, if a join variable contains a value with id id1 and
the bit h(id1) is cleared in the bloom filter, then we can determine id2, such that the bit
h(id2) is set in the bloom filter and no id3 exists, such that id1 < id3 < id2 holds and
the bit h(id3) is set in the bloom filter. Then, id2 can be used to jump over the

solutions, which do not have any join partner in A, and to retrieve directly a solution,
which possibly has a join partner in A, by calling next(id2).

6.6 Dynamically Restricting Triple Patterns

This join approach has been especially developed for in-memory join computation

and is a variant of the index join. We assume that the seven in-memory hash indices

S, SP, SPO, SO, P, PO, and O are given. A naive way to compute the join of two

triple patterns is first evaluating individual triple patterns separately and then to

perform a join on their results using standard join algorithms. Figure 6.10 visualizes

this naive approach. However, we can leverage the properties of RDF and SPARQL

in order to compute joins more efficiently.

In this section, we present a new and efficient approach to computing the join of

triple patterns: we compute joins by dynamically generating more restrictive triple
patterns (see Definition 11 in the previous chapter).
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For example, (?article rdf:type bench:Article) is more restrictive than (?article
dc:creator ?person). It is reasonable to assume that a more restrictive pattern

typically retrieves less data than the less restrictive triple patterns.

In order to compute the join of two triple patterns, we compute the first triple

pattern by means of the seven indices and then use the solutions of this triple pattern

to replace the corresponding variables in the next triple pattern. In this way, we get

a more restrictive triple pattern. By one index access, we can get the joined result

of the current solution of the first triple pattern with the solutions of the second

triple pattern directly and do not need to check the join condition. Figure 6.11

visualizes our approach to compute the join. If there are more triple patterns, we use

the result of the already joined triple patterns to dynamically restrict the next triple

pattern.

In this way, the join computation only involves the seven in-memory indices.

Note that the seven indices only have to be generated once when reading the input

data.

Example 2 (Dynamically generating more restrictive triple patterns). In order to

evaluate the graph pattern
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=
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(?article, rdf: type, bench :Article)
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“rdf: type bench:Article”
as key
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“dc:creator”
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Fig. 6.10 A naive way to compute join
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Fig. 6.11 Our approach to compute join
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((( (?article rdf:type bench:Article) AND
(?article dc:creator ?person) AND
(?inproc rdf:type bench:Inproceedings) AND 
(?inproc dc:creator ?person2) AND 
(?person foaf:name ?name) AND 
(?person2 foaf:name ?name2)) 
FILTER (?name=?name2)) 
PROJ{?person, ?name}) DISTINCT

over the following input RDF graph:

D={ (:article1, rdf:type, bench:Article), (t1)
(:article2, rdf:type, bench:Article), (t2)
(:article4, rdf:type, bench:Article), (t3)
(:article1, dc:creator, :person1), (t4)
(:article2, dc:creator, :person2a), (t5)
(:article2, dc:creator, :person2b), (t6)
(:article3, dc:creator, :person3), (t7)
(:inproc1, rdf:type, bench:Inproceedings), (t8)
(:inproc1, dc:creator, :person1), (t9)
(:person1, foaf:name, “Hans Fortune”) }  (t10)

we first determine the solutions of the first triple pattern (?article rdf:type bench:
Article) by using the po index with key “rdf:type bench:Article”. The triples (t1), (t2),
and (t3) are returned for this index access and thus the result of the first triple pattern
is < {(?article, :article1)}, {(?article, :article2)}, {(?article, :article4)}>. We then

bind each value of ?article in the resultant set to the same variable in the second triple

pattern (?article dc:creator ?person) and construct three more restricted triple pat-

terns: (article1 dc:creator ?person), (article2 dc:creator ?person), and (article4 dc:
creator ?person). For each new triple pattern, we use the sp index with the sequence
of the subject and predicate literals as key. Therefore, the join of the first and second

triple pattern is < {(?article, :article1), (?person, :person1)}, {(?article, :arti-
cle2), (?person, :person2a)}, {(?article, :article2), (?person, :person2b)}> .

The third triple pattern (?inproc rdf:type bench:Inproceedings) does not have
any common variables with the join result of the first and the second triple patterns.

We evaluate this triple pattern by using the po index with “rdf:type bench:Inpro-
ceedings” as key and get the solution <{( ?inproc, :inproc1)}>. Then, we compute

the Cartesian product of the join of the first and second triple patterns and the result

of the third triple pattern and get the join result of the first three triple patterns:

<{(?article, :article1), (?person, :person1), (?inproc, :inproc1)}, {(?article, :arti-
cle2), (?person, :person2a), (?inproc, :inproc1)}, {(?article, :article2), (?person, :
person2b), (?inproc, :inproc1)}>. We analogously proceed with the remaining

triple patterns. The overall result of the whole SPARQL query is < {(?person, :
person1), (?name, “Hans Fortune”)}>.

It is obvious that the given order for join computation is not optimal as the costly

Cartesian product should be applied later or even avoided. Recall that the previous

chapter introduced several approaches to optimizing the join order.
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6.7 Sorting Numbering Scheme

We describe our specialized join approach for large-scale RDF datasets in this

section. Since RDF data are modeled as a set of triples, six collation orders

SPO, SOP, PSO, POS, OSP, and OPS are sufficient for sorting RDF data in any

order. Therefore, recent approaches (e.g., Neumann and Weikum 2008, 2009;

Weiss et al. 2008) use six indices, each for one collation order, to manage RDF

data. This storage schema allows for quick and scalable general-purpose query

processing.

Furthermore, these approaches also adopt the technique of dictionary encoding

(Abadi et al. 2007) to map RDF terms into integer identifiers (ids). Therefore, id

triples are stored in six indices rather than the original literal triples. Actually, the

sort criterion in evaluation indices of the other RDF stores such as Hexastore
(Weiss et al. 2008) and RDF3X (Neumann and Weikum 2008, 2009) as well as

our SPARQL engines are according to these ids rather than the RDF terms. Thus,

operators like merge joins also use sort criteria according to the ids rather than

according to the RDF terms themselves. Only a sort operator following the

SPARQL specification (Prud’hommeaux and Seaborne 2008) requires a sort crite-

rion according to the RDF terms instead of the ids. The main purpose of using

integer ids to replace RDF terms is for compressing the RDF store in these

approaches.

However, we also find another important application for these integer ids: they

can be used to fast sort solutions. Having the capability of fast sorting, query

processing, like computation of joins and elimination of duplications, can be

performed more efficiently over large datasets. When we use these ids for sorting

solutions, we call them presorting numbers.

6.7.1 Joins Without Presorting Numbers

For example, we have a SPARQL query with the three triple patterns TP1 (?
a < origin > <DLC>), TP2 (?a < records > ?c), and TP3 (?c
< type > ?b). When evaluating the query, we can first join the triple patterns

TP1 and TP2 over the variable ?a, or TP2 and TP3 over ?c, or TP1 and TP3. The

third alternative, the join between TP1 and TP3, is actually a Cartesian product

having high costs, and thus we do not consider this join ordering further. State-

of-the-art database management systems use selectivity estimations in order to

determine the best join ordering, which we discuss in previous sections.

In order to perform a join on?a between TP1 and TP2, the existing approaches,

Hexastore (Weiss et al. 2008) and RDF3X (Neumann and Weikum 2008, 2009),

compute TP1 (?a < origin > <DLC>) according to the POS (or OPS)

collation order and get the result sorted according to ?a; compute TP2 (?a <
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records > ?c) according to PSO and get the result sorted also according to

?a. Consequently, a merge join can be directly used to compute the join of TP1

and TP2 over ?a. The second join is computed between the results of the first join

and of the remaining triple pattern TP3 (?c < type > ?b), and thus the join

variable is ?c. Since the result of the first join is sorted according to ?a, the

second join is computed using the hash join (see Fig. 6.12a).

Likewise, a merge join can be directly used for the join of the triple patterns

TP2 (?a < records > ?c) and TP3 (?c < type > ?b), but cannot be

directly used for the succeeding join between the results of the first join and that of

the remaining triple pattern TP1 (?a < origin > <DLC>).

Sorting is time-consuming. It is a well-known fact that any sorting algorithm

based on comparing and exchanging values needs at leastO(N*log(N)) steps,

where N is the number of elements to be sorted. Therefore, instead of sorting

data for performing a merge join, these approaches typically choose a hash join

algorithm. A hash join does not require sorted input data and is usually faster than

a normal merge sort join requiring an additional sorting phase. The hash join is

simple and efficient when at least one of two operands of it fits into main memory.

If neither of the two operands of a hash join fits into memory, the disk-based hash

join algorithms become expensive (see Elmasri and Navathe 2000; Garcia-Molina

et al. 2002). Our experiments show that a merge join with our fast sorting phase

based on the presorting numbers outperforms significantly hash joins for large data.

Merge Join?c

Fast Sort?c

?a <origin> <DLC> ?a <records> ?c ?c <type> ?b

Hash Join?c

Merge Join?a

?a <origin> <DLC> ?a <records> ?c ?c <type> ?b

a

b

IndexPOS(<origin><DLC>) IndexPSO(<records>) IndexPSO(<type>)

Merge Join?a

IndexPOS(<origin><DLC>) IndexPSO(<records>) IndexPSO(<type>)

Fig. 6.12 Join computation of a nonbushy query with three triple patterns (a) without and (b) with

using fast sorting
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6.7.2 Joins with Presorting Numbers

We take as example the same query as in the previous section. Like RDF3X and

Hexastore, we use a merge join to compute the first join between, for example, TP1

(?a < origin > <DLC>) and TP2 (?a < records > ?c) over ?a.

If we use the ids of RDF terms as presorting numbers, we can fast sort the result of

this join according to ?c. We use a variant of bucket sort (Knuth 1998) specialized

to external sorting and also able to sort according to order criteria with several

variables, as we will explain in later subsections. Consequently, the second join can

be computed using a merge join instead of a hash join.

Figure 6.13 illustrates our fast sorting technique using the ids as presorting

numbers. If the RDF data contain n different literals, then each literal can be

mapped into an integer id in [1, n]. In order to sort solutions, we use n buckets,

numbered from 1 to n. We describe in later subsections how to reduce the number of

buckets.

During computing the first join between TP1 (?a < origin > <DLC>)

and TP2 (?a < records > ?c), once a binding has been determined as

a solution of this join, it is put into the corresponding bucket according to the id

value of ?c. Once the join computation is finished, the result in all these buckets

has been sorted according to ?c and can be retrieved by accessing their contents in

the order of the buckets.

?a <origin> <DLC>

?a <records> ?c

merge join fast sorting

89

25

9

5

1

?a

239

9

5

3

1

1

?a

66

135

2

24

6

?c

…

5135135

…

96666

…

12424

92323

…

166

…

1

?a?c

Content of 
bucketsBucket

number

Sorted according to ?c

Fig. 6.13 Fast sorting according to ?c using the ids of RDF terms as presorting numbers when

computing join

6.7 Sorting Numbering Scheme 131



The last triple pattern ?c < type > ?b is computed using the index PSO,

and thus its result is also sorted according to ?c. Therefore, the second join

between the results of the first join and of the last triple pattern can be computed

using a merge join (see Fig. 6.12b).

6.7.3 Optimization of Fast Sorting

Usually, the presorting numbers (ids) of solutions are located at a certain range

[m, k], where 1 � m � k � n, rather than dispersed over the whole id space. In

this case, we need only k þ 1 � m buckets for sorting. We can determine the

range [m, k] during cardinality estimation of the results of triple patterns and of

joins in the logical optimization phase. In the logical optimization phase, we can

therefore store the minimum m and the maximum k of the range at the operator

for the corresponding triple pattern in the execution plan.

If the range of the presorting numbers is relatively small, then we can store the

buckets in main memory by simply using, for example, an array to store the solutions.

If the range of the presorting numbers is large, then we have to store the buckets in an

external storage like a hard disk. One way is to store each bucket in a single file.

However, the number of solutions stored in a bucket is typically small and often even

1. Managing a large number of buckets with little content is inefficient.

An alternative without this disadvantage for sorting solutions is to divide the

whole range of the presorting numbers into m smaller ranges. We then use mmerge

sorts for the m smaller ranges, each of which employs a heap for replacement

selection, to sort the results with large range. We describe this approach in

Fig. 6.14. In this way, we use much less buckets to store all sorted results. Our

experiments show that using this way to sort data is very fast. In our experiments,

we have used 1,000 ranges and heaps of size 256.

However, the ids of solutions are usually not continual integers, that is, there are

gaps among these ids. This might lead to a bad distribution among m smaller ranges

when using equal range sizes. This can be solved by using histograms of triple patterns.

For each kind of triple patterns, an equi-depth histogram is constructed. Among

other information, each interval in this histogram contains the range and the number of

triples allocated in this interval. Equi-depth histograms have the property to divide the

data in such a way that each interval has the same or at least similar numbers of triples.

Therefore, the intervals in the equi-depth histograms can be directly used as the

smaller ranges into which the whole range of the presorting numbers is divided. In

this way, we can get a perfect distribution among smaller ranges.

6.7.4 Sorting for Complex Joins

So far, the joins we consider have only one join partner, that is, only one common

variable between two triple patterns. In most cases, the joins have only one join
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partner, even if there are many joins in a query. Nevertheless, our fast sorting

approach described so far can be extended to handle the joins with arbitrary numbers

of join partners. The idea is to combine several presorting numbers to a unique

presorting number.

For example, the execution plan for the three triple patterns TP1 (?a <
origin > ?b), TP2 (?a < records > ?c), and TP3 (?c ?b <
text>) is first to compute the join with the join partner ?a between TP1 and

TP2 and then to compute the join with the two join partners ?b and ?c between

the results of the first join and of TP3. In order to use the merge join to compute the

second join, the result of the first join needs to be sorted according to both variables

?c and ?b.

Figure 6.15 demonstrates how to sort the join result of TP1 and TP2 according to

?b as the primary order and ?c as the secondary order, denoted by ?b?c, while

computing the join. In order to sort the join result according to ?b?c, we use (1)

the id values of?b returned by TP1, denoted asTP1?b; and (2) the id values of?
c returned by TP2, denoted as TP2?c. Let MAXTP1,?b and MINTP1,?b be
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the maximal and minimal values of TP1?b, and MAXTP2,?c and MINTP2,?c
be the maximal and minimal values of TP2?c. We use the formula,

ðTP1?b �MINTP1;?bÞ � ðMAXTP2;?c �MINTP2;?c þ 1Þ þ ðTP2?c �MINTP2;?cÞ

¼ ðTP1?b � 6Þ � ð26� 21þ 1Þ þ ðTP2?c � 21Þ;

to sort and compute unique presorting numbers of the join result between TP1 and

TP2. Note that this formula is very similar to the function used in compilers for

mapping an entry of a multidimensional array to a memory address.

Proposition 1. The formula,

ðTP1?b �MINTP1;?bÞ � ðMAXTP2;?c �MINTP2;?cþ1Þ þ ðTP2?c �MINTP2;?cÞ;

generates the unique combined presorting numbers and defines ?b as the primary
sort criterion and ?c as the secondary sort criterion. The minimal combined
presorting number is 0 and the maximal combined presorting number is

ðMAXTP1;?b�MINTP1;?bÞ�ðMAXTP2;?c�MINTP2;?cþ1ÞþðMAXTP2;?c�MINTP2;?cÞ:

Proof Sketch. The first part of the formula, (TP1?b � MINTP1,?b), is used to compute

the number of values of?b. Each value of?b, that is, TP1?b, can be combined with
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Fig. 6.15 Sorting the result of join of TP1 and TP2 according to ?b (primary order) and ?c

(secondary order)
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any TP2?c, and thus the number of possible combinations is the second part *

(MAXTP2,?c � MINTP2,?c + 1). The first and second parts together (TP1?b �
MIN

TP1,?b
)*(MAXTP2,?c � MINTP2,?c + 1) allocate TP1?b � MINTP1,?b spaces. Each

space has the size MAXTP2,?c � MINTP2,?c + 1 and is for one TP1POS to combine

with any TP2?c. This part is also used to sort ?b. The third part + (TP2?c �
MIN

TP2,?c
) sorts?c in each space. In the space where one TP1?b is located, the possible

maximal combined presorting number is maxp ¼ (TP1?b � MINTP1,?b) * (MAXTP2,?c �
MIN

TP2,?c
+ 1) + (MAXTP2,?c � MINTP2,?c). In the space where 1 + TP1?b is located,

the possible minimal combined presorting number is minp+1 ¼ (1 + TP1?b �
MIN

TP1,?b
) * (MAXTP2,?c � MINTP2,?c + 1). Sinceminp+1 � maxp ¼ 1, TP1?b � MIN-

TP1�?b spaces are disjoint and the combined presorting numbers are unique.

Proposition 2. In general, in order to sort data according to n variables, we need n
types of presorting numbers P1, . . ., Pn, where the maximal presorting numbers
are MAXP1, . . ., MAXPn, and all the minimal presorting numbers are 0. If the range
of the original presorting numbers p is in [MIN, MAX], then we compute a
newp0 ¼ p-MIN, and thus the minimal value ofp0 is 0.We can combine these pre-
sorting numbers and retrieve the unique combined presorting numbers in n! different
ways. For example, the formula, (. . .((P1*(MAXP2 þ 1) þ P2)*(MAXP3 þ 1) þ P3)*

(. . .(MAXPn þ 1)) þ Pn, computes the unique presorting numbers and defines P1 as
the primary sort criterion, P2 as the secondary sort criterion, . . ., Pn as the nth
sort criterion. The maximum of the combined presorting numbers is (. . .((MAXP1*

(MAXP2þ 1)þMAXP2) *(MAXP3þ 1)þMAXP3)*. . .)*(MAXPn þ 1) þ MAXPn.

Proof Sketch. According to Proposition 1, the most inner part,P1*(MAXP2 þ 1)
þ P2, generates the unique presorting numbers of the combined P1 and P2, and

defines P1 as the primary sort criterion and P2 as the secondary sort criterion,

denoted by P1P2; (P1P2*(MAXP3 þ 1) þ P3) generates the unique

presorting numbers of the combined P1, P2, and P3, and defines P1P2 as the

primary sort criterion andP3 as the secondary sort criterion, denoted byP1P2P3.

We proceed analogously until we get the unique presorting number of the combined

P1, . . ., Pn. In this way, we can prove the correctness of the formula.

The MAX–MIN range can grow quickly when processing a join with multiple

join partners. However, a large range of presorting numbers is not a problem for our

fast sorting approach, because we divide the whole range of the presorting numbers

into m smaller ranges and (merge) sort the ranges independently from each other.

Therefore and based on the experience in our experiments, we neither need more

space nor more time for a larger range, if the number of data to be sorted is the same.

6.7.5 Additional Benefits from SIP Strategies

A merge join looks for the equivalent values from two sorted operands by compar-

ing their results pairwise. If two values are unequal, the merge join continues
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reading the following data from the operand with the smaller value until an equal or

larger value is seen. When processing very large datasets, reading each data in turn

for finding a certain value is quite time-consuming.

An improvement is using the SIP strategy as described in (Neumann and

Weikum 2009). SIP applies the information of the larger value L to the side of

the operand with the smaller value for directly going to the data, which is equal to or

larger than L. In particular, when data are stored using B+-trees, the larger value

L can be used as key for directly finding the wanted leaf. Using SIP allows jumping

over big gaps by accessing interior nodes of the B+-trees and thus avoiding search-

ing along a possibly long chain of leaves.

For hash joins, the SIP strategy can use bloom filters. A bloom filter is a bit

vector, which is created by applying a hash function to one operand. This bit

vector is afterward used to filter out irrelevant data of the other operand. The

bloom filter can also be used to compute the number of distinct values, which can

be jumped over. The upper bound for this number corresponds to the number of

unset bits in the bloom filter. However, since a hash function might map many

distinct values to a same integer, the real number of distinct values to be jumped

over can be (much) larger. Furthermore, the number of distinct values is at most

the length of the bit vector of the bloom filter. Therefore, using bloom filters is not

scalable.

Having our fast sorting capability, the efficient merge join can be applied instead

of the hash join. Furthermore, using SIP merge joins can jump over bigger gaps

than hash joins. Therefore, the application of our sorting numbering scheme in

combination with SIP can significantly speeds up query processing.

6.8 Optional

The Optional operator returns the result of a join between its operands and addition-

ally all not joined solutions of its left operand. Therefore, we can modify any join

algorithm to return joined solutions and additionally not joined solutions of the left

operand. We do not provide adapted algorithms computing the result of an Optional

operation for all discussed join algorithms here and leave this to the reader, but present

the adapted algorithm of the merge join algorithm using SIP in the next subsection.

6.8.1 MergeOptional

Assuming S to be the left and R to be the right operand, we modify the merge join

algorithm using SIP to calculate the result of an OPTIONAL construct in the

following way:
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S.open();
R.open();
s=S.next();
r=R.next();
WHILE(s!=null && r!=null){

IF(s < r){
OUTPUT s;
s=S.next();

} ELSE IF(r < s){
r=R.next(s);

} ELSE {
s1=s;
r1=r;
operand1 = {};
operand2 = {};
WHILE(joinable(r1, s)){

operand1 = operand1 È {s};
s=S.next();

}
WHILE(joinable(r, s1)){

operand2 = operand2 È {r};
r=R.next();

}
FOR EACH s2 IN operand1 DO

FOR EACH r2 IN operand2 DO
OUTPUT join(s2, r2);

}
}
WHILE(s!=null){

OUTPUT s;
s=S.next();

}

In this version of the algorithm, we return s as result whenever no join partners

in R can be found. The modified code is marked with boldface.

6.9 Duplicate Elimination

SPARQL uses the modifier DISTINCT to require a result without duplicates. In this

subsection, we describe different algorithms for the elimination of duplicates.

6.9.1 Duplicate Elimination Using Hashing

This version of duplicate elimination first partitions its input data by using hash

functions until all partitions fit into main memory. Afterward, the algorithm can use

any in-memory algorithm for duplicate elimination by, for example, determining

the set of solutions in each partition. Sets can be determined from a sequence of
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solutions containing duplicates by, for example, using a hash table or balanced trees

like AVL trees.

6.9.2 Duplicate Elimination Using Sorting

Duplicate elimination using sorting just first sorts its solutions and afterward scans

the sorted solutions, and returns only those solutions, which are different to their

previous ones. In some query plans, the solutions are already sorted before the

DISTINCT operator, such that the DISTINCT operator does not need to sort the data

initially.

6.9.3 Duplicate Elimination Using Presorting Numbers

Fast sorting data using presorting numbers is of great benefit not only to merge

joins, but also to many other operations in query processing. Using the presorting

numbers, DISTINCT operations can be efficiently performed: when processing the

operation just before the DISTINCT operation, once a solution is computed, it is

sorted using the corresponding presorting numbers in the same way for sorting the

join result as illustrated in Fig. 6.13. However, we only store one of the solutions

with the same presorting number. When the operation before the DISTINCT
operation is finished, its result will not contain the duplicates. Consequently, a

separate DISTINCT operation is not needed anymore.

6.10 Cost Model

In the previous chapter, we have already described logical plan generation based on

estimations of the result cardinality. The main goal there was to reduce the number

of solutions as early as possible in the operatorgraph.

Different physical operators have different costs concerning CPU processing

time, I/O costs for reading and storing solutions, as well as costs for used space in

main memory or on disk. The physical plan generator takes all these costs into

consideration, computes the total costs of possible physical operators, and chooses

the physical operator with the best estimated total costs. As I/O costs are typically

the lion’s share in the total costs, that is, I/O operations are the slowest ones in a

nondistributed computer system, most physical query optimizers focus on the I/O

costs. Some query optimizers determine the I/O costs by estimating the number of

solutions to be read and written by a specific operator. Other query optimizers

compute the I/O costs by estimating the number of page accesses for a specific

operator, which considers the block nature of I/O devices such as hard disks. Both

variants produce similar good results, but cannot be mixed.
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6.11 Performance Evaluation

For the performance evaluation, we consider two main scenarios.

In the first scenario, we use small to middle-sized datasets, which completely fit

into main memory. In this scenario, our approaches for main-memory indexing and

join processing promise optimal performance.

In the second scenario, we use large-scale datasets with over one billion triples.

These datasets do not fit into main memory anymore and we comprehensively

analyze the disk-based indexing (and joining) approaches.

6.11.1 Performance Evaluation for In-memory Databases

The SP2B benchmark (Schmidt et al. 2009) includes a set of 18 queries, which

contain more features of SPARQL and address more optimization techniques than

many other Semantic Web benchmarks such as the LUBM benchmark (Guo et al.

2005). The SP2B benchmark uses a data generator, which can generate data of

different size. The SP2B data set imitates an RDF version of the real-world DBLP

data set (Ley 2010); that is, the data structure of the SP2B data set is very similar to

real-world data. Furthermore, the SP2B benchmark does not consider inference

based on an ontology, which we do not consider here due to our focus on basic join

algorithms. Therefore, we choose the SP2B benchmark in our experiments. In our

figures, we present the average of ten execution times of reading the input and

generating the indices, and of applying the SPARQL queries of the SP2B

benchmark.

The test system uses an Intel Core 2 Duo CPU T7500 with 2.2 GHz, 2 GB main

memory, Windows XP Professional 2002, and Java 1.6. We use Jena ARQ

(Wilkinson et al. 2003) and Sesame (Broekstra et al. 2002) as SPARQL database

engines since they support the current SPARQL version (Prud’hommeaux and

Seaborne 2008), which is not fully supported by many other SPARQL processing

engines. Furthermore, we have implemented an in-memory version of the approach

presented in (Weiss et al. 2008), which we call In-memory Hexastore in the

following paragraphs. In-memory Hexastore uses merge joins to join two triple

patterns at the first level and standard relational join algorithms like index joins for

succeeding joins. Our implementation of In-memory Hexastore reorders the join

operands according to the result sizes of triple patterns.

In the figures, we call our approach RestrictingTP. We have measured different

variants of our approach. RestrictingTP-OrderSize represents the execution times

of our approach when reordering the triple patterns according to the result sizes of

each triple pattern. RestrictingTP-OrderVar represents the execution times of our

approach when reordering the triple patterns according to the restrictiveness of

triple patterns. RestrictingTP-OrderVarSize represents the hybrid approach, which

orders the triple patterns primarily according to the restrictiveness of triple patterns
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and secondarily according to the result sizes of the triple patterns. We use hash

maps for our seven indices, but use B+-trees whenever we mark the experiment with

B+, where we also order the triple patterns primarily according to the restrictiveness

and secondarily according to the result sizes of the triple patterns.

6.11.1.1 Index Construction Time

Reading the input data and constructing the indices only need to be done once.
Afterward, the indices can be used to evaluate many queries. Thus, less time for

query evaluation is more critical than less time for index construction. The index

construction time for Sesame and Jena is the smallest (see Fig. 6.16). The index

construction time for RestrictingTP, RestrictingTP-orderSize, RestrictingTP-order-
Var, and RestrictingTP-orderVarSize is obviously the same, and thus we use the

time for RestrictingTP for all of them, which are approximately two times slower

than Jena and 3.6 times slower than Sesame. In-memory Hexastore and B + per-

form the worst.

6.11.1.2 Query Evaluation

For all queries used in this experiment, the time to compile queries and perform the

logical and physical optimization step is below one millisecond.

For each query of the SP2B benchmark (Schmidt et al. 2009), In-memory

Hexastore performs worst, as In-memory Hexastore processes time-consuming

searches in sorted lists for index accesses, which is avoided in our approach.
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Furthermore, out-of-memory errors occur for the queries q4, q5a, and q12a. For

simplicity of presentation, we present the execution times of In-memory Hexastore

in an extra figure (see Fig. 6.17) and do not present them in the figures especially for

the different queries.

Query q1. This query consists of three triple patterns, the overall result of which
contains only one solution. All approaches except In-memory Hexastore need only

less than 4 ms.

Query q2. This query consists of ten triple patterns, one of which is in an

OPTIONAL construct. The result is additionally sorted. Sesame and Jena perform

best (see Fig. 6.18). The implementation of sorting can be still much optimized in

the benchmarked version of our SPARQL engine, such that we believe that our

approach performs much better after these optimizations have been done.

Query q3a–c. These queries consist of two triple patterns and a comparison of a

variable with a constant value. Due to space limitations, we present the execution

times of only q3a here (see Fig. 6.19). For q3a, our approach performs best and then

Sesame and Jena. For q3b and q3c, all approaches and query engines except of

In-memory Hexastore need less than 100 ms, where RestrictingTP-orderVarSize
performs best, the execution times of which are below 4 ms.

Query q4. This query consists of eight triple patterns with a less than value

comparison (“<”) between two variables. Figure 6.20 shows that RestrictingTP-
orderVarSize performs best. Jena is the slowest. In-memory Hexastore, Restric-
tingTP, and RestrictingTP-orderSize compute the triple patterns in an inefficient

way, such that out-of-memory errors occur.
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Fig. 6.17 Execution times of the queries q1–q12c of In-memory Hexastore
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Queries q5a and q5b. q5b is a manually optimized query of q5a. Restricting-
orderVar and Restricting-orderVarSize perform best for q5a (see Fig. 6.21). For

q5b, Restricting-orderVarSize is slightly slower than Sesame (0.3 s), but 156 times

faster than Jena.

Query q6. Our approaches are slightly slower than Sesame and Jena (see

Fig. 6.22) since the complex OPTIONAL constructs with many filter expressions

in q6. In the implementation of our prototype, there is still much space for

optimizing this kind of queries.
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Query q7. q7 consists of several nested OPTIONAL constructs. Here, our

approaches perform much better than the others (see Fig. 6.23).

Query q8 and q9. q8 and q9 contain common subexpressions in the operands of

UNION, which is currently not optimized by our prototype. Therefore, the execu-

tion times of our prototype are higher than those of Sesame and Jena (see Fig. 6.24).

Queries q10 and q11: q10 and q11 consist of one triple pattern, the result of

which is retrieved below 300 ms for all different approaches and query engines

except of In-memory Hexastore.
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Queries q12a–c. These queries contain the ASK construct; that is, they return

true if there is some result and otherwise false. One optimization is to abort the

evaluation of queries if there is at least one result. Our approaches perform similarly

to the other approaches for q12c and are slightly slower for q12a and q12b.

Average execution times of all queries q1–q12c. Figure 6.25 shows the average

execution times of all queries q1–q12c. Overall, our approaches and especially

RestrictingTP-OrderVarSize are the fastest. Sesame is more than two times slower,

and Jena is more than six times slower than RestrictingTP-OrderVarSize.
In-memory Hexastore is the slowest approach.
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6.11.2 Performance Evaluation for Large-Scale Datasets

We study the performance benefits for our sorting numbering scheme integrated

into other index approaches. For these experiments, we focus on the index approach

RDF3X in (Neumann and Weikum 2008, 2009), since it is similar to Hexastore in

(Weiss et al. 2008), but uses a simpler and faster index structure than (Weiss et al.

2008). We compare the pure RDF3X approach, that is, using hash joins when data

become unsorted, with the RDF3X-Sort approach, that is, our sorting numbering
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scheme integrated into the RDF3X approach. RDF3X-Sort uses fast sorting for

applying merge joins to replace hash joins and for elimination of duplicates.

The original RDF3X prototype (Neumann and Weikum 2008, 2009) has several

limitations:

l It does not support full SPARQL 1.0.
l It only supports very simple filter expressions.
l It neglects prefixes in predicates. This improves the performance, but leads to

information loss. For example, the two different triples (<a>, <www.film/

title>, “Ratatouille”) and (<a>, <www.game/title>, “Ratatouille”) are stored

as one triple (<a>, <title>, “Ratatouille”) in the original RDF3X prototype.
l It does not support data types, such that, for example, the two identical integer

values +2 and 2 are treated as two different strings.
l It supports only in-memory hash joins; that is, if the operands of hash joins

cannot fit into memory, RDF3X cannot process the hash joins.

In order to lift these limitations and avoid problems resulting from not sup-

ported features of the original RDF3X prototype, we have reimplemented the

RDF3X approach. Our reimplementation successfully runs all the W3C test cases

(Feigenbaum 2008), which contain over 200 queries. As we will show in the

following subsections, the execution times of our reimplementation are similar to,

and often outperform those of the original RDF3X prototype, compared with results

of Neumann and Weikum (2009), although we have used Java as programming

language and the RDF3X system is implemented in Cþþ. An online demonstra-

tion of our implementations is publicly available (see Groppe and Groppe 2009;

Groppe et al. 2009b).

The test system for the evaluation of queries uses a Dual Quad Core Intel CPU

X5550 computer with 2.67 GHz, 6 GB main memory, Windows XP Professional

(x64 Edition), and Java 1.6 64 bit. We have run the experiments ten times and

present the average execution times as well as the standard deviation of the sample.

In order to build indices faster over the two very large datasets, index construc-

tions are performed in a cluster with additional 6 Intel Core 2 Quad CPU Q9400

computers, each with 2.66 GHz, 4 GB main memory, Windows XP Professional

(32 bit), and Java 1.6.

We use two large-scale datasets: UniProt (Swiss Institute of Bioinformatics

2009) and Billion Triples Challenge (BTC) (Semantic web challenge 2009), and cor-

responding queries. Three kinds of indices are constructed over the two datasets: two

dictionary indices for mapping between RDF terms and integer ids; six evaluation

indices according to the six collation orders of RDF for evaluating SPARQL queries;

six histogram indices for fast generating histograms for triple patterns.

6.11.2.1 UniProt

UniProt (Swiss Institute of Bioinformatics 2009) is a comprehensive repository of

protein sequence and annotation data. We have used the version 15.14 of the 9th

February 2010 of it, which contains over 1.5 billion triples.
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We have used the queries of Neumann and Weikum (2009), which we name UP 1

to UP 8. However, the number of results of these queries and especially the number of

solutions for the hash joins are quite small. Therefore, we added some additional

queries (EUP 1 to EUP 8) with bigger cardinalities, which are presented below.

Table 6.2 presents the types of operations of the UniProt queries performed by

the pure RDF3X approach without using our fast sorting technique. In comparison,

the RDF3X-Sort approach, that is, our sorting numbering scheme integrated into the

RDF3X approach, uses fast sorting and merge joins instead of hash joins and

optimizes duplicate elimination by also using our fast sorting technique. Table 6.1

presents the execution costs by the two approaches when they process these UniProt

queries over 1.5 billion triples.

The queries UP 1 to UP 8 from RDF3X (Neumann and Weikum 2009) are

favorable to RDF3X, since the number of solutions is quite small, and thus the

simple and fast in-memory hash join can be used. Therefore, the performance gain

is quite small by RDF3X-Sort for these queries. However, for queries with larger

intermediate results, RDF3X-Sort is often about 10 times up to 32 times faster than

the RDF3X approach (see EUPs 1, 2, 3, and 5).

The time for index construction for the over 1.5 billion triples was 57 h. The

space consumption is 19.5 GB for the two dictionary indices, 47.1 GB for the six

evaluation indices, and 47.1 GB for the six histogram indices.

Table 6.2 presents the types of operations of the UniProt queries performed by

the pure RDF3X approach without using our fast sorting technique, when proces-

sing the UniProt queries. In the following paragraphs, we provide the additional

queries for the UniProt dataset.

We assume that all UniProt queries define the namespaces rdf, rdfs, and

up by

Table 6.1 Evaluation times (in seconds) for UniProt Data

Query RDF3X RDF3X-sort RDF3X/

RDF3X-sort

Histogram computation

UP 1 0.0391 � 0.0106 0.0375 � 0.0174 1.043 0.14

UP 2 0.35 � 0.021 0.35 � 0.02 1 1.014

UP 3 0.925 � 0.0702 0.8969 � 0.0474 1.031 0.395

UP 4 0.321 � 0.025 0.309 � 0.013 1.039 0.233

UP 5 0.79 � 0.04 0.79 � 0.05 1 0.005

UP 6 0.55 � 0.006 0.55 � 0.01 1 0.02

UP 7 0.5453 � 0.0047 0.5438 � 0.0061 1.003 0.042

UP 8 0.8469 � 0.0117 0.8515 � 0.0203 0.995 0.286

EUP 1 27.320 � 4.427 2.7468 � 0.1044 9.946 2.061

EUP 2 3.1172 � 0.1078 0.3391 � 0.1081 9.193 0.572

EUP 3 1620.1 � 5.98 49.6735 � 0.236 32.615 1.614

EUP 4 1.55 � 0.018 0.8657 � 0.0102 1.79 1.05

EUP 5 0.2096 � 0.0102 0.0172 � 0.0046 12.186 0.595

EUP 6 2.5141 � 0.0203 1.9937 � 0.0077 1.261 0.7624

EUP 7 42.6124 � 0.783 4.9063 � 0.1245 8.685 0.5

EUP 8 0.2843 � 0.0645 0.0376 � 0.0187 7.561 0.55
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PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX up:   <http://purl.uniprot.org/core/>.

Query EUP 1:
select * where{ 
?x rdf:type up:Sequence_Conflict_Annotation; 

up:conflictingSequence ?y.

?y rdf:type up:External_Sequence.}

Query EUP 2:
select * where { 
?c rdf:type up:Concept; rdfs:label ?l;

up:obsolete "true"; rdfs:subClassOf ?c2.

?c2 rdfs:label ?l2.}

Query EUP 3:
select * where {
?x up:sequenceFor ?y; rdf:type up:Sequence.

?y rdf:type up :Protein;up:reviewed "false";

up:created "2009-07-28".}

Query EUP 4:
select * where { 
?x up:date "1996"; rdf:type>?t.

?t rdfs:subClassOf ?c.}

Query EUP 5:
select * where {
?x up:cofactor "Iron"; rdfs:subClassOf ?c.

?c up:name ?n.}

Query EUP 6:
select * where {
?x rdf:type up:Tissue; rdfs:label ?l1;

rdfs:seeAlso ?y.

?y rdfs:label ?l2; up:database "eVOC".}

Query EUP 7:
select distinct * where {  
?x rdf:type up:Sequence_Conflict_Annotation; 

up:conflictingSequence ?y.

?y rdf:type up:External_Sequence.}

Query EUP 8:
select distinct * where {
?x up:cofactor "Iron"; rdfs:subClassOf ?c.

?c up:name ?n.}  
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6.11.2.2 Billion Triples Challenge

The major part of the dataset of the Billion Triples Challenge (BTC) (Semantic web

challenge 2009) was crawled during February/March 2009 based on datasets

provided by, for example, Falcon-S, Sindice, Swoogle, SWSE, and Watson. We

have imported all over 830 million distinct triples of the Billion Triples Challenge.

In comparison, the performance analysis in Neumann and Weikum (2009) used

only a subset of it.

Like the UniProt queries used by RDF3X (Neumann and Weikum 2009), the

queries for BTC used by (Neumann and Weikum 2009) return very small interme-

diate and final results. Therefore, we also use some additional queries (EBTC 1 to

EBTC 8) with bigger cardinalities (see below), as well as the ones of (Neumann

and Weikum 2009) (BTC 1 to BTC 8). Table 6.4 presents the query operations

performed by the original RDF3X approach, and Table 6.3 presents the processing

times of these queries by the two approaches.

Although the queries BTC 1 to BTC 8 are designed to retrieve very small results

and thus are favorable to RDF3X, the RDF3X-Sort still has a similar (or a slightly

better) evaluation performance (up to 24%). When processing those queries with

large intermediate and final results (EBTC 1 to EBTC 8), the RDF3X-Sort approach

shows significant performance improvements and is up to several orders of magni-

tude better than the pure RDF3X.

The time for index construction for the BTC dataset with over 830 million

distinct triples was 30 h. The space consumption is 31.1 GB for the dictionary

indices, 30.8 GB for the evaluation indices, and 30.8 GB for the histogram

indices.

Table 6.2 Operations by

RDF3X for the UniProt

queries

Query Number of

merge joins

Number of

hash joins

DISTINCT

UP 1 2 1

UP 2 10 2

UP 3 10 1

UP 4 8 2

UP 5 5 2

UP 6 11 1

UP 7 11 1

UP 8 11 1

EUP 1 1 1

EUP 2 3 1

EUP 3 3 1

EUP 4 1 1

EUP 5 1 1

EUP 6 3 1

EUP 7 1 1 √
EUP 8 1 1 √
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Table 6.4 presents the query operations performed by the original RDF3X

approach. The additional BTC queries, which we have used in the experiments,

are provided below as follows:

We assume that all BTC queries define the namespaces rdf, rdfs, foaf,

dbpedia, purl, sioc, skos, atom , geoont, geocountry,
and geopos by

Table 6.3 Evaluation times (in seconds) for BTC Data

Query RDF3X RDF3X-sort RDF3X/

RDF3X-sort

Histogram

computation

BTC 1 0.0469 � 0.0155 0.045 � 0.0049 1.042 23.5

BTC 2 0.0359 � 0.0076 0.0359 � 0.0105 1 7.419

BTC 3 0.3032 � 0.0547 0.3032 � 0.0443 1 2.642

BTC 4 39.3234 � 0.123 38.0327 � 0.0491 1.034 73.23

BTC 5 0.37 � 0.046 0.3344 � 0.0341 1.106 0.631

BTC 6 1.3172 � 0.0477 1.061 � 0.063 1.241 4.801

BTC 7 0.3265 � 0.0227 0.3264 � 0.0127 1.0003 27.829

BTC 8 0.2266 � 0.0144 0.2124 � 0.0103 1.067 38.018

EBTC1 46.8687 � 0.851 1.8563 � 0.0918 25.248 1.116

EBTC2 30.4593 � 1.0404 3.0844 � 0.1191 9.875 15.461

EBTC3 0.8626 � 0.0649 0.1188 � 0.01443 7.26 0.759

EBTC4 531.9172 � 2.340 0.636 � 0.094 836.35 1.017

EBTC5 46.303 � 2.827 4.014 � 0.2672 11.535 2.514

EBTC6 1602.692 � 24.59 36.8641 � 0.317 43.476 12.341

EBTC7 3.4765 � 0.2576 0.3142 � 0.1046 11.065 0.9767

EBTC8 0.8797 � 0.0627 0.1203 � 0.035 7.313 0.774

Table 6.4 Operations by

RDF3X for the BTC queries
Query Number of

merge joins

Number of

hash joins

DISTINCT

BTC 1 3 0

BTC 2 3 0

BTC 3 4 0

BTC 4 5 1

BTC 5 2 1 √
BTC 6 2 2 √
BTC 7 4 3 √
BTC 8 3 1

EBTC 1 1 1

EBTC 2 2 1

EBTC 3 1 1

EBTC 4 1 1

EBTC 5 2 1

EBTC 6 4 1

EBTC 7 2 1 √
EBTC 8 1 1 √
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PREFIX rdf: 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: 
<http://www.w3.org/2000/01/rdf-schema#>

PREFIX foaf:    <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/property/>
PREFIX purl:    <http://purl.org/dc/elements/1.1/>
PREFIX sioc:    <http://rdfs.org/sioc/ns#>
PREFIX skos:   <http://www.w3.org/2004/02/skos/core#>
PREFIX atom:    <http://www.w3.org/2005/>
PREFIX geoont:  <http://www.geonames.org/ontology#>
PREFIX gecountry: 

<http://www.geonames.org/countries/#>
PREFIX geopos:

<http://www.w3.org/2003/01/geo/wgs84_pos#>.

Query EBTC 1:
select * where {
?x foaf:depiction ?d;

dbpedia:hasPhotoCollection ?y.

?y foaf:maker ?m.}

Query EBTC 2:
select * where {
?x purl:title "Wimbledon_College_of_Art";

sioc:has_creator ?c; sioc:links_to ?l.

?l purl:title ?t.}

Query EBTC 3:
select * where {
?x skos:subject <http://dbpedia.org/resource/

Category:1960_in_Formula_One>;

dbpedia:wikilink ?l.

?l foaf:name ?n.}

Query EBTC 4:
select * where {
?m purl:title ?t.

?x foaf:made ?m; foaf:nick ?i.}

Query EBTC 5:
select * where {
?x atom:Atomuri ?u; atom:Atomname ?n.

?y atom:Atomname ?n; atom:Atomemail ?m.}
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Query EBTC 6:
select * where {
?x geoont:name> ?n1; geopos:lat ?l;

geoont:inCountry geocountry:DE.

?y geoont:name ?n2; geopos:lat ?l;

geoont:inCountry geocountry:DE.}

Query EBTC 7:
select distinct ?t where {
?x purl:title "Wimbledon_College_of_Art";

sioc:has_creator ?c; sioc:links_to ?l.

?l purl:title ?t.}

Query EBTC 8:
select distinct ?nwhere {
?x skos:subject <http://dbpedia.org/resource/

Category:1960_in_Formula_One>; 

dbpedia:wikilink ?l.

?l foaf:name ?n.}

6.11.2.3 Performance Gains

Several main factors contribute to the significant performance gains from our

presorting numbering scheme, when processing queries with larger intermediate

results:

1. A merge join with a fast sorting phase is more efficient than a hash join.

2. It often occurs that one operand of joins is already sorted accordingly. Under

such cases, RDF3X-Sort only needs to sort another operand. In comparison,

when using a hash join, two operands must be processed anyway.

3. Using the SIP strategy merge joins can benefit more than hash joins, by jumping

over much larger gaps.

6.12 Summary and Conclusions

We develop a new and efficient approach to computing joins in memory by

dynamically restricting triple patterns and using seven indices.

Our experimental evaluation shows that our proposed approach for joining the

result of triple patterns in memory is faster than in-memory variants of disk-based

join algorithms and common in-memory SPARQL database engines. Concretely,

the average execution of all SP2B benchmark queries (Schmidt et al. 2009) of our

approach is at least two times faster (see Fig. 6.25) than the compared approaches

and common in-memory SPARQL database engines.

152 6 Physical Optimization



For efficiently querying the large-scale Semantic Web, we propose a sorting

numbering scheme in order to fast sort solutions of SPARQL queries. Having the

fast sorting capability, a merge sort join can be efficiently applied to compute the

joins, data of which are unsorted. For large data sets, in combination with SIP

strategies, the application of merge joins instead of hash joins leads to remarkable

performance improvements. Elimination of duplicates also benefits significantly

from the fast sorting capability. Our approach neither requires more space in the

indices nor has extra update costs, since we use the ids of RDF terms as presorting

numbers. By using histograms for the determination of the subranges for the

buckets to be sorted in external mass storage, we ensure a good distribution between

the buckets even if there are gaps in the values to be sorted, that is, intervals in the

ids, which do not occur in the values, are quite common in large datasets, and could

occur after updates.

Our experimental results show that merge joins using our fast sorting algorithm

are more efficient than hash joins, and our fast sorting capability is a big benefit for

elimination of duplicates. Our sorting numbering scheme significantly speeds up

querying very large Semantic Web databases.
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