

Data Management and Query Processing
in Semantic Web Databases

.

Sven Groppe

Data Management
and Query Processing
in Semantic Web
Databases

Sven Groppe
Institute of Information Systems
University of Lübeck
Ratzeburger Allee 160 (Building 64 - 2nd level)
23562 Lübeck
Germany
groppe@ifis.uni-luebeck.de

ISBN 978-3-642-19356-9 e-ISBN 978-3-642-19357-6
DOI 10.1007/978-3-642-19357-6
Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): H.2, H.3, I.2

Library of Congress Control Number: 2011926984

Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Introduction . 1

1.1 Main Target Group of the Book . 2

1.2 Prerequisites Needed to Understand the Book . 3

1.3 Content . 3

1.4 Logical Organization of the Book . 4

1.5 Structure of the Chapters and Book Webpage . 4

2 Semantic Web . 7

2.1 Introduction . 7

2.2 Overview . 8

2.3 RDF Data . 9

2.3.1 N3 Notation . 11

2.3.2 RDF/XML . 13

2.4 Ontology Languages . 13

2.5 Open World Assumption . 16

2.6 No Unique Name Assumption . 17

2.7 SPARQL Query Language . 17

2.7.1 Language Constructs of SPARQL . 18

2.7.2 SPARQL Protocol for RDF . 24

2.7.3 SPARQL Query Results XML Format . 26

2.7.4 RDF Stores . 27

2.8 Rules . 28

2.9 Related Work . 31

2.9.1 RIF Processing . 31

2.9.2 Optimizations for Recursive Rules . 33

2.10 Summary and Conclusions . 34

3 External Sorting and B+-Trees . 35

3.1 Motivation . 35

3.2 B+-trees . 36

3.2.1 Properties of B+-Trees . 37

v

3.2.2 Self-balancing Property of B+-Trees . 38

3.2.3 Searching . 39

3.2.4 Prefix Search in Combination with Sideways

Information Passing . 39

3.2.5 Inserting . 41

3.2.6 Deleting . 43

3.2.7 B+-Tree Construction from a large Dataset 45

3.3 Heap . 45

3.4 (External) Merge Sort . 47

3.5 Replacement Selection . 48

3.6 External Chunks Merge Sort . 50

3.7 Distribution Sort . 52

3.8 RDF Distribution Sort . 53

3.9 Experimental Analysis . 56

3.9.1 SP2B Dataset . 57

3.9.2 Yago Dataset . 58

3.10 Summary and Conclusions . 63

4 Query Processing Overview . 67

4.1 The LUPOSDATE System . 67

4.2 Phases of Query Processing . 69

4.3 CoreSPARQL . 73

4.3.1 Defining CoreSPARQL . 73

4.3.2 Transforming SPARQL Queries into CoreSPARQL

Queries . 74

4.3.3 CoreSPARQL Grammar . 77

4.4 Related Work . 78

4.5 Summary and Conclusions . 78

5 Logical Optimization . 79

5.1 Logical Algebra . 79

5.1.1 Semantics of the Logical Algebra Operators 81

5.2 Logical Optimization Rules . 85

5.2.1 Pushing FILTER Operators . 85

5.2.2 Splitting and Commutativity of FILTER Operators 87

5.2.3 Constant and Variable Propagation . 87

5.2.4 Heuristic Query Optimization Using Equivalency Rules 89

5.2.5 Cost-Based Optimization . 90

5.2.6 Histograms . 99

5.3 Further Related Work . 101

5.4 Summary and Conclusions . 101

6 Physical Optimization . 103

6.1 Motivation . 104

6.2 Related Work . 106

vi Contents

6.3 Indexing . 108

6.3.1 Building In-Memory Indices . 109

6.3.2 Building Disk-Based Indices . 110

6.4 Pipelining Versus Materialization . 116

6.4.1 Pipeline-Breaker . 116

6.4.2 Sideways Information Passing . 116

6.5 Join Algorithms . 117

6.5.1 Nested-Loop Join . 117

6.5.2 Merge Join . 120

6.5.3 Index Join . 122

6.5.4 Hash Join . 123

6.6 Dynamically Restricting Triple Patterns . 126

6.7 Sorting Numbering Scheme . 129

6.7.1 Joins Without Presorting Numbers . 129

6.7.2 Joins with Presorting Numbers . 131

6.7.3 Optimization of Fast Sorting . 132

6.7.4 Sorting for Complex Joins . 132

6.7.5 Additional Benefits from SIP Strategies . 135

6.8 Optional . 136

6.8.1 MergeOptional . 136

6.9 Duplicate Elimination . 137

6.9.1 Duplicate Elimination Using Hashing . 137

6.9.2 Duplicate Elimination Using Sorting . 138

6.9.3 Duplicate Elimination Using Presorting Numbers 138

6.10 Cost Model . 138

6.11 Performance Evaluation . 139

6.11.1 Performance Evaluation for In-memory Databases 139

6.11.2 Performance Evaluation for Large-Scale Datasets 145

6.12 Summary and Conclusions . 152

7 Streams . 155

7.1 Introduction . 155

7.2 eBay . 156

7.3 Monitoring eBay Auctions . 157

7.3.1 Monitoring System . 157

7.3.2 Demonstration . 158

7.3.3 Streaming SPARQL Engine . 159

7.4 Special Operators for Stream Processing . 160

7.4.1 Types of Stream Operators . 160

7.4.2 Types of Window Operators . 161

7.5 Related Work . 161

7.5.1 Data Streams in General . 161

7.5.2 Semantic Web Data Streams . 162

7.6 Summary and Conclusions . 162

Contents vii

8 Parallel Databases . 163

8.1 Motivation . 163

8.2 Types of Parallelisms . 165

8.3 Amdahl’s Law . 167

8.4 Parallel Monitors and Bounded Buffers . 168

8.5 Parallel Join Using a Distribution Thread . 168

8.6 Parallel Merge Join Using Partitioned Input . 169

8.7 Parallel Computation of Operands . 172

8.8 Performance Evaluation . 173

8.9 Performance Gains and Loss . 175

8.10 Summary and Conclusions . 175

9 Inference . 177

9.1 Introduction . 177

9.2 RDF Schema Inference Rules . 178

9.3 Materialization of Inference and Consequences

for Query Optimization . 179

9.4 Logical Optimization for Inference . 180

9.5 Performance Analysis . 187

9.6 Related Work . 189

9.7 Summary and Conclusions . 189

10 Visual Query Languages . 191

10.1 Motivation . 191

10.2 Related Work . 193

10.3 RDF Visual Editor . 194

10.4 SPARQL Visual Editor . 194

10.5 Browser-Like Query Creation . 194

10.6 Generating Condensed Data View . 196

10.7 Refining Queries . 197

10.8 Query Formulation Demo . 198

10.9 Computation of Suggested Triple Patterns for Query

Refinement . 199

10.10 Summary and Conclusions . 201

11 Embedded Languages . 203

11.1 Motivation . 203

11.2 Related Work . 204

11.3 Embedding Semantic Web Languages Into JAVA 205

11.3.1 The Type System . 208

11.3.2 Subtype Test . 210

11.3.3 Satisfiability Test of Embedded SPARQL

and SPARUL Queries . 215

11.3.4 Determination of the Query Result Types 217

11.4 Summary and Conclusions . 217

viii Contents

12 Comparison of the XML and Semantic Web Worlds 219

12.1 Introduction . 219

12.2 Concepts and Visions . 221

12.3 Data Models . 221

12.4 Schema and Ontology Languages . 222

12.5 Query Languages . 223

12.6 Embedding SPARQL into XQuery/XSLT . 226

12.6.1 Embedded SPARQL . 226

12.6.2 Translation Process . 229

12.6.3 Experimental Analysis . 235

12.7 Embedding XPath Into SPARQL . 240

12.7.1 Translation of XPath Subqueries Into SPARQL

Queries . 241

12.7.2 Performance Analysis . 247

12.8 Related Work . 248

12.9 Summary and Conclusions . 250

13 Summary, Conclusions, and Future Work . 251

13.1 Possibilities for Future Work . 252

References . 255

Index . 267

Contents ix

.

Chapter 1

Introduction

The current World Wide Web (short Web) enables an easy, instant access to a vast

amount of online information. However, the content in the Web is typically for

human consumption and is not tailored to be machine-processed.

Machines already help users to organize their lives in the Internet. The most

prominent examples are search engines such as google or yahoo: Users type some

keywords as “food” and the search engine displays the webpages containing these

keywords. During its search, the search engine compares plain text rather than the

meaning of the keywords with the words on a webpage. Consequently, a number of

unwanted webpages are displayed to the user, since for example, the meaning of a

given keyword is ambiguous or the webpages contain only little relevant content for

this keyword. On the other hand, if a meaning is expressed by using other words

than the given keyword, relevant webpages are not retrieved by the search engine. If

a search engine can understand the meaning of a webpage and can use the meaning

during search, the described problems occur less and the quality of search results

can be improved.

The Semantic Web, which is intended to establish a machine-understandable web,

thereby offers a promising and potential solution tomining and analyzingweb content.

The advocators of the SemanticWeb define the SemanticWeb as “an extension of the

current web, in which information is given a well-defined meaning, better enabling

computers and people to work in cooperation” (Berners-Lee et al. 2001).

Around the vision of the Semantic Web, a number of semantic standards and

techniques have been developed by the World Wide Web Consortium (W3C),

among which the Resource Description Framework (RDF) is an important one.

RDF provides a general method for conceptual description and is designated by the

Semantic Web as its data model to describe the web resources. The W3C also

developed SPARQL as RDF querying language.

The Semantic Web is currently changing from an emergent trend to a technology

used in complex real-world applications. Semantic Web ontologies and RDF

knowledge bases are becoming increasingly large. The examples of large RDF

data with millions and even billions of facts include the UniProt comprehensive

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_1, # Springer-Verlag Berlin Heidelberg 2011

1

catalogue of protein sequence, function, and annotation data (Swiss Institute of

Bioinformatics 2009), the RDF data extracted from Wikipedia (Auer et al. 2007),

the Princeton University’s WordNet (Assem et al. 2006), and the Billion Triples

Challenge (Semantic web challenge 2010). The querying performance is no doubt a

key issue for Semantic Web applications.

In this book, we shed light on various aspects of high performance Semantic

Web data management and query processing, which is the heart of most applica-

tions and is often most worth to be optimized.

Why it is necessary to have a book specialising on the data management and

query processing in Semantic Web databases? Why not only read a book about the

Semantic Web and another one about databases?

The existing Semantic Web books typically focus on presenting the Semantic

Web technologies and their applications. After reading these books, the readers get

to know how to use Semantic Web technologies. We have just mentioned that

Semantic Web databases are becoming increasingly large, and the Billion Triples

Challenge (Semantic web challenge 2010) contains already several billion triples.

Semantic Web data managing and querying performance is no doubt a key issue for

Semantic Web applications. However, no books examine high performance Seman-

tic Web applications and address how to exploit the Semantic Web properties to

speed up the applications of Semantic Web.

On the other hand, database books usually describe the database internals for

data management and query processing specialized to the relational world.

Although they may cover also topics about object-oriented databases, web data-

bases (without the Semantic Web), XML databases, and other topics, they fail to

address the special topics about Semantic Web databases. The Semantic Web

databases deal with the special index structures and data management and query

processing approaches, which exploit the properties of the Semantic Web data

model and the Semantic Web query languages to speed up applications.

This book fills the gap of Semantic Web books and database books and deals

especially with how to use Semantic Web data and query specific properties to

efficiently manage and query very large Semantic Web databases.

1.1 Main Target Group of the Book

The main target group include as follows:

l Lecturers and students at universities and universities of applied sciences
l Researchers in the area of the Semantic Web and databases
l Software developers for semantic web databases
l Readers, which study on these topics
l All who are interested in databases and the Semantic Web, and especially in

query processing and data management of Semantic Web databases

2 1 Introduction

1.2 Prerequisites Needed to Understand the Book

The main prerequisites needed to understand the book are as follows:

l Basic computer science knowledge
l Basic knowledge about algorithms
l Semantic Web knowledge is not a prerequisite as the necessary Semantic Web

knowledge will be introduced in this book
l No knowledge about database internals such as query processing and data

management is required as those topics will also be introduced in this book

1.3 Content

We start with describing the specifications of the SemanticWeb in Chap. 2. All other

chapters deal with query processing specialized to the SemanticWebworld. Chapter 3

contains an excursion to external sorting and B+-trees. B+-trees are later used as

index for large-scale datasets and external sorting is used, for example, as part for

an efficient construction of a B+-tree from scratch.We have developed an own general

external sorting algorithm with higher performance than traditional external sorting

algorithms and a specialized external sorting algorithm for speeding up index

construction of large-scale Semantic Web indices. Chapter 4 introduces query

processing and its phases. We also introduce our Semantic Web database manage-

ment system LUPOSDATE and the transformation of Semantic Web queries into a

core of the query language without redundant language constructs to simplify further

processing steps in this chapter. Chapters 5 and 6 provide more details of the main

query processing phases logical and physical optimizations. Besides explaining

logical optimization rules, we describe the sophisticated query optimizer in the

LUPOSDATE implementation. We have developed indices for large-scale as well

as main memory databases for high speed query processing and a sorting numbering

scheme for fast sorting in order to avoid costly hash join operations. When all these

proposed techniques play together, we can process typical queries on even very large

datasets with over one billion triples in seconds or often in milliseconds, thus making

Semantic Web applications feasible. Chapter 7 deals with stream processing, that is,

the processing of (possibly infinite) streams of data generated, for example, by

sensors. Chapter 8 describes the optimization possibilities when using parallel

database technologies of today’s multicore processors. Chapter 9 describes different

optimization possibilities and materialization strategies for supporting inference.

Chapter 10 introduces visual query languages as alternative to formulate textual

queries. Chapter 11 deals with query and data languages embedded into program-

ming languages as well as their features. Chapter 12 finally compares the Semantic

Web world with the XML world as alternative for web data and queries. Chapter 13

provides summary and conclusions as well as hints for future work.

1.3 Content 3

1.4 Logical Organization of the Book

Figure 1.1 presents the logical organization of the book, that is, the dependencies

between the chapters. An arrow from a chapter X to a chapter Y means that the

content of chapter X is directly precondition of (and used within) the chapter Y.

Note that we did not mark all dependencies, but have drawn the main ones; that is,

small dependencies that should not hinder the main understanding if the chapter is

left away. Although we recommend to read the book from the first to the last

chapter, this logical organization may help the reader to read other passes through

the book and pick the chapters (s)he is only interested in (and those which are

required for these chapters).

1.5 Structure of the Chapters and Book Webpage

Each chapter starts with an abstract. After the abstract, an introduction shortly

introduces the topic of the chapter. Each chapter ends up with summary and

conclusions. The book webpage at http://www.ifis.uni-luebeck.de/~groppe/Sem

WebDBBook/ contains additional material such as exercises for each chapter.

The exercises can be used by lecturers as material for tutorials and by interested

Chapter 4
Query Processing

Overview

Chapter 5
Logical

Optimization

Chapter 6
Physical

Optimization

Chapter 7
Streams

Chapter 8
Parallel

Databases

Chapter 9
Inference

Chapter 10
Visual Query
Languages

Chapter 11
Embedded
Languages

Chapter 12
Comparison of
the XML and
Semantic Web

Worlds

Chapter 3
External Sorting

and B+-trees

Chapter 2
Semantic Web

Fig. 1.1 Logical organization of the book

4 1 Introduction

http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/
http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/

readers to check their understanding and learning success. The solutions of the

exercises are also given at the book webpage.

Acknowledgements First of all I thank Jinghua and Nils for the valuable family life they gave to

me. I thank for their patience, their humor, exciting moments of life, and last, but not least for their

love.

I thank all who have contributed to the implementations of the discussed approaches and all who

gave comments and remarks, and who have proposed improvements for the implementations and

online demonstrations.

I thank the reviewers of my papers for providing advices and their stimulations to go on with my

research after kind words and after acceptance.

I thank the students of my lectures, tutorials and laboratories, and those with a bachelor and master

thesis supervised by me for testing and extending the implementations.

I thank the members of the Institute of Information Systems (IFIS) for the smart working

environment and the sometimes long, but useful and fruitful discussions.

1.5 Structure of the Chapters and Book Webpage 5

Chapter 2

Semantic Web

Abstract The Semantic Web provides languages to define data, queries, ontologies,

and rules. This chapter introduces them after a short motivation and overview of the

Semantic Web.

2.1 Introduction

Although Semantic Web technologies can be and are used independent of the

Internet, the design issues of the Semantic Web address challenges for processing

data and knowledge in the internet such as vastness, semantically duplicated terms,

vagueness, incompleteness, uncertainty, and inconsistency:

l Vastness: The indexed web already contains at least 21.13 billion pages as

reported in (de Kunder et al. 2010) for the 6 May 2010. As well as the traditional

World Wide Web was designed to publish webpages read by humans, Semantic

Web technologies such as RDFa (Adida and Birbeck 2008) allow webpage

designers to embed RDF in their webpages for encoding information to be

processed by machines. Other Semantic Web datasets with up to over one billion

facts were crawled from data of the web or built for a special domain like the

UniProt comprehensive catalog of protein sequence, function, and annotation

data (Swiss Institute of Bioinformatics 2009), the RDF data extracted from

Wikipedia (Auer et al. 2007), the Princeton University’s WordNet (Assem

et al. 2006), and the Billion Triples Challenge (Semantic web challenge 2010).

Semantic Web tools have to be able to process these truly large datasets.
l Semantically duplicated terms: Large datasets may contain semantically dupli-

cated terms referring to the same thing such as truck, lorry, and freight vehicle,

which complicates automated processing and must be dealt with.
l Vagueness: Humans understand vague terms such as young and can handle

different meanings of the same term in different contexts: a young child may

have a different understanding of a young person as an adult or old person.

Furthermore, even in the same context, it is not absolutely clear at what exact

age a person is young and at what exact age a person is not young any more.

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_2, # Springer-Verlag Berlin Heidelberg 2011

7

Much information contains such vague terms, such that machines must be able to

process them.
l Incompleteness: New data sources occur frequently in the internet; other

data sources disappear or are temporarily unavailable. Thus, information in

the internet can never be seen as being complete, as new or temporarily

unavailable data sources can contribute relevant information for a specific

topic. Therefore, Semantic Web tools should regard any available information

as being incomplete.
l Inconsistency: Due to the huge amount of information in the internet, contradic-

tory information can be given in different or even in the same data sources.

Semantic Web tools must react on contradictory information in a reasonable and

practical way.

To deal with some of these challenges, Semantic Web technologies consider the

meaning of symbols during processing. This reduces the number of errors when,

for example, searching for or automatically integrating data and services. For this

purpose, Semantic Web technologies also infer new knowledge on the basis of

ontologies and rules. Inference helps to avoid redundancies in data and knowledge,

as inferred data and knowledge neither need to be explicitly stated nor stored.

Furthermore, inference aims to detect hidden relationships within the data and

knowledge. However, errors in data and knowledge can lead to unwanted detected

relationships and thus unwanted results. Therefore, it is necessary to check care-

fully the data, knowledge, and inferred data by humans.

After a short overview of the basic architecture of the Semantic Web in the next

subsection, we introduce its basic specifications. Note that we cannot cover all

specifications, drafts, and planned specifications here, but we focus on those which

are relevant for the topics addressed in this book. The reader should keep in mind

that a lot more is going on in the quite active Semantic Web community and the

World Wide Web is still the best source to be informed about recent activities.

2.2 Overview

Figure 2.1 presents the basic architecture of the Semantic Web, including the

important Semantic Web specifications from W3C, and their relationships. The

Resource Description Framework (RDF) (Beckett 2004), which defines a simple

Data Format: RDF

Query:

SPARQL

Ontology: Rule:

RIF

OWL (2)

RDFS

Fig. 2.1 Basic semantic web

architecture

8 2 Semantic Web

and extremely flexible data model, is an underlying component in this architecture.

The concepts of ontologies and of rules are the basis for the data integration and

inference of new facts. The standard languages for constructing ontologies are

RDF Schema (RDFS) (Brickley and Guha 2004) and the Web Ontology Language
(OWL) (Dean and Schreiber 2004) with its successor OWL 2 (Motik et al. 2009).

The W3C also proposes the Rule Interchange Format (RIF) (Boley et al. 2009)

as RDF rule language, and SPARQL (Prud’hommeaux and Seaborne 2008) as

RDF query language.

Since RDF and SPARQL are two important technologies dealt with in this book,

we will describe them in detail in this chapter. For the other specifications we

provide only background information.

2.3 RDF Data

The RDF data model is based upon the idea of making statements about resources

(in particular Web resources) and is therefore similar to classic conceptual model-

ing approaches such as Entity-Relationship or Class diagrams. The statements are

subject–predicate–object expressions of the form (Subject, Predicate, Object) and
are known as triples in RDF terminology. Subject indicates a resource (also known

as entity), Predicate represents a property of the entity, and Object is a value of the
property in form of a resource or literal. The predicate is also often explained as

expressing a relationship between the subject and object. For example, one way to

represent the notion “book1 has the author Egon” in RDF is as the triple (s, p, o),
where the subject s denotes “book1”, the predicate p “has the author”, and the

object o “Egon”.

RDF data consist of a set of triples. The set of triples builds a directed graph,

called RDF graph, where the subject and object are nodes and the predicate is

a labeled directed edge from the subject to the object. Nodes are unique; that is, the

same resources and literals in subjects and objects are represented by the same

node. For an example of an RDF graph, see Fig. 2.2.

RDF is an abstract model with several serialization formats (i.e., file formats) such

as RDF triples (Grant and Beckett 2004), N3 (Berners-Lee 1998), Turtle (Beckett

2006), or RDF/XML (Beckett 2004), which uses XML to encode RDF data. In the

following subsections, we shortly introduce the N3 notation and RDF/XML, which

are the most widely used formats due to the human-readable syntax of N3 and the

integration of RDF/XML into the RDF specification.

Resources are described in RDF by Internationalized Resource Identifiers (IRIs)

(D€urst and Suignard 2005). An IRI is a complement to the Uniform Resource

Identifier (URI) (Berners-Lee et al. 1998). A mapping from IRIs to URIs is defined;

that is, IRIs can be used instead of URIs, where appropriate, to identify resources. The

syntax of IRIs differs only slightly to the one of URIs. An example of an IRI is http://

www.example.org. Note that the IRI does not necessarily refer to a real webpage.

2.3 RDF Data 9

http://www.example.org
http://www.example.org

IRIs in RDF notations such as N3 and in query languages such as SPARQL are often

enclosed with < and >, for example, <http://www.example.org>.

Sometimes the user does not want or does not need to provide an explicit IRI as

global identifier for a resource. For this purpose, the user can define blank nodes. If

available, labels of blank nodes are local; that is, local labels can be used within

the same RDF file to refer to the same blank nodes, but cannot be used to

externally address this blank node. In N3 notation, every [] defines a new blank

node. _:b defines a blank node with local blank node label b.
Literals are values such as strings, numerical values, language-tagged values,

or values with a user-defined data type. “text” defines the simple literal text in N3

notation and in SPARQL.

Typed literals are literals with the further information of its data type.

For example, “text”^^<http://www.w3.org/2001/XMLSchema#string> is a typed

literal, where “text” is typed with the XML Schema data type string (Peterson et al.

2009) and which is equivalent to the simple literal “text”. Using a prefix, for

example, xsd, for http://www.w3.org/2001/XMLSchema#, the typed literal can be

abbreviated as “text”^^xsd:string.
Numerical values are typically expressed by a typed literal with a numerical

XML Schema data type (Peterson et al. 2009) such as int, integer, positiveInteger,

long, double, float, and decimal. Note that the validation of typed literals is not part

of RDF itself and left to the application using RDF. For example, “not an int”^^xsd:
int is correct in RDF, but applications may expect a real XML Schema int value like
“120”^^xsd:int.

An own user-defined data type may be used within a typed literal, for example,

“content”^^<http://www.myDatatypes.org/myDatatype1>. Again, it is up to the

application to validate and interpret the content content according to the data

type <http://www.myDatatypes.org/myDatatype1>. In multilingual environments,

language-tagged literals of the form “content”@tag may be used, where tag

:book1

v:book

“Egon”

“Fritz”

:Buch2 v:Buch
rdf:type

rdf
:ty

pe

v:author

v:author

v:a
uth

or

Fig. 2.2 Example of an RDF

graph

10 2 Semantic Web

http://www.example.org
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema
http://www.myDatatypes.org/myDatatype1
http://www.myDatatypes.org/myDatatype1

conforms to Alvestrand et al. (2001); for example, language-tagged literals for the

English content “hello”@en and for German content “hallo”@de may be used.

For later usage, we define the terms RDF triple and graph in a formal way:

Definition 1 (RDF triple). Assume there are pairwise disjoint infinite sets I, B, and
L, where I represents the set of IRIs (D€urst and Suignard 2005), B the set of blank
nodes, and L the set of literals. We call a triple (s, p, o) 2 (I [B) � I � (I [B [L)

an RDF triple, where s represents the subject, p the predicate, and o the object of the
RDF triple.

Furthermore, we call an element e2I [B [L an RDF term.

Definition 2 (RDF graph). An RDF graph (Beckett 2004) is a set of RDF triples.

2.3.1 N3 Notation

Figure 2.3 contains an example of RDF data in N3 notation, which is the serializa-

tion of the RDF graph in Fig. 2.2. The serialized RDF data contain three prefix

declarations [see lines (1)–(3)] and a set of triples [see lines (4)–(8)]. A prefix

declaration @prefix name: <iri> defines an alias name for a prefix IRI (D€urst and
Suignard 2005) iri. The prefix name can be used in the declaration of triples, where

name:postfix represents the IRI <iri postfix>. For example, rdf:type in line (4)

represents <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> according to the

prefix declaration in line (3). The first prefix declaration in line (1) does not define a

name for its prefix and is thus a default prefix to be used for prefixed IRIs without

prefix name like :book1 [line (4)] which represents<http://book/instances/book1>.

There are some abbreviations in N3 notation.

Object lists separate objects by a comma, and can be used to avoid repeating

the same subject and predicate, for example, :book1 v:author “Fritz”, “Egon”.
abbreviates the lines (5) and (6) of Fig. 2.3. Using predicate–object lists to separate

lists of predicate and object by a semicolon avoids repeating the same subject, for

example, :book1 rdf:type v:book; v:author “Fritz”. is equivalent to the lines (4) and
(5) of Fig. 2.3. The N3 abbreviations can usually be arbitrarily mixed; for example,

(1) @prefix: <http:// book / instances />.

(2) @prefix v: <http:// book / vocabulary />.

(3) @prefix rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>.

(4) :book1 rdf:type v:book.

(5) :book1 v:author “Fritz” .

(6) :book1 v:author “Egon” .

(7) :Buch2 rdf:type v:Buch.

(8) :Buch2 v:author “Fritz” .

Fig. 2.3 RDF data in N3 Notation

2.3 RDF Data 11

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://book/instances/book1

the triples in the lines (4)–(6) of Fig. 2.3 can be also expressed with:book1 rdf:type
v:book; v:author “Fritz”, “Egon”.

We explain another notation for blank nodes with the following example: [rdf:
type v:book; v:author “Herbert”, “Josef”], where a predicate–object list occurs

inside the brackets [] for blank nodes, is equivalent to [] rdf:type v:book; v:author
“Herbert”, “Josef”. The advantage of this notation is that additionally a predicate–

object list on the right of the blank node brackets [] as well as a subject and

predicate on the left of the blank node brackets [] are allowed. A subject and

predicate on the left of the blank node brackets [] together with the new blank

node as object form a triple; that is,

:bookshop1 v:sells
[rdf:type v:book;
v:author “Herbert”, “Josef”]

v:price “10”^^xsd:int

is equivalent to

:bookshop1 v:sells :_b.
_:b rdf:type v:book;

v:author “Herbert”, “Josef”;
v:price “10”^^xsd:int,

where _:b is a new blank node not used elsewhere.

A single-linked list is also called collection in N3. Collections in N3 (and also

in SPARQL) are enclosed with brackets (and). For each element e of a collection,
a new blank node b is generated. The blank node b and the current element e are

connected via a triple (b, rdf:first, e). The blank node b is also connected with the

blank node bnext for the next entry via a triple (b, rdf:next, bnext). For the last element

in the collection, a triple (b, rdf:next, rdf:nil) is generated. Therefore,

(“Friday” “Saturday” “Sunday”)

is equivalent to

[rdf:first “Friday”;
rdf:next [rdf:first “Saturday”;

rdf:next [rdf:first “Sunday”;
rdf:next rdf:nil]]].

Again, analogous to the blank node brackets [], we can add a subject and a

predicate on the left to the collection brackets () as well as a predicate–object list on

the right of the collection brackets (), for example,

:list v:listOfDays (“Friday” “Saturday” “Sunday”) v:altFirst “Freitag”@de.

is equivalent to

:list v:listOfDays [rdf:first “Friday”;
rdf:next [rdf:first “Saturday”;

rdf:next [rdf:first “Sunday”;
rdf:next rdf:nil]]] v:altFirst “Freitag”@de.

12 2 Semantic Web

The keyword a is an alias for rdf:type, the empty collection () for rdf:nil. The
N3 notation contains more syntactic sugar. We refer the interested reader to

(Berners-Lee 1998).

2.3.2 RDF/XML

RDF/XML uses XML to encode RDF triples. RDF/XML supports also a huge

number of abbreviations and language constructs. We only present the RDF/XML

representation (see Fig. 2.4) of the RDF data of Fig. 2.3 here and will not introduce

the language constructs of RDF/XML further. We refer the interested reader to the

specification of RDF/XML in (Beckett 2004) for more details. As N3 notation (or

similar notations such as RDF triples or Turtle) is typically more human-readable

than RDF/XML, one usually uses tools to transform RDF/XML files into one of

these human-readable notations such as N3 before inspecting the content. These

transformation tools are often part of an RDF store like Jena (McBride 2002;

Wilkinson et al. 2003).

2.4 Ontology Languages

An ontology is meant to provide a standard description about a domain by defining

a set of concepts, the properties of the concepts, and the relationships between these

concepts. These relationships are either explicitly defined in the ontology, or can be

H
E
A
D
E
R

<rdf:RDF

xmlns = "http:// book / instances / "
Declaration
of prefixesxmlns:v = "http:// book / vocabulary / "

xmlns:rdf = "http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#">

<rdf:Description rdf:about = "http:// book / instances / book1">

<rdf:type rdf:resource = "http:// book / vocabulary / book"/> Triples of
lines (4) to (6)
in Figure 2.3

<v:author>Fritz< / v:author>

<v:author>Egon< / v:author>

< / rdf:Description>

<rdf:Description rdf:about = "http:// book / instances /Buch2">
Triples of
lines (7) to (8)
in Figure 2.3

<rdf:type rdf:resource = "http:// book / vocabulary /Buch"/>

<v:author>Fritz< / v:author>

< / rdf:Description>

< / rdf:RDF>

Fig. 2.4 RDF/XML representation of the RDF data of Fig. 2.3

2.4 Ontology Languages 13

asserted based on the existing ones from the ontology. This is the so-called

inference capability of ontology. Ontology languages are formal languages used

to construct ontologies. They allow the encoding of knowledge about specific

domains and often include reasoning rules that support the processing of that

knowledge. RDF Schema (RDFS) (Brickley and Guha 2004) and theWeb Ontology

Language (OWL) (Dean and Schreiber 2004) are two ontology languages devel-

oped by W3C.

RDFS provides basic elements for describing the ontologies in order to construct

various RDF resources. RDFS allows the definition of classes, subclasses, and

instances. It also allows the definition of properties, derived properties, and their

domains and codomains. RDFS supports a type system and metaclasses.

OWL (Dean and Schreiber 2004) and its successor OWL 2 (Motik et al. 2009)

allow more language constructs than RDF Schema. OWL (2) consists of three

sublanguages OWL Lite, OWL DL, and OWL Full, with increasing expressiveness.

OWL Lite contains language constructs for simple classification hierarchies and

conditions, which allows simple and fast implementations. OWL DL is close to a

syntactic variant of a more expressive, but still decidable (i.e., all computations are

guaranteed to be completed in finite time), Description Logic (DL) (Baader et al.

2007), namely SHOIN (D). More precisely, the OWL DL variant coincides with

this DL by imposing several restrictions on the usage of RDF(S) like disallowing

metaclasses. Furthermore, OWL DL has the property of computation completeness;

that is, the computation of all conclusions is guaranteed. The restrictions of OWL

DL are lifted in OWL Full that combines the description logic flavor of OWL

DL and the syntactic freedom of RDF(S). Figure 2.5 provides overviews of the

unionOf
arbitrary cardinality

enumerated types (oneOf)
negation (disjointWith, complementOf)

intersection, (in) equality
cardinality 0 / 1, datatypes

inverse, transitive, symmetric
hasValue, someValuesFrom

allValuesFrom

(sub) properties, domain, range
(sub) classes, individuals

M
eta

-cl
ass

es

RDFS

OWL
Lite

OWL
DL

OWL
Full

Fig. 2.5 Expressiveness of OWL sublanguages and RDFS

14 2 Semantic Web

expressiveness of RDFS and of OWL sublanguages, and Fig. 2.6 describes the

important OWL language constructs.

OWL 2 additionally specifies 3 profiles: OWL 2 EL is particularly useful in

applications employing ontologies that contain very large numbers of properties

and/or classes. The basic reasoning problems for OWL 2 EL can be performed in

time that is polynomial with respect to the size of the ontology. OWL 2 QL captures

expressive power of simple ontologies such as thesauri, and (most of) expressive

power of ER/UML schemas, which enables a tight integration with relational

database management systems. OWL 2 RL is aimed at applications that require

scalable reasoning without sacrificing too much expressive power. In the OWL

2 RL fragment, the ontology consistency, class expression satisfiability, class

expression subsumption, instance checking, and conjunctive query answering pro-

blems can be solved in time that is polynomial with respect to the size of the

ontology.

Legend:
Properties are indicated by: P, P1, P2, etc
Specific classes are indicated by: x, y, z
Generic classes are indicated by: C, C1, C2
Values are indicated by: v, v1, v2
Instance documents are indicated by: I1, I2, I3, etc.
A number is indicated by: N
P(x,y) is read as: “property P relates x to y”

Symmetric: if P(x, y) then P(y, x)
Transitive: if P(x, y) and P(y, z) then P(x, z)
Functional: if P(x, y) and P(x, z) then y = z
InverseOf: if P1(x, y) then P2(y, x)
InverseFunctional: if P(y, x) and P(z, x) then y = z
allValuesFrom: P(x, y) and y = allValuesFrom(C)
someValuesFrom: P(x, y) and y = someValuesFrom(C)
hasValue: P(x, y) and y = hasValue(v)
cardinality: cardinality(P) = N
minCardinality: minCardinality(P) = N
maxCardinality: maxCardinality(P) = N
equivalentProperty: P1 = P2
intersectionOf: C = intersectionOf(C1, C2, …)
unionOf: C = unionOf(C1, C2, …)
complementOf: C = complementOf(C1)
oneOf: C = one of(v1, v2, …)
equivalentClass: C1 = C2
disjointWith: C1 != C2
sameIndividualAs: I1 = I2
differentFrom: I1 != I2
AllDifferent: I1 != I2, I1 != I3, I2 != I3, …
Thing: I1, I2, …

Fig. 2.6 Important OWL

language constructs

2.4 Ontology Languages 15

Multiple inheritances are allowed in RDFS as well as in OWL (2).

Figure 2.7 presents an OWL ontology Book.owl. The RDF data Book.rdf in

Fig. 2.3 is an instance data of this ontology. Book.owl defines three concepts,

v:book, v:Buch, and v:author, and several relationships: v:book and v:Buch are

classes [lines (4) and (5)]; v:author is a property [line (6)] of v:book [line (7)]; and
v:book and v:Buch are equivalent classes [line (8)]. A number of implied relation-

ships can be asserted; for example, if a book is an instance of v:book, then it is also

an instance of v:Buch.

2.5 Open World Assumption

In this and in the next subsection, we want to introduce some paradigms, which

are realized in the Semantic Web technologies and which differ from known

paradigms, for example, from the database world. These new paradigms address

new challenges in web environments: data is often incomplete, as new data

sources occur frequently, data sources are temporarily unavailable, or disappear

permanently.

The first paradigm is the Open World Assumption, which is contrary to the well-
known Closed World Assumption. Recall that the Closed World Assumption states

that a database contains all facts and that everything not contained in the database is

assumed to be false. Contrary, the Open World Assumption assumes everything

not contained in the database not to be false, but to be unknown! If a data source

contains, for example, only the information that trains depart at 2 and 5 p.m., then a

query about the existence of a train departing at 4 p.m. would be answered using the

ClosedWorld Assumption with false. However, using the OpenWorld Assumption,

the answer should be unknown, as there could be another data source containing

this information. OWL reasoning follows the Open World Assumption and as

consequence, a fact that a train departs at 4 p.m. is not inconsistent with the

previous given information that trains depart at 2 and 5 p.m.

(1) @prefix v: <http:// book / vocabulary />.

(2) @prefix owl: <http:// www.w3.org / 2002 / 07 / owl#>.

(3) @prefix rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>.

(4) owl:class rdf:ID v:book.

(5) owl:class rdf:ID v:Buch.

(6) rdf:property rdf:ID v:author.

(7) v:title owl:domain v:book.

(8) v:book owl:equivalentClass v:Buch.

Fig. 2.7 An OWL ontology Book.owl in N3 notation

16 2 Semantic Web

2.6 No Unique Name Assumption

In the database world, every resource (like a table row in a relational database) has

an identifier (consisting of the attribute values of the primary key in a relational

table). This resource has neither another identifier nor has another resource the

same identifier. In an open context like the Web, this cannot be guaranteed and

the uniqueness of identifiers must be lifted. In the No Unique Name Assumption

several different identifiers can refer to the same resource. This affects reasoning,

too. For example, the facts that a person Mary has the parents Lisa Minelly, John

Doe, and Lisa Doe are given. Furthermore, we have a cardinality axiom stating

that a person has at most two persons as parents. In the Unique Name Assumption

as used in the database world, it would be a contradiction to have the parents Lisa

Minelly, John Doe, and Lisa Doe, which are more than two. In the No Unique Name

Assumption as used in OWL reasoning, it can be inferred that Lisa Minelly is the

same person as John Doe or as Lisa Doe, or John Doe is the same person as Lisa

Doe, or Lisa Minelly, John Doe and Lisa Doe are all one person. For a human being,

it is intuitive that Lisa Minelly and Lisa Doe is the same person, as Lisa Minelly

could be the maiden name of Lisa Doe. A reasoner can only determine this fact if

much more information is given such as Lisa Doe and Lisa Minelly are females,

John Doe is male, and female is disjoint from male.

2.7 SPARQL Query Language

Just as SQL is the most important query language for relational databases, SPARQL

(Prud’hommeaux and Seaborne 2008; Beckett and Broekstra 2008; Clark et al.

2008) is the most important query language for the Semantic Web.

Before SPARQL has been recommended as standard RDF query language by

the W3C, many proprietary RDF query languages have been developed. Among

them are RDQL (Seaborne 2004) and N3QL (Berners-Lee 2004). RDQL was

influenced by SquishQL and rdfDB (Miller et al. 2002), while N3QL was influ-

enced by Notation 3 (Berners-Lee 1998) and RDQL. Furthermore, TAP (Guha and

McCool 2003) has been specified for the semantic search, and Sesame RDF Query

Language (SeRQL) (Broekstra and Kampman 2003) has been introduced as part of

Sesame (Broekstra et al. 2002). YARSQL (Harth and Decker 2005) is a quadruple

query language, which additionally considers the context of a triple (see Guha et al.

2004; MacGregor and Ko 2003). Today, SPARQL is accepted as standard query

language and is supported by main database vendors such as Oracle (Oracle 2009).

SPARQL offers a powerful means to query RDF triples and graphs and supports

a variety of querying capabilities. Results of SPARQL queries can be ordered,

limited and offset by a given number of elements. The W3C has plans for embed-

ding SPARQL into other W3C languages, analogous to the embedding of the

XML query language XPath (W3C 2007b) into XQuery (W3C 2007c) and XSLT

(W3C 2007a).

2.7 SPARQL Query Language 17

The core component of SPARQL queries is a set of triple patterns s p o. s p o
corresponds to the subject (s), predicate (p), and object (o) of an RDF triple, but

they can be variables as well as RDF terms. Within a SPARQL query, the user

specifies the known RDF terms of triples and leaves the unknown ones as variables

in triple patterns. The same variables can occur in multiple triple patterns and

thus imply joins. A triple pattern matches a subset of the RDF data, where the RDF

terms in the triple pattern correspond to the ones in the RDF data. A triple pattern

applied to an RDF graph generates an unordered bag of solutions. A solution is a set

of bindings, each of which consists of a pair of a variable and its bound value, that

is, corresponding RDF terms in the matched subset of the RDF data. The result of

a group of triple patterns is the join of the results of individual triple patterns.

There are several limitations on SPARQL concerning the supported language

constructs. For example, SPARQL allows the nesting of subexpressions only up to a

certain degree (e.g., a SPARQL construct query, the result of which is an RDF

graph, cannot be the input of an outer SPARQL query) and does not support path

expressions (e.g., to retrieve the descendants of a node), the expressions to compute

the transitive closure, updates, user-defined functions, or rules.

Proprietary extensions of SPARQL exist such as SPARUL (Seaborne and

Manjunath 2008) for supporting update operations. SPARUL and some other exten-

sions like GROUPBY, aggregation functions, and nested subqueries are currently in

the standardization process for SPARQL 1.1 (Kjernsmo and Passant 2009).

2.7.1 Language Constructs of SPARQL

Before describing the main aspects of the SPARQL query language, we first present

an example SPARQL query in order to provide readers a first flavor of SPARQL

queries.

Figure 2.8 is an example of a SPARQL query Book.sparql, which can be applied

on the RDF data Book.rdf in Fig. 2.3. Book.sparql contains a SELECT clause in

line (3) and aWHERE clause in lines (4) and (5). The SELECT clause identifies the

variables to appear in the query results (i.e., the bindings of the variable ?author).

The WHERE clause contains two triple patterns, which identify the constraints on

the input RDF data. The first triple pattern ?x v:author ?author matches three

triples of Book.rdf (see lines (5), (6), and (8) in Fig. 2.3), and thus its result is

{(?x¼:book1, ?author¼“Fritz”), (?x¼:book1, ?author¼“Egon”), (?x¼:Buch2,
?author¼“Fritz”)}. Without considering the ontology Book.owl in Fig. 2.7, the

(1) PREFIX v: <http://book / vocabulary />

(2) PREFIX rdf: <http://www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

(3) SELECT ?author

(4) WHERE { ?x v:author ?author .

(5) ?x rdf:type v:book. }

Fig. 2.8 A SPARQL query Book.sparql

18 2 Semantic Web

second triple pattern ?x rdf:type v:book only matches one triple of Book.rdf, that is,

(:book1, rdf:type, v:book) (see line (4) in Fig. 2.3), and thus its result is {(?x¼:
book1)}. The two triple patterns impose a join over the common variable ?x, and
the join result of the two triple patterns is hence {(?x¼:book1, ?author¼“Fritz”),
(?x¼:book1, ?author¼“Egon”)}. The final query result is a bag {(?author¼
“Fritz”), (?author¼“Egon”)}. The statement, v:book owl:equivalentClass v:Buch,
in the ontology Book.owl in Fig. 2.7 [see line (8)] implies that an instance of v:Buch is
also an instance of v:book. Therefore, we can infer that :Buch2 is an instance of v:book;
that is, the triple (:Buch2, rdf:type, v:book) can be added to Book.rdf as implicit

knowledge. When considering this ontology information, the result of the second

triple pattern is hence {(?x¼:book1), (?x¼:Buch2)}, and thus the final query result is

{(?author¼“Fritz”), (?author¼“Egon”), (?author¼“Fritz”)}.

2.7.1.1 Types of SPARQL Queries

There are four types of SPARQL queries.

The most often used type is the SELECT query, which we have just introduced

above. The bindings of all the variables occurring in a query are returned when

using the wildcard * instead of a projection list of variables. A projection list is

a parameter of the SELECT clause and consists of variable names [see line (3)

in Fig. 2.8]. By replacing line (3) of Fig. 2.8 with SELECT ?x ?author
or with SELECT *, we retrieve {(?x¼:book1, ?author¼“Fritz”), (?x¼:book1,
?author¼“Egon”)} when applying the query on the RDF data in Fig. 2.3.

Additionally to the WHERE clause like in SELECT queries, CONSTRUCT

queries have a set of triple templates. For each solution of the WHERE clause,

variables in the triple templates are substituted with the bound values in the

solution, such that RDF triples are generated. All generated RDF triples build an

RDF graph, which is the result of the CONSTRUCT query. For example, the result

of the CONSTRUCT query in Fig. 2.9 is the set of triples {(:book1, v:author,
“Fritz”), (:book1, v:author, “Egon”), (:book1, rdf:type, v:Buch)} when applied on
the RDF data in Fig. 2.3.

Users can apply ASK queries in order to test whether or not a given query pattern

has a solution. An ASK query returns a Boolean value indicating whether or not a

solution exists. For example, replacing line (3) in Fig. 2.8 with ASK and applying

this query on the RDF data in Fig. 2.3 would return true.

PREFIX v: <http:// book / vocabulary />

PREFIX rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

CONSTRUCT { ?x v:author ?author .
?x rdf:type v:Buch. }

WHERE { ?x v:author ?author .
?x rdf:type v:book. }

Fig. 2.9 Construct query

2.7 SPARQL Query Language 19

DESCRIBE queries return RDF graphs containing relevant information about

the resources found for a given query pattern in the WHERE clause. However, the

result of a DESCRIBE query has not been formally defined and is implementation-

dependent. In most implementations, replacing line (3) in Fig. 2.8 withDESCRIBE
?x and applying this query on the RDF data in Fig. 2.3 would return at least all

triples containing :book1, that is, {(:book1, v:author, “Fritz”), (:book1, v:author,
“Egon”), (:book1, rdf:type, v:book)}.

2.7.1.2 Default Graph and Named Graphs

An RDF store applies a query on a certain RDF graph, the default RDF graph, if no
other RDF graphs are addressed in the query. Besides a default RDF graph, an RDF

store administers different RDF graphs and uses IRIs to distinguish them. SPARQL

uses the FROM IRI clause to indicate a nondefault RDF graph with name IRI to be
queried. For example, we assume that the triples in lines (4)–(6) of Fig. 2.3 are

stored in an RDF graph associated with the IRI <http://www.graph1.com> in the

RDF store, and the triples in lines (7) and (8) of Fig. 2.3 are stored in another RDF

graph associated with the IRI <http://www.graph2.com>. We also use these RDF

graphs in other examples of this subsection. When adding

FROM <http://www.graph1.com>
FROM <http://www.graph2.com>
between the lines (3) and (4) of Fig. 2.8, the query is evaluated on the union of both

RDF graphs.

SPARQL even supports to evaluate different triple patterns on different RDF

graphs within the same query. For this purpose, the FROM NAMED IRI clause
specifies the RDF graph with name IRI to be used as named graph rather than as

default RDF graph like for a FROM IRI clause. Then a GRAPH IRI { E } clause
indicates that the inner query expression E in the curly brackets will be evaluated on

the named RDF graph IRI. If a variable, for example,?v rather than an IRI is used,
the inner query expression E is evaluated on all named graphs. The variable ?v will
be bound with the IRI of the corresponding named RDF graph. For example,

the query in Fig. 2.10 has the result {(?author¼“Fritz”, ?x¼:book1, ?t¼v:book,

PREFIX v: <http:// book / vocabulary />

PREFIX rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

SELECT *
FROM NAMED <http:// www.graph1.com>

FROM NAMED <http:// www.graph2.com>

WHERE { GRAPH ?g {

?x v:author ?author.

?x rdf:type ?t. }}

Fig. 2.10 SPARQL query using named graphs

20 2 Semantic Web

http://www.graph1.com
http://www.graph2.com
http://www.graph1.com
http://www.graph2.com

?g¼<http://www.graph1.com>), (?author¼“Egon”, ?x¼:book1, ?t¼v:book,
?g¼<http://www.graph1.com>), (?author¼“Fritz”, ?x¼:Buch2, ?t¼v:Buch,
?g¼<http://www.graph2.com>)}.

2.7.1.3 Other Modifiers

All query types except of the ASK queries support the modifier ORDER BY for

sorting the result of queries, by a given number limited query result when using the

LIMIT modifier, and considering an offset in the query result when using the

OFFSET modifier.

The ORDER BY clause causes sorted query results. After the ORDER BY
keyword, a list of sort criteria can be given. The first sort criterion in this list is

the primary sort criterion, the second in this list the secondary sort criterion, and so

on. Each sort criterion can start with ASC for ascending order or DESC for

descending order. If neither ASC nor DESC is given, then the ascending order is

assumed. A variable may be given as sort criterion. It is also possible to specify a

more complex expression as sort criterion like a built-in function or a formula like

?x þ ?y, where the solutions of the query are sorted according to the result of the

given expression applied on the solutions.

The OFFSET x clause discards the first x solutions from the query result, where

x is an integer.

Complementary to the OFFSET clause, when using the LIMIT x clause, only

the first x solutions remain in the query result and the others are discarded, where x
is an integer.

LIMIT and OFFSET clauses can be combined, that is, when using OFFSET x
LIMIT y, the (xþ1)th to (xþyþ1)th query result solutions remain and the others are

discarded.

For example, when adding the following lines

ORDER BY ?author
LIMIT 1
OFFSET 1

to the query in Fig. 2.8 after line (5), we retrieve the result {(?author¼“Fritz”)}

when evaluating the modified query on the RDF data in Fig. 2.3.

2.7.1.4 Variables and Blank Nodes

Variables are placeholders for the RDF terms in RDF data. Solutions of a query

result contain bindings of variables with these RDF terms. Variables start with a

dollar character $ or a question mark ?, followed by the name n of the variable, for

example, $n and ?n. Variables with the same name n represent the same variable;

that is, $n and ?n are the same variables!

Sometimes the user does not want to include a variable in the query result. In

such a case, the user can use a SPARQL blank node: The SPARQL language

2.7 SPARQL Query Language 21

http://www.graph1.com
http://www.graph1.com
http://www.graph2.com

redefines the semantics of blank nodes of RDF using the same notation as in N3,

that is, [] for a new blank node without name and _:b for a blank node with name b.
Blank nodes in SPARQL are local variables, whereas blank nodes in RDF are RDF

terms with (local) identifiers. Blank nodes in SPARQL can neither be used in the

projection list of SELECT queries nor their bound values appear in the query result

even if the wildcard * is used in a SELECT clause. For example, the query in

Fig. 2.11 returns the same result as the query in Fig. 2.8.

2.7.1.5 Triple Patterns

For triple patterns, SPARQL supports abbreviations for object lists, predicate–

object lists, blank nodes, and collections. These abbreviations are similar to the

ones for the N3 notation and only differ in the additional support of variables

besides RDF terms. For example, the triple patterns in Fig. 2.11 may be replaced

with [v:author ?author; rdf:type v:book], which does not change the query result

for any input RDF graph.

As in the N3 notation, the keyword a represents rdf:type and the empty collec-

tion () stands for rdf:nil.

2.7.1.6 Filter

Filter expressions contain Boolean formulas. For each solution of the intermediate

query result, a filter expression checks whether its Boolean formula becomes true,

false, or an error occurs like a type error or that a used variable is not bound. If its

Boolean formula becomes true, then the solution remains in the intermediate query

result, otherwise in the case that the Boolean formula becomes false or an error

occurs, the solution is discarded. A Boolean formula is an RDF term or a variable.

Furthermore, if B1 and B2 are Boolean formulas, then the negated formula !B1,
formulas containing logical and- (B1 && B2) and or-(B1 || B2) combinations,

relational operations (B1 < B2, B1 <¼ B2, B1 ¼ B2, B1 > B2, B1 >¼ B2, B1 !¼
B2), mathematical formulas such as B1 þ B2, or built-in functions are also Boolean

formulas. A Boolean formula transforms other values than the Boolean values true or
false and errors by determining the effective Boolean value (see Prud’hommeaux and

PREFIX v: <http:// book / vocabulary />

PREFIX rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

SELECT *

WHERE { _:b v:author ?author.

_:b rdf:type v:book. }

Fig. 2.11 Query using blank nodes

22 2 Semantic Web

Seaborne 2008). For example, the effective Boolean formula of a plain literal or a

typed literal with a data type of xsd:string is false if the result has zero length;

otherwise the effective Boolean value is true. The effective Boolean value of a

numeric type or a typed literal with a data type derived from a numeric type is false

if the operand value is NaN (alias for not a number) or is numerically equal to zero;

otherwise the effective Boolean value is true.

For example, by inserting FILTER(?author¼“Fritz”) between lines (4) and (5)
in Fig. 2.8, we would retrieve the query result {(?author¼“Fritz”)}.

2.7.1.7 Built-In Functions

SPARQL supports various built-in functions to be used in Filter expressions. We

focus on the important ones here, whereas a complete list of built-in functions is

given in (Prud’hommeaux and Seaborne 2008).

The function bound checks whether or not a variable is bound. The functions

isIRI (equivalent to the function isURI), isBlank, and isLiteral check whether or not
a RDF term is an IRI, blank node, or a literal, respectively. The function datatype
returns the data type of a literal. In the case of a simple literal, xsd:string is returned
as data type. The function REGEX checks whether or not a regular expression is

matched. REGEX is actually equivalent to the XPath fn:matches function as defined
in Malhotra et al. (2007). SPARQL further imports a subset of the XPath con-

structor functions defined in (Malhotra et al. 2007). A constructor function as, for

example, xsd:long allows to cast a value to the corresponding data type of the

constructor function. Data type-specific operations such as comparisons or mathe-

matical operations can be afterward calculated using the casted values, even though

the values themselves are simple literals or have another data type.

For example, by inserting FILTER(REGEX(?author, “E”)) between lines (4)

and (5) in Fig. 2.8 for checking if ?author contains E, we would retrieve the query

result {(?author¼“Egon”)}.
RDF stores typically support more functions than only the built-in functions of

the specification and also support to call external functions programmed in another

programming language like Java [as Jena (McBride 2002) (Wilkinson et al. 2003)

does].

2.7.1.8 Optional

The OPTIONAL operator adds bindings of its right operand to the solutions of its

left operand if the right operand matches and do not bind other values to the same

variables as in the solution of the left operand; otherwise the OPTIONAL operator

let the solution of the left operand unchanged; that is, the effect of an OPTIONAL
operator is like for a left-outer join in relational databases.

Furthermore, the OPTIONAL operator in combination with a FILTER(!bound
(?v)) can simulate Negation as Failure in logic programming and a NOT EXISTS

2.7 SPARQL Query Language 23

clause of the upcoming SPARQL 1.1 standard. For example, the query in Fig. 2.12

returns all those RDF terms that have an author and are not of type v:book. When

evaluating the query in Fig. 2.12 on the RDF data in Fig. 2.3, we get the result

{(?x¼:Buch2)}. In more detail, the pattern AOPTIONAL {B}FILTER(!bound(?v)),
where A and B are SPARQL subexpressions, and the variable ?vmust occur in B for

every result of B and not in A, can be used in SPARQL 1.0 to retrieve all solutions of

A for which B does not have any solutions.

2.7.1.9 Union

The UNION operator returns all the solutions of all its operands. For example, the

query in Fig. 2.13 uses the UNION operator to retrieve all those RDF terms of type

v:book or v:Buch, which have an author. The result of this query applied on the

RDF data in Fig. 2.3 is hence {(?author¼“Fritz”, ?x¼:book1), (?author¼“Egon”,

?x¼:book1), (?author¼“Fritz”, ?x¼:Buch2)}.

2.7.2 SPARQL Protocol for RDF

To increase the interoperability of different SPARQL engines, (Clark 2008) pro-

poses a protocol, which specifies how to set up queries at a SPARQL engine over

the internet. SPARQL engines supporting the protocol specified in (Clark 2008) are

also called SPARQL endpoints. The SPARQL protocol uses WSDL 2.0 (Chinnici

et al. 2007) to describe how to convey SPARQL queries to a SPARQL endpoint and

return the query results to the requesting entity. The SPARQL Protocol is described

PREFIX v: <http://book / vocabulary />

PREFIX rdf: <http://www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

SELECT *

WHERE { ?x v:author ?author.

{?x rdf:type v:book .} UNION {?x rdf:type v:Buch .} }

Fig. 2.13 SPARQL query with UNION operator

PREFIX v: <http:// book / vocabulary />

PREFIX rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

SELECT ?x

WHERE { ?x v:author ?author.

OPTIONAL { ?x rdf:type ?t.

FILTER(?t=v:book).}

FILTER(!bound(?t)) }

Fig. 2.12 Example of negation as failure in SPARQL

24 2 Semantic Web

in an abstract interface independent of any concrete realization, implementation, or

binding to another protocol. Furthermore, HTTP and SOAP bindings of this

interface are provided. We do not explain all the details here and just provide a

simple example: Fig. 2.14 contains the SOAP message for setting up the query of

Fig. 2.8. Another SOAP message (see Fig. 2.15) is used to transport the query result

<?xml version = "1.0" encoding = "utf-8"? >

<soapenv:Envelope

xmlns:soapenv = "http:// www.w3.org / 2003 / 05 / soap-envelope/ "

xmlns:xsd = "http:// www.w3.org / 2001 /XMLSchema"

xmlns:xsi = "http:// www.w3.org / 2001 /XMLSchema-instance">

<soapenv:Body>

<query-result xmlns = "http:// www.w3.org / 2005 / 09 / sparql-protocol-types /#">

RESULT

< / query-result>

< / soapenv:Body>

< / soapenv:Envelope>

Fig. 2.15 SOAP message containing the query result

POST / services / sparql-query HTTP / 1.1

<?xml version = "1.0" encoding = "UTF-8"?>

<soapenv:Envelope

xmlns:soapenv = "http:// www.w3.org / 2003 / 05 / soap-envelope / "

xmlns:xsd = "http:// www.w3.org / 2001 /XMLSchema"

xmlns:xsi = "http:// www.w3.org / 2001 /XMLSchema-instance">

<soapenv: Body>

<query-request

xmlns = "http:// www.w3.org / 2005 / 09 / sparql-protocol-types /#">

<query>

PREFIX v: <http:// book / vocabulary />

PREFIX rdf:<http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

SELECT ?author

WHERE{ ?x v:author ?author.

?x rdf:type v:book.}

< / query>

< / query-request>

< / soapenv:Body>

< / soapenv:Envelope>

Fig. 2.14 SOAP message for setting up the query of Fig. 2.8

2.7 SPARQL Query Language 25

back. RESULT in Fig. 2.15 is a placeholder for the query result. The query result

itself follows a special format, which we explain in the next subsection.

2.7.3 SPARQL Query Results XML Format

For the interoperability of different SPARQL engines, we have to not only specify

how to set up queries at SPARQL engines over the internet, but also specify the

format of the query result. For this purpose, (Beckett and Broekstra 2008) specify

an XML format for the variable binding and Boolean results of SELECT queries

and ASK queries called SPARQL Query Results XML Format. Note that CON-

STRUCT and DESCRIBE queries return an RDF graph, which can be serialized in

XML using RDF/XML (Beckett 2004).

For example, the query result {(?x¼:book1, ?author¼“Fritz”), (?x¼:book1,
?author¼“Egon”)} can be expressed as in Fig. 2.16. The <head> tag contains all

variables in the query result; the <results> tag contains all solutions of the query.

Each solution is contained in one<result> tag. A variable binding of a variable n is
contained in a <binding name¼“n”> tag. The bound values can be encoded in an

<uri> tag in the case of an URI, in a <literal> tag in the case of a literal, or in a

<bnode> tag in the case of a blank node. The<literal> tag can have no attribute for

simple literals, the attribute datatype¼“D” for a typed literal with data typeD, or the
attribute xml:lang¼“L” for a language-tagged literal with language L.

<?xml version = "1.0"? >

<sparql xmlns = "http:// www.w3.org / 2005 / sparql-results#">

<head>
<variable name = "x" />

<variable name = "author" />

< / head>

<results>
<result>

<binding name = "x"> <uri>http:// book / instances / book1< / uri>< / binding>
<binding name = "author"> <literal>Fritz< / literal>< / binding>

< / result>

<result>

<binding name = "x"> <uri>http:// book / instances / book1< / uri>< / binding>

<binding name = "author"> <literal>Egon< / literal>< / binding>
< / result>

< / results>
< / sparql>

Fig. 2.16 SPARQL query results format of {(?x¼:book1, ?author¼“Fritz”), (?x¼:book1,
?author¼“Egon”)}

26 2 Semantic Web

2.7.4 RDF Stores

We classify storage systems according to the logical and physical data model and

the supported query languages. Structured data are typically stored with support of

indices for fast access to the data. RDF storage systems provide functionalities like

support of permanent RDF data, updates, and deletion. Figure 2.17 contains an

overview of several RDF storage systems.

RDF storage
system

Data
model

Storage
model

Supported
query

languages

Data access in-
terface

Inference of
new facts

Jena
(McBride 2002;
Wilkinson et al. 2003)

Triple
RDBMS,
File

SPARQL,
RDQL, Triple
Pattern

RDF /XML, N-
Triples, N3,
Turtle, NetAPI

Rule based

YARS (Harth and
Decker 2005)

Quadruple B+ tree
Tripel Pattern,
YARSQL

N-Triples, HTTP

SESAME
(Broekstra et al. 2002) Triple

Abstract,
RDBMS,
File

SPARQL, RQL,
RDQL, SeRQL

RDF input / output
library,
RDF /XML,
N-Triple, N3,
Turtle

Rule based

Oracle Spatial 11g
(Oracle, 2009) Triple

Oracle Spa-
tial Network
Data Model

Extension of
standard SQL,
planned:
SPARQL

Extension of
standard SQL

Inference
based on
RDFS, big
subset of OWL

ORDI
(Kiryakov et al. 2004)

Triple SESAME
SPARQL, RQL,
RDQL, SeRQL

RDF input / output
library,
RDF/XML,
N-Triple, N3,
Turtle

Rule based

3Store
(Harris and Gibbins
2003)

Triple RDBMS
SPARQL,
RDQL

RDF/XML, N-
Triples, Turtle,
HTTP

Inference
based on RDFS

Kowari
(Wood et al. 2005)

Quadruple AVL Tree
iTQL, planned:
SPARQL

RDF/XML, N3,
SOFA, JRDF,
SOAP

DL, OWL-Lite

RDFPeers
(Sung et al. 2005)

Triple RDBMS
RDQL,
RDFPeers que-
ries

RDF /XML -

-

Edutella
(Edutella 2004)

Triple RDBMS
RDF-QEL
(adaptet from
Datalog)

RDF /XML
Adapted from
Datalog

Fig. 2.17 Overview of existing RDF storage systems

2.7 SPARQL Query Language 27

2.8 Rules

Rules have been used, for example, to control devices and processes in real-time

applications, perform calculations or inference, enforce integrity constraints on

databases, represent and enforce policies, and determine the need for human

intervention. The RIF rule language has been developed by the W3C in order to

support advanced reasoning capabilities by integrating it with ontology languages.

Ontology languages describe knowledge according to the Open World Assump-

tion: the encoded knowledge is considered incomplete, and the conclusions, which

cannot be derived from ontologies, are treated agnostically. Rule inference as

proposed by RIF follows the Closed World Assumption, where everything which

is not derivable is assumed to be false. This allows reasoning, for example, in

domains that have to deal with default knowledge, that is, knowledge that usually

holds like “birds typically fly”, unless there is evidence of the contrary. Therefore,

rule languages are introduced as complementation for ontologies.

Today’s state-of-the-art applications run in distributed and heterogeneous envir-

onments (communicating, e.g., using the internet). Using rules in this situation

requires a widely accepted and supported standard for rules interchange, such that

rules can be processed by different distributed systems running on different plat-

forms and using different rule engines.

However, before RIF, there was neither a common standard for rules interchange

nor a rule language specialized for the Semantic Web. The language for RIF rules is

standardized by the W3C, the world’s leading standardization committee for the

Web. RIF rules – in comparison to prolog and datalog rules, are specialized for the

usage in the Semantic Web. This opens new possibilities and additional advantages

for Semantic Web applications, for example, more interchangeability, more con-

cisely processing by additionally considering the semantics based on ontologies,

and a widespread support of further Semantic Web technologies.

Logic-based dialects cover languages that apply some kind of logic, such as first-

order logic (often restricted to Horn logic) or non-first-order logics, which underlay

the various logic programming languages like logic programming using the well-

founded (Gelder et al. 1991) or stable (Gelfond and Lifschitz 1988) semantics. The

rules-with-actions dialects include production rule systems, such as Drools,1 Jess,2

and JRules,3 as well as reactive (or event-condition-action) rules, such as Reaction

RuleML4 and XChange.5

The RIF working group aims to provide representational interchange formats for

processes based on the use of rules and rule-based systems. These formats act as

1http://jboss.org/drools/
2http://www.jessrules.com/
3http://www.ilog.com/products/jrules/
4http://reaction.ruleml.org/
5http://reactiveweb.org/xchange/

28 2 Semantic Web

http://jboss.org/drools/
http://www.jessrules.com/
http://www.ilog.com/products/jrules/
http://reaction.ruleml.org/
http://reactiveweb.org/xchange/

“interlingua” to exchange rules and integrate with other languages, in particular

(Semantic) Web markup languages.

The RIF languages are designed for two main kinds of dialects (see Fig. 2.18):

logic-based dialects [e.g., the RIF Core Dialect (Boley et al. 2009) and the Basic

Logic Dialect (RIF-BLD) (Boley and Kifer 2009)], and dialects for rules with
actions [e.g., the Production Rule Dialect (RIF-PRD) (Sainte Marie et al. 2009)].

Both dialects RIF-BLD and RIF-PRD extend the RIF Core Dialect (Boley et al.

2009). Other dialects are expected to be defined by the various user communities.

Figure 2.18 provides an overview of the expressiveness of the different RIF

dialects. RIF Core is basically a syntactic variant of Horn rules, which most

available rule systems can process. RIF allows frames as in F-Logic notation, is

compatible with the RDF data model, supports the use of IRIs (D€urst and Suignard

2005) as object identifiers (where IRIs are enclosed in angle brackets), and typed

literals. For instance, the RDF triple (<http://book/instances/book1>, dcterms:

issued, "2006"^^xsd:gYear) can be represented as a RIF frame <http://book/

instances/book1> [dcterms:issued -> "2006"^^xsd:gYear]. RIF uses the Prolog

style “:-” for separating rule head (called left side or consequent) and body (called

right side or antecedent).
The example in Fig. 2.19 presents a simple complete RIF Core rule [taken from

(Boley et al. 2009)], which describes several buy–sell relationships in order to

RIF BLD

• Equality in conclusions
• membership in
 conclusions
• External Functions
• Frame subclass
• Open Lists
• “logic” functions

RIF PRD

• Conclusion “actions”
• Negation
• frames-as-objects
• Retraction
• subclass
• membership in
 conclusion

RIF CORE

• Horn (monotonic)
• Datatypes & builtins
• external functions
• frames, class membership (in
 conditions)
• equality (in conditions)
• ground lists
• existential quantification (in
 conditions)

Fig. 2.18 Expressiveness of RIF dialects, adapted from http://www.w3.org/2005/rules/wiki/

images/b/b0/W3C_RIF-CW-9-09.pdf

(1) Document(Prefix(cpt <http:// example.com / concepts #>)

(2) Prefix(ppl <http:// example.com / people#>)

(3) Prefix(bks <http:// example.com / books#>)

(4) Group(

(5) Forall ?Buyer ?Item ?Seller(

(6) cpt:buy(?Buyer ?Item ?Seller):-

(7) cpt:sell(?Seller ?Item ?Buyer))

(8) cpt:sell(ppl:John bks:LeRif ppl:Mary)))

Fig. 2.19 Simple complete RIF Core example [taken from (Boley et al. 2009)]

2.8 Rules 29

http://www.w3.org/2005/rules/wiki/images/b/b0/W3C_RIF-CW-9-09.pdf
http://www.w3.org/2005/rules/wiki/images/b/b0/W3C_RIF-CW-9-09.pdf

derive new buy–sell relationships (1) A buyer buys an item from a seller if the seller

sells the item to the buyer [see lines (5)–(7)]. (2) John sells LeRif to Mary [see line

(8)]. The fact Mary buys LeRif from John can be logically derived by a modus
ponens argument, which can be determined by application of the rule in lines

(5)–(7).Groups [see line (4)] allow to associate rules with a priority and a resolution

conflict strategy. The current RIF Core specification (Boley et al. 2009) defines only

the resolution conflict strategy forward-chaining, which is the default. Recall that

forward-chaining starts with the available data and applies given rules to infer new

data until a goal is reached. The lines (1)–(3) contain prefix declarations similar

to SPARQL queries. Figure 2.20 contains another RIF example for retrieving the

book’s authors analogous to the SPARQL query in Fig. 2.8. In this example, the

frames ?x[v:author->?author] and ?x[rdf:type->v:book] are used analogously to

the triple patterns of the SPARQL query in Fig. 2.8.

RIF rules specify how the RIF rules themselves interoperate with RDF graphs

and RDFS/OWL ontologies, and specify the conditions under which the combina-

tion of RIF rules, RDF graphs, and ontologies is satisfiable (i.e., consistent), as well

as the entailments (i.e., logical consequences based on inference). The interaction

between RIF and RDF/OWL is realized by connecting the model theory of RIF with

the model theories of RDF (Hayes 2004) and OWL (Motik et al. 2009). When RDF

graphs are imported into RIF, it must be specified whether the satisfiability or

entailment of a model (Simple, RDF, D (for data type support), OWL DL, or OWL

Full) is the basis for the combination of RIF with the imported data. Bruijn (2009)

provides more information about these combinations.

RIF supports the XML Schema data types (Peterson et al. 2009) and various

functions: a huge amount of built-in functions for comparing values, data type

functions for checking if a literal is (or is not) of a certain data type, data type

conversions and castings functions, (basic) numeric functions, Boolean functions,

and functions on strings, dates, times, durations, xml literals, plain literals, and lists.

Rules in RIF-PRD support actions as consequent in the (production) rules. The

actions can be assertions and retractions of facts and frames, modifications (i.e.,

additions, removals, or replacements) of frames, executions of externally defined

actions, or sequences of these actions, including the declaration of local variables

and a mechanism to bind a local variable with a frame slot value or a new frame

object.

Document(Prefix(v <http:// book / vocabulary />)

Prefix(rdf <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>)
Group(

Forall ?author(

v:bookauthors(?author) :- AND(

?x[v:author->?author]

?x[rdf:type->v:book]))))

Fig. 2.20 Rule for retrieving the book titles analogous to the SPARQL query in Fig. 2.8

30 2 Semantic Web

A typical scenario for the use of RIF with RDF/OWL is the exchange of rules

that use RDF data and/or RDFS or OWL ontologies. An interchange partner A uses

a rule language that is RDF/OWL-aware; that is, the input data of the rules are RDF

data, an RDFS or OWL ontology defines the semantics of objects used in the rules,

or the rules extend RDF(S)/OWL inference. A transmits its rules using RIF,

possibly with references to input RDF graph(s), to partner B. B receives the rules

and retrieves the referenced RDF graph(s). The rules are then processed together

with the retrieved RDF graphs.

A specialization of the previous scenario is the publication of RIF rules: a

publisher publishes its rules in the Web and consumers retrieve the RIF rules

(and referenced RDF graphs) from the Web and process the retrieved RIF rules

together with the RDF graphs in their own rule engines.

In another exchange scenario, the intention of a publisher is to extend an OWL

ontology with rules. This publisher splits its ontology and rules description into a

separate OWL ontology and a RIF document that includes a reference to the OWL

ontology and publishes them. A consumer of the rules retrieves the OWL ontology

and RIF document and translates both into a description, which combines ontology

and rules, in its own rule extension of OWL.

There are a number of systems available or planned for RIF dialects (see

Fig. 2.21).

2.9 Related Work

2.9.1 RIF Processing

As RIF only recently appeared, there are only few publications concerning

RIF processing. A RIF tutorial is given in Marie (2008), and Hawke (2009)

and Kiefer (2008) are two keynotes about RIF.

There are several demonstrations (Bost et al. 2007; Hallmark et al. 2008;

IBM 2008), which describe systems supporting RIF. In (Bost et al. 2007), the

Mortgage Industry Maintenance Organization (MISMO) describes a proof-

of-concept (POC) to solve an often mentioned need for the exchange of rules:

loan application pricing. Bost et al. (2007) develop an extended Production

Rules (PR) language of the Rules Interchange Format (RIF). In Bost et al.

(2007), the well-established MISMO schema is used as the ontology for

sharing and executing a rule set among ILOG JRules and JBOSS Rules in

a distributed environment. Hallmark et al. (2008) describe a system, where

rules are interchanged between the rule engines such as ILOG JRules, Oracle,

and Prova. IBM (2008) contains a web demo for RIF processing using the

IBM rule engine.

(continued)

2.9 Related Work 31

Eiter et al. (2008) describe the current state of the art of rule integration

into the Semantic Web, and addresses open questions and possible future

research work in this area. Besides the RIF language, earlier approaches

(e.g., Lisi 2008) use other rule languages for the integration of rules into

the Semantic Web. Both publications have in common that they show the

importance of rule integration for the Semantic Web and describe future

challenges like case studies and large(r) scale examples beyond toy examples

of semantics for rules plus ontologies, refined studies of computational

(continued)

Rule System
Organization,

Contact
RIF dialect

Consumer,
Producer,
Function

Impl.
language &
license

Time
frame

SILK

Vulcan, BBN,
Stony Brook
University, B.
Grosof, M.
Dean, M. Kifer

BLD + develop-
ment of a Default
Logic Dialect
(DLD) extending
BLD

producer,
consumer

producer,
consumer

Java (license
TBD)

October
(BLD) and
December
(DLD)
2009

OntoBroker 5.3
ontoprise Chris-
tian Schmidt

BLD commercial Available

fuxi
Chimezie
Ogbuji

RIF Core/OWL 2
RL

producer BSD license Available

N/A Susan Malaika
BLD (but should
support all XML
syntaxes)

producer
IBM Develo-
perWorks

Available

IBM Websphere
ILOG JRules

Changhai Ke
IBM/ ILOG

PRD+DTB
producer-
consumer

October
2009

Eye Jos De Roo

BLD+DTB using
external
RIF /XML->N3
translator

consumer
Yap and W3C
License

DTB
available

Vampire Prime
Alexandre
Riazanov

BLD consumer LGPL Available

RIFle

José María
Álvarez, Luis
Polo

Core, PRD, DTB Validator
Eclipse Public
License

Core+DTB
Available,
PRD
12 / 2009

OBR
Gary Hallmark,
Oracle

PRD without Im-
port + some of
DTB

Producer +
Consumer

Producer +
Consumer

Proprietary

IRIS
Adrian Marte,
STI Innsbruck

BLD+DTB
TBD open
source

End 09

N /A
Stijn Heymans,
MichaelKifer

FLD
Core Answer Set
Programming
Dialect

N /A available

Fig. 2.21 Implementations of RIF rules (adapted from http://www.w3.org/2005/rules/wiki/

Implementations)

32 2 Semantic Web

http://www.w3.org/2005/rules/wiki/Implementations
http://www.w3.org/2005/rules/wiki/Implementations

properties of the various approaches for combining rules and ontologies, and

efficient implementations and algorithms for rules plus ontologies.

Zhao and Boley (2008) deal with uncertainty in RIF by extending the RIF

language. Boley (2009) defines the central semantics-preserving mappings

bridging RIF/XML and RuleML/XML, the mappings between the RIF Pre-

sentation Syntax and RIF/XML, and the mappings between RuleML/XML

and the Prolog-like RuleML/POSL. Marie (2009) introduces the notion of

limited forward compatibility, and describes a low-cost, nondisruptive, exten-

sible implementation. Marie (2009) uses XSLT to specify individual trans-

forms, an XML format to associate them with individual RIF constructs, and

the RIF import mechanism to convey the fallback information from RIF

producer to RIF consumer. Gordon et al. (2009) describe requirements for

rule interchange languages in the legal domain.

2.9.2 Optimizations for Recursive Rules

There have been several optimization approaches proposed for recursive

rules.

The SNIP approach of McKay and Shapiro (1981) corresponds to the

seminaive evaluation in Bancilhon and Ramakrishnan (1986), where recur-

sive rules are reapplied to only the newly inferred facts, rather than to all facts

(given and inferred). Top-down evaluation using tables has been proposed in

(Tamaki and Sato 1986; Chen and Warren 1996), and static and dynamic

filtering in (Kifer and Lozinskii 1990).

The Henschen–Naqvi method (H–N) (Henschen and Naqvi 1984) com-

piles queries into iterative programs, which are described using relational

algebra expressions. Henschen and Naqvi (1984) try to detect “repeated

patterns” of relational expressions during the compilation. These patterns

provide the basis for the iterative program. Dependence on a repeated pattern

severely restricts the applicability of H–N, and it is believed (Bancilhon et al.

1986; Bancilhon and Ramakrishnan 1986) that the application domain

of H–N cannot be extended beyond linear axioms. Liu and Stoller (2009)

compile rules directly into an implementation in a standard imperative

programming language. The generated implementation performs a kind

of bottom-up computation based on careful incremental updates with data

structure support.

One of the most well-known optimization techniques is the usage of magic

sets (Bancilhon et al. 1986; Faber et al. 2005), where a fast computable set is

used to early discard irrelevant subgoals. The similar Counting method

[described in Bancilhon et al. (1986) and then further developed and

generalized by Sacca and Zaniolo (1986) and Beeri and Ramakrishnan

(continued)

2.9 Related Work 33

(1987)] computes the “distance” from each tuple in a magic set to the tuple of

bindings specified in the query. The Counting approach allows more precise

selections to be made while computing the query, and this is an advantage

over the Magic Sets method. On the other hand, the “distance” between tuples

of the magic set and the query binding may not be uniquely defined. In this

case, Counting tends to do some superfluous computations compared to

Magic Sets.

There are also methods for efficient evaluation of Datalog queries using

binary decision diagrams (Lam et al. 2005) and relational databases

(Avgustinov et al. 2007).

2.10 Summary and Conclusions

The Semantic Web family of specifications cover many aspects needed for infor-

mation processing: RDF is defined as simple, but flexible data model, SPARQL as

its powerful query language, RDFS and OWL (2) for not only schema information,

but also for metainformation considering the meaning of symbols and avoiding

redundancies by using inference mechanisms, and RIF as standardized rule lan-

guage, which is more flexible than just using ontologies.

34 2 Semantic Web

Chapter 3

External Sorting and B+-Trees

Abstract Today’s Semantic Web datasets become increasingly larger containing

over one billion triples. The performance of index construction is a crucial factor

for the success of large Semantic Web databases. (Large-scale) Indices are typically

constructed from externally sorted data. In this chapter, as well as reviewing the

data structure B+-tree and traditional external sort algorithms, we propose two new

external sort approaches: External chunks-merge sort and Distribution Sort for
RDF. The former stores and retrieves chunks from a special chunks heap in order

to speed up replacement selection. The latter leverages the RDF-specific properties

to construct RDF indices and significantly improves the performance of index

construction. Our experimental results show that our approaches significantly

speed up RDF index construction and are important techniques for large Semantic

Web databases.

3.1 Motivation

Indices are an important data structure for efficient data management and query

processing. The invention of the internet, especially of the World Wide Web,

revolutionizes the speed and amount of information spread. New data sources

keep occurring and are easily obtained. An incremental update to databases will

be impractical for insertion of large datasets; instead, indices need to be constructed

from scratch. This also applies to many other situations, for example, whenever

databases need to be set up from previously made dumps, because of, for example,

reconfigurations of the underlying hardware. Therefore, developing efficient tech-

niques to speed up the index construction for large datasets is obviously an

important and urgent task for modern databases.

The most widely used index type in databases is the B+-tree, which is a variant of

the B-tree storing only keys in the interior nodes and all records, that is, the keys and

their values, in leaves. B+-trees can be built very efficiently from sorted data by

avoiding costly node splitting (see (Miller et al. 1977) and adapt its results from

B-trees to B+-trees). Thus, the performance of index construction from scratch

relies heavily on the techniques of data sorting.

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_3, # Springer-Verlag Berlin Heidelberg 2011

35

Large datasets typically cannot fit into main memory and thus need external

sorting, that is, sorting using disk storage. The most well-known efficient external

sorting algorithms (Knuth 1998) are external merge sort and distribution sort.
The external merge sort first generates initial runs of sorted data. An initial run is

typically computed by reading as much data as possible from input into main

memory, and sorting these data using main-memory sorting algorithms. The alter-

native approach replacement selection uses a heap to generate longer initial runs.

Runs are written into external storage and merged afterward to larger sorted runs

until all the data are sorted.

The distribution sort first distributes the input data according to disjoint intervals

into several buckets. The data in these buckets are then sorted using a main-memory

sort algorithm if the data fit into main memory; otherwise, the distribution sort is

recursively applied.

The main contributions of this chapter include two new approaches to speeding

up external sorting for the index construction of large-scale RDF databases:

1. The first approach is a variant of the external merge sort approach. The variant

generates longer initial runs (and thus less number of runs) than external merge

sort using main-memory sort algorithms, and thus the succeeding merge phase

can be processed faster. Since the generation of the initial runs has a similar

performance, our approach is faster than external merge sort using main-memory

sort algorithms. In comparison to the approach of replacement selection, our

approach generates slightly smaller initial runs, and thus the merging phase is

slightly slower. However, our approach computes the initial runs much faster

since more simple operations are used, such that our approach outperforms

replacement selection as well.

2. The second approach is a variant of distribution sort. Our variant considers

RDF-specific properties and avoids several unnecessary passes through the RDF

data, such that our approach enormously speeds up RDF index construction in

comparison to the original distribution sort, and also to the external merge sort

algorithms.

3. An experimental evaluation demonstrates the performance improvements of

both new approaches.

This chapter contains contributions of (Groppe and Groppe 2010).

3.2 B+-trees

B+-trees are the most widely used database indices (see Fig. 3.1 for an example of a

B+-tree). The B+-tree is a self-balancing block-oriented search tree. We can store

keys and their values in a B+-tree and a value can be efficiently retrieved using its

key. The nodes in trees without children are called leaves and all other nodes are

called interior nodes. In contrast to B-trees (Bayer and McCreight 1972), in a

B+-tree all records, that is, the keys and the values (sometimes also pointers to

36 3 External Sorting and B+-Trees

values), are stored in the leaves and the interior nodes contain only keys, such that

interior nodes can hold more keys to decrease the height of the overall search tree.

The database systems often sort the input data in order to build indices efficiently.

Using sorted data, B+-trees are constructed without expensive node splitting [see

(Miller et al. 1977) and adapt its results from B-trees to B+-trees]. Index construc-

tion from sorted data plus an extra sorting phase is typically much faster than

building the B+-tree from unsorted data.

3.2.1 Properties of B+-Trees

B+-trees have two parameters k and k0. Whereas the parameter k determines the

number of keys in an interior node, k0 determines the number of key-value pairs in

the leaves. Using two parameters k and k0 increases the flexibility to react on the

higher space consumption of the additional stored values in leaves; that is, k and k0

can be balanced such that each interior node and each leaf consumes similar space

on disk. The block size is 8 kb in most modern hard disks, such that a space

consumption of 8 kb for a node promises best performance. B+-trees have the

following properties:

l All interior nodes (except of the root) must have at least k and at most 2*k keys
K1, . . .,Kj, where K1 � K2 �. . .� Kj�1 � Kj holds, and j+1 childrenC1, . . .,Cj+1.

The sub-B+-tree with root node Ci contains only keys that are larger than Ki�1 and

equal to or less than Ki. For the extreme case C1, all keys in the sub-B+-tree with

root node C1 must be equal to or less than K1, and for Cj+1 all keys in the sub-B+-

tree with root node Cj+1 must be larger than Kj. The interior node is also called the

parent (interior) node of its children C1, . . ., Cj+1.
l All leaves (except of the root) contain at least k0 and at most 2*k0 key-value pairs

(k1, v1), . . ., (kj, vj), where ki represents a key and vi represents its value, and
k1 < k2 <. . .< kj�1 < kj holds. Furthermore, all leaves L1, . . ., Ln are organized
in a chain of leaves L1 ! L2 ! . . . ! Ln�1 ! Ln, where all keys of Li are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9

12 15keys

values

Fig. 3.1 Example of a B+-tree

3.2 B+-trees 37

smaller than those of Li+1 for 1 � i < n. The chain of leaves is realized by a

pointer in every leaf (except of the last leaf Ln in the chain), which points to the

next leaf in the chain.
l The root node of a B+-tree is either a leaf with 0–2*k0 key-value pairs, if all key-

value pairs fit into only one leaf, or is an interior node with at least one key (and

two children) and at most 2*k keys (and 2*k + 1 children).
l A sequence C1, . . ., Cn of B

+-tree nodes is a pathwith length n � 1 from the root

R to a leaf L, if C1 is the root R, Cn is the leaf L, and Ci contains the child Ci+1 for

i � 1< n. The nodes C1, . . .,Cn�1 are also called the ascendant nodes of Cn. The

length of all the paths from the root to its leaves is the same, which is also called

the height of a B+-tree. Note that this property of B+-trees is seldom explicitly

stated in literature, but is guaranteed by the insertion and the deletion algorithms

of B+-trees.

These properties must be guaranteed after the construction of a B+-tree from

imported data and after each basic operation such as insertion and deletion of a key-

value pair. Furthermore, for the basic operations of searching, insertion, and

deletion, the maximum number of nodes that must be temporarily stored in main

memory for these operations is 3, such that we can guarantee never to run out of

memory for suitable chosen k and k0.

3.2.2 Self-balancing Property of B+-Trees

We will now prove that the height of a B+-tree for N stored key-value pairs is in

O(log(N)); that is, B+-trees are self-balancing.

If the root node is a leaf, then the height of the B+-tree is 0.

If the root node is not a leaf, we first determine the maximal height h of a B+-tree

with N stored key-value pairs. The height of a B+-tree for a given number N of key-

value pairs becomes maximal if the nodes in a B+-tree are “most possible empty”;

that is, if all B+-tree interior nodes have the smallest possible number of children

and the leaves contain the smallest possible number of key-value pairs. This is the

case when the root node has two children, each interior node has k + 1 children, and

the leaves have k0 key-value pairs. Thus, the minimal number of key-value pairs

stored in such a B+-tree with height h is pmin ¼ 2*(k+1)h�1*k0. As a B+-tree with the

height h can also store more than pmin key-value pairs, pmin � N holds and thus

h � logk+1 (N/(2*k
0)) + 1.

We now determine the minimal height h of a B+-tree. The height of a B+-tree for

a given number N of key-value pairs becomes minimal if all nodes in the B+-tree are

“full up”; that is, all B+-tree interior nodes have the largest possible number of

children and the leaves contain the largest possible number of key-value pairs as

well. This is the case when the root node as well as each interior node has 2*k+1
children, and the leaves have 2*k0 key-value pairs. Thus, the maximal number of

key-value pairs stored in such a B+-tree with height h is pmax ¼ (2*k+1)h*k0. As a

38 3 External Sorting and B+-Trees

B+-tree with the height h can also store less than pmax key-value pairs, pmax � N
holds and thus h � log2*k+1 (N/k

0).
Therefore, log2*k+1 (N/k0) � h � logk+1 (N/(2*k0)) + 1 holds, such that the

height of a B+-tree is always logarithmic to the number of stored key-value pairs

and in this way self-balancing.

For example, for a B+-tree with parameters k ¼ 400, k0 ¼ 200 and

N ¼ 4,000,000,000 (four billions), a B+-tree storing N key-value pairs has a height

of at most 4.

3.2.3 Searching

Searching for the value of a key k starts at the root node, and searching proceeds in

the following way:

If the current node is an interior node with keys K1, . . ., Kj and children C1, . . .,
Cj+1, searching proceeds with the node C0 if k � K0 holds, with the node Cj+1 if

k > Kj holds, and Ci, if Ki�1 < k � Ki holds.

If the current node is a leaf node with key-value pairs (k1, v1),. . ., (kj, vj), where ki
represents a key and vi represents its value, then we found the value vi for the key k
if k ¼ kiwith 1 � i � j; otherwise, the B+-tree does not contain any such key-value

pair with key k.
Figure 3.2 presents the accessed path in the B+-tree of Fig. 3.1 while searching

for the value of the key 8.

3.2.4 Prefix Search in Combination with Sideways Information
Passing

While we have described a search for the value of a key in the previous section, we

describe the search for all values of keys starting with a given prefix (also called

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9

12 15keys

values

Path for searching
for the value of 8

Fig. 3.2 Searching in the B+-tree of Fig. 3.1 for the value of the key 8

3.2 B+-trees 39

prefix key) in this section. This kind of search is also called prefix search. The
applications of prefix searches are widespread. We only name two of them here: If

the keys in a B+-tree are strings, then the prefix search can be used to retrieve all

values of string keys starting with a given prefix key, which can be used, for

example, for the wildcard search dir s* in a command line to display all files

starting with s. We will also see that prefix search in an index for RDF triples can be

used to retrieve the result of a triple pattern.

Indices used to answer Semantic Web queries often index RDF triples according

to a certain collation order SPO, SOP, PSO, POS, OSP, or OPS. The collation order

determines how the triples are sorted in the index, for example, for the SPO collation

order, the triples are primarily sorted according to the subject (S), secondarily

according to the predicate (P), and tertiary according to the object (O). If we want

to retrieve the result of a triple pattern, where only the subject is not a variable, then

we can use this subject as prefix key in the SPO index in order to retrieve all RDF

triples matched by the triple pattern. If only the object in a triple pattern is a variable,

then we can use the subject and predicate of the triple pattern as prefix key in the SPO

index for determining all matching RDF triples. Figure 3.3 contains such a B+-tree

for RDF data according to the SPO collation order. Note that the B+-tree of Fig. 3.3

uses integer ids for RDF literals, which is often used in real SPARQL engines such as

RDF3X (Neumann and Weikum 2008) and Hexastore (Weiss et al. 2008).

Like in the normal search as described in the previous subsection, the prefix

search starts at the root and recursively searches at the child, which may contain the

first key-value pair matched by the prefix key, until the first matching key-value pair

in a leaf is found. However, now not the full keys are compared, but just their prefixes

with the prefix key (see 1. of Fig. 3.3). Typically the result of a prefix search is returned

as iterator, where the single results are returned one by one after calling a next()
method of the iterator. For the next result, the iterator reads the next key-value pair

(k, v) of the current leaf and returns v if k conforms to the prefix key (see 2. of Fig. 3.3).

(1,
1,
4)

(1,2,2) (1,2,5)

(1,2,8)

(1,2,11) (1,2,2)keys

values

(1,
2,
1)

(1,
2,
2)

(1,
2,
3)

(1,
2,
4)

(1,
2,
5)

(1,
2,
6)

(1,
2,
7)

(1,
2,
8)

(1,
2,
9)

(1,
2,

10)

(1,
2,

11)

(1,
2,

12)

(1,
3,
1)

(1,
3,
2)

(1,
3,
3)

(1,
4,
3)

(1,
4,
6)

4. next((1,2,12))

(a)

(b)
1. Search for firs

t result

for prefix key (1, 2)

3.
 n

ex
t(

)

2.next ()

Fig. 3.3 Prefix search using prefix key (1, 2) in a B+-tree

40 3 External Sorting and B+-Trees

Otherwise, if k does not conform to the prefix key, the iterator is closed and does not

return any values any more. It may occur that a new leaf must be opened during a

next()-call (see 3 of Fig. 3.3) using the pointers in the chain of leaves.

When using sideways information passing strategies for query processing

(described in the chapter about physical optimization), a lower limit lowerLimit for
the next key of a prefix search is determined during query processing. In order to use

this information, the iterator provides a method next(lowerLimit) returning the next

result, which is matched by a prefix key and is equal to or larger than lowerLimit.
The method next(lowerLimit) can be implemented in two different ways: next

(lowerLimit) can just call next() until the determined key-value pair P has a key

larger than or equal to lowerLimit (approach A). The other way is to use lowerLimit
as key and start the search at the root and going over the interior nodes (approach B)
to reach P. Note that we additionally have to check if P is still matched by the prefix

key and not just larger than or equal to lowerLimit when using approach B. The
approach B can be further optimized in the following way: As the key lowerLimit is
always larger than the key of the last returned value of the iterator, we can avoid

starting the search at the first keys in the root and the interior nodes, and can

continue the search at the last keys compared during the last search for the prefix

key in the root and interior nodes.

If P is far away from the current key-value pair (and this often occurs in large-

scale datasets), then we can save much processing time by avoiding going along the

chain of leaves as in approach A, which possibly has a runtime complexity linear to

the number of key-value pairs in the B+-tree. When using approach B, next
(lowerLimit) can jump “directly” to the leaf containing P, and this leads to a

logarithmic runtime complexity.

However, if P is in the same (or in the next) leaf, then approach B to find P takes

longer time than just reading in the key-value pairs along the chain of leaves using

approach A. Therefore, we need a good strategy to decide when to use approach A
and when B.

In our implementations, we use a heuristic: If we read in a whole leaf without

finding P (see 4. Fig. 3.3a for searching the value of a key � (1,2,12) in a next((1,

2,12)) call), then we use approachB (see 4. Fig. 3.3b). Our experiments show that this

heuristic yields a good performance.

The algorithm to find all values of keys in a given range [a, b], which is often used
for range queries, is very similar to the one for the prefix search. For range queries,

the first value is searched with key equal to or larger than a and equal to or smaller

than b, and afterward, all succeeding values are returned with keys smaller than b.

3.2.5 Inserting

Indices do not contain only static data. Instead, data are often updated, that is, new

data are inserted and old data deleted, to reflect changes in the real world like a new

employee. When inserting a new key-value pair into the B+-tree, the insertion

3.2 B+-trees 41

position in a leaf is first searched for using a search algorithm similar to the one for

searching the value of a key. If we inserted the new key-value pair as last key-value

pair in the leaf (see Figs. 3.4 and 3.5 for an example), then we may have to update

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9

12 15.6keys

values

15.6

Fig. 3.4 Inserting 15.6 in the B+-tree (with k¼1 and k0¼2) of Fig. 3.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9

12 15.6

15.4 15.6

Overflow!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9

12 15.6

15.4 15.6

Overflow!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9 14

15.6

15.4 15.6

12

Overflow in leaf

Splitting leaf and overflow
in inner node

Splitting inner node

a

b

c

14

Fig. 3.5 Inserting 15.4 in the B+-tree (with k¼1 and k0¼2) of Fig. 3.4

42 3 External Sorting and B+-Trees

an/several interior node(s) ascendant to the leaf with this new largest key of the leaf,

as interior nodes contain the largest keys of their subtrees.

The properties of the B+-tree do not allow that an updated leaf contains more

than 2*k0 key-value pairs, which is called an overflow. This can be resolved by

splitting the leaf with an overflow into two leaves: the first leaf takes over the first k0

key-value pairs and the second leaf takes over the remaining key-value pairs [see

Fig. 3.5a]. We also need to update the interior node containing the old leaf as child:

The last keys of the new two leaves replace the key of the old leaf and the old leaf is

replaced by the new two leaves in the list of children.

Again, the updated interior node can have an overflow with more than 2*k key
and 2*k+1 children. Therefore, splitting interior nodes and updating their parents

(see Fig. 3.5b and c) may need to be performed several times. In the worst case, the

process must be repeated until to the root node.

Using this algorithm, the properties of the B+-tree can be guaranteed. However,

we can try to avoid splitting a node, which introduces a new level in the B+-tree in

the worst case and therefore slows down operations in the B+-tree, in the following

way: We assume N to be a node with an overflow. One of the neighbour nodes of N,
that is, the nodes left and right to N at the same level in the B+-tree, may have less

than 2*k0 key-value pairs in the case of leaves, or less than 2*k keys and 2*k + 1

children in the case of interior nodes. Then we can avoid splitting N by shifting a

key-value pair in the case of leaves or a child in the case of interior nodes from N to

this neighbour node. Note that we may have to update the keys in the ascendant

interior nodes of N and of the neighbour nodes, but we do not have to add keys and

children in the ascendant interior nodes.

3.2.6 Deleting

In order to delete a key-value pair from a leaf, we search for the key-value pair in

the B+-tree (see Fig. 3.6). Note that we do not need to (but could) update the keys in

ascendant interior nodes (e.g., 9 in the root in a) of Fig. 3.6) for simple deletions, as

all searches are still successful even if the old keys remain in the interior nodes.

Deletion of a key-value pair can cause an underflow, that is, a leaf contains less than
k0 key-value pairs (see Fig. 3.6b, d, f), which is not allowed in a B+-tree according to

its properties.

In this case, if one neighbour of the leaf has more than k0 key-value pairs, then we
can shift the first (in the case of a right neighbour) or last (in the case of a left

neighbour) key-value pair from it to the leaf with an underflow in order to recover

the B+-tree properties (see Fig. 3.6c and e). Furthermore, we have to update the keys

in the ascendant interior nodes of the leaves correspondingly (see Fig. 3.6c and e).

If a neighbour node has exactly k0 key-value pairs, then we can merge the two

leaves to one leaf, which will have 2*k0 � 1 key-value pairs (Fig. 3.6g). One child

in an interior node is deleted when two nodes are merged, which can cause again an

underflow in this interior node. Therefore, deleting a key-value pair might cause the

3.2 B+-trees 43

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18

3 6

9

12 15

a

b

c

d

e

f

g

Deleting 9

Deleting 7 (1 / 2)
Underflow in leaf

Deleting 7 (2 / 2)
Shifting from left neighbour

Deleting 6 (1 / 2)
Underflow in leaf

Deleting 6 (2 / 2)
Shifting from right neighbour

Deleting 8 (1 / 2)
Underflow

Deleting 8 (2 / 2)
Merging leaves

1 2 3 4 5 6 8 10 11 12 13 14 15 16 17 18

3 6

9

12 15

1 2 3 4 5 6 8 10 11 12 13 14 15 16 17 18

3 5

9

12 15

1 2 3 4 5 8 10 11 12 13 14 15 16 17 18

3 5

9

12 15

11 22 33 44 55 88 10 11 12 13 14 15 16 17 18

3 5

10

12 15

1 2 3 4 5 10 11 12 13 14 15 16 17 18

3 5

10

12 15

11 22 33 44 55 10 11 12 13 14 15 16 17 18

3

10

12 15

Underflow!

Underflow!

Underflow!

Fig. 3.6 Deleting in the B+-tree (with k¼1 and k0¼2) of Fig. 3.1

44 3 External Sorting and B+-Trees

actions shifting a key-value pair from a neighbour or merging two nodes performed

many times. In the worst case, we have to merge interior nodes until the root node,

and even may have to replace the root with a merged node, such that the height of

the B+-tree is reduced.

3.2.7 B+-Tree Construction from a large Dataset

If we have to construct a new B+-tree from a large set with N key-value pairs, it is

wise to first sort the key-value pairs according to the keys. Afterward, we can

construct the B+-tree in one pass through the sorted data (see Fig. 3.7 for an

example): we first determine the number d of leaves by calculating dN/2*k0e. The
number p of their parent interior nodes can be also determined by calculating dd/
2*ke. We can proceed to calculate the number of interior nodes at the level above in

the B+-tree by computing dp/2*ke and so on until the number of nodes are computed

for all levels of the B+-tree.

With the number of nodes at each level of the B+-tree computed, we can equally

distribute the key-value pairs at the leaves and the corresponding keys and children

at the interior nodes, such that we neither have an underflow nor an overflow at any

node in each level. Finally, we create the leaves and interior nodes by one pass

through the sorted data.

Whenever a leaf L is finished, we have to add it as child in its parent interior node

at the upper level with the corresponding key (i.e., the maximum key in L). If the
parent node does not exist, we create one for it. A finished interior node I is then
recursively added as a child of a node at its upper level with the corresponding key

(i.e., the maximum key in the subtree with root I).
For each level of the B+-tree, at most one node has not been finished at the same

time during applying this algorithm. Therefore, the height of the B+-tree determines

the number of file output streams to be used at the same time to store unfinished

nodes, which is no problem even for large datasets. In our experiments, the

algorithm does not run out of memory for any dataset even not for the very large

ones with over 1.5 billion triples.

3.3 Heap

A (min-) heap is an efficient data structure to retrieve the smallest item from the

items stored in the heap [see (Williams 1964)]. Adding an item into the heap and

removing the smallest item from the heap is done in O(log n), where n is the size of
the heap. Internally, the heap is organized as tree, most often as complete binary

tree. The root of each subtree contains the smallest item of the subtree. Complete

binary trees can be memory efficiently stored in arrays, where the index of the

children and the parent can be computed by simple formulas. When the smallest

3.3 Heap 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 6

9

12 15

1 2 3

3

1 2 3 4 5 6

3 6
1) 2)

3)

4)

5)

6)

1 2 3 4 5 6 7 8 9

3 6

9

1 2 3 4 5 6 7 8 9 10 11 12

3 6

9

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 6

9

12 15

Fig. 3.7 Constructing B+-tree in one pass from sorted data, where the B+-tree is presented after

each constructed leaf

46 3 External Sorting and B+-Trees

item is taken way, an item in a leaf is moved to the root. Afterward, the root item is

recursively swapped with its minimum child if the minimum child is smaller than it

(bubble-down). For an example of removing the smallest item from a heap, see

Fig. 3.8. Adding an item is done by inserting the item in an empty leaf to the heap

tree and swapping the item with its parent as long as it is smaller than its parent

(bubble-up). See Fig. 3.9 for an example of inserting. Therefore, the smallest item

in the heap is always stored in the root of the tree.

After the smallest element in the heap is taken away, a succeeding insertion of a

new element can be optimized by first placing the new element in the root and then

performing a bubble-down operation. This approach to optimize a pair of removing

and insertion operations avoids the bubble-up operation (see Fig. 3.10).

3.4 (External) Merge Sort

(External) merge sort [see (Knuth 1998)] is known to be one of the best sorting

algorithms for external sorting, that is, if the data are too large to fit into the main

memory. The merge sort algorithm first generates several initial runs from the given

data. Each run consists of a sorted subset of the given data. Several initial runs are

afterward merged to generate a new round of runs. Instead of merging only two

2

4

811

10

20

4

811

10

20

4

811

10

20 4

811

1020

4

8

11

10

20

Removing
the smallest
element

Bubble-
down1) 2) 3) 4) 5)

Fig. 3.8 Removing an element from a heap

4

8

11

10

20 5

4

8

11

10

20 5

4

8

11

5

20 10

Insertion
of a new
element

1) 2) 3)
Fig. 3.9 Inserting a new

element into the heap

2

4

811

10

20

4

811

10

20

5

4

811

10

20

5

5

811

10

20

4
1) 2) 3) 4)

Insertion
of a new
element

Removing
the smallest
element

Fig. 3.10 Optimizing removing and insertion of a new element into the heap

3.4 (External) Merge Sort 47

runs, it is more efficient to merge several runs. In order to generate a new run from

several runs, we need always to find the smallest items from these runs. Thus, a

heap is the ideal data structure to perform this task. For an example of the applica-

tion of external merge sort, see Fig. 3.11. This process is repeated until all the data

are sorted.

The runs can be generated by reading as much data into main memory as

possible, sorting this data, and write this run to external storage. For sorting the

data in main memory, any main memory sort algorithm can be chosen (Knuth

1998), for example, quicksort, (main-memory) merge sort (and its parallel version),

or heap sort, which are well known to be very fast.

3.5 Replacement Selection

Another approach, called replacement selection (Friend 1956), uses a heap to

increase the length of the initial runs on average by a factor of 2. Whenever the

heap is full, its root item is retrieved and written to the current run. If an item is

inserted into the heap it is checked if it can be still written into the current run, that

is, if it is greater than or equal to the last item written into the current run. In this

case, the run number of the current run is attached to this item. If the item cannot be

written into the current run (as it is smaller than the last item written into the current

run), the run number of the next run, which is the run number of the current run

plus 1, is attached to the item. The items with a higher run number are regarded to

be larger in the heap, that is, the run number is the primary order criterion and the

item is the second-order criterion in the heap, such that first all items of the current

run are stored. If the root item in the heap is smaller than the last item of the current

run, the current run is closed, and a new run is created and becomes the current run.

We present the first eight steps of an example for replacement selection in Fig. 3.12.

2

4

8

10

11

20

1st run

Sort

3

3

5

7

9

12 2nd run

Sort

Merge

2

3

3

4

5

7

8

9

10

11

12

20

8

10

2

4

11

20

5

3

9

7

3

12

…

2

4

8

10

11

20

2

4

8

10

11

20

3

3

5

7

9

12

3

3

5

7

9

12

2

3

3

4

5

7

8

9

10

11

12

20

8

10

2

4

11

20

5

3

9

7

3

12

…

Fig. 3.11 External merge

sort

48 3 External Sorting and B+-Trees

1) 2)

3) 4)

5) 7)

8) 9)

8
10
2
4

11
20

5
3
9
7
3

12
…

Build

Heap

2
Smallest

1st run

8
10
2
4

11
20

5
3
9
7
3

12
…

2 1st runHeap
condition

Swap element with the
smallest child until smallest
child is larger

Smallest 4
8

10
2
4

11
20

5
3
9
7
3

12
…

2

4Insert

3

2 1st run

4
8

10
2
4

11
20

5
3
9
7
3

12
…

Heap
condition Smallest

5

Swap element with the
smallest child until smallest
child is larger

2 1st run

4
5

Insert

9

8
10
2
4

11
20

5
3
9
7
3

12
…

2

4
8

10
2
4

11
20

5
3
9
7
3

12
…

5

Smallest

8

8
10
2
4

11
20

5
3
9
7
3

12
…

Insert

5

2

2 1st run

4
5

8

9

10

11

12

20

element
Run

number1) 2)

4)

7)

8
10
2
4

11
20

5
3
9
7
3

12
…

28
10
2
4

11
20

5
3
9
7
3

12
…

1-2

1-4

1-81-11

1-10

1-20

2

8
10
2
4

11
20

5
3
9
7
3

12
…

2

4
8

10
2
4

11
20

5
3
9
7
3

12
…

1-4

1-5

1-81-11

1-10

1-20

2

4
8

10
2
4

11
20

5
3
9
7
3

12
…

2 1st run

4

3

8
10
2
4

11
20

5
3
9
7
3

12
…

2

4

3

1-5

2-3

1-81-11

1-10

1-20

2

4

3

3 cannot be
stored in

the 1st run
any more!

2

4
8

10
2
4

11
20

5
3
9
7
3

12
…

5
1-5

2-3

1-8

1-11

1-10

1-20

2

4
8

10
2
4

11
20

5
3
9
7
3

12
…

5

2

4
5

9

8
10
2
4

11
20

5
3
9
7
3

12
…

1-9

2-3

1-8

1-11

1-10

1-20

2

4
5

9

8
10
2
4

11
20

5
3
9
7
3

12
…

2

4
8

10
2
4

11
20

5
3
9
7
3

12
…

5

Smallest

8
1-9

2-31-11

1-10

1-20

2 1st run

4
8

10
2
4

11
20

5
3
9
7
3

12
…

5
1-8 Smallest

8

Heap
condition

Swap element with the
smallest child until smallest
child is larger

8
10
2
4

11
20

5
3
9
7
3

12
…

5

28
10
2
4

11
20

5
3
9
7
3

12
…

5

1-5

1-4

1-81-11

1-10

2 1st run

1-20

2

4
5

8

9

10

11

12

20

2

4
5

8

9

10

11

12

20

Fig. 3.12 Example for replacement selection

3.5 Replacement Selection 49

Figure 3.12 also contains the first run of the example (see 9 of Fig. 3.12), which

is three items larger than the first run of the external merge sort approach in

Fig. 3.11.

3.6 External Chunks Merge Sort

Generating the initial runs using main-memory sort algorithms is very fast, but

produces a high number of initial runs, and thus the following merge phase is slow.

In contrast, replacement selection produces a smaller number of initial runs, and

thus there is a faster merge phase. However, maintaining a heap is time-consuming,

as more operations are needed in comparison to using main-memory sort algo-

rithms for the initial runs.

If we can take the advantages of these two approaches: the speed of main-

memory sort and the larger runs of replacement selection, then we will be able to

improve the sorting performance, and thus speeding up index construction. There-

fore, we propose a new and efficient data structure, k-chunks heap. A k-chunks heap
is a block-oriented variant of the heap, where usually blocks of k items are added to

and retrieved from the heap. The k-chunks heap uses only very simple and thus fast

operations for blocks of k items. The application of our k-chunks heaps to external

merge sort speeds up the computation of the initial runs in comparison to replace-

ment selection and generates the larger initial runs (and thus a smaller number of

initial runs) in comparison to using main-memory sort algorithms. The following

merge phase is also hence fast processed.

Note that rather than organized as tree, our k-chunks heap holds a sorted list of

items (see Fig. 3.13). Whenever a chunk of k items is added, the k items are sorted

using an efficient main-memory sort algorithm. Afterward, the sorted k items are

merged with the items (which are already sorted) in the heap. If a chunk of the k
smallest items is requested, then the first k items of the heap are returned, and the

remaining heap content remains sorted. Note that these operations can be memory

efficiently performed by using arrays instead of lists of items.

Applying our k-chunks heap to the external merge sort, we create a variant of the

external merge sort, which we call external chunks merge sort. Our approach first

reads as much data into main memory as possible, sorts the data, and stores it into a

k-chunks heap. Instead of retrieving one item from the heap and storing it into the

current run, the first k items of the heap are retrieved and written into the current

run. Afterward, k new items are read in and added to the heap. When we read the k
new items, we also check if they can be put into the current run. If an item cannot be

written into the current run (i.e., it is smaller than the last item of the current run), it

is attached to the number of the next initial run (i.e., a number, which is larger than

the number of the current run). Otherwise, the item is assigned with the number of

the current run. When we sort these k items, the items with smaller run number are

ordered before those with larger ones.

50 3 External Sorting and B+-Trees

8
10
2
4
11
20
5
3
9
7
3
12
...

In
pu

t
D

at
a

3-Chunks Heap

sort

1-2

1-4

1-8

1-10

1-11

1-20

2

4

8

1

write

run number

Runs
current

Main memory

Creating a 3-chunks heap

1-8

1-10

1-2

1-4

1-11

1-20

read

3-Chunks Heap

old new

1-10

1-11

1-20

2-5

2-3

1-9

1-9

1-10

1-11

1-20

2-3

2-5

Runs
current

2

4

8

9

10

11

1

8
10
2
4
11
20
5
3
9
7
3
12
…

In
pu

t
D

at
a

1-9

2-3

2-5

read

sort

merge

write

Reading a chunk to heap

3-Chunks Heap

1-20

2-3

2-5

2-7

2-3

1-12

1-12

1-20

2-3

2-3

2-5

2-7
1-12

2-3

2-7

Runs
closed

2

4

8

9

10

11

12

20

1

ch
un

k

In
pu

t
D

at
a

c

b

Reading a chunk to heap

sort

merge

w
rite, close

3 2

8
10
2
4
11
20
5
3
9
7
3
12
…

w
rite

old new

read

current

a

Fig. 3.13 External chunks-merge sort

3.6 External Chunks Merge Sort 51

Afterward, the sorted new items are merged with the (old) heap content, accord-

ing to the run number as the primary comparison criterion and the value of the item

as the secondary comparison criterion. Merging in this way guarantees that all the

items in the heap, which will be written into the current run, are ordered before

the items, which will be stored into the next run. Figure 3.13 demonstrates our

external chunks-merge sort approach. Afterward, we once again take the first k
items from the heap. If all k items are attached to the number of the current run, they

are written into the current run. If only a part of the k items are attached to the

number of the current run, this part is written into the current run, and then the

current run is closed. A new run is opened and becomes the current run, and

the remaining of the retrieved k items is written into it.

After all input data are read and stored in initial runs, our external merge sort

algorithmmerges the initial runs like in the traditional external merge sort algorithms.

The external chunks merge sort generates fewer initial runs than the main-memory

sort, but more than replacement selection. However, our external chunks merge sort

approach uses simpler (and thus faster) operations than replacement selection. There-

fore, our approach is more efficient than replacement selection. We demonstrate the

efficiency by our performance study. Our experimental results show that our external

chunks-merge sort approach outperforms replacement selection and main-memory

sort algorithms greatly.

3.7 Distribution Sort

Another well-known external sorting algorithm is distribution sort (Knuth 1998).

Distribution sort first retrieves k values v1, . . ., vk (distribution keys) from the

input, where v1 < v2 < . . . < vk according to an order relation <. Afterward,

distribution sort distributes the input data according to v1, . . ., vk into kþ1

different buckets: the data, which are less than or equal to v1 are stored in the

first bucket, the data larger than v1 and less than or equal to v2 are stored in the

second bucket, and so on. The choice of v1, . . ., vk is critical for the performance

of the algorithm, as the approach is fastest for buckets with similar sizes. A fast

and simple approach is choosing v1, . . ., vk randomly from the input data. More

complex approaches (see e.g., Nodine and Vitter 1993) use histograms to improve

the choice of the distribution keys.

Afterward, every bucket is sorted by a main-memory sorting algorithm if the

whole bucket fits into main memory; otherwise, distribution sort is recursively

applied to this bucket. The overall sorted sequence is the concatenation of the sorted

buckets. For an example of distribution sort, see Fig. 3.14.

Using distribution sort, the merging phase can be avoided. The distribution

phase is usually performed faster than the merging phase. Therefore, distribution

sort earns considerable advantages in comparison to external merge sorting

algorithms.

52 3 External Sorting and B+-Trees

3.8 RDF Distribution Sort

The most efficient indices for managing and accessing RDF data are the six indices

from the six collation orders SPO, SOP, PSO, POS, OSP, and OPS (see e.g.,

Neumann and Weikum 2008; Weiss et al. 2008). Therefore, we need to sort the

RDF data six times according the six collation orders in order to construct RDF

indices efficiently.

Applying the general-purpose distribution sort for RDF index construction has

two main disadvantages:

l The input data are read 12 times (six times for retrieving the distribution keys

and six times for distribution of each of the collation orders SPO, SOP, PSO,

POS, OSP, and OPS).
l For each distribution, full triples consisting of three components (subject, predi-

cate, and object) are compared.

These disadvantages significantly impact the performance of index construction,

especially for large RDF databases. Therefore, we propose two new variants of

distribution sort in this chapter to avoid these severe shortcomings.

We define <c to be an order relation between triples according to a collation

order c 2{SPO, SOP, PSO, POS, OSP, OPS}; for example, for two triples (s1, p1,
o1) and (s2, p2, o2), the order relation <SPO holds; that is, (s1, p1, o1) < SPO (s2, p2,
o2), if s1 < s2 or (s1 ¼ s2 and (p1 < p2 or (p1 ¼ p2 and o1 < o2))).

The comparison between the components s1, s2, p1, p2, o1, and o2 are defined

based on the order of blank nodes, uris/iris, and literals as specified in the SPARQL

specification (Prud’hommeaux and Seaborne 2008). This allows plan generators of

SPARQL evaluators to consider the plans, which use the RDF indices to directly

8
10
2
4
11
20

5
3
9
7
3
12
…

Distribution keys

3

6

9

12

10 11 12

2 3 3

4 5

20

Distri-

bute

2 3 3

4 5

7 8 9

10 11 12

20

Sort
recursively

or in main
memory

8 9 7

Fig. 3.14 Example for distribution sort

3.8 RDF Distribution Sort 53

retrieve sorted data according to sort criteria specified in a SPARQL query, and thus

to avoid extra sorting phases at runtime.

If a SPARQL engine maps RDF literals to integer ids using a dictionary, then the

comparison between the components s1, s2, p1, p2, o1, and o2 are usually defined

based on the order of the integer ids in all operations except of sorting. As

consequence, sort operations cannot be eliminated, but other operations can be

optimized like the application of merge joins using this order and optimization of

duplicate elimination in already sorted query results.

Our first variant is Distribution Sort Triple Keys (see Fig. 3.15a). Using this

approach, the input data need to be read only twice: one time for retrieving the

distribution keys (for the different indices) and one time for distribution of the data

(see Fig. 3.15a). We first randomly retrieve k triples vc,1, . . ., vc,k (distribution keys)
by using only one pass through the input for every of the six collation orders

c 2{SPO, SOP, PSO, POS, OSP, OPS}, where vc,1 <c vc,2 <c . . .<c vc,k. In another
pass through the data, the triples are distributed to k+1 bags for each collation order,
where the distribution keys play the role of the bag borders.

In more detail, for each read triple t and each collation order c, we search for the
distribution key vc,i, where vc,i�1 <c t � c vc,i, and store the triple t in the bag i of
the collation order c. Note that we have to consider the two special cases of the first
and the last bag: If t � cvc,1, then we store t in the first bag, if vc,k < ct, then we

store t in the last bag k + 1 of the collation order c. We then sort each bag in main

memory, if the bag content fits into main memory; otherwise, we recursively apply

Distribution Sort Triple Keys to the bag. The overall sorted sequence of a collation

order c is the concatenation of the sorted buckets of c.
The second variant is Distribution Sort Component Keys (see Fig. 3.15b). Similar

to Distribution Sort Triple Keys, the input is read twice: one time for randomly

choosing the distribution keys and one time for distributing the data. Instead of

distributing the data six times, this variant distributes the data only three times and

considers only the bags for the subjects, predicates, and objects of the RDF triples.

Thus, the distribution keys are chosen only from the subjects of the triples for the

subject-distributed bags, from the predicates for the predicate-distributed bags and

from objects for the object-distributed bags. The bags, containing distributed data

according to the subjects, can be used to sort the data for the SPO and SOP

collation orders; the predicate-distributed bags for the PSO and POS collation

orders; and the object-distributed bags for the OSP and OPS collation orders. As

well as only distributing the RDF data three times instead of six times, the variant

also avoids the comparison of full triples, and just compares one component

(subject, predicate, or object) of a triple. Comparing only one component rather

than three components of triples can significantly save processing time for large

datasets. Our experiments show that the distribution of the input data using this

approach is similar as well as the approach Distribution Sort Triple Keys. Distribu-
tion Sort Component Keys significantly improves the performance of index construc-

tion by reducing the number of passes through data, of distribution, and of

comparison operations.

54 3 External Sorting and B+-Trees

a
Distribution SortTriple Keys

b
Distribution SortComponent Keys

RDF input data

Calculate
Bag Intervals

Distribute
Data

Bag 1 … Bag k

Sort
Bag

Sort
Bag

Sorted Result according to SPO
(Input for SPO Index Construction)

Calculate
Bag Intervals

Bag Intervals
<(o1, p1, s1), …,
(ok, pk, sk)>

Distribute
Data

Bag 1 … Bag k

Sort
Bag

Sort
Bag

Sorted Result according to OPS
(Input for OPS Index Construction)

Read RDF data
(Phase 1)

Read RDF data
(Phase 2)

RDF input data

Calculate
Bag Intervals

Bag Intervals
< s1, …, sk>

Distribute
Data

Bag 1 … Bag k

Sort
Bag

Sort
Bag

Sorted Result
according to SPO
(Input for SPO

Index Construction)

Calculate
Bag Intervals

Bag Intervals
<o1, …, ok>

Distribute
Data

Bag 1 … Bag k

Sort
Bag

Sort
Bag

Sorted Result
according to OSP
(Input for OSP

Index Construction)

Read RDF data
(Phase 1)

Read RDF data
(Phase 2)

Sort
Bag

Sort
Bag

Sorted Result
according to SOP
(Input for SOP

Index Construction)

Sort
Bag

Sort
Bag

Sorted Result
according to OPS
(Input for OPS

Index Construction)

Bag Intervals
<(s1, p1, o1), …,
(sk, pk, ok)>

Fig. 3.15 (a) Distribution sort Triple Keys and (b) Distribution Sort Component Keys

3.8 RDF Distribution Sort 55

3.9 Experimental Analysis

In the performance study, we use real-world data, and synthetic data, as synthetic

data with different sizes can be generated.

In our experiments, we first sort the data in parallel according to the 6 collation

orders SPO, SOP, PSO, POS, OSP, and OPS. Afterward, we generate in parallel six

B+-trees for keys from the six sorted datasets. We use a prefix codemap for the

prefixes of uris and iris in order to significantly reduce the storage space consumption.

We compare several different approaches for computing the initial runs: the

most important standard approaches (the external merge sort using replacement

selection, and using main-memory quicksort/parallel merge sort), and our new

approaches (External Chunks-Merge Sort, Distribution Sort Triple Keys, and Distri-

bution Sort Component Keys). For replacement selection, we use an optimized heap,

which avoids a bubble-up operation in the two succeeding operations retrieving the

smallest item of the heap and adding a new item to the heap: After the root item is

taken away, instead of the standard operations (i.e., moving the last leaf node to the

root, performing a bubble-down operation, adding the new item as the last leaf node

and performing a bubble-up operation), we directly insert the new item at the root,

and perform just one single bubble-down operation. This optimization significantly

speeds up the replacement selection by avoiding a bubble-up operation. Distribu-

tion Sort Component Keys uses Distribution Sort Triple Keys when bags are too big to be

sorted in main memory and must be further distributed.

In the experiments, we have used 100 bags and 1,000 bags in Distribution

Sort Triple Keys and Distribution Sort Component Keys. We have used an upper bound

of 211, 213, and 215 items in main memory for external merge sorts using main-

memory quicksort/parallel merge sort and external chunks-merge sorts. The

replacement selection variants have an upper bound of 211-1, 213-1, and 215-1

items in main memory (which are the space requirements of corresponding com-

plete binary trees). We have used these upper bounds for the items in main memory

because the sort algorithms are the fastest for these upper bounds. Although using

larger upper bounds lead to less initial runs (and thus the merge phase is faster

processed), the main-memory sort phases as well as heap operations for the

generation of the initial runs are much slower for larger upper bounds. Thus, the

main-memory sort approaches and replacement selection perform best for certain

upper bounds (neither smaller nor larger upper bounds). The external chunks-merge

sorts are performed with the chunks of half of the items hold in main memory (i.e.,

(211/2)-chunks-merge sort, (213/2)-chunks merge sort, and (215/2)-chunks merge

sort), and 1/3 of the items hold in main memory (i.e., (211/3)-chunks merge sort,

(213/3)-chunks merge sort, and (215/3)-chunks merge sort). Note that for larger

chunks, the time used for sorting increases, but the number of chunks is less, and

thus the number of merging phases is less. Therefore, there exists also an optimal

chunk size, which is performed the best.

In our figures, we present the average of five execution times of reading input,

sorting, and generating indices.

56 3 External Sorting and B+-Trees

3.9.1 SP2B Dataset

The SP2B benchmark (Schmidt et al. 2009) includes a set of 18 queries, which

contain more features of SPARQL and address more optimization techniques than

many other Semantic Web benchmarks such as LUBM benchmark (Guo et al.

2005). The SP2B benchmark uses a data generator, which can generate data of

different sizes. In our experiments, we have used datasets with one million and ten

million triples. The SP2B datasets imitate an RDF version of the real-world DBLP

dataset (Ley 2010); that is, the data structure of the SP2B datasets is very similar to

real-world data.

The test system for this dataset uses an Intel Core 2 Quad CPU Q9400 with

2.66 GHz, 4 GB main memory, Windows XP Professional (32 bit) and Java 1.6.

We have used the same legend presented in Fig. 3.16 for all figures of the SP2B

dataset.

The total times for reading data, sorting, and index construction (see Figs. 3.17

and 3.18) show that

l External merge sort using parallel merge sort for the initial runs is faster than

external merge sort using quicksort and replacement selection,
l Chunks-merge sort is significantly faster than the other external merge sort

approaches and replacement selection,
l Distribution Sort Triple Keys is competitive with the other external merge sort

approaches and replacement selection, and
l Distribution Sort Component Keys has much less main-memory requirements and

outperforms all other external sorting approaches significantly.

Let us first have a look at the external merge sort and replacement selection

variants. The generation of initial runs (see Figs. 3.19 and 3.20) is similar fast when

using quicksort and replacement selection, and is very fast when using parallel

merge sort because of the efficient main-memory sort algorithm. However, the

chunks-merge sorts generate the initial runs fastest, since only smaller chunks need

to be sorted, and merging the new sorted chunk with the old heap content can be

done in parallel with reading in the next chunk.

Replacement selection performs best (especially for the larger datasets) in the

merging phase (see Figs. 3.21 and 3.22); the external merge sort approaches using

main-memory sort algorithms perform worst; the external chunks-merge sorts are

between these two approaches. It is obvious that the times used for merging depend

on the total number of runs (see Figs. 3.21, 3.22, and 3.23).

Looking at the distribution sort variants, we see that using 1,000 instead of 100

bags significantly reduces the number of distribution passes (see Fig. 3.24), and

Distribution Sort Triple Keys and Distribution Sort Component Keys have a similar

number of distribution phases. In the first distribution round, Distribution

Sort Component Keys distributes the data only to 3 instead of 6 bags, each of which is

used for two different collation orders. Furthermore, only one component, rather

3.9 Experimental Analysis 57

than all the components of triples, is compared. All these factors significantly speed

up sorting the data for RDF index construction.

3.9.2 Yago Dataset

The Yago dataset (Suchanek et al. 2007) consists of facts extracted from the info

boxes and category system of Wikipedia and are integrated with the WordNet

thesaurus. Thus, this dataset is more homogeneous compared with, for example,

External Merge Sort using Quicksort on 2^11 items

External Merge Sort using Parallel Mergesort on 2^11 items

Replacement Selection using Heap with 2^11-1 items

External (2^11 / 2)-Chunks Merge Sort

External (2^11 / 3)-Chunks Merge Sort

External Merge Sort using Quicksort on 2^13 items

External Merge Sort using Parallel Mergesort on 2^13 items

Replacement Selection using Heap with 2^13-1 items

External (2^13 / 2)-Chunks Merge Sort

External (2^13 / 3)-Chunks Merge Sort

External Merge Sort using Quicksort on 2^15 items

External Merge Sort using Parallel Mergesort on 2^15 items

Replacement Selection using Heap with 2^15-1 items

External (2^15 / 2)-Chunks Merge Sort

External (2^15 / 3)-Chunks Merge Sort

Distribution Sort Triple Keys 100 Bags

Distribution Sort Component Keys 100 Bags

Distribution Sort Triple Keys 1000 Bags

Distribution Sort Component Keys 1000 Bags

Fig. 3.16 Legend used in the figures of the SP2B experiments

58 3 External Sorting and B+-Trees

the Barton dataset (MIT 2007). We use the complete Yago dataset, which contains

approximately 40 million triples.

We have used another test system for this dataset in order to show that the results

remain valid (except of constant factors) even if we use other computer configurations.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e
in

 s
ec

on
ds

Fig. 3.18 Total times for index construction for ten million SP2B triples

0

100

200

300

400

500

600

700
T

im
e

in
 s

ec
on

ds

Fig. 3.17 Total times for index construction for one million SP2B triples

3.9 Experimental Analysis 59

The test system for this dataset uses a Dual Quad Core Intel CPU X5550 with

2.67 GHz, 6 GB main memory, Windows XP Professional (x64 Edition) and Java

1.6 64 bit.

We have used the legend presented in Fig. 3.25 for all figures of the Yago dataset.

For this large dataset, we tried out Distribution Sort Triple Keys and Distribution

0

50

100

150

200

250

300

350

400

450
T

im
e

in
 s

ec
on

ds

Fig. 3.19 The times for the generation of the initial runs for one million SP2B triples

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
in

 s
ec

on
ds

Fig. 3.20 The times for the generation of the initial runs for ten million SP2B triples

60 3 External Sorting and B+-Trees

Sort Component Keys with 1,000 and 10,000 bags. The numbers of distribution passes

are 185 for Distribution Sort Triple Keys and 144 for Distribution Sort Component Keys

with 1,000 bags, which decrease to 65 for Distribution Sort Triple Keys and 84 for

0

1000

2000

3000

4000

5000

6000

T
im

e
in

 s
ec

on
ds

Fig. 3.22 The times for the merging phase for ten million SP2B triples

0

50

100

150

200

250

300

T
im

e
in

 s
ec

on
ds

Fig. 3.21 The times for the merging phase for one million SP2B triples

3.9 Experimental Analysis 61

Distribution Sort Component Keys with 10,000 bags. However, each distribution pass

takes longer time for 10,000 bags, and thus the total times for 1,000 bags are smaller.

Analogous remarks as for the SP2B dataset apply also to the total times for index

construction, the times for the initial runs and for the merging phase, as well as the

number of runs (see Figs. 3.26–3.29). Thus, we have verified our experimental

results for the synthetic SP2B data using the real-world dataset Yago.

0

5000

10000

15000

20000

25000

30000
N

um
be

r
of

 R
un

s

1 million 10 million

Fig. 3.23 Number of runs using external merge sort approaches for one and ten million SP2B

triples

0

50

100

150

200

250

300

350

1 million triples 10 million triples

Distribution Sort Triple Keys 100 Bags Distribution Sort Component Keys 100 Bags
Distribution Sort Triple Keys 1000 Bags Distribution Sort Component Keys 1000 Bags

Fig. 3.24 Number of distribution passes using distribution sort approaches for the SP2B datasets

62 3 External Sorting and B+-Trees

3.10 Summary and Conclusions

The state-of-the-art data structures used for indices of large-scale datasets are

B+-trees. B+-trees have a constant main-memory demand for basic operations

such as searching for, insertion, and deletion of elements, are optimized for block

devices such as hard disks, and are self-balancing having a height logarithmic to the

number of inserted key-value pairs. The height of a B+-tree is practically a small

number often below 5 even for very large datasets.

External Merge Sort using Quicksort on 2^11 items

External Merge Sort using Parallel Mergesort on 2^11 items

Replacement Selection using Heap with 2^11-1 items

External (2^11 / 2)-Chunks Merge Sort

External (2^11 / 3)-Chunks Merge Sort

External Merge Sort using Quicksort on 2^13 items

External Merge Sort using Parallel Mergesort on 2^13 items

Replacement Selection using Heap with 2^13-1 items

External (2^13 / 2)-Chunks Merge Sort

External (2^13 / 3)-Chunks Merge Sort

External Merge Sort using Quicksort on 2^15 items

External Merge Sort using Parallel Mergesort on 2^15 items

Replacement Selection using Heap with 2^15-1 items

External (2^15 / 2)-Chunks Merge Sort

External (2^15 / 3)-Chunks Merge Sort

Distribution Sort Triple Keys 1000 Bags

Distribution Sort Component Keys 1000 Bags

Distribution Sort Triple Keys 10000 Bags

Distribution Sort Component Keys 10000 Bags

Fig. 3.25 Legend used in the figures of the Yago experiments

3.10 Summary and Conclusions 63

The performance of index construction for large Semantic Web databases

heavily relies on the efficiency of sorting. We propose an efficient variant of the

external merge sort algorithm, which stores and retrieves chunks from a special

chunks heap in order to speed up replacement selection. We also develop variants of

distribution sort specialized for RDF index construction, which greatly speed up

0

2000

4000

6000

8000

10000

12000
T

im
e

in
 s

ec
on

ds

Fig. 3.26 Total times for index construction for the 40-million Yago dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
in

 s
ec

on
ds

Fig. 3.27 The times for the generation of the initial runs for the 40-million Yago dataset

64 3 External Sorting and B+-Trees

RDF sorting by reducing passes through RDF data and by exploiting the RDF-

specific properties. These approaches, especially the specialized Distribution Sort

Component Key, significantly improve the performance of RDF index construction, as

shown by our experimental results.

0

1000

2000

3000

4000

5000

6000

7000

8000
T

im
e

in
 s

ec
on

ds

Fig. 3.28 The times for the merging phase for the 40-million Yago dataset

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r

of
 R

un
s

Fig. 3.29 Number of runs using external merge sort approaches for the Yago dataset

3.10 Summary and Conclusions 65

Chapter 4

Query Processing Overview

Abstract We first present our LUPOSDATE system, including its indexing methods

for data management and query engines for query evaluation. Afterward, we

describe the different phases of query processing performed by these query engines

on a high-level basis. In this chapter, we describe the phase of eliminating redun-

dant language constructs of SPARQL queries in detail. The other (more complex)

phases will be described in detail in their own chapters.

4.1 The LUPOSDATE System

In the LUPOSDATE project, we have developed a Semantic Web database system

with logically and physically optimized SPARQL engines, named as LUPOSDATE

system. Figure 4.1 presents the functionalities of our LUPOSDATE system.

In order to present the functionalities of the LUPOSDATE system, we have

developed an online demonstration (Groppe and Groppe 2009; Groppe et al. 2009b),

which is available at http://www.ifis.uni-luebeck.de/index.php?id¼luposdate-demo.

The online demonstration visualizes the evaluation of SPARQL queries, and

various optimizing techniques used by our system. Although our SPARQL engines

work for input data with over one billion triples, due to technical limitations of

Java applets, the online demonstration only works for input sizes, which fit into

main memory. Figure 4.2 presents a screenshot of the web demonstration. A more

detailed description of the web demonstration is available on the demonstration

webpage.

In summary, our system and SPARQL engines

l Support full SPARQL 1.0 and run the over 200 W3C test cases (Feigenbaum

2008) successfully,
l Support various approaches to managing RDF data and processing SPARQL

queries,

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_4, # Springer-Verlag Berlin Heidelberg 2011

67

http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo

l Include more optimizing techniques than existing SPARQL engines:

– Our own optimization strategies (see Groppe et al. 2009a, b; Groppe et al.

2007a, b),

– Existing indexing approaches (seeNeumann et al. 2008, 2009;Weiss et al. 2008)
l Integrate the existing tools Jena (Wilkinson et al. 2003) and Sesame (Broekstra

et al. 2002) for comparison matters,
l Support optimized in-memory (for small data sizes) (Groppe et al. 2009a, 2007a)

and disk-based (for large data sizes, for example, over one billion triples) data

processing. When processing large-scale datasets, Jena and Sesame engines

mainly depend on the existing database techniques.
l Support SPARQL processing of RDF streams (Groppe et al. 2007a), which is the

first stream-based engine for SPARQL queries.
l Optimize index construction (Groppe and Groppe 2009).
l Support the visual editing of data and queries.

The prototypes of our SPARQL engines are well tested: we have run them against

the test suite of the W3C (Feigenbaum 2008), which contains over 200 test cases,

each of which is successfully processed by our prototypes. Our streaming engine

Index-building

Abstract Syntax Tree

CoreSPARQL-Query

Abstract Syntax Tree

Operator graph

Result

RDF-Data

P
re

pr
oc

es
si

ng
O

pt
im

iz
at

io
n

Transformation into CoreSPARQL

Logical Optimization

Physical Optimization

Evaluation

SPARQL-Parser

CoreSPARQL-Parser

Transformation into Operatorgraph

SPARQL-Query

Operator graph

Operator graph

D
at

a
m

an
ag

in
g

Cost
model

Fig. 4.1 Functionalities and overview of query processing phases of the LUPOSDATE system

68 4 Query Processing Overview

currently does not support named graphs, and thus it runs all W3C test cases

successfully except of those with named graphs. Furthermore, we have already

successfully used them, for example, in tutorials for master students in our lectures

Mobile und Verteilte Datenbanken (Mobile and Distributed Databases) (see

Groppe 2009, 2010).

4.2 Phases of Query Processing

Figure 4.1 presents the phases of query processing in the LUPOSDATE system,

which are similar to the ones in other typical database systems such as relational,

deductive, and XML databases.

After creating an empty database, RDF data are typically read in and indices are

constructed for a faster access to the data for querying and updates. We discuss

different types of indices in later chapters. Updates of data are performed on these

indices. In comparison, a stream query evaluator does not construct any index of all

the data. Stream query evaluators work on a (possibly infinite) stream of data and

start to process queries and returning partial results once partial data are available.

Fig. 4.2 Snapshot of the main window of our online demo

4.2 Phases of Query Processing 69

In query processing, a query is first parsed according to the grammar of the query

language, and an abstract syntax tree is generated and serves as input for the next phase

(see Fig. 4.3 for the abstract syntax tree of the SPARQL query in Fig. 4.2 displayed

with our LUPOSDATE system). However, sometimes in the case of simple transfor-

mations the abstract syntax tree is not explicitly generated (to save processing and

space costs) and the output of the next phase is generated just directly during parsing.

Query languages such as SPARQL often support different language constructs

with the same semantics, and this complicates later phases since they must consider

a large number of different cases. In order to simplify subsequent processing, we

define a core of the query language. This core fragment excludes redundant

language constructs, but possesses the same expressive power as the original

query language. We name this core language of SPARQL the CoreSPARQL
language (Groppe et al. 2009d) (see Fig. 4.4 for the CoreSPARQL query and

Fig. 4.5 for its abstract syntax tree displayed in our LUPOSDATE system). The

following subsection describes more details about this CoreSPARQL language and

the transformation from any SPARQL query into a CoreSPARQL query.

In the next phase, the query is transformed into an operator graph consisting of

logical operators (see Fig. 4.6 for the logical operator graph displayed in our LUPOS-

DATE system). The semantics of logical operators, that is, their results, is formally

defined (see Chap. 5). However, concrete implementations and algorithms, which

describe how to determine their results, are not defined for logical operators. During

the logical optimization phase, the logical operator graph is optimized based on logical

Fig. 4.3 Abstract syntax tree of the SPARQL query in Fig. 4.2

Fig. 4.4 A CoreSPARQL query transformed from the SPARQL query in Fig. 4.2

70 4 Query Processing Overview

equivalence rules. For example, a filter operator discards solutions based on a Boolean

expression and thus usually reduces the number of solutions. If a filter is evaluated

more early, thenwe save processing and space costs: Therefore, a filter operator should

Fig. 4.6 Logical operator graph before logical optimization of the SPARQL query in Fig. 4.2

Fig. 4.5 Abstract syntax tree of the CoreSPARQL query of Fig. 4.4

4.2 Phases of Query Processing 71

be moved as much before other operations in the logical operator graph as possible.

The join order plays another important role in the performance of query processing.

Whereas quicksort is known to be one of the fastest (simple) sorting algorithms,

merge sort can be well parallelized and insertion sort is known to be superior

for sorting very few data items. Thus, depending on the properties of the data to be

sorted and maybe the context of the sort operation like the hardware configuration,

a sorting algorithm is sometimes faster or slower in comparison to the other sorting

algorithms. Analogously, other logical operators than sorting like those for joins

or duplicate elimination can be implemented using many different algorithms,

which are slower or faster depending on the characteristics of their input data and

their context. Therefore, an important task is to choose concrete implementations

(physical operators) for each logical operator in the physical optimization phase

with the goal to optimize the performance. The choice of physical operators is

based on estimations about the data to be processed and the context of the logical

operator. The output of this phase is the physical operator graph consisting of

physical operators (see Fig. 4.7 for the physical operator graph of the SPARQL

query in Fig. 4.2 displayed in our LUPOSDATE system).

Finally, the physical operator graph (also called execution plan) is executed and

the query result is retrieved (see lower part in Fig. 4.2 for the query result).

Whereas the logical and physical optimizations are the topics of the next two

chapters, we describe the first phase transforming any SPARQL query into its

equivalent CoreSPARQL query in the next subsection.

Fig. 4.7 Physical operator graph after physical optimization for the SPARQL query in Fig. 4.2

72 4 Query Processing Overview

4.3 CoreSPARQL

SPARQL supports a large number of different language constructs. For example,

the three expressions of SPARQL in Fig. 4.8 have the same semantics. Redundant

expressive power brings the flexibility of expressiveness and abbreviations bring

the simplification of expressions, but they do not increase the expressive power of

the language. It is also obvious that the syntax for Expression 1 is user friendly, but

Expression 3 is more easily to be interpreted by a machine.

In order to reduce the number of cases, which must be considered when proces-

sing SPARQL queries, and in order to make SPARQL queries more machine-

processable, we suggest the CoreSPARQL language, which is a core fragment of

the SPARQL language. CoreSPARQL possesses the same expressive power as

SPARQL, but eliminates redundant language constructs of SPARQL and only

allows machine-friendly syntax. We develop an approach, which automatically

transforms SPARQL queries into CoreSPARQL queries.

4.3.1 Defining CoreSPARQL

In Definition 1, we describe CoreSPARQL in terms of the common and different

properties with SPARQL. A grammar for the syntax of CoreSPARQL is given in a

later subsection.

Definition 1 (CoreSPARQL). CoreSPARQL is a core fragment of SPARQL. A
CoreSPARQL query is also a SPARQL query. CoreSPARQL has the same expres-
sive power as SPARQL, but allows only machine-friendly syntax, and excludes most
redundant language constructs. Especially, in CoreSPARQL,

l All triple patterns are only in the form: s p o.
l A group graph pattern cannot directly nest another group graph pattern
l Variable names start only with ?
l Blank nodes [] are not allowed

Expression 1 Expression 2 Expression 3

(1 [?x 3]). [] rdf:first 1;

rdf:rest _:b.

_:b rdf:first [$x 3];

rdf:rest rdf:nil.

_:b1 rdf:first 1.

_:b1 rdf:rest _:b2.

_:b2 rdf:first _:b3.

_:b3 ?x 3.

_:b2 rdf:rest rdf:nil.

Fig. 4.8 Three SPARQL expressions with same semantics

4.3 CoreSPARQL 73

l RDF collections of the form (. . .) are not allowed
l Neither prefixed IRIs nor IRIs, which are relative to a BASE declaration, are

allowed
l Abbreviations using the keyword a and () are not allowed

Figure 4.9 demonstrates several SPARQL and corresponding CoreSPARQL

components.

4.3.2 Transforming SPARQL Queries into CoreSPARQL
Queries

SPARQL provides user-friendly syntax to write RDF queries, and CoreSPARQL

queries are easy to process. Therefore, the next task for us is to find a way to

automatically transform SPARQL queries into CoreSPARQL queries. We develop

a set of transformation rules, such that a SPARQL query can be transformed into a

CoreSPARQL query by recursive application of these rules; that is, if the expres-

sion of a left-hand side of a rule occurs in a SPARQL query, it is replaced with the

right-hand side of the rule.

In the following paragraphs, we assume rdf to be an alias for http://www.w3.org/
1999/02/22-rdf-syntax-ns#.

We use the following notation to describe these rules: we write s (s1, s2,. . .),
p (p1, p2, . . .), o (o1, o2,. . .) for the subject, predicate, and object of a triple pattern,
os (os1, os2, . . .) for a list of objects, for example, os ¼ o1, o2, o3, . . ., om, where
m � 1, and pos (pos1, pos2, . . .) for predicate-object-lists, for example, pos¼
p1 os1; p2 os2; . . .; pm osm, where m � 1. Note that some patterns in the following

rules may be not supported by SPARQL. Such patterns are intermediate results of

the transformation and will be translated to standard language constructs after the

transformation.

l Rule 1: eliminating Object-Lists:

1.1 s1 p1 o1, os. => s1 p1 o1. s1 p1 os.

SPARQL CoreSPARQL

s1 p1 o1;

 p2 $x.

s1 p1 o1.

s1 p2 ?x.

[p o]. _:b p o.

{ {s1 p1 o1}

 s2 p2 o2. }

{ s1 p1 o1.

 s2 p2 o2. }

component

triple pattern

blank node []

group graph

pattern

Fig. 4.9 SPARQL and

corresponding CoreSPARQL

components

74 4 Query Processing Overview

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#

l Rule 2: eliminating Predicate–Object-Lists:

2.1 s1 p1 os1; pos. => s1 p1 os1. s1 pos.

l Rule 3: eliminating blank nodes [].

3.1 [] => _:b,
where b is a blank node label not used elsewhere in the query

3.2 [pos]. => _:b pos.
3.3 [pos1] pos2. => _:b pos1. _:b pos2.
3.4 s1 p1 [pos]. => s1 p1 _:b. _:b pos.
3.5 s1 p1 [pos] p2 os1. => s1 p1 _:b. _:b pos. _:b p2 os1.

l Rule 4: eliminating RDF collections (), where e (e1, e2,..) is an element of the

collection, that is, a variable, a literal, a blank node, or a collection. Here, we

introduce a variant of the collection, for example, (e)s¼_:b. to restrict that the

blank node, which is allocated for the collection (e), must be _:b. A new blank

node _:b on the right side of a rule must be chosen in such a way that _:b is not

used elsewhere in the query.

4.1 (e) pos. => _:b rdf:first e. _:b rdf:rest rdf:nil. _:b pos.
4.2 (e). => _:b rdf:first e. _:b rdf:rest rdf:nil.
4.3 (e1 e2 e3…). => _:b rdf:first e1. _:b rdf:rest (e2 e3…).
4.4 s p (e1 e2 ...). => s p _:b. (e1 e2 ...)s=_:b.
4.5 s p (e1 e2 ...) pos. => s p _:b. (e1 e2 ...)s=_:b. _:b pos.
4.6 (e1 e2…)s=_:b. => _:b rdf:first e1. _:b rdf:rest (e2…).
4.7 (e)s=_:b. => _:b rdf:first e. _:b rdf:rest rdf:nil.
4.8 () => rdf:nil

l Rule 5: eliminate the keyword a:

5.1 a => rdf:type

l Rule 6: eliminate directly nested group graph patterns

where {A} is not a part of an OPTIONAL, or an UNION, or a GRAPH oper-
and; A does not consist of only Filter expressions either.

6.2 { {Filter(e).} … }

 { Filter(true) …}, if the result of the static analysis of e is true.
=>

 { Filter(false)…}, if the result of the static analysis of e is false or a type error.

6.1 { {A} …} => { A …},

For example, the expression 10 > 1 is statically analyzed to true, and thus

{Filter(10 > 1)).} ¼ Filter(true)..

In the group graph pattern {Filter(bound(?x)).}, the variable x will never be

bound. Therefore, the static analysis of bound(?x) can produce a type error, and

thus {Filter(bound(?x)).} ¼ Filter(false).. For the details on the static analysis

and type errors, see Sect. 11.2 Filter Evaluation in the SPARQL specification

(Prud’hommeaux and Seaborne 2008).

l Rule 7: eliminating prefixes and BASE declarations.

7.1 p:a => <prefix(p) a>,

4.3 CoreSPARQL 75

where prefix(p) is a function to resolve the prefixed IRI p:a according to defined

PREFIX and BASE declarations. The PREFIX and BASE declarations are

deleted in the CoreSPARQL query.

Example 1 Using this example, we demonstrate how to transform a SPARQL

expression t1 ¼ (1 [p o1] (2)). into the corresponding CoreSPARQL expression

by recursively applying the rules above.

1. Applying Rule 4.3 on t1: t1 ¼> t2. t3.:

_:b1 rdf:first 1. (t2)

_:b1 rdf:rest ([p o1] (2)). (t3)

2. Applying Rule 4.4 on t3: t3 ¼> t4. t5.:

_:b1 rdf:rest _:b2. (t4)

([p o1] (2))s=_:b2. (t5)

3. Applying Rule 4.6 on t5: t5¼> t6. t7.:

_:b2 rdf:first [p o1]. (t6)

_:b2 rdf:rest ((2)). (t7)

4. Applying Rule 3.4 on t6: t6 ¼> t8. t9.:

_:b2 rdf:first _:b3. (t8)

_:b3 po 1. (t9)

5. Applying Rule 4.4 on t7: t7 ¼> t10. t11.:

_:b2 rdf:rest _:b4. (t10)

((2))s=_:b4. (t11)

6. Applying Rule 4.7 on t11: t11 ¼> t12. t13.:

_:b4 rdf:first (2). (t12)

_:b4 rdf:rest rdf:nil. (t13)

7. Applying Rule 4.4 on t12: t12 ¼> t14. t15.:

_:b4 rdf:first _:b5. (t14)

(2)s=_:b5. (t15)

8. Applying Rule 4.7 on t15: t15 ¼> t16. t17.:

_:b5 rdf:first 2. (t16)

_:b5 rdf:rest rdf:nil. (t17)

The transformation result consists of triple patterns t2, t4, t8, t9, t10, t13, t14,

t16, and t17, where additionally the prefixed form of IRIs have been replaced with

their long form according to Rule 7.1.

Note that there are further redundancies, which we allow in CoreSPARQL, as

they can be processed in a machine-friendly way. Nevertheless, we explain

these redundancies and how to eliminate these redundancies in the following

paragraphs.

The wildcard * can be replaced by the concrete list of variables in SELECT [

DISTINCT | REDUCED] * and DESCRIBE *; that is, the SPARQL expression can

be replaced by SELECT [DISTINCT | REDUCED] Var1, . . ., Varn and

DESCRIBE Var1, . . ., Varn, where Var1, . . ., Varn are all variables of the original

SPARQL query, which have been bound in triple patterns.

76 4 Query Processing Overview

Furthermore, the REDUCED keyword can be replaced by DISTINCT or can be

deleted, as SELECT REDUCED . . . allows any number of duplicates between the

number of duplicates of SELECT . . . and SELECT DISTINCT
Any operations on constants can be replaced by the result of their applications.

According to (Gutierrez et al. 2004), blank node labels of the form _:b can be

replaced by a local variable ?_b, where the variable ?_b must not be used in the

original SPARQL query. Whenever at least one blank node label is replaced,

SELECT [DISTINCT | REDUCED] * and DESCRIBE * must be replaced with

SELECT [DISTINCT | REDUCED] Var1, . . ., Varn and DESCRIBE Var1, . . .,
Varn, where Var1, . . ., Varn are all variables of the original SPARQL query, which

have been bound in triple patterns; that is, all local variables ?_b do not occur in the

final result. Note that unbound variables in FILTER expressions raise type errors.

4.3.3 CoreSPARQL Grammar

The grammar rules for CoreSPARQL are adapted from the grammar rules for

SPARQL, which are given in A.8 Grammar in Prud’hommeaus and Seaborne

(2008). Twenty-two rules (2–4, 32–42, 48, 68, 71–72, 75, 92, and 99–100) in

SPARQL are not needed and eliminated; ten rules (1, 21, 22, 25, 31, 37, 44, 45,

67, and 69) differ from the corresponding ones in SPARQL; and the rest remains

unchanged. Here, we only present these ten adapted rules in Table 4.1 and comment

Table 4.1 Adapted grammar rules of the SPARQL grammar

[1] Query ::¼ SelectQuery | ConstructQuery |

DescribeQuery | AskQuery

PREFIX and BASE declarations are not allowed.

[21] TriplesBlock ::¼ VarOrTerm VarOrIRIref VarOrTerm

Only allow triple patterns of the form s p o.

[22] GraphPatternNotTriples ::¼ OptionalGraphPattern | UnionGraphPattern |

GraphGraphPattern

Group graph patterns are not allowed to directly nest any other group graph pattern.

[25] UnionGraphPattern ::¼ GroupGraphPattern ’UNION’

GroupGraphPattern

Group graph patterns are not allowed to directly nest any other group graph pattern.

[31] ConstructTriples ::¼ TriplesBlock (’.’ ConstructTriples?)?

Only allow triple patterns of the form s p o.

[37] Verb ::¼ VarOrIRIref

The keyword a is not allowed anymore.

[44] Var ::¼ VAR1

Variable names start only with “?”.

[45] GraphTerm ::¼ IRIref | RDFLiteral | NumericLiteral |

BooleanLiteral | BlankNode

The abbreviation () for rdf:nil is not allowed.

[67] IRIref ::¼ IRI_REF

Prefixed IRIs are not allowed anymore.

[69] BlankNode ::¼ BLANK_NODE_LABEL

Blank nodes are represented only with label.

4.3 CoreSPARQL 77

the consequence of the adaptation. We use the same number and the name of left-

hand side for every rule as in SPARQL, except for Rule 25. The name of left-hand

side of Rule 25 is changed from GroupOrUnionGraphPattern to UnionGraphPat-
tern in order to reflect the prohibition of the direct nesting of group graph patterns.

4.4 Related Work

Jarke and Koch (1984), Ioannidis (1996), and Chaudhuri et al. (1998) give an

overview of logical transformation techniques and that of physical evaluation

methods for database queries using the framework of the relational algebra

(Ioannidis 1996; Chaudhuri et al. 1998) or of the (tuple) relational calculus

(Jarke and Koch 1984). In these works, the relational query (e.g., an SQL

query) is first transformed into a relational algebra tree (Ioannidis 1996;

Chaudhuri et al. 1998) or into an object graph (Jarke and Koch 1984), on

which logical transformation rules are applied in order to optimize the query

evaluation. After that, depending on cost estimations, physical operators are

chosen for the logical operators in the relational algebra tree (Ioannidis 1996;

Chaudhuri et al. 1998), or in the object graph (Jarke and Koch 1984), in order

to finally evaluate the query in the estimated fastest way. The physical

operators are chosen from a set of different implementations with different

runtime performance. These techniques, which especially use the framework

of the relational algebra, are also presented in various standard works for

database systems (e.g., Garcia-Molina et al. 2002; Connolly and Begg 2002;

Elmasri and Navathe 2000).

We propose the CoreSPARQL fragment in (Groppe et al. 2009d).

4.5 Summary and Conclusions

We suggest the CoreSPARQL language, which is a core fragment of SPARQL, but

has the same expressiveness as SPARQL 1.0. Optimization approaches, SPARQL

engines, and all applications, which process SPARQL queries, benefit from

CoreSPARQL: CoreSPARQL has machine-friendly syntax and thus is easy to

process; CoreSPARQL contains less language constructs and thus reduces the

number of cases to be considered.

We apply the logical and physical optimization framework in our SPARQL

engines. Once the logical operator graph has been generated, logical equivalence

rules can be used to optimize the performance. After logical optimization, the

physical optimization chooses the best estimated physical operator for each logical

operator for processing joins, sort operations, optional expressions, and index scans

to determine the result of a triple pattern. The physical operator graph, also called

execution plan, is finally executed to retrieve the query result.

78 4 Query Processing Overview

Chapter 5

Logical Optimization

Abstract In this chapter, we first introduce an algebra for SPARQL queries and

define the semantics of query evaluation. Afterward, we present equivalency rules

for optimizing the query processing and present a heuristic approach to query

optimization based on these equivalency rules. Afterward, we deal with query

optimizers, which enumerate all possible query plans and choose the one with the

best estimated costs. Finally, we describe how to employ histograms for estimating

the cardinality of operator results as basis for cost estimations.

5.1 Logical Algebra

In order to define the semantics of query evaluation, we formalize an algebra of the

core fragment of SPARQL over simple RDF, that is, RDF without RDFS vocabu-

lary and literal rules. We extend the algebraic formalization of Pérez et al. (2006) by

considering a larger fragment of SPARQL and by allowing more complex built-in

conditions and empty graph patterns. With our extensions, the algebra covers the

full power of SPARQL 1.0 (Prud’hommeaux and Seaborne 2008), such that even

the different types of SPARQL queries like SELECT, ASK, and CONSTRUCT
queries can be expressed in this algebra.

A SPARQL query is evaluated on RDF graphs. In order to describe the seman-

tics of SPARQL queries, we first define built-in conditions of SPARQL, which are

used in FILTER clauses of SPARQL. Note that we do not distinguish between

variables and blank node variables any more, as blank node variables can be

eliminated as described in the transformation from SPARQL queries into Core-

SPARQL queries.

Definition 1 (Built-in condition). We assume the existence of a set V of variables,
which is disjoint from the set of IRIs I, the set of blank nodes B, and the set of literals
L. A built-in condition is recursively defined as follows:

(a) l2 L, i2 I and v2V are built-in conditions
(b) If R1 and R2 are built-in conditions, then

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_5, # Springer-Verlag Berlin Heidelberg 2011

79

I. The Boolean expressions R1∧R2, R1∨R2, ¬R1 and R1 op R2, where
op 2 {¼, 6¼, <, �, >, �}, are also built-in conditions,

II. The numeric expressions R1 op R2, where op2 {+,�, *, /}, are also built-in
conditions, and

(c) If R1, . . ., Rn are built-in conditions, then func(R1, . . ., Rn) is also a built-in
condition, where func is an external or a SPARQL built-in function. See
Prud’hommeaux and Seaborne (2008) for a complete list of SPARQL built-in
functions.

The core component of SPARQL queries is a graph pattern.

Definition 2 (Graph pattern). A graph pattern is defined recursively as follows:

(a) The empty graph pattern {} is a graph pattern.
(b) A triple pattern tp, where tp2 (I [B [L [V) � (I [V) � (I [B [L [V), is

a graph pattern
(c) If P1 and P2 are graph patterns, then P1 AND P2, P1 OPT P2, and P1 UNION P2

are graph patterns
(d) If P is a graph pattern and vi2 I [V, then GRAPH vi (P) is also a graph

pattern
(e) If P is a graph pattern and R is a built-in condition, then P FILTER R is a graph

pattern

The list of graph patterns has been extended with GRAPH vi (P) in comparison
to Pérez et al. (2006) for the support of named graphs. Note that the SPARQL
syntax (Prud’hommeaux and Seaborne 2008) differs slightly from the above
notation. For example, the SPARQL expression P1 P2 in Prud’hommeaux and
Seaborne (2008) corresponds to our graph pattern P1 AND P2, P1 OPTIONAL

P2 to P1 OPT P2, GRAPH vi {P} to GRAPH vi (P), and P. and {P} to P.
Furthermore, the SPARQL operators &&, ||, !, !¼, <¼ and >¼ correspond to
the operators ∧, ∨, ¬, 6¼, � and � in the built-in conditions (see Definition 1).
SPARQL also supports some further redundant equivalent language constructs
like object lists and predicate-object lists in triple patterns, and several other
abbreviations, which can be transformed into an equivalent long form (Groppe
et al. 2009d).

Note that SPARQL allows literals as subjects of triple patterns, but RDF does
not allow literals as subjects of triples. Therefore, the triple patterns with literal
subjects always return the empty result for any input RDF graph, and thus this kind
of triple patterns is unsatisfiable.

In the following paragraphs, we further extend the algebraic formalization
of Pérez et al. (2006) for considering also the different types of SPARQL queries,
that is, SELECT, ASK, and CONSTRUCT queries, and their modifiers such
as DISTINCT, ORDER BY, LIMIT, and OFFSET. DESCRIBE queries are not
considered here, as their result has only informally been described in the SPARQL
specification (Prud’hommeaux and Seaborne 2008) and is implementation-
dependent.

80 5 Logical Optimization

Definition 3 (Query heads and extended list of graph patterns). The following
query heads and additional graph patterns are defined as follows:

(a) If P is a graph pattern and {v1, . . ., vn} is a set of variables, then the projectionQ
{v1, . . ., vn} P is a graph pattern.

(b) If P is a graph pattern, then DISTINCT P is a graph pattern for the elimination
of duplicates.

(c) If R1, . . ., Rn are built-in conditions, then SORTORDER1(R1), . . ., ORDERn(Rn) P,
where ORDER1, . . ., ORDERn2 {ASC, DESC} and which corresponds to the
ORDER BY clause of SPARQL queries, is a graph pattern.

(d) If P is a graph pattern and i an integer, then LIMIT i P and OFFSET i P are
graph patterns for the LIMIT and OFFSET clause respectively of SPARQL
queries.

(e) If P is a graph pattern, then ASK P is a query head for ASK queries.
(f) If P is a graph pattern and {tp1, . . ., tpn} a set of triple patterns tp1, . . ., tpn,

then CONSTRUCT{tp1, . . ., tpn} P is a query head for CONSTRUCT queries.
Example 1 (Graph pattern and SPARQL query). The graph pattern

DISTINCT ∏{?title, ?price} ((?x dc:title ?title)
OPT ((?x ns:price ?price)

FILTER(?price <30)))

represents the SPARQL query

SELECT DISTINCT?title ?price
WHERE { ?x dc:title ?title.

OPTIONAL { ?x ns:price ?price.
FILTER (?price <30) }}.

The transformation from any CoreSPARQL query into its graph pattern or its

query head respectively is straightforward and is thus left to the reader.

5.1.1 Semantics of the Logical Algebra Operators

In this section, we define the semantics of SPARQL queries by describing the result

of graph patterns (see Definition 2) evaluated on an RDF graph. For this purpose,

we need to introduce several concepts.

Definition 4 (Binding). A binding is a tuple (v, t), where v2V represents a
SPARQL variable and t2 (I [B [L) one of its values.

A solution contains one element of the result of a SPARQL graph pattern.

Definition 5 (Solution). A solution E is a set of bindings, where each variable in the
bindings has exactly one assigned value; that is, 8(v, t)2E: v2V∧ t2 (I [B [L)
and 8(v1, t1)2E: 8(v2, t2)2E: (v1 6¼v2 ∨ t1¼t2).

With this, we can define the result of a built-in condition.

5.1 Logical Algebra 81

Definition 6 (Result of built-in condition). The result EvalR(E) of a built-in
condition R evaluated on a solution E is a Boolean value, that is, true or false,
and is determined recursively according to the following rules:

(a) R ¼ R1 op R2, where op2 {∧, ∨}: EvalR1 op R2(E) ¼ EvalR1(E) op EvalR2(E)
(b) R ¼ R1 op R2, where op2 {¼, 6¼, <, �, >, �}: EvalR1 op R2(E) ¼ ValueR1(E)

op ValueR2(E), where ValueR(E) is defined recursively as follows:
I. R2L or R2 I: ValueR(E) ¼ R

II. R2V: ValueR(E) ¼ t if (R, t)2E or ValueR(E) raises an error if ∄t*:
(R, t*)2E [see Sect. 11.2 of Prud’hommeaux and Seaborne (2008) for
handling errors]

III. R ¼ op R1, where op2 { +, -, ¬}: ValueR(E) ¼ op ValueR1(E)
IV. R ¼ R1 op R2, where op2 { +, -, *, /, ∧, ∨, ¼, 6¼, <, �, >, �}:

ValueR1 op R2(E) ¼ ValueR1(E) op ValueR2(E)
V. R ¼ func(R1, . . ., Rn): Valuefunc(R1, . . ., Rn)(E) ¼ func(R1, . . ., Rn), where

func(R1, . . ., Rn) is an external or a SPARQL built-in function. For example,
bound(v) returns true if ∃t:(v, t)2E; otherwise, bound(v) returns false.
See Prud’hommeaux and Seaborne (2008) for a complete list of SPARQL
built-in functions.

(c) Otherwise: EvalR(E) ¼ xsd:boolean(ValueR(E)) [see Prud’hommeaux and
Seaborne (2008) for the Effective Boolean value xsd:boolean].

SPARQL queries can be SELECT,DESCRIBE,ASK, or CONSTRUCT queries.
ASK queries return Boolean results. CONSTRUCT queries and DESCRIBE

queries return RDF graphs. SELECT queries usually return bags (also called
multisets) of solutions. A bag contains unordered entries. Whereas in a set each
of its unordered entries can occur only once, each entry in a bag can also occur
several times. If a SELECT query contains the DISTINCT modifier, then actually a
set of solutions is returned, as duplicates are eliminated. If the SELECT query
contains an ORDER BY clause for sorting its result, then a sequence of solutions is
returned if the SELECT query contains no DISTINCT modifier, and an ordered set
of solutions if the SELECT query contains a DISTINCT modifier.

We denote bags by enclosing its entries with < and>. For example,<x1, x2> is
a bag containing the entries x1 and x2, where the entries x1 and x2 are typically
solutions in our definitions for graph pattern results. The concatenation of bags is
expressed with the operator o, for example, <x1, x2> o <x3> ¼ <x1, x2, x3>. The
bag X contains the bag Y, denoted by Y � X, if 8y2Y: (y2 2Y) � (y2 2X),
where y2 2Y represents the number of copies of y in Y. Furthermore, the bag
X ¼ <x1, . . ., xn> set-contains the bag Y ¼ < y1, . . ., ym >, denoted by Y �set X,
if 8y2 {y1, . . ., ym}: ∃x2 {x1, . . ., xn}: x ¼ y. The difference between two bags X
andY is defined to be Z: ¼ X – Y�X, where 8x2X: x2 2Z ¼ max((x2 2X)�
(x2 2Y), 0). We define the set-difference between two bags X and Y, denoted
by Zset: ¼ X-set Y, to be Zset ¼ < x | x 2 {x1, . . ., xn}∧ x=2{y1, . . ., ym}>, where the
set-difference contains the entries of X ¼ <x1, . . ., xn> excluding the entries of the
bag Y ¼ < y1, . . ., ym >.

82 5 Logical Optimization

In the definitions for the result of graph patterns, we use the operators Join,
Union, and Left outer-join, which work on bags of solutions.

Definition 7 (Join, Union and Left outer-join of bags of solutions). Let O1 and
O2 be two bags of solutions. Then:

(a) Join: O1 ⋈ O2 ¼ < o1 [o2 | o12O1 ∧ o22O2 ∧ 8(v, t1)2 o1 [o2:
8(v, t2)2o1 [o2: t1¼t2>

(b) Union: O1 [O2 ¼ <o | o 2O1 ∨ o 2 O2 >
(c) Left outer-join:O1⋈O2 ¼ O1⋈O2 o< o1’ | o1’2O1∧ o1’=2{ o1 | o12O1∧

o22O2 ∧8(v, t1)2 o1 [o2: 8(v, t2)2 o1 [o2: t1¼t2}>

Definition 8 (Result of graph patterns). Let D be an RDF graph and NG¼{D
(IRI1), . . ., D(IRIn)} be a set of named graphs, where IRI1, . . ., IRIn are the IRI
labels of the named RDF graphs, (e1 e2 e3) a triple pattern, P1 and P2 graph
patterns, R a built-in condition, IRI an IRI label, and v2V a variable. Then the
evaluation of a graph pattern P over the default RDF graph D and the named RDF
graphs NG denoted by [[P]]D, NG is defined recursively as follows:

a) [[{}]] D, NG = <>
b) [[(e1 e2 e3)]] D, NG = < E | (d1, d2, d3)∈ D Ù

E={ (x, v) | i∈ {1, 2, 3} Ù x=ei Ù ei ∈ V Ù v=di} Ù
((∀ j∈ {1, 2, 3}: (ej ∈ V) Ú (ej=dj)) Ù

∀ (n, v1)∈ E: ∀ (n, v2)∈ E: v1=v2)>
c) [[P1 AND P2]]D, NG = [[P1]]D, NG [[P2]]D, NG

d) [[P1 OPT P2]]D, NG= [[P1]]D, NG ([[P1]]D, NG [[P2]]D, NG)
e) [[P1 UNION P2]]D, NG= [[P1]]D, NGÈ [[P2]]D, NG

f) [[GRAPH v (P1)]]D, NG = (<(v, IRI1)> [[P1]]D(IRI1), NG) UNION… UNION
(<(v, IRIn)> [[P1]]D(IRIn), NG)

g) [[GRAPH IRI(P1)]]D, NG= [[P1]]D(IRI), NG, if D(IRI)∈ NG, otherwise <>.
h) [[P1 FILTER R]]D, NG= < w | w∈ [[P1]]D, NGÙ EvalR (w)>

In comparison to the original definition [[P1 OPT P2]]D ¼ [[P1]]D ⋈ [[P2]]D
given in Pérez et al. (2006), in the case d) of Definition 8 we first join the results of
P1 and that of P2, because the filter expressions in P2 may use variables, which are
bound in P1 rather than in P2, for example, ((?x <a> ?z) AND (?x ?w)) OPT

((?y<a> ?z2) AND (?y ?w2) FILTER(?z¼?z2 && ?w2< ?w)). Without first
joining the results of P1 and of P2, these filter expressions would be evaluated to a
different result from the intended one following the SPARQL specification (Prud’-
hommeaux and Seaborne 2008) and test cases (Feigenbaum 2008). Furthermore, to
support named RDF graphs, we have to not only use the default graphD as in Pérez
et al. (2006) in our formulas, but also the set of named RDF graphs NG.

For completeness, we have also to define the result of the extended list of graph
patterns as well as the query heads:

Definition 9 (Result of query heads and extended list of graph patterns). Let
D be an RDF graph and NG¼{D(IRI1), . . ., D(IRIn)} be a set of named graphs,
where IRI1, . . ., IRIn are the IRI labels of the named RDF graphs, {v1, . . ., vn} be
a set of variables, R1, . . ., Rn be built-in conditions, ORDER1, . . ., ORDERn2
{ASC, DESC}, and {(s1, p1, o1), . . ., (sn, pn, on)} bet a set of triple patterns, then:

5.1 Logical Algebra 83

(a) [[
Q

{v1, . . ., vn} P1]]D, NG ¼ <{(v1, t1), . . ., (vn, tn)} | o 2 [[P1]]D, NG ∧ (vi, ti)
2o for i2 {1, . . ., n}>.

(b) [[DISTINCT P1]]D, NG ¼ < o | o 2 {o’ | o’ 2 [[P1]]D, NG } >.
(c) [[SORTORDER1(R1), . . ., ORDERn(Rn) P1]]D, NG ¼ <o1, . . ., om>, where [[P1]]D,

NG � < o1, . . ., om > and < o1, . . ., om > � [[P1]]D, NG, and o1� ORDER1(R1),

. . ., ORDERn(Rn) o2 � ORDER1(R1), . . ., ORDERn(Rn) . . .� ORDER1(R1), . . ., ORDERn(Rn)

om, where � ORDER1(R1), . . ., ORDERn(Rn) is the order relation between two
solutions according to ORDER1(R1), . . ., ORDERn(Rn), that is, o1� ORDER1

(R1), . . ., ORDERn(Rn) o2 holds if ValueR1(o1) op1 ValueR1(o2), or ValueR1(o1)
¼ ValueR1(o2) and ValueR2(o1) op2 ValueR2(o2), . . ., or ValueRn(o1) opn
ValueRn(o2), where for each i 2 {1, . . ., n} opi is < for ORDERi¼ASC and
otherwise opi is >.

(d) [[LIMIT i P1]]D, NG ¼ <o1, . . ., ok>, where [[P1]]D, NG ¼ <o1, . . ., om>
and k ¼ min(i, m).

(e) [[OFFSET i P1]]D, NG ¼ <oi, . . ., om>, where [[P1]]D, NG ¼ <o1, . . ., om>.
If m < i, then [[OFFSET i P1]]D, NG ¼ <>.

(f) [[ASK P1]]D, NG ¼ true if [[P1]]D, NG 6¼<> and otherwise false.
(g) [[CONSTRUCT{(s1, p1, o1), . . ., (sn, pn, on)} P1]]D, NG ¼{ (s, p, o) | i 2 {1, . . .,

n} ∧ o 2 [[P1]]D, NG ∧ ((s¼si ∧ si2 I[B[L) ∨ (si, s)2o) ∧ ((p ¼ pi ∧
pi2 I[B[L) ∨ (pi, p)2o) ∧ ((o¼oi ∧ oi2 I[B[L) ∨ (oi, o)2o)}.

Example 2 (Result of graph patterns). The result of

DISTINCT ∏{? title, ?price} ((?x dc:title ?title) OPT ((?x ns:price ?price)
FILTER(?price < 30)))

with default RDF graph

D={ (:book1 dc:title "SPARQL Tutorial "), (:book1 ns:price 42),
(:book2 dc:title "The Semantic Web"), (:book2 ns:price 23)}

is
DISTINCT ∏{? title, ?price} ([[(?x dc:title ?title)]]D, {}

< w | w ∈ [[(?x dc:title ?title)]]D, {} [[(?x ns:price ?price)]]D, {}
Ù Eval?price < 30(w)>)

= DISTINCT ∏{? title, ? price} (< {(x, :book1), (title, "SPARQL Tutorial")},
{(x, :book2), (title, "The Semantic Web")} >

< w | w ∈ < {(x, :book1), (title, "SPARQL Tutorial"), (price, 42)},
{(x, :book2) , (title, "The Semantic Web"), (price, 23)}>

Ù Eval?price < 30(w)>)
= DISTINCT ∏{? title, ?price} (< {(x, :book1), (title, "SPARQL Tutorial ")},

{(x, :book2), (title, "The Semantic Web")}>
<{(x, :book2), (title, "The Semantic Web"), (price, 23)}>)

= DISTINCT ∏{? title, ?price} (< {(x, :book1), (title, "SPARQL Tutorial ")},
{(x, :book2), (title, "The Semantic Web"), (price, 23)}>)

= DISTINCT (< { (title, "SPARQL Tutorial")},
{ (title, "The Semantic Web"), (price, 23)}>)

= < { (title, "SPARQL Tutorial")},
{ (title, "The Semantic Web"), (price, 23)} >.

84 5 Logical Optimization

5.2 Logical Optimization Rules

Logical optimization aims to reorganize the operator graph into an equivalent opera-

tor graph, which generates the same output for any input as the original one, in order

to optimize the execution time of query evaluation. We write P1 � P2 to denote that
a graph pattern P1 generates the same output for any input as the graph pattern P2.

Figure 5.1 presents some equivalency rules published in the contributions (Pérez

et al. 2006; Groppe et al. 2007a, b; Heese et al. 2006), which can be used for the

logical optimization of the operator graph of the SPARQL query. We will explain

some important logical optimization rules in detail. Many of these equivalency

rules are adapted from the equivalency rules of the relational algebra (see e.g.,

Arasu et al. 2006; Chaudhuri 1998; Ioannidis 1996; Jarke and Koch 1984). How-

ever, to the best of our knowledge, the equivalency rules for pushing filters and

constant and variable propagations have been only informally described and have

not been so precisely formalized and comprehensively presented as here.

A description on the logical optimization rules developed in our LUPOSDATE

system can be accessed via http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/

ruledoc/.

5.2.1 Pushing FILTER Operators

It is a good strategy to push FILTER operators as much as possible into inner

subexpressions. Early application of FILTER operators will reduce the sizes of

intermediate results and thus speed up succeeding processing.

To define the conditions under which a FILTER operator can be moved into

inner subexpressions, we must define the function nov(P), where P is a graph

pattern. nov(P) determines a set of variables, which are bound in every result

solution of P for any input. For example, nov((?book dc:author ?author) UNION
(?book dc:price ?price)) ¼ {?book }, as every result solution binds ?book with

a value regardless if the result solution is in the result of (?book dc:author ?author)
or of (?book dc:price ?price). However, the variables ?author and ?pricemight not

be bound.

Definition 10. Let {} be the empty graph pattern, (s p o)2 (I [B [L [V) � (I [
V) � (I [B [L [V) be a triple pattern, P1 and P2 be two graph patterns, and R

be a built-in condition. The function nov(P) is recursively defined as follows:

l nov({}) ¼ {}
l nov((s p o)) ¼ { v | v 2 {s, p, o} ∧ v 2V }
l nov(P1 AND P2) ¼ nov(P1) [nov(P2)
l nov(P1 UNION P2) ¼ nov(P1) \ nov(P2)
l nov(P1 OPT P2) ¼ nov(P1)
l nov(P1 FILTER R) ¼ nov(P1)

5.2 Logical Optimization Rules 85

http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/
http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/

Furthermore, let PR be a given built-in condition or graph pattern, and let
var(PR) be a function, which returns all variables occurring in PR. The follow-
ing equivalency rules can be used to move a FILTER operator into inner subex-
pressions:

Equivalency Rules Reference

AND and UNION are associative and commutative, i.e.,
(P1 AND P2) ≡ (P2 AND P1)
(P1 UNION P2) ≡ (P2 UNION P1)
(P1 AND (P2 AND P3)) ≡ ((P1 AND P2) AND P3)
(P1 UNION (P2 UNION P3)) ≡ ((P1 UNION P2) UNION P3)

Pérez et al. (2006)

(P1 AND (P2 UNION P3)) ≡ ((P1 AND P2) UNION (P1 AND P3))
(P1 OPT (P2 UNION P3)) ≡ ((P1 OPT P2) UNION (P1 OPT P3))
((P1 UNION P2) OPT P3) ≡ ((P1 OPT P3) UNION (P2 OPT P3))
((P1 UNION P2) FILTER R) ≡ ((P1 FILTER R) UNION (P2 FILTER R))

Pérez et al. (2006)

P = (P1 AND (P2 OPT P3)) ≡ ((P1 AND P2) OPT P3), where P is a
well designed graph pattern, i.e. for every occurrence of a sub-pattern
P’= (P1' OPT P2') of P and for every variable ?X occurring in P, it
is required that if ?Xoccurs both inside P2' and outside P', then it
also occurs in P1' .

Pérez et al. (2006)

P = ((P1 OPT P2) OPT P3) ≡ ((P1 OPT P3) OPT P2), where P is a well
designed graph pattern

Pérez et al. (2006)

Pushing filter upward in the operatorgraph: We can push filter
upward until after those operators in the operatorgraph, where all
variables of the filter expression have already been bound. This
reduces the space used for intermediary results.

Filtering unsatisfiable queries and subexpressions: A query or a
subexpression of it is unsatisfiable if it returns the empty result
for any RDF data. Unsatisifibility can be often precomputed and
be used to simplify queries. For example, the predicate
FILTER(?price<30 && ?price>50) is unsatisfiable, since ?price<30 is
contradictory to ?price>50.We can hence replace the filter expression
with FILTER(false).

Some rules in
Heese (2006)

Eliminating Variables: For each Filter(?var1 = ?var2) and ?var2 is
not bound in an outer scope of Filter(?var1 = ?var2), we can replace
the variable ?var2 with ?var1 and eliminate the filter
Filter(?var1 = ?var2).a

Heese (2006)

Groppe et al.
(2007)

Fig. 5.1 Equivalency rules for logical optimization of SPARQL queries
aRemark: If the results of the variables are typed-data, e.g. 1 and þ1, two results are value-equal,

but literally un-identical. These situations might occur when the variables do not occur as the

subject or the predicate of a triple pattern, but only as the objects, which may be bound with

numerical typed literals or language tagged literals. The equivalency rule cannot be applied in

these cases.

86 5 Logical Optimization

l (P1 AND P2) FILTER R � (P1 FILTER R)AND (P2 FILTER R) if var(R)�nov

(P1) ∧ var(R)�nov(P2)
l (P1 AND P2) FILTER R � (P1 FILTER R) AND P2 if var(R)�nov(P1) ∧ var

(R) ⊈nov(P2)
l (P1 AND P2) FILTER R � P1 AND (P2 FILTER R) if var(R)�nov(P2) ∧ var

(R) ⊈nov(P1)
l (P1 OPT P2) FILTER R � (P1 FILTER R) OPT (P2 FILTER R) if var(R)�nov

(P1) ∧ var(R)�nov(P2)
l (P1 OPT P2) FILTER R � (P1 FILTER R) OPT P2 FILTER R if var(R)�nov

(P1) ∧ var(R) ⊈nov(P2)
l (P1 UNION P2) FILTER R � (P1 FILTER R) UNION (P2 FILTER R)

5.2.2 Splitting and Commutativity of FILTER Operators

Let R1 and R2 be two built-in conditions. The simple equivalency rule FILTER
(R1 ∧ R2) � FILTER(R1) FILTER(R2) splits a FILTER operator with a built-in

condition R1 ∧ R2 into two separate FILTER operators, which can be further opti-

mized according to other equivalency rules discussed in the following subsections.

For example, the filter in FILTER(?author¼?editor ∧ ?price < 30) ((?book dc:
author ?author) AND (?book dc:editor ?editor) AND (?book dc:price ?price)) cannot
be moved to the inner subexpressions without splitting. However, after splitting the

filter operator, that is, FILTER(?author¼?editor) FILTER(?price < 30), the filter

operator FILTER(?price < 30) can be moved to the triple pattern (?book dc:price
?price), that is, FILTER(?author¼?editor) ((?book dc:author ?author) AND (?book
dc:editor ?editor) AND (FILTER(?price < 30) (?book dc:price ?price))).

Furthermore, FILTER(R1) FILTER(R2) � FILTER(R2) FILTER(R1) holds; that
is, the FILTER operator is commutative.

5.2.3 Constant and Variable Propagation

In the graph pattern P ¼ ((?person foaf:name ?name) FILTER(?name¼“Bob”)), we
can replace the variable ?name in the triple pattern (?person, foaf:name, ?name)with
the constant string “Bob” in the filter expression. Consequently, the filter expression

becomes redundant, and P can be optimized to P’¼ (?person foaf:name “Bob“).
However, the result of P contains the bindings of the variables ?person and ?name,
but the result of P’ consists only of the binding of the variable ?person.

In order to solve this problem, we need a new operation BIND(?name¼“Bob”) in
P’, which binds the variable ?name with “Bob” in the result of P’. Thus, P’¼
((?person foaf:name “Bob“) BIND(?name¼“Bob”)) returns the same result as P
for any input RDF graph. This kind of equivalency is also called constant propagation.

5.2 Logical Optimization Rules 87

Typed data, for example, 1 and þ1, are value-equal, but not identical. Conse-

quently, for example, the triple patterns (?s ?p 1) and (?s ?p þ1) return different

results, but (?s ?p ?o) FILTER(?o¼1) compares ?o to be value-equal to 1; that is,

[[(?s ?p 1)UNION (?s ?pþ1)]]D, NG� [[
Q

{?s, ?p} ((?s ?p ?o)FILTER(?o¼1))]]D, NG
for any default graph D and for any named graphs NG. Similar remarks apply to

language-tagged literals as well. Therefore, the constant propagation cannot be

applied for typed data, where non-identical values can be value-equal like in the

case of numerical values, or language-tagged literals.

Without application of optimization rules, the graph pattern ((?person foaf:name
?name) AND (?person2 foaf:mbox ?mbox) FILTER(?person2¼ ?person))will lead
to an inefficient query execution: a Cartesian product between the two triple

patterns is first computed, and afterward the FILTER operation is applied.

However, we can leverage the information ?person2 ¼ ?person in the filter

expression to rewrite the graph pattern to ((?person foaf:name ?name) AND (?person
foaf:mbox ?mbox) BIND(?person2 ¼ ?person)). The BIND(?person2 ¼ ?person)
operation ensures that the result also contains the bindings of the replaced variable.

Consequently, the costly Cartesian product is replaced with a join.

However, < {(?person¼1)}> ⋈ < {(?person¼þ1)}>¼ < >, but < {(?

person¼1, ?person2¼þ1)}> remains after FILTER(?person2 ¼ ?person)) has

been applied to < {(?person¼1, ?person2¼þ1)}>, as 1 and þ1 are value-equal

and not identical. Therefore, the rule is incorrect whenever the variables ?person
and ?person2 can contain value-equal (but not identical) values, which occur, for

example, for numerical or language-tagged literals. Numerical or language-tagged

literals can only occur in objects of RDF triples. Therefore, if one of the variables

?person or ?person2 occurs as subject or predicate in one of the triple patterns to

be joined, then the variables ?person and ?person2 cannot contain value-equal (but
not identical) values, and the rule is correct.

Let P be a graph pattern, v2V a variable, and cv2 L[I[V a constant value or

another variable. The expression P BIND(v¼cv) adds a binding (v, cv) to each result
solution of the graph pattern P. Let D be the input RDF graph and NG be the named

graphs. [[P BIND(v¼cv)]]D, NG is formally defined as follows:

[[P BIND(v¼cv)]]D, NG ¼ < E | E’2 [[P]]D, NG ∧ E ¼ E’ [{(v, v’) | (v’¼cv ∧
cv2 L[I) ∨ ((cv, v’)2E’ ∧ cv2V)}>.

For each i2 {1, . . ., n} let (si pi oi) 2 (I [B [V)� (I [V)� (I [B [L [V) be a
triple pattern, and cv2 (I [L [V). Our logical optimization rule to constant and

variable propagation can be expressed as follows:

(s1 p1 o1) AND . . . AND (sn pn on) FILTER (v¼cv) � (s1’ p1’ o1’) AND . . . AND
(sn’ pn’ on’) BIND(v¼cv) if v2 {si, pi, oi} and cv is neither a numerical value nor a

language-tagged literal nor a variable with 8i: si6¼v∧pi 6¼v∧si 6¼cv∧pi 6¼cv, where
8i: si’¼cv if si¼v; otherwise si’¼si, pi’¼cv if pi¼v; otherwise pi’¼pi, and oi’¼cv if
oi¼v; otherwise oi’¼oi.

BIND(v¼cv) adds an additional variable binding to the query result. Therefore,

the performance improves when BIND(v¼cv) can be moved to outer subexpres-

sions, such that inner subexpressions have smaller intermediate results. Let P1 and

88 5 Logical Optimization

P2 be graph patterns, and R be a built-in condition, then BIND(v¼cv) can be moved

to outer subexpressions according to the following equivalency rules:

l (P1 BIND(v¼cv)) AND P2 � (P1 AND P2) BIND(v¼cv) if v=2var(P2)∧ cv=2var
(P2)

l P1 AND (P2 BIND(v¼cv)) � (P1 AND P2) BIND(v¼cv) if v=2var(P1)∧ cv=2var
(P1)

l (P1 BIND(v¼cv)) OPT P2 � (P1 OPT P2) BIND(v¼cv) if v=2var(P2) ∧ cv=2var
(P2)

l (P1 BIND(v¼cv)) FILTER R � (P1 FILTER R) BIND(v¼cv) if v=2var(R)
l (P1 BIND(v¼cv)) OP (P2 BIND(v¼cv)) � (P1 OP P2) BIND(v¼cv), where

OP2 {AND, UNION, OPT}

5.2.4 Heuristic Query Optimization Using Equivalency Rules

Query optimizers apply an equivalency rule only when its application can lead to a

better performance. However, the difficult task for query optimizers is to decide if
an equivalency rule can lead to a better performance. Often, logical optimization

approaches use heuristic methods. Heuristic methods assume that the application of

certain equivalency rules typically lead to a better performance and thus always

apply these equivalency rules in any possible cases.

While heuristic methods may lead to suboptimal results, it is a simple approach,

and it is especially favourite to some equivalency rules like pushing filter operators

into inner subexpressions. The application of the rule can early filter intermediate

results and thus improving the performance in nearly every case. We already obtain

a good logical operator graph when we just apply the equivalency rules of the

previous subsections for splitting FILTER operations, pushing FILTER operators

into inner subexpressions, and constant and variable propagations. This heuristic

approach is used by most query optimizers in practice in combination with other

query optimization approaches to enumerate all possible join orderings as we will

later discuss. Figure 5.2 presents an example of the heuristic approach to optimizing

queries using equivalency rules.

For many other equivalency rules, especially those for changing the join order,

logical optimizers typically use statistics of the input data and a cost model to

determine the best logical operator graph. For example, in order to determine the

best join order, the query optimizer enumerates all possible orderings using

dynamic programming, estimates the costs of each possibility using statistics and

the cost model and chooses the best estimated one as optimized logical operator

graph.

The next subsection describes cost-based optimizations, that is, optimizations,

which determine estimated costs of a query plan and aim to choose the estimated

best ones. Afterward, we introduce histograms, which are used in statistic-based

approaches to cost estimation of logical and physical operators.

5.2 Logical Optimization Rules 89

5.2.5 Cost-Based Optimization

Cost-based optimization aims to optimize a whole query plan containing operators

such as join, filter, projection, sort, and union by estimating their costs regarding

consumed space in memory and on disk, and processing time. Due to the fact

that the already discussed heuristic approaches like pushing filters and variable

and constant propagations optimize the query plan in nearly every case, query

1. Unoptimized Query: 2. Splitting FILTER operators:

3. Pushing FILTER Operators: 4. Variable Propagation:

5. Pushing BIND:

OPT

AND

AND

FILTER(?yr<1990)

OPT

AND

AND

FILTER(?author = ?editor)

FILTER(?yr<1990)

OPT

AND

AND

FILTER(?yr<1990)

OPT

AND

AND

BIND(?author = ?editor)

FILTER(?yr<1990)

OPT

AND

AND

FILTER(?author = ?editor ∧ ?yr<1990)

(?inproc bench: abstract ?abstract)

(?inproc dcterms: issued ?yr)

(?inproc dc: creator ?author)

(?inproc dc: editor ?editor)

FILTER(?author = ?editor)

(?inproc dcterms: issued?yr)

(?inproc bench: abstract ?abstract)

(?inproc dc: creator ?author)

(?inproc dc: editor ?editor)

BIND(?author = ?editor)

(?inproc bench: abstract ?abstract)

(?inproc dcterms: issued ?yr)

(?inproc dc: editor ?editor)(?inproc dc: creator ?editor)

(?inproc dc: editor ?editor)

(?inproc dc: creator ?editor)

(?inproc dcterms: issued ?yr)

(?inproc bench: abstract ?abstract)

(?inproc dc: editor ?editor)

(?inproc dc: creator ?author)

(?inproc dcterms: issued ?yr)

(?inproc bench: abstract ?abstract)

Fig. 5.2 Heuristic approach to optimizing queries using equivalency rules

90 5 Logical Optimization

optimizers in practice often apply these heuristic approaches and only apply further

cost-based optimizations as discussed in this subsection for join (and optional)

order optimization. This has the advantage that less possibilities for query plans

need to be considered and thus query optimization becomes faster.

Join orders determine the sizes of intermediate results (e.g., DeHaan and Tompa

2007), and are an important factor, which influences the performance of query

processing. Therefore, a good execution plan depends much on join ordering. We

focus on join order optimization in our examples and introduce special join order

optimization approaches besides approaches to optimize the whole query plan.

In the first subsection, we describe the heuristic approaches to join ordering

optimization suitable for main-memory databases. These approaches can be per-

formed fast, such that they are not slower than processing a not optimized join

ordering, but may produce suboptimal results, the performance lost of which in

comparison to the optimal join ordering can be neglected for the small datasets of

main-memory databases. In the second subsection, we describe the approaches,

which enumerate all possible query plans and choose the estimated best query plan

from them. These approaches spend much more time on query optimization, but

produce better query plans. Thus, they are the first choice for large-scale datasets,

where processing a suboptimal query plan becomes much more expensive, that is,

are slower processed, than for small datasets.

For join order optimization, we must have in mind that certain join algorithms,

which we introduce in the next chapter, like merge join have lower costs than others

like hash join or even nested loop join, such that not only the estimated cardinality

must be considered for join optimization, but also if cheap join algorithms like the

merge join can be used for a considered join.

Furthermore, the different optimization approaches generate different types of

join trees. In left-deep join trees (see Fig. 5.3a), all right children of joins are triple

patterns. Contrary, in right-deep join trees (see Fig. 5.3c), all left children of joins

are triple patterns. All other join trees are bushy join trees (see Fig. 5.3b). Whereas

left-deep and right-deep join trees allow using indices on the input data in each join

for the triple pattern operand, bushy trees are more flat having more possibilities to

optimize the join order and allowing better parallel strategies.

5.2.5.1 Heuristic Approaches to Join Order Optimization

The first simple approach generates left-deep join trees. Note that some join algo-

rithms like our main-memory join approach described in the next chapter work only

on left-deep join trees (or on right-deep join trees) rather than on bushy join trees.

A left-deep (or right-deep) join tree can be generated by first choosing two triple

patterns to join and afterward choosing a triple pattern to the already generated join so

far (until no triple pattern remains).

An important impact on the determination of execution order of triple patterns is

the restrictiveness of triple patterns: a more restrictive triple pattern typically

retrieves less data than the less restrictive triple patterns.

5.2 Logical Optimization Rules 91

Definition 11 (more restrictive triple patterns). Let tp1, tp22 (I [B [V) � (I [
V) � (I [B [L [V) be two triple patterns. If tp1 contains less number of
variables than tp2, then tp1 is more restrictive than tp2.

AND

AND

AND

AND
…

left-deep tree

bushy tree

right-deep tree

AND

AND

AND

AND

…

AND

AND

AND

AND

…

(s1 p1 o1)

(s2 p2 o2)

(s3 p3 o3)

(sn pn on) (sn–1 pn–1 on–1)

(s3 p3 o3)

(sn–1 pn–1 on–1) (sn pn on)(s2 p2 o2)(s1 p1 o1)

(s1 p1 o1)

(s2 p2 o2)

(s3 p3 o3)

(sn–1 pn–1 on–1) (sn pn on)

b

c

a

Fig. 5.3 Left-deep, bushy, and right-deep join trees

92 5 Logical Optimization

Let var(P) be the function, which returns the variables occurring in a graph
pattern P. Furthermore, let Pold be the graph pattern of already joined triple
patterns and tp be a remaining triple pattern. Then we call variables in var(Pold)
\ var(tp) old variables of tp, because they are already bound in Pold during
processing. We call all other variables of tp, that is, var(tp) – (var(Pold) \
var(tp)), new variables of tp, because they have not been bound so far in Pold.
According to our main-memory join approach in the next chapter, the restrictive-
ness of a triple pattern is determined by the number of new variables in the triple
pattern. Therefore, we first choose the most restrictive triple pattern, which con-
tains the most constant values. Afterward, we choose that triple pattern tp, which
binds the least new variables, to be joined with the other already joined triple
patterns; that is, we build Pold AND tp, until no triple pattern remains. In this way,
join operands can be reordered according to the restrictiveness of triple patterns
without considering the input data.

Example 3 (Reordering triple patterns according to the restrictiveness in order to
optimize join computation). The following tripe patterns

(?article, rdf:type, bench:Article) AND
(?article, dc:creator, ?person) AND
(?inproc, rdf:type, bench:Inproceedings) AND
(?inproc, dc:creator, ?person2) AND
(?person, foaf:name, ?name) AND
(?person2, foaf:name, ?name2)

can be reordered as follows using our heuristic approach choosing the triple

pattern with least new variables:

(A) (?inproc, rdf:type, bench:Inproceedings) AND
(B) (?inproc, dc:creator, ?person2) AND
(C) (?person2, foaf:name, ?name2) AND
(D) (?article, rdf:type, bench:Article) AND
(E) (?article, dc:creator, ?person) AND
(F) (?person, foaf:name, ?name)

After reordering in our example, each triple pattern contains only one new

variable, which is not already bound by a previous triple pattern before. Other

reorders are also possible, where each triple pattern contains only one new variable,

for example, the reordering (D), (A), (E), (B), (C), and (F).

Triple patterns can also be reordered according to their result sizes or according

to the estimated join cardinality using, for example, histograms. Result sizes of

triple patterns can be determined efficiently using special indices over the input

data. If we do not consider already bound variables, we can determine the result

sizes of each triple pattern with one index access. However, our approach to

main-memory join computation described in the next chapter replaces already

bound variables. Therefore, ordering the join operands according to their result

sizes without considering already bound variables leads to a suboptimal reordering.

Otherwise, more complex approaches for join cardinality estimations must be

5.2 Logical Optimization Rules 93

applied using, for example, histograms. However, for main-memory databases,

datasets are small and approaches for join cardinality estimations are often slower

than processing a less optimized join order. Thus, whereas applying approaches for

join cardinality estimations for optimizing joins in large datasets is a must for best

performance, they typically slow down the performance in main-memory databases

and should not be applied there.

In a hybrid approach, we order the triple patterns primarily according to restric-

tiveness, which we call the main factor, and secondarily according to result sizes,

which we call the minor factor. Whenever the main factor cannot unambiguously

determine the order of the triple patterns, the second factor is used to help reach the

determination.

The experimental evaluation in the next chapter shows that SPARQL main-

memory evaluation performs best when the restrictiveness is the main factor and the

result size is the minor factor. As we explained already before, join ordering

according to the result sizes of triple patterns without considering already bound

variables leads to a suboptimal order.

5.2.5.2 Enumeration of Plans

The heuristic approaches for join order optimization described so far are preferable

for main-memory databases, as they can be computed very fast, but can lead to

suboptimal join orderings, which are still fast processed because of small datasets.

For large-scale datasets, it makes sense to spend more time on query optimization

for computing better query plans, as they can lead to enormous performance

improvements. Another class of optimization approaches following this idea aims

to enumerate all possible query plans, determines the estimated costs of each

possible query plan and chooses the one with the best estimated costs. For more

complex queries, enumerating all possible query plans, estimating their costs and

choosing the best one becomes too slow because of a blowup of the query plan

possibilities. Therefore, the approaches for query plan enumeration try to not

consider whole subsets of the plans if these subsets cannot lead to the best estimated

costs.

In principle, there are two main strategies for enumerating query plans:

1. Top-down: starting at the root of the logical query plan, each possibility to

compute its operands is considered by applying equivalency rules, and the costs

of each possibility are computed, where the best one is chosen. Note that the

enumeration of plans is recursively applied.

2. Bottom-up: starting at the leafs of a query plan, for each subexpression S of the

logical query plan, all possibilities to compute the subexpression S are enumer-

ated based on the equivalency rules and their costs are determined by combining

already determined possible query plans for subexpressions of S.

94 5 Logical Optimization

Both kinds of strategies enumerate all possible query plans. However, the

bottom-up strategies are more popular, as they can discard the plans with high

costs early.

In the following subsections, we describe several important approaches for plan

enumeration. The last subsection describes also an example of a query optimizer

used in practice, which is actually the query optimizer in our SPARQL engines for

large-scale datasets.

Branch and Bound Plan Enumeration

In this approach, first a query plan is determined based on heuristics like pushing

filters, variable and constant propagation, and the already discussed heuristic

approaches to join order optimization and its costs are estimated. These costs

serve now as upper limit for the costs of the other plans and the query plan becomes

the currently best one. Afterward, all possible query plans are enumerated using the

bottom-up strategy. If the estimated costs of an enumerated subexpression are

already higher than the determined upper limit for the costs, then this subexpression

can be discarded as all query plans containing this subexpression will have higher

costs than the currently best one. If we find a query plan with lower costs, then this

query plan becomes the currently best one and these lower costs become the new

upper limit. The advantage of this strategy is that the query optimizer can stop after

a plan with very low costs is found, such that the time spent for query optimization

does not dominate the overall query processing costs. On the other hand, if the

currently best query plan has high costs, then it is wise to continue query optimiza-

tion, such that may be a better query plan is found and the costs are significantly

reduced.

Hill Climbing

This approach also first computes a query plan using good heuristics. Afterward, the

approach tries to lower the costs of this query plan by making small changes to the

query plan. If all possible, small changes do not lower the costs, then the current

query plan is chosen. In this way good candidates for low-cost query plans are

chosen quickly. Like the branch and bound plan enumeration approach, hill climb-

ing can be stopped when a query plan with very low costs is already found.

However, as big changes to the query plan are not made, not all possible query
plans are enumerated, and hill climbing therefore may miss optimal query plans.

Dynamic Programming

Dynamic programming is a variant of the general bottom-up strategy. Query plans

for a complex subexpression S are determined by building every possible disjoint

5.2 Logical Optimization Rules 95

subsets S1 and S2 of its subexpressions (e.g., sets of triple patterns to be joined), the
union of which is S; that is, S ¼ S1 [S2. Assuming that we have already deter-

mined the best possible query plans for S1 and S2, we determine the query plan and

its costs for the combination of S1 and S2. Among all the built disjoint subsets S1
and S2 and their combined query plans for S, we choose the one with the best

estimated costs.

We now present how to determine the best query plan for joining four triple

patterns t1, t2, t3, and t4. For an example, t1 is <s1> <p1> ?so, t2 is <s2> <p2> ?
so, t3 is ?so<p3> ?o, and t4 is ?s<p4> ?o. We assume to have input data such that

the result of t1 is<{(?so,<o1>)}, {(?so,<o2>)}, {(?so,<o3>)}, {(?so,<o5)}>,

the result of t2 is <{(?so, <o1>)}, {(?so, <o2>)}, {(?so, <o4>)}, {(?so,
<o5)}>, the result of t3 is <{(?so, <o1>), (?o, <e1>)}, {(?so, <o3>), (?o,
<e2>)}, {(?so, <o3>), (?o, <e4)}, {(?so, <o4>, (?o, <e3>))}>, and the result

of t4 is <{(?s, <s1>), (?o, <e1>)}, {(?s, <s2>), (?o, <e1>)}, {(?s, <s1>),

(?o, <e2>)}, {(?s, <s2>), (?o, <e2>)}, {(?s, <s1>), (?o, <e3>)}>. We present

these results of the triple patterns also in Fig. 5.4, where we additionally mark join

partners between the results of the triple patterns by dotted lines.

First the costs are estimated of processing each triple pattern. We have not

described so far how to estimate the costs of operators, which we will do in the

section about histograms. In this section, we do not estimate the costs, but compute

the sizes of all intermediate results, that is, the number of solutions in the result, and

take this number as costs. Afterward, the minimal costs are determined of a join

between any two triple patterns; that is, we determine the following table:

Join between t1, t2 t1, t3 t1, t4 t2, t3 t2, t4 t3, t4

Determine plan with

minimal costs among

t1 ⋈ t2
t2 ⋈ t1

t1 ⋈ t3
t3 ⋈ t1

t1 ⋈ t4
t4 ⋈ t1

t2 ⋈ t3
t3 ⋈ t2

t2 ⋈ t4
t4 ⋈ t2

t3 ⋈ t4
t4 ⋈ t3

Best plan in example:

Costs:

t1 ⋈ t2
3

t1 ⋈ t3
3

t1 ⋈ t4
20

t2 ⋈ t3
2

t2 ⋈ t4
20

t3 ⋈ t4
5

t1 t2 t3 t4
?so ?so ?so ?o ?o ?s

<o1> <o1> <o1> <e1> <e1> <s1>

<e1> <s2>

<o2> <o2>

<o3> <o3> <e2> <e2> <s1>

<e2> <s2>

<o3> <e4>

<o4> <o4> <e3> <e3> <s1>

<o5> <o5>

Fig. 5.4 Results of the triple patterns t1, t2, t3, and t4 in the example, where the dotted lines
connect join partners between the different triple patterns

96 5 Logical Optimization

Note that, for example, t1 ⋈ t2 and t2 ⋈ t1 may have different costs for a join

algorithm, as the join is faster processed when the cardinality of the left operand is

smaller than the one of the right operand (see next chapter). Note that in our

example, this does not matter because we determine the costs by looking only at

the number of all intermediate results.

We now define the function min(T), where T�{t1, t2, t3, t4} is a set of triple

patterns, to return the already determined query plan with minimal costs for joining

the triple patterns of T by looking up the previous table. Then we compute the

following table for joins between three triple patterns:

Join between t1, t2, t3 t1, t3, t4 t2, t3, t4

Determine plan with

minimal costs among

min({t1, t2})⋈ t3
t3 ⋈ min({t1, t2})
min({t1, t3})⋈ t2
t2 ⋈ min({t1, t3})
min({t2, t3})⋈ t1
t1 ⋈ min({t2, t3})

min({t1, t3})⋈ t4
t4 ⋈ min({t1, t3})
min({t1, t4})⋈ t3
t3 ⋈ min({t1, t4})
min({t3, t4})⋈ t1
t1 ⋈ min({t3, t4})

min({t2, t3})⋈ t4
t4 ⋈ min({t2, t3})
min({t2, t4})⋈ t3
t3 ⋈ min({t2, t4})
min({t3, t4})⋈ t2
t2 ⋈ min({t3, t4})

Best plan in example:

Costs:

min({t2, t3})⋈ t1
2 þ 1 ¼ 3

min({t3, t4})⋈ t1
5 þ 4 ¼ 9

min({t3, t4})⋈ t2
5 þ 3 ¼ 8

At last, we compute the query plan with minimal costs for the four triple

patterns, which is our final optimized query plan:

Join between t1, t2, t3, t4

Determine plan with minimal costs

among

min({t1, t2, t3})⋈ t4
t4 ⋈ min({t1, t2, t3})
min({t1, t2, t4})⋈ t3
t3 ⋈ min({t1, t2, t4})
min({t1, t3, t4})⋈ t2
t2 ⋈ min({t1, t3, t4})
min({t2, t3, t4})⋈ t1
t1 ⋈ min({t2, t3, t4})
min({t1, t2})⋈ min({t3, t4})
min({t3, t4})⋈ min({t1, t2})
min({t1, t3})⋈ min({t2, t4})
min({t2, t4})⋈ min({t1, t3})
min({t1, t4})⋈ min({t2, t3})
min({t2, t3})⋈ min({t1, t4})

Best plan in example:

Costs:

min({t1, t2, t3})⋈ t4
3 þ 2 ¼ 5

In our example, we therefore have determined the join order ((t1 ⋈ t2) ⋈ t3) ⋈
t4 as optimal join order.

Selinger-Style Optimization

Dynamic programming yields often the best query plan, but not always: For

example, a query plan A with high costs produces sorted results, but another

5.2 Logical Optimization Rules 97

query plan B for the same subexpression with lower costs does not. If now the

sorting of the result can be used in a more complex subexpression S to apply

(one or even several times) an algorithm with lower costs, then the overall costs

may be smaller than the ones when using the query plan B and an algorithm with

higher costs in S. The algorithm with lower costs in S requiring sorted input may be

merge joins, optimized versions of duplicate elimination or group-by operators, or a

sort operator may be discarded. In order to consider these cases, the Selinger-style

optimization (Griffiths-Selinger et al. 1979) has been developed as a variant of

dynamic programming.

In comparison to dynamic programming, not only the best query plan for a

subexpression is kept for the Selinger-style optimization, but also the best query

plans, the evaluation of which produce sorted results. These query plans are

additionally considered when the query plans for more complex subexpressions

are built. Query optimizers of professional database management systems often

apply internally this Selinger-style optimization.

Example of a Query Optimizer Used in Practice

In this section, we describe our implemented SPARQL query optimizer in LUPOS-

DATE for large-scale datasets as example of a query optimizer used in practice. We

employ the technique of dynamic programming for generating the execution plan

with the optimal join order. Our query optimizer uses equi-depth histograms

(Piatetsky-Shapiro and Connell 1984) of triple patterns for calculating the cost of

individual joins and the overall cost of a concrete plan.

Since merge joins without additional sorting phases are very cheap, our query

optimizer first chooses such merge joins. When data become unsorted, we use the

merge join together with our fast sorting technique, which we describe in the next

chapter. If a query contains many triple patterns, we split the set of triple patterns

into two sets according to either Cartesian products (first choice), membership of

the largest star-shaped joins (second choice), or paths (third choice). The join orders

of these subsets are then optimized separately. If there is only one huge star-shaped

join or one huge path join, this join is optimized greedy by first joining those triple

patterns, the results of which have the smallest cardinality. This strategy scales

well for a number of triple patterns and can generate near optimal plans. In our

experiments, we have used this strategy for more than seven triple patterns, which

actually occurs very seldom in real-world queries.

Whenever a bloom filter needs to be computed from the results of one join

operand, our query optimizer plans the computation of this join operand more early

than the other join operand. Consequently, index scans can use this bloom filter

to filter out irrelevant data for the other join operand more early. If bloom filters

are computed from both join operands, then the join operand with the lower cost is

computed first. This bloom filter from the operand with the lower cost can be used

to reduce the high cost of the other operand by earlier filtering out irrelevant

data of it.

98 5 Logical Optimization

5.2.6 Histograms

Histograms describe the properties of the input data and are the basis for good

estimations of result sizes of operations. Since a histogram is used for cost estima-

tions, it does not matter if the histogram does not reflect recent database updates,

especially when the recent updates do not change much the properties of the input

data. Therefore, a histogram does not need to be recomputed after every database

modification, but is recomputed in (automatic and/or manual) statistics-gathering

cycles.

The most common types of histograms (Piatetsky-Shapiro and Connell 1984)

are equal-width, equal-depth, and most-frequent-values histograms. The most-

frequent-values histogram can be combined with the equal-width and equal-depth

histograms.

By having the minimum and maximum values, equal-width histograms can be

very efficiently constructed in one pass through the values. Equal-depth histograms

can be efficiently constructed, whenever the values are already sorted (as, e.g., in

certain indices like Bþ-trees), and the estimations based on equal-depth histograms

are typically more precise than estimations based on equal-width histograms when

the values are not well distributed. The estimations based on most-frequent-values

histograms are more precise than estimations based on the other types of histograms

whenever some values occur very often, and the number of occurrences of all the

other values is not significant.

The equal-width and equal-depth histograms divide the whole range of the input

data into disjoint intervals. We denote [l, u] for an interval for which v2 [l, u]

holds if l�v�u, and similarly, v2 [l, u [holds if l�v<u. Let vmin be the minimum

and vmax be the maximum value of the values to be represented by a histogram, then

a histogram typically contains intervals [vmin, u0[, [u0, u1[, . . ., [un�2, un�1[, [un�1,

vmax] with vmin<u0<u1<. . .<un�2<un�1<vmax to cover the whole range from

vmin to vmax. Due to simplicity of presentation, we focus on the interval type

[ui, uiþ1[here, as the last interval [un�1, vmax] can be also replaced with [un�1,

un[, where un is a value with vmax<un. Note that the formulas presented for

[ui, uiþ1[intervals can be slightly altered to deal with [ui, uiþ1] intervals. For each

interval, usually the number of values and the number of distinct values, which are

located at this interval, are stored in the histogram. Thus, an equal-width or equal-

depth histogram H can be represented by a set of histogram entries consisting of the

intervals [li, ui[with li<ui, the number nvi of values, and the number dvi of distinct
values in this interval (and therefore obviously nvi�dvi must hold); that is,

H ¼ {([l0, u0[, nv0, dv0), . . ., ([ln, un[, nvn, dvn)}, where ui�liþ1 for i2 {0,. . .,
n�1}. According to this definition, we also allow “holes” in the intervals; that is,

a histogram {([0, 5[, 5, 4), ([5, 7[, 3, 3), ([9, 15[, 9, 3)} is valid, although [7, 9[is not

covered by the intervals of this histogram. The more intervals a histogram contains,

the better the estimations are, but the longer it takes to compute the estimations. We

therefore have a trade-off between preciseness and computation costs.

5.2 Logical Optimization Rules 99

The equal-depth histogram chooses the intervals in such a way that every

interval contains the same (or at least a similar) number of values. This type of

interval can be efficiently constructed from a sorted list of values. Let p be the

number of values of each interval and we assume k to be the number of intervals

such that k*p is the number of values or a slightly larger number. Due to simplicity

of presentation, we assume k*p to be exactly the number of values. Furthermore, let

vi be the ith value in the sorted list of values v1, . . ., vp*k. The idea is that the first

p values in the sorted list of values belong to the first interval, the values from (pþ1)

to 2*p to the second interval, the ones from (2*pþ1) to 3*p to the third interval,

and so on, such that the intervals [v1, vpþ1[, [vpþ1, v2*p[, . . ., [v(k�1)*pþ1, vk*p] are
constructed. As the values vi*p and vi*pþ1 for i2 {1, . . ., k-1} may be the same values

and we construct the intervals [v(i-1)*pþ1, vi*pþ1[and [vi*pþ1, v(iþ1)*p[, the numbers of

values belonging to the intervals may be slightly different. This is also the case in our

example in Fig. 5.5b), where the histograms consist of three intervals.

The equal-width histogram (Fig. 5.5a) divides the whole range of the input data

into intervals with equal width. Let v0 be the lowest value of the input data, w be

the width of the intervals, then in an equal-width histogram the first interval has

the borders [v0, v0þw[, the second interval [v0þw, v0þ2*w[, the third interval

[v0þ2*w, v0þ3*w[, and so on.

The most-frequent-values histogram (Fig. 5.5c) lists the most common values

of the input data and their number of occurrences. If the most-frequent-values

histogram does not come along with an equal-width or equal-depth histogram,

then all the values different from the already considered most common values

may be grouped and their number of occurrences and their number of distinct

values stored. The most-frequent-values histogram can be therefore represented as

{(a0, n0), . . ., (ai, ni), ([vmin, un [- {a0, . . ., ai}, nv, dv)}, where a0, . . ., ai are the most

frequent values and n0, . . ., ni their numbers of occurrences, and [vmin, un [- {a0, . . ., ai}
is the whole range of considered values without the most frequent values containing

nv values and dv distinct values.

Values: 0, 1, 1, 1, 2, 2, 3, 3, 5, 5, 5, 5, 5, 10, 10, 11, 11, 11, 11, 12, 14

Equal-width histogram

{([0 , 5[, 8, 4), ([5, 10[, 5, 1), ([10, 15[, 8, 4)}

Equal-depth histogram

{([0 , 3[, 6, 3), ([3, 10[, 7, 2), ([10, 15[, 8, 4)}

Most-frequent-values histogram

{(5, 5), (11, 4),

([0, 15[– {5, 11}, 12, 7)}

c

b

a

Fig. 5.5 Different types of histograms

100 5 Logical Optimization

Histograms can be easily built from the result of triple patterns. For all other

operators in the logical operator graph, formulas to compute a resultant histogram

from the histograms of previous operators exist in the scientific literature. However,

these formulas are not based on exact science and are rather determined from

experiences with experiments (see e.g., Garcia-Molina et al. 2002; Connolly and

Begg 2002; Elmasri and Navathe 2000). We therefore do not present them here.

5.3 Further Related Work

Besides the specification of SPARQL (Prud’hommeaux and Seaborne 2008),

several other works define the semantic of SPARQL as a part of their con-

tributions; for example, Groppe et al. (2007b) describe a SPARQL evaluator

for RDF data streams, (Groppe et al. 2008; Polleres 2007) describe the

transformation from SPARQL queries to XQuery/XSLT and rules, and

(Pérez et al. 2006) investigate the complexity of SPARQL evaluations.

The complexity of the evaluation of SPARQL queries is PSPACE-com-

plete (Pérez et al. 2006, 2009), even if SPARQL does not contain any FILTER
clauses. The evaluation complexity of some SPARQL fragments has better

runtime complexities. For example, the graph patterns with only AND and

FILTER operators are in O(|P|*|D|), where |P| is the size of the graph pattern

and |D| is the size of the data. The SPARQL fragment, which supports AND,
UNION, and FILTER operators, is NP-complete.

Angles and Gutierrez (2008) show that SPARQL has the same expressive

power as relational algebra.

Gutierrez et al. (2004) describe the semantics and complexity of conjunc-

tive RDF query languages with triple patterns, which is the core concept of

SPARQL. Serfiotis et al. (2005) describe some algorithms for a containment

tester and the minimization of RDF/S query patterns, but they only consider

hierarchy of concepts and RDF properties. Cyganiak (2005) and Frasincar

et al. (2004) propose an algebra for SPARQL, which are derived from the

relational algebra and which enable logical transformations for SPARQL

queries in order to optimize the evaluation time. Klug (1988) describes

an algorithm for the problem of containment testing of conjunctive queries

containing inequalities. The algorithm is in P2
P, but it is open if the contain-

ment problem itself is in NP.

5.4 Summary and Conclusions

In this work, we define an algebra for SPARQL queries and the semantics of its

processing, and we have discussed and developed equivalency rules based on this

algebra. The equivalency rules are the basis for query optimization, where the task

5.4 Summary and Conclusions 101

is to choose a plan among possible equivalent ones with the best estimated costs.

We described heuristic as well as query optimization approaches, which enumerate

all possible query plans, estimate their costs, and choose the one with the best

estimated costs. The main factor in the costs of a plan is the sum of the cardinality

of its intermediate results. Therefore, for more systematic approaches to query

optimization, we introduce histograms for cardinality estimations.

102 5 Logical Optimization

Chapter 6

Physical Optimization

Abstract Different algorithms exist to compute the result of a logical operator like

AND, OPT, or SORT. A physical operator implements one of the algorithms to

compute the result of a logical operator. The different physical operators sometimes

have different constraints on the input data like that the input data must be sorted, or

are faster than others for special types of input data, for example, when the input

data fit into main memory. The context of an operator can be described by the

estimations of properties of its input data. For each (logical) operator in the

operatorgraph, physical optimization aims to choose the physical operator with

the best estimated execution times in the operator’s context.

As well as describing the physical operators, we in this chapter present our new

approaches to efficient RDF data management and join optimization for small

datasets and for large-scale datasets with over one billion triples.

For small datasets, where the data can be indexed in main memory, in-memory

indices can significantly speed up query processing because (after loading the data)

no disk accesses need to be done for query processing. B+-trees are optimized for

disk indices of large-scale datasets, as they are optimized for blockwise sequential

accesses of disks. For main-memory indices, hash indices are preferable as an index

access can be done in constant time, as only a hash function must be applied to the

key to retrieve the (main memory) address of the indexed element. Therefore, we

use hash indices to manage small RDF datasets. Based on the triple nature of RDF

data, we create seven hash indices in order to retrieve in-memory RDF data quickly.

On the basis of the SPARQL-specific properties and the seven indices, we develop a

new, efficient approach to computing join by dynamically restricting triple patterns.

A performance evaluation demonstrates that the new approach outperforms other

state-of-the-art in-memory databases.

Since the Semantic Web datasets are becoming increasingly large, developing

efficient techniques to speeding up querying large-scale Semantic Web data is a key

issue for Semantic Web applications. When data are already sorted, from relational

database research, merge joins are known to be the fastest join algorithms on large-

scale data. Therefore, recent approaches focus on the presorting of Semantic Web

data during index construction, and thus the fast merge join can be used without a

sorting phase at runtime for some joins. When data for succeeding joins become

unsorted, the hash join is typically used. In this chapter, we propose a sorting

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_6, # Springer-Verlag Berlin Heidelberg 2011

103

numbering scheme for large RDF datasets, based on which we can fast sort any

intermediate and final querying results. Applying our sorting numbering scheme, all

joins can be computed using the merge join with a fast sorting phase. Besides being

a significant benefit to merge joins, our fast sorting technique can also remarkably

speed up the elimination of duplicates. Our experiments show that a merge join

using our fast sorting technique outperforms greatly the hash join and that our

sorting numbering scheme integrated into any index approaches significantly

speeds up querying large-scale Semantic Web data.

6.1 Motivation

Semantic Web ontologies and RDF knowledge bases are becoming increasingly

large. The examples of large RDF data with millions and even billions of facts

include the UniProt comprehensive catalogue of protein sequence, function, and

annotation data (Swiss Institute of Bioinformatics 2009), the RDF data extracted

from Wikipedia (Auer et al. 2007), the Princeton University’s WordNet (Assem

et al. 2006), and the Billion Triples Challenge (Semantic web challenge 2009).

Examples of other RDF data include RSS 1.0 (Beged-Dove et al. 2001) and FOAF

(Brickley and Miller 2007). Therefore, an important research task is developing

efficient approaches to processing SPARQL queries over very large RDF data.

An amount of work (e.g., Chong et al. 2005; Guha 2010; Harris and Gibbins

2003; Pan and Heflin 2003; Volz et al. 2003; Wilkinson 2006) maps the RDF data

format to the format of relational databases and SPARQL queries to SQL queries,

thus leveraging the proved database technologies. However, the relational optimi-

zations do not specialize on the data model of RDF triples and the usage of

SPARQL triple patterns. Furthermore, this kind of approach also fails to handle

very large RDF databases (see Abadi et al. 2007; Neumann and Weikum 2008,

2009; Weiss et al. 2008).

As well as the common and similar properties between the RDF data and the

relational tables, and between SPARQL and SQL, RDF and SPARQL also have

their own properties. Relational optimization techniques do not specialize on the

data model of triples and the usage of triple patterns in query languages. These

RDF- and SPARQL-specific features have attracted the attention and interests of

researchers to develop new optimization techniques, for example, Abadi et al.

(2007) and its generalization in Weiss et al. (2008) and Neumann et al. (2008).

Weiss et al. (2008) and Neumann and Weikum (2008) use six indices according to

the six possibilities SPO, SOP, PSO, POS, OSP, and OPS to order RDF triples. For

example, the SPO collation order regards the subject (S) of an RDF triple as

primary order criterion, the predicate (P) as secondary, and the object (O) as tertiary

order criterion. However, (Weiss et al. 2008; Neumann and Weikum 2008) still

apply conventional relational merge join algorithms to compute the joins of triple

patterns. These contributions do not fully exploit RDF- and SPARQL-specific

properties for optimizations of, for example, in-memory join computation, which

104 6 Physical Optimization

are also studied in this work. The approaches (Abadi et al. 2007; Neumann and

Weikum 2008, 2009; Weiss et al. 2008) avoid costly self-joins in one large triple

table and can handle quite large-scale Semantic Web data. For the first several joins,

the fast merge joins can be directly applied on already sorted data. However, in

general, not all joins can be computed with the merge join algorithm without

requiring extra sorting phases at runtime. This happens already for nonbushy

queries with only three triple patterns, for example, (?a < origin >
<DLC>.), (?a < records > ?c.) and (?c < type > ?b.). When

data become unsorted for succeeding joins, hash joins are used in these approaches.

From the relational database research, hash joins are known to be the fastest

approach to computing joins, which do not require sorted input data. Hash joins

are very efficient and cheap if at least one of two operands of the join can fit into

main memory. However, when querying the very large Semantic Web databases,

one cannot assume that the data for hash joins can always or even often fit into main

memory.

In this chapter, we suggest a sorting numbering scheme for efficiently querying

large-scale Semantic Web databases. On the basis of our sorting numbering

scheme, we develop a fast sorting approach. When the data for succeeding joins

become unsorted and are too large to fit into memory, using the merge joins

with our fast sorting technique is more efficient than using a hash join on the

unsorted data. Furthermore, our fast sorting technique is of great benefit to the

queries, which require duplicate elimination. The sorting numbering scheme can

be integrated into any index approaches like the ones of (Neumann and Weikum

2008, 2009; Weiss et al. 2008) to speed up querying the very large Semantic Web

databases.

Overall, the contributions of our work to large-scale datasets include as follows:

l A sorting numbering scheme based on the RDF- and SPARQL-specific proper-

ties for managing and efficiently querying large-scale Semantic Web databases
l A fast sorting technique based on the sorting numbering scheme for computing

any joins using the fast merge join approach, and for eliminating duplicates

efficiently
l Integration of our sorting numbering scheme into index approaches for speeding

up querying very large Semantic Web data
l The idea of using integer identifiers of RDF terms as presorting numbers for fast

sorting intermediate and final results of queries, such that our approach of sorting

numbering can efficiently support updates and does not need any additional

storage space
l A concept-proof prototype, including the implementations of our sorting num-

bering schemes and fast sorting algorithms, reimplementations of several exist-

ing approaches, and integration of our approach into these existing approaches,

in order to compare different approaches
l A performance analysis, which demonstrates that the application of our fast

sorting technique significantly speeds up the join computation and duplicate

elimination when querying large-scale Semantic Web databases

6.1 Motivation 105

Besides increasingly larger datasets, the main memory sizes of typical computer

configurations increase continually. Therefore, more and more datasets used in

real-world applications can be managed completely in main memory, and thus also

in-memory databases become increasingly important. Just applying optimizations

for large-scale datasets in in-memory databases lead to suboptimal query proces-

sing, that is, special optimizations using the elements in main memory that can be

directly addressed away from constraints of sequential disk accesses can boost

query evaluation. Our approach for in-memory databases joins triple patterns

by dynamically restricting triple patterns, that is, joining one triple pattern to the

solution of the previous triple pattern or of the join of previous triple patterns. In

order to compute the join of two triple patterns, we first compute one triple pattern

and then use the resultant data to replace the corresponding variables in another

triple pattern. In this way, the join computation only involves retrieving from the

given RDF data. Therefore, we only need to create seven hash indices (S, SP, SPO,

SO, P, PO, and O using keys on the subject (S), predicate (P), and/or object (O)) on

the original RDF data in order to fast retrieve data specified by any triple pattern. In

comparison with the indices described in (Weiss et al. 2008; Neumann andWeikum

2008), where accessing the index requires time-consuming searches in B+-trees and

sorted lists, using our indices, we can access the result of any triple pattern with one
index access in main memory.

The contributions of this chapter for in-memory databases include as follows:

l An approach to manage and access RDF data efficiently using seven indices
l An approach to efficiently compute joins for in-memory database engines
l An experimental evaluation, which shows that our approach is faster than in-

memory adaptations of disk-based approaches (e.g., Weiss et al. 2008) and other

existing state-of-the-art in-memory engines for SPARQL processing

6.2 Related Work

Several index approaches are developed to manage RDF data for efficient

query processing. Abadi et al. (2007) suggest a vertical partitioning approach

to storing RDF data. In this scheme, the RDF triples are stored in two-column

tables, and each table manages one property and contains a subject and an

object column. Each table is sorted by subject, and thus particular subjects

can be accessed quickly, such that fast merge joins can be applied while joins

are processed on the subject. Abadi et al. (2007) employ a column-oriented

DBMS (e.g., Stonebraker et al. 2005) to manage these property tables in order

to leverage its benefits of compressibility and performance. The property

tables in (Abadi et al. 2007) have considerable advantages for the SPARQL

triple patterns, where the predicate is a RDF term but not a variable. However,

this approach does not sufficiently support the efficient processing of the

(continued)

106 6 Physical Optimization

triple patterns, where the predicate is a variable (see Neumann and Weikum

2008, 2009; Weiss et al. 2008).

For efficient processing of more general queries, Hexastore (Weiss et al.

2008) and RDF3X (Neumann and Weikum 2008, 2009) use six indices

corresponding to the six collation orders SPO, SOP, PSO, POS, OSP, and

OPS to manage RDF triples. Depending on which positions in a triple pattern

contain RDF terms (e.g., the subject and the object), one of the indices (e.g.,

SOP) is used to efficiently retrieve the data by using a prefix search. Using

these collation orders, some joins can be computed using the fast merge join

approach over sorted data. In comparison, our approach optimizes the evalu-

ation of remaining joins, when data become unsorted.

For every collation order, for example, SPO, (Weiss et al. 2008) proposes

to associate a subject key si to a sorted vector of ni property keys, {p
i
1, p

i
2, . . .,

pini}. Each property key pij is, in its turn, linked to an associated sorted list of
ki,j object keys. These object lists are shared in indices for corresponding

collation orders; for example, the object lists for SPO are also shared by the

index for PSO. RDF3X (Neumann and Weikum 2008, 2009) uses a more

elegant solution to store data sorted according to the six collation orders:

employing just B+-trees and prefix searches and thus gaining a simpler and

faster index structure than (Weiss et al. 2008).

RDF3X (Neumann and Weikum 2008, 2009) and Hexastore (Weiss et al.

2008) use sophisticated data structures to compress their index structures.

RDF3X (Neumann and Weikum 2008, 2009) also supports additional special

aggregated indices for fast processing of a special kind of queries. However,

important features of SPARQL like data types are currently not supported by

RDF3X. Neumann and Weikum (2008, 2009) also describe some cardinality

estimation techniques of SPARQL join results and a sophisticated plan

generator. Furthermore, (Neumann and Weikum 2009) introduce the Side-

ways Information Passing (SIP) strategy for optimizing query processing.

If meta nodes are ignored, the approaches described in (Harth and Decker

2005) and in (Groppe et al. 2009a) use the seven indices S, SP, SPO, SO, P,

PO, and O for retrieving the result of a triple pattern within one index access.

When B+-trees and prefix searches are used, then the number of indices can

be reduced to four (accesses to the S and SP indices can be answered by a

prefix search in the SPO index; accesses to the P index by the PO index).

While (Harth and Decker 2005) show that four B+-tree indices work well for

disk-based Semantic Web applications, (Groppe et al. 2009a) demonstrate

that seven hash indices perform well for in-memory SPARQL engines.

(Groppe et al. 2009a) first compute one triple pattern and then use the

resultant values to replace the corresponding variables in the following triple

patterns. In this way, the join computation only involves the retrieving from

the given RDF data, and thus the 7 indices on the original data are enough,

and neither sorting nor hashing of the solutions are needed. However, this join

(continued)

6.2 Related Work 107

approach becomes inefficient when the data do not fit into memory any more

because it causes extra disk accesses.

The SPARQL-engine Kowari (Wood et al. 2005) envisions statement-

based queries. A statement-based query lacks one or two parts of a triple,

and its answer is a set of resources that complement the missing parts. If meta

nodes are ignored, the number of required indices of the Kowari solution is 3,

defined by the three cyclic orderings SPO, POS, and OSP. Since the other

three indices SOP, PSO, and OPS are missing, Kowari cannot efficiently

process general queries.

Other SPARQL engines such as Jena (see Wilkinson 2006), 3store (Harris

and Gibbins 2003), DLDB (Pan and Heflin 2003), KAON (Volz et al. 2003),

Oracle (Chong et al. 2005), and rdfDB (Guha 2010) utilize a traditional

relational database or Berkeley DB as their underlying persistent data store

(Matono et al. 2005). Most of these SPARQL engines store RDF triples

directly in relational or hash tables, and thus simple statement-based queries

can be satisfactorily processed by such systems. However, the conventional

approaches are not efficient for more complex queries (Matono et al. 2005)

involving, for example, multiple filtering steps.

Some systems such as Jena (Wilkinson 2006) attempt to create relational-

like property tables out of RDF data, and these tables gather together infor-

mation about multiple properties over a list of subjects. Still, these schemes

do not perform well for queries that need to combine data from several tables

(Abadi et al. 2007). A relational-like structure on RDF data results in a sparse

representation with many NULL values in the formed property tables.

Handling such sparse tables, as opposed to denser ones, requires a significant

computational overhead (Abadi et al. 2007).

Angles and Gutiérrez (2005) and Hayes and Gutiérrez (2004) deal with the

possibility of storing RDF data as a graph, but do not sufficiently address the

scalability questions either. Matono et al. (2003) and Kim et al. (2005) propose

a path-based approach for managing RDF data and store subgraphs into

distinct relational tables. These systems do not provide the scalability neces-

sary for querying large-scale data. As well as (Neumann and Weikum 2008,

2009; Bernstein et al. 2007) also use selectivity estimation techniques for

query optimization. However, this approach focuses on small RDF graphs,

which fit into main memory, and thus also faces scaling problems. Liarou et al.

(2007) investigate SPARQL extensions for handling continuous queries.

6.3 Indexing

An index stores key-value pairs in such a datastructure that a value can be efficiently

retrieved for a given key. Query processing is often speeded up by storing the input

data in indices and by accessing the results of query subexpressions using these

108 6 Physical Optimization

indices. In the following subsections, we describe in-memory and disk-based

indices for the processing of SPARQL queries.

6.3.1 Building In-Memory Indices

In this section, we first focus on in-memory indices, where the input data fits intomain

memory. Inmainmemory, spread elements can be addressed directly via, for example,

hash tables and we do not need to consider sequential disk-based accesses. We

describe the usage of seven indices in order to retrieve the result of any triple pattern

with one index access. RDF is a set of triples (s, p, o)2(I [B) � I � (I [B [L).
Triple patterns of SPARQL queries contain either constant values or variables, for

example, (?article rdf:type bench:Article). In order to access the result of any triple

pattern (s p o) efficiently, we use the sequence of constant values in triple patterns as
keys to create indices. Therefore, for any RDF data and SPARQL queries, we only

need to construct seven indices using s, p, o, sp, so, po, and spo as keys, respectively.
The seven indices are enough for any triple pattern in SPARQL queries to retrieve

RDF data quickly.As our experiments show, constructing andmanaging seven indices

is also practical even for large RDF data, which still fit into main memory.

Example 1 (Index with sp as key). The following RDF graph is the input RDF graph:

D={ (:article1, rdf:type, bench:Article),
(:article1, rdf:type, bench:JournalArticle),
(:article1, dc:creator, :person1),
(:inproc1, rdf:type, bench:Inproceedings) }

The following table presents the index with sp as key and the triples for the

corresponding key:

Key sp Triples

:article1 rdf:type {(:article1, rdf:type, bench:Article),
(:article1,rdf:type,bench:JournalArticle)}

:article1 dc:creator {(:article1, dc:creator, :person1)}
:inproc1 rdf:type {(:inproc1,rdf:type,bench:Inproceedings)}

If we use indices, which allow a prefix search like supported by B+-trees but not

by hash tables, then we can reduce the number of indices to four, as a s-index access
and a sp-index access can be answered by a prefix search on the spo index, and a

p-index access by a prefix search on the po index. While B+-trees or variants of

B+-trees seem to be the best choice for indices of disk-based approaches (see Weiss

et al. 2008; Neumann and Weikum 2008), our experimental evaluation shows that

hash tables are the best choice for in-memory databases, as one index access can be

done in constant time.

The seven indices are generated only once when reading the input data and can

be afterward used for the evaluation of any SPARQL query during the lifetime of

6.3 Indexing 109

the in-memory database engine process. As we will see later on, for joining the

results of any triple patterns, we need only these seven indices.

6.3.2 Building Disk-Based Indices

Most Semantic Web query evaluators use B+-trees to store large-scale RDF datasets

on disks (e.g., Weiss et al. 2008; Neumann and Weikum 2008, 2009). B+-trees can

be built very efficiently from a sorted list of data by avoiding expensive node

splitting. Among a number of sorting algorithms, merge sort scales well for very
large data and performs especially well for external sorting. Therefore, our

SPARQL engine uses the merge sort technique to sort data for constructing indices

efficiently. In the merge sort algorithm, our SPARQL engine uses a sort&merge-

heap (Groppe and Groppe 2010) with replacement selection (Friend 1956) in order

to increase the size of the initial runs. We now describe the internals of our

SPARQL engine for large-scale datasets. Note that the internals of other SPARQL

engines may slightly differ, but the main principles are the same. Three different

types of indices are created and maintained in our SPARQL engine: dictionary

indices, evaluation indices, and histogram indices.

6.3.2.1 Dictionary Indices

Semantic Web query evaluators such as RDF3X (Neumann and Weikum 2008,

2009) and Hexastore (Weiss et al. 2008) as well as our SPARQL engine use

dictionary indices to map RDF terms into integer ids. One advantage of ids is

lower space requirements in the evaluation indices storing the input RDF triples as

an integer is stored instead of a possibly large string. Furthermore, more space can

be saved by avoiding storing leading zero bytes and using difference encoding,

which we will explain in detail in the section about the evaluation indices. Solutions

using ids consume less space such that the memory footprint is smaller and/or more

solutions can be processed without swapping to hard disks and thus improving the

performance. Using ids have disadvantages in seldom cases when operations like

sorting or relational comparisons like <, <¼, >¼, and > require the RDF terms

instead of the ids causing high costs for large intermediate results because of the

materializations of the RDF terms. Furthermore, displaying the final query result

has also high costs whenever the query result is large. However, the advantages

typically outweigh the disadvantages of using ids for large-scale datasets.

One dictionary index maps RDF terms into integer ids; one translates integer ids

back into RDF terms. The dictionary indices do not fit into main memory for large-

scale datasets such that our SPARQL engine uses B+-trees for the dictionary

indices. When storing RDF terms in the dictionaries, we use difference encoding

in order to save storage space: we determine common left substrings of the current

110 6 Physical Optimization

and previously stored strings and store only the length of the common left substring

together with the remaining right substring of the current string. Furthermore, after

transforming id values of query results back to RDF terms, we cache the RDF terms

with their ids together in order to avoid multiple materializations. We use the

strategy of least recently used (LRU) caches for the accesses to the B+-tree nodes

in order to further improve the performance of these materializations.

The dictionary indices are used to transform RDF triples into id triples, which

are consisting of ids instead of RDF terms and are then stored in the evaluation

indices: Id triples are obtained from RDF triples by using the dictionary index from

strings to ids and mapping the RDF terms of the subject, predicate, and object from

the triples to their ids. If many RDF triples must be transformed into id triples like

when importing a large dataset into the database, then it is not efficient to query the

dictionary index for every single RDF term accessing a path from the root to a leaf

of the B+-tree for mapping RDF terms into ids. It is more efficient to use three

passes through the RDF triples, where first the subjects, then the predicates, and

finally the objects are transformed into ids. In each pass, the triples are first sorted

according to the component (subject, predicate, or object) to be transformed into

ids. Afterward, we iterate through the sorted RDF triples and simultaneously

through the sorted RDF terms of the dictionary index. We read RDF terms from

the dictionary index until we have found the entry for the current component of the

RDF triple and replace this component with the corresponding id. Afterward, we

read the next RDF triple and proceed as before. In this way, we only need one pass

through the sorted RDF triples to be imported and the dictionary index to transform

one component of the RDF triples into their ids. Furthermore, we can also use

SIP strategies as we have discussed when introducing B+-trees to increase the

performance during iterating through the dictionary index. Afterward, we sort our

(partly) transformed triples to be imported according to the next component and

replace their RDF terms with the corresponding ids like before until all components

are transformed into ids.

6.3.2.2 Evaluation Indices

These indices are used for the evaluation of SPARQL queries. They are constructed

from sorted id triples according to the six collation orders SPO, SOP, PSO, POS,

OSP, and OPS of RDF. Large-scale datasets are hard to manage without compres-

sion. Using (integer) ids instead of RDF terms already compresses the indices

much. We can compress such indices further by storing only the different compo-

nents of a triple in comparison to the last stored triple. For example, assuming

the collation order SPO and a last stored triple (<a>, , <c>), we only need

to store the object <d> for a triple (<a>, , <d>). Of course, we have to

additionally store two bits for distinguishing if all three components of a triple must

be stored, two components, or only one component. An integer id of an RDF term is

typically represented by four bytes. For small integer ids, some leading bytes of

these four bytes are zero. We can now store two bits for distinguishing if no, one,

6.3 Indexing 111

two, or three leading bytes are zero, and only store the bytes without leading zeros.

We further know that the id i1 of the triple’s object must be larger than the id i2 of

the last triple’s object in our example because of the SPO collation order. Therefore,

we only need to store the difference i1–i2, which may have more leading zero bytes.

However, for the object of triples, where numerical values and language-tagged

literals can occur, we must consider special RDF properties, which we explain in

the following paragraph:

In RDF data, typed literals like integer values of XML Schema can have

several representations, for example, 2 and +2. During query processing, they

are treated as value-equal integer values. Therefore, they should be assigned with

the same id. Otherwise, some processing, like the computation of join, might

create wrong results. However, the W3C test cases (Feigenbaum 2008) show that

the query results must contain the original representation. Similar remarks

also apply to language-tagged literals. For example, “Text”@DE and

“Text”@de are treated as equal values, but the original representation must

be maintained for the final result. Therefore, we additionally store an id, which

refers to the original representation in the index, additionally to the id for value-

equal literals, if necessary. Different representations of equal values are only

possible for typed literals and language-tagged literals, which can only occur in

objects of triples. Therefore, we only need to store an additional id for the objects

if the original representation differs from the indexed one. In comparison, the

original RDF3X prototype (Neumann and Weikum 2008, 2009) does not support

data types, and considers, for example, the same integer values 2 and +2 to be

two different literals.

Furthermore, every node in our B+-trees has an integer id, which allows us to

highly compress references to B+-tree nodes as well. Figures 6.1 and 6.2 present

the stored bits and bytes for a leaf in a B+-tree, when an id triple is stored (see

Fig. 6.1) or a reference to the next B+-tree node (see Fig. 6.2). Figure 6.3 presents

the stored bits and bytes for a B+-tree interior node, when a key in form of an id

triple with a reference to its B+-tree child node is stored. The last entry of a B+-tree

interior node contains only a reference to a B+-tree child node. For this last entry,

we use the same stored bits and bytes as presented in Fig. 6.2 for a B+-tree leaf:

We just store the reference to the B+-tree child node instead of the reference to the

next B+-tree leaf.

The original RDF3X prototype (Neumann and Weikum 2008, 2009) supports

additional special aggregated indices for fast processing a special kind of queries.

For example, the two triples (<a>, , <C>) and (<a>, , <D>) are

aggregated as (<a>,,2) in the aggregated SP index in order to represent two

triples with a common subject <a> and a common predicate (but with

different objects). The SP index can be used to fast retrieve the result of a triple

pattern <a> ?p ?o, if the variable ?o is neither further used nor occurs in the

final result. Considering that such cases occur seldom in real world and the

additional costs for maintaining the aggregated indices, aggregated indices are

not supported by our SPARQL engines.

112 6 Physical Optimization

6.3.2.3 Histogram Indices

Our plan generator uses equi-depth histograms (Piatetsky-Shapiro and Connell

1984) for estimating the cardinality of results of triple patterns and for calculating

the overall cost of a plan. A histogram is created for a triple pattern and a specific

0 for entry contains id triple
1 for the reference to next B+-tree leaf node

How many leading components are the same in
comparsion to the last stored triple?
00 all components are different
01 one leading component is the same
10 two leading components are the same
11 no last triple

0 to 4Bytes
for subject

0 to 4Bytes
for predicate

0 to 4Bytes
for object

0 to 4Bytes
for original

representation
of object

0

0 or 2 bits for storing the number of bytes necessary to
store the difference of the three components and the
original representation of the object
00 = 1Byte, 01 = 2Bytes, 10 = 3Bytes, 11 = 4bytes

Header 6-12 Bits (1-2 Bytes)

0 for original representation
of object m

ust be stored
1 otherw

ise

Fig. 6.1 Entry for id triple in B+-tree leaf

Header
3 Bits

(1Byte)

1 to 4Bytes
for integer id of

the next B+-tree leaf node

1

0 for entry contains id triple
1 for the reference to next B+-tree leaf node

2bits for storing the number of bytes necessary to
store the integer id for the next B+-tree leaf node
00 = 1Byte, 01 = 2Bytes, 10 = 3Bytes, 11 = 4bytes

Fig. 6.2 Entry for integer id

for next B+-tree leaf node

6.3 Indexing 113

variable of it. Each interval in the histogram contains the number of the triples

allocated in this interval and the numbers of distinct values. In order to speed up the

generation of equi-depth histograms, we use a special B+-tree for each collation

order. In each inner node of this special B+-tree, we store the number of triples, the

number of distinct subjects, predicates, and objects, and three bits. The three bits

indicate whether the subject, predicate, or object of the first triple F in the subtree is

different from the triple before F.
Using this special B+-tree and especially its additional information, we can very

quickly find the corresponding information related to a triple pattern by not only

passing leaf nodes, but also jumping over whole subtrees. Therefore, histograms of

triple patterns can be constructed very efficiently from these histogram indices. This

is also shown by our experimental results. Figure 6.4 illustrates how to construct

the histogram for the variable ?v and the triple pattern (3, ?v, ?o) from

a histogram index. Since these additional B+-trees are only needed for efficiently

computing histograms, their updates can be delayed to the times with low workload.

Once a histogram has been calculated, it is stored in a separate index and can be

reused for the triple patterns with the same RDF terms and variables at the same

positions, but independent from the names of variables. While histogram computa-

tions using histogram indices need some seconds for large-scale datasets like the

one from the Billion Triples Challenge (Semantic web challenge 2009), reusing

a histogram by retrieving it from the separate index only consumes milliseconds.

Other contributions to Semantic Web databases do not use histogram indices:

(Weiss et al. 2008) do not use any histograms for query optimization, which leads to

inefficient query plans. Neumann and Weikum (2008) compute histograms using

How many leading components are the
same in comparsion to the last stored triple?
00 all components are different
01 one leading component is the same
10 two leading components are the same
11 no last triple

00 = 1Byte, 01 = 2Bytes, 10 = 3Bytes, 11 = 4bytes

0 to 4
Bytes
for

subject

0 to 4
Bytes
for

predicate

0 to 4
Bytes
for

object

0 to 4Bytes
for original

representation
of object

0

0 to 4Bytes
for B+-tree
child node

0 for entry contains id triple and B+-tree child node
1 for only reference to B+-tree child node

0 or 2 bits for storing the number of bytes necessary to
store B+-tree child node, the difference of the three components
and the original representation of the object

Header 8-14Bits (1-2Bytes)

0 for original representation
of object m

ust be stored
1 otherw

ise

Fig. 6.3 Entry for id triple and B+-tree child node in B+-tree inner node

114 6 Physical Optimization

(1
,
2,

 3
),
 (

1,
 2

,
4)

,
(1

,
3,

 3
),
 (

2,
 2

,
4)

(3
,
2,

 1
),
 (

3,
 3

,
4)

,
(3

,
3,

 5
),
 (

3,
 3

,
6)

(3
,
3,

 7
),
 (

3,
 3

,
8)

,
(3

,
4,

 1
),
 (

3,
 4

,
2)

(3
,
4,

 3
),
 (

3,
 4

,
6)

,
(3

,
4,

 7
),
 (

3,
 5

,
5)

(3
,
5,

 6
),
 (

3,
 5

,
8)

,
(3

,
6,

 1
),
 (

3,
 6

,
2)

(3
,
7,

 3
),
 (

3,
 7

,
4)

,
(8

,
2,

 7
),
 (

8,
 4

,
3)

(2
,
2,

 4
)

(3
,
3,

 6
)

4
4

4
2

1
1

2
2

2
2

4
4

1
1

0
1

0
0

1
1

1

(3
,
5,

 5
)

(3
,
6,

 2
)

4
4

4
1

1
2

2
2

3
4

4
3

0
0

0
0

0
1

1
1

1

(3
,
4,

 2
)

12
12

3
2

3
5

8
8

1
0

1
0

1
1

K
ey

:
#

tr
ip

le
s:

#
di

st
in

ct
 s

ub
je

ct
s:

#
di

st
in

ct
 p

re
di

ca
te

s:
#

di
st

in
ct

 o
bj

ec
ts

:

su
bj

ec
t

pr
ed

ic
at

e
ob

je
ct

of
 f

ir
st

 t
ri
pl

e
di

ff
er

en
t

fr
om

pr
ev

io
us

 t
ri
pl

e

K
ey

:
#

tr
ip

le
s:

#
di

st
in

ct
 s

ub
je

ct
s:

#
di

st
in

ct
 p

re
di

ca
te

s:
#

di
st

in
ct

 o
bj

ec
ts

:

su
bj

ec
t

pr
ed

ic
at

e
ob

je
ct

of
 f

ir
st

 t
ri
pl

e
di

ff
er

en
t

fr
om

pr
ev

io
us

 t
ri
pl

e

L
ea

f
no

de
s

C
om

pu
te

d
H

is
to

gr
am

w
it
h

2
in

te
rv

al
s

fo
r

va
ri
ab

le
 ?

v
an

d
tr

ip
le

 p
at

te
rn

(3
,
?v

,
?o

)
2

4
7

#
tr

ip
le

s
=

 1
1,

#

di
st

in
ct

 v
al

ue
s

=
 3

co
m

pu
ta

ti
on

s
fo

r
fi
rs

t
hi

st
og

ra
m

 i
nt

er
va

l:
#

tr
ip

le
s

=
4

+
 4

 +
 3

#
di

st
in

ct
 v

al
ue

s
=

2
+

 2
–1

 +
 1

–1

A
ce

ss
ed

 p
at

h
in

 B
+

-t
re

e
du

ri
ng

 h
is
to

gr
am

 c
om

pu
ta

ti
on

B
+

-t
re

e
fo

r
fa

st
 h

is
to

gr
am

 c
om

pu
ta

ti
on

(S
P
O

 c
ol

la
ti
on

 o
rd

er
)

#
tr

ip
le

s
=

 7
,
#

di
st

in
ct

 v
al

ue
s

=
 3

#
di

st
in

ct
 v

al
ue

s
=

1
+

 2
–1

 +
 1

–
0

co
m

pu
ta

ti
on

s
fo

r
se

co
nd

 h
is
to

gr
am

 i
nt

er
va

l:
#

tr
ip

le
s

=
1

+
 4

 +
 2

F
ig
.
6
.4

F
as
t
co
n
st
ru
ct
io
n
o
f
th
e
h
is
to
g
ra
m

fo
r
th
e
v
ar
ia
b
le

?v
an
d
th
e
tr
ip
le

p
at
te
rn

(3
,
?v
,
?o
)
u
si
n
g
a
h
is
to
g
ra
m

in
d
ex

6.3 Indexing 115

the evaluation indices, which is too slow for large datasets. Neumann and Weikum

(2009) precompute all possible joins facing problems with efficiency and cost

estimations behind joining only two triple patterns.

6.4 Pipelining Versus Materialization

Many physical operators can determine first solutions after some and not all input

data come in and can deliver these solutions early to its succeeding operators, which

is called pipelining. For the support of pipelining, an operator has to support the

iterator concept. The iterator concept requires the support of the methods open() for
starting the computation, next() to retrieve the first (just after an open() call) as well
as the next result, and close() to end computing and to free resources. The open()
method of an operator calls the open() methods of its operands. The next() method

gets solutions of the operator’s operands by calling their next() methods until

a solution can be determined, which is then returned. Thus, next() returns the

solutions of an operator one by one. The close() method calls the close() methods

of its operands before freeing its own resources.

The opposite materialization strategy first finishes the computation of an opera-

tor and determines the whole result and then proceeds to the next one. Few solutions

may fit into main memory, but a large number of solutions must be stored on disk.

Consequently, the costs for disk accesses slow down the performance. Contrary to

the materialization strategy, pipelining does not require any materialization of

intermediate results, as the solutions of operator results are computed one by one

on demand of the parent’s operator when calling the next() method avoiding huge

costs for disk accesses.

6.4.1 Pipeline-Breaker

Some operators like the Sort operator cannot start the computation until all the data

come in. These operators are called pipeline-breaker. Nevertheless, these operators
can still support the iterator concept by just reading all the input data after an open()
call, computing its result, and returning them one by one after next() calls. Thus, an
operator does not need to know if its parent’s operator is a pipeline-breaker or not

and can just use the iterators for accessing its input.

6.4.2 Sideways Information Passing

SIP passes information from one operand to the other sideways in the operator-

graph. For example, a merge join algorithm requires the input of its operands to be

116 6 Physical Optimization

sorted. Furthermore, if a solution A is read from one of the operands, then solutions

of the other operand are read by the merge join algorithm until a solution equal to or

larger than A is read. In a more intelligent way, we can pass A to the other operand

and the other operand may optimize retrieving a solution equal to or larger than A.
For this purpose, we extend the iterator concept for SIP, such that a next(lower-
Limit) method must be supported. next(lowerLimit) methods return a solution equal

to or larger than lowerLimit for sorted results. Note that this method has been

already introduced for prefix searches in B+-trees, such that index scans retrieving

the result of triple patterns are already optimized for processing next(lowerLimit)
method calls. Furthermore, the information lowerLimit may be passed not only

between the operands of an operator, but also to their operands, such that the

optimization potential is enormous.

6.5 Join Algorithms

We first review the traditional join algorithms Nested-Loop, Merge, Index, and

Hash Join. Afterward, we present our new approaches to join computation for the

in-memory and large-scale RDF databases.

6.5.1 Nested-Loop Join

The nested-loop join is one of the simplest join algorithms and performs well for

very small unsorted data. Therefore, this join algorithm is often used as part of other

more complex join algorithms like the hash join.

In its simplest form, the nested-loop join contains a nested loop iterating through

the solutions of its left and right operand. In each iteration, if the two solutions of the

left and right operands can be joined, the joined result is returned. Otherwise, the

loops proceed. Let R and S contain the solutions of its left and right operands,

joinable(r, s) be a function to check if r and s can be joined, and join(r, s) computes

the join between r and s. The following pseudo code presents the nested-loop join

algorithm:

FOR EACH s IN S DO
FOR EACH r IN R DO

IF(joinable(r, s)) {
OUTPUT join(r, s);

}

The runtime complexity is O(|S|*|R|). If the results of both operands of a join do

not have any variables in common, then every solution of one operand must be

combined with every solution of the other operand; that is, the join degenerates to

a Cartesian product. Therefore, the worst case runtime complexity is O(|S|*|R|) for

6.5 Join Algorithms 117

any join algorithm. However, the average runtime complexity for typical input data

is often better for other join algorithms up to linear complexity O(|S| + |R|) for
merge joins, which may be O(min(|S|, |R|)) or even better when using SIP strategies.

6.5.1.1 Iterator Version

In this subsection, we describe the iterator version of the nested-loop join algorithm.

We therefore present the pseudo code of the three methods open(), next(), and
close() here as follows:

open() {
R.open();
S.open();
s = S.next();

next() {

}

DO {
r = R.next();
IF(r == null){ // R is exhausted for the current r

R.close();
s = S.next();
IF(s==null){ // both R and S are exhausted!

return null;
{
R.open();
r = R.next();

}
} WHILE (!joinable(r, s));
RETURN join(r, s);

}

close(){
R.close();
S.close();

}

The new main ideas and principles of the other physical operators can be under-

stood from the materialization versions of these physical operators. Therefore and

due to simplicity of presentation, we will not present the iterator version for the other

physical operators and discuss only the version for the materialization strategy.

6.5.1.2 Block-Based Nested-Loop Join

Database systems usually work on pages, which are arrays of bytes with fixed

length (typically 8 kb). A page contains input data, metainformation, and solutions.

Pages are stored on disk and loaded into main memory (using a buffer manager) for

reading and manipulating. Solutions (and data) are typically organized in pages to

118 6 Physical Optimization

be controlled by the buffer manager. The buffer manager holds frequently accessed

pages in main memory, such that the page(s) containing solutions (and data) may be

never (temporarily) stored on disk if they fit completely into main memory.

The design of some physical operators pays attention to the page-oriented

organization of data and optimizes the number of page accesses. These operators

assume that a part of the main memory with the size for m pages is available for

them.

The block-based nested-loop join reserves k pages for the result R of its first join

operand and thus m � k pages for the result S of its second join operand (see

Fig. 6.5). According to the iterator concept, the solutions of the join are computed

one by one after each call of next(). Thus, the join operator does not reserve any

page for the result of the join. However, the operator calling next() of the join may

reserve a page for the result of the join and may temporarily store the result on disk

if necessary.

The block-based nested-loop join works as follows (see Fig. 6.6): First of all, it

loads m � k pages of S and k pages of R into main memory and then joins the

m � k pages of S with the k pages of R using, for example, the “normal” nested-

loop join algorithm discussed in the previous subsections. Afterward, it loads the

next k pages of R into main memory and joins these k pages of R with the already

loaded m � k pages of S. The process is repeated until all pages of R are joined

with the first m � k pages of S. Note that in the last round � k pages are joined

with the firstm � k pages of S. The nextm � k pages of S are then loaded into main

memory and joined with R in the same way as the first m � k pages of S. The
process is repeated until all pages of R are joined one time with all pages of S, and
therefore whole R is joined with whole S.

We have an exercise at the book webpage http://www.ifis.uni-luebeck.de/

~groppe/SemWebDBBook/ for analyzing the number of pages accessed by this

variant of the nested-loop join.

After each round joining m � k pages of S, k pages of R are still in main

memory, which are then replaced with the first k pages of R to be joined with the

next m � k pages of S. An optimization of the presented block-based nested-loop

m-k
pages
for S

Main Memory:

k
pages
for R

Fig. 6.5 Reserving pages for

S and R in main memory

6.5 Join Algorithms 119

http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/
http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/

join uses these k pages of R from the last round and joins them with the next m � k
pages of S before this optimization proceeds joining with the first k pages of R. In
this way, k pages are less loaded in each round (except of the initial round).

6.5.2 Merge Join

Let VL be the set of bound variables of the left operand of a join, and VR be the set of

bound variables of the right operand. We call the variables in VL \ VR the join
variables. The merge join requires the solutions of its operands sorted in the same

way according to its join variables. We assume that the input is sorted in descendant

order, such that the solutions of an operand are equal to or larger than the previous

solutions. Note that the merge join algorithm can be easily adapted to consume

sorted data in ascendant order by exchanging larger than comparisons in the pseudo

code given below with smaller than comparisons. For an example of the merge join

algorithm applied to the solutions of its operands, see Fig. 6.7. The merge join

algorithm first reads the solutions from both operands and checks if they are

joinable (i.e., the bound values of the join variables are the same). If they are not
joinable, the next solution of the operand with the smaller values is read, because

we are sure that the remaining solutions of the other operand are equal or larger

values according to the sort criterion and thus cannot be joined with the smaller

value. In the case that they are joinable, the merge join algorithm reads the next

solutions from both operands until the bound values of the join variables differ from

k k k

k k k

k
k

1 2 3 PS

kk k k

1.1 2.1 3.1

2.2 3.21.2

S:

R:

m-k
pages

m-k
pages

m-k
pages

m-k
pages

VI VI VI VI

V
I

Joins between blocks of S and R:

1 –1.1
1 –1.2
 …
1 –1.PR
2 –2.1
2 –2.2
 …
2 –2.PR
3 –3.1
3 –3.2
 …
3 – 3.PR
 …
PS – PS.1
PS – PS.2
 …
PS – PS.PR2.PR 3.PR1.PR PS.PR

PS.2

PS.1

Fig. 6.6 Block-based nested-loop join

120 6 Physical Optimization

the first read solution. All the read solutions with the same bound values of the join

variables of both operands must now be joined and returned. The pseudo code for

the materialization strategy variant of the merge join algorithm is therefore as

follows:

S.open();
R.open();
s=S.next();
r=R.next();
WHILE(s!=null && r!=null){

IF(s < r){
s=S.next();

} ELSE IF(r < s){
r=R.next();

} ELSE {
s1=s;
r1=r;
operand1 = {};
operand2 = {};
WHILE(joinable(r1, s)){

operand1 = operand1 È {s};
s=S.next();

}
WHILE(joinable(r, s1)){

operand2 = operand2 È {r};
r=R.next();

}
FOREACHs2 IN operand1 DO

FOR EACH r2 IN operand2 DO
OUTPUT join(s2, r2);

}
}

We will analyze the average runtime complexity in an exercise at the book

webpage http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/.

Result of join

?a ?b ?b ?c ?a ?b ?c

10 1 1 3 10 1 3

5 2 4 9 6 4 9

7 2 5 20 2 6 7

6 4 5 45 8 6 7
2 6 6 7 2 6 4

8 6 6 4 8 6 4

7 7

Solutions of operands sorted
according to join variable ?b

Fig. 6.7 Merge join example

6.5 Join Algorithms 121

http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/

6.5.2.1 Merge Join and Sideways Information Passing

When using SIP strategies, we can use the next(lowerLimit) method to retrieve

directly an element equal to or larger than lowerLimit. The merge join can obvi-

ously benefit from the SIP strategy, because for unequal solutions of both operands,

we already know that the larger solution lowerLimit is the lower limit for the next

solution of the other operand retrieved by calling next(lowerLimit). The following
pseudo code contains the SIP version of the merge join algorithm, where SIP related

code is marked with boldface:

S.open();
R.open();
s=S.next();
r=R.next();
WHILE(s!=null && r!=null){

IF(s < r){
s=S.next(r);

} ELSE IF(r < s){
r=R.next(s);

} ELSE {
s1=s;
r1=r;
operand1 = {};
operand2 = {};
WHILE(joinable(r1, s)){

operand1 = operand1 È {s};
s=S.next();

}
WHILE(joinable(r, s1)){

operand2 = operand2 È {r};
r=R.next();

}
FOR EACH s2 IN operand1 DO

FOR EACH r2 IN operand2 DO
OUTPUT join(s2, r2);

}
}

When using the iterator versions of the operators, a SIP information may be

passed through many operators until an index scan for retrieving the solutions of a

triple pattern is reached. The index scan then can use the next(lowerLimit) method

of a B+-tree to jump over possibly huge data. This will lead to enormous reduction

in the runtime especially for large-scale datasets.

6.5.3 Index Join

The index join utilizes a given index of one of its join operands to optimize join

processing: The index join iterates through the solutions of one join operand and

122 6 Physical Optimization

searches for relevant join partners, that is, solutions with the same bound values for

the join variables, from the other join operand by using its index. An operand

typically provides an index like a B+-tree if it is an index scan operator for

retrieving the result of a triple pattern. We express the index join in pseudo code

as follows:

FOR EACH s IN S DO
FOR EACH r IN index(R, s) DO

OUTPUT join(s, r);

The function index(R, s) is a function using a given index of the operator R to

determine relevant join partners for the solution s. This join algorithm is typically

used whenever one operand R provides an index and the solutions of the other

operand S are not sorted according to the join variables, such that amerge join cannot

be used without a preceding sorting phase. Let g(|R|) be the costs of an index access
on data with size |R|, then the index join has the runtime complexity O(|S|*g(|R|))
under the assumption that the data R has the property that index(R, s) never returns
large sets of data, but only one or few solutions. Theoretically, g(|R|) is in O(log(|R|))
for B+-trees, but practically B+-trees are typically quite flat with a height below 5

even for large data; that is, an index access is done in (nearly) constant time.

Therefore, we can achieve a (nearly) linear complexity O(|S|) for the index join for

such kind of data, which is often the case for real-world data.

If both operands of a join are not index scans, but their solutions fit into main

memory, then it is also efficient to first index the results of one operand R using an

in-memory hash table and then apply the index join using the just created index. For

indexing the solutions of R, a hash function over the join variables must be used,

which maps bound values of the join variables in a solution to an integer, and such

that the join partners for the solutions of S can be found within one index access.

This type of index join is often also called in-memory hash join. The in-memory

hash join is very efficient, because creating the index can be done in linear time to

the results of R, that is, O(|R|), and retrieving the join partners of R can be done in

constant time. Under the assumption that we only have one or a few join partners for

each solution of S in R, the average runtime complexity for joining is O(|S|) and thus
the overall average runtime complexity is O(|R| + |S|).

6.5.4 Hash Join

We have presented the in-memory hash join, but we now describe the hash join for

large data. Like the in-memory hash join, we use again hash functions over the join

variables. The large data hash join first distributes the input data into smaller

partitions using hash functions over the join variables. After the partitions become

small enough, a general-purpose join algorithm, like the block-based nested-loop

join, is used to join corresponding partitions of both operands.

6.5 Join Algorithms 123

In detail, we first determine the operand Awith fewer solutions: If the sizes of the

operands’ solutions are not known, then the query optimizer can estimate which

operand has fewer solutions. The results of the operand A is then partitioned into

several partitions, that is, the solutions with the same result using the hash function

are stored in the same partition. If the hash join operator can obtain m pages in main

memory for its computations, then the hash join uses m � 1 partitions stored in

m � 1 pages in main memory, and the remaining one page for reading in the data to

be distributed (see Fig. 6.8). If one page of these m � 1 pages for the partitions is

filled up, then the page is swapped to disk. When this partition round is finished,

then the (not necessarily full) pages in main memory are stored on disk.

If one partition is larger than m � 1 pages, then another partition round for this

large partition is performed using another hash function over the join variables. The

process is repeated, until the size of each partition of A is less than m pages. For the

reason of finishing the partitioning phase more early, we first distribute the solutions

of the operand A, which has fewer solutions. We now distribute the solutions of the

other operand B into partitions using the same hash functions as for A and in the

same way as for A: If a partition was distributed for A, then we redistribute

the partition for B using the same hash function, too. Unlike the partitions of A,
the partitions of B do not need to fit into m � 1 pages. In the joining phase, we first

load m � 1 pages of A into main memory and join them with the pages of B’s
corresponding partition one by one by a block-based nested-loop join. Figure 6.9

presents an overview of the different phases of the hash join approach. Two

partitioning rounds are performed in Fig. 6.9.

This hash join is known to be the fastest general-purpose join algorithm when-

ever the input data are neither sorted nor an already existing index can be used for

joining.

We will analyze the number of pages accessed by the hash join algorithm in an

exercise at the book webpage http://www.ifis.uni-luebeck.de/~groppe/SemWeb

DBBook/.

However, the hash join algorithm as described before can run into an infinity

loop whenever a partition of A does not become smaller during redistributions,

Main Memory:

m-1 pages
for

partitions
of A

1 page
for

reading A

Fig. 6.8 Pages in main

memory for distributing the

solutions of the operand A
during the partitioning phase

124 6 Physical Optimization

http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/
http://www.ifis.uni-luebeck.de/~groppe/SemWebDBBook/

as the solutions of this partition contain only the same bound values for the join

variables. Fortunately, other general-purpose join algorithms than the block-based

nested-loop join having the solutions of one operand completely in main memory

can be used for joining this partition after several redistributions do not result in

smaller partitions.

6.5.4.1 Hash Join and Sideways Information Passing

The hash join first reads in all solutions of one operand A for partitioning before any

solutions of the other operand B is read. Thus, we already know the join partners,

that is, solutions with the same bound values for the join variables, of the solutions

of B in A and could filter out irrelevant solutions of B early, which do not have any

join partners in A. Using all the join partners of A for this purpose is neither practical

nor scalable because of a possibly large set of join partners. However, we can use a

bloom filter for discarding irrelevant solutions early. The bloom filter uses a bit

vector and sets those bits, which are returned by a given hash function for the

…
…

…

hash
function

f1

A

…
…

…

hash
function

f2

hash
function

f1

B

1. Building partitions of A 2. Building partitions of B

hash
function

f2

3. joining
partitions

of A and B

≤ m-1 pages

Fig. 6.9 Phases of hash join

6.5 Join Algorithms 125

solutions of A. The bloom filter can be calculated during reading in the results of A.
In our LUPOSDATE SPARQL engines, bloom filters are constructed in the SIP-

FilterOperator (Iterator) operators. Afterward, the bloom filter can be attached to

those operators in B, which bind values to join variables. These operators –

typically index scans for determining the solutions of triple patterns – can now

check by using the bloom filter if a corresponding join partner in B can exist. For

determining the corresponding bit in the bit vector, the same hash function as when

creating the bloom filter on the bound value of the join variables is applied to the

solution of the triple pattern. If the bit is cleared, then we can surely discard this

solution as it does not have any join partner in A. Due to the fact that hash functions
may map several different values to the same integer, the bit for a solution without

any join partners in A may be nevertheless set, such that we may have some

false drops.
We have learned that a B+-tree offers the next(lowerLimit)method, which returns

the next value equal to or larger than lowerLimit for a prefix search. B+-trees can

optimize the application of the next(lowerLimit) method using interior nodes of the

B+-tree. However, a bloom filter does not contain the information for such lowerLimit
parameter, but we can determine a lower limit of the distance from the current value.

We assume that the hash function hwas used to construct a bloom filter. For example,

we discard a solution with an id 10 bound to the join variable, because in our

example, h(10) returns a bit position, which is cleared in the bloom filter. Further-

more, the bits h(11), h(12), until h(50) are also cleared in the bloom filter, but the bit h
(51) is set in the bloom filter. Therefore, we know that a lower limit for a relevant

solution not to be discarded has a value with id 51 or higher, and we can call next(51)
to retrieve it. Thus, in more general, if a join variable contains a value with id id1 and
the bit h(id1) is cleared in the bloom filter, then we can determine id2, such that the bit
h(id2) is set in the bloom filter and no id3 exists, such that id1 < id3 < id2 holds and
the bit h(id3) is set in the bloom filter. Then, id2 can be used to jump over the

solutions, which do not have any join partner in A, and to retrieve directly a solution,
which possibly has a join partner in A, by calling next(id2).

6.6 Dynamically Restricting Triple Patterns

This join approach has been especially developed for in-memory join computation

and is a variant of the index join. We assume that the seven in-memory hash indices

S, SP, SPO, SO, P, PO, and O are given. A naive way to compute the join of two

triple patterns is first evaluating individual triple patterns separately and then to

perform a join on their results using standard join algorithms. Figure 6.10 visualizes

this naive approach. However, we can leverage the properties of RDF and SPARQL

in order to compute joins more efficiently.

In this section, we present a new and efficient approach to computing the join of

triple patterns: we compute joins by dynamically generating more restrictive triple
patterns (see Definition 11 in the previous chapter).

126 6 Physical Optimization

For example, (?article rdf:type bench:Article) is more restrictive than (?article
dc:creator ?person). It is reasonable to assume that a more restrictive pattern

typically retrieves less data than the less restrictive triple patterns.

In order to compute the join of two triple patterns, we compute the first triple

pattern by means of the seven indices and then use the solutions of this triple pattern

to replace the corresponding variables in the next triple pattern. In this way, we get

a more restrictive triple pattern. By one index access, we can get the joined result

of the current solution of the first triple pattern with the solutions of the second

triple pattern directly and do not need to check the join condition. Figure 6.11

visualizes our approach to compute the join. If there are more triple patterns, we use

the result of the already joined triple patterns to dynamically restrict the next triple

pattern.

In this way, the join computation only involves the seven in-memory indices.

Note that the seven indices only have to be generated once when reading the input

data.

Example 2 (Dynamically generating more restrictive triple patterns). In order to

evaluate the graph pattern

:article4

:article2

:article1

?article

:person3:article3

:article2

:article2

:article1

?article

:person2b

:person2a

:person1

?person

=

:article2

:article2

:article1

?article

:person2b

:person2a

:person1

?person

Join Result

(?article, rdf: type, bench :Article)

po-index with
“rdf: type bench:Article”
as key

(?article,dc:creator, ?person)

p-index with
“dc:creator”
as key

Fig. 6.10 A naive way to compute join

:article4

:article2

:article1

?article

:article2

:article2

:article1

?article

:person2b

:person2a

:person1

?person

{}

Join Result

po -index with

as key

sp-index with key:

(?article, rdf: type, bench:Article) (?article, dc:creator,?person)

“rdf:type bench:Article ”

“:article1 dc:creator ”

“:article2 dc:creator ”

“:article4 dc:creator ”

Fig. 6.11 Our approach to compute join

6.6 Dynamically Restricting Triple Patterns 127

((((?article rdf:type bench:Article) AND
(?article dc:creator ?person) AND
(?inproc rdf:type bench:Inproceedings) AND
(?inproc dc:creator ?person2) AND
(?person foaf:name ?name) AND
(?person2 foaf:name ?name2))
FILTER (?name=?name2))
PROJ{?person, ?name}) DISTINCT

over the following input RDF graph:

D={ (:article1, rdf:type, bench:Article), (t1)
(:article2, rdf:type, bench:Article), (t2)
(:article4, rdf:type, bench:Article), (t3)
(:article1, dc:creator, :person1), (t4)
(:article2, dc:creator, :person2a), (t5)
(:article2, dc:creator, :person2b), (t6)
(:article3, dc:creator, :person3), (t7)
(:inproc1, rdf:type, bench:Inproceedings), (t8)
(:inproc1, dc:creator, :person1), (t9)
(:person1, foaf:name, “Hans Fortune”) } (t10)

we first determine the solutions of the first triple pattern (?article rdf:type bench:
Article) by using the po index with key “rdf:type bench:Article”. The triples (t1), (t2),
and (t3) are returned for this index access and thus the result of the first triple pattern
is < {(?article, :article1)}, {(?article, :article2)}, {(?article, :article4)}>. We then

bind each value of ?article in the resultant set to the same variable in the second triple

pattern (?article dc:creator ?person) and construct three more restricted triple pat-

terns: (article1 dc:creator ?person), (article2 dc:creator ?person), and (article4 dc:
creator ?person). For each new triple pattern, we use the sp index with the sequence
of the subject and predicate literals as key. Therefore, the join of the first and second

triple pattern is < {(?article, :article1), (?person, :person1)}, {(?article, :arti-
cle2), (?person, :person2a)}, {(?article, :article2), (?person, :person2b)}> .

The third triple pattern (?inproc rdf:type bench:Inproceedings) does not have
any common variables with the join result of the first and the second triple patterns.

We evaluate this triple pattern by using the po index with “rdf:type bench:Inpro-
ceedings” as key and get the solution <{(?inproc, :inproc1)}>. Then, we compute

the Cartesian product of the join of the first and second triple patterns and the result

of the third triple pattern and get the join result of the first three triple patterns:

<{(?article, :article1), (?person, :person1), (?inproc, :inproc1)}, {(?article, :arti-
cle2), (?person, :person2a), (?inproc, :inproc1)}, {(?article, :article2), (?person, :
person2b), (?inproc, :inproc1)}>. We analogously proceed with the remaining

triple patterns. The overall result of the whole SPARQL query is < {(?person, :
person1), (?name, “Hans Fortune”)}>.

It is obvious that the given order for join computation is not optimal as the costly

Cartesian product should be applied later or even avoided. Recall that the previous

chapter introduced several approaches to optimizing the join order.

128 6 Physical Optimization

6.7 Sorting Numbering Scheme

We describe our specialized join approach for large-scale RDF datasets in this

section. Since RDF data are modeled as a set of triples, six collation orders

SPO, SOP, PSO, POS, OSP, and OPS are sufficient for sorting RDF data in any

order. Therefore, recent approaches (e.g., Neumann and Weikum 2008, 2009;

Weiss et al. 2008) use six indices, each for one collation order, to manage RDF

data. This storage schema allows for quick and scalable general-purpose query

processing.

Furthermore, these approaches also adopt the technique of dictionary encoding

(Abadi et al. 2007) to map RDF terms into integer identifiers (ids). Therefore, id

triples are stored in six indices rather than the original literal triples. Actually, the

sort criterion in evaluation indices of the other RDF stores such as Hexastore
(Weiss et al. 2008) and RDF3X (Neumann and Weikum 2008, 2009) as well as

our SPARQL engines are according to these ids rather than the RDF terms. Thus,

operators like merge joins also use sort criteria according to the ids rather than

according to the RDF terms themselves. Only a sort operator following the

SPARQL specification (Prud’hommeaux and Seaborne 2008) requires a sort crite-

rion according to the RDF terms instead of the ids. The main purpose of using

integer ids to replace RDF terms is for compressing the RDF store in these

approaches.

However, we also find another important application for these integer ids: they

can be used to fast sort solutions. Having the capability of fast sorting, query

processing, like computation of joins and elimination of duplications, can be

performed more efficiently over large datasets. When we use these ids for sorting

solutions, we call them presorting numbers.

6.7.1 Joins Without Presorting Numbers

For example, we have a SPARQL query with the three triple patterns TP1 (?
a < origin > <DLC>), TP2 (?a < records > ?c), and TP3 (?c
< type > ?b). When evaluating the query, we can first join the triple patterns

TP1 and TP2 over the variable ?a, or TP2 and TP3 over ?c, or TP1 and TP3. The

third alternative, the join between TP1 and TP3, is actually a Cartesian product

having high costs, and thus we do not consider this join ordering further. State-

of-the-art database management systems use selectivity estimations in order to

determine the best join ordering, which we discuss in previous sections.

In order to perform a join on?a between TP1 and TP2, the existing approaches,

Hexastore (Weiss et al. 2008) and RDF3X (Neumann and Weikum 2008, 2009),

compute TP1 (?a < origin > <DLC>) according to the POS (or OPS)

collation order and get the result sorted according to ?a; compute TP2 (?a <

6.7 Sorting Numbering Scheme 129

records > ?c) according to PSO and get the result sorted also according to

?a. Consequently, a merge join can be directly used to compute the join of TP1

and TP2 over ?a. The second join is computed between the results of the first join

and of the remaining triple pattern TP3 (?c < type > ?b), and thus the join

variable is ?c. Since the result of the first join is sorted according to ?a, the

second join is computed using the hash join (see Fig. 6.12a).

Likewise, a merge join can be directly used for the join of the triple patterns

TP2 (?a < records > ?c) and TP3 (?c < type > ?b), but cannot be

directly used for the succeeding join between the results of the first join and that of

the remaining triple pattern TP1 (?a < origin > <DLC>).

Sorting is time-consuming. It is a well-known fact that any sorting algorithm

based on comparing and exchanging values needs at leastO(N*log(N)) steps,

where N is the number of elements to be sorted. Therefore, instead of sorting

data for performing a merge join, these approaches typically choose a hash join

algorithm. A hash join does not require sorted input data and is usually faster than

a normal merge sort join requiring an additional sorting phase. The hash join is

simple and efficient when at least one of two operands of it fits into main memory.

If neither of the two operands of a hash join fits into memory, the disk-based hash

join algorithms become expensive (see Elmasri and Navathe 2000; Garcia-Molina

et al. 2002). Our experiments show that a merge join with our fast sorting phase

based on the presorting numbers outperforms significantly hash joins for large data.

Merge Join?c

Fast Sort?c

?a <origin> <DLC> ?a <records> ?c ?c <type> ?b

Hash Join?c

Merge Join?a

?a <origin> <DLC> ?a <records> ?c ?c <type> ?b

a

b

IndexPOS(<origin><DLC>) IndexPSO(<records>) IndexPSO(<type>)

Merge Join?a

IndexPOS(<origin><DLC>) IndexPSO(<records>) IndexPSO(<type>)

Fig. 6.12 Join computation of a nonbushy query with three triple patterns (a) without and (b) with

using fast sorting

130 6 Physical Optimization

6.7.2 Joins with Presorting Numbers

We take as example the same query as in the previous section. Like RDF3X and

Hexastore, we use a merge join to compute the first join between, for example, TP1

(?a < origin > <DLC>) and TP2 (?a < records > ?c) over ?a.

If we use the ids of RDF terms as presorting numbers, we can fast sort the result of

this join according to ?c. We use a variant of bucket sort (Knuth 1998) specialized

to external sorting and also able to sort according to order criteria with several

variables, as we will explain in later subsections. Consequently, the second join can

be computed using a merge join instead of a hash join.

Figure 6.13 illustrates our fast sorting technique using the ids as presorting

numbers. If the RDF data contain n different literals, then each literal can be

mapped into an integer id in [1, n]. In order to sort solutions, we use n buckets,

numbered from 1 to n. We describe in later subsections how to reduce the number of

buckets.

During computing the first join between TP1 (?a < origin > <DLC>)

and TP2 (?a < records > ?c), once a binding has been determined as

a solution of this join, it is put into the corresponding bucket according to the id

value of ?c. Once the join computation is finished, the result in all these buckets

has been sorted according to ?c and can be retrieved by accessing their contents in

the order of the buckets.

?a <origin> <DLC>

?a <records> ?c

merge join fast sorting

89

25

9

5

1

?a

239

9

5

3

1

1

?a

66

135

2

24

6

?c

…

5135135

…

96666

…

12424

92323

…

166

…

1

?a?c

Content of
bucketsBucket

number

Sorted according to ?c

Fig. 6.13 Fast sorting according to ?c using the ids of RDF terms as presorting numbers when

computing join

6.7 Sorting Numbering Scheme 131

The last triple pattern ?c < type > ?b is computed using the index PSO,

and thus its result is also sorted according to ?c. Therefore, the second join

between the results of the first join and of the last triple pattern can be computed

using a merge join (see Fig. 6.12b).

6.7.3 Optimization of Fast Sorting

Usually, the presorting numbers (ids) of solutions are located at a certain range

[m, k], where 1 � m � k � n, rather than dispersed over the whole id space. In

this case, we need only k þ 1 � m buckets for sorting. We can determine the

range [m, k] during cardinality estimation of the results of triple patterns and of

joins in the logical optimization phase. In the logical optimization phase, we can

therefore store the minimum m and the maximum k of the range at the operator

for the corresponding triple pattern in the execution plan.

If the range of the presorting numbers is relatively small, then we can store the

buckets in main memory by simply using, for example, an array to store the solutions.

If the range of the presorting numbers is large, then we have to store the buckets in an

external storage like a hard disk. One way is to store each bucket in a single file.

However, the number of solutions stored in a bucket is typically small and often even

1. Managing a large number of buckets with little content is inefficient.

An alternative without this disadvantage for sorting solutions is to divide the

whole range of the presorting numbers into m smaller ranges. We then use mmerge

sorts for the m smaller ranges, each of which employs a heap for replacement

selection, to sort the results with large range. We describe this approach in

Fig. 6.14. In this way, we use much less buckets to store all sorted results. Our

experiments show that using this way to sort data is very fast. In our experiments,

we have used 1,000 ranges and heaps of size 256.

However, the ids of solutions are usually not continual integers, that is, there are

gaps among these ids. This might lead to a bad distribution among m smaller ranges

when using equal range sizes. This can be solved by using histograms of triple patterns.

For each kind of triple patterns, an equi-depth histogram is constructed. Among

other information, each interval in this histogram contains the range and the number of

triples allocated in this interval. Equi-depth histograms have the property to divide the

data in such a way that each interval has the same or at least similar numbers of triples.

Therefore, the intervals in the equi-depth histograms can be directly used as the

smaller ranges into which the whole range of the presorting numbers is divided. In

this way, we can get a perfect distribution among smaller ranges.

6.7.4 Sorting for Complex Joins

So far, the joins we consider have only one join partner, that is, only one common

variable between two triple patterns. In most cases, the joins have only one join

132 6 Physical Optimization

partner, even if there are many joins in a query. Nevertheless, our fast sorting

approach described so far can be extended to handle the joins with arbitrary numbers

of join partners. The idea is to combine several presorting numbers to a unique

presorting number.

For example, the execution plan for the three triple patterns TP1 (?a <
origin > ?b), TP2 (?a < records > ?c), and TP3 (?c ?b <
text>) is first to compute the join with the join partner ?a between TP1 and

TP2 and then to compute the join with the two join partners ?b and ?c between

the results of the first join and of TP3. In order to use the merge join to compute the

second join, the result of the first join needs to be sorted according to both variables

?c and ?b.

Figure 6.15 demonstrates how to sort the join result of TP1 and TP2 according to

?b as the primary order and ?c as the secondary order, denoted by ?b?c, while

computing the join. In order to sort the join result according to ?b?c, we use (1)

the id values of?b returned by TP1, denoted asTP1?b; and (2) the id values of?
c returned by TP2, denoted as TP2?c. Let MAXTP1,?b and MINTP1,?b be

1st Phase:
Generating
Initial Runs

H
ea

p

H
ea

p

H
ea

p

…

1st 2nd 3rd

current 1st 2nd

current 1st 2nd 3rd

current

Initial
Runs

{(?c = 2365), …}Incoming intermediate
result to be sorted
according to ?c

?

2500 30002300

2nd Phase:
Merging
Initial Runs

Merged
Runs

S
or

te
d

da
ta

ac
co

rd
in

g
to

 ?
c

Fig. 6.14 Using multiple merge sorts with replacement selection to fast sort data with large range

6.7 Sorting Numbering Scheme 133

the maximal and minimal values of TP1?b, and MAXTP2,?c and MINTP2,?c
be the maximal and minimal values of TP2?c. We use the formula,

ðTP1?b �MINTP1;?bÞ � ðMAXTP2;?c �MINTP2;?c þ 1Þ þ ðTP2?c �MINTP2;?cÞ

¼ ðTP1?b � 6Þ � ð26� 21þ 1Þ þ ðTP2?c � 21Þ;

to sort and compute unique presorting numbers of the join result between TP1 and

TP2. Note that this formula is very similar to the function used in compilers for

mapping an entry of a multidimensional array to a memory address.

Proposition 1. The formula,

ðTP1?b �MINTP1;?bÞ � ðMAXTP2;?c �MINTP2;?cþ1Þ þ ðTP2?c �MINTP2;?cÞ;

generates the unique combined presorting numbers and defines ?b as the primary
sort criterion and ?c as the secondary sort criterion. The minimal combined
presorting number is 0 and the maximal combined presorting number is

ðMAXTP1;?b�MINTP1;?bÞ�ðMAXTP2;?c�MINTP2;?cþ1ÞþðMAXTP2;?c�MINTP2;?cÞ:

Proof Sketch. The first part of the formula, (TP1?b � MINTP1,?b), is used to compute

the number of values of?b. Each value of?b, that is, TP1?b, can be combined with

9

6

3

3

1

?a

7

10
9

6
8

?b

TP1:
?a <origin> ?b

239

9

5

3

1

1

?a

26
25

21
23

22

?c

TP2:
?a <records> ?c

29

3

1

1

9

9

3

?a

…

21918
…

23814

22813
…

26711
…

2378
…

2160
?c?b

Content of
buckets

Bucket
number
?b?c

Sorted according to ?b?c

merge join fast sorting

?b?c = (TP1?b – MINTP1, ?b) * (MAXTP2, ?c – MINTP2, ?c + 1) + (TP2?c – MINTP2, ?c)
 = (TP1?b – 6) * (26 – 21 +1) + (TP2?c–21)

Fig. 6.15 Sorting the result of join of TP1 and TP2 according to ?b (primary order) and ?c

(secondary order)

134 6 Physical Optimization

any TP2?c, and thus the number of possible combinations is the second part *

(MAXTP2,?c � MINTP2,?c + 1). The first and second parts together (TP1?b �
MIN

TP1,?b
)*(MAXTP2,?c � MINTP2,?c + 1) allocate TP1?b � MINTP1,?b spaces. Each

space has the size MAXTP2,?c � MINTP2,?c + 1 and is for one TP1POS to combine

with any TP2?c. This part is also used to sort ?b. The third part + (TP2?c �
MIN

TP2,?c
) sorts?c in each space. In the space where one TP1?b is located, the possible

maximal combined presorting number is maxp ¼ (TP1?b � MINTP1,?b) * (MAXTP2,?c �
MIN

TP2,?c
+ 1) + (MAXTP2,?c � MINTP2,?c). In the space where 1 + TP1?b is located,

the possible minimal combined presorting number is minp+1 ¼ (1 + TP1?b �
MIN

TP1,?b
) * (MAXTP2,?c � MINTP2,?c + 1). Sinceminp+1 � maxp ¼ 1, TP1?b � MIN-

TP1�?b spaces are disjoint and the combined presorting numbers are unique.

Proposition 2. In general, in order to sort data according to n variables, we need n
types of presorting numbers P1, . . ., Pn, where the maximal presorting numbers
are MAXP1, . . ., MAXPn, and all the minimal presorting numbers are 0. If the range
of the original presorting numbers p is in [MIN, MAX], then we compute a
newp0 ¼ p-MIN, and thus the minimal value ofp0 is 0.We can combine these pre-
sorting numbers and retrieve the unique combined presorting numbers in n! different
ways. For example, the formula, (. . .((P1*(MAXP2 þ 1) þ P2)*(MAXP3 þ 1) þ P3)*

(. . .(MAXPn þ 1)) þ Pn, computes the unique presorting numbers and defines P1 as
the primary sort criterion, P2 as the secondary sort criterion, . . ., Pn as the nth
sort criterion. The maximum of the combined presorting numbers is (. . .((MAXP1*

(MAXP2þ 1)þMAXP2) *(MAXP3þ 1)þMAXP3)*. . .)*(MAXPn þ 1) þ MAXPn.

Proof Sketch. According to Proposition 1, the most inner part,P1*(MAXP2 þ 1)
þ P2, generates the unique presorting numbers of the combined P1 and P2, and

defines P1 as the primary sort criterion and P2 as the secondary sort criterion,

denoted by P1P2; (P1P2*(MAXP3 þ 1) þ P3) generates the unique

presorting numbers of the combined P1, P2, and P3, and defines P1P2 as the

primary sort criterion andP3 as the secondary sort criterion, denoted byP1P2P3.

We proceed analogously until we get the unique presorting number of the combined

P1, . . ., Pn. In this way, we can prove the correctness of the formula.

The MAX–MIN range can grow quickly when processing a join with multiple

join partners. However, a large range of presorting numbers is not a problem for our

fast sorting approach, because we divide the whole range of the presorting numbers

into m smaller ranges and (merge) sort the ranges independently from each other.

Therefore and based on the experience in our experiments, we neither need more

space nor more time for a larger range, if the number of data to be sorted is the same.

6.7.5 Additional Benefits from SIP Strategies

A merge join looks for the equivalent values from two sorted operands by compar-

ing their results pairwise. If two values are unequal, the merge join continues

6.7 Sorting Numbering Scheme 135

reading the following data from the operand with the smaller value until an equal or

larger value is seen. When processing very large datasets, reading each data in turn

for finding a certain value is quite time-consuming.

An improvement is using the SIP strategy as described in (Neumann and

Weikum 2009). SIP applies the information of the larger value L to the side of

the operand with the smaller value for directly going to the data, which is equal to or

larger than L. In particular, when data are stored using B+-trees, the larger value

L can be used as key for directly finding the wanted leaf. Using SIP allows jumping

over big gaps by accessing interior nodes of the B+-trees and thus avoiding search-

ing along a possibly long chain of leaves.

For hash joins, the SIP strategy can use bloom filters. A bloom filter is a bit

vector, which is created by applying a hash function to one operand. This bit

vector is afterward used to filter out irrelevant data of the other operand. The

bloom filter can also be used to compute the number of distinct values, which can

be jumped over. The upper bound for this number corresponds to the number of

unset bits in the bloom filter. However, since a hash function might map many

distinct values to a same integer, the real number of distinct values to be jumped

over can be (much) larger. Furthermore, the number of distinct values is at most

the length of the bit vector of the bloom filter. Therefore, using bloom filters is not

scalable.

Having our fast sorting capability, the efficient merge join can be applied instead

of the hash join. Furthermore, using SIP merge joins can jump over bigger gaps

than hash joins. Therefore, the application of our sorting numbering scheme in

combination with SIP can significantly speeds up query processing.

6.8 Optional

The Optional operator returns the result of a join between its operands and addition-

ally all not joined solutions of its left operand. Therefore, we can modify any join

algorithm to return joined solutions and additionally not joined solutions of the left

operand. We do not provide adapted algorithms computing the result of an Optional

operation for all discussed join algorithms here and leave this to the reader, but present

the adapted algorithm of the merge join algorithm using SIP in the next subsection.

6.8.1 MergeOptional

Assuming S to be the left and R to be the right operand, we modify the merge join

algorithm using SIP to calculate the result of an OPTIONAL construct in the

following way:

136 6 Physical Optimization

S.open();
R.open();
s=S.next();
r=R.next();
WHILE(s!=null && r!=null){

IF(s < r){
OUTPUT s;
s=S.next();

} ELSE IF(r < s){
r=R.next(s);

} ELSE {
s1=s;
r1=r;
operand1 = {};
operand2 = {};
WHILE(joinable(r1, s)){

operand1 = operand1 È {s};
s=S.next();

}
WHILE(joinable(r, s1)){

operand2 = operand2 È {r};
r=R.next();

}
FOR EACH s2 IN operand1 DO

FOR EACH r2 IN operand2 DO
OUTPUT join(s2, r2);

}
}
WHILE(s!=null){

OUTPUT s;
s=S.next();

}

In this version of the algorithm, we return s as result whenever no join partners

in R can be found. The modified code is marked with boldface.

6.9 Duplicate Elimination

SPARQL uses the modifier DISTINCT to require a result without duplicates. In this

subsection, we describe different algorithms for the elimination of duplicates.

6.9.1 Duplicate Elimination Using Hashing

This version of duplicate elimination first partitions its input data by using hash

functions until all partitions fit into main memory. Afterward, the algorithm can use

any in-memory algorithm for duplicate elimination by, for example, determining

the set of solutions in each partition. Sets can be determined from a sequence of

6.9 Duplicate Elimination 137

solutions containing duplicates by, for example, using a hash table or balanced trees

like AVL trees.

6.9.2 Duplicate Elimination Using Sorting

Duplicate elimination using sorting just first sorts its solutions and afterward scans

the sorted solutions, and returns only those solutions, which are different to their

previous ones. In some query plans, the solutions are already sorted before the

DISTINCT operator, such that the DISTINCT operator does not need to sort the data

initially.

6.9.3 Duplicate Elimination Using Presorting Numbers

Fast sorting data using presorting numbers is of great benefit not only to merge

joins, but also to many other operations in query processing. Using the presorting

numbers, DISTINCT operations can be efficiently performed: when processing the

operation just before the DISTINCT operation, once a solution is computed, it is

sorted using the corresponding presorting numbers in the same way for sorting the

join result as illustrated in Fig. 6.13. However, we only store one of the solutions

with the same presorting number. When the operation before the DISTINCT
operation is finished, its result will not contain the duplicates. Consequently, a

separate DISTINCT operation is not needed anymore.

6.10 Cost Model

In the previous chapter, we have already described logical plan generation based on

estimations of the result cardinality. The main goal there was to reduce the number

of solutions as early as possible in the operatorgraph.

Different physical operators have different costs concerning CPU processing

time, I/O costs for reading and storing solutions, as well as costs for used space in

main memory or on disk. The physical plan generator takes all these costs into

consideration, computes the total costs of possible physical operators, and chooses

the physical operator with the best estimated total costs. As I/O costs are typically

the lion’s share in the total costs, that is, I/O operations are the slowest ones in a

nondistributed computer system, most physical query optimizers focus on the I/O

costs. Some query optimizers determine the I/O costs by estimating the number of

solutions to be read and written by a specific operator. Other query optimizers

compute the I/O costs by estimating the number of page accesses for a specific

operator, which considers the block nature of I/O devices such as hard disks. Both

variants produce similar good results, but cannot be mixed.

138 6 Physical Optimization

6.11 Performance Evaluation

For the performance evaluation, we consider two main scenarios.

In the first scenario, we use small to middle-sized datasets, which completely fit

into main memory. In this scenario, our approaches for main-memory indexing and

join processing promise optimal performance.

In the second scenario, we use large-scale datasets with over one billion triples.

These datasets do not fit into main memory anymore and we comprehensively

analyze the disk-based indexing (and joining) approaches.

6.11.1 Performance Evaluation for In-memory Databases

The SP2B benchmark (Schmidt et al. 2009) includes a set of 18 queries, which

contain more features of SPARQL and address more optimization techniques than

many other Semantic Web benchmarks such as the LUBM benchmark (Guo et al.

2005). The SP2B benchmark uses a data generator, which can generate data of

different size. The SP2B data set imitates an RDF version of the real-world DBLP

data set (Ley 2010); that is, the data structure of the SP2B data set is very similar to

real-world data. Furthermore, the SP2B benchmark does not consider inference

based on an ontology, which we do not consider here due to our focus on basic join

algorithms. Therefore, we choose the SP2B benchmark in our experiments. In our

figures, we present the average of ten execution times of reading the input and

generating the indices, and of applying the SPARQL queries of the SP2B

benchmark.

The test system uses an Intel Core 2 Duo CPU T7500 with 2.2 GHz, 2 GB main

memory, Windows XP Professional 2002, and Java 1.6. We use Jena ARQ

(Wilkinson et al. 2003) and Sesame (Broekstra et al. 2002) as SPARQL database

engines since they support the current SPARQL version (Prud’hommeaux and

Seaborne 2008), which is not fully supported by many other SPARQL processing

engines. Furthermore, we have implemented an in-memory version of the approach

presented in (Weiss et al. 2008), which we call In-memory Hexastore in the

following paragraphs. In-memory Hexastore uses merge joins to join two triple

patterns at the first level and standard relational join algorithms like index joins for

succeeding joins. Our implementation of In-memory Hexastore reorders the join

operands according to the result sizes of triple patterns.

In the figures, we call our approach RestrictingTP. We have measured different

variants of our approach. RestrictingTP-OrderSize represents the execution times

of our approach when reordering the triple patterns according to the result sizes of

each triple pattern. RestrictingTP-OrderVar represents the execution times of our

approach when reordering the triple patterns according to the restrictiveness of

triple patterns. RestrictingTP-OrderVarSize represents the hybrid approach, which

orders the triple patterns primarily according to the restrictiveness of triple patterns

6.11 Performance Evaluation 139

and secondarily according to the result sizes of the triple patterns. We use hash

maps for our seven indices, but use B+-trees whenever we mark the experiment with

B+, where we also order the triple patterns primarily according to the restrictiveness

and secondarily according to the result sizes of the triple patterns.

6.11.1.1 Index Construction Time

Reading the input data and constructing the indices only need to be done once.
Afterward, the indices can be used to evaluate many queries. Thus, less time for

query evaluation is more critical than less time for index construction. The index

construction time for Sesame and Jena is the smallest (see Fig. 6.16). The index

construction time for RestrictingTP, RestrictingTP-orderSize, RestrictingTP-order-
Var, and RestrictingTP-orderVarSize is obviously the same, and thus we use the

time for RestrictingTP for all of them, which are approximately two times slower

than Jena and 3.6 times slower than Sesame. In-memory Hexastore and B + per-

form the worst.

6.11.1.2 Query Evaluation

For all queries used in this experiment, the time to compile queries and perform the

logical and physical optimization step is below one millisecond.

For each query of the SP2B benchmark (Schmidt et al. 2009), In-memory

Hexastore performs worst, as In-memory Hexastore processes time-consuming

searches in sorted lists for index accesses, which is avoided in our approach.

0 2 4
Filesize in Megabytes

6 8 10

Sesame
Jena

RestrictingTP

In-memory Hexastore

B+

2
4
6
8

10

T
im

e
in

 S
ec

on
ds

12
14
16
18
20
22
24
26

0

Fig. 6.16 Index construction time

140 6 Physical Optimization

Furthermore, out-of-memory errors occur for the queries q4, q5a, and q12a. For

simplicity of presentation, we present the execution times of In-memory Hexastore

in an extra figure (see Fig. 6.17) and do not present them in the figures especially for

the different queries.

Query q1. This query consists of three triple patterns, the overall result of which
contains only one solution. All approaches except In-memory Hexastore need only

less than 4 ms.

Query q2. This query consists of ten triple patterns, one of which is in an

OPTIONAL construct. The result is additionally sorted. Sesame and Jena perform

best (see Fig. 6.18). The implementation of sorting can be still much optimized in

the benchmarked version of our SPARQL engine, such that we believe that our

approach performs much better after these optimizations have been done.

Query q3a–c. These queries consist of two triple patterns and a comparison of a

variable with a constant value. Due to space limitations, we present the execution

times of only q3a here (see Fig. 6.19). For q3a, our approach performs best and then

Sesame and Jena. For q3b and q3c, all approaches and query engines except of

In-memory Hexastore need less than 100 ms, where RestrictingTP-orderVarSize
performs best, the execution times of which are below 4 ms.

Query q4. This query consists of eight triple patterns with a less than value

comparison (“<”) between two variables. Figure 6.20 shows that RestrictingTP-
orderVarSize performs best. Jena is the slowest. In-memory Hexastore, Restric-
tingTP, and RestrictingTP-orderSize compute the triple patterns in an inefficient

way, such that out-of-memory errors occur.

q4

q12a

q12c
q10
q3b
q1
q3cq11

q3a

q9

q5b

q6

q2
q12b
q8

q7

q5a

0 2 4 6 8 10
Filesize in Megabytes

0.5
1

5
10

50

100

T
im

e
in

 S
ec

on
ds 500

1000

5000

10000

25000

Fig. 6.17 Execution times of the queries q1–q12c of In-memory Hexastore

6.11 Performance Evaluation 141

Queries q5a and q5b. q5b is a manually optimized query of q5a. Restricting-
orderVar and Restricting-orderVarSize perform best for q5a (see Fig. 6.21). For

q5b, Restricting-orderVarSize is slightly slower than Sesame (0.3 s), but 156 times

faster than Jena.

Query q6. Our approaches are slightly slower than Sesame and Jena (see

Fig. 6.22) since the complex OPTIONAL constructs with many filter expressions

in q6. In the implementation of our prototype, there is still much space for

optimizing this kind of queries.

0 2 4
Filesize in Megabytes

6 8 10

Sesame

Jena

RestrictingTP OrderSize
RestrictingTP OrderVarSize
RestrictingTP OrderVar
RestrictingTP

B+

0

0.2

0.4

0.6

T
im

e
in

 S
ec

on
ds

0.8

1

Fig. 6.18 Execution times of q2

0 2 4
Filesize in Megabytes

6 8 10

Sesame

Jena

RestrictingTP OrderSize
RestrictingTP OrderVarSize

RestrictingTP OrderVar

RestrictingTP

B+

0

0.02

0.06

0.08

0.04

0.1

0.12

T
im

e
in

 S
ec

on
ds

0.14

0.16

Fig. 6.19 Execution times of q3a

142 6 Physical Optimization

Query q7. q7 consists of several nested OPTIONAL constructs. Here, our

approaches perform much better than the others (see Fig. 6.23).

Query q8 and q9. q8 and q9 contain common subexpressions in the operands of

UNION, which is currently not optimized by our prototype. Therefore, the execu-

tion times of our prototype are higher than those of Sesame and Jena (see Fig. 6.24).

Queries q10 and q11: q10 and q11 consist of one triple pattern, the result of

which is retrieved below 300 ms for all different approaches and query engines

except of In-memory Hexastore.

0 2 4
Filesize in Megabytes

RestrictingTP OrderSize

6 8 10

Sesame

RestrictingTP

RestrictingTP OrderVarSize

RestrictingTP OrderVar

Jena

B+

0.5
1

5

10

50

100

T
im

e
in

 S
ec

on
ds

500

1500
1000

Fig. 6.20 Execution times of q4

0 2 4
Filesize in Megabytes

RestrictingTP OrderSize

6 8 10

Sesame

RestrictingTP

RestrictingTP OrderVarSize
RestrictingTP OrderVar

Jena

B+

0.5
1

5

10

50

100

T
im

e
in

 S
ec

on
ds

500

Fig. 6.21 Execution times of q5a

6.11 Performance Evaluation 143

Queries q12a–c. These queries contain the ASK construct; that is, they return

true if there is some result and otherwise false. One optimization is to abort the

evaluation of queries if there is at least one result. Our approaches perform similarly

to the other approaches for q12c and are slightly slower for q12a and q12b.

Average execution times of all queries q1–q12c. Figure 6.25 shows the average

execution times of all queries q1–q12c. Overall, our approaches and especially

RestrictingTP-OrderVarSize are the fastest. Sesame is more than two times slower,

and Jena is more than six times slower than RestrictingTP-OrderVarSize.
In-memory Hexastore is the slowest approach.

0 2 4
Filesize in Megabytes

RestrictingTP OrderSize

6 8 10

Sesame

RestrictingTP

RestrictingTP OrderVarSize
RestrictingTP OrderVar

Jena

B+

0

40

80

120

160

T
im

e
in

 S
ec

on
ds

280

240

200

360

320

Fig. 6.22 Execution times of q6

0 2 4
Filesize in Megabytes

RestrictingTP OrderSize

6 8 10

Sesame

RestrictingTP
RestrictingTP OrderVarSize

RestrictingTP OrderVar

Jena

B+

0.5
1

5

10

50

100

T
im

e
in

 S
ec

on
ds

Fig. 6.23 Execution times of q7

144 6 Physical Optimization

6.11.2 Performance Evaluation for Large-Scale Datasets

We study the performance benefits for our sorting numbering scheme integrated

into other index approaches. For these experiments, we focus on the index approach

RDF3X in (Neumann and Weikum 2008, 2009), since it is similar to Hexastore in

(Weiss et al. 2008), but uses a simpler and faster index structure than (Weiss et al.

2008). We compare the pure RDF3X approach, that is, using hash joins when data

become unsorted, with the RDF3X-Sort approach, that is, our sorting numbering

0 2 4
Filesize in Megabytes

RestrictingTP OrderSize

6 8 10
Sesame

RestrictingTP

RestrictingTP OrderVarSize

RestrictingTP OrderVar

Jena

B+

0

2

4

6

T
im

e
in

 S
ec

on
ds

8

Fig. 6.24 Execution times of q8

0 2 4

Filesize in Megabytes

6 8 10

Sesame

Jena

RestrictingTP OrderVar
RestrictingTP OrderVarSize

In-memory Hexastore

B+

1
0.5

5
10T

im
e

in
 S

ec
on

ds

50

100

500

1000

2200

Fig. 6.25 Average execution times of all queries q1–q12c

6.11 Performance Evaluation 145

scheme integrated into the RDF3X approach. RDF3X-Sort uses fast sorting for

applying merge joins to replace hash joins and for elimination of duplicates.

The original RDF3X prototype (Neumann and Weikum 2008, 2009) has several

limitations:

l It does not support full SPARQL 1.0.
l It only supports very simple filter expressions.
l It neglects prefixes in predicates. This improves the performance, but leads to

information loss. For example, the two different triples (<a>, <www.film/

title>, “Ratatouille”) and (<a>, <www.game/title>, “Ratatouille”) are stored

as one triple (<a>, <title>, “Ratatouille”) in the original RDF3X prototype.
l It does not support data types, such that, for example, the two identical integer

values +2 and 2 are treated as two different strings.
l It supports only in-memory hash joins; that is, if the operands of hash joins

cannot fit into memory, RDF3X cannot process the hash joins.

In order to lift these limitations and avoid problems resulting from not sup-

ported features of the original RDF3X prototype, we have reimplemented the

RDF3X approach. Our reimplementation successfully runs all the W3C test cases

(Feigenbaum 2008), which contain over 200 queries. As we will show in the

following subsections, the execution times of our reimplementation are similar to,

and often outperform those of the original RDF3X prototype, compared with results

of Neumann and Weikum (2009), although we have used Java as programming

language and the RDF3X system is implemented in Cþþ. An online demonstra-

tion of our implementations is publicly available (see Groppe and Groppe 2009;

Groppe et al. 2009b).

The test system for the evaluation of queries uses a Dual Quad Core Intel CPU

X5550 computer with 2.67 GHz, 6 GB main memory, Windows XP Professional

(x64 Edition), and Java 1.6 64 bit. We have run the experiments ten times and

present the average execution times as well as the standard deviation of the sample.

In order to build indices faster over the two very large datasets, index construc-

tions are performed in a cluster with additional 6 Intel Core 2 Quad CPU Q9400

computers, each with 2.66 GHz, 4 GB main memory, Windows XP Professional

(32 bit), and Java 1.6.

We use two large-scale datasets: UniProt (Swiss Institute of Bioinformatics

2009) and Billion Triples Challenge (BTC) (Semantic web challenge 2009), and cor-

responding queries. Three kinds of indices are constructed over the two datasets: two

dictionary indices for mapping between RDF terms and integer ids; six evaluation

indices according to the six collation orders of RDF for evaluating SPARQL queries;

six histogram indices for fast generating histograms for triple patterns.

6.11.2.1 UniProt

UniProt (Swiss Institute of Bioinformatics 2009) is a comprehensive repository of

protein sequence and annotation data. We have used the version 15.14 of the 9th

February 2010 of it, which contains over 1.5 billion triples.

146 6 Physical Optimization

http://www.film/title
http://www.film/title
http://www.game/title

We have used the queries of Neumann and Weikum (2009), which we name UP 1

to UP 8. However, the number of results of these queries and especially the number of

solutions for the hash joins are quite small. Therefore, we added some additional

queries (EUP 1 to EUP 8) with bigger cardinalities, which are presented below.

Table 6.2 presents the types of operations of the UniProt queries performed by

the pure RDF3X approach without using our fast sorting technique. In comparison,

the RDF3X-Sort approach, that is, our sorting numbering scheme integrated into the

RDF3X approach, uses fast sorting and merge joins instead of hash joins and

optimizes duplicate elimination by also using our fast sorting technique. Table 6.1

presents the execution costs by the two approaches when they process these UniProt

queries over 1.5 billion triples.

The queries UP 1 to UP 8 from RDF3X (Neumann and Weikum 2009) are

favorable to RDF3X, since the number of solutions is quite small, and thus the

simple and fast in-memory hash join can be used. Therefore, the performance gain

is quite small by RDF3X-Sort for these queries. However, for queries with larger

intermediate results, RDF3X-Sort is often about 10 times up to 32 times faster than

the RDF3X approach (see EUPs 1, 2, 3, and 5).

The time for index construction for the over 1.5 billion triples was 57 h. The

space consumption is 19.5 GB for the two dictionary indices, 47.1 GB for the six

evaluation indices, and 47.1 GB for the six histogram indices.

Table 6.2 presents the types of operations of the UniProt queries performed by

the pure RDF3X approach without using our fast sorting technique, when proces-

sing the UniProt queries. In the following paragraphs, we provide the additional

queries for the UniProt dataset.

We assume that all UniProt queries define the namespaces rdf, rdfs, and

up by

Table 6.1 Evaluation times (in seconds) for UniProt Data

Query RDF3X RDF3X-sort RDF3X/

RDF3X-sort

Histogram computation

UP 1 0.0391 � 0.0106 0.0375 � 0.0174 1.043 0.14

UP 2 0.35 � 0.021 0.35 � 0.02 1 1.014

UP 3 0.925 � 0.0702 0.8969 � 0.0474 1.031 0.395

UP 4 0.321 � 0.025 0.309 � 0.013 1.039 0.233

UP 5 0.79 � 0.04 0.79 � 0.05 1 0.005

UP 6 0.55 � 0.006 0.55 � 0.01 1 0.02

UP 7 0.5453 � 0.0047 0.5438 � 0.0061 1.003 0.042

UP 8 0.8469 � 0.0117 0.8515 � 0.0203 0.995 0.286

EUP 1 27.320 � 4.427 2.7468 � 0.1044 9.946 2.061

EUP 2 3.1172 � 0.1078 0.3391 � 0.1081 9.193 0.572

EUP 3 1620.1 � 5.98 49.6735 � 0.236 32.615 1.614

EUP 4 1.55 � 0.018 0.8657 � 0.0102 1.79 1.05

EUP 5 0.2096 � 0.0102 0.0172 � 0.0046 12.186 0.595

EUP 6 2.5141 � 0.0203 1.9937 � 0.0077 1.261 0.7624

EUP 7 42.6124 � 0.783 4.9063 � 0.1245 8.685 0.5

EUP 8 0.2843 � 0.0645 0.0376 � 0.0187 7.561 0.55

6.11 Performance Evaluation 147

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX up: <http://purl.uniprot.org/core/>.

Query EUP 1:
select * where{
?x rdf:type up:Sequence_Conflict_Annotation;

up:conflictingSequence ?y.

?y rdf:type up:External_Sequence.}

Query EUP 2:
select * where {
?c rdf:type up:Concept; rdfs:label ?l;

up:obsolete "true"; rdfs:subClassOf ?c2.

?c2 rdfs:label ?l2.}

Query EUP 3:
select * where {
?x up:sequenceFor ?y; rdf:type up:Sequence.

?y rdf:type up :Protein;up:reviewed "false";

up:created "2009-07-28".}

Query EUP 4:
select * where {
?x up:date "1996"; rdf:type>?t.

?t rdfs:subClassOf ?c.}

Query EUP 5:
select * where {
?x up:cofactor "Iron"; rdfs:subClassOf ?c.

?c up:name ?n.}

Query EUP 6:
select * where {
?x rdf:type up:Tissue; rdfs:label ?l1;

rdfs:seeAlso ?y.

?y rdfs:label ?l2; up:database "eVOC".}

Query EUP 7:
select distinct * where {
?x rdf:type up:Sequence_Conflict_Annotation;

up:conflictingSequence ?y.

?y rdf:type up:External_Sequence.}

Query EUP 8:
select distinct * where {
?x up:cofactor "Iron"; rdfs:subClassOf ?c.

?c up:name ?n.}

148 6 Physical Optimization

6.11.2.2 Billion Triples Challenge

The major part of the dataset of the Billion Triples Challenge (BTC) (Semantic web

challenge 2009) was crawled during February/March 2009 based on datasets

provided by, for example, Falcon-S, Sindice, Swoogle, SWSE, and Watson. We

have imported all over 830 million distinct triples of the Billion Triples Challenge.

In comparison, the performance analysis in Neumann and Weikum (2009) used

only a subset of it.

Like the UniProt queries used by RDF3X (Neumann and Weikum 2009), the

queries for BTC used by (Neumann and Weikum 2009) return very small interme-

diate and final results. Therefore, we also use some additional queries (EBTC 1 to

EBTC 8) with bigger cardinalities (see below), as well as the ones of (Neumann

and Weikum 2009) (BTC 1 to BTC 8). Table 6.4 presents the query operations

performed by the original RDF3X approach, and Table 6.3 presents the processing

times of these queries by the two approaches.

Although the queries BTC 1 to BTC 8 are designed to retrieve very small results

and thus are favorable to RDF3X, the RDF3X-Sort still has a similar (or a slightly

better) evaluation performance (up to 24%). When processing those queries with

large intermediate and final results (EBTC 1 to EBTC 8), the RDF3X-Sort approach

shows significant performance improvements and is up to several orders of magni-

tude better than the pure RDF3X.

The time for index construction for the BTC dataset with over 830 million

distinct triples was 30 h. The space consumption is 31.1 GB for the dictionary

indices, 30.8 GB for the evaluation indices, and 30.8 GB for the histogram

indices.

Table 6.2 Operations by

RDF3X for the UniProt

queries

Query Number of

merge joins

Number of

hash joins

DISTINCT

UP 1 2 1

UP 2 10 2

UP 3 10 1

UP 4 8 2

UP 5 5 2

UP 6 11 1

UP 7 11 1

UP 8 11 1

EUP 1 1 1

EUP 2 3 1

EUP 3 3 1

EUP 4 1 1

EUP 5 1 1

EUP 6 3 1

EUP 7 1 1 √
EUP 8 1 1 √

6.11 Performance Evaluation 149

Table 6.4 presents the query operations performed by the original RDF3X

approach. The additional BTC queries, which we have used in the experiments,

are provided below as follows:

We assume that all BTC queries define the namespaces rdf, rdfs, foaf,

dbpedia, purl, sioc, skos, atom , geoont, geocountry,
and geopos by

Table 6.3 Evaluation times (in seconds) for BTC Data

Query RDF3X RDF3X-sort RDF3X/

RDF3X-sort

Histogram

computation

BTC 1 0.0469 � 0.0155 0.045 � 0.0049 1.042 23.5

BTC 2 0.0359 � 0.0076 0.0359 � 0.0105 1 7.419

BTC 3 0.3032 � 0.0547 0.3032 � 0.0443 1 2.642

BTC 4 39.3234 � 0.123 38.0327 � 0.0491 1.034 73.23

BTC 5 0.37 � 0.046 0.3344 � 0.0341 1.106 0.631

BTC 6 1.3172 � 0.0477 1.061 � 0.063 1.241 4.801

BTC 7 0.3265 � 0.0227 0.3264 � 0.0127 1.0003 27.829

BTC 8 0.2266 � 0.0144 0.2124 � 0.0103 1.067 38.018

EBTC1 46.8687 � 0.851 1.8563 � 0.0918 25.248 1.116

EBTC2 30.4593 � 1.0404 3.0844 � 0.1191 9.875 15.461

EBTC3 0.8626 � 0.0649 0.1188 � 0.01443 7.26 0.759

EBTC4 531.9172 � 2.340 0.636 � 0.094 836.35 1.017

EBTC5 46.303 � 2.827 4.014 � 0.2672 11.535 2.514

EBTC6 1602.692 � 24.59 36.8641 � 0.317 43.476 12.341

EBTC7 3.4765 � 0.2576 0.3142 � 0.1046 11.065 0.9767

EBTC8 0.8797 � 0.0627 0.1203 � 0.035 7.313 0.774

Table 6.4 Operations by

RDF3X for the BTC queries
Query Number of

merge joins

Number of

hash joins

DISTINCT

BTC 1 3 0

BTC 2 3 0

BTC 3 4 0

BTC 4 5 1

BTC 5 2 1 √
BTC 6 2 2 √
BTC 7 4 3 √
BTC 8 3 1

EBTC 1 1 1

EBTC 2 2 1

EBTC 3 1 1

EBTC 4 1 1

EBTC 5 2 1

EBTC 6 4 1

EBTC 7 2 1 √
EBTC 8 1 1 √

150 6 Physical Optimization

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia: <http://dbpedia.org/property/>
PREFIX purl: <http://purl.org/dc/elements/1.1/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX atom: <http://www.w3.org/2005/>
PREFIX geoont: <http://www.geonames.org/ontology#>
PREFIX gecountry:

<http://www.geonames.org/countries/#>
PREFIX geopos:

<http://www.w3.org/2003/01/geo/wgs84_pos#>.

Query EBTC 1:
select * where {
?x foaf:depiction ?d;

dbpedia:hasPhotoCollection ?y.

?y foaf:maker ?m.}

Query EBTC 2:
select * where {
?x purl:title "Wimbledon_College_of_Art";

sioc:has_creator ?c; sioc:links_to ?l.

?l purl:title ?t.}

Query EBTC 3:
select * where {
?x skos:subject <http://dbpedia.org/resource/

Category:1960_in_Formula_One>;

dbpedia:wikilink ?l.

?l foaf:name ?n.}

Query EBTC 4:
select * where {
?m purl:title ?t.

?x foaf:made ?m; foaf:nick ?i.}

Query EBTC 5:
select * where {
?x atom:Atomuri ?u; atom:Atomname ?n.

?y atom:Atomname ?n; atom:Atomemail ?m.}

6.11 Performance Evaluation 151

Query EBTC 6:
select * where {
?x geoont:name> ?n1; geopos:lat ?l;

geoont:inCountry geocountry:DE.

?y geoont:name ?n2; geopos:lat ?l;

geoont:inCountry geocountry:DE.}

Query EBTC 7:
select distinct ?t where {
?x purl:title "Wimbledon_College_of_Art";

sioc:has_creator ?c; sioc:links_to ?l.

?l purl:title ?t.}

Query EBTC 8:
select distinct ?nwhere {
?x skos:subject <http://dbpedia.org/resource/

Category:1960_in_Formula_One>;

dbpedia:wikilink ?l.

?l foaf:name ?n.}

6.11.2.3 Performance Gains

Several main factors contribute to the significant performance gains from our

presorting numbering scheme, when processing queries with larger intermediate

results:

1. A merge join with a fast sorting phase is more efficient than a hash join.

2. It often occurs that one operand of joins is already sorted accordingly. Under

such cases, RDF3X-Sort only needs to sort another operand. In comparison,

when using a hash join, two operands must be processed anyway.

3. Using the SIP strategy merge joins can benefit more than hash joins, by jumping

over much larger gaps.

6.12 Summary and Conclusions

We develop a new and efficient approach to computing joins in memory by

dynamically restricting triple patterns and using seven indices.

Our experimental evaluation shows that our proposed approach for joining the

result of triple patterns in memory is faster than in-memory variants of disk-based

join algorithms and common in-memory SPARQL database engines. Concretely,

the average execution of all SP2B benchmark queries (Schmidt et al. 2009) of our

approach is at least two times faster (see Fig. 6.25) than the compared approaches

and common in-memory SPARQL database engines.

152 6 Physical Optimization

For efficiently querying the large-scale Semantic Web, we propose a sorting

numbering scheme in order to fast sort solutions of SPARQL queries. Having the

fast sorting capability, a merge sort join can be efficiently applied to compute the

joins, data of which are unsorted. For large data sets, in combination with SIP

strategies, the application of merge joins instead of hash joins leads to remarkable

performance improvements. Elimination of duplicates also benefits significantly

from the fast sorting capability. Our approach neither requires more space in the

indices nor has extra update costs, since we use the ids of RDF terms as presorting

numbers. By using histograms for the determination of the subranges for the

buckets to be sorted in external mass storage, we ensure a good distribution between

the buckets even if there are gaps in the values to be sorted, that is, intervals in the

ids, which do not occur in the values, are quite common in large datasets, and could

occur after updates.

Our experimental results show that merge joins using our fast sorting algorithm

are more efficient than hash joins, and our fast sorting capability is a big benefit for

elimination of duplicates. Our sorting numbering scheme significantly speeds up

querying very large Semantic Web databases.

6.12 Summary and Conclusions 153

Chapter 7

Streams

Abstract Data streams are becoming an important concept and used in more and

more applications. Processing of data streams needs a streaming engine. The

streaming engine can start query processing once initial data is available. This

capability is especially important for real-time computation and for long-relay

transmission of data streams. In this chapter, we introduce stream processing by a

demonstration of a monitoring system of eBay auctions, which is based on our RDF

stream engine and can analyze eBay auctions in a flexible way. Using our monitor-

ing system, users can easily monitor the eBay auctions information of interest,

analyze the behavior of buyers and sellers, predict the tendency of auctions, and

make more favorable decisions.

7.1 Introduction

A growing number of applications in areas such as network monitoring, sensor

networks, and auction industry are using continuous data streams rather than finite

stored datasets. Processing and querying data streams require long-running contin-
uous queries as opposed to one-time queries.

Data produced over time form data streams. Data streams having no end are

called infinite data streams. (Infinite) data streams are generated from, for example,

sensors, which constantly obtain data from their environment. In order to determine

useful conclusions (like a probably upcoming earth quake) from data streams, we

need to consider the infinite nature and support the computation of intermediate

results based on a window, which contains the recent data of the infinite data stream.

In many scenarios, the intermediate results must be calculated in a timely fashion;

for example, a probably upcoming earthquake must be detected as early as possible

allowing no delays for the computations.

Streaming query engines operating on data streams can (a) discard irrelevant

input as early as possible, and thus save processing costs and space costs, (b) build

indices only on those parts of the data, which are needed for the evaluation of the

query, and (c) determine partial results of a query earlier, and thus evaluate queries

more efficiently.

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_7, # Springer-Verlag Berlin Heidelberg 2011

155

Stream-based processing enables more efficient evaluation not only in local

scenarios, where the data are stored and the query engines run on the same

computer, but also in many other applications, for example,

l In integrating data over networks such as the Internet, in particular from slow

sources. It is desirable to progressively process the input before all the data are

retrieved
l In continuous query processing over infinite data streams (e.g., Arasu et al.

2006), generated by, for example, sensors. Continuous query processing (e.g.,

Arasu et al. 2006) evaluates queries periodically.
l In selective dissemination of information, where RDF data have to be filtered

according to requirements given in a query
l In pipelined processing, where data are sent through a chain of processors, and

the input of each processor is the output of the preceding processor.

The data format of the Semantic Web is RDF, and a large amount of data are

described using RDF. SPARQL (Prud’hommeaux and Seaborne 2008) is the

standard RDF querying language and has been extended by several contributions

to support operations in infinite RDF data streams (see e.g., Bolles et al. 2008;

Barbieri et al. 2009). In this chapter, we demonstrate our streaming query engine by

a real-world case: monitoring the eBay auctions based on querying a real-time eBay

RDF data stream. Our demonstration application is available online and can be

downloaded from (Fell et al. 2010). We will explain special operators for stream

processing afterward in detail.

7.2 eBay

eBay (eBay 2010a) is a popular online auction and shopping website. Through eBay

individuals and business sell and buy a wide variety of goods and services, and

millions of items are auctioned daily. Furthermore, the eBay Developers Program

(eBay 2010b) offers several eBay web services, with which new applications, tools,

and value-added services can be created in order to meet the diverse needs of buyers

and sellers on eBay.

The eBay web services use domains and aspects describe the auctioned items. A

domain represents a kind of items, the aspects describe the characteristics of items

in a given domain, and items are instances of a domain. For example, the book can

be a domain, and the title, author, pages, and price can be the aspects of the book

domain. A book entitled “Stream Processing” auctioned in eBay is an instance of

the book domain. The information model1 used by eBay is very similar to the RDF

data model.

1http://developer.ebay.com/DevZone/finding/Concepts/FindingAPIGuide.html

156 7 Streams

http://developer.ebay.com/DevZone/finding/Concepts/FindingAPIGuide.html

Therefore, we can use RDF to describe eBay auctions, thus leveraging SPARQL

and RDF tools to query and process auction data. While the eBay’s Finding API

supports the functionality of searching and browsing items listed on eBay, the RDF

query language SPARQL provides more powerful capabilities than the eBay

Finding API.

7.3 Monitoring eBay Auctions

By monitoring the real-time eBay auctions of interest, the buyers and sellers can

predict auction tendencies and make better decisions. Furthermore, it also helps

the economists and researchers in analyzing various aspects of buying and

selling behavior. In this section, we demonstrate how the users of our system

can easily query and monitor the eBay auction information in which they are

interested.

7.3.1 Monitoring System

Figure 7.1 describes our system of monitoring eBay Auctions. Our stream generator

interacts with the eBay platform using the eBay web services. In this figure, the

stream generator calls the eBay server with the function findItemsByKeywords

(“Wii”), which retrieves and returns the auction information matched by the

keyword “Wii”. Once the first data element arrives, the stream generator transforms

ebay

Monitoring Window

Stream
Generator

Finding API
findItemsByKeywords(“Wii”)

Auctions matched by “Wii”

2015

20011

current
Price

id

Wii Sports

Wii Basic

title

…

…

G
U

I

RDF Stream

ebay:11 p:title“Wii Basic”.
ebay:11 p:currentPrice“200”^^xsd:integer.
…
ebay:15 p:title“Wii Sports”.
ebay:15 p:currentPrice“20”^^xsd:integer.
…

Streaming
Query
Engine

keyword

Q
uery

Result

Periodic
Request

Fig. 7.1 Monitoring system of eBay auctions

7.3 Monitoring eBay Auctions 157

it into the RDF format and sends it to the streaming query engine. The streaming

query engine processes the SPARQL query on the RDF data stream and the results

of the query are displayed in the monitoring window.

7.3.2 Demonstration

Figure 7.2 is a screen snapshot of the main window of our demonstration system.

Users can specify the search keywords [see (1) of Fig. 7.2] or eBay item numbers or

the webpage address of the eBay auction [see (2) of Fig. 7.2] for retrieving related

information from eBay. The eBay item number can be found at its auction webpage.

A SPARQL expression is used [see (3) of Fig. 7.2] to query the data returned by the

eBay server. Several predefined SPARQL queries can be obtained by clicking the

menu item Presets in the top menu.

After specifying the query information, click the button Start to start the

communication with the eBay server, the generation of RDF data, and the evalua-

tion of the SPARQL query over the RDF data stream. It might take some time to

finish these processes, depending on various factors, for example, the speed of

networks and the size of transmitted data.

The query result is displayed in the main window [see (4) of Fig. 7.2]. If a

checkbox is marked in the query result, the numerical values are displayed in a chart

[see (5) of Fig. 7.2]. The data are periodically retrieved and processed from eBay,

and the query result is periodically updated. The old query result still remains in the

charts when updated. Consequently, users can easily observe and monitor the

changes over time.

1
2

3

4

5

6
1

2
3

4

5

6

Fig. 7.2 Main window of our demonstration

158 7 Streams

7.3.3 Streaming SPARQL Engine

Our streaming SPARQL engine supports an extended version of SPARQL by

allowing windows and the specification of the periods for updating the query result.

Figure 7.3 describes such a query for the RDF stream. Line (5) specifies the query

result to be updated every second, and lines (7–9) specify a window of the recent

100 triples of the RDF stream to be queried by the triple patterns in lines (8) and (9).

Additional to SPARQL 1.0 (Prud’hommeaux and Seaborne 2008), we support

aggregation functions [see lines (3) and (4)] such as average, min, max, and sum

to determine the average, minimum, maximum, and summation.

Our demonstration also shows the internals of stream processing. Before proces-

sing a query, our streaming SPARQL engine parses the query and transforms it into

a logically and physically optimized operator graph. If the checkbox “demo” (see

(6) in Fig. 7.2 is enabled, a window of the evaluation demo will be popped after

clicking the button Start. The window demonstrates single execution steps of the

query processing, and displays the operator graph of the SPARQL query, and the

information transmission between the operators [see (1) of Fig. 7.4].

The user can navigate through the processing steps by clicking on the next [see

(2) of Fig. 7.4] or previous [see (3) of Fig. 7.4] step button. The user can also

directly navigate to the first step [see (4) of Fig. 7.4] or watch an animation of the

processing steps [see (5) of Fig. 7.4]. The processing of the RDF stream is

initialized by sending a Start-Of-Evaluation-Message to each operator. Incoming

triples are transmitted along the operator graph until a Triple Pattern operator,

which is evaluated on the incoming triples. The result [see (1) of Fig. 7.4] is then

transmitted to succeeding operators. The Window operator [see (6) of Fig. 7.4]

handles the window of considered triples for query evaluation. If a triple is out of

the window, then the Window operator transmits the information of deleting this

triple downward. This information might cause a succeeding Triple Pattern opera-

tor to delete a certain solution. The information to delete a certain solution is

transmitted to the succeeding operators, which have to delete this solution from

their eventually used temporary indices and finally from the query result. The

streaming engine triggers the periodic computation of the query by a Compute-

Intermediate-Result-Message, and the query result is displayed [see (7) of Fig. 7.4].

(1) PREFIX ebay: <http: / / developer.ebay.com / DevZone / finding / CallRef / findItemsByKeywords.html#>

(2) PREFIX lupos: <http: / / www.luposdate.org / >

(3) SELECT DISTINCT ?id ?title ?bid lupos:average(?bid) AS ?avg lupos:min(?bid) AS ?min

(4) lupos:max(?bid) AS ?max lupos:sum(?bid) AS ?sum`

(5) STREAM INTERMEDIATERESULT DURATION 1000

(6) WHERE {
(7) WINDOW TYPE SLIDINGTRIPLES 100 {

(8) ?id ebay:Response.searchResult.item.sellingStatus.currentPrice ?bid.

(9) ?id ebay:Response.searchResult.item.title ?title.}}

Fig. 7.3 Example query for RDF streams

7.3 Monitoring eBay Auctions 159

Note that LUPOSDATE also supports the stepwise evaluation demo for the

other SPARQL engines such as the main-memory engine and the RDF3X and

Hexastore reimplementations, which do not process data streams.

7.4 Special Operators for Stream Processing

The SPARQL algebra must be extended by basically two types of operators for

stream processing:

1. The first one called Stream operator triggers the periodic computation of query

results. The Stream operator is the root in operator graphs of stream queries.

2. The second one called Window operator implements that query processing only

considers certain recent data instead of all data.

7.4.1 Types of Stream Operators

Stream operators differ in the way they determine when they trigger succeeding

operators to compute an intermediate query result:

3 5 24

1

7

6

Fig. 7.4 Demonstration of evaluating RDF streams

160 7 Streams

l The Stream Triples operator triggers the computation of an intermediate query

result after a given number of triples have been arrived (and processed) inde-

pendent from the time of the last computation.
l The Stream Duration operator starts the computation of intermediate query

results after a certain time is over independent from the number of arrived

(and processed) triples.

Both operator types have their applications: While the Stream Duration operator

guarantees up-to-date query results, the Stream Triples operator allows computing

the query result only when there are many changes in the input.

7.4.2 Types of Window Operators

Window operators can differ how one can define the triples to be considered:

l The Window Triples operator considers only the last recent triples (up to a

specified number of triples) for query processing. The Window Triples operator

finds its applications, for example, whenever new triples update the values of

older ones and these newer triples should be only considered during query

processing.
l The Window Duration operator considers only those triples, which have been

arrived in recent time (up to a specified time period), for query processing. The

Window Duration operator is a necessity to compute aggregation functions over

a certain time period, for example, the average temperature of the last hour.

More types of Window operators exist. We refer the interested reader to, for

example, Arasu et al. (2006).

7.5 Related Work

We divide the related contributions into those dealing with data streams in

general and those especially for Semantic Web streams:

7.5.1 Data Streams in General

The Chronicle (Jagadish et al. 1995) data model introduced data streams by

describing chronicles as append-only ordered sequence of tuples and an

algebra operating over chronicles as well as over traditional relations.

Distributed stream management is supported in OpenCQ (Liu et al. 1999),

(continued)

7.5 Related Work 161

NiagraCQ (Chen et al. 2000), and Aurora (Balakrishnan et al. 2004), which

evolved into the Borealis project (Abadi et al. 2005). Babu andWidom (2001)

address continuous queries over data streams, which evolved into the devel-

opment of the CQL (Arasu et al. 2003, 2006; Munagala et al. 2007) query

language tailored for data streams. Law et al. (2004, 2005), and Bai et al.

(2006) deal with mining data streams. Especially, (Bai et al. 2006) exten-

sively consider data aggregation in streams. Rewriting techniques for stream-

ing aggregation queries are discussed in Golab et al. (2008).

7.5.2 Semantic Web Data Streams

We have proposed a SPARQL engine processing finite data streams in

Groppe et al. (2007b) and have there defined corresponding logical and

physical operators. To the best of our knowledge, our contribution in Groppe

et al. (2007a, b) reports the first streaming SPARQL engine. At that time, we

did not support window functions. Bolles et al. (2008) firstly introduced a

window-based processing of RDF streams. Barbieri et al. (2009, 2010) have

further extended the syntax of SPARQL by aggregates and timestamp func-

tions, but restrict the functionalities by allowing only one Window per

stream. Apart from supporting the aggregates and timestamp functions, we

also allow several windows per stream. Walavalkar et al. (2008) describe a

first approach to reasoning on data streams.

7.6 Summary and Conclusions

Our demonstration (Fell et al. 2010) shows the importance of streaming query

engines in data stream applications. By using the RDF data stream and its querying

language SPARQL, our monitoring system obtains big benefits in real-time data

processing, and it provides users with the capabilities of observing, analyzing, and

predicating the behavior and pattern of eBay buyers and sellers. Furthermore, our

system can also stepwise display the internal processing steps of querying RDF

streams, which helps one to better and easily understand the RDF stream processing

technology.

162 7 Streams

Chapter 8

Parallel Databases

Abstract While a number of optimizing techniques have been developed to effi-

ciently process increasing large Semantic Web databases, these optimization

approaches have not fully leveraged the powerful computation capability of modern

computers. Today’s multicore computers promise an enormous performance boost

by providing a parallel computing platform. Although the parallel relational data-

base systems have been well built, parallel query computing in Semantic Web

databases have not extensively been studied. In this work, we develop the parallel

algorithms for join computations of SPARQL queries. Our performance study

shows that the parallel computation of SPARQL queries significantly speeds up

querying large Semantic Web databases.

8.1 Motivation

The Semantic Web databases are becoming increasingly large, and a number of

approaches and techniques have been suggested for efficiently managing and

querying large-scale Semantic Web databases. However, current algorithms are

implemented for sequential computation and do not fully leverage the computing

capabilities of current standard multicore computers. Therefore, the querying

performance of the Semantic Web databases can be further improved by maximally

employing the capabilities of multicore computers, that is, parallel processing of

SPARQL queries.

A parallel database system improves performance through parallelization of

various operations, such as building indexes and evaluating queries. While centra-

lized database systems allow parallelism between transactions (multiuser synchro-

nization), parallel database systems additionally use parallelism between queries

inside a transaction, between the operators and within individual operators of a

query.

Ideally, the speedup from parallelization would be linear – doubling the number

of processing units should halve the runtime. However, very few parallel

approaches can achieve such ideal speedup. Since the existence of nonparalleliz-

able parts, most of them have a near-linear speedup for small numbers of processing

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_8, # Springer-Verlag Berlin Heidelberg 2011

163

units, and the speedup does not become larger than a certain constant value for large

numbers of processing units. The potential speedup of an algorithm on a parallel

computing platform is governed by Amdahl’s law (Amdahl 1967). The Amdahl’s

law discloses that a small portion of the problem, which cannot be parallelized, will

limit the overall speedup available from parallelization by a constant value. For this

reason, parallel computing is only useful for either small numbers of processors or

highly parallelizable problems. We will see that SPARQL query evaluation is

highly parallelizable.

Two major techniques of parallelism used in parallel database systems are

pipelined parallelism and partitioned parallelism (DeWitt and Gray 1992). By

streaming the output of one operator into the input of another operator, the two

operators can work in series giving pipelined parallelism. N operators executed

using pipelined parallelism can achieve a potential speedup of N. By partitioning

the input data into multiple parts, an operator can be run in parallel using the

multiple processing units, with each working on a part of the data. The partitioned

data and execution provide partitioned parallelism.

Parallelism can be obtained from conventional sequential algorithms by using

split and merge operators. The proven and efficient techniques (e.g. Mishra and

Eich 1992) developed for centralized database systems can be leveraged in a

parallel system enhanced with the split and merge operators. New issues that

need to be addressed in parallel query processing include data partitioning and

parallel join computation. The strategies of data partitioning contain (multidimen-

sional) range partitioning, round-robin partitioning, and hash partitioning (Graefe

1993). A large number of optimizing techniques for parallel join processing of

relational queries have been developed (e.g., Boral et al. 1990; DeWitt et al. 1986;

Kitsuregawa et al. 1983; Kitsuregawa and Ogawa 1990; Schneider and DeWitt

1989, 1990; Wolf et al. 1990; Zeller and Gray 1990), most of which focus on

parallel hash-join algorithms.

Parallel computing and parallel relational databases have been employed for

many years, and a number of efficient techniques have been developed, which can

be leveraged for parallel processing of SPARQL. However, optimizing techniques

for parallel relational databases do not specialize on the triple model of RDF and

triple patterns of SPARQL queries. In this chapter, we develop a parallel Semantic

Web database engine based on the RDF- and SPARQL-specific properties. We

focus on parallelization approaches for standard hardware with multiple processing

cores and common memory and shared disks. This chapter contains contributions

from (Groppe et al. 2011a).

The contributions of this chapter are as follows:

l Parallel join computations especially for

– Hash joins using a distribution thread, and

– Merge joins using partitioned input,
l An approach to computing operands in parallel, and
l An experimental evaluation, which shows the performance benefits of parallel

data structures and algorithms in Semantic Web databases.

164 8 Parallel Databases

8.2 Types of Parallelisms

Different types of parallelisms can be used during query processing (see Fig. 8.1).

We describe some of these types in detail in the following paragraphs:

1. A transaction contains several queries and updates of a database application.

Transactions typically conform to the ACID properties of databases:

l (A) Atomicity: A transaction should be processed atomic; that is, the effects

of all its queries and updates are visible to other transactions or none of them.
l (C) Consistency: The database should be left in a consistent state before and

after the transaction.
l (I) Isolation: The transaction should be processed isolated; that is, the effect

of the transaction should be the same as when all transactions are sequentially

processed.
l (D) Durability: The effect of a successful transaction must be durable even

after system crashes, damages of storage systems, or other erroneous software

or hardware.

The multiuser synchronization of databases ensures the ACID properties for

transactions, but allows processing different transactions in parallel (as much

as possible considering conflicts between different transactions).

2. As a transaction contains several queries and updates, these queries and updates

can be processed in parallel if they do not depend on each other: If an update

Tj

1. Inter-Transaction-Parallelism (Multi-User Synchronisation)

Start Transaction;
Exec sparql … SELECT ?a WHERE {
 ?a rdf:type bench:Article; swrc:pages ?v. };
Exec sparql … INSERT { dc:journal1 rdf:type bench:Article. };
Exec sparql … SELECT ?yr WHERE {
 ?j dc:title "Journal 1. ?j dcterms:issued ?yr.};
Commit Transaction;

2. Intra-Transaction-Parallelism and Inter-Query-Parallelism

Project to variable ?yr

Merge Join (?journal)

Sort ?j dc:title "Journal 1"
according to ?j

Sort ?j dcterms:issued ?yr
according to ?j

3. Intra-Query-Parallelism and Inter-Operator-Parallelism

Parallel Sorting of ?j dc:title "Journal 1" according to the variable ?j

4. Intra-Operator-Parallelism

Ti Tk

Fig. 8.1 Types of parallelisms in query processing

8.2 Types of Parallelisms 165

inserts, deletes, or modifies a triple, which influences the result of another query

in the transaction, then the update and query must be processed in the order they

occur in the transaction. The transaction in Fig. 8.1 contains an insertion of the

triple dc:journal1 rdf:type bench:Article, which is matched by the triple pattern

?a rdf:type bench:Article of the first query, such that the first query must be

processed before the insertion. However, the last query does not contain any

triple pattern matching the triple dc:journal1 rdf:type bench:Article, and there-

fore the last query can be processed in parallel to the insertion and also in

parallel to the first query of the transaction.

3. A query (and also an update) of a transaction is transformed into an operator-

graph consisting of several operators to be executed by the database system.

Two forms of parallelisms can be applied here: The first form applies operators

independent from each other in parallel. The second uses pipelining, where

already computed intermediate results are transferred to subsequent operators

as early as possible, which already processes this intermediate result further

leading to a smaller memory footprint and to saving i/o accesses. We have

already described pipelining in the chapter about physical optimization.

4. Many operators themselves can use parallel algorithms to determine their

results. Prominent examples of such operators are sorting and join operators.

For data parallelism, one tries to distribute the data into different disjoint frag-

ments, such that operations like sorting or joins can be done in parallel in the

different fragments. The extent of parallelism can be chosen dependent on the

size of data; that is, larger data can be distributed into more fragments, such that

more computers can be used to process the data in parallel leading to scalable

solutions. Furthermore, data parallelism can be combined with pipelining.

There are two forms of I/O parallelism (see Fig. 8.2):

l The access parallelism uses different I/O devices like hard disks to process

one job. Access parallelism is important for data parallelism and the

distributed fragments should be therefore stored on different I/O devices.
l During job parallelism independent jobs are processed on different I/O

devices in parallel. Applying job parallelism is important for intertransaction

parallelism and interquery parallelism.

…

…

(I) Intra-I/O-Parellelism (Access Parallelism)

(II) Inter-I/O-Parallelism (Job Parallelism)

Fig. 8.2 Types of I/O

parallelisms

166 8 Parallel Databases

8.3 Amdahl’s Law

The batch speedup determines the response time improvement of parallel proces-

sing. The batch speedup for N computers is defined to be the response time when

using one computer (and sequential algorithms) divided by the response time when

using N computers, parallel algorithms, and the same data. Ideal would be a

doubled batch speedup when using two times more computers (see Fig. 8.3).

A linear improvement would be still fine, because one could determine the number

of computers needed to obtain any response time one wants. However, experiments

show that in typical cases the batch speedup does not increase or only slightly

increases after a certain upper limit has been reached. In many cases, the batch

speedup even decreases for more computers.

The reasons for the limits of scalability are startup and termination overhead of

the parallel algorithms, inferences when accessing the logical and physical

resources, overloads of individual computers, lock conflicts, limited partitioning

possibilities of data, transactions and queries, and skew in the execution times of

subtasks.

Amdahl’s law now can determine an upper limit for the batch speedup, if the

fraction of the execution time of the non-optimized, sequential part of the algorithm

is known in relation to the overall execution time (see Fig. 8.4). Using this formula,

one can determine a maximal batch speedup of 20 if the sequential fraction is

only 5%.

ideal

linear

Batch
Speedup

N

typical

Fig. 8.3 Batch speedup

dependent on the number N

of computers

Batch Speedup =

Fopt = Fraction of the optimized (parallelized) component (0 ≤ Fopt ≤ 1)

Sopt = Speedup for the optimized (parallelized) component

1

(1–Fopt) +
Fopt

Sopt

Fig. 8.4 Formula for batch speedup

8.3 Amdahl’s Law 167

8.4 Parallel Monitors and Bounded Buffers

An important concept in parallel computing is parallel monitors. A parallel monitor

is a high-level synchronization concept and is introduced in (Hoare 1974). It is a

program module for concurrent programming with common storage, and has entry

procedures, which are called by threads. The monitor guarantees mutual exclusion

of calls of entry procedures: at most one thread executes an entry procedure of the

monitor at any time. Condition variables may be defined in the monitor and used

within entry procedures for condition synchronization.

An example of a parallel monitor is a bounded buffer. Mainly, a bounded buffer

has two operations: put to store an element in the bounded buffer and get to retrieve
an element from the bounded buffer. The bounded buffer has a specific constant

limit for the number of stored elements. If a thread tries to put an element into a full

bounded buffer, then the bounded buffer forces the calling thread to sleep until

another thread calls get to retrieve one element. A get on an empty bounded buffer

causes the calling thread to sleep until another thread puts one element inside.

The bounded buffers are typically used in producer/consumer patterns, where

several threads produce elements and other threads consume these elements.

The advantage of bounded buffers in comparison to unbounded buffers is that

the usage of the main memory is bounded, that is, consumer threads cannot store

more elements than allowed by the main memory, thus avoiding the problem of out-

of-memory errors. Therefore, we use bounded buffers for the communication

between threads for the parallel join computation.

8.5 Parallel Join Using a Distribution Thread

When we use several threads for join computation (see Fig. 8.5) and the input is not

partitioned yet, we have to partition the input data among these join threads using,

for example, (multidimensional) range partitioning or hash partitioning.

The data must be partitioned according to the join variables in the following

way: the solutions (of two join operands) with the same values bound to the join

variables are distributed to the same thread. This ensures (a) that each join thread

only involves the data in its own bounded buffers, and (b) that the overall join result

is correct. Hash partitioning uses a hash function over the values of the join

variables to determine to which join thread an input element is distributed. Hash

partitioning promises good distributions and efficient partitioning computation. We

hence use the hash partitioning for most parallel join processing.

For each operand of joins, we use a data partitioning thread to distribute the data
into the bounded buffers of join threads (see Fig. 8.5). The join thread reads data

from its two bounded buffers and performs a sequential join algorithm. If one join

thread has finished its computation, then its result can be processed by succeeding

operators (without waiting for the other join threads). This approach is the fastest

one of parallelizing join algorithms such as the hash join and the index join.

168 8 Parallel Databases

When processing large data, the joins such as the disk-based hash join and index

join involve complex operations during joining. Parallelizing these join algorithms,

even plus the overhead of data partitioning, still can speed up join processing.

Merge joins on already sorted data are very fast and cheap in terms of I/O and

CPU costs. The benefit from parallelizing merge joins cannot compensate the

overhead of data partitioning even for large input data and large join results. We

discuss how to parallelize merge joins in another way in the next section.

8.6 Parallel Merge Join Using Partitioned Input

As we mentioned before, a parallel merge join does not speed up the processing of

joins if an additional partitioning process is needed. However, the processing

performance benefits from the parallel computation of merge joins, if the input is

already partitioned.

The merge join operator typically follows either the triple pattern operator in an

operator graph, or the operators such as filters, which do not destroy the partitions of

the input. Furthermore, the output of a merge join with such partitioned input is

again partitioned, such that succeeding merge joins can use partitioned input as

well. In order to generate a partitioned input for the merge join, we can retrieve the

result of triple patterns using range partitioning (see Fig. 8.6). Range partitioning in

comparison to hash partitioning has the advantage that the data in all the ranges can

be read and processed in parallel.

input from
left operand

…

Join Thread

Join Thread

…
…

input from
right oper-

and

…

D
at

a
pa

rt
it
io

ni
ng

 t
hr

ea
d

D
at

a
pa

rt
it
io

ni
ng

 t
hr

ea
d

bounded buffersbounded buffers

… …

final result

Fig. 8.5 Parallel join computation

8.6 Parallel Merge Join Using Partitioned Input 169

SPARQL engines for large-scale data, such as Hexastore (Weiss et al. 2008) and

RDF3X (Neumann and Weikum 2008, 2009), use six indices corresponding to six

collation orders SPO, SOP, PSO, POS, OSP, and OPS to manage RDF triples.

Depending on which positions in a triple pattern contain RDF terms (e.g., the

subject and the object), one of the indices (e.g., SOP) is used to efficiently retrieve

the data by using a prefix search. Using these collation orders, many joins can

be computed using the fast merge join approach over sorted data. RDF3X employs

just B+-trees for each collation order and prefix searches, thus gaining a simpler and

faster index structure than Hexastore.

Employing B+-trees as the indices for each collation order has another advan-

tage: The results of retrieving B+-trees can be very easily partitioned according to

the range information in the histograms of triple patterns. For each kind of triple

patterns, an equi-depth histogram (Piatetsky-Shapiro and Connell 1984) is con-

structed (see Chapter Logical Optimization) during the query optimization phase of

our SPARQL engine. Among other information, each interval in this histogram

contains the range and the number of triples allocated in this interval. We use

special histogram indices to fast compute histograms over large datasets (see

Chapter Physical Optimization).

Figure 8.7 describes how to get the partitioned results of a triple pattern using

range partitioning: We assume that the data in the ranges [(3, 2, 1), (3, 4, 7)] will be

distributed to the first partition and the data in [(3, 5, 5), (3, 7, 4)] to the second

Merge Join Thread Merge Join Thread …

Union

Merge Join Thread

Triple
(s,p,o)
with

b1 ≤ s<b2

Triple
Pattern 2

e.g.
(s,p2,o2)

Triple
Pattern 1

e.g.
(s,p1,o1)

Triple
Pattern 2

e.g.
(s,p2,o2)

Triple
Pattern 2

e.g.
(s,p2,o2)

Triple
Pattern 1

e.g.
(s,p1,o1)

Triple
Pattern 1

e.g.
(s,p1,o1)

Triple
(s,p,o)
with

b1 ≤ s<b2

Triple
(s,p,o)
with
bn ≤ s

Triple
(s,p,o)
with
bn ≤ s

Triple
(s,p,o)
with
s<b1

Triple
(s,p,o)
with
s<b1

Fig. 8.6 Parallel merge join using range partitioning

170 8 Parallel Databases

(1
,
2,

 3
),
 (

1,
 2

,
4)

,
(1

,
3,

 3
),
 (

2,
 2

,
4)

(2
,
2,

 4
)

(3
,
3,

 6
)

(3
,
4,

 2
)

K
ey

:

K
ey

:

L
ea

f
no

de
s

2
P

ar
ti
ti
on

s
fo

r
tr

ip
le

 p
at

te
rn

 (
3,

 ?
v,

 ?
o)

(3
,
2,

 1
)

(3
,
4,

 7
)

(3
,
5,

 5
)

(3
,
7,

 4
)

P
ar

ti
ti
on

 1
P

ar
ti
ti
on

 2

B
+

–t
re

e
(S

P
O

 c
ol

la
ti
on

 o
rd

er
)

A
ce

ss
ed

 p
at

h
fo

r
P
ar

ti
ti
on

 2
w

it
h

bo
rd

er
s

(3
,
5,

 5
)

an
d

(3
,
7,

 4
)

A
ce

ss
ed

 p
at

h
fo

r
P
ar

ti
ti
on

 1
w

it
h

bo
rd

er
s

(3
,
2,

 1
)

an
d

(3
,
4,

 7
)

(3
,
2,

 1
),
 (

3,
 3

,
4)

,
(3

,
3,

 5
),
 (

3,
 3

,
6)

(3
,
3,

 7
),
 (

3,
 3

,
8)

,
(3

,
4,

 1
),
 (

3,
 4

,
2)

(3
,
4,

 3
),
 (

3,
 4

,
6)

,
(3

,
4,

 7
),
 (

3,
 5

,
5)

(3
,
5,

 6
),
 (

3,
 5

,
8)

,
(3

,
6,

 1
),
 (

3,
 6

,
2)

(3
,
7,

 3
),
 (

3,
 7

,
4)

,
(8

,
2,

 7
),
 (

8,
 4

,
3)

(3
,
5,

 5
)

(3
,
6,

 2
)

K
ey

 a
nd

 v
al

ue
:

F
ig
.
8
.7

B
þ
-t
re
e
ac
ce
ss
es

fo
r
p
ar
ti
ti
o
n
ed

in
p
u
t.
In
te
g
er

id
s
ar
e
u
se
d
in
st
ea
d
o
f
R
D
F
te
rm

s
as

co
m
p
o
n
en
ts
o
f
th
e
in
d
ex
ed

tr
ip
le
s

8.6 Parallel Merge Join Using Partitioned Input 171

partition. Two partitioning threads can perform the range partitioning in parallel:

One first searches for the border (3, 2, 1) in the B+-tree and then follows the chain of

leafs until the border (3, 4, 7), and the retrieved data belong to the first partition;

another starts searching from the border (3, 5, 5) until the border (3, 7, 3) and

retrieves the data for the second partition.

All approaches described so far for parallel joins apply also for the computation

of OPTIONAL constructs. They are left outer-joins and can hence be analogously

parallelized.

8.7 Parallel Computation of Operands

Another way to parallelize joins is to process their operands in parallel. In order to

parallelize the processing of join operands, we use two operand threads (see

Fig. 8.8). An operand thread computes its operand and puts the result into its

bounded buffer.

Join approaches such as hash joins first read in the whole data of one operand and

afterward start reading from the other operand. For such joins, the parallelism is not

high, depending on the size of the bounded buffer. For the joins such as merge joins,

which synchronously process the operands’ data, two operand threads can work in

parallel.

re
su

lt
 f

ro
m

le
ft

 o
pe

ra
nd

re
su

lt
 f

ro
m

ri
gh

t
op

er
an

d

O
pe

ra
nd

 t
hr

ea
d

O
pe

ra
nd

 t
hr

ea
d

Join

…

bo
un

de
d

bu
ff

er

bo
un

de
d

bu
ff

er

…

Operator

… …

(Operatorgraph
of left operand)

(Operatorgraph
of right operand)

…

Operator

Fig. 8.8 Parallel

computation of operands

172 8 Parallel Databases

However, advanced techniques such as sideways information passing (SIP)

(Neumann and Weikum 2009) cannot be applied to parallel computation of oper-

ands, as using SIP to compute the next solution of one operand relies on the current

solution of the other operand.

The experiments show that the parallel computation of operands speeds up the

evaluation of some queries, especially if the processing of operands involves complex

computations, but the previously discussed approaches for parallel joins are superior.

8.8 Performance Evaluation

We study the performance benefits for parallel join computations. For these experi-

ments, we focus on the index approach RDF3X in (Neumann and Weikum 2008,

2009), since it is similar to Hexastore in (Weiss et al. 2008), but uses a simpler and

faster index structure than (Weiss et al. 2008). We compare the pure RDF3X
approach, that is, using sequential join algorithms, with several parallel versions

of the RDF3X approach: PHJ RDF3X is the RDF3X approach using a parallel hash-

join algorithm with eight join threads and distribution threads; PMJ RDF3X uses

parallel merge join algorithms with eight merge join threads with partitioned input;

PO RDF3X computes the operands of the last hash join in parallel. Combinations

such as PMJ PO RDF3X combine together several parallel approaches such as PMJ
RDF3X and PO RDF3X.

The original RDF3X prototype (Neumann and Weikum 2008, 2009) has several

limitations, as already explained in the chapter about physical optimization. In

order to lift these limitations and avoid problems resulting from not supported

features of the original RDF3X prototype, we use again our reimplementation of the

RDF3X approach.

The test system for the performance analysis uses an Intel Core 2 Quad CPU

Q9400 computers, each with 2.66 GHz, 4 GB main memory, Windows XP Profes-

sional (32 bit), and Java 1.6. We have run the experiments ten times and present the

average execution times and the standard deviation of the sample.

We use the large-scale datasets of the Billion Triples Challenge (BTC)

(Semantic web challenge 2009) and corresponding queries.

We have imported all over 830 million distinct triples of the Billion Triples

Challenge. In comparison, the performance analysis in (Neumann and Weikum

2009) used only a subset of it.

The queries (BTC 1 to BTC 8) used by (Neumann and Weikum 2009) return

very small intermediate and final results, which can be processed directly in

memory. For these queries, the parallel approaches often do not show benefits

and are dominated by their overhead. Therefore, we also use several additional

queries (EBTC 1 to EBTC 8) with bigger cardinalities (see the Chapter Physical

Optimization). Table 8.1 presents the processing times by the different approaches.

Although the queries BTC 1 to BTC 8 are designed to retrieve very small results

and thus are favorable to the RDF3X using sequential algorithms, except for the

query BTC 7, our parallel approaches have similar performance as the sequential

8.8 Performance Evaluation 173

T
a
b
le

8
.1

E
v
al
u
at
io
n
ti
m
es

(i
n
se
co
n
d
s)
fo
r
B
T
C
D
at
a.
E
n
tr
ie
s
in

b
o
ld

fa
ce

p
ar
t
m
ar
k
si
g
n
ifi
ca
n
tl
y
fa
st
es
t
ru
n
ti
m
es

Q
u
er
y

R
D
F
3
X

P
H
J
R
D
F
3
X

P
M
J
R
D
F
3
X

P
H
P
M
J
R
D
F
3
X

P
O

R
D
F
3
X

P
O

P
H
J
R
D
F
3
X

S
iz
e
o
f
re
su
lt
s

B
T
C
1

0
.0
4
7
�

0
.0
1
4

0
.0
4
7
�

0
.0
2
6

0
.0
4
7
�

0
.0
1
5

0
.0
4
7
�

0
.0
3
3

0
.0
4
5
�

0
.0
1
3

0
.0
4
6
�

0
.0
2
8

2

B
T
C
2

0
.0
4
2
�

0
.0
1
6

0
.0
4
6
�

0
.0
1

0
.1
1
9
�

0
.1
3
4

0
.1
1
�

0
.1
3

0
.1
2
�

0
.0
1
2

0
.1
2
�

0
.0
1

4
8

B
T
C
3

0
.4
5
2
�

0
.0
8
2

0
.4
3
6
�

0
.
0
8
5

0
.6
5
6
�

0
.0
4
7

0
.7
4
�

0
.0
5

0
.4
5
4
�

0
.1
0
5

0
.4
8
�

0
.0
4

3
4

B
T
C
4

4
4
.9

�
0
.1

4
5
.9
9
�

0
.1
3

3
1
.9
8
�

2
.9
9

3
3
.8

�
0
.9

4
6
.1

�
0
.2

4
4
.8
6
�

0
.1
2

3

B
T
C
5

3
.5
8
�

0
.1
2

3
.5
2
�

0
.0
4

3
�

0
.0
6

2
.9
9
�

0
.1

5
.2

�
0
.2

5
.1
5
�

0
.1
3

0

B
T
C
6

1
.6
1
�

0
.0
3

1
.6
5
�

0
.0
8

0
.9
5
9
�

0
.5
6
4

0
.7
6
�

0
.0
4

0
.6
3
�

0
.0
5

0
.7
6
�

0
.1

1

B
T
C
7

0
.6
2
9
�

0
.0
7
7

6
.3
3
�

0
.0
7

6
.9
6
�

2
.7
4

1
3
.7

�
0
.7

1
7
0
�

1
1
7
3
�

1
0

B
T
C
8

0
.3
8
1
�

0
.0
7
0

0
.3
6
�

0
.0
5

0
.8
8
�

0
.0
9

0
.8
7
�

0
.0
7

0
.5
2
�

0
.0
7

0
.5
2
�

0
.0
8

0

E
B
T
C
1

1
5
3
.2

�
3
.7

1
0
5
.9

�
1
.7

1
5
3
.1
6
�

3
.3
8

1
1
3
.4
4
�

3
.0
8

1
4
9
�

2
1
3
9
�

2
7
9
8
,5
5
3

E
B
T
C
2

6
.0
5
�

0
.4
1

4
.4
1
�

0
.7
1

6
.5
8
�

0
.3
4

4
.6
9
�

0
.1
4

6
.5
8
�

0
.7

5
.6

�
0
.9

1
,2
0
6

E
B
T
C
3

2
.0
8
�

0
.0
5

3
.1
2
�

0
.0
7
2

2
.1
3
�

0
.1
3

2
.1
3
�

0
.1
7

1
.9
7
�

0
.1
3

3
.3

�
0
.1
2

5
7

E
B
T
C
4

1
,8
8
3
�

3
2

1
,2
4
1
�

2
6

1
,8
4
4
�

1
8

1
,2
9
7
�

2
1

1
,8
3
4
�

2
1

1
,8
5
0
�

3
7

1
3
4
,5
8
8

E
B
T
C
5

1
3
6
.9

�
4
.1

1
4
5
�

2
0

1
3
4
�

3
1
6
0
�

2
9

1
2
9
�

3
1
3
7
�

1
8

3
,8
5
6
,5
8
6

E
B
T
C
6

2
,8
1
0
�

2
4

1
,7
3
6
�

8
5

2
,6
4
9
�

3
9

1
,7
9
9
�

6
0

2
,6
7
7
�

9
1
,5
5
5
�

3
8

5
8
,8
4
9
,3
2
6

E
B
T
C
7

6
.4

�
0
.3
4

4
.8
7
�

0
.8
5

6
.8

�
0
.6
2

5
.3
7
�

0
.6
1

7
.4

�
0
.9

5
.3
3
�

0
.8
4

1
8

E
B
T
C
8

2
.1
5
�

0
.0
7

3
.0
1
�

0
.0
7

2
.1
0
�

0
.0
6

3
.0
7
�

0
.0
1
2

2
.0
6
�

0
.1
3

3
.3
5
�

0
.1
6

5
7

174 8 Parallel Databases

one. Our parallel approaches significantly outperform the sequential approach for

the queries BTC 4 (PMJ RDF3X being the fastest), BTC 5 (PH PMJ RDF3X being

the fastest) and BTC 6 (PO RDF3X being the fastest). For the EBTC queries, PHJ

RDF3X is the fastest approach when evaluating EBTC 1, EBTC2, EBTC4, and

EBTC 7, PO RDF3X is the fastest approach for EBTC 5, and PO PHJ RDF3X is the

fastest one for EBTC 6. Parallel join algorithms work well whenever join results are

large: If a merge join has a large result, PMJ RDF3X or PH PMJ RDF3X belongs to

the fastest ones. If a hash join has a large result, PHJ RDF3X is the fastest.

8.9 Performance Gains and Loss

Several main factors contribute to the gain and loss of performance from paralleliz-

ing Semantic Web database engines:

(a) PHJ RDF3X performs best whenever hash joins have large results.

(b) Whenever merge joins have to process large input and have large results, then

PMJ RDF3X or PH PMJ RDF3X outperforms the other sequential and parallel

approaches.

(c) The overhead of parallel processing such as data partitioning will dominate if

involved data are small in size.

(d) Advanced techniques such as sideways information passing (SIP) (Neumann

and Weikum 2009) cannot be applied to some parallel computations.

Therefore, it is the task of the query optimizer to estimate the sizes of the join

results and choose the proper join algorithms.

8.10 Summary and Conclusions

Since the disappearing of single-core computers, parallel computing has become

the dominant paradigm in computer architectures. Therefore, developing parallel

programs to fully employ the computing capabilities of multicore computers is

under the necessity. This is especially important for time-consuming processing

like querying growingly large Semantic Web databases. In this work, we develop a

parallel SPARQL engine, especially focusing on the parallelism of join computa-

tion. For different join algorithms, we propose different parallel processing in order

to maximally gain from parallel computing.

Our experimental results show that parallel join computation outperforms

sequential join processing for large join results; otherwise, the parallel overhead

compensates the performance improvements through parallelization. Therefore, the

query optimizer must decide when to apply parallel join approaches. The proper

application of parallel computation can significantly speed up querying very large

Semantic Web databases.

8.10 Summary and Conclusions 175

Chapter 9

Inference

Abstract Data contain given facts, which are explicitly expressed. If we have the

facts that Nils is a child of Sven and Sven is a child of Josef, then we as humans

know that Josef is the grandparent of Nils, which is also called implicit knowledge.
However, machines cannot process implicit knowledge as humans can do.

Machines must get to know how to transform implicit knowledge to explicit

knowledge, that is, to facts, such that machine can process it. The transformation

from implicit knowledge to explicit knowledge is often expressed by rules. The

application of rules to determine new facts is called inference. Inference is a costly
operation, often leading to higher costs than query processing. We propose different

materialization strategies for inferred facts to optimize query processing on inferred

facts in this chapter and examine their performance gains.

9.1 Introduction

The mechanism to derive new facts based on given ones according to rules is called

inference. The rules can be user-defined, for example, in the case of RIF (Boley

et al. 2009) rules, or being fixed for inference based on RDF Schema (Brickley and

Guha 2004) or OWL (2) (Dean and Schreiber 2004; Motik et al. 2009) ontologies.

A rule typically contains a rule head (called left side or consequent) and a body
(called right side or antecedent). If the antecedent of a rule is true, then the

consequent of the rule can be derived as new fact. Many different notations for

rules exist: For example, a rule with consequent (c1, subClassOf, c3) and anteced-

ent (c1, subClassOf, c2) and (c2, subClassOf, c3) is denoted by

(c1, subClassOf, c3) :- (c1, subClassOf, c2), (c2, subClassOf, c3),
by

IF (c1, subClassOf, c2) AND (c2, subClassOf, c3) THEN (c1, subClassOf, c3),
or by

ðc1; subClassOf; c2Þðc2; subClassOf; c3Þ
ðc1; subClassOf; c3Þ

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_9, # Springer-Verlag Berlin Heidelberg 2011

177

with c1, c2, and c3 being variables. This rule describes the transitive property of

subClassOf relationships; that is, if the facts (Jeep, subClassOf, Car) and (Car,
subClassOf, Vehicle) are given, we can derive the new fact (Jeep, subClassOf,
Vehicle) according to this rule. The rule given above is one of the inference rules for
RDF Schema and OWL ontologies. Derived facts such as (Jeep, subClassOf,
Vehicle) must be considered during query processing; that is, a triple pattern

(?s, subClassOf, Vehicle) has also the solution {(?s ¼ Jeep)} based on the derived

fact (Jeep, subClassOf, Vehicle). Materializing, that is, precomputation, of the

derived facts can speed up query processing, but may explode the size of adminis-

tered data. Deriving for queries relevant facts for every query new does not have

this disadvantage, but may slow down query processing significantly. In this

chapter, we investigate how to optimize inference for query processing and propose

several approaches each with its own advantages and disadvantages. In particular,

we examine three different materialization strategies (1) No materialization of

derived facts and deriving relevant facts for each query new, (2) optimized materi-

alization of derived facts between facts of the ontology, and (3) optimized materi-

alization of all derived facts. We focus on inference based on RDF Schema in order

to demonstrate the main principles of the different materialization strategies. Note

that RIF and OWL inference is based on more and more complex rules, but the main

clues remain the same as for RDF Schema inference.

9.2 RDF Schema Inference Rules

There have been different sets of inference rules for RDF Schema proposed. First,

the W3C itself proposes a set of inference rules in Hayes (2004). A simplified

version of the inference rules in Hayes (2004) are proposed in Gutierrez et al.

(2004). The authors in (Muňoz et al. 2007) claim that the inference rules in Hayes

(2004) and in Gutierrez et al. (2004) are not sound and complete, and they propose

their own ones being sound and complete.

We present here the simplified version of theW3C rules as proposed in Gutierrez

et al. (2004). These rules give an overview and help to understand the main

inference rules for RDF Schema. Muňoz et al. (2007) add some more rules (and

let two minor rules [(VI) and (VII)] away), which all do not affect the core of RDF

Schema inference. In later examples, especially in the operator graphs, we will use

the official W3C inference rules (Hayes 2004). Note that our implementation can

additionally use the inference rules of Gutierrez et al. (2004) and we yield similar

results with the rule set of Gutierrez et al. (2004).

Triples (s, p, o)2 (I [B) � I � (I [B [L) containing ontology information are

those with p2 {domain, range, subPropertyOf, subClassOf}. The rules of Gutierrez
et al. (2004), which require only triples containing ontology information are as

follows:

(I):
ðc1; subClassOf; c2Þðc2; subClassOf; c3Þ

ðc1, subClassOf, c3Þ

178 9 Inference

(II):
ðp1; subPropertyOf; p2Þðp2; subPropertyOf; p3Þ

ðp1, subPropertyOf, p3Þ
The rules (I) and (II) generate the transitive closure of subClassOf and

subPropertyOf relationships. The other rules are as follows:

(III):
ðp1; domain; cÞðs; p1; oÞ

ðs, type, cÞ
(IV):

ðp1; range; cÞðs; p1; oÞ
ðo, type, cÞ

(V):
ðs; type; PropertyÞ
ðs, subPropertyOf, sÞ

(VI):
ðs; type;ClassÞ

ðs, subClassOf, sÞ
(VII):

ðp1; subPropertyOf; p2Þðs; p1; oÞ
ðs, p2, oÞ

(VIII):
ðc1; subClassOf; c2Þðs; type; c1Þ

ðs, type, c2Þ
Especially the rules (VII) and (VIII) determine instances and properties of super

classes and super properties.

9.3 Materialization of Inference and Consequences

for Query Optimization

If all derived facts are materialized (and thus are stored in the main indices), then

queries can be processed as usual. For example, the query in Fig. 9.1 can be just

processed as presented in the operator graph in Fig. 9.2. The operator graphs

presented here are the ones of the stream engine, but analogous operator graphs

exist for the other query engines.

PREFIX rdf: <http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#>

PREFIX dc: <http:// purl.org / dc / elements / 1.1 />

PREFIX dcterms: <http:// purl.org / dc / terms />

PREFIX foaf: <http:// xmln.com / foaf / 0.1 />

PREFIX xsd: <http:// www.w3.org / 2001 /XMLSchema#>

SELECT ?journal ?yr

WHERE {

?journal rdf:type foaf:Document.

?journal dc:title “Journal 1 (1940)”^^xsd:string.

?journal dcterms:issued ?yr. }

Fig. 9.1 Example SPARQL query for the different materialization strategies

9.3 Materialization of Inference and Consequences for Query Optimization 179

However, if we materialize the inference requiring only triples containing ontol-

ogy information [e.g., rules (I) and (II) for the RDF Schema rule set proposed in

Gutierrez et al. (2004)], which we call inference in the ontology layer, then we can

use this materialized inference to further optimize the operator graph: First, we have

to generate the operator graph containing the query itself as well as the missing

inference rules not for the inference in the ontology layer. For our example query in

Fig. 9.1, we thus retrieve the operator graph in Fig. 9.3, where we consider the official

inference rules of the W3C as proposed in Hayes (2004). Let us assume that the

subClassOf relationships (Journal, subClassOf, Document) and (Article, subClassOf,
Document) are given. Because of the materialization strategy, we know that all triples

with predicate subClassOf are already inferred. Thus, because of the rule (VIII) of

Gutierrez et al. (2004),we can replace the triple pattern (?journal, rdf:type,Document)
with the union of the triple patterns (?journal, rdf:type, Document), (?journal, rdf:
type, Journal), and (?journal, rdf:type, Article). Further logical optimizations lead to

the very optimal operator graph as presented in Fig. 9.4 after 1,854 single transfor-

mation steps in our implementation. We present some of the logical optimization

rules in later chapters. The materialization of the inference in the ontology layer can

be expressed in the form of an operator graph (see Fig. 9.5) and afterward logically

optimized (see Fig. 9.6). The optimized operator graph (see Fig. 9.6) only needs to be

determined once and can be afterward directly used for any ontology.

If no inference has been materialized, then we have to add all inference rules in

the operator graph of the query (see Fig. 9.7) and can afterward apply logical

optimization (see Fig. 9.8).

9.4 Logical Optimization for Inference

We do not present all logical optimization rules here, as they are too many.

However, we present a short overview of the goals and how they are reached in

the logical optimization phase for inference. Therefore, we only describe the rules

in an informal way such that the ideas behind them become clear.

Fig. 9.2 Operator graph of the query in Fig. 9.1

180 9 Inference

F
ig
.
9
.3

U
n
o
p
ti
m
iz
ed

o
p
er
at
o
r
g
ra
p
h
w
it
h
in
fe
re
n
ce

ru
le
s
fo
r
in
st
an
ce

la
y
er

9.4 Logical Optimization for Inference 181

The logical optimization for inference without materialization or with materiali-

zation in the ontology layer has two main goals:

1. The first goal is to infer only that information which is necessary to answer a

given query.

2. The second goal is to infer as late as possible during query processing in order to

reduce the sizes of intermediate results.

New RDF triples are inferred by Generate operators in the initial execution plan.

The first optimization rule determines which triple patterns could be matched by

generated RDF triples from each Generate operator and connects the Generate

operator with those triple patterns.

Generate operators generating RDF triples, which will never be matched by any

triple pattern, can be already removed with its preceding operators. With this, we

already fulfill the first goal and infer only that information which is necessary to

answer a given query.

Now, we can determine the generated solutions of such a Generate – triple

pattern combination, replace them with one special operator, and can try to move

this special operator to inner subexpressions to infer as late as possible (goal two).

If we have materialized the inference within the ontology layer, we can try to

already apply triple patterns matching RDF triples containing ontology information.

The triple pattern is then replaced with the union of its solutions from applying it

to the materialized ontology inference. Afterward, especially constant propagation

Fig. 9.4 Optimized operator graph of Fig. 9.3 after 1,854 single transformation steps

182 9 Inference

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

s:
su

bP
ro

pe
rt

yO
f,

?v
vv

)
T

rip
le

 P
at

te
rn

 (
?v

vv
,r

df
s:

su
bP

ro
pe

rt
yO

f,
?x

xx
)

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

:ty
pe

, r
df

s:
C

on
ta

in
er

M
em

be
rs

hi
pP

ro
pe

rt
y)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

C
la

ss
O

f,
rd

fs
:s

ub
P

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

C
la

ss
O

f,
rd

fs
:s

ub
P

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

C
la

ss
O

f,
rd

fs
:s

ub
P

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

s:
su

bC
la

ss
O

f,
?v

vv
)

P
at

te
rn

M
at

ch
er

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

Jo
in

 o
n

nu
ll

0
1

0
1

0

1

1 1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

Jo
in

 o
n

nu
ll

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bC
la

ss
O

f,
?x

xx
)

G
en

er
at

e
(?

uu
u,

 r
df

s:
ra

ng
e,

 ?
zz

z)

G
en

er
at

e
(r

df
:P

ro
pe

rt
y,

 r
df

s:
su

bC
la

ss
O

f,
?v

vv
)

G
en

er
at

e
(?

w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

G
en

er
at

e
(r

df
s:

C
la

ss
, r

df
s:

su
bC

la
ss

O
f,

?v
vv

)

G
en

er
at

e
(r

df
:P

ro
pe

rt
y,

 r
df

s:
su

bC
la

ss
O

f,
?v

vv
)

G
en

er
at

e
(r

df
s:

C
la

ss
, r

df
s:

su
bC

la
ss

O
f,

?v
vv

)

rd
f:<

ht
tp

://
w

w
w

.w
3.

or
g

/1
99

9
/0

2
/2

2-
rd

f-
sy

nt
ax

-n
s#

>
rd

fs
:h

ttp
://

w
w

w
.w

3.
or

g
/2

00
0

/0
1

/r
df

-s
ch

em
a#

>

G
en

er
at

e
(r

df
s:

R
es

ou
rc

e,
 r

df
s:

su
bC

la
ss

O
f,

?v
vv

)

G
en

er
at

e
(u

uu
, r

df
s:

su
bC

la
ss

O
f,

?u
uu

)

G
en

er
at

e
(u

uu
, r

df
s:

su
bP

ro
pe

rt
yO

f,
?u

uu
)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bC
la

ss
O

f,
rd

fs
:U

R
IL

ite
ra

l)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bP
ro

pe
rt

yO
f,

rd
fs

:m
em

be
r)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bC
la

ss
O

f,
rd

fs
:R

es
ou

rc
e)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bP
ro

pe
rt

yO
f,

?x
xx

)

G
en

er
at

e
(?

uu
u,

 r
df

s:
do

m
ai

n,
 ?

zz
z)

G
en

er
at

e
(?

w
w

w
, r

df
s:

ra
ng

e,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?v
vv

,r
df

s:
su

bC
la

ss
O

f,
?x

xx
)

T
rip

le
 P

at
te

rn
 (

?v
vv

,r
df

s:
su

bC
la

ss
O

f,
?z

zz
)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

P
ro

pe
rt

yO
f,

rd
fs

:s
ub

P
ro

pe
rt

yO
f,

?w
w

w
)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

ra
ng

e,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

ra
ng

e,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

s:
ra

ng
e,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?v
vv

, r
df

s:
su

bC
la

ss
O

f,
?z

zz
)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

s:
do

m
ai

n,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

rd
fty

pe
, r

df
s:

su
bP

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?s
, ?

p,
 ?

o)

R
es

ul
t

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

su
bC

la
ss

O
f,

?u
uu

)
T

rip
le

 P
at

te
rn

 (
?u

uu
, r

df
s:

do
m

ai
n,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

:ty
pe

, r
df

s:
D

at
at

yp
e)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

:ty
pe

, r
df

s:
C

la
ss

)
T

rip
le

 P
at

te
rn

 (
?u

uu
, r

df
s:

ra
ng

e,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

su
bP

ro
pe

rt
yO

f,
?u

uu
)

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

:ty
pe

, r
df

P
ro

pe
rt

y)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

:ty
pe

, r
df

s:
C

la
ss

)

F
ig
.
9
.5

U
n
o
p
ti
m
iz
ed

o
p
er
at
o
r
g
ra
p
h
fo
r
m
at
er
ia
li
zi
n
g
th
e
in
fe
re
n
ce

in
th
e
o
n
to
lo
g
y
la
y
er

9.4 Logical Optimization for Inference 183

F
ig
.
9
.6

O
p
ti
m
iz
ed

o
p
er
at
o
r
g
ra
p
h
o
f
F
ig
.
9
.5

af
te
r
1
4
4
si
n
g
le

tr
an
sf
o
rm

at
io
n
st
ep
s

184 9 Inference

p1
:<

ht
tp

://
xm

ln
s.

co
m

/f
oa

f/
0.

1
/>

p2
:<

ht
tp

://
pu

rl.
or

g
/d

c
/e

le
m

en
ts

/1
.1

/>

p3
:<

ht
tp

://
pu

rl.
or

g
/d

c
/t

er
m

s
/>

rd
f:h

ttp
://

w
w

w
.w

3.
or

g
/1

99
9

/0
2

/2
2-

rd
f-

sy
nt

ax
-n

s#
>

rd
fs

:h
ttp

://
w

w
w

.w
3.

or
g

/2
00

0
/0

1
/r

df
-s

ch
em

a#
>

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

s:
su

bP
ro

pe
rt

yO
f,

?v
vv

)
T

rip
le

 P
at

te
rn

 (?
uu

u,
rd

fs
:s

ub
C

la
ss

O
f,

?v
vv

)

T
rip

le
 P

at
te

rn
 (

?v
vv

,r
df

s:
su

bP
ro

pe
rt

yO
f,

?x
xx

)

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

s:
do

m
ai

n,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

s:
ta

ng
e,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?v
vv

, r
df

s:
su

bC
la

ss
O

f,
?z

zz
)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (?

rd
fs

:s
ub

C
la

ss
O

f,
rd

fs
:s

ub
P

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

s:
su

bC
la

ss
O

f,
?x

xx
)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

T
rip

le
 P

at
te

rn
 (

?u
uu

, ?
aa

a,
 ?

yy
y)

T
rip

le
 P

at
te

rn
 (

?u
uu

, ?
aa

a,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?u
uu

, ?
aa

a,
 ?

yy
y)

T
rip

le
 P

at
te

rn
 (

?u
uu

, ?
aa

a,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?v
vv

, r
df

ty
pe

, ?
uu

u)

T
rip

le
 P

at
te

rn
 (

?u
uu

, ?
aa

a,
 ?

xx
x)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

ra
ng

e,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

ra
ng

e,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?a
aa

, r
df

s:
ra

ng
e,

 ?
xx

x)
T

rip
le

 P
at

te
rn

 (
?a

aa
, r

df
s:

do
m

ai
n,

 ?
xx

x)

T
rip

le
 P

at
te

rn
 (?

jo
ur

na
l,

p3
:is

su
ed

, ?
yr

)

T
rip

le
 P

at
te

rn
 (

?j
ou

rn
al

, r
df

:ty
pe

, p
1:

D
oc

um
en

t)

T
rip

le
 P

at
te

rn
 (?

uu
u,

 rd
f:t

yp
e,

 rd
fs

:C
on

ta
in

er
M

em
be

rs
hi

pP
ro

pe
rt

y)

T
rip

le
 P

at
te

rn
 (

?v
vv

, r
df

s:
su

bC
la

ss
O

f,
?z

zz
)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

s:
do

m
ai

n,
 ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

su
bC

la
ss

O
f,

?u
uu

)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

C
la

ss
O

f,
rd

fs
:s

ub
P

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

P
ro

pe
rt

yO
f,

rd
fs

:s
ub

P
ro

pe
rt

yO
f,

?w
w

w
)

T
rip

le
 P

at
te

rn
 (

?a
aa

, r
df

s:
su

bP
ro

pe
rt

yO
f,

?b
bb

)

T
rip

le
 P

at
te

rn
 (

?u
uu

, r
df

:ty
pe

, r
df

s:
D

at
at

yp
e)

T
rip

le
 P

at
te

rn
 (

?j
ou

rn
al

, p
2:

tit
le

, “
Jo

ur
na

l 1
 (

19
40

)”
)

T
rip

le
 P

at
te

rn
 (

rd
fs

:s
ub

C
la

ss
O

f,
rd

fs
:s

ub
P

ro
pe

rt
yO

f,
?w

w
w

)

T
rip

le
 P

at
te

rn
 (?

uu
u,

 rd
fs

:r
an

ge
, ?

vv
v)

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

ty
pe

, r
df

P
ro

pe
rt

y)
T

rip
le

 P
at

te
rn

 (
?u

uu
,r

df
ty

pe
, r

df
s:

C
la

ss
)

T
rip

le
 P

at
te

rn
 (

rd
f:t

yp
e,

 r
df

s:
su

bP
ro

pe
rt

yO
f,

?w
w

w
)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

su
bP

ro
pe

rt
yO

f,
?u

uu
)

T
rip

le
 P

at
te

rn
 (

?w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)

P
at

te
rn

M
at

ch
er

Jo
in

 o
n

[?
vv

v]
Jo

in
 o

n
[?

vv
v]

Jo
in

 o
n

[?
vv

v]
Jo

in
 o

n
[?

vv
v]

Jo
in

 o
n

[?
w

w
w

]
Jo

in
 o

n
[?

w
w

w
]

Jo
in

 o
n

[?
uu

u]
Jo

in
 o

n
[?

aa
a]

Jo
in

 o
n

[?
aa

a]

Jo
in

 o
n

[?
w

w
w

]
Jo

in
 o

n
[?

w
w

w
]

Jo
in

 o
n

[?
w

w
w

]
Jo

in
 o

n
[?

uu
u]

Jo
in

 o
n

[?
uu

u]

Jo
in

 o
n

[?
aa

a]

Jo
in

 o
n

[?
jo

ur
na

l]

P
ro

je
ct

io
n

to
 [?

jo
ur

na
l,

?y
r]

R
es

ul
t

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

2

1

0

0

0

0
0

0

0

0

0
0

0

0
0

0

0

0

G
en

er
at

e
(?

uu
u,

 rd
fs

:s
ub

P
ro

pe
rt

yO
f,

?u
uu

)

G
en

er
at

e
(?

uu
u,

 rd
fs

:s
ub

C
la

ss
O

f,
?x

xx
)

G
en

er
at

e
(?

w
w

w
, r

df
s:

do
m

ai
n,

 ?
vv

v)
G

en
er

at
e

(?
uu

u,
 rd

fs
:r

an
ge

, ?
zz

z)

G
en

er
at

e
(r

df
:P

ro
pe

rt
y,

 r
df

s:
su

bC
la

ss
O

f,
?v

vv
)

G
en

er
at

e
(r

df
s:

C
la

ss
, r

df
s:

su
bC

la
ss

O
f,

?v
vv

)

G
en

er
at

e
(?

uu
u,

 rd
f:t

yp
e,

 rd
fs

:R
es

ou
rc

e)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bP
ro

pe
rt

yO
f,

rd
fs

:m
em

be
r)

G
en

er
at

e
(?

vv
v,

 r
df

:ty
pe

, ?
xx

x)
G

en
er

at
e

(?
uu

u,
 r

df
:ty

pe
, ?

xx
x)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bC
la

ss
O

f,
rd

fs
:R

es
ou

rc
e)

G
en

er
at

e
(?

uu
u,

 rd
fs

:s
ub

C
la

ss
O

f,
?u

uu
)

G
en

er
at

e
(r

df
s:

R
es

ou
rc

e,
 rd

fs
:s

ub
C

la
ss

O
f,

?v
vv

)
G

en
er

at
e

(?
w

w
w

, r
df

s:
ra

ng
e,

 ?
vv

v)

G
en

er
at

e
(r

df
:P

ro
pe

rt
y,

 r
df

s:
su

bC
la

ss
O

f,
?v

vv
)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bP
ro

pe
rt

yO
f,

?x
xx

)

G
en

er
at

e
(?

uu
u,

 rd
fs

:d
om

ai
n,

 ?
zz

z)

G
en

er
at

e
(r

df
s:

C
la

ss
, r

df
s:

C
la

ss
O

f,
?v

vv
)

G
en

er
at

e
(?

uu
u,

 ?
bb

b,
 ?

yy
y)

G
en

er
at

e
(?

vv
v,

 r
df

ty
pe

, ?
xx

x)

G
en

er
at

e
(?

vv
v,

 r
df

ty
pe

, r
df

s:
R

es
ou

rc
e)

F
IL

T
E

R
((

is
B

LA
N

K
(?

vv
v)

 ||
 is

IR
I(

?v
vv

))
)

G
en

er
at

e
(?

uu
u,

 r
df

s:
su

bC
la

ss
O

f,
rd

fs
: U

R
IL

ite
ra

l)

T
rip

le
 P

at
te

rn
 (

?v
vv

,r
df

s:
su

bC
la

ss
O

f,
?x

xx
)

T
rip

le
 P

at
te

rn
 (

?u
uu

,r
df

:ty
pe

, r
df

s:
C

la
ss

)

F
ig
.
9
.7

U
n
o
p
ti
m
iz
ed

o
p
er
at
o
r
g
ra
p
h
o
f
th
e
q
u
er
y
in

F
ig
.
9
.1

an
d
al
l
in
fe
re
n
ce

ru
le
s

9.4 Logical Optimization for Inference 185

F
ig
.
9
.8

O
p
ti
m
iz
ed

o
p
er
at
o
r
g
ra
p
h
o
f
F
ig
.
9
.7

af
te
r
3
4
4
si
n
g
le

tr
an
sf
o
rm

at
io
n
st
ep
s

186 9 Inference

optimizes inference, such that we bind new variables based on the materialized

ontology inference as late as possible.

9.5 Performance Analysis

The test system for the evaluation of queries uses a Dual Quad Core Intel CPU

X5550 computer with 2.67 GHz, 6 GB main memory, Windows XP Professional

(x64 Edition), and Java 1.6 64 bit. We have run the experiments ten times and

present the average execution times as well as the standard deviation of the sample.

We have used the LUBM benchmark (Guo et al. 2005) for our experiments. The

LUBM benchmark can generate data of different sizes and inference must be

considered during query processing. The LUBM benchmark contains a university

domain ontology. Although the original LUBM benchmark proposes an OWL

ontology, we use an RDFS variant of the original LUBM benchmark for the

considered RDFS inference. The used data contain 103,271 triples.

In our experiments, we use two different versions of rule sets for the inference.

One rule set is the rule set of the W3C (Hayes 2004); the other is called Rudimen-

tary RDFS and contains only the rudimentary rules (I) and (II) for inference in the

ontology layer, and the rules (VII) and (VIII), which is the core of RDFS inference

and is enough for most applications in practice. We have measured the times for

materializing all inferable data, which we denote with All, for materializing no

inferable data, which we denote with None, and for materializing the inferable data

in the ontology layer, which we denote with Ont, in the tables of Figs. 9.9 and 9.10.
We add Rudimentary to the name if Rudimentary RDFS is used instead of the W3C

rule set for RDFS.

Not surprisingly, the index construction times (see Fig. 9.9) are the smallest for

None and Rudimentary None, and the highest for All. Because of the small numbers

of rules in the rule set for Rudimentary RDFS, the index construction time for

Rudimentary All is relatively small, although it is the second highest one. The index

construction times for Rudimentary Ont and Ont is only a little bit higher than those

for (Rudimentary) None. This shows that most facts are inferred because of instance

data and only few facts are inferred in the ontology layer.

Contrary to the index construction times, the query execution times (see

Fig. 9.10) are the smallest for (Rudimentary) All, as all inferable facts are already

materialized and no new facts need to be inferred during query processing. The

query execution times for (Rudimentary) None are the highest, as necessary facts

need to be inferred during query processing. The query execution times for (Rudi-

mentary) Ont are between those of (Rudimentary) All and (Rudimentary) None,

more often more close to (Rudimentary) All than to (Rudimentary) None.

The index only need to be constructed once and can be then used for many

queries. Thus, (Rudimentary) All seems to be a good choice for high performance

query processing. However, the space costs are high for (Rudimentary) All, as the

index must hold all inferred facts. If there are frequent updates and each update

9.5 Performance Analysis 187

requires materializing all inferable facts again, then this variant has too high costs.

For very frequent updates, the variant (Rudimentary) None seems to be a reason-

able choice, as query processing anyway needs to determine all relevant inferable

facts for each query again, as the data already changed most probably since the last

query execution. (Rudimentary) Ont seems to be good compromise between both

Rudimentary
All

Rudimentary
None

Rudimentary
Ont

All None Ont

10.77
± 0.15

4.69
± 0.14

4.74
± 0.19

29.59
± 0.29

4.66
± 0.19

4.70
± 0.13

Fig. 9.9 Index construction times in seconds

Qu
ery

Rudimen-
tary All

Rudimen-
tary None

Rudimen-
tary Ont

All None Ont

1 0.0079
± 0.0083

1.0766
± 0.3531

0.4359
± 0.1975

0.0047
± 0.0076

27.5422
± 2.6171

3.1063

± 0.0394

2 1.0282
± 0.0482

1.3813
± 0.3373

1.4016
± 0.1346

1.0985
± 0.2887

28.9484
± 2.2095

Out of
Memory

3 0.011
± 0.0129

0.8202
± 0.0773

0.4624
± 0.2120

0.0047
± 0.0075

27.5984
± 1.7427

3.2579
± 0.1631

4 0.0406
± 0.0426

1.3704
± 0.4067

0.5625
± 0.2812

0.0234
± 0.0082

27.8609
± 1.4667

3.2703
± 0.1641

5 0.0141
± 0.0088

0.9797
± 0.2967

0.4422
± 0.1952

0.0095
± 0.0082

28.2812
± 1.5235

3.3765
± 0.1587

6 0.0046
± 0.0074

1.0203
± 0.3161

0.4407
± 0.1862

0.011
± 0.0107

26.8797
± 1.9840

3.1265
± 0.0881

7 0.1359
± 0.0824

Out of
Memory

Out of
Memory

0.1031
± 0.0286

Out of
Memory

Out of
Memory

8 0.3766
± 0.0903

1.9939
± 0.6878

107.7109
± 1.6675

0.3188
± 0.0255

28.7234
± 1.8121

110.5234
± 1.3026

9 1.8031
± 0.2309

Out of
Memory

Out of
Memory

1.7406
± 0.0109

Out of
Memory

Out of
Memory

10 0.0125
± 0.0124

1.0516
± 0.3734

0.4202
± 0.1731

0.0031
± 0.0065

28.2062
± 3.7902

3.211
± 0.1180

11 0.0015
± 0.0047

0.9406
± 0.3032

0.4374
± 0.1972

0.0016
± 0.0051

26.7531
± 1.9667

3.089
± 0.0584

12 0.0063
± 0.0077

1.0452
± 0.2812

0.4422
± 0.1821

0.0079
± 0.0083

28.1656
± 1.3778

3.1125
± 0.0610

13 0.0094
± 0.0081

1.0968
± 0.3453

0.4891
± 0.236

0.0063
± 0.0081

27.611
± 1.6638

3.3015
± 0.1704

14 0.0078
± 0.0082

0.9593
± 0.3314

0.4422
± 0.1880

0.0329
± 0.0090

26.7295
± 2.1833

3.1047
± 0.1027

Fig. 9.10 Query execution times in seconds

188 9 Inference

extreme cases: Having moderate space costs as well as update costs and a high

query processing performance.

9.6 Related Work

OWL reasoners are used to validate RDF data and to infer new facts based on

OWL ontologies.

Table-based provers for description logic such as Pellet (Sirin et al. 2006),

RacerPro (Haarslev and M€oller 2003), or FaCT++ (Tsarkov and Horrocks

2006) are an obvious choice as OWL reasoners because of their traditional

roots in inference calculus. These provers support a big subset of OWL, and

many optimization techniques for increasing their performance have been

developed (e.g., Fokoue et al. 2006).

An alternative is translating OWL ontologies into disjunctive Datalog

programs for leveraging a Datalog engine. This approach is realized, for

example, in KAON2 (Motik and Studer 2005). Many optimization techniques

from deductive databases like magic sets can be applied, but the approach has

performance problems, for example, when OWL ontologies restrict the

cardinality of properties (Weith€oner et al. 2007).
Other approaches such as OWLIM (Kiryakov et al. 2005) and OWL-

JessKB (Kopena 2005) use standard rule engines to support OWL reasoning.

However, these approaches are incomplete and consume much space because

of their materialization strategy.

There exist some hybrid approaches such as QuOnto (Acciarri et al. 2005),

Minerva (Zhou et al. 2006), Instance Store (Bechhofer et al. 2005), and LAS

(Chen et al. 2005), which connect an external reasoner (often a table-based

system) with a database. This allows handling big datasets, but the power of

the used languages is very restricted.

9.7 Summary and Conclusions

Inference is necessary to process implicit knowledge. However, inference comes

along with high costs. Optimizing inference is therefore a key issue for the success

of Semantic Web technologies. We have investigated to (a) optimize a given query

together with inference rules (and do not materialize any inferred facts), (b) to

materialize all facts, and (c) to materialize facts within the ontology layer. We have

focused on RDF Schema as basic ontology language. Variant (a) does not have any

costs for materialization, but has the highest costs for query processing. Variant (b)

has the lowest costs for query processing, but the highest for materializing infer-

ence. Variant (c) is a mixture of (a) and (b) and has moderate query processing as

well as inference materialization costs.

9.7 Summary and Conclusions 189

Chapter 10

Visual Query Languages

Abstract The social web is becoming increasingly popular and important, because

it creates the collective intelligence, which can produce more value than the sum of

individuals. The social web uses the Semantic Web technology RDF to describe the

social data in a machine-readable way. RDF query languages play certainly an

important role in the social data analysis for extracting the collective intelligence.

However, constructing such queries is not trivial because the social data are often

quite large and assembled from a large number of different sources and because of

the lack of structure information like ontologies. In order to solve these challenges,

we develop a Visual Query System (VQS) for helping the analysts of social data

and other semantic data to formulate such queries easily and exactly. In this VQS,

we suggest a condensed data view, a browser-like query creation system for

absolute beginners and a Visual Query Language (VQL) for beginners and experi-

enced users. Using the browser-like query creation or the VQL, the analysts of

social data and other semantic data can construct queries with no or little syntax

knowledge; using the condensed view, they can determine easily what queries

should be used. Furthermore, our system also supports a number of other function-

alities, for example, precise suggestions to extend and refine existing queries. An

online demonstration of our VQS is publicly available at http://www.ifis.uni-

luebeck.de/index.php?id¼luposdate-demo.

10.1 Motivation

The Social Web fosters collaboration and knowledge sharing and boots the collec-

tive intelligence of the society, organizations, and individual people. The signifi-

cance of the Social Web is already beyond the field of computer science. The

Semantic Web promises a machine-understandable web, and provides the capabil-

ities for finding, sorting, and classifying web information, and for inferring new

knowledge. The Semantic Web hence offers a promising and potential solution to

mining and analyzing the social web.

Therefore, the emerging Social Semantic Web, the application of semantic web

technologies to the social web, seems to be a certain evolution. In the Social

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_10, # Springer-Verlag Berlin Heidelberg 2011

191

http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo

Semantic Web, the social data are described using the Semantic Web data format

RDF, and the social data become hence machine-understandable.

Analysis of social data plays a critical role in, for example, extracting the

collective intelligence, obtaining insights, making decisions, and solving problems.

The Social Semantic Web gathers a huge amount of semantic data. For example,

DBpedia (http://wiki.dbpedia.org/About) has extracted 479 million RDF triples

from the social website Wikipedia (http://en.wikipedia.org/wiki/Main_Page).

Analyzing such a large amount of data by browsing either the datasets or their

visualizations is impractical. RDF query languages such as SPARQL (Prud’hom-

meaux and Seaborne 2008) are obviously an important tool for the analysis of

large-scale social data.

Ontologies are used to describe the structure of the Semantic Web data. Due to

the open world assumption of the Semantic Web, the data may contain structures,

which are not described by the given ontologies. Ontologies are also often not given

for considered data. This is especially true for the social data, which are contributed

by a huge number of individual participants.

In order to formulate SPARQL queries for analyzing social data or other

semantic data, the analysts have to hence look into the data as well as its ontology,

besides having the knowledge of the SPARQL language. Looking into a large

amount of social data is obviously inefficient and impractical. Therefore, in this

work, we propose a condensed data view, which describes the structure of the initial

large data, but uses a compact representation of the data.

We also develop a browser-like query creation system and a visual editor of

SPARQL queries, which allows analysts to formulate SPARQL queries with little

syntax knowledge of SPARQL. Using different frames for the browser-like creation

and the visual editor within the same window, the user can use both approaches

in parallel for query creation; that is, all effects during query editing are visible in

the browser-like query creation as well as in the visual editor and the user can

manipulate the query either in the browser-like query creation frame or in the visual

editor. Furthermore, we support to extend and refine queries based on the concrete

social data for constructing exacter queries for more precise and efficient data

analysis during browser-like query creation as well as visual editing.

In order to demonstrate these approaches to facilitating the (social) data analysis,

we develop a Visual Query System (VQS), which includes the following:

l Support of whole SPARQL 1.0.
l Browser-like query creation for absolute beginners.
l Visual editor of SPARQL queries, which hides SPARQL syntax from users and

supports the creation of more complicated queries in comparison to browser-like

query creation.
l Visual browsing and editing of RDF data.
l Condensed data view for avoiding browsing the initial large datasets.
l Extending and refining queries based on query results.
l Import and export of textual SPARQL queries.

192 10 Visual Query Languages

http://wiki.dbpedia.org/About
http://en.wikipedia.org/wiki/Main_Page

10.2 Related Work

Query-by-form is used in many web applications for simple data access; users

are provided a form, all fields of which are seen as parameters of a fixed query.

Query-by-form is neither flexible nor expressive, as a form needs to be

developed for each query.

Query-by-example (Zloof 1977) allows users to formulate their queries

by selecting the names of the queried relations and fields and by entering

keywords into a table.

As many databases are modeled conceptually using EER or ORM dia-

grams, a user can also query these databases starting from those diagrams by

using conceptual query languages. Examples are EER-based (Czejdo et al.

1987; Parent and Spaccapietra 1989) and ORM-based (De Troyer et al. 1988;

Hofstede et al. 1995) approaches. Ontology-aware VQSs (Russell and Smart

2008; Fadhil and Haarslev 2006; Vdovjak et al. 2003; Borsje and Embregts

2006; Catarci et al. 2004; OpenLink 2010) also belong to this class of visual

query languages.

We classify the existing VQSs for the Semantic Web according to the

support of suggestions for extending and refining queries. The VQSs, which

provide suggestions for extending and refining queries, include vSPARQL/

NITELIGHT (Russell and Smart 2008; Smart et al. 2008), GLOO (Fadhil and

Haarslev 2006), EROS (Vdovjak et al. 2003), SPARQLViz (Borsje and

Embregts 2006), SEWASIE (Catarci et al. 2004), and iSPARQL/OpenLink

(OpenLink 2010). Other VQSs do not support suggestions, like RDF-GL/

SPARQLinG (Hogenboom et al. 2010), MashQL (Jarrar and Dikaiakos

2008, 2009), and the one from DERI (Harth et al. 2006). All the contributions

for extending and refining a query are based on ontologies. In comparison, our

VQS LUPOSDATE-VEdit extends and refines a query based on concrete data.

The Semantic Web VQSs can be also classified according to the supported

query languages. Some of the VQSs support SPARQL as query language (e.g.,

Borsje and Embregts 2006; Jarrar and Dikaiakos 2008, 2009; Hogenboom

et al. 2010; Russell and Smart 2008; OpenLink 2010). The rest of the VQSs

supports other query languages like triple pattern queries (Harth et al. 2006),

RQL (Vdovjak et al. 2003), nRQL (Fadhil and Haarslev 2006), and conjunc-

tive queries (Catarci et al. 2004). All the VQSs for SPARQL only support a

smaller subset of SPARQL 1.0, whereas our LUPOSDATE VQS supports the

whole SPARQL 1.0.

Other semantic web approaches use visual scripting languages, such as

SPARQLMotion (SPARQLMotion 2008), Konduit (M€oller et al. 2008a, b)
and Deri Pipes (Tummarello et al. 2007). In these approaches, visual boxes

and lines are used to connect different query and transformation steps, but the

embedded queries must be inserted and edited in a textual form. This chapter

contains contributions from (Groppe et al. 2011).

10.2 Related Work 193

10.3 RDF Visual Editor

The core element of RDF data is the RDF triple s p o, where s is called the subject,

p the predicate, and o the object of the RDF triple. A set of RDF triples builds a

directed graph, called RDF graph. In an RDF graph, the subject and object are

nodes and the predicate is a directed edge from the subject to the object. Therefore,

the visual representation of RDF triples should conform to the RDF graph.

Table 10.1 contains textual and visual representations of two RDF triples. The

visual representation is actually a screenshot of our RDF visual editor. In addition to

browsing data, the RDF visual graphs can be used to update data easily. For

example, the button þ is used to add a triple and – to delete a triple easily.

10.4 SPARQL Visual Editor

The natural way to visualize the triple patterns of SPARQL should be analogous to the

way for RDF triples. Table 10.2 contains the textual and visual representations of a

SPARQL query. Again, the visual representation is a snapshot of our SPARQL visual

editor. Using check and combo boxes in the visualization, users can immediately see

the features of SPARQL without the need of learning the complex SPARQL syntax.

Our SPARQL visual editor allows the modification of queries in a similar way

for RDF triples: using þ to add a triple pattern or a new modifier; using – for

removing. Furthermore, users’ modification is parsed and checked immediately

after each input, and error information is prompted to users. Consequently, our

editor ensures users to construct syntactically correct queries.

10.5 Browser-Like Query Creation

The browser-like query creation (see Fig. 10.1) starts with a query for all data or

with a query transformed from a visual or textual query. The result of the current

Table 10.1 Example RDF Data Records.rdf
Textual representation Visual representation

<a> p1:hasWonPrize <p>.

<a> p1:actedIn <f>.

194 10 Visual Query Languages

query is presented in the form of a result table. The result table contains buttons to

further modify the query. For example, the “Rename” button allows renaming the

column name of the result table, that is, renaming the corresponding variable name

in the query. The button “Sort” supports to sort the result according to a certain

column, the button “Exclude” to hide the column and the button “Refine” to refine

the query based on the values of this column. We will explain the refinement of

queries in later sections. The “Filter” button supports to filter the result table

according to the values of a column and excludes the other rows in the result

table. The browser-like query creation also allows to go back to previously created

queries (button “<”) and then to return to the later created queries (button “>”).

The advantage of the browser-like query creation is that it is very easy to use,

features are always visible, and no knowledge of the SPARQL syntax is necessary.

Furthermore, users often like to work on the concrete data rather than on an abstract

query seeing immediately the effect of the query modification regarding a correct

query result as hint for a correct query. The disadvantage is that not all features of

SPARQL can be provided by an easy graphical user interface like it is the case

Table 10.2 Example SPARQL Query DLCRecords.sparql
Textual representation Visual representation

PREFIX p1: <http://www.p/>

SELECT *
WHERE {

?x301 p1:hasWonPrize ?x311.
?x301 p1:actedIn ?x330.

}

10.5 Browser-Like Query Creation 195

http://www.p/

during visual query editing. For example, the union of two (sub) queries cannot be

created with the browser-like query creation approach. However, such a query can

be taken over from the visual query editor and the query can be further modified

with the browser-like query creation approach.

10.6 Generating Condensed Data View

A condensed data view provides an efficient way to see the data structure and to get

an overview of the original large datasets. Using the condensed view, one can easily

determine the exact queries for the concrete purposes.

A condensed view is generated by integrating the nodes of the RDF graph with

certain common features into one node. We use a stepwise approach to condensing

data. The main steps are as follows:

Step 1. integrating all leafs with the same subject into one node (see Fig. 10.2a).

A leaf is an object with only one incoming and without outgoing edges. We

condense first all leafs in order to condense the information of a subject into one

node, which is otherwise only displayed in a space-consuming way, and to preserve

the information of long paths in the data.

Step 2. integrating all objects with the same subject and predicate into one node

(see Fig. 10.2b). The structure of the data related to objects with the same predicate

Fig. 10.1 The browser-like query creation

196 10 Visual Query Languages

are often the same or similar, such that this condensing strategy often yields good

results.

Step 3. integrating all subjects with the same predicates and objects into one

node (see Fig. 10.2c). Similar remarks as for Step 2 also apply to the quality of

condensing for this step.

Step 4. integrating the objects with the same subject and at least one predicate in

common into one node (see Fig. 10.2d). This step condenses further allowing a

sparse representation of the data.

Figure 10.2 describes the condensing steps and Fig. 10.3 presents the condensed

view of the Yago data (Suchanek et al. 2007). All the four steps can be processed in

reasonable time even for large datasets.

10.7 Refining Queries

Our VQS efficiently supports refinement of queries by a suggestion functionality in
our SPARQL visual editor. The refined queries can retrieve more exact results for

efficient data analysis.

In order to refine a query, the user selects the related node from the SPARQL

graph in the SPARQL visual editor, for example, the node for the variable ?x330
in Table 10.2, or presses the button “Refine” in the browser-like query creation

frame (see Fig. 10.1). Afterward, we create two suggestion-computing queries (see

Sect. 10.8) and evaluate them on the RDF data. According to the evaluation results

of these queries, our system can suggest the triple patterns related with the node for

?x330. Among these suggested triple patterns, those with ?x330 as object are called
preceding triple patterns, and those with ?x330 as subject are called succeeding

a b

c d

s

o1 o2

p1 p2

s

o1 o2

{p1, p2}

s

o1 o2

P P

s

o1 o2

P

o

s1 s2

P P

o

s1 s2

P

s s

o1 o2

P1 P2

o1 o2

P1 P2

P1 P2

≠{}

Fig. 10.2 Condensing steps

10.7 Refining Queries 197

triple patterns. We will explain how to retrieve the suggested triple patterns in

detail in Sect. 10.9.

Our system will automatically insert the suggested triple patterns selected

by users into the query. Figure 10.4 presents the suggestion dialog for the node

?x330.

10.8 Query Formulation Demo

Assume that there is a kind of users, who is neither familiar with the structure of the

data nor with the SPARQL query language for whatever reasons. We want to

demonstrate by a simple example how such kind of users can easily create the

queries by using our VQS.

In order to formulate queries for, for example, Yago data, a user first browses the

condensed view of the Yago data. In order to obtain the condensed view, the user

selects the Yago data and then clicks “Condense data” from the main window.

A condensed view window is popped, which contains the condensed data views

from different condensing steps. Figure 10.3 presents a condensed data view of the

Yago data (Suchanek et al. 2007).

The user is interested in the actors, which have won a prize, and in the films, in

which the actors acted. Thus, the user selects the corresponding nodes in the

condensed view and copies them by clicking Copy in the condensed view window.

Afterwards, the user opens the query editor from the main window, chooses a

Fig. 10.3 Condensed data view of Yago data

198 10 Visual Query Languages

SELECT query, and pastes the nodes into the query editor by clicking Edit – Paste.
The generated visual query is described in Table 10.2 and its query result is

displayed in the browser-like query creation frame (see Fig. 10.1).

After investigating the query result, the user wants to have more information about

the films, and thus the user should refine the query. In order to refine queries easily,

the user uses our suggestion functionality in either the browser-like query creation

approach (button “Refine” in the column for variable ?x330) or the SPARQL visual

editor. In the SPARQL visual editor, the user needs to call Edit – Make suggestions.
After that, the user clicks the node for the variable ?x330 (which selects films), and a

suggestion window for query refinement is popped (see Fig. 10.4).

From the suggestion dialog, the user chooses a succeeding triple pattern, ?x330
p1:hasBudget ?b. The triple pattern is automatically integrated into the edited query

in the visual editor as well as in the browser-like query creation frame after clicking

the corresponding button Add succeeding suggestion.
Furthermore, the user also wants to see the querying result sorted according the

budgets. By only looking at the visual editor, the user can easily see that the feature

Order By is the one wanted. In the browser-like query creation frame it is even

more obvious to click on the “Sort” button in the column for the variable ?b.
Figure 10.5 presents the final visual query.

10.9 Computation of Suggested Triple Patterns

for Query Refinement

Our VQS supports the suggesting functionality for the refinement and extension of

queries. Our suggesting functionality computes a group of triple patterns related to

the node marked by the user. These triple patterns are recommended to the user for

query extension and refinement. In order to determine this group of triple patterns,

we first create two SPARQL queries, which we name suggestion-computing queries.
For example, a user wants the suggested triple patterns related to the node ?x330

in Table 10.2. In order to compute these triple patterns, we first construct the

following two suggestion-computing queries Q1 and Q2:

Fig. 10.4 Suggestion dialog for the variable ?x330

10.9 Computation of Suggested Triple Patterns for Query Refinement 199

Q1: Q2:

PREFIX p1: <http://www.p/>
SELECT DISTINCT ?x330 ?p ?so
WHERE {

?x301 p1:hasWonPrize ?x311.
?x301 p1:actedIn ?x330.
?x330 ?p ?so.

}

PREFIX p1: <http://www.p/>
SELECT DISTINCT ?x330 ?p ?so
WHERE {

?x301 p1:hasWonPrize ?x311.
?x301 p1:actedIn ?x330.
?so ?p ?x330.

}

Q1 and Q2 are then evaluated on the given RDF data. From the result of Q1,

we can generate the succeeding triple patterns related to the node ?x330.
For example, ?x330¼<TheFilmII>, ?p¼<http://www.p/hasSuccessor>, and

?so¼<TheFilmIII> is one result of Q1; on the basis of this result, we can

recommend the following succeeding triple patterns:

Fig. 10.5 Final visual query

200 10 Visual Query Languages

http://www.p/
http://www.p/hasSuccessor

l ?x330 <http://www.p/hasSuccessor> <TheFilmIII>,
l ?x330 ?p <TheFilmIII>, and
l ?x330 <http://www.p/hasSuccessor> ?so.

Likewise, from the result of Q2, we can obtain the related preceding triple

patterns. Figure 10.4 presents the dialog displaying the suggested triple patterns.

10.10 Summary and Conclusions

In this chapter, we present our solution to formulate SPARQL queries for analyzing

the semantic data from, for example, the Social Semantic Web. Such data are often

large-scale and are collected from a large number of different sources. By support-

ing a condensed data view and visual query editing as well as browser-like query

creation, our VQS allows the users, who are neither familiar with the SPARQL

language nor the data structure, to construct queries easily. We define the visual

query language, develop the rules of the transformations between textual and visual

representations, and support automatic transformations between the textual and

visual representations. Furthermore, our system also provides a precise approach

to query refinement based on the query result, thus generating more exact queries.

10.10 Summary and Conclusions 201

http://www.p/hasSuccessor
http://www.p/hasSuccessor

Chapter 11

Embedded Languages

Abstract The state of the art in programming Semantic Web applications is using

complex application programming interfaces of Semantic Web frameworks. Exten-

sive tests are necessary for the detection of errors, although many types of errors

could be detected already at compile time. In this chapter, we propose an embed-

ding of Semantic Web languages into the java programming language, such that

Semantic Web data and queries are easily integrated into the program code, type

safety is guaranteed, and already at compile time, syntax errors of Semantic Web

data and queries are reported and unsatisfiable queries are detected.

11.1 Motivation

Programming Semantic Web applications requires to first learn a complex applica-

tion programming interface of a Semantic Web framework like the one from Jena

(Wilkinson et al. 2003). Furthermore, syntax errors in data files and in queries are

only detected when the corresponding program instructions are executed, and error

messages are reported from the Semantic Web framework. Therefore, extensive

tests are necessary for developing stable Semantic Web programs, which must

consider as much as possible from every branch in a program execution and from

every possible input data. With our contribution, we want to address the following

types of errors by a tool for embedding Semantic Web languages into programming

languages, which use a static program analysis for avoiding or detecting these types

of errors and therefore support the development of more stable programs: Queries

with semantic errors do not generate error messages, but lead to unexpected

behaviour of the Semantic Web application. Note that queries with semantic errors

often return the empty result set every time, that is, these queries are unsatisfiable,
which is a hint for a semantic error in the query. Furthermore, query results often

contain data with a certain data type, for example, numeric values, which have

to be further processed in data-type-dependent operations such as the summation

of numeric values. Therefore, a cast is necessary to a specific programming

language-dependant type. If an erroneous query contains values of other types

than expected, then cast errors might occur at runtime.

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_11, # Springer-Verlag Berlin Heidelberg 2011

203

So far suitable tools for embedding Semantic Web data and query languages into

existing programming languages, which go beyond the simple use of application

programming interfaces and take advantages of an additional program analysis at

compile time, are missing. All static program analysis for detecting errors in the

embedded languages can be processed at compile time before the application is

really executed by starting the precompiler offering the most possible convenience

to the programmer: Some tests may be done without using embedded languages,

but then have to be done by using additional tools and copying and pasting code

fragments, or by executing the program itself. A static program analysis can detect

errors, which – without a static program analysis – may only be detected after

running a huge amount of test cases, as the static program analysis considers every

branch in the application code. Our tool, which we call Semantic Web Objects
system (SWOBE), embeds

l The Semantic Web data language RDF/XML
l The query language SPARQL
l The update language SPARUL

into the java programming language. SWOBE supports the development of more
stable Semantic Web applications by

l Providing transparent usage of Semantic Web data and query languages without

requiring users to have a deep knowledge of application programming interfaces

of Semantic Web frameworks
l Checking the syntax of the embedded languages for the detection of syntax

errors already at compile time
l A static type check of embedded data constructs for guaranteeing type safety
l A satisfiability test of embedded queries for the detection of semantic errors in

the embedded queries already at compile time
l A determination of the types of query results for guaranteeing type safety and

thus avoiding cast errors.

A demonstration of the SWOBE precompiler is available online at Groppe and

Neumann (2008), the example SWOBE programs of which cover embedding of

RDF/XML constructs [see Assistant.swb, Student.swb, University.swb and Profes-

sor.swb at Groppe and Neumann (2008)], SPARQL queries (see TestStudent.swb

and QueryTest.swb), and SPARUL queries (see Assistant.swb, Student.swb,

University.swb, Benchmark.swb, Professor.swb, and UpdateTest.swb).

11.2 Related Work

We divide contributions to embedded languages into two groups: the embed-

ding of relational query languages such as SQL into programming languages,

and the embedding of XML data and its query languages into programming

languages.

(continued)

204 11 Embedded Languages

Pascal/R is the first approach for a type safe embedding of a relational

query language into a programming language (Schmidt 1977). Pascal/R does

not use SQL but a proprietary query language.

There are many contributions that deal with the embedding of SQL into

the programming languages C (see IBM 2003); Ingres 2006), Java (see ANSI

1998; Sybase 1998a; Erdmann 2002), Cobol (see Gilmore et al. 1994; Ingres

2006), Ada (see Erdmann 2002; Ingres 2006), Fortran (see Ingres 2006),

Basic (see Ingres 2006), Pascal (see Ingres 2006), and functional program-

ming languages (see Buneman and Ohori 1996; Wallace and Runciman 1999;

Nagy and Stansifer 2006). Especially, Buneman and Ohori (1996), Bussche

and Waller (1999), and Nagy and Stansifer (2006) describe a comprehensive

type systems for guaranteeing static type safety for the relational algebra.

Kempa and Linnemann (2003) embed XML and the XPath query language

into the object-oriented language Java and call the resultant language XOBE

(XML Objects). The generated XML data of an XOBE-program are statically

checked for type safety with respect to a given schema and the result types of

embedded XPath queries are inferred. XOBEDBPL (Schuhart and Linnemann

2005) extends XOBE with a transparent, type-independent, and distributed

persistence-mechanism and a statically checked embedded update query

language.

XDuce (Hosoya et al. 2005), HaXML (Wallace and Runciman 1999), and

XMLambda (Shields and Meijer 2001) deal with the embedding of XML data

into functional programming languages with special regard to parametric

polymorphism in type systems for XML. <bigwig> (Brabrand et al. 2002)

and JWIG (Christensen et al. 2003) allow the embedding of static validated

XHTML 1.0, the XML variant of HTML, into C and Java. Furthermore,

Christensen et al. (2003) introduce high-level constructs for Web Service

programming with an explicit session model.

Serfiotis et al. (2005) describe algorithms for a containment tester and

the minimization of RDF/S query patterns. Serfiotis et al. (2005) consider

a hierarchy of concepts and properties.

This chapter contains the contributions for embedding Semantic Web data

and query languages into existing programming languages of Groppe et al.

(2009e).

11.3 Embedding Semantic Web Languages Into JAVA

We first provide an overview of SWOBE and demonstrate the features of SWOBE

by an example. Afterward, we explain the ideas and concepts of SWOBE in detail

in the following subsections. We refer the interested reader to the specifications of

RDF/XML (Beckett 2004), SPARQL (Prud’hommeaux and Seaborne 2008), and

SPARUL (Seaborne and Manjunath 2008) for an introduction to the embedded

data, query, and update languages.

11.3 Embedding Semantic Web Languages Into JAVA 205

Figure 11.1 contains an example SWOBE program, which uses the RDF format

to describe information about students and the courses they take [see lines (16–32)

of Fig. 11.1]. The type of the embedded RDF data is defined in lines (6–11) of

Fig. 11.1. An embedded SPARQL query [see lines (33–39) of Fig. 11.1] asks for the

telephone number of those students, which take at least one course. Additionally,

the name and the short name of the courses taken by the student are contained in the

query result. Afterward, the telephone numbers of the students and the names or

short names respectively of the courses are stored in arrays by iterating through the

query result [see lines (41–48) of Fig. 11.1].

(1) class TestStudent {
(2) prefix rdf = http:// www.w3.org / 1999 / 02 / 22-rdf-syntax-ns#;
(3) prefix ub = http:// www.lehigh.edu / ~zhp2 / 2004 / 0401 / univ-bench.owl#;
(4) prefix xsd = http:// www.w3.org / 2001 / XMLSchema#;
(5) prefix uni = http:// www.University.edu / ;
(6) type Course = (URI, rdf:type,ub:Course) » (URI,ub:name,string) »
(7) (URI,ub:shortName,string)? » (URI, ub:date,date)+;
(8) type Student = (URI,rdf:type,ub:GraduateStudent) » (URI, ub:name,string) »
(9) (URI,ub:takesCourse,URI) » Course+ »
(10) ((URI,ub:emailAddress, anyURI) | (URI, ub:telephone, integer))*;
(11) type Students = Student+;
(12) public int[] getTelephoneNumbers(){
(13) String courseURI = "uni:Programming";
(14) int tel = 0565664732; int tel2 = 0565457893;
(15) String email = "Henry@hotmail.com";
(16) rdf<Course> course = <ub:Course rdf:about=#courseURI#>
(17) <ub:name rdf:datatype="xsd:string">Programming< / ub:name>
(18) <ub:shortName rdf:datatype="xsd:string">Prog< / ub:shortName>
(19) <ub:date rdf:datatype="xsd:date">2008-02-09< / ub:date>
(20) <ub:date rdf:datatype="xsd:date">2008-02-16< / ub:date>
(21) < / ub:Course>;
(22) rdf<Students> students = <rdf:RDF><ub:GraduateStudent rdf:about="uni:MatrNr552662">
(23) <ub:name rdf:datatype="xsd:string">Henry Schmidt< / ub:name>
(24) <ub:takesCourse>#course#< / ub:takesCourse>
(25) <ub:telephone rdf:datatype="xsd:integer">#tel#< / ub:telephone>
(26) <ub:emailAddress rdf:datatype="xsd:anyURI">#email#< / ub:emailAddress>
(27) < /ub:GraduateStudent>
(28) <ub:GraduateStudent rdf:about="uni:MatrNr552663">
(29) <ub:name rdf:datatype="xsd:string">Anne Mustermann< / ub:name>
(30) <ub:takesCourse>#course#< / ub:takesCourse>
(31) <ub:telephone rdf:datatype="xsd:integer">#tel2#< / ub:telephone>
(32) < / ub:GraduateStudent> < / rdf:RDF>;
(33) SparqlIterator query = sparql (SELECT ?Y ?Z FROM #students#
(34) WHERE { ?X rdf:type ub:GraduateStudent .
(35) ?X ub:telephone ?Y .
(36) ?X ub:takesCourse ?V .
(37) { ?V ub:shortName ?Z . }
(38) UNION
(39) { ?V ub:name ?Z .} });
(40)
(41) int[] telnumber = new int[query.getRowNumber()];
(42) String[] name = new String[query.getRowNumber()];;
(43) int i = 0;
(44) while(query.hasNext()){
(45) Result res = query.next();
(46) telnumber[i] = res.getY();
(47) if(res.getZ() != null) name[i] = res.getZ();
(48) i++;}
(49) query.close();
(50) return telnumber; } }

Fig. 11.1 A SWOBE example program. The bold facepart contains specific SWOBE expressions

206 11 Embedded Languages

Figure 11.2 depicts the architecture of the SWOBE precompiler.

The SWOBE precompiler first parses the SWOBE program according to the

Java 1.6 grammar with the extension of embedded RDF/XML constructs (e.g., lines

(16–21) and lines (22–32) of Fig. 11.1), prefix declarations (e.g., lines (2–5) of

Fig. 11.1), and SPARQL/-UL queries (e.g., the SPARQL query in lines (33–39) of

Fig. 11.1). Syntax errors of embedded RDF/XML constructs and SPARQL/-UL

queries are already detected and reported in this phase at compile time, which are

otherwise – in the case of using Java 1.6 with Semantic Web application program-

ming interfaces – only detected at runtime maybe after running extensive tests.

We assume S to be the type of the right side of an assignment of RDF data to a

variable (lines (16–32) of Fig. 11.1) and T to be the variable type. The type system

of the SWOBE precompiler then checks whether or not S conforms to T, that is, if S

is a subtype of T.

The satisfiability tester of the SWOBE precompiler afterward checks whether

the result of the embedded SPARQL/-UL queries (e.g., lines (33–39) of Fig. 11.1

for a SPARQL query) is empty for any input based on the type of the input data.

The SWOBE precompiler then determines the java types of the results of the

embedded SPARQL queries. The SWOBE precompiler uses the java types for

Java classes:
-Main class
-Iterator classes
-Helper class

Parser

Type System

Satisfiability Tester

Determination of Types
of Query Results

Transformator

Type
Hierarchie

Section 3.1 / 3.2

Section 3.3

Section 3.4

Section 3

SW
O

B
E

 P
re

co
m

pi
le

r

SWOBE program

Fig. 11.2 The architecture of the SWOBE precompiler

11.3 Embedding Semantic Web Languages Into JAVA 207

generating the special iterators for query results. In the example of Figure 11.1, the

SWOBE precompiler generates an iterator for the result of the SPARQL query in

lines (33–39). The iterator contains the special methods int getY() and String getZ()

for accessing the results of the variables Y and Z, respectively. Note that the

SWOBE precompiler also determines the result type of Y to be int and of Z to be

String based on the type Students of the input data #students# of the SPARQL

query.

At last the SWOBE precompiler transforms the SWOBE program into java

classes. The generated java classes use the application programming interfaces

(API) of existing Semantic Web frameworks. Our SWOBE precompiler currently

supports the API of the widely used Jena Semantic Web framework (Wilkinson

et al. 2003), but can be easily tailored to support APIs of other Semantic Web

frameworks. The transformed java classes are the main class corresponding to the

SWOBE program, some iterator classes for query results like query in Fig. 11.1, and

helper classes, methods of which are called by the main class.

11.3.1 The Type System

RDFS/OWL ontologies are designed to handle incomplete information. This design

decision leads to the following two phenomena:

1. OWL and RDFS ontologies do not provide any constraints for entities that are

not typed. For example, the triple (s, rdf:type, c) types the s entity to be of class c.

If an ontology is given, which has constraints for members of the class c like a

maximal cardinality one of a property color for entities of the class c, then the

triples (s, color, blue) and (s, color, red) are inconsistent with this ontology.

However, no entity, not _:b1 and not _:b2, is typed in the triple set {(_:b1, uni:

name, “UniversityOfL€ubeck”), (_:b1, uni:institute, _:b2), (_:b2, uni:name,

“IFIS”)}, such that no any ontology can impose constraints on the triples of

this triple set. Thus, this triple set conforms to any ontology.

2. Even if an entity is typed, a given ontology does not impose any constraints for

properties and objects, which are not listed in the ontology. Thus, a fact (s, p, o)

is still consistent with a given RDFS/OWL ontology, even when (s, rdf:type, c)

is true and there are no constraints given in the RDFS/OWL ontology about the

object o or predicate p for members of the class c.

However, if the types S and T are described by ontologies, the check whether or

not a type S is a subtype of another type T would not consider the triples not

described by an ontology according to phenomena (1) and (2). In this case, we could

only state that S is a subtype of T except of triples according to phenomena (1) and

(2). Additionally, the satisfiability test of embedded SPARQL queries based on a

given type for the input triples would detect only maybe unsatisfiable queries,

which are unsatisfiable for triples without those of phenomena (1) and (2). How-

ever, we cannot guarantee the exclusion of triples according to phenomena (1) and

208 11 Embedded Languages

(2). Furthermore, the determination of the query result types based on a given type

for the input triples fails to consider the triples according to phenomena (1) and (2).

Therefore, we propose to use a type system, which avoids the two aforemen-

tioned phenomena of RDFS/OWL ontologies. Note that our type system supports

incomplete information by allowing any triples if explicitly stated.

Our developed language for defining the types of embedded RDF data conforms

to the EBNF rules of Fig. 11.3.

We can define the types of triple sets with this language. If the type is ANY,

then there are no restrictions to the triple set. Types for single triples consist of

three basic types for the subject, predicate, and object of a triple. A basic type is

a concrete URI, literal, or an XML Schema data type. We can exclude values

for basic types; for example, string \ “Fritz” allows all strings except “Fritz”.

Furthermore, if A and B are types for triple sets, then A | B, A [B, A*, A+, A? and

(A) are also types for triple sets: A | B allows triples of type A or B. A triple set V

conforms to a type A [B if triple sets V1 and V2 exist, such that V1 \ V2¼{} and

V¼V1 [V2 and V1 conforms to type A and V2 conforms to type B. Arbitrary

repetitions can be expressed by using A* for including zero repetitions, A+ for

at least one repetition and A? for zero or one repetition. Bracketed expressions (A)

allow specifying explicit priorities between the operators of a type, for example,

(A [B)*. References to named types may be used in a type for reusing already

defined types.

We further allow types for predicate-object-lists, triples of which have the same

subject, and for object-lists, triples of which have the same subject and the same

predicate. We do not present these extensions here due to the simplicity of presen-

tation, as these extensions complicate the algorithms for subtype tests due to more

cases to be considered, but do not show new insights for subtype tests.

In the example of Fig. 11.1, the type definition Course [see lines (6–7) of

Fig. 11.1] describes the RDF data about a course at a university. The type definition

Student [see lines (8–10) of Fig. 11.1] describes the RDF data about a student in

a university, and the type definition Students [see line (11) of Fig. 11.1] describes

a group of students.

TypeDefinition ::= OrType | "ANY"

OrType ::= UnionType ("|" UnionType)*

UnionType ::= TripleExpr ("+"|"*"|"?")?

(" " TripleExpr ("+"|"*"|"?")?)*

TripleExpr ::= "(" ElemExpr "," ElemExpr "," ElemExpr ")"

| <IDENTIFIER> | "(" OrType ")"

ElemExpr ::= Value ("\" (Value|"("<STRING_LITERAL>

("|" <STRING_LITERAL>)* ")"))?

where <IDENTIFIER> represents an identifier (the name of a named type), Value a
basic type and <STRING_LITERAL> a string literal.

Fig. 11.3 EBNF rules for defining types of embedded RDF data

11.3 Embedding Semantic Web Languages Into JAVA 209

11.3.2 Subtype Test

Whenever a variable is assigned with RDF data [e.g., lines (22–32) of Fig. 11.1], we

can determine the type of this assigned RDF data. The type S of assigned RDF data

[e.g., the assigned RDF data in lines (22–32) of Fig. 11.1] is the union of the types

of the triples, which are generated, and the types of embedded variables [e.g.,

#course in line (24)] containing RDF data. The subtype test is used for checking

whether or not the type S of assigned RDF data [e.g., the assigned data in lines

(22–32) of Fig. 11.1] conforms to an expected type T [e.g., the type rdf<Students>
of the variable students in line (11) of Fig. 11.1] for the content of the assigned

variable. In general, the subtype test checks whether or not a type S is a subtype of

another type T; that is, the subtype test checks whether or not all possible input data,

which are of type S, are also of type T.

We first simplify the type definition T and S according to the formulas presented

in Fig. 11.4, such that superfluous brackets are eliminated and subexpressions of the

form A y1 y2, where y1, y2 2 {+, *, ?}, are transformed into subexpressions A y3
with one frequency operator y3.

The algorithm checkSubType(S,T) (see Fig. 11.5) performs the task of checking

if S is a subtype of T. In the special case that the type S describes an empty triple set

[see line (2) of Fig. 11.5), it is tested whether or not T allows the empty triple set by

using the function isNullable (see Fig. 11.6). If T allows any input, then any type is

a subtype of T [see line (3) of Fig. 11.5]. If T does not allow any input, but S does,

A θ0 θ1 = A* if ∃i∈{0, 1} θi∈{+, *} θ(i+1)% 2∈{?,*}

(A θ0) θ1= A θ0 θ1, where θ0,θ1∈ {+,*,?}

((A)) = (A)

A θ θ = A θ, where θ∈{+,*,?}

Fig. 11.4 Simplifying type

definitions, where A is a type

definition

(1) boolean checkSubType(S, T) {
(2) if(S = ø) return isNullable(T);
(3) else if(T = ANY)return true;
(4) else if(S = ANY)return false;
(5) else return (∃m= {(s1,t1),…,(sn,tn)}, where si ∈ SExpr(S)
 ti ∈ SExpr(T): homomorphism(S,T,m)); }

Fig. 11.5 Main Algorithm for the test if S is a subtype of T

isNullable(A | B)= isNullable(A) isNullable(B) isNullable(A *) = true

isNullable(A B)= isNullable(A) isNullable(B) isNullable(A ?) = true

isNullable(A +)= isNullable(A) isNullable((s, p, o)) = false

isNullable((A))= isNullable(A) isNullable(ø) = true

Fig. 11.6 Algorithm isNullable, where A and B are type definitions, s, p, and o the types of the

subject, predicate, and object of a triple

210 11 Embedded Languages

then S cannot be a subtype of T [see line (4) of Fig. 11.5]. Otherwise, we first

transform the types S and T into tree representations tree(S) and tree(T) by using

a function tree. See Fig. 11.7 for the recursive definition of the function tree and an

example of its result in Fig. 11.8.

Checking if S is a subtype of T can be reformulated into the problem of finding

a homomorphism [see line (5) of Fig. 11.5] from the tree representation tree(S) of

S to the tree representation tree(T) of T. We first describe an optimized algorithm

for quickly finding such a homomorphism and afterward describe the constraints of

the homomorphism in detail for the subtype relation between S and T. We use the

tree(T1 T2) =>
tree(T1θ) =>

tree((T1)) => tree(T1)
| θ

(s, p, o)
where θ∈{+,*,?} tree(T1)

tree(T1| T2) =>

tree(T1) tree((s,p,o)) =>tree(T2) tree(T1) tree(T2)

Fig. 11.7 Transforming a type definition into a tree representation. T1 and T2 represent type

definitions and (s, p, o) the type of a triple

U

+

?

* +

| U

? +

U
R

I,
ub

: n
am

e,
 s

tr
in

g

U
R

I,
ub

: t
ak

es
C

ou
rs

e,
 U

R
I

U
R

I,
ub

: t
el

ep
ho

ne
, i

nt
eg

er

U
R

I,
ub

: e
m

ai
lA

dr
es

s,
 a

ny
U

R
I

U
R

I,
rd

f:
ty

pe
, u

b:
 C

ou
rs

e

U
R

I,
ub

: n
am

e,
 s

tr
in

g

U
R

I,
ub

: s
ho

rt
N

am
e,

 s
tr

in
g

U
R

I,
ub

: d
at

e,
 d

at
e

U
R

I,
rd

f:
ty

pe
, u

b:
 G

ra
du

at
eS

tu
de

nt

U

U

U

un
i:

M
at

rN
r5

52
66

2,
 r

df
:ty

pe
, u

b:
 G

ra
du

at
eS

tu
de

nt

un
i:

M
at

rN
r5

52
66

2,
 u

b:
na

m
e,

 H
en

ry
 S

ch
m

id
t^

^x
sd

: s
tr

in
g

un
i:

M
at

rN
r5

52
66

2,
 u

b:
 ta

ke
sC

ou
rs

e,
 U

R
I

un
i:

M
at

rN
r5

52
66

2,
 u

b:
 te

le
ph

on
e,

 0
56

56
64

73
2^

^x
sd

: i
nt

eg
er

un
i:

M
at

rN
r5

52
66

2,
 u

b:
 e

m
ai

lA
dr

es
s,

 H
en

ry
@

ho
tm

ai
l.c

om
^^

xs
d:

 a
ny

U
R

I

U
R

I,
rd

f:
ty

pe
, u

b:
 C

ou
rs

e

U
R

I,
ub

: n
am

e,
 s

tr
in

g

U
R

I,
ub

: s
ho

rt
N

am
e,

 s
tr

in
g

U
R

I,
ub

: d
at

e,
 d

at
e

+ ?

U

U

un
i:

M
at

rN
r5

52
66

3,
 r

df
: t

yp
e,

 u
b:

 G
ra

du
at

eS
tu

de
nt

un
i:

M
at

rN
r5

52
66

3,
 u

b:
na

m
e,

 A
nn

e
M

us
te

rm
an

n^
^x

sd
: s

tr
in

g

un
i:

M
at

rN
r5

52
66

3,
 u

b:
ta

ke
sC

ou
rs

e,
 U

R
I

un
i:

M
at

rN
r5

52
66

3,
 u

b:
te

le
ph

on
e,

 0
56

54
57

89
3^

^x
sd

: i
nt

eg
er

U
R

I,
rd

f:t
yp

e,
 u

b:
 C

ou
rs

e

U
R

I,
ub

: n
am

e,
 s

tr
in

g

U
R

I,
ub

: s
ho

rt
N

am
e,

 s
tr

in
g

U
R

I,
ub

: d
at

e,
 d

at
e

+

Fig. 11.8 Homomorphism from a type S representing the type of the assigned data in lines

(22–32) of Fig. 11.1 on the right side of this figure to a type T representing the type rdf<Students>
of the variable students in line (11) of Fig. 11.1 on the left side of this figure

11.3 Embedding Semantic Web Languages Into JAVA 211

tree representation of T and S and a corresponding homomorphism in the example

of Fig. 11.8.

A subtype relation is already proved after only one homomorphism relation

between two types is found.

We propose to search for a homomorphism between two types in two phases.

The first phase determines all single candidate mappings from subexpressions of S

to subexpressions of T. The candidate mappings can be determined very fast in the

time O(|S|*|T|), where |V| represents the length of a type V, that is, the number

of subexpressions of V. The efficient algorithm visits the tree representation of S

bottom-up in order to find suitable subexpressions in T. During visiting S bottom-

up, the algorithm considers already found mappings for the current node’s children

in the tree representation of S to nodes in the tree representation of T.

Afterward, we determine suitable subsets of the candidate mappings, which will

be checked by the algorithm homomorphism (see Fig. 11.9) and this is explained in

the next paragraph. This second phase is designed to quickly exclude unsuitable

subsets of the candidate mappings. Furthermore, we first check those subsets of

candidate mappings, which are promising to be a homomorphism. As a subexpres-

sion in S must not be mapped to two different subexpressions in T, we exclude this

kind of subsets of the candidate mappings. In order to further exclude subsets of the

candidate mappings earlier, we consider afterward candidate mappings for a sub-

expression in S, which is mapped to a minimum number of subexpressions in T

in the remaining set of candidate mappings. In order to abort the search for a

homomorphism in unsuitable subsets of the candidate mappings as early as possi-

ble, we do not consider a possible subset of candidate mappings further if a

mapping (s, t) is in the subset C of candidate mappings, where one child s1 of

s and a mapping (s1, t1) 2 C exists such that t 6¼ t1 and t1 is not a subexpression of t.

In this case, the constraints imposed by the homomorphism of the subtype relation

cannot be fulfilled anymore.

The function homomorphism (see Fig. 11.9) expects the types T and S and a

mapping m as input. The function first checks if a subexpression of S is mapped to

(1) boolean homomorphism(S, T, m) {

(2) if(∃s∈SExpr(S): (s, t1) ∈m (s, t2) ∈m t1≠t2

(3) !(∃t1’, …, tn’ ∈SExpr(T) : ((t1’ = t1 tn’ = t2) (t1’ = t2 tn’ = t1))

(4) ∀i∈{1,…, n-1}: ((ti’ = ti+1’ θ, where θ∈{ +, *, ? }) (ti’ = ti+1’| t’ ti’ = t’| ti+1’,

(5) where t’ ∈SExpr(T)) (ti’ = ti+1’ t’ ti’ = t’ ti+1’,

(6) where isNullable(t’) t’∈SExpr(T))))) return false;

(7) if((S, T)∈m ∀s∈SExpr(S): ∃ (s, t) ∈m

(8) ∀(s, t) ∈m: isMappingOfHomomorphism (s, t, T, m)) return true;

(9) else return false; }

Fig. 11.9 Function homomorphism for checking if m describes a homomorphism from S to T

212 11 Embedded Languages

only one subexpression of T [see line (2) of Fig. 11.9], as otherwise the mapping

would be ambiguous with some exceptions: One exception is a subexpression with

a frequency operator [see line (4) of Fig. 11.9]: if s is a subtype of t, then s is also a

subtype of t y, where y 2 {þ, *, ?}. Another exception is a subexpression with an

or-operator: if s is a subtype of t, then s is also a subtype of t | t’ [see line (4) of

Fig. 11.9). The last exception is a subexpression with a union-operator with at least

one operand, which allows the empty expression [see line (5) of Fig. 11.9]: if s is a

subtype of t, then s can be also a subtype of t [t’ with isNullable(t) or isNullable(t’)

holds and we later check whether or not s is really a subtype of t [t’. Afterward, the

function homomorphism checks if the type S is mapped to the type T and if all

subexpressions SExpr(S) (see Fig. 11.10) of S are mapped to subexpressions of T,

fulfilling further constraints checked in the function isMappingOfHomomorphism

for each single mapping entry [see lines (7–8) of Fig. 11.9].

The function isMappingOfHomomorphism checks if the given mapping m from

type S to type T describes a part of a homomorphism from S to T. If S is composed

of two subtypes S1 and S2 in an or-relation S1 | S2, then there should exist mappings

from S1 and S2 to T [see line (2) of Fig. 11.11] for a subtype relation. If T is

SExpr(A1|...|An)={(A1|...|An)} SExpr(A1) ... SExpr(An), where n ≥ 2
SExpr(A1 ... An)= {(A1 ... An)} SExpr(A1) ... SExpr(An), where n ≥ 2

SExpr(A θ)={(A θ)} SExpr(A), where θ ∈{+,*,?}

SExpr((s, p, o))={ (s, p, o) }
SExpr((A))=SExpr(A)

Fig. 11.10 Function SExpr, where A, A1, . . ., An are type definitions and (s, p, o) is the type of

a triple

(1) boolean isMappingOfHomomorphism(s, t, T, m) {

(2) if(s = s1| s2) return (((s1, t)∈m) ((s2, t)∈m));

(3) else if(t = t1 | t2) return (((s, t1)∈m) ((s, t2)∈m));

(4) else if(s = s1 s2 … sn t = t1 t2 … tp) {

(5) return (∃ S1’, …,Sk’: ((repetition(t, T) ∃q∈ : k = p*q) (k = p))

(6) ∀i∈{1, …, k}: Si’⊆{s1, …, sn} !(∃j∈{1, …, k} -{i}:Si’ Sj’ ≠ ∅)

(7) ((s’∈Si
’S’, t((i–1) mod p)+1) ∈m (isNullable(t((i-1) mod p)+1) Si’ = ())

(8) (isNullable(t((i-1) mod p)+1) Si’ ≠ ∅)) ;

(9) } else if(s = (s1, p1, o1) t = (s2, p2, o2)) {

(10) return isSubtype(s2, s1) isSubtype(p2, p1) isSubtype(o2, o1)) ;

(11) } else if(t = t1θ1, where θ1∈{ +, *, ? }) {

(12) if(freq(s) ≠ freq(t) !(freq(s) <f freq(t))) return false;

(13) if(s = s1 θ2, where θ2∈ { +, *, ? }) return ((s1, t1)∈m);

(14) else return ((s, t1)∈m); }}

Fig. 11.11 Function isMappingOfHomomorphism for checking if m describes a homomorphism

from s to t

11.3 Embedding Semantic Web Languages Into JAVA 213

composed of two subtypes T1 and T2 in an or-relation T1 | T2, then there should exist

at least one mapping from S to T1 or T2 [see line (3) of Fig. 11.11] for a subtype

relation.

We present examples for subtype tests between types containing union opera-

tions in Fig. 11.12. Example (a) in Fig. 11.12 is the simplest case. In this example, S

and T are the union of two subtypes, and each union-operand of S must be a subtype

of another union-operand of T. The pictures of the examples (b)–(d) in Fig. 11.12

become more complicated since the union-operator of T can be arbitrarily repeated

(they are in the scope of a * or a þ operator). In the example (b), several union-

operands of S must be subtypes of the same union-operand of T. If T consists of a

union of types, which can be arbitrarily repeated (see e.g., (c)), and the union-

operator in S has more operands than the union-operator in T, then several pairwise

disjoint decompositions of the union-operands of S must be subtypes of T. Further-

more, if an operand of the union-operator of T can be arbitrarily repeated like in

example (d), then several union-operands of S can be the subtype of this arbitrarily

repeatable union-operand of T. If an operand of the union-operator of T allows

the empty triple set like in example (d), then no union-operand of S may be the

t1

t1

t1

t2
t2

t2

t1

s1 s2

s2s1

+

*

*

a

b

c

d

Mapping based on
lines (4) to (8) of Fig. 11.10
Mapping based on
lines (12) to (14) of Fig. 11.10

S1‘ s1

S1‘

S1‘ S2‘ S3‘ = ∅ S4‘

s2

S2‘

s3

S3‘

s4

s4s2s1s0

S4‘

S2‘

S1‘ S2‘

+

Fig. 11.12 Different examples for the subtype test when checking union operations. Here, t1, . . ., tp
are subexpressions of T, s1, . . ., sn are subexpressions of S, S1’, . . ., Sk’ are sets of the decomposi-

tion, si is a subtype of t((i-1) mod p)+1, and s0 is a subtype of t1

214 11 Embedded Languages

subtype of this union-operand of T. In order to deal with all these cases, we check

the following condition: If S and T are composed of types in a union-relation [line

(4) of Fig. 11.11], then there should exist a pairwise disjoint decomposition of the

operands [line (6) of Fig. 11.11] of the union operator, such that the number of

decompositions is the same as the number of union-operands of T or is a factor

of the number of union-operands of T in the case that the subexpression of the

union-operator can be arbitrarily repeated [line (5) of Fig. 11.11] as it is in the scope

of a * or a þ operator (see Fig. 11.13). Furthermore, all these decompositions must

be mapped to the corresponding union-operand of T according to the number of

repetitions [line (7) of Fig. 11.11)] and all union-operands of T should have a

candidate mapping or should allow the empty triple set [line (8); Fig. 11.11].

If the types S and T describe constraints for single triples, then each triple

element, that is, the subject, predicate, and object, of S must be a subtype of the

corresponding triple element of T [lines (9) and (10) of Fig. 11.11]; for example,

xsd:long is a subtype of xsd:decimal according to the type hierarchy of

XML Schema data types (see Peterson et al. (2009). In the case that T contains an

operator þ, * or ? [lines (11–14) of Fig. 11.11], we exclude those candidate

mappings, the frequency of which is in conflict with a subtype relation in line (12)

of Fig. 11.11. A mapping from S to T is not in conflict with a subtype relation, if they

have the same frequency (see Fig. 11.14 for the computation of the frequency of

a type) or if the frequency of S is lower than the frequency of T, that is, freq(S) <f

freq(T), where the transitive relation <f holds for ONE <f ? <f þ <f *. Afterward,

we check if the corresponding subexpressions are in the mapping m (lines (13 and

14) of Fig. 11.11).

11.3.3 Satisfiability Test of Embedded SPARQL and SPARUL
Queries

Erroneous queries often return the empty set for any input, and thus queries are

unsatisfiable. Therefore, an unsatisfiable query is a hint for errors in the query.

Satisfiability tests of queries can (1) warn the user of the errors in queries, and

debug SWOBE programs, thus leading to more stable programs, and (2) precompute

repetition(t,T)=(∃ t’∈SExpr(T):t∈SExpr(t’) t’ = t’’ θ θ∈ { +,* })

Fig. 11.13 Function repetition(t, T) for the determination whether or not the subexpression t is

part of a subexpression of the type T, which can be arbitrarily repeated

freq(A θ)=θ, where θ∈{ +,*,? }
freq(A B) =One
freq(A | B)=One
freq((s, p, o))=One

Fig. 11.14 Function freq,

where A and B are type

definitions, s is the type of the

subject, p of the predicate,

and o of the object of a triple

11.3 Embedding Semantic Web Languages Into JAVA 215

the unsatisifiable queries to the empty result at compile time, thus avoiding runtime

processing and speeding up the program execution.

Note that SPARUL queries extend the syntax and semantics of SPARQL queries

by update queries, such that the below described approaches apply to SPARQL

queries and SPARUL queries. For checking the satisfiability of embedded queries,

we first transform abbreviations of SPARQL/-UL constructs, that is, predicate-

object-lists, object-lists, collections, and the a operator, into their equivalent long

forms (see Groppe et al. (2009d). We replace blank nodes by the variables, which

are not used somewhere else in the SPARQL/-UL query according to Gutierrez

et al. (2004). After this step, each triple pattern of the SPARQL/-UL query has the

form e1 e2 e3., where ei is an IRI, a literal (including string and numeric constants)

or a variable.

We determine the type D of the input data of the embedded query by a static

program analysis. In the example of Fig. 11.15, the satisfiability test and the

determination of the query result types are for the embedded SPARQL query in

lines (33–39) of Fig. 11.1. The determined type for the variable ?Y is integer and the

determined type for the variable ?Z is string. A triple pattern e1 e2 e3 is satisfiable, if

the type D of the input data contains types of triples, which intersect with e1 e2 e3..

We can determine all possible types of variables in the triple pattern by checking

all types of triples in D, which intersect with the triple pattern e1 e2 e3. Thus, we

can use types(e1 e2 e3.) to determine the types of the variables in triple patterns

(see Fig. 11.16). If the set of variable types is empty, then this triple pattern is

unsatisfiable.

The satisfiability of queries can be determined by the function types of Fig. 11.16.

Note that sat(Expr, types(A)) is a satisfiability tester for Boolean expressions Expr

under data type constraints types(A) of the variables in Expr. Such a satisfiability

tester sat(Expr, types(A)) has a high computational complexity (see Cook (1971).

However, the results without using such a satisfiability tester sat(Expr, types(A))

for FILTER expressions are typically quite well, such that the application of such

a satisfiability tester can be avoided to speed up computation.

If the result of the function types contains the empty set for the types of at

least one variable, then the SPARQL/-UL query is unsatisfiable and we can warn

the user.

SELECT ?Y ?Z FROM #student#
WHERE {

?X rdf:type ub: GraduateStudent.

?X ub:telephone?Y .

?X ub:takesCourse?V .

{ ?V ub:shortName?Z . }

UNION
{ ?V ub:name?Z . }

}

{(?X, {URI})}

{(?X, {URI}), (?Y, {integer})}

{(?X, {URI}), (?V,{URI})}

{(?V, {URI}), (?Z, {string})}

{(?V, {URI}), (?Z, {string})}

{(?X, {URI}),
 (?Y, {integer})}

{(?V, {URI}),
 (?Z, {string})}

{(?X, {URI}),
 (?V, {URI}),
 (?Y, {integer})}

{(?X, {URI}),
 (?V, {URI}),
 (?Y, {integer}),
 (?Z, {string})}

Fig. 11.15 Example of the satisfiability test and the determination of the query result types for

the embedded SPARQL query in lines (33–39) of Fig. 11.1

216 11 Embedded Languages

11.3.4 Determination of the Query Result Types

We have already determined the possible types of the result of an embedded

SPARQL query when testing the satisfiability. For returning the result by an

iterator, we have to determine a super type of these possible types. This super

type is then the return type for the iterator method.

We present in Fig. 11.15 the determination of the query result types for the

embedded SPARQL query in lines (33–39) of Fig. 11.1. The type for the variable

?Y in the query result is integer and the type for the variable ?Z is string.

Once we have determined the return type, we can generate code for a query

result iterator with this return type, such that the type system of java guarantees type

safety for the usages of the result. In the example of Fig. 11.15, the java type for the

variable ?Y is int and the java type of the variable ?Z is string.

11.4 Summary and Conclusions

We have proposed an approach to supporting the development of more stable

Semantic Web applications by embedding the Semantic Web languages RDF/

XML, SPARQL, and SPARUL into the java programming language.

Our Semantic Web Objects system (SWOBE) uses a static program analysis in

order to guarantee type safety, detect unsatisfiable SPARQL/-UL queries, and deter-

mine the types of query results at compile time. In this way, we avoid runtime errors

and unexpected behavior of the Semantic Web application. Our implementation of

the SWOBE system shows the advantages of our approach as a programming tool.

intersect(t1, t2) = (t1 is a variable t1 is subtype of t2 t2 is a subtype of t1)

types(e1e2 e3., (e1’, e2’, e3’)) = { (ei, ST) | i∈{1,2,3} ei is a variable

 ST = {ei’} intersect(e1,e1’) intersect(e2,e2’) intersect(e3,e3’) }

types(e1e2e3) = {(ei,ST)|i∈{1,2,3} ei is a variable

 ST = (e1’, e2’, e3’)∈D types(e1 e2 e3, (e1’, e2’, e3’))}

types(A B) = {(e, ST) | (e, ST’) ∈types(A) (e, ST’’) ∈ types(B) ST = {t | t is a super type of
 t’∈ST’ t is a super type of t’’ ∈ST’’}}, where A and B are group graph patterns
types({A})=types(A), where A is a group graph pattern

types(A OPTIONAL B) = types(A) { (e, ST) | (e,ST’) ∉types(A) (e,ST)∈types(B)}

types(A UNION B) = {(e,ST) | (e,ST’)∈types(A) (e,ST’’)∈types(B) ST = ST’ ST’’
 ((e,ST)∈types(A) (e,ST’’)∉types(B)) ((e,ST’)∉types(A) (e,ST)∈types(B))}

types(A) if sat(Expr, types(A))

types(A FILTER(Expr)) = ø otherwise

Fig. 11.16 The function types determining the types of variables in a SPARQL query, and the

function intersect checking if elements of a triple type and a triple pattern intersect. A and B are

SPARQL subexpressions, and ei is the type of an element of a triple type or of a triple pattern

11.4 Summary and Conclusions 217

Chapter 12

Comparison of the XML and Semantic

Web Worlds

Abstract XML and the Semantic Web cover many specifications of languages for

the web, which can be used for similar applications. We compare both worlds, the

Semantic Web one and the XML one, and show how to transform queries and data

from one to the other. We also provide a comprehensive performance analysis for

translated queries.

12.1 Introduction

XML (W3C 2010b) and the Semantic Web (W3C 2010a) are both initiated and

supported by the W3C, where XML has an older history (see Fig. 12.1) than the

Semantic Web.

The direct predecessor of XML data (W3C 2004b), Standard Generalized
Markup Language (SGML) (ISO 1986), has been already standardized in 1986,

long before the W3C was founded in 1994. The W3C avoids the wording Standard
and calls it Recommendation, such that the first W3C Recommendation of XML

version 1.0 was published in 1998. This W3C Recommendation contains the

description of the tree data model of XML, its textual representation, and a first

language to express schemas of XML, the DTD. The W3C released the more

expressive language XML Schema (Peterson et al. 2009) for schemas of XML

data 6 years later in 2004. The basic XML query language, XPath (W3C 2007b),

was released in 1999. The name of XPath derives from its basic concept, the path

expression, with which the user can hierarchically address the nodes of the XML

data. XSLT (W3C 2007a), a language for expressing transformations of XML data,

which has been released in the same year as XPath, embeds XPath as well as

XQuery (W3C 2007c), which was developed as query language on top of XPath and

first occurred in 2002 as working draft. XQuery was finally released in its version

1.0 in 2007 as W3C Recommendation together with XPath 2.0 and XSLT 2.0,

which influenced one another.

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_12, # Springer-Verlag Berlin Heidelberg 2011

219

The basic data format RDF (Beckett 2004) of the Semantic Web firstly occurred

in the year 1999. RDF data consist of triples, which express labelled directed

relationships and which together describe a graph. An ontology is a specification

of a conceptualization, which contain the concepts and relationships of the consid-

ered domain. Semantic Web ontologies are usually expressed in RDF Schema

(Brickley and Guha 2004) or in the Web Ontology Language (OWL) (Dean and

Schreiber 2004; Motik et al. 2009). Both ontology languages, RDF Schema and

OWL, became W3C Recommendations in 2004, and OWL version 2.0 (Motik et al.

2009) in 2009. While RDF Schema is powerful enough for simple ontologies, OWL

is intended for large and complex ontologies. Considering the technical view,

ontologies describe constraints on the Semantic Web data, and new facts can be

inferred based on a given ontology. Especially, the inference of new facts distin-

guishes ontologies from schemas as known from databases. The W3C recently

published SPARQL (Prud’hommeaux and Seaborne 2008) for querying RDF

data as W3C Recommendation in 2008, and works on SPARQL version 1.1.

Furthermore, a W3C working group plans to specify a rule language called Rule
Interchange Format (RIF) (Boley and Kifer 2009; Boley et al. 2009; Sainte Marie

et al. 2009) with which one can express arbitrary rules.

Especially, the XML family, but also the Semantic Web family, contains

numerous specifications, where we focus on the most important ones specifying

the data models, query languages, schemas, and ontologies.

19
90

19
95

20
00

20
05

S
G

M
L

IS
O

 S
ta

nd
ar

d

W
3C

 w
as

 fo
un

de
d

S
G

M
L

W
or

ki
ng

 G
ro

up

X
M

L
1.

0,
 D

O
M

X
P

at
h

1.
0,

 X
S

LT

X
H

T
M

L
1.

0

X
Q

ue
ry

 a
nd

 X
P

at
h

2.
0

W
or

ki
ng

 D
ra

fts

X
M

L
S

ch
em

a
W

or
ki

ng
 D

ra
ft

X
M

L
1.

1,
 X

M
L

S
ch

em
a

1.
0

S
P

A
R

Q
L

X
P

at
h

2.
0,

 X
S

LT
 2

.0
, X

Q
ue

ry
 1

.0

R
D

F
/X

M
L

(r
ev

is
ed

),
R

D
F

 S
ch

em
a

1.
0,

 O
W

L

R
D

F
 M

od
el

 a
nd

S
yn

ta
x

S
pe

ci
fic

at
io

n

XML related specifications:

Year :

Semantic Web related specifications:

O
W

L
2.

0

Fig. 12.1 Time line of XML-related and Semantic Web-related specifications

220 12 Comparison of the XML and Semantic Web Worlds

12.2 Concepts and Visions

Originally designed to meet the challenges of large-scale electronic publishing, XML

is also playing an increasingly important role in the exchange of a wide variety of

data on the Web and elsewhere. Today, we use more and more of XML’s capability

of labeling the information content of diverse data sources including structured

and semistructured documents, relational databases, and object repositories.

The Semantic Web aims to provide common formats for integration and combi-

nation of data drawn from diverse sources, where the traditional XML-Web mainly

concentrated on the interchange of documents. Furthermore, the Semantic Web

aims to provide a language for recording how the data relate to real-world objects.

One vision of the Semantic Web is that a person, or a machine, can start off in one

database and then move through an unending set of databases that are connected by

being about the same thing.

The Semantic Web requires that we all or at least a big group agree on the

semantics of machine-processable symbols, such that the visions of the Semantic

Web work. Thus, for making these visions of the Semantic Web work, one question

is if such agreements of a maximized big group of people are realistic and how they

can be achieved. Furthermore, how much data already have an agreed semantics

and how much more accurate can data be processed by additionally considering the

agreed semantics? When providing schemas for XML data, such that valid XML

data are an agreed representation of certain objects, which are maybe objects of

the real world, and are processed in defined way, XML users also agree on the

semantics of machine-processable symbols. Therefore, other questions are how

much and in which extensiveness such agreements have been already made with

other traditional technologies and which technologies – Semantic Web technolo-

gies or traditional technologies – are more suitable for such agreements and for the

development of applications, which work with the data with the agreed semantics.

In order to rate the technologies especially regarding the last question, we have

to get an overview over the data models, the schema, and the ontology and query

languages.

12.3 Data Models

The XPath and XQuery data model (Fernández and Robie 2001) is defined as

follows:

Definition 1 (Data Model of XPath and XQuery). An XML document is a tree of
nodes. The kinds of nodes are document, element, attribute, text, namespace,
processing instruction, and comment. Every node has a unique node identity that
distinguishes it from other nodes. In addition to nodes, the data model allows atomic
values, which are single values that correspond to the simple types defined in
(Peterson et al. 2009), such as strings, Booleans, decimals, integers, floats, doubles,

12.3 Data Models 221

and dates. The first node in any document is the document node, which contains the
entire document. Element nodes, comment nodes, and processing instruction nodes
occur in the order in which they are found in the textual representation of the XML
document. Element nodes occur before their children – the element nodes, text
nodes, comment nodes, and processing instructions, which they contain. Attribute
nodes and namespace nodes are not considered as children of an element.

XML has a textual representation, which is readable by humans and computers,

as well as an application programming interface (API), called DOM (W3C 2004a),

for an in memory access to the XML data.

The data model of RDF has been already described in Chap. 2.

There are different ways to represent RDF data, for example, RDF triples (Grant

and Beckett 2004), N3 (Berners-Lee 1998), Turtle (Beckett 2006), or RDF/XML

(Beckett 2004), which uses XML to encode RDF data.

Figure 12.2 contains a comparison of the XML and Semantic Web data models.

XML data represent a tree of information. RDF data consist of triple data, which

expresses a graph. Nevertheless, XML data can contain information to represent

graphs and RDF data can express trees.

12.4 Schema and Ontology Languages

W3C’s DTDs (W3C 2004b) and XML Schema [see (Peterson et al. 2009)] are two

widely used and supported XML schema languages. DTDs are compact and highly

readable and can be defined inline. However, DTDs are primarily structural in

nature. DTDs have limited support for defining the type of data, and do not have

ability to specify specific and precise data types above and beyond character data.

As well as imposing the constraints of structure and semantics on XML docu-

ments as DTDs do, the XML Schema language provides powerful capabilities for

specifying more concrete data types on elements and attributes, most of which are

not expressible in DTDs. The XML Schema language provides a large number of

built-in simple types and allows deriving new types for values of elements and

attributes, which are only specified to be character data in DTDs.

Since XML Schema can express more restrictions than a DTD, a DTD can be

easily transformed into an XML Schema representation, but in general, an XML

Schema definition cannot be transformed into a DTD without losing information.

Furthermore, the schemas written in the XML Schema language are XML docu-

ments, but the syntax of DTDs is completely different. Therefore, XML Schema

can leverage various tools that have been built around XML, but DTDs cannot.

An ontology is the specification of a conceptualization, which contains the

concepts and relationships of the considered domain. Semantic Web ontologies

are usually expressed in RDF Schema (Brickley and Guha 2004) or in the Web

Ontology Language (OWL) (Dean and Schreiber 2004; Motik et al. 2009). While

RDF Schema is powerful enough for simple ontologies, OWL is intended for large

and complex ontologies. Chapter 2 provides a further introduction to ontology

222 12 Comparison of the XML and Semantic Web Worlds

languages. Considering the technical view, ontologies describe constraints on the

Semantic Web data, and new facts can be inferred based on a given ontology.

Especially, the inference of new facts distinguishes ontologies from schema as

known from databases.

12.5 Query Languages

We first compare the XPath language with the SPARQL language, as XPath is

embedded in XQuery and XSLT. Later, we also compare XQuery and XSLT with

SPARQL.

Tree-based queries can be easily expressed in the tree query languages XPath,

XQuery, and XSLT in comparison to the graph query language SPARQL.

XML (XPath and XQuery data
model [Fernández and Robie,
2001])

Semantic Web

Underlying
structure

Ordered tree Graph with directed and labelled
relationships

Type of nodes document, element, attribute, text,
namespace, processing-instruction
and comment

RDF URI reference, blank node
or literal (plain, typed or language
-tagged)

Values Plain literals having optionally a
language tag, or a typed literal
having additionally a datatype
URI being a RDF URI reference

Order The first node in any document is
the document node, which contains
the entire document. Element nodes,
comment nodes, and processing
instruction nodes occur in the order
in which they are found in the
textual representation of the XML
document. Element nodes occur
before their children –the element
nodes, text nodes, comment nodes,
and processing instructions, which
they contain. Attribute nodes and
namespace nodes are not considered
as children of an element.

No order between the triples of
the RDF data.

Representations Textual representation, DOM
(API)

RDF /XML, RDF Triplets,
NTriples, Turtle

Single values that correspond to
the simple types defined in
(W3C, 2001), such as strings,
Booleans, decimals, integers, floats,
doubles and dates

Fig. 12.2 Comparison of the XML and Semantic Web data models

12.5 Query Languages 223

For example, SPARQL does not allow computing all descendant nodes of a node

like XPath does. However, the formulation of joins in graphs is easier in SPARQL

than in XPath.

Both XPath and SPARQL support complex queries and support the usage of

variables, constraining the result of queries (see predicates [. . .] in XPath and

FILTER expressions in SPARQL) and joins using variables. XPath and SPARQL

support iterating through an input dataset (see for clauses in XPath and triple

patterns in SPARQL). Furthermore, XPath and SPARQL have a rich set of built-in

functions, some of which are equivalent (see e.g., function fn:matches in XPath

and the equivalent function regex in SPARQL). Both XPath and SPARQL do not

support user-defined functions. Both languages support conditional results (see

e.g., if-then-else expressions in XPath and OPTIONAL patterns in SPARQL)

and support nesting of their expressions and statements. The supported datatypes

in XPath queries are the datatypes of XML Schema, which are supported in

SPARQL, too.

XPath supports mechanisms to determine transitive closures by built-in mechan-

isms (e.g., using the descendant axis), but SPARQL does not support the

determination of transitive closures.

Both XPath and SPARQL define built-in functions, which do not have a

corresponding built-in function in the other language (see e.g., fn:replace
and simple aggregates such as fn:count and fn:max in XPath, and isIRI
and isBound in SPARQL). Cast operations in XPath queries of data of a not

castable datatype lead to an error, which stops the evaluation of the XPath query,

while casting in SPARQL queries within filter expressions constraints the input

data.

XPath expressions return a single or a sequence of atomic values, which are

single values that correspond to the simple types defined in (W3C 2001), such

as strings, Booleans, decimals, integers, floats, doubles and dates, or a non-

nesting, un-typed sequence of nodes, which are ordered according to the docu-

ment order, whereas the evaluation of SPARQL queries returns a set of bindings

of variables.

XQuery and XSLT have the same expressive power, such that translation

schemes between these languages exist (see e.g., Klein et al. 2005; Bettentrupp

et al. 2006; Groppe et al. 2009c).

XQuery, XSLT as well as SPARQL, can generate the data in the format of their

input data; that is, XQuery and XSLT can generate XML fragments and SPARQL

can generate RDF data (by using CONSTRUCT queries).

XQuery and XSLT support user-defined functions formulated as XQuery func-

tions and as XSLT templates, but SPARQL does not support user-defined functions

formulated in SPARQL. XQuery and XSLT restricted by using intermediate vari-

ables support nesting of expressions with full generality, but SPARQL does not

support, for example, querying the result of a SPARQL subquery formulated in one

SPARQL query. XQuery and XSLT support the determination of transitive closures

by, for example, defining and using a recursive function, but SPARQL does not

support the determination of the transitive closure.

224 12 Comparison of the XML and Semantic Web Worlds

The good news is that XPath queries can be translated into SPARQL queries (see

Droop et al. 2007, 2008, 2009) and SPARQL queries can be translated into XQuery

queries and XSLT stylesheets (Groppe et al. 2008a, b).

Figure 12.3 summarizes the comparison between XPath, XQuery, XSLT, and

SPARQL.

Support XPath 2.0 XQuery /XSLT SPARQL
Type Tree query language Tree query language Graph query language

Variables Yes Yes Yes

Constraints Yes (Predicates) Yes (Predicates /where-
clause (XQuery))

Yes (Filter-clause)

Joins Yes (using variables) Yes (using variables) Yes (using variables)

Iteration
through input
data set

Yes (for-clause) Yes (for-clause / for-each
XSLT instruction)

Yes (triple patterns)

Built-in functions Yes Yes Yes

User-defined
functions

No Yes (functions in XQuery
and templates in XSLT)

No

Conditional
results

Yes (if-then-else
expression)

Yes (if-then-else expression
/ if XSLT instruction)

Yes (Optional
patterns)

XML Schema
data types

Yes Yes Yes

Nesting of
expressions

Yes Yes (in XSLT intermediate
results have often to be
stored in variables)

Restricted (e.g. sub-
queries planned for
SPARQL 1.1)

descendant
nodes

Yes Yes No

Determination
of transitive
closure

Built-in mechanisms to
retrieve descendant /
ancestor nodes

Yes (recursive functions and
templates)

No

Cast errors Stop evaluation Stop evaluation Constraints input data

Type of query
result

single or a sequence of
atomic values,or a non-
nesting, un-typed se-
quence of nodes, which
are ordered according
to the document order

Like the query result type
of XPath and additionally
XML fragments

a set of bindings of
variables, a Boolean
value or an RDF
graph

Updates No No (Proprietary extension
of XQuery for updates
available)

No (planned for
SPARQL 1.1)

Translations XPath into SPARQL
(Droop et al. 2009)

XQuery /XSLT can be
translated into each other
(Groppe et al. 2009c), but
not into SPARQL

SPARQL into
XQuery /XSLT
(Groppe et al. 2008)

Fig. 12.3 Comparison of XPath, XQuery, XSLT, and SPARQL features

12.5 Query Languages 225

12.6 Embedding SPARQL into XQuery/XSLT

The tree-based languages XQuery and XSLT for XML are widely supported. We

propose to embed SPARQL subqueries into XQuery/XSLT, such that XQuery and

XSLT benefit from the graph query language constructs of SPARQL, and SPARQL

benefits from features of XQuery/XSLT, which SPARQL does not support. The

embedding enables XQuery/XSLT tools to handle at the same time XML queries

and SPARQL subqueries, and XML and RDF data.

Many commercial as well as freely available products support the evaluation of

XQuery expressions or XSLT stylesheets, but do not support the SPARQL lan-

guage. Examples for products with XQuery support include Tamino XML Server

(Software AG 2007), Microsoft SQL Server 2005 Express (Microsoft 2007), Saxon

(Kay 2010), and Qizx (xmlmind 2010). Examples for products with XSLT support

include BizTalk (Microsoft 2009), Cocoon (Apache 2009), and Saxon (Kay 2010).

Integration of RDF data into XML data and embedding of SPARQL queries into

XQuery queries and XSLT stylesheets can make RDF data and SPARQL available

for these products. Furthermore, the proposed embedding enables users to work in

parallel with XML data and RDF data, and with XQuery queries, XSLT stylesheets,

and SPARQL queries; that is RDF data are integrated in XML data and the result of

SPARQL subqueries can be used in XQuery/XSLT for further processing. As most

XQuery/XSLT tools do not allow calling an external SPARQL evaluator from

XQuery/XSLT, we propose to translate embedded SPARQL queries into XQuery/

XSLT subexpressions.

Graph queries can be easily expressed in the graph query language SPARQL in

comparison to the tree-based query and transformation languages XQuery and

XSLT. An embedding of SPARQL into XQuery/XSLT allows the easy formulation

of tree queries/transformations and graph queries in one query. Furthermore,

SPARQL does not support many language constructs such as computation of the

transitive closure and user-defined functions, which are supported by the proposed

embedding. Thus, the host languages XQuery and XSLT benefit from the embed-

ded language SPARQL and the embedded language SPARQL benefits from its host

languages XQuery and XSLT.

The contributions of this section are as follows:

l The embedding of SPARQL into XQuery/XSLT, which enables users to benefit

from both graph and tree language constructs,
l The translation from the operator tree into XQuery/XSLT, and
l An experimental evaluation of the embedding.

12.6.1 Embedded SPARQL

In this section, we introduce language constructs for embedding SPARQL in XQu-

ery/XSLT. The RDF data of Fig. 12.4 contain a FOAF (Brickley and Miller 2007)

226 12 Comparison of the XML and Semantic Web Worlds

document for representing social networks with four triples, the first of which (line

(2)) associates _:a (the subject) with foaf:name (the predicate) and "Alice" (the

object). In this chapter, we do not resolve the prefix foaf, which is defined in line

(1), due to simplicity of presentation.

Lines (3–6) in Fig. 12.5 and lines (5–10) in Fig. 12.6 show examples of an

embedded SPARQL (Prud’hommeaux and Seaborne 2008) query Q in XQuery

(W3C 2007c) and in XSLT (W3C 2007a). The embedded SPARQL query Q returns

the names and email addresses of those people, the email addresses of which

contain "@work.example". The result of a SPARQL query is a bag (also called

multiset), that is, its unordered elements can appear more than once. The result of Q

is the bag<{(name, "Alice"), (mbox,<mailto:alice@work.example>)}> of envir-

onments consisting of bindings of variables; for example, the value "Alice" is

bound to the variable name.

The proposed extension for ($var1, $var2, . . ., $varn) in S of XQuery and the

proposed extension <xsl:for-SPARQL var¼"$var1, $var2, . . ., $varn">S</xsl:for-

SPARQL> of XSLT, where S is a SPARQL SELECT subquery, iterate through all

environments of the result of S. In each iteration, the values of bound variables of

the current environment are mapped to the XQuery/XSLT variables $var1, . . .,
$varn, which can be afterward used in normal XQuery/XSLT instructions. For

example, Fig. 12.7 presents the overall result of the XQuery query of Fig. 12.5

and of the XSLT stylesheet of Fig. 12.6, both of which with embedded SPARQL

subquery.

(1) @prefix foaf: <http:/ / xmlns.com / foaf / 0.1 / > .

(2) _:a foaf:name "Alice".

(3) _:a foaf:mbox <mailto:alice@work.example> .

(4) _:b foaf:name "Bob" .

(5) _:b foaf:mbox <mailto:bob@home.example> .

Fig. 12.4 RDF data

(1) declare namespace foaf = “http: / / xmlns.com / foaf / 0.1 / ”;

(2) <results>{ for ($n, $m) in

(3) SELECT ?name ?mbox

(4) WHERE { ?x foaf:name ?name .

(5) ?x foaf:mbox ?mbox .

(6) FILTER regex(str(?mbox),"@work.example") }

(7) return <result>

(8) <name>{$n}< / name>

(9) <mbox>{$m}< / mbox>

(10) < / result>}

(11) <results>

Fig. 12.5 Embedded SPARQL query Q in an XQuery query

12.6 Embedding SPARQL into XQuery/XSLT 227

Additionally, we propose the extension let ($var1, $var2, . . ., $varn) :¼ S of

XQuery and the extension <xsl:result-SPARQL var¼"$var1, $var2, . . .,
$varn">S</xsl:result> of XSLT, where S is a SPARQL SELECT subquery,

which map a whole result of S to the variables $var1, . . ., $varn, each of which

stores sequences of values, such that $var1[i], . . ., $varn[i] represents the ith result

of S.

SPARQL ASK queries return a Boolean value, such that an embedding of ASK

subqueries in Boolean expressions of XQuery and XSLT is natural, which we omit

here due to no further scientific insights.

(1) <xsl:stylesheet xmlns:foaf ="http:/ / xmlns.com / foaf / 0.1 / ">

(2) <xsl:template match ="/ ">

(3) <results>

(4) <xsl:for -SPARQL var ="$n $m">

(5) <xsl:SPARQL>

(6) SELECT ?name ?mbox

(7) WHERE { ?x foaf:name ?name .

(8) ?x foaf:mbox ?mbox .

(9) FILTER regex(str(?mbox), "@work.example") }

(10) < / xsl:SPARQL>

(11) <result>

(12) <name><xsl:value-of select = "$n"/ >< / name>

(13) <mbox><xsl:value-of select = "$m"/ >< / mbox>

(14) < / result>

(15) <xsl:for-SPARQL>

(16) <results>

(17) < / xsl:template>

(18) < / xsl:stylesheet>

Fig. 12.6 Embedded SPARQL query Q in an XSLT stylesheet

<results>

<result>

<name>”Alice”< / name>

<mbox>mailto:alice@work.example< / mbox>

< / result>

< / results>

Fig. 12.7 Result of Fig. 12.5/Fig. 12.6 with Fig. 12.4 as input

228 12 Comparison of the XML and Semantic Web Worlds

12.6.2 Translation Process

In this section, we describe the translation process, which consists of the integration

of RDF data into XML data and the translation from the operator tree into XQuery/

XSLT subexpressions.

12.6.2.1 Integration of RDF Data into XML

The translated embedded SPARQL subqueries formulated in XQuery/XSLT

require a simple form of the RDF data in XML format, such that each triple can

be easily accessed by XQuery and XSLT language constructs. Thus, we iterate

through all triples and translate each triple (sv, pv, ov) with optional datatypes sd,

pd, and od into an XML subtree.

<entry>

<s>sv< / s>

<s_datatype>sd< / s_datatype>

<p>pv< / p>

<p_datatype>pd< / p_datatype>

<o>ov< / o>

<o_datatype>od< / o_datatype>

< / entry>.

If sd, pd, or od are not given, then we do not generate the corresponding element

<s_datatype>, <p_datatype>, or <o_datatype>, respectively. All these <entry>
elements are integrated in an already existing input XML document. In the example

of Fig. 12.8, which contains the translated RDF data of Fig. 12.4, we insert them as

children under a <translatedData> element.

12.6.2.2 Physical Operators Formulated in XQuery/XSLT

In this section, we present algorithms of the operators formulated in XQuery and

XSLT, as most XQuery/XSLT tools do not allow calling an external SPARQL

evaluator from XQuery/XSLT.

We use transformation rules to represent the translation from the operator tree of

the embedded SPARQL query into XQuery/XSLT. The transformation rule T(Op,

operand)¼> r or T(Op, operand1, . . ., operandn)¼> r, respectively, replaces an

operator Op with subtree operand (or with operands operand1, . . ., operandn,
respectively) by the right-hand side r. r consists of XQuery/XSLT expressions,

which occur in the translation as in r, in italic, conditional processing instructions,

and calls of other transformation rules and helper functions.

12.6 Embedding SPARQL into XQuery/XSLT 229

The result of a call T(Op, operand), where Op is the root operator of the operator

tree and operand its subtree, is the translation of an embedded SPARQL query into

an XQuery subquery or XSLT subexpression, respectively, which replaces the

embedded SPARQL query in the original XQuery query/XSLT stylesheet.

The call of a transformation rule T(Op), where Op is an operator, is equivalent to

a call of the transformation rule T(Op, operand1, . . ., operandn), where operand1,

. . ., operandn are the operands of Op. We use the same short notation for helper

functions.

Many transformation rules and helper functions are the same for XQuery and

XSLT. Whenever they are different, we mark them with a subscript “XQuery” or

“XSLT,” respectively; that is TXQuery(Op, operand)¼> r represents a transforma-

tion rule for XQuery, TXSLT(Op, operand)¼> r for XSLT, and T(Op, operand)¼> r

for both translations, for XQuery and XSLT.

Intermediate variables generated by the translation and SPARQL variables may

conflict with already used variables of the outer host XQuery/XSLT expression

because of same names. Therefore, we consistently rename those variables. We do

not present the variable renaming algorithm here due to simplicity of presentation.

We extend our SPARQL algebra as discussed before by two new operators,

which represent the functionality of the operators for embedding SPARQL into

XQuery/XSLT:

<translatedData>

<entry>
<s>a< / s>
<p>http: / / xmlns.com / foaf / 0.1 / mbox< / p>
<o>mailto:alice@work.example< / o>

< / entry>
<entry>

<s>a< / s>
<p>http: / / xmlns.com / foaf / 0.1 / name< / p>
<o>Alice< / o>

< / entry>
<entry>

<s>b< / s>
<p>http: / / xmlns.com / foaf / 0.1 / mbox< / p>
<o>mailto:bob@home.example< / o>

< / entry>
<entry>

<s>b< / s>
<p>http:/ / xmlns.com / foaf / 0.1 / name< / p>
<o>Bob< / o>

< / entry>
< / translatedData>

Fig. 12.8 Simple XML form of the RDF data of Fig. 12.4

230 12 Comparison of the XML and Semantic Web Worlds

1. The projection operator Projection_for{(x1,s1), . . ., (xn,sn)} represents the language

extension for ($var1, $var2, . . ., $varn) in . . . of XQuery and the extension

<xsl:for-SPARQL var¼"$var1, $var2, . . ., $varn"> . . . </xsl:for-SPARQL>
of XSLT. For example, Projection_for{(n, name), (m, mbox)} represents the exten-

sion of XQuery/XSLT and the SELECT clause in line (2) of Fig. 12.5 and line

(5) of Fig. 12.6. The semantics of the projection operator Projection_for{(x1,s1),

. . ., (xn,sn)} defines a loop for iterating its succeeding operators with the variables

x1, . . ., xn of the host XQuery/XSLT expression assigned with the bound values

of the SPARQL variables s1, . . ., sn of the embedded SPARQL query result.

2. The projection operator Projection_let{(x1,s1), . . ., (xn,sn)} represents the result of the

language extensions let ($var1, $var2, . . ., $varn) :¼ . . . and <xsl:result-SPARQL

var¼"$var1, $var2, . . ., $varn"> . . . </xsl:result> of the host languages. The

projection operator Projection_let{(x1,s1), . . ., (xn,sn)} assigns the variables x1, . . .,
xn of the host XQuery/XSLT expression with the sequence of bound values of the

SPARQL variables s1, . . ., sn of the embedded SPARQL query result.

With this extended SPARQL algebra, the embedded SPARQL query in Fig. 12.5

and in Fig. 12.6 can be represented as operator graph as depicted in Fig. 12.9.

XQuery

See Fig. 12.10 for the result of the translation of the embedded SPARQL query of

Fig. 12.5 into XQuery.

The following transformation rule for projection operators is the entry point

for translating the operator tree of a SPARQL query. The translated XQuery query

contains the declaration of a variable addressing all translated RDF triples. First, the

subtree of the projection operator is translated and then the variables to which it is

projected and their bound values are set. If there are optional variables, which are

stored in $Optional1 to $Optionaln, these optional variables are considered, too. The
function boundVariablesCurrentScope.contains is defined to return true for those

variables, which are not optional variables, and otherwise false. The function getUni-

queID() returns unique identifiers and the function getLastID() (getPrelastID(), respec-

tively) returns the identifier of the last call (pre-last call respectively) of getUniqueID().

Projection_for{($n, $name), ($m, $mbox)}

FILTER regex(str($mbox),"@work.example")

AND

(?x foaf:name ?name) (?x foaf:mbox ?mbox)

Fig. 12.9 Operator graph of

the embedded SPARQL

query in Fig. 12.5 and in

Fig. 12.6

12.6 Embedding SPARQL into XQuery/XSLT 231

<value name = "xn">pXQuery(xn, sn)< / value>

let $x1: = $_i_getLastID()[@name = "x1"] / text()…

let $xn: = $_i_getLastID()[@name = "xn"] / text()

pXQuery(xi,si) => if (boundVariablesCurrentScope.contains(vi)) then let $xi: = $si

else let $xi: = for $_i_getUniqueID() in

$Optional1 / binding / var[. = "vi"] / following-sibling::value, …,

$Optionaln / binding / var[. = "vi"] / following-sibling::value

return $_i_getLastID()

TXQuery(Projection_for{(x1, s1), …, (xn, sn)}, s) => let $___entry___: = / translatedData / entry;

T(s)pXQuery(x1, s1)…pXQuery(xn,sn)

TXQuery(Projection_let{(x1, s1), …, (xn, sn)}, s) =>

let $___entry___: = / translatedData / entry;

let $_i_getUniqueID(): = T(s) return <value name = "x1">pXQuery(x1, s1)< / value>…

The transformation rule for a triple pattern operator (p1 p2 p3) generates XQuery

instructions, which check for each triple in the input RDF data, whether or not the

triple pattern matches the considered triple (in the where helper function) by also

considering already bound variables. The generated XQuery instructions also bind

variables in the triple pattern to their corresponding values of the considered triple.

The function boundVariables.contains(pi) returns true if the variable pi has been

already bound to a value because of the generated XQuery instructions of a previous

triple pattern operator. getVarOf((p1 p2 p3)) returns the name of the variable

holding the currently considered triple of the triple pattern operator (p1 p2 p3).

TXQuery((p1 p2 p3)) => for $_cE_getUniqueID() in $___entry___

patXQuery(p1, s, _cE_getLastID())

patXQuery(p2, p, _cE_getLastID())

patXQuery(p3, o, _cE_getLastID())

patXQuery(pi, pos, varOfTriple) =>

if(pi is variable and !boundVariables.contains(pi))

then let $pi: = $varOfTriple / pos let $pi_datatype: = $varOfTriple / pos_datatype

where((p1p2 p3)) => wherePattern(p1, s, getVarOf((p1 p2 p3))) and

wherePattern(p2, p, getVarOf((p1 p2 p3))) and

wherePattern(p3, o, getVarOf((p1 p2 p3)))

wherePattern (pi, pos, varOfTriple) =>

if(pi is a variable)

then { if(boundVariables.contains(pi)) then varOfTriple / pos / text() = $pi}

else varOfTriple / pos / text() = pi.getString()

232 12 Comparison of the XML and Semantic Web Worlds

Most of the translation for a join has already been generated in the translation of

succeeding triple pattern operators, such that the translation of the AND operator

consists of generating the where clause, which checks constraints of the succeeding

operators. As there is only one where clause allowed in an XQuery FLWOR

expression, we only generate the where clause for the outermost AND or OPT

operator. Note that the presented translations implementing nested-loop joins can

be replaced by translations using other join types such as merge or hash join.

TXQuery(AND, s1, …, sn) => T(s1) … T(sn)

If(AND is the outermost from all AND / OPT operators)

If(AND is not the outermost from all AND / OPT operators)

then where where(s1) and … and where(sn)

where(AND, s1, …, sn) =>

then where(s1) and … and where(sn)

The translation rules for the OPT operator generate XQuery instructions, which

build an XML structure for all variables and eventually their optionally bound

values. boundVariablesOf(s) returns a sequence of all bound variables of the

operator s.

TXQuery(OPT, s1, s2) => T(s1) optional1XQuery(s2);

If(OPT is the outermost from all AND / OPT operators)

then where where(s1)

optional1XQuery(s) => let $__optional__getUniqueID():=

if (fn:empty(optional2XQuery(s))))

then <noBinding> noBinding(s) < / noBinding>

else (optional2XQuery(s))

optional2XQuery(s) => T(s) where where(s)

<binding>

<var> boundVariablesOf(s).get(1) < / var>

<value>{$ boundVariablesOf(s).get(1)}< / value>

< / binding>…

<binding>

<var> boundVariablesOf(s).getLast() < / var>

<value>{$ boundVariablesOf(s).getLast()}< / value>

< / binding>

noBinding(s) => <var> boundVariablesOf(s).get(1) < / var> ...

<var> boundVariablesOf(s).getLast() < / var>

where(OPT, s1,s2) => If(OPT is not the outermost from all AND / OPT operators)
 then where(s1)

12.6 Embedding SPARQL into XQuery/XSLT 233

The translation rules for filter expressions add a translated XPath expression to

the constraints to be checked in the outer where clause of the translated XQuery

expression.

T(FILTER R, s) => T(s)

where(FILTER R, s) => R and where(s)

The translation of the UNION operator and its operands is analogous to the

translation of the optional part of Optional.

T(UNION, s1, …, sn) => optional1(s1) … optional1(sn)

where(UNION, s1, …, sn) =>

XSLT

We present only those transformation rules (see Fig. 12.11), which differ from the

transformation rules forXQuery, in the following paragraphs.As analogous remarks in

comparison to the XQuery transformation rules apply, we present the transformation

rules for XSLT without remarks. The function close(s) returns </xsl:if> for each

open<xsl:if> and</xsl:for-each> for each open <xsl:for-each> according to their

nesting of the translations of the operator s in order to generate correct XSLT

stylesheets. For the TXSLT(Projection_forV,s) operator, we have to replace the closing

tag</xsl:for-SPARQL>with the result of close(s). See Fig. 12.12 for the result of the

translation of the embedded SPARQL query of Fig. 12.6 into XSLT.

(1) declare namespace foaf = "http:/ / xmlns.com / foaf / 0.1 / ";

(2) <results>{ let $___entry___:= / translatedData / entry

(3) for $_cE_0 in $___entry___

(4) let $x := $_cE_0 / s / text()

(5) let $x_datatype := $_cE_0 / s_datatype / text()

(6) let $name := $_cE_0 / o / text()

(7) let $name_datatype:= $_cE_0 / o_datatype / text()

(8) for $_cE_1 in $___entry___

(9) let $mbox := $_cE_1 / o / text()

(10) let $mbox_datatype:= $_cE_1 / o_datatype / text()

(11) let $n = $name $m := $mbox

(12) where matches($mbox,"@work.example") and

(13) $_cE_0[p / text() = 'http: / / xmlns.com / foaf / 0.1 / name'] and

(14) $_cE_1 / s / text() = $x and

(15) $_cE_1[p / text() = 'http: / / xmlns.com / foaf / 0.1 / mbox']

(16) return <result>

(17) <name>{$n}< / name>

(18) <mbox>{$m}< / mbox>

(19) < / result>}

(20) <results>

Fig. 12.10 Result of translating Fig. 12.5

234 12 Comparison of the XML and Semantic Web Worlds

12.6.3 Experimental Analysis

We present the average of ten execution times of the original SPARQL queries of

the DAWG test cases (Feigenbaum 2008), of the data and query translation, and of

the processing of the translated queries (see Figs. 12.13–12.20). The DAWG test

cases consist of a set of queries covering many aspects of the SPARQL language.

The test system uses an Intel Pentium 4 processor with 2.66 GHz, 1 GB main

memory,Windows XP Professional 2002, and Java 1.5.We use Jena (Wilkinson et al.

2003) since it supports the current SPARQL version (Prud’hommeaux and Seaborne

2008), which is not fully supported bymany SPARQLprocessing engines.We choose

the widely used Saxon (Kay 2010) XQuery evaluator, and Qizx (xmlmind 2010).

Xalan and Saxon (Kay 2010) are widely used Java XSLT processors, where only

Saxon supports XSLT 2.0 (W3C 2007a), which is a requirement of our translation.

We exclude those queries for the experiments, which cannot be translated by our

prototype for the following reasons:

l The queries contain not supported built-in functions such as LANG, LANG-

MATCHES, sameTerm, isIRI, isURI, isBLANK, and isLITERAL, which do not

have equivalent XQuery/XSLT built-in functions.

<xsl:variable name = ’___entry___’ select = ’/ translatedData / entry’ / >

T(s)

<xsl:variable name = ’___entry___’ select = ’/ translatedData / entry’ / >

<xsl:variable name = ’_i_getUniqueID()>

T(s)

<value name = "x1">pXSLT(x1, s1)< / value>…

<value name = "xn">pXSLT(xn, sn)< / value>

close(s)

< / xsl:variable>

<xsl:variable name = ’x1’ select = $_i_getLastID() [@name = "x1"] / text()’ / >…

<xsl:variable name = ’xn’ select = $_i_getLastID() [@name = "xn"] / t ext()’/ >

pXSLT(xi, si) => if(boundVariablesCurrentScope.contains(vi))

then <xsl:variable name = 'xi' select = '$si'/>

else <xsl:variable name = 'xi'select = ’

$Optional1 / binding / var[. = "si"] / following-sibling::value / text(), …,

$Optionaln / binding / var[. = "si"] / following-sibling::value / text()’ / >

TXSLT(Projection_for{(x1, s1), …, (xn, sn)}, s) =>

pXSLT(x1,s1)…pXSLT(xn,sn)

TXSLT(Projection_let{(x1, s1), …, (xn, sn)}, s) =>

Fig. 12.11 (continued)

12.6 Embedding SPARQL into XQuery/XSLT 235

TXSLT((p1p2p3)) => <xsl:for-each select = ’$___entry___’>

<xsl variable name = ’_cE_getUniqueID()’select = ’.’/ >

patXSLT(p1, s, _cE_getLastID())

patXSLT(p2, p, _cE_getLastID())

patXSLT(p3, o, _cE_getLastID())

patXSLT(pi, pos, varOfTriple) =>

if(pi is variable and !boundVariables.contains(pi))

then <xsl:variable name = ’pi’ select = ’$varOfTriple / pos’ / >

<xsl:variable name = ’pi_datatype’ select = ’$varOfTriple / pos_datatype’/>

TXSLT(AND, s1, …, sn) => T(s1) … T(sn)

If(Join is the outermost from all AND / OPT operators)

then <xsl:if test =’where(s1) and… and where(sn)’>

TXSLT(OPT, s1, s2) => T(s1) optional1XQuery(s2);

If(OPT is the outermost from all AND / OPT operators)

then <xsl:if test = ’ where(s1)’>
optional1XSLT(s) =>

<xsl:variable name = ’_t_getUniqueID()’>

T(s)

<xsl:if test = ’where(s)’>

<binding>

<var> boundVariablesOf(s).get(1) </var>

<value><xsl:value-of select = ’$boundVariablesOf(s).get(1)’/ >< / value>

< / binding>…

<binding>

<var> boundVariablesOf(s).getLast() </var>

<value><xsl:value-of select = ’$boundVariablesOf(s).getLast()’ / >< / value>

< / binding>

< / xsl:if>

close(s)

< / xsl:variable>

<xsl:variable name = ’__optional__getUniqueID()’>

<xsl:choose>

<xsl:when test = ’not($_t_getPrelastID())’>

<noBinding> noBinding(s) < / noBinding>

< / xsl:when>

<xsl:otherwise>

<xsl:copy-of select = ’$_t_getPrelastID()’/ >

< / xsl:otherwise>

< / xsl:choose>
< / xsl:variable>

Fig. 12.11 Tranformation rules for XSLT

236 12 Comparison of the XML and Semantic Web Worlds

<xsl:stylesheet xmlns:foaf = "http: / / xmlns.com / foaf / 0.1 / ">

<xsl:template match = "/ ">

<results>

<xsl:variable name = ’___entry___’ select = ’ / translatedData / entry’ / >

<xsl:for-each select = '$___entry___'>

<xsl:variable name = '_cE_0’ select = '.'/ >

<xsl:variable name = 'x' select = '$_cE_0 / s' / >

<xsl:variable name = 'x_datatype' select = '$_cE_0 / s_datatype’ / >

<xsl:variable name = 'name' select = '$_cE_0/o'/>

<xsl:variable name = 'name_datatype' select = '$_cE_0 / o_datatype'/ >

<xsl:for-each select = '$___entry___'>

<xsl:variable name = '_cE_1' select='.'/ >

<xsl:variable name = 'mbox' select = '$_cE_1 / o'/ >

<xsl:variable name = 'mbox_datatype' select = '$_cE_1 / o_datatype' / >

<xsl:if test = 'matches($mbox,"@work.example") and

$_cE_0 / p / text() = "http: / / xmlns.com / foaf / 0.1 / name" and

$_cE_1 / s / text() = $x and

$_cE_1 / p / text() = "http: / / xmlns.com / foaf / 0.1 / mbox" '>

<xsl:variable name = 'n'select = '$name'/ >

<xsl:variable name = 'm'select = '$mbox'/ >

<result>

<name><xsl:value-of select = "$n"/>< / name>

<mbox><xsl:value-of select = "$m"/>< / mbox>

< / result>

< / xsl:if>

< / xsl:for-each>

< / xsl:for-each>

< / results>

< / xsl:template>

< / xsl:stylesheet>

Fig. 12.12 Result of translating Fig. 12.6

12.6 Embedding SPARQL into XQuery/XSLT 237

1

10

100

1000

bound \ bound1.rq

examples \ ex2-1a.rq

examples \ ex2-2a.rq

examples \ ex2-3a.rq

examples \ ex2-4a.rq

examples \ ex3.rq

examples \ ex11_1.rq

examples \ ex11.2.3.1_0.rq

examples\ex11.2.3.1_1.rq

examples \ ex11.2.3.2_1.rq

examples \ ex11.2.3.6_0.rq

Expr1 \ expr-1
.rq

Expr2 \ query-bev-1.rq

Expr2 \ query-bev-2.rq

Expr2 \ query-bev-3.rq

Expr2 \ query-bev-4.rq

ExprBuiltin
s \ q-str-1

.rq

ex
ec

u
ti

o
n

 t
im

e
/

m
ill

is
ec

o
n

d
s

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.13 Execution times of the first part of the DAWG test cases, where we use the filenames

of the DAWG queries to label test cases

1

10

100

1000

ExprBuiltin
s \ q-str-2

.rq

ExprBuiltin
s \ q-str-3

.rq

ExprBuiltin
s \ q-datatype-1.rq

ExprEquals \ query-eq-1.rq

ExprEquals \ query-eq-2.rq

ExprEquals \ query-eq-3.rq

ExprEquals \ query-eq-4.rq

ExprEquals \ query-eq-5.rq

ExprEquals \ query-eq-graph-1.rq

ExprEquals \ query-eq-graph-2.rq

ExprEquals \ query-eq-graph-3.rq

ExprEquals \ query-eq-graph-4.rq

ExprEquals \ query-eq-graph-5.rq

i18n \ norm
alization-02.rq

i18n \ norm
alization-03.rq

local-constr \ expr-1
.rq

Optional \ q
-opt-1

.rq

ex
ec

u
ti

o
n

 t
im

e
/

m
ill

is
ec

o
n

d
s

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.14 Execution times of the second part of the DAWG test cases, where we use the

filenames of the DAWG queries to label test cases

1

10

100

1000

10000

Optional \ q
-opt-2

.rq

Optional \ q
-opt-3

.rq

part1
\ dawg-query-001.rq

part1
\ dawg-query-002.rq

part1
\ dawg-query-003.rq

part1
\ dawg-query-004.rq

regex \ re
gex-query-001.rq

regex \ re
gex-query-002.rq

rf1
\ rf1

-example.rq

Select \ q
-select-1

.rq

Select \ q
-select-2

.rq

Select \ q
-select-3

.rq

simple \ dawg-tp
-01.rq

simple \ dawg-tp
-02.rq

simple \ dawg-tp
-03.rq

simple \ dawg-tp
-04.rq

simple2 \ dawg-tp
-01.rq

simple2 \ dawg-tp
-02.rq

ex
ec

u
ti

o
n

 t
im

e
/

m
ill

is
ec

o
n

d
s

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.15 Execution times of the third part of the DWAG test cases, where we use the filenames

of the DAWG queries to label test cases

1
10

100

1000
10000

100000

simple2 \ dawg-tp
-03.rq

simple2 \ dawg-tp
-04.rq

sort \
query-sort-1

.rq

sort \
query-sort-3

.rq

sort \
query-sort-5

.rq

Sortin
g \ one-of-o

ne-column.rq

survey \ query-survey-1.rq

survey \ query-survey-2.rq

survey \ query-survey-3.rq

survey \ query-survey-8.rq

survey \ query-survey-9.rq

survey \ query-survey-10.rq

survey \ query-survey-12.rq

survey \ query-survey-13.rq

Syntax \ syntax-001.rq

Syntax \ syntax-002.rq

Syntax \ syntax-003.rq

ex
ec

u
ti

o
n

 t
im

e
/

m
ill

is
ec

o
n

d
s

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.16 Execution times of the fourth part of the DAWG test cases, where we use the filenames

of the DAWG queries to label test cases

238 12 Comparison of the XML and Semantic Web Worlds

1

10

100

1000

Syntax \ syntax-004.rq

SyntaxFull \ s
yntax-basic-01.rq

SyntaxFull \ s
yntax-basic-02.rq

SyntaxFull \ s
yntax-basic-03.rq

SyntaxFull \ s
yntax-basic-04.rq

SyntaxFull \ s
yntax-basic-05.rq

SyntaxFull \ s
yntax-basic-06.rq

SyntaxFull \ s
yntax-bnodes-...

SyntaxFull \ s
yntax-bnodes-...

SyntaxFull \ s
yntax-bnodes-...

SyntaxFull \ s
yntax-bnodes-...

SyntaxFull \ s
yntax-bnodes-...

SyntaxFull \ s
yntax-expr-0

1.rq

SyntaxFull \ s
yntax-expr-0

2.rq

SyntaxFull \ s
yntax-expr-0

3.rq

SyntaxFull \ s
yntax-expr-0

4.rq

SyntaxFull \ s
yntax-expr-0

5.rq

ex
ec

u
ti

io
n

 t
im

e
/

m
ill

is
ec

o
n

d
s

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.17 Execution times of the fifth part of the DAWG test cases, where we use the filenames

of the DAWG queries to label test cases

1

10

100

1000

SyntaxFull \ s
yntax-order-0

1.rq

SyntaxFull \ s
yntax-lit-

02.rq

SyntaxFull \ s
yntax-lit-

07.rq

SyntaxFull \ s
yntax-lit-

08.rq

SyntaxFull \ s
yntax-lit-

01.rq

SyntaxFull \ s
yntax-order-0

2.rq

SyntaxFull \ s
yntax-order-0

3.rq

SyntaxFull \ s
yntax-order-0

4.rq

SyntaxFull \ s
yntax-pat-0

1.rq

SyntaxFull \ s
yntax-pat-0

2.rq

SyntaxFull \ s
yntax-pat-0

3.rq

SyntaxFull \ s
yntax-pat-0

4.rq

SyntaxFull \ s
yntax-qname-07.rq

SyntaxFull \ s
yntax-qname-08.rq

SyntaxFull \ s
yntax-qname-09.rq

SyntaxFull \ s
yntax-qname-10.rq

SyntaxFull \ s
yntax-qname-11.rq

ex
ec

u
ti

io
n

 t
im

e
/

m
ill

is
ec

o
n

d
s

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.18 Execution times of the sixth part of the DAWG test cases, where we use the filenames

of the DAWG queries to label test cases

1

10

100

1000

SyntaxFull \ s
yntax-qname-12.rq

SyntaxFull \ s
yntax-qname-13.rq

SyntaxFull \ s
yntax-qname-14.rq

SyntaxFull \ s
yntax-stru

ct-0
1.rq

SyntaxFull \ s
yntax-stru

ct-0
2.rq

SyntaxFull \ s
yntax-stru

ct-0
3.rq

SyntaxFull \ s
yntax-stru

ct-0
4.rq

SyntaxFull \ s
yntax-stru

ct-0
5.rq

SyntaxFull \ s
yntax-stru

ct-0
6.rq

SyntaxFull \ s
yntax-stru

ct-0
7.rq

SyntaxFull \ s
yntax-stru

ct-0
8.rq

SyntaxFull \ s
yntax-stru

ct-0
9.rq

SyntaxFull \ s
yntax-stru

ct-1
0.rq

SyntaxFull \ s
yntax-union-01.rq

SyntaxFull \ s
yntax-keywords-01.rq

SyntaxFull \ s
yntax-keywords-02.rq

SyntaxFull \ s
yntax-keywords-03.rq

TypePromotion \ tP
-double-double.rq

ex
ec

u
ti

o
n

 t
im

e
/

m
ill

is
ec

o
n

d
ss

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.19 Execution times of the seventh part of the DAWG test cases, where we use the

filenames of the DAWG queries to label test cases

1

10

100

1000

10000

TypePromotion \ tP
-double-flo

at.rq

TypePromotion \ tP
-double-decimal.rq

TypePromotion \ tP
-flo

at-flo
at.rq

TypePromotion \ tP
-flo

at-d
ecimal.rq

TypePromotion \ tP
-decimal-decimal.rq

TypePromotion \ tP
-short-d

ouble.rq

TypePromotion \ tP
-short-l

ong-fa
il.rq

TypePromotion \ tP
-short-i

nt-fa
il.rq

TypePromotion \ tP
-double-flo

at-fa
il.rq

TypePromotion \ tP
-double-decimal-fa

...

TypePromotion \ tP
-flo

at-d
ecimal-fa

il.rq

ValueTesting \ extendedType-eq-pas...

ValueTesting \ boolean-equiv-TRUE.rq

ValueTesting \ boolean-logical-O
R.rq

ValueTesting \ boolean-tru
e-canonica...

ValueTesting \ boolean-EBV-canonica...

Average

ex
ec

u
ti

o
n

 t
im

e
/

m
ill

is
ec

o
n

d
ss

Jena Data translation Saxon XQuery Qizx Saxon XSLT

Fig. 12.20 Execution times of the eighth part of the DAWG test cases, where we use the filenames

of the DAWG queries to label test cases

12.6 Embedding SPARQL into XQuery/XSLT 239

l The queries contain FILTER statements with variables of OPTIONAL pat-

terns, in which the considered FILTER statement is not embedded. This is

solvable by additional tests of the bindings of variables of OPTIONAL patterns

or by transferring the FILTER statement into the corresponding OPTIONAL

pattern.
l The queries and data contain other data types than String, Boolean, Decimal,

Float, Double, Duration, dateTime, Time, and Date. The used XQuery evalua-

tors and XSLT processors do not support special data types such as nonNega-

tiveInteger.
l For the translation into XSLT: The queries require sorting according to another

data type than String, as Saxon XSLT always sorts according to the string

representation of the values.

We neglect the support, which can be added by using a function library espe-

cially developed for this purpose, of this kind of queries as their support do not

demonstrate further main principles.

The average execution time of the original SPARQL queries of these 137 queries

is 54.4 ms when using the Jena evaluator. The average execution time for data

translation from RDF data to XML data is 12.4 ms; the average execution time for

translating the query from SPARQL to XQuery/XSLT is approximately 6 ms.

While the executions of the translated queries are for Saxon XQuery 1.86 times,

for Qizx 4.06 times, and for Saxon XSLT 3.55 times slower in comparison with

using Jena, the absolute average execution times are quite small, 101 ms for Saxon

XQuery, 220.6 ms for Qizx, and 184.4 ms for Saxon XSLT.

12.7 Embedding XPath Into SPARQL

In recent years, many RDF storage systems, which support or plan to support

SPARQL, have occurred like Jena (Wilkinson et al. 2003). These RDF storage

systems do not support XML data and XPath queries, which are currently

widely used in applications. Integration of XML data into RDF data and

embedding of XPath queries into SPARQL queries can make XML data and

XPath available for these products. Furthermore, the proposed embedding

enables users to work in parallel with XML data and RDF data, and with

XPath queries and SPARQL queries, that is, XML data are integrated in RDF

data and the result of XPath subqueries can be used in SPARQL for further

processing. As many SPARQL tools do not allow calling an external XPath

evaluator from SPARQL, we propose to translate embedded XPath queries into

SPARQL subexpressions.

Tree-based queries can be easily expressed in the tree query language XPath in

comparison to the graph query language SPARQL. For example, SPARQL does

not allow computing all descendant nodes of a node like XPath does. Further-

more, the formulation of joins in graphs is easier in SPARQL than in XPath. An

240 12 Comparison of the XML and Semantic Web Worlds

embedding of XPath into SPARQL allows the easy formulation of tree queries

and graph queries in one query. Thus, the host language SPARQL benefits from

the embedded language XPath, and the embedded language XPath benefits from

its host language SPARQL.

In this section, we propose a translation scheme for XML data into RDF data and

XPath queries into SPARQL queries. Furthermore, we present the results of an

experimental evaluation of a prototype, which shows that various different XPath

queries can be embedded into SPARQL.

12.7.1 Translation of XPath Subqueries Into SPARQL Queries

We propose to embed XPath subqueries in SPARQL queries by binding a SPARQL

variable to the result of an XPath subquery by using a BIND(S, E) construct in the

WHERE clause of the host SPARQL query, which assigns the resultant nodes of an

embedded XPath expression E to a SPARQL variable S. For example, we present a

SPARQL query with an embedded XPath subquery in Fig. 12.21, where the titles of

all available books in a collection of books from a bookstore, the data of which are

stored in the input XML document, are retrieved and represented by the SPARQL

variable ?XPath [see line (6)]. Furthermore, the retrieved result of the embedded

XPath subquery is compared with the titles in the book collection of the user [see

line (9)], which are stored in the input RDF document, and the current places of the

books are determined [see line (10)]. The titles of the books available in both the

bookstore and the book collection of the user are returned together with the current

place of the book [see line (5)].

We first explain how to translate an XPath query into an equivalent SPARQL

query. Afterward, we explain how to integrate the translation of an embedded

XPath subquery into its host SPARQL query.

The translation process consists of three steps (see Fig. 12.22): (1) the translation

of the input data from XML into RDF, (2) the source-to-source translation from the

XPath query into the translated SPARQL query, and (3) in the case that the host

(1) PREFIX myCollection:

(2) <http://www.luposdate.org/>

(3) PREFIX xsd:

(4) <http://www.w3.org/2001/XMLSchema#>

(5) SELECT ?XPath ?place WHERE

(6) { BIND(?XPath,

(7) /child::bookstore/parent::node()/

(8) descendant::title/child::text()).

(9) ?x myCollection:title ?XPath.

(10) ?x myCollection:place ?place. }

Fig. 12.21 Host SPARQL query with embedded XPath query

12.7 Embedding XPath Into SPARQL 241

SPARQL query returns the result of an embedded XPath query the translation of the

result from the translated SPARQL query into the result according to the XPath and

XQuery data model, which is equivalent to the result of the XPath query. We

explain each translation step in detail in the following subsections.

12.7.1.1 Translation of Data

The implicit type of each node of the XML tree has to be stored explicitly by a special

relationship for translating XML data into RDF data. All implicit relationships

of nodes of the XML tree have to be added as explicit relationships in the RDF data.

This includes parent–child relationships, attribute and namespace relationships,

and next-sibling relationships. As SPARQL does not support the determination of

transitive closures, we have to add a numbering scheme to the RDF data in order to

support XPath axes, which require the determination of the transitive closure of basic

relationships, such as descendant, ancestor, following, and preceding.

We translate the XML data intoRDF data by a depth-first traversal of the XML tree

and annotate each translated node of the XML data with the relationships rel:type,

rel:child, rel:attribute, rel:namespace, rel:name, rel:value, rel:start, and rel:end.

As an example, see Fig. 12.23 for the original XML data, see Fig. 12.24 for its

graphical representation, and see Fig. 12.25 for the translated RDF graph.

We use a relationship rel:type in the RDF data in order to explicitly annotate the

type of an XML node. The explicit relationship rel:child in the translated RDF data

expresses a parent–child relationship in the XML tree, rel:attribute an attribute

relationship, and rel:namespace a namespace relationship. The value associated

with the relationship rel:name contains the name of the XML node; rel:value

contains the value of the node. The relationships rel:start and rel:end are computed

by a numbering scheme for XML data and their purpose are for the determination of

Result in
Data Model

XML

Result in
Data Model

SparQL

Source
Program

formulated
in XPath

Data in
Data Model

XML

Data in
Data Model

RDF

(ii) Source-To-Source Translation

(i) Translation of Data

(iii)
Translation
of Result

Source
Program

formulated
in SparQL

Fig. 12.22 The translation process consisting of three steps

242 12 Comparison of the XML and Semantic Web Worlds

the descendant relationships in SPARQL queries, as SPARQL does not support the

determination of transitive closures.

We use a numbering scheme based on the region encoding on elements of the

XML tree, which we adapt from Grust et al. (2004): For each element, the values of

rel:start and rel:end can be assigned by a depth-first traversal through the XML tree.

The value of rel:start of the document tree is 1. The value rel:end of a node v with

start value n can be computed by n+count(subtree(v))+1, where the function count

returns the number of nodes of the subtree rooted at v. The value of rel:start of the

first child of a node v is v.start+1. The value of rel:start of a non-first child is the

value of rel:end of the previous sibling plus 1.

<bookstore>

<book category = "CHILDREN">

<title>Harry Potter</title>

<author>J. K. Rowling</author>

</book>

<book category = "WEB">

<title>Learning XML</title>

<author>Erik T. Ray</author>

</book>

</bookstore>

Fig. 12.23 An example

XML document representing

a bookstore

Document Node

bookstore

book book

category =
„CHILDREN“

category =
„WEB“

title author title author

Harry Potter J. K. Rowling Learning XML Erik T. Ray

X Element with name „X“

attribute with name „X“
assigned with value „V“

text node with content „T“

X =
„V“

T

parent-child relationship

next-sibling relationship

parent-attribute relationship

Fig. 12.24 Graphical representation of the XML document of Fig. 12.23

12.7 Embedding XPath Into SPARQL 243

Between any two elements a and b of the XML tree, a is a descendant node of b,

if a.start>b.start and a.end<b.end. Analogously, a is an ancestor node of b, if a.

start<b.start and a.end>b.end. a is a following-sibling (a preceding-sibling respec-

tively) of b, if a.start>b.start (a.start<b.start respectively), and there exists a subject

p such that p rel:child a and p rel:child b holds.

With these relationships, we can support all XPath axes in our translation

scheme, as we can determine the nodes according to the basic relationships. Note

that the XPath location step following::n is equivalent to ancestor-or-self::node()/

following-sibling::node()/descendant-or-self::n, and the XPath location step

preceding::n is equivalent to ancestor-or-self::node()/preceding-sibling::node()/

descendant-or-self::n.

12.7.1.2 Translation of Queries

We translate an XPath query into an equivalent SPARQL query in the following

way:

First, we determine the syntax tree of the XPath query. See Fig. 12.27, which

contains the syntax tree of the XPath query of Fig. 12.26. This can be done by using

standard compiler techniques, the input of which is the XPath grammar.

Second, we evaluate an attribute grammar. This attribute grammar defines

computation rules for each possible situation in the syntax tree. The computation

rules compute attributes of the nodes of the syntax tree. Depending on the depen-

dencies between the attributes in the computation rules, a tree walking algorithm

bookstore

rel:name

0

23

9

rel:
start

rel:type

rel:end

re
l:c

hi
ld

1

22

1
rel:
start

rel:type

rel:end

rel:name

12

21

1
rel:

start

rel:type

rel:endrel:name

2

11

1
rel:

start

rel:type

rel:end

2

category

CHILDREN

rel:type
rel:

attribute
rel:

name

rel:value

re
l:c

hil
d rel:child

2

category

WEB

rel:type
rel:attribute

rel:
name

rel:value

rel:name

3

6

1
rel:
start

rel:type

rel:end rel:name

7

10

1
rel:

start

rel:type

rel:end

title

rel:name

13

16

1
rel:
start

rel:type

rel:end rel:name

17

20

1

rel:
start

rel:type

rel:end

re
l:c

hi
ld rel:child

re
l:c

hi
ld

rel:child

rel:value

18

19

3
rel:

start

rel:type

rel:endrel:value

14

15

3
rel:

start

rel:type

rel:endrel:value

8

9

3
rel:

start

rel:type

rel:endrel:value

4

5

3
rel:

start

rel:type

rel:end

re
l:c

hi
ld

re
l:c

hi
ld

re
l:c

hi
ld

re
l:c

hi
ld

A12

bookbook

A7 A5

author

A6

Erik T. Ray

A8

Learning XMLJ. K. Rowling

A11A9

A3 A0

author

A1A4

Harry Potter

title

A10

file: /// C: / bookstore.xml

A2

X Node with identity X or
literal with value X

relationship r
rel:

r

Fig. 12.25 Graphical representation of the RDF data representing the generated RDF graph of the

data translation module of our prototype when using the XML data of Fig. 12.23 as input

244 12 Comparison of the XML and Semantic Web Worlds

defines the traversal of the syntax tree and the evaluation order of the attributes.

After applying the tree walking algorithm, a special attribute SPARQL of the root

node XPATH of the syntax tree contains the translated SPARQL query.

As an example of the query translation, see Fig. 12.26 for the original embedded

XPath query, Fig. 12.27 for its syntax tree with computed attributes according to

our attribute grammar, Fig. 12.28 for the translated SPARQL query, and Fig. 12.29

for its visual representation.

/ child::bookstore / parent::node() / descendant::title / child::text()

Fig. 12.26 Embedded XPath query

XPath

Expr

AndExpr

CmpExpr

RangeExpr

AdditiveExpr

UnionExpr

IntersectExpr

UnaryExpr

PathExpr

RelPath
“/“

AxisStep

AxisStep

“/“

AxisStep

“/“

AxisStep

“/“

Axis NodeTest PredList

Axis NodeTest PredList

Axis NodeTest PredList

Axis NodeTest PredList

“child“

“parent“

“descendant“

“child“

QName

KindTest

AnyKindTest

QName

KindTest

TextTest

SPARQL="PREFIX rel: <http:// www.luposdate.org / > \ n"+
 "PREFIX xsd: <http:// www.w3.org / 2001/ XMLSchema#>n"+
 "SELECT DISTINCT ?v9 WHERE {"Expr.SPARQL+"}";

SPARQL = AndExpr.SPARQL

SPARQL = CmpExpr.SPARQL

SPARQL = RangeExpr.SPARQL

SPARQL = AdditiveExpr.SPARQL

SPARQL = UnionExpr.SPARQL

SPARQL = IntersectExpr.SPARQL

SPARQL = UnaryExpr.SPARQL

SPARQL = PathExpr.SPARQL

SPARQL = “?v0 rel:type9.“+RelPath.SPARQL

SPARQL = Step[1].SPARQL+Step[2].SPARQL+Step[3].SPARQL+Step[4].SPARQL

Step

Step

Step

StepSPARQL =
AxisStep.SPARQL

SPARQL =
AxisStep.SPARQL

SPARQL =
AxisStep.SPARQL
SPARQL = Axis.SPARQL+

SPARQL =
AxisStep.SPARQL

SPARQL =
Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

NodeTest.SPARQL+
PredList.SPARQL

SPARQL = Axis.SPARQL+NodeTest.SPARQL+

PredList.SPARQL

SPARQL = Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=
“?v0 rel:child?v1.“

SPARQL =
“?v2 rel:child ?v1.“

SPARQL = SPARQL = ““
“?v1 rel: name“+
“ ‘bookstore‘.“

SPARQL = SPARQL = ““
KindTest.SPARQL

SPARQL=““ SPARQL =
“?v8 rel:type3.“+
“?v8 rel:value ?v9.“

SPARQL = SPARQL = ““
KindTest.SPARQL

SPARQL =
“?v7 rel:start ?v3.“+
“?v2 rel:start ?v5.“+
“Filter(xsd:long(?v5)“+
 “<xsd:long(?v3))“+
“?v7 rel:end ?v4.“+
“?v2 rel:end ?v6.“+
“Filter(xsd:long(?v6)“+
 “>xsd:long(?v4))“

SPARQL = SPARQL = ““
“?v7 rel:name“+
“ ‘title‘.“

SPARQL =
“?v7 rel:child ?v8.“

“title“
“title“

Fig. 12.27 Syntax tree of the XPath query of Fig. 12.26 and computed attributes according to our

attribute grammar

12.7 Embedding XPath Into SPARQL 245

PREFIX rel: <http:// www.luposdate.org />

PREFIX xsd: <http:// www.w3.org / 2001 /XMLSchema#>

SELECT ?v9

WHERE {

?v0 rel:type "9".
?v0 rel:child ?v1.
?v1 rel:name "bookstore".
?v2 rel:child ?v1.
?v7 rel:start ?v3.
?v2 rel:start ?v5.
?v7 rel:end ?v4.
?v2 rel:end ?v6.
?v7 rel:name "title".
?v7 rel:child ?v8.
?v8 rel:type "3".
?v8 rel:value ?v9.
FILTER(xsd:long(?v6)>xsd:long(?v4)).
FILTER(xsd:long(?v5)<xsd:long(?v3)).

}

Fig. 12.28 Translated

SPARQL query when using

the XPath query of Fig. 12.26

as input of our prototype

Fig. 12.29 Visual representation of the SPARQL query in Fig. 12.28

246 12 Comparison of the XML and Semantic Web Worlds

The translation of embedded XPath subqueries and the integration of their

translations into the host SPARQL query require that the resultant SPARQL

query containing the result of the XPath subquery is renamed according to the

bound variable of the extended SPARQL expression for embedding XPath queries.

Furthermore, the declared prefixes must be added to the declared prefixes of the

host SPARQL query and theWHERE clause of the translated XPath query has to be

added to the WHERE clause of the host SPARQL query.

12.7.1.3 Translation of Result

The result of an SPARQL query is a set of bindings of variables in the SELECT

clause of an SPARQL query. We determine the translated XPath query in such a

way that the retrieved bindings of the XPath query represent the resultant XML

nodes of the original query. In the module of the translation of result and in the case

that the result of an embedded XPath query is returned by the SPARQL query, we

now rebuild the subtrees of these resultant XML nodes by considering the informa-

tion of the original XML tree in the RDF data (especially the rel:type, rel:child, rel:

attribute, rel:namespace, rel:name, rel:value, rel:start, and rel:end relationships).

Furthermore, we sort the resultant XML trees according to the document order of

the original XML tree, as the XPath language specifies the result of an XPath query

to be in document order of the queried XML document. Note that the less than order

relation of the computed values of rel:start correspond to the document order

relation; that is, if a and b are the values of the rel:start relationship of two nodes

of the translated RDF data and a<b, then the corresponding node of a occurs before

the corresponding node of b in document order in the original XML document.

12.7.2 Performance Analysis

The test system for all experiments is a 2.66 GHz Intel Pentium 4 processor with

1 GB main memory. The test system runs Windows XP Professional Version 2002

Service Pack 2 and Java version 1.5. We have used the Java 1.5 internal XPath

evaluator. Furthermore, we have used the XQuery evaluators Saxon (Kay 2010), as

Saxon is widely used, and Qizx (xmlmind 2010), as Qizx is a fast evaluator, to

process the original XPath queries. We have used Jena (Wilkinson et al. 2003) to

process the translated SPARQL expressions, as Jena supports the current version of

SPARQL and as Jena is the most widely used Semantic Web reasoning engine (see

Cardoso 2007). We present the average of ten execution times of evaluating the

original XPath queries, of the data translation, of the query translation, of proces-

sing the translated SPARQL queries, and of the result translation.

For the original queries, we have used the queries for the performance test of the

XPathMark (Franceschet 2005) benchmark. The data are generated by the data

generation tool of the benchmark, which allows scaling the size of the input data.

12.7 Embedding XPath Into SPARQL 247

We have excluded those queries of the XPathMark benchmark, which are not

supported by our prototype for the following reasons:

l The queries contain an XPath built-in function, which does not correspond to

any built-in function of SPARQL. Our prototype supports the not, round, abs,

floor, ceiling, and substring function. One possible way to support other built-in

functions is to use external functions, which are especially implemented to

provide the same functionality as the corresponding XPath built-in function.

We did not implement these external functions, as external functions are not

standardized and thus depend on the used SPARQL engine.
l The queries contain predicates of the form [x], where x is a number, which

restrict the current node set of a location step to its xth element. We are currently

not aware of a simple, but efficient, way to access the xth element of a

dynamically determined set in SPARQL queries. Note that techniques devel-

oped for SQL as described in Tatarinov et al. (2002) cannot be adapted to

SPARQL, as a RANK clause as in SQL or an equivalent language construct is

missing in the SPARQL language.

Figure 12.30 presents the execution times of the original XPath queries of the

XPathMark benchmark, of the data translation, of the query translation, of the

translated SPARQL query, and of the result translation when using an input XML

document of size 56.55 kB. Furthermore, Figure 12.30 presents the average execution

times of all these 18 queries of the XPathMark benchmark (most right column).

Figure 12.31 present the average execution times when varying the size of the input

file. Furthermore, it shows that the average execution times for processing the

translated SPARQL queries are dominated by the execution time of those translated

queries, which are translated from XPath queries containing a recursive axis such as

descendant, descendant-or-self, ancestor, ancestor-or-self, following, preceding, fol-

lowing-sibling, and preceding-sibling. The translated SPARQL queries of XPath

queries containing a recursive axes have filter expressions such as FILTER (xsd:

long(?v6) > xsd:long(?v4)), the processing of which is time-consuming. Future

versions of Jena or other SPARQL engines may optimize these kinds of filter

expressions, such that the translations for recursive axes are faster processed.

12.8 Related Work

There are many contributions (e.g. Florescu and Kossmann 1999; Georgiadis

and Vassalos 2006; Manolescu et al. 2001; Shanmugasundaram et al. 1999;

Subramanyam, and Kumar 2005; Fan et al. 2005; Yoshikawa et al. 2001;

Grust et al. 2004; Tatarinov et al. 2002) to source-to-source translations for

evaluating XPath expressions on relational database management systems.

Many techniques described there can be adapted for evaluating XPath expres-

sions on SPARQL evaluators such as using a numbering scheme for the XML

(continued)

248 12 Comparison of the XML and Semantic Web Worlds

data to support all XPath axes (Grust et al. 2004), but some other techniques

cannot be adapted such as the evaluation of positional predicates (Tatarinov

et al. 2002) as SQL supports more language constructs than SPARQL such as

the rank clause.

Bettentrupp et al. (2006), Fokoue et al. (2005), Klein et al. (2005), Lechner

et al. (2001), Groppe et al. (2011c), and Groppe et al. (2009c) focus on the

(continued)

0,001

0,010

0,100

1,000

10,000

100,000

1000,000

 t
im

e
in

 s
ec

o
n

d
s

/site
/closed_auctions

/closed_auction
/annotation

/description
/text/keyw

ord

//closed_auction
//keyw

ord

/site
/closed_auctions

/closed_auction//keyw
ord

/site
/closed_auctions

/closed_auction[annotation
/description

/text/keyw
ord]/date

/site
/closed_auctions

/closed_auction[descendant::keyw
ord]/date

/site
/people

/person[phone or hom
epage]/nam

e

/site
/people

/person[address and (phone or hom
epage) and (creditcard or

 profile)]/nam

e

/site
/regions

/*/item
[parent::nam

erica or parent::sam
erica]/nam

e

//keyw
ord

/ancestor::listitem
/text/keyw

ord

/site
/open_auctions

/open_auction
/bidder[follow

ing-sibling::bidder]

/site
/open_auctions

/open_auction
/bidder[preceding-sibling::bidder]

/site
/regions

/*/item
[follow

ing::item
]/nam

e

/site
/regions

/*/item
[preceding::item

]/nam
e

//person[profile
/@

incom
e]/nam

e

/site
/open_auctions

/open_auction[(not(bidder/follow
ing::bidder) or

not(bidder/preceding::bidder)) and (bidder/follow
ing::bidder and

bidder/preceding::bidder)]/interval

/site
/people

/person[profile
/age >

 =
 18 and profile

/@
incom

e <
 10000 and

 address
/city ! =

 'D
allas']/nam

e

/site
/open_auctions

/open_auction[bidder/increase =
 current]/interval

 /site
/people

/person[profile
/@

incom
e =

/site
/open_auctions

/open_auction
/current]/nam

e

A
verage

Java 1.5 internal XPath Processor Saxon Qizx Data Translation Query Translation Jena Result Translation

Fig. 12.30 Execution time of the original XPath queries of the XPathMark Benchmark, of the

data translation, of the query translation, of the translated SPARQL query, and of the result

translation when using an input XML document of size 56.55 kB

12.8 Related Work 249

translations between XSLT and XQuery (and vice versa), which embed the

XPath language.

Furthermore, some contributions deal with bridging the gap between

SPARQL/RDF and the relational world (e.g., Chong et al. 2005; Dokulil

2006; Harris and Shadbolt 2005; Laborda and Conrad 2006).

Polleres (2007) describes a translation scheme from SPARQL to rules by

developing transformation rules from a SPARQL algebra to rules.

12.9 Summary and Conclusions

XQuery and SPARQL are query languages developed for and by different commu-

nities: the XML community in the case of XQuery and the Semantic Web commu-

nity in the case of SPARQL. Nevertheless, translations between their data models

XML and RDF and embedding the query language SPARQL into XQuery and

XSLT and embedding XPath queries into SPARQL queries are possible. Transla-

tions between RDF and XML data and embedding SPARQL into XQuery/XSLT

and XPath into SPARQL enable XML tools to deal with RDF data and to process

SPARQL queries, and SPARQL query evaluators to deal with XML data and to

process XPath queries as subqueries.

We have developed prototypes for translating SPARQL queries into XQuery

queries and into XSLT stylesheets as well as translating XPath queries into SPARQL

queries. The prototypes show that a wide range of queries can be translated and

performed efficiently.

300
200
100

50
25

10
5

2.5

1

0.1

0.01

0.001

30 35 40

input XML document file size in Kilobytes

45 50 55 60 65 70 75 80
Result translation

Query translation

Data translation

Jena, queries without recursive axes

Jena, queries with recursive axes
Jena

Qizx

Saxon
Java 1.5 internal XPath Processor

ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Fig. 12.31 Average execution times of the original queries of the XPathMark benchmark, of data

translation, query translation, result translation, and the execution times of the translated SPARQL

queries (all, only those containing recursive axes, and those which contain only nonrecursive

queries) using Jena

250 12 Comparison of the XML and Semantic Web Worlds

Chapter 13

Summary, Conclusions, and Future Work

This book covers a wide range of topics in the area of the Semantic Web related to

query processing.

First of all in Chap. 2 after the introduction in Chap. 1, we have learnt about the

basic specifications of the Semantic Web, its data language RDF, its ontology

languages RDF Schema and OWL, its query language SPARQL, and its rule

language RIF. We got to know that the various different Semantic Web languages

are powerful enough for nearly any kind of application.

Then the B+-tree has been introduced as an efficient index for large-scale

datasets (Chap. 3). Also, external sorting for efficiently building the B+-tree from

large-scale datasets from scratch has been discussed. These are the basics for

efficient indexing and querying large-scale datasets, which are the topics in later

chapters.

An overview of query optimization phases has been given afterward (Chap. 4).

We have then provided the transformation from SPARQL to a core of SPARQL

without redundancies in the language constructs as basic operation used in many

tools to simplify, for example, building an operatorgraph or a visual query.

An algebra for SPARQL and its logical optimizations are discussed in Chap. 5.

Applying equivalency rules to the query expressed in the notion of the algebra is the

basis for any kind of optimization.

The algorithms for processing of the operators of a SPARQL query and indexing

techniques for large-scale as well as small datasets are the content of Chap. 6.

Experimental results show the superior performance for large-scale as well as small

datasets.

The processing of infinite data streams as generated, for example, from sensors is

the topic of Chap. 7. Infinite data streams require another kind of operators that

periodically calculate query results. Because differences to previous query results

are calculated internally, the traditional operators for joins, sorting, and so on must

also deal with requests to delete a solution from their temporary indices and buffers.

The demonstrated solution shows the practical relevance of this young field of

research.

Chapter 8 introduces into the world of multicore processors and their optimiza-

tions for Semantic Web parallel databases. Not all queries can benefit from parallel

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6_13, # Springer-Verlag Berlin Heidelberg 2011

251

processing. However, the query optimizer can already estimate if an operator is

worth to be parallelized and can generate the operator graph accordingly.

Inference is a highly costly operation, which needs optimization. Inference

materialization strategies as well as optimization approaches have been discussed

in Chap. 9. The optimizations work for database queries as well as for stream

queries and significantly improve the performance.

Visual query languages to help users formulating queries are introduced in

Chap. 10. Users do not need to learn the syntax of SPARQL and the visual

representation helps them to easily see connected terms in their query. Furthermore,

the system can provide suggestions to extend and refine their queries.

Chapter 11 discusses the features, possibilities, and the technology behind

embedded Semantic Web languages in programming languages. The advantage is

that a static analysis can detect already many errors during compilation, which may

be otherwise only detected after extensive tests during runtime. By determining the

types of query results already at compile time, the java type system can also be

orthogonally used to detect this kind of type errors. Therefore, embedded query

languages ensure more stable programs and applications.

Chapter 12 compares the XML world as alternative to the Semantic Web world

and shows common features as well as differences. Furthermore, this chapter shows

that it is possible to embed SPARQL into XQuery and into XSLT as well as to

embed XPath into SPARQL. We can conclude that you can theoretically use XML

or the Semantic Web (or both in parallel) for a solution involving data and queries.

However, some solutions are more elegant and easier to formulate when using

XML with its tree model or the Semantic Web with its graph model.

This book already covers many aspects of data management and query proces-

sing. It demonstrates that the technologies for a high performance Semantic Web

have been developed. These (or even more advanced) technologies must now find

their ways into industry and their commercial products. Only then the Semantic

Web will be successful and accepted by the user and at the market. Many compa-

nies such as Oracle have already started to support Semantic Web technologies, but

it is still a long way until it is a must for companies to support Semantic Web

technologies.

13.1 Possibilities for Future Work

A book can cover only a snapshot of current research. In the following paragraphs,

we will give hints where future work can be done on the presented topics.

Of course, future work can deal with more equivalency rules for logical optimi-

zations in the operator graph as well as for inference and specialized equivalency

rules for stream queries.

Stream processing can be further extended by developing new types of windows

and update streams with the possibility to delete or update an older triple.

252 13 Summary, Conclusions, and Future Work

Parallel algorithms can be further investigated for remaining operators. How-

ever, the most rewarding operators to be parallelized are the join operators, which

have already been discussed in this book.

The obvious next step for research on inference is to support OWL and OWL 2,

where probably further optimization rules must be developed.

Research on visual query languages can include research on further simplifying

query creation by having a more browser-like graphical user interface without

losing the provided flexibility by, for example, using the current approach as

fallback to further manipulate the visual query.

Research on embedded languages can focus on using the static analysis to

optimize queries and the program containing the queries together instead sepa-

rately, which is state of the art. This promises much better optimization possibi-

lities. Furthermore, also the costly inference could be precomputed as much as

possible based on a static analysis and optimized together with the program code.

The relationship to XML can be further investigated and, for example, inference

can be included to be simulated by XQuery and/or XSLT. Other data models such

as the object-oriented one and query languages such as object-oriented query

languages can be investigated if they are as powerful as the Semantic Web ones

and how to transform data and translate queries into each other.

Another big topic would be to efficiently support rules (e.g., RIF) and focus on

optimizations for rules in large-scale databases. It is also an open research question

how to combine inference based on ontologies as well as based on rules and query

processing and apply all these three different kinds of processing in one system.

Research must be further driven to rule stream processing, parallel rule processing,

visual rules, and embedded rules in programming languages.

Microformats are used to embed RDF data into webpages. Research is missing

which can deal with these highly distributed and split pieces of data, their retrieval,

integration, and processing.

A new research trend in databases is to use hardware such as FPGAs or the

power of graphical processors for optimizing processing. New optimization tech-

niques have to be developed to optimize Semantic Web queries, inference, and

rules on this hardware, but the benefits seem to be enormous.

13.1 Possibilities for Future Work 253

References

Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H., Lindner, W.,

Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The design of the

Borealis stream processing engine. In: Proceedings International Conference on Innovative

Data Systems Research (CIDR 2005), 2005

Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data management

using vertical partitioning, VLDB, Vienna, Austria (2007)

Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri, M., Rosati, R.:

QuOnto: querying ontologies. In: Proceedings of the 20th National Conference on Artificial

Intelligence (AAAI 2005), Pittsburgh, USA (2005)

Adida, B., Birbeck, M. (eds): RDFa primer – bridging the human and data webs, W3C Working

Group Note. http://www.w3.org/TR/xhtml-rdfa-primer/, 14 October 2008

Alex Sung L.G., Ahmed N., Blanco R., Li H., Soliman M.A., Hadaller D.: A survey of data

management in peer-to-peer systems. Web Data Management (2005)

Alvestrand, H.: RFC 3066 - Tags for the identification of languages, IETF, http://www.isi.edu/in-
notes/rfc3066.txt (2001)

Amdahl, G.: Validity of the single processor approach to achieving large-scale computing cap-

abilities. AFIPS Conference Proceedings (30), pp. 483–485 (1967)

Angles, R., Gutiérrez C.: Querying RDF data from a graph database perspective. In: ESWC (2005)

Angles, R., Gutierrez C.: The expressive power of SPARQL, In: 7th International Semantic Web

Conference (ISWC 2008), Karlsruhe, Germany (2008)

ANSI, Information technology – Database languages – SQL – Part 0:SQL/OLB standard. ANSI

X3.135 (1998)

Apache Software Foundation, Cocoon, http://cocoon.apache.org (2009)

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.

STREAM: The Stanford Stream Data Manager (Demonstration Description). In: Proceedings

of ACM International Conference on Management of Data (SIGMOD 2003), p. 665 (2003)

Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and

query execution. VLDB Journal 15(2), 121–142 (2006)

Auer, S., et al.: Dbpedia: a nucleus for a web of open data. In: ISWC/ASWC (2007)

Avgustinov, P., Hajiyev, E., Ongkingco, N., Demoor, O., Sereni, D., Tibble, J., Verbaere, M.:

Semantics of static pointcuts in AspectJ. In: Proceedings of the 34th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’07). ACM Press,

New York, pp. 11–23 (2007)

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description

logic handbook: theory, implementation, and applications, 2nd edn. Cambridge, The Univer-

sity Press, Cambridge (2007)

Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Rec 30(3), 109–120 (2001)

S. Groppe, Data Management and Query Processing in Semantic Web Databases,
DOI 10.1007/978-3-642-19357-6, # Springer-Verlag Berlin Heidelberg 2011

255

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.isi.edu/in-notes/rfc3066.txt
http://www.isi.edu/in-notes/rfc3066.txt
http://cocoon.apache.org

Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C.: A data stream language and system designed

for power and extensibility. In: Proceedings International Conference on Information and

Knowledge Management (CIKM 2006), pp. 337–346 (2006)

Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Galvez,

E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.: Retrospective on Aurora. The

VLDB J 13(4), 370–383 (2004)

Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways to implement

logic programs (extended abstract). In: Proceedings of the fifth ACM SIGACT-SIGMOD

symposium on Principles of Database Systems. Cambridge, Massachusetts (1986)

Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query processing of

strategies. In: Proceedings of the ACM-SIGMOD International Conference on Management

Data. ACM, New York (1986)

Barbieri, D.F., Braga D., Ceri S., Della Valle, E., Grossniklaus M., C-SPARQL: SPARQL for

continuous querying. In: Proceedings of the 18th International Conference on World Wide

Web (WWW 2009), Madrid, Spain (2009)

Barbieri D.F., Braga D., Ceri S., Grossniklaus M.: An execution environment for C-SPARQL

queries, In: 13th International Conference on Extending Database Technology (EDBT 2010),

Lausanne, Switzerland (2010)

Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered indices. Acta

Informatica 1, 173–189 (1972)

Bechhofer, S., Horrocks, I., Turi, D.: The OWL instance store: system description. In: Proceedings

of the 20th International Conference on Automated Deduction (CADE 2005), Tallinn, Estonia

(2005)

Beckett, D. (ed): RDF/XML syntax specification (Revised), W3C Recommendation, 10th

February 2004

Beckett, D.: The design and implementation of the Redland RDF application framework. In:

WWW (2001)

Beckett, D.: Turtle – terse RDF triple language. http://www.dajobe.org/2004/01/turtle/ (2006)

Beckett, D., Broekstra, J., (eds): SPARQL query results XML format, W3C Recommendation. 15

January 2008, http://www.w3.org/TR/rdf-sparql-XMLres/ (2008)

Beeri, C., Ramakrishnan, R.: On the power of magic. In: Proceedings of the ACM SIGACTSIG-

MOD Symposium on Principles of Database Systems. ACM, New York, pp. 269–283 (1987)

Beged-Dove, G., Brickley, D., Dornfest, R., Davis, I., Dodds, L., Eisenzopf, J., Galbraith, D.,

Guha, R.V., MacLeod, K., Miller, E., Swartz, A., van der Vlist, E.: RDF site summary (RSS)

1.0, http://purl.org/rss/1.0/spec (2001)

Berners-Lee, T.: N3QL – RDF data query language, W3C, July 2004. http://www.w3.org/

DesignIssues/N3QL.html (2004)

Berners-Lee, T.: Notation 3 – An RDF language for the semantic web. W3C. http://www.w3.org/

DesignIssues/Notation3.html (1998)

Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web, Scientific American Magazine, May

2001

Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifiers (URI): Generic syntax,

RFC 2396 (1998)

Bernstein, A., Stocker, M., Kiefer, C.: SPARQL query optimization using selectivity estimation.

ISWC (2007)

Bettentrupp, R., Groppe, S., Groppe, J., B€ottcher, S., Gruenwald, L.: A prototype for translating

XSLT into XQuery, In: Eighth International Conference on Enterprise Information Systems

(ICEIS 2006), Paphos, Cyprus (2006)

Boley, H.: RIF RuleML Rosetta Ring: Round-Tripping the Dlex Subset of Datalog RuleML and

RIF-Core, Rule Interchange and Applications, International Symposium, RuleML 2009. Las

Vegas, Nevada, USA, November 5–7 (2009)

Boley, H., Kifer M., (eds): RIF Basic Logic Dialect, W3C candidate recommendation, 1 October

2009. http://www.w3.org/TR/rif-bld/ (2009)

256 References

http://www.dajobe.org/2004/01/turtle/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://purl.org/rss/1.0/spec
http://www.w3.org/DesignIssues/N3QL.html
http://www.w3.org/DesignIssues/N3QL.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/rif-bld/

Boley, H., Hallmark, G., Kifer, M., Paschke A., Polleres A., Reynolds D., (eds.): RIF Core Dialect,

W3C Candidate Recommendation, 1 October 2009. http://www.w3.org/TR/rif-core/ (2009)

Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL – Extending SPARQL to process data

streams. In: Proceedings of Europe Semantic Web Conference (ESWC 2008), Tenerife,

Canary Islands, Spain (2008)

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M., Hart, B., Smith, M.,

Valduriez, P.: Prototyping Budda: a highly parallel database system. IEEE Knowledge and

Data Engineering, vol. 2, no. 1, March (1990)

Borsje, J., Embregts H.: Graphical query composition and natural language processing in an RDF

visualization interface. In: Erasmus School of Economics and Business Economics, vol.

Bachelor, Rotterdam (2006)

Bost, T., Bonnard, P.: Mark proctor: implementation of production rules for a RIF dialect:

A MISMO proof-of-concept for loan rates. International Symposium on Advances in Rule

Interchange and Applications (RuleML), Orlando, Florida (2007)

Brabrand, C., Møller, A., Schwartzbach, M.I.: The <bigwig> project. ACM ToIT 2, 79–114

(2002)

Brickley, D., Guha, D.V.: RDF vocabulary description language 1.0: RDF Schema, W3C Recom-

mendation, http://www.w3.org/TR/rdf-schema/ (2004)

Brickley, D., Miller L.: FOAF vocabulary specification 0.9, http://xmlns.com/foaf/spec (2007)

Broekstra, J., Kampman A.: SeRQL: A second generation RDF Query language. User manual,

Aduna, 2003. http://sesame.aduna.biz/publications/SeRQLmanual.html (2003)

Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing and

querying RDF and RDF schema. In: International Semantic Web Conference 2002, Chia,

Sardinai, Italy (2002)

Buneman, P., Ohori, A.: Polymorphism and type inference in database programming. ACM ToDS

21(1), 30–76 (1996)

Bussche, J., Waller, E.: Type inference in the polymorphic relational algebra. PODS, Philadelphia,

USA (1999)

Cail M., Frank M.: RDFPeers: A scalable distributed RDF repository based on a structured peer-

to-peer network, WWW 2004, Manhattan, NY, USA (2004)

Cardoso, J.: The Semantic Web Vision: Where are We?, IEEE Intelligent Systems, pp. 22–26

(2007)

Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An ontology based

visual tool for query formulation support, ECAI 2004, Valencia (2004)

Chaudhuri, S.: An overview of query optimization in relational systems. In: Proceedings of the

17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS98), Seattle, Washington, USA (1998)

Chen,W.,Warren, D.S.: Tabled evaluation with delaying for general logic programs. J ACM 43(1),

20–74 (1996)

Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system for

internet databases. In: Proceedings of ACM International Conference on Management of Data

(SIGMOD 2000), pp. 379–390 (2000)

Chen, C., Haarslev, V., Wang, J.: LAS: extending racer by a large Abox store. In: Proceedings of

the International Workshop on Description Logics (DL’05), Edinburgh, Scotland, UK (2005)

Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language, W3C Recommendation. http://www.w3.org/TR/

wsdl20/, 26 June 2007

Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying scheme,

VLDB (2005)

Christensen, A.S., Møller, A., Schwartzbach, M.I.: Extending Java for high-level web service

construction. ACM ToPLaS, 25(6) (2003)

Clark K.G., Feigenbaum L., Torres E. (ed): SPARQL protocol for RDF, W3C Recommendation,

15 January 2008. http://www.w3.org/TR/rdf-sparql-protocol/ (2008)

References 257

http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec
http://sesame.aduna.biz/publications/SeRQLmanual.html
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/rdf-sparql-protocol/

Cole, R.: Parallel merge sort. SIAM J Comput 17(4), 770–785 (1998)

Connolly, T., Begg, C.: Database Systems – A practical approach to design, implementation and

management, 3rd edition, Addison Wesley (2002)

Cook, S.A.: The complexity of theorem-proving procedures. ACM STOC, Shaker Heights, Ohio,

United States (1971)

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms, MIT Press (1990)

Cyganiak, R.: A relational algebra for sparql. Technical report HPL-2005-170, HP Laboratories

Bristol (2005)

Czejdo, B., Elmasri, R., Rusinkiewicz, M., Embley, D.: An algebraic language for graphical query

formulation using an EER model. ACM Conference on Computer Science (1987)

Das, S.K., Wen-Bing, H., Moon, G.S.: An efficient algorithm for managing a parallel heap.

International Journal of Parallel, Emergent and Distributed Systems 4(3), 281–299 (1994)

de Bruijn, J.: RIF RDF and OWL Compatibility, W3C Candidate Recommendation 1 October

2009. http://www.w3.org/TR/rif-rdf-owl/#Importing_RDF_and_OWL_in_RIF (2009)

de Kunder, M.: The size of the World Wide Web, http://www.worldwidewebsize.com/ (2010)

de Laborda, C.P., Conrad, S.: Bringing relational data into the SemanticWeb using SPARQL and

Relational.OWL. SWDB’06, Atlanta, Georgia, USA (2006)

de Sainte Marie C.: A modest proposal to enable RIF dialects with limited forward compatibility.

Rule interchange and applications. In: International Symposium, RuleML 2009, Las Vegas,

Nevada, USA, November 5–7 (2009)

de Sainte Marie, C.; Paschke, A., Hallmark, G., (eds): RIF production rule dialect. W3C candidate

recommendation, 1 October 2009. http://www.w3.org/TR/rif-prd/

de Sainte Marie, C.: W3C rule interchange format – The production rule dialect, tutorial at

RuleML, slides available at http://intranet.cs.man.ac.uk/ruleML/presentations/standards2.ppt

(2008)

De Troyer, O., Meersman, R., Verlinden, P.: RIDL on the CRIS case: a workbench for NIAM.

IFIP.8.1. (1988)

Dean, M., Schreiber, G. (Eds): OWLWeb Ontology Language Reference, W3C Recommendation,

10 February 2004, http://www.w3.org/TR/2004/REC-owl-ref-20040210/ (2004)

DeHaan, D., Tompa, F.W.: Optimal top-down join enumeration. SIGMOD, Beijing, China (2007)

Deo, N., Prasad, S.: Parallel heap: an optimal parallel priority queue. J Supercomput 6(1), 1992

(1992)

DeWitt, D., Gray, J.: Parallel database systems: the future of high performance database systems.

Communications of ACM 35(6), 85–98 (1992)

DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar, K.B.: GAMMA – A high

performance dataflow database machine. VLDB, 1986

Dokulil, J.: Evaluation of SPARQL queries using relational databases. ISWC, Athens, GA, USA

(2006)

Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner, F., Schier, M.,

Sch€opf, F., Staffler, H., Zugal, S.: Translating XPath Queries into SPARQL Queries, On the

Move (OTM 2007) Federated Conferences andWorkshops (DOA, ODBASE, CoopIS, GADA,

IS). In: 6th International Conference on Ontologies, DataBases, and Applications of Semantics

(ODBASE 2007), Vilamoura, Algarve, Portugal (2007)

Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner, F., Schier, M.,

Sch€opf, F., Staffler, H., Zugal, S.: Bringing the XML and Semantic Web Worlds Closer:

Transforming XML into RDF and Embedding XPath into SPARQL. In: Filipe, J., Cordeiro, J.

(Eds), Enterprise Information Systems, 10th International Conference, ICEIS 2008, Barcelona,

Spain, June 12–16, 2008, Revised Selected Papers, Lecture Notes in Business Information

Processing, Springer, Heidelberg (2009)

Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner, F., Schier,

M., Sch€opf, F., Staffler, H., Zugal, S.: Embedding XPath Queries Into SPARQL Queries, 10th

International Conference on Enterprise Information Systems (ICEIS 2008), Barcelona, Spain

(2008)

258 References

http://www.w3.org/TR/rif-rdf-owl/#Importing_RDF_and_OWL_in_RIF
http://www.worldwidewebsize.com/
http://www.w3.org/TR/rif-prd/
http://intranet.cs.man.ac.uk/ruleML/presentations/standards2.ppt
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

D€urst, M., Suignard, M.: Internationalized resource identifiers (IRIs), http://www.ietf.org/rfc/

rfc3987.txt, W3C Memo (2005)

eBay, eBay Developers Program, http://developer.ebay.com/ (2010)

eBay, eBay, http://www.ebay.com/ (2010)

Edutella, Edutella – P2P for the Semantic Web, http://www.edutella.org/edutella.shtml (2004)

Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the Semantic Web,

Reasoning Web 2008, LNCS 5224, pp. 1–53 (2008)

Elmasri, R., Navathe, S.B.: Fundamentals of database systems, 3rd edn, Addison Wesley (2000)

Erdmann, M. (ed): GNADE User’s Guide: GNADE, The GNat Ada Database Environment;

Version 1.5.3. (2002)

Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. In: 10th

International Conference of Database Theory (ICDT). Edinburgh, UK (2005)

Fadhil A., Haarslev V.: GLOO: a graphical query language for OWL ontologies, OWL: Experi-

ence and Directions, pp. 215–260. (2006)

Fan, W., Yu, J.X., Lu, H., Lu, J., Rastogi, R.: Query translation from XPath to SQL in the presence

of recursive DTDs, VLDB, Trondheim, Norway (2005)

Feigenbaum, L., (ed): DAWG Testcases, http://www.w3.org/2001/sw/DataAccess/tests/r2, 2008.

Fell, K., Kalis, F., Samsel M.: LUPOS eBay-Stream-Reader 2010, http://lupos.metawort.de/

(2010)

Fernández, M., Robie, J. (Eds): XQuery 1.0 and XPath 2.0 Data Model, W3C Working Draft,

http://www.w3c.org/TR/2001/WD-query-datamodel (2001)

Fielding, R.T.: Architectural styles and the design of network-based software architectures, PhD

Thesis, University of California, Irvine (2000)

Florescu, D., Kossmann, D.: Storing and Querying XML Data Using an RDBMS. IEEE Data

Engineering Bulletin 22 (1999) 27–34 (1999)

Fokoue, A., Rose, K., Siméon, J., Villard, L.: Compiling XSLT 2.0 into XQuery 1.0, WWW 2005,

Chiba, Japan (2005)

Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The Summary Abox: Cutting

Ontologies Down to Size. In: Proceedings of the 5th International Semantic Web Conference

(ISWC’06), Athens, GA, USA (2006)

Franceschet, M.: XPathMark – An XPath Benchmark for the XMark Generated Data. XSym 2005,

Trondheim, Norway (2005)

Frasincar, F., Houben, G.J., Vdovjak, R., Barna, P.: RAL: an Algebra for Querying RDF. WWW,

New York, USA (2004)

Friend, E.H.: Sorting on electronic computer systems. J ACM 3(3) (1956)

Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Prentice

Hall, Upper Saddle River, NJ (2002)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic Pro-

gramming: Proceedings of the Fifth Conference and Symposium. pp. 1070–1080. (1988)

Georgiadis, H., Vassalos, V.: Improving the efficiency of XPath execution on relational systems.

EDBT, vol. 3896, pp. 570–587, Springer, Berlin (2006)

Gilmore, W., Black, C., Clegg, D., Dayal, S., Fourt, E., Goodman, S., Richey, J., Smith, G., Swift

P.: Open Client Embedded SQL/COBOL Programmer’s Guide. SYBASE Embedded SQL

Release 10.0. (1994)

Golab L., Johnson T., Koudas N., Srivastava D., Toman D.: Optimizing away joins on data

streams. In: Proceedings of International Workshop on Scalable Stream Processing System

(SSPS 2008), pp. 48–57. (2008)

Gordon T.F.: Guido Governatori, and Antonino Rotolo, Rules and Norms: Requirements for rule

interchange languages in the legal domain. Rule Interchange and Applications, International

Symposium, RuleML 2009. Las Vegas, Nevada, USA, November 5–7 (2009)

Graefe, G.: Query evaluation techniques for large database. ACM Computing Surveys 25,

2 (June), 73–170 (1993)

References 259

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://developer.ebay.com/
http://www.ebay.com/
http://www.edutella.org/edutella.shtml
http://www.w3.org/2001/sw/DataAccess/tests/r2
http://lupos.metawort.de/
http://www.w3c.org/TR/2001/WD-query-datamodel

Grant, J., Beckett, D. (eds): RDF Test Cases, W3C Recommendation, http://www.w3.org/TR/rdf-

testcases/, 10th February 2004

Griffiths-Selinger, P., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path

selection in a relational database system. ACM SIGMOD (1979)

Groppe S.: Mobile and distributed databases. Lecture. http://www.ifis.uni-luebeck.de/index.php?

id¼mobile-ws0910. (2010)

Groppe, S., Groppe, J.: LUPOSDATE demonstration, http://www.ifis.uni-luebeck.de/index.php?

id¼luposdate-demo (2009)

Groppe, S.: Mobile and distributed databases. Lecture. http://www.ifis.uni-luebeck.de/index.php?

id¼mobile-ws0809 (2009)

Groppe, S., Groppe, J., Linnemann, V.: Using an index of precomputed joins in order to speed up

SPARQL processing. In: 9th International Conference on Enterprise Information Systems

(ICEIS 2007), Funchal, Portugal (2007a)

Groppe, S., Groppe, J., Kukulenz, D. Linnemann, V.: A SPARQL engine for streaming RDF data.

In: 3rd International Conference on Signal-Image Technology and Internet-Based Systems

(SITIS 2007). Shanghai, China, (2007b). This paper received an honorable mention at the

SITIS’07 Conference 2007

Groppe, S., Neumann, J.: Demonstration of SWOBE. http://www.ifis.uni-luebeck.de/~groppe/

swobe_demo/ (2008)

Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N., Reinke, C.: Embedding

SPARQL into XQuery/XSLT. In: 23rd ACM symposium on applied computing (ACM SAC

2008), Fortaleza, Ceara, Brasilien (2008)

Groppe, J., Groppe, S., Ebers, S., Linnemann, V.: Efficient Processing of SPARQL joins in

memory by dynamically restricting triple patterns, ACM SAC, Waikiki Beach, Honolulu,

Hawaii, USA (2009)

Groppe, J., Groppe, S., Schleifer, A., Linnemann, V.: LuposDate: A semantic web database

system. In: 18th ACM conference on information and knowledge management (ACM CIKM

2009), Hong Kong, China (2009)

Groppe, S, Groppe, J, Reinke, C., Hoeller, N., Linnemann, V.: XSLT: Common issues with

XQuery and special issues of XSLT. In: Eric Pardede (Ed.), Open and novel issues in XML

database applications: future directions and advanced technologies, IGI Global (2009)

Groppe, J., Groppe, S., Kolbaum, J.: Optimization of SPARQL by Using coreSPARQL, In:

Proceedings of the 11th International Conference on Enterprise Information Systems (ICEIS

2009). Milano, Italy (2009d). 2009

Groppe, S, Neumann, J, Linnemann, V.: SWOBE – Embedding the Semantic Web languages

RDF, SPARQL and SPARUL into Java for Guaranteeing Type Safety, for Checking the

Satisfiability of Queries and for the Determination of Query Result Types, 24th ACM Sympo-

sium on Applied Computing (ACM SAC 2009), Waikiki Beach, Honolulu, Hawaii, USA

(2009e)

Groppe, S, Groppe, J.: External sorting for index construction of large semantic web databases. In:

25th Symposium On Applied Computing (ACM SAC 2010), Sierre, Switzerland (2010)

Groppe, J., Groppe, S.: Parallelizing join computations of SPARQL queries for large semantic web

databases. In: 26th symposium on applied computing (ACM SAC 2011), TaiChung, Taiwan

(2011a)

Groppe, J., Groppe, S., Schleifer, A.: Visual query system for analyzing social semantic Web. In:

20th International World Wide Web Conference (WWW 2011), Hyderabad, India (2011b)

Groppe, S., Groppe, J., Klein, N., Bettentrupp, R., B€ottcher, S., Gruenwald, L.: Transforming

XSLT stylesheets into XQuery expressions and vice versa. Computer Languages, Systems and

Structures Journal 37(3), 76–111 (2011c)

Grust, T., van Keulen, M., Teubner, J.: Accelerating XPath evaluation in any RDBMS. ACM

Trans Database Syst 29, 91–131 (2004)

Guha, R.V.: rdfDB : An RDF database. http://www.guha.com/rdfdb/ (2010)

260 References

http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-testcases/
http://www.ifis.uni-luebeck.de/index.php?id=mobile-ws0910
http://www.ifis.uni-luebeck.de/index.php?id=mobile-ws0910
http://www.ifis.uni-luebeck.de/index.php?id=mobile-ws0910
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=mobile-ws0809
http://www.ifis.uni-luebeck.de/index.php?id=mobile-ws0809
http://www.ifis.uni-luebeck.de/index.php?id=mobile-ws0809
http://www.ifis.uni-luebeck.de/~groppe/swobe_demo/
http://www.ifis.uni-luebeck.de/~groppe/swobe_demo/
http://www.guha.com/rdfdb/

Guha, R., McCool, R.: TAP: A semantic web test-bed. Journal of Web Semantics, vol. 1, Issue 1,

December (2003)

Guha, R.V., McCool, R., Fikes, R.: Contexts for the Semantic Web. In: Proceedings of the 3rd

International Semantic Web Conference, Hiroshima, Japan, November (2004)

Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Web

Semantics 3(2) (2005)

Gutierrez, C., Hurtado, C., Mendelzon, A.: Foundations of Semantic Web Databases. PODS 2004,

Paris, France (2004)

Haarslev, V., M€oller, R.: Racer: A core inference engine for the SemanticWeb Ontology Language

(OWL). In: Proceeding of the 2nd International Workshop on Evaluation of Ontology-based

Tools. (2003)

Hallmark, G., de Sainte Marie, C., Del Fabro, M.D., Albert, P., Paschke, A.: Please pass the rules:

A rule interchange demonstration. In: International Symposium on Rule Interchange and

Applications (RuleML). Orlando, FL, USA (2008)

Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: PSSS. (2003)

Harris, S., Shadbolt, N.: SPARQL query processing with conventional relational database systems.
WISE Workshops 2005, New York, USA (2005)

Harth, A., Decker, S.: Optimized index structure for querying RDF from the web. In: Proceedings

of the 3rd Latin American Web Congress (LA-WEB), Buenos Aires, Argentina (2005)

Harth, A., Kruk, S., Decker, S.: Graphical representation of RDF queries, World Wide Web.

(2006)

Hawke, S.: RIF: bringing order to chaos, keynote at RuleML, slides. http://www.w3.org/2009/

Talks/1105-ruleml/#(1) (2009)

Hayes, J., Gutiérrez C.: Bipartite graphs as intermediate model for RDF. In: ISWC, (2004)

Hayes, P.: RDF Semantics, W3C Recommendation, 10th February 2004, http://www.w3.org/TR/

rdf-mt/

Heese, R.: Query graph model for SPARQL, ER Workshops 2006 Tucson, AZ, USA (2006)

Henschen, L.J., Naqvi, S.A.: Compiling queries in relational first-order databases. J ACM 31(1),

47–85 (1984)

Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM 17(10),

549–557 (1974)

Hofstede, A., Proper, H., van der Weide, T.: Computer supported query formulation in an evolving

context. In: Proceedings of the ADC, (1995)

Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.: RDF-GL: A SPARQL-Based Graphical

Query Language for RDF. In: Emergent Web Intelligence: Advanced Information Retrieval.

Springer (2010)

Hosoya, H., Frisch, A., Castagna, G.: Parametric polymorphism for XML. In: POPL, Long Beach,
USA (2005)

IBM, IBM RIF Demo, International Symposium on Rule Interchange and Applications (RuleML),

Orlando, FL, USA (2008)

IBM. IBM Informix ESQL/C Programmer’s Manual. Version 9.53, IBM, (2003)

Ingres Corporation. Ingres® 2006 Embedded SQL Companion Guide. (2006)

International Organization for Standardization (ISO), ISO/IEC 10646:2003: Information

technology – Universal Multiple-Octet Coded Character Set (UCS), http://www.iso.org/iso/

en/CatalogueDetailPage.CatalogueDetail?CSNUMBER¼39921&ICS1¼35&ICS2¼40&ICS3

(2003)

International Organization for Standardization (ISO), ISO/IEC 14977:1996: Information technol-

ogy – Syntactic metalanguage – Extended BNF, http://www.iso.ch/cate/d26153.html (1996)

International Organization for Standardization (ISO), ISO8879: Information processing – Text and

office systems – Standard Generalized Markup Language (SGML), http://www.iso.ch/cate/

d16387.html (1986)

Ioannidis, Y.E.: Query optimization. In: ACM Computing Surveys. Vol. 28, No. 1 (1996)

References 261

http://www.w3.org/2009/Talks/1105-ruleml/#(1)
http://www.w3.org/2009/Talks/1105-ruleml/#(1)
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39921&ICS1=35&ICS2=40&ICS3
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39921&ICS1=35&ICS2=40&ICS3
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39921&ICS1=35&ICS2=40&ICS3
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39921&ICS1=35&ICS2=40&ICS3
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39921&ICS1=35&ICS2=40&ICS3
http://www.iso.ch/cate/d26153.html
http://www.iso.ch/cate/d16387.html
http://www.iso.ch/cate/d16387.html

Jagadish, H.V., Mumick, I.S., Silberschatz, A.: View maintenance issues for the chronicle data

model. In: Proceedings ACM symposium on principles of database systems (PODS 1995).

pp. 113–124. (1995)

Jarke, M., Koch, J.: Query optimization in database systems. In: ACM computing surveys. 16(2)

(1984)

Jarrar, M., Dikaiakos, M.D.: MashQL: A query-by-diagram topping SPARQL – towards semantic

data mashups. In: ONISW’08, Napa Valley, California, USA (2008)

Jarrar, M., Dikaiakos, M.D.: A data mashup language for the data web, Linked Data on the Web

(LDOW) at WWW. Madrid, Spain (2009)

Jeon, M., Kim, D.: Load-balanced parallel merge sort on distributed memory parallel computers.

In: Proceedings of the International Parallel and Distributed Processing Symposium

(IPDPS’02), (2002)

Kay, M.H.: Saxon – The XSLT and XQuery processor, http://saxon.sourceforge.net (2010)

Kempa, M., Linnemann, V.: Type Checking in XOBE, BTW 2003, Leipzig, Germany (2003)

Kiefer, M.: Rule interchange format: The framework, Joint Keynote between RR2008 and

RuleML-2008, slides available at http://intranet.cs.man.ac.uk/ruleML//presentations/keynote3.

ppt (2008)

Kifer, M., Lozinskii, E.L.: On compile-time query optimization in deductive databases by means

of static filtering. ACM Trans Datab Syst 15(3), 385–426 (1990)

Kim, Y., Kim, B., Lee, J., Lim, H.: The path index for query processing on RDF and RDF Schema.

ICACT. (2005)

Kiryakov, A., Ognyanov, D., Kirov, V.: An ontology representation and data integration (ORDI)

Framework, WP2 of DIP Project, 2004. https://bscw.dip.deri.ie/bscw/bscw.cgi/0/3012

Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – a Pragmatic Semantic Repository for OWL.

In: Proceedings of the International Workshop on Scalable SemanticWeb Knowledge Base

Systems (SSWS’05), New York City, USA (2005)

Kitsuregawa, M., Tanaka, H., Moto-oka, T.: Application of hash to data base machine and its

architecture. New Generation Computing 1(1) (1983)

Kitsuregawa, M., Ogawa, Y.: A new parallel Hash join method with robustness for data skew in

super database computer (SDC), In: Proceedings of the Sixteenth International Conference on

Very Large Data Bases. Melbourne, Australia, August (1990)

Kjernsmo, K., Passant, A.: SPARQL new features and rationale, W3CWorking Draft 2 July 2009.

Available at http://www.w3.org/TR/2009/WD-sparql-features-20090702/

Klein, N., Groppe, S., B€ottcher, S.: A prototype for translating XQuery expressions into XSLT

stylesheets. In: Ninth East-European Conference on Advances in Databases and Information

Systems (ADBIS 2005), Talinn, Estonia (2005)

Klug, A.: On conjunctive queries containing inequalities, J ACM, 35(1) (1988)

Knuth, D.E.: Sorting and searching, vol. 3 of The art of computer programming, 2nd edn. Reading,

MA: Addison-Wesley (1998)

Kopena, J.: OWLJessKB: A semantic web reasoning tool, http://edge.cs.drexel.edu/assemblies/

software/owljesskb/ (2005)

Kruk, S.R., Decker, S.: Semantic social collaborative filtering with FOAFRealm. In: Proceedings

of Semantic Desktop Workshop at ISWC 2005, Galway, Ireland (November 2005)

Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Unkel, C.: Context-

sensitive program analysis as database queries. In: Proceedings of the 24th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS’05). ACM, New

York, pp. 1–12. (2005)

Law, Y.-N., Wang, H., Zaniolo, C.: Query Languages and Data Models for Database Sequences

and Data Streams. In: Proceedings of International Conference on Very Large Data Bases

(VLDB 2004), pp 492–503. (2004)

Law, Y.-N., Zaniolo, C.: An adaptive nearest neighbor classification algorithm for data streams.

In: Proceedings of European Conference on Principles and Practice of Knowledge Discovery

in Databases (PKDD 2005), pp. 108–120. (2005)

262 References

http://saxon.sourceforge.net
http://intranet.cs.man.ac.uk/ruleML//presentations/keynote3.ppt
http://intranet.cs.man.ac.uk/ruleML//presentations/keynote3.ppt
https://bscw.dip.deri.ie/bscw/bscw.cgi/0/3012
http://www.w3.org/TR/2009/WD-sparql-features-20090702/
http://edge.cs.drexel.edu/assemblies/software/owljesskb/
http://edge.cs.drexel.edu/assemblies/software/owljesskb/

Lechner, S., Preuner, G., Schrefl, M.: Translating XQuery into XSLT, In: ER 2001 Workshops,

Yokohama, Japan (2001)

Ley, M.: The DBLP computer science bibliography. http://www.informatik.uni-trier.de/~ley/db/

(2010)

Liarou, E., Idreos, S., Koubarakis, M.: Continuous RDF query processing over DHTs. In: ISWC.

(2007)

Linnepe, D., Groppe, S., Ingenerf, J.: Nutzung von MEDLINE und MeSH f€ur das Benchmarking

von RDF-Speichersystemen, 54. gmds-Jahrestagung 2009 – Deutsche Gesellschaft f€ur Medi-

zinische In-formatik, Biometrie und Epidemiologie e.V., Essen, Germany (2009)

Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic program-

ming. Theory and Practice of Logic Programming (TPLP) 8(3), 271–300 (2008)

Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and space guarantees.

ACM Trans Program Lang Syst 31(6) (2009)

Liu, L., Pu, C., Tang, W.: Continual queries for internet scale event-driven information delivery.

IEEE Trans Knowl Data Eng 11(4), 610–628 (1999)

MacGregor, R.M., Ko, I.-Y.: Representing contextualized data using semantic web tools. In:

Proceedings of the 1st International Workshop on Practical and Scalable Semantic Systems.

Sanibel Island, FL, USA, October (2003)

Malhotra, A., Melton, J., Walsh, N., (eds): XQuery 1.0 and XPath 2.0 Functions and Operators,

W3C Recommendation, 23 January (2007)

Manolescu, I., Florescu, D., Kossmann, D: Pushing XML Queries inside Relational Databases.

INRIA, Rapport de recherche 4112, (2001)

Matono, A., Yoshikawa, A.T., Uemura, S.: An indexing scheme for RDF and RDF schema based

on Suffix Arrays. SWDB’03 co-located with VLDB 2003, Berlin (2003)

Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: A path-based relational RDF database. In:

ADC, (2005)

McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing 6(6), 55–59 (2002)

McKay, D.P., Shapiro, S.C.: Using active connection graphs for reasoning with recursive rules. In:

International Joint Conference on Artificial Intelligence. pp. 368–374. (1981)

Microsoft, Biztalk, http://www.biztalk.org (2009)

Microsoft: SQL Server 2005 Express, http://www.microsoft.com/sql/express (2007)

Miller, R., Pippenger, N., Rosenberg, A., Snyder, L.: Optimal 2–3 trees, IBM Research Rep. RC

6505, IBM Research Lab. Yorktown Heights, NY. (1977)

Miller, L., Seaborne, A., Reggiori, A.: Three implementations of SquishQL, a simple RDF query

language, ISWC2002, Chia, Sardinai, Italy (2002)

Mishra, P., Eich, M.: Join processing in relational databases. ACM Computing Surveys 24(1),

63–113 (1992)

MIT Libraries Barton Catalog Data. http://simile.mit.edu/rdf-test-data/barton/ (2007)

M€oller, K., Dragan, L., Ambrus, O., Handschuh, S.: A visual interface for building SPARQL

queries in Konduit. In: 7th International Semantic Web Conference (ISWC 2008), Karlsruhe,

Germany (2008)

M€oller, K., Handschuh, S., Tr€ug, S., Josan, L., Decker, S.: Visual programming for the semantic

desktop with Konduit. In: Proceedings of the 5th European Semantic Web Conference

(ESWC2008), Tenerife, Spain (2008)

Motik, B., Studer, R.: KAON2 – A scalable reasoning tool for the semantic web. In: Proceedings of

the 2nd European Semantic Web Conference (ESWC’05), Heraklion, Greece (2005)

Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web ontology language structural specifica-

tion and functional-style syntax, W3C Recommendation, 27 October 2009

Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared expen-

sive filters. In: Proceedings ACM International Symposium on Principles of Database Systems

(PODS 2007). pp. 215–224. (2007)

Muňoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. 4th European Semantic

Web Conference (ESWC 2007), Innsbruck, Austria (2007)

References 263

http://www.informatik.uni-trier.de/~ley/db/
http://www.biztalk.org
http://www.microsoft.com/sql/express
http://simile.mit.edu/rdf-test-data/barton/

Nagy, L., Stansifer, R.: Polymorphic type inference for the relational algebra in the functional

database programming language neon. In: 44th annual Southeast regional conference,

Melbourne, USA (2006)

Naur, P. (ed): Revised report on the algorithmic language ALGOL 60. Computer J, 5(4), 349–367

(1963)

Nejdl, W., Wolf, B., Qu, C., Decker, S., Naeve, MSA, Nilsson, M., Palmer, M., Risch, T.,

EDUTELLA: A P2P networking infrastructure based on RDF, WWW2002, Honolulu, Hawaii,

USA (2002)

Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs, SIGMOD (2009)

Neumann, T., Weikum, G.: RDF3X: a RISCstyle engine for RDF. In: Proceedings of the 34th

International Conference on Very Large Data Bases (VLDB). Auckland, New Zealand (2008)

Nodine, M.H., Vitter, J.S.: Deterministic distribution sort in shared and distributed memory

multiprocessors. In: Proceedings of the ACM Symposium on Parallel Algorithms and Archi-

tectures. Velen, Germany (1993)

Northrop Grumman Corporation, Kowari, http://kowari.sourceforge.net/ (2007)

OpenLink iSPARQL, http://demo.openlinksw.com/isparql (2010)

Oracle.: Semantic Technologies Center, http://www.oracle.com/technology/tech/semantic_

technologies/index.html (2009)

Pan, Z., Heflin, J.: DLDB: Extending relational databases to support Semantic Web queries. In:

PSSS. (2003)

Parent, C., Spaccapietra, S.: About complex entities, complex objects and object-oriented data

models. In: Proceedings of the IFIP 8.1 conference (1989)

Paschke, A., Hirtle, D., Ginsberg, A., Patranjan, P.-L., McCabe, F.: RIF use cases and require-

ments. W3C Working Draft. 18 December 2008, http://www.w3.org/TR/rif-ucr/

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ISWC, Athens, USA

(2006)

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database

Syst. 34(3) (2009)

Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C.M., Thompson, H.S., (eds): W3C XML

Schema Definition Language (XSD) 1.1 Part 2: Datatypes.W3C Candidate Recommendation.

http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/, 30 April 2009. Latest version

available as http://www.w3.org/TR/xmlschema11-2/

Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of tuples satisfying a

condition. SIGMOD, (1984)

Polleres, A.: From SPARQL to rules (and back). In: WWW2007, Banff, Canada (2007)

Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Recommendation,

(2008)

Russell, A., Smart, P.R.: NITELIGHT: A graphical editor for SPARQL Queries. In: 7th Interna-

tional Semantic Web Conference (ISWC 2008), Karlsruhe, Germany (2008)

Sacca, D., Zaniolo, C.: On the implementation of the simple class of logic queries for databases. In:

Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems.

ACM, New York, pp. 16–23. (1986)

Schmidt, J.W.: Some high level language constructs for data of type relation. ACM ToDS 2(3),

247–261 (1977)

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL performance bench-

mark, ICDE. Shanghai, China (2009)

Schneider, D., DeWitt D.: A performance evaluation of four parallel join algorithms in a shared-

nothing multiprocessor environment, In: Proceedings of the 1989 SIGMOD Conference.

Portland, OR, June 1989

Schneider, D., DeWitt, D.: Tradeoffs in processing complex join queries via Hashing in multipro-

cessor database machines. In: Proceedings of the Sixteenth International Conference on Very

Large Data Bases, Melbourne, Australia, August (1990)

264 References

http://kowari.sourceforge.net/
http://demo.openlinksw.com/isparql
http://www.oracle.com/technology/tech/semantic_technologies/index.html
http://www.oracle.com/technology/tech/semantic_technologies/index.html
http://www.w3.org/TR/rif-ucr/
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/
http://www.w3.org/TR/xmlschema11-2/

Schuhart, H., Linnemann, V.: Valid updates for persistent XML objects, BTW 2005, Karlsruhe,

Germany (2005)

Seaborne, A.: RDQL – A query language for RDF. W3CMember Submission, W3C. Available at:

http://www.w3.org/Submission/RDQL/ (2004)

Seaborne, A., Manjunath, G.: SPARQL/Update, A language for updating RDF graphs. http://jena.

hpl.hp.com/~afs/SPARQL-Update.html (2008)

Semantic web challenge 2009. billion triples track. http://challenge.semanticweb.org/.

Semantic web challenge 2010. Billion triples track. http://challenge.semanticweb.org/

Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and minimization of RDF/S

query patterns. In: ISWC, Galway, Ireland (2005)

Shadbolt, N.: The AKT project, http://www.aktors.org/akt (2007)

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.: Relational

databases for querying XML documents: limitations and opportunities. VLDB 1999, Edinburgh,

Scotland (1999)

Shields, M., Meijer, E.: Type-indexed rows. In: PoPL, London, Great Britain (2001)

Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL DL reasoner.

J Web Semantics (2006)

Smart, P.R., Russel, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.R.: A visual approach to

semantic query design using a web-based graphical query designer. In: 16th International

Conference on Knowledge Engineering: Practice and Patterns (EKW), Acitrezza, Italy (2008)

Software AG, Tamino XML Server, http://www.softwareag.com/tamino (2007)

SPARQLMotion http://www.topquadrant.com/sparqlmotion (2008)

Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A.,

Madden, S.R., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik, S.B.: C-store: a column-

oriented DBMS. In: VLDB, (2005)

Subramanyam, G.V., Kumar, P.S.: Efficient handling of sibling axis in XPath, COMAD 2005,

Goa, India (2005)

Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)

Swiss Institute of Bioinformatics, uniprot RDF, http://dev.isb-sib.ch/projects/uniprot-rdf/ (2009)

Sybase. SQLJ Part 1: Java Stored Procedures. Working Draft. (1998)

Sybase. SQLJ Part 2: Java Data Types. Working Draft. (1998)

Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Shapiro, E. (ed.) Proceedings of the 3rd

International Conference on Logic Programming, pp. 84–98. Springer, Berlin (1986)

Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang, C.: Storing and

querying ordered XML using a relational database system. SIGMOD Conference 2002,

Madison, Wisconsin, USA (2002)

Tsarkov, D., Horrocks, I.: FaCT++ Description logic reasoner: system description. In: Proceedings

of the International Joint Conference on Automated Reasoning (IJCAR’06), (2006)

Tummarello, G., Polleres, A., Morbidoni, C.: Who the FOAF knows Alice? A needed step toward

Semantic Web Pipes. In: Proceedings of the ISWC Workshops (2007)

UMBC, Swoogle Semantic Web Search Engine, http://swoogle.umbc.edu/ (2009)

Uniprot RDF. http://dev.isb-sib.ch/projects/uniprot-rdf/ (2009)

van Assem, M., Gangemi, A., Schreiber, G.: RDF/OWL Representation of WordNet, W3C

Working Draft, 2006. http://www.w3.org/TR/wordnet-rdf/

van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs.

J ACM 38(3), 620–650 (1991)

Vdovjak, R., Barna, P., Houben, G.: EROS: explorer for RDFS-based ontologies. In: Proceedings

of Intelligent User Interfaces. Miami, FL, USA (2003)

Volz, R., Oberle, D., Staab, S., Motik, B.: KAON SERVER - A Semantic Web Management

System. In: WWW (2003)

Walavalkar, O., Joshi, A., Finin, T., Yesha, Y.: Streaming knowledge bases. In: Proceedings of

International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2008),

(2008)

References 265

http://www.w3.org/Submission/RDQL/
http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://challenge.semanticweb.org/
http://challenge.semanticweb.org/
http://www.aktors.org/akt
http://www.softwareag.com/tamino
http://www.topquadrant.com/sparqlmotion
http://dev.isb-sib.ch/projects/uniprot-rdf/
http://swoogle.umbc.edu/
http://dev.isb-sib.ch/projects/uniprot-rdf/
http://www.w3.org/TR/wordnet-rdf/

Wallace, M., Runciman, C.: Haskell, and XML: Generic combinators or type-based translation?

In: ICFP’99 (1999)

Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data manage-

ment. VLDB (2008)

Weith€oner T., Liebig T., Luther M., B€ohm S., von Henke F., Noppens, O.: Real-world reasoning

with OWL, ESWC 2007, Springer LNCS 4519. pp. 296–310. (2007)

Wilkinson K.: Jena property table implementation. In: SSWS (2006)

Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and Retrieval in Jena2.

In: Workshop on Semantic Web and Databases. Berlin, Germany (2003)

Williams, J.W.J.: Algorithm 232: Heapsort. Commun ACM 7(6), 347–348 (1964)

Wolf, J.L., Dias, D.M., Yu P.S.: An effective algorithm for parallelizing sort-merge joins in the

presence of data Skew. In: 2nd International Symposium on Databases in Parallel and

Distributed Systems. (1990)

Wood, D., Gearon, P., Adams, T.: Kowari: A platform for Semantic Web storage and analysis. In:

XTech, (2005)

World Wide Web Consortium (W3C), Document Object Model (DOM) Level 3 Core Specifica-

tion Version 1.0, W3C Recommendation, http://www.w3.org/TR/DOM-Level-3-Core/ (2004)

World Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0 (Third Edition),

W3C Recommendation, http://www.w3.org/TR/2004/REC-xml-20040204/, February (2004)

World Wide Web Consortium (W3C), XPath Version 2.0, W3C Recommendation. (2007)

World Wide Web Consortium (W3C), XQuery 1.0: An XML Query Language, W3C Recommen-

dation (2007)

World Wide Web Consortium (W3C), XSL Transformations (XSLT) Version 2.0, W3C Recom-

mendation, (2007)

WorldWideWeb Consortium (W3C), SemanticWeb, http://www.w3.org/standards/semanticweb/

(2010)

World Wide Web Consortium (W3C), XML Technology, http://www.w3.org/standards/xml/

(2010)

xmlmind, Qizx, http://www.xmlmind.com/qizx/ (2010)

Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: A path-based approach to storage

and retrieval of XML documents using relational databases. ACM TOIT 1(2001), 110–141

(2001)

Zeller, H.J., Gray, J.: Adaptive hash joins for a Multiprogramming Environment. In: Proceedings

of the 1990 VLDB Conference. Australia, August 1990

Zhao, J., Boley, H.: Uncertainty treatment in the rule interchange format: From encoding to

extension. In: Fourth International Workshop on Uncertainty Reasoning for the Semantic

Web. Karlsruhe, Germany (2008)

Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A scalable OWL ontology storage

and inference system. In: Proceedings of 1st Asian Semantic Web Conference (ASWC 2006),

Beijing, China (2006)

Zloof, M.: Query-by-example: a data base language. IBM Syst J 16(4) (1977)

266 References

http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/xml/
http://www.xmlmind.com/qizx/

Index

A

Abstract syntax tree, 70

Access parallelism, 166

ACID, 165

Aggregation function, 18, 159

Algebra, 79

Amdahl’s law, 167

ASC, 21

ASK, 19, 79

Atomicity, 165

Attribute grammar, 244

B

B+-tree, 3, 35, 36, 99, 103, 110, 112,

114, 126, 136, 170

Bag, 82

Barton dataset, 59

Basic Logic Dialect, 29

Batch speedup, 167

Billion Triples Challenge, 2, 7, 104, 146, 149, 173

Binding, 81

BizTalk, 226

Blank node, 10, 22, 79

Block-based nested loop join, 118

Bloom filter, 126

Bottom-up, 94

Bound, 23

Bounded buffer, 168

Branch and Bound, 95

Browser-like query creation, 191, 195

Bubble-down, 47

Bubble-up, 47

Built-in condition, 79

Built-in functions, 23

Bushy join tree, 91

C

Closed World Assumption, 16, 28

Cocoon, 226

Collation order, 104

Conceptual query languages, 193

Condensed data view, 196

Consistency, 165

Constant propagation, 88

CONSTRUCT, 19, 79

Continuous queries, 155

CoreSPARQL, 70, 73, 81

Cost estimation, 79

Cost-based optimization, 90

D

Data model, 221

Data parallelism, 166

Datatype, 23

DAWG test case, 235

DBpedia, 192

Default graph, 20

Deleting, 43

DESC, 21

DESCRIBE, 20

Dictionary indices, 110

Disk-based indices, 110

Distribution sort, 36, 52

Distribution SortComponent Keys, 54

Distribution Sort for RDF, 35

Distribution SortTriple Keys, 54

Duplicate elimination, 105, 137

Durability, 165

Dynamic programming, 95

Dynamically restricting triple

patterns, 126

267

E

eBay, 155

EBNF, 209

Embedded language, 203

Enumeration of plans, 94

Equal-depth, 99

Equal-width, 99

Equi-depth, 113, 132, 170

Equivalency rule, 79

Evaluation indices, 111

External chunks merge sort, 35, 50

External merge sort, 36, 47

External sorting, 3

F

False drops, 126

Filter, 22

First-order logic, 28

FOAF, 104

FROM, 20

FROM NAMED, 20

G

Generate operator, 182

Grammar, 70, 77, 244

Graph pattern, 80, 88

GROUP BY, 18

H

Hash join, 105, 123, 130, 136, 152

Hash partitioning, 168

Heap, 45

Heuristic, 89

Hill Climbing, 95

Histogram, 93, 99, 113, 132, 170

Histogram indices, 113

Homomorphism, 211

Horn logic, 28

I

Incompleteness, 7

Inconsistency, 7

Index construction, 35, 45, 68

Index join, 122

Inference, 3, 8, 177

Inference rules, 178

Infinite data streams, 155

Initial run, 36

In-memory indices, 109

Inserting, 41

Interior nodes, 36

isBlank, 23

isIRI, 23

isLiteral, 23

Isolation, 165

isURI See isIRI
Iterator, 40, 118

J

Jena, 68

Job parallelism, 166

K

k-chunks heap, 50

L

Leaves, 36

Left outer-join, 83

Left-deep join tree, 91

LIMIT, 21

Logical operators, 70

Logic-based dialects, 28

LUBM benchmark, 187

LUPOSDATE, 3, 67, 86, 98, 126, 160, 193

M

Main memory database, 3, 91, 106, 139

Materialization, 116, 179

Materialization strategies, 3

Merge join, 104, 120, 131, 152

MergeOptional, 136

Microsoft SQL Server, 2005 Express, 226

Most-frequent-values, 99

Multiple inheritance, 16

Multiset See Bag
Multi-user synchronization, 165

N

N3 notation, 11

N3QL, 17

Named graphs, 20, 80

Negation as Failure, 23

Nested subqueries, 18

Nested-loop join, 117

No Unique Name Assumption, 17

Node splitting, 37

Non-first-order logics, 28

Notation, 3, 17

O

Object, 9, 104

OFFSET, 21

Ontology, 7, 9, 13, 28, 192, 208, 220

Open World Assumption, 16, 28

268 Index

Operatorgraph, 70, 138, 159, 179

Optimization

join order, 91

logical, 3, 70, 180

logical optimization rule, 85

physical, 3, 72, 103

query, 79

OPTIONAL, 23, 136

Oracle, 17

ORDER BY, 21

P

Parallel database, 3, 163

Parallel monitor, 168

Partitioned parallelism, 164

Physical operator, 72, 103, 116, 138, 229

Pipeline-breaker, 116

Pipelining, 116

Plan generator, 113

Precompiler, 204

Predicate, 9, 104

Prefix key, 39

Prefix Search, 39

Presorting number, 131, 138

Production Rule Dialect, 29

Production rule systems, 28

Prolog, 30

Q

Qizx, 226

Query

textual, 3

visual, 3

Query head, 81

Query optimizer, 3

Query result type, 217

Query-by-example, 193

Query-by-form, 193

R

Range partitioning, 168

RDF Distribution Sort, 53

RDF Schema, 9, 14, 177, 208, 220

RDF stores, 27

RDF/XML, 13, 204

RDFa, 7

rdfDB, 17

RDQL, 17

Reactive (or event-condition-action)

rules, 28

Refining queries, 197

REGEX, 23

Relational Database, 221

Replacement selection, 36, 48, 110

Resolution conflict strategy, 30

Resource Description Framework (RDF),

1, 7–9, 220

Restrictiveness, 91

RIF Core Dialect, 29

Right-deep join tree, 91

RSS 1.0, 104

Rule, 7, 9, 28, 177

Rule Interchange Format (RIF), 9, 28, 220

Rules-with-actions dialects, 28

S

Satisfiability test, 215

Saxon, 226

Search engines, 1

Searching, 39

SELECT, 18, 79

Self-balancing Property, 38

Selinger-Style, 97

Semantic Web, 1, 3, 7, 219

Semantic Web databases, 2, 163

Semantically duplicated terms, 7

Semantics

stable, 28

well-founded, 28

Semi-structured document, 221

Sesame, 17, 68

Sesame RDF Query Language (SeRQL), 17

Set-contains, 82

Set-difference, 82

Sideways Information Passing, 39, 116, 122,

125, 136

Social web, 191

Solution, 81

Sorting numbering scheme, 3, 105,

129, 145

SP2B benchmark, 57, 139

SPARQL, 1, 9, 17, 67, 79, 104, 163,

192, 204

Protocol, 24

Query Results, 26

SPARQL 1.1, 18, 24

SPARUL, 18, 204

SquishQL, 17

Standard Generalized Markup Language

(SGML), 219

Static program analysis, 204

Statistics-gathering cycles, 99

Index 269

Stream operator, 160

Stream processing, 3, 68, 155

Subject, 9, 104

Subtype test, 210

SWOBE, 204

T

Tamino XML Server, 226

TAP, 17

Top-down, 94

Triple pattern, 18, 22

Type system, 208

U

Uncertainty, 7

UNION, 24

UniProt, 1, 7, 104, 146

Update, 18

V

Vagueness, 7

Variable, 21

Variable propagation, 87

Vastness, 7

Visual query language, 191

Visual Query System (VQS), 191

W

W3C test cases, 67, 112

Web Ontology Language (OWL), 9, 14,

177, 208, 220

WHERE, 18

Wikipedia, 2, 7, 58, 104,192

Window, 155, 159, 160

WordNet, 2, 7, 58, 104

World Wide Web, 1

X

XML, 2, 3, 219, 221

DTD, 219

Schema, 219

XPath, 17, 219

XQuery, 17, 219

XSLT, 17, 219

Y

Yago dataset, 58

YARSQL, 17

270 Index

	Data Management and Query Processing in Semantic Web Databases
	Contents
	Chapter 1: Introduction
	Chapter 2: Semantic Web
	Chapter 3: External Sorting and B+-Trees
	Chapter 4: Query Processing Overview
	Chapter 5: Logical Optimization
	Chapter 6: Physical Optimization
	Chapter 7: Streams
	Chapter 8: Parallel Databases
	Chapter 9: Inference
	Chapter 10: Visual Query Languages
	Chapter 11: Embedded Languages
	Chapter 12: Comparison of the XML and Semantic Web Worlds
	Chapter 13: Summary, Conclusions, and Future Work
	References
	Index

