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Chapter 1
Introduction

The current World Wide Web (short Web) enables an easy, instant access to a vast
amount of online information. However, the content in the Web is typically for
human consumption and is not tailored to be machine-processed.

Machines already help users to organize their lives in the Internet. The most
prominent examples are search engines such as google or yahoo: Users type some
keywords as “food” and the search engine displays the webpages containing these
keywords. During its search, the search engine compares plain text rather than the
meaning of the keywords with the words on a webpage. Consequently, a number of
unwanted webpages are displayed to the user, since for example, the meaning of a
given keyword is ambiguous or the webpages contain only little relevant content for
this keyword. On the other hand, if a meaning is expressed by using other words
than the given keyword, relevant webpages are not retrieved by the search engine. If
a search engine can understand the meaning of a webpage and can use the meaning
during search, the described problems occur less and the quality of search results
can be improved.

The Semantic Web, which is intended to establish a machine-understandable web,
thereby offers a promising and potential solution to mining and analyzing web content.
The advocators of the Semantic Web define the Semantic Web as “an extension of the
current web, in which information is given a well-defined meaning, better enabling
computers and people to work in cooperation” (Berners-Lee et al. 2001).

Around the vision of the Semantic Web, a number of semantic standards and
techniques have been developed by the World Wide Web Consortium (W3C),
among which the Resource Description Framework (RDF) is an important one.
RDF provides a general method for conceptual description and is designated by the
Semantic Web as its data model to describe the web resources. The W3C also
developed SPARQL as RDF querying language.

The Semantic Web is currently changing from an emergent trend to a technology
used in complex real-world applications. Semantic Web ontologies and RDF
knowledge bases are becoming increasingly large. The examples of large RDF
data with millions and even billions of facts include the UniProt comprehensive
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2 1 Introduction

catalogue of protein sequence, function, and annotation data (Swiss Institute of
Bioinformatics 2009), the RDF data extracted from Wikipedia (Auer et al. 2007),
the Princeton University’s WordNet (Assem et al. 2006), and the Billion Triples
Challenge (Semantic web challenge 2010). The querying performance is no doubt a
key issue for Semantic Web applications.

In this book, we shed light on various aspects of high performance Semantic
Web data management and query processing, which is the heart of most applica-
tions and is often most worth to be optimized.

Why it is necessary to have a book specialising on the data management and
query processing in Semantic Web databases? Why not only read a book about the
Semantic Web and another one about databases?

The existing Semantic Web books typically focus on presenting the Semantic
Web technologies and their applications. After reading these books, the readers get
to know how to use Semantic Web technologies. We have just mentioned that
Semantic Web databases are becoming increasingly large, and the Billion Triples
Challenge (Semantic web challenge 2010) contains already several billion triples.
Semantic Web data managing and querying performance is no doubt a key issue for
Semantic Web applications. However, no books examine high performance Seman-
tic Web applications and address how to exploit the Semantic Web properties to
speed up the applications of Semantic Web.

On the other hand, database books usually describe the database internals for
data management and query processing specialized to the relational world.
Although they may cover also topics about object-oriented databases, web data-
bases (without the Semantic Web), XML databases, and other topics, they fail to
address the special topics about Semantic Web databases. The Semantic Web
databases deal with the special index structures and data management and query
processing approaches, which exploit the properties of the Semantic Web data
model and the Semantic Web query languages to speed up applications.

This book fills the gap of Semantic Web books and database books and deals
especially with how to use Semantic Web data and query specific properties to
efficiently manage and query very large Semantic Web databases.

1.1 Main Target Group of the Book

The main target group include as follows:

e Lecturers and students at universities and universities of applied sciences

¢ Researchers in the area of the Semantic Web and databases

e Software developers for semantic web databases

e Readers, which study on these topics

e All who are interested in databases and the Semantic Web, and especially in
query processing and data management of Semantic Web databases
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1.2 Prerequisites Needed to Understand the Book

The main prerequisites needed to understand the book are as follows:

e Basic computer science knowledge

¢ Basic knowledge about algorithms

¢ Semantic Web knowledge is not a prerequisite as the necessary Semantic Web
knowledge will be introduced in this book

¢ No knowledge about database internals such as query processing and data
management is required as those topics will also be introduced in this book

1.3 Content

We start with describing the specifications of the Semantic Web in Chap. 2. All other
chapters deal with query processing specialized to the Semantic Web world. Chapter 3
contains an excursion to external sorting and B*-trees. B*-trees are later used as
index for large-scale datasets and external sorting is used, for example, as part for
an efficient construction of a B*-tree from scratch. We have developed an own general
external sorting algorithm with higher performance than traditional external sorting
algorithms and a specialized external sorting algorithm for speeding up index
construction of large-scale Semantic Web indices. Chapter 4 introduces query
processing and its phases. We also introduce our Semantic Web database manage-
ment system LUPOSDATE and the transformation of Semantic Web queries into a
core of the query language without redundant language constructs to simplify further
processing steps in this chapter. Chapters 5 and 6 provide more details of the main
query processing phases logical and physical optimizations. Besides explaining
logical optimization rules, we describe the sophisticated query optimizer in the
LUPOSDATE implementation. We have developed indices for large-scale as well
as main memory databases for high speed query processing and a sorting numbering
scheme for fast sorting in order to avoid costly hash join operations. When all these
proposed techniques play together, we can process typical queries on even very large
datasets with over one billion triples in seconds or often in milliseconds, thus making
Semantic Web applications feasible. Chapter 7 deals with stream processing, that is,
the processing of (possibly infinite) streams of data generated, for example, by
sensors. Chapter 8 describes the optimization possibilities when using parallel
database technologies of today’s multicore processors. Chapter 9 describes different
optimization possibilities and materialization strategies for supporting inference.
Chapter 10 introduces visual query languages as alternative to formulate textual
queries. Chapter 11 deals with query and data languages embedded into program-
ming languages as well as their features. Chapter 12 finally compares the Semantic
Web world with the XML world as alternative for web data and queries. Chapter 13
provides summary and conclusions as well as hints for future work.
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1.4 Logical Organization of the Book

Figure 1.1 presents the logical organization of the book, that is, the dependencies
between the chapters. An arrow from a chapter X to a chapter Y means that the
content of chapter X is directly precondition of (and used within) the chapter Y.
Note that we did not mark all dependencies, but have drawn the main ones; that is,
small dependencies that should not hinder the main understanding if the chapter is
left away. Although we recommend to read the book from the first to the last
chapter, this logical organization may help the reader to read other passes through
the book and pick the chapters (s)he is only interested in (and those which are
required for these chapters).

1.5 Structure of the Chapters and Book Webpage

Each chapter starts with an abstract. After the abstract, an introduction shortly
introduces the topic of the chapter. Each chapter ends up with summary and
conclusions. The book webpage at http://www.ifis.uni-luebeck.de/~groppe/Sem
WebDBBook/ contains additional material such as exercises for each chapter.
The exercises can be used by lecturers as material for tutorials and by interested

Chapter 4
Query Processing
Overview

Chapter 5 Chapter 7 Chapter 9

L'og.lcal. Streams J Inference
Optimization
- l\\ -
Chapter 3 Chapter 6 Chapter 8 Chapter 10
Chapter 2 . . .
. External Sorting Physical Parallel Visual Query
Semantic Web Lo

and B+-trees L Optimization ) Databases L Languages

Chapter 11

Embedded

Languages

7 Chanter 17 )
Chapter 12

Comparison of
the XML and
Semantic Web

\ Worlds y

Fig. 1.1 Logical organization of the book
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readers to check their understanding and learning success. The solutions of the
exercises are also given at the book webpage.
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Chapter 2
Semantic Web

Abstract The Semantic Web provides languages to define data, queries, ontologies,
and rules. This chapter introduces them after a short motivation and overview of the
Semantic Web.

2.1 Introduction

Although Semantic Web technologies can be and are used independent of the
Internet, the design issues of the Semantic Web address challenges for processing
data and knowledge in the internet such as vastness, semantically duplicated terms,
vagueness, incompleteness, uncertainty, and inconsistency:

Vastness: The indexed web already contains at least 21.13 billion pages as
reported in (de Kunder et al. 2010) for the 6 May 2010. As well as the traditional
World Wide Web was designed to publish webpages read by humans, Semantic
Web technologies such as RDFa (Adida and Birbeck 2008) allow webpage
designers to embed RDF in their webpages for encoding information to be
processed by machines. Other Semantic Web datasets with up to over one billion
facts were crawled from data of the web or built for a special domain like the
UniProt comprehensive catalog of protein sequence, function, and annotation
data (Swiss Institute of Bioinformatics 2009), the RDF data extracted from
Wikipedia (Auer et al. 2007), the Princeton University’s WordNet (Assem
et al. 2006), and the Billion Triples Challenge (Semantic web challenge 2010).
Semantic Web tools have to be able to process these truly large datasets.
Semantically duplicated terms: Large datasets may contain semantically dupli-
cated terms referring to the same thing such as truck, lorry, and freight vehicle,
which complicates automated processing and must be dealt with.

Vagueness: Humans understand vague terms such as young and can handle
different meanings of the same term in different contexts: a young child may
have a different understanding of a young person as an adult or old person.
Furthermore, even in the same context, it is not absolutely clear at what exact
age a person is young and at what exact age a person is not young any more.

S. Groppe, Data Management and Query Processing in Semantic Web Databases, 7
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8 2 Semantic Web

Much information contains such vague terms, such that machines must be able to
process them.

e [Incompleteness: New data sources occur frequently in the internet; other
data sources disappear or are temporarily unavailable. Thus, information in
the internet can never be seen as being complete, as new or temporarily
unavailable data sources can contribute relevant information for a specific
topic. Therefore, Semantic Web tools should regard any available information
as being incomplete.

e [Inconsistency: Due to the huge amount of information in the internet, contradic-
tory information can be given in different or even in the same data sources.
Semantic Web tools must react on contradictory information in a reasonable and
practical way.

To deal with some of these challenges, Semantic Web technologies consider the
meaning of symbols during processing. This reduces the number of errors when,
for example, searching for or automatically integrating data and services. For this
purpose, Semantic Web technologies also infer new knowledge on the basis of
ontologies and rules. Inference helps to avoid redundancies in data and knowledge,
as inferred data and knowledge neither need to be explicitly stated nor stored.
Furthermore, inference aims to detect hidden relationships within the data and
knowledge. However, errors in data and knowledge can lead to unwanted detected
relationships and thus unwanted results. Therefore, it is necessary to check care-
fully the data, knowledge, and inferred data by humans.

After a short overview of the basic architecture of the Semantic Web in the next
subsection, we introduce its basic specifications. Note that we cannot cover all
specifications, drafts, and planned specifications here, but we focus on those which
are relevant for the topics addressed in this book. The reader should keep in mind
that a lot more is going on in the quite active Semantic Web community and the
World Wide Web is still the best source to be informed about recent activities.

2.2 Overview

Figure 2.1 presents the basic architecture of the Semantic Web, including the
important Semantic Web specifications from W3C, and their relationships. The
Resource Description Framework (RDF) (Beckett 2004), which defines a simple

Query: Ontology: Rule:

OWL (2)
SPARQL RDFS RIF

Fig. 2.1 Basic semantic web Data Format: RDF
architecture
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and extremely flexible data model, is an underlying component in this architecture.
The concepts of ontologies and of rules are the basis for the data integration and
inference of new facts. The standard languages for constructing ontologies are
RDF Schema (RDFS) (Brickley and Guha 2004) and the Web Ontology Language
(OWL) (Dean and Schreiber 2004) with its successor OWL 2 (Motik et al. 2009).
The W3C also proposes the Rule Interchange Format (RIF) (Boley et al. 2009)
as RDF rule language, and SPARQL (Prud’hommeaux and Seaborne 2008) as
RDF query language.

Since RDF and SPARQL are two important technologies dealt with in this book,
we will describe them in detail in this chapter. For the other specifications we
provide only background information.

2.3 RDF Data

The RDF data model is based upon the idea of making statements about resources
(in particular Web resources) and is therefore similar to classic conceptual model-
ing approaches such as Entity-Relationship or Class diagrams. The statements are
subject—predicate—object expressions of the form (Subject, Predicate, Object) and
are known as triples in RDF terminology. Subject indicates a resource (also known
as entity), Predicate represents a property of the entity, and Object is a value of the
property in form of a resource or literal. The predicate is also often explained as
expressing a relationship between the subject and object. For example, one way to
represent the notion “book1 has the author Egon” in RDF is as the triple (s, p, 0),
where the subject s denotes “book1”, the predicate p “has the author”, and the
object o “Egon”.

RDF data consist of a set of triples. The set of triples builds a directed graph,
called RDF graph, where the subject and object are nodes and the predicate is
a labeled directed edge from the subject to the object. Nodes are unique; that is, the
same resources and literals in subjects and objects are represented by the same
node. For an example of an RDF graph, see Fig. 2.2.

RDF is an abstract model with several serialization formats (i.e., file formats) such
as RDF triples (Grant and Beckett 2004), N3 (Berners-Lee 1998), Turtle (Beckett
2006), or RDF/XML (Beckett 2004), which uses XML to encode RDF data. In the
following subsections, we shortly introduce the N3 notation and RDF/XML, which
are the most widely used formats due to the human-readable syntax of N3 and the
integration of RDF/XML into the RDF specification.

Resources are described in RDF by Internationalized Resource Identifiers (IRIs)
(Diirst and Suignard 2005). An IRI is a complement to the Uniform Resource
Identifier (URI) (Berners-Lee et al. 1998). A mapping from IRIs to URIs is defined;
that is, IRIs can be used instead of URIs, where appropriate, to identify resources. The
syntax of IRIs differs only slightly to the one of URIs. An example of an IRI is http://
www.example.org. Note that the IRI does not necessarily refer to a real webpage.


http://www.example.org
http://www.example.org
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Fig. 2.2 Example of an RDF
graph

rdf:type

:Buch2 v:Buch

IRIs in RDF notations such as N3 and in query languages such as SPARQL are often
enclosed with < and >, for example, <http://www.example.org>.

Sometimes the user does not want or does not need to provide an explicit IRI as
global identifier for a resource. For this purpose, the user can define blank nodes. If
available, labels of blank nodes are local; that is, local labels can be used within
the same RDF file to refer to the same blank nodes, but cannot be used to
externally address this blank node. In N3 notation, every [] defines a new blank
node. _:b defines a blank node with local blank node label b.

Literals are values such as strings, numerical values, language-tagged values,
or values with a user-defined data type. “text” defines the simple literal fext in N3
notation and in SPARQL.

Typed literals are literals with the further information of its data type.
For example, “text” M<http://www.w3.0rg/2001/XMLSchemai#string> is a typed
literal, where “text” is typed with the XML Schema data type string (Peterson et al.
2009) and which is equivalent to the simple literal “fexs”. Using a prefix, for
example, xsd, for http://www.w3.0rg/2001/XMLSchemai#, the typed literal can be
abbreviated as “text”Mxsd:string.

Numerical values are typically expressed by a typed literal with a numerical
XML Schema data type (Peterson et al. 2009) such as int, integer, positivelnteger,
long, double, float, and decimal. Note that the validation of typed literals is not part
of RDF itself and left to the application using RDF. For example, “not an int”Mxsd:
int is correct in RDF, but applications may expect a real XML Schema inf value like
“120”Mxsd:int.

An own user-defined data type may be used within a typed literal, for example,
“content”M< http:/lwww.myDatatypes.org/myDatatypel >. Again, it is up to the
application to validate and interpret the content content according to the data
type <http://www.myDatatypes.org/myDatatypel >. In multilingual environments,
language-tagged literals of the form “content”@tag may be used, where tag


http://www.example.org
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema
http://www.myDatatypes.org/myDatatype1
http://www.myDatatypes.org/myDatatype1
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conforms to Alvestrand et al. (2001); for example, language-tagged literals for the
English content “hello”@en and for German content “hallo”@de may be used.

For later usage, we define the terms RDF triple and graph in a formal way:

Definition 1 (RDF triple). Assume there are pairwise disjoint infinite sets 1, B, and
L, where 1 represents the set of IRIs (Diirst and Suignard 2005), B the set of blank
nodes, and L the set of literals. We call a triple (s,p,0) € TUB) x I x TUBUL)
an RDF triple, where s represents the subject, p the predicate, and o the object of the
RDF triple.

Furthermore, we call an element el U B U L an RDF term.

Definition 2 (RDF graph). An RDF graph (Beckett 2004 ) is a set of RDF triples.

2.3.1 N3 Notation

Figure 2.3 contains an example of RDF data in N3 notation, which is the serializa-
tion of the RDF graph in Fig. 2.2. The serialized RDF data contain three prefix
declarations [see lines (1)—(3)] and a set of triples [see lines (4)—(8)]. A prefix
declaration @prefix name: <iri> defines an alias name for a prefix IRI (Diirst and
Suignard 2005) iri. The prefix name can be used in the declaration of triples, where
name:postfix represents the IRI <iri postfix>. For example, rdf:type in line (4)
represents <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> according to the
prefix declaration in line (3). The first prefix declaration in line (1) does not define a
name for its prefix and is thus a default prefix to be used for prefixed IRIs without
prefix name like :hookl [line (4)] which represents <http://book/instances/book1>.

There are some abbreviations in N3 notation.

Object lists separate objects by a comma, and can be used to avoid repeating
the same subject and predicate, for example, :bookl v:author “Fritz”, “Egon”.
abbreviates the lines (5) and (6) of Fig. 2.3. Using predicate—object lists to separate
lists of predicate and object by a semicolon avoids repeating the same subject, for
example, :bookl rdf:type v:book; v:author “Fritz” . is equivalent to the lines (4) and
(5) of Fig. 2.3. The N3 abbreviations can usually be arbitrarily mixed; for example,

(1) @prefix.  <http.://book/instances/>.

(2) @prefix v. <http://book/vocabulary/>.

(3) @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
(4) :bookl rdf:type v:book.

(5) :bookl v:author “Fritz” .

(6) :bookl v:author “Egon” .

(7) :Buch2 rdf:type v:Buch.

(8) :Buch2 v:author “Fritz” .

Fig. 2.3 RDF data in N3 Notation


http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://book/instances/book1
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the triples in the lines (4)—(6) of Fig. 2.3 can be also expressed with:bookl rdf:type
v:book; v:author “Fritz”, “Egon”.

We explain another notation for blank nodes with the following example: [ rdf:
type v:book; v:author “Herbert”, “Josef’ ], where a predicate—object list occurs
inside the brackets [] for blank nodes, is equivalent to [] rdf:type v:book; v:author
“Herbert”, “Josef’. The advantage of this notation is that additionally a predicate—
object list on the right of the blank node brackets [] as well as a subject and
predicate on the left of the blank node brackets [] are allowed. A subject and
predicate on the left of the blank node brackets [] together with the new blank
node as object form a triple; that is,

:bookshop1 v:sells
[ rdf:type v:book;
v:author “Herbert”, “Josef” ]
v:price “10”Mxsd:int

is equivalent to

:bookshopl v:sells :_b.

_:b rdf:type v:book;
v:author “Herbert”, “Josef”;
v:price “10"Mxsd:int,

where _:b is a new blank node not used elsewhere.

A single-linked list is also called collection in N3. Collections in N3 (and also
in SPARQL) are enclosed with brackets ( and ). For each element e of a collection,
a new blank node b is generated. The blank node b and the current element e are
connected via a triple (b, rdf:first, e). The blank node b is also connected with the
blank node b,,,, for the next entry via a triple (b, rdf:next, b,,.,,). For the last element
in the collection, a triple (b, rdf:next, rdf:nil) is generated. Therefore,

(“Friday” “Saturday” “Sunday’)

is equivalent to

[ rdf:first “Friday”;
rdf:next [ rdf:first “Saturday”;
rdf:next [ rdf:first “Sunday”;
rdf:next rdf:nil 1]].

Again, analogous to the blank node brackets [], we can add a subject and a
predicate on the left to the collection brackets () as well as a predicate—object list on
the right of the collection brackets (), for example,

:list v:listOfDays (“Friday” “Saturday” “Sunday”) v:altFirst “Freitag” @de.
is equivalent to
:list v:listOfDays [rdf:first “Friday”;

rdf:next [rdf-first “Saturday”;

rdf:next [rdf:first “Sunday”;
rdf:next rdf:nil 11] v:altFirst “Freitag” @de.
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The keyword a is an alias for rdf:type, the empty collection () for rdf:nil. The
N3 notation contains more syntactic sugar. We refer the interested reader to
(Berners-Lee 1998).

2.3.2 RDF/XML

RDF/XML uses XML to encode RDF triples. RDF/XML supports also a huge
number of abbreviations and language constructs. We only present the RDF/XML
representation (see Fig. 2.4) of the RDF data of Fig. 2.3 here and will not introduce
the language constructs of RDF/XML further. We refer the interested reader to the
specification of RDF/XML in (Beckett 2004) for more details. As N3 notation (or
similar notations such as RDF triples or Turtle) is typically more human-readable
than RDF/XML, one usually uses tools to transform RDF/XML files into one of
these human-readable notations such as N3 before inspecting the content. These
transformation tools are often part of an RDF store like Jena (McBride 2002;
Wilkinson et al. 2003).

2.4 Ontology Languages

An ontology is meant to provide a standard description about a domain by defining
a set of concepts, the properties of the concepts, and the relationships between these
concepts. These relationships are either explicitly defined in the ontology, or can be

H
<rdf-RDF E
xmins = "http.//book /instances/" . A
xmlins:v = "http://book /vocabulary /" I))fegrirf?;e(;n E
xmins:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"> R
<rdf:Description rdf:about = "http://book /instances/book1">
<rdf:type rdf:resource = "http.://book /vocabulary/book"/> Triples of
<v:author>Fritz</v:author> lines (4) to (6)
<v:author>Egon</v:author> in Figure 2.3
</rdf:Description>
<rdf:Description rdf:about = "http://book /instances/Buch2"> Triples of
<rdf:type rdf:resource = "http:// book /vocabulary/Buch"/> lines (7) to (8)
<y:author>Fritz</v:author> in Figure 2.3
</rdf:Description>
</rdf:RDF>

Fig. 2.4 RDF/XML representation of the RDF data of Fig. 2.3
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asserted based on the existing ones from the ontology. This is the so-called
inference capability of ontology. Ontology languages are formal languages used
to construct ontologies. They allow the encoding of knowledge about specific
domains and often include reasoning rules that support the processing of that
knowledge. RDF Schema (RDFS) (Brickley and Guha 2004) and the Web Ontology
Language (OWL) (Dean and Schreiber 2004) are two ontology languages devel-
oped by W3C.

RDFS provides basic elements for describing the ontologies in order to construct
various RDF resources. RDFS allows the definition of classes, subclasses, and
instances. It also allows the definition of properties, derived properties, and their
domains and codomains. RDFS supports a type system and metaclasses.

OWL (Dean and Schreiber 2004) and its successor OWL 2 (Motik et al. 2009)
allow more language constructs than RDF Schema. OWL (2) consists of three
sublanguages OWL Lite, OWL DL, and OWL Full, with increasing expressiveness.
OWL Lite contains language constructs for simple classification hierarchies and
conditions, which allows simple and fast implementations. OWL DL is close to a
syntactic variant of a more expressive, but still decidable (i.e., all computations are
guaranteed to be completed in finite time), Description Logic (DL) (Baader et al.
2007), namely SHOIN (D). More precisely, the OWL DL variant coincides with
this DL by imposing several restrictions on the usage of RDF(S) like disallowing
metaclasses. Furthermore, OWL DL has the property of computation completeness;
that is, the computation of all conclusions is guaranteed. The restrictions of OWL
DL are lifted in OWL Full that combines the description logic flavor of OWL
DL and the syntactic freedom of RDF(S). Figure 2.5 provides overviews of the

unionOf
arbitrary cardinality

enumerated types (oneOf)

negation (disjointWith, complementOf)

intersection, (in) equality
cardinality 0/ 1, datatypes

OWL inverse, transitive, symmetric
Lite hasValue, someValuesFrom
allValuesFrom

(sub) properties, domain, range
(sub) classes, individuals

Fig. 2.5 Expressiveness of OWL sublanguages and RDFS
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Fig. 2.6 Important OWL Symmetric: if P(x, y) then P(y, x)

language constructs Transitive: if P(x, y) and P(y, z) then P(x, z)
Functional: if P(x, y) and P(x, z) theny = z
InverseOf: if P1(x, y) then P2(y, x)
InverseFunctional: if P(y, x) and P(z, x) theny =z
allValuesFrom: P(x, y) and y = allValuesFrom(C)
someValuesFrom: P(x, y) and y = someValuesFrom(C)
hasValue: P(x, y) and y = hasValue(v)
cardinality: cardinality(P) = N
minCardinality: minCardinality(P) = N
maxCardinality: maxCardinality(P) = N
equivalentProperty: P1 = P2
intersectionOf: C = intersectionOf(C1, C2, ...)
unionOf: C = unionOf(C1, C2, ...)
complementOf: C = complementOf(C1)
oneOf: C = one of(v1, v2, ...)
equivalentClass: C1 = C2
disjointWith: C1 != C2
samelndividualAs: 11 = |12
differentFrom: |1 |= 12
AlIDifferent: [1 =12, 11 =13, 12 =13, ...
Thing: 11,12, ...

Legend:

Properties are indicated by: P, P1, P2, etc

Specific classes are indicated by: x, y, z

Generic classes are indicated by: C, C1, C2
Values are indicated by: v, v1, v2

Instance documents are indicated by: I1, 12, 13, etc.
A number is indicated by: N

P(x,y) is read as: “property P relates x to y”

expressiveness of RDFS and of OWL sublanguages, and Fig. 2.6 describes the
important OWL language constructs.

OWL 2 additionally specifies 3 profiles: OWL 2 EL is particularly useful in
applications employing ontologies that contain very large numbers of properties
and/or classes. The basic reasoning problems for OWL 2 EL can be performed in
time that is polynomial with respect to the size of the ontology. OWL 2 QL captures
expressive power of simple ontologies such as thesauri, and (most of) expressive
power of ER/UML schemas, which enables a tight integration with relational
database management systems. OWL 2 RL is aimed at applications that require
scalable reasoning without sacrificing too much expressive power. In the OWL
2 RL fragment, the ontology consistency, class expression satisfiability, class
expression subsumption, instance checking, and conjunctive query answering pro-
blems can be solved in time that is polynomial with respect to the size of the
ontology.
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(1) @prefix v: <http.://book /vocabulary/>.
(2) @prefix owl: <http://www.w3.0rg/2002/07/owl#>.
(3) @prefix rdf:  <http://www.w3.0rg/1999/02/22-rdf-syntax-nst>.

(4) owl:class rdf:1D v:book.
(5) owl:class rdf:1D v:Buch.
(6) rdf:property rdf:1D v:author.
(7) v:title owl:domain  v:book.

(8) v:book owl:equivalentClass v:Buch.

Fig. 2.7 An OWL ontology Book.owl in N3 notation

Multiple inheritances are allowed in RDFS as well as in OWL (2).

Figure 2.7 presents an OWL ontology Book.owl. The RDF data Book.rdf in
Fig. 2.3 is an instance data of this ontology. Book.owl defines three concepts,
v:book, v:Buch, and v:author, and several relationships: v:book and v:Buch are
classes [lines (4) and (5)]; v:author is a property [line (6)] of v:book [line (7)]; and
v:book and v:Buch are equivalent classes [line (8)]. A number of implied relation-
ships can be asserted; for example, if a book is an instance of v:book, then it is also
an instance of v:Buch.

2.5 Open World Assumption

In this and in the next subsection, we want to introduce some paradigms, which
are realized in the Semantic Web technologies and which differ from known
paradigms, for example, from the database world. These new paradigms address
new challenges in web environments: data is often incomplete, as new data
sources occur frequently, data sources are temporarily unavailable, or disappear
permanently.

The first paradigm is the Open World Assumption, which is contrary to the well-
known Closed World Assumption. Recall that the Closed World Assumption states
that a database contains all facts and that everything not contained in the database is
assumed to be false. Contrary, the Open World Assumption assumes everything
not contained in the database not to be false, but to be unknown! If a data source
contains, for example, only the information that trains depart at 2 and 5 p.m., then a
query about the existence of a train departing at 4 p.m. would be answered using the
Closed World Assumption with false. However, using the Open World Assumption,
the answer should be unknown, as there could be another data source containing
this information. OWL reasoning follows the Open World Assumption and as
consequence, a fact that a train departs at 4 p.m. is not inconsistent with the
previous given information that trains depart at 2 and 5 p.m.
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2.6 No Unique Name Assumption

In the database world, every resource (like a table row in a relational database) has
an identifier (consisting of the attribute values of the primary key in a relational
table). This resource has neither another identifier nor has another resource the
same identifier. In an open context like the Web, this cannot be guaranteed and
the uniqueness of identifiers must be lifted. In the No Unique Name Assumption
several different identifiers can refer to the same resource. This affects reasoning,
too. For example, the facts that a person Mary has the parents Lisa Minelly, John
Doe, and Lisa Doe are given. Furthermore, we have a cardinality axiom stating
that a person has at most two persons as parents. In the Unique Name Assumption
as used in the database world, it would be a contradiction to have the parents Lisa
Minelly, John Doe, and Lisa Doe, which are more than two. In the No Unique Name
Assumption as used in OWL reasoning, it can be inferred that Lisa Minelly is the
same person as John Doe or as Lisa Doe, or John Doe is the same person as Lisa
Doe, or Lisa Minelly, John Doe and Lisa Doe are all one person. For a human being,
it is intuitive that Lisa Minelly and Lisa Doe is the same person, as Lisa Minelly
could be the maiden name of Lisa Doe. A reasoner can only determine this fact if
much more information is given such as Lisa Doe and Lisa Minelly are females,
John Doe is male, and female is disjoint from male.

2.7 SPARQL Query Language

Just as SQL is the most important query language for relational databases, SPARQL
(Prud’hommeaux and Seaborne 2008; Beckett and Broekstra 2008; Clark et al.
2008) is the most important query language for the Semantic Web.

Before SPARQL has been recommended as standard RDF query language by
the W3C, many proprietary RDF query languages have been developed. Among
them are RDQL (Seaborne 2004) and N3QL (Berners-Lee 2004). RDQL was
influenced by SquishQL and rdfDB (Miller et al. 2002), while N3QL was influ-
enced by Notation 3 (Berners-Lee 1998) and RDQL. Furthermore, TAP (Guha and
McCool 2003) has been specified for the semantic search, and Sesame RDF Query
Language (SeRQL) (Broekstra and Kampman 2003) has been introduced as part of
Sesame (Broekstra et al. 2002). YARSQL (Harth and Decker 2005) is a quadruple
query language, which additionally considers the context of a triple (see Guha et al.
2004; MacGregor and Ko 2003). Today, SPARQL is accepted as standard query
language and is supported by main database vendors such as Oracle (Oracle 2009).

SPARQL offers a powerful means to query RDF triples and graphs and supports
a variety of querying capabilities. Results of SPARQL queries can be ordered,
limited and offset by a given number of elements. The W3C has plans for embed-
ding SPARQL into other W3C languages, analogous to the embedding of the
XML query language XPath (W3C 2007b) into XQuery (W3C 2007c) and XSLT
(W3C 2007a).
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The core component of SPARQL queries is a set of triple patterns s p 0. s p o
corresponds to the subject (s), predicate (p), and object (o) of an RDF triple, but
they can be variables as well as RDF terms. Within a SPARQL query, the user
specifies the known RDF terms of triples and leaves the unknown ones as variables
in triple patterns. The same variables can occur in multiple triple patterns and
thus imply joins. A triple pattern matches a subset of the RDF data, where the RDF
terms in the triple pattern correspond to the ones in the RDF data. A triple pattern
applied to an RDF graph generates an unordered bag of solutions. A solution is a set
of bindings, each of which consists of a pair of a variable and its bound value, that
is, corresponding RDF terms in the matched subset of the RDF data. The result of
a group of triple patterns is the join of the results of individual triple patterns.

There are several limitations on SPARQL concerning the supported language
constructs. For example, SPARQL allows the nesting of subexpressions only up to a
certain degree (e.g., a SPARQL construct query, the result of which is an RDF
graph, cannot be the input of an outer SPARQL query) and does not support path
expressions (e.g., to retrieve the descendants of a node), the expressions to compute
the transitive closure, updates, user-defined functions, or rules.

Proprietary extensions of SPARQL exist such as SPARUL (Seaborne and
Manjunath 2008) for supporting update operations. SPARUL and some other exten-
sions like GROUP BY, aggregation functions, and nested subqueries are currently in
the standardization process for SPARQL 1.1 (Kjernsmo and Passant 2009).

2.7.1 Language Constructs of SPARQL

Before describing the main aspects of the SPARQL query language, we first present
an example SPARQL query in order to provide readers a first flavor of SPARQL
queries.

Figure 2.8 is an example of a SPARQL query Book.sparql, which can be applied
on the RDF data Book.rdf in Fig. 2.3. Book.sparql contains a SELECT clause in
line (3) and a WHERE clause in lines (4) and (5). The SELECT clause identifies the
variables to appear in the query results (i.e., the bindings of the variable ?author).
The WHERE clause contains two triple patterns, which identify the constraints on
the input RDF data. The first triple pattern ?x v:author ?author matches three
triples of Book.rdf (see lines (5), (6), and (8) in Fig. 2.3), and thus its result is
{(?x=:bookl, ?author="“Fritz”), (?x=:bookl, ?author=“Egon”), (?x=:Buch2,
?author="“Fritz”)}. Without considering the ontology Book.owl in Fig. 2.7, the

(1) PREFIX v:  <http://book/vocabulary/>

(2) PREFIX rdf: <http://www.w3.0org/1999/02/22-rdf-syntax-ns#>
(3) SELECT ’author

(4) WHERE { x  v:author Zauthor .

5) x  rdf:type v:book. }

Fig. 2.8 A SPARQL query Book.spargl
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second triple pattern ?x rdf:type v:book only matches one triple of Book.rdf, that is,
(:bookl, rdf:type, v:book) (see line (4) in Fig. 2.3), and thus its result is {(?x=:
bookl)}. The two triple patterns impose a join over the common variable ?x, and
the join result of the two triple patterns is hence {(’x=:bookl, ?author="“Fritz”),
(?x=:bookl, ?author="“Egon”)}. The final query result is a bag {(’author=
“Fritz”), (?author="“Egon”)}. The statement, v.book owl:equivalentClass v:Buch,
in the ontology Book.owl in Fig. 2.7 [see line (8)] implies that an instance of v:Buch is
also an instance of v:book. Therefore, we can infer that :Buch?2 is an instance of v:book;
that is, the triple (:Buch2, rdf:type, v:book) can be added to Book.rdf as implicit
knowledge. When considering this ontology information, the result of the second
triple pattern is hence {(?x=:bookl), (?x=:Buch2)}, and thus the final query result is
{Cauthor="Fritz"), (?author=“Egon”), (?author="Fritz")}.

2.7.1.1 Types of SPARQL Queries

There are four types of SPARQL queries.

The most often used type is the SELECT query, which we have just introduced
above. The bindings of all the variables occurring in a query are returned when
using the wildcard * instead of a projection list of variables. A projection list is
a parameter of the SELECT clause and consists of variable names [see line (3)
in Fig. 2.8]. By replacing line (3) of Fig. 2.8 with SELECT ?x ?author
or with SELECT *, we retrieve {(?x=:bookl, ?author="Fritz”), (?x=:bookl,
?author=“Egon”)} when applying the query on the RDF data in Fig. 2.3.

Additionally to the WHERE clause like in SELECT queries, CONSTRUCT
queries have a set of triple templates. For each solution of the WHERE clause,
variables in the triple templates are substituted with the bound values in the
solution, such that RDF triples are generated. All generated RDF triples build an
RDF graph, which is the result of the CONSTRUCT query. For example, the result
of the CONSTRUCT query in Fig. 2.9 is the set of triples {(:bookl, v:author,
“Fritz”), (:bookl , v:author, “Egon”), (:bookl, rdf:type, v:Buch)} when applied on
the RDF data in Fig. 2.3.

Users can apply ASK queries in order to test whether or not a given query pattern
has a solution. An ASK query returns a Boolean value indicating whether or not a
solution exists. For example, replacing line (3) in Fig. 2.8 with ASK and applying
this query on the RDF data in Fig. 2.3 would return true.

PREFIX v: <http://book /vocabulary />
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

CONSTRUCT { x  v:author Zauthor .
x  rdf:type v:Buch. }
WHERE { x  v:author Zauthor .
x  rdf-type v:book. }

Fig. 2.9 Construct query
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DESCRIBE queries return RDF graphs containing relevant information about
the resources found for a given query pattern in the WHERE clause. However, the
result of a DESCRIBE query has not been formally defined and is implementation-
dependent. In most implementations, replacing line (3) in Fig. 2.8 with DESCRIBE
?x and applying this query on the RDF data in Fig. 2.3 would return at least all
triples containing :bookl, that is, {(:bookl, v:author, “Fritz”"), (:bookl, v:author,
“Egon”), (:bookl, rdf:type, v:book)}.

2.7.1.2 Default Graph and Named Graphs

An RDF store applies a query on a certain RDF graph, the default RDF graph, if no
other RDF graphs are addressed in the query. Besides a default RDF graph, an RDF
store administers different RDF graphs and uses IRIs to distinguish them. SPARQL
uses the FROM IRI clause to indicate a nondefault RDF graph with name IR/ to be
queried. For example, we assume that the triples in lines (4)—(6) of Fig. 2.3 are
stored in an RDF graph associated with the IRI <http://www.graphl.com> in the
RDF store, and the triples in lines (7) and (8) of Fig. 2.3 are stored in another RDF
graph associated with the IRI <http://www.graph2.com>. We also use these RDF
graphs in other examples of this subsection. When adding

FROM <http:/lwww.graphl .com>

FROM <http:/lwww.graph2.com>

between the lines (3) and (4) of Fig. 2.8, the query is evaluated on the union of both
RDF graphs.

SPARQL even supports to evaluate different triple patterns on different RDF
graphs within the same query. For this purpose, the FROM NAMED IRI clause
specifies the RDF graph with name IR/ to be used as named graph rather than as
default RDF graph like for a FROM IRI clause. Then a GRAPH IRI { E } clause
indicates that the inner query expression E in the curly brackets will be evaluated on
the named RDF graph IRI. If a variable, for example,?v rather than an IR/ is used,
the inner query expression E is evaluated on all named graphs. The variable ?v will
be bound with the IRI of the corresponding named RDF graph. For example,
the query in Fig. 2.10 has the result {(?author="Fritz”, ?x=:bookl, ?t=v:book,

PREFIX v: <http://book /vocabulary />
PREFIX rdf: <http.//www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT *
FROM NAMED <http.//www.graphl.com>
FROM NAMED <http.://www.graph2.com>
WHERE { GRAPH g {
x  v.author Zauthor.
x  rdf-type 2. })

Fig. 2.10 SPARQL query using named graphs
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?g=<http://www.graphl.com>), (?author=“Egon”, ?x=:bookl, ?t=v:book,
?g=<http:/lwww.graphl.com>), (?author="Fritz”’, ?x=:Buch2, ?t=v:Buch,
?g=<http:/lwww.graph2.com>)}.

2.7.1.3 Other Modifiers

All query types except of the ASK queries support the modifier ORDER BY for
sorting the result of queries, by a given number limited query result when using the
LIMIT modifier, and considering an offset in the query result when using the
OFFSET modifier.

The ORDER BY clause causes sorted query results. After the ORDER BY
keyword, a list of sort criteria can be given. The first sort criterion in this list is
the primary sort criterion, the second in this list the secondary sort criterion, and so
on. Each sort criterion can start with ASC for ascending order or DESC for
descending order. If neither ASC nor DESC is given, then the ascending order is
assumed. A variable may be given as sort criterion. It is also possible to specify a
more complex expression as sort criterion like a built-in function or a formula like
?x + ?y, where the solutions of the query are sorted according to the result of the
given expression applied on the solutions.

The OFFSET x clause discards the first x solutions from the query result, where
X is an integer.

Complementary to the OFFSET clause, when using the LIMIT x clause, only
the first x solutions remain in the query result and the others are discarded, where x
is an integer.

LIMIT and OFFSET clauses can be combined, that is, when using OFFSET x
LIMIT vy, the (x+1)th to (x+y+1)th query result solutions remain and the others are
discarded.

For example, when adding the following lines
ORDER BY ?author

LIMIT 1

OFFSET |
to the query in Fig. 2.8 after line (5), we retrieve the result {(?author="Fritz”)}
when evaluating the modified query on the RDF data in Fig. 2.3.

2.7.1.4 Variables and Blank Nodes

Variables are placeholders for the RDF terms in RDF data. Solutions of a query
result contain bindings of variables with these RDF terms. Variables start with a
dollar character $ or a question mark ?, followed by the name # of the variable, for
example, $n and ?n. Variables with the same name n represent the same variable;
that is, $n and ?n are the same variables!

Sometimes the user does not want to include a variable in the query result. In
such a case, the user can use a SPARQL blank node: The SPARQL language
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redefines the semantics of blank nodes of RDF using the same notation as in N3,
that is, [] for a new blank node without name and _:b for a blank node with name b.
Blank nodes in SPARQL are local variables, whereas blank nodes in RDF are RDF
terms with (local) identifiers. Blank nodes in SPARQL can neither be used in the
projection list of SELECT queries nor their bound values appear in the query result
even if the wildcard * is used in a SELECT clause. For example, the query in
Fig. 2.11 returns the same result as the query in Fig. 2.8.

2.7.1.5 Triple Patterns

For triple patterns, SPARQL supports abbreviations for object lists, predicate—
object lists, blank nodes, and collections. These abbreviations are similar to the
ones for the N3 notation and only differ in the additional support of variables
besides RDF terms. For example, the triple patterns in Fig. 2.11 may be replaced
with [ v:author ?author; rdf:type v:book ], which does not change the query result
for any input RDF graph.

As in the N3 notation, the keyword a represents rdf:type and the empty collec-
tion () stands for rdf:nil.

2.7.1.6 Filter

Filter expressions contain Boolean formulas. For each solution of the intermediate
query result, a filter expression checks whether its Boolean formula becomes true,
false, or an error occurs like a type error or that a used variable is not bound. If its
Boolean formula becomes true, then the solution remains in the intermediate query
result, otherwise in the case that the Boolean formula becomes false or an error
occurs, the solution is discarded. A Boolean formula is an RDF term or a variable.
Furthermore, if Bl and B2 are Boolean formulas, then the negated formula /B/,
formulas containing logical and- (B! && B2) and or-(B1 Il B2) combinations,
relational operations (B! < B2, Bl <= B2, Bl = B2, Bl > B2, Bl >= B2, Bl /=
B2), mathematical formulas such as B/ + B2, or built-in functions are also Boolean
formulas. A Boolean formula transforms other values than the Boolean values true or
false and errors by determining the effective Boolean value (see Prud’hommeaux and

PREFIX v: <http://book/vocabulary/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT *
WHERE { _:b v:author ?author.
b rdf:type v:book. }

Fig. 2.11 Query using blank nodes
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Seaborne 2008). For example, the effective Boolean formula of a plain literal or a
typed literal with a data type of xsd:string is false if the result has zero length;
otherwise the effective Boolean value is true. The effective Boolean value of a
numeric type or a typed literal with a data type derived from a numeric type is false
if the operand value is NaN (alias for not a number) or is numerically equal to zero;
otherwise the effective Boolean value is true.

For example, by inserting FILTER(?author=“Fritz” ) between lines (4) and (5)
in Fig. 2.8, we would retrieve the query result {(?author=“Fritz”)}.

2.7.1.7 Built-In Functions

SPARQL supports various built-in functions to be used in Filter expressions. We
focus on the important ones here, whereas a complete list of built-in functions is
given in (Prud’hommeaux and Seaborne 2008).

The function bound checks whether or not a variable is bound. The functions
isIRI (equivalent to the function isURI), isBlank, and isLiteral check whether or not
a RDF term is an IRI, blank node, or a literal, respectively. The function datatype
returns the data type of a literal. In the case of a simple literal, xsd:string is returned
as data type. The function REGEX checks whether or not a regular expression is
matched. REGEX is actually equivalent to the XPath fn:matches function as defined
in Malhotra et al. (2007). SPARQL further imports a subset of the XPath con-
structor functions defined in (Malhotra et al. 2007). A constructor function as, for
example, xsd:long allows to cast a value to the corresponding data type of the
constructor function. Data type-specific operations such as comparisons or mathe-
matical operations can be afterward calculated using the casted values, even though
the values themselves are simple literals or have another data type.

For example, by inserting FILTER(REGEX(?author, “E”)) between lines (4)
and (5) in Fig. 2.8 for checking if ?author contains E, we would retrieve the query
result {(?author="“Egon”)}.

RDF stores typically support more functions than only the built-in functions of
the specification and also support to call external functions programmed in another
programming language like Java [as Jena (McBride 2002) (Wilkinson et al. 2003)
does].

2.7.1.8 Optional

The OPTIONAL operator adds bindings of its right operand to the solutions of its
left operand if the right operand matches and do not bind other values to the same
variables as in the solution of the left operand; otherwise the OPTIONAL operator
let the solution of the left operand unchanged; that is, the effect of an OPTIONAL
operator is like for a left-outer join in relational databases.

Furthermore, the OPTIONAL operator in combination with a FILTER(!bound
(?v)) can simulate Negation as Failure in logic programming and a NOT EXISTS
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PREFIX v: <http://book /vocabulary />
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ’x
WHERE { ’x v:author 2author.
OPTIONAL {  ?x rdf:type 1.
FILTER(?t=v:book).}
FILTER(!bound(?t)) }

Fig. 2.12 Example of negation as failure in SPARQL

PREFIX v: <http://book /vocabulary />
PREFIX rdf: <http://'www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT *
WHERE { ?x v:author ?author.
{?x rdf:type v:book .} UNION {?x rdf:type v.Buch .} }

Fig. 2.13 SPARQL query with UNION operator

clause of the upcoming SPARQL 1.1 standard. For example, the query in Fig. 2.12
returns all those RDF terms that have an author and are not of type v:book. When
evaluating the query in Fig. 2.12 on the RDF data in Fig. 2.3, we get the result
{(?x=:Buch2)}. In more detail, the pattern A OPTIONAL {B} FILTER(!bound(?v)),
where A and B are SPARQL subexpressions, and the variable ?v must occur in B for
every result of B and not in A, can be used in SPARQL 1.0 to retrieve all solutions of
A for which B does not have any solutions.

2.7.1.9 Union

The UNION operator returns all the solutions of all its operands. For example, the
query in Fig. 2.13 uses the UNION operator to retrieve all those RDF terms of type
v:book or v:Buch, which have an author. The result of this query applied on the
RDF data in Fig. 2.3 is hence {(?author="Fritz”, ?x=:bookl), (?author="Egon”,
?x=:bookl), (Tauthor="Fritz”, ?x=:Buch2)}.

2.7.2 SPARQL Protocol for RDF

To increase the interoperability of different SPARQL engines, (Clark 2008) pro-
poses a protocol, which specifies how to set up queries at a SPARQL engine over
the internet. SPARQL engines supporting the protocol specified in (Clark 2008) are
also called SPARQL endpoints. The SPARQL protocol uses WSDL 2.0 (Chinnici
et al. 2007) to describe how to convey SPARQL queries to a SPARQL endpoint and
return the query results to the requesting entity. The SPARQL Protocol is described
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in an abstract interface independent of any concrete realization, implementation, or
binding to another protocol. Furthermore, HTTP and SOAP bindings of this
interface are provided. We do not explain all the details here and just provide a
simple example: Fig. 2.14 contains the SOAP message for setting up the query of
Fig. 2.8. Another SOAP message (see Fig. 2.15) is used to transport the query result

POST /services/sparql-query HTTP/1.1
<?xml version = "1.0" encoding = "UTF-8"?>
<soapeny:Envelope
xmins:soapenv = "http://www.w3.org/2003/05 /soap-envelope /"
xmins:xsd = "http://www.w3.org/2001/ XM LSchema"
xmlins:xsi = "http://www.w3.org/2001/ XM LSchema-instance">
<soapenv: Body>
<query-request
xmins = "http://www.w3.0rg/2005/09/sparql-protocol-types/#">
<query>
PREFIX v: <http://book /vocabulary />
PREFIX rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ’author
WHERE{ x  v:author 2author.
x  rdf-type v:book.}
</query>
</query-request>
</soapenv:Body>

</soapenv.Envelope>

Fig. 2.14 SOAP message for setting up the query of Fig. 2.8

<?xml version = "1.0" encoding = "utf-8"?>
<soapenv:Envelope
xmlins:soapenv = "http://www.w3.org /2003 /05 /soap-envelope/"
xmins:xsd = "http://www.w3.org/2001/ XM LSchema"
xmlins:xsi = "http://www.w3.org/2001/ XM LSchema-instance">
<soapenv:Body>

<query-result xmlns = "http.//www.w3.org/2005/09/sparql-protocol-types/#" >
RESULT

</query-result>
</soapenv.:Body>

</soapenv:Envelope>

Fig. 2.15 SOAP message containing the query result
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back. RESULT in Fig. 2.15 is a placeholder for the query result. The query result
itself follows a special format, which we explain in the next subsection.

2.7.3 SPARQL Query Results XML Format

For the interoperability of different SPARQL engines, we have to not only specify
how to set up queries at SPARQL engines over the internet, but also specify the
format of the query result. For this purpose, (Beckett and Broekstra 2008) specify
an XML format for the variable binding and Boolean results of SELECT queries
and ASK queries called SPARQL Query Results XML Format. Note that CON-
STRUCT and DESCRIBE queries return an RDF graph, which can be serialized in
XML using RDF/XML (Beckett 2004).

For example, the query result {(?x=:bookl, ?author="“Fritz”), (?x=:bookl,
?author=“Egon”)} can be expressed as in Fig. 2.16. The <head> tag contains all
variables in the query result; the <results> tag contains all solutions of the query.
Each solution is contained in one <result> tag. A variable binding of a variable #n is
contained in a <binding name=“n"> tag. The bound values can be encoded in an
<uri> tag in the case of an URI, in a <l/iteral> tag in the case of a literal, or in a
<bnode> tag in the case of a blank node. The </iteral> tag can have no attribute for
simple literals, the attribute datatype=“D” for a typed literal with data type D, or the
attribute xml:lang="L” for a language-tagged literal with language L.

<?xml version = "1.0"?>
<sparql xmlns = "http://www.w3.org/2005/ sparql-results#">
<head>
<variable name = "x"/>
<variable name = "author" />
</head>

<results>
<result>
<binding name = "x"> <uri>http://book /instances/book1</uri></binding>
<binding name = "author"> <literal>Fritz</literal></binding>
</result>

<result>
<binding name = "x"> <uri>http://book /instances/book 1< /uri></binding>
<binding name = "author"> <literal>Egon</literal></binding>
</result>
</results>
</sparql>

Fig. 2.16 SPARQL query results format of {(’x=:bookl, ?author="*Fritz”), (?x=:bookl,
?author="Egon”)}
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2.7.4 RDF Stores

We classify storage systems according to the logical and physical data model and
the supported query languages. Structured data are typically stored with support of
indices for fast access to the data. RDF storage systems provide functionalities like
support of permanent RDF data, updates, and deletion. Figure 2.17 contains an

overview of several RDF storage systems.

RDF storage Data Storage Supf;)rrted Data access in- Inference of
system model model query terface new facts
languages
Jena RDBMS SPARQL, RDF/XML, N-
(McBride 2002; Triple File ? RDQL, Triple Triples, N3, Rule based
Wilkinson et al. 2003) Pattern Turtle, NetAPI
YARS (Harth and Tripel Pattern, .
Decker 2005) Quadruple | B+ tree YARSQL N-Triples, HTTP |-
RDF input/output
Abstract library
SESAME . § SPARQL, RQL :
Triple RDBMS } > |RDF/XML, Rule based
Broekstra et al. 2002 i ;
(Brockstra et a ) File RDQL, SeRQL |\ yipe, N3,
Turtle
Extension of Inference
Oracle Spatial 11g . Qracle Spa- standard SQL, Extension of based on
Triple tial Network .
(Oracle, 2009) Data Model planned: standard SQL RDFS, big
SPARQL subset of OWL
RDF input/output
library
ORDI . SPARQL, RQL g
) Triple SESAME ? > | RDF/XML, Rule based
(Kiryakov et al. 2004) RDQL, SeRQL N-Triple, N3,
Turtle
3Store RDF/XML, N-
(Harris and Gibbins | Triple RDBMS ;%A(;(LQL, Triples, Turtle, Lr;fsi;erzfs RDFS
2003) HTTP
. . RDF/XML, N3
Kowari iTQL, planned: o .
(Wood et al. 2005) Quadruple | AVL Tree SPARQL SOFA, JRDF, DL, OWL-Lite
SOAP
RDQL,
RSDFPeffsl 2005 Triple RDBMS RDFPeers que- | RDF/XML ;
(Sung et al. ) res
RDF-QEL
Edutella . Adapted from
(Edutella 2004) Triple RDBMS g;i;;;:)egl)from RDF/XML Datalog

Fig. 2.17 Overview of existing RDF storage systems
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2.8 Rules

Rules have been used, for example, to control devices and processes in real-time
applications, perform calculations or inference, enforce integrity constraints on
databases, represent and enforce policies, and determine the need for human
intervention. The RIF rule language has been developed by the W3C in order to
support advanced reasoning capabilities by integrating it with ontology languages.

Ontology languages describe knowledge according to the Open World Assump-
tion: the encoded knowledge is considered incomplete, and the conclusions, which
cannot be derived from ontologies, are treated agnostically. Rule inference as
proposed by RIF follows the Closed World Assumption, where everything which
is not derivable is assumed to be false. This allows reasoning, for example, in
domains that have to deal with default knowledge, that is, knowledge that usually
holds like “birds typically fly”, unless there is evidence of the contrary. Therefore,
rule languages are introduced as complementation for ontologies.

Today’s state-of-the-art applications run in distributed and heterogeneous envir-
onments (communicating, e.g., using the internet). Using rules in this situation
requires a widely accepted and supported standard for rules interchange, such that
rules can be processed by different distributed systems running on different plat-
forms and using different rule engines.

However, before RIF, there was neither a common standard for rules interchange
nor a rule language specialized for the Semantic Web. The language for RIF rules is
standardized by the W3C, the world’s leading standardization committee for the
Web. RIF rules — in comparison to prolog and datalog rules, are specialized for the
usage in the Semantic Web. This opens new possibilities and additional advantages
for Semantic Web applications, for example, more interchangeability, more con-
cisely processing by additionally considering the semantics based on ontologies,
and a widespread support of further Semantic Web technologies.

Logic-based dialects cover languages that apply some kind of logic, such as first-
order logic (often restricted to Horn logic) or non-first-order logics, which underlay
the various logic programming languages like logic programming using the well-
founded (Gelder et al. 1991) or stable (Gelfond and Lifschitz 1988) semantics. The
rules-with-actions dialects include production rule systems, such as Drools,' Jess,>
and JRules,3 as well as reactive (or event-condition-action) rules, such as Reaction
RuleML* and XChange.’

The RIF working group aims to provide representational interchange formats for
processes based on the use of rules and rule-based systems. These formats act as

1http://jboss.org/drools/

2http://www. jessrules.com/
3http://www.ilog.com/products/jrules/
4http://reaction.ruleml.org/
Shttp://reactiveweb.org/xchange/
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RIF BLD RIF CORE RIF PRD
 Equality in conclusions | * Horn (monotonic) * Conclusion “actions”
* membership in » Datatypes & builtins * Negation
conclusions « external functions * frames-as-objects
e External Functions * frames, class membership (in « Retraction
* Frame subclass conditions) * subclass
* Open Lists * equality (in conditions) * membership in
* “logic” functions * ground lists conclusion
« existential quantification (in
conditions)

Fig. 2.18 Expressiveness of RIF dialects, adapted from http://www.w3.org/2005/rules/wiki/
images/b/b0/W3C_RIF-CW-9-09.pdf

(1) Document( Prefix(cpt <http://example.com/concepts #>)
2) Prefix(ppl <http://example.com/people #>)
3) Prefix(bks <http://example.com/books #>)
(4) Group(

(5) Forall ?Buyer ?Item ?Seller(

(6)  cpt:buy(?Buyer ?Item ?Seller):-

@) cpt:sell( ?Seller ?Item ?Buyer))
(8) cpt:sell(ppl:John bks:LeRif ppl:Mary)))

0

Fig. 2.19 Simple complete RIF Core example [taken from (Boley et al. 2009)]

“interlingua” to exchange rules and integrate with other languages, in particular
(Semantic) Web markup languages.

The RIF languages are designed for two main kinds of dialects (see Fig. 2.18):
logic-based dialects [e.g., the RIF Core Dialect (Boley et al. 2009) and the Basic
Logic Dialect (RIF-BLD) (Boley and Kifer 2009)], and dialects for rules with
actions [e.g., the Production Rule Dialect (RIF-PRD) (Sainte Marie et al. 2009)].
Both dialects RIF-BLD and RIF-PRD extend the RIF Core Dialect (Boley et al.
2009). Other dialects are expected to be defined by the various user communities.
Figure 2.18 provides an overview of the expressiveness of the different RIF
dialects. RIF Core is basically a syntactic variant of Horn rules, which most
available rule systems can process. RIF allows frames as in F-Logic notation, is
compatible with the RDF data model, supports the use of IRIs (Diirst and Suignard
2005) as object identifiers (where IRIs are enclosed in angle brackets), and typed
literals. For instance, the RDF triple (<http://book/instances/bookl>, dcterms:
issued, "2006""Mxsd:gYear) can be represented as a RIF frame <http://book/
instances/book1> [ dcterms:issued -> "2006" Mxsd:gYear ]. RIF uses the Prolog
style “:-” for separating rule head (called left side or consequent) and body (called
right side or antecedent).

The example in Fig. 2.19 presents a simple complete RIF Core rule [taken from
(Boley et al. 2009)], which describes several buy—sell relationships in order to
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Document( Prefix (v <http://book /vocabulary/>)
Prefix(rdf <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>)
Group/(
Forall ?author(
v:bookauthors( ?author) :- AND(
2x[v:author->?author |

’x[rdf:type->v:book]))))

Fig. 2.20 Rule for retrieving the book titles analogous to the SPARQL query in Fig. 2.8

derive new buy—sell relationships (1) A buyer buys an item from a seller if the seller
sells the item to the buyer [see lines (5)—(7)]. (2) John sells LeRif to Mary [see line
(8)]. The fact Mary buys LeRif from John can be logically derived by a modus
ponens argument, which can be determined by application of the rule in lines
(5)—(7). Groups [see line (4)] allow to associate rules with a priority and a resolution
conflict strategy. The current RIF Core specification (Boley et al. 2009) defines only
the resolution conflict strategy forward-chaining, which is the default. Recall that
forward-chaining starts with the available data and applies given rules to infer new
data until a goal is reached. The lines (1)—(3) contain prefix declarations similar
to SPARQL queries. Figure 2.20 contains another RIF example for retrieving the
book’s authors analogous to the SPARQL query in Fig. 2.8. In this example, the
frames ?x[v:author->?author] and ?x[rdf:type->v:book] are used analogously to
the triple patterns of the SPARQL query in Fig. 2.8.

RIF rules specify how the RIF rules themselves interoperate with RDF graphs
and RDFS/OWL ontologies, and specify the conditions under which the combina-
tion of RIF rules, RDF graphs, and ontologies is satisfiable (i.e., consistent), as well
as the entailments (i.e., logical consequences based on inference). The interaction
between RIF and RDF/OWL is realized by connecting the model theory of RIF with
the model theories of RDF (Hayes 2004) and OWL (Motik et al. 2009). When RDF
graphs are imported into RIF, it must be specified whether the satisfiability or
entailment of a model (Simple, RDF, D (for data type support), OWL DL, or OWL
Full) is the basis for the combination of RIF with the imported data. Bruijn (2009)
provides more information about these combinations.

RIF supports the XML Schema data types (Peterson et al. 2009) and various
functions: a huge amount of built-in functions for comparing values, data type
functions for checking if a literal is (or is not) of a certain data type, data type
conversions and castings functions, (basic) numeric functions, Boolean functions,
and functions on strings, dates, times, durations, xml literals, plain literals, and lists.

Rules in RIF-PRD support actions as consequent in the (production) rules. The
actions can be assertions and retractions of facts and frames, modifications (i.e.,
additions, removals, or replacements) of frames, executions of externally defined
actions, or sequences of these actions, including the declaration of local variables
and a mechanism to bind a local variable with a frame slot value or a new frame
object.
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A typical scenario for the use of RIF with RDF/OWL is the exchange of rules
that use RDF data and/or RDFS or OWL ontologies. An interchange partner A uses
arule language that is RDF/OWL-aware; that is, the input data of the rules are RDF
data, an RDFS or OWL ontology defines the semantics of objects used in the rules,
or the rules extend RDF(S)/OWL inference. A transmits its rules using RIF,
possibly with references to input RDF graph(s), to partner B. B receives the rules
and retrieves the referenced RDF graph(s). The rules are then processed together
with the retrieved RDF graphs.

A specialization of the previous scenario is the publication of RIF rules: a
publisher publishes its rules in the Web and consumers retrieve the RIF rules
(and referenced RDF graphs) from the Web and process the retrieved RIF rules
together with the RDF graphs in their own rule engines.

In another exchange scenario, the intention of a publisher is to extend an OWL
ontology with rules. This publisher splits its ontology and rules description into a
separate OWL ontology and a RIF document that includes a reference to the OWL
ontology and publishes them. A consumer of the rules retrieves the OWL ontology
and RIF document and translates both into a description, which combines ontology
and rules, in its own rule extension of OWL.

There are a number of systems available or planned for RIF dialects (see
Fig. 2.21).

2.9 Related Work

2.9.1 RIF Processing

As RIF only recently appeared, there are only few publications concerning
RIF processing. A RIF tutorial is given in Marie (2008), and Hawke (2009)
and Kiefer (2008) are two keynotes about RIF.

There are several demonstrations (Bost et al. 2007; Hallmark et al. 2008;
IBM 2008), which describe systems supporting RIF. In (Bost et al. 2007), the
Mortgage Industry Maintenance Organization (MISMO) describes a proof-
of-concept (POC) to solve an often mentioned need for the exchange of rules:
loan application pricing. Bost et al. (2007) develop an extended Production
Rules (PR) language of the Rules Interchange Format (RIF). In Bost et al.
(2007), the well-established MISMO schema is used as the ontology for
sharing and executing a rule set among ILOG JRules and JBOSS Rules in
a distributed environment. Hallmark et al. (2008) describe a system, where
rules are interchanged between the rule engines such as ILOG JRules, Oracle,
and Prova. IBM (2008) contains a web demo for RIF processing using the
IBM rule engine.

(continued)
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Fig. 2.21 Implementations of RIF rules (adapted from http://www.w3.org/2005/rules/wiki/

Implementations)

Eiter et al. (2008) describe the current state of the art of rule integration
into the Semantic Web, and addresses open questions and possible future
research work in this area. Besides the RIF language, earlier approaches
(e.g., Lisi 2008) use other rule languages for the integration of rules into
the Semantic Web. Both publications have in common that they show the
importance of rule integration for the Semantic Web and describe future
challenges like case studies and large(r) scale examples beyond toy examples
of semantics for rules plus ontologies, refined studies of computational
(continued)
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2.9 Related Work

propertties of the various approaches for combining rules and ontologies, and
efficient implementations and algorithms for rules plus ontologies.

Zhao and Boley (2008) deal with uncertainty in RIF by extending the RIF
language. Boley (2009) defines the central semantics-preserving mappings
bridging RIF/XML and RuleML/XML, the mappings between the RIF Pre-
sentation Syntax and RIF/XML, and the mappings between RuleML/XML
and the Prolog-like RuleML/POSL. Marie (2009) introduces the notion of
limited forward compatibility, and describes a low-cost, nondisruptive, exten-
sible implementation. Marie (2009) uses XSLT to specify individual trans-
forms, an XML format to associate them with individual RIF constructs, and
the RIF import mechanism to convey the fallback information from RIF
producer to RIF consumer. Gordon et al. (2009) describe requirements for
rule interchange languages in the legal domain.

2.9.2 Optimizations for Recursive Rules

There have been several optimization approaches proposed for recursive
rules.

The SNIP approach of McKay and Shapiro (1981) corresponds to the
seminaive evaluation in Bancilhon and Ramakrishnan (1986), where recur-
sive rules are reapplied to only the newly inferred facts, rather than to all facts
(given and inferred). Top-down evaluation using tables has been proposed in
(Tamaki and Sato 1986; Chen and Warren 1996), and static and dynamic
filtering in (Kifer and Lozinskii 1990).

The Henschen—Naqvi method (H-N) (Henschen and Naqvi 1984) com-
piles queries into iterative programs, which are described using relational
algebra expressions. Henschen and Naqvi (1984) try to detect “repeated
patterns” of relational expressions during the compilation. These patterns
provide the basis for the iterative program. Dependence on a repeated pattern
severely restricts the applicability of H-N, and it is believed (Bancilhon et al.
1986; Bancilhon and Ramakrishnan 1986) that the application domain
of H-N cannot be extended beyond linear axioms. Liu and Stoller (2009)
compile rules directly into an implementation in a standard imperative
programming language. The generated implementation performs a kind
of bottom-up computation based on careful incremental updates with data
structure support.

One of the most well-known optimization techniques is the usage of magic
sets (Bancilhon et al. 1986; Faber et al. 2005), where a fast computable set is
used to early discard irrelevant subgoals. The similar Counting method
[described in Bancilhon et al. (1986) and then further developed and
generalized by Sacca and Zaniolo (1986) and Beeri and Ramakrishnan

(continued)

33



34 2 Semantic Web

(1987)] computes the “distance” from each tuple in a magic set to the tuple of
bindings specified in the query. The Counting approach allows more precise
selections to be made while computing the query, and this is an advantage
over the Magic Sets method. On the other hand, the “distance” between tuples
of the magic set and the query binding may not be uniquely defined. In this
case, Counting tends to do some superfluous computations compared to
Magic Sets.

There are also methods for efficient evaluation of Datalog queries using
binary decision diagrams (Lam et al. 2005) and relational databases
(Avgustinov et al. 2007).

2.10 Summary and Conclusions

The Semantic Web family of specifications cover many aspects needed for infor-
mation processing: RDF is defined as simple, but flexible data model, SPARQL as
its powerful query language, RDFS and OWL (2) for not only schema information,
but also for metainformation considering the meaning of symbols and avoiding
redundancies by using inference mechanisms, and RIF as standardized rule lan-
guage, which is more flexible than just using ontologies.



Chapter 3
External Sorting and B*-Trees

Abstract Today’s Semantic Web datasets become increasingly larger containing
over one billion triples. The performance of index construction is a crucial factor
for the success of large Semantic Web databases. (Large-scale) Indices are typically
constructed from externally sorted data. In this chapter, as well as reviewing the
data structure B*-tree and traditional external sort algorithms, we propose two new
external sort approaches: External chunks-merge sort and Distribution Sort for
RDF. The former stores and retrieves chunks from a special chunks heap in order
to speed up replacement selection. The latter leverages the RDF-specific properties
to construct RDF indices and significantly improves the performance of index
construction. Our experimental results show that our approaches significantly
speed up RDF index construction and are important techniques for large Semantic
Web databases.

3.1 Motivation

Indices are an important data structure for efficient data management and query
processing. The invention of the internet, especially of the World Wide Web,
revolutionizes the speed and amount of information spread. New data sources
keep occurring and are easily obtained. An incremental update to databases will
be impractical for insertion of large datasets; instead, indices need to be constructed
from scratch. This also applies to many other situations, for example, whenever
databases need to be set up from previously made dumps, because of, for example,
reconfigurations of the underlying hardware. Therefore, developing efficient tech-
niques to speed up the index construction for large datasets is obviously an
important and urgent task for modern databases.

The most widely used index type in databases is the B*-tree, which is a variant of
the B-tree storing only keys in the interior nodes and all records, that is, the keys and
their values, in leaves. B*-trees can be built very efficiently from sorted data by
avoiding costly node splitting (see (Miller et al. 1977) and adapt its results from
B-trees to B*-trees). Thus, the performance of index construction from scratch
relies heavily on the techniques of data sorting.

S. Groppe, Data Management and Query Processing in Semantic Web Databases, 35
DOI 10.1007/978-3-642-19357-6_3, © Springer-Verlag Berlin Heidelberg 2011
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Large datasets typically cannot fit into main memory and thus need external
sorting, that is, sorting using disk storage. The most well-known efficient external
sorting algorithms (Knuth 1998) are external merge sort and distribution sort.

The external merge sort first generates initial runs of sorted data. An initial run is
typically computed by reading as much data as possible from input into main
memory, and sorting these data using main-memory sorting algorithms. The alter-
native approach replacement selection uses a heap to generate longer initial runs.
Runs are written into external storage and merged afterward to larger sorted runs
until all the data are sorted.

The distribution sort first distributes the input data according to disjoint intervals
into several buckets. The data in these buckets are then sorted using a main-memory
sort algorithm if the data fit into main memory; otherwise, the distribution sort is
recursively applied.

The main contributions of this chapter include two new approaches to speeding
up external sorting for the index construction of large-scale RDF databases:

1. The first approach is a variant of the external merge sort approach. The variant
generates longer initial runs (and thus less number of runs) than external merge
sort using main-memory sort algorithms, and thus the succeeding merge phase
can be processed faster. Since the generation of the initial runs has a similar
performance, our approach is faster than external merge sort using main-memory
sort algorithms. In comparison to the approach of replacement selection, our
approach generates slightly smaller initial runs, and thus the merging phase is
slightly slower. However, our approach computes the initial runs much faster
since more simple operations are used, such that our approach outperforms
replacement selection as well.

2. The second approach is a variant of distribution sort. Our variant considers
RDF-specific properties and avoids several unnecessary passes through the RDF
data, such that our approach enormously speeds up RDF index construction in
comparison to the original distribution sort, and also to the external merge sort
algorithms.

3. An experimental evaluation demonstrates the performance improvements of
both new approaches.

This chapter contains contributions of (Groppe and Groppe 2010).

3.2 B'-trees

B-trees are the most widely used database indices (see Fig. 3.1 for an example of a
B™-tree). The B*-tree is a self-balancing block-oriented search tree. We can store
keys and their values in a B*-tree and a value can be efficiently retrieved using its
key. The nodes in trees without children are called /eaves and all other nodes are
called interior nodes. In contrast to B-trees (Bayer and McCreight 1972), in a
B-tree all records, that is, the keys and the values (sometimes also pointers to
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Fig. 3.1 Example of a B*-tree

values), are stored in the leaves and the interior nodes contain only keys, such that
interior nodes can hold more keys to decrease the height of the overall search tree.
The database systems often sort the input data in order to build indices efficiently.
Using sorted data, B*-trees are constructed without expensive node splitting [see
(Miller et al. 1977) and adapt its results from B-trees to B*-trees]. Index construc-
tion from sorted data plus an extra sorting phase is typically much faster than
building the B*-tree from unsorted data.

3.2.1 Properties of B*-Trees

B*-trees have two parameters k and k'. Whereas the parameter k determines the
number of keys in an interior node, kX" determines the number of key-value pairs in
the leaves. Using two parameters k and k' increases the flexibility to react on the
higher space consumption of the additional stored values in leaves; that is, k and &’
can be balanced such that each interior node and each leaf consumes similar space
on disk. The block size is 8 kb in most modern hard disks, such that a space
consumption of 8 kb for a node promises best performance. B*-trees have the
following properties:

e All interior nodes (except of the root) must have at least k£ and at most 2*k keys
Ki,...,K;,where K; < K, <...< K; ; < K;holds, and j+1 children Cy, ... ., Cj,;.
The sub-B*-tree with root node C; contains only keys that are larger than K;_; and
equal to or less than K. For the extreme case Cj, all keys in the sub-B*-tree with
root node C; must be equal to or less than K, and for C;,; all keys in the sub-B*-
tree with root node Cj,; must be larger than K. The interior node is also called the
parent (interior) node of its children C1, ..., Cj,;.

¢ All leaves (except of the root) contain at least X’ and at most 2*k’ key-value pairs
(ky, v1), ..., (kj, v;), where k; represents a key and v; represents its value, and
ki < kp <...< kj_1 < k;holds. Furthermore, all leaves L, .. ., L, are organized
in a chain of leaves Ly — L, — ... — L, | — L,, where all keys of L; are
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smaller than those of L;;; for 1 < i < n. The chain of leaves is realized by a
pointer in every leaf (except of the last leaf L, in the chain), which points to the
next leaf in the chain.

¢ The root node of a B*-tree is either a leaf with 0-2*k’ key-value pairs, if all key-
value pairs fit into only one leaf, or is an interior node with at least one key (and
two children) and at most 2*k keys (and 2*k + 1 children).

e Asequence Cy, ..., C, of B'-tree nodes is a path with length n — 1 from the root
R toaleaf L, if Cy is the root R, Cn is the leaf L, and C; contains the child C;, for
i < 1< n.Thenodes Cy, ..., C,_, are also called the ascendant nodes of C,,. The
length of all the paths from the root to its leaves is the same, which is also called
the height of a B*-tree. Note that this property of B*-trees is seldom explicitly
stated in literature, but is guaranteed by the insertion and the deletion algorithms
of B™-trees.

These properties must be guaranteed after the construction of a B*-tree from
imported data and after each basic operation such as insertion and deletion of a key-
value pair. Furthermore, for the basic operations of searching, insertion, and
deletion, the maximum number of nodes that must be temporarily stored in main
memory for these operations is 3, such that we can guarantee never to run out of
memory for suitable chosen & and &'.

3.2.2 Self-balancing Property of B*-Trees

We will now prove that the height of a B+-tree for N stored key-value pairs is in
O(log(N)); that is, B*-trees are self-balancing.

If the root node is a leaf, then the height of the B*-tree is 0.

If the oot node is not a leaf, we first determine the maximal height /1 of a B*-tree
with N stored key-value pairs. The height of a B™-tree for a given number N of key-
value pairs becomes maximal if the nodes in a B*-tree are “most possible empty”’;
that is, if all B*-tree interior nodes have the smallest possible number of children
and the leaves contain the smallest possible number of key-value pairs. This is the
case when the root node has two children, each interior node has k + 1 children, and
the leaves have k' key-value pairs. Thus, the minimal number of key-value pairs
stored in such a B*-tree with height £ is p., = 2%(k+1)"""*k'. As a B*-tree with the
height 4 can also store more than p,,;, key-value pairs, p,,;, < N holds and thus
h < logry (NJQ2*¥K)) + 1.

We now determine the minimal height / of a B*-tree. The height of a B*-tree for
a given number N of key-value pairs becomes minimal if all nodes in the B*-tree are
“full up”; that is, all B-tree interior nodes have the largest possible number of
children and the leaves contain the largest possible number of key-value pairs as
well. This is the case when the root node as well as each interior node has 2*k+1
children, and the leaves have 2*k’ key-value pairs. Thus, the maximal number of
key-value pairs stored in such a B*-tree with height /1 is p,, = (2%k+1)"*k'. As a
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B™-tree with the height 4 can also store less than p,,,. key-value pairs, p,c > N
holds and thus & > logs«. (N/K).

Therefore, logsy1 (NIK) < h < logi,; (N/(2*kK')) + 1 holds, such that the
height of a B*-tree is always logarithmic to the number of stored key-value pairs
and in this way self-balancing.

For example, for a B¥-tree with parameters k = 400, k' =200 and
N = 4,000,000,000 (four billions), a B*-tree storing N key-value pairs has a height
of at most 4.

3.2.3 Searching

Searching for the value of a key £ starts at the root node, and searching proceeds in
the following way:

If the current node is an interior node with keys K, .. ., K; and children Cy, .. .,
Cj41, searching proceeds with the node Cy if £ < K holds, with the node Cj,; if
k > K; holds, and C;, if K;_; < k < K; holds.

If the current node is a leaf node with key-value pairs (ky, v1),. . ., (k;, v;), where k;
represents a key and v; represents its value, then we found the value v; for the key k&
if k = k;with 1 < i < j; otherwise, the B*-tree does not contain any such key-value
pair with key k.

Figure 3.2 presents the accessed path in the B*-tree of Fig. 3.1 while searching
for the value of the key 8.

3.2.4 Prefix Search in Combination with Sideways Information
Passing

While we have described a search for the value of a key in the previous section, we
describe the search for all values of keys starting with a given prefix (also called
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Fig. 3.2 Searching in the B*-tree of Fig. 3.1 for the value of the key 8
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prefix key) in this section. This kind of search is also called prefix search. The
applications of prefix searches are widespread. We only name two of them here: If
the keys in a B*-tree are strings, then the prefix search can be used to retrieve all
values of string keys starting with a given prefix key, which can be used, for
example, for the wildcard search dir s* in a command line to display all files
starting with s. We will also see that prefix search in an index for RDF triples can be
used to retrieve the result of a triple pattern.

Indices used to answer Semantic Web queries often index RDF triples according
to a certain collation order SPO, SOP, PSO, POS, OSP, or OPS. The collation order
determines how the triples are sorted in the index, for example, for the SPO collation
order, the triples are primarily sorted according to the subject (S), secondarily
according to the predicate (P), and tertiary according to the object (O). If we want
to retrieve the result of a triple pattern, where only the subject is not a variable, then
we can use this subject as prefix key in the SPO index in order to retrieve all RDF
triples matched by the triple pattern. If only the object in a triple pattern is a variable,
then we can use the subject and predicate of the triple pattern as prefix key in the SPO
index for determining all matching RDF triples. Figure 3.3 contains such a B*-tree
for RDF data according to the SPO collation order. Note that the B*-tree of Fig. 3.3
uses integer ids for RDF literals, which is often used in real SPARQL engines such as
RDF3X (Neumann and Weikum 2008) and Hexastore (Weiss et al. 2008).

Like in the normal search as described in the previous subsection, the prefix
search starts at the root and recursively searches at the child, which may contain the
first key-value pair matched by the prefix key, until the first matching key-value pair
in a leaf is found. However, now not the full keys are compared, but just their prefixes
with the prefix key (see 1. of Fig. 3.3). Typically the result of a prefix search is returned
as iterator, where the single results are returned one by one after calling a next()
method of the iterator. For the next result, the iterator reads the next key-value pair
(k, v) of the current leaf and returns v if k conforms to the prefix key (see 2. of Fig. 3.3).

- (1,2,8)

Fig. 3.3 Prefix search using prefix key (1, 2) in a B*-tree
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Otherwise, if k£ does not conform to the prefix key, the iterator is closed and does not
return any values any more. It may occur that a new leaf must be opened during a
next()-call (see 3 of Fig. 3.3) using the pointers in the chain of leaves.

When using sideways information passing strategies for query processing
(described in the chapter about physical optimization), a lower limit lowerLimit for
the next key of a prefix search is determined during query processing. In order to use
this information, the iterator provides a method next(lowerLimit) returning the next
result, which is matched by a prefix key and is equal to or larger than lowerLimit.

The method next(lowerLimit) can be implemented in two different ways: next
(lowerLimit) can just call next() until the determined key-value pair P has a key
larger than or equal to lowerLimit (approach A). The other way is to use lowerLimit
as key and start the search at the root and going over the interior nodes (approach B)
to reach P. Note that we additionally have to check if P is still matched by the prefix
key and not just larger than or equal to lowerLimit when using approach B. The
approach B can be further optimized in the following way: As the key lowerLimit is
always larger than the key of the last returned value of the iterator, we can avoid
starting the search at the first keys in the root and the interior nodes, and can
continue the search at the last keys compared during the last search for the prefix
key in the root and interior nodes.

If P is far away from the current key-value pair (and this often occurs in large-
scale datasets), then we can save much processing time by avoiding going along the
chain of leaves as in approach A, which possibly has a runtime complexity linear to
the number of key-value pairs in the B*-tree. When using approach B, next
(lowerLimit) can jump “directly” to the leaf containing P, and this leads to a
logarithmic runtime complexity.

However, if P is in the same (or in the next) leaf, then approach B to find P takes
longer time than just reading in the key-value pairs along the chain of leaves using
approach A. Therefore, we need a good strategy to decide when to use approach A
and when B.

In our implementations, we use a heuristic: If we read in a whole leaf without
finding P (see 4. Fig. 3.3a for searching the value of a key > (1,2,12) in a next((1,
2,12) ) call), then we use approach B (see 4. Fig. 3.3b). Our experiments show that this
heuristic yields a good performance.

The algorithm to find all values of keys in a given range [a, b], which is often used
for range queries, is very similar to the one for the prefix search. For range queries,
the first value is searched with key equal to or larger than a and equal to or smaller
than b, and afterward, all succeeding values are returned with keys smaller than b.

3.2.5 |Inserting

Indices do not contain only static data. Instead, data are often updated, that is, new
data are inserted and old data deleted, to reflect changes in the real world like a new
employee. When inserting a new key-value pair into the B*-tree, the insertion
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position in a leaf is first searched for using a search algorithm similar to the one for

searching the value of a key. If we inserted the new key-value pair as last key-value
pair in the leaf (see Figs. 3.4 and 3.5 for an example), then we may have to update
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an/several interior node(s) ascendant to the leaf with this new largest key of the leaf,
as interior nodes contain the largest keys of their subtrees.

The properties of the B*-tree do not allow that an updated leaf contains more
than 2*k’ key-value pairs, which is called an overflow. This can be resolved by
splitting the leaf with an overflow into two leaves: the first leaf takes over the first &’
key-value pairs and the second leaf takes over the remaining key-value pairs [see
Fig. 3.5a]. We also need to update the interior node containing the old leaf as child:
The last keys of the new two leaves replace the key of the old leaf and the old leaf is
replaced by the new two leaves in the list of children.

Again, the updated interior node can have an overflow with more than 2*k key
and 2*k+1 children. Therefore, splitting interior nodes and updating their parents
(see Fig. 3.5b and c) may need to be performed several times. In the worst case, the
process must be repeated until to the root node.

Using this algorithm, the properties of the B*-tree can be guaranteed. However,
we can try to avoid splitting a node, which introduces a new level in the B*-tree in
the worst case and therefore slows down operations in the B*-tree, in the following
way: We assume N to be a node with an overflow. One of the neighbour nodes of N,
that is, the nodes left and right to N at the same level in the B*-tree, may have less
than 2*k’ key-value pairs in the case of leaves, or less than 2*k keys and 2*k + 1
children in the case of interior nodes. Then we can avoid splitting N by shifting a
key-value pair in the case of leaves or a child in the case of interior nodes from N to
this neighbour node. Note that we may have to update the keys in the ascendant
interior nodes of N and of the neighbour nodes, but we do not have to add keys and
children in the ascendant interior nodes.

3.2.6 Deleting

In order to delete a key-value pair from a leaf, we search for the key-value pair in
the B*-tree (see Fig. 3.6). Note that we do not need to (but could) update the keys in
ascendant interior nodes (e.g., 9 in the root in a) of Fig. 3.6) for simple deletions, as
all searches are still successful even if the old keys remain in the interior nodes.
Deletion of a key-value pair can cause an underflow, that is, a leaf contains less than
k' key-value pairs (see Fig. 3.6b, d, T), which is not allowed in a B*-tree according to
its properties.

In this case, if one neighbour of the leaf has more than k' key-value pairs, then we
can shift the first (in the case of a right neighbour) or last (in the case of a left
neighbour) key-value pair from it to the leaf with an underflow in order to recover
the B*-tree properties (see Fig. 3.6¢ and ). Furthermore, we have to update the keys
in the ascendant interior nodes of the leaves correspondingly (see Fig. 3.6¢c and e).

If a neighbour node has exactly £’ key-value pairs, then we can merge the two
leaves to one leaf, which will have 2%k’ — 1 key-value pairs (Fig. 3.6g). One child
in an interior node is deleted when two nodes are merged, which can cause again an
underflow in this interior node. Therefore, deleting a key-value pair might cause the
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actions shifting a key-value pair from a neighbour or merging two nodes performed
many times. In the worst case, we have to merge interior nodes until the root node,
and even may have to replace the root with a merged node, such that the height of
the B*-tree is reduced.

3.2.7 B*-Tree Construction from a large Dataset

If we have to construct a new B*-tree from a large set with N key-value pairs, it is
wise to first sort the key-value pairs according to the keys. Afterward, we can
construct the B*-tree in one pass through the sorted data (see Fig. 3.7 for an
example): we first determine the number d of leaves by calculating [N/2*k]. The
number p of their parent interior nodes can be also determined by calculating [d/
2*k]. We can proceed to calculate the number of interior nodes at the level above in
the B*-tree by computing [p/2*k] and so on until the number of nodes are computed
for all levels of the B*-tree.

With the number of nodes at each level of the B*-tree computed, we can equally
distribute the key-value pairs at the leaves and the corresponding keys and children
at the interior nodes, such that we neither have an underflow nor an overflow at any
node in each level. Finally, we create the leaves and interior nodes by one pass
through the sorted data.

Whenever a leaf L is finished, we have to add it as child in its parent interior node
at the upper level with the corresponding key (i.e., the maximum key in L). If the
parent node does not exist, we create one for it. A finished interior node / is then
recursively added as a child of a node at its upper level with the corresponding key
(i.e., the maximum key in the subtree with root /).

For each level of the B*-tree, at most one node has not been finished at the same
time during applying this algorithm. Therefore, the height of the B*-tree determines
the number of file output streams to be used at the same time to store unfinished
nodes, which is no problem even for large datasets. In our experiments, the
algorithm does not run out of memory for any dataset even not for the very large
ones with over 1.5 billion triples.

3.3 Heap

A (min-) heap is an efficient data structure to retrieve the smallest item from the
items stored in the heap [see (Williams 1964)]. Adding an item into the heap and
removing the smallest item from the heap is done in O(log #), where 7 is the size of
the heap. Internally, the heap is organized as tree, most often as complete binary
tree. The root of each subtree contains the smallest item of the subtree. Complete
binary trees can be memory efficiently stored in arrays, where the index of the
children and the parent can be computed by simple formulas. When the smallest
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Fig. 3.10 Optimizing removing and insertion of a new element into the heap

item is taken way, an item in a leaf is moved to the root. Afterward, the root item is
recursively swapped with its minimum child if the minimum child is smaller than it
(bubble-down). For an example of removing the smallest item from a heap, see
Fig. 3.8. Adding an item is done by inserting the item in an empty leaf to the heap
tree and swapping the item with its parent as long as it is smaller than its parent
(bubble-up). See Fig. 3.9 for an example of inserting. Therefore, the smallest item
in the heap is always stored in the root of the tree.

After the smallest element in the heap is taken away, a succeeding insertion of a
new element can be optimized by first placing the new element in the root and then
performing a bubble-down operation. This approach to optimize a pair of removing
and insertion operations avoids the bubble-up operation (see Fig. 3.10).

3.4 (External) Merge Sort

(External) merge sort [see (Knuth 1998)] is known to be one of the best sorting
algorithms for external sorting, that is, if the data are too large to fit into the main
memory. The merge sort algorithm first generates several initial runs from the given
data. Each run consists of a sorted subset of the given data. Several initial runs are
afterward merged to generate a new round of runs. Instead of merging only two
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runs, it is more efficient to merge several runs. In order to generate a new run from
several runs, we need always to find the smallest items from these runs. Thus, a
heap is the ideal data structure to perform this task. For an example of the applica-
tion of external merge sort, see Fig. 3.11. This process is repeated until all the data
are sorted.

The runs can be generated by reading as much data into main memory as
possible, sorting this data, and write this run to external storage. For sorting the
data in main memory, any main memory sort algorithm can be chosen (Knuth
1998), for example, quicksort, (main-memory) merge sort (and its parallel version),
or heap sort, which are well known to be very fast.

3.5 Replacement Selection

Another approach, called replacement selection (Friend 1956), uses a heap to
increase the length of the initial runs on average by a factor of 2. Whenever the
heap is full, its root item is retrieved and written to the current run. If an item is
inserted into the heap it is checked if it can be still written into the current run, that
is, if it is greater than or equal to the last item written into the current run. In this
case, the run number of the current run is attached to this item. If the item cannot be
written into the current run (as it is smaller than the last item written into the current
run), the run number of the next run, which is the run number of the current run
plus 1, is attached to the item. The items with a higher run number are regarded to
be larger in the heap, that is, the run number is the primary order criterion and the
item is the second-order criterion in the heap, such that first all items of the current
run are stored. If the root item in the heap is smaller than the last item of the current
run, the current run is closed, and a new run is created and becomes the current run.
We present the first eight steps of an example for replacement selection in Fig. 3.12.
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Figure 3.12 also contains the first run of the example (see 9 of Fig. 3.12), which
is three items larger than the first run of the external merge sort approach in
Fig. 3.11.

3.6 External Chunks Merge Sort

Generating the initial runs using main-memory sort algorithms is very fast, but
produces a high number of initial runs, and thus the following merge phase is slow.
In contrast, replacement selection produces a smaller number of initial runs, and
thus there is a faster merge phase. However, maintaining a heap is time-consuming,
as more operations are needed in comparison to using main-memory sort algo-
rithms for the initial runs.

If we can take the advantages of these two approaches: the speed of main-
memory sort and the larger runs of replacement selection, then we will be able to
improve the sorting performance, and thus speeding up index construction. There-
fore, we propose a new and efficient data structure, k-chunks heap. A k-chunks heap
is a block-oriented variant of the heap, where usually blocks of & items are added to
and retrieved from the heap. The k-chunks heap uses only very simple and thus fast
operations for blocks of k items. The application of our k-chunks heaps to external
merge sort speeds up the computation of the initial runs in comparison to replace-
ment selection and generates the larger initial runs (and thus a smaller number of
initial runs) in comparison to using main-memory sort algorithms. The following
merge phase is also hence fast processed.

Note that rather than organized as tree, our k-chunks heap holds a sorted list of
items (see Fig. 3.13). Whenever a chunk of £ items is added, the & items are sorted
using an efficient main-memory sort algorithm. Afterward, the sorted k items are
merged with the items (which are already sorted) in the heap. If a chunk of the k
smallest items is requested, then the first £ items of the heap are returned, and the
remaining heap content remains sorted. Note that these operations can be memory
efficiently performed by using arrays instead of lists of items.

Applying our k-chunks heap to the external merge sort, we create a variant of the
external merge sort, which we call external chunks merge sort. Our approach first
reads as much data into main memory as possible, sorts the data, and stores it into a
k-chunks heap. Instead of retrieving one item from the heap and storing it into the
current run, the first k items of the heap are retrieved and written into the current
run. Afterward, k new items are read in and added to the heap. When we read the k
new items, we also check if they can be put into the current run. If an item cannot be
written into the current run (i.e., it is smaller than the last item of the current run), it
is attached to the number of the next initial run (i.e., a number, which is larger than
the number of the current run). Otherwise, the item is assigned with the number of
the current run. When we sort these & items, the items with smaller run number are
ordered before those with larger ones.
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Afterward, the sorted new items are merged with the (old) heap content, accord-
ing to the run number as the primary comparison criterion and the value of the item
as the secondary comparison criterion. Merging in this way guarantees that all the
items in the heap, which will be written into the current run, are ordered before
the items, which will be stored into the next run. Figure 3.13 demonstrates our
external chunks-merge sort approach. Afterward, we once again take the first k
items from the heap. If all £ items are attached to the number of the current run, they
are written into the current run. If only a part of the k items are attached to the
number of the current run, this part is written into the current run, and then the
current run is closed. A new run is opened and becomes the current run, and
the remaining of the retrieved k items is written into it.

After all input data are read and stored in initial runs, our external merge sort
algorithm merges the initial runs like in the traditional external merge sort algorithms.

The external chunks merge sort generates fewer initial runs than the main-memory
sort, but more than replacement selection. However, our external chunks merge sort
approach uses simpler (and thus faster) operations than replacement selection. There-
fore, our approach is more efficient than replacement selection. We demonstrate the
efficiency by our performance study. Our experimental results show that our external
chunks-merge sort approach outperforms replacement selection and main-memory
sort algorithms greatly.

3.7 Distribution Sort

Another well-known external sorting algorithm is distribution sort (Knuth 1998).
Distribution sort first retrieves k values v;, ..., v (distribution keys) from the
input, where v; < v, < ... < v, according to an order relation <. Afterward,
distribution sort distributes the input data according to vy, ..., v, into k+1
different buckets: the data, which are less than or equal to v, are stored in the
first bucket, the data larger than v, and less than or equal to v, are stored in the
second bucket, and so on. The choice of vy, ..., v, is critical for the performance
of the algorithm, as the approach is fastest for buckets with similar sizes. A fast
and simple approach is choosing vy, ..., v, randomly from the input data. More
complex approaches (see e.g., Nodine and Vitter 1993) use histograms to improve
the choice of the distribution keys.

Afterward, every bucket is sorted by a main-memory sorting algorithm if the
whole bucket fits into main memory; otherwise, distribution sort is recursively
applied to this bucket. The overall sorted sequence is the concatenation of the sorted
buckets. For an example of distribution sort, see Fig. 3.14.

Using distribution sort, the merging phase can be avoided. The distribution
phase is usually performed faster than the merging phase. Therefore, distribution
sort earns considerable advantages in comparison to external merge sorting
algorithms.
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3.8 RDF Distribution Sort

The most efficient indices for managing and accessing RDF data are the six indices
from the six collation orders SPO, SOP, PSO, POS, OSP, and OPS (see e.g.,
Neumann and Weikum 2008; Weiss et al. 2008). Therefore, we need to sort the
RDF data six times according the six collation orders in order to construct RDF
indices efficiently.

Applying the general-purpose distribution sort for RDF index construction has
two main disadvantages:

e The input data are read 12 times (six times for retrieving the distribution keys
and six times for distribution of each of the collation orders SPO, SOP, PSO,
POS, OSP, and OPS).

e For each distribution, full triples consisting of three components (subject, predi-
cate, and object) are compared.

These disadvantages significantly impact the performance of index construction,
especially for large RDF databases. Therefore, we propose two new variants of
distribution sort in this chapter to avoid these severe shortcomings.

We define <. to be an order relation between triples according to a collation
order ¢ € {SPO, SOP, PSO, POS, OSP, OPS}; for example, for two triples (si, pi,
01) and (s», pa, 0»), the order relation <gpo holds; that is, (s1, p1, 01) < spo (52, P2,
0,), if s1 < sy or (s; = s, and (p; < pp or (p; = pr and 0; < 07))).

The comparison between the components sy, S», p1, P2, 01, and 0, are defined
based on the order of blank nodes, uris/iris, and literals as specified in the SPARQL
specification (Prud’hommeaux and Seaborne 2008). This allows plan generators of
SPARQL evaluators to consider the plans, which use the RDF indices to directly
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retrieve sorted data according to sort criteria specified in a SPARQL query, and thus
to avoid extra sorting phases at runtime.

If a SPARQL engine maps RDF literals to integer ids using a dictionary, then the
comparison between the components sy, $2, p1, P2, 01, and o, are usually defined
based on the order of the integer ids in all operations except of sorting. As
consequence, sort operations cannot be eliminated, but other operations can be
optimized like the application of merge joins using this order and optimization of
duplicate elimination in already sorted query results.

Our first variant is Distribution Sort g,y keys (se€ Fig. 3.15a). Using this
approach, the input data need to be read only twice: one time for retrieving the
distribution keys (for the different indices) and one time for distribution of the data
(see Fig. 3.15a). We first randomly retrieve k triples v, y, . . ., v (distribution keys)
by using only one pass through the input for every of the six collation orders
¢ €{SPO, SOP, PSO, POS, OSP, OPS}, where v, ; <, V.2 <, ... <. Ve In another
pass through the data, the triples are distributed to k+1 bags for each collation order,
where the distribution keys play the role of the bag borders.

In more detail, for each read triple ¢ and each collation order c, we search for the
distribution key v.;, where v.;_; <.t < . v.,, and store the triple ¢ in the bag i of
the collation order c. Note that we have to consider the two special cases of the first
and the last bag: If + < .v.,, then we store ¢ in the first bag, if v., < ., then we
store ¢ in the last bag k + 1 of the collation order c. We then sort each bag in main
memory, if the bag content fits into main memory; otherwise, we recursively apply
Distribution Sort 1,ipie keys to the bag. The overall sorted sequence of a collation
order c is the concatenation of the sorted buckets of c.

The second variant is Distribution Sort component keys (S€€ Fig. 3.15b). Similar
to Distribution Sort pyipie keys» the input is read twice: one time for randomly
choosing the distribution keys and one time for distributing the data. Instead of
distributing the data six times, this variant distributes the data only three times and
considers only the bags for the subjects, predicates, and objects of the RDF triples.
Thus, the distribution keys are chosen only from the subjects of the triples for the
subject-distributed bags, from the predicates for the predicate-distributed bags and
from objects for the object-distributed bags. The bags, containing distributed data
according to the subjects, can be used to sort the data for the SPO and SOP
collation orders; the predicate-distributed bags for the PSO and POS collation
orders; and the object-distributed bags for the OSP and OPS collation orders. As
well as only distributing the RDF data three times instead of six times, the variant
also avoids the comparison of full triples, and just compares one component
(subject, predicate, or object) of a triple. Comparing only one component rather
than three components of triples can significantly save processing time for large
datasets. Our experiments show that the distribution of the input data using this
approach is similar as well as the approach Distribution Sort 1yipie keys- Distribu-
tion Sort component Keys Significantly improves the performance of index construc-
tion by reducing the number of passes through data, of distribution, and of
comparison operations.
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3.9 Experimental Analysis

In the performance study, we use real-world data, and synthetic data, as synthetic
data with different sizes can be generated.

In our experiments, we first sort the data in parallel according to the 6 collation
orders SPO, SOP, PSO, POS, OSP, and OPS. Afterward, we generate in parallel six
B*-trees for keys from the six sorted datasets. We use a prefix codemap for the
prefixes of uris and iris in order to significantly reduce the storage space consumption.

We compare several different approaches for computing the initial runs: the
most important standard approaches (the external merge sort using replacement
selection, and using main-memory quicksort/parallel merge sort), and our new
approaches (External Chunks-Merge Sort, Distribution Sort rrpe keys, and Distri-
bution Sort component Keys)- FOr replacement selection, we use an optimized heap,
which avoids a bubble-up operation in the two succeeding operations retrieving the
smallest item of the heap and adding a new item to the heap: After the root item is
taken away, instead of the standard operations (i.e., moving the last leaf node to the
root, performing a bubble-down operation, adding the new item as the last leaf node
and performing a bubble-up operation), we directly insert the new item at the root,
and perform just one single bubble-down operation. This optimization significantly
speeds up the replacement selection by avoiding a bubble-up operation. Distribu-
tion Sort component Keys Uses Distribution Sort pyipie keys When bags are too big to be
sorted in main memory and must be further distributed.

In the experiments, we have used 100 bags and 1,000 bags in Distribution
Sort riple Keys and Distribution Sort component Keys- W€ have used an upper bound
of 2'', 23, and 2" items in main memory for external merge sorts using main-
memory quicksort/parallel merge sort and external chunks-merge sorts. The
replacement selection variants have an upper bound of 2''-1, 231, and 2'°-1
items in main memory (which are the space requirements of corresponding com-
plete binary trees). We have used these upper bounds for the items in main memory
because the sort algorithms are the fastest for these upper bounds. Although using
larger upper bounds lead to less initial runs (and thus the merge phase is faster
processed), the main-memory sort phases as well as heap operations for the
generation of the initial runs are much slower for larger upper bounds. Thus, the
main-memory sort approaches and replacement selection perform best for certain
upper bounds (neither smaller nor larger upper bounds). The external chunks-merge
sorts are performed with the chunks of half of the items hold in main memory (i.e.,
(2”/2)—chunks-merge sort, (2'3/2)-chunks merge sort, and (2'3/2)-chunks merge
sort), and 1/3 of the items hold in main memory (i.e., (2"'/3)-chunks merge sort,
(2"3/3)-chunks merge sort, and (2'°/3)-chunks merge sort). Note that for larger
chunks, the time used for sorting increases, but the number of chunks is less, and
thus the number of merging phases is less. Therefore, there exists also an optimal
chunk size, which is performed the best.

In our figures, we present the average of five execution times of reading input,
sorting, and generating indices.
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3.9.1 SP’B Dataset

The SP?B benchmark (Schmidt et al. 2009) includes a set of 18 queries, which
contain more features of SPARQL and address more optimization techniques than
many other Semantic Web benchmarks such as LUBM benchmark (Guo et al.
2005). The SP’B benchmark uses a data generator, which can generate data of
different sizes. In our experiments, we have used datasets with one million and ten
million triples. The SPB datasets imitate an RDF version of the real-world DBLP
dataset (Ley 2010); that is, the data structure of the SP?B datasets is very similar to
real-world data.

The test system for this dataset uses an Intel Core 2 Quad CPU Q9400 with
2.66 GHz, 4 GB main memory, Windows XP Professional (32 bit) and Java 1.6.

We have used the same legend presented in Fig. 3.16 for all figures of the SP*B
dataset.

The total times for reading data, sorting, and index construction (see Figs. 3.17
and 3.18) show that

¢ External merge sort using parallel merge sort for the initial runs is faster than
external merge sort using quicksort and replacement selection,

e Chunks-merge sort is significantly faster than the other external merge sort
approaches and replacement selection,

¢ Distribution Sort rple keys 1S competitive with the other external merge sort
approaches and replacement selection, and

¢ Distribution Sort component Keys Nas much less main-memory requirements and
outperforms all other external sorting approaches significantly.

Let us first have a look at the external merge sort and replacement selection
variants. The generation of initial runs (see Figs. 3.19 and 3.20) is similar fast when
using quicksort and replacement selection, and is very fast when using parallel
merge sort because of the efficient main-memory sort algorithm. However, the
chunks-merge sorts generate the initial runs fastest, since only smaller chunks need
to be sorted, and merging the new sorted chunk with the old heap content can be
done in parallel with reading in the next chunk.

Replacement selection performs best (especially for the larger datasets) in the
merging phase (see Figs. 3.21 and 3.22); the external merge sort approaches using
main-memory sort algorithms perform worst; the external chunks-merge sorts are
between these two approaches. It is obvious that the times used for merging depend
on the total number of runs (see Figs. 3.21, 3.22, and 3.23).

Looking at the distribution sort variants, we see that using 1,000 instead of 100
bags significantly reduces the number of distribution passes (see Fig. 3.24), and
Distribution Sort ryiple keys and Distribution Sort component Keys have a similar
number of distribution phases. In the first distribution round, Distribution
Sort component Keys distributes the data only to 3 instead of 6 bags, each of which is
used for two different collation orders. Furthermore, only one component, rather
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Fig. 3.16 Legend used in the figures of the SP’B experiments

than all the components of triples, is compared. All these factors significantly speed
up sorting the data for RDF index construction.

3.9.2 Yago Dataset

The Yago dataset (Suchanek et al. 2007) consists of facts extracted from the info
boxes and category system of Wikipedia and are integrated with the WordNet
thesaurus. Thus, this dataset is more homogeneous compared with, for example,
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the Barton dataset (MIT 2007). We use the complete Yago dataset, which contains
approximately 40 million triples.

We have used another test system for this dataset in order to show that the results
remain valid (except of constant factors) even if we use other computer configurations.
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The test system for this dataset uses a Dual Quad Core Intel CPU X5550 with
2.67 GHz, 6 GB main memory, Windows XP Professional (x64 Edition) and Java
1.6 64 bit.

We have used the legend presented in Fig. 3.25 for all figures of the Yago dataset.
For this large dataset, we tried out Distribution Sort rypie keys and Distribution
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Sort component Keys With 1,000 and 10,000 bags. The numbers of distribution passes
are 185 for Distribution Sort rrpie keys and 144 for Distribution Sort component Keys
with 1,000 bags, which decrease to 65 for Distribution Sort ypie keys and 84 for
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Fig. 3.24 Number of distribution passes using distribution sort approaches for the SP’B datasets

Distribution Sort component Keys With 10,000 bags. However, each distribution pass
takes longer time for 10,000 bags, and thus the total times for 1,000 bags are smaller.

Analogous remarks as for the SP?B dataset apply also to the total times for index
construction, the times for the initial runs and for the merging phase, as well as the
number of runs (see Figs. 3.26-3.29). Thus, we have verified our experimental
results for the synthetic SP°B data using the real-world dataset Yago.
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Fig. 3.25 Legend used in the figures of the Yago experiments

3.10 Summary and Conclusions

The state-of-the-art data structures used for indices of large-scale datasets are
B™-trees. B*-trees have a constant main-memory demand for basic operations
such as searching for, insertion, and deletion of elements, are optimized for block
devices such as hard disks, and are self-balancing having a height logarithmic to the
number of inserted key-value pairs. The height of a B*-tree is practically a small
number often below 5 even for very large datasets.



64 3 External Sorting and B*-Trees

12000 -

10000

8000

T
T
T

6000

T

T

T
)4

Time in seconds

4000

T

T

T
b4

T

T

T
>4

2000

T

T

T
4

0

Fig. 3.26 Total times for index construction for the 40-million Yago dataset
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Fig. 3.27 The times for the generation of the initial runs for the 40-million Yago dataset

The performance of index construction for large Semantic Web databases
heavily relies on the efficiency of sorting. We propose an efficient variant of the
external merge sort algorithm, which stores and retrieves chunks from a special
chunks heap in order to speed up replacement selection. We also develop variants of
distribution sort specialized for RDF index construction, which greatly speed up
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RDF sorting by reducing passes through RDF data and by exploiting the RDF-
specific properties. These approaches, especially the specialized Distribution Sort
Component Key» Significantly improve the performance of RDF index construction, as
shown by our experimental results.



Chapter 4
Query Processing Overview

Abstract We first present our LUPOSDATE system, including its indexing methods
for data management and query engines for query evaluation. Afterward, we
describe the different phases of query processing performed by these query engines
on a high-level basis. In this chapter, we describe the phase of eliminating redun-
dant language constructs of SPARQL queries in detail. The other (more complex)
phases will be described in detail in their own chapters.

4.1 The LUPOSDATE System

In the LUPOSDATE project, we have developed a Semantic Web database system
with logically and physically optimized SPARQL engines, named as LUPOSDATE
system. Figure 4.1 presents the functionalities of our LUPOSDATE system.

In order to present the functionalities of the LUPOSDATE system, we have
developed an online demonstration (Groppe and Groppe 2009; Groppe et al. 2009b),
which is available at http://www.ifis.uni-luebeck.de/index.php?id=Iuposdate-demo.
The online demonstration visualizes the evaluation of SPARQL queries, and
various optimizing techniques used by our system. Although our SPARQL engines
work for input data with over one billion triples, due to technical limitations of
Java applets, the online demonstration only works for input sizes, which fit into
main memory. Figure 4.2 presents a screenshot of the web demonstration. A more
detailed description of the web demonstration is available on the demonstration
webpage.

In summary, our system and SPARQL engines

e Support full SPARQL 1.0 and run the over 200 W3C test cases (Feigenbaum
2008) successfully,

e Support various approaches to managing RDF data and processing SPARQL
queries,

S. Groppe, Data Management and Query Processing in Semantic Web Databases, 67
DOI 10.1007/978-3-642-19357-6_4, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 4.1 Functionalities and overview of query processing phases of the LUPOSDATE system

Include more optimizing techniques than existing SPARQL engines:

— Our own optimization strategies (see Groppe et al. 2009a, b; Groppe et al.
2007a, b),

— Existing indexing approaches (see Neumann et al. 2008, 2009; Weiss et al. 2008)

Integrate the existing tools Jena (Wilkinson et al. 2003) and Sesame (Broekstra

et al. 2002) for comparison matters,

Support optimized in-memory (for small data sizes) (Groppe et al. 2009a, 2007a)

and disk-based (for large data sizes, for example, over one billion triples) data

processing. When processing large-scale datasets, Jena and Sesame engines

mainly depend on the existing database techniques.

Support SPARQL processing of RDF streams (Groppe et al. 2007a), which is the

first stream-based engine for SPARQL queries.

Optimize index construction (Groppe and Groppe 2009).

Support the visual editing of data and queries.

The prototypes of our SPARQL engines are well tested: we have run them against

the test suite of the W3C (Feigenbaum 2008), which contains over 200 test cases,
each of which is successfully processed by our prototypes. Our streaming engine



4.2 Phases of Query Processing 69

 LUPOSDATE Demonstration
Choose an ewaluator: RDF3X
5 PARUL-query:

L rREXIA LUL.
2 PREFIX dc:
3 PREFIX dcterms:

Preferences
£Y: |ql.spargl || Select Llear query rield

-

' |RDF3X - PRESORTING
. [Hexastore

4 PREFIX bench: h 1
§ PREFTX xzd: 1 {Hexastore - PRESORTING|
5 Stream
7 SELECT 2yr Tena 3
8 WMERE | Sesame
9 ?journal rdf:type DEnch: JOULnAL .
10 ?journal de:title "Journal 1 (1940)"~~xsd:string . —
11 ?journal dcterms:issued ?yr
12} T
Errors detected: Clear error field
FDF data: Visual Edit | Choose FDF data: spZb_demo.n3 w || Select Clear data field
BYE “ILLp: FI=7 TOUCITE LI T T SWICTEOT T T FEUEy TS - EN T Y

rdf:type foaf:Person.
"Sadayoshi Englemarn”~~xzd:string.

1371942 /Incollectior rdf: type bench:Incollecticn.
e "corollaries irades inadvisabil

aspadrinrager.

699 _
700 _
701
F02
703

704 deiticle g s inadvisabilivy disciplinariS|
TJ05 t//loc Z n foaf:homepage "http://wvww.rades.tld/discipling o
4 | | L4

Evaluate | Execution Times | Condense Data

Show AST.SPARQL Query | Show CoreSPARQLQuery | Show AST Core3SPARQL Query | Show Operator Graph
' |Use prefixes

Prefixes:
sd: <http: //wow.w3. 0rg/2001 2ML3chenay>

Result table:

4

1940~~xsd: integer

Fig. 4.2 Snapshot of the main window of our online demo

currently does not support named graphs, and thus it runs all W3C test cases
successfully except of those with named graphs. Furthermore, we have already
successfully used them, for example, in tutorials for master students in our lectures
Mobile und Verteilte Datenbanken (Mobile and Distributed Databases) (see
Groppe 2009, 2010).

4.2 Phases of Query Processing

Figure 4.1 presents the phases of query processing in the LUPOSDATE system,
which are similar to the ones in other typical database systems such as relational,
deductive, and XML databases.

After creating an empty database, RDF data are typically read in and indices are
constructed for a faster access to the data for querying and updates. We discuss
different types of indices in later chapters. Updates of data are performed on these
indices. In comparison, a stream query evaluator does not construct any index of all
the data. Stream query evaluators work on a (possibly infinite) stream of data and
start to process queries and returning partial results once partial data are available.
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Fig. 4.3 Abstract syntax tree of the SPARQL query in Fig. 4.2

% CoreSPAROLOuery S B2

¥

i

?journal <hecep: /v, wl.org/19 22-rdf-s ax-nsfcype> <heep:/f/loc
?journal . > "Joucnal 1 (1940) "+
?journal <heep:

)

Fig. 4.4 A CoreSPARQL query transformed from the SPARQL query in Fig. 4.2

In query processing, a query is first parsed according to the grammar of the query
language, and an abstract syntax tree is generated and serves as input for the next phase
(see Fig. 4.3 for the abstract syntax tree of the SPARQL query in Fig. 4.2 displayed
with our LUPOSDATE system). However, sometimes in the case of simple transfor-
mations the abstract syntax tree is not explicitly generated (to save processing and
space costs) and the output of the next phase is generated just directly during parsing.

Query languages such as SPARQL often support different language constructs
with the same semantics, and this complicates later phases since they must consider
a large number of different cases. In order to simplify subsequent processing, we
define a core of the query language. This core fragment excludes redundant
language constructs, but possesses the same expressive power as the original
query language. We name this core language of SPARQL the CoreSPARQL
language (Groppe et al. 2009d) (see Fig. 4.4 for the CoreSPARQL query and
Fig. 4.5 for its abstract syntax tree displayed in our LUPOSDATE system). The
following subsection describes more details about this CoreSPARQL language and
the transformation from any SPARQL query into a CoreSPARQL query.

In the next phase, the query is transformed into an operator graph consisting of
logical operators (see Fig. 4.6 for the logical operator graph displayed in our LUPOS-
DATE system). The semantics of logical operators, that is, their results, is formally
defined (see Chap. 5). However, concrete implementations and algorithms, which
describe fiow to determine their results, are not defined for logical operators. During
the logical optimization phase, the logical operator graph is optimized based on logical
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Fig. 4.6 Logical operator graph before logical optimization of the SPARQL query in Fig. 4.2

equivalence rules. For example, a filter operator discards solutions based on a Boolean
expression and thus usually reduces the number of solutions. If a filter is evaluated
more early, then we save processing and space costs: Therefore, a filter operator should
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be moved as much before other operations in the logical operator graph as possible.
The join order plays another important role in the performance of query processing.

Whereas quicksort is known to be one of the fastest (simple) sorting algorithms,
merge sort can be well parallelized and insertion sort is known to be superior
for sorting very few data items. Thus, depending on the properties of the data to be
sorted and maybe the context of the sort operation like the hardware configuration,
a sorting algorithm is sometimes faster or slower in comparison to the other sorting
algorithms. Analogously, other logical operators than sorting like those for joins
or duplicate elimination can be implemented using many different algorithms,
which are slower or faster depending on the characteristics of their input data and
their context. Therefore, an important task is to choose concrete implementations
(physical operators) for each logical operator in the physical optimization phase
with the goal to optimize the performance. The choice of physical operators is
based on estimations about the data to be processed and the context of the logical
operator. The output of this phase is the physical operator graph consisting of
physical operators (see Fig. 4.7 for the physical operator graph of the SPARQL
query in Fig. 4.2 displayed in our LUPOSDATE system).

Finally, the physical operator graph (also called execution plan) is executed and
the query result is retrieved (see lower part in Fig. 4.2 for the query result).

Whereas the logical and physical optimizations are the topics of the next two
chapters, we describe the first phase transforming any SPARQL query into its
equivalent CoreSPARQL query in the next subsection.
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Fig. 4.7 Physical operator graph after physical optimization for the SPARQL query in Fig. 4.2
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4.3 CoreSPARQL

SPARQL supports a large number of different language constructs. For example,
the three expressions of SPARQL in Fig. 4.8 have the same semantics. Redundant
expressive power brings the flexibility of expressiveness and abbreviations bring
the simplification of expressions, but they do not increase the expressive power of
the language. It is also obvious that the syntax for Expression 1 is user friendly, but
Expression 3 is more easily to be interpreted by a machine.

In order to reduce the number of cases, which must be considered when proces-
sing SPARQL queries, and in order to make SPARQL queries more machine-
processable, we suggest the CoreSPARQL language, which is a core fragment of
the SPARQL language. CoreSPARQL possesses the same expressive power as
SPARQL, but eliminates redundant language constructs of SPARQL and only
allows machine-friendly syntax. We develop an approach, which automatically
transforms SPARQL queries into CoreSPARQL queries.

4.3.1 Defining CoreSPARQL

In Definition 1, we describe CoreSPARQL in terms of the common and different
properties with SPARQL. A grammar for the syntax of CoreSPARQL is given in a
later subsection.

Definition 1 (CoreSPARQL). CoreSPARQL is a core fragment of SPARQL. A
CoreSPARQL query is also a SPARQL query. CoreSPARQL has the same expres-
sive power as SPARQL, but allows only machine-friendly syntax, and excludes most
redundant language constructs. Especially, in CoreSPARQL,

e All triple patterns are only in the form: s p o.

e A group graph pattern cannot directly nest another group graph pattern
e Variable names start only with ?

e Blank nodes [] are not allowed

Expression 1 Expression 2 Expression 3
(1 [?x 3]). [1 rdffirst 1; _:b1  rdffirst 1.
rdf:rest _:b. _:b1 rdfirest _:b2.
_:b rdf:first [$x 3]; _:b2 rdf:first _:b3.
rdf:rest rdf:nil. _:b3 ?x 3.
_:b2  rdfirest rdf:nil.

Fig. 4.8 Three SPARQL expressions with same semantics
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Fig. 4.9 SPARQL and
corresponding CoreSPARQL component SPARQL CoreSPARQL
components
triple pattern s1 p1 of; s1 p1 ol.
p2 $x. s1 p2 ?x.
blank node [ ] [p o] _b p o.
group graph { {s1p1ol} {s1pi1oil.
pattern s2p2o02.} s2p2o02.}

® RDF collections of the form (.. .) are not allowed

e Neither prefixed IRIs nor IRIs, which are relative to a BASE declaration, are
allowed

e Abbreviations using the keyword a and () are not allowed

Figure 4.9 demonstrates several SPARQL and corresponding CoreSPARQL
components.

4.3.2 Transforming SPARQL Queries into CoreSPARQL
Queries

SPARQL provides user-friendly syntax to write RDF queries, and CoreSPARQL
queries are easy to process. Therefore, the next task for us is to find a way to
automatically transform SPARQL queries into CoreSPARQL queries. We develop
a set of transformation rules, such that a SPARQL query can be transformed into a
CoreSPARQL query by recursive application of these rules; that is, if the expres-
sion of a left-hand side of a rule occurs in a SPARQL query, it is replaced with the
right-hand side of the rule.

In the following paragraphs, we assume rdf to be an alias for http://www.w3.org/
1999/02/22-rdf-syntax-ns#.

We use the following notation to describe these rules: we write s (sl, s2,...),
p (pl,p2,...),0(ol, 02,...) for the subject, predicate, and object of a triple pattern,

os (osl, o0s2, ...) for a list of objects, for example, os = 04, 05, 03, ..., 0,,, where
m > 1, and pos (posl, pos2, ...) for predicate-object-lists, for example, pos=
P1 0S1; P2 0825 . . .5 Pm OS,,, Where m > 1. Note that some patterns in the following

rules may be not supported by SPARQL. Such patterns are intermediate results of
the transformation and will be translated to standard language constructs after the
transformation.

e Rule 1: eliminating Object-Lists:
1.1 s1p1o1,0s.=>s1pl1ol.s1plos.


http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
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¢ Rule 2: eliminating Predicate—Object-Lists:
2.1 s1 p1os1; pos. =>s1plosl.stpos.

e Rule 3: eliminating blank nodes [].

3.1 []=>_:b,
where b is a blank node label not used elsewhere in the query
3.2 [ pos]. => _:b pos.
3.3 [pos1] pos2. => _:b posi1. _:b pos2.
3.4 s1pl[pos] =>s1pl _:b._:bpos.
3.5 s1pl1[pos]p2osi.=>s1pl_:b. _:bpos._:bp2osi.

¢ Rule 4: eliminating RDF collections ( ), where e (el, €2,..) is an element of the
collection, that is, a variable, a literal, a blank node, or a collection. Here, we
introduce a variant of the collection, for example, (e)s— .p. to restrict that the
blank node, which is allocated for the collection (e), must be _:b. A new blank
node _:b on the right side of a rule must be chosen in such a way that _:b is not
used elsewhere in the query.
4.1 (e) pos. => _:b rdf:first e. _:b rdf:rest rdf:nil. _:b pos.
4.2 (e). => _:b rdf:first e. _:b rdf:rest rdf:nil.
4.3 (e1e2e8...). => _:brdffirstel. _:b rdfirest (e2 e3...).
44 sp(ele2..).=>sp_:b.(e1e2..)s=_b.
45 sp(ele2..)pos.=>sp_:b.(e1e2..)s=_b. _:bpos.
4.6 (el e2...)s=_b. => _:b rdf:first e1. _:b rdf:rest (e2...).
4.7 (e)s=_b. => _:b rdf:first e. _:b rdfirest rdf:nil.
4.8 () => rdf:nil

¢ Rule 5: eliminate the keyword a:
5.1 a=> rdfitype

e Rule 6: eliminate directly nested group graph patterns

6.1 {{A}...}=>{A ..},
where {A} is not a part of an OPTIONAL, or an UNION, or a GRAPH oper-
and; A does not consist of only Filter expressions either.
6.2 {{Filter(e).} ... }
{{ Filter(true) ...}, if the result of the static analysis of e is true.
=>

{ Filter(false)...}, if the result of the static analysis of e is false or a type error.

For example, the expression 10 > 1 is statically analyzed to true, and thus
{Filter(10 > 1)).} = Filter(true)..

In the group graph pattern {Filter(bound(?x)).}, the variable x will never be
bound. Therefore, the static analysis of bound(?x) can produce a type error, and
thus {Filter(bound(?x)).} = Filter(false).. For the details on the static analysis
and type errors, see Sect. 11.2 Filter Evaluation in the SPARQL specification
(Prud’hommeaux and Seaborne 2008).

e Rule 7: eliminating prefixes and BASE declarations.
7.1 p:a => <prefix(p) a>,
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where prefix(p) is a function to resolve the prefixed IRI p:a according to defined
PREFIX and BASE declarations. The PREFIX and BASE declarations are
deleted in the CoreSPARQL query.

Example 1 Using this example, we demonstrate how to transform a SPARQL
expression tl = (1 [p ol] (2)). into the corresponding CoreSPARQL expression
by recursively applying the rules above.

1. Applying Rule 4.3 on tl: t1 => 2. t3.:

b1 rdf:first 1. (t2)
_:b1 rdfirest ([p 01] (2)). (t3)
2. Applying Rule 4.4 on t3: t3 => t4. t5.:

_:b1 rdf:rest _:b2. (t4)
([p 01] (2))s=_:b2. (t5)

3. Applying Rule 4.6 on t5: t5=> t6. t7.:
_:b2 rdf:first [p o1]. (t6)
_:b2 rdf:rest ((2)). (t7)

4. Applying Rule 3.4 on t6: t6 => t8. t9.:
_:b2 rdf:first _:b3. (t8)
_:b3po 1. (19)

5. Applying Rule 4.4 on t7: t7 => t10. t11.:
_:b2 rdf:rest _:b4. (t10)

((2))s=_ba. (t1n)
6. Applying Rule 4.7 on t11: t11 => t12. t13.:

_:b4 rdf:first (2). (t12)
_:b4 rdf:rest rdf:nil. (t13)

7. Applying Rule 4.4 on t12: t12 => t14. t15.:
_:b4 rdf:first _:b5. (t14)
(2)s=_bs. (t15)

8. Applying Rule 4.7 on t15: t15 => t16. t17.:
_:b5 rdf:first 2. (t16)
_:b5 rdf:rest rdf:nil. (t17)

The transformation result consists of triple patterns t2, t4, t8, t9, t10, t13, t14,
t16, and t17, where additionally the prefixed form of IRIs have been replaced with
their long form according to Rule 7.1.

Note that there are further redundancies, which we allow in CoreSPARQL, as
they can be processed in a machine-friendly way. Nevertheless, we explain
these redundancies and how to eliminate these redundancies in the following
paragraphs.

The wildcard * can be replaced by the concrete list of variables in SELECT [
DISTINCT | REDUCED ] * and DESCRIBE *; that is, the SPARQL expression can
be replaced by SELECT [ DISTINCT | REDUCED ] Vary, ..., Var, and
DESCRIBE Vary, ..., Var,, where Vary, ..., Var, are all variables of the original
SPARQL query, which have been bound in triple patterns.
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Furthermore, the REDUCED keyword can be replaced by DISTINCT or can be
deleted, as SELECT REDUCED ... allows any number of duplicates between the
number of duplicates of SELECT ... and SELECT DISTINCT ...

Any operations on constants can be replaced by the result of their applications.

According to (Gutierrez et al. 2004), blank node labels of the form _:b can be
replaced by a local variable ?_b, where the variable ?_b must not be used in the
original SPARQL query. Whenever at least one blank node label is replaced,
SELECT [ DISTINCT | REDUCED ] * and DESCRIBE * must be replaced with
SELECT [ DISTINCT | REDUCED ] Vary, ..., Var, and DESCRIBE Vary, ...,
Var,,, where Vary, ..., Var, are all variables of the original SPARQL query, which
have been bound in triple patterns; that is, all local variables ?_b do not occur in the
final result. Note that unbound variables in FILTER expressions raise type errors.

4.3.3 CoreSPARQL Grammar

The grammar rules for CoreSPARQL are adapted from the grammar rules for
SPARQL, which are given in A.8§ Grammar in Prud’hommeaus and Seaborne
(2008). Twenty-two rules (2-4, 32-42, 48, 68, 71-72, 75, 92, and 99-100) in
SPARQL are not needed and eliminated; ten rules (1, 21, 22, 25, 31, 37, 44, 45,
67, and 69) differ from the corresponding ones in SPARQL; and the rest remains
unchanged. Here, we only present these ten adapted rules in Table 4.1 and comment

Table 4.1 Adapted grammar rules of the SPARQL grammar

[1] Query == SelectQuery | ConstructQuery |
DescribeQuery | AskQuery

PREFIX and BASE declarations are not allowed.

[21] TriplesBlock ::=  VarOrTerm VarOrlIRIref VarOrTerm

Only allow triple patterns of the form s p o.

[22] GraphPatternNotTriples = OptionalGraphPattern | UnionGraphPattern |
GraphGraphPattern

Group graph patterns are not allowed to directly nest any other group graph pattern.

[25] UnionGraphPattern 1= GroupGraphPattern "UNION’
GroupGraphPattern

Group graph patterns are not allowed to directly nest any other group graph pattern.

[31] ConstructTriples = TriplesBlock ( ’.” ConstructTriples? )?

Only allow triple patterns of the form s p o.

[37] Verb ::=  VarOrlIRIref

The keyword a is not allowed anymore.

[44] Var u=  VARI

Variable names start only with “?”.

[45] GraphTerm ::=  IRIref | RDFLiteral | NumericLiteral |

BooleanLiteral | BlankNode
The abbreviation () for rdf:nil is not allowed.

[67] IRIref = IRI_REF
Prefixed IRIs are not allowed anymore.
[69] BlankNode = BLANK_NODE_LABEL

Blank nodes are represented only with label.
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the consequence of the adaptation. We use the same number and the name of left-
hand side for every rule as in SPARQL, except for Rule 25. The name of left-hand
side of Rule 25 is changed from GroupOrUnionGraphPattern to UnionGraphPat-
tern in order to reflect the prohibition of the direct nesting of group graph patterns.

4.4 Related Work

Jarke and Koch (1984), lIoannidis (1996), and Chaudhuri et al. (1998) give an
overview of logical transformation techniques and that of physical evaluation
methods for database queries using the framework of the relational algebra
(Ioannidis 1996; Chaudhuri et al. 1998) or of the (tuple) relational calculus
(Jarke and Koch 1984). In these works, the relational query (e.g., an SQL
query) is first transformed into a relational algebra tree (Ioannidis 1996;
Chaudhuri et al. 1998) or into an object graph (Jarke and Koch 1984), on
which logical transformation rules are applied in order to optimize the query
evaluation. After that, depending on cost estimations, physical operators are
chosen for the logical operators in the relational algebra tree (Ioannidis 1996;
Chaudhuri et al. 1998), or in the object graph (Jarke and Koch 1984), in order
to finally evaluate the query in the estimated fastest way. The physical
operators are chosen from a set of different implementations with different
runtime performance. These techniques, which especially use the framework
of the relational algebra, are also presented in various standard works for
database systems (e.g., Garcia-Molina et al. 2002; Connolly and Begg 2002;
Elmasri and Navathe 2000).
We propose the CoreSPARQL fragment in (Groppe et al. 2009d).

4.5 Summary and Conclusions

We suggest the CoreSPARQL language, which is a core fragment of SPARQL, but
has the same expressiveness as SPARQL 1.0. Optimization approaches, SPARQL
engines, and all applications, which process SPARQL queries, benefit from
CoreSPARQL: CoreSPARQL has machine-friendly syntax and thus is easy to
process; CoreSPARQL contains less language constructs and thus reduces the
number of cases to be considered.

We apply the logical and physical optimization framework in our SPARQL
engines. Once the logical operator graph has been generated, logical equivalence
rules can be used to optimize the performance. After logical optimization, the
physical optimization chooses the best estimated physical operator for each logical
operator for processing joins, sort operations, optional expressions, and index scans
to determine the result of a triple pattern. The physical operator graph, also called
execution plan, is finally executed to retrieve the query result.



Chapter 5
Logical Optimization

Abstract In this chapter, we first introduce an algebra for SPARQL queries and
define the semantics of query evaluation. Afterward, we present equivalency rules
for optimizing the query processing and present a heuristic approach to query
optimization based on these equivalency rules. Afterward, we deal with query
optimizers, which enumerate all possible query plans and choose the one with the
best estimated costs. Finally, we describe how to employ histograms for estimating
the cardinality of operator results as basis for cost estimations.

5.1 Logical Algebra

In order to define the semantics of query evaluation, we formalize an algebra of the
core fragment of SPARQL over simple RDF, that is, RDF without RDFS vocabu-
lary and literal rules. We extend the algebraic formalization of Pérez et al. (2006) by
considering a larger fragment of SPARQL and by allowing more complex built-in
conditions and empty graph patterns. With our extensions, the algebra covers the
full power of SPARQL 1.0 (Prud’hommeaux and Seaborne 2008), such that even
the different types of SPARQL queries like SELECT, ASK, and CONSTRUCT
queries can be expressed in this algebra.

A SPARQL query is evaluated on RDF graphs. In order to describe the seman-
tics of SPARQL queries, we first define built-in conditions of SPARQL, which are
used in FILTER clauses of SPARQL. Note that we do not distinguish between
variables and blank node variables any more, as blank node variables can be
eliminated as described in the transformation from SPARQL queries into Core-
SPARQL queries.

Definition 1 (Built-in condition). We assume the existence of a set V of variables,
which is disjoint from the set of IRIs 1, the set of blank nodes B, and the set of literals
L. A built-in condition is recursively defined as follows:

(a) [eL,ie€l andv eV are built-in conditions
(b) If Ry and R, are built-in conditions, then

S. Groppe, Data Management and Query Processing in Semantic Web Databases, 79
DOI 10.1007/978-3-642-19357-6_5, © Springer-Verlag Berlin Heidelberg 2011
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I. The Boolean expressions RiAR,, R{VR,, =R; and Ry op R,, where
op €{=,#, <, <, >, >}, are also built-in conditions,

I. The numeric expressions Ry op R,, where op € {+, —, *,/}, are also built-in
conditions, and

(¢) If Ry, ..., R, are built-in conditions, then func(Ry, ..., R,) is also a built-in

condition, where func is an external or a SPARQL built-in function. See

Prud hommeaux and Seaborne (2008) for a complete list of SPARQL built-in

functions.

The core component of SPARQL queries is a graph pattern.
Definition 2 (Graph pattern). A graph pattern is defined recursively as follows:

(a) The empty graph pattern {} is a graph pattern.

(b) A triple pattern tp, wheretpe (IUBULUV) x (IUV) x (IUBULUYV),is
a graph pattern

(¢) If Py and P, are graph patterns, then P; AND P,, P; OPT P,, and P; UNION P,
are graph patterns

(d) If P is a graph pattern and vie 1 U V, then GRAPH vi (P) is also a graph
pattern

(e) If Pisagraph pattern and R is a built-in condition, then P FILTER R is a graph
pattern

The list of graph patterns has been extended with GRAPH vi (P) in comparison
to Perez et al. (2006) for the support of named graphs. Note that the SPARQL
syntax (Prud hommeaux and Seaborne 2008) differs slightly from the above
notation. For example, the SPARQL expression P1 P2 in Prud hommeaux and
Seaborne (2008) corresponds to our graph pattern P1 AND P2, P1 OPTIONAL
P2 to P1 OPT P2, GRAPH vi {P} to GRAPH vi (P), and P. and {P} to P.
Furthermore, the SPARQL operators &&, |, !, =, <= and >= correspond to
the operators A, V, =, #, < and > in the built-in conditions (see Definition 1).
SPARQL also supports some further redundant equivalent language constructs
like object lists and predicate-object lists in triple patterns, and several other
abbreviations, which can be transformed into an equivalent long form (Groppe
et al. 2009d).

Note that SPARQL allows literals as subjects of triple patterns, but RDF does
not allow literals as subjects of triples. Therefore, the triple patterns with literal
subjects always return the empty result for any input RDF graph, and thus this kind
of triple patterns is unsatisfiable.

In the following paragraphs, we further extend the algebraic formalization
of Perez et al. (20006) for considering also the different types of SPARQL queries,
that is, SELECT, ASK, and CONSTRUCT queries, and their modifiers such
as DISTINCT, ORDER BY, LIMIT, and OFFSET. DESCRIBE queries are not
considered here, as their result has only informally been described in the SPARQL
specification (Prud hommeaux and Seaborne 2008) and is implementation-
dependent.
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Definition 3 (Query heads and extended list of graph patterns). The following
query heads and additional graph patterns are defined as follows:

(a) IfPisa graph pattern and {v1, ..., vn} is a set of variables, then the projection
[Ln1, . vy Pis a graph pattern.

(b) IfPis a graph pattern, then DISTINCT P is a graph pattern for the elimination
of duplicates.

(C) Ile, ey Rn are built-in COI’ldiin}’lS, then SORTORDERI(RI), ..., ORDERn(Rn) P,
where ORDERYI, ..., ORDERn € {ASC, DESC} and which corresponds to the
ORDER BY clause of SPARQL queries, is a graph pattern.

(d) If P is a graph pattern and i an integer, then LIMIT i P and OFFSET i P are
graph patterns for the LIMIT and OFFSET clause respectively of SPARQL
queries.

(e) If P is a graph pattern, then ASK P is a query head for ASK queries.

() If P is a graph pattern and {tpl, ..., tpn} a set of triple patterns tpl, ..., tpn,
then CONSTRUCT{tpl, ..., tpn} P is a query head for CONSTRUCT gqueries.

Example 1 (Graph pattern and SPARQL query). The graph pattern

DISTINCT I1zitte, 2pricey  ((?x dc:title ?title)
OPT ( (?x ns:price ?price)
FILTER(?price <30)))

represents the SPARQL query

SELECT DISTINCT ?title ? price
WHERE { ?x dc:title ?title.
OPTIONAL { ?x ns:price ?price.
FILTER (?price <30) }}.

The transformation from any CoreSPARQL query into its graph pattern or its
query head respectively is straightforward and is thus left to the reader.

5.1.1 Semantics of the Logical Algebra Operators

In this section, we define the semantics of SPARQL queries by describing the result
of graph patterns (see Definition 2) evaluated on an RDF graph. For this purpose,
we need to introduce several concepts.

Definition 4 (Binding). A binding is a tuple (v, t), where v €V represents a
SPARQL variable and t € (1 U B U L) one of its values.
A solution contains one element of the result of a SPARQL graph pattern.

Definition 5 (Solution). A solution E is a set of bindings, where each variable in the
bindings has exactly one assigned value; that is,¥V(v,t)eE:veV Ate(IUBUL)
and N(vy, t1) EE: Y(vy, tp) €E: (viF£v,y V t=t)).

With this, we can define the result of a built-in condition.
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Definition 6 (Result of built-in condition). The result Evalgr(E) of a built-in
condition R evaluated on a solution E is a Boolean value, that is, true or false,
and is determined recursively according to the following rules:

(@) R =R10pR2, where op€{A, V}: Evalg; op ro(E) = Evalg,(E) op Evalg,(E)
(b) R =Rl opR2, whereop € {=, #, <, <, >, >} Evalg; op ro(E) = Valueg,(E)
op Valueg,(E), where Valuer(E) is defined recursively as follows:

I. ReL orRel: Valueg(E) =R

II. REV: Valueg(E) = t if (R, t) €E or Valueg(E) raises an error if At*:
(R, t¥) € E [see Sect. 11.2 of Prud hommeaux and Seaborne (2008) for
handling errors]

III. R =opR1, where op<{ +, -, =}: Valueg(E) = op Valueg,(E)

IV. R = R1 op R2, where opef{ +, -, *, [, A, V, =, #, <, <, >, >}

Valueg; op r2o(E) = Valueg(E) op Valueg,(E)

V. R = func(Ry, ..., Ry): Valuegneri, .., ro)(E) = func(Ry, ..., Ry), where
func(Ry, ..., R,) is an external or a SPARQL built-in function. For example,
bound(v) returns true if At:(v, t) EE,; otherwise, bound(v) returns false.
See Prud hommeaux and Seaborne (2008) for a complete list of SPARQL
built-in functions.

(c) Otherwise: Evalg(E) = xsd:boolean(Valuer(E)) [see Prud hommeaux and

Seaborne (2008) for the Effective Boolean value xsd:boolean].

SPARQL queries can be SELECT, DESCRIBE, ASK, or CONSTRUCT gueries.
ASK queries return Boolean results. CONSTRUCT queries and DESCRIBE
queries return RDF graphs. SELECT queries usually return bags (also called
multisets) of solutions. A bag contains unordered entries. Whereas in a set each
of its unordered entries can occur only once, each entry in a bag can also occur
several times. If a SELECT query contains the DISTINCT modifier, then actually a
set of solutions is returned, as duplicates are eliminated. If the SELECT query
contains an ORDER BY clause for sorting its result, then a sequence of solutions is
returned if the SELECT query contains no DISTINCT modifier, and an ordered set
of solutions if the SELECT query contains a DISTINCT modifier.

We denote bags by enclosing its entries with < and >. For example, <X1, Xy> is
a bag containing the entries X, and X,, where the entries X, and X, are typically
solutions in our definitions for graph pattern results. The concatenation of bags is
expressed with the operator o, for example, <x1, X,> 0 <X3> = <Xi, X, X3>. The
bag X contains the bag Y, denoted by Y C X, if VyeY: (ye €Y) < (ye €X),
where y € €Y represents the number of copies of y in Y. Furthermore, the bag
X = <Xy, ..., X,> set-contains the bag Y = <yy, ..., Ym >, denoted by Y Cyey X,
iy Elyy, ..., b AXE Xy, ..., X}: x = y. The difference between two bags X
andY isdefinedtobeZ: = X - Y C X, whereVx € X:x€ €Z = max((x € € X)—
(x€e €Y), 0). We define the set-difference between two bags X and Y, denoted
by Zger: = Xoget Y, 10be Zgoy = <X|X E{Xy, ..., X} AXE{YY, ..., Ym}>, where the
set-difference contains the entries of X = <Xy, ..., X,> excluding the entries of the
bagY¥ = <yi, ..y Ym >
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In the definitions for the result of graph patterns, we use the operators Join,
Union, and Left outer-join, which work on bags of solutions.

Definition 7 (Join, Union and Left outer-join of bags of solutions). Let Q; and
Q, be two bags of solutions. Then:

(a) Join: Ql [P Qz =<0 Um/ o EQI A 0)2692 A V(V, t1)) € o U @y
V(V, tz) cm; Uy t1=t>

(b) Union: QU =<o/o0 €Q; Vo e Q>

(c) Left outer-join: Q1 ><1Q = QX Qo< 0 /0 €EQ A 0p¢{ @/ 0 €EQ; A
W, € Q2 /\V(V, tl) € oy Umy: V(Vy tz) € o Uy t1:t2}>

Definition 8 (Result of graph patterns). Let D be an RDF graph and NG={D
(IRI1), ..., D(IRIn)} be a set of named graphs, where IRI1, ..., IRIn are the IRI
labels of the named RDF graphs, (el e2 e3) a triple pattern, P1 and P2 graph
patterns, R a built-in condition, IR an IRI label, and v €V a variable. Then the
evaluation of a graph pattern P over the default RDF graph D and the named RDF
graphs NG denoted by [[P]]p, ng is defined recursively as follows:

a) [[{}1p vo=<>
b) [[(el €2 €3)]] p x¢=<E|(d\, o, d3)e D~
E={ (x,v) | ie {1,2,3} A x=¢;in e; € VA Vv=d;} r
((V je {1, 2,3}:(ej € V)v(e=d)) ~
Y (n,v))e E: ¥V (n, m)e E: vi=vy)>
[[P1 AND P2]]p, nc = [[P1]]p, 6 % [[P2]]p, nG
d) [[P1 OPT P2]]p n6= [[P1]]p n6 w([[P1]] D, N6 [[P2]]p, NG
[[P1 UNION P2]]p n6= [[P1]lp, nev [[P2]]p G
f) [[GRAPH v (PD)]]p, no = (<(v, IRI1)> » [[ P1]] pris, o) UNION... UNION
(<, IRIn)>w ([ P1]] prriny, n6)
g) [[ GRAPH IRI(Pl)]] D, NG— [[Pl]] D(IRI), NGs lfD(IRI)E NG, otherwise <>.
h) [[PI FILTERR]p no= <w|we [[P1]]p nor Evalg(w)>

In comparison to the original definition [{P1 OPT P2]]p = [[P1]]p < [[P2]]p
given in Perez et al. (2006), in the case d) of Definition 8 we first join the results of
P1 and that of P2, because the filter expressions in P2 may use variables, which are
bound in P1 rather than in P2, for example, ((?x <a> 7z) AND (?x <b> ?w)) OPT
((?7y <a> ?z2) AND (?y <b> ?w2) FILTER(?z=722 && w2 < ?w)). Without first
Jjoining the results of P1 and of P2, these filter expressions would be evaluated to a
different result from the intended one following the SPARQL specification (Prud’ -
hommeaux and Seaborne 2008) and test cases (Feigenbaum 2008). Furthermore, to
support named RDF graphs, we have to not only use the default graph D as in Perez
et al. (2006) in our formulas, but also the set of named RDF graphs NG.

For completeness, we have also to define the result of the extended list of graph
patterns as well as the query heads:

Definition 9 (Result of query heads and extended list of graph patterns). Let
D be an RDF graph and NG={D(IRI1), ..., D(IRIn)} be a set of named graphs,
where IRI1, ..., IRIn are the IRI labels of the named RDF graphs, {v1, ..., vn} be
a set of variables, R1, ..., Rn be built-in conditions, ORDERI, ..., ORDERn €
{ASC, DESC}, and {(s1, P1, 01), - - -, (Sn, Pn» On)} bet a set of triple patterns, then:
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@ [[TIp1, ... vy P, NG = <{(v1,t1), ..., (vn,tn)} [ @ €[[P1]]p NG A (Vi, ti)
cwforiefl,...,n}>.

(b) [[DISTINCT Pl]]p ng =<0/ €{0 /® €[[P1]]p nG} >.

(¢) [[SORToRpERI(RI), ..., ORDERn(Rn) P1]ID, NG = <O, ..., On>, where [[P1]]p,
NG E <O, .., Oy > and < Oy, . .., Oy > C [[P1]]p NG, and ©1< orDER1(R1),

..., ORDERn(Rn) @2 < ORDERI(R1), ..., ORDERn(Rn) - - -< ORDERI(R1), ..., ORDERn(Rn)
O, Where < ORDERI(RI), ..., ORDERn(Rn) IS the order relation between two
solutions according to ORDER1(R1), ..., ORDERn(Rn), that is, ®1< orpgr1
(R1), ..., ORDERn(Rn) W2 holds if Valuer(®;) op; Valuer(m,), or Valuer (o)
= Valueg(®,) and Valuego(®;) op, Valuers(®;), ..., or Valueg,(®;) op,
Valueg,(®,), where for each i €{1, ..., n} op; is < for ORDERi=ASC and
otherwise op; is >.

(d) [[LIMIT i P1]]p, ng = <Oy, ..., &>, where [[Pl]]p ng = <O, ..., Oy>
and k = min(i, m).

(e) [[OFFSETiP1]]p ng = <®;, . .., ©n>, where [[P1]]p nGg = <O, ..., ©Op>.
If m < i, then [[OFFSET i P1]]p ng = <>.

(f) [[ASK P1]]p, ng = true if [[P1]]p, nG <> and otherwise false.

(2) [[CONSTRUCT{(S1, p1, 01), - - -, (Sns P 00} P11 G ={ (5, p,0) /i €(1, ...,
n} Ao €[[Pl]]p ng A ((s=s; A s;€IUBUL) V (55, s)e®) A ((p=p; A
pi€IUBUL) V (p;, p) €®) A ((0=0; A 0,€IUBUL) V (0;, 0) € ®)}.

Example 2 (Result of graph patterns). The result of

DISTINCT I 21itte oprice; ((?x de:title ?title) OPT — ((?x ns:price Zprice)
FILTER (?price < 30)))

with default RDF graph

D={ (:bookl dc:title "SPARQL Tutorial"), (:bookl ns:price 42),
(:book2 dc:title "The Semantic Web"), (:book2 ns:price 23)}

1S
DISTINCTH{?HII@. ?price} ([[ (-7x dc:title 71”16)]] D™
<wl|wel[(?x dec:title ?title)]] p, ¢ ) [[(?x ns:price Zprice)]]p, g
A Evaly,ice < 30(@)>)
=DISTINCT I ;site, 2 price; (< {(X, :book1), (title, "SPARQL Tutorial")},
{(x, :book2), (title, "The Semantic Web")} > x
<wo|we < {(x, :bookl), (title, "SPARQL Tutorial"), (price, 42)},
{(x,book2) , (title, "The Semantic Web"), (price, 23)}>
N Eval?prive <30 (0))>)
= DISTINCT [ 5itte, oprice; (< { (X, :book1), (title, "SPARQL Tutorial")},
{(x, :book2), (title, "The Semantic Web")} >
<{(x, :book2), (title, "The Semantic Web"), (price, 23)}>)
= DISTINCT I »itte, rpricey (<{(x, :book1), (title, "SPARQL Tutorial")},
{(x, :book2), (title, "The Semantic Web" ), (price, 23)}>)
= DISTINCT (<{ (title, "SPARQL Tutorial")},
{ (title, "The Semantic Web"), (price, 23)}>)
= <{ (title, "SPARQL Tutorial")},
{ (title, "The Semantic Web"), (price, 23)} >.
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5.2 Logical Optimization Rules

Logical optimization aims to reorganize the operator graph into an equivalent opera-
tor graph, which generates the same output for any input as the original one, in order
to optimize the execution time of query evaluation. We write P/ = P2 to denote that
a graph pattern P/ generates the same output for any input as the graph pattern P2.

Figure 5.1 presents some equivalency rules published in the contributions (Pérez
et al. 2006; Groppe et al. 2007a, b; Heese et al. 2006), which can be used for the
logical optimization of the operator graph of the SPARQL query. We will explain
some important logical optimization rules in detail. Many of these equivalency
rules are adapted from the equivalency rules of the relational algebra (see e.g.,
Arasu et al. 2006; Chaudhuri 1998; Ioannidis 1996; Jarke and Koch 1984). How-
ever, to the best of our knowledge, the equivalency rules for pushing filters and
constant and variable propagations have been only informally described and have
not been so precisely formalized and comprehensively presented as here.

A description on the logical optimization rules developed in our LUPOSDATE
system can be accessed via http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/
ruledoc/.

5.2.1 Pushing FILTER Operators

It is a good strategy to push FILTER operators as much as possible into inner
subexpressions. Early application of FILTER operators will reduce the sizes of
intermediate results and thus speed up succeeding processing.

To define the conditions under which a FILTER operator can be moved into
inner subexpressions, we must define the function nov(P), where P is a graph
pattern. nov(P) determines a set of variables, which are bound in every result
solution of P for any input. For example, nov((?book dc:author ?author) UNION
(?book dc:price ?price)) = {?book }, as every result solution binds ?book with
a value regardless if the result solution is in the result of (?book dc:author ?author)
or of (?hook dc:price ?price). However, the variables ?author and ?price might not
be bound.

Definition 10. Let {} be the empty graph pattern, (spo)e (IUBULUYV) x (IU
V) x (1UBULUYV) be a triple pattern, P1 and P2 be two graph patterns, and R
be a built-in condition. The function nov(P) is recursively defined as follows:

e nov({}) ={}

e nov((spo)) ={v/v €{s,p,o} Av €V]
e nov(P1 AND P2) = nov(P1) U nov(P2)

e nov(P1 UNION P2) = nov(P1) N nov(P2)
e nov(P1 OPT P2) = nov(P1)

¢ nov(P1 FILTER R) = nov(P1)


http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/
http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/
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Equivalency Rules Reference

AND and UNION are associative and commutative, i.e., Pérez et al. (2006)
(P1 AND P2) = (P2 AND P1)

(P1 UNION P2) = (P2 UNION P1)

(P1 AND (P2 AND P3)) = ((P1 AND P2) AND P3)

(P1 UNION (P2 UNION P3)) = ((P1 UNION P2) UNION P3)

(P1 AND (P2 UNION P3)) = ((P1 AND P2) UNION (P1 AND P3)) Pérez et al. (2006)
(P1 OPT (P2 UNION P3)) = (P1 OPT P2) UNION (P1 OPT P3))

((P1 UNION P2) OPT P3) = ((P1 OPT P3) UNION (P2 OPT P3))

((P1 UNION P2) FILTER R) = ((P1 FILTER R) UNION (P2 FILTER R))

P = (P1 AND (P2 OPT P3)) = ((P1 AND P2) OPT P3), where P is a Pérez et al. (2006)
well designed graph pattern, i.e. for every occurrence of a sub-pattern
P’= (P1' OPT P2') of P and for every variable ?X occurring in P, it

is required that if ?Xoccurs both inside P2' and outside P', then it
also occurs in P1'.

P = ((P1 OPT P2) OPT P3) = ((P1 OPT P3) OPT P2), where P is a well | Pérez et al. (2006)
designed graph pattern

Pushing filter upward in the operatorgraph: We can push filter Groppe et al.
upward until after those operators in the operatorgraph, where all (2007)
variables of the filter expression have already been bound. This
reduces the space used for intermediary results.

Filtering unsatisfiable queries and subexpressions: A query or a Some rules in
subexpression of it is unsatisfiable if it returns the empty result Heese (2006)
for any RDF data. Unsatisifibility can be often precomputed and

be used to simplify queries. For example, the predicate
FILTER(?price<30 && ?price>50) is unsatisfiable, since ?price<30 is
contradictory to ?price>50.We can hence replace the filter expression
with FILTER(false).

Eliminating Variables: For each Filter(?vari=?var2) and ?var2 is Heese (2006)
not bound in an outer scope of Filter(?var1=?var2), we can replace
the variable ?var2 with ?var1 and eliminate the filter
Filter(?var1=?var2)?

Fig. 5.1 Equivalency rules for logical optimization of SPARQL queries

“Remark: If the results of the variables are typed-data, e.g. 1 and +1, two results are value-equal,
but literally un-identical. These situations might occur when the variables do not occur as the
subject or the predicate of a triple pattern, but only as the objects, which may be bound with
numerical typed literals or language tagged literals. The equivalency rule cannot be applied in
these cases.

Furthermore, let PR be a given built-in condition or graph pattern, and let
var(PR) be a function, which returns all variables occurring in PR. The follow-
ing equivalency rules can be used to move a FILTER operator into inner subex-
pressions:
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e (P1 ANDP2)FILTERR = (P1 FILTER R) AND (P2 FILTER R) if var(R)Cnov
(P1) A var(R)Cnov(P2)

e (P1 AND P2) FILTER R = (P1 FILTER R) AND P2 if var(R)Cnov(P1) A var
(R) €nov(P2)

e (P1 AND P2) FILTER R = P1 AND (P2 FILTER R) if var(R)Cnov(P2) A var
(R) &nov(P1)

e (P1OPTP2) FILTER R = (P1 FILTER R) OPT (P2 FILTER R) if var(R)Cnov
(P1) A var(R)Cnov(P2)

e (P1 OPT P2) FILTER R = (P1 FILTER R) OPT P2 FILTER R if var(R)Cnov
(P1) A var(R) €nov(P2)

e (P1 UNION P2) FILTER R = (P1 FILTER R) UNION (P2 FILTER R)

5.2.2 Splitting and Commutativity of FILTER Operators

Let R/ and R2 be two built-in conditions. The simple equivalency rule FILTER
(RI A R2) = FILTER(RI) FILTER(R2) splits a FILTER operator with a built-in
condition RI A R2 into two separate FILTER operators, which can be further opti-
mized according to other equivalency rules discussed in the following subsections.

For example, the filter in FILTER(?author="?editor A ?price < 30) ((?book dc:
author ?author) AND (?book dc:editor ?editor) AND (?book dc:price ?price)) cannot
be moved to the inner subexpressions without splitting. However, after splitting the
filter operator, that is, FILTER(?author="2editor) FILTER(?price < 30), the filter
operator FILTER(?price < 30) can be moved to the triple pattern (?book dc:price
?price), that is, FILTER(?author="2editor) ((?book dc:author ?author) AND (?book
dc:editor ?editor) AND (FILTER(?price < 30) (?book dc:price ?price))).

Furthermore, FILTER(RI) FILTER(R2) = FILTER(R2) FILTER(RI) holds; that
is, the FILTER operator is commutative.

5.2.3 Constant and Variable Propagation

In the graph pattern P = ((?person foaf:name ?name) FILTER(? name=“Bob”)), we
can replace the variable ?name in the triple pattern (?person, foaf:name, ? name) with
the constant string “Bob” in the filter expression. Consequently, the filter expression
becomes redundant, and P can be optimized to P'= (?person foaf:name “Bob*).
However, the result of P contains the bindings of the variables ?person and ?name,
but the result of P’ consists only of the binding of the variable ?person.

In order to solve this problem, we need a new operation BIND(?name=“Bob” ) in
P’, which binds the variable ?name with “Bob” in the result of P’. Thus, P'=
((?person foaf:name “Bob*) BIND(?name="“Bob”)) returns the same result as P
for any input RDF graph. This kind of equivalency is also called constant propagation.
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Typed data, for example, 1 and +1, are value-equal, but not identical. Conse-
quently, for example, the triple patterns (?s ?p 1) and (?s ?p +1) return different
results, but (?s ?p ?0) FILTER(?0=1) compares 7o to be value-equal to 1; that is,
[[(?s 2p 1) UNION (2 ?p + D1, w6 C [T 75, 2p) (s 2p 20) FILTER?0=1)]1p, nG
for any default graph D and for any named graphs NG. Similar remarks apply to
language-tagged literals as well. Therefore, the constant propagation cannot be
applied for typed data, where non-identical values can be value-equal like in the
case of numerical values, or language-tagged literals.

Without application of optimization rules, the graph pattern ((?person foaf:name
?name) AND (?person2 foaf:mbox ?mbox) FILTER(?person2 = ?person)) will lead
to an inefficient query execution: a Cartesian product between the two triple
patterns is first computed, and afterward the FILTER operation is applied.

However, we can leverage the information ?person2 = ?person in the filter
expression to rewrite the graph pattern to ((?person foaf:name ?name) AND (?person
foaf:mbox ?mbox) BIND(?person2 = ?person)). The BIND(?person2 = ?person)
operation ensures that the result also contains the bindings of the replaced variable.
Consequently, the costly Cartesian product is replaced with a join.

However, < {(?person=1)}> > < {(?person=+1)}>= < >, but < {(?
person=1, ?person2=+-1)}> remains after FILTER(?person2 = ?person)) has
been applied to < {(?person=1, ?person2=+1)}>, as 1 and +1 are value-equal
and not identical. Therefore, the rule is incorrect whenever the variables ?person
and ?person2 can contain value-equal (but not identical) values, which occur, for
example, for numerical or language-tagged literals. Numerical or language-tagged
literals can only occur in objects of RDF triples. Therefore, if one of the variables
?person or ?person2 occurs as subject or predicate in one of the triple patterns to
be joined, then the variables ?person and ?person2 cannot contain value-equal (but
not identical) values, and the rule is correct.

Let P be a graph pattern, v € V a variable, and cv € LUIUV a constant value or
another variable. The expression P BIND(v=cv) adds a binding (v, c¢v) to each result
solution of the graph pattern P. Let D be the input RDF graph and NG be the named
graphs. [[P BIND(v=cv)]]p, nc is formally defined as follows:

[[P BIND(v=cv)llp.n¢ = < E|E €[lPllp.n¢ NE=FE U{(v,V')](V=cv A
cveLUD) YV ((cv, V') EE AN cveV))>.

Foreachie {1,...,n}let(s;p;0;) € (UBUV)x (IUV)x {UBULUV)bea
triple pattern, and cv € (I U L U V). Our logical optimization rule to constant and
variable propagation can be expressed as follows:

(s;p10;) AND ... AND (s, p, 0,) FILTER (v=cv) = (s;” p;’ 0;”) AND ... AND
(s, pn 0,") BIND(v=cv) if v € {s,, p;, 0;} and cv is neither a numerical value nor a
language-tagged literal nor a variable with Vi: s;#vAp;#£vAs#cvAp;7cv, where
Vi: s;/ =cv if s;=v; otherwise s;'=s;, p,’=cv if p,=v; otherwise p;’=p;, and o;'=cv if
0,=v; otherwise 0;' =o;.

BIND(v=cv) adds an additional variable binding to the qu