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Preface

VECPAR is an international conference series dedicated to the promotion and
advancement of all aspects of high performance computing for computational
science, as an industrial technique and academic discipline, extending the fron-
tier of both the state of the art and the state of practice. The audience and
participants of VECPAR are seen as researchers in academic departments, gov-
ernment laboratories, and industrial organizations. There is now a permanent
website for the conference series at http://vecpar.fe.up.pt, where the history of
the conference is described.

The 9th edition of VECPAR was organized in Berkeley (USA), June 22–25,
2010. It was the 4th time the conference was celebrated outside Porto after
Valencia (Spain) in 2004, Rio de Janeiro (Brazil) in 2006, and Toulouse (France)
in 2008.

The whole conference program consisted of 6 invited talks, 45 papers, and 5
posters.

The major themes were:

– Large Scale Simulations in CS&E
– Linear Algebra on GPUs and FPGAs
– Linear Algebra on Emerging Architectures
– Numerical Algorithms
– Solvers on Emerging Architectures
– Load Balancing
– Parallel and Distributed Computing
– Parallel Linear Algebra
– Numerical Algorithms on GPUs

Three workshops were organized before the conference:

iWAPT — Fifth international Workshop on Automatic Performance Tuning
PEEPS — Workshop on Programming Environments for Emerging Parallel

Systems
HPC Tools — Tutorial on High Performance Tools for the Development of

Scalable and Sustainable Applications

The most significant contributions have been made available in the present book,
edited after the conference, and after a second review of all orally presented
papers at the conference.

Henricus Bouwmeester, from the University of Colorado Denver received the
Best Student Presentation award for his talk on “Towards an Efficient Tile Matrix
Inversion of Symmetric Positive Definite Matrices on Multicore Architectures”.



VI Preface

VECPAR 2010 took place at the Sutardja Dai Hall of the Center for Infor-
mation Technology Research in the Interest of Society (CITRIS), University of
California, Berkeley, USA. The logistics and organizational details were dealt
with by Yeen Mankin, with the kind support of Dany DeCecchis and Jean Piero
Suarez (students at San Diego State University).

Paper submission and selection were managed via the conference management
system, hosted and operated by the Faculty of Engineering of the University of
Porto (FEUP)1. Websites were maintained by both FEUP and the Lawrence
Berkeley National Laboratory; registrations were managed by the Lawrence
Berkeley National Laboratory.

The success of the VECPAR conferences and the long life of the series result
from the collaboration of many people. As before, given the widespread orga-
nization of the meeting, a large number of collaborators were involved. Here
we mention only a few. Through them we thank many others who offered their
time and commitment to the success of the conference workshops and tutorial:
Takahiro Katagiri, Richard Vuduc, Reiji Suda, Jonathan Carter, John Cavazos,
Kengo Nakajima, Lenny Oliker, Nick Wright, Tony Drummond, Sameer Shende,
and Jose Roman.

For their contributions to the present book, we must thank all the authors for
meeting the deadlines and all members of the Scientific Committee who helped
us so much in selecting the papers. We also thank the members of the committees
involved in the organization of the workshops held before the conference.

November 2010 José M.L.M. Palma
Michel Daydé
Osni Marques

J. Correia Lopes

1 The VECPAR series of conferences has been organized by the Faculty of Engineering
of Porto (FEUP) since 1993.
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Exascale Computing Technology Challenges 

John Shalf1, Sudip Dosanjh2, and John Morrison3 

1 NERSC Division, Lawrence Berkeley National Laboratory, 
1 Cyclotron Road, Berkeley, California 94611 

2 Sandia National Laboratories,  
New Mexico 87185 

3 Los Alamos National Laboratory,  
Los Alamos, New Mexico 87544 

jshalf@lbl.gov, sudip@sandia.gov, jfm@lanl.gov 

Abstract. High Performance Computing architectures are expected to change 
dramatically in the next decade as power and cooling constraints limit increases 
in microprocessor clock speeds. Consequently computer companies are dramati-
cally increasing on-chip parallelism to improve performance. The traditional 
doubling of clock speeds every 18-24 months is being replaced by a doubling of 
cores or other parallelism mechanisms. During the next decade the amount of 
parallelism on a single microprocessor will rival the number of nodes in early 
massively parallel supercomputers that were built in the 1980s. Applications and 
algorithms will need to change and adapt as node architectures evolve. In par-
ticular, they will need to manage locality to achieve performance. A key element 
of the strategy as we move forward is the co-design of applications, architectures 
and programming environments. There is an unprecedented opportunity for  
application and algorithm developers to influence the direction of future architec-
tures so that they meet DOE mission needs. This article will describe the tech-
nology challenges on the road to exascale, their underlying causes, and their  
effect on the future of HPC system design. 

Keywords: Exascale, HPC, codesign. 

1   Introduction 

Node architectures are expected to change dramatically in the next decade as power 
and cooling constraints limit increases in microprocessor clock speeds (which are 
expected to remain near 1 GHz). Consequently computer companies are dramatically 
increasing on-chip parallelism to improve performance. The traditional doubling of 
clock speeds every 18-24 months is being replaced by a doubling of cores, threads or 
other parallelism mechanisms. During the next decade the amount of parallelism on a 
single microprocessor will rival the number of nodes early massively parallel super-
computers that were built in the 1980s.  

Applications and algorithms will need to change and adapt as node architectures 
evolve. They will need to manage locality and perhaps resilience to achieve high 
performance. In addition, hardware breakthroughs will be needed to achieve useful 
Exascale computing later this decade, at least within any reasonable power budget. A 
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key element of the strategy as we move forward is the co-design of applications, ar-
chitectures and programming environments as shown in Figure 1. Much greater col-
laboration between these communities will be needed to overcome the key Exascale 
challenges. There is an unprecedented opportunity for application and algorithm de-
velopers to influence the direction of future architectures so that they meet DOE  
mission needs. 

 

 

Fig. 1. Schematic of application-driven hardware/software co-design process 

These trends are illustrated in Figure 2, which shows the energy cost of moving 
data to different levels of system memory relative to the cost of a floating point opera-
tion.  The cost of data movement will not improve substantially whereas the cost of 
performing a floating -point operation will likely improve between 5x to 10x.  Past 
attempts to exploit intra-node parallelism did not show significant benefits primarily 
because the cost of data movement within a node was not substantially lower than the 
cost of moving data across the interconnect because the cost of moving data off-chip 
dominated the energy costs. However, modern chip multiprocessors have CPU’s co-
located on the same chip. Consequently, there is a huge opportunity to capture en-
ergy-efficiency and performance benefits by directly taking advantage of intra-chip 
communication pathways. 

2   Metrics, Cost Functions, and Constraints 

For Exascale systems, the primary constraints are (for the purposes of discussion) 
platform capital costs under $200M, less than 20MW power consumption, and deliv-
ery in 2018.  All other system architectural choices are free parameters, and are opti-
mized to deliver maximum application performance subject to these very challenging 
constraints.   
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Fig. 2. Energy cost of data movement relative to the cost of a flop for current and 2018 systems 
(the 2018 estimate is conservative and doesn’t account for the development of an advanced 
memory part). The biggest change in energy cost is moving data off-chip.  Therefore, future 
programming environments must support the ability of algorithms and applications to exploit 
locality which will, in turn, be necessary to achieve performance and energy efficiency. 

In an ideal world, we would design systems that would never subject applications 
to any performance constraints. However, component costs and power usage force 
system architects to consider difficult trade-offs that balance the actual cost of system 
components against their effect on application performance.  For example, if doubling 
floating point execution rate nets a 10% gain in overall application performance, but 
only increases system costs by 5%, then it is a net benefit despite degrading system 
balance. It is important to have an open dialog to fully understand the cost impacts of 
key design choices so that they can be evaluated against their benefit to the applica-
tion space. 

Cost Functions 

The Cost of Power: Even with the least expensive power available in the US, the cost 
of electricity to power supercomputing systems is a substantial part of the Total Cost 
of Ownership (TCO).  When burdened with cooling and power distribution over-
heads, even the least expensive power in the U.S. (< 5cents/KWH) ultimately costs 
$1M per Megawatt per year to operate a system.  To keep the TCO manageable 
DOE’s Exascale Initiative Steering Committee adopted 20MW as the upper limit for a 
reasonable system design [1,2].  This limit is movable, but at great cost and design 
risk.  

 
The Cost of a FLOP: Floating point used to be the most costly component of a sys-
tem both in terms of design cost and power.  However, today, FPUs consume a very 
small fraction of the area of a modern chip design and a much smaller fraction of the 
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power consumption.  On modern systems, a double-precision FMA (fused multiply 
add) consumes 100 picoJoules. By contrast, reading the double precision operands 
from DRAM costs about 2000 pJ.  By 2018 floating point operations will consume 
about ~10.6pJ/op on 11nm lithography technology [3], and the cost of reading from 
DRAM will only improve modestly to 1000pJ unless more energy-efficient memory 
technology is developed.   

With these figures of merit, it would only consume 100W to put 10 Teraflops on a 
chip, which is easily achievable.  However, it would require 2000W of power re-
quired to supply memory bandwidth to those floating point units at a modest memory 
bandwidth to floating point ratio of 0.2. The consequence is that we can engineer far 
more floating point capability onto a chip than can reasonably be used by an applica-
tion.  Engineering FLOPs is not a design constraint – data movement presents the 
most daunting engineering and computer architecture challenge.  

 
The Cost of Moving Data: Memory interfaces and communication links on modern 
computing systems are currently dominated by electrical/copper technology.  How-
ever, wires are rapidly being subsumed by optical technology because of the limits of 
bit rate scaling as we shrink wires length scales as observed by David A. B. Miller of 
Stanford [4-5]. Miller observes that for a conventional electrical line (without repeat-
ers or equalization) can be modeled as a simple RC circuit by virtue of the simplified 
Telegrapher’s equation for lossy transmission line.  The wire must be charged and 
discharged at a rate governed by the RC time constant, which is given by equation 1 
where Rl is the resistance of the wire, Cl is the capacitance and l is the length of the 
wire.  As the wire length increases, the risetime (given by the RC time constant) in-
creases by the square of the length – thereby reducing the bit-rate.  

risetime=RlCl l
2 (1) 

Miller observes that if you shrink the wire proportionally in all dimensions by a factor 
of s, the resistance (Rl) increases proportionally to the reduced wire aspect ratio, 
which reduces by a factor of s2, but capacitance (Cl) remains the same. The conse-
quence is that for constant voltage, the bit-rate carrying capacity of an RC line scales 
proportional to B ≈ A/ l2 , where B is the bandwidth of the wire and A is the cross-
sectional area of the wire and l2 is the length of the wire.  The consequence of this 
observation is that natural bit rate capacity of the wire depends on the aspect ratio of 
the line, which is the ratio of the length to the cross-sectional area for a constant input 
voltage and does not improve as we shrink the wires down with smaller lithographic 
processes. We can push to a higher bitrate by increasing the drive voltage to the wire, 
but this also increases power consumption.  These effects are summarized in equation 
2, which assumes a simple RC model of the wire and no re-amplification (long-haul 
wires on-chip are normally re-amplified at regular intervals to maintain a linear 
power profile as a function of length, but at a cost of more power consumption).  

Power ≈ B × l2 / A (2) 

This has the following consequences to system design [6, 16]: 
 

• Power consumed increases proportionally to the bit-rate, so as we move to ultra-
high-bandwidth links, the power requirements will become an increasing concern. 



 Exascale Computing Technology Challenges 5 

• Power consumption is highly distance-dependent (quadratically with wire length 
without re-amplification), so bandwidth is likely to become increasingly local-
ized as power becomes a more difficult problem. 

• Improvements in chip lithography (making smaller wires) will not improve the 
energy efficiency or data carrying capacity of electrical wires. 

 

In contrast, optical technology does not have significant distance-dependent energy 
consumption.  It costs nearly the same amount of energy to transmit an optical signal 
1 inch as it does to transmit it to the other end of a room.  Also, signaling rate does 
not strongly affect the energy required for optical data transmission.  Rather, the fixed 
cost of the laser package for optical systems and the absorption of light to receive a 
signal are the dominant power costs for optical solutions. 

As the cost and complexity of moving data over copper will become more difficult 
over time, the cross-over point where optical technology becomes more cost-effective 
than electrical signaling has been edging closer to the board and chip package at a 
steady pace for the past 2 decades.  Contemporary short-distance copper links con-
sume about 10-20 pJ/bit, but could be improved to 2pJ/bit for short-haul 1 cm length 
links by 2018.  However, the efficiency and/or data carrying capacity of the copper 
links will fall off rapidly with distance (as per equation 2) that may force a movement 
to optical links. Contemporary optical links consume about 30-60pJ/bit, but solutions 
that consume as little as 2.5pJ/bit have been demonstrated in the lab.  In the 2018 
timeframe optical links are likely to operate at 10pJ/bit efficiency [7].  Moreover, 
silicon photonics offers the promise of breaking through the limited bandwidth and 
packaging constraints of organic carriers using electrical pins. 

Another serious barrier to future performance growth is cost of signals that go off-
chip as we rapidly approach pin-limited bandwidth.  Due to the skin effect [19], and 
overheads of more complex signal equalization, it is estimated that 10-15GHz is 
likely the maximum feasible signaling rate for off-chip differential links that are 1-
2cm in length.  A chip with 4000 pins would be a very aggressive, but feasible design 
point for 2018.  If you consider that half of those pins (2000) are power and ground, 
while the remaining 2000 pins are differential pairs, then the maximum feasible  
off-chip bandwidth would be ~1000 × 10GHz, which comes to approximately 1 Tera-
byte/second (10 Terabits/sec with 10/8 encoding).  Breaking through this 1 TB/s bar-
rier would require either more expensive, exotic packaging technology (ceramics 
rather than organic packages), or migration to on-chip optics, such as silicon-photonic 
ring-resonator technology [20, 21]. 

Without major breakthroughs in packaging technology or photonics, it will not be 
feasible to support globally flat bandwidth across a system.  Algorithms, system soft-
ware, and applications will need to aware of data locality.  The programming envi-
ronment must enable algorithm designers to express and control data locality more 
carefully.  The system must have sufficient information and control to make decisions 
that maximally exploit information about communication topology and locality.  Flat 
models of parallelism (e.g. flat MPI or shared memory/PRAM models) will not map 
well to future node architectures. 

3   Memory Subsystem 

Ultimately, memory performance is primarily constrained by the dynamics of the com-
modity market.  One key finding of DOE’s Architecture and Technology workshop [8] 
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was that memory bandwidth is primarily constrained by power & efficiency of the 
memory interface protocols, whereas memory capacity is primarily constrained by cost.  
Early investments in improving the efficiency of DRAM interfaces and packaging tech-
nology may result in substantially improved balance between memory bandwidth and 
floating point rate.  Investments in packaging (mainly chip-stacking technology) can 
also provide some benefit in the memory capacity of nodes, but it is unclear how much 
the price of the components can be affected by these investments given commodity 
market forces. 

3.1   Memory Bandwidth 

The power consumed by data movement will dominate the power consumption profile 
of future systems.  Chief among these concerns is the power consumed by memory 
technology, which would easily dominate the overall power consumption of future 
systems if we attempt to maintain historical bandwidth/flop ratios of 1 byte/flop.  A 
20 MW power constraint on an Exascale system will limit the breadth of applications 
that can execute effectively on such systems unless there are fundamental break-
throughs in memory and communications technologies. 

For example, today’s DDR-3 memory interface technology consumes about 
70picoJoules/bit, resulting in approximately 5000 pJ of energy to load a double-
precision operand (accounting for ECC overhead).  If we extrapolate the energy-
efficiency of memory interfaces to DDR-5 in 2018, the efficiency could be improved 
to 30pJ/bit.  A system with merely 0.2 bytes/flop of memory bandwidth would con-
sume > 70Megawatts of power, which is not considered a feasible design point.  
Keeping under the 20MW limit would force the memory system to have less than 
0.02 bytes/flop, which would severely constrain the number of applications that could 
run efficiently on the system as illustrated in Figures 4 and Figure 5. 

 

 

Fig. 3. If we follow standard JEDEC memory technology roadmap, the power consumption of a 
feasible Exascale system design (using 0.2 bytes/flop memory bandwidth balance) will be 
>70Megawatts due to memory power consumption, which is an impractical design point.  
Keeping memory power under control will either require substantial investments in more effi-
cient memory interface protocols, or substantial compromises in memory bandwidth and float-
ing point performance (< 0.02 bytes/flop).  
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Fig. 4. This figure illustrates the trade-offs between memory power consumption and the desire 
for a more broadly applicable Exascale system design under different assumptions about in-
vestments in advanced memory technology. 

We cannot reach reasonable memory energy efficiency by following the JEDEC 
roadmap. Getting to a reasonable energy efficiency requires development of new, 
more efficient interface designs and memory protocols.  Advanced memory technol-
ogy can get to about 7 pJ/bit with investments to bring the technology to market.  The 
limit of this new technology is estimated to be 4pJ/bit (excluding memory queues and 
controller logic).  Therefore, in order to maintain 0.2 byte/flop system balance and 
stay under a 20MW design limit for power requires either substantial investments in 
advanced memory technology, or a substantial degradation in system memory bal-
ance, as illustrated in Figure 5. As always, these ratios are movable.  For example, the 
power limit could be relaxed, but would put the feasibility of fielding siting such a 
system in jeopardy and increase the total cost of ownership. 

3.2   Memory Capacity 

One figure of merit for improvements to HPC systems is the total memory capacity.  
More aggregate memory enables systems to solve problems that have either propor-
tionally higher resolution, or more physics fidelity/complexity – or both.  However, 
cost considerations may limit an exascale system to a memory capacity that improves 
only by a factor of 100x in comparison to the system peak floating point rate which 
will improve by 1000x.  This is a movable parameter in the design space of the ma-
chine, but the consequence of moving this parameter is increased cost for the memory 
subsystem and the total cost of the system.  

The DRAM capacity of a system is primarily limited by cost, which is defined by 
the dynamics of a broad-based high-volume commodity market. The commodity 



8 J. Shalf, S. Dosanjh, and J. Morrison 

market for memory makes pricing of the components highly volatile, but the centroid 
of the market is approximately $1.80/chip. Figure 4 illustrates that the rate of memory 
density improvement has gone from a 4x improvement every 3 years to a 2x im-
provement every 3 years (a 30% annual rate of improvement).  Consequently the cost 
of memory technology is not improving as rapidly as the cost of Floating Point capa-
bility.  Given the new rate of technology improvement, 8 gigabit memory parts will 
be widely available in the commodity market in the 2018 timeframe and 16 gigabit 
parts will also have been introduced.  It is unclear which density will be the most cost-
effective in that timeframe.  

If we assume that memory should not exceed 50% of the cost of a computer sys-
tem, and that the anticipated capital cost of an Exascale system is $200M, then Table 
5 shows that the memory capacity we could afford lies somewhere between 50 and 
100Petabytes.  Again, these are not hard limits on capacity, but they do have a sub-
stantial effect on the cost of the system, and the trade-off between memory capacity 
and other system components must be considered carefully given a limited procure-
ment budget. 

 

 

Fig. 5. The rate of improvement in memory technology improving at slower rates -- now  
approaching 30% per year. (Figure courtesy of David Turek, IBM). 
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3.3   Latency 

Off-chip latencies are unlikely to improve substantially over existing systems.  With a 
fixed clock rate of 2 GHz, the distance to off-chip memory on modern systems is 
approximately 100ns (200 clock cycles away), and will potentially improve to 40-
50ns (100 clock cycles away from memory) in the 2018 timeframe.  A modern inter-
connect has a messaging latency of 1 microsecond.  Most of that latency is on the 
end-points for the message (message overhead of assembling a message and interrupt 
handling to receive it).  By 2018, this could improve to as little as 200-500ns for mes-
sage latency, which is at that point limited by the speed of light (0.75c in optical fiber) 
and comes to about 5ns latency per meter of cable. 

Lastly, the message injection rates of modern systems (an indirect measure of the 
overhead of sending messages) is approximately tens of thousands of mes-
sages/second on leading-edge designs.  If the interconnect NIC is moved on-chip, it 
may be feasible to support message injection rates of hundreds of millions of mes-
sages per second for lightweight messaging (such as one-sided messages for PGAS 
languages). 

With no substantial improvements in off-chip and cross-system latency, the band-
width-latency product for future systems (which determines the number of bytes that 
must be in flight to fully saturate bandwidth) will be large. This means there must be 
considerable attention to latency hiding support in both algorithms and in hardware 
designs.  The approach to latency hiding has not yet been determined.  

 

 

Fig. 6. There are two possible memory chip densities in the 2018 timeframe. It is less certain 
which option will be most cost-effective. 

4   Node Architecture Projections for 2018 

There are many opportunities for major reorganization of our computation model to 
take better advantage of future hardware designs.  However, much of the discussion 
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to-date of inter-processor communication semantics and node organization has fo-
cused on evolutionary rather than revolutionary features. 

4.1   Clock Rate 

Technology projections[1,2,3,9] indicate that clock-speeds will not change apprecia-
bly by 2018 and will remain near 1-2 GHz. This sets clear design constraints for the 
number of floating point functional units that will be on a future chip design.   In 
order to keep component counts for future systems within practical limits (< 1M 
nodes), a node must perform between 1-10 Teraflops.  At 1 GHz, that means there 
will be between 1000 and 10,000 discrete Floating Point Units on a chip.   

 

 
 

Fig. 7. Schematic of a future node architecture.  The number of functional units on the chip will 
need to scale out in a 2-D planar geometry and communication locality between the functional 
units will be increasingly important for efficient computation. 

4.2   Instruction Level Parallelism 

Up until recently, microprocessors depended on Instruction Level Parallelism and out-
of-order execution to make implicit parallelism available to a programmer and to hide 
latency. Power and complexity costs make it clear that we cannot depend on out-of-
order instruction streams to hide latency and improve performance.  Instead, we must 
move to more explicit forms of exposing parallelism such as SIMD units and chips 
with many independent CPUs. 

4.3   Instruction Bundling (SIMD and VLIW) 

One way to organize floating point functional units to get implicit parallelism is to 
depend on grouping multiple operations together into SIMD or VLIW bundles.  The 
benefit of such bundling is that they enable finer-grained data sharing among the 
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instructions, which lowers energy costs and controls complexity.  Although SIMD is 
the most popular approach to organizing FPUs today, there may be movement to-
wards a VLIW organization because it is more flexible in instruction mixing. 

The number of SIMD units on x86 chips has doubled in recent years, but the ability 
to fully exploit evern greater widths is questionable.  GPUs also depend on very wide 
SIMD units, but the semantics of the GPU programming model (CUDA for example) 
make it easier to automatically use SIMD or VLIW lanes.  Currently, Nvidia uses 32-
wide SIMD lanes, but there is a pressure to shrink down to 4-8.  Current CPU designs 
have a SIMD width of 4 slots, but will likely move to 8 slots.  Overall, this indicates a 
convergence in the design space towards 4-8 wide instruction bundles (whether it be 
SIMD or VLIW). 

 

 

Fig. 8. Due to the stall in clock speeds, future performance improvements will be from in-
creased explicit parallelism. 2018 systems may have as much as 1 billion way parallelism (from 
DARPA Exascale Report)[2]. 

4.4   Multithreading to Hide Latency 

Little’s Law (equation 3) is derived from general information theory, but has impor-
tant application to understanding the performance of memory hierarchies.  

#outstanding_memory_requests=bandwidth*latency (3) 

In order to fully utilize the available bandwidth of a memory interface, this equation 
must be balanced.  If you have a high bandwidth memory interface, bandwidth will be 
underutilized if there are not enough outstanding memory requests to hide the latency 
term of this equation (latency limited). Since we will no longer be depending on com-
plex out-of-order instruction processors to hide latency in the memory hierarchy, 
there will be increased dependence on hardware multithreading to achieve latency 
hiding. The latency to local memory is 100ns, but typically you don’t have to hide all 
of the time due to cache reuse.  
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In swim-lane #1, manycore chip architectures currently support 2-4-way multi-
threading, and this may increase to 4-8 way multithreading in future architectures 
depending on energy cost.  GPUs currently depend on 48-64-way hardware multi-
threading and will likely support these many threads in the future.  

The consequence for programming models is that the baseline expression of paral-
lelism will require 1 billion-way parallelism to achieve an Exaflop if a 1 GHz clock-
rate is used.  Additional hardware threading required to hide latency will increase the 
amount of parallelism by a factor of 10-100x. 

4.5   FPU Organization 

Floating point used to be the most costly component of a system both in terms of 
design cost and power.  However, today, FPUs use a very small fraction of the area of 
a modern chip design and consume an even smaller fraction of power.  On modern 
systems, a double-precision FMA (fused multiply add) consumes 100 pJ per FMA in 
65nm lithography.  For 11nm technology anticipated for a 2018 system, a double 
precision FMA will consume approximately 10.6pJ/op and take 0.02 mm2 of chip 
surface area.  The FPUs of modern CPUs consume a very small fraction of chip sur-
face area (5-10% of a 400 mm2 die), whereas GPUs see a larger fraction of their sur-
face area developed to FPUs and general ALUs.  A CPU design that consists of many 
lightweight cores (a manycore chip akin to Larrabee, or Tilera) would likely see the 
fraction of die area devoted to FPUs close to that observed on modern GPUs. 

In order to reduce failure rates and component counts, it is desirable to build a sys-
tem that reduces the total number of nodes by maximizing the performance of each 
node. Placing 10,000 FPUs on a chip would only consume 100Watts in this time-
frame, and is entirely reasonable in terms of area and power consumption.  However 
supplying memory bandwidth and capacity to a 10Teraflop chip is the primary barrier 
to this design point.  Without advanced packaging technology and substantial im-
provements in DRAM interface energy efficiency, the upper limit for per-chip per-
formance will likely be 1-2 Teraflops/chip.   

We consider two design points to represent this range. 
 

– Swim Lane 1: 1,000 FPUs per chip 
– Swim Lane 2: 10,000 FPUs per chip 

 

To support full floating point performance, the on-chip register file bandwidth 
would need to supply 64 bytes per op.  Therefore, a 10 Teraflops chip requires  
320TB/s of register file bandwidth and 64TB/s register file bandwidth is needed for a 
1TF chip. The upper limit of feasible off-chip memory bandwidth will be 4TB/s.  
Therefore, the design point for Swim Lane 2 would require O(100) data reuse on chip 
and the design point for Swim Lane 1 would require O(10) data reuse on chip if a 
4TB/s memory interface is used. In both cases, the assumed quantity of on-chip mem-
ory is on the order of 0.5-1GB/chip, so all temporal recurrences necessary to achieve 
on-chip data reuse would need to be captured within this memory footprint. 

For node organizations that use more than one chip for a node, the bandwidth 
would likely be more on the order of 0.5 to 1TB/s to remote DRAM (1/4 to 1/8 of 
local DRAM BW).  Therefore, NUMA effects on a multi-chip node will have a sub-
stantial performance impact. 
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4.6   System on Chip (SoC) Integration 

To reduce power, and improve reliability it is useful to minimize off-chip I/O by inte-
grating peripheral functions, such as network interfaces and memory controllers, 
directly onto the chip that contains the CPUs.  There are fringe benefits, such as hav-
ing the communication adaptor be TLB-coherent with the processing elements, which 
eliminates the need for expensive memory pinning or replicated page tables that is 
required for current high-performance messaging layers.  It also reduces exposure to 
hard-errors caused by mechanical failure of solder joints.  From a packaging stand-
point, the node design can be reduced to a single chip surrounded by stacked memory 
packages, which increases system density. SoC integration will play an increasingly 
important role in future HPC node designs. 

4.7   Alternative Exotic Functional Unit Organizations 

Accelerators and Heterogenous Multicore Processors: Accelerators and heterogene-
ous processing offers some opportunity to greatly increase computational perform-
ance within a fixed power budget, while still retaining conventional processors to 
manage more general purpose components of the computation such as OS services.  
Currently, such accelerators have disjoint memory spaces that are at the other end of a 
PCIe interface, which makes programming them very difficult.   

There is a desire to have these accelerators fully integrated with the host proces-
sor’s memory space.  At low end, accelerators already are integrated in a unified 
memory space, but such integration is difficult at the high-end because of differences 
in the specialized memory technology used for the accelerator and the host processor.  
By 2015 it will be feasible from a market standpoint to integrate scalar cores with 
accelerators to obviate the need to copy data between disjoint memory spaces.  This 
was true for NVidia GPU solutions and possibly for heterogeneous manycore archi-
tectures like Intel’s Larrabee/Knight’s Corner[10]. 

 

FPGAs and Application-Specific Accelerators: Application specific functional unit 
organizations may need to be considered to tailor computation and power utilization 
profiles to more closely match application requirements.  However, the scope of such 
systems may be limited and therefore impact the cost-effectiveness of the resulting 
system design.  FPGAs enable application-tailored logic to be created on-the-fly, but 
are currently too expensive.  Otherwise, FPGA’s could be used to implement applica-
tion-specific primitives.   

There is some evidence that power considerations will force system architects to 
rely on application-tailored processor designs in the 2020 timeframe. Economics will 
likely constrain the number of application tailored processor designs to a small num-
ber and the high performance computing marketplace may not be of sufficient size to 
warrant its own application-tailored processor.  

5   Cache Hierarchy 

5.1   Levels of Cache Hierarchy 

There has been general agreement among computer companies that there will be  
2-4-levels of on-chip hierarchy that can be managed explicitly or flipped to implicit 
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state.  The reason for a multi-level hierarchy is mostly governed by the cost of data 
movement across the chip.  Moving data 1 mm across a chip costs far less than a 
floating point operation, but movement of 20mm (to the other end of the chip) costs 
substantially more than a floating point operation.  Consequently, computation and 
memory hierarchy on a chip will likely be grouped into clusters or hierarchies of 
some form to exploit spatial locality of data accesses. There will need to be more 
effort to create Hardware Block Transfer support to copy data between levels of the 
memory hierarchy with gather/scatter (multi-level DMA). 

5.2   Private vs. Shared Caches 

Most codes make no use of cache coherence.  So it is likely the cache hierarchy will 
be organized to put most of the on-chip memory into private cache.  Performance 
analysis indicate less sharing is best (ie. Code written in threads to look like MPI 
generally performs better).   

 
Fig. 9. Processor cores or functional units will likely be organized into groups or a hierarchy in 
order to exploit spatial locality of data accesses 

5.3   Software Managed Caches vs. Conventional Caches 

Automatically managed caches virtualize the notion of on-chip and off-chip memory, 
and are therefore invisible to current programming models. However, the cost of 
moving data off-chip is so substantial, that virtualizing data location in this manner 
wastes energy and substantially reduces performance. Therefore, there has been in-
creasing interest in explicit software management of memory, such as the Local-
stores used by the STI Cell processor and by GPUs.  Over the next decade, explicitly 
managed on-chip memory will become mainstream in conventional CPU designs as 
well. 

However, we have not found the right abstraction for exposing software-controlled 
memories in our existing programming models.  To support an incremental path for 
existing applications, these explicitly managed memory hierarchies will need to co-
exist with conventional automatically managed caches. These software-managed 
caches may depend on the ability to switch dynamically from automatically managed 
caches to software-managed caches. Switchable, and dynamically partitionable caches  
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are already demonstrated in the Fermi GPUs, but will likely be seen in conventional 
multicore architectures as well. 

When data is placed into an explicitly controlled cache, it can be globally visible to 
other processors on the chip, but is not visible to the cache-coherence protocol.  
Therefore, if the path to higher performance involves keeping more data in these 
explicitly managed caches, then it means cache-coherence (and the notion of an SMP 
with it) cannot be part of the high-performance path.  Programming language design-
ers must consider how to enable expression of on-chip parallelism without an 
SMP/cache-coherent model. 

6   Intra-node Communication (Networks-on-Chip) 

The primary area of growth in parallelism is explicit parallelism on-chip.  Whereas 
the number of nodes in an Exascale system is expected to grow by a factor of 10x 
over the next decade, on-chip parallelism is expected to grow by a factor of 100x.  
This requires reconsideration of on-chip organization of CPU cores, and the semantics 
of inter-processor communication. 

6.1   Cache Coherence (or Lack Thereof) 

It is likely that cache-coherence strategies can scale to dozens of processing elements, 
but the cost and latency of data movement on chip would make cache-coherence an 
inefficient method for interprocessor communication for future chip designs.  In all 
likelihood cache-coherence could be used effectively in clusters or sub-domains of the 
chip (as illustrated in figure 7), but is unlikely be effective if extended across a chip 
containing thousands of cores.  It is more likely that global memory addressing with-
out cache-coherence will be supported with synchronization primitives to explicitly 
manage memory consistency.   

It is unlikely that cache-coherence will be eliminated completely, but there will 
need to be careful consideration of the trade-offs of the size of the coherency domain 
with the magnitude of NUMA (Non-Uniform Memory Access) effects.  For a fixed 
power budget, you can offer users a cluster of cache-coherent domains that have 
minimal NUMA effects, or very large numbers of cores in the cache-coherent domain 
that expose the programmer to large NUMA effects. A chip with minimal NUMA 
effects and small coherence domain could be programmed without substantial atten-
tion to data locality, but would derive less benefit from surface-to volume ratios if the 
coherence-domain is small.  There is some opportunity in language support for better 
implicit locality management in both cases.  Creating a chip that has a large coherence 
domain and minimal NUMA effects would require a substantial increase in power 
budget to over-design the on-chip interconnection network.   

6.2   Global Address Space 

Partitioned Global Address Space (PGAS) programming models, including the HPCS 
programming languages benefit from Global Address Space (GAS) to ensure a com-
pact way to reference remote memory across the machine.  PGAS models are willing 
to accept global addressing without SMP cache-coherence on the node. Therefore, 
there will likely be support for incoherent global addressing for small-scale systems, 
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but will require hardware investment to scale to larger systems.  It is not clear how 
many address bits will be supported in mainstream implementation.  From a technol-
ogy standpoint, it is entirely feasible to support global addressing within context of 
Exascale.  However, larger scale global addressing schemes will not naturally occur 
without investment. Global addressing only makes sense with hardware support for 
sync, which is also investment dependent.  

6.3   Fine Grained Synchronization Support 

Future programming models will need much finer-grained synchronization features 
that could directly map to programming language primitives.  These features could 
greatly improve the efficiency of fine-grained on-chip parallelism. 

One option is moving atomics memory operations (AMOs) to memory controllers 
and full empty bits on-chip.  Moving atomics as close to memory as possible makes 
sense from a power and performance standpoint, but would force us to give up some 
temporal recurrences since the data operated on by the atomics would not pass 
through the cache hierarchy.   

An alternative approach to supporting these atomics is to use an intermediate level 
of the memory hierarchy where synchronization constructs get enforced/resolved.  For 
example, you could imagine an L2 cache on-chip that is specifically dedicated to  
fine-grained inter-processor synchronization and atomic memory operations. This 
approach would potentially encode synchronization state information or other coordi-
nating state using the ECC words of the memory system, because it cannot be held  
on-chip.  All of these options are feasible, but would require close interaction with 
application developers and programming model designers to determine which ap-
proach will be most effective. 

7   Power Management 

Thermally limited designs force compromises that lead to highly imbalanced comput-
ing systems (such as reduced global system bandwidth). The design compromises 
required for power-limited logic will reduce system bandwidth and consequently 
reduce delivered application performance and greatly limit the scope and effective-
ness of such systems.  

From an applications perspective, active power management techniques improve 
application performance on systems with a limited power budget by dynamically 
directing power usage only to the portions of the system that require it.  For example, 
a system without power management would melt if it operated memory interfaces at 
full performance while also operating the floating point unit at full performance ⎯ 
forcing design compromises that limit the memory bandwidth to 0.01 bytes/flop ac-
cording to the DARPA projections.  However, in this thermally limited case you can 
deliver higher memory bandwidth to the application for the short periods of time by 
shifting power away from other components. Whereas the projected bandwidth ratio 
for a machine would be limited to 0.01 bytes/flop without power management,  
the delivered bandwidth could be increased to 1 byte/flop for the period of time when 
the application is bandwidth limited by shifting the power away from floating point 
(or other components that are under-utilized in the bandwidth-limited phase of an 
algorithm). Therefore, power management is an important part of enabling better 
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delivered application performance through dynamic adjustment of system balance to 
fit within a fixed power budget.  

Currently, changes between power modes take many clock-cycles to take effect. In 
a practical application code that contains many solvers, the power modes cannot 
switch fast enough to be of use.  Technology that would enable power management 
systems to switch to low-power modes within a single clock cycle may emerge in the 
2015 timeframe.  However, there is still a lot of work required to coordinate switching 
across a large-scale HPC system.  Without system scale coordination of power modes, 
this approach will not be effective. 

Current power management features are primarily derived from consumer technol-
ogy, where the power savings decisions are all made locally.  For a large parallel sys-
tem, locally optimal solutions can be tremendously non-optimal at the system scale. 
When nodes go into low-power modes opportunistically based on local decisions, it 
creates jitter that can substantially reduce system-scale performance.  For this reason, 
localized automatic power management features are often turned off on production 
HPC systems. Moreover, the decision to change system balance dynamically to con-
serve power requires advance notice because there is latency for changing between 
different power modes.  The control loop for such a capability requires a predictive 
capability to make optimal control decisions. Therefore, new mechanisms that can 
coordinate these power savings technologies at system scale will be required to realize 
an energy-efficiency benefit without a corresponding loss in delivered performance. 

A complete adaptive control system requires a method for sensing current resource 
requirements, making a control decision based on an accurate model for how the 
system will respond to the control decision, and then distributing that control decision 
in a coordinated fashion. Currently the control loop for accomplishing this kind of 
optimal control for power management is fundamentally broken. Predictive models 
for response to control decisions are generally hand-crafted (a time-consuming proc-
ess) for the few examples that currently[11].  There is no common expression of pol-
icy or objective.  There is no comprehensive monitoring or data aggregation.  More 
importantly, there is almost NO tool support for integration of power management 
into libraries and application codes.   

Without substantial investments to create system-wide control systems for power 
management, standards to enable vertical and horizontal integration of these capabili-
ties, and the tools to facilitate easier integration of power management features into 
application codes, there is little chance that effective power management technologies 
will emerge.  The consequence will be systems that must compromise system balance 
(and hence delivered application performance) to fit within fixed power constraints, 
or systems that have impractical power requirements. 

7.1   Node-Scale Power Management 

Operating systems must support Quality-of-Service management for node-level ac-
cess to very limited/shared resources.  For example, the OS must enable coordi-
nated/fair sharing of the memory interface and network adaptor by hundreds or even 
thousands of processors on the same node. Support for local and global control deci-
sions require standardized monitoring interfaces for energy and resource utilization 
(PAPI for energy counters). Standard control and monitoring interfaces enable adapt-
able software to handle diversity of hardware features/designs.  Future OS’s must also 



18 J. Shalf, S. Dosanjh, and J. Morrison 

manage heterogeneous computing resources, and manage data movement and locality 
in memory hierarchy [13].   

7.2   System-Scale Power Management 

We need to develop power Performance monitoring and aggregation that scales to 1B+ 
core system. System management services require standard interfaces to enable coor-
dination across subsystems and international collaboration on component development. 
Many power management decisions must be executed too rapidly for a software im-
plementation, so must be expressed as a declarative policy rather than a procedural 
description of actions.  Therefore, policy descriptions must be standardized to do fine-
grained management on chip. This requires standards for specifying reduced models of 
hardware power impact and algorithm performance to make logistical decisions about 
when and where to move computation as well as the response to adaptations. This 
includes analytical power models of system response and empirical models based on 
advanced learning theory. We must also develop scalable control algorithms to bridge 
gap between global and local models. Systems to aggregate sensor data from across the 
system (scalable data assimilation and reduction), make control decisions and distrib-
ute those control decisions in a coordinated fashion across large scale machines are 
needed. Both online and offline tuning options based on advanced search pruning heu-
ristics should be considered. 

7.3   Energy Aware Algorithms 

New algorithms must base order of complexity on energy cost of operations rather 
than FLOPs. A good example of this approach is communication-avoiding algo-
rithms, which trade-off FLOPS for communication to save energy.  However, the 
optimal trade-off is very context specific. There would need to be some methodology 
to annotate code with a parameterized model of energy consumption for different 
architectures so that the trade-offs could be computed analytically for different sys-
tems. Alternatively, a persistent database could collect runtime information to build 
up an empirical model of energy consumption for each basic-block of code. Standard-
izing the approach to specifying or building lightweight analytical models to predict 
response to resource adjustment will be important to this effort. 

7.4   Library Integration with Power Management Systems 

Library designers need to use their domain-specific knowledge of the algorithm to 
provide power management and policy hints to the power management infrastructure. 
This research agenda requires performance/energy efficiency models and power man-
agement interfaces in software libraries to be standardized.  This ensures compatibil-
ity of the management interfaces and policy coordination across different libraries 
(horizontal integration) as well as supporting portability across different machines 
(vertical integration). 

7.5   Compiler Assisted Power Management 

Compilers and code generators must be able to automatically instrument code for 
power management sensors and control interfaces to improve the programmability of 
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such systems.  Compiler technology can be augmented to automatically expose 
“knobs for control” and “sensors” for monitoring of non-library code.  A more ad-
vanced research topic would be to find ways to automatically generate reduced per-
formance and energy consumption models to predict response to resource adaptation. 

7.6   Application-Directed Power Management 

Applications require more effective declarative annotations for policy objectives and 
interfaces to coordinate with advanced power-aware libraries and power management 
subsystems. 

7.7   System “Aging” 

Today’s systems operate with clock rates and voltages in guard margins to account for 
chip “wear-out”.  By employing slight clock speed reduction over the lifetime of the 
system, a 5% power savings can be achieved instead of using guard bands to account 
for silicon aging effects. 

7.8   Voltage Conversion and Cooling Efficiency 

Another key area for power reduction is to design hardware to minimize the losses in 
voltage regulation and power conversion components.  For example, the D.E. Shaw 
system had 30% efficiency loss just from the power conversion stages going from 
480V to lowest voltage level delivered to chips. 

There are opportunities to use smart-grid strategies to reduce energy consumption. 
Improve data center efficiencies ( 5-10% savings in total power consumption) have 
been demonstrated using this approach [13].  Smart grid technology can rapidly shift 
power distribution to balance power utilization across the system. 

Exascale systems should be water cooled (some may be warm water cooled) be-
cause it is substantially more efficient that air cooling.   

8   Fault Detection and Recovery 

There is a vibrant debate regarding how much responsibility for fault resilience will 
need to be handled by applications. As a baseline, nearly all applications running on 
extreme-scale platforms already incorporate some form of application-based defen-
sive I/O (checkpointing).  The discussion is primarily concerns shifting balance of 
responsibility between hardware and software, and its effect on how much additional 
burden beyond conventional application-driven checkpointing will be required.  Sys-
tem architects are keenly aware that applications writers prefer not to have have addi-
tional burdens placed upon them. 

The circuit hardening techniques required to handle resiliency entirely in hardware 
are well understood by industry circuit designers for milspec/radiation-hardened parts. 
Shifting the responsibility more toward the hardware will have a cost in performance 
or in power consumption (for example, if you add redundancy to harden critical data 
paths). However, the biggest concern is how far such parts will depart from high-
volume mainstream components that will benefit from sharing NRE costs across a 
larger set of applications. The current failure rates of nodes are primarily defined by 



20 J. Shalf, S. Dosanjh, and J. Morrison 

market considerations rather than technology. So perhaps it is better to project reli-
ability based on market pressure rather than technology scaling. 

From the standpoint of technology scaling, the sources of transient errors will in-
crease by a factor of 100 to 1000x.  However, offering a laptop or even cell phone that 
fails at a 1000x higher rate than today is wholly and entirely impractical from the 
standpoint of a mainstream technology vendor. Therefore industry will be highly 
motivated to keep per-node soft error rates from degrading. 

 

1. Moore's law die shrinks will deliver a 100x increase in processors per node in 
the 11 years between the debut of Petascale systems and the debut of Exascale 
in 2018. 

2. We will need to increase the number of nodes by 10x to get to an Exaflop by 
2018. 

3. Therefore, market pressure will likely result in a system that is 10x worse than 
today’s extreme-scale systems because of the increased node (and hence com-
ponent) count. 

 

With 10x, localized checkpointing techniques (such as LLNL’s SCR[15]) may be 
sufficient.  As long as users move to a standardized API for user-level checkpointing, 
these techniques would be comparatively non-invasive since most user codes already 
understand the importance of defensive I/O (and message logging/replay techniques 
are transparent to the application). 

HPC traditionally acquires network switches, disks, etc from a marketplace that 
isn’t as focused on reliability.  We still need a better understanding of the reliability 
cost trade-offs of these choices. An MTTI of 1 day is achievable for an Exascale sys-
tem in the 2018 timeframe if the FIT rate per node (Failures in time per billion hours 
of operation for transient uncorrectable errors) stays constant.  

8.1   Hard (Permanent) Errors 

Hard errors, which are also known as permanent errors, depend on a different  
mitigation strategy than soft errors. Hard errors might be partly accommodated by 
incorporating redundant or spare components.  For example, building extra cores into 
a processor chip that can be pressed into service to replace any failed processors on 
chip. System on Chip designs, described in the Node Architecture section above, can 
greatly reduce the hard-error rate by reducing the number of discrete chips in the 
system.  Both sockets and solder-joints are a large source of hard-failures – both of 
which are minimized if all peripheral components are integrated onto a single chip. 
This approach has been employed successfully on BlueGene systems to achieve a  
10-15x lower hard-error rate than conventional clusters. 

8.2   Soft (Transient) Errors 

The soft (transient) error rate refers to transient errors that affect the Mean time be-
tween application interruption (MTTI). The MTTI is any failure that requires applica-
tion remedial action as opposed to errors that are hidden from the application by resil-
ience mechanism in the hardware or the system software. The MTTI can be much 
better, using mechanisms a supplier can provide.  



 Exascale Computing Technology Challenges 21 

It can be useful if the application does some self-checking with a common API to 
facilitate error detection.  Defining a common API for error detection and resilience 
would help provide uniformity of semantics and innovation of mechanism across 
multiple vendor platforms. Software approaches for managing error detection and 
resilience can reduce dependence on hardware checking mechanisms, which can save 
on power and cost of the system.  For example a code could run duplex calculations to 
self-check could be alternative approach to error detection. 

8.3   Node Localized Checkpointing 

Localized checkpointing to node-integrated non-volatile storage can accommodate 
O(10 day) uncorrectable soft errors, but failure characteristics of nonvolatile node-
localized storage must be far lower that current commodity parts would support.  
Using increased redundancy and extensions to Reed-Solomon error correction encod-
ings could make high-volume commodity NVRAM components suitable for node-
localized checkpointing.   

9   Interconnection Networks 

The path towards realizing next-generation petascale and exascale computing is in-
creasingly dependent on building supercomputers with unprecedented numbers of 
processors. To prevent the interconnect from dominating the overall cost of these 
ultra-scale systems, there is a critical need for scalable interconnects that capture the 
communication requirements of ultrascale applications. Future computing systems 
must rely on development of interconnect topologies that efficiently support the un-
derlying applications' communication characteristics. It is therefore essential to under-
stand high-end application communication characteristics across a broad spectrum of 
computational methods, and utilize that insight to tailor interconnect designs to the 
specific requirements of the underlying codes. 

9.1   Topology 

Throughout the 1990’s and early 2000’s, high performance computing (HPC) systems 
implementing fully-connected networks (FCNs) such as fat-trees and crossbars have 
proven popular due to their excellent bisection bandwidth and ease of application map-
ping for arbitrary communication topologies. However, as supercomputing systems 
move towards tens or even hundreds of thousands of nodes, FCNs quickly become 
unfeasibly expensive in terms of wiring complexity, power consumption, and cost[15]. 
The two leading approaches discussed at the meeting were multi-dimensional Torii and 
Dragonfly[17] as feasible scalable interconnect topologies.  Both approaches present 
feasible wiring and cost-scaling characteristics for an exascale system.  However, it is 
unclear what portion of scientific computations have communication patterns that can 
be efficiently embedded onto these types of networks.  

The Dragonfly depends on availability of high-radix (radix 64 or greater) router 
technology to implement a tapered CLOS interconnect topology.  The Dragonfly organ-
izes the wiring pattern for the CLOS to localize the high-density wiring within individ-
ual cabinets and taper bandwidth for the longer-haul connections.  The high-density 
wiring within a cabinet is amenable to lower-cost copper backplanes to minimize use of 



22 J. Shalf, S. Dosanjh, and J. Morrison 

discrete wires. Long-haul connections between cabinets would rely on optical transceiv-
ers. The tapering of bandwidth for the long-haul connections keeps wiring complexity 
& cost within practical limits, and results in power and bisection bandwidth characteris-
tics that are similar to the Torus and hypercube. 

Another viable technology option is low-radix torus and hypercube interconnects, 
which rely on low-degree (6-12 port) routers and exploit spatial locality in application 
communication patterns. The growth in system parallelism has renewed interest in 
networks with a lower topological degree, such as mesh and torus interconnects (like 
those used in the IBM BlueGene and Cray XT series), whose costs rise linearly with 
system scale.  Indeed, the number of systems using lower degree interconnects such 
as the BG/L and Cray Torus interconnects has increased from 6 systems in the No-
vember 2004 list to 58 systems in the more recent Top500 list of June 2009[18].  
Although there has been a move towards higher-dimensional torus and hypercube 
networks, in the 2018 timeframe computing system designs may be forced back to-
wards lower-dimensional (4D or 3D) designs in order to keep control of wiring com-
plexity & wire lengths (maximizing the use of wire paths that can be embedded into 
board designs.  

9.2   Effect of Interconnect Topology on Interconnect Design 

Practical wiring, cost and power constraints force us away from fully-connected net-
works. Both networks (Dragonfly[17] and Torus), will require algorithms and other 
support software that are more aware of the underlying network topology to make the 
most efficient use of the available network bandwidth at different levels of the net-
work hierarchy. Both networks have similar bisection bandwidth characteristics when 
compared with similar link performance and message injection bandwidth.  

10   Conclusions 

Addressing the technology challenges discussed in this report and accelerating the pace 
of technology development will require focused investments to achieve Exascale com-
puting by 2018. Achieving an Exascale level of performance by the end of the decade 
will require applications to exploit on the order of a billion-way parallelism provided 
by an envisioned exascale system. This is in sharp contrast to the approximately quar-
ter million-way parallelism in today’s petascale systems. Node architectures are ex-
pected to change dramatically in the next decade as power and cooling constraints limit 
increases in microprocessor clock speeds. Consequently computer companies are dra-
matically increasing on-chip parallelism to improve performance. The traditional dou-
bling of clock speeds every 18-24 months is being replaced by a doubling of cores, 
threads or other parallelism mechanisms. Exascale systems will be designed to achieve 
the best performance within both power and cost constraints.  In addition, hardware 
breakthroughs will be needed to achieve useful exascale computing later this decade, at 
least within any reasonable power budget. Applications and algorithms will need to 
change and adapt as node architectures evolve. They will need to manage locality and 
perhaps resilience to achieve high performance. A key element of the strategy as we 
move forward is the co-design of applications, architectures and programming envi-
ronments as shown in Figure 1. Much greater collaboration between these communities  
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will be needed to overcome the key Exascale challenges. There is an unprecedented 
opportunity for application and algorithm developers to influence the direction of fu-
ture architectures to reinvent computing for the next decade. 

 

 

Fig. 10. This figure illustrates the bandwidth tapering characteristics of the communication 
patterns of 8 key DOE applications when mapped optimally to a multi-layer hierarchical net-
work. Many applications do not fully utilize the upper-layers of the interconnect, meaning that 
full bisection is not required.  [15] 

Table 1. Overview of technology scaling for exascale systems. Swimlane 1 represents an 
extrapolation of manycore system design point whereas swimlane 2 represents scaling of a GPU 
design point. 

Systems 2009 2018 Swimlane 1 2018  
Swim-
Lane 2 

System peak 2 Peta 1 Exa Same as 
Swim-
lane 1 

Power 6 MW ~20 MW Same as 
SL1 

System memory 0.3 PB 32 - 64 PB Same as 
SL1 

Node performance 125 GF 1,2TF 10TF 
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Table 1. (continued) 

Systems 2009 2018 Swimlane 1 2018  
Swim-
Lane 2 

Interconnect Latency (for 
longest path) 

1-5usec 
(limited by overhead at 
endpoints) 

0.5-1usec 
(speed of light) 

Same 

Memory Latency 150-250 clock cycles  
(~70-100ns) 

100-200 clock cycles 
(~50ns) 

same 

Node memory BW 25 GB/s 0.4TB/s 4-5TB/s 

Node concurrency 12 O(1k) O(10k) 

Total Node Interconnect 
BW 

3.5 GB/s 100-400GB/s 
(1:4 or 1:8 from memory 
BW) 

2TB/s 

System size (nodes) 18,700 O(1M) O(100,0
00) 

Total concurrency 225,000 O(100M)*10 for latency 
hiding 

O(100M
)*100 
for 
latency 
hiding 

Storage 15 PB 500-1000 PB (>10x 
system memory is min) 

Same as 
SL1 

IO 0.2 TB 60 TB/s Same as 
SL1 
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Abstract. The Par Lab started in 2008, based on an earlier technical report “The 
Berkeley View” on the parallel computing challenge. (K. Asanovic, R. Bodik, 
B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. 
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The landscape of parallel 
computing research: A view from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, December 18 
2006.) This talk gives an update on where we are two years in the Par Lab. We 
picked five applications to drive our research, and believe they collectively cap-
ture many of the important features of future client applications even if they 
themselves do not become the actual future “killer app”. The Personalized 
Medicine application focuses on detailed modeling of individual’s responses to 
treatments, representing the important health market. The Music application 
emphasizes real-time responsiveness to rich human input, with high-
performance many-channel audio synthesis. The Speech application focuses on 
making speech input work well in the real-world noisy environments where 
mobile devices will be operated. The Content-Based Image Recognition (CBIR) 
application represents the growing practical use of machine vision. Finally, the 
Parallel Web Browser is currently perhaps the most important single application 
on client devices, as well as representative of many other interactive rich-
document processing tasks.  

Our first step in attacking the parallel programming challenge was to analyze 
a wide range of applications, including workloads from embedded computing, 
desktop computing, games, databases, machine learning, and scientific comput-
ing, as well as our five driving applications. We discovered a surprisingly com-
pact set of recurring computational patterns, which we termed “motifs”. We 
have greatly expanded on this work, and now believe that any successful soft-
ware architecture, parallel or serial, can be described as a hierarchy of patterns. 
We divide patterns into either computational patterns, which describe a compu-
tation to be performed, or structural patterns, which describe how computations 
are composed. The patterns have proven central to ourresearch effort, serving as 
both a common human vocabulary for multidisciplinary discussions spanning 
application developers to hardware architects, as well as an organizing structure 
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for software development. Another organizing principle in our original proposal 
was to divide the software development stack into two layers: efficiency and 
productivity. Programmers working in the efficiency layer are generally experts 
in achieving high performance from the underlying hardware, but are not neces-
sarily knowledgeable of any given application domain. Programmers working 
in the productivity layer are generally knowledgeable about an application do-
main, but are less concerned with hardware details. The patterns bridge these 
two layers. Efficiency programmers develop libraries and frameworks that effi-
ciently implement the standard patterns, and productivity programmers can de-
compose an application into patterns and use high-level languages to compose 
corresponding libraries and frameworks to form applications.  

To improve the quality and portability of efficiency-level libraries, we pro-
posed to leverage our earlier work on autotuning. Autotuning is an automatic 
search-based optimization process whereby multiple variants of a routine are 
generated and empirically evaluated on the hardware platform. We have also 
included a major effort on parallel program correctness to help programmers 
test, verify, and debug their code. Different correctness techniques apply at the 
efficiency layer, where low-level data races and deadlocks are of concern, and 
at the productivity layer, where we wish to ensure semantic determinism and 
atomicity. Our whole pattern-based component approach to the software stack 
hinges on the ability to efficiently and flexibly compose software modules. We 
developed a low-level user-level scheduling substrate called “Lithe” to support 
efficient sharing of processing resources between arbitrary modules, even those 
written in different languages and to different programming models.  

Our operating system and architecture research is devoted to supporting the 
software stack. The OS is based on space-time partitioning, which exports sta-
ble partitions of the machine resources with quality-of-service guarantees to an 
application, and two-level scheduling, which allows a user-level scheduler, such 
as Lithe, to perform detailed application-specific scheduling within a partition. 
Our architecture research focuses on techniques to support OS resource parti-
tioning, performance counters to support application adaptivity, software-
managed memory hierarchies to increase memory efficiency, and scalable co-
herence and synchronization mechanisms to lower parallel system overheads. 
To experiment with the behavior of our new software stack on our new OS and 
hardware mechanisms, we have developed an FPGA-based simulation envi-
ronment, “RAMP Gold”. By running our full application and OS software envi-
ronment on our fast architectural simulator, we can quickly iterate across levels 
in our system stack.  
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Abstract. In the post-genome era, the integration of molecular and cellular 
findings in studies into the functions of organs and individuals is recognized as 
an important field of medical science and physiology. Computational modeling 
plays a central role in this field, which is referred to as Physiome. However, 
despite advancements in computational science, this task remains difficult. In 
addition to coupling multiple disciplines, including electricity, physical 
chemistry, solid mechanics and fluid dynamics, the integration of events over a 
wide range of scales must also be accomplished. Our group, including clinical 
practitioners, has been tackling this problem over several years, with a focus on 
the human heart.  

The morphology of our heart model is reconstructed from human multi-
detector computed tomography data and discretized using the finite element 
method. For the electrophysiology simulation, a composite voxel mesh with 
fine voxels in and around the heart and coarse voxels covering the torso is 
adopted to solve the bidomain equation. Following the excitation of a sinus 
node, the simulator reproduces the excitation propagation and depolarization of 
the membrane potentials of virtual cells sequentially in the atria, conduction 
system, and ventricles. The mechanical simulation for the interaction between 
the heart wall and intracavitary blood flow is performed on a tetrahedral mesh. 
The Ca2+ concentration data obtained from the electrophysiology model are 
applied to the molecular model of sarcomere dynamics to compute the 
contraction force of every element. This results in the synchronous contraction 
of the heart and blood flow. 

Thus far, we have been able to retrieve and present the data in the same way 
as clinical diagnostic tools, such as ECG, UCG, and magneto-cardiogram in our 
simulation studies. These data are in good agreement with the clinical data for 
both normal and diseased heart models, thus suggesting their potentials for 
diagnostic support. 

However, a more important aspect of the simulation involves modeling the 
underlying mechanism driving the myocardium, i.e., the origin of the pulsation 
of the heart, which includes electrophysiological regulation and cross-bridge 
kinetics in the cardiac cells. To integrate such microscopic phenomena with the 
macroscopic function of the organ in a seamless manner, the cardiac cells are 
also modeled using the finite element method, based on the cell physiology for 
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every finite element in the heart model. The mathematical linkage is realized 
using the so-called homogenization method. All the cell models and the heart 
model are then solved simultaneously, because the instantaneous states of the 
macroscopic model, such as the strains and strain rates over the heart wall, also 
regulate each cell response. It is apparent that the total number of degrees of 
freedom of all the cell models becomes prohibitively large.  

We will introduce basic algorithms and parallel computational techniques 
applied to the above mentioned multi-physics and multi-scale simulations.  
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Abstract. During the last two decades, giant strides have been achieved in many 
aspects of Computational Engineering. Higher-fidelity mathematical models, bet-
ter approximation methods, and faster algorithms have been developed for many 
time-dependent applications. SIMD, SPMD, MIMD, coarse-grain, and fine-grain 
parallel processors have come and gone. Linux clusters are now ubiquitous, cores 
have replaced CEs, and GPUs have shattered computing speed barriers. Most im-
portantly, the potential of high-fidelity physics-based simulations for providing 
deeper understanding of complex engineering systems and enhancing system per-
formance has been recognized in almost every field of engineering. Yet, in many 
engineering applications, high-fidelity time-dependent numerical simulations are 
not performed as often as needed, or are more often performed in special circum-
stances than routinely. The reason is very simple: these simulations remain too 
computationally intensive for time-critical operations such as design, design opti-
mization, and active control. Consequently, the impact of computational sciences 
on such operations has yet to materialize. Petascale or exascale computing alone 
is unlikely to make this happen. Achieving this objective demands instead a 
game-changing computational technology that bridges both ends of the computing 
spectrum. This talk will attempt to make the case for this pressing need and out-
line a candidate computational technology for filling it that is based on model re-
duction, machine learning concepts, trained data bases, and rigorous interpolation 
methods. It will also illustrate it with preliminary results obtained from its applica-
tion to the support of the flutter flight testing of a fighter aircraft and the aerody-
namic optimization of Formula 1 car. 
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Abstract. HPC is entering a new phase in system structure and operation driven 
by a combination of technology and architecture trends. Perhaps foremost are 
the constraints of power and complexity that as a result of the at-lining of clock 
rates relies on multicore as the primary means by which performance gain is 
being achieved with Moore's Law. Indeed, for all intense and purposes, 
“multicore” is the new “Moore's Law" with steady increases in the number of 
cores per socket. Added to this are the highly multithreaded GPU components 
moving HPC into the heterogeneous modality for additional performance gain. 
These dramatic changes in system architecture are forcing new methods of use 
including programming and system management. Historically HPC has 
experienced five previous phase changes involving technology, architecture, 
and programming models. The current phase of two decades is exemplified by 
the communicating sequential model of computation replacing previous vector 
and SIMD models. HPC is now faced with the need for new effective means of 
sustaining performance growth with technology through rapid expansion of 
multicore with anticipated structures of hundreds of millions of cores by the end 
of this decade delivering Exaflops performance. This presentation will discuss 
the driving trends and issues of the new phase change in HPC and will discuss 
the ParalleX execution model that is serving as a pathfinding framework for 
exploring an innovative synthesis of semantic constructs and mechanisms that 
may serve as a foundation for computational systems and techniques in the 
Exascale era. This talk is being given just as DARPA is initiating its UHPC 
program and DOE is launching additional programs such as their X-stack all 
aimed at catalyzing research in to the challenging area. 
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Abstract. As computational science applications grow more parallel
with multi-core supercomputers having hundreds of thousands of com-
putational cores, it will become increasingly difficult for solvers to scale.
Our approach is to use hybrid MPI/threaded numerical algorithms to
solve these systems in order to reduce the number of MPI tasks and
increase the parallel efficiency of the algorithm. However, we need effi-
cient threaded numerical kernels to run on the multi-core nodes in order
to achieve good parallel efficiency. In this paper, we focus on improving
the performance of a multithreaded triangular solver, an important ker-
nel for preconditioning. We analyze three factors that affect the parallel
performance of this threaded kernel and obtain good scalability on the
multi-core nodes for a range of matrix sizes.

1 Introduction

1.1 Motivation

With the emergence of multi-core processors, most supercomputers are now hy-
brid systems in that they have shared memory multi-core nodes that are con-
nected together into a larger distributed memory system. Although for many
numerical algorithms the traditional message programming model is sufficient
to obtain good scalability, some numerical methods can benefit from an hybrid
programming model that uses message passing between the nodes with a shared
memory approach (e.g., threads) within the node. Scalable threaded algorithms
that run efficiently on the node are essential to such a hybrid programming
model and are the emphasis of our work in this paper.

Solvers are a good example of numerical algorithms that we believe can benefit
from a hybrid approach. Solver implementations based on a flat MPI program-
ming model (where subcommunicators are not utilized) often suffer from poor
scalability for large numbers of tasks. One difficulty with these approaches is that
with domain decomposition based preconditioners, the number of iterations per
linear solve step increase significantly as the number of MPI tasks (and thus
the number of subdomains) becomes particularly large. We also see this behav-
ior with scalable preconditioners such as an algebraic multilevel preconditioner.
Figure 1 shows an example of this difficulty for Charon, a semiconductor de-
vice simulation code [1,2,3], with a three level multigrid preconditioner. As the
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(a) Charon timing breakdown (b) Increase in iterations

Fig. 1. Strong scaling analysis of Charon on Sandia Tri-Lab Linux Capacity Cluster
for 28 million unknowns

number of MPI tasks increases, the number of linear solver iterations increases
(Figure 1(b)). Figure 1(a) shows that these extra iterations require an increas-
ingly higher percentage of the total runtime as the number of MPI tasks increase,
resulting in a degradation in the parallel performance.

By having fewer (but larger) subdomains, better convergence can be obtained
for the linear solver. With fewer subdomains, the solvers for these larger sub-
domains must be parallel in order to maintain the overall scalability of the
algorithm. This leads to a two-level model of parallelism, where MPI is used
to communicate between subdomains and a second level of parallelism is used
within each subdomain. One approach is to also use MPI to obtain parallelism
at the subdomain level (e.g., [4]). Another approach, which we explore in this
paper, utilizes multithreading to obtain parallelism at the subdomain level. This
approach is limited in that each subdomain does not extend beyond the pro-
cessor boundaries. However, we feel that as the number of cores per processor
continues to increase, this will become less important and threads may be a
better approach for exploiting the shared memory architecture on the node.

Keeping the iteration count low is not sufficient, however, to obtain perfor-
mance gains over MPI-only implementations. The shared memory numerical
kernels that run on each multi-core node also need to be scalable. It is particu-
larly important to have a scalable shared memory implementation of a triangular
solver to run on each node since this kernel will be executed for each iteration
of the linear solver. The focus of this paper is to study the various factors that
affect the performance of this shared memory triangular solver kernel in the
pursuit of a sufficiently scalable algorithm.

1.2 Level-Set Triangular Solver

We focus our attention on improving the performance of a level-set triangular
solver for sparse matrices as described in [5]. Below we describe the process for
lower triangular matrices, but the upper triangular case is analogous. First, we
express the data dependencies of the triangular solve for the lower triangular
matrix L as a directed acyclic graph (DAG). A vertex vi of this DAG corre-
spond to the vector entry xi that will be calculated in the triangular solve. The
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directed edges in the DAG represent data dependencies between the x vector
entries, with a directed edge connecting vi to vj if and only if xi is needed to
compute xj . The level-sets of this DAG represent sets of row operations in the
triangular solve operation that can be performed independently. Specifically, the
ith level-set is a set of vertices that have incoming edges only from vertices of the
previous i−1 levels (the corresponding xi entries are only dependent on x vector
entries in previous levels). We calculate these level-sets from the DAG using a
variant of breadth-first search. Permuting the system symmetrically so that the
rows/columns are in order of the level-sets, we obtain the following permuted
matrix,

L̃ = PLPT =

⎡⎢⎢⎢⎢⎢⎣
D1
A2,1 D2
A3,1 A3,2 D3

...
...

...
. . .

Al,1 Al,2 Al,3 . . . Dl

⎤⎥⎥⎥⎥⎥⎦ ,

where l is the number of level-sets. This symmetrically permuted matrix is still
triangular since x̃i can only depend on those x̃j calculated in a previous level with
this dependency corresponding to a lower triangular nonzero in the permuted
matrix. Since there are no data dependencies within a level in the permuted
matrix (i.e., no edges connecting vertices within a level-set), the Di must be
diagonal matrices.

With this basic level-set permuted matrix structure, we can use either a
forward-looking or backward-looking algorithm. After a diagonal solve deter-
mines a set of vector entries x̃i, the forward-looking algorithm uses x̃i to im-
mediately update x̃j , j > i with the matrix-vector product operations in the
ith column block. A backward-looking algorithm uses all previously computed
x̃i, i = 1, . . . , l − 1, in a series of matrix-vector products updates immediately
before computing x̃l. Both algorithms have the same operation counts but have
different memory access patterns for the matrices and vectors. In particular, the
forward-looking algorithm exploits the temporal locality of the previously calcu-
lated x̃i that are used in the matrix-vector products while the backward-looking
algorithm exploits the temporal locality of x̃i that are being determined/stored.
While both algorithms have different advantages, we chose to implement the
backward-looking algorithm, since we were able to use our compressed row stor-
age matrices in a more natural manner. The operations needed to solve the
permuted system for x̃ in this backward-looking algorithm are as follows

x̃1 = D−1
1 ỹ1

x̃2 = D−1
2 (ỹ2 −A2,1x̃1)

...
...

...
x̃l = D−1

l (ỹl −Al,1x̃1 − . . .−Al,l−1x̃l−1) .

(Note that the above operations were written to elucidate this algorithm but in
practice the sparse matrix-vector product (SpMV) operations for each level can
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be combined into one SpMV.) x can be subsequently recovered by the operation
PT x̃.

The vector entries at each level (those in x̃i above) can be calculated indepen-
dently. Thus, in our threaded solver kernel, the computation in each level can be
distributed across threads (e.g., with an OpenMP/TBB like parallel for opera-
tion) without the need for synchronization. However, synchronization is needed
between the levels of the algorithm to ensure that the vector entries x̃j needed for
matrix-vector product portion of each level of computation (i.e., Ai,j x̃j) have
been previously determined. In this context, we examine how specific factors
affect the performance of this multithreaded triangular solve kernel.

This approach is most beneficial for solving triangular systems resulting from
incomplete factorizations, where the resulting matrix factors are sufficiently
sparse to yield sufficiently large levels. For matrices that do not result in suffi-
ciently large levels, this approach to parallelism will not be particularly effective
(as we will see in the subsequent section). However, for matrices where the result-
ing levels are sufficiently large, the synchronization costs in our multithreaded
algorithm should be small enough to allow for good parallel performance.

1.3 Related Work

Saltz described the usage of directed acyclic graphs and wavefront (level-set)
methods for obtaining parallelism for the sparse triangular solve operation in [5].
In this paper, his work focused on sparse triangular systems generated by incom-
plete factorizations arising from discretization of partial differential equations.
This approach was applicable to both shared memory and message passing sys-
tems. Rothberg and Gupta addressed the sparse triangular solve bottleneck in
the context of the incomplete Cholesky conjugate gradient algorithm ([6]). They
argued that the two most promising algorithms at that time (one of which was
the level-set method) performed poorly on the more modern shared memory ma-
chines that utilized deep memory hierarchies. One of the problems they found
was that the level-set algorithm’s performance was negatively impacted by the
poor spatial locality of the data. This is not a major difficulty for our imple-
mentation since we explicitly permute the triangular matrix unlike the original
implementation that simply accessed the rows in a permuted order. In more
recent work ([7]), Mayer has developed two new algorithms for solving triangu-
lar systems on shared memory architectures. The first algorithm uses a block
partitioning to split the triangular matrix across both rows and columns in a
2D Cartesian manner. Given this partitioning, the operations using blocks on
the same anti-diagonal can be computed in parallel on different threads. The
difficulty with this method is finding a good partitioning of blocks that balances
the work. The second method is a hybrid method combining the first method
with a method of solving by column blocks (after a diagonal block has been
solved, the updates in the column block below may be done in parallel). The
hybrid method is easier to partition than the first method. Mayer’s results were
somewhat modest in the speedups that were obtained. However, the methods



36 M.M. Wolf, M.A. Heroux, and E.G. Boman

are more general than the level-set method and may be effective over a larger
range of matrices.

2 Factors Affecting Performance

One factor we examine is data locality for the matrices. First, we experiment
on two special types of matrices (Figure 2), where the number of rows is the
same for each level and the matrices are already ordered by level-sets. One of
these special matrices results in good data locality (Figure 2(a)) in that threads
will not use vector entries that another thread has computed in its computation.
This can be seen in the precisely placed off-diagonal bands in these matrices
that ensure that if a vector entry xi is calculated by a thread, any subsequent
computation involving xi (i.e., computation corresponding to nonzeros in column
i) will assigned to that same thread. We can enforce this good data locality since
these matrices have the same number of rows per level-set and we assign row
operations to threads in a contiguous block manner. The other matrix results
in bad data locality (Figure 2(b)) in that threads will often use vector entries
calculated by another thread. Again, this can be seen in the precisely placed
off-diagonal nonzero blocks in these matrices that ensure that if a vector entry
xi is calculated by a thread, subsequent computation involving xi in the next
level will not be assigned to that same thread.

(a) Good Locality (b) Bad Locality

Fig. 2. Nonzero patterns for matrix types

We also look at variants of the triangular solve algorithm with different bar-
riers and thread affinity settings. The barrier is an important part of this level
set method, providing synchronization between the levels of our triangular solve.
The first type of barrier is somewhat passive and uses mutexes and conditional
wait statements. All the threads wait (pthread cond wait) until every thread
has entered the barrier. Then a signal is broadcast (pthread cond broadcast)
that allows the threads to exit the barrier. The disadvantage with this more
passive barrier is a thread calling this barrier might be switched to a different
computational core while waiting for a signal in the conditional wait statement.
The second type of barrier is more active and uses spin locks and active polling.



Factors Impacting Performance of Multithreaded Sparse Triangular Solve 37

A thread entering this barrier will actively poll until all threads have reached
the barrier. This makes it less likely for the threads to be switched, which is a
good thing assuming there is nothing else being computed simultaneously with
the triangular solve. Thread affinity describes how likely a thread is to run on a
particular core. By setting the thread affinity, we can bind a thread to a partic-
ular core, which can be beneficial to the performance of numerical kernels. This
also allows us to ensure our threads are running on the same socket on machines
with multiple sockets. This may be desirable for numerical algorithms, especially
if there is effective utilization of a cache shared between the cores on a socket
(e.g., L3 cache on Nehalem). When setting the thread affinity, we set the affinity
for each thread to a different core on the same socket.

3 Numerical Experiments

We implemented a level set triangular solve prototype that solves triangular
systems of ten levels, with the same number of rows for each level. For this
prototype, the rows in a level are distributed in a block fashion to different
threads that will perform the computation on those rows. This simple set up
allows us to easily control the factor of data locality. We experiment on a range
of different size matrices and run our experiments on one, two, and four threads
to study the scalability of the algorithm variants.

We have performed these experiments on two different multi-core systems.
The first system is an Intel Nehalem system running Linux with a two socket
motherboard with 2.93 GHz quad-core Intel Xeon processors for a total of 8
cores. Intel’s Turbo Boost Technology is turned off on this system, so two threads
should run at the same clock speed as one thread. The second system is an AMD
Istanbul system running Linux with a two socket motherboard with 2.6 GHz six-
core AMD Opteron processors for a total of 12 cores.

3.1 Barriers

First, we compare the results for the different types of barriers. Figures 3 and
4 show results for the triangular solves on the good data locality matrices of
various sizes when the thread affinity is set. For the Nehalem system, we show
results for 2, 4, and 8 threads. For the Istanbul system, we show results for 2, 6,
and 12 threads. Parallel speedups are presented for both the active and passive
barrier variants.

For both the Nehalem and the Istanbul systems, it is clear that the active
barrier is necessary to obtain good scalability, especially for the smaller sized
matrices and runs with many threads. Figure 5 shows a runtime comparison of
the two implementations using different barriers for two of the matrices (bad
data locality and thread affinity on) for 1, 2, and 4 threads. It is clear from both
the Nehalem and Istanbul plots that having an active barrier is important for
scalability.
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Fig. 3. Effects of different barriers on Nehalem system: thread affinity on, good data
locality. Speedups for passive barrier (PB) and active barrier (AB) for 2, 4, and 8
threads.

Fig. 4. Effects of different barriers on Istanbul system: thread affinity on, good data
locality. Speedups for passive barrier (PB) and active barrier (AB) for 2, 6, and 12
threads.

(a) Nehalem (b) Istanbul

Fig. 5. Effects of different barriers: sizes 5000 and 10000, thread affinity on, bad data
locality. Runtimes for passive barrier (PB) and active barrier (AB).

3.2 Thread Affinity

Next, we examine the effects of thread affinity on the scalability of our triangular
solve algorithm. Figures 6 and 7 show results for the triangular solves on the
good data locality matrices of various sizes with the active barrier. For both
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the Nehalem and the Istanbul systems, it is clear that the thread affinity is not
as important of a factor in scalability as the barrier type. However, for some
of the smaller data sizes, setting the thread affinity does seem to improve the
scalability. Figure 8 shows the runtimes for two matrices (bad data locality and
active barrier) with thread affinity on or off for 1, 2, and 4 threads. It seems that

Fig. 6. Effects of binding threads to cores by setting thread affinity on Nehalem system:
active barrier, good data locality. Speedups for algorithm when setting thread affinity
(TA) and not setting thread affinity (NTA) for 2, 4, and 8 threads.

Fig. 7. Effects of binding threads to cores by setting thread affinity on Istanbul system:
active barrier, good data locality. Speedups for algorithm when setting thread affinity
(TA) and not setting thread affinity (NTA) for 2, 6, and 12 threads.

(a) Nehalem (b) Istanbul

Fig. 8. Effects of setting thread affinity: sizes 5000 and 10000, active barrier, bad data
locality. Runtimes for setting thread afinity (TA) and not setting thread affinity (NTA).
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thread affinity is somewhat important for these problem sizes, especially on the
Nehalem system.

3.3 Data Locality

Finally, we examine the impact of data locality on the scalability of the triangular
solves. Figure 9 shows a comparison between the results of the two different types
of matrices (one with good locality and the other with bad data locality) of size
50000 and 100000 rows. We see basically no difference for these types of matrices
for Nehalem and only a very slight difference for Istanbul. The results for these
two sizes was typical of what we observed overall.

(a) Nehalem (b) Istanbul

Fig. 9. Effects of data locality: active barrier, thread affinity on. Runtimes for good
and bad data locality matrices (sizes 50000 and 100000).

3.4 More Realistic Problems

In the previous subsections, we solved triangular systems for a very specific set
of matrices. These matrices were designed to have a specific structure that al-
lowed us to study the importance of data locality in a very simple environment.
These matrices were sufficient to get a good handle of the factors affecting per-
formance in an ideal scenario. In this subsection, we study the impact of barrier
type and thread affinity in more realistic situation, solving triangular systems
resulting from four symmetric matrices obtained from the University of Florida
Sparse Matrix Collection [8]. These four matrices are shown in Table 1 with
their respective number of rows, number of nonzeros, and application areas. We
generalized the prototype solver used in the previous subsections to calculate
level sets, permute the matrices, and solve the triangular system for any lower
triangular system.

We take the lower triangular part of the matrices shown in Table 1 to be our
lower triangular matrices (i.e., zero fill incomplete factorizations). The fourth
column of Table 1 gives the average number of rows per level for the level-sets
determined from the lower triangular part of these matrices. We picked these
four matrices deliberately to cover a range for this statistic. As we did with the
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Table 1. Symmetric Matrix Info

Name N nnz N/nlevels application area
asic680ks 682,712 2,329,176 13932.9 circuit simulation
cage12 130,228 2,032,536 1973.2 DNA electrophoresis

pkustk04 55,590 4,218,660 149.4 structural engineering
bcsstk32 44,609 2,014,701 15.1 structural engineering

simple matrices of the previous subsections, we compare the results for the active
and passive barrier variants. Figures 10 and 11 show results for the triangular
solves when the thread affinity is set, comparing the two barrier types.

Again we see for both the Nehalem and the Istanbul systems that the active
barrier is necessary to obtain good scalability. The difference is particularly strik-
ing for the larger numbers of threads. As expected, the solves scaled better when
the matrices had large numbers of rows per level. In particular, the asic680ks
and cage12 matrices, which had the largest numbers of rows per level, scaled
very well (especially on the Istanbul architecture). However, the bcsstk32 ma-
trix, which had approximately 15.1 rows per level, actually required more run-
time as the number of threads increased. This is not too surprising since with an

Fig. 10. Application matrices. Effects of different barriers on Nehalem system: thread
affinity on. Speedups for passive barrier (PB) and active barrier (AB) for 2, 4, and 8
threads.

Fig. 11. Application matrices. Effects of different barriers on Istanbul system: thread
affinity on. Speedups for passive barrier (PB) and active barrier (AB) for 2, 6, and 12
threads.
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average of 15.1 rows per level, many levels would not have one row per thread,
let alone provide enough work to amortize the cost of the synchronization step.

Again, we examine the effects of thread affinity on the scalability of our tri-
angular solve algorithm. Figures 12 and 13 show results for the triangular solves
for these more realistic matrices with the active barrier. For both the Nehalem
and the Istanbul systems, it is clear that the thread affinity is not as important
of a factor in scalability as the barrier type. For several problems, we see a slight
increase in speedup when thread affinity is on. However, there are several counter
examples where the speedup slightly decreases.

Fig. 12. Application matrices. Effects of binding threads to cores by setting thread
affinity on Nehalem system: active barrier. Speedups for algorithm when setting thread
affinity (TA) and not setting thread affinity (NTA) for 2, 4, and 8 threads.

Fig. 13. Application matrices. Effects of binding threads to cores by setting thread
affinity on Istanbul system: active barrier. Speedups for algorithm when setting thread
affinity (TA) and not setting thread affinity (NTA) for 2, 6, and 12 threads.

4 Summary and Conclusions

In pursuit of more scalable solvers that scale to hundreds of thousands of
computational cores on multi-core architectures, we are researching hybrid
MPI/threaded algorithms that should lower iterations counts by reducing the
number of MPI tasks (and subdomains). An essential part of these algorithms
are scalable threaded numerical kernels such as the triangular solver on which
we focused. We examined three different factors that affect the performance of
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the threaded level-set triangular solver. Of these three factors, the barrier type
was shown to have the most impact, with an active barrier greatly increasing
the parallel performance when compared to a more passive barrier. Although it
is not always possible (e.g., if additional computation takes place on the same
cores concurrently), we advocate using as aggressive of a barrier as possible in
this type of algorithm. Our results showed that binding the threads to proces-
sor cores had less impact than the barrier type. However, it did improve the
performance for some cases and may be a reasonable approach to take for multi-
threaded numerical kernels where the number of active threads is not more than
the number of computational cores. With an active barrier and thread binding
to cores, we were able to achieve excellent parallel performance for a range of
matrix sizes for the ideal matrices as well as three of the four more realistic
matrices that we studied.

We also examined the impact of data locality on the scalability of the trian-
gular solves, comparing matrices with good and bad data locality. It is unclear
from our results whether data locality is an important factor in the parallel per-
formance. It is possible that our bad data locality matrices do not have poor
enough data locality to see a very large effect. It is also possible that our matri-
ces are too sparse and that we would see more of an effect for denser matrices.
But perhaps the memory systems are too fast for the locality of the data in these
sparse matrix triangular solves to greatly impact the scalability of the algorithm.
If the data locality becomes an issue more general classes of triangular matrices,
we would need to explore ordering techniques to mitigate this problem.

Of more importance was the sparsity structure of the matrices and how this
sparsity translated into level-sets. This was apparent in our study that utilized
symmetric matrices obtained from various application areas. We saw a strong
correlation between parallel performance of our multithreaded triangular solver
and the average number of rows per level in the level-set permuted matrices.
The matrix obtained from the bcsstk32 matrix resulted in only 15.1 rows per
level. The solution of these system actually slowed down as threads were added.
The lower triangular part of a tridiagonal matrix would be the worse case with
a linear DAG and only 1 row per level. Clearly for these types of matrices, the
level-set method is not scalable. Perhaps a feasible approach is to calculate this
statistic in the DAG analysis phase to determine whether or not to use the
level-set algorithm.
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Abstract. We study the numerical behavior of heterogeneous systems
such as CPU with GPU or IBM Cell processors for some orthogonaliza-
tion processes. We focus on the influence of the different floating arith-
metic handling of these accelerators with Gram-Schmidt orthogonaliza-
tion using single and double precision. We observe for dense matrices a
loss of at worst 1 digit for CUDA-enabled GPUs as well as a speed-up
of 20x, and 2 digits for the Cell processor for a 7x speed-up. For sparse
matrices, the result between CPU and GPU is very close and the speed-
up is 10x. We conclude that the Cell processor is a good accelerator for
double precision because of its full IEEE compliance, and not sufficient
for single precision applications. The GPU speed-up is better than Cell
and the decent IEEE support delivers results close to the CPU ones for
both precisions.

Keywords: parallel and distributed computing, numerical algorithms
for CS&E, performance analysis.

1 Introduction

In the scientific computing domain, many subproblems require the computa-
tion of an orthogonal basis. The purpose of this technique is to compute an
orthogonal basis spanning some linear subspace. The orthogonality of this basis
is critical for problems such as solving systems with the GMRES method[16], or
computing eigenvalues with the QR method or the Arnoldi process[4]. Depend-
ing on the orthogonalization process, the quality of the basis may be impacted
due to numerical rounding error. The behavior of this error is predictable among
modern mainstream processors essentially because of the IEEE floating arith-
metic norm[13] and it is generally taken for granted that mainstream processors
are fully IEEE compliant. Consequently the error for elementary floating calcu-
lations should be the same for any fully IEEE compliant processors : 10−8 in
Single Precision (or SP) and 10−16 for Double Precision (or DP).

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 45–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Emerging computing architectures do not always fully respect this IEEE
norm. It is the case of first and second1 generation NVidia CUDA-enabled
GPUs and the STI Cell processor. The upcoming Fermi/GT4xx architecture
from NVidia will fully support the recent IEEE 754-2008, respecting a more
recent standard than modern processors. In this aspect, the study described in
this paper still applies for this upcoming hardware. The two accelerated architec-
tures offer very high achievable computing power compared to classical multicore
CPUs, for less Watts / GFLOPs. The peak computing power of the Cell is 200
GFLOPs in single precision(SP) and 100 GFLOPs in double precision(DP). For
the best 2009 scientific CUDA-enabled GPU, it is 933 GFLOPs for SP and al-
most 100 GFLOPs for DP. Also, the memory bandwidth of GPUs varies from
dozens of GBytes/s to almost 200 GBytes/s. It is more than any mainstream
CPU-based system can achieve.

With the purpose of orthogonalizing faster using GPUs or Cell processors, we
want in this paper to focus on the influence of the non fully IEEE-compliance
of these architectures compared to a fully IEEE compliant CPU in SP and
DP. We first test GPU and Cell with dense matrices by using some well known
generated matrices from MatrixMarket, and apply the orthogonalization process
using manufacturer BLAS [1] routines. We then analyze the results in terms of
performance and accuracy and test the sparse case for the GPU.

This paper will be organized as follows. In section 1 we will explain the differ-
ent orthogonalization algorithms that will be used. In section 2 we will describe
the orthogonalization process. Section 3 will focus on the NVidia CUDA-enabled
GPU and the IBM Cell processor to explain the hardware and IEEE differences
with CPUs. Section 4 will present the implementation of the different orthogo-
nalization processes. Finally we will discuss in section 5 the results for dense and
sparse matrices in terms of quality of the orthogonal basis and performances.

2 Orthogonalization Process

Several variants of the orthogonalization process exist [11] : Householder re-
flections, Givens rotations and the Gram-Schmidt process are the most com-
mon ones. The Gram-Schmidt process is declined in different versions : clas-
sical(CGS), modified(MGS) and classical with reorthogonalization(CGSr) for
instance. These algorithms are described in table 1. The classical version is the
most simple and easily parallelizable as seen in [17] : it is faster, as it can take
advantage of BLAS2 2 operations instead of BLAS 1 in the modified algorithm.
But the main drawback of CGS is the possibly high loss of orthogonality within
the computed basis due to round-off error [9]. The MGS algorithm tries to cor-
rect this, and in fact it manages to provide a more accurate version of the
Gram-Schmidt process. Mathematically both are the same, but the MGS pro-
vides less parallelism. The CGSr process provides an even more accurate version,
1 First generation is hardware 1.0 and 1.1 for G80/90 GPUs, and second generation

is Hardware 1.2 and 1.3 for GT200 GPUs.
2 Basic Linear Algebra Subroutines.
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Table 1. Classical Gram-Schmidt(CGS), Modified G-S(MGS), CGS with reorthogo-
nalization(CGSr)

CGS MGS CGSr

1. for i = 1 : m
2. vi+1 = Avi

3. H1:i,i = (vi+1, v1:i)
4. vi+1 = vi+1 −

H1:i,i.v1:i

5. Hi,i+1 = |vi+1|2
6. vi+1 = vi+1

Hi,i+1

7. end

1. for i = 1 : m
2. vi+1 = Avi

3. for j = 1 : i
4. Hj,i = (vi+1, vj)
5. vi+1 = vi+1 − Hj,i.vj

6. end
7. Hi,i+1 = |vi+1|2
8. vi+1 = vi+1

Hi,i+1

9. end

1. for i = 1 : m
2. vi+1 = Avi

3. H1:i,i = (vi+1, v1:i)
4. vi+1 = vi+1 −

H1:i,i.v1:i

5. C1:i,i = (vi+1, v1:i)
6. vi+1 = vi+1−C1:i,i.v1:i

7. H1:i,i += C1:i,i

8. Hi,i+1 = |vi+1|2
9. vi+1 = vi+1

Hi,i+1

10. end

by reorthogonalizing each computed vector. In practice it is not necessary to re-
orthogonalize at each iteration, and so the cost of this algorithm using selective
reorthogonalization is close to CGS while being more accurate.

Accuracy of the orthogonal basis is a crucial matter when we apply the orthog-
onalization process for the Arnoldi Iteration. The orthogonality has an impact
on the computed eigenvalues [4], as the constructed orthogonal basis is involved
in the projection of the Ritz vectors to obtain the eigenvectors.

3 Accelerators Programming

In this section we will expose the architecture as well as the programming
paradigm of the GPUs and the Cell processor.

3.1 Nvidia CUDA-Enabled GPUs

For several years, GPU processing power has kept steadily increasing, outper-
forming the peak computing power of the best multicore processors [15]. Because
of this, researchers started to study the use of GPUs for scientific computations,
and one of the most successful attempt was Brook [5], a scientific language to
exploit GPUs.

Hardware and language. In 2006 Nvidia, a major mainstream graphics card
manufacturer, released a first version of CUDA3, its programming language
for Nvidia G80 and above series. CUDA aims at providing a comprehensive
paradigm able to exploit the massive parallelism of a GPU. This language can
not be used with other manufacturer’s graphics cards. The memory is faster
than classical central memory and the access pattern must be regular to achieve
great performance just like for a vector machine.
3 Compute Unified Device Architecture.
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IEEE compliance. The hardware IEEE floating point norm is handled slightly
differently than on fully IEEE architectures. Here are some examples of these
differences for SP only, taken from the programming manual [15]:
– Addition and multiplication are often combined into a single multiply-add in-

struction (FMAD), which truncates the intermediate result of the
multiplication;

– Division is implemented via the reciprocal in a non-standard-compliant way;
– Square root is implemented via the reciprocal square root in a non- standard-

compliant way;
– For addition and multiplication, only round-to-nearest-even and round-

towards-zero are supported via static rounding modes; directed rounding
towards +/- infinity is not supported;

There are more details about IEEE support of Nvidia GPUs in the programming
manual [15].

3.2 STI Cell Processor

The Cell processor is the product of the joint between Sony, Toshiba and IBM.
The objective of the Cell is to provide an efficient novel multicore design for
multimedia applications. As for video cards, its original field is far from the sci-
entific computing field. Despite this, it has been improved to fully handle IEEE
double precision arithmetic. The fastest supercomputer in the top500 from June
2009 [14] is the Roadrunner from IBM, delivering more than one PetaFLOPs.

Hardware and language. The Cell processor embeds 9 cores : one classical
PowerPC core, called PPE4, and 8 computing cores called SPEs5. As a result,
the basic paradigm to program the Cell is as follows : one initializes the ap-
plication using the PPE, and then spawns threads on the SPEs to do or help
computations.

IEEE compliance. The PPE is fully IEEE 754 compliant as it is a PowerPC
processor. In single precision, SPEs only implement round-towards-zero round-
ing mode as opposed to the standard round-to-even mode. It can impact the
calculations as seen in [8] where 2 to 3 bits of accuracy are lost. The data for-
mat follows the IEEE standard 754 definition, but single precision results are
not fully compliant with this standard (different overflow and underflow behav-
ior, support only for truncation rounding mode, different denormal results) [2].
The programmer should be aware that, in some cases, the computation results
will not be identical to IEEE Standard 754 ones. For double precision, the Cell
processor is fully IEEE-compliant.

4 Optimizations

In this section, we will see the implementation and optimizations applied to the
orthogonalization processes for each hardware : reference CPU, CUDA-enabled
GPUs and the STI Cell processor.
4 PowerPC Processing Element.
5 Synergistic Processing Element.
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4.1 BLAS Operations
We saw in table 1 the different versions of the Gram-Schmidt process. For each
of them, the same basic BLAS operations apply.

– Matrix vector multiplication : gemv
– Vector dot product : dot
– Scaled vector addition : axpy
– Scaling of a vector : scal
– optionally : vector norm 2 computation, nrm2. It is the square root of the

dot product of the vector.

If we take CGS as an example, then we have :

1. for i = 1 : m
2. vi+1 = Avi ← one gemv operation
3. H1:i,i = (vi+1, v1:i) ← several dot products
4. vi+1 = vi+1 −H1:i,i.v1:i ← several axpy operations
5. Hi,i+1 = |vi+1|2 ← one norm2 computation
6. vi+1 = vi+1

Hi,i+1
← one scaling of a vector

7. end.

Same basic kernels are being used for the other versions of the GS orthogonaliza-
tion. Consequently, we may use optimized BLAS operations to take advantage
of the different hardware in an optimized and portable manner.

4.2 CPU
The implementation of the dense orthogonalization process on classical CPU
follows the standard algorithm described in table 1 and uses ATLAS6 subrou-
tines [18]. ATLAS is a superset of BLAS library, that adapts some parameters to
the architecture by probing its caches and performances according to the num-
ber of cores used, at library compilation time. In our case all the operations are
BLAS 1 or 2. ATLAS implementations of the BLAS 1 and 2 operations use only
one thread, and so does our application.

Concerning the sparse case, we follow the standard CSR matrix vector prod-
uct, mixed with ATLAS BLAS 1 routines to comply with the described GS
algorithms.

4.3 GPU
Implementation on the GPU for the dense case is also close to the original
algorithms and uses mainly CUBLAS [6], except that we have to handle the
memory operations between host and device memory : allocation and transfers.

For sparse matrices, we use the optimized sparse matrix vector multiply from
NVidia, which can handle different matrix format : COO7, CSR8, ELL9, DIA10,
6 Automatically Tuned Linear Algebra Subroutines.
7 COOrdinate.
8 Compressed Sparse Row.
9 ELLPACK.

10 Diagonal.
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and hybrid (DIA+ELL). See [3] for more details about the implementation
and the hybrid format. Provided this optimized Matrix-Vector product, we use
CUBLAS routines to exploit the GPU power in a portable way, following the
steps described in table 1.

4.4 Cell Broadband Engine

As for the GPU hardware, the global algorithm was respected, but an accelerated
implementation on the Cell processor implied more programming effort. After
data initialization on the PPE, the computing part is distributed among the
SPEs equally. There is a BLAS interface used locally on each SPE. This way
we have an optimized BLAS operation using all the SPE power. The matrix-
vector product uses a rowwise computing pattern, using the EIB to stream data
between the processing elements. The locally computed part of the vector is used
for the vector operations, an data exchanges may be necessary between SPEs.

5 Experimentation

This section will present the results in terms of precision and performance, each
time for both the dense and sparse matrices. The hardware characteristics are
described in table 2.

Table 2. Hardware used for experimentation. Frequency is in GHertz and memory in
GBytes. The bandwidth is the peak memory bandwidth and actual is the benchmarked
bandwidth. Both are expressed in GBytes/s. The peak power is expressed in GFLOPs.

Hardware Frequency cores memory bandwidth / actual Peak Power (DP/SP)
Xeon e5440 2.83 4 4 5.33 / 5.0 45.6 / 91.2
Tesla c1060 1.296 320 4 100 / 75 75 / 933
Cell QS22 3.2 8 16 25.6 / 25.6 100 / 200

5.1 Hardware Precision

Experimentation methodology. The precision of the GS process for one sub-
space size is calculated using the largest absolute dot product between vectors
of the orthogonal basis:

Orthogonal error : max |< vi, vj >|, i �= j and vi, vj ∈ V basis.

Precisely, this would be the worst orthogonality between two vectors of the basis.
Also, the accumulator of the dot products uses the same precision as the rest of
the calculations : if the precision is SP, then the accumulator is SP too. Same
applies for DP. This way we do not add another parameter to the calculations.

Dense matrices. We tested CGS and CGSr orthogonalization with dense ma-
trices. CGS is known to be very sensitive to machine precision [12], which usually
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Fig. 1. Precision of the CGS orthogonalization of a 10240 square Hilbert matrix, using
different hybrid architectures. The left figure shows the single precisiob computations,
and the right one double precision. The X axis represents the subspace size starting
from one, andthe Y axis the accuracy of the basis, e.g. the worst orthogonality b“tween
two vectors of V.

is IEEE-754 compliant. This standard does not define how the machine has to
implement floating point operations, but mainly the global behavior and char-
acteristics [10]. On figure 1, we clearly see the difference between 32 bits and 64
bits precision, and the use of an accelerator or not.

Some statistical indicators were extracted from figures 1 and 2, to try to
characterize each device in table 3. As we can see in this table, the Cell is the
least accurate device in single precision, and the GPU is less accurate than
the CPU. The reason behind is that every computation for the Cell, including
division, was done on the non fully IEEE-compliant SPE. Furthermore the Cell
is the least IEEE compliant device in SP.

When switching to double precision, then each accelerator tends to be very
close to the reference CPU in terms of precision. But the interesting thing with
the Cell processor is its full double precision IEEE compliance : the result differs
from the fully double precision IEEE compliant CPU. It is due to the multi SIMD
core nature of the Cell, which will handle computations in a different order than
in the CPU case, here used as a single core processor. Some tests conducted on
basic dot products parallelized on the Cell provided different results wether we
use each core of the Cell as a scalar processor or a SIMD unit. The difference
was within the order of the machine precision and it could explain the different
Gram-Schmidt orthogonalization behavior.

Sparse matrices. We chose two test matrices from the eigenvalues field : Lin
and Andrews matrices from the sparse matrices collection of the University of
Florida[7]. We experimented the sparse CGSr with the GPU against the CPU.
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Fig. 2. Precision of the dense CGS process with reorthogonalization on a 10240 square
Hilbert matrix, using different hybrid architectures. The left figure shows single preci-
sion accuracy results and the right one double precision accuracy results. X axis bears
the subspace size, and the Y axis the accuracy of the orthogonal basis, e.g. the worst
orthogonality between two vectors of V.

Table 3. Precision factor achieved for the dense CGS and CGSr orthogonalization.
Factor = Acceleratorprecision / CPUprecision.

Hardware Precision CGS CGSr

Cell

GPU

32 bits
64 bits
32 bits
64 bits

Max. Err Median Err.
170x 22.74x
3x 1.64x
8x 2.98x
30x 31.66x

Max. Err Median Err.
43x 11x

1.07x 0.98x
7.1x 1.91x
0.9x 0.89x

We did not test the Cell because the achievable speed-up would have implied
a great programming effort. The trends in figure 3 and 4 are different than the
dense case. By looking at the matrix H, which is built using dot products of
V, we see very close results for the first columns. Then some noise appears,
which gives 31x higher elements than the CPU-computed result. Because the
coefficients of the H matrix are used throughout the orthogonalization process,
there is a quick propagation of this noise through each vector operation.

Also, and due to the datasets, the resulting vectors tend to contain numbers
relatively close to the machine precision. The GPU truncates these, which ex-
plains the apparent better accuracy of the GPU when we seek the “worst” dot
product of the V vectors : many zeros imply a lower dot product, and so a lower
error.
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Fig. 3. Precision of the sparse CGS process with reorthognalization on sparse Lin
matrix, using different hybrid architectures. Top figure shows single precision results
and bottom figure double precision. This matrix is square with a square size of 256k.
The total number of non zeros is 1.8m numbers and the filling ratio is 0.0027%. The
subspace size starts from 1 and increases along the X axis, and the y axis shows the
error of the orthogonal basis, e.g. the worst orthogonality between two vectors of V.

Fig. 4. Precision of the sparse CGSr process on sparse Andrews matrix, using different
hybrid architectures. Top figure represents the single precision accuracy results and the
lower one double precision.This matrix is square with 60k elements per dimension, and
has 760k non zeros and the filling ratio is 0.021%. X axis represents the subspace size
and y axis the precision of the orthogonal basis, e.g. the worst orthogonality between
two vectors of V.
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5.2 Performance Achieved

We present in this section the performance achieved for mainstream x86 multi-
core, Nvidia GPUs and the Cell processor with dense matrices, as well as per-
formance achieved for sparse matrices with x86 multicore and GPU hardware.

Expected Results. The dominant computing operation is the memory-
bandwidth bound matrix vector product, which for a matrix of nz elements does
2nz floating operations implying a 2 factor between computation and memory
used. Say we have Z GTransfer/s, where the size of one transfer is a double
precision element. Then we may do 2Z computations. So the GFLOPs for each
architecture will be 2 times the GT/s. From the performance and memory speed
shown in table 2 we can deduce the maximum performance expected for these
accelerators, summarized in table 4.

Table 4. Maximum peak performance for the Gram-Schmidt process in GFlops

Precision CPU GPU Cell
32 bits 2.667 37 12.8
64 bits 1.333 18 6.4

Dense matrices. In practice, the observed results differ from the theoretical
ones, due to data transfers which cannot utilize the whole available bandwidth,
be it for the CPU or the accelerators. The fastest implementation is the GPU’s
one, with a speed-up of 15x in SP and 21x in DP compared to our CPU. The
second one is the Cell with a speed-up of 6x compared to the CPU in SP and
DP. Table 5 shows the performance results in more details. The efficiency of our
solution for the GPU is of 55% in SP and 82% in DP. Concerning the Cell, it is
70% and 66%. So, even with the use of high level BLAS routines, we were able
to achieve a decent portion of the accelerators’ available bandwidth.

Sparse matrices. For the sparse case, we focus on the CUDA-enabled Tesla
GPU, and compare it to the CPU. Here, the performance highly depends on the
pattern of the matrices : Lin and Andrews in our case. Table 5 shows the actual
performance of the sparse CGSr. As we can see, the GPU is the fastest, with
a varying factor of 6x to 7x times faster. By using the DIA format, then the
performance increases with the GPU, speeding-up by a factor of 9x to 10x. The
results with the sparse Andrews matrix are similar, except that the performance
is lower for GPU hardware 2.5 GFLOPs in DP and 3 GFlops in SP for the
CSR format. Using the Hybrid format from Nvidia, the GPU performs at 3.17
GFLOPs in DP and 4.23 GFLOPs in SP for a speed-up of 5.3x in DP and 3.25x
in SP compared to the CPU.
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Table 5. Execution time and performance for the CGSr process for a dense Hilbert
matrix of size 10240x10240 and a sparse Lin matrix of size 256kx256k and 1.8m nnz,
with a subspace size of 32. Time is expressed in seconds and performance in GFLOPs.

Dense Sparse
CPU GPU Cell CPU GPU(CSR) GPU(Best)

Time(sec) Time(sec)
32 bits 5.01 0.33 0.75 1.02 0.156 0.118(DIA)
64 bits 10.12 0.46 1.6 1.8 0.242 0.188(DIA)
Performance(GFLOPs) Performance(GFLOPs)
32 bits 1.36 20.5 9.02 1.195 7.82 10.32(DIA)
64 bits 0.69 14.7 4.22 0.65 5.05 6.50(DIA)

6 Synthesis

We presented implementations of the dense and sparse Classical Gram-Schmidt
process with and without reorthogonalization using high level manufacturer
BLAS routines for the STI Cell processor and the CUDA-enabled GPUs.

Performance. These implementations outperformed their CPU counterpart
with a factor of 20x for the GPU and 7x for the Cell processor with dense
matrices, and 10x for sparse matrices using the GPU.

Floating point arithmetic. The Cell is less IEEE compliant than the GPU in
SP and fully IEEE compliant in DP, providing the potential same accuracy as
a classical processor. In DP, the GPU is close to be fully IEEE compliant, with
differences only in exceptions handling and static rounding modes. Consequently,
here is the expected ranking of these architectures in terms of precision:

– SPaccuracy : Cellacc. ≤ GPUacc. ≤ CPUacc.

– DPaccuracy : GPUacc. ≤ Cellacc. ≤ CPUacc.

Precision achieved. Concerning the precision with dense matrices, using the
Cell implies an actual precision of 10−6. For the GPU, the precision is around
10−7, close to the CPU. In DP, accelerators’ results were very close to the CPU
ones. We saw varying results in DP due to a different parallel order of execution
of the Cell and GPU. For the precision with sparse matrices, the results are less
clear, as the GPU seems to give a better orthogonal basis than the CPU, even
if it is due to cancellation of some elements of the V basis. Still, it is reliable as
the results are close to the reference CPU.

7 Conclusion

The Cell is not IEEE-compliant enough for sensitive SP computation and may
only be used mixed with or in full IEEE DP mode if precision is a concern. It
provides a good speed-up but at a great programming effort. The GPU has a very
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good potential because it tends to become more and more IEEE-compliant and
it remains backward compatible. Thus, the upcoming Fermi NVidia scientific
GPU will fully support the IEEE-norm for both SP and DP, implying a better
precision than previous GPUs. It will also integrate L1 and L2 caches improving
performances for irregular data patterns like sparse matrices. But because of the
parallel nature of these architectures, one has to take into account the parallel
execution of the operations, which may have an impact on the precision as with
the Cell and the Xeon or maybe the 2 caches of the Fermi. Furthermore, we saw
it is possible to accelerate a memory bandwidth bound algorithm such as the
Gram-Schmidt process with CUDA-GPUs. Finally, if high-level libraries such
as CUBLAS are used then the code may be tested with the next-generation
GPUs. These accelerators or new emerging ones may be the key to reach the
post-petascale era, certainly mixing precision on levels we know now -32 and
64 bits- but also extended precision : 128 bits. It is thus possible to experiment
the same benchmarks to measure the promising improvement in accuracy and
performance of the Fermi GPUs as well as new accelerators.
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Abstract. This paper proposes an error correction method for solving
linear systems of equations and the evaluation of an implementation
using mixed precision techniques.

While different technologies are available, graphic processing units
(GPUs) have been established as particularly powerful coprocessors in
recent years. For this reason, our error correction approach is focused on a
CUDA implementation executing the error correction solver on the GPU.

Benchmarks are performed both for artificially created matrices with
preset characteristics as well as matrices obtained from finite element
discretizations of fluid flow problems.

Keywords: Mixed Precision, Iterative Refinement Method, Computa-
tional Fluid Dynamics (CFD), Large Sparse Linear Systems, Hardware-
aware Computing, GPGPU.

1 Introduction

The development of modern technology is characterized by simulations, that
often are no longer performed through physical experiments, but through math-
ematical modeling and numerical simulation. In many cases, for example in com-
putational fluid dynamics (CFD), massive computation power is needed, in order
to handle large systems of linear equations.

Often iterative solvers are chosen for the solving process, since they can exploit
the sparse structure of the affiliated matrix to compute an approximation of a
certain accuracy usually faster than a direct solver.

The computational complexity of this problem depends on the characteristics
of the linear system, the properties of the used linear solver and the floating
point format. The floating point format determines not only the execution time
when performing computations, but also the occurring rounding errors. A more
complex floating point format usually leads to higher accuracy and higher com-
putational effort.

Today, most hardware architectures are configured for the IEEE 754 [1] stan-
dard containing single precision and double precision as the main floating point
formats. As their names indicate, the double precision format has twice the size

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 58–70, 2011.
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of the single precision format, leading to a factor of two in computational cost
while offering a higher precision.

In many cases single precision floating point accuracy is not sufficient for
scientific computation. The question arises, whether the whole algorithm has to
be performed in the double precision format, or whether one can gain speed by
computing parts of it in single precision and other parts in double precision,
and still obtain double precision accuracy for the final result. One approach
is to modify the algorithm of an error correction method such that the inner
error correction solver uses a lower format than the working precision in the
outer loop. As the final accuracy only depends on the stopping criterion of the
refinement solver, the solution approximation is not affected. Still, it can be
expected that the mixed precision approach performs faster than a plain solver
in high precision, since the cheaper error correction solver in the low precision
format may overcompensate the additional computations and typecasts.

2 Mixed Precision Error Correction Methods

2.1 Mathematical Background

Error correction methods have been known for more than 100 years, and have
finally become of interest with the rise of computer systems in the middle of the
last century. The core idea is to use the residual of a computed solution as the
right-hand side to solve a correction equation.

The motivation for the error correction method can be obtained from New-
ton’s method. Newton developed a method for finding successively better approx-
imations to the zeros of a function f(·) by updating the solution approximation
xi through

xi+1 = xi − (∇f(xi))−1f(xi). (1)

We now apply Newton’s method (1) to the function f(x) = b − Ax with
∇f(x) = −A. By defining the residual ri := b− Axi, we obtain

xi+1 = xi − (∇f(xi))−1f(xi)
= xi + A−1(b−Axi)
= xi + A−1ri.

Denoting the solution update with ci := A−1ri, we can design an algorithm.

1: initial guess as starting vector: x0

2: compute initial residual: r0 = b− Ax0

3: while (‖ Axi − b ‖2> ε ‖ r0 ‖) do
4: ri = b− Axi

5: solve: Aci = ri

6: update solution: xi+1 = xi + ci

7: end while

Algorithm 1. Error Correction Method
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Here x0 is an initial guess. In each iteration, the inner correction solver
searches for a ci, such that Aci = ri with ri being the residual of the solu-
tion approximation xi. Then, the approximation of the solution xi is updated to
xi+1 = xi + ci.

2.2 Mixed Precision Approach

The underlying idea of mixed precision error correction methods is to use dif-
ferent precision formats within the algorithm of the error correction method,
updating the solution approximation in high precision, but computing the error
correction term in lower precision. This approach was also suggested by [8],[12],
[10], and [9].

Hence, one regards the inner correction solver as a black box, computing a
solution update in lower precision. The term high precision refers to the preci-
sion format that is necessary to display the accuracy of the final solution and we
can obtain the following algorithm where .high denotes the high precision value
and .low denotes the value in low precision. The conversion between the formats
will be left abstract throughout this paper. Because especially the conversion of
the matrix A is expensive, it should be stored in both precision formats, high
and low precision. This leads to the drawback of a higher memory need. In the
case of using hybrid hardware, A should be stored in the local memory of the
hardware devices in the respectively used format. E.g. using a hybrid CPU-GPU
system, the matrix Ahigh should be stored in the CPU memory and Alow should
be stored in the GPU memory.

Using the mixed precision approach to the error correction method, we have
to be aware of the fact that the residual error bound of the error correction solver
may not exceed the accuracy of the lower precision format. Furthermore, each
error correction produced by the inner solver in lower precision cannot exceed the
data range of the lower precision format. This means that the smallest possible
error correction is the smallest number εlow, that can be represented in the lower
precision. Thus, we can not guarantee an accuracy of the final solution exceeding
εlow either. This can become a problem when working with very small numbers,
because then the solution correction terms can not be denoted in low precision.
However, in most cases, the problem can be avoided by converting the original
values to a lower order of magnitude.

Using the displayed algorithm we obtain a mixed precision solver. If the final
accuracy does not exceed the smallest number εlow that can be represented in
the lower precision, it gives exactly the same solution approximation as if the
solver was performed in the high precision format. Theoretically, any precision
can be chosen, but in most cases it is comfortable to use the IEEE 754 standard
formats.

The computation of the correction loop Alowclow = rlow can be performed
with a direct solver, or again with an iterative method. This implies that it is
even possible to cascade a number of error correction solvers using decreasing
precision.



An Error Correction Solver for Linear Systems 61

Fig. 1. Visualizing the mixed precision approach to an error correction solver

In the case of an iterative solver as error correction solver, especially the
iterative approaches to the Krylov subspace methods are of interest, since these
provide an approximation of the residual error iteratively in every computation
loop. Hence, one is able to set a certain relative residual stopping criterion for
the iterative error correction solver. Possible Krylov subspace solvers include the
CG algorithm, GMRES, BiCGStab etc. (see e.g. [2], [3]). The mixed precision
error correction method based on a certain error correction solver poses the same
demands to the linear problem, as the within used Krylov subspace solver.

In the case of a direct error correction solver, the solution update usually
has a quality depending on the condition number of the system and the lower
precision format [4]. Hence, the solution improvement normally depends on the
specific case, but is generally high. Despite the fact that direct methods are for
many cases computationally expensive and have a high memory consumption,
they are of interest as error correction solver, since some of them own pleasant
characteristics:

Using for example the LU solver as error correction solver, the LU decompo-
sition has to be computed only in the first error correction loop. In the following
loops, the stored decomposition can be used to perform the forward and back-
ward substitution. Since these substitutions imply only low computational effort,
they can, depending on the hardware structure, even be performed in the high
precision format. This leads to accuracy advantages and economizes the algo-
rithm by omitting the computationally expensive typecasts of the residual and
the solution update.

It should be mentioned, that the solution update of the error correction solver
is usually not optimal for the outer system, since the discretization of the problem
in the lower precision format contains rounding errors, and it therefore solves a
perturbed problem. When comparing the algorithm of an error correction solver
to a plain solver, it is obvious, that the error correction method has more com-
putations to execute. Each outer loop consists of the computation of the residual
error term, a typecast, a vector update, the scaling process, the inner solver for
the correction term, the reconversion of the data and the solution update. The
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computation of the residual error itself consists of a matrix-vector multiplica-
tion, a vector addition and a scalar product. Using a hybrid architecture, the
converted data additionally has to be transmitted between the devices.

The mixed precision refinement approach to a certain solver is superior to the
plain solver in high precision, if the additional computations and typecasts are
overcompensated by the cheaper inner correction solver using a lower precision
format.

3 Hardware Platform and Implementation Issues

The utilized TESLA-System is equipped with one NVIDIA TESLA S10701. Both
host nodes, each connected via a PCIe 2.0 x16 to the S1070, are equipped with
two Intel Xeon 5450 CPUs. The Intel MKL in version 10.1.1.019, the Intel com-
piler in version 11.0.074 and the CUDA in version 2.0 are used.

The InstitutsCluster2 (IC1) is located at the Karlsruhe Institute of Technol-
ogy (KIT) and consists of 200 computing nodes each equipped with two Intel
quad-core EM64T Xeon 5355 processors, owning 16 GB of main memory. Peak
performance of one node is about 85,3 GFlops. For a detailed performance eval-
uation see [17]. On the software side, the Intel CMKL in version 10.1.2.024 and
the Intel compiler in version 10.1.022 are used.

The implementation of the GMRES algorithm (taken from [2]), and the sur-
rounding error correction method is based on the elementary kernels of the Intel
CMKL and the CUBLAS library.

4 Numerical Experiments

4.1 Test Configurations

To be able to compare the performance of different implementation of the
GMRES-(10) solver, we perform tests with different linear systems. In this work
10 denotes the restart parameter for the GMRES.

All solvers use the relative residual stopping criterion ε = 10−10 ‖ r0 ‖2.
Due to the iterative residual computation in the case of the plain GMRES-
(10) solvers, the mixed GMRES-(10) solvers based on the mixed precision error
correction method usually iterate to a better approximation since they compute
the residual error explicitly, but as the difference is generally small, the solvers
are comparable. In case of the mixed precision GMRES-(10) on the TESLA-
System, the error correction solver is performed on one of the four available
GPUs, while the solution update is led to the CPU of the same system. This is
done to be able to handle larger problems since the amount of memory on the
GPU is limited to 4 GB. Our hardware platform is therefore similar to a system
equipped with one TESLA C1060, but in the following we denote the results
with S1070.
1 http://www.nvidia.com
2 http://www.scc.kit.edu
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On the one hand, we use matrices with a preset condition number, preset
sparsities, and increase the dimension. Depending on the sparsity, the matrices
are stored in the matrix array storage format (MAS) or the compressed row
storage format (CRS).

M1 The first test matrix, is a dense matrix that is generated with the DLATMR-
routine out of the lapack-library [18]. As parameter set, we choose all entries
smaller 1, and a condition number of 3. One drawback is that we cannot
set positive definiteness in the routine itself. To ensure this property, we
set the diagonal entries to be 10 ·n, where n is the dimension of the matrix.
By doing so, we lose the control of the condition number, but it is bounded
by the former choice.

M2 We also choose the second artificial test matrix to be a dense matrix, but
this time with a higher condition number. As it is not easy to control the
condition number of a dense matrix, we choose the term W = 2 ·103 ·n+n
on the diagonal. The term on the upper and lower second diagonal is V =
103 · n, and the rest of the matrix is filled with random double precision
numbers between 0 and 1. These entries are the only entries we cannot
control, and in one row, they can at most sum up to (n − 3) · (1 − ε), but
they can also sum up to (n− 3) · ε, with ε > 0. Since the random numbers
are for large dimension evenly distributed, we assume that they sum up to
0.5 · (n− 3).

M3 The third test case is a sparse matrix similar to a 5-point stencil. The
difference is the the term H = 4 + 10−3 instead of H = 4 on the diagonal.
Furthermore, the second and fifth upper and lower diagonal is filled with
−1. The term 10−3 on the diagonal is used to control the condition number.

Table 1. Structure plots and properties of the artificial test-matrices

M1 M2 M3
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problem: artificial matrix
problem size: variable
sparsity: nnz = n2

cond. number: κ < 3
storage format: MAS

problem: artificial matrix
problem size: variable
sparsity: nnz = n2

cond. number: κ ≈ 8 · 103

storage format: MAS

problem: artificial matrix
problem size: variable
sparsity: nnz ≈ 5n
cond. number: κ ≈ 8 · 103

storage format: CRS
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On the other hand, we additionally use linear problems that were obtained
from discretization in the area of CFD. The three systems of linear equations
CFD1, CFD2 and CFD3 are affiliated with the 2D modeling of a Venturi Nozzle
in different discretization fineness. The distinct number of supporting points
leads to different matrix characteristics concerning the dimension, the number
of non-zeros, and the condition number.

Table 2. Sparsity plots and properties of the CFD test-matrices

CFD1 CFD2 CFD3

problem: 2D fluid flow
problem size: n = 395009
sparsity: nnz = 3544321
storage format: CRS

problem: 2D fluid flow
problem size: n = 634453
sparsity: nnz = 5700633
storage format: CRS

problem: 2D fluid flow
problem size: n = 1019967
sparsity: nnz = 9182401
storage format: CRS

4.2 Numerical Results
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20 plain double precision GMRES-(10) on 1 core
mixed precision GMRES-(10) on 1 core
plain double precision GMRES-(10) on 4 cores
mixed precision GMRES-(10) on 4 cores
mixed precision GMRES-(10) on TESLA S1070

plain double precision GMRES-(10) on 1 core of IC1
mixed precision GMRES-(10) on 1 core of IC1
plain double precision GMRES-(10) on 4 cores of IC1
mixed precision GMRES-(10) on 4 cores of IC1
mixed precision GMRES-(10) on TESLA S1070

Fig. 2. Test case M1, relative residual stopping criterion ε = 10−10
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plain double precision GMRES-(10) on 4 cores of IC1
mixed precision GMRES-(10) on 4 cores of IC1
mixed precision GMRES-(10) on TESLA S1070

Fig. 3. Test case M2, relative residual stopping criterion ε = 10−10
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Fig. 4. Test case M3, relative residual stopping criterion ε = 10−10
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CFD1

solver type computation time [s]
plain double GMRES-(10) on 1 core of IC1 3146.61
mixed GMRES-(10) on 1 core of IC1 1378.56
plain double GMRES-(10) on 4 cores of IC1 1656.53
mixed GMRES-(10) on 4 cores of IC1 712.83
mixed GMRES-(10) on TESLA S1070 438.13

CFD2

solver type computation time [s]
plain double GMRES-(10) on 1 core of IC1 13204.70
mixed GMRES-(10) on 1 core of IC1 5924.32
plain double GMRES-(10) on 4 cores of IC1 6843.66
mixed GMRES-(10) on 4 cores of IC1 3495.09
mixed GMRES-(10) on TESLA S1070 2092.84

CFD3

solver type computation time [s]
plain double GMRES-(10) on 1 core of IC1 60214.50
mixed GMRES-(10) on 1 core of IC1 41927.40
plain double GMRES-(10) on 4 cores of IC1 32875.10
mixed GMRES-(10) on 4 cores of IC1 19317.00
mixed GMRES-(10) on TESLA S1070 10316.70

discretization:
n=395009

nnz=3544321

discretization:
n=634453

nnz=5700633

discretization:
n=1019967

nnz=9182401
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or plain double GMRES-(10) on 1 core of IC1
mixed GMRES-(10) on 1 core of IC1
plain double GMRES-(10) on 4 cores of IC1
mixed GMRES-(10) on 4 cores of IC1
mixed GMRES-(10) on TESLA S1070

Fig. 5. Speedup of the different solvers for the CFD simulation of the Venturi Nozzle
in different discretization fineness with ε = 10−10 and εinner = 0.1

4.3 Result Interpretation

In the first test (Fig. 2), the low condition number leads to a good convergence
rate of GMRES-(10) and there are only few iterations necessary to obtain a
solution approximation fulfilling the stopping criterion. The additional compu-
tational cost of the mixed precision iterative refinement approach is large com-
pared to the computational cost of the pure double solver. Therefore is the mixed
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precision GMRES-(10) neither for the sequential, nor for the parallel case able
to compete with the plain double precision GMRES-(10). The TESLA S1070-
implementation of the mixed GMRES-(10) outperforms the solvers on the IC1
due to the larger number of cores and the excellent single precision performance
of the GPU, that can be exploited by the inner error correction solver. It should
be mentioned, that the factors between the computation time of the different
solver types are independent of the dimension n of the linear system that is
solved.

The difference of the second test (Fig. 3) to the first test case (Fig. 2) is
the fairly high condition number of κ ≈ 8 · 103 of the linear system. Due to
the high number of iterations the linear solvers have to perform, the overhead
for the mixed precision method is considerably small. Therefore, also on the
IC1, the additional costs can be overcompensated by the speedup gained by
performing the inner solver in a lower precision format. Both, for the parallel
and the sequential case we gain a factor of about two using the mixed precision
iterative refinement approach instead of the plain double precision GMRES-(10).
Using a lower precision format leads to a shorter execution time when performing
elementary computations on the one hand, and to a more efficient use of the
memory bandwidth on the other hand. The memory space needed to store one
single precision floating point number is half the size that is needed for one
double precision floating point number. Usually, the memory bandwidth is the
limiting factor of the computational power of a system. Using a lower precision
format, the processors have shorter waiting time for the data, and the system
gains a higher efficiency. Since this argument applies to all memory levels, the
speedup using single precision for the GMRES-(10) can even exceed the factor 2
that characterizes the speedup of a general purpose CPU when switching from
double to single precision computations.

The speedup factor gained by performing the mixed GMRES-(10) on the
TESLA S1070 is almost 15 with respect to the sequential plain double GMRES-
(10) on the IC1. Again we can observe, that the speedup factors between the
different solvers on the different Hardware platforms remain constant, indepen-
dent of the problem size.

For the third test case (Fig. 4), again an artificial test matrix is used with
a condition number of κ ≈ 8 · 103. In difference to the former test cases, we
now apply the solvers to sparse linear systems where the matrices are stored
in the CRS format. The low number of nonzero entries leads no longer to a
computational cost that is quadratically increasing with the dimension, but lin-
early. Furthermore is the total computational effort lower compared to the tests
with matrix structure M2. Despite some perturbations, that can be explained
by rounding effects and the use of different cache levels, we can still observe that
the quotients between the solver types remain the same, independently of the
dimension of the linear system. Again, both for the sequential and the parallel
case, the mixed precision GMRES-(10) on the IC1 outperform the plain double
implementations due to the fact, that the additional computational cost of the
iterative refinement scheme is overcompensated by the speedup gained through
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the execution of the inner solver in single precision. The implementation on the
TESLA S1070 can additionally exploit the excellent single precision performance
of the highly parallelized GPU and overcompensate the additional data transfer
costs. Furthermore approximate the speedups gained by using the mixed preci-
sion GMRES-(10) the speedups of test case M2.

The tests with the matrices CFD1, CFD2 and CFD3 show that the mixed
precision iterative refinement approach is also beneficial when applying solvers
to real world problems (Fig. 5). The mixed GMRES-(10) solvers outperform
the sequential plain double GMRES-(10) implementations for all test problems,
both in the sequential and the parallel case. The reason is again the fact, that
the additional computational cost of the iterative refinement approach is over-
compensated by the cheaper inner solver using a lower precision format.

Using hybrid hardware, the mixed GMRES-(10) on the TESLA S1070 even
generates speedups up to 7 with respect to the plain double implementation on
the IC1. It can be observed, that this factor decreases for increasing dimension.
The reason is, that for large data amounts, the connection between the host
CPU and the GPU slows the mixed GMRES-(10) down.

5 Conclusions and Future Work

Numerical tests have shown the high potential of using different precision formats
within the proposed error correction solver.

While the obtained algorithm is flexible in terms of choosing the inner cor-
rection solver, it is robust in terms of numerical stability. The possibility of
performing the error correction solver on a coprocessor increases the potential
of mixed precision methods, as they can be implemented efficiently on hybrid
systems. Performing the error correction solver of an error correction method in
a lower format leads to an overall increase in performance for a large number of
problems.

On a CPU, performing the error correction method in mixed precision, one
often achieves a speedup factor of two compared to the plain solver in double
precision.

When using hybrid hardware, consisting of coprocessors specialized on low
precision performance, even higher speedup factors can be expected. In the
numerical experiments for the FEM discretizations of the Venturi Nozzle we
achieved speedups of more than seven for our CUDA implementation.

Still, a very ill-conditioned problem can lead to a high number of additional
outer iterations necessary to correct the rounding errors, that arise from the use
of a lower precision format in the error correction solver. In the worst case, the
inner solver will not converge. Due to the fact that we are usually not able to
determine a priori whether the mixed precision method is superior for a spe-
cific problem, an optimized implementation of the solver would execute the first
solution update of the mixed precision error correction method and determine,
depending on the improvement of the solution approximation, whether it should
continue in the mixed precision mode or whether it should use the plain solver
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in high precision. The next step beyond this strategy of changing between single
and double precision is to use techniques around adaptive precision, where the
precision is adjusted according to the convergence in the inner solver. FPGAs
and related technologies may provide the capabilities for such algorithms.

For an efficient implementation of the mixed precision error correction tech-
niques in a solver suite, some additional work is necessary, especially concerning
the use of preconditioners. This may not only increase the stability of the solver,
but also its performance. In such an environment, the mixed precision error
correction methods form powerful solvers for FEM simulations and beyond.
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Abstract. The use of GPUs to accelerate the factoring of large sparse symme-
tric matrices shows the potential of yielding important benefits to a large group 
of widely used applications. This paper examines how a multifrontal sparse 
solver performs when exploiting both the GPU and its multi-core host. It de-
monstrates that the GPU can dramatically accelerate the solver relative to one 
host CPU. Furthermore, the solver can profitably exploit both the GPU to factor 
its larger frontal matrices and multiple threads on the host to handle the smaller 
frontal matrices. 

Keywords: GPU acceleration, GPGPU, multifrontal algorithms, MCAE. 

1   Introduction 

Solving the system of linear equations Ax = b, where A is both large and sparse, is a 
computational bottleneck in many scientific and engineering applications. Therefore, 
over the past forty years, a tremendous amount of research has gone into this problem, 
exploring both direct and iterative methods [1]. This paper focuses on a subset of this 
large space of numerical algorithms, factoring large sparse symmetric indefinite ma-
trices. Such problems often arise in Mechanical Computer Aided Engineering (MCAE) 
applications. For decades, researchers have sought to exploit novel computing systems 
to accelerate the performance of sparse matrix factorization algorithms. This paper 
continues that trend, exploring whether or not one can accelerate the factorization of 
large sparse matrices, which is already parallelized on a modern multi-core micropro-
cessor, by additionally exploiting graphics processing units (GPUs). 

The GPU is a very attractive candidate as an accelerator to ameliorate a computa-
tional bottleneck such as sparse matrix factorization.  Unlike previous generations of 
accelerators, such as those designed by Floating Point Systems [2] for the relatively 
small market of scientific and engineering applications, current GPUs are designed to 
improve the end-user experience in mass-market arenas such as gaming. Together 
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with other niche chips, such as Sony, Toshiba, and IBM’s (STI) Cell [3], they are a 
new generation of devices whose market share is growing rapidly, independently of 
science and engineering.  The extremely high peak floating point performance of 
these new commodity components begs the question as to whether or not they can be 
exploited to increase the throughput and/or reduce the cost of applications beyond the 
markets for which they are targeted. The quest to explore broader use of GPUs is 
often called GPGPU, which stands for General Purpose computation on GPUs [4]. 

There are many algorithms for factoring large sparse linear systems.  The multifron-
tal method [5] is particularly attractive, as it transforms the sparse matrix factorization 
into a hierarchy of dense matrix factorizations. Multifrontal codes can effectively ex-
ploit the memory hierarchies of cache-based microprocessors, routinely going out-of-
core to disk as needed. With the right data structures, the vast majority of the floating 
point operations can be performed with calls to highly tuned BLAS3 routines, such as 
the SGEMM matrix-matrix multiplication routine [6], and near peak throughput is 
expected. Not surprisingly, all of the major commercial MCAE applications use multi-
frontal solvers. 

Recent GPGPU work has demonstrated that dense, single-precision linear algebra 
computations, e.g., SGEMM, can achieve very high levels of performance on GPUs 
[7][8][9]. This in turn led to early efforts to exploit GPUs in multifrontal linear solv-
ers by investigators at USC [10], ANSYS [11], and AAI [12].  These early efforts 
compared the performance of early model NVIDIA G80 GPUs to that of single CPU 
hosts.  In the work reported herein, we extend the previous work and report on the 
performance of a multifrontal linear solver exploiting both state-of-the-art NVIDIA 
Tesla GPUs as well as shared memory concurrency on the dual-socket, quad-core 
Intel Nehalem host microprocessor. 

The remainder of the paper is organized as follows. The next section provides a 
brief overview of the multifrontal method and illustrates how it turns a sparse problem 
into a tree of dense ones. This is followed by a brief overview of the NVIDIA Tesla 
C1060 GPU used in the earlier phase of this experiment. We discuss both the unique 
nature of its architecture as well as its CUDA programming language. Section 4 
presents our strategy for factoring individual frontal matrices on the GPU and pro-
vides performance results on the GPU.  Section 5 presents the impact on the overall 
performance of the multifrontal sparse solver of utilizing both shared memory paral-
lelism and the GPU.  Finally, we summarize the results of our experiment and suggest 
directions for future research.  

2   Overview of a Multifrontal Sparse Solver 

Figure 1 depicts the non-zero structure of a small sparse matrix. Coefficients that are 
initially non-zero are represented by an ‘x’, while those that fill-in during factoriza-
tion are represented by a ‘*’. Choosing an optimal order in which to eliminate these 
equations is in general an NP-complete problem, so heuristics, such as METIS [13], 
are used to try to reduce the storage and operations necessary. The multifrontal me-
thod treats the factorization of the sparse matrix as a hierarchy of dense sub-problems. 
Figure 2 depicts the multifrontal view of the matrix in Fig.1. The directed acyclic 
graph of the order in which the equations are eliminated is called the elimination tree.  
When each equation is eliminated, a small dense matrix called the frontal matrix is 
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assembled.  In Figure 2, the numbers to the left of each frontal matrix are its row 
indices.  Frontal matrix assembly proceeds in the following fashion:  the frontal ma-
trix is cleared, it is loaded with the initial values from the pivot column (and row if 
it’s asymmetric), then any updates generated when factoring the pivot equation’s 
children in the elimination tree are accumulated.  Once the frontal matrix has been 
assembled, the variable is eliminated.  Its Schur complement (the shaded area in 
Fig.2) is computed as the outer product of the pivot row and pivot column from the 
frontal matrix.  Finally, the pivot equation’s factor (a column of L) is stored and its 
Schur complement placed where it can be retrieved when needed for the assembly of 
its parent’s frontal matrix.  If a post-order traversal of the elimination tree is used, the 
Schur complement matrix can be placed on a stack of real values. 
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3 XX     X
2 XXX   *X*
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Fig. 1. Sparse matrix with symmetric 
non-zero structure 

Fig. 2. Multifrontal view of sparse matrix from Fig.1 

The cost of assembling frontal matrices is reduced by exploiting supernodes.  A su-
pernode is a group of equations whose non-zero structures in the factored matrix are 
indistinguishable.  For example, zeros filled-in during the factorization of the matrix in 
Fig.1 turn its last four equations into a supernode.  The cost of assembling one frontal 
matrix for the entire supernode is amortized over the factorization of all the constituent 
equations, reducing the multifrontal method’s overhead.  Furthermore, when multiple 
equations are eliminated from within the same frontal matrix, their Schur complement 
can be computed very efficiently as the product of two dense matrices. 

Fig.3 depicts a finite element grid generated by the LS-DYNA MCAE code 
(www.lstc.com). The matrix for the grid in Fig. 3 is relatively small, having only 
235,962 equations. Matrices with two orders-of-magnitude more equations are rou-
tinely factored today. Factoring such large problems can take many hours, a time that 
is painfully apparent to the scientists and engineers waiting for the solution. 

Figure 4 illustrates the elimination tree for the matrix corresponding to the grid in 
Fig 3, as ordered by METIS. This particular elimination tree has 12,268 relaxed [14] 
supernodes in it. There are thousands of leaves and one root. The leaves are relatively 
small, O(10) equations being eliminated from O(100). The supernodes near the root 
are much bigger. Hundreds of equations are eliminated from over a thousand. Be-
cause dense factor operations scale as order N3, approximately two-dozen supernodes 
at the top of the tree contain half of the total factor operations. 
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Fig. 3. Example of an MCAE Finite Element Problem and Grid (courtesy LSTC) 

 

Fig. 4. Supernodal elimination tree for problem in Figure 3 (courtesy Cleve Ashcraft) 

The multifrontal code discussed in this paper has two strategies for exploiting 
shared-memory, multithreaded concurrency. The frontal matrices at the leaves of the 
elimination tree can all be assembled and factored independently. At the lower levels 
in the tree, there can be thousands of such leaves, dwarfing the number of processors, 
and hence each supernode is assigned to an individual processor. This leads to a 
breadth-first traversal of the elimination tree, and a real stack can no longer be used to 
manage the storage of the update matrices [15]. Near the top of the elimination tree, 
the number of supernodes drops to less than the number of processors. Fortunately, 
for the finite element matrices considered in this work, these few remaining super-
nodes are large, and a right-looking code can be sped up by dividing the matrix into 
panels and assigning them to different processors. 

The objective of the work reported here is to attempt to use GPUs as inexpensive ac-
celerators to factor the large supernodes near the root of the elimination tree, while 
processing the smaller supernodes near the bottom of the tree by exploiting shared-
memory concurrency on the multicore host. This should lead to a significant increase in 
the throughput of sparse matrix factorization compared to a single CPU. The next sec-
tion gives a brief description of the NVIDIA Tesla C1060 and its CUDA programming 
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language, highlighting just those features used in this work to factor individual frontal 
matrices. 

3   Graphics Processing Units 

The NVIDIA Tesla GPU architecture consists of a set of multiprocessors.  Each of the 
C1060’s thirty multiprocessors has eight Single Instruction, Multiple Data (SIMD) 
processors. This GPU supports single precision (32 bit) IEEE 754 [16] formatted 
floating-point operations.  It also supports double precision, but at a significantly 
lower performance.  Each SIMD processor can perform two single precision multip-
lies and one add at every clock cycle.  The clock rate on the C1060 card is 1.3 GHz.  
Therefore, the peak performance is: 

 

  1.3 GHz * 3 results/cycle * 8 SIMD/mp * 30 mp = 936 GFlops/s 
 

The ratio of multiplies to adds in matrix factorization is one, so for a linear solver, 
the effective peak performance is 624 GFlop/s. In practice, the NVIDIA CuBLAS 
SGEMM routine delivers just over half of that performance. 

Memory on the Tesla GPU is organized into device memory, shared memory and 
local memory. Device memory is large (4 GBytes), is shared by all multiprocessors, is 
accessible from both host and GPU, and has high latency (over 100 clock cycles).  
Each multiprocessor has a small (16 KBytes) shared memory that is accessible by all 
of its SIMD processors. Shared memory is divided into banks and, if accessed so as to 
avoid bank conflicts, has a one cycle latency. Shared memory should be thought of a 
user-managed cache or buffer between device memory and the SIMD processors.  
Local memory is allocated for each thread. It is small and can be used for loop va-
riables and temporary scalars, much as registers would be used. The constant memory 
and texture memory were not used in this effort.   

In our experience, there are two primary issues that must be addressed to use the 
GPU efficiently: 

 

 code must use many threads, without conditionals, operating on separate data to 
keep the SIMD processors busy 

 code must divide data into small sets, which can be cached in the shared memo-
ry. Once in shared memory, data must be used in many operations (10 – 100) to 
mask the time spent transferring between shared and device memory.  

 

It is not yet feasible to convert a large code to execute on the GPU.  Instead, compute-
bound subsets of the code should be identified that use a large percentage of the ex-
ecution time.  Only those subsets should be converted to run on the GPU.  Their input 
data is transferred from the host to the GPU’s device memory before initiating com-
putation on the GPU.  After the GPU computation is complete, the results are trans-
ferred back to the host from the GPU’s device memory.  

To facilitate general-purpose computations on their GPU, NVIDIA developed the 
Compute Unified Device Architecture (CUDA) programming language [17].  CUDA 
is a minimal extension of the C language and is loosely type-checked by the NVIDIA 
compiler (and preprocessor), nvcc, which translates CUDA programs (.cu) into C 
programs. These are then compiled with the gcc compiler and linked as an NVIDIA 
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provided library.   Within a CUDA program, all functions have qualifiers to assist the 
compiler with identifying whether the function belongs on the host of the GPU.  For 
variables, the types have qualifiers to indicate where the variable lives, e.g., 
__device__ or __shared__.  CUDA does not support recursion, static va-
riables, functions with arbitrary numbers of arguments, or aggregate data types. 

4   Algorithm for Factoring Individual Frontal Matrices on the 
GPU 

In earlier work, we determined that, in order to get meaningful performance using the 
GPU, we had to both maximize use of the NVIDIA supplied SGEMM arithmetic 
kernel and minimize data transferred between the host and the GPU.  We decided to 
adopt the following strategy for factoring individual frontal matrices on the GPU: 

 

• Download the factor panel of a frontal matrix to the GPU. Store symmetric 
data in a square matrix, rather than a compressed triangular.  This wastes sto-
rage, but is easy to implement. 

• Use a left-looking factorization, proceeding over panels from left to right: 
- Update a panel with SGEMM 
- Factor the diagonal block of the panel 
- Eliminate the off-diagonal entries from the panel 

• Update the Schur complement of this frontal matrix with SGEMM 
• Return the entire frontal matrix to the  host, converting back from square to 

triangular storage 
• Return an error if the pivot threshold was exceeded or a diagonal entry was 

zero 

 
Table 1. Log of time spent factoring a model frontal matrix 

Method Name GPU msec %GPU time 

Copy data to and from GPU 201.0 32.9% 
Factor 32x32 diagonal blocks 42.6 7.0% 
Eliminate off diagonal panels 37.0 6.1% 

Update with SGEMM 330.6 54.1% 
Total time 611.4 100.0% 

 
The time log for factoring a large, simulated frontal matrix with the fully optimized 

CUDA factorization code is in Table 1. This timing was taken when the GPU was 
eliminating 3072 equations from 4096. Approximately half of the execution time on 
the GPU is spent in SGEMM. Eliminating off-diagonals and factoring diagonal 
blocks takes only 13% of the time. The remaining third of the time is spent realigning 
the matrices and copying data to and from the host. A further 0.029 seconds are spent  
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on the host, and not reflected in Table 1. The computation rate for the entire dense 
symmetric factorization is 163 GFlops/s.  In contrast, four cores of the Intel Xeon 
Nehalem host achieve 29 GFlop/s when factoring the same sized frontal matrix and 
using the same 32-column panel width.  Performance results using the GPU to factor 
a variety of model frontal matrices is presented in Table 2. These range in the number 
of equations eliminated from the frontal matrix (size) as well as the number of equa-
tions left in the frontal matrix, i.e., its external degree (degree). As expected, the larg-
er the frontal matrix gets, the more operations one has to perform to factor it, and the 
higher the performance of the GPU.  

Table 2. Performance of the C1060 GPU frontal matrix factorization kernel 

Size Degree Secs GFlop/s 
1024 1024 0.048 51.9 
1536 1024 0.079 66.3 
2048 1024 0.117 79.7 
512 2048 0.045 60.2 

1024 2048 0.079 86.5 
1536 2048 0.123 101.3 
2048 2048 0.179 112.2 
512 3072 0.076 74.7 

1024 3072 0.128 103.9 
1536 3072 0.188 122.4 
2048 3072 0.258 136.0 
512 4096 0.116 84.0 

1024 4096 0.185 118.3 
1536 4096 0.267 137.3 
2048 4096 0.361 150.9 

5   Performance of the Accelerated Multifrontal Solver 

In this section we examine the performance impact of the GPU on overall multifrontal 
sparse matrix factorization. We will use a matrix extracted from the LS-DYNA 
MCAE application. It is derived from a three dimensional problem composed of three 
cylinders nested within each other, and connected with constraints. The rank of this 
symmetric matrix is 760320 and its diagonal and lower triangle contain 29213357 
non-zero entries. After reordering with Metis, it takes 7.104E+12 operations to factor 
the matrix. The resulting factored matrix contains 1.28E+09 entries.   

Figure 5 plots the time it takes to factor the matrix, as a function of the number of 
cores employed, both with and without the GPU.  The dual socket Nehalem host sus-
tains 10.3 GFlop/s when using one core, and 59.7 GFlop/s when using all eight.  
When the GPU is employed, it performs 6.57E+12 operations, 92% of the total, and 
sustains 98.1 GFlop/s in doing so. The overall performance with the GPU improves to 
61.2 GFlop/s when one host core is used, and 79.8 GFlop/s with all eight. For pers-
pective, reordering and symbolic factorization take 7.9 seconds, permuting the input 
matrix takes 2.64 seconds, and the triangular solvers take 1.51 seconds. 
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Fig. 5. Multicore factorization time, with and without the GPU 

To understand why there seems to be so little speedup when the GPU-enhanced 
solver goes from one core to eight, consider Figure 6. It displays the number of super-
nodes per level in the elimination tree for the three cylinder matrix, along with the 
number of operations required to factor the supernodes at each level.  Notice that the 
vast majority of the operations are in the top few levels of the tree, and these are 
processed by the GPU.   

Figure 7 plots the performance achieved by the multicore host when factoring the 
supernodes at each level of the tree. Note, near the leaves, performance is nowhere 
near the peak. This is true even for one core, as the supernodes are too small to facili-
tate peak SGEMM performance. As multiple cores are used, relatively little speedup 
is observed, which is likely due to the relatively low ratio of floating point operations 
to memory loads and stores for these small supernodes, leaving them memory bound 
on the multicore processor. 

The performance study described above was performed in single precision, using 
an NVIDIA Tesla C1060. In most implicit MCAE applications, double precision is 
preferred. Therefore, it was not until the Tesla C2050 (Fermi) was available that it 
made send to try to integrate the GPU-enhanced multifrontal code into an application 
such as LS-DYNA. The results of this integration as presented in Figure 8, which 
depicts the time for LS-DYNA to run a static analysis of the same three nested cy-
linders. LS-DYNA itself is compiled to use eight-byte integers and double precision  
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Fig. 6. Number of supernodes and factor operations per level in the tree 

 

 
Fig. 7. Multicore performance per level in the elimination tree 
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Fig. 8. LS-DYNA run time, with and without the GPU 

floating point operations. The frontal matrix factorization kernel on the C2050 GPU 
uses 32-bit integers and double precision floating point numbers. Because sparse 
matrix factorization dominates the run time in this example, the shape of the curves 
depicting the run time of LS-DYNA on multiple cores, with and without the C2050 
GPU, is very similar to those of the solver in Fig. 5. 

6   Summary 

This paper has demonstrated that a GPU can in fact be used to significantly accelerate 
the throughput of a multi-frontal sparse symmetric factorization code, even when 
exploiting shared memory concurrency on the host multicore microprocessor. We 
have demonstrated factorization speed-up of 5.91 relative to one core on the host, and 
1.34 when using eight cores. This was done by designing and implementing a symme-
tric factorization algorithm for the NVIDIA C1060 in the CUDA language and then 
offloading a small number of large frontal matrices, containing over 90% the total 
factor operations, to the GPU. 

In addition, we have demonstrated that with suitable support for double precision 
arithmetic, as is found in the NVIDIA C2050, the GPU-enhanced solver can accele-
rate implicit MCAE analysis. We note that both ANSYS and Simulia have recently 
reported similar results, having integrated solver kernels developed by Acceleware in 
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to their MCAE codes, ANSYS and ABAQUS. However, more work needs to be done 
before the use of GPUs will be common for such applications. The GPU frontal ma-
trix factorization code implemented for this experiment should be revisited to make it 
more efficient in its use of memory on the GPU. It should be modified to implement 
pivoting so that indefinite problems can be factored entirely on the GPU. Further, it 
should be extended to work on frontal matrices that are bigger than the relatively 
small device memory on the GPU, much as the multifrontal code goes out-of-core 
when the size of a sparse matrix exceeds the memory of the host processor. 

Finally, if one GPU helps, why not more? Researchers have been implementing pa-
rallel multifrontal codes for over two decades [18]. In fact, the multifrontal code used 
in these experiments has both OpenMP and MPI constructs. Therefore exploiting mul-
tiple GPUs is not an unreasonable thing to consider. However, when one considers that 
one would have to simultaneously overcome both the overhead of accessing the GPU 
as well as the costs associated with communicating amongst multiple processors; it 
may be very challenging to efficiently factor one frontal matrix with multiple GPUs. 
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Abstract. Implementations of the Basic Linear Algebra Subprograms
(BLAS) interface are major building block of dense linear algebra (DLA)
libraries, and therefore have to be highly optimized. We present some
techniques and implementations that significantly accelerate the
corresponding routines from currently available libraries for GPUs. In
particular, Pointer Redirecting – a set of GPU specific optimization tech-
niques – allows us to easily remove performance oscillations associated
with problem dimensions not divisible by fixed blocking sizes. For ex-
ample, applied to the matrix-matrix multiplication routines, depending
on the hardware configuration and routine parameters, this can lead to
two times faster algorithms. Similarly, the matrix-vector multiplication
can be accelerated more than two times in both single and double pre-
cision arithmetic. Additionally, GPU specific acceleration techniques are
applied to develop new kernels (e.g. syrk, symv) that are up to 20×
faster than the currently available kernels. We present these kernels and
also show their acceleration effect to higher level dense linear algebra
routines. The accelerated kernels are now freely available through the
MAGMA BLAS library.
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1 Introduction

Implementations of the BLAS interface are major building block of dense lin-
ear algebra libraries, and therefore have to be highly optimized. This is true for
GPU computing as well, especially after the introduction of shared memory in
modern GPUs. This is important because it enabled fast Level 3 BLAS imple-
mentations for GPUs [2,1,4], which in turn made possible the development of
DLA for GPUs to be based on BLAS for GPUs [1,3]. Earlier attempts (before
the introductions of shared memory) could not rely on memory reuse, only on
the GPU’s high bandwidth, and as a result were slower than the corresponding
CPU implementations.
� Candidate to the Best Student Paper Award.

�� Research reported here was partially supported by the National Science Foundation,
NVIDIA, and Microsoft Research.

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 83–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



84 R. Nath, S. Tomov, and J. Dongarra

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

CUDA 2.3, GTX 280

SGEMM

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

CUDA 2.3, GTX 280

DGEMM

(b) Double Precision

Fig. 1. GEMM Performance on Square Matrices

Despite the current success in developing highly optimized BLAS for GPUs
[2,1,4], the area is still new and presents numerous cases/opportunities for im-
provements. This paper addresses several very important kernels, namely the
matrix-matrix multiplication that are crucial for the performance throughout
DLA, and matrix-vector multiplication that are crucial for the performance of
linear solvers and two-sided matrix factorizations (and hence eigen-solvers). The
new implementations are included in the recently released and freely available
Matrix Algebra for GPU and Multicore Architectures (MAGMA) version 0.2
BLAS Library [3].

The rest of the paper is organized as follows. Section 2 gives some per-
formance results of current kernels and points out our optimization targets.
Section 3 presents the Pointer Redirecting techniques and their use to accelerate
the xAXPY, xGEMV, and xGEMM routines. Section 4 summarizes the results
on accelerating selected MAGMA BLAS kernels. Next, in Section 5 we give the
performance results for the new kernels. Finally, Section 6 summarizes this work
and describes on-going efforts.

2 Performance of Current BLAS for GPUs

One current BLAS library for GPUs is NVIDIA’s CUBLAS [2]. Figure 1(a)
shows the performance of the single precision matrix-matrix multiplication rou-
tine (SGEMM) for a discrete set of matrix dimensions. Figure 1(b) shows similar
data but for double precision arithmetic. Note that at some dimensions the per-
formance is much higher than at other dimensions, e.g. taken at odd numbers
like 65, 129, etc. These performance dips, that actually happen in the majority of
matrix dimensions are one of our acceleration targets. The reason for these dips
is very likely related to an implementation that has even inner-blocking size to
match various hardware parameters and considerations to get high performance.
The performance graphs illustrate a quite high performance loss for the cases
when the matrix dimension is obviously not a multiple of the inner blocking size.
In particular, the performance gap is more than 24 GFlops/s in double precision
(around.34% of the peak performance), and is worse for single precision.
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(a) GEMM for GPUs (b) Acceleration target

Fig. 2. The algorithmic view of GEMM for GPUs

There are ways around to work with these BLAS routines and still get high
performance in high level algorithms. One possible solution is to force the user
to allocate and work with matrices multiple of the blocking size. This though
leads to memory waste. Sometimes it is a burden to the user if the application
is already written, and in general is obviously not a good solution. Another
solution is padding with 0s to fit the blocking factor, do the computation and
keep this transparent to the user. This approach has the overhead of copying
data back and forth, and possibly some extra computation. A third approach
is to rewrite the kernels in such a way that there are no extra computations,
no data movement or any other overheads. This rewriting though is difficult
and time consuming, especially taken into account different GPU specifics as
related to data coalescing, data parallel computation, computation symmetry,
and memory bank layout.

3 Pointer Redirecting

The matrix-matrix multiplication (xGEMM; e.g. C = AB) algorithm for GPUs
is schematically represented in Figure 2(a). Matrix C is divided into blocks of
size blkM × blkN and each block is assigned to a block of nthdx×nthdy threads.
Each thread inside a thread block computes a row of sub matrix blkM × blkN .
Each thread accesses corresponding row of matrix A as shown by an arrow and
uses the sub-matrix K× blkN of matrix B for computing the final result. As the
portion of matrix B needed by each thread inside a thread block is the same, they
load a sub-matrix of matrix B of size blkN × blkK from global memory to shared
memory in a coalesced way, synchronize themselves, do the computation and
repeat until the computation is over. All these happen in a series of synchronized
steps. With an optimal selection of blkM , blkN , blkK , nthdX , nthdY , we can get
the best kernel for the matrix sizes that are divisible by blocking factors, i.e.
M%blkM = 0, N%blkN = 0, K%blkK = 0.

The question is how to deal with matrix dimensions that are not divisible by
the blocking factor. Whatever solution we choose, we have to keep it transparent
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Fig. 3. GEMM Implementation with Conditional Statement in Inner Loop

to the user while maintaining highest flexibility. The goal is to allow reasonable
overhead (if needed) and to achieve high performance in general cases. We show
in Figure 2(b) matrix C of a xGEMM operation (C = αC + βOp(A)Op(B))
where dimensions M and N are not divisible by the blocking factor. The matrix
has only one full block. We can do the computation for the full block and do the
other partial blocks by loading data and doing computation selectively. This will
introduce several if-else statements in the kernel which will prevent the threads
inside a thread-block to run in parallel. Figure 3 shows the performance of one
such implementation. Note that GPUs run all the threads inside a thread block
in parallel as long as they execute the same instruction on different data. If
the threads ever execute different instruction, their processing would become
temporary sequential until they start executing the same instructions again.

Another approach is to let the unnecessary threads do similar work so that
the whole thread block can run in data parallel mode. In Figure 2(b) the dashed
blue lines correspond to unnecessary flops that are done by respective thread.
It is not clear yet which data they will operate on, but it also does not matter
because the computation will be discarded. Lets take a look at the scenario
where all the threads assume that the matrix fits into the block and do the
work in a natural way until updating matrix C. In Figure 4, the shaded region
corresponds to original matrix and the outmost rectangle corresponds to the
largest matrix that best fits in terms of blocking factor. We are going to make
	 M

dimM

 × 	 N

dimN

 number of grids and allow threads at the partial block to

compute the same way as it is done in a full block. It is evident that memory
accesses inside the shaded region in Figure 4, denoted by white diamond, are
always valid. Memory accesses denoted by red diamonds are always invalid.
Memory accesses represented by green diamond could be valid or illegal. As we
can see in the Figure 4, the leftmost green diamond could be an element from
the next column, e.g. when lda � blkM × 	 M

blkM

. It could be an element in the

same column when lda > blkM×	 M
blkM


, or it could be invalid memory reference.
In Figure 5(Left), the blue lines in last row and last column are last valid mem-

ory reference irrespective of any values of lda, M , N , K, blkM , blkN , nthdX , nthdY .
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Fig. 4. Possible Illegal Memory Reference in Matrix Multiply

Fig. 5. (Left) Last Valid Access (Middle) Pointer Redirecting (Right) Mirroring

If some thread needs to access some memory location beyond this last row/
column, we are going to force him reference to this last row/column by adjust-
ing the pointer. These threads will be doing unnecessary computation, we don’t
care from where this data is coming from. All we care is that together they make
best use of memory bandwidth and layout, access data in a coalesced manner.
Figure 5(Middle) depicts the complete scenario how the memory is referenced.
As a result the matrix will have some virtual row where rows beyond the last row
are replication of last row and columns beyond the last column are replication
of last column. It is shown in Figure 5.

Let’s see how it fits into xGEMM’s(Op(A) = Op(B) =Non-Transposed) con-
text in terms of accessing matrix A. As in Figure 6(a), thread t1, t2, t3, t4 will
be accessing valid memory location. And all the threads beyond thread t4, e.g.
thread t5, t6 will be accessing same memory thread t4 is accessing. As a result
no separate memory read operation will be issued and no latency will be experi-
enced for this extra load. If we look at Figure 6(b), blkK × blkN data of matrix
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(a) Accessing Matrix A (b) Accessing Matrix B

Fig. 6. Algorithmic view of GEMM for GPUs with Pointer Redirecting

B are brought into shared memory by nthdX × nthdY threads in a coalesced
manner. The left blkK × blkN block is necessary as we can see. But the right
blkK × blkN is partially needed. The black portions are unnecessary memory
access. As discussed before, it will access the last row or column that is needed
instead of accessing invalid memory. This will still be done in a coalesced way
and it is accessing less memory now. Some memory are accessed more than once,
which doesn’t hamper performance. This a simple solution to the problem with
little overhead that doesn’t break the pattern of coalesced memory access. Note
that we will not be doing any extra computation in K dimension, so we don’t
need to zeroing out values to keep the computation valid.

4 MAGMA BLAS Kernels

MAGMA BLAS includes a subset of CUDA BLAS that are crucial for the per-
formance of MAGMA routines. The pointer redirecting technique were applied
to most of the kernels. Here we mention a few of the new kernels and their use
in high level MAGMA routines.

xGEMM: Various kernels were developed as an extension to the approach
previously presented in [4]. The extensions include more parameters to explore
xGEMM’s design space to find best performing versions in an auto-tuning ap-
proach. The new algorithms are of extreme importance for both one-sided and
two-sided matrix factorizations as they are in general based on xGEMMs involv-
ing rectangular matrices, and these are the cases that we managed to accelerate
most significantly.

xGEMV: Similarly to xGEMM, various implementations were developed and
parametrized to prepare them for auto-tuning based acceleration. Different im-
plementations are performing best in different settings. xGEMVs are currently
used in MAGMA’s mixed-precision iterative refinement solvers and the Hessen-
berg reduction algorithm.

xSYMV: Similarly to xGEMM and xGEMV, various implementations were
developed. xSYMV is used similarly to when xGEMV is used with the difference
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when symmetric matrices are involved. This is again the mixed-precision iterative
refinement solvers and the reduction to three diagonal form.

xTRSM: Algorithms that trade off parallelism and numerical stability, espe-
cially in algorithms related to triangular solvers, have been known and studied
before, but now are getting extremely relevant with the emerging highly parallel
architectures, like the GPUs. We use an approach where diagonal blocks of the
matrix are explicitly inverted and used in a block algorithm. Multiple kernels,
including kernels where the inverses are computed on the CPU or GPU, with
various block sizes (e.g., recursively increasing it from 32), are developed.

xSYRK: A block index reordering technique is used to initiate and limit the
computation only to blocks that are on the diagonal or in the lower (corre-
spondingly upper) triangular part of the matrix. In addition, all the threads in a
diagonal block are responsible to compute redundantly half of the block in a data
parallel fashion in order to avoid expensive conditional statements that would
have been necessary otherwise. Some threads also load unnecessary data so that
data is fetched from global memory in a coalesced manner. These routines are
used in both some one-sided and two-sided matrix factorization algorithms.

5 Performance

For the unnecessary computation there will be some overhead. Figure 7 shows
the percentage of extra flops needed for different dimensions of matrix with pa-
rameters blkM = 64, blkN = 16, blkK = 16, nthdX = 16, nthdY = 4 for different
matrix sizes. The overhead is scaled to 100 for visibility. Figure 9 and Figure 8
shows the performance results for GEMM in single and double precision respec-
tively. In double precision we are seeing an improvement of 24 GFlops/s and
in single precision it is like 170 GFlops/s. As we have discussed before other
than small dimensions the improvement is significant The zig-zag patterns in
performance graph resembles the blocking factor of the kernel.

As we have discussed before, if the matrices are in CPU memory one can
use padding, e.g., as in [5]. We have to allocated a bigger dimension of matrix
in GPU memory, put zeroes in the extra elements, then transfer the data from
CPU to GPU and then call the Kernel. Figure 10 shows the performance com-
parison when data is in CPU memory. It is evident that for small matrix size
our implementation is better and for higher dimension they are very identical.
We note that the pointer redirecting approach does not use extra memory, does
not require a memory copy if non padded matrix is given on the GPU memory,
and finally does not require initialization of the padded elements.

Finally Figure 11 gives an illustration on the effect of optimized BLAS on high
level routines. We see similar results throughout MAGMA algorithms. Table 1
shows the performance of the one-sided QR factorization using CUBLAS and
MAGMA BLAS for matrix sizes not divisible by the kernel’s block size. The
pointer redirecting approach brings 20% to 50% performance improvement over
CUBLAS in this case.
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Fig. 7. Flops overhead in xGEMM
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Table 1. Performance comparison between MAGMA BLAS with pointer redirecting
and CUBLAS for the QR factorization in single precision arithmetic

Matrix Size CUBLAS MAGMA BLAS
1001 47.65 46.01
2001 109.69 110.11
3001 142.15 172.66
4001 154.88 206.34
5001 166.79 226.43
6001 169.03 224.23
7001 175.45 246.75
8001 177.13 251.73
9001 179.11 269.99

10001 180.45 262.90
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Fig. 11. Effect of optimized SGEMV on the Hessenberg reduction

6 Conclusions and On-going Work

We presented techniques to accelerate GPU BLAS kernels that are crucial for the
performance of DLA algorithms. Performance results, demonstrating significant
kernels acceleration and the effect of this acceleration on high level DLA, were
also presented. On-going work includes the extension of these techniques to more
routines, and their inclusion in the MAGMA BLAS library.
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Abstract. We present a Cholesky factorization for multicore with GPU
accelerators systems. The challenges in developing scalable high perfor-
mance algorithms for these emerging systems stem from their heterogene-
ity, massive parallelism, and the huge gap between the GPUs’ compute
power vs the CPU-GPU communication speed. We show an approach
that is largely based on software infrastructures that have already been
developed for homogeneous multicores and hybrid GPU-based comput-
ing. This results in a scalable hybrid Cholesky factorization of unprece-
dented performance. In particular, using NVIDIA’s Tesla S1070 (4 C1060
GPUs, each with 30 cores @1.44 GHz) connected to two dual-core AMD
Opteron @1.8GHz processors, we reach up to 1.163 TFlop/s in single and
up to 275 GFlop/s in double precision arithmetic. Compared with the
performance of the embarrassingly parallel xGEMM over four GPUs,
where no communication between GPUs are involved, our algorithm
still runs at 73% and 84% for single and double precision arithmetic
respectively.

1 Introduction

When processor clock speeds flatlined in 2004, after more than fifteen years of
exponential increases, the era of routine and near automatic performance im-
provements that the HPC application community had previously enjoyed came
to an abrupt end. CPU designs moved to multicores and are currently going
through a renaissance due to the need for new approaches to manage the expo-
nentially increasing (a) appetite for power of conventional system designs, and
(b) gap between compute and communication speeds.

Compute Unified Device Architecture (CUDA) [1] based multicore platforms
stand out among a confluence of trends because of their low power consumption
and, at the same time, high compute power and bandwidth. Indeed, as power
consumption is typically proportional to the cube of the frequency, accelerators
using GPUs have a clear advantage against current homogeneous multicores,
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as their compute power is derived from many cores that are of low frequency.
Initial GPU experiences across academia, industry, and national research labo-
ratories have provided a long list of success stories for specific applications and
algorithms, often reporting speedups on the order of 10 to 100× compared to
current x86-based homogeneous multicore systems [2]. The area of dense linear
algebra (DLA) is no exception as evident from previous work on a single core
with a single GPU accelerator [3,4], as well as BLAS for GPUs (see the CUBLAS
library [5]). Despite the current success stories involving hybrid GPU-based sys-
tems, the large scale enabling of those architectures for computational science
would still depend on the successful development of fundamental numerical li-
braries for using the CPU-GPU in a hybrid manner. Major issues in terms of
developing new algorithms, programmability, reliability, and user productivity
have to be addressed. Our work is a contribution to the development of these
libraries in the area of dense linear algebra and will be included in the Matrix Al-
gebra for GPU and Multicore Architectures (MAGMA) Library [9]. Designed to
be similar to LAPACK in functionality, data storage, and interface, the MAGMA
library will allow scientists to effortlessly port their LAPACK-relying software
components and to take advantage of the new hybrid architectures.

The challenges in developing scalable high performance algorithms for multi-
core with GPU accelerators systems stem from their heterogeneity, massive par-
allelism, and the huge gap between the GPUs’ compute power vs the CPU-GPU
communication speed. We show an approach that is largely based on software in-
frastructures that have already been developed – namely, the Parallel Linear Al-
gebra for Scalable Multicore Architectures (PLASMA) [6] and MAGMA libraries.
On one hand, the tile algorithm concepts from PLASMA allow the computation
to be split into tiles along with a scheduling mechanism to efficiently balance
the work-load between GPUs. On the other hand, MAGMA kernels are used to
efficiently handle heterogeneity and parallelism on a single tile. Thus, the new
algorithm features two levels of nested parallelism. A coarse-grained parallelism
is provided by splitting the computation into tiles for concurrent execution be-
tween GPUs (following PLASMA’s framework). A fine-grained parallelism is
further provided by splitting the work-load within a tile for high efficiency com-
puting on GPUs but also, in certain cases, to benefit from hybrid computations
by using both GPUs and CPUs (following MAGMA’s framework). Furthermore,
to address the challenges related to the huge gap between the GPUs’ compute
power vs the CPU-GPU communication speed, we developed a mechanism to
minimize the communications overhead by trading off the amount of memory
allocated on GPUs. This is crucial for obtaining high performance and scalability
on multicore with GPU accelerators systems. Indeed, although the computing
power of order 1 TFlop/s is concentrated in the GPUs, communications between
them are still performed using the CPUs as a gateway, which only offers a shared
connection on the order of 1 GB/s. As a result, by reusing the core concepts of
our existing software infrastructures along with data persistence optimizations,
the new hybrid Cholesky factorization not only achieves unprecedented high
performance but also, scales while the number of GPUs increases.
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The paper is organized as follows. Section 2 introduces the principles of the
new technique, which permits the overall algorithm to scale on multiple GPUs.
It also gives implementation details about various Cholesky versions using dif-
ferent levels of optimizations. Section 3 presents the performance results of those
different versions. Section 4 describes the on-going work in this area and finally,
Section 5 summarizes this work.

2 Cholesky Factorization on Multicore+MultiGPUs

In this section, we describe our new technique to efficiently perform the Cholesky
factorization on a multicore system enhanced with multiple GPUs.

2.1 Principles and Methodology

This section represents our main twofold contribution.
First, the idea is to extend the runtime environment (RTE) of PLASMA,

namely the static scheduler [7], to additionally handle computation on GPUs.
Instead of assigning tasks to a single CPU, the static scheduler is now able to
assign tasks to a CPU+GPU couple. Each CPU host is dedicated to a particular
GPU device to offload back and forth data. PLASMA’s RTE ensures depen-
dencies are satisfied before a host can actually trigger the computation on its
corresponding device. Moreover, there are four kernels to compute the Cholesky
factorization and they need to be redefined (from PLASMA). Three of them –
xTRSM, xSYRK and xGEMM – can be efficiently executed on the GPU using
CUBLAS or the MAGMA BLAS libraries. In particular, we developed and used
optimized xTRSM and xSYRK (currently included in MAGMA BLAS). But
most importantly, the novelty here is to replace the xPOTRF LAPACK kernel
by the corresponding hybrid kernel from MAGMA. High performance on this
kernel is achieved by allowing both host and device to factorize the diagonal tile
together in a hybrid manner. This is paramount to improve the kernel because
the diagonal tiles are located in the critical path of the algorithm.

Second, we developed a data persistence strategy that optimizes the number
of transfers between the CPU hosts and GPU devices, and vice versa. Indeed, the
host is still the only gateway to any transfers occurring between devices which
appears to be a definite bottleneck if communications are not handled cautiously.
To bypass this issue, the static scheduler gives us the opportunity to precisely
keep track of the location of any particular data tile during runtime. One of the
major benefits of such a scheduler is that each processing CPU+GPU couple
knows ahead of time its workload and can determine where a data tile resides.
Therefore, many assumptions can be taken before the actual computation in
order to limit the amount of data transfers to be performed.

The next sections present incremental implementations of the new tile
Cholesky factorization on multicore with GPU accelerators systems. The last
implementation is the most optimized version containing both contributions
explained above.
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2.2 Implementations Details

We describe four different implementations of the tile Cholesky factorization
designed for hybrid systems. Each version introduces a new level of optimizations
and simultaneously includes the previous ones. Each GPU device is dedicated to
a particular CPU host, and this principle holds for all versions described below.

2.3 Memory Optimal

This version of the tile Cholesky factorization is very basic in the sense that the
static scheduler from PLASMA is reused out of the box. The scheduler gives the
green light to execute a particular task after all required dependencies have been
satisfied. Then, three steps occur in this following order. First, the core working
on that task triggers the computation on its corresponding GPU by offloading
the necessary data. Second, the GPU performs the current computation. Third,
the specific core requests the freshly computed data back from the GPU. Those
three steps are repeated for all kernels except for the diagonal factorization
kernel, i.e., xPOTRF, where no data transfers are needed since the computation
is only done by the host. This version only requires, at most, the size of three
data tiles to be allocated on the GPU (due to the xGEMM kernel). However, the
amount of communication involved is tremendous as for each kernel call (except
xPOTRF) , two data transfers are needed (steps one and three).

2.4 Data Persistence Optimizations

In this implementation, the amount of communications is significantly decreased
by trading off the amount of memory allocated on GPUs. To understand how
this works, it is important to mention that each data tile located on the left
side of the current panel being factorized corresponds to the final output, i.e.,
they are not transient data tiles. And this is obviously due to the nature of
the left-looking Cholesky factorization. Therefore, the idea is to keep in GPU’s
memory any data tile loaded for a specific kernel while processing the panel,
in order to be eventually reused by the same GPU for subsequent kernels. Af-
ter applying all operations on a specific data tile located on the panel, each
GPU device uploads back to its CPU host the final data tile to ensure data
consistency between hosts/devices for the next operations. As a matter of fact,
another progress table has been implemented to determine whether a particu-
lar data tile is already present in the device’s memory or actually needs to be
uploaded from host’s memory. This technique requires, at most, the amount of
half the matrix to be stored in GPU’s memory. Besides optimizing the num-
ber of data transfers between hosts and devices, we also try to introduce asyn-
chronous communications to overlap communications by computations (using
the cudaMemcpy2DAsync function and pinned CPU memory allocation).
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2.5 Hybrid xPOTRF Kernel

The implementation of this version is straightforward. The xPOTRF kernel has
been replaced by the hybrid xPOTRF MAGMA kernel, where both host and
device compute the factorization of the diagonal tile.

2.6 xSYRK and xTRSM Kernel Optimizations

This version integrates new implementations of the BLAS xSYRK and xTRSM
routines, which are highly optimized for GPU computing as explained below.

xSYRK: A block index reordering technique is used to initiate and limit the
computation only to blocks that are on the diagonal or in the lower (corre-
spondingly upper) triangular part of the matrix (since the resulting matrix is
symmetric). Thus, no redundant computations are performed for blocks off of
the diagonal. Only the threads that would compute diagonal blocks are let to
compute redundantly half of the block in a data parallel fashion in order to avoid
expensive conditional statements that would have been necessary otherwise.

xTRSM: Similarly to [3,8], we explicitly invert blocks of size 32 × 32 on the
diagonal of the matrix and use them in blocked xTRSM algorithms. The in-
verses are computed simultaneously, using one GPU kernel, so that the criti-
cal path of the blocked xTRSM can be greatly reduced by doing it in parallel
(as a matrix-matrix multiplication). We have implemented multiple kernels but
this performed best for the tile sizes used in the Cholesky factorization (see
Section 3.2) and our particular hardware configuration.

3 Experimental Results

3.1 Environment Setup

The experiments have been performed on a dual-socket dual-core host machine
based on an AMD Opteron processor operating at 1.8 GHz. The NVIDIA S1070
graphical card is composed of four GPUs C1060 with two PCI Express connec-
tors driving two GPUs each. Each GPU has 1.5 GB GDDR-3 of memory and
30 processing cores each, operating at 1.44 GHz. Each processing core has eight
SIMD functional units and each functional unit can issue three floating point
operations per cycle (1 mul-add + 1 mul = 3 flops). The single precision theo-
retical peak performance of the S1070 card is then 30× 8× 3× 1.44× 4 = 4.14
Tflop/s. However, only two flops per cycle can be used for general purpose com-
putations in our dense linear algebra algorithm (1 mul-add per cycle). So, in our
case, the single precision peak performance drops to 2/3× 4.14 = 2.76 Tflop/s.
The double precision peak is computed similarly with the only difference be-
ing that there is only one SIMD functional unit per core, i.e., the peak will be
30× 1× 2 × 1.44× 4 = 345 Gflop/s. The host machine is running Linux 2.6.18
and provides GCC Compilers 4.1.2 together with the CUDA 2.3 library. All the
experiments presented below focus on asymptotic performance and have been
conducted on the maximum amount of cores and GPUs available on the machine,
i.e., four cores and four GPUs.
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3.2 Tuning

The performance of the new factorization strongly depends on tunable execu-
tion parameters, most notably various block sizes for the two levels of nested
parallelism in the algorithm, i.e., the outer and inner block sizes. These param-
eters are usually computed from an auto-tuning procedure (e.g., established at
installation time) but for now, manual tuning based on empirical data is used
to determine their “optimal” values. The selection of the tile size (the outer
blocking size) is determined by the performance of xGEMM. The goal is to de-
termine from which tile size the performance of xGEMM on a single GPU starts
to asymptotically flatten. Several values in that region were tested to finally se-
lect the best performing ones, namely bs = 576 in single and bd = 832 in double
precision arithmetic. The selection of the inner blocking sizes for the splitting
occurring within the hybrid kernels (i.e., MAGMA’s xPOTRF) and the GPU
kernels (i.e., MAGMA BLAS’s xSYRK, xTRSM, xGEMM) is done similarly,
based on empirical data for problem sizes around 500 and 800 for single and
double precision arithmetic, respectively [10].
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Fig. 1. Performance comparisons of various implementations

3.3 Performance Results

Figure 1 shows the incremental performance in single and double precision arith-
metic of the tile hybrid Cholesky factorization using the entire system resources,
i.e. four CPUs and four GPUs. Each curve represents one version of the Cholesky
factorization. The memory optimal version is very expensive due to the high
number of data transfers occurring between hosts and devices. The communi-
cation optimal or data persistence techniques trigger a considerable boost in
the overall performance, especially for single precision arithmetic. The integra-
tion of the hybrid kernel (i.e., MAGMA’s xPOTRF) to accelerate the execu-
tion of tasks located on the critical path improves further the performance. To
our surprise, we did not see any improvements between the synchronous and
the asynchronous version. Most probably this feature is not yet handled effi-
ciently at the level of the driver. Finally, the additional optimizations performed
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on the other MAGMA BLAS kernels (i.e., MAGMA BLAS’s xSYRK, xTRSM,
xGEMM) make the Cholesky factorization reach up to 1.163 Tflop/s for single
and 275 Gflop/s for double precision arithmetic. Compared with the performance
of the embarrassingly parallel xGEMM over four GPUs, i.e. 400×4 = 1.6 Tflop/s
for single precision (58% of the theoretical peak of the NVIDIA card) and 82×
4 = 328 Gflop/s for double precision arithmetic (95% of the theoretical peak
of the NVIDIA card), our algorithm runs correspondingly at 73% and 84%.
Figure 2 highlights the scalable speed-up of the tile hybrid Cholesky factorization
using four CPUs - four GPUs in single and double precision arithmetics. The
performance doubles as the number of CPU-GPU couples doubles.
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Fig. 2. Speed up of the tile hybrid Cholesky factorization

4 Related Work

Several authors have presented work on multiGPU algorithms for dense linear
algebra. Volkov and Demmel [3] presented an LU factorization for two GPUs
(NVIDIA GTX 280) running at up to 538 GFlop/s in single precision. The
algorithm uses 1-D block cyclic partitioning of the matrix between the GPUs
and achieves 74% improvement vs using just one GPU. Although extremely
impressive, it is not clear if this approach will scale for more GPUs, especially
by taking into account that the CPU work and the CPU-GPU bandwidth will
not scale (and actually will remain the same with more GPUs added).

Closer in spirit to our work is [11]. The authors present a Cholesky factor-
ization and its performance on a Tesla S1070 (as we do) and a host that is
much more powerful than ours (two Intel Xeon Quad-Core E5440 @2.83 GHz).
It is interesting to compare with this work because the authors, similarly to us,
split the matrix into tiles and schedule the corresponding tasks using a dynamic
scheduling. Certain optimizations techniques are applied but the best perfor-
mance obtained is only close to our memory optimal version, which is running
three times slower compared to our best version. The algorithm presented in here
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performs better for a set of reasons, namely the data persistence optimization
techniques along with the efficiency of our static scheduler, the integration of
the hybrid kernel, and the overall optimizations of the other GPU kernels.

5 Summary and Future Work

This paper shows how to redesign the Cholesky factorization to greatly enhance
its performance in the context of multicore with GPU accelerators systems. It
initially achieves up to 20 GFlop/s in single and up to 10 GFlop/s in double pre-
cision arithmetic by using only two dual-core 1.8 GHz AMD Opteron processors.
Adding four GPUs and redesigning the algorithm accelerates the computation
up to 65× and 27× for single and double precision arithmetic respectively. This
acceleration is due to a design that enables efficient cooperation between the four
Opteron cores and the four NVIDIA GPUs (30 cores per GPU, @1.44 GHz per
core). By reusing concepts developed in the PLASMA and MAGMA libraries
along with data persistence techniques, we achieve an astounding performance of
1, 163 TFlop/s in single and 275 GFlop/s in double precision arithmetic. Com-
pared with the performance of the embarrassingly parallel xGEMM over four
GPUs, where no communication between GPUs are involved, our algorithm still
runs at 73% and 84% for single and double precision arithmetic respectively.
Although this paper focused only on the Cholesky factorization, a full high-
performance linear solver is possible [12]. This hybrid algorithm will eventually
be included in the future release of MAGMA. Future work includes the extension
to LU and QR factorizations.
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Abstract. Algebraic multigrid (AMG) solvers have proven to be ex-
tremely efficient on distributed-memory architectures. However, when
executed on modern multicore cluster architectures, we face new chal-
lenges that can significantly harm AMG’s performance. We discuss our
experiences on such an architecture and present a set of techniques that
help users to overcome the associated problems, including thread and
process pinning and correct memory associations. We have implemented
most of the techniques in a MultiCore SUPport library (MCSup), which
helps to map OpenMP applications to multicore machines. We present
results using both an MPI-only and a hybrid MPI/OpenMP model.

1 Motivation

Solving large sparse systems of linear equations is required by many scientific
applications, and the AMG solver in hypre [14], called BoomerAMG [13], is
an essential component of simulation codes at Livermore National Laboratory
(LLNL) and elsewhere. The implementation of BoomerAMG focuses primar-
ily on distributed memory issues, such as effective coarse grain parallelism and
minimal inter-processor communication, and, as a result, BoomerAMG demon-
strates good weak scalability on distributed memory machines, as demonstrated
for weak scaling on BG/L using 125,000 processors [11].

Multicore clusters, however, present new challenges for libraries such as hypre,
caused by the new node architectures: multiple processors each with multiple
cores, sharing caches at different levels, multiple memory controllers with affini-
ties to a subset of the cores, as well as non-uniform main memory access times. In
order to overcome these new challenges, the OS and runtime system must map
the application to the available cores in a way that reduces scheduling conflicts,
avoids resource contention, and minimizes memory access times. Additionally,
algorithms need to have good data locality at the micro and macro level, few
synchronization conflicts, and increased fine-grain parallelism [4]. Unfortunately,

� This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344
(LLNL-CONF-429864).

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 102–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On the Performance of an Algebraic Multigrid Solver on Multicore Clusters 103

sparse linear solvers for structured, semi-structured and unstructured grids do
not naturally exhibit these desired properties. Krylov solvers, such as GM-
RES and conjugate gradient (CG), comprise basic linear algebra kernels: sparse
matrix-vector products, inner products, and basic vector operations. Multigrid
methods additionally include more complicated kernels: smoothers, coarsening
algorithms, and the generation of interpolation, restriction and coarse grid oper-
ators. Various recent efforts have addressed performance issues of some of these
kernels for multicore architectures. While good results have been achieved for
dense matrix kernels [1,21,5], obtaining good performance for sparse matrix ker-
nels is a much bigger challenge [20,19]. In addition, efforts have been made to
develop cache-aware implementations of multigrid smoothers [9,15], which, while
not originally aimed at multicore computers, have inspired further research for
such architectures [18,12].

Little attention has been paid to effective core utilization and to the use of
OpenMP in AMG in general, and in BoomerAMG in particular. However, with
rising numbers of cores per node, the traditional MPI-only model is expected
to be insufficient, both due to limited off-node bandwidth that cannot support
ever-increasing numbers of endpoints, and due to the decreasing memory per
core ratio, which limits the amount of work that can be accomplished in each
coarse grain MPI task. Consequently, hybrid programming models, in which a
subset of or all cores on a node will have to operate through a shared memory
programming model (like OpenMP), will become commonplace.

In this paper we present a comprehensive performance study of AMG on a
large multicore cluster at LLNL and present solutions to overcome the observed
performance bottlenecks. In particular, we make the following contributions:

– A performance study of AMG on a large multicore cluster with 4-socket,
16-core nodes using MPI, OpenMP, and hybrid programming;

– Scheduling strategies for highly asynchronous codes on multicore platforms;
– A MultiCore SUPport (MCSup) library that provides efficient support for

mapping an OpenMP program onto the underlying architecture;
– A demonstration that the performance of AMG on the coarsest grid levels

can have a significant effect on scalability.

Our results show that both the MPI and the OpenMP version suffer from severe
performance penalties when executed on our multicore target architecture with-
out optimizations. To avoid the observed bottlenecks we must pin MPI tasks to
processors and provide a correct association of memory to cores in OpenMP ap-
plications. Further, a hybrid approach shows promising results, since it is capable
of exploiting the scaling sweet spots of both programming models.

2 The Algebraic Multigrid (AMG) Solver

Multigrid methods are popular for large-scale scientific computing because of
their algorithmically scalability: they solve a sparse linear system with n un-
knowns with O(n) computations. Multigrid methods obtain the O(n) optimality
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by utilizing a sequence of smaller linear systems, which are less expensive to
compute on, and by capitalizing on the ability of inexpensive smoothers (e.g.,
Gauss-Seidel) to resolve high-frequency errors on each grid level. In particular,
because multigrid is an iterative method, it begins with an estimate to the solu-
tion on the fine grid. Then at each level of the grid, a smoother is applied, and
the improved guess is transferred to a smaller, or coarser, grid. On the coarser
grid, the smoother is applied again, and the process continues. On the coars-
est level, a small linear system is solved, and then the solution is transferred
back up to the fine grid via interpolation operators. Good convergence relies
on the smoothers and the coarse-grid correction process working together in a
complimentary manner.

AMG is a particular multigrid method that does not require an explicit grid
geometry. Instead, coarsening and interpolation processes are determined en-
tirely based on matrix entries. This attribute makes the method flexible, as of-
ten actual grid information may not be available or may be highly unstructured.
However, the flexibility comes at a cost: AMG is a rather complex algorithm.

We use subscripts to indicate the AMG level numbers for the matrices and
superscripts for the vectors, where 1 denotes the finest level, so that A1 = A is
the matrix of the original linear system to be solved, and m denotes the coarsest
level. AMG requires the following components: grid operators A1, . . . , Am, inter-
polation operators Pk, restriction operators Rk (here we use Rk = (Pk)T ), and
smoothers Sk, where k = 1, 2, . . .m − 1. These components of AMG are deter-
mined in a first step, known as the setup phase. During the setup phase, on each
level k, the variables to be kept for the next coarser level are determined using
a coarsening algorithm, Pk and Rk are defined, and the coarse grid operator is
computed: Ak+1 = RkAkPk.

Once the setup phase is completed, the solve phase, a recursively defined cycle,
can be performed as follows, where f (1) = f is the right-hand side of the linear
system to be solved and u(1) is an initial guess for u:

Algorithm: MGV (Ak, Rk, Pk, Sk, u(k), f (k)).
If k = m, solve Amu(m) = f (m).
Otherwise:

Apply smoother Sk μ1 times to Aku(k) = f (k).
Perform coarse grid correction:

Set r(k) = f (k) −Aku(k).
Set r(k+1) = Rkr(k).
Set e(k+1) = 0.
Apply MGV (Ak+1, Rk+1, Pk+1, Sk+1, e

(k+1), r(k+1)).
Interpolate e(k) = Pke(k+1).
Correct the solution by u(k) ← u(k) + e(k).

Apply smoother Sk μ2 times to Aku(k) = f (k).

The algorithm above describes a V(μ1, μ2)-cycle; other more complex cycles such
as W-cycles are described in [3].
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Determining appropriate coarse grids is non-trivial, particularly in parallel,
where processor boundaries require careful treatment (see, e.g.,[6]). In addition,
interpolation operators often require a fair amount of communication to deter-
mine processor neighbors (and neighbors of neighbors) [7]. The setup phase time
is non-trivial and may cost as much as multiple iterations in the solve phase.
The solve phase performs the multilevel iterations (often referred to as cycles).
These iterations consist primarily of applying the smoother, restricting the error
to the coarse-grid, and interpolating the error to the fine grid. These operations
are all matrix-vector multiplications (MatVecs) or MatVec-like, in the case of
the smoother. An overview of AMG can be found in [11,17,3].

For the results in this paper, we used a modification of the BoomerAMG
code in the hypre software library. We chose one of our best performing options:
HMIS coarsening [8], one level of aggressive coarsening with multipass interpo-
lation [17], and extended+i(4) interpolation [7] on the remaining levels. Since
AMG is generally used as a preconditioner, we investigate it as a preconditioner
for GMRES(10).

The results in this paper focus on the solve phase (since this can be completely
threaded), though we will also present some total times (setup + solve times).
Note that because AMG is a fairly complex algorithm, each individual com-
ponent (e.g., coarsening, interpolation, and smoothing) affects the convergence
rate. In particular, the parallel coarsening algorithms and the hybrid Gauss-
Seidel parallel smoother, which uses sequential Gauss-Seidel within each task
and delayed updates across cores, are dependent on the number of tasks, and
the partitioning of the domain. Since the number of iterations can vary based
on the experimental setup, we rely on average cycle times (instead of the total
solve time) to ensure a fair comparison.

BoomerAMG uses a parallel matrix data structure. Matrices are distributed
across cores in contiguous block of rows. On each core, the matrix block is
split into two parts, each of which are stored in compressed sparse row (CSR)
format. The first part contains the coefficients local to the core, whereas the
second part contains the remaining coefficients. The data structure also contains
a mapping that maps the local indices of the off-core part to global indices as
well as information needed for communication. A complete description of the
data structure can be found in [10].

Our test problem is a 3D Laplace problem with a seven-point stencil generated
by finite differences, on the unit cube, with 100× 100 × 100 grid points per node.
Note that the focus of this paper is a performance study of AMG on a multicore
cluster, and not a convergence study, which would require a variety of more
difficult test problems. This test problem, albeit simple from a mathematical
point of view, is sufficient for its intended purpose. While the matrix on the finest
level has only a seven-point stencil, stencil sizes as well as the overall density
of the matrix increase on the coarser levels. We therefore encounter various
scenarios that can reveal performance issues, which would also be present in
more complex test problems.
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3 The Hera Multicore Cluster

We conduct our experiments on Hera, a multicore cluster installed at LLNL with
864 nodes interconnected by Infiniband. Each node consists of four AMD Quad-
core (8356) 2.3 GHz processors. Each core has its own L1 and L2 cache, but four
cores share a 2 MB L3 cache. Each processor provides its own memory controller
and is attached to a fourth of the 32 GB memory per node. Despite this sep-
aration, a core can access any memory location: accesses to memory locations
served by the memory controller on the same processor are satisfied directly,
while accesses through other memory controllers are forwarded through the Hy-
pertransport links connecting the four processors. This leads to non-uniform
memory access (NUMA) times depending on the location of the memory.

Each node runs CHAOS 4, a high-performance computing Linux variant
based on Redhat Enterprise Linux. All codes are compiled using Intel’s C and
OpenMP/C compiler (Version 11.1). We rely on MVAPICH over IB as our MPI
implementation and use SLURM [16] as the underlying resource manager. Fur-
ther, we use SLURM in combination with an optional affinity plugin, which uses
Linux’s NUMA control capabilities to control the location of processes on sets
of cores. The impact of these settings are discussed in Section 4.

4 Using an MPI-Only Model with AMG

As mentioned in Section 1, the BoomerAMG solver is highly scalable on the
Blue Gene class of machines using an MPI-only programming model. However,
running the AMG solver on the Hera cluster using one MPI task for each of the 16
cores per node yields dramatically different results (Figure 1). Here the problem
size is increased in proportion to the number of cores (using 50×50×25 grid
points per core), and BG/L shows nearly perfect weak scalability with almost
constant execution times for any number of nodes for both total times and cycle
times. On Hera, despite having significantly faster cores, overall scalability is
severely degraded, and execution times are drastically longer for large jobs.

To investigate this observation further we first study the impact of affinity set-
tings on the AMG performance, which we influence using the before mentioned
affinity plugin loaded as part of the SLURM resource manager. The black line
in Figure 2 shows the performance of the AMG solve phase for a single cycle
on 1, 64, and 216 nodes with varying numbers of MPI tasks per node without
affinity optimizations (Aff=16/16 meaning that each of the 16 tasks has equal
access to all 16 cores). The problem uses 100×100 ×100 grid points per node.
Within a node we partition the domain into cuboids so that communication
between cores is minimized, e.g., for 10 MPI tasks the subdomain per core con-
sists of 100×50×20 grid points, whereas for 11 MPI tasks the subdomains are
of size 100×100×10 or 100×100×9, leading to decreased performance for the
larger prime numbers. From these graphs we can make two observations: the
performance generally increases for up to six MPI tasks per node; adding more
tasks is counterproductive. Second, this effect is growing with the number of
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Fig. 1. Total times, including setup and solve times, (left) and average times per iter-
ation (right) for AMG-GMRES(10) using MPI only on BG/L and Hera. Note that the
setup phase scales much worse on Hera than the solve phase.

Fig. 2. Average times in seconds per AMG-GMRES(10) cycle for varying numbers of
MPI tasks per node

nodes. While for a single node, the performance only stagnates, the solve time
increases for large node counts. These effects are caused by a combination of
local memory pressure and increased pressure on the internode communication
network.

Additionally, the performance of AMG is impacted by affinity settings: while
the setting discussed so far (Aff=16/16) provides the OS with the largest flexi-
bility for scheduling the tasks, it also means that a process can migrate between
cores and with that also between processors. Since the node architecture based
on the AMD Opteron chip uses separate memory controllers for each processor,
this means that a process, after it has been migrated to a different processor,
must satisfy all its memory requests by issuing remote memory accesses. The
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consequence is a drastic loss in performance. However, if the set of cores that an
MPI task can be executed on is fixed to only those within a processor, then we
leave the OS with the flexibility to schedule among multiple cores, yet eliminate
cross-processor migrations. This choice results in significantly improved perfor-
mance (gray, solid line marked Aff=4/16). Additional experiments have further
shown that restricting the affinity further to a fixed core for each MPI task is
ineffective and leads to poor performance similar to Aff=16/16.

It should be noted that SLURM is already capable of applying this optimiza-
tion for selected numbers of tasks, as indicated by the black dashed line in Figure
2, but a solution across all configurations still requires manual intervention. Note
that for the remaining results in this paper optimal affinity settings were applied
(either manually using command line arguments for SLURM’s affinity plugin or
automatically by SLURM itself).

5 Replacing On-Node MPI with OpenMP

The above observations clearly show that an MPI-only programming model is
not sufficient for machines with wide multicore nodes, such as our experimental
platform. Further, the observed trends indicate that this problem will likely get
more severe with increasing numbers of cores. With machines on the horizon
for the next few years that offer even more cores per node as well as more
nodes, solving the observed problems is becoming critical. Therefore, we study
the performance of BoomerAMG on the Hera cluster using OpenMP and MPI.

5.1 The OpenMP Implementation

Here we describe in more detail the OpenMP implementation within Boomer-
AMG. OpenMP is generally employed at the loop level. In particular for m
OpenMP threads, each loop is divided into m parts of approximately equal size.
For most of the basic matrix and vector operations, such as the MatVec or dot
product, the OpenMP implementation is straight-forward. However, the use of
OpenMP within the highly sequential Gauss-Seidel smoother requires an algo-
rithm change. Here we use the same technique as in the MPI implementation,
i.e., we use sequential Gauss-Seidel within each OpenMP thread and delayed
updates for those points belonging to other OpenMP threads. In addition, be-
cause the parallel matrix data structure essentially consists of two matrices in
CSR storage format, the OpenMP implementation of the multiplication of the
transpose of the matrix with a vector is less efficient than the corresponding MPI
implementation; it requires a temporary vector to store the partial matrix-vector
product within each OpenMP thread and the subsequent summation of these
vectors.

Overall, the AMG solve phase, including GMRES, is completely threaded,
whereas in the setup phase, only the generation of the coarse grid operator (a
triple matrix product) has been threaded. Both coarsening and interpolation do
not contain any OpenMP statements.
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Fig. 3. Two partitionings of a cube into 16 subdomains on a single node of Hera. The
partitioning on the left is optimal, and the partitioning on the right is the partitioning
used for OpenMP.

Fig. 4. Speedup for the MatVec kernel and a cycle of AMG-GMRES(10) on a single
node of Hera

Note that, in general, the partitioning used for the MPI implementation is
not identical to that of the OpenMP implementation. Whereas we attempt to
optimize the MPI implementation to minimize communication (see Figure 3(a)),
for OpenMP the domain of the MPI task is sliced into m parts due to the
loop-level parallelism, leading to a less optimal partitioning (see Figure 3(b)).
Therefore, Figure 4 (discussed in Section 5.2) also contains timings for MPI using
the less-optimal partitioning (Figure 3(b)), denoted ‘MPI noopt’, which allows
a comparison of MPI and OpenMP with the same partitioning.

5.2 Optimizing Memory Behavior with MCSup

The most time intensive kernels, the sparse MatVec and the smoother, account
for 60% and 30%, respectively, of the solve time. Since these two kernels are
similar in terms of implementation and performance behavior, we focus our in-
vestigation on the MatVec kernel. The behavior of the MatVec kernel closely
matches the performance of the full AMG cycle on a single node. Figure 4 shows
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the initial performance of the OpenMP version compared to MPI in terms of
speedup for the MatVec kernel and the AMG-GMRES(10) cycle on a single node
of Hera (16 cores). The main reason for this poor performance lies in the code’s
memory behavior and its interaction with the underlying system architecture.

On NUMA systems, such as the one used here, Linux’s default policy is to
allocate new memory to the memory controller closest to the executing thread.
In the case of the MPI application, each rank is a separate process and hence
allocates its own memory to the same processor. In the OpenMP case, though,
all memory gets allocated and initialized by the master thread and hence is
pushed onto a single processor. Consequently, this setup leads to long memory
access times, since most accesses will be remote, as well as memory contention
on the memory controller responsible for all pages. Additionally, the fine-grain
nature of threads make it more likely for the OS to migrate them, leading to
unpredictable access times.

Note that in this situation even a first-touch policy, implemented by some
NUMA-aware OS and OS extensions, would be insufficient. Under such a policy,
a memory page would be allocated on a memory close to the core that first uses
(typically writes) to it, rather than to the core that is used to allocate it. However,
in our case, memory is often also initialized by the master thread, which still
leads to the same locality problems. Further, AMG’s underlying library hypre
frequently allocates and deallocates memory to avoid memory leakage across
library routine invocations. This causes the heap manager to reuse previously
allocated memory for subsequent allocations. Since this memory has already
been used/touched before, its location is now fixed and a first touch policy is no
longer effective.

To overcome these issues, we developed MCSup (MultiCore SUPport), an
OpenMP add-on library capable of automatically co-locating threads with the
memory they are using. It performs this in three steps: first MCSup probes the
memory and core structure of the node and determines the number of cores and
memory controllers. Additionally, it determines the maximal concurrency used
by the OpenMP environment and identifies all available threads. In the second
step, it pins each thread to a processor to avoid later migrations of threads
between processors, which would cause unpredictable remote memory accesses.

For the third and final step, it provides the user with new memory allocation
routines that they can use to indicate which memory regions will be accessed
globally and in what pattern. MCSup then ensures that the memory is dis-
tributed across the node in a way that memory is located locally to the threads
most using it. This is implemented using Linux’s NUMAlib, a set of low-level
routines that provide fine-grain control over page and thread placements.

5.3 Optimized OpenMP Performance

Using the new memory and thread scheme implemented by MCSup greatly im-
proves the performance of the OpenMP version of our code, as shown in Figure 4.
The performance of the 16 OpenMP thread MatVec kernel improved by a factor
of 3.5, resulting in comparable single node performance for OpenMP and MPI.
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Note that when using the same partitioning the OpenMP+MCSup version of the
MatVec kernel shows superior performance than the MPI version for 8 or more
threads. Also the performance of the AMG-GMRES(10) cycle improves signifi-
cantly. However, in this case using MPI tasks instead of threads still results in
better performance on a single node. The slower performance is primarily caused
by the less efficient OpenMP version of the multiplication of the transpose of
the matrix with a vector.

6 Mixed Programming Model

Due to the apparent shortcomings of both MPI- and OpenMP-only programming
approaches, we next investigate the use of a hybrid approach allowing us to
utilize the scaling sweet spots for both programming paradigms and present
early results. Since we want to use all cores, we explore all combinations with
m MPI processes and n OpenMP threads per process with m ∗ n = 16 within
a node. MPI is used across nodes. Figure 5 shows total times and average cycle
times for various combinations of MPI with OpenMP. Note, that since the setup
phase of AMG is only partially threaded, total times for combinations with large
number of OpenMP threads such as OpenMP or MCSup are expected to be
worse, but they outperform the MPI-only version for 125 and 216 nodes. While
MCSup outperforms native OpenMP, its total times are generally worse than the
hybrid tests. However when looking at the cycle times, its overall performance is
comparable to using 8 MPI tasks with 2 OpenMP threads (Mix 8× 2) or 2 MPI
tasks with 8 OpenMP threads (Mix 2× 8) on 27 or more nodes. Mix 2× 8 does
not use MCSup, since this mode is not yet supported, and therefore shows a
similar, albeit much reduced, memory contention than OpenMP. In general, the
best performance is obtained for Mix 4×4, which indicates that using a single
MPI task per socket with 4 OpenMP threads is the best strategy.

7 Investigating the MPI-Only Performance Degradation

Conventional wisdom for multigrid is that the largest amount of work and, con-
sequently, the most time is spent on the finest level. This also coincides with
our previous experience on closely coupled large-scale machines such as Blue
Gene/L, and hence we expected that the performance and scalability of a ver-
sion of the AMG preconditioner restricted to just two levels is similar to that
of the multilevel version. However, our experiments on the Hera cluster show a
different result.

The left plot on the bottom of Figure 5 illustrates that on two levels the MPI-
only version performs as well as Mix 8×2 and Mix 4×4, which indicates that the
performance degradation within AMG for the MPI-only model occurs on one or
more of the lower levels. The right plots in Figure 5 confirm that, while the MPI-
only version shows good scalable performance on two levels, its overall time is
increasing much more rapidly than the other versions with increasing numbers
of levels. While both OpenMP and MCSup do not appear to be significantly
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Fig. 5. Total times (setup + solve phase) in seconds of AMG-GMRES(10) (top left)
and times in seconds for 100 AMG-GMRES(10) cycles (top right) using all levels (7 to
9) of AMG. Times for 100 cycles using two (bottom left) or five (bottom right) levels
only. ‘m × n’ denotes m MPI tasks and n OpenMP threads per node.

affected by varying the number of levels, performance for the variants that use
more than one MPI task per node decreases (the Mix 4×4 case is least affected).
We note that while we have only shown the degradation in MPI-only performance
with increasing numbers of levels for the solve phase, the effect is even more
pronounced in the setup phase.

To understand the performance degradation for the MPI-only version on
coarser levels, we must first consider the difference in the work done at the finer
and coarser levels. In general, on the fine grid the matrix stencils are smaller
(our test problem is a seven-point stencil on the finest grid), and the matri-
ces are sparser. Neighbor processors, with which communication is necessary,
are generally fewer and “closer” in terms of process ranks and messages passed
between processors are larger in size. As the grid is coarsened, processors own
fewer rows in the coarse grid matrices, eventually owning as little as a single
row or even no rows at all on the coarsest grids.1 On the coarsest levels there
is very little computational work to be done, and the messages that are sent
are generally small. However, because there are few processes left, the neighbor

1 When all levels are generated, the AMG algorithm coarsens such that the coarsest
matrix has fewer than nine rows.
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processes may be farther away in terms of process ranks. The mid-range levels
are a mix of all effects and are difficult to categorize. All processors will remain
at the mid-levels, but the stencil is likely bigger, which increases the number
of neighbors. Figure 6 shows the total communication volume (setup and solve
phase) collected with TAU/ParaProf [2] in terms of number of messages sent
between pairs of processes on 128 cores (8 nodes) of Hera using the MPI-only
version of AMG. From left to right in the figure, the number of AMG levels is
restricted to 4, 6, and 8 (all) levels, respectively. Note that the data in these
plots is cumulative, e.g., the middle 6-level plot contains the data from the left
4-level plot, plus the communication totals from levels 5 and 6. The fine grid
size for this problem is 8,000,000 unknowns. The coarsest grid size with the 4,
6, and 8 levels is 13643, 212, and 3 unknowns, respectively.

Fig. 6. Communication matrices indicating the total number of communications be-
tween pairs of 128 cores on 8 nodes. The x-axis indicates the id of the receiving MPI
task, the the y-axis indicates the id of the sender. Areas of black indicate zero messages
between cores. From left to right, results are shown for restricting AMG to 4, 6, and 8
(all) levels, respectively.

These figures show a clear difference in the communication structure in dif-
ferent refinement levels. For 4 levels we see a very regular neighborhood com-
munication pattern with very little additional communication off the diagonal
(black areas on the top/right and bottom/left). However, on the coarser levels,
the communication added by the additional levels becomes more arbitrary and
long-distance, and on the right-most plot with 8 levels of refinement, the com-
munication has degraded to almost random communication. Since our resource
manager SLURM generally assigns process ranks that are close together to be
physically closer on the machine (i.e., processes 0-15 are one a node, processes 16-
31 are on the next node, etc.), we benefit from regular communication patterns
like we see in the finer levels. The more random communication in coarser levels,
however, will cause physically more distant communication as well as the use of
significantly more connection pairs, which need to be initialized. The underlying
Infiniband network used on Hera is not well suited for this kind of communica-
tion due to its fat tree topology and higher cost to establish connection pairs.
The latter is of particular concern in this case since these connections are short
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lived and only used to exchange very little communication and hence the setup
overhead can no longer be fully amortized.

When comparing the setup and the solve phase, we notice that the solve phase
is less impacted by the performance degradation. While the setup phase touches
each level only once, the solve phase visits each level at least twice (except the
coarsest) in each iteration. This enables some reuse of communication pairs and
helps to amortize the associated overhead.

We note that on more closely coupled machines, such as Blue Gene/L with
a more even network topology and faster communication setup mechanisms, we
don’t see this degradation. Further the degradation is less in the hybrid OpenMP
case, since fewer MPI tasks, and with that communication end points as well as
communication pairs, are involved.

8 Summary

Although the hypre AMG solver scales well on distributed-memory architectures,
obtaining comparable performance on multicore clusters is challenging. Here we
described some of the issues we encountered in adapting our code for multicore
architectures and make several suggestions for improving performance. In partic-
ular, we greatly improved OpenMP performance by pinning threads to specific
cores and allocating memory that the thread will access on that same core. We
also demonstrated that a mixed model of OpenMP threads and MPI tasks on
each node results in superior performance. However, many open questions re-
main, particularly those specific to the AMG algorithm. In the future, we plan
to more closely examine kernels specific to the setup phase and include OpenMP
threads in those that have not been threaded yet. We will also explore the use
of new data structures.
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Abstract. The Cimmino method is a row projection method in which
the original linear system is divided into subsystems. At every iteration,
it computes one projection per subsystem and uses these projections to
construct an approximation to the solution of the linear system.

The usual parallelization strategy in block algorithms is to distribute
the different blocks on the available processors. In this paper, we follow
another approach where we do not perform explicitly this block distribu-
tion to processors within the code, but let the multi-frontal sparse solver
MUMPS handle the data distribution and parallelism. The data coming
from the subsystems defined by the block partition in the Block Cimmino
method are gathered in an unique block diagonal sparse matrix which is
analysed, distributed and factorized in parallel by MUMPS. Our target
is to define a methodology for parallelism based only on the functionali-
ties provided by general sparse solver libraries and how efficient this way
of doing can be.

1 Introduction

The Cimmino method is a row projection method in which the original linear
system is divided into subsystems. At each iteration, it computes one projection
per subsystem and uses these projections to construct an approximation to the
solution of the linear system. The Block-CG method can also be used within the
Block Cimmino Iteration to accelerate its convergence. Therefore, we present
an implementation of a parallel distributed Block Cimmino method where the
Cimmino iteration matrix is used as a preconditioner for the Block-CG.

In this work we propose to investigate a non usual methodology for paral-
lelization of the Block Cimmino method where the direct solver package MUMPS
(MUltifrontal Massively Parallel sparse direct Solver [1,2]) is incorporated in or-
der to schedule and perform most of the parallel tasks. This library offers to the
user the facilities to call the different phases of the solver (analysis, factorization,
solution) while taking care of the distribution of data and processes.

The outline of the paper is the following: the Block Cimmino Algorithm is
described in section 2 and parallelization strategies are exposed in section 3. More
details about our strategy are given in section 4. We finish by a presentation of
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some preliminary numerical results in section 5 that give us some hints for future
improvements and developments.

2 Block Cimmino Algorithm

The Block Cimmino method is a generalization of the Cimmino method [3].
Basically, we partition the linear system of equations:

Ax = b, (1)

where A is a m× n matrix, into l subsystems, with l ≤ m, such that:⎛⎜⎜⎜⎝
A1
A2
...

Al

⎞⎟⎟⎟⎠ x =

⎛⎜⎜⎜⎝
b1
b2
...
bl

⎞⎟⎟⎟⎠ (2)

The block method [4] computes a set of l row projections, and a combination
of these projections is used to build the next approximation to the solution of
the linear system. Now, we formulate the Block Cimmino iteration as:
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In (3), the matrix A+
i refers to the classical pseudo-inverse of Ai defined as:
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(
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)−1.
However, the Block Cimmino method will converge for any other pseudo-

inverse of Ai and in our parallel implementation we use a generalized pseudo-
inverse [6], A−
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)−1, were G is some symmetric and
positive definite matrix. The PR(AT

i ) is an orthogonal projector onto the range
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We use the augmented systems approach, as in [7] and [8], for solving the
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The Block Cimmino method is a linear stationary iterative method with a
symmetrizable iteration matrix [9]. When A has full rank, the symmetrized it-
eration matrix is symmetric positive definite (SPD). We can accelerate its rate
of convergence with the use of Block Conjugate Gradient method (Block-CG)
[10,11].

3 Parallelization Strategy

The Block-Cimmino algorithm generates a set of fully independent blocks that
are the basis for a first level of natural parallelism. As opposed to usual paral-
lelization strategies that we will recall shortly in the next subsection, and that
consist in distributing in some way each block onto processors, while having
more blocks in general than processors to manage better load balancing, we in-
troduce an other strategy (detailed in subsection 3.2) that resumes in gathering
the blocks into a larger but single sparse linear system with a block diagonal
structure, and handle all the levels of parallelism at the same time.

3.1 Manual Parallelism Description

As described in [12], a first, and natural strategy would be to distribute the
blocks evenly on the available processors.

Blocks’ distribution. It could be difficult to achieve a good load balancing
since the distribution of the augmented systems blocks must be closely related to
the number of processors. From a technical point we can consider the following
issues:

– if there is a high number of processors, we can create the same number of
blocks, but the speed of convergence of such block iterative algorithms is
often slowed down when the number of blocks increases;

– if the blocks are too small, the cost of communication can become prohibitive
relatively to the computations.

In general, it’s better to have more blocks than processors to have more degree
of freedom for better load-balancing.

Parallelism exploitation. In a problem with different physical properties hav-
ing blocks with different dimensions is a common thing, which may overload the
processors supposed to handle them. Moreover the other processors will stall
once they finish their work as there is a synchronization after the solve part for
the projectors sum.

Furthermore, we may not have a fully and unrestricted choice in the block
partitioning of our matrix. Some problems involving different physical properties
require a particular partitioning that have to be respected otherwise it may
disturb the convergence rate.
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3.2 Automatic Parallelism with MUMPS

In order to get rid of the problems noticed in the manual block distribution, we
chose to use the direct sparse solver MUMPS (MUltifrontal Massively Parallel
sparse direct Solver)[1], which will handle the block distribution and the
parallelism.

In our approach we create the block diagonal sparse matrix from the data com-
ing from the subsystems defined by the block partition (2) in the Block Cimmino
method. The matrix is then given to MUMPS for an in-depth analysis which will
permit a fine grain parallelism handling while respecting the matrix structure
and augmented systems’ properties. The matrix is then distributed following the
mapping generated by this analysis, and afterward factorized in parallel. At each
Block-CG iteration, MUMPS solves in parallel the system involved during the
preconditioning step.

The added advantage of this way of doing, is that the sparse linear solver
will handle (without any extra development for us) all the levels of parallelism
available, and in particular those coming from sparsity structure and BLAS3
kernels on top of the block partitioning. This also gives us more degrees of free-
dom when partitioning the matrix, with the possibility to define less blocks than
processors but larger ones. This may help to increase the speed of convergence
of the method while still keeping a good parallelism since the three levels of
parallelism are managed together.

The analysis and the factorization –part of the preprocessing step– are handled
by MUMPS. However, during the solve step –as the solve is done in parallel– we
have to gather the distributed results onto the master to perform the remaining
Block-CG operations (daxpy, ddot, residual computation) in sequential. The next
achievement to reach our goal is to perform most of these operations in parallel
by keeping the results distributed and performing the Block-CG operations in
parallel. To achieve this, we need to exploit MUMPS-embedded functionalities
for data management and communications (distributed solution) and implement
others (distributed right-hand sides).

4 Strategy Details

Our approach inherits from the direct methods the three main steps which are
the Analysis, the Factorization and the Solution. For the sake of simplicity we
consider two main steps by merging the Analysis and the Factorization steps
into the Preprocessing step. Meanwhile, Block-Cimmino and Block-CG will be
assimilated into the Solve step.

4.1 Preprocessing

During this step most of the Block-Cimmino preprocessing is done. As described
in Fig.1, we go through the following processes:
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Fig. 1. Preprocessing
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Structure and Frame analysis. Using the matrix structure and the block
decomposition information we start by analyzing the dependence between the
blocks by finding the non-zero values on the common columns. This informa-
tion helps us to find the parts of the projections to sum during the Block-CG
iterations.

Augmented Systems and Block Diagonal Matrix creation. The new
blocks’ structure is used to generated the augmented systems as described in (5).
We then combine these augmented systems into a block diagonal matrix.

The Analysis. MUMPS handles during this step the following steps:

– structure analysis and Scaling;
– graph ordering using METIS;
– mapping the nodes over the available processors by respecting matrix block

diagonal structure. MUMPS will recognize it as a forest and thus maps the
nodes over the processors according to the number of nodes and their weight;

– distribute the matrix over the processors.

The Factorization. The distributed matrix is LDLT factorized in parallel.
The factors of the block diagonal matrix are kept in place and distributed onto
the processors for future access during the solves in the Block-CG iterations.

4.2 Solve: The Block-CG Acceleration

The Block Cimmino method is a linear stationary iterative method with a sym-
metrizable iteration matrix [9].

ERJ x = hRJ (7)

With : ERJ =
∑l

i=1 AT
i (AiA

T
i )−1Ai

and : hRJ =
∑l

i=1 AT
i (AiA

T
i )−1bi

One way to solve (7) in parallel is to use a distributed QR factorization which
will easily help to calculate ERJ , an implementation is under current develop-
ment and released under the name of QR-MUMPS: http://mumps.enseeiht.
fr/doc/ud_2010/qr_talk.pdf. The other approach –our case– is using aug-
mented systems described in Section 2.

This system has two main properties:

– when A is consistent our system is consistent and symmetric positive semi-
definite;

– when A has full rank our system is symmetric positive definite.

The second property made our choice to use Block-CG as acceleration. This
method [10,11] simultaneously searches for the next approximation to the sys-
tem’s solution in a given number of Krylov subspaces, and this number is given
by the block size of the Block-CG method. The Block-CG method converges in

http://mumps.enseeiht.fr/doc/ud_2010/qr_talk.pdf
http://mumps.enseeiht.fr/doc/ud_2010/qr_talk.pdf
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a finite number of iterations in absence of roundoff errors. The straightforward
implementation of the Block-CG loop is described in Algorithm 1. We can see
that this implies matrix-matrix operations with better granularity than in the
classical CG implementation.

It also involves in step 6 the solution of augmented systems with several right-
hand sides (RHS) inducing thus some extra parallelization in the solution phase.
We also mention that, for reasons of numerical stability, this straightforward
implementation needs some slight modifications as described in [5].

Algorithm 1. Block-CG acceleration algorithm
1: X(0) ← arbitrary
2: R̃(0) ← H − EX(0)

3: P̃ (0) ← R̃(0)

4: k ← 0
5: loop
6: Ω(k) ← EP (k)

7: β(k) ← (P̃ (k)T GΩ(k))−1(R̃(k)T GR̃(k))
8: X(k+1) ← X(k) + P̃ (k)β(k)

9: if Converged then
10: exit loop
11: end if
12: R̃(k+1) ← R̃(k) − Ω(k)β(k)

13: α(k) ← (R̃(k)T GR̃(k))−1(R̃(k+1)T GR̃(k+1))
14: P̃ (k+1) ← R̃(k+1) + R̃(k)α(k+1)

15: k ← k + 1
16: end loop

We use MUMPS during the operations involved in the lines 2 and 6 of Algo-
rithm 1. These operations are equivalent to solve the subsystems (8) in parallel,
and then centralize the solutions to combine the projectors. The solve process
can be presented as in the Fig.2.[

G AT
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Ai 0

] [
ui

vi

]
=
[

0
bi −Aix

]
(8)

The main Block-CG loop (run on the master) prepares the RHS for each
augmented system and generates a single RHS –to accelerate the convergence
rate of Block-CG we can generate multiple RHS– corresponding to the system
to be solved with the block diagonal matrix generated during the preprocessing.
The RHS is then sent to MUMPS to solve the system.

MUMPS distributes the RHS according to the way the augmented systems
were mapped on the available processors during the Preprocessing step. Then
each subsystem (8) is solved in parallel with no association between the number
of subsystems and the number of processors. Once solved the solutions are sent
back to the master to be combined and used in the rest of Block-CG iteration.
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Fig. 2. Block-CG acceleration loop

5 Numerical Results

The numerical experiments were carried out on the Hyperion supercomputer
(http://www.calmip.cict.fr/spip/spip.php?rubrique90). Hyperion is the
latest supercomputer of the CICT (Centre Interuniversitaire de Calcul de Tou-
louse) and was ranked 223rd in November’s Top500.org ranking. With its 352
bi-Intel ”Nehalem” EP quad-core nodes it can develop a peak of 33TFlops. Each
node has 4.5GB memory dedicated for each of the cores with an overall of 32GB
fully available memory on the node. Our testing method respects the following:

– each MPI-Process is mapped on a single Quad-Core CPU with a dedicated
memory access;

– we run each test case –relative to the number of processors– with two differ-
ent numbers of partitions;

– all partitions have same number of rows;
– we use the Block-CG acceleration with 16 RHS;

– the stopping criterion is
‖b−Ax‖

‖A‖‖x̃‖+ ‖b‖ <= 10−14.

http://www.calmip.cict.fr/spip/spip.php?rubrique90
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The results we present are for a symmetric, indefinite and cyclic band diagonal
matrix. The matrix is 3 dimensional with Ni×Nj×Nk = 96×128×128 for a total
of 1,572,864 nodes. The problem results from the pressure equation discretization
in wind energy generation and is provided by CEsA-FEUP1.

5.1 Factorization Step

Usually the first problematic part is the factorization in which the structure of
the matrix determines how fast it will be performed. From the results we got in
Fig.3, we can see that we benefit directly from the fact that MUMPS handles
the three levels of parallelism.
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Fig. 3. Factorization Step

Table 1. Number of operations during the node elimination

8 partitions 16 partitions
1.162D+12 6.924D+10

From the factorization results we retain the following information:

– The more partitions we have the faster the factorization goes in general.
This is mainly due to the narrow band matrix given to MUMPS resulting
from the small diagonal block size. We see this effect also from the number
of operations to be done during the factorization (Table 1). Still comparing
gains in Fig.3 when increasing the number of processors,we can observe that
a larger number of partitions implies a larger block diagonal matrix with
smaller blocks on the diagonal. Thus there is less potential for parallelism
within the factorization of each of these diagonal blocks.

1 http://paginas.fe.up.pt/~cesa/

http://paginas.fe.up.pt/~cesa/
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Fig. 4. Memory usage per processor during factorization

– The good locality of data –result of a good mapping during the analysis–
gives a fast distributed computing.

– The gains are lower on higher number of processors as they do not get enough
work compared to the communications that keep increasing.

– The memory usage (Fig.4) decreases when the number of partitions or pro-
cessors increases. This is a desirable property to expect for very large 3D
PDE problems in particular.

5.2 Solve Step

In Fig.5 the different parts refer to:

– Sequential is the time spent in the Block-CG iterations and the summation
of projections.

– Communication is the time spent in the scatter and gather of RHS and
solution vectors.

– Parallel Computing is the time spent in MUMPS. It refers to the solution
in parallel of the augmented systems and thus computing the projections.

For the solution phase we have:

– MUMPS handles well the solution of the augmented systems. This behaviour
is shown by the good scalability of the Parallel Computing phase.

– Communication becomes slightly more important when we increase the num-
ber of processors due to an increase of the number of messages between
processors.

– Increasing the number of partitions makes the communication longer. Indeed
the block diagonal matrix given to MUMPS becomes larger and the length
of vectors to gather and scatter is larger.
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Fig. 5. Solve Step

– The overall time is longer with increasing number of partitions as the block-
iterative methods converge slower with more partitions (98 iterations for the
8-block partition, 156 for the 16-block partition).

If we consider this overall time, the gains when we increase the number of
processor are slight. These results can be explained and softened if we look at
Table 2 that shows the details about the time spent in each step in a solve call.
We can see the large percentage taken by communications and which increases
proportionally to the number of processors and partitions.

Implementing in parallel the rest of Block-CG’s operations (daxpy, ddot, etc.)
will help to get rid of the sequential part that represents about 30% of the overall
time. At the same time, we will reduce the communications as the summation
of the projections will be done in parallel too.

Table 2. Time spent on each part of one solve call (seconds)

Scatter Gather Computing

8-block partition
8 processors 0.92 1.27 3.23
16 processors 1.02 1.46 2.53
32 processors 1.10 1.35 1.84

16-block partition
8 processors 1.01 1.42 2.81
16 processors 1.50 1.51 1.90
32 processors 1.24 1.53 1.42

In previous work [14], the solution time was increasing with the increase of
the number of processor, and even appeared to be heavily long in the case of
the 16-block partition. It was due to the fact that the mapping was not taking
into account the forest structure in the dependency tree. With the current fine
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tuning, MUMPS notices the block diagonal structure of the matrix and maps
the data with respect to that and gains can be obtained when increasing the
number of processors.

6 Ongoing Work

The current results show the good parallelism performance and scalability. It
helped us to identify the bottlenecks and problems for future improvements.

To implement the final targeted parallel version, we have to use the basic em-
bedded functionalities already available in the MUMPS package, such as residual
computation used in iterative refinement for instance, and design new features
whenever necessary.

We have also to define a user interface to address directly these functionali-
ties within the parallel iterative solver in order to appropriately exploit the data
distribution already established and handled by MUMPS. This will help us es-
pecially during the parallelisation of Block-CG’s sequential parts and get rid of
the actual but useless gather and scatter communications.

We plan also to experiment the potential of the final solver on matrices com-
ing from real problems coming from an industrial software for the simulation
of atmospheric circulation above mountain in the field of wind energy produc-
tion [13].

Acknowledgment. This particular work has strongly benefited from sustained
interactions with the members of the MUMPS project development team. In-
deed, the strategy for parallelism and the particular sparse structure exploited
in this approach was needing fine tuning as well as some tiny adaptations of the
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Abstract. The algorithms in the current sequential numerical linear al-
gebra libraries (e.g. LAPACK) do not parallelize well on multicore archi-
tectures. A new family of algorithms, the tile algorithms, has recently been
introduced. Previous research has shown that it is possible to write effi-
cient and scalable tile algorithms for performing a Cholesky factorization,
a (pseudo) LU factorization, a QR factorization, and computing the in-
verse of a symmetric positive definite matrix. In this extended abstract, we
revisit the computation of the inverse of a symmetric positive definite ma-
trix. We observe that, using a dynamic task scheduler, it is relatively pain-
less to translate existing LAPACK code to obtain a ready-to-be-executed
tile algorithm. However we demonstrate that, for some variants, non trivial
compiler techniques (array renaming, loop reversal and pipelining) need
then to be applied to further increase the parallelism of the application.
We present preliminary experimental results.

1 Introduction

The appropriate direct method to compute the solution of a symmetric positive
definite system of linear equations consists of computing the Cholesky factor-
ization of that matrix and then solving the underlying triangular systems. It is
not recommended to use the inverse of the matrix in this case. However some
applications need to explicitly form the inverse of the matrix. A canonical exam-
ple is the computation of the variance-covariance matrix in statistics. Higham
[15, p.260,§3] lists more such applications.

With their advent, multicore architectures [21] induce the need for algorithms
and libraries that fully exploit their capacities. A class of such algorithms –
called tile algorithms [8,9] – has been developed for one-sided dense factorizations

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 129–138, 2011.
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(Cholesky, LU and QR) and made available as part of the Parallel Linear Algebra
Software for Multicore Architectures (PLASMA) library [2]. In this paper, we
study this class of algorithms to the case of the (symmetric positive definite)
matrix inversion. An identical study has already been performed in 2008 [11],
and the associated software is present in the libflame library [23].

Besides constituting an important functionality for a library such as PLASMA,
the study of the matrix inversion on multicore architectures represents a chal-
lenging algorithmic problem. Indeed, first, contrary to standalone one-sided fac-
torizations that have been studied so far, the matrix inversion exhibits many
anti-dependences [4] (Write After Read). Those anti-dependences can be a bot-
tleneck for parallel processing, which is critical on multicore architectures. It is
thus essential to investigate (and adapt) well known techniques used in compi-
lation such as using temporary copies of data to remove anti-dependences to en-
hance the degree of parallelism of the matrix inversion. This technique is known
as array renaming [4] (or array privatization [14]). Second, loop reversal [4] is
to be investigated. Third, the matrix inversion consists of three successive steps
(first of which is the Cholesky decomposition). In terms of scheduling, it thus
represents an opportunity to study the effects of pipelining [4] those steps on
performance.

The current version of PLASMA (version 2.1) is scheduled statically. Ini-
tially developed for the IBM Cell processor [17], this static scheduling relies on
POSIX threads and simple synchronization mechanisms. It has been designed to
maximize data reuse and load balancing between cores, allowing for very high
performance [3] on today’s multicore architectures. However, in the case of the
matrix inversion, the design of an ad-hoc static scheduling is a time consuming
task and raises load balancing issues that are much more difficult to address
than for a stand-alone Cholesky decomposition, in particular when dealing with
the pipelining of multiple steps. Furthermore, the growth of the number of cores
and the more complex memory hierarchies make executions less deterministic.
In this paper, we rely on an experimental in-house dynamic scheduler named
QUARK [16]. This scheduler is based on the idea of expressing an algorithm
through its sequential representation and unfolding it at runtime using data
hazards (Read after Write, Write after Read, Write after Write) as constraints
for parallel scheduling. The concept is rather old and has been validated by a few
successful projects. We could as well have used schedulers from the Jade project
from Stanford University [20], from the SMPSs project from the Barcelona Su-
percomputer Center [18], or from the SuperMatrix framework [10].

Our discussions are illustrated with experiments conducted on a dual-socket
quad-core machine based on an Intel Xeon EMT64 processor operating at 2.26
GHz. Composed of 8 cores, the theoretical peak is equal to 9.0 Gflop/s per
core or 72.3 Gflop/s for the whole machine. The machine is running Mac OS
X 10.6.2 and is shipped with the Apple vecLib v126.0 multithreaded BLAS [1]
and LAPACK vendor library. We have installed reference LAPACK [5] v3.2.1,
reference ScaLAPACK [7] v1.8.0, and libflame v3935 [23].
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The rest of the paper is organized as follows. In Section 2, we explain a possi-
ble algorithmic variant for matrix inversion based on tile algorithms; we explain
how we articulated it with our dynamic scheduler to take advantage of multicore
architectures and we compare its performance against state-of-the-art libraries.
In Section 3, we investigate the impact on parallelism and performance of dif-
ferent well known techniques used in compilation: loop reversal, array renaming
and pipelining. We conclude and present future work directions in Section 4.

2 Tile in-place Matrix Inversion

Tile algorithms are a class of Linear Algebra algorithms that allow for fine gran-
ularity parallelism and asynchronous scheduling, enabling high performance on
multicore architectures [3,8,9,11,19]. The matrix of order n is split into t × t
square submatrices of order b (n = b × t). Such a submatrix is of small granu-
larity (we fixed b = 200 in this paper) and is called a tile. So far, tile algorithms
have been essentially used to implement one-sided factorizations [3,8,9,11,19].

Algorithm 1 extends this class of algorithms to the case of the matrix inversion.
As in state-of-the-art libraries (LAPACK, ScaLAPACK), the matrix inversion
is performed in-place, i.e., the data structure initially containing matrix A is
directly updated as the algorithm is progressing, without using any significant
temporary extra-storage; eventually, A−1 substitutes A. Algorithm 1 is composed
of three steps. Step 1 is a Tile Cholesky Factorization computing the Cholesky
factor L (lower triangular matrix satisfying A = LLT ). This step was studied
in [9]. Step 2 computes L−1 by inverting L. Step 3 finally computes the inverse
matrix A−1 = L−1T

L−1.
A more detailed description is beyond the scope of this extended abstract and

is not essential to the understanding of the rest of the paper. However, we want
to point out that the stability analysis of the block (or tile) triangular inversion
is quite subtle and one should not replace too hastily “TRSM-then-TRTRI” by
“TRTRI-then-TRMM” See [13] for a comprehensive explanation.

Each step is composed of multiple fine granularity tasks (since operating on
tiles). These tasks are part of the BLAS (SYRK, GEMM, TRSM, TRMM) and
LAPACK (POTRF, TRTRI, LAUUM) standards. Indeed, from a high level point
of view, an operation based on tile algorithms can be represented as a Directed
Acyclic Graph (DAG) [12] where nodes represent the fine granularity tasks in
which the operation can be decomposed and the edges represent the depen-
dences among them. For instance, Figure 1(a) represents the DAG of Step 3 of
Algorithm 1.

Algorithm 1 is based on the variants used in LAPACK 3.2.1. Bientinesi,
Gunter and van de Geijn [6] discuss the merit of algorithmic variations in the
case of the computation of the inverse of a symmetric positive definite matrix.
Although of definite interest, this is not the focus of this extended abstract. We
will use the same variant enumerations as in [6]. With these notations, Algo-
rithm 1 is called 242: variant 2 for POTRF, variant 4 for TRTRI and variant 2
for LAUUM. Variant 4 of TRTRI is identical to variant 1 of TRTRI but it starts
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Algorithm 1. Tile In-place Cholesky Inversion (lower format). Matrix A
is the on-going updated matrix (in-place algorithm).

Input: A, Symmetric Positive Definite matrix in tile storage (t × t tiles).
Result: A−1, stored in-place in A.
Step 1: Tile Cholesky Factorization (compute L such that A = LLT );

Variant 2 ;
for j = 0 to t − 1 do

for k = 0 to j − 1 do
Aj,j ← Aj,j − Aj,k ∗ AT

j,k (SYRK(j,k)) ;
Aj,j ← CHOL(Aj,j) (POTRF(j)) ;
for i = j + 1 to t − 1 do

for k = 0 to j − 1 do
Ai,j ← Ai,j − Ai,k ∗ AT

j,k (GEMM(i,j,k)) ;

for i = j + 1 to t − 1 do
Ai,j ← Ai,j/A

T
j,j (TRSM(i,j)) ;

Step 2: Tile Triangular Inversion of L (compute L−1)
Variant 4 ;

for j = t − 1 to 0 do
for i = t − 1 to j + 1 do

Ai,j ← Ai,i ∗ Ai,j (TRMM(i,j)) ;
for k = i − 1 to j + 1 do

Ai,j ← Ai,j + Ai,k ∗ Ak,j (GEMM(i,j,k)) ;
Ai,j ← −Ai,j/Aj,j (TRSM(i,j)) ;

Aj,j ← TRINV (Aj,j) (TRTRI(j)) ;

Step 3: Tile Product of Lower Triangular Matrices (compute A−1 = L−1T
L−1)

Variant 2 ;
for i = 0 to t − 1 do

for j = 0 to i − 1 do
Ai,j ← AT

i,i ∗ Ai,j (TRMM(i,j)) ;

Ai,i ← AT
i,i ∗ Ai,i (LAUUM(i)) ;

for j = 0 to i − 1 do
for k = i + 1 to t − 1 do

Ai,j ← Ai,j + AT
k,i ∗ Ak,j (GEMM(i,j,k)) ;

for k = i + 1 to t − 1 do
Ai,i ← Ai,i + AT

k,i ∗ Ak,i (SYRK(i,k)) ;
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(a) In-place (Algo-
rithm 1)

(b) Out-of-place (variant introduced in Section 3)

Fig. 1. DAGs of Step 3 of the Tile Cholesky Inversion (t = 4)

from the bottom-right corner and ends at the top left corner. (Variant 1 is the
reverse.)

We will see in the experimental section, Section 3, that this choice of variants
is not optimal, however it gives an interesting case study.

We have implemented Algorithm 1 using our dynamic scheduler QUARK in-
troduced in Section 1. Figure 2 shows its performance against state-of-the-art
libraries and the vendor library on the machine described in Section 1. For a
matrix of small size while keeping the tile size reasonably large, it is difficult
to extract parallelism and have full use of all the cores [3,8,9,19]. We indeed
observe a limited scalability (N = 1000, Figure 2(a)). However, tile algorithms
(Algorithm 1) still benefit from a higher degree of parallelism than blocked al-
gorithms [3,8,9,19]. Therefore Algorithm 1 (in place) consistently achieves a sig-
nificantly better performance than vecLib, ScaLAPACK and LAPACK libraries.
With the tile size kept constant, a larger matrix size (N = 4000, Figure 2(b))
allows for a better use of parallelism. In this case, an optimized implementation
of a blocked algorithm (vecLib) competes well against tile algorithms (in place)
on few cores (left part of Figure 2(a)). However, only tile algorithms scale to a
larger number of cores (rightmost part of Figure 2(b)) due to a higher degree of
parallelism. In other words, the tile Cholesky inversion achieves a better strong
scalability than the blocked versions, similarly to what had been observed for
the factorization step [3,8,9,19].

We see that the performance of the 242 variant (green and yellow lines) is
mediocre and a more appropriate variant would be 331 (red and purple lines) or
even better 312 (dashed purple). The reason for this is that the combinantion of
variants in the 242 variant does not lend itself well to interleaving. Variant 2 of
POTRF starts from the top-left corner and ends bottom-right, then variant 4 of
TRTRI starts from the bottom-right corner and ends at the top-left corner being
followed by variant 2 of LAUUM which starts from the top-left corner and ends
at the bottom-right. Due to the progression of each step within this combination,
it is very difficult to interleave the tasks. More appropriately, a variant of TRTRI
which progresses from top-left to bottom-right would afford a more aggressive
interleaving of POTRF, TRTRI, and LAUUM. Variants 331 and 312 provide
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Fig. 2. Scalability of Algorithm 1 (in place) and its out-of-place variant introduced
in Section 3, using our dynamic scheduler against libflame, vecLib, ScaLAPACK and
LAPACK libraries

this combination. This corroborates the observation of Bientinesi, Gunter and
van de Geijn: the 331 variant (e.g.) allows for a “one-sweep” algorithm [6].

We note that we obtain similar performance as the libflame libraries when
we use the same 331 algorithmic variant. (See red and plain purple curves.)
The main difference in this case being the schedulers (QUARK vs Supermatrix)
which are performing equally for these experiments. We did not try to tune the
parameters of either of these schedulers.

The best algorithmic combination of variants for our experimental conditions
was 312 as observed in the plot with the dashed purple curve.

3 Algorithmic Study

In the previous section, we compared the performance of the tile Cholesky in-
version against state-the-art libraries. In this section, we focus on tile Cholesky
inversion and we discuss the impact of several possible optimizations of Algo-
rithm 1 on its performance.

Array renaming (removing anti-dependences). The dependence between
SYRK(0,1) and TRMM(1,0) in the DAG of Step 3 of Algorithm 1 (Figure 1(a))
represents the constraint that the SYRK operation (l. 28 of Algorithm 1) needs
to read Ak,i = A1,0 before TRMM (l. 22) can overwrite Ai,j = A1,0. This anti-
dependence (Write After Read) can be removed by use of a temporary copy
of A1,0. Similarly, all the SYRK-TRMM anti-dependences, as well as TRMM-
LAUMM and GEMM-TRMM anti-dependences can be removed. We have de-
signed a variant of Algorithm 1 that removes all the anti-dependences by usage
of a large working array (this technique is called array renaming [4] in com-
pilation [4]). The subsequent DAG (Figure 1(b)) is split into multiple pieces
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Table 1. Length of the critical path as a function of the number of tiles t

In-place case Out-of-place case
Step 1 3t − 2 (up) 3t − 2 (up)
Step 2 3t − 2 (down) 2t − 1 (down)
Step 3 3t − 2 (up) t (up)

(Figure 1(b)), leading to a shorter critical path (Table 1). We also implemented
the out-of-place algorithm, within the framework of our dynamic scheduler. Fig-
ure 2(a) shows that our dynamic scheduler exploits this higher degree of paral-
lelism to achieve a higher strong scalability even on small matrices (N = 1000).
For a larger matrix (Figure 2(b)), the in-place algorithm already achieved very
good scalability. Therefore, using up to 7 cores, their performance are similar.
However, there is not enough parallelism with a 4000×4000 matrix to efficiently
use all 8 cores with the in-place algorithm; thus the higher performance of the
out-of-place version in this case (leftmost part of Figure 2(b)).

Loop reversal (exploiting commutativity). The most internal loop of each
step of Algorithm 1 (l. 8, l. 17 and l. 26) consists in successive commutative
GEMM operations. Therefore they can be performed in any order, among which
increasing order and decreasing order of the loop index. Their ordering impacts
the length of the critical path. Algorithm 1 orders those three loops as increasing
(U) for POTRF, decreasing (D) for TRTRI, and increasing (U) for LAUUM. We
had manually chosen these respective orders (UDU) because they minimize the
critical path of each step (values reported in Table 1). A naive approach would
have, for example, been comprised of consistently ordering the loops in increasing
order (UUU). In this case (UUU), the critical path of TRTRI would have been
equal to t2 − 2t + 4 (in-place) or (1

2 t2 − 1
2 t + 2) (out-of-place) instead of 3t− 2

(in-place) or 2t− 1 (out-of-place) for (UDU). Figure 3 shows how loop reversal
impacts performance.

This optimization is important for libraries relying on a tile BLAS (e.g.
libflame [23]). While any loop ordering is fine for a tile GEMM (e.g.) in term
of correctness, the loop ordering has an influence on how fast tiles are freed by
the tile GEMM operation. It is therefore critical that tile GEMM (e.g.) has the
ability of switching the ordering of the tasks depending on the context. In our
case, the optimal loop ordering for the 331 variant of Cholesky inversion is UUU
and so the good loop ordering comes “naturally”.

Pipelining. Pipelining (interleaving) the multiple steps of the inversion reduces
the length of its critical path. For the in-place case, the critical path cannot be
reduced since the final task of Step 1 must be completed before the first task of
Step 2 can proceed and similarly for Step 2 to Step 3. (This is because we have
chosen to study the 242 variant.) For the out-of-place case, it is reduced from
6t− 3 to 5t− 2 tasks. We studied the effect of pipelining on the performance of
the inversion of a 8000×8000 matrix with an artificially large tile size (b = 2000
and t = 4). For the out-of-place case, the elapsed time grows from 16.4 to 19.0
seconds (16 % overhead) when pipelining is prevented.
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Fig. 3. Impact of loop reversal on performance

4 Conclusion and Future Work

We have studied the problem of the computation of the inverse of a symmetric
positive definite matrix on multicore architectures. This problem was already
presented by Chan, Van Zee, Bientinesi, Quintana-Ort́ı, Quintana-Ort́ı, and van
de Geijn in 2008 [11]. We are essentially following the same approach: start-
ing from standard algorithms, we derive tile algorithms whose tasks are then
scheduled dynamically.

Our experimental study has shown both an excellent scalability of these algo-
rithms and a significant performance improvement compared to LAPACK and
ScaLAPACK based libraries.

In perspective of [11], our contribution is to bring back to the fore well known
issues in the domain of compilation. Indeed, we have shown the importance of
loop reversal, array renaming and pipelining. The optimization of these are very
important in the sense that they influence dramatically the shape of the DAG
of tasks that is provided to our dynamic scheduler and consequently determine
the degree of parallelism (and scalability) of the application.

The use of a dynamic scheduler allowed an out-of-the-box pipeline of the dif-
ferent steps whereas loop reversal and array renaming required a manual change
to the algorithm. The future work directions consist of enabling the scheduler to
automatically perform loop reversal and array renaming. We exploited the com-
mutativity of GEMM operations to perform array renaming. Their associativity
would furthermore allow them to be processed in parallel (e.g. following a binary
tree). Actually, the commutative and associative nature of addition allows one
to execute the operations in the fashion of a DOANY loop [22]. The subsequent
impact on performance is to be studied. Array renaming requires extra-memory,
thus it will be interesting to address the problem of the maximization of perfor-
mance under memory constraints.
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Abstract. In this paper, we propose a process grid free algorithm for a 
massively parallel dense symmetric eigensolver with a communication splitting 
multicasting algorithm. In this algorithm, a tradeoff exists between speed and 
memory space to keep the Householder vectors. As a result of a performance 
evaluation with the T2K Open Supercomputer (U. Tokyo) and the RX200S5, 
we obtain the performance with 0.86x and 0.95x speed-downs and 1/2 memory 
space compared to the conventional algorithm for a square process grid. We 
also show a new algorithm for small-sized matrices in massively parallel 
processing that takes an appropriately small value of p of the process grid p x q. 
In this case, the execution time of inverse transformation is negligible.  

Keywords: parallel and distributed computing, numerical algorithms for CS&E. 

1   Introduction 

A parallel dense symmetric eigensolver is a crucial tool for scientific computing. 
Some applications need few eigenvalues and eigenvectors for a sparse matrix. But 
other cases need all eigenvalues and all eigenvectors for a dense matrix. For example, 
all eigenvalues and eigenvectors for a dense matrix are needed in the density 
functional calculation of the electronic structure of an insulin hexamer [1]. Hundreds 
of computations of eigenvalues and eigenvectors are required to optimize the structure 
in some applications. Hence, we need to optimize the eigensolver to match both the 
dense and small sizes of the matrix in massively parallel processing because of the 
time restriction of computer services, such as at a supercomputer center. 

In addition, current computer architectures are increasing in complexity. Therefore, 
we need to administrate deep hierarchical caches, non-uniform memory accesses, and 
increase of the number of cores. Due to the features of current computer architectures, a 
cache-aware algorithm, that is, a blocking algorithm, is used in many numerical 
libraries. As an example in eigensolvers, a blocking algorithm for the reduction of dense 
matrices was proposed by Dongarra et al. [2]. After that, to reduce the communication 
time, a two-step reduction algorithm was proposed by Bischof et al. [3]. 
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These algorithms, however, are not aimed at small matrices. Instead, the target is a 
huge matrix to obtain high “computational” efficiency for one-time computation. This 
efficiency does not consider the actual execution limit of computer services. In 
current massively parallel machines, more than 10,000 cores are implemented. In this 
massively parallel environment, the conventional approach cannot work well because 
the actual matrix size that can be solved is very limited. For a dense eigensolver, the 
computation complexity grows to O(n3), and hence the computation time increases on 
the order of 100x of execution time with one core in weak scaling when we use 
100,000 cores. 

Katagiri et al. [4] proposed a massively parallel algorithm with a communication 
splitting multicast algorithm. The algorithm established more than a 5x speedup 
compared to that of ScaLAPACK [4], although the algorithm does not implement a 
blocking algorithm. The drawback of this algorithm was the restriction of process grid 
construction. In this paper, we propose an algorithm for a square process grid 
configuration. The goal of this paper is two-fold.  

First, we propose a process grid free algorithm based on [4]. This enables us not 
only many opportunities to adapt our algorithm, but also another tuning approach. 

Second, the process grid free algorithm has a tradeoff between memory space and 
execution speed. We evaluate the tradeoff by using two kinds of parallel machines. 
The execution speed with a small-sized matrix is examined in this paper. We focus on 
the small dimension of 10,000, which represents the real usage for a chemical 
simulation. The execution time for a small size of 10,000 is shown in the performance 
evaluation. 

This paper is organized as follows. Section 2 explains sequential and parallel 
algorithms for symmetric eigensolvers. Section 3 proposes a new algorithm with 
communication-splitting multicasts. Section 4 is a performance evaluation with the 
T2K Open Supercomputer (U. Tokyo) and the RX200S5. Finally, we summarize our 
findings in Section 5. 

2   Symmetric Dense Eigensolver 

To calculate the symmetric standard eigenproblem xAx λ= , where 
nnn xA ℜ∈ℜ∈ℜ∈ × ,, 1λ　 , we need to reduce the dense matrix A to a tridiagonal matrix 

T. This transformation is called “tridiagonalization.” After solving the new 
eigenproblem for T, we obtain an eigenvalue and an eigenvector. The eigenvector, 
which is y in this example, is not the eigenvector for matrix A. Therefore, we need a 
transform from y to x, which is the eigenvector of A. This transformation is called 
“inverse transformation.” 
 
Non-blocking Sequential Algorithm 
We describe the tridiagonalization processes shown in Figure 1. 

In this figure, the notation          indicates the sub-matrix of     , which  
consists of rows from a to b and columns from c to d. Figure 1 includes a dense vector 
matrix multiplication in line <3>, a dot product in line <4>, a copy in line <5>, and a 
matrix update in line <6>. To perform inverse transformation, we need a workspace  
to store the Householder (pivot) vectors                            .  

)( kA

221 ,,, −nuuu

dcba
kA :,:

)(
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Inverse transformation is described in Figure 2. Figure 2 includes a dot product in 
line <3>, and a matrix update in line <4>. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Tridiagonalization Processes 

 
 
 
 
 
 
 
 

 

Fig. 2. Inverse Transformation Processes 

3   The Communication Splitting Multicasting Algorithm 

3.1   The Data Distribution 

Let the number of MPI processes be np = px x py, and the process grid be p x q. The 
process identification is also defined in a 2D manner, that is, (myidx, myidy), which 
ranges from 0 to p-1 for myidx and from 0 to q-1 for myidy. 

The symmetric dense matrix A is distributed to each process in a cyclic-cyclic 
manner with a non-compressed form; thus, it does not use symmetry. In the cyclic-
cyclic distribution, indexes of the row and column for matrix A are distributed as 
follows. 

 

 (1) 
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By using the index sets in Equation (1), we can denote the distributed matrix and 
vectors. For example, )(

,
k

kAΠ  is a vector that consists of a cyclic distribution for the first 

dimension and an entire k-th column for matrix )(kA , and Πku is a vector in which 

the elements are distributed with the cyclic manner of vector ku . 

3.2   The Square Grid Algorithm for Tridiagonalization  

For the parallel algorithm for a square grid [4], that is, the case of p=q, 
tridiagonalization is used, as described in Figure 3. 

In Figure 3, all communications can be implemented by using multiple 
MPI_BCASTs or MPI_ALLREDUCEs on the splitted communicator of MPI. The 
communication time can be reduced in massively parallel execution, in contrast to the 
time needed by a conventional algorithm that cannot split the communication. To 
perform matrix updating in parallel in lines <25>-<29> in Figure 3, we need the 
partial elements of xk and uk. The copies can perform 2x the tridiagonal multicasting 
operations in lines <5>-<7> to obtain the elements from Πku  to Γku , and in lines 
<12>-<14> to transpose y to x. This enables us to dramatically reduce the 
communication time for the operation in comparison to that of the conventional 
algorithm [2]. 

Figure 4 shows the data distribution of vectors uk, xk, and yk in the square grid 
algorithm. The data distribution of their duplications is also shown. 

3.3   The Process Grid Free Algorithm for Tridiagonalization 

The Case of a Rectangle Grid (p < q)  
In [4], there is no description of rectangle process grid algorithms for the rectangle 
grid (p < q). However, the algorithm can be constructed by exchanging MPI_BCAST 
in Figure 3 with MPI_ALLREDUCE. We consequently establish a multicasting 
algorithm, but the communication time increases compared to the case of the square 
process grid.  

The key point of the change is the transpose operations in lines <5>-<7> and <12>-
<14> in Figure 3. In the case of p < q, there is no data for the elements of yk with a p 
cyclic distribution to go with the elements of xk with a q cyclic distribution. To avoid 

this situation, we add a copy process of Γku = Πku stridden (myidy / px) with offset (py / 
px), before line <6> in Figure 3 for uk operation. This is the key implementation 
technique of this distribution. Figure 5 shows the data distribution of yk and its 
multicastings based on this implementation. 
 
The Case of a Rectangle Grid (p > q)  
There is also no description and no performance evaluation in [4] for the rectangle 
grid (p > q). According to our verification, this algorithm can be described by 
exchanging MPI_BCASTs with MPI_ALLREDUCE, as in the case of p < q. But the  
 



 A Massively Parallel Dense Symmetric Eigensolver 143 

stride and offset are changed to (myidx / py) and (px / py), respectively. This is also a 
key implementation technique to establish a grid free algorithm. Figure 6 shows the 
data distribution of yk and its multicastings based on the above implementation. 

The number of multicasting is reduced to the case of p < q, but the number of 
processes by MPI_ALLREDUCEs is increased. Hence, the best grid configuration 
depends on the communication performance of the tridiagonalization process.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 

<1> do k=1, n-2 
<2>      if ( k Γ∈  )  MPI_BCAST ( )(

,
k

kAΠ  ) to Cores sharing rows Π . 

<3>      else  Receive data with MPI_BCAST ( )(
,

k
kAΠ
 )  endif; 

<4>      Computation of ( Πkk ua ,  ) with MPI_ALLREDUCE; 

<5>      if ( I have diagonal elements of A )  
<6>         MPI_BCAST ( Πku  ) to Cores sharing columns Γ . 

<7>      else  Receive data with MPI_BCAST ( Γku  )  endif; 

<8>      do j=k, n 

<9>          if ( j Γ∈  ) )(
,

k
j

T
kk

T
k

T
k Auyy

j ΠΠΠ += α  

<10>    enddo 

<11>    MPI_ALLREDUCE of T
ky Π  to Cores sharing rows Π . 

<12>    if ( I have diagonal elements of A ) 
<13>        MPI_BCAST ( T

ky Π  ) to Cores sharing columns Γ . 

<14>    else  Receive data with MPI_BCAST ( Γkx  )  endif; 

<15>    do j=k, n 
<16>          ΠΠ= k

T
kkk uyαμ   enddo 

<17>    MPI_ALLREDUCE of 
kμ  to Cores sharing rows Π . 

<25>    do j=k, n 
<26>          do i=k, n 
<27>              if (i Π∈  .and. j Γ∈  ) then 

<28>                
j

T
kk

T
k

T
kk

k
ji

k
ji yuuxuAA

ijji
−−−= ++ )()1(

,
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, μ  endif; 

<29>         enddo;  enddo; 
<30>    if (k Γ∈  )  }{k−Γ=Γ   endif 

<31>    if (k Π∈  )  }{k−Π=Π   endif 

<32> enddo 

Fig. 3. Parallel Tridiagonalization Algorithm with Square Process Grid Proposed in [4] 
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Fig. 4. Data Distribution of Vectors uk, xk, and yk , and Vectors of Their Duplications 
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Fig. 5. Data Distribution of Vector yk and Its Multicastings on the Process Grid Free Algorithm 
for Tridiagonalization. (the Case of Rectangle Grid (p < q), p = 2 and q = 4). 
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Fig. 6. Data Distribution of Vector yk and Its Multicastings on the Process Grid Free Algorithm 
for Tridiagonalization. (the Case of Rectangle Grid (p > q), p = 4 and q = 2). 

3.4   The Process Grid Free Algorithm for Inverse Transformation 

Figure 7 shows the parallel algorithm for inverse transformation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The algorithm in Figure 7 also can be described with multiple MPI_BCASTs. The 

process grid affects the execution performance since p is the number of 
MPI_BCASTs for the p x q grid. The small p seems to perform better, but it depends 
on network performance. The data distribution of uk and its multicastings are shown 
in Figure 8.  

However, the memory requirement to store the Householder vector uk varies 
according to p. If p=2, it needs 2x memory space compared to p=4 to keep the 
Householder (pivot) vectors. Therefore, this algorithm is a tradeoff between execution 
time and memory space. This algorithm is process grid free. The process grid of the 

<1> do k=n-2, 1, -1  

<2>   Gather the vector  ku  and  scalar kα  by using  

p-times of MPI_BCAST for 
Πku  with sharing . columns Γ . 

<3>   do i=kstart, kend  

<4>      ink
kT

kki Au ,:
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<5>      
ikiink
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k uAA σ−= ,:
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<6>   enddo  
<7> enddo 

Fig. 7. The Parallel Inverse Transformation Algorithm with Square Grid Proposed in [4] 
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inverse transformation is the same as that of tridiagonalization. From this point of 
view, the entire performance is determined by the communication performance 
between tridiagonalization and inverse transformation. 
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Fig. 8. Data Distribution of uk and Its Multicastings on the Process Grid Free Algorithm for 
Inverse Transformation 

4   Performance Evaluation 

4.1   Machine Environment  

We used the T2K Open Supercomputer (TODAI), which is a HITACHI HA8000 
installed at the Information Technology Center, The University of Tokyo. Each node 
contains 4 sockets of the AMD Opteron 8356 (Quad core, 2.3 GHz). The L1 cache is 
64 KB/core, the L2 cache is 512 KB/core, and the L3 cache is 2 MB/4 cores. The 
memory on each node is 32 GB with DDR2-667 MHz. The theoretical peak is 147.2 
GFLOPS/node. Inter-node connection is 4 lines of the Myri-10G with a full bisection 
connection. The inter-node connection attains 5 GB/sec in both directions. We used 
the HITACHI Fortran90 Compiler version V01-00-/B with option “-opt=ss -
noparallel.” Users can use a maximum of 64 nodes (1,024 cores) for a personal 
application in normal service, but a maximum of 256 nodes (4,096 cores) is available 
for a special service, which can be performed once per month.  

We also used the RICC PRIMERGY RX200S5 installed in the Advanced Center 
for Computing and Communication, RIKEN. Each node contains 2 sockets of the 
Intel Xeon X5570 (Quad core, 2.93 GHz). The L1 cache is 256 KB/core, the L2 cache 
is 1 MB/core, and the L3 is 8 MB/4 cores. The memory on the node is 12 GB with 
DDR3-1333 MHz. The theoretical peak is 93.0 GFLOPS/node. Inter-node connection 
is one line of the DDR InfinitiBand. We used the Fujitsu Fortran90 Compiler version 
3.2 with the option “-pc –high.” In this experiment, 32 nodes (256 cores) were used. 
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We used ABCLib_DRSSED version 1.04 [5][6]. No automatic tuning was used in 
this experiment; hence, the default parameters were set. 

4.2   Performance on Different Process Grids  

Figure 9 shows the execution time. Table 1 shows the speedups and memory spaces in 
the cases of the square and rectangle grids on the T2K.  
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(b) 1024 Cores (p = q) 

Fig. 9. Execution Time on Different Process Grids on the T2K 

 

In Figure 9, the execution time of p > q increases because the gathering time for uk 
increases according to p. In Table 1, speedup, memory space, speedup per memory 
(SPM) based on conventional execution are calculated. The conventional executions 
are 16x32 (512 cores) and 32x32 (1024 cores). If SPM is more than 1.0, it performs 
with good efficiency with respect to the ratio of speedup based on unit memory space.  

 

Table 1. Speedups and Memory Spaces on the T2K. The Memory Space Is Calculated by the 
Memory Requirement to Keep Householder Vectors uk. 

(a) 512 Cores (p != q) 
 

Grid 
(pxq) 

Time 
[sec.]

Speed 
UP 

Mem. SPM

16x32 25.8 1x 1x 1 

8x64 24.0 1.07x 2x 0.5 

4x128 25.3 1.01x 4x 0.2 

2x256 31.3 0.82x 8x 0.1 

32x16 29.7 0.86x 0.5x 1.7 

64x8 24.6 0.74x 0.25x 2.9 

128x4 54.6 0.47x 0.125x 3.7 

256x2 90.0 0.28x 0.062x 4.5 
 

(b) 1024 Cores (p = q) 
 

Grid 
(pxq) 

Time 
[sec.]

Speed
UP 

Mem. SPM 

32x32 16.5 1x 1x 1 

64x16 32.0 0.51x 0.5x 1.02 

128x8 39.7 0.41x 0.25x 1.6 

256x4 73.1 0.22x 0.125x 1.7 

512x2 128 0.12x 0.062x 1.9 
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Table 1 shows that the case of p>q has high efficiency with respect to SPM. 
Especially, the speed-down is only 0.86x, but memory space is reduced to 1/2 in 
Table 1 (a). In the p = q case, the algorithm of 32x32 is very fast compared to the 
others. If users accept the 0.41x speed-down, the memory space can be reduced  
to 1/4.  

Figure 10 shows the execution time. Table 2 shows the speedups and memory 
spaces in the cases of the square and rectangle grids on the RX200S5.  
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(b) 256 Cores (p=q) 

Fig. 10. Execution Time in Different Processor Grids on the RX200S5 

For Table 2 (a), (b), the ratios of SPM are better than those of the T2K. The speed-
down is only 0.95x, but the memory space is reduced to 1/2 in Table 2 (a). In Table 2 (a), 
the speed-down is only 0.71x with 32x8 compared to the case of 16x16. 

 

Table 2. Speedups and Memory Spaces on the RX200S5. The Memory Space Is Calculated by 
the Memory Requirement for Householder Vectors uk. 

(a) 128 Cores (p != q) 

Grid 
(pxq) 

Time 
[sec.]

Speed 
UP 

Mem. SPM

8x16 25.1 1x 1x 1 

4x32 26.1 0.96x 2x 0.48 

2x64 30.7 0.81x 4x 0.20 

16x8 26.3 0.95x 0.5x 1.9 

32x4 28.3 0.88x 0.25x 3.5 

64x2 38.3 0.65x 0.125x 5.2 
 

(b) 1024 Cores (p = q) 

Grid 
(pxq) 

Time 
[sec.]

Speed
UP 

Mem. SPM 

16x16 12.9 1x 1x 1 

32x8 18.1 0.71x 0.5x 1.4 

64x4 22.7 0.56x 0.25x 2.2 

128x2 40.8 0.31x 0.125x 2.4 
 

4.3   Execution Performance in a Massively Parallel Environment 

Figure 11 shows the execution time with 4,096 cores (256 nodes) on the T2K. In this 
experiment, 11 kinds of processor-grid configurations were tested.  
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Figure 11 indicates following interesting phenomena:  
 

1. The conventional square grid, 64x64 (total execution time is 11.7+22.4=34.1 
seconds), is not the fastest. In this case, 8x512 (the total execution time is 
2.05+26.8=28.8 seconds) is the fastest. 

2. The ratio between the time of inverse transformation and the total time decreases 
when p is reduced. The fastest case of inverse transformation takes only 0.283 
seconds of execution in the process grid 2x2048. The ratio of execution time of 
inverse transformation to the total time is 0.283/59.7=0.47%. This is negligible 
time. 

3. When p increases, the execution time of inverse transformation greatly increases. 
In addition, it causes a bottleneck due to the increase of processes according to 
multicastings. In contrast, the time of tridiagonalization only slightly affects the 
total time compared to the time of inverse transformation. This is due to good 
load balancing for the heavy computational part of tridiagonalization.   
 

Phenomena 2 and 3 provide another possibility of optimization for symmetric 
eigensolvers. If we use much memory to store pivot vectors, we take small values of p. 
Because the heavy computational part is only tridiagonalization in this case, we can 
tune the routine in a simple manner. Conventional tuning is very complex since there is 
a tradeoff between tridiagonalization and inverse transformation in the communication, 
especially in a conventional square process grid. Again, our target is small-sized 
matrices. There is a room for memory space in our target. Hence, the algorithm with 
small values of p is a candidate for an efficient parallel algorithm to be considered in 
the future. 
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Fig. 11. Execution Time with 4,096 Cores (256 Nodes) on the T2K Using Different Processor 
Grids 
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5   Conclusion 

In this paper, we propose a process grid free algorithm for a massively parallel dense 
symmetric eigensolver with a communication splitting multicasting algorithm. A 
tradeoff exists between speed and memory space in this algorithm. As a result of the 
performance evaluation with the T2K Open Supercomputer (HITACHI HA8000) and 
RICC RX200S5, we found that 0.86x and 0.95x speed-downs with 1/2 memory space 
allows us to keep the Householder vectors.  

We showed the possibility of this new algorithm for small-sized matrices on 
massively parallel processing to take appropriately small values of p of process grid p 
x q. In this case, the execution time of inverse transformation is negligible.  

The blocking parallel algorithm is now being studied in [7] and takes into account 
the communication reduction for the symmetric dense eigensolver. Implementing a 
communication-hiding algorithm with previous sending for the next-step Householder 
vector is important future work for small-sized matrices on massively parallel 
processing. 
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Bât. Sadi Carnot, 9 rue de la Physique,
69621 Villeurbanne Cedex, France

{christian.obrecht,frederic.kuznik,jean-jacques.roux}@insa-lyon.fr
2 Laboratoire de l’Informatique du Parallélisme

(UMR 5668 CNRS, ENS de Lyon, INRIA, UCB Lyon 1)
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Abstract. In this work, we investigate the global memory access mech-
anism on recent GPUs. For the purpose of this study, we created spe-
cific benchmark programs, which allowed us to explore the scheduling
of global memory transactions. Thus, we formulate a model capable of
estimating the execution time for a large class of applications. Our main
goal is to facilitate optimisation of regular data-parallel applications on
GPUs. As an example, we finally describe our CUDA implementations of
LBM flow solvers on which our model was able to estimate performance
with less than 5% relative error.

Keywords: GPU computing, CUDA, lattice Boltzmann method, CFD.

Introduction

State-of-the-art graphics processing units (GPU) have proven to be extremely
efficient on regular data-parallel algorithms [1]. For many of these applications,
like lattice Boltzmann method (LBM) fluid flow solvers, the computational cost
is entirely hidden by global memory access. The present study intends to give
some insight on the global memory access mechanism of the nVidia’s GT200
GPU. The obtained results led us to optimisation elements which we used for
our implementations of the LBM.

The structure of this paper is as follows. First, we briefly review nVidia’s com-
pute unified device architecture (CUDA) technology and the algorithmic aspects
of the LBM. Then, we describe our measurement methodology and results. To
conclude, we present our CUDA implementations of the LBM.
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1 Compute Unified Device Architecture

CUDA capable GPUs, i.e. the G8x, G9x, and GT200 processors consist in a
variable amount of texture processor clusters (TPC) containing two (G8x, G9x)
or three (GT200) streaming multiprocessors (SM), texture units and caches [2].
Each SM contains eight scalar processors (SP), two special functions units (SFU),
a register file, and shared memory. Registers and shared memory are fast but in
rather limited amount, e.g. 64 KB and 16 KB per SM for the GT200. On the
other hand, the off-chip global memory is large but suffers from high latency and
low throughput compared to registers or shared memory.

The CUDA programming language is an extension to C/C++. Functions in-
tended for GPU execution are named kernels, which are invoked on an execution
grid specified at runtime. The execution grid is formed of blocks of threads. The
blocks may have up to three dimensions, the grid two. During execution, blocks
are dispatched to the SMs and split into warps of 32 threads.

CUDA implementations of data intensive applications are usually bound by
global memory throughput. Hence, to achieve optimal efficiency, the number
of global memory transactions should be minimal. Global memory transactions
within a half-warp are coalesced into a single memory access whenever all the
requested addresses lie in the same aligned segment of size 32, 64, or 128 bytes.
Thus, improving the data access pattern of a CUDA application may dramati-
cally increase performance.

2 Lattice Boltzmann Method

The Lattice Boltzmann Method is a rather innovative approach in computational
fluid dynamics [3,4,5]. It is proven to be a valid alternative to the numerical
integration of the Navier-Stockes equations. With the LBM, space is usually
represented by a regular lattice. The physical behaviour of the simulated fluid
is determined by a finite set of mass fractions associated to each node. From an
algorithmic standpoint, the LBM may be summarised as:

for each time step do
for each lattice node do

if boundary node then
apply boundary conditions

end if
compute new mass fractions
propagate to neighbouring nodes

end for
end for

The propagation phase follows some specific stencil. Figure 1 illustrates
D3Q19, the most commonly used three-dimensional stencil, in which each node
is linked to 18 of its 27 immediate neighbours.1

1 Taking the stationary mass fraction into account, the number of mass fractions per
node amounts to 19, hence D3Q19.
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Fig. 1. The D3Q19 stencil

CUDA implementations of the LBM may take advantage of its inherent data
parallelism by assigning a thread to each node, the data being stored in global
memory. Since there is no efficient global synchronisation barrier, a kernel has
to be invoked for each time step [6]. CPU implementations of the LBM usually
adopt an array of structures (AoS) data layout, which improves locality of mass
fractions belonging to a same node [7]. On the other hand, CUDA implementa-
tions benefit from structure of arrays (SoA) data layouts, which allows coalesced
global memory accesses [8]. However, this approach is not sufficient to ensure
optimal memory transactions, since propagation corresponds to one unit shifts
of global memory addresses for the minor spatial dimension. In other words, for
most mass fractions, the propagation phase yields misalignments. A way to solve
this issue consists in performing propagation partially in shared memory [9]. Yet,
as shown in [10], this approach is less efficient than using carefully chosen prop-
agation schemes in global memory.

3 Methodology

To study transactions between global memory and registers, we used kernels
performing the following operations:

1. Store time t0 in a register.
2. Read N words from global memory, with possibly L misalignments.
3. Store time t1 in a register.
4. Write N words to global memory, with possibly M misalignments.
5. Store time t2 in a register.
6. Write t2 to global memory.

Time is accurately determined using the CUDA clock() function which gives
access to counters that are incremented at each clock cycle. Our observations
enabled us to confirm that these counters are per TPC, as described in [11], and
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not per SM as stated in [2]. Step 6 may influence the timings, but we shall see
that it can be neglected under certain circumstances.

The parameters of our measurements are N , L, M , and k, the number of warps
concurrently assigned to each SM. Number k is proportional to the occupancy
rate α, which is the ratio of active warps to the maximum number of warps
supported on one SM. With the GT200, this maximum number being 32, we
have: k = 32α.

We used a one-dimensional grid and one-dimensional blocks containing one
single warp. Since the maximum number of blocks supported on one SM is 8,
the occupancy rate is limited to 25%. Nonetheless, this rate is equivalent to the
one obtained with actual CUDA applications.

We chose to create a script generating the kernels rather than using runtime
parameters and loops, since the layout of the obtained code is closer to the one of
actual computation kernels. We processed the CUDA binaries using decuda [12]
to check whether the compiler had reliably translated our code. We carried out
our measurements on a GeForce GTX 295 graphics board, featuring two GT200
processors.2

4 Modelling

At kernel launch, blocks are dispatched to the TPCs one by one up to k blocks per
SM [13]. Since the GT200 contains ten TPCs, blocks assigned to the same TPC
have identical blockIdx.x unit digit. This enables to extract information about
the scheduling of global memory access at TPC level. In order to compare the
measurements, as the clock registers are peculiar to each TPC [11], we shifted
the origin of the time scale to the minimal t0. We noticed that the obtained
timings are coherent on each of the TPCs.

For a number of words read and written N ≤ 20, we observed that:

– Reads and writes are performed in one stage, hence storing of t2 has no
noticeable influence.

– Warps 0 to 8 are launched at once (in a determined but apparently incoherent
order).

– Subsequent warps are launched one after the other every ∼ 63 clock cycles.

For N > 20, reads and writes are performed in two stages. One can infer the
following behaviour: if the first n warps in a SM read at least 4,096 words, where
n ∈ {4, 5, 6}, then the processing of the subsequent warps is postponed. The
number of words read by the first n warps being n× 32N , this occurs whenever
n × N ≥ 128. Hence, n = 4 yields N ≥ 32, n = 5 yields N ≥ 26, and n = 6
yields N ≥ 21.

Time t0 for the first 3n warps of a TPC follow the same pattern as in the
first case. We also noticed a slight overlapping of the two stages, all the more
2 In the CUDA environment, the GPUs of the GTX 295 are considered as two distinct

devices. It should be noted that our benchmark programs involve only one of those
devices.
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as storing t2 should here be taken into account. Nonetheless, the read time for
the first warp in the second stage is noticeably larger than for the next ones.
Therefore, we may consider, as a first approximation, that the two stages are
performed sequentially.

In the targeted applications, the global amount of threads is very large. More-
over, when a set of blocks is assigned to the SMs, the scheduler waits until all
blocks are completed before providing new ones. Hence, knowing the average
processing time T of k warps per SM allows to estimate the global execution
time.

For N ≤ 20, we have T = �+TR +TW , where � is time t0 for the last launched
warp, TR is read time, and TW is write time. Time � only depends on k. For
N > 20, we have T = T0 + �′ + T ′

R + T ′
W , where T0 is the processing time of the

first stage, �′(i) = �(i− 3n + 9) with i = 3k − 1, T ′
R and T ′

W are read and write
times for the second stage.

Fig. 2. Launch delay in respect of warp rank

To estimate �, we averaged t0 over a large number of warps. Figure 2 shows,
in increasing order, the obtained times in cycles. Numerically, we have �(i) ≈ 0
for i ≤ 9 and �(i) ≈ 63(i− 10) + 13 otherwise.

5 Throughput

5.1 N ≤ 20

Figures 3 and 4 show the distribution of read and write times for 96,000 warps
with N = 19. The bimodal shape of the read time distribution is due to trans-
lation look-aside buffer (TLB) misses [14]. This aspect is reduced when adding
misalignments, since the number of transactions increases while the number of
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misses remains constant. Using the average read time to approximate T is ac-
ceptable provided no special care is taken to avoid TLB misses.

Fig. 3. Read time for N = 19

Fig. 4. Write time for N = 19

We observed that average read and write times depend linearly of N . Numer-
ically, with k = 8, we obtained:

TR ≈ 317(N − 4) + 440 TW ≈ 562(N − 4) + 1,178

TR′ ≈ 575(N − 4) + 291 TW ′ ≈ 983(N − 4) + 2,030

where TR′ and TW ′ are read and write times with L = N and M = N mis-
alignments. Hence, we see that writes are more expensive than reads. Likewise,
misalignments in writes are more expensive than misalignments in reads.
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5.2 21 ≤ N ≤ 39

As shown in figures 5 and 6, T0, T ′
R, and T ′

W depend linearly of N in the three
intervals {21, . . . 25}, {26, . . . 32}, and {33, . . . 39}. As an example, for the third
interval, we obtain:

T0 ≈ 565(N − 32) + 15,164

T ′
R ≈ 112(N − 32) + 2,540 T ′

W ≈ 126(N − 32) + 3,988

Fig. 5. First stage duration

Fig. 6. Timings in second stage
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5.3 Complementary Studies

We also investigated the impact of misalignments and occupancy rate on average
read and write times. Figures 7 and 8 show obtained results for N = 19.

For misaligned reads, we observe that the average write time remains approx-
imatively constant. Read time increases linearly with the number of misalign-
ments until some threshold is reached. From then on, the average read time is
maximal. Similar conclusion can be drawn for misaligned writes.

Fig. 7. Misaligned reads

Fig. 8. Occupancy impact
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Average read and write times seem to depend quadratically on k. Since the
amount of data transferred depends only linearly on k, this leads to think that
the scheduling cost of each warp is itself proportional to k.

6 Implementations

We implemented several LBM fluid flow solvers: a D3Q19 LBGK [4], a D3Q19
MRT [5], and a double population thermal model requiring 39 words per node [15].
Our global memory access study lead us to multiple optimisations. For each im-
plementation, we used a SoA like data layout, and a two-dimensional grid of one-
dimensional blocks. Since misaligned writes are more expensive than misaligned
reads, we experimented several propagation schemes in which misalignments are
deferred to the read phase of the next time step. The most efficient appears to be
the reversed scheme where propagation is entirely performed at reading, as out-
lined in figure 9. For the sake of simplicity, the diagram shows a two-dimensional
version.

Fig. 9. Reversed propagation scheme

Performance of a LBM based application is usually given in million lattice
node updates per second (MLUPS). Our global memory access model enables us
to give an estimate of the time T (in clock cycles) required to process k warps
per SM. On the GT200, where the number of SMs is 30 and the warp size is 32,
k warps per SM amounts to K = 30× k × 32 = 960k threads. Since one thread
takes care of one single node, T is therefore the number of clock cycles needed
to perform K lattice node updates. Hence, using the global memory frequency
F in MHz, the expected performance in MLUPS is: P = (K/T )× F .

With our D3Q19 implementations, for instance, we have N = 19 reads and
writes, L = 10 misaligned reads, no misaligned writes, and 25% occupancy (thus
k = 8). Using the estimation provided by our measurements, we obtain: T =
� + TR + TW = 15,594. Since K = 7,680 and F = 999 MHz, we have P =
492 MLUPS.
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To summarize, table 1 gives both the actual and estimated performances for
our implementations on a 1283 lattice. Our estimations appear to be rather
accurate, thus validating our model.

Table 1. Performance of LBM implementations (in MLUPS)

Model Occupancy Actual Estimated Relative error

D3Q19 LBGK 25% 481 492 2.3%

D3Q19 MRT 25% 516 492 4.6%

Thermal LBM 12.5% 195 196 1.0%

Summary and Discussion

In this work, we present an extensive study of the global memory access mech-
anism between global memory and GPU for the GT200. A description of the
scheduling of global memory accesses at hardware level is given. We express
a model which allows to estimate the global execution time of a regular data-
parallel application on GPU. The cost of individual memory transactions and
the impact of misalignments is investigated as well.

We believe our model is applicable to other GPU applications provided certain
conditions are met:

– The application should be data-parallel and use a regular data layout in
order to ensure steady data throughput.

– The computational cost should be negligible as compared with the cost of
global memory reads and writes.

– The kernel should make moderate use of branching in order to avoid branch
divergence, which can dramatically impact performance. This would proba-
bly not be the case with an application dealing, for instance, with complex
boundaries.

On the other hand, our model does not take possible TLB optimisation into
account. Hence, some finely tuned applications may slightly outvalue our per-
formance estimation.

The insight provided by our study, turned out to be useful in our attempts
to optimize CUDA implementations of the LBM. It may contribute to efficient
implementations of other applications on GPU.
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Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes. Parallel
Processing Letters 13(4), 549–560 (2003)
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Abstract. As general purpose computing on Graphics Processing Units
(GPGPU) matures, more complicated scientific applications are being tar-
geted to utilize the data-level parallelism available on a GPU. Implementing
physically-based simulation on data-parallel hardware requires preprocessing
overhead which affects application performance. We discuss our implementation
of physics-based data structures that provide significant performance improve-
ments when used on data-parallel hardware. These data structures allow us to
maintain a physics-based abstraction of the underlying data, reduce programmer
effort and obtain 6x-8x speedup over previously implemented GPU kernels.

1 Introduction

In any useful surgical simulation system, in order to meet the strict requirements of
proper visual and behavioral illusion of reality, the system must solve a number of
physics-based problems such as cutting and deformation at interactive speeds [12].
However surgical simulation cannot leverage the tricks that are used in “game physics”.
Physics engines for soft body simulation concentrate on real time and visually plausible
results, while surgical simulation requires numerical stability and accuracy due to the
critical nature of the simulation [12].

The present development trend of computational science software libraries is not
driven by changes in problem-specific methodology [9], but by the fundamental shift
of the underlying hardware towards heterogeneity and parallelism. This is particularly
true for data-intensive problems such as finite element analysis. GPUs have become the
technology of choice for data-parallel applications due to their potential for impressive
speedups and their ability to accelerate a range of general purpose programs [3,5,10].

Our current work involves accelerating the physics simulation library PhysBAM [20]
using the Compute Unified Device Architecture (CUDA) on NVIDIA GPUs for a real
time surgical simulator. PhysBAM is an object oriented library that works with dy-
namically generated data structures to simplify the modeling of the underlying physics.
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Physically-based modeling techniques have been used to properly model time-varying
properties such as geometry and topology [21].

Physics simulation algorithms possess inherent data parallelism, however paralleliz-
ing such algorithms naively leads to high overhead preprocessing since data parallelism
is interspersed throughout the simulation and few compute-intensive “kernels” exist on
which optimization efforts can be concentrated. This leads us to search for optimization
techniques which can be applied more widely across an application and can improve
data parallel performance irrespective of the underlying data structures and algorithms.
In this paper, we describe methods to improve data layout and use them to accelerate
physical simulation. We present a framework for physically- based simulation that au-
tomatically translates dynamic data structures to match the requirements of the GPU
memory subsystem.

2 Related Work

A number of prior studies have addressed acceleration of physics simulation and fi-
nite element analysis using GPUs [6,7,8,9]. The GPU implementation of FEAST [8] is
based on a scalable recursive multi-grid algorithm which prevents us from using it for
our surgical simulation implementation due to the real time requirements of our envi-
ronment and the need to simulate cutting. Farias et al. [16] discuss physically precise
deformation and demonstrate very good performance for their particular methodology.
Our work attempts to be agnostic to specific algorithms and provides a framework to
implement different types of data-parallel physics algorithms that can effectively exploit
the resources of a GPU.

The motivation behind our work is to build a simulation engine similar to Bullet [18]
that models soft tissue deformation and cutting accurately enough to be applied to sur-
gical simulation. Physics simulation for game and visual realism has been implemented
using NVIDIA GPUs in PhysX [2] and is available as a middleware for CUDA capa-
ble GPUs. Other physics simulation work for CUDA-based hardware includes [17,18].
For our simulated environment we need to provide accurate soft tissue deformation, so
our goal is to more closely couple the physics of the problem with our data parallel
implementation.

The implementation described in HONEI [9] is relevant to our work since Dyk et
al. also explored the heterogeneity and parallelism between GPUs and CPUs. Our work
is different from HONEI in the sense that our work is specific to Physics simulation
and the relationship between data-parallel structures and the underlying physics param-
eters. The data structures provided within HONEI are oriented towards finite element
analysis. The Simulation Open Framework Architecture (SOFA) [6] is a framework for
surgical simulation, but does not provide the computational infrastructure that will be
required for our future work. The Fenics Form Compiler [11] is also related to our work
since it deals with the conversion of mathematical expressions into programs that can be
executed using low-level linear algebra libraries for general purpose CPUs. Our method
is complimentary to this compiler since it is related to data structures and is designed to
improve performance for a different computing platform (GPUs).
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3 Physically Based Simulation Framework

To describe our data-parallel physics simulation framework, we first discuss how the
memory coalescing requirements for NVIDIA GPUs affect the design of our physics-
based data structures. We then show how our framework can be used to build structures
that exploit the GPU memory sub-system.

3.1 Coalesced Memory Accesses from Arrays of Objects

Physics based data-structures are arrays of dynamically generated objects denoting mul-
tiple instances of physical quantities like force, displacement, etc. Within a generic
physics simulation engine, due to the lack of a prirori knowledge of data layouts, these
arrays do not typically reside in contiguous locations in memory. The typical solution
for working with arrays of objects on the GPU is to allocate a contiguous block of
memory that can hold all the structures, and then copy the complete array of objects
into consecutive locations in memory (Figure 1).

The approach of simply contiguously storing data structures will impede perfor-
mance due to the CUDA memory coalescing rules. Memory coalescing in CUDA is
defined as reads or writes by threads to consecutive 4-byte elements in memory. If co-
alescing is not achieved, accesses are serialized and bandwidth degrades significantly.
Figure 1 shows memory accesses when consecutive 3-element data structures try to
access memory in CUDA.

Fig. 1. For data structures stored consecutively, non-coalesced accesses occur

As shown in Figure 2, we need to rearrange the allocated data in linear memory
locations to map efficiently to the underlying data-parallel hardware.

3.2 Automated Framework for Physics Data Structures

We have implemented a framework that allows us to create data structures for physics
simulation algorithms adhering to the memory coalescing requirements. The motivation
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Fig. 2. Data structures that are transformed for coalesced memory access

behind our framework is illustrated by listing some calculations and data structures re-
quired for modeling deformation of a silicone cube. The technique used for deformation
modeling is based on [14] and entails three main steps.

1. Singular Value Decomposition(SVD): The SVD of an array of 3x3 matrices is
calculated using approximate methods [14,13].

2. Stress Derivative: An array of structures of stress parameters denoting the consti-
tutive model. The results are used to update the stiffness matrices for the iterative
solver.

3. Solving Linear System: Arrays of 3x3 matrices and 3x3 symmetric matrices for
stiffness arrays. This step also requires arrays of vectors for force and displacement.

In our simulator, the data structures and parallel algorithms are closely coupled to the
physics theory. The physics based data structures denoted above are only a small subset
of the possible dynamically generated arrays which are different for each simulation.
Due to the variety of algorithms that could be implemented using PhysBAM [20], little
information is known apriori about the data structures and kernels1 that will be invoked
in a simulation. Due to this characteristic of our application, providing a limited set of
optimized data structures is not beneficial.

The architecture of our framework called GPUPhysBAM (GPU Physics Based
Modeling) is shown in Figure 3. The available physics simulation library dynamically
generates data whose structure is determined as per the algorithm being simulated. The
intermediate layer of GPUPhysBAM will allocate data in the GPU memory while keep-
ing in mind constraints like alignment and ordering for inter-thread access. These con-
straints have to be satisfied in order to take advantage of the high-bandwidth memory
bus between the GPU memory and the GPU’s SIMD processors.

Implementation of data structures that can be reused and adapted to different simu-
lation algorithms without sacrificing performance is key since we wish to maintain the
generic nature of the simulation library and allow our data-parallel structures to impact
a wider range of algorithms.

1 We refer to kernels as code that is parallelized and offloaded to the GPU.
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Fig. 3. GPUPhysBAM Architecture

3.3 Data Transformations and Hierarchically Designed Data Structures

Due to the complicated nature of physics based simulation code where both the CPU
and the GPU play a significant role in computation, data has to be organized such that
computation on both the CPU and the GPU yields optimal performance.

A simple example that illustrates the importance of properly designed data structures
for the CPU and GPU is shown in Figure 4. We present a simple program Y = f(X)
where X and Y are arrays of 3-element vectors indexed as Xi[0] − Xi[2] and f()
is a function that operates on each element of each vector independently. For the CPU
layout, function f() was applied as in the loop nest in Figure 4. For the loop in Figure 4,
data layout 1 would be optimal. However, as discussed in Section 3.1 such a layout
would prevent coalesced reads and writes on the GPU if each iteration of the loop
maps to a thread. The optimal layout for CUDA (assuming each iteration of the loop is
mapped to 1 thread) is shown in data layout 2, where the access pattern would follow
Figure 2. An alignment factor (pitch) is needed, since GPU memory is divided into
banks and optimized accesses can only begin at the starting location of the first bank.
However, if a large amount of computation is carried out on the CPU as well, we should
transform data from layout 2 back to layout 1. These transformations are automated and
abstracted using our data structures2.

The fundamental structure defined within our framework shown in Figure 3 is an OB-
JECT ARRAY which denotes a grouping of similar objects. The term “object” in this
context refers to any ordering of data such as arrays, vectors, or matrices. Such struc-
tures represent most physics-based simulation data (e.g., force, displacement, stress,
etc.) which consist of arrays of vectors or arrays of matrices. Even for the simplistic sim-
ulation discussed in Section 3.2, there exist a large number of different data structures.
To make our data-parallel simulation framework extensible and independent of any

2 We assume no dependencies occur across elements in each vector and no conflicting compiler
optimizations are used.
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Fig. 4. Optimal data layouts for the CPU and the GPU

particular algorithm, we design a framework for dynamically building data structures
such that the data layout generated is always optimal when implemented in CUDA3.

The Single Instruction Multiple Thread (SIMT) model for CUDA requires well-
structured access patterns across threads to coalesce memory accesses. Matching the
memory access patterns to the architecture is critical since GPU performance is de-
pendent on exploiting the high bandwidth present between the device memory and the
Single Instruction Multiple Data (SIMD) units [1,3,10].

Figure 5 denotes the layout of our data structures used in the implementation of
our GPUPhysBAM framework. Our underlying base class behaves as a CPU or GPU
memory container. As shown in Figure 5, we abstract out GPU-specific operations in
the 2nd level where we store information such as strides, number of elements in an
object and number of objects. The 3rd level simply contains indexing functions for
each element within an object.

Next, we demonstrate the benefits and extensibility of this approach. Figure 5 shows
the implementation of an Object Array of 3x3 symmetric matrices which is commonly
used in stiffness matrices. By inheriting from our GPU-generic class and implement-
ing functions (Get() and Put() in SYMMETRIC MATRIX ARRAY to access data)
within each object4 of the array, we build data-parallel structures that will be efficiently
accessed in a SIMD fashion on a GPU. The lower level getdata() and putdata() func-
tions handle the indexing and the pitch calculations that are done to return data when
given the object number and the element within the object. Thus, we provide the algo-
rithmically relevant “3x3 Symmetric Matrix Array” while exploiting the wide memory
bandwidth and many-core parallelism of a GPU.

A second example (shown in Figure 5) is an Object Array of structs used to describe
a constitutive model. The Constitutive Model Array is also created in a similar fashion
to the Symmetric Matrix Array. We derive the new class and simply write functions
to access the respective value out of 12 elements that make up each object. As shown,

3 Optimal refers to the optimal usage of memory bandwidth which occurs for coalesced data
accesses.

4 In this case one object is 6 elements of a symmetric matrix considered column major.
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Fig. 5. Hierarchically declared data structures for both the CPU and the GPU

similar to Symmetric Matrices, the lower level base class functions of getdata() and
putdata() implement the required indexing.

By using contiguous memory allocated in base classes and controlling indexing using
derived objects, we maintain both proper coalescing for the SIMT hardware and the
close coupling of the computation to the original physics theory. The utility of our
framework lies in the fact that a domain expert could create the appropriate physics
based data structures by simply inheriting the base class for the GPU functionality, and
based on his/her expertise, simply write functions to access data within each object of
the Object Array without knowing how the set of objects are laid out in memory.
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4 Performance Results

The datasets used in our work are based on a popular model called the Truth Cube [15].
The Truth Cube serves as a model to validate soft-tissue deformation algorithms by
comparing deformation obtained by an analytical method to known mechanical values.
We use the Truth Cube to verify our data-structures. Figure 6a shows the Truth Cube in
an undeformed position. Figure 6b shows the Truth Cube after performing Quasistatic
simulation of deformation.

(a) Before Applying Deforming Forces (b) After Quasistatic Deformation simulation

Fig. 6. Deformation of a Truth Cube

The Quasistatic simulation of the Truth Cube shown in Figure 6 was implemented
by using data-structures created within our framework. A range of data structures were
required by each benchmark as shown in Table 1. We benchmark 4 physics-relevant
kernels from this simulation, which dominate the overall execution time. We compare
only the execution time of the GPU kernels. The CPU-GPU I/O and memory transfor-
mation overhead does not change across data layouts because the baseline also incurs
transformation overhead given that data is dynamically generated and not in contigu-
ous memory. The performance was measured on a system using an NVIDIA GTX-285
GPU, Intel Core 2 Duo with 4GB of RAM running Ubuntu 9.04, and CUDA 3.0. Our
baseline which is CUDA code implemented without our data structures is naive only
with respect to data layout, it is architecturally aware of the GPU. The baseline CUDA
code exploits shared memory, textures and uses an optimized thread execution configu-
ration.

The performance improvements of the physics kernels have been denoted in Table 2.
The performance improvements are substantial even in computationally intensive ker-
nels like Add Force Differential which use the shared memory of the device to hide
most of device memory latency.

“Coalescing Improvement” in Table 2 denotes ratio of requests to actual memory
transactions measured using the CUDA profiler [1]. The increased ratio when using our
framework denotes the improvement in memory access efficiency due to coalescing.
The improvement in kernel performance when using our framework is due to the re-
duction in the number of actual memory transactions that the GPU memory subsystem
processes.
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Table 1. Data Structures Built Using GPUPhysBAM For Each Benchmark

Benchmark Data Structures
Force Calculations 3x3 Matrix, Diagonal Matrices, 1d-vectors

Isotropic Stress Derivative Constitutive Mode Structs, Diagonal Matrices
Add Force Differential Symmetric Matrices, 3-Element Vectors

Clamp Particles Neighbor Lists, 3-Element Vector

Table 2. Performance Results for Different Physics-based Benchmark Kernels

Benchmark Coalescing Imprrovement Performance(ms) Speedup
Baseline GPUPhysBAM Baseline GPUPhysBAM

Force Calculations 0.031 0.167 20.240 2.430 8.33x
Isotropic Stress Derivative 0.026 0.222 10.480 1.560 6.72x

Add Force Differential 0.013 0.066 5.900 1.150 5.13x
Clamp Particles 0.053 0.307 12.990 2.143 6.06x

The performance improvements presented here for each physics-based kernel trans-
late to an improvement in application level performance because these kernels consti-
tute the bulk of the computation. For e.g. the Add Force Differential kernel contains
indirect accesses and is similar to a sparse matrix vector multiplication which is known
to consume the bulk of the time spent in the Quasistatic simulation [14,20]. The per-
formance improvements presented in Table 2 are obtained for essentially no increase in
programming effort or development time for an application developer because the same
physics-derived data structure design API is maintained which allows us to simply in-
sert the improved data structures from underneath the physics simulator.

5 Conclusion

In this work we describe techniques that allow us to implement physics-based sim-
ulations efficiently on NVIDIA GPUs. Due to the variety of algorithms that can be
implemented using our physics simulator, we focus on implementation techniques and
optimizations that are extensible and generic so that they can have impact on a broader
class of data-parallel physics simulations. Our framework is extendable to different
types of physics-related objects and can also be adapted to other algorithms targeting
GPUs. We have used this framework to implement other deformation algorithms based
on MultiGrid methods and Backward Euler solvers. Our future work includes support-
ing more complicated models and evaluating the associated performance enhancements
possible.
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Abstract. The scalability of a fully implicit global shallow water solver
is studied in this paper. In the solver a conservative second-order finite
volume scheme is used to discretize the shallow water equations on a
cubed-sphere mesh which is free of pole-singularities. Instead of using the
popular explicit or semi-implicit methods in climate modeling, we employ
a fully implicit method so that the restrictions on the time step size can
be greatly relaxed. Newton-Krylov-Schwarz method is then used to solve
the nonlinear system of equations at each time step. Within each Newton
iteration, the linear Jacobian system is solved by using a Krylov subspace
method preconditioned with a Schwarz method. To further improve the
scalability of the algorithm, we use multilevel hybrid Schwarz precondi-
tioner to suppress the increase of the iteration number as the mesh is re-
fined or more processors are used. We show by numerical experiments on
the Rossby-Haurwitz problem that the fully implicit solver scales well to
thousands of processors on an IBM BlueGene/L supercomputer.

1 Introduction

The numerical simulation of shallow water equations is essential in global cli-
mate modeling and is usually used as a testbed for developing and verifying new
dynamics cores. In this paper, we study a multilevel fully implicit solver for the
shallow water equations on the cubed-sphere mesh. The cubed-sphere mesh is
quasi-uniform thus provides better data distribution compared to the popular
latitude-longitude mesh and is much easier to implement compared to unstruc-
tured mesh. If an explicit time integration is used in the solver, good strong
scaling results can be obtained. However, it is well-known that the explicit time
step size depends on the mesh size due to the stability condition. As a result,
to obtain the solution of a give simulation state, more time steps are needed
when the mesh is refined. Therefore the weak scalability of an explicit method
is far from ideal. By using a fully implicit time integration, the stability limit
on the time step size can be greatly relaxed. And by using a multilevel Schwarz
preconditioner, the weak scalability can be further improved.
� This research was supported in part by DOE under DE-FC-02-06ER25784, in part

by NSF under EAR 0934647 and DMS 0913089, in part by NSFC under 10801125
and in part by 863 program of China under 2010AA012300.

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 172–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Implicit Shallow Water Solver 173

We employ the cubed-sphere mesh of gnomonic type [9] in this study. The
mesh is generated by mapping the six faces of an inscribed cube of a sphere to
the surface using the gnomonic projection. The six patches are then attached
together via interface conditions. Using the local curvilinear coordinates, the
shallow water equations have an identical form on each patch:

∂Q

∂t
+

1
Λ

∂(ΛF )
∂x

+
1
Λ

∂(ΛG)
∂y

+ S = 0, (x, y) ∈ [−π/4, π/4]2 (1)

with

Q =

⎛⎝ h
hu
hv

⎞⎠ , F =

⎛⎝ hu
huu
huv

⎞⎠ , G =

⎛⎝ hv
huv
hvv

⎞⎠ , S =

⎛⎝ 0
S1
S2

⎞⎠ , (2)

where

S1 = Γ 1
11(huu) + 2Γ 1

12(huv) + fΛ
(
g12hu− g11hv

)
,

S2 = 2Γ 2
12(huv) + Γ 2

22(hvv) + fΛ
(
g22hu− g12hv

)
.

(3)

Here the unknowns are the thickness and velocity of the atmosphere; i.e., h
and (u, v). The gravitational constant is g and the Coriolis parameter is f . The
coefficients gmn, Λ and Γ �

mn in the equation are only dependent on the curvilinear
coordinates, see [15] for details.

2 A Fully Implicit Finite Volume Discretization

Suppose each patch Pk is covered by a logically rectangular N×N mesh, which is
equally spaced in the computational domain {(x, y) ∈ [−π/4, π/4]2} with mesh
size � = π/2N . Patch Pk is then divided into mesh cells Ck

ij centered at (xi, yj),
i, j = 1, · · · , N . The approximate solution in cell Ck

ij at time t is defined as

Qk
ij ≈

1
Λk

ij�
2

∫ yj+�/2

yj−�/2

∫ xi+�/2

xi−�/2
Λ (x, y) Q (x, y, t) dxdy.

Here Λk
ij is evaluated at the cell center of Ck

ij . Since expressions are identical on
different patches in most cases, we ignore the superscript k in the sequel.

On each mesh cell we integrate the shallow water equations and use the
Green’s formula, then we obtain a semi-discrete system

∂Qij

∂t
+ L(Qij) = 0, (4)

with

L(Qij) =
(ΛF )i+1/2,j − (ΛF )i−1/2,j

Λij�
+

(ΛG)i,j+1/2 − (ΛG)i,j−1/2

Λij�
+ Sij . (5)
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The numerical fluxes on cell boundaries are calculated by using the Osher’s
Riemann solver [7,8]

(ΛF )i±1/2,j = Λi±1/2,jF
(
Q∗

i±1/2,j

)
, (ΛG)i,j±1/2 = Λi,j±1/2G

(
Q∗

i,j±1/2

)
,

where Q∗ is evaluated as

h∗ =
1

4gg11

[
1
2
(
u− − u+)+

√
gg11

(√
h− +

√
h+
)]2

,

u∗ =
1
2
(
u− + u+)+

√
gg11

(√
h− −

√
h+
)

,

v∗ =

⎧⎨⎩v− +
(
g12
/
g11
)
(u∗ − u−) , ifu∗ ≥ 0

v+ +
(
g12
/
g11
)
(u∗ − u+) , otherwise,

under the assumption that |u| <
√

gg11h. The calculation of (ΛG)i,j+1/2 follows
a similar scheme, see [14] for more details. The reconstructed states are calculated
using a second-order scheme as follows:

Q∓
i±1/2,j = Qij ± (Qi+1,j −Qi−1,j)/4 , Q∓

i,j±1/2 = Qij ± (Qi,j+1 −Qi,j−1)/4 .

Only in the construction of the Schwarz preconditioner, we use a piecewise con-
stant method to reconstruct Q by forcing Q = Qij on Cij , which leads to a
first-order scheme [15]. On each patch interface, we extend the mesh with one
layer of ghost cells and the numerical fluxes are calculated symmetrically across
the interface to insure the numerical conservation of total mass; see [14] for
details.

Denote Q(m) as the approximate solution at the m-th time step with a fixed
time step size Δt. We use the second-order backward differentiation formula
(BDF-2) for time integration

1
2Δt

(
3Q

(m)
ij − 4Q

(m−1)
ij + Q

(m−2)
ij

)
+ L

(
Q

(m)
ij

)
= 0. (6)

Only at the first time step, a first-order backward Euler (BDF-1) method is
used. We also implement an explicit second-order Strong Stability Preserving
Runge-Kutta (SSP RK-2) method

Q
(m)

= Q(m−1) −ΔtL
(
Q(m−1)

)
,

Q(m) = (1/2 )
(
Q(m−1) + Q

(m)
)
− (Δt/2 )L

(
Q

(m)
) (7)

for the purpose of comparison. When using the explicit method, the time step
size is adaptively controlled so that the corresponding CFL number is fixed at
0.5. On the other hand, when the fully implicit method is employed, the time
step size Δt is no longer constrained by the CFL condition. However, the price
to pay by using the fully implicit method is that we have to solve a nonlinear
algebraic system for each time step. The development of a scalable algorithm to
solve the nonlinear system is the key to the success of the fully implicit solver.
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3 An Inexact Newton’s Method with Adaptive Stopping
Conditions

In the fully implicit solver, a nonlinear system F(X) = 0 arises at each time
step. An inexact Newton’s method is employed to solve the nonlinear system. In
the Newton’s method, the approximate solution is updated as

Xn+1 = Xn + λnSn, n = 0, 1, ... (8)

Here the steplength λn is calculated via linesearch [3] and the initial guess X0 is
chosen as the solution of the previous time step. In the inexact Newton’s method,
the correction vector Sn is obtained by approximately solving the linear Jacobian
system

JnSn = −F(Xn). (9)

Here Jn = F ′(Xn) is the Jacobian matrix calculated at the current approximate
solution Xn. In practice, we solve the right-preconditioned system

JnM−1(MSn) = −F(Xn), (10)

using a restarted GMRES method until the linear residual rn = JnSn + F(Xn)
satisfies

‖rn‖ ≤ η‖F(Xn)‖. (11)

In the implementation, GMRES restarts at every 30 iterations and the non-
linear forcing term is η = 10−3. A flexible version of GMRES [10] is used for
multilevel preconditioners due to the change of the preconditioner during the
GMRES iterations. Note that some more flexible methods can be used in choos-
ing the nonlinear forcing term, such as the techniques suggested by Eisenstat
and Walker [4].

We stop the Newton iteration (8) when the residual satisfies

‖F(Xn+1)‖ ≤ min
{

ε̂a, max
{
ε̌a, εr‖F(X0)‖

}}
. (12)

Here εr = 1.0× 10−7 is the relative tolerance εr with safeguard ε̂a = 1.0× 10−7.
The absolute tolerance ε̌a is initially set to ε̌

(0)
a = 1.0 × 10−8 at the first time

step and then adaptively determined by

ε̌(m)
a = max

{
ε̌(m−1)

a , ‖F(X(m−1))‖
}
.

Here m is the time step index.

4 Some Variants of One-Level and Multilevel Schwarz
Preconditioners

The partition of the cubed-sphere mesh is straightforward. Suppose the number
of processors is 6p2. We decompose each of the six patches of the cubed-sphere
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Fig. 1. Partition of the cubed-sphere mesh into subdomains with an overlap δ. Here
p = 2 and the number of subdomains is 6p2 = 24. The solid lines indicate the partition
of the domain into non-overlapping pieces of size Hx × Hy, the filled rectangle shows
the extended boundary of an overlapping subdomain and the incomplete fine mesh of
solid lines illustrates underlying uniform mesh of size �.

mesh into p× p identical non-overlapping subdomains respectively. Each subdo-
main is then mapped onto one processor. By further extending each subdomain
Ωj to a larger subdomain Ω′

j , j = 1, · · · , 6p2, we get an overlapping decomposi-
tion of the cubed-sphere, as shown in Fig 1.

Based on the overlapping domain decomposition, we define the one-level ad-
ditive Schwarz (AS) preconditioner

M−1
AS(1) =

6p2∑
j=1

(Rδ
j)

T B−1
j Rδ

j , (13)

and its restricted version (RAS, [2,11])

M−1
one =

6p2∑
j=1

(R0
j )

T B−1
j Rδ

j . (14)

Here Rδ
j is the restriction operator that maps a vector defined on the whole

domain onto subdomain Ω′
j ; and (Rδ

j)
T serves as a prolongation operator that

extends a vector defined on subdomain Ω′
j to the whole domain by filling zeros

outside Ω′
j . The RAS preconditioner differs from the AS in that the prolon-

gation operator is based on the non-overlapping domain decomposition of the
cubed-sphere that reduces communication in the application of the precondi-
tioner. Observations were made [2] that the restricted version of the Schwarz
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preconditioner also helps in reducing the number of linear iterations in some
cases; therefore we will use the RAS preconditioner in this study.

The operator B−1
j represents a subdomain preconditioner that has several dif-

ferent definitions. Denote the Jacobian matrix based on the second-order spatial
discretization as J and denote its first-order version as J̃ . We list some possible
choices of the subdomain preconditioner B−1

j .

(1) The direct inverse of the true subdomain Jacobian matrix based on the LU
factorization of Rδ

jJ(Rδ
j)

T .
(2) An approximate inverse of the true subdomain Jacobian matrix based on

the incomplete LU factorization of Rδ
jJ(Rδ

j )
T .

(3) The direct inverse of the first-order subdomain Jacobian matrix based on
the LU factorization of Rδ

j J̃(Rδ
j)

T .
(4) An approximate inverse of the first-order subdomain Jacobian matrix based

on the incomplete LU factorization of Rδ
j J̃(Rδ

j)
T .

In our implementation, the sparse matrices are stored in a point-block format,
and both the LU and ILU factorizations are carried out in the (3×3) point-block
format. Compared to factorizations based on other matrix formats, the point-
block version helps in keeping the coupling between all physical components of
each mesh point which is essential for our fully coupled solver.

If a first-order spatial discretization is used for the fully implicit solution of
the shallow water equations, the one-level RAS preconditioner (14) is found to
be robust [15]. Some observations made in [13] suggest that the one-level RAS
preconditioner constructed based on the low-order scheme is efficient even when
the spatial discretization is second-order. Therefore, we only consider the latter
two choices of the subdomain preconditioner B−1

j .
When a large number of processors is used to solve a larger problem or larger

time step size is considered, it becomes difficult for a one-level method to scale
ideally. To obtain better scalability, coarse levels need to be included to the
one-level preconditioner. We may compose the one-level additive Schwarz pre-
conditioner Bf with a coarse-level preconditioner Bc either additively

M−1
two = Bc + Bf , (15)

or multiplicatively
M−1

two = Bc + Bf −BfJfBc, (16)

where Bc = If
c J−1

c Ic
f , and Ic

f and If
c are restriction and prolongation operators

mapping between vectors defined on the fine level and the coarse level. A linear
system with Jacobian matrix Jc defined on the coarse is solved for each appli-
cation of the two-level preconditioner (16). Here the linear solver for the coarse
level problem does not need to be exact; instead, we may solve it using GMRES
with a given tolerance ηc. Note that the coarse level preconditioner can be either
one-level or another two-level preconditioner which results in a three-level solver.
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5 Numerical Experiments

The numerical experiments are carried out on an IBM BlueGene/L supercom-
puter with 4096 dual-processor compute nodes. The fully implicit solver is im-
plemented based on the Portable, Extensible Toolkit for Scientific computation
(PETSc [1]). We consider the sixth test case provided in [12], which is a four-wave
Rossby-Haurwitz problem. Although it is not an analytic solution to the shal-
low water equations, the Rossby-Haurwitz wave is a good tool as a middle-term
test. The height field contour on day 14 using the fully implicit BDF-2 method
is given in Fig 2; the result using the explicit RK-2 method is also provided in
the same figure for comparison purpose. Our numerical results are in agreement
with the reference solutions in [5,6] and although time step sizes are different by
two orders of magnitudes, the implicit and explicit results are consistent with
each other.

Fig. 2. Height field contours of the Rossby-Haurwitz problem at day 14. The calcu-
lations are done on a 128 × 128 × 6 mesh with 96 processors. The top figure is the
result using BDF-2 with Δt = 0.1days (CFL ≈ 55); and the bottom one is obtained
using SSP RK-2 with CFL = 0.5. The contour levels are from 8100 to 10500m with an
interval of 100m. The innermost lines near the equator are at 10500m.
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5.1 Numerical Conservation

We then investigate the numerical conservation of the fully implicit solver. Here
the normalized conservation error of a specific quantity ρ at time t is measured
by δ(ρ) = [I(ρ, t)− I(ρ, 0)]/I(ρ, 0), where

I(ρ, t) =
6∑

k=1

N∑
i,j=1

(
Λijρ

k
ij(t)

)
. (17)

The integral invariants can be the total mass δ(h), the total energy δ(E) and
the potential enstrophy δ(ξ), where

E =
Λ2h

2
(g11v2 + g22u2 − 2g12uv),

ξ =
1

2Λh

{
∂

∂x
[Λ2(g11v − g12u)]− ∂

∂y
[Λ2(g22u− g12v)] + Λf

}2

.

The numerical conservation of the three integral invariants are provided in Fig 3.
From Fig 3, we have the following observations. When using the explicit method,
the mass conservation is accurate to the machine precision and the conservations
of the other two integral invariants are also satisfactory. When the fully implicit
method is used instead, the numerical conservations are also within acceptable
levels; here we believe that the slight discrepancies of the numerical conservation
are mainly due to the much larger time step size and the inexact solution of the
nonlinear systems.

5.2 Performance Tests

We study the performance of the fully implicit solver by using the precondition-
ers listed in Table 1. Both the second-order and the first-order Jacobians are
evaluated analytically where the latter is used to construct the RAS precondi-
tioners.

Table 1. Preconditioners used in the fully implicit solver. For the three-level precon-
ditioner, the values in the last three entries are provided from the finest level to the
coarsest. The � stands for the direct application of the preconditioner without iteration.

Preconditioner #Levels Ratio η δ Subdomain solver
1-level-ILU 1 0.001 - 2� ILU(2)
1-level-LU 1 0.001 - 2� LU

3-level 3 0.001, 0.1, � 1:2 2�, 0, 4� ILU(2), ILU(2), LU

We first investigate the strong scalability by running a fix-sized problem with
an increasing number of processors. In the ideal situation, the execution time
should be reduced by a factor of 2 as the number of processors doubles. We
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Fig. 3. Numerical conservation of the of the total mass, total energy and potential
enstrophy for the Rossby-Haurwitz problem. The calculations are done on a 128×128×6
mesh with 96 processors. Results are compared between BDF-2 with Δt = 0.1days
(CFL ≈ 55) and SSP RK-2 with CFL = 0.5.

run the Rossby-Haurwitz problem on a 1152× 1152× 6 mesh (nearly 24 million
unknowns) with time step size Δt = 0.1days for the first 20 time steps. The
performance results of the fully implicit solver using the preconditioners listed in
Table 1 are provided in Fig 4 and 5. The averaged number of Newton iteration per
time step is not provided in the figure because we observe that it is always around
3.0, independent on the number of processors and the preconditioners used inside
the linear solver. The results on the averaged number of linear iterations per
Newton iteration for each time step are given in Fig 4 from which we find that the
number of linear iterations is greatly reduced when using the three-level method
instead of one-level versions and more importantly the dependency between the
number of linear iterations and the number of processors is successfully removed.
The results on the total compute time in the strong scaling tests are provided
in Fig 5 in which the explicit results are also given. Fig 5 clearly indicates that
the fully implicit solver is orders of magnitudes faster than the explicit solver.
The three-level method is about 30% to 50% faster compared to the one-level
methods. Suppose the compute speed for 384 processors is ideal, the scalability
of the explicit method is nearly ideal and the parallel efficiency of the implicit
solver is around 73% to 80% when 7776 processors are used.
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Fig. 4. Strong scaling results on the Rossby-Haurwitz problem, averaged number of
linear iterations

Fig. 5. Strong scaling results on the Rossby-Haurwitz problem, total compute time

We then study the weak scalability of the fully implicit solver. In the weak
scaling tests, we fix the per processor mesh size and thus the total problem
size increases as more processors are used. As the problem size increases, the
CFL number becomes larger, leading to larger condition number of the Jacobian
system. In the ideal case, we expect to obtain mesh-independent compute time
which is much harder to achieve than the strong scalability. We run the Rossby-
Haurwitz problem starting with a 48×48×6 mesh for six processors and ending
up with a 1728×1728×6 mesh (nearly 54 million unknowns) for 7776 processors.
In each test we run the problem for the first 20 time steps also with a fixed time
step size Δt = 0.1days. Analogous to the strong scaling tests, we observe that the
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Fig. 6. Weak scaling results on the Rossby-Haurwitz problem, averaged number of
linear iterations

Fig. 7. Weak scaling results on the Rossby-Haurwitz problem, total compute time

number of Newton iterations is insensitive to the number of processors. However
the number of linear iterations increases more rapidly as more processors are
used, see Fig 6. Although the three-level method provides much better iteration
counts, the dependency between the number of linear iterations and the number
of processors is not totally removed. As a result, we can not obtain the ideal weak
scalability in terms of compute time, see Fig 7. We would like to point out here
that if an explicit method is used instead, the weak scalability is far below the
ideal situation because the time step size is limited by the CFL condition as the
mesh is refined. The results using the explicit RK-2 method is provided in Fig 7
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to compare. Although not ideal, with the help of the three-level preconditioner,
the compute time only increases by 128% as the number of processor increases
from 6 to 7776.

6 Conclusions

The scalability of a global shallow water solver is studied. The solver features a
conservative second-order finite volume scheme based on a cubed-sphere mesh
and a fully implicit time integration method. Newton-Krylov-Schwarz algorithms
are used to solve the nonlinear system arising at each implicit time step. The
inexact Newton iteration is controlled by adaptive stopping conditions so that
the nonlinear residuals are maintained within a uniform level for all time steps.
Multilevel Schwarz preconditioners are studied to improve both strong and weak
scalabilities of the fully implicit solver. To show the performance of the algorithm
we provide some numerical results for the Rossby-Haurwitz problem carried out
on a supercomputer with thousands of processors.
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Abstract. OpenMP/MPI hybrid parallel programming models were imple-
mented to 3D finite-volume based simulation code for groundwater flow prob-
lems through heterogeneous porous media using parallel iterative solvers with 
multigrid preconditioning. Performance and robustness of the developed code 
has been evaluated on the “T2K Open Supercomputer (Tokyo)” and “Cray-
XT4” using up to 1,024 cores through both of weak and strong scaling compu-
tations. OpenMP/MPI hybrid parallel programming model demonstrated better 
performance and robustness than flat MPI with large number of cores for ill-
conditioned problems with appropriate command lines for NUMA control, first 
touch data placement and reordering of the data for contiguous “sequential” ac-
cess to memory.  

Keywords: Multigrid, OpenMP/MPI Hybrid, Preconditioning. 

1   Introduction 

In order to achieve minimal parallelization overheads on SMP (symmetric multiproc-
essors) and multi-core clusters, a multi-level hybrid parallel programming model is 
often employed. In this method, coarse-grained parallelism is achieved through do-
main decomposition by message passing among nodes, while fine-grained parallelism 
is obtained via loop-level parallelism inside each node using compiler-based thread 
parallelization techniques, such as OpenMP (Fig.1 (a)). Another often used pro-
gramming model is the single-level flat MPI model, in which separate single-threaded 
MPI processes are executed on each core (Fig.1 (b)). It is well-known that the effi-
ciency of each model depends on hardware performance (CPU speed, communication 
bandwidth/latency, memory bandwidth/latency, and their balance), application fea-
tures, and problem size [1].  

In the previous work [1], author applied OpenMP/MPI hybrid parallel program-
ming models to finite-element based simulations of linear elasticity problems. The 
developed code has been tested on the “T2K Open Supercomputer” [2] using up to 
512 cores. Performance of OpenMP/MPI hybrid parallel programming model is com-
petitive with that of flat MPI using appropriate command lines for NUMA control. 
Furthermore, reordering of the data for contiguous access to memory with first touch 
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data placement provides excellent improvement on performance of OpenMP/MPI 
hybrid parallel programming models, especially if the problem size for each core is 
relatively small. Generally speaking, OpenMP/MPI hybrid parallel programming 
model provides excellent performance for strong scaling cases where problems are 
less memory-bound.  

In the present work, OpenMP/MPI hybrid parallel programming models were im-
plemented to 3D finite-volume based simulation code for groundwater flow problems 
through heterogeneous porous media using parallel iterative solvers with multigrid 
preconditioning, which was originally developed in [3]. Multigrid is a scalable 
method and expected to be a promising approach for large-scale computations, but 
there are no detailed research works where multigrid methods are evaluated on multi-
core/multi-socket clusters using OpenMP/MPI hybrid parallel programming models. 
In this work, developed code has been evaluated on the “T2K Open Super Computer 
(Todai Combined Cluster) (T2K/Tokyo)” at the University of Tokyo, and “Cray-
XT4” at National Energy Research Scientific Computing Center (NERSC) of Law-
rence Berkeley National Laboratory [4] using up to 1,024 cores, and performance of 
flat MPI and three kinds of OpenMP/MPI hybrid parallel programming models are 
evaluated.  

The rest of this paper is organized as follows: In section 2, overview of the target 
hardware (“T2K/Tokyo”, “Cray XT4”) is provided. In section 3, we outline the details 
of the present application, and describe the linear solvers and reordering/optimization 
procedures. In section 4, preliminary results of the computations for both of weak and 
strong scaling tests are described, while some final remarks are offered in section 5. 

 

 
 
 
 
 
 

 
  (a) Hybrid                                                           (b) Flat MPI 

Fig. 1. Parallel Programming Models 

2   Hardware Environment 

“T2K Open Super Computer (Todai Combined Cluster) (T2K/Tokyo)” at the Univer-
sity of Tokyo [2] was developed by Hitachi under “T2K Open Supercomputer Alli-
ance” [5]. T2K/Tokyo is an AMD Quad-core Opteron-based combined cluster system 
with 952 nodes, 15,232 cores and 31TB memory. Total peak performance is 140 
TFLOPS. T2K/Tokyo is an integrated system of four clusters. Number of nodes in 
each cluster is 512, 256, 128 and 56, respectively. Each node includes four “sockets” 
of AMD Quad-core Opteron processors (2.3GHz), as shown in Fig.2.  

Peak performance of each core is 9.2 GFLOPS, and that of each node is 147.2 
GFLOPS. Each node is connected via Myrinet-10G network. In the present work, 64 
nodes of the system have been evaluated. Because T2K/Tokyo is based on cache-coherent 
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NUMA (cc-NUMA) architecture, careful design of software and data configuration is 
required for efficient access to local memory. 

“Cray XT4 (Franklin)” system at NERSC/LBNL [4] is a large-scale cluster system. 
A single node of Cray-XT4 corresponds to a single “socket” of AMD Quad-core 
Opteron processor (2.3 GHz) in Fig.2. Entire system consists of 9,572 nodes, 38,288 
cores and 77TB memory. Total peak performance is 352 TFLOPS. Network topology 
of T2K/Tokyo is multi-stage cross-bar, while that of Cray-XT4 is 3D truss. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Overview of a “node” of T2K/Tokyo, each node consists of four sockets of AMD Quad-
core Opteron processors (2.3GHz) 

3   Implementation and Optimization of Target Application 

3.1   Finite-Volume Application 

In the present work, groundwater flow problems through heterogeneous porous media 
(Fig.3) are solved using a parallel finite-volume method (FVM). Problem is described 
by the following Poisson equation and boundary condition: 

( )( ) max0,,, zzatqzyx ===∇⋅∇ φφλ  (1) 

where φ denotes potential of water-head, and λ(x,y,z) describes water conductivity. q 
is value of volumetric flux of each finite-volume cell, and is set to a uniform value 
(=1.0) in this work. A heterogeneous distribution of water conductivity in each cell is 
calculated by a sequential Gauss algorithm, which is widely used in the area of geo-
statistics [6]. The minimum and maximum values of water conductivity are 10-5 and 
105, respectively, with an average value of 1.0. This configuration provides ill-
conditioned coefficient matrices whose condition number is approximately 1010. Each 
cell is a cube, and distribution of cells is structured like finite-difference-type voxels . 
In this work, entire model is consists of clusters of small models with 1283 cells. In 
each small model, distribution pattern is same therefore same pattern of heterogeneity 
appears periodically. The code is parallelized by domain decomposition using MPI 
for communications between partitioned domains [3]. 
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(a)

    

(b) 

  

Fig. 3. Example of groundwater flow through heterogeneous porous media, (a) distribution of 
water conductivity, (b) streamlines 

3.2   Iterative Method with Multigrid Preconditioning 

The Conjugate Gradient (CG) solver with multigrid preconditioner (MGCG) [3] was 
applied for solving Poisson’s equations with symmetric positive definite (SPD) coef-
ficient matrices. Iterations are repeated until the norm |r|/|b| is less than 10-12. Multi-
grid is an example of scalable linear solver and widely used for large-scale scientific 
applications. Relaxation methods such as Gauss-Seidel can efficiently damp high-
frequency error, but low-frequency error is left. The multigrid idea is to recognize that 
this low-frequency error can be accurately and efficiently solved for on a coarser grid 
[7]. In this work, very simple geometric multigrid with V-cycle, where 8 children 
form 1 parent cell in isotropic manner for structured finite-difference-type voxels, as 
shown in Fig.4, has been applied. Level of the finest grid is set to 1 and the level is 
numbered from the finest to the coarsest grid, where number of cell is one at each 
domain (MPI processe). In this work, multigrid operations at each level are done in 
parallel manner, but the operations at the coarsest levels are executed on a single core 
by gathering information of entire processes. Total number of cells at the coarsest 
level is equal to number of domains (MPI processes). 
 

 
 
 
 
 
 

 
                LEVEL=k                           LEVEL=k-1                              LEVEL=k-2 

Fig. 4. Procedure of Geometric Multigrid (8 children = 1 parent) 

In multigrid procedure, equations at each level are “relaxed” using smoothing opera-
tors, such as Gauss-Seidel iterative solvers. Many types of smoothing operators have 
been proposed and used [7]. Among those, ILU(0)/IC(0) (Incomplete LU/Cholesky 
factorization without fill-in’s) are widely used. These smoothing operators demonstrate 
excellent robustness for ill-conditioned problems [3,7,8]. In this study, IC(0) is adopted 
as a smoothing operator. IC(0) process includes global operations and it is difficult to be 
parallelized. Block-Jacobi-type localized procedure is possible for distributed parallel 
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operations, but this approach tends to be unstable for ill-conditioned problems. In order 
to stabilize the localized IC(0) smoothing, additive Schwarz domain decomposition 
(ASDD) method for overlapped regions [9] has been introduced.  

3.3   Procedures for Reordering 

The 3D code is parallelized by domain decomposition using MPI for communications 
between partitioned domains. In the OpenMP/MPI hybrid parallel programming 
model, multithreading by OpenMP is applied to each partitioned domain. The reorder-
ing of elements in each domain allows the construction of local operations without 
global dependency, in order to achieve optimum parallel performance of IC opera-
tions in multigrid processes.  
 
 

 
 
 
 
 
 

 
 

(a) MC (4col’s)                              (b) RCM                       (c) MC-RCM (4col’s) 

Fig. 5. Various Methods for Coloring 

Reverse Cuthill-McKee (RCM) reordering facilitates a faster convergence of iterative 
solvers with ILU/IC preconditioners than traditional multicolor (MC) reordering, espe-
cially for ill-conditioned problems, but leads to irregular numbers of vertices in each 
level set. The solution to this trade-off is RCM with cyclic-multicoloring (CM-RCM) 
[11]. In this method, further renumbering in a cyclic manner is applied to vertices that 
are reordered by RCM, as shown in Fig.5 (c). In CM-RCM, the number of colors should 
be large enough to ensure that vertices of the same color are independent. 

3.4   Procedures for Optimization 

In the current work, following three types of optimization procedures have been ap-
plied to OpenMP/MPI hybrid parallel programming models: 
 

• Appropriate command lines for NUMA control 
• First touch data placement 
• Reordering for contiguous “sequential” access to memory, 

 

Same command lines for NUMA control as were used in [1] have been applied in the 
current work. Detailed information for optimum command lines can be found in [1]. 

3.4.1   First Touch Data Placement 
Minimizing memory access overhead is important for cc-NUMA architecture, such as 
T2K/Tokyo. In order to reduce memory traffic in the system, it is important to keep 
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the data close to the cores that works with the data. On cc-NUMA architecture, this 
corresponds to making sure the pages of memory are allocated and owned by the 
cores that works with the data contained in the page. The most common cc-NUMA 
page-placement algorithm is the first touch algorithm [10], in which the core first 
referencing a region of memory has the page holding that memory assigned to it. Very 
common technique in OpenMP programs is to initialize data in parallel using the 
same loop schedule as will be used later in the computations, as shown in Fig.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Example of initialization of arrays for first touch data placement, where initialization 
process has been done 

3.4.2   Reordering of Data for Contiguous “Sequential” Memory Access 
In CM-RCM reordering, initial vector is re-numbered according to color ID, as shown 
in Fig.5. Elements in each color are distributed to each thread so that load for each 
thread is balanced. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 7. Data distribution on each thread after further reordering for contiguous “sequential” 
memory access, number of color: 5, number of thread: 8 

color=1 color=2 color=3 color=4 color=5
Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5
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Initial Numbering

Non-contiguous
access to memory
on each thread
(numbering 
according to color)
“COALESCED”

Contiguous
access to memory
on each thread
“SEQUENTIAL”

do lev= 1, LEVELtot
do ic= 1, COLORtot(lev)

!$omp parallel do private(ip,i,j,isL,ieL,isU,ieU)
do ip= 1, PEsmpTOT
do i = STACKmc(ip,ic-1,lev)+1, STACKmc(ip,ic,lev)

RHS(i)= 0.d0; X(i)= 0.d0; D(i)= 0.d0

isL= indexL(i-1)+1
ieL= indexL(i)
do j= isL, ieL

itemL(j)= 0; AL(j)= 0.d0
enddo

isU= indexU(i-1)+1
ieU= indexU(i)
do j= isU, ieU

itemU(j)= 0; AU(j)= 0.d0
enddo

enddo
enddo

!$omp omp end parallel do
enddo

enddo
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Pages of memory are allocated to local memory of each socket through the first 
touch procedure for initialization described in Fig.6. But the problem is that the size 
of each page is small and addresses of pages in each thread are not contiguous, as 
shown in Fig.7. This provides inefficient performance of access to memory. In order 
to provide contiguous address of local pages, further reordering has been applied, as 
shown in Fig.7.  

Thus, each thread can access pages of memory in contiguous manner. This pattern 
of memory access is called “sequential” and suitable for cc-NUMA architectures with 
multi-sockets and multi-cores, while original pattern of memory access in CM-RCM 
is “coalesced” which is rather favorable in GPU computing. 

4   Results 

4.1   Effect of Coloring and Optimization 

Performance of the developed code has been evaluated using between 16 and 1,024 
cores of the T2K/Tokyo and Cray-XT4. IC(0) smoothing is applied twice at each 
level except the coarsest one with a single cycle of ASDD at each smoothing opera-
tion. A single V-cycle operation is applied at a preconditioning process of each CG 
iteration. At the coarsest level, IC(0) smoothing is applied once. 

Following three types of OpenMP/MPI hybrid parallel programming models are 
applied as follows, and results are compared with those of flat MPI: 

 
• Hybrid 4×4 (HB 4×4): Four OpenMP threads for each of four sockets in Fig.2, 

four MPI processes in each node, both of T2K/Tokyo and Cray-XT4 
• Hybrid 8×2 (HB 8×2): Eight OpenMP threads for two pairs of sockets in Fig.2, 

two MPI processes in each node, only for T2K/Tokyo 
• Hybrid 16×1 (HB 16×1): Sixteen OpenMP threads for a single node in Fig.2, 

one MPI process in each node, only for T2K/Tokyo 
 

Because each node of Cray-XT4 has a single socket with four cores, only HB 4×4 has 
been applied to Cray-XT4 as OpenMP/MPI hybrid cases. 

First of all, effect of reordering and optimization for OpenMP/MPI hybrid cases 
described in the previous chapter has been evaluated using 4 nodes (64 cores) of 
T2K/Tokyo for flat MPI and OpenMP/MPI hybrid parallel programming models. 
Number of finite-volume cells per each core is 262,144 (=643), therefore total prob-
lem size is 16,777,216. Figure 8 provides relationship between number of iterations 
for convergence of MGCG solvers with CM-RCM reordering for each parallel pro-
gramming model and number of colors for CM-RCM reordering. Generally speaking, 
number of iterations for convergence of iterative solvers with IC/ILU-type precondi-
tioners decreases, as number of colors increases, according to the theory of “incom-
patible nodes” described in [11].  Convergence of the problem in this work generally 
follows this theory, as shown in Fig.8.  
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Fig. 8. Performance of MGCG solver with CM-RCM reordering on T2K/Tokyo, 16,777,216 
cells, 64 cores, Number of Iterations for Convergence 

Each of Fig. 9 (a) and (b) provides the relationship between performance (compu-
tation time for linear solvers) and number of colors for each parallel programming 
model. The procedures for optimization described in the previous chapter for 
OpenMP/MPI hybrid cases have been already applied. Although number of iterations 
decreases according to increasing of number of colors, as shown in Fig.8, CM-RCM 
with only 2 colors (CM-RCM(2)) provides the shortest elapsed computation time of 
MGCG solvers for each parallel programming model, as shown in Fig.9 (a). In this 
type of geometry with structured finite-difference-type voxels, 2 colors are enough to 
ensure that vertices of the same color are independent in CM-RCM procedure. Figure 
9 (b) shows computation time for MGCG solvers per iteration, and CM-RCM(2) 
provides the best computational performance (FLOPS rate). This is because that 
cache is more efficiently utilized if the number of colors is smaller in CM-RCM or-
dering for structured finite-difference-type voxels used in the current work. Each of 
Fig. 10 (a) and (b) shows an example of numbering of cells for 2D structured finite-
difference-type voxels with 64 cells using (a) CM-RCM(2) (#1-#32 cells belong to 
the 1st color, while #33-#64 cells are in the 2nd color) and (b) RCM (with 15 colors), 
respectively. If forward/backward substitutions (FBS) during ILU operations are 
considered for cells of #29, #30 and #31 in CM-RCM(2) (Fig.10 (a)), numbering of 
off-diagonal variables (#59~#64) is contiguous, and diagonal and off-diagonal vari-
ables are on separate cache lines. On the contrast, corresponding diagonal and off-
diagonal variables could be on a same cache line in RCM with 15 colors (Fig.10 (b)).  
In this case, the cache line is written back to memory, after one of the diagonal vari-
ables is updated in FBS process.  

Figure 11 provides computation time of MGCG solver with CM-RCM (2) before 
and after optimization on T2K/Tokyo. Effect of optimization described in 3. (opti-
mum command lines for NUMA control, first-touch data placement (Fig.6) and reor-
dering of data for contiguous “sequential” memory access (Fig.7)) is significant,  
especially for HB 8×2 and HB 16×1. In HB 4×4, effect of NUMA control is signifi-
cant, but effect of first-touch and “sequential” memory access is small, because all 
data for each process are guaranteed to be on local memory of each socket. Flat MPI 
and optimized OpenMP/MPI Hybrid cases are generally competitive from the view-
point of computation time.  
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Fig. 9. Performance of MGCG solver with CM-RCM reordering on T2K/Tokyo, 16,777,216 
cells, 64 cores (Optimized solvers using first-touch data placement (Fig.6) and reordering of 
data for contiguous “sequential” memory access (Fig.7)), (a) Elapsed computation time for 
MGCG solvers, (b) Computation time for MGCG solvers for each iteration 

 
(a)                         (b) 
 
 
 
 
 
 
 

 
 

Fig. 10. Examples of numbering of cells for 2D structured finite-difference-type voxels using 
(a) CM-RCM (2) (#1-#32: 1st color, #33-#64: 2nd color), (b) RCM (with 15 colors) 

 
 
 
 

 
 
 
 
 
 
 
 

Fig. 11. Performance of MGCG solver with CM-RCM(2) on T2K/Tokyo, 16,777,216 cells, 64 
cores (Initial version of solvers, Solvers with optimum command lines for NUMA control, 
Solvers with additional optimization by first-touch data placement and reordering of data for 
contiguous “sequential” memory access), Computation time for MGCG solvers 
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In flat MPI cases, time for reordering and set-up of matrices is approximately 1.50 
sec. and 6.00 sec., respectively, while computation time for MGCG solvers is about 
20 sec. In OpenMP/MPI hybrid cases of the current work, processes for reordering 
and set-up of matrices are not parallelized yet. 

4.2   Weak Scaling 

Performance of weak scaling has been evaluated using between 16 and 1,024 cores of 
the T2K/Tokyo and Cray-XT4. Number of finite-volume cells per each core is 
262,144 (=643), therefore maximum total problem size is 268,435,456. Figure 12 (a) 
shows computation time of MGCG solver until convergence, and Fig.12 (b) shows 
number of iterations for convergence. Number of iterations for convergence of flat 
MPI increases, as number of core is more than 256. On the contrast, number of itera-
tions of OpenMP/MPI hybrid cases stays almost constant between 16 and 1,024 cores 
for the ill-conditioned problems with condition number of 1010. This feature is more 
significant, as thread number per process increases. MGCG solvers with 
OpenMP/MPI hybrid parallel programming model provide excellent scalability even 
in this type of ill-conditioned problems. Generally speaking, robustness of localized 
IC(0) preconditioning is getting worse, as number of domains increases in ill-
conditioned problems. OpenMP/MPI hybrid is generally more robust than flat MPI 
because number of cells at domain boundaries is relatively fewer. 

Performance of Cray-XT4 is generally larger than that of T2K/Tokyo by 40%~50%. 
Memory performance of Cray-XT4 is about 25% larger than that of T2K/Tokyo ac-
cording to STREAM benchmarks [12]. Furthermore, cache is utilized more efficiently 
on Cray-XT4 in multigrid operations especially for coarser level of cells, because no 
cache coherency is considered on Cray-XT4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12. Performance of MGCG solver with CM-RCM(2) on T2K/Tokyo and Cray-XT4 using 
up to 1,024 cores, Weak Scaling: 262,144 cells/core, Max. Total Problem Size: 268,435,456    
(a) Computation time for MGCG solvers, (b) Number of iterations for convergence 
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4.3   Strong Scaling 

Performance of strong scaling has been evaluated for fixed size of problem with 
33,554,432 cells (=512×256×256) using between 16 and 1,024 cores of T2K/Tokyo 
and Cray-XT4. Figure 13(a) shows relationship between number of cores and number 
of iterations until convergence for each parallel programming model. Number of 
iterations for flat MPI increases significantly, as number of cores (domains) increases. 
On the contrast, increasing for hybrid parallel programming model is not so signifi-
cant. Especially, that of HB 16×1 stays almost constant between 16 and 1,024 cores. 
Figure 13(b) provides parallel performance of T2K/Tokyo based on the performance 
of flat MPI with 16 cores. At 1,024 cores, parallel performance is approximately 60% 
of the performance at 16 cores. Decreasing of parallel performance of HB 16×1 is 
very significant. At 1,024 cores, HB 16×1 is rather slower than flat MPI although 
convergence is much better. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 13. Performance of MGCG solver with CM-RCM(2) on T2K/Tokyo using up to 1,024 
cores, Strong Scaling: 33,554,432 cells (=512×256×256), (a) Number of iterations for conver-
gence, (b) Parallel performance based on the performance of Flat MPI with 16 cores 

 
 
 
 
 
 
 
 

 
Fig. 14. Communications for information exchange at domain boundary (sending process), 
copies of arrays to/from sending/receiving buffers occur 
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!C
!C-- SEND

do neib= 1, NEIBPETOT
istart= levEXPORT_index(lev-1,neib) + 1
iend = levEXPORT_index(lev ,neib)
inum = iend - istart + 1

!$omp parallel do private (ii)
do k= istart, iend

WS(k)= X(EXPORT_ITEM(k))
enddo

!$omp end parallel do
call MPI_ISEND (WS(istart), inum, MPI_DOUBLE_PRECISION,   &

&                  NEIBPE(neib), 0, MPI_COMM_WORLD, req1(neib), ierr)
enddo
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Communication between partitioned domains at each level occurs in parallel itera-
tive solvers. Information at each domain boundary is exchanged using functions of 
MPI for point-to-point communication. In this procedure, copies of arrays to/from 
sending/receiving buffers occur, as shown in Fig.14. In the original code using 
OpenMP/MPI hybrid parallel programming models, this type of operation for mem-
ory copy is parallelized by OpenMP, as shown in Fig.14. But overhead of OpenMP is 
significant, if length of loop is short and number of threads is large. If length of loop 
is short, operations by a single thread might be faster than those by multi-threading.  

In the current work, effect of switching from multi-threading to single-threading at 
coarser levels of multigrid procedure has been evaluated.  Figure 15 (a) shows results 
of HB 16×1 with 1,024 cores (64 nodes) for the strong scaling case. “Communica-
tion” part includes processes of memory copies shown in Fig.14. “Original” applies 
multi-threading by OpenMP at every level of multigrid procedure. “LEVcri=k” means 
applying multi-threading if level of grid is smaller than k. Therefore, single-threading 
is applied at every level if “LEVcri=1”, and multi-threading is applied at only the 
finest grid (level=1) if “LEVcri=2”. Generally speaking, “LEVcri=2” provides the 
best performance at 1,024 cores for all of HB 4×4, HB 8×2 and HB 16×1, although 
effect of switching is not so clear for HB 4×4, as shown in Fig.15 (b). Figure 16 
shows effects of this optimization with “LEVcri=2” for all OpenMP/MPI hybrid 
cases. Performance of HB 8×2 and HB 16×1 are much improved at large number of 
cores, and HB 8×2 is even faster than HB 4×4 at 1,024 cores, while performance with 
fewer number of cores did not change. Finally, performance of strong scaling has 
been evaluated between 16 and 1,024 cores of T2K/Tokyo and Cray-XT4. Each of 
Fig.17 (a) and (b) shows parallel speed-up to 1,024 cores with “LEVcri=2”, based-on 
the performance of flat MPI with 16 cores of each platform. Performance at 1,024 
cores for T2K/Tokyo is 534 (flat MPI), 690 (HB 4×4), 696 (HB 8×2), and 646 (HB 
16×1), respectively. Performance of Cray-XT4 is 455 (flat MPI) and 617 (HB 4×4). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 15. Effect of switching from multi-threading to single-threading at coarse levels of multi-
grid procedure in operations of memory copy for communications at domain boundaries using 
1,024 cores for strong scaling case with 33,554,432 cells (=512×256×256), “LEVcri=k”: apply-
ing multi-threading if level of grid is smaller than k, (a) HB 16×1, (b) HB 4×4 
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Fig. 16. Performance of MGCG solver with CM-RCM(2) on T2K/Tokyo using up to 1,024 
cores, Strong Scaling: 33,554,432 cells (=512×256×256), Parallel performance based on the 
performance of Flat MPI with 16 cores, “LEVcri=2” in Fig.15 is applied for OpenMP/MPI 
hybrid parallel programming models 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
Fig. 17. Performance of MGCG solver with CM-RCM(2) on T2K/Tokyo and Cray-XT4 using 
up to 1,024 cores, Strong Scaling: 33,554,432 cells (=512×256×256), Speed-up based on the 
performance of flat MPI with 16 cores on each platform, “LEVcri=2” in Fig.15 is applied for 
OpenMP/MPI hybrid parallel programming models 
 
 
 

Finally, optimized solver for strong scaling cases with “LEVcri=2” has been ap-
plied to weak scaling cases, where number of finite-volume cells per each core is 
262,144 (=643). Figure 18 shows ratio of performance for OpenMP/MPI hybrid cases 
up to 1,024 cores. Generally speaking, entire performance is not so much changed by 
optimization for strong scaling cases. Therefore, switching from multi-threading to 
single-threading at coarser levels for communications at domain boundaries works 
well for both of weak and strong scaling cases. 
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Fig. 18. Performance of MGCG solver with CM-RCM(2) on T2K/Tokyo and Cray-XT4 using 
up to 1,024 cores, Weak Scaling: 262,144 cells/core, Max. Total Problem Size: 268,435,456, 
Ratio of performance for the solver with “LEVcri=2” to that of original solver in Fig.12 

5   Concluding Remarks 

OpenMP/MPI hybrid parallel programming models were implemented to 3D finite-
volume based simulation code for groundwater flow problems through heterogeneous 
porous media using parallel iterative solvers with multigrid preconditioning by IC(0) 
smoothing. Performance and robustness of the developed code has been evaluated on 
T2K/Tokyo and Cray-XT4 using up to 1,024 cores through both of weak and strong 
scaling computations. Optimization procedures for OpenMP/MPI hybrid parallel 
programming models, such as appropriate command lines for NUMA control, first 
touch data placement and reordering for contiguous “sequential” access to memory, 
provided excellent improvement of performance on multigrid preconditioners. Fur-
thermore, performance of OpenMP/MPI hybrid at large number of cores in strong 
scaling is improved by optimization of communication procedure between domains. 
The developed procedure also provided good performance in weak scaling cases. 
OpenMP/MPI hybrid demonstrated better performance and robustness than flat MPI, 
especially with large number of cores for ill-conditioned problems, and could be a 
reasonable choice for large-scale computing on multi-core/multi-socket clusters. 
Automatic selection of optimum parallel programming models and parameters (e.g. 
number of colors, switching level for communication) is an interesting area for future 
works. Furthermore, development of parallel procedures for reordering and more 
robust procedures for parallel multigrid with HID (Hierarchical Interface Decomposi-
tion) [1], and with improvement of solver at the coarsest level, is also ongoing. In the 
current work, the developed procedures were evaluated under very limited conditions. 
Various geometries, boundary conditions and problem size will be applied in the 
future for various types of computer platforms. 
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Abstract. The simulation of two-phase flow problems involving two
time-dependent spatial regions with different physical properties is com-
putationally hard. The numerical solution of such problems is compli-
cated by the need to represent the movement of the interface. The level
set approach is a front-capturing method representing the position of
the interface implicitly by the root of a suitably defined function. We de-
scribe a parallel adaptive finite element simulation based on the level set
approach. For freely sedimenting n-butanol droplets in water, we quan-
tify the parallel performance on a Xeon-based cluster using up to 256
processes.

1 Introduction

Two-phase flow problems play a dominant role in various areas of computational
science and engineering. Systems containing different liquids such as oil slicks
in coastal waters or liquid-liquid extraction columns are illustrating examples.
To develop predictive models for such extraction columns, the study of single
droplets is important. At RWTH Aachen University, an interdisciplinary team
of researchers from engineering, mathematics and computer science is interested
in analyzing the behavior of single droplets in surrounding liquids [1,8,9,15].
These flow problems involve two spatial regions that vary with time. In each
of these regions, the physical properties of a material is uniformly distributed
in space. The numerical simulation of two-phase flow problems is complicated
by the fact that the interface between the two phases needs to be represented
for the reconstruction of the interfacial movement. In front-tracking methods,
the interface is explicitly represented by computational elements that follow
its movement [21]. In contrast, front-capturing methods represent the interface
implicitly by suitably defined functions.

The volume of fluid technique [11,13] is a popular front-capturing method
representing the interface by a function whose values are interpolated on the
underlying mesh. The reconstruction of smooth interfaces, however, requires ad-
vanced interpolation techniques. The level set approach [17,18] is another front-
capturing method eliminating this drawback. In these methods, the position of
the interface is given by the root of a scalar-valued function that splits the com-
putational domain into two regions. An advantage of the level set approach is
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its elegance and simplicity to handle complicated problems involving breaking
or joining regions. While serial level set approaches are widely used, parallel
techniques are hardly available in the open literature. An early reference [14]
carries out numerical experiments on an Intel/IPSC-860 hypercube but does not
focus on parallel computing. A parallel implementation of a hybrid technique
that brings together the level set approach and the volume of fluid method is
reported in [19].

The approach taken in [22] to parallelize a level set technique for the simu-
lation of two-dimensional dendritic growth is to exploit processor virtualization
rather than domain decomposition. Essentially, the program decomposes the
computation into a large number of objects called virtual processors which are
then mapped to different physical processors. Performance results on a system
with Intel Xeon-based dual-core processors are reported demonstrating a good
scalability for up to 32 cores, but a degradation of the performance for 64 cores.

The idea behind the recent domain decomposition approach described in [10] is
to generate two different grids that can be adapted independently of each other.
In addition to the grid on which the flow solution is computed, this approach
employs a separate Cartesian grid for tracking the movement of the interface
using a level set approach. The approach is shown to scale on a cluster with
Intel Xeon-based quad-core processors using up to 2048 cores.

The structure of this note is as follows. In Sect. 2, we sketch a particular
two-phase flow problem which is detailed in [1]. This section also includes the
underlying mathematical model. The new contributions of this note are given in
Sect. 3 and 4. First, the overall strategy to parallelize the finite element method
and the level set technique is described. Second, performance results of a new
implementation are reported for a freely sedimenting n-butanol droplet in water
with up to 256 processes. Concluding remarks are given in Sect. 5.

2 Numerical Simulation of Droplets Sedimenting in
Water

Throughout this article, we follow the overall setting reported in [1] in which
the solvent extraction standard-test system of n-butanol droplets sedimenting
in water is considered [16]. The experimental setup is schematically depicted in
Fig. 1(a). The droplets are generated through a nozzle submerged in a cylindrical
cell that contains the continuous phase. Upon generation, the droplet starts to
accelerate upwards until it reaches its terminal sedimentation velocity which
is determined by monitoring the droplet’s position by a camera. A numerical
simulation is carried out to predict the velocity and the deformation of different
droplets over time. In Fig. 1(b), the deformation of a droplet with radius of 2mm
is illustrated. In Fig. 2, the simulated position and velocity are depicted for a
droplet of the same radius showing the oscillating behavior [1].

The numerical simulation is based on the following computational model orig-
inally introduced in [20]. The incompressible Navier-Stokes equations are em-
ployed to model the velocity u and the pressure p of a two-phase flow problem
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(a) Sedimentation apparatus (b) Droplet deformation over time

Fig. 1. Experimental setup and simulated shape of a droplet both taken from [1]

in a domain Ω ⊂ R
3. The phase interface, denoted by Γ , is described by the

root of the scalar level set function φ = φ(x, t) where x ∈ Ω and t denotes
time. The level set function splits the domain Ω into two disjoint subdomains
Ω1(t) := {x ∈ Ω | φ(x, t) < 0} and Ω2(t) := {x ∈ Ω | φ(x, t) > 0}. Here, the
droplet is represented by Ω1 and the continuous phase by Ω2. The effect of the
surface tension τ is expressed in terms of a localized force at the interface, so-
called continuum surface force [3,7]. Combining these approaches leads to the
following system of partial differential equations in Ω × [0, T ]:

ρ(φ)
(

∂

∂t
u + (u · ∇)u

)
= −∇p + ρ(φ)g + div (μ(φ)D(u)) + τKδΓ nΓ , (1)

div u = 0, (2)
∂

∂t
φ + u · ∇φ = 0 (3)

0 0.1 0.2 0.3 0.4 0.5 0.6
5

10

15

20

25

30

35

40

time [s]

po
si

tio
n 

[m
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

time [s]

ve
lo

ci
ty

 [
m

m
/s

]

Fig. 2. Position and sedimentation velocity of an n-butanol droplet in water
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with appropriate boundary and initial conditions. Here, the density is given by ρ,
the viscosity is denoted by μ, the strain tensor is defined by D(u) := ∇u+(∇u)T ,
and the symbolK is used for the curvature. Furthermore, the Dirac function with
support on Γ is denoted by δΓ and nΓ represents the normal vector on Γ . The
external gravity force is denoted by g.

For the solution of the coupled problem (1)–(3), the finite element solver
DROPS [5] is employed. Its main features are as follows: The three-dimensional
geometry is discretized by a hierarchical tetrahedral grid accounting for adap-
tive refinements that change over time. Piecewise quadratic functions are used as
finite element functions for the level set and the velocity. The pressure is repre-
sented by piecewise linear functions. Various Navier-Stokes, Stokes, and Krylov
solvers are implemented. Time integration is based on a linear theta scheme. The
level set function and the Navier-Stokes equations are decoupled by a fix-point
interaction. A fast-marching variant is used to re-initialize the level set function.

3 Parallel Hierarchy of Triangulations

In DROPS, the hierarchical tetrahedral grid representing the computational do-
main Ω is decomposed and distributed to the processes. Here, we sketch the
data structures used for the parallel refinement algorithm introduced in [6]. Let
T0 denote a coarse triangulation representing the computational domain. A finer
triangulation T1 is obtained by refining some tetrahedra of T0 by a red/green
refinement algorithm [2]. Multiple recursive refinements of tetrahedra lead to a
multi-level triangulation M = (T0, . . . , Tk−1), where the triangulation Tk−1 rep-
resents the finest triangulation. The multi-level triangulation is admissible if the
following conditions hold for all levels l ∈ {1, . . . , k − 1}:

1. A tetrahedron T ∈ Tl is either in Tl−1 or is obtained by a refinement of a
tetrahedron T ′ ∈ Tl−1.

2. If T ∈ Tl−1 ∩Tl then T ∈ Tl+1, . . . , Tk−1. That is, if the tetrahedron T is not
refined then it stays unrefined.

Due to these two conditions, we can assign each tetrahedron T a unique level

l(T ) := min {m | T ∈ Tm} .

The set of all tetrahedra on level l is denoted by Gl and is called the hierarchi-
cal surplus. These hierarchical surpluses define the hierarchical decomposition
H = (G0, . . . ,Gk−1). Since each tetrahedron is only located in one hierarchical
surplus this decomposition is used to efficiently store all tetrahedra. The equa-
tions (1)–(3) are solved on the finest triangulation Tk−1. Therefore, the domain
decomposition approach is based on distributing the tetrahedra of Tk−1 among
the processes and leads to a decomposition of the hierarchical surplus H.

In general, repeated local grid modifications lead to large differences in the
number of tetrahedra stored on each process. Therefore, a load balancing algo-
rithm is implemented consisting of three steps:
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1. The triangulation Tk−1 is described by a weighted graph G = (V, E, �V , �E).
Each node v ∈ V represents a set of tetrahedra. Each edge (v, w) ∈ E
corresponds to a pair of tetrahedron sets v and w that have at least a face
in common. The number of common faces between the tetrahedron sets
determines the edge weight �E(v, w). The vertex weight �V (v) is given by
the number of tetrahedra represented by v. The underlying graph model is
discussed in more detail in [4].

2. The weighted graph is partitioned into P parts, where P denotes the number
of processes. This leads to a partition of the vertices V = V1∪· · ·∪VP where
Vi∩Vj = ∅ for all i �= j. The library ParMetis [12] partitions the graph in an
attempt to minimize the number of edges between Vi and Vj with i �= j while
balancing the sum of the vertex weights in each Vi. In particular, a routine
is used that computes a new partition based on a previous one. This is of
special interest for solving two-phase problems, since the triangulation Tk−1
changes only slightly by performing a time step of the simulation.

3. The final step consists of migrating tetrahedra and its vertices, edges and
faces among the processes. After the migration, each process p = 1, . . . , P
stores the tetrahedra represented by the subset Vp. Note that the migration
has to take into account not only the tetrahedra in Tk−1 but also on other
levels so that the complete hierarchy is still admissible.

Since most physical effects occur in the vicinity of the phase interface Γ we
refine the grid in this subdomain leading to a high resolution close to Γ . While
evolving in simulation time, the location of Γ changes and demands for modifying
the finest triangulation. However, this can again imply a large difference in the
number of tetrahedra stored on each process. To avoid this imbalance the three
load balancing steps are performed each time the grid changes.

DROPS uses piecewise linear and quadratic finite element functions. The cor-
responding degrees of freedom (DOF) are located at vertices and edges of Tk−1.
So, the migration algorithm handles not only geometric but also DOF data.
Therefore, the non-overlapping decomposition of the tetrahedra in Tk−1 leads to
a distribution of DOF among the processes. Vertices and edges may be stored
by multiple processes if they are located at a process boundary. Hence, the cor-
responding DOF are stored on multiple processes as well. Linear algebra opera-
tions on these DOF require updating mechanisms which include communication
between neighboring processes. This communication is overlapped by computa-
tion. The systems of linear equations resulting from linearizing and discretizing
(1)–(3) are iteratively solved by Krylov subspace methods which involve linear
algebra operations such as matrix vector products, inner products, and vector
updates. These linear algebra operations are rearranged to minimize the number
of communications by re-using updated DOF.

4 Parallel Performance

In this section, we present results of sedimenting n-butanol droplets in water.
In [1], droplets of initial radius from 0.5mm to 2.0mm are investigated in a
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(a) Initial (b) Middle (c) End

Fig. 3. Decomposition of a triangulation among 4 processes

brick-shaped domain. However, in this note, we are interested in studying larger
problems by simulating droplets of radius 2mm and 3mm . In Fig. 3(a), the
initial distribution of the tetrahedra of the finest triangulation is illustrated. In
Fig. 3(b) and 3(c), the distribution of tetrahedra is depicted in the middle and
at the end of the simulation time, respectively. These simulations are performed
on a triangulation which is 4 or 5 times recursively refined in the vicinity of
the phase boundary. That is, each tetrahedron whose barycenter is located at
a radius of 0.4mm around the phase boundary is recursively refined into eight
sub-tetrahedra. In Table 1, the problem sizes in terms of number of tetrahedra
and DOF are presented.

All experiments are performed on a cluster of Xeon-based quad-core proces-
sors (E5450) at the center for computing and communication at RWTH Aachen
University. Each node of the cluster consists of two quad-core processors which
share one InfiniBand network card for inter-node communication. An Intel im-
plementation of MPI handles the communication between the processes.

To present the performance results, we distinguish between two different place-
ments of MPI processes on the quad-core processors: a compact strategy (Comp),
and a scatter strategy (Scat). In Comp, one MPI process is placed on each core

Table 1. Problem size in terms of number of tetrahedra and DOF

Radius [mm] Refinements tetrahedra velocity DOF pressure DOF level set DOF
2 4 155 132 525 756 22 485 178 101
2 5 876 776 3 006 030 126 190 1 004 859
3 4 328 472 1 102 782 46 799 370 443
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(c) Comp, radius 2mm, refinements 4
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(d) Comp, radius 2mm, refinements 5

Fig. 4. Parallel performance of a single time step

of the processors leading to eight MPI processes per node. In Scat , only a single
MPI process is located on each processor implying idle cores and two processes
per node. The choice of the strategy has a big impact on the time to perform
one time step. For example, while simulating a 2mm drop with 4 levels of re-
finement, switching from Scat to Comp for 8 processes increases the runtime
by a factor of 3.22. The major reason for this effect seems to be given by the
limited memory bandwidth. Since the underlying data structures represent un-
structured grids the access pattern to the memory is not consecutive resulting
in unstructured memory access. Hence, the cache hierarchy of the processors
cannot be exploited. Additionally, the network card is likely to serve two MPI
processes more efficiently than eight processes.

In Fig. 4 the speedup of four test cases is shown. In this figure, the speedup
for P processes is defined by

Sp(P ) =
p · T (p)
T (P )

,

where T (P ) denotes the runtime on P processes and p denotes the smallest
number of processes used to perform the corresponding simulation. That is, we
assume perfect speedup while using p processes. These plots show the parallel
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performance of a single time step for the solution of the two-phase flow problem.
In Fig. 4(a) and (b), a single process is capable of representing the discrete
two-phase flow problem and, thus, in these figures p = 1. In Fig. 4(c), at least
eight processes are used, i.e., one node is employed whereas in Fig. 4(d) four
nodes, p = 32, are at least applied to solve the two-phase problem. The time
required by a time step is denoted by Total . The update of the triangulation
including grid modifications and load balancing are referred to as UpdateTriang.
The discretization of the system (1)–(2) is denoted by DiscNS The remaining
time required by a time step dominates Total and is not shown separately in
these plots. The total time scales well up to 128 and 256 processes using the Scat
or Comp strategy, respectively.

The updating does not scale as good as the other parts. In Fig. 4(b), the
relative time spent in updating the triangulation w.r.t. the total time is 0.24% on
one process and 1.35% on 128 processes. In Fig. 4(c), this relative time increases
from 0.36% on 8 processes to 1.47% on 256 processes. In this scenario of a
sedimenting droplet and in typical simulations, the updating is performed about
every tenth discrete time step. Therefore, this updating part of the simulation
is currently not a major bottleneck.

For the total time, using 128 processes and Scat leads to a speedup of
S1(128) ≈ 90 for both radii and four refinements as presented in Fig. 4(a) and
(b). Here, the serial execution time for simulating a 3 mm droplet is decreased
from 8801 s to 96 s while using 128 processes. The serial time for updating the
triangulation takes 21 s. On 128 processes, modifying the triangulation including
the load-balancing steps takes 1.3 s. Figure 4(c) and (d) illustrate that for Comp
the speedup is given by S8(256) ≈ 116 and S32(256) ≈ 209 when simulating a
2mm droplet with four and five refinements, respectively. The execution time in
Fig. 4(c) decreases from 1713 s on eight processes to 118 s on 256 processes. If
simulating a droplet of radius 3mm with four refinements and Comp, the total
time of 4508 s on eight processes is reduced to 119 s on 256 processes, whereas
the time for updating decreases from 9.6 s to 1.7 s.

5 Concluding Remarks

The strategy to parallelize the three-dimensional computational fluid dynamics
software DROPS is presented. This software employs a unique combination of
discretization on tetrahedral grids using finite elements, local grid refinement
techniques, and level set methods for interface capturing [5]. The parallelization
consists of decomposing the computational domain on the finest level of the hi-
erarchy of triangulations. Load balancing is addressed via graph partitioning.
In [1], the parallel simulation of a sedimenting n-butanol droplet in water is val-
idated by comparing the numerical results with empirical models as well as with
actual experimental measurements. In contrast to [1] where parallel computing
is only briefly mentioned, the focus of the present note is on the parallelization
strategy and the resulting performance on a cluster of Xeon-based quad-core
processors. The reported parallel performance is good, but not excellent. A mi-
nor bottleneck in the scalability is shown to be the update of the triangulation.
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Moreover, there is room for introducing a more refined graph model for load bal-
ancing [4] and more scalable approaches to re-initialize the level set function.

Acknowledgments

We thank our collaborators within SFB 540 “Model-based experimental anal-
ysis of kinetic phenomena in fluid multi-phase reactive systems” which is sup-
ported by the Deutsche Forschungsgemeinschaft (DFG). The Aachen Institute
for Advanced Study in Computational Engineering Science (AICES) provides a
stimulating research environment for our work.

References

1. Bertakis, E., Groß, S., Grande, J., Fortmeier, O., Reusken, A., Pfennig, A.: Vali-
dated simulation of droplet sedimentation with finite-element and level-set meth-
ods. Chemical Engineering Science 65(6), 2037–2051 (2010)

2. Bey, J.: Simplicial grid refinement: On Freudenthal’s algorithm and the optimal
number of congruence classes. J. Numer. Math. 85(1), 1–29 (2000)

3. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling sur-
face tension. J. Comput. Phys. 100(2), 335–354 (1992)
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Abstract. We investigate schemes to accelerate the decay of aircraft
trailing vortices. These structures are susceptible to several instabilities
that lead to their eventual destruction. We employ an Evolution Strategy
to design a lift distribution and a lift perturbation scheme that minimize
the wake hazard as proposed in [6]. The performance of a scheme is mea-
sured as the reduction of the mean rolling moment that would be induced
on a following aircraft; it is computed by means of a Direct Numerical
Simulation using a parallel vortex particle code. We find a configuration
and a perturbation scheme characterized by an intermediate wavelength
λ ∼ 4.64, necessary to trigger medium wavelength instabilities between
tail and flap vortices and subsequently amplify long wavelength modes.

Keywords: Large Scale Simulations in CS&E, Parallel and Distributed
Computing, Numerical Algorithms for CS&E.

1 Introduction

Aircraft trailing vortices are powerful flow structures inherent to the very pro-
duction of lift along the wing. These structures live long after an aircraft has
flown by and constitute a potential hazard to any following aircraft. As a conse-
quence, they require the enforcement of strict separation distances in particular
at take-off and landing. This phenomenon is the limiting constraint on airport
traffic, not without environmental consequences: longer traffic patterns lead to
more noise and air pollution in particular.

The design of schemes to accelerate the decay of trailing vortices have been
the topics of several theoretical [7,5], experimental [6] and numerical investiga-
tions [1,16].

The design and optimization of a wake alleviation scheme is a complex
engineering problem. Wake decay simulations require solving the full three-
dimensional Navier-Stokes well into the non-linear regime of vortex instabilities.
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These results then allow the measurement of the hazard level. This is a highly
non-linear and multi-modal optimization problem, which does not lend itself to
gradient-based methods.

In this work, we couple a derandomized Evolution Strategy with Covariance-
Matrix Adaptation (CMA-ES) to a fast parallel Navier-Stokes solver in order to
design and optimize a wake alleviation scheme. We base our work on an approach
proposed in [6]. We note that integrated optimization approaches have been used
before, albeit at a smaller scale [14].

This paper is organized as follows. Section 2 presents the problem of wake
alleviation and its statement as an optimization problem. Section 3 presents the
optimization and numerical tools of our study. We present and discuss our results
in Section 4 to finally conclude in Section 5.

2 Optimization of Wake Alleviation

2.1 Alleviation Scheme

We investigate the scheme proposed in [6]. This scheme relies on the periodic
deflection of wing control surfaces (flaps) in order to perturb the near wake of
the aircraft where there are several pairs of trailing vortices. The periodic control
surface motions redistribute some lift between the inboard and outboard sections
of the wing. This redistribution conserves the total lift –although not necessarily
the pitching moment of the wing–, the circulation, and a zero rolling moment.
The effect is a periodic oscillation of the positions of the tip and inboard flap
vortices. This forced an accelerated reconnection of the tip vortices, at a rate
which can be about twice as high as the regular Crow instability[6].

We will use the same perturbation amplitude as in [6] and redistribute
ΔCL/CL = 6% of the total wing lift.

lift

span

bw

(a) Lift redistribution and ef-
fect on vortices

bT
bf
btΓT Γf

Γt
Δztx

z
y

(b) Unperturbed trailing vortices

Fig. 1. Wing and wake configuration

2.2 Optimization of the Lift Distribution and Perturbation

In this section we describe the cost function, the parameterization of the problem
and the search space.
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Cost function. In the context of our optimization procedure,we will approxi-
mate the hazard posed to a following aircraft (with a wing span bfollow) by the
maximum rolling moment averaged in the streamwise direction. We define the
induced rolling moment as

Croll(x, y, z, t) =
∫ y+1/2bfollow

y−1/2bfollow

(y′ − y)uz(x, y, z, t)dy′ (1)

and its streamwise average as

〈Croll〉x (y, z, t) =
1

Lx

∫ Lx

0
Croll(x, y, z, t)dx . (2)

We opt to define our cost function as the maximum average rolling moment

fobj = max
y,z∈[−∞,+∞]

〈Croll〉x (y, z, τobj) (3)

taken at a fixed dimensionless time τobj = 5 and for a bfollow = 1/2bw. This de-
scent time value corresponds to a downstream distance of ∼ 4nm, which matches
the ICAO Standard Separation Distance between large jumbo jets. This manda-
tory separation grows to 6nm if the following aircraft is a light aircraft, justifying
wake destruction within this time and space interval.

Parameterization and search space. We study the time evolution of the
trailing vortices under the approximation of a streamwise periodic flow. The wake
configuration is sketched in Fig. 1b. We account for the wing lift distribution
through the geometry of the flap and tip vortices; they have, respectively, the
circulations Γf and ΓT and the spans bf and bT . The wing circulation and
equivalent span can then be written as

Γw = ΓT + Γf (4)

bw =
ΓT

Γw
bT +

Γf

Γw
bf (5)

The negative lift of the horizontal tail plane (HTP) is manifested by a third vortex
pair with circulation Γt and span bt. Because this pair is generated downstream
of the wing, we assume it to be positioned Δzt above the wing and flap vortices.
These vortices are assumed to be Gaussian with core sizes σT , σf and σt.

The dimensionality of our search space will be sensibly smaller than the num-
ber of parameters outlined above as we choose to constrain several engineering
characteristics of the problem. The total wing lift, proportional to Γwbw, and
the root wing circulation Γw have to be preserved. The lift redistribution is kept
at ΔCL/CL = 6% of the total wing lift. The HTP keeps the same negative lift
and the vortex core sizes do not change. The resulting search space then counts
4 parameters
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α = 2π/λ is the wavenumber of the perturbation;
β = bt/bw is the span of the HTP vortices;
γ = Γf/Γw is the circulation ratio of the flap vortices;
δ = (bT − bf )/(2bw) is the separation between the tip and flap vortices.

The remaining parameters are kept constant and listed in the Table 1a. We
bound the configuration parameters in order to avoid unfeasible or physically
irrelevant configurations. The bounds are summarized in Table 1b.

Table 1. Parameters

(a) Constants

Parameter Value
Γw/ν 2500
Γtbt −0.0836 Γwbw

σT 0.05 bw

σf 0.05 bw

σt 0.025 bw

(b) Ranges

Parameter Minimun Maximum
α 0.5 5.0
β 0.2 0.5
γ 0.1 0.5
δ 0.25 0.5

3 Methodology

3.1 Vortex Particle Method

We consider a three dimensional incompressible flow and the Navier-Stokes equa-
tions in its velocity (u)-vorticity (ω = ∇× u) form:

Dω

Dt
= (ω · ∇)u + ν∇2ω (6)

∇ · u = 0 (7)

where D
Dt = ∂

∂t + u ·∇ denotes the Lagrangian derivative and ν is the kinematic
viscosity. Vortex methods discretize the vorticity field with particles, character-
ized by a position xp, a volume Vp and a strength αp =

∫
Vp

ωdx. Particles are
convected by the flow field and their strength is modified to account for vortex
stretching and diffusion.

Using the definition of vorticity and the incompressibility constraint the ve-
locity field is computed by solving the Poisson equation

∇2u = −∇× ω . (8)

This equation will be solved on a grid by means of a Fourier solver that
allows for mixed periodic (x) and unbounded directions (y and z). We use
remeshing[3,10,15] in order to remedy the loss of accuracy due to Lagrangian
distortion. Remeshing consists in the periodic regularization onto a grid of
the particle set via high order interpolation In the present work, remeshing is
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performed at the end of each time step and uses the third order accurate M ′
4

interpolation formula of [11]. The grid/mesh allows for additional advances: dif-
ferential operators (such as those for stretching and diffusion) are evaluated on
the mesh using fourth order finite differences and the Poisson equation (Eq. 8)
is solved on the grid. The results of these calculations on the grid are then in-
terpolated back onto the particles. We refer to [1,2] for details on the parallel
implementation and the periodic-unbounded Poisson solver.

The vortex particle method is particularly well-suited for our flow configu-
ration. It exploits the compact support of vorticity: particles are only needed
where vorticity is non-zero. Likewise, the grid of the unbounded-periodic Pois-
son solver tracks the support of vorticity and grows or shrinks accordingly in
the transverse directions. Finally, the method exhibits accuracy, robustness and
relaxed stability properties for advection[4].

3.2 Evolution Strategy

We use a state-of-the-art Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES)[8]. CMA-ES belongs to the class of Evolutionary Algorithms com-
prising methods that are inspired by the principles of natural evolution to solve
optimization and learning problems. It is operating with real valued parameters
and adapts a Gaussian sampling distribution from the information acquired in
the course of the optimization.

The gradient of the cost function in the search space is not readily available in
the present investigation: an adjoint approach would be impractical and Finite
Differences involve a stepsize selection procedure. The need for robustness and
the likelihood of local minima in the cost function therefore close the case for
CMA-ES. This requirement of robustness and the dimensionality of the problem
(4) impose the population size of the Evolution Strategy, i.e. the number of
function evaluations needed at every iteration of CMA-ES. We set it to 10 based
on the investigations in [9].

Finally, we note that the search space is bounded through the constraints of
Table 1b. These boundaries are enforced by biasing the sampling distributions,
i.e. through a rejection algorithm.

3.3 Coupling and Computation

Every evaluation of the cost function is carried out by our parallel vortex particle
code[1] and can involve running on hundreds of processors for several hours. Our
approach consisted in dissociating this evaluation process from the optimization
code. The latter is not computationally intensive and can easily run on a personal
workstation; the former requires access to parallel architectures counting several
hundred cores, typically in a supercomputing center, enabling the fast evaluation
of several candidates of a population in parallel. This allows us to use an existing
CMA-ES matlab implementation1 and to only implement the evaluation of the
cost function.
1 Available at www.cse-lab.ethz.ch
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Fig. 2. CMA-ES optimization history: evolution of the best cost function achieved in
current generation and parameters

This matlab function determines the computational problem size from well-
resolvedness considerations and then chooses a supercomputer partition size that
keeps the wallclock duration of a simulation approximately constant (here be-
tween 4 and 12 hours). It generates the control files and scripts necessary to
submit the parallel job on the super-computer queue, copies them and submits
the job remotely. Several jobs –10 in this study–are submitted at the same time
as they correspond to the function evaluations inside an iteration of CMA-ES.
Their statuses are monitored and upon completion, their results are copied back
in order to post-process them and return a scalar fobj(x).

4 Results

4.1 Optimization

The history of the optimization is shown in Fig. 2. We see that CMA-ES went
through 34 iterations, or 340 evaluations. The evaluations resulted in simulations
running on Cray XT5 partitions ranging from 64 to 256 cores for run times
between 6 and 12 wallclock hours. This represents a total of 270, 000 CPU hours.

The optimization was initialized in the center of our parameter intervals and
converged (see Fig. 2) to a point which reduces the wake hazard by a factor of
4 with respect to the initial guess.

4.2 Optimum Parameter Set

The best candidate found over the course of the optimization is the case 174; it
is described by the parameters (α, β, γ, δ) = (1.3544, 0.48186, 0.47542, 0.48261).
After encountering this point, the Evolution Strategy searches its neighborhood
and eventually converges to this point (see Fig. 2b).
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This candidate is characterized by a wavelength λ = 4.64 bw sensibly smaller
than the wavelength of the Crow instability for the equivalent wing vortex pair
λCrow ∼ 8 bw. Fig. 3 shows the evolution of the flow. The early phase is charac-
terized by the fast growth of medium wavelength instabilities between the tail
and flap vortices (see Fig. 3b and Fig. 3c). The reconnections generate dipoles
similar to Ω-loops[12] which perturb the tip vortices and reconnect with them
(Fig. 3d).

(a) τ = 0 (b) τ = 0.53

(c) τ = 1.62 (d) τ = 2.81

(e) τ = 3.53 (f) τ = 5.0

Fig. 3. Optimum parameter set (case 174): isosurfaces of vorticity norm ‖ω‖ = 0.01,
0.02, 0.04, 0.08 Γw/(πσ2

T )

The outstanding features of the optimum become more apparent in a com-
parison with another less performant candidate. Fig. 4 shows the development
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of the best candidate of the first iteration (case 2), described by (α, β, γ, δ) =
(2.1606, 0.37654, 0.13392, 0.42296) and thus a wavelength λ = 2.91. This case
shows that even though its vortex dynamics produce a fast growing medium-
wavelength instability between the flap and tail vortices, they do not perturb
the tip vortices appreciably. The flow generates large dipoles (Fig. 4b and 4c)
which get twirled around the tip vortices (Fig. 4d). This leads to fairly large
secondary structures (Fig. 4e) but keeps the tip vortices relatively straight and
unaffected.

(a) τ = 0 (b) τ = 0.49

(c) τ = 1.09 (d) τ = 1.94

(e) τ = 2.91 (f) τ = 4.28

Fig. 4. Best candidate of the first generation (case 2): isosurfaces of vorticity norm
‖ω‖ = 0.01, 0.02, 0.04, 0.08 Γw/(πσ2

T )
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In the optimum case, the transverse structures are smaller but more impor-
tantly, the tip vortices are displaced vertically over a half wavelength (Fig. 3c to
3f). In fact, this segmentation of the tip vortices is even apparent in the contours
of the average rolling moment, shown in Fig. 5. The cores are distinguishable
at two levels (Fig. 5d) thus causing the average moment to be roughly halved
along the axes of these cores.

This effect appears to contribute substantially to the overall dissipation of the
wake. And even more so if we consider the rolling moments of case 2 where there
is no vertical spreading of the cores or halving of the average moment(Fig. 6).

(a) τ = 0 (b) τ = 0.53

(c) τ = 1.62 (d) τ = 2.81

(e) τ = 3.53 (f) τ = 5.0

Fig. 5. Optimum parameter set (case 174): streamwise-averaged rolling moment
〈Croll〉x
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(a) τ = 0 (b) τ = 0.49

(c) τ = 1.66 (d) τ = 2.91

(e) τ = 3.56 (f) τ = 5.0

Fig. 6. Best candidate of the first generation (case 2): streamwise-averaged rolling
moment 〈Croll〉x

5 Conclusions

We have coupled a derandomized Evolution Strategy and an efficient parallel
Navier-Stokes solver in order to optimize a wake alleviation scheme. The opti-
mization relied on the parameterization of the wake configuration and the use
of a wake hazard measurement for the cost function. Convergence of the ES
required hundreds of function evaluations which were computed remotely on a
supercomputing cluster.

An optimum was found at an intermediate wavelength λ = 4.64bw. For typical
approach speeds, this corresponds to an actuation frequency which is in the sub-
Hertz range f ∼ 0.2 − 0.4Hz. The perturbation triggers fast-growing medium
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wavelength instabilities and vortex reconnections. The resulting flow disrupts
the tip vortices and smears their induced rolling moment.

The present results were obtained from Direct Numerical Simulations at a
moderate Reynolds number of 2500. While it may be argued that this mimics a
uniform turbulent viscosity (see [13]), this constitutes a very crude RANS and
future simulations will be carried out with an actual LES model.

Other future work areas include the addition of noise in the initial conditions
in order to favor robust alleviation schemes over the course of the optimization. In
addition, the cost function based on a fixed time measurement will be abandoned
in favor of a time window average of the wake hazard. Finally, we plan to account
for the spatial development of the flow and track the actuation effects more
realistically. We will simulate the perturbed lift distribution itself, capture its
effect in the near wake and then start a streamwise periodic simulation from the
established vortex wake field.
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Abstract. Real time search — a setting in which Web search engines
are able to include among their query results documents published on
the Web in the very recent past — is a clear evidence that many of the
off-line computations performed so far on conventional search engines
need to be moved to the on-line arena. This is a demanding case for par-
allel computing since it is necessary to cope efficiently with thousands of
concurrent read and write operations per unit time, all requiring latency
times within a fraction of a second. To our knowledge, computations
related to capturing user preferences through their clicks on the query
result webpages and include this feature in the document ranking pro-
cess are currently performed in an off-line manner. This is effected by
pre-processing very large logs containing millions of queries submitted by
actual users in a time scale of days, weeks or even months. The outcome
is score data for the set of documents indexed by the search engine which
were selected by users in the past. This paper studies the efficiency of
this process in the on-line setting by evaluating a set of strategies for
concurrent read/write operations executed on a multi-threaded multi-
core architecture. The benefit of efficient on-line processing of user clicks
is making it feasible to include user preference in document ranking also
in a real-time fashion.

1 Introduction

Conventional Web Search Engines track user clicks performed on the URLs listed
on the webpages containing search results to improve the quality of the document
ranking process. User clicks are monitored along time to detect document pop-
ularity trends so that ranking can be updated accordingly to refine the results
of subsequent queries; previously high-ranked pages that are not attracting user
clicks are eventually demoted, while previously low-ranked pages that capture
the interest of visitors are rewarded with a rank boost.

However, most of the optimizations to the ranking process that are based on
click rates are still performed in an off-line manner. This means that the effects
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of previous clicks on the present ranking process only become visible at regular
intervals of the order of hours or even days.

In essence, the problem consists on efficiently ranking the URLs clicked by
previous users that submitted similar queries to the search engine. For this pur-
pose, clicks themselves are indexed and now concurrency conflicts appear among
the continuous stream of click updates over the index and the required opera-
tions needed to process time-consuming tasks such as determination of similar
queries and related clicks on documents.

By “similar” we mean queries correlated in some probabilistic way that consid-
ers clicked URLs and respective query terms. The calculation of the probabilities
query-to-query, query-to-URL, and URL-to-URL can be very demanding in ex-
ecution time and memory requirements with the additional challenge that must
be performed on-the-fly for each user query.

In this paper we present algorithms for dealing with the problem of on-line
indexing and querying a continuous stream of queries generated by users of a
large Web search engine. We concentrate on what happens on a multicore-based
click-ranking node dealing with this work-load and in particular we focus on how
to organize the associated concurrent read/write operations submitted from the
different threads running on such a click-ranking node. Our main contribution is
a comparative study of different strategies that trade-off parallelism granularity
and data locality.

The remaining of the paper is structured as follows. In Section 2 we provide
some background and discuss related work. In Section 3 we describe different
strategies explored by this research. In Section 4 we analyze our experimental
results and in Section 5 we conclude summarizing our findings.

2 Background and Problem Setting

Web Search Engines use the inverted file data structure to index the text collec-
tion and speed up query processing. An inverted file is composed of a vocabulary
table and a set of posting lists. The vocabulary table contains the set of relevant
terms found in the collection. Each of these terms is associated with a posting
list which contains the document identifiers where the term appears in the col-
lection along with additional data used for ranking purposes. To solve a query,
it is necessary to get the set of documents ids associated with the query terms
and then perform a ranking of these documents so as to select the top K doc-
uments as the query answer. On conventional search engines, the posting list
are update off-line and consequently query operations are exclusively read-only
requests upon the inverted file.

A number of papers have been published reporting experiments and proposals
for efficient parallel query processing upon inverted files which are distributed on
a set of P nodes [1,2,3,16,15,19,17]. The two dominant approaches to distribut-
ing an inverted file are (a) the document partitioning strategy (also called
local indexing), in which the documents are evenly distributed onto the set of
available nodes and an inverted index is constructed in each processor using the
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respective subset of documents, and (b) the term partitioning strategy (called
global indexing), in which a single inverted file is built from the whole text
collection to then evenly distribute the terms and their respective posting lists
onto the processors. Document partitioning is usually employed since it has
better scalability. These strategies have been devised for distributed memory
systems in which nodes have a share nothing architecture. Note, however, that
their main principles can also be re-used on a multi-core setting in which nodes
consists of several cores interconnected through a shared memory hierarchy.

Our context differs from a conventional set-up in several key aspects.

– First, our clicks engine has an inverted file that indexes URLs clicked by
users in previous actual queries submitted to the Web search engine. The
vocabulary table of that inverted file is formed by the query terms – or
queries themselves treated as single units – and the associated postings lists
contain references to the URLs clicked by users together with other data
used for ranking. Furthermore, as shown in Figure 1 we need double inverted
indexing so that from terms we can reach clicked URLs and vice-versa. A
key operation is to start from the query term to reach a set of clicked URL,
then these URLs are used to get a new set of terms from the second inverted
file and from these terms get more URLs. The resulting sets of terms and
URLs are then operated each other to generate a list of ranked URLs.

– Second, by “query” we mean a number of operations performed on the in-
verted file that tracks the relevance of the click made by users and this means
that we need to process both read and write requests upon the inverted
file. As mentioned above, in conventional search engines queries are usually
read-only requests since the update of the posting list is performed off-line.
However, for real-time indexing of click-through data, it is mandatory to
process on-line write requests upon the inverted file to keep posting list up-
to-date all the time. As new queries arrive to each click-ranking node it is
necessary to detect if the clicked URLs are already being indexed. If so, the
clicks count of the respective URLs must increased and the item promoted
to the front of the posting lists associated with the query terms. We use a
transposition heuristic on the posting list to promote highly clicked URLs
to the front of the posting list. This is used as a low cost indication of how
recently the URLs have been clicked which is useful for ranking purposes.

– Third, our engine prototype is explicitly designed to exploit the available
thread level parallelism available in current multicore processors. A straight-
forward approach to transparently take advantage of such architectures is
to rely on virtualization technology and use as many single-CPU virtual
nodes per processor as cores are available. Unfortunately, this involve addi-
tional overheads that become an overkill in the extremely demanding arena
of search engines. Note, however, that explicit parallelism complicated click-
ranking node design and implementation, especially in this setting with con-
current read and white request upon the inverted file.

Our focus in this paper is to explore different alternatives to implement such
a parallel click-ranking node. Intuitively, the simplest approach consists in
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Fig. 1. Double inverted file organization. The first index (left) is a standard search
engine index in which doc is a clicked URL and frec is the total number of times users
have clicked the URL for queries containing the same term. The second index (right)
enables the mapping from clicked URLs to query terms that caused the clicks on the
URLs, where click indicates the average position in the result webpage of the respective
URL. The sequence given by the labels (1), (2) and (3) indicates that from a given
term (1) it is possible to reach a new term (2), which in turn leads to a new set of
documents (3) to be included in the ranking process. For each posting list item in
the first index, this sequence is repeated for each posting list item of the second index.
Therefore, queries expand the set of active terms during a period of time and new query
arrivals cause the modification of the posting lists of both indexes which potentially
causes read/write conflicts.

exploiting thread level parallelism at the query level, i.e. assigning an inde-
pendent thread per incoming query. This approach could perform well from a
parallel implementation point of view as long as there are always enough simul-
taneous queries to keep all cores busy. In fact, this is the interesting case since
performance only becomes critical when the engine operates under heavy query
traffic. When traffic is sufficiently low, it does not really matter that a given
strategy is less efficient than another provided that the response time of individ-
ual operations is below an upper limit. However, even assuming peak traffic, if we
need to update ranking information online based on clicks made by users, read
writer synchronization may jeopardize parallel performance and it is unclear if
exploiting query-level parallelism will be enough.

As an alternative we need to evaluate if the processing of a single query
itself can be organized to exploit intra-query parallelism. Intuitively, this is also
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Fig. 2. Inverted file organization where each posting list is stored in a number of blocks
and where each block is logically divided in chunks that are assigned to threads. Each
chunk is composed of a number of posting list items and each item is a pair (doc id,
relevance factor). In this example, the first block of term 0 is processed in parallel by
threads th0, th1, th2 and th3.

possible since the posting list of the inverted file are large enough and data
parallelism can be exploited when traversing such lists. This is the idea illustrated
graphically in Figure 2. Items on the posting lists (URL references) are usually
kept ordered by a relevance factor that accounts for the frequency of clicks made
by users to them, but for efficiency reasons, instead of keeping a fully ordered
list, we group items into different blocks and kept the list sorted by the relevance
factor just across blocks, i.e. the set of items kept in block i are all of higher
relevance than the values associated with the set of items kept in block i + 1.
With this organization, the idea is that posting list processing can be perform
on a block basis and within each block, we can exploit parallelism at item level
distributing each block into chunks with are assigned to the available threads.

In summary, in this paper we have tried to answer to the following comple-
mentary questions:

1. Is query-level parallelism enough to achieve satisfactory parallel performance
under heavy query traffic?

2. If query-level parallelism is not enough, is it efficient to exploit parallelism
at the item level?

3. How to implement the concurrency control mechanism required by the read
write synchronization inherent to the online update?

3 Strategies for Read-Write Synchronization

As mentioned above, we have studied a number of strategies for implementing
real-time parallel indexing of click-though data which (1) exploit parallelism
at different levels (either query level or item level or both) and (2) implement
different concurrency control policies to satisfy read write synchronization issues.
All of them use either locks or barriers as synchronization mechanism and their
main characteristics are summarized in Table 1.
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The most restrictive strategies guarantee that the scheduling of regular sear-
ches on the inverted file, which we denoted as read transactions, and ranking
update operations, which we denote as write transactions, are serializable, i.e.
they maintain the illusion of serial execution. The other strategies does not
enforced serialization, which potentially will allow for better performance. Nev-
ertheless, the proposed strategies make use of data locality in different ways and
this also have a strong influence on performance.

The “Bulk Processing (BP)” strategy does not exploit parallelism at the
query level, i.e. either regular searches on the inverted file or updates of the
posting lists, are processes serially without any kind of concurrency. Instead,
it exploits parallelism a much finer level. As described above, the posting lists
are statically divided into blocks. When serving read transactions, these blocks
are logically partitioned into smaller chunks, which are processed in parallel by
the available threads within the click-ranking node. A master thread performs a
short sequential phase to merge the results of those threads and finally it gets the
same outcome as a conventional single CPU algorithm. The block size is a key
parameter in this approach. Intuitively, the larger the block size, the coarser the
parallelism, but smaller blocks tend to improve data locality and some trade-off
should be found.

The “Concurrent-Reads (CR)” does exploit query level parallelism but
just for regular searches. However, before a write operation could take place, the
CR strategy waits for all of the current reads being solved to end. In this way,
read transactions exploit the available (intuitive) parallelism between indepen-
dent queries but as in BP, write serialization is also guaranteed by isolating the
execution of write transactions. In fact, write transactions are handle the same
way in both approaches.

The “Term-Level-Parallelism (TLP)” strategy allows concurrency of both
read and write operations as long as they involve different terms of the vocab-
ulary and they are not correlated. Concurrent transactions are assigned on de-
mand to the available threads of the click-ranking node and ideally, a different
lock protects the posting list of each vocabulary term to control the concurrency.
To enforce serializability, a thread does not proceed with a transaction till it ac-
quires all its associated locks at once. In practice, since locks are an expensive
resource, this approach uses hashing to map several terms onto the same lock.
We have explored two alternative variations. The first one always allow concur-
rent reads (TLP1 ), whereas the second, which is much easier to implement, does
not overlap read transactions that have some terms in common (TLP2 ).

Finally, we have also explored a couple of strategies which relax serializabil-
ity requirements. The first one, which is denoted as “Relaxed-Term-Level-
Parallelism (RTLP)”, is similar to the TLP approach but without forcing
threads to acquire all the locks of a given transaction at once and removing the
atomic commitment of transactions. Our second approach, which we have de-
noted as “Relaxed-Block-Level-Parallelism (RBLP)”, uses a similar strat-
egy but controls concurrency at the block level (a hashing function maps several
blocks of the posting lists to the same lock) to reduce potential imbalances
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caused by the Zipf Law. Obviously, the degree of concurrency of both RTLP and
RBLP is much higher than the other strategies but they may introduce a non-
serializable scheduling. Nevertheless, in click-ranking it usually does not matter
much if some inconsistencies appear.

Table 1. Different strategies for implementing a multicore-based click-ranking node
supporting online updates of the inverted index. The first column indicates if the strat-
egy introduces non-serializable scheduling of read and write transactions, the second
column indicates the source of parallelism and the third column indicates the inner
mechanism used to control concurrency and enable online updates.

Serializable Parallelism Implementation
BP Yes Fine Grain Barrier based
CR Yes Concurrent Searches Barrier based

TLP1 Yes Concurrent Searches and Updates Term Lock based
TLP2 Yes Concurrent Searches and Updates Term Lock based
RTLP No Concurrent Searches and Updates Term Lock based
RBLP No Concurrent Searches and Updates Block Lock based

4 Experiments

The computing platform used in our simulations is a dedicated cluster node
equipped with two Intel’s Quad-Xeon processors, whose main characteristics
are summarized in Table 2. The search node prototype have been developed in
C++, using Linux POSIX Threads as explicit threading API.

Our evaluation has focused on studying the performance under heavy query
traffic since the ultimate goal is to deploy index nodes able to efficiently cope with
drastic peaks in traffic. In particular, we have evaluated two different scenarios
that emulated extreme cases:

1. Workload 1 – Heavy traffic but limited concurrency –. In the most ad-
verse scenario we have evaluated, there is a high probability that subsequent
queries (in time) actually become quite similar from a semantic point of view.
For instance, this emulates traffic when suddenly, many people becomes in-
terested on the same topic and the engine receives a large stream of similar
queries. In this case ranking updates and regular accesses to the same post-
ing lists (i.e. read and write transactions) occur almost simultaneously very
often, which limits the available parallelism of some of the strategies.

2. Workload 2 – Heavy traffic, high concurrency –. This workload emulates
a more benign scenario in which the chances of simultaneous read and write
transactions to the same posting lists is much lower, which can be considered
as an average case. Since subsequent queries are less correlated, there is a
much coarser parallelism and it is expected that relaxed schemes can be
benefited from it.
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Table 2. Main features of the target computing platform

Processor

Intel Quad-Xeon (2.66 GHz)
L1 Cache 4x32KB+4x32KB (inst.+data)
(per core) 8-way assoc. 64 byte/line
L2 Unified 2x4MB

Cache 16-way assoc. 64-byte/line
16 GBytes

Memory (4x4GB) 667 MHz FB-DIMM memory
1333 MHz system bus

Operating GNU Debian System Linux
System kernel 2.6.22-SMP for 64 bits

Intel C/C++ v.10.1 -fast
Compiler Switches Parallelization with POSIX Threads: -lpthreads

Simulations have been performed with a text collection from an United King-
dom Web database sample. Query traces have been build using a real query-log
containing user searches, which in turn, have been used to build synthetic click-
through traces using different user behavior models. Obviously, users do not click
on links at random, but make an informed choice that depends on many factors,
but for the focus of this paper, we believe that this random model is enough to
obtain useful insights on the comparative performance of the strategies tested in
this work. Nevertheless, we are aware of our simplifications and it is clear that
precise modeling of click-through behavior or real click-logs will be necessary to
refine our experiments.

In our experiments we have assumed than users click on average just on one
of the most promising top-k links presented in the search results page, but we
have also evaluated more demanding workloads in which for each search query
users clicks on more than one link and hence more ranking updates are necessary
for a single search request.

There are many parameters that have a noticeable influence on the perfor-
mance of our click-ranking node but for the sake of clarity we only summarize
here our major findings and report results using optimal parameters.

One of the most important parameters is the block size used within the post-
ing lists. Intuitively, the larger the block size, the coarser the parallelism for
strategies like BP, but smaller blocks tend to improve data locality so a trade-off
is in place. Empirically, we have found that blocks of 128 elements provide the
best performance rates across all strategies and this is the block size used in all
our experiments.

Another important parameter is the number of locks used in strategies such
as TLP and RTLP. As locks resources are limited and their administration is
expensive in terms on running time, the strategies TLP1, TLP2 and RTLP use
hashing to reduce the number of actual locks created by the program. To assess
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the impact of hash collisions in this application setting, we tried with different
number of locks and fortunately, we found that even with a moderate number of
identifiers, namely an array of locks (hash table) with no less than 4099 entries,
the performance degradation over having unlimited locks becomes negligible (less
than 2%).

Performance Results

Figure 3 shows the scalability of the different strategies using the workload 1.
Surprisingly, BP is the strategy that scale the best in our platform and reaches an
impressive speedup of 7.75x for eight threads, in spite of only exploiting what we
have denoted above as item level parallelism. This is an important finding since
intuitively, the other approaches are able to exploit coarser parallelism. However,
click-ranking is a demanding application since read-write synchronization is very
frequent and in practice, even if we are assuming high query traffic, query level
parallelism is not enough to keep many concurrent threads busy. Figure 4 further
demonstrate this issue. If we assume that users click on average on to four link for
each search, more ranking updates will be needed and less query level parallelism
will be actually available.

Figures 5 and 6 focused on 8-thread experiments and show the actual query
throughput and index-update throughput achieved with workloads 1 and 2 re-
spectively. Under a less demanding workload (Figure 6), query level parallelism
is higher, but even in that case, BP is able to outperform the other strategies
since read-write synchronization overheads are still large enough.

Finally, Figure 7 shows running times of individual query and index-update
operations. However, these results has to be read with precaution since they
measure the time elapsed between the instant in which the query/index-update
operation starts execution and the instant it is completely processed. Precision
of measures can be compromised given the tiny values of running times. How-
ever, they show a general trend from which we can explain the differences in
overall query throughput observed in the above experiments. First, the curves
in Figure 7 [top] show that average running time per operation tends to be very
similar each other across strategies. They are smaller for 5 clicks indicating that
index-update operations are faster than query operations and the trace executed
in that case is populated by more of these faster operations. Except for the BP
strategy, all other strategies basically assign one thread to process sequentially
the query/index-update operation. One would expect BP to outperform all oth-
ers in this case because it uses all threads to process each query/index-update
operation. However, BP has the burden of barrier synchronizing the threads in
order to start with the next operation, and the results show that this cost is
significant. On the other hand, the points in Figure 7 [bottom] clearly show that
all other strategies tend to consume a significant amount of time for some op-
erations which is an indication that they suffer, from time to time, from long
delays due to lock contention among the active threads. The BP strategy does not
suffer from this problem because it simply processes one operation at a time and,
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Fig. 3. Scalability of the different approaches for workload 1 and assuming users just
click on one link per search on average. Results for 2, 4 and 8 threads (T).

Fig. 4. Scalability of the different approaches for workload 1 and assuming a more
demanding experiments in which users click on four links per search on average. Results
for 2, 4 and 8 threads (T).
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Fig. 5. Query/index-update throughput achieved with workload 1 under different click-
through behavior from users. Results for 8 threads.

Fig. 6. Query/index-update achieved with workload 2 under different click-through
behavior from users. Results for 8 threads.
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Fig. 7. Individual query times. The figure at the top shows results for average running
time per query/update-index operation for 1, 2, 4 and 8 threads. The figure at the
bottom shows the maximum running time observed every 1,000 query/update-index
operations for 8 threads.

while it uses locks for implementing oblivious barrier synchronization, the threads
do not have to compete each other to acquire locks at the end of each operation.
This explains the better performance of BP with respect to the relevant perfor-
mance metric for our case, namely query/index-update throughput.
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5 Conclusions

We have presented an experimental study that compares different concurrency
control strategies devised to process user clicks in an on-line manner. The results
show that the BP approach based on exploiting the full parallelism available from
the cores for processing one single query or index update at a time, is the best
alternative. This strategy outperforms the more intuitive approach found out as
current practice in multi-threaded search engine nodes. Namely, the strategy in
which each active query or index update is handled by an independent concurrent
thread that is mapped to one of the available cores. We tested different variants
of the intuitive approach. Each one representing differing degrees of compro-
mise between fully concurrent operation and strict serialization of read/write
transactions. The results show that even for the very relaxed strategies, the BP
approach (which is serializable) performs better.
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Abstract. In this paper we propose an evaluation method for parallel
algorithms that can be used independently of the used parallel program-
ming library and architecture. We propose to predict the execution costs
using a simple but efficient framework that consists in modeling the
strategies via a BSP architecture, and estimating the real costs using
as input real query traces over real or stochastically generated data. In
particular we apply this method on a 2D inverted file index used to re-
solve web search queries. We present results for OR queries, for which
we compare different ranking and caching strategies, and show how our
framework works. In addition, we present and evaluate intelligent rank-
ing and caching algorithms for AND queries.

1 Introduction

Inverted files [1] are the most widely used index data structures to cope efficiently
with high traffic of queries upon huge text collections. An inverted file consists
of a vocabulary table which contains the set of relevant terms found in the text
collection, and a set of posting lists that contain the document identifiers where
each term appears in the collection along with additional data used for ranking
purposes. To answer a query, in a Web search engine context, a broker machine
sends the query to a set of search processors in order to get the set of documents
associated with the query terms. These processors perform a ranking of these
documents in order to select the top-K documents.

Many different methods for distributing the inverted file onto P processors or
computers and their respective query processing strategies have been proposed in
the literature [1]. The different ways of doing this splitting are mainly variations
of two basic dual approaches: document partition (a.k.a local index) and term
partition (a.k.a global index). Variants of these two basic schemes have been
proposed in [5] which focus on optimizing for particular situations.

In a previous paper [2] we introduced a novel distributed architecture for
indexing, named the 2D index, that consists in arranging a set of processors in
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a two-dimensional array, applying term-partitioning at row level and document-
partitioning at column level. We showed in that paper that, for AND queries,
choosing the adequate number of rows (R) and columns (C) given the available
number of processors it is possible to obtain significant improvements in the
performance against the basic architectures of term and document partitioning
with the same number of processors.

In this paper we propose to use the bulk-synchronous model of parallel com-
puting (BSP) [8] as the cornerstone of a simple but efficient framework in which
we blend empiric analysis and theoretical tools to predict the cost of real system
executions, which we apply to variations of the 2D index. In that framework, we
combine the usage of real input logs, average-cost analysis of certain operations
and stochastic generated values to compute realistic estimations of the cost of
the real system.

Our framework has two important features. The first is precisely the ability
to scale the system architecture obtaining reliable results without the need to
acquire additional resources, permitting for example to predict what happens
when there are thousands of processors with billions of documents. This is an
important issue as deploying and running algorithms on large clusters to deter-
mine their efficiency and performance is extremely expensive, and prohibitive
in many cases, as it is sometimes impossible to access the required resources.
Our methodology enables us to validate the feasibility and convenience of an
architecture or algorithm more easily than constructing a real system or build-
ing complex simulations involving the use of queuing theory, real-time managing
techniques and, not less involved, the real implementation of all the operations.

The second important characteristic is the possibility of applying this frame-
work to any kind of system, meaning synchronous or asynchronous, with dis-
tributed or centralized ranking. Besides, in this way we can ensure a fair com-
parison between algorithms independently of the hardware used to run the codes
and particular implementation details. The result is that our framework based
on the BSP model may be seen as a unifying setting to fairly compare different
algorithms and implementations.

Apart from BSP, several general-purpose parallel models have been presented
in the literature, like LogP or QSM [8]. As it has been proved, the different models
can be reciprocally simulated efficiently, and we base our evaluation framework
on BSP, which has a well developed literature, libraries and other resources that
provide an efficient way of evaluating algorithms for a wide variety of problems.
We insist on the fact that we are not choosing one model over the others as a
real platform over which the algorithms would actually run, but choosing one of
them as the “computational model” that will be used to compare the behavior
of different strategies or configurations.

The rest of this paper is organized as follows: Section 2 presents generali-
ties about distributed search architectures and some improvements proposed to
speedup query response time. Some of these improvements were introduced in
previous papers, while Clairvoyant Distributed Ranking and the re-using inter-
sections cache are original contributions of this paper. Section 3 presents our
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methodology using the BSP model. Section 4 shows the features of the query
log and the parameters used in the experiments, as well as the results of the
experiments we conducted. Finally, Section 5 presents our conclusions.

2 Search Architecture

Queries are introduced to the system via a receptionist machine named the bro-
ker. The broker is in charge of routing the queries to the clusters search proces-
sors and receiving the respective answers. It decides to which processor a given
query will be routed, normally by using a load balancing heuristic. The parallel
processing of queries consists in a series of operations that will be executed in
different processors, the results of which will be combined to get the final answer
to the query. These are the primitive operations of broadcast or communication,
list intersection, list merging, list ranking, etc. Each of these operations has a
cost depending on its actual parameters. The combination of these costs for all
the queries in an execution environment conforms the total cost of a sequence
of queries.

Several features may be added to the basic setting just described to further
speed up the search process or provide fault tolerance, as for example the already
mentioned partitioning schemes, replication, particular policies for routing the
queries among the processors, different ranking algorithms, and various types of
caches. In the following we describe some of these standard features as well as
some original ones that we introduce in this paper, and will be tested using our
evaluation framework.

Partitioning and Replications. We already mentioned in the introduction
the exploitation of parallelism over the text database that is achieved by differ-
ent variations or evolutions of the two “extreme” settings of document and term
partitioning, in particular the 2D scheme of [2]. Fault-tolerance is generally sup-
ported by means of replication. To this end, and assuming a P -processor parallel
search cluster, D copies for each of the P processors are introduced. This can
be seen as adding an extra dimension to whichever configuration was initially
chosen. Then the system can be seen as a P ×D matrix in which each processor
in the D dimension maintains an identical copy of the respective partition of
the index. Upon receipt of a query by the broker node in the cluster, the broker
sends it to all the processors that must evaluate it, and for each of them one
replica is selected. The processors hit by the query work on their part of the
solution to then merge all results to produce the final answer.

The basic model of concurrency in here is the distribution of the query search
among the distributed knowledge of the P principal nodes and also internally
to each of the D replicas, which contain the same data (global knowledge). The
question arises on how to utilize the available resources to best execute search
algorithms in the P × D arrangement of computers. A naive approach would
be to attempt a text data partitioning throughout the system and hope that
the multiplicity of computational resources can provide a speedup by virtue
of simultaneous computations. Another approach would be to share in a more
subtle way the resources of the D replicas. We explore these cases in this paper.
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Caching. A typical way of reducing the number of processors involved in each
query processing is by using caching in several ways. First, the broker machine
may have a results cache (RCache) of previous queries, to avoid repeatedly com-
puting the most frequent ones. The state of the art strategy for the results cache
is the SDC strategy [6], which keeps a static section to store the answer for
queries that are frequent along large periods of time and a dynamic part with
the objective of capturing queries that become very popular during short periods
of time. Additionally, we can reduce the number of processors participating on
each query by sending the query only to a selected group of them as in [7] or
[2]. The latter works propose to keep a compact location cache (LCache) at the
broker machine.

Processors may maintain also caches of posting lists to reduce secondary mem-
ory accesses. Examples of these can be found in [6,4,3]. Alternatively there is
an intersection cache [4] which keeps in each search node the intersection of the
posting lists associated with pairs of terms frequently occurring in queries. The
intersection operation is useful to detect the documents that contain all of the
query terms, which is a typical requirement for the top-K results in major search
engines. Figure 1 shows the five caches defining a hierarchy which goes from the
most specific pre-computed data for queries (results cache) to the most generic
data required to solve queries (posting list cache). When a new query arrives
to the system, if the broker finds the new query in its RCache, the query is an-
swered with no further computation. If that is not the case, the broker searches
the query in its LCache to reduce the number of processors that will be involved
in its processing. Finally, the broker selects a processor to send the query to.
After that, the query is processed according to the partitioned index approach
and the ranking scheme.

Fig. 1. Query processing using a 2D index and a five level cache hierarchy
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Distributed vs. Centralized Ranking. There are basically two types of rank-
ings under distributed architectures: distributed or centralized ranking. For clar-
ity we explain the ranking schemes without considering caching at any level. In
the distributed ranking scheme, the broker sends the query to a manager-merger
processor. This processor sends the query to each other processor involved in the
processing of the query (i.e. each processor owning terms of the query if the term
partition scheme is used, or all processors when we use the document partition
scheme). Then, these processors fetch the posting lists for each term and com-
pute their union. In the last phase, they rank the local results and send the top-K
documents identifier to the manager-merger processor which merges the partial
results in order to build the global top-K results that are sent to the broker.

Using the centralized ranking strategy, there is one processor (named the
manager-ranker processor) that globally ranks the pieces of posting lists that are
sent to it by the processors involved in the processing of the query. In general it
is enough that each involved processor sends a small list to the manager-ranker
processor to allow him compute a barrier SMAX that document frequencies for
a certain term must surpass to qualify for the final result list. When posting
lists are kept sorted by frequency, this allows to directly skip whole list-tails
consisting of documents with frequencies smaller than the barrier.

To map these basic strategies to a 2D architecture we need first to describe the
main computational path that each query will follow. At column-level a union
(resp. intersection) is computed in a sequential way by sending the shortest list
from the processor that owns it to the processor owning the second shortest list,
who computes the union (resp. intersection) with its term (or terms) and sends
the result to the following one and so on, until the last processor is reached.
When using the distributed ranking scheme we perform a ranking over local
data before sending partial results to the next processor. This allows reducing
the communication cost. This mechanism requires that some processor, with the
information of the lengths of the posting lists at that column, prepares the route
the query will follow. Then the basic ranking strategies become:

Distributed Ranking for 2D index:

1. The broker machine sends the query to the manager-merger processor using
a hash function over the query terms.

2. The manager-merger sends the query to a random processor at each column
(which we call the manager-ranker).

3. The manager-ranker of each column prepares the route for the query and
sends it to the first processor of that route.

4. Each processor that receives the query fetches the postings lists of its term(s),
computes their union or intersection, makes the ranking and sends the result
to the following processor in the routing list.

5. The last processor of the routing list sends the results to the manager-ranker
of the column, which performs the final distributed ranking (in order to
obtain the top-K postings of the column).

6. The manager-merger receives the results of all the columns and merges them
to obtain the global top-K results.
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Centralized Ranking for 2D index:

1. The broker machine sends the query to a manager-ranker processor.
2. The manager-ranker sends the query to a random processor at each column

(which we call the column manager).
3. The column manager of each column prepares the routing list for the query

and sends it to the first processor of that route.
4. Each processor that receives the query fetches the postings lists of its term(s),

makes the union or intersection with the partial list it receives from previ-
ous processors from the same column, and sends the result to the following
processor in the list.

5. The last processor sends the results to the column manager, who sends the
results to the manager-ranker.

6. The manager-ranker receives the results of all the columns and ranks them.

Clairvoyant Distributed Ranking for AND queries. The main advantage
of the centralized ranking approach with respect to the distributed one arises
from the possibility of excluding documents that would not do it to the top-
K results, by means of initially considering short prefixes of all the lists and
then updating the global barrier as needed. The price to be paid for that gain
is the extra communication and overhead due to the extra need of interaction
among the processors. This suggests that it would be very valuable to know
a-priory how many elements to consider of each list. In that case we could send
exactly the required postings and do the minimum work. Considering that each
successive intersection that is computed will further reduce the length of the
resulting lists, just limiting the number of elements of the first list that must
be sent would be useful to reduce the total computation and communication
time. We can exploit the information of the query logs to estimate the number
of elements of the shortest list that should be sent at the beginning of the
computation to ensure that the appropriate number of results will be found. Of
course we cannot be sure we will effectively obtain that number, but we have
two possible solutions to that. First, we could choose the number of postings to
send so as the probability of having enough elements exceeds a certain threshold,
admitting the (rare) possibility of having less results than needed. A second idea
would be to choose that number and, in case of not having enough elements in
the intersection, behave as in the centralized case, i.e. asking for extra results to
the first processor and repeating the process. We implemented the first of these
ideas and compared it with the Distributed and Centralized strategies above.

Clairvoyant Distributed Ranking:

1. The manager-merger of the query sends it to a random processor at each
column, that will be the manager-ranker.

2. The manager-ranker of each column prepares the route for the query and
sends it to the first processor of that route.

3. Each processor that receives the query fetches a certain number of postings
of its term(s) according to the estimation, intersects them with the partial
list it receives and sends the result to the following processor in the list.
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Fig. 2. Average length of the intersection vs length of the shortest list, two-term queries

4. The last processor sends the results to the manager-ranker of the column,
which makes the ranking and sends the results to the manager-merger.

5. The manager-merger receives the results of all the columns and merges them.

We now explain how we did to compute the parameters of Clairvoyant Rank-
ing, i.e. the number of postings of the shortest list that need to be sent to
ensure that with high probability the top-K elements will be found. We used the
same data sets and query logs described in Section 4 to compute the average
length of the intersection for queries with different number of terms, and ana-
lyzed the results as a function of the length of the shortest posting list involved
in the intersection. Figure 2 shows the resulting values for 2-term queries. We
then computed min-square approximations, and another linear function that is
a lower-bound to the average length for more than 90% of the queries. The in-
verse of the linear lower bound acts as an upper bound to the average length
of the resulting list, so fetching that number of postings from the shortest list
would, on average, be enough for more than 90% of the queries. We decided
to fetch twice that number to cope with those intersections whose results are
smaller than average. The values needed to have top-K results in at least 90%
of the queries are those depicted in table 1. Those were the values used in the
experiments described in section 4. For queries with 4 or more terms, we used
the same values as for 4 term intersections.

Re-using Intersections. Although as we mentioned before replication is nor-
mally introduced to improve fault tolerance and throughput (due to the added
processing capacity), the D replicas of a processor may contain intersections be-
tween pairs of terms that could be useful to solve new queries. It is then pertinent

Table 1. # of postings of the shortest list sent to ensure 90% of the queries have
enough results

# of terms # of postings sent
2 (K/C + 1000) ∗ 5
3 (K/C + 1000) ∗ 22
4 (K/C + 400) ∗ 50
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to try to exploit this advantage by first making a sort of tour along the replicas
to “see” if there is something useful to solve a current query in the column. That
way, the caches of the replicas behave in some way as a common shared resource.
In the following we propose a strategy to achieve this goal.

Each processor will be responsible of a set of terms, given by a hashing function
H . This function H must be such that it distributes terms among processors
trying to cluster together terms frequently co-occurring in queries. H is extended
from terms to queries, in some reasonable way (for example, defining H(q) =
H(t), where t is the term of q with the longest individual posting list among
those forming q). Each processor p will have a cache of posting lists, divided in
two parts: a static part where it will hold the most useful posting lists (according
to the logs), among the terms t such that H(t) = p, and a dynamic part, both for
terms t such that H(t) = p and for terms t such that H(t) <> p. Besides, each
processor will maintain a dynamic cache of intersections (pair intersections),
which will contain only queries or partial queries q such that H(q) = p. Upon
computing complex intersections, p will eventually cache pair-intersections in it’s
own cache and also may cache pair-intersections in other processor’s intersection
cache. Finally, each processor will have a results-cache, where it will hold results
of previous queries assigned to it. The following algorithm shows the behavior
of a processor upon receiving a query.

- Given a query q = t1, . . . , tr (abusing notation we denote by q also the set of terms {t1, . . . , tr})
- q is assigned to p = H(q)
- If p has q in its results cache then p updates the validity of q in cache and answers
- else
If p has q in it’s own intersection cache then p updates the validity of q in cache and answers
- else

- Let TY be the set of terms of q that appear already in an intersection with another term of q
in the intersection cache of p
- If TY = q (i.e. p has all the pairs needed to compute the answer in its own cache)

- p computes the answer, updates the validity of all the used pairs, caches q in the results
cache and answers

- else
- Let TN = q − TY

- Let T p
N = TN ∩ H−1(p) (i.e. the set of terms that are not cached and must be looked

for in p)
- Let T p

N = TN ∩ H−1(p) (i.e. the set of terms that are not cached and must be looked
for in other processors)
- p asks processors in H(T p

N ) for intersections or posting lists useful for computing q
- Each processor answers, and blocks the contents of the cache for a superstep
- Let T be the set if terms in T p

N such that NO useful intersections are kept in the caches.
- p couples together all the terms in T p

N (putting together pairs with maximum frequency or
maximum frequency × length of the posting lists), computes and caches their intersections.
- If |T p

N | is odd, the uncoupled term is coupled with one term in T , p computes their
intersection and caches the result where it corresponds according to H.
- p couples together the rest of the terms in T (putting together pairs with maximum
frequency or with maximum frequency × length of the posting lists), computes the
intersection of each pair and caches each result where it corresponds according to H.
- p computes the query using the information already in the caches of the other processors
and its own cache
- p communicates to the other processor which information it has used, the other processors
update the validity of the information
- p caches q in the results-cache and answers

We must also say what a processor does in case another processor makes a
request: If I have a pair or a partial result useful for the query: (a) Answer to the
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asking processor, (b) Block it during one superstep, (c) When the processor tells
me that it has used the provided pair or result, update the cache accordingly.

Finally, we must say what’s the meaning of “caches the result where it corre-
sponds according to H .” When a processor computes a pair that does not belong
to him accordingly, it will cache it in the owner’s cache. This means that upon
a request of caching, the other processor p’ must: (a) Receive the list, (b) Make
place in the cache according to the caching policy, and (c) Update the cache
with the new list.

3 A Cost Estimation Methodology

Our cost estimation framework is based on the bulk-synchronous model of par-
allel computing (BSP) [8], where computation is organized as a sequence of
supersteps, in each of which the processors may perform computations on local
data and/or send messages to other processors. The messages are available for
processing at their destinations by the next superstep, and each superstep is
ended with the barrier synchronization of the processors.

The total running cost of a BSP program is the cumulative sum of the costs
of its supersteps, and the cost of each superstep is the sum of three components:
computation, communication and barrier synchronization. Computation cost is
given by the maximum computation cost of a processor in the superstep, and
will be denoted by a quantity w. This will include also disk accesses, whose unit
cost will represented by a constant δ. Besides, we note that just for participating
in the processing of a query, a processor incurs a certain overhead β, which must
also be taken in consideration when accounting for the actual cost of the query.
Communication cost is given by the maximum number of word-length messages
sent or received by a processor during the superstep (denoted by h) times the
cost of communicating one word (γ). Hence this will be denoted by the product
h∗γ. Finally, we will use L for the synchronization cost. Parameters γ, L, β and
δ take into account the characteristics of the particular computer architecture
that is emulated.

The impact of uneven load balance in the cost is taken into account by con-
sidering maximum cost among all the processors for each of the costs above.
Moreover, we can compute the load work and communication efficiency using
this model as follows: for any performance measure X , in each superstep we
compute its value for each processor, and define BSP efficiency for X as the
ratio average(X)/maximum(X) ≤ 1, over the P processors. This gives an idea
of how well we distribute the workload among processors.

We end this section with the list of the primitive components that together
conform the costs (computation and communication) that are charged to each
query:

– ti(x, y): Expected time employed by a processor to compute the intersection
of two lists of lengths x and y respectively.

– tm(x): Expected time employed by a processor to merge a set of lists of total
length x.
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– tr(x): Expected time employed by a processor to rank a list of length x.
– I(x, y): Expected length of the intersection of two lists of length x and y.
– γ: time employed to transmit a unit of information from one processor to

another.
– δ: cost of accessing a unit of information in disk.
– β: overhead due to the participation of a processor in a query.
– L: time for the barrier synchronization at the end of each superstep.

4 Experimental Setting

We did our experiments to estimate the cost of our algorithm using P=512
processors with different combinations of P = C×R. The number of rows ranged
from 1 (local index) to 512(global index). Queries where selected from a query
log with 36,389,567 queries submitted to the AOL Search service between March
1 and May 31, 2006. We preprocessed the query log following the rules applied in
[3] by removing stopwords and completely removing any query consisting only
of stopwords. We also erased duplicated terms and assumed that two queries
are identical if they contain the same words no matter the order. The resulting
query trace has 16,900,873 queries, where 6,614,176 are unique queries and the
vocabulary consists of 1,069,700 distinct query terms. 75% of these queries occur
only once, and 12% of them occur twice. The index was built using a 1.5TB
sample of the UK’s web obtained from Yahoo! searches.

We used caching in several ways as we mentioned before. For the experiments
we set the overall cache sizes so as to maintain information of at most 10% of
the processed queries. In all the cases the broker machine has a cache of results
of previous queries (RCache), and the processors maintain caches of posting lists
to reduce secondary memory accesses. In the experiments reported in Section 4
we considered an additional level of caching introduced in Section 2. For the
algorithms using replication, to improve the throughput and fault tolerance (see
for example [6]), we set the number of replications D = 4, so in these cases we
have P ×D processors available to compute queries.

We defined particular costs for the different primitive functions and con-
stants, based on benchmarking runs we did on the same collection. The val-
ues are expressed relative to a base-line in terms of ranking time defined as
tr(x) = x. Merge operations require in average tm(x) = x/6. An intersec-
tion between two lists of lengths x, y can be done in time proportional to
min(x log y, x + y). However, the constants discovered in the benchmark make
us count ti(x, y) = min(x log y, x+ y)/6. For I, the random variable that models
the expected length of the intersection of lists, we used a power-law distribution,
with parameters varying according to the number of lists being intersected. The
actual values of these parameters were determined via sampling from real queries.
We also established that the communication cost for transmitting a query is, on
average, 1/4 of the time required to transmit a K-word list. For P = 512, the
communication time for one unit under a heavily loaded network was γ ≈ 0.453,
and the overhead constant β ≈ 1.5. The cost for the synchronization was L ≈ 8.
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Fig. 3. Number of participating rows as a function of the number of columns

We give as example a succinct explanation of the costs charged to each pro-
cessor in the Distributed Ranking case for AND queries, the other cases are
analogous. For simplicity we omit the parameters of random variable I.

Distributed ranking costs:
1. Send the query to a processor at each column. Computation: β; Communi-

cation: K/4× γ
2. Send the query to the first processor in the route. Computation: β; Commu-

nication: K/4× γ
3. Fetch and intersect.(At each participating processor) Computation: δ × K

for disk access + ti(I) + β; Communication: I × γ.
4. Rank. Computation: tr+ β; Communication: I × γ
5. Merge. Computation: tm+ β; Communication: K × γ

OR Queries with iterations. In this experiment we considered Centralized
and Distributed ranking for OR queries, with an additional restriction imposed
in order to balance communication, secondary memory recovery and computa-
tion costs among processors: we limit the number of operations of each type
a processor may execute in each superstep. Operations not performed in one
superstep due to that limitation, are delayed until the next one. Thus, the pro-
cessing of a query is separated in successive iterations. The estimation of the
costs is performed in each superstep, charging always the maximum cost for
each operation. We used the RCache at the broker and top-K cache plus posting
list cache at search processors’ side.

As the number of columns augments, the probability that the query terms are
located in fewer rows augments (see Figure 3), and therefore the communication
costs tends to decrease, while the computation overhead increases because each
query is processed by more columns. There must naturally exist a trade-off
between the two extremes of the 2D index. Figure 4[Left] shows the cost for
the centralized and distributed ranking algorithms when processing OR queries
with an asynchronous system for different P = R×C combinations. Results show
that when the index is working as a term partition (matrix size of 512× 1) both
ranking strategies tend to perform well, but a better configuration is 16× 32. A
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document partition index has a higher cost due to the overhead of dealing with
every query in all processors. The centralized ranking has a lower cost in each
extreme of the matrix because it requires less iterations to finish the processing
of a query when using Persin filters.

Figure 4[Right] shows the average efficiency measured as
∑

(wpi/Maxwp)/P
in each superstep, where wpi is the computation performed by processor pi, and
Maxwp is the maximum computation performed in that superstep. Results show
that using a large number of rows improves both ranking’s efficiency, but when
working with 512 columns and one row per column, the distributed ranking
scheme reports a better efficiency than the centralized one.
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Fig. 4. OR queries [Left] Normalized costs. [Right] Computation efficiency.

OR Queries with complete lists. Figure 5 shows results for OR queries
when we accessed to the whole posting lists of each term to perform the ranking
operation, i.e. without the iterations defined in the previous experiment. The
same cache settings were used. As we may see, in this case the term partition
index with centralized ranking presents high costs due to the imbalance it has
both in communication (because it has to transmit complete posting lists from
the search processors to the manager) and in secondary memory access (when
retrieving the posting lists for each term). On the other extreme, the document
partition index is more balanced in both costs, but its overhead is clearly higher.
The Distributed ranking scheme presents more balanced communication with all
configurations (ranking is performed in each processor before sending results).
But the term partitioned index presents some imbalance in secondary memory
retrieval as ranking is performed over larger posting lists. Again, we see the
trade-off communication/overhead, with the optimal configuration realized by a
128× 4 arrangement of the processors.

Different ranking strategies for AND Queries. Figure 6 shows the per-
formance of Distributed, Centralized and Clairvoyant strategies with different
configurations. As we may see, the best configurations are those in which the 256
processors are arranged in 32 or 64 columns, depending on the ranking strategy,
the optimal combination being the clairvoyant strategy with 64 columns. Again,
as the number of columns augments, the probability that the query terms are



248 E. Feuerstein et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32 64 128 256 512

N
o

rm
al

iz
ed

 C
o

st

Number of Columns

Centralized
Distributed

Fig. 5. Normalized costs for OR queries with complete lists

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 50 100 150 200 250 300

C
o

st

Number of Columns

Centralized
Distributed
Clairvoyant

Fig. 6. Normalized costs vs. number of columns, for different ranking strategies

located in fewer rows augments (see Figure 3), and therefore the communication
costs tends to decrease, while the computation overhead increases because each
query is processed by more columns. There is naturally a trade-off between the
two extremes. Both the distributed and centralized approaches suffer from the
inconvenient that each time a new group of postings must be considered for
the intersection, they must be compared with all the previously fetched terms,
with a cost that is almost quadratic in the required number of iterations. The
clairvoyant strategy is free of that problem.

Intelligent Caching in a Replicated Local Index. In this section we re-
port the results of an experiment in which we compare the effects of different
caching protocols for AND queries in a 1×P ×D setting (i.e. a local index with
replication, D = 4, 8). The base-line was the architecture having all the caching
levels considered before, except the intersection cache (No Intersection). We then
considered adding the intersection cache, but without any particular strategy for
routing the queries and their corresponding caching decisions (Intersection). Fi-
nally, we considered the usage of intelligent distribution of the traffic among the
rows, using the hashing function H as described in Section 4.2.1 (Intersection-
h). Fig. 7(a) shows the throughput obtained by all three intersection algo-
rithms. This graphics shows the improvement (almost 30% with K=128 and more
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notorious when with K=1024 is 60%) obtained when using a more intelligent al-
gorithm to reassign the intersections operations. Fig. 7(b) shows the disk and
CPU cost saving relative to an algorithm that uses no caching at all. As it may
be seen, all three algorithms obtain visible differences in both aspects with re-
spect to that base line. However, the use of intersection caches helps improve
that in an extra 20%. The most significant savings are obtained for bigger values
of D. In those cases, the number of disk accesses needed by the best algorithm
is about 1/4 of the number needed without caching of intersections.

5 Conclusions

We have presented a methodology for predicting the costs of different algorithms
and architectures for distributed indexes of different sizes. We provided results
for some interesting experiments regarding a novel two-dimensional architecture
and some new ranking and caching strategies. The results obtained allow us to
be optimistic on the further development and applications of the cost framework,
as for example putting together the different features we have tested separately,
like replication, caching, etc. The cost framework can be used for analyzing
and comparing our work with other authors when evaluating the scalability of
alternative strategies.
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Abstract. The enormous amount of information stored in unstructured texts can-
not simply be used for further processing by computers, which typically handle 
text as simple sequences of character strings. Text mining is the process of ex-
tracting interesting information and knowledge from unstructured text. One key 
difficulty with text classification learning algorithms is that they require many 
hand-labeled documents to learn accurately. In the text mining pattern discovery 
phase, the text classification step aims at automatically attribute one or more pre-
defined classes to text documents. In this research, we propose to use an algo-
rithm for learning from labeled and unlabeled documents based on the combina-
tion of Expectation-Maximization (EM) and a naïve Bayes classifier on a grid 
environment, this combination is based on a mixture of multinomials, which is 
commonly used in text classification. Naïve Bayes is a probabilistic approach to 
inductive learning. It estimates the a posteriori probability that a document be-
longs to a class given the observed feature values of the documents, assuming 
independence of the features. The class with the maximum a posteriori probabil-
ity is assigned to the document. Expectation-Maximization (EM) is a class of it-
erative algorithms for maximum likelihood or maximum a posteriori estimation 
in problems with unlabeled data. The grid environment is a geographically dis-
tributed computation infrastructure composed of a set of heterogeneous re-
sources. The semi-supervised learning classifier in the grid is available as a grid 
service, expanding the functionality of Aîuri Portal, which is a framework for a 
cooperative academic environment for education and research. Text classifica-
tion mining methods are time-consuming by using the grid infrastructure can 
bring significant benefits in learning and the classification process.  

Keywords: grid computing, text classification, expectation-maximization and 
naïve bayes. 

1   Introduction 

Text mining is a relatively new practice derived from Information Retrieval (IR) [1, 2] 
and Natural Language Processing (NLP), Baeza-Yates et al [3]. The strict definition of 
text mining includes only the methods capable of discovering new information that is 
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not obvious or easy to find out in a document collection, i.e., reports, historical docu-
ments, e-mails, spreadsheets, papers and others. Text mining executes several proc-
esses, each one consisting of multiple phases, which transform or organize an amount 
of documents in a systematized structure. These phases enable the use of processed 
documents later, in an efficient and intelligent manner. The processes that compose the 
text mining can be visualized in fig. 1 that is summarized version of the figure model 
from Han et al [4] on page 6.   

Text classification has become one of the most important techniques in text min-
ing. The task is to automatically classify documents into predefined classes based on 
their content. Many algorithms have been developed to deal with automatic text clas-
sification. One of the common methods is the Naïve Bayes, Mitchell [5]. Although 
the naïve Bayes works well in many studies [6, 7, 8], it requires a large number of 
labeled training documents for learning accurately. In the real world task, it is very 
hard to obtain the large labeled documents, which are mostly produced by humans. 
Nigam et al. [9] apply the Expectation-Maximization (EM) algorithm to improve the 
accuracy of learned text classifiers by augmenting a small number of labeled training 
documents with a large pool of unlabeled documents. The EM algorithm uses both 
labeled and unlabeled documents for learning. Their experimental results show that 
using the EM algorithm with unlabeled documents can reduce classification error 
when there is a small number of training data.  

 

Fig. 1. Shows a summary of the text mining phases 

Unfortunately, the EM algorithm is too slow when it performs on very large docu-
ment collections. In order to reduce the time spent, we propose to use the grid infra-
structure to improve the computational time in learning and classifying process. The 
text classification task uses an algorithm based on the combination of EM algorithm 
and the Naïve Bayes classifier, Dempster et al [10]. This can bring significant benefits 
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and expands the functionality of Aîuri Portal, which uses this semi-supervised learn-
ing algorithm as a grid service, which will be explained in section 3.2. 

Implementation of text mining techniques in distributed environment allows us to 
access different geographically distributed data collections and perform text mining 
tasks in distributed way.  

This paper is organized as follows. In section 2, we present an overview of text 
classification task with the classification algorithms. In section 3, we briefly present 
an overview of grid computing. Section 4 describes the distributed implementation of 
naïve Bayes classifier via the EM algorithm on a grid and we briefly conclude on 
Section 5. 

2   Text Classification 

Text categorization or classification aims to automatically assign categories or classes 
to unseen text documents [11, 12], some classification techniques are naïve Bayes 
classifier [5], k-nearest neighbor, Yang [13], and support vector machines, Joachims 
[14]. The Naïve Bayes algorithm requires a large number of labeled training docu-
ments, but to obtain training labels is expensive, while large quantities of unlabeled 
documents are readily available. The combination of EM algorithm and a Naïve 
Bayes classifier can make use of unlabeled documents to training. This new algorithm 
first trains a classifier using the available labeled documents, and probabilistically 
labels the unlabeled documents. It then trains a new classifier using the labels for all 
the documents, and iterates to convergence, fig 2. 

In this section, we briefly review the naïve Bayes classifier and the EM algorithm 
that is used for making use of unlabeled data. 

2.1   Naïve Bayes Classifier 

Naïve Bayes Classifier is a probabilistic learning algorithm that derives from Bayes-
ian decision theory describing by Mitchell [12], which by default assumes observa-
tions are independent. It is easy to build a Naïve Bayes Classifier when you have a 
large number features. Researchers have shown that Naïve Bayes Classifier is com-
petitive with other learning algorithms in many cases and in some cases it outper-
forms the other methods [8]. Learning in Naïve Bayes Classifier involves estimation 
of the parameters for a classifier, using the labeled document only. The classifier then 
uses the estimated parameters to classify unobserved documents. 

First we will introduce some notation to describe text. Let D be a set of text docu-
ments D = {d1, d2, d|D|}, and ck be a possible class from a set of predefined classes  
C = {c1, c2, c|C|}.  The probability of a document d being in class c, P(ck | D), is  
computed as  

)|()()|( kcDPkcPDkcP ×=                                           (1) 
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classifier model

Naive Bayes
Classifier

Labeled Documents
Training set

Labeled Documents

  
Fig. 2. Expectation-Maximization algorithm with Naïve Bayes classifier 

Class probability P(ck) can be estimated from training data. However, direct esti-
mation of P(ck|D) is impossible in most cases because of the sparseness of training 
data. 

By assuming the conditional independence of the elements of a vector, P(D|ck) is 
decomposed as follows,  

,
1

)|()|( ∏
=

=
k

j kcjdPkcDP                                          (2) 

where dj is the jth element of a set of text documents D. Then Equation (1) becomes 

)(

1
)|(

)()|(
DP

k

j kcjdP

kcPDkcP

∏
=

×= .                                   (3) 

With this equation, we can calculate P(ck|D) and classify D into the class with the 
highest P(ck|D). 

Note that the naïve Bayes classifier assumes the conditional independence of  
features. This assumption however does not hold in most cases. For example, word  
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occurrence is a commonly used feature for text classification. However, obvious 
strong dependencies exist among word occurrences. Despite this apparent violation of 
the assumption, the naïve Bayes classifier exhibits good performance for various 
natural language processing tasks. 

2.2   Expectation-Maximization Algorithm 

One disadvantage of the Naïve Bayes Classifier is that it requires a large set of the 
labeled training documents for learning accurately. The cost of labeling documents is 
expensive, while unlabeled documents are commonly available. By applying the EM 
algorithm, we can use the unlabeled documents to augment the available labeled 
documents in the training process. Figure 3 shows the procedure of modified EM 
algorithm. 

 
  Input: Training Documents 
Output: Classification Model 
 

1. Train the classifier using only labeled data. 
2. Classify unlabeled documents, assigning probabilistic-weight class labels to them. 
3. Update the parameters of the model. Each probabilistically labeled document is 
counted as its probability instead of one. 
4. Go back to (2) until convergence. 
 

Fig. 3. Modified EM algorithm 

The EM algorithm is a type of iterative algorithm for maximum likelihood or 
maximum a posteriori estimation in problems with incomplete data [10, 15, 16]. This 
algorithm can be applied to minimally supervised learning, in which the missing val-
ues correspond to missing labels of the documents, McLachlan et al [17]. In our task, 
the class labels of the unlabeled documents are considered as the missing values. 

The EM algorithm consists of the E-step in which the expected values of the miss-
ing sufficient statistics given the observed data and the current parameter estimates 
are computed, and the M-step in which the expected values of the sufficient statistics 
computed in the E-step are used to compute complete data maximum likelihood esti-
mates of the parameters [10]. 

The EM algorithm starts using the Naïve Bayes Classifier to initialize the parame-
ters feature probabilities and class priors using the labeled documents. The E-step and 
M-step are iterated until the change in class labels for the unlabeled documents is be-
low some threshold (i.e. the algorithm converges [16] to a local maximum). The  
E-step almost dominates the execution time on each epoch, since it estimates the class 
labels for all the training documents [9]. 
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3   Grid Environment 

A grid is a geographically distributed computation infrastructure composed of a set 
of heterogeneous machines, often with separate policies for security and resource 
use, Qi et al [18], that users can access via a single interface. Grids therefore, pro-
vide a common resource-access technology and operational services across widely 
distributed virtual organizations composed of institutions or individuals that share 
resources.      

Today grids can be used as effective infrastructures for distributed high-performance 
computing and data processing, Foster et al [19]. 

3.1   NACAD Grid Environment 

The NACAD Grid uses Globus Toolkit 4 (GT4) [20] as a grid middleware, which is a 
widely used middleware in scientific and data-intensive grid applications, and is be-
coming standard for implementing grid systems. The toolkit addresses security, in-
formation discovery, resource and data management, communication, fault detection, 
portability issues and is based on grid services. Grid services is a technology based on 
the concepts and technologies of grids and web services and can be defined as a web 
service that delivers a set of interfaces that follows specific conventions, fig. 4. This 
technology was originated from the necessity to integrate services through virtual, 
heterogeneous and dynamic organizations, composed of distinct resources, whether 
within the same organization or by resource sharing.  

 

Fig. 4. Grid services  
 

3.2   Grid Services 

A grid service is a web service that conforms to a set of conventions (interfaces and 
behaviors) that defines how a client interacts with a grid service. A web service  
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converts an application into a web-application, which is published, found, and used 
through the web facilitating the communication between applications.  

In this work we propose to implement the classifier model as a grid service in the 
Aîuri Portal [21], which is a framework for a cooperative academic environment for 
education and research. The components are grid Text Mining services and in the 
future Data Mining components will be added. The classifier service will be included 
in the Aîuri Portal showing that many distinct algorithms can be easily added and 
accessed through this Portal, fig 5.  
 
 

Fig. 5. The classifier service as a component service in the Aîuri Portal 

4   Naïve Bayes Classifier via the EM Algorithm on a Grid 
Environment 

The enormous amount of information stored in huge document databases in unstruc-
tured format or semi-structured format cannot simply be used for further processing 
by computers, which typically handle text as sequences of character strings. Text 
mining provides some methods, like classification, able to extract interesting informa-
tion and knowledge from unstructured text. One key difficulty with text classification 
learning algorithms is that they require many hand-labeled documents to learn accu-
rately. Using the Naïve Bayes Classifier via the EM algorithm we can use the unla-
beled documents to increase the available labeled documents in the training process. 
Implementation of text mining techniques in distributed environment allows us to 
access different data collections that are geographically distributed and perform text 
mining tasks in distributed way. Figure 6 shows the distributed EM algorithm for text 
classification on a grid environment.  
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  Input: Training Documents 
Output: Classification Model 
 
 
1. The Portal receives from the user the parameters input file, the labeled documents 
and the unlabeled documents.  
2. The Portal sends a request to the service container to create the grid service  
instance, which is composed with the Naïve Bayes Classifier and the EM applica-
tion.  
3. The classifier grid service builds the initial global classifier from only the labeled 
documents using the grid nodes.  
4. Each grid node receives a pre-defined set of training documents from the Portal. 
5. Iterate until the classifier parameters are still improved: 
   5.1. E-step: Each grid node estimates the class of each document by using the 
current global classifier. 
   5.2. M-step: Each grid node re-estimates its own local classifier given the  
estimated class of each document. 
6. Sum up the local classifier to obtain the new global classifier and return them to 
all grid nodes. 
 

Fig. 6. The distributed EM algorithm for text classification on a grid environment 

5   Results 

In this study we used the Reuters text collection to evaluate the proposed approaches. 
Term stemming and stopwords removal techniques are used in the prior stage of text 
preprocessing.  

Reuters-21578 collection, Distribution 1.0 [22], is a financial corpus with news ar-
ticles averaging 200 words each. In this corpus there are about 12000 classified sto-
ries into 118 possible categories, this collection has articles with none or at least one 
category. For our study, we use The Modified Apte Split to generate a single-topic 
split, in which articles with a single topic and with the text tag not empty were as-
signed for training, testing and unlabeled sets. For the training and unlabeled sets, we 
used articles with attributes: lewissplit = “train” and topics = “yes” of the Reuters tag; 
and for testing set used articles with attributes lewissplit = “test” and topics = “yes”. 
Considering only articles with this single-topic split and the categories which still 
have at least one train and one test article, we have 8 of the 10 most frequent catego-
ries. In this single-topic split we used 4936 articles for training, 2189 articles for 
unlabeled set and 549 articles for testing. Table 1 presents the distribution of articles 
per most frequent categories, the number of training and testing articles and the total 
quantity of articles. 
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Table 1. Number of training, unlabeled and testing articles from Reuters‘ most frequent categories 

Categories # Train # Unlabeled # Test # Total 
grain 37 10 4 51 
trade 226 75 25 326 

money-fx 185 87 21 293 
crude 228 121 25 374 

interest 171 81 19 271 
ship 97 36 11 144 
acq 1436 696 160 2292 
earn 2556 1083 284 3923 
Total 4936 2189 549 7674 

5.1   Performance Criteria 

The simulation results were evaluated using Accuracy, Recall, Precision and F meas-
ures, which were computed in the unlabeled and testing sets for each category. The 
information used was: 

 TP – is the number of correct predictions of a positive article. 
 TN – is the number of correct predictions of a negative article. 
 FP – is the number of incorrect predictions of a positive article. 
 FN – is the number of incorrect predictions of a negative article. 

 

Accuracy is the percentage of correct classifications obtained (4). 
 

 

(4) 
 
 

Recall is the percentage of total documents for the given topic that are correctly 
classified (5). 

 
(5) 

 
Precision is the percentage of predicted documents for the given topic that are cor-

rectly classified (6). 
 

(6) 
 
 

F measures is the weighted harmonic mean of precision and recall (7). 
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Fig. 7. The categories precision measure evolution across 10 epochs 

A confusion matrix [23] contains information about actual and predicted classifica-
tions done by a classification system. Performance of such systems is commonly 
evaluated using the data in the matrix. Table 2 shows the confusion matrix for the 
eight most frequent categories classifier. 

Table 2. Confusion Matrix of  the eight categories 

 grain trade  money-fx crude interest ship acq  earn  

grain 0 0 2 0 0 2 0 0 

trade  0 24  1  0  0  0  0  0  

money-fx 0 1  16  0  3  0  0  1  

crude  0 2  1  20  0  0  1  1  

interest  0 1  10  0  8  0  0  0  

ship  0 0  0  0  0  11  0  0  

acq  1 4  5  1  0  1  124  24  

earn  8 2  11  9  4  1  18  231  

6   Conclusion 

In this study, we propose to use a combination [9] of Expectation-Maximization (EM) 
[10] and a Naïve Bayes classifier on a grid environment. The semi-supervised algo-
rithm implemented as a grid service, is an extension of the Aîuri Academic Portal. 
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Using this portal on grid, we can explore distributed services across grid environ-
ments, categorize a large collection of textual documents, extract consistent knowl-
edge, visualize the results and set the parameters to allow better understanding of the 
behavior of different knowledge discovery tasks. 
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Abstract. After years dominating high performance computing, expen-
sive vector computers were gradually replaced by more affordable so-
lutions and the use of vectorization techniques once applied to many
scientific codes also faded. This paper addresses the vectorization of en-
gineering codes using Streaming SIMD Extensions (SSE) also known
as multimedia instructions. This particular kind of vectorization differs
from the old vectorization techniques in the sense that it relies on hard-
ware features and instruction sets only present on modern processors.
Evolving from Intel MMX, SSE is the fifth generation of an established
technology highly suited to handle computing intensive tasks like en-
cryption/decryption, audio and video compression, also including digital
signal processing but not so well explored for scientific computing, spe-
cially among engineering programmers. To demonstrate the benefits of
vector/SIMD computing and its implementation on existing scalar al-
gorithms, the authors present this technique applied to an engineering
program for the solution of two dimensional elastostatic problems with
the boundary element method. Taking an application from a well-know
reference on the area, the paper focus on the programming techniques
and addresses common tasks used in many other codes, like Gauss inte-
gration and equations system assembling. Thus, the vectorization guide-
lines provided here may also be extended to solve many other types of
problems, using other numerical methods as well as other multimedia
instruction set extensions. Numerical experiments show the effectiveness
of the proposed approach.

1 Introduction

Over decades, since the invention of the first computers, hardware and software
resources have been created or modified to follow the increasing complexity of
engineering and scientific problems. During many years, vector computers domi-
nated high performance computing but its technologies have been recently super-
seded by more affordable architectures. In the current world of off-the-shelf-built
clusters and multi-core blades, only two major manufacturers, NEC and Cray,
still offer expensive solutions. Nowadays, vector computers share less than 1%
of the high performance computer market.1

1 www.top500.org

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 263–270, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Despite the fading use of such computers the benefits of vector computing
were not forgotten by hardware engineers who brought the old technology into
the new processors present on today’s clusters, servers, desktops and notebooks.
The first step in this direction came in the late 90’s with instructions sets such
as Intel MMX, AMD 3D-Now and Apple Altivec. Originally developed for multi-
media applications, these Single-Instruction-Multiple-Data (SIMD) instructions
quickly evolved into powerful extensions highly suited to applications process-
ing data streams such as encryption/decryption, audio and video compression,
digital image and signal processing, among others. Today, Streaming SIMD Ex-
tensions (SSE) represent an established technology with significant impact in
processor performance.

Unfortunately, developers of engineering codes still do not take full advan-
tage of the resources offered by modern processors and compilers, such as auto-
vectorization or explicit language instructions. This fact has called the attention
of the present authors that address this work to engineering programmers willing
to speed their applications with the use of multimedia instructions. Here, this
vectorization technique is applied to a well known boundary element application
to solve two-dimensional elastostatic problems, although the concepts can also
be implemented to other kind of problems and alternative numerical methods.

The present text is organized as follows: the next section presents an outline
of the boundary element theory and the following section describes the selected
application. Section 4 introduces the Streaming SIMD Extensions while Section
5 details the SSE implementation of the code. In Section 6 a performance analysis
is presented. The paper ends with a summary of the main conclusions.

2 Outline of the Boundary Element Theory

The boundary element method (BEM) [1] is a technique for the numerical solu-
tion of partial differential equations with initial and boundary conditions.

Using a weighted residual formulation, Green’s third identity, Betty’s recip-
rocal theorem or some other procedure, an equivalent integral equation can be
obtained and converted to a form that involves only surface integrals performed
over the boundary. The bounding surface is then divided into elements and the
original integrals over the boundary are simply the sum of the integrations over
each element, resulting in a reduced dense and non-symmetric system of linear
algebraic equations.

The discretization process involves selecting nodes on the boundary, where
unknown values are considered. Interpolation functions relate such nodes to the
approximated displacements and tractions distributions on the respective bound-
ary elements. The simplest case positions a node in the center of each element
and defines an interpolation function that is constant over the entire element.
For linear 2-D elements, nodes are placed at, or near, the end of the elements
and the interpolation function is a linear combination of the two nodal values.
High-order elements, quadratic or cubic, can be used to better represent curved
boundaries using three and four nodes, respectively.
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Once the boundary solution has been obtained, interior point results can be
computed directly from the basic integral equation in a post-processing routine.

3 The Application

The program reviewed here is a well-known code presented by Telles [1] for
the solution of two dimensional elastostatic problems using linear boundary
elements.

The INPUT routine reads the program data, MATRX routine generates the equa-
tion system, while the OUTPT routine prints the boundary solution, computes and
prints boundary stresses and internal displacements and stresses.

The solver is usually the most time consuming routine in BEM programs.
High-performance solvers are available from standard libraries and LAPACK’s
solver SGESV [2] is used here.

However, the generation of the equations system as well as the computing
of internal points together can take the most part of the processing time [10]
and demand special care. Those two procedures are usually implemented by the
researchers and greatly limit the speedup if not properly optimized. Hence, the
vectorization programming techniques are here applied to the generation of the
system of equations and the evaluation of internal point results, since they can
be implemented following the same techniques.

4 The Streaming SIMD Extensions

Computers have been originally classified by Flynn’s taxonomy [7] according to
instructions and data streams as Single-Instruction-Single-Data (SISD), Single-
Instruction-Multiple-Data (SIMD), Multiple-Instruction-Single-Data (MISD)
and Multiple-Instruction-Multiple-Data (MIMD).

As the name suggests, the SIMD model applies to systems where a single
instruction processes a vector data set, instead of scalar operands.

One of the first SIMD implementations was the MMX technology introduced
with Pentium computers intended to enhance the performance of multimedia
applications. The 57 MMX instructions can process simultaneously 64-bit data
sets of integer type.

With the release of the Pentium III processor an instruction set called Stream-
ing SIMD Extensions (SSE) was added to Intel 32-bit architecture. SIMD ex-
tension comprises 70 instructions, 12 for integer operations and 50 for single-
precision floating-point operations. The remaining 8 instructions are for cache
control and data prefetch.

While MMX operates on integers and SSE are essentially single-precision
floating-point instructions, the SSE2 set introduced with Pentium 4 added sup-
port for double-precision (64-bits) floating-point operations and extended MMX
integer instructions from 64 to 128 bits. The 144 instructions implemented by
SSE2 were followed by 13 SSE3 instructions, that also support complex floating-
points operations.
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4.1 Auto-vectorization Compilers

The first and quickest way to implement Streaming SIMD Extensions is auto-
vectorization, a feature present on most recent compilers such as Intel Fortran
and C++.

The SSE technology is now also incorporated by Fortran and C/C++ com-
pilers, which offer compiler options to generate vectorized SSE code automati-
cally. Once SSE compiler options are set, the compiler will search the code for
vectorization opportunities, automatically replacing scalar operations by vector
instructions whenever possible.

The implementation of auto-vectorization techniques in the application here
considered is object of a previous work [11] and is not discussed here.

4.2 Compiler Intrinsics

Auto-vectorization compiler options are available in Fortran as well as in C/C++
compilers. While Fortran users must rely on the compiler ability to generate SSE
executables, the C/C++ language alternatively allows to insert explicit vector
functions in the code, giving programmers more control to the vectorization
process.

C/C++ compiler intrinsics provide the user with new data types and a set of
vector functions. Thus, one benefit of SSE intrinsics is the use of C/C++ syntax
of function calls and variables instead of assembly instructions and hardware
registers. Intrinsics are expanded inline to eliminate call overhead.

Vector addition, subtraction, multiplication and division can be performed
using the intrinsic functions mm add ps, mm sub ps, mm mul ps and mm div ps,
respectively. These functions perform one operation on two sets of four floating-
point single-precision values, simultaneously, as illustrated in Fig. 1.

� � � �

� � � �
a4 a3 a2 a1

b4 b3 b2 b1

a4 + b4 a3 + b3 a2 + b2 a1 + b1 xmm3

xmm1

xmm0

xmm3 = mm add ps(xmm0,xmm1)

Fig. 1. SSE Packed Addition

SSE does not include instructions to evaluate sines, cosines, logarithms and
other trigonometric functions. To bypass this limitation, vector implementations
make calls to the Short Vector Math Library (SVML), an Intel library intended
for use by the Intel compiler vectorizer.

In this section only a few instructions are presented. However, SSE provides a
large set of vector operations. For a full description of all SSE instruction set the
reader is referred to Bik [3,4]. A more extensive C/C++ vector implementation
of the original Fortran code with SSE compiler intrinsics will be addressed in
the next section.
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5 An SSE Implementation

In the application under study, an equation system is generated in routine MATRX
with its influence coefficients computed by subroutine FUNC. This routine evalu-
ates all the non-singular element integrals using Gauss integration. For elements
with the singularity at one of its extremities the required integrals are com-
puted analytically. In the first case, a set of small matrix operations are initially
computed, as follows:

[
UL11 UL12
UL21 UL22

]
= −C1

[[
C2 logR 0

0 C2 logR

]
−
[

DR11 DR12
DR21 DR22

]]

Those 2x2 matrices can be converted into vectors of size 4 and matrix oper-
ations can be performed with vector instructions. Thus, a very simple approach
is to use SSE to evaluate those matrices leaving some intermediate operations
to be executed with scalar instructions.

In the original algorithm, those matrices are computed from 2 to 6 times,
accordingly to the number of Gauss integration points defined by an empiric
formula. Alternatively, a fully vector implementation of the matrix computation
above can be achieved by using 4 Gauss integration points and evaluating all
four values of each coefficient at once, including the intermediate values.

A possible SSE implementation of the vector computation discussed is pre-
sented in Listing 1.

Listing 1. An SSE implementation

xmm0 = _mm_set_ps1(DXY[0]); // DXY1

xmm1 = _mm_set_ps1(DXY[1]); // DXY2

xmm2 = _mm_load_ps(CTEv4); // .5 * (XI + 1)

xmm0 = _mm_mul_ps(xmm0,xmm2); // .5 * (XI + 1) * DXY1

xmm1 = _mm_mul_ps(xmm1,xmm2); // .5 * (XI + 1) * DXY2

xmm3 = _mm_set_ps1(X[II]-XS); // X[II] - XS

xmm4 = _mm_set_ps1(Y[II]-YS); // Y[II] - YS

xmm0 = _mm_add_ps(xmm0,xmm3); // XMXY = .5 * (XI + 1) * DXY1 + X[II] - XS

xmm1 = _mm_add_ps(xmm1,xmm4); // YMYI = .5 * (XI + 1) * DXY2 + Y[II] - YS

xmm2 = _mm_mul_ps(xmm0,xmm0); // XMXI^2

xmm3 = _mm_mul_ps(xmm1,xmm1); // YMYI^2

xmm2 = _mm_add_ps(xmm2,xmm3); // XMXI^2 + YMYI^2

xmm2 = _mm_sqrt_ps(xmm2); // R = sqrt(XMXI^2 + YMYI^2)

xmm0 = _mm_div_ps(xmm0,xmm2); // DR1 = XMXI / R

xmm1 = _mm_div_ps(xmm1,xmm2); // DR2 = YMYI / R

xmm6 = _mm_set_ps1(BN[0]); // BN1

xmm7 = _mm_set_ps1(BN[1]); // BN2

xmm3 = _mm_mul_ps(xmm0,xmm6); // DR1 * BN1

xmm4 = _mm_mul_ps(xmm1,xmm7); // DR2 * BN2

xmm5 = _mm_mul_ps(xmm0,xmm1); // UL12 = DR1 * DR2

xmm3 = _mm_add_ps(xmm3,xmm4); // DRDN = DR1 * BN1 + DR2 * BN2

xmm6 = _mm_mul_ps(xmm6,xmm1); // DR2 * BN1

xmm7 = _mm_mul_ps(xmm7,xmm0); // DR1 * BN2

_mm_store_ps(ul12v4,xmm5);

xmm0 = _mm_mul_ps(xmm0,xmm0); // DR1 * DR1

xmm1 = _mm_mul_ps(xmm1,xmm1); // DR2 * DR2

xmm5 = _mm_add_ps(xmm5,xmm5); // 2 * DR1 * DR2

xmm7 = _mm_sub_ps(xmm7,xmm6); // DR1 * BN2 - DR2 * BN1

xmm4 = vmlsLn4(xmm2); // log R

xmm5 = _mm_mul_ps(xmm5,xmm3); // 2 * DR1 * DR2 * DRDN

_mm_store_ps(ul11v4,xmm0);

_mm_store_ps(ul22v4,xmm1);

For each integration point i, UL is used to compute another matrix, G, as
follows:[

G11 G12 G13 G14
G21 G22 G23 G24

]
=
[

G11 G12 G23 G24
G21 G22 G23 G24

]
+

[[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ B

i
1

[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ B

i
2

]
∗ W

i
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Each one of the 2x4 matrices above can be splitted into two 2x2 matrices, as
indicated below:

[
G11 G12
G21 G22

]
=
[

G11 G12
G21 G22

]
+
[

ULi
11 ULi

12
ULi

21 ULi
22

]
∗ Bi

1 ∗ W i

Since all values of UL are stored in vectors, it is quite simple to perform the
multiplications of each value by the respective four values stored in B1 and W .

However, there is no SSE instruction to perform the sum of the elements of a
vector needed in the computation of G.

Using the SSE unpack and move instructions, the values stored on four vectors
can be reordered to obtain the same effect of a matrix transposition, although
here the operations are performed on vectors.

Listing 2 shows how SSE unpack and move instructions can be used in the
computation of one half of matrix G.

Listing 2. SSE matrix transposition

// computing G1

xmm7 = _mm_set_ps1(C);

xmm6 = _mm_set_ps1(C1);

xmm6 = _mm_mul_ps(xmm6,xmm7);

xmm5 = _mm_load_ps(B1Wv4);

xmm5 = _mm_mul_ps(xmm5,xmm6);

xmm0 = _mm_load_ps(ul11v4);

xmm1 = _mm_load_ps(ul22v4);

xmm2 = _mm_load_ps(ul12v4);

xmm3 = _mm_load_ps(ul12v4);

xmm0 = _mm_mul_ps(xmm0,xmm5);

xmm1 = _mm_mul_ps(xmm1,xmm5);

xmm2 = _mm_mul_ps(xmm2,xmm5);

xmm3 = _mm_mul_ps(xmm3,xmm5);

xmm4 = _mm_unpackhi_ps(xmm0,xmm1);

xmm5 = _mm_unpackhi_ps(xmm2,xmm3);

xmm6 = _mm_unpacklo_ps(xmm0,xmm1);

xmm7 = _mm_unpacklo_ps(xmm2,xmm3);

xmm0 = _mm_movelh_ps(xmm6,xmm7);

xmm1 = _mm_movehl_ps(xmm7,xmm6);

xmm2 = _mm_movelh_ps(xmm4,xmm5);

xmm3 = _mm_movehl_ps(xmm5,xmm4);

xmm0 = _mm_add_ps(xmm0,xmm2);

xmm1 = _mm_add_ps(xmm1,xmm3);

xmm0 = _mm_add_ps(xmm0,xmm1);

_mm_store_ps(v4G1,xmm0);

Well-known optimization techniques, usually applied to scalar codes, can also
be used in the implementation of vector algorithms in order to replace long la-
tency instructions and to reduce data dependence. High performance techniques
are presented by the authors in previous works [8,9] and will not be addressed
here.

6 Results Summary

The implementation evaluated here runs on a SGI Altix XE 1200 cluster with
11 nodes, comprising 8 Quad-Core Xeon 2.66GHz (X5355) processors and 8 GB
memory per node. The operating system is Linux SLES 10.1, ProPack 5 SP3
and Intel C/C++ 10 compiler is used.
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The case study corresponds to a square plate under biaxial load, as found in
[1], with nodes distributed along the boundary.
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Fig. 2. A square plate under biaxial load

To evaluate the performance of the techniques presented here, a 10.000 bound-
ary nodes study case was used. This particular discretization yields a 20.000
square dense nonsymmetric system of linear equations.

In its original version the program spent 45.822 seconds to run while the exe-
cutable version generated with autovectorization compiling options took 32.918
seconds to complete the same task. A fully vectorized implementation, using
vector intrinsic functions solved the same problems within a runtime of 12.88
seconds.

7 Conclusions

This paper introduces the Streaming SIMD Extensions (SSE), also known as
multimedia instructions, and its application to engineering codes. The SSE in-
struction set enhanced the Intel IA-32 architecture with instructions that handle
a set of floating-point values stored in vectors, simultaneously, instead of scalar
variables. These vector operations can enhance the performance of modern pro-
cessors significantly.

In the first part of the work [11] auto-vectorization techniques were presented.
Here, explicit vector/SIMD instructions or compiler intrinsics are addressed in
some detail and its use is demonstrated in a numerical application to solve two-
dimensional elastostatic problems. The implementation proposed illustrates the
basic concepts underlying SSE and provides guidelines to generate vector exe-
cutables with C/C++ compiler intrinsics. The techniques presented are applied
to a boundary element code but other methods can equally be addressed with
the same techniques.

The results show a reduction in the runtime of 30% using auto-vectorization
techniques while the implementation with SSE intrinsics yields a reduction of
over 70% when compared to the original code.
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SIMD extensions are currently found in most current processors, hence the
knowledge of SIMD programming appears to be a decisive factor in the future
of high performance computing [5,6]. The implementation of boundary element
codes on the IBM Cell Broadband Engine processor using SIMD instructions has
been presented in a previous work [12]. Intel next microarchitecture will include
Advance Vector Extensions (AVX), supporting 256-bit wide vector registers.

Thus, the procedures introduced here arise as an additional and important
optimization tool for numerical applications on today’s and future processor
architectures.
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Abstract. In the context of parallel and distributed computation, the
currently existing numerical libraries do not allow code reuse. Besides,
they are not able to exploit the multi-level parallelism offered by many
numerical methods. A few linear algebra numerical libraries make use of
object oriented approach allowing modularity and extensibility. Never-
theless, those which offer modularity together with sequential and par-
allel code reuse are almost non-existent. We analyze the lacks in existing
libraries and propose a design model based on a component approach
and the strict separation between computation operations, data defini-
tion and communication control of applications. We present then an im-
plementation of this design using YML scientific workflow environment
jointly with the object oriented LAKe (Linear Algebra Kernel) library.
Some numerical experiments on GRID5000 platform validate our ap-
proach and show its efficiency.

Keywords: large scale distributed systems, numerical library, code
reusability, design model.

1 Introduction

To solve linear algebra problems on large scale distributed systems an application
can rely on existing libraries such as LAPACK[1] which provides a set of routines
that can be used to create solvers. Parallel solvers for distributed memory archi-
tectures can be built on top of the services provided by sequential libraries. The
approach consists in building the parallel version by using distributed versions of
the basic operations used in the library. For example in LAPACK the paralleliza-
tion is done by the parallelization of BLAS. Nevertheless, these libraries allow
neither data type abstraction nor code reuse between the parallel and sequential
versions of the applications. That means the subroutines of the solvers are not
able to adapt their behaviors depending on the data types. Those subroutines
must be defined once for use in sequential and once again in parallel. The compo-
nent approach used in libraries such as PETSc (Portable, Extensible Toolkit for
Scientific Computation)[2] or Trilinos [6] increased drastically the modularity,
interoperability and reusability of high level components within the libraries as
well as in the user applications. It increases the ease of use, code reuse, and main-
tainability of libraries. Nevertheless, it doesn’t allow scalable sequential/parallel
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code reusability. The Linear Algebra Kernel (LAKe)[9] is an object oriented li-
brary in C++ which makes use of MPI. It introduces code reuse between the
sequential and the parallel versions of an application. However LAKe doesn’t
allow to use concurrently the parallel and sequential versions of a code inside
the same application. This feature is required to build hybrid numerical meth-
ods in the context of distributed computing. These methods are defined by a set
of collaborating classical iterative methods called co-methods. Each co-method
aims at decreasing the number of iterations required by the method to compute
its results. An extended version of LAKe proposed in [4] allows it to support
the hybrid methods. Nevertheless, as in PETSc, the scalability of the reusability
offered by this extension is limited.

In this paper, we propose a design model for numerical libraries allowing
their reuse on parallel and distributed systems. Our approach is based on three
levels of abstraction concerning computation aspect, data definition and com-
munication control of an application. The simultaneous reusability between the
sequential and the parallel codes is possible thanks to this abstraction. We show
that our design can be mapped on some scientific workflow environments. We
present then the implementation of our approach using YML scientific workflow
environment (http://yml.prism.uvsq.fr/) jointly with LAKe library. We will see
that the approach makes possible to exploit the hybrid methods in the context of
large scale distributed systems. Finally, we give the results of some experiments
in order to validate our solution.

2 Linear Algebra Libraries

2.1 Imperative Numerical Libaries

In order to implement numerical solvers, one can use libraries such as LAPACK
[1] and ARPACK[7] written in FORTRAN using a traditional imperative pro-
gramming style. They consist in a set of routines which provides the individual
steps of the iterative methods. Parallel solvers for distributed memory archi-
tectures can be built on top of the services provided by the aforementioned
libraries. This approach has been used to build libraries such as ScaLAPACK[3]
and P ARPACK[8]. The parallel solvers exploit intra co-method parallelism.
Nevertheless, these libraries allow neither data type abstraction nor code reuse
between the parallel and sequential versions of the applications. That means the
subroutines of the solvers are not able to adapt their behaviors depending on
the data types. Consequently, those subroutines must be defined once for use in
sequential and once again in parallel and then the application code is different
if using the parallel or sequential library.

2.2 Object Oriented Numerical Libraries

The object oriented approach used in libraries such as PETSc [2] or Trilinos [6]
enforced drastically the modularity, interoperability and reusability of high level
components within the libraries as well as in the user applications. Using PETSc
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or Trilinos, the application specifies the building blocks of the solver. However
the solver is provided by the library which provides parallel and sequential solvers
and allows to make use of one and/or the other in the same application. However
these parallel and sequential solvers are still limited by their scalability in the
context of hybrid methods.

LAKe is an object oriented library written in C++. It defines a framework
to implement iterative solvers. The design approach of this library is based on a
strict separation between the computation part, which is composed by numerical
algorithms and services, and the data management and communication part of
the application code. The latter are used to represent both sequential and parallel
data type used by LAKe computation part. Using the object oriented approach
and template based generic programming provided by C++, LAKe allows the
computation part to be common to both sequential and parallel versions of the
application. The computation part of the library is identical in the case of a se-
quential data set or distributed data set. The parallel version of LAKe makes use
of the message passing interface (MPI) standard version 1 [5] for communication
between the various involved computation processes. However the use of MPI is
completely transparent to the user. He/she can switch from a sequential solver
to a parallel one by changing the type of the matrix representing the data. LAKe
achieves code reuse between sequential and parallel versions thanks to a strict
separation between the computation and the data/comunication management
aspects of applications.

The intra-method communication of the parallel version of LAKe increases the
time performance when handling huge matrices. However LAKe is not suitable to
implement hybrid methods. For hybrid methods we need two levels of parallelism.
Using MPI means we need local communication at the co-method level and global
communication between the co-methods composing the hybrid method. LAKe
provides no access to the MPI communicator to client applications nor to the
computation part of the library.

An extension of LAKe has been proposed to support hybrid methods. It makes
possible the use of sequential and parallel co-method processes concurrently
within the same application. This extension described in [4] discusses a solution
that matches the architecture design of LAKe. The user of the library must ex-
plicitly define the number of processors allocated to each process representing a
co-method. However, its use is not easy due to the configuration of the communi-
cators (with MPI standard version 1). This limits the scalability of the solution
proposed to only a few number of co-method processes. Experiments have been
done up to three concurrent co-methods.

3 A Reusable Numerical Library Design Model

Most of previously mentioned libraries suffer from many problems. Imperative
numerical libraries lack portability, modularity, interoperability. Despite modu-
larity and reusability of their high level components, object oriented libraries
such as LAKe do not allow the simultaneous reusability of components be-
tween the sequential and the parallel versions of an application. Extended LAKe,
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PETSc and Trilinos allow this kind of reusability but it is not scalable. We notice
that all these libraries lack an additional level of abstraction which is necessary
to achieve such a kind of reusability.

Fig. 1. Reusable numerical libraries design

To remedy to these problems, we propose a library design model based on
three levels of abstraction. That means, a model which separates strictly the
computation aspect, the data definition and the communication actions of ap-
plications (see figure 1). The data definition includes data types abstraction. The
computation aspect represents all computation components. These two compo-
nents communicate through the communication actions. Our main goal is to
achieve the simultaneous reusability between sequential and parallel components,
so in data definition part we encapsulate the parallelism in a common generic
object which has the same interface in parallel and in serial. Then, parallel ob-
jects can be used polymorphically. Components of the computation part will
be clients of these objects. We want to allow the code to be the same between
the sequential and parallel versions of an application. Thereby every function
is implemented once and used either in sequential or in parallel. Additionally,
the maintainability of the library implemented according to this model would
be simplified using this approach.

3.1 Library Integration in Scientific Workflow Environment

A scientific workflow environment describes an application along three aspects:
a set of services, the control flow and the data flow of the application. Based
on these informations, it orchestrates the execution of the application. A service
is a public interface associated to an implementation. The public interface de-
scribes how a service interacts with clients. Each service defines a set of input
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and output parameters also known as communication channels. A service can
be stateless or not depending on the underlying middleware capabilities in that
respect. The control flow consists in describing the order of execution of the
services involved in the application. It does not contain the computation code,
only the order of computation. It is a coarse grained description of the applica-
tion where computation is handled by services as defined above. The data flow
consists in describing the exchange of data between the services. Some workflow
environment mixes the data flow and control flow together. Data migration from
data repositories are managed transparently by the workflow environment. To
provide a solution independently from the underlying middleware, that services
have to be supposed stateless.

We target a scientific workflow environment which model is defined by three
main layers: a layer to interact with end users. A second layer which includes
workflow manager and an integrator of services such as databases and compu-
tation codes. Finally, there is a layer to interact with middleware. In the envi-
ronments, based on this model, the user can make use of large scale distributed
architectures transparently and independently from the deployed middleware.
The computation and data components in the model are represented by some
services. The communication between these services would be done by the mad-
deware. Note that the strict separation between computation aspect, data defi-
nition and communication actions required by our library design model matches
easily with environments realized according to aforementioned model.

YML is a scientific workflow environment based on the above model [10].
It permits to represent computation and data definitions of our library design
model by the corresponding YML components. Besides, it confides the commu-
nication actions of our model to the middelware. The activities graph which
defines a solver will then be described by YML workflow langage. As a conse-
quence, the solvers are independent from the communication mechanisms used
by the middelware (MPI or others). In order to achieve our objective of simul-
taneous serial and parallel code reusability, we integrate the computation and
data components of LAKe library in YML. This solution allows to exploit the
multi level parallelism of hybrid methods on parallel and distributed systems.

4 Experiments

For our experiments, we selected two matrices from the MatrixMarket collection.
The used matrices are summarized in the table 1. NNZ corresponds to the
number of non zero elements of the matrix, we also added the Froebenius norm
which impacts on the convergence criterion. In order to validate our approach, we
evaluated YML/LAKe on the Grid’5000 platform. Grid’5000 is a French national
testbed dedicated to large scale distributed system experiments. We make use of
computing resources of the Grid Explorer cluster of Grid’5000. We demonstrate
the validity of our approach (a) by presenting the feasibility, (b) by decreasing
the number of iterations needed to converge when the number of co-methods
increases and (c) by showing the scalability of the solution in regards of the
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Table 1. List of matrices used for experiments

Matrix name Size NNZ Froebenius
norm

pde490000 490000 2447200 10+3

pde1000000 1000000 4996000 10+3

matrix sizes and of the number of co-methods used to solve a large eigenproblem
with MERAM (multiply explicitly restarted Arnoldi method).

MERAM is a hybrid method composed of several instances of the same itera-
tive method ERAM. In other words, this method is based on a set of p instances
of ERAM. The latter is an iterative method which computes a few eigenvalues
and eigenvectors of a large sparse non-Hermitian matrix. The instances of ERAM
work on the same problem but they are initialized with different subspace size
mi, i ∈ [1, k]. MERAM defines a set of parameters, the most significant ones are
the matrix A, n the size of this matrix, r the number of desired eigenelements,
m1, .., mp the subspace sizes of the co-methods ERAM composing MERAM also
noted MERAM(m1, ..., mp) and tol denoting the tolerance expected for the re-
sults. An horizontal line denotes the tolerance or the error allowed on the re-
sults. The vertical axis represents the estimated error of the solution obtained
at each iterations. The horizontal axis represents the number of iterations. In
figure 2, we present two executions of MERAM for the matrix pde490000. The
two executions differ in the number of involved co-methods. In the first execu-
tion, MERAM(10,30,50) requires 98 iterations to converge while MERAM(10,
20, 30, 50) requires 91 iterations. In other words, the increase in the number
of co-methods decreases the iteration count of the hybrid method. We notice
that by making use of YML/LAKe we are able to overcome the limitation in
the number of co-methods composing a hybrid method. One of the motivation
of YML/LAKe is the scalability issue in regards of the number of co-methods
composing an hybrid one and the size of the problems to be solved. Figure 3
illustrates the progresses made in that regards. Using YML/LAKe we have been

Fig. 2. Convergence of MERAM for matrix 490000 with different number of co-methods
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Fig. 3. Scalability of the solution: number of co-methods/size of A

able to solve eigenproblems with one million-order matrices. Our approach is
based onto the fragmentation in blocks of the matrix of the problem and its
distribution during the projection step of the iterative method. The second scal-
ability issue relates to the number of co-methods used to solve an eigenproblem.
Extended LAKe allows to test the hybrid methods composing by only a small
number of co-methods (up to 3). Using YML/LAKe we have been able to test
effortlessly with ten co-methods and it is possible to increase this number.

5 Conclusion

Hybrid methods and some of linear algebra applications are well adapted to
parallel and distributed systems as well as large scale distributed memory archi-
tectures such as GRID and peer to peer systems. Such methods require several
levels of parallelism in the same application organized in a tree. Existing nu-
merical libraries are not able to exploit all these levels of parallelism. Their use
on distributed systems is still difficult and complex. Their design doesn’t allow
the simultaneous reusability between the sequential and the parallel versions
of an application. Moreover, they do not manage effectively communications in
these complex environments; they combine communication with the definition
of data and computations. We have presented a model to design reusable nu-
merical libraries for parallel and distributed systems. Our approach is based on
three levels of abstraction consisting of the computation, the data definition and
the communication actions of applications. We involve in our solution the use
of scientific workflow environments. These environments provide tools to orches-
trate the execution on a set of distributed services and they allow the use of
middleware transparently to end users. To solve simultaneous serial and parallel
reuse, we proposed to map our library design model on such a scientific work-
flow environment. We realized this solution by the integration of LAKe library
in YML framework.

We validated our approach with experiments using YML/LAKe. Future works
will include the application of our approach to some existing libraries such as
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PETSc or certain components of Trilinos. This is possible by including some
interfaces in the library source code and its integration on a scientific workflow
environment such as YML. According to this approach, we can obtain a set of
numerical libraries which can cooperate together for the resolution of a problem.
Applications developers can use these libraries more easily in the context of large
scale distributed systems through the workflow environment.
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Jean-François Méhaut1, and Alexandre Carissimi2

1 University of Grenoble
LIG Laboratory - INRIA

Grenoble, France
{pousa,bastosca,Jean-Francois.Mehaut}@imag.fr

2 Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil
asc@inf.ufrgs.br

Abstract. On numerical scientific High Performance Computing (HPC),
Non-Uniform Memory Access (NUMA) platforms are now commonplace.
On such platforms, the memory affinity management remains an impor-
tant concern in order to overcome the memory wall problem. Prior solu-
tions have presented some drawbacks such as machine dependency and a
limited set of memory policies. This paper introduces Minas, a framework
which provides either explicit or automatic memory affinity management
with architecture abstraction for ccNUMAs. We evaluate our solution on
two ccNUMA platforms using two geophysics parallel applications. The
results show some performance improvements in comparison with other
solutions available for Linux.

1 Introduction

The increasing number of cores per processor and the efforts to overcome the
hardware limitations of classical Symmetric Multiprocessors (SMP) parallel sys-
tems remain a problem. Due to this, Non-Uniform Memory Access (NUMA)
platforms are becoming very common computing resources for numerical scien-
tific High Performance Computing (HPC). A NUMA platform is a large scale
multi-processed system in which the processing elements are served by a shared
memory that is physically distributed into several memory banks interconnected
by a network. Thus, memory access costs may vary depending on the distance
between cpus and memory banks. The effects of this asymmetry can be reduced
by optimizing memory affinity [1,2].

Memory affinity is assured when a compromise between threads and data is
achieved by reducing either the number of remote accesses (latency optimization)
or the memory contention (bandwidth optimization). In the past, researches have
led to many different solutions on user and kernel space. However, such solutions
present some drawbacks, such as: platform dependency (developers must have
prior knowledge of the target architecture), they do not address different memory
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accesses and they do not include optimizations for numerical scientific data (i.e.,
array data structures) [1,2,3].

To overcome these issues, our research have led to a new solution named
Minas: an efficient and portable framework for managing memory affinity on
cache-coherent NUMA (ccNUMA) platforms. Minas enables explicit and auto-
matic control mechanisms for numerical scientific HPC applications. Beyond the
architecture abstraction, this framework also provides several memory policies
allowing better memory access control. In this paper, we evaluate its portabil-
ity and efficiency by performing experiments with two Geophysics applications
on two ccNUMA platforms. The results are compared with Linux solutions for
ccNUMAs (first-touch, numactl and libnuma).

This paper is organized as follows: first, we discuss the related work (Sec-
tion 2). After presenting the Minas design, its characteristics and implementa-
tion details (Section 3), we will show its performance evaluation (Section 4). We
will then give a brief conclusion and present our future work (Section 5).

2 Related Work

In order to guarantee memory affinity and thus achieve better performance,
developers usually spend significant time optimizing data allocation and place-
ment on applications and ccNUMA platforms. As a consequence, research groups
have studied different ways to simplify memory affinity management on such
platforms using Linux [2]. Two approaches have been proposed for the Linux
operating system, the explicit approach (libraries, interfaces and tools) and the
automatic approach (memory policies in user or kernel spaces) [3,4,5,6].

On the Linux operating system, the explicit approach is a basic support to
manage memory affinity on ccNUMAs which is composed of three parts: ker-
nel/system calls, a library (libnuma) and a tool (numactl). The kernel part de-
fines three system calls (mbind(), set mempolicy() and get mempolicy()) that
allow the programmer to set a memory policy (bind, interleave, preferred or de-
fault) for a memory range. A memory policy is responsible for placing memory
pages on physical memory banks of the machine. The use of such system calls is
a complex task, since developers must deal with pointers, memory pages, sets of
bytes and bit masks. The second part of this support is a library named libnuma,
which is a wrapper layer over the kernel system calls. The limited set of memory
policies provided by libnuma is the same as the one provided by the system calls.
The last part, the numactl tool, allows the user to set a memory policy for an
application without changing the source code. However, the chosen policy is ap-
plied over all application data (it is not possible to either express different access
patterns or change the policy during the execution [3]). Additionally, providing
a list of nodes (memory banks and cpus/cores), that are platform-dependent
parameters, is mandatory when using this tool.

The automatic approach is based on the use of memory policies and it is the
simplest way to deal with memory affinity, since developers do not have to take
into consideration the memory management. In this approach, the operating
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system is responsible for optimizing all memory allocation and placement. First-
touch is the default policy in the Linux operating system to manage memory
affinity on ccNUMAs. This policy places data on the node that first accesses it
[2]. To assure memory affinity using this policy, it is necessary to either execute
a parallel initialization of all shared application data allocated by the master
thread or allocate its data on each thread. However, this strategy will only
present performance gains if it is applied on applications that have a regular data
access pattern and if threads are not frequently scheduled to different cores/cpus.
In case of irregular applications (threads do not always access the same data),
first-touch will result in a high number of remote accesses.

Currently, there are some proposals concerning new memory policies for
Linux. For instance, in [4,5,6], the authors have designed and have implemented
the on-next-touch memory policy. This policy allows more local accesses, since
each time a thread touches a data, the data migrates when needed. Its perfor-
mance evaluation has shown good performance gains only for applications that
have a single level of parallelism and large amount of data (e.g., matrices which
size are higher than 8K x 8K). In case of multiple levels of parallelism (nested
parallelism), each thread may create other threads. When these threads share
a significant amount of data, several data migration can be performed, since
each thread may be in a different machine node. These data migrations have
presented an important overhead and they usually have lowered the application
performance gains. Moreover, for small amount of data, on-next-touch policy
have also not presented a good performance since the overhead with migrations
is more expensive than the cost of remote accesses.

3 Minas

Minas [7] is an efficient and portable framework that allows developers to man-
age memory affinity in an explicit or automatic way on large scale ccNUMA
platforms. In this work, efficiency means fine control of memory accesses for
each application variable and similar performance on different ccNUMA plat-
forms. As portability, we mean architecture and compiler abstraction and none
or minimal source code modifications.

This framework is composed of three main modules: Minas-MAi, Minas-MApp
and numarch. Minas-MAi, which is a high level interface, is responsible for im-
plementing the explicit NUMA-aware application tuning mechanism whereas the
Minas-MApp preprocessor implements an automatic mechanism. The last mod-
ule, numarch, is responsible for extracting several information about the target
platform. This module can be used by the developer to consult some impor-
tant information about the architecture and it is also used by Minas-MAi and
Minas-MApp mechanisms.

Minas differs from other memory affinity solutions [2,3] in at least four aspects.
First of all, Minas offers code portability. Since numarch provides architecture
abstraction, the developer do not have to specify nodes that will be used by Mi-
nas to place data. Secondly, Minas is a flexible framework since it supports two
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different mechanisms to control memory affinity (explicit and automatic tuning).
Thirdly, Minas is designed for array oriented applications, since this data struc-
ture usually represents the most important variables in kernels/computations.
Finally, Minas implements several memory policies to deal with both regular ap-
plications (threads always access the same data set) and irregular applications
(threads access different data during the computations).

Minas

MApp

Automatic Tuning

Explicit Tuning

Symbols

Fig. 1. Overview of Minas

Figure 1 shows a schema of Minas mechanisms to assure memory affinity.
The original application source code can be modified by either using the explicit
mechanism (gray arrows) or the automatic one (black arrows). The decision be-
tween automatic and explicit mechanisms depends on the developer’s knowledge
about the target application. One possible approach is to first use the automatic
tuning mechanism and to verify whether the performance improvements are
considered sufficient or not. If the gains are not sufficient, developers can then
explicitly modify (manual tuning) the application source code using Minas-MAi.

Depending on the mechanism, numarch is used to retrieve different infor-
mation. In explicit mechanism, Minas-MAi retrieves from numarch the number
of nodes and cpus/cores as well as theirs physical identifiers in order to ap-
ply memory policies (dashed arrow 1). Differently, in the automatic mechanism,
Minas-MApp gets from numarch the machine’s NUMA factor, interconnection
bandwidth, cache subsystem information and the amount of free memory of each
node. These information are then used by the heuristic function to determine
a suitable memory policy (dashed arrow 2). The chosen memory policy will be
applied by using Minas-MAi memory policy functions (dashed arrow 3).

The current version of Minas is implemented in C. Minas has been tested on
different ccNUMA architectures (Intel, AMD and SGI) with Linux as operating
system. Minas supports C/C++ and Fortran and the following compilers: Intel,
GNU and Portland.
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3.1 MAi: Memory Affinity interface

MAi (Memory Affinity interface) is an API (Application Programming Interface)
that provides a simple way of controling memory affinity [8]. It simplifies memory
affinity management issues, since it provides simple and high level functions that
can be called in the application source code to deal with data allocation and
placement. All MAi functions are array-oriented, since MAi was designed for
numerical scientific HPC applications.

The most important group of functions on MAi is the memory policies group,
since it is responsible for assuring memory affinity. The interface implements
eight memory policies that have as their memory affinity unit an array. The
memory policies of MAi can be divided in three groups: bind, cyclic and random.
Bind memory policies optimize latency, by placing data and threads as close
as possible. Both, random and cyclic groups optimize bandwidth of ccNUMA
platforms, since they minimize interconnect and memory contention.

Bind group has two memory policies, bind block and bind all. In bind block
memory policy, data is divided into blocks depending on the number of threads
that will be used and on their placement within the machine. In bind all memory
policy, data is placed in one or a set of restrict nodes. Cyclic group is composed
by cyclic, skew mapp and prime mapp memory policies. In cyclic, data is placed
according to a linear round-robin distribution, using one memory page per round.
In the skew mapp memory policy, a page i is allocated on the node (i+ �i/M�+
1) mod M , where M is the number of memory banks. The prime mapp policy
uses a two-phase strategy. In the first phase, the policy places data using cyclic
policy on (P ) virtual memory banks, where P is a prime greater or equal to
M (real number of memory banks). In the second phase, the memory pages
previously placed on virtual memory banks are reordered and placed on real
memory banks also using the cyclic policy. In random policy, memory pages are
placed randomly on CC-NUMA nodes, using a random uniform distribution.

The data distribution over the machines nodes can be performed using the
entire array or an array tile (blocks distribution). A tile is a sub array which
size can be specified by the user or automatically chosen by MAi. Such memory
policies allows developers to express different memory access operations, such as
write-only, read-only or read/write.

MAi also allows the developer to change the memory policy applied to an
array during the application execution, allowing to express different patterns.
Finally, any incorrect memory placement can be optimized through the use of
MAi memory migration functions. The unit used for migration can be a set
memory pages (automatically defined by MAi) or a set of rows/columns of an
array (specified by the user).

3.2 MApp: Memory Affinity preprocessor

MApp (Memory Affinity preprocessor) is a preprocessor that provides a trans-
parent control of memory affinity for numerical scientific HPC applications over
ccNUMA platforms. MApp performs optimizations in the application source
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code considering the application variables and platform characteristics at compile
time. Its main characteristics are its simplicity of use (automatic NUMA-aware
tuning, no manual modifications) and its platform/compiler independence.

Parser Heuristic
Code

Transform.
App. 
Info.

MApp

Fig. 2. Overview of MApp code transformation process

The code transformation process is divided into four steps (Figure 2). Firstly,
it scans the application source code to obtain information about variables (App
Info.). During the scanning process, MApp searches for shared static arrays that
are considered large by Minas (eligible arrays). An eligible array is considered
large if its size is equal or greater than the size of the highest level cache of the
platform. Secondly, it fetches the platform characteristics, retrieving information
from the numarch module (NUMA factor, nodes, cpus/cores, interconnection
network and memory subsystem). During the third step, it chooses a suitable
memory policy for each array. Finally, the code transformation is performed by
including Minas-MAi specific functions for allocation and data placement.

The most important step of MApp automatic tuning process is the strategy
used to decide which memory policy will be applied for each array. Based on em-
pirical data from our previous works and experiments [8,9,10], we have designed
an heuristic responsible for deciding which memory policy would be the most
effective considering the underlying ccNUMA characteristics. On platforms with
a high number of interconnections between nodes and small NUMA factor (ra-
tio between remote latency and local latency to access data), the heuristic will
apply cyclic memory policies. On the contrary, on platforms with low number
of interconnections and high NUMA factor, the heuristic will opt for bind block
memory policies. Figure 3 shows a simple example of a code transformation
generated by MApp. This example is a parallel code (C with openMP) that
performs some operations in four arrays. However, as we can observe, MApp
only applied memory policies for three of them (eligible arrays). Small vari-
ables such as integers i,j and xux will probably fit in cache so MApp will not
interfere on compiler decisions (allocation and placement of variables). In this
example, we suppose that the target ccNUMA platform has a small NUMA fac-
tor (remote latency is low) and a bandwidth problem for interconnection among
nodes. Thus, on such a platform, optimizing memory accesses considering band-
width instead of latency is important. Due to this, MApp has decided to spread
memory pages of vel, vxy and tem with cyclic memory policy in order to optimize
bandwidth.
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Original Source Code
NUMA-Aware Source Code

#define X         516
#define Y         128
#define Xv       1000
#define LIMRX  32
#define LIMRY  16 

int nrom[X], vel[Xv][Y];
double tem[X][Y];

int main() {
  int i, j;
  int xux[LIMRX][LIMRY], vxy[LIMRX][Xv];

#pragma omp parallel for private(j)
  for(i=1; i<LIMRX; i++)
    for(j=1; j<LIMRY; j++)
      vel[i-1][j-1] = fcos(xux[i][j], tem[i][j], vxy[i][j]);

#pragma omp parallel for private(j)
  for(i=X-1; i>=0; i--)
    for(j=Y-1; j>=0; j--)
      vel[i][j] = comp(tem[i][j]);
  ...
}

int nrom[516], **vel;
double **tem;

int main() {
  int i, j;
  int xux[32][16], **vxy;

  mai_init(((void *)0));
  vel = mai_alloc_2D(1000, 128, sizeof(int), 4);
  mai_cyclic(vel);
  tem = mai_alloc_2D(516, 128, sizeof(double), 8);
  mai_cyclic(tem);
  vxy = mai_alloc_2D(32, 1000, sizeof(int), 4);
  mai_cyclic(vxy);

#pragma omp parallel for private(j)
  for(i=1; i<32; i++)
    for(j=1; j<16; j++)
      vel[i-1][j-1] = fcos(xux[i][j], tem[i][j], vxy[i][j]);

#pragma omp parallel for private(j)
  for(i=516-1; i>=0; i--)
    for(j=128-1; j>=0; j--)
      vel[i][j] = comp(tem[i][j]);
  ...
}

'vel' ARRAY 'int' 2 1000 128 'global' 'example.c'
'tem' ARRAY 'double' 2 516 128 'global' 'example.c' 
'vxy' ARRAY 'int' 2 32 1000 'main' 'example.c' 

MApp

Fig. 3. Example of MApp source code transformation

3.3 Numarch: NUMA Architecture Module

The numarch module has an important role for Minas, since it retrieves the ma-
chine information that are necessary to place data on memory banks. This mod-
ule extracts information about the interconnection network (number of links and
bandwidth), memory access costs (NUMA factor and latency) and architecture
characteristics (number of nodes, cpus/cores and cache subsystem). To retrieve
such information, numarch parses the /sys/devices/ file system of the operating
system. The retrieved information is stored in temporary files on the /tmp/ of
the operating system. Using such information Minas-MApp places data among
the machine nodes reducing latency costs (less remote accesses) and optimizing
bandwidth (interconnect contention and memory contention).

This module can also be used as a library, since it provides some high level
functions that can be called on the application source code to get some informa-
tion of the target NUMA machine. The library is composed by a set of functions
to retrieve information such as number of nodes, cache size, total of free memory
on each node, number of cores per processor, the node of a core/cpu and cores
and cpus on a node. Such information can be used by the developer to better
understand the machine topology and characteristics.

4 Performance Evaluation

In this section, we present the performance evaluation of Minas and compare
its results with other three memory affinity solutions for Linux based platforms.
We first describe the two ccNUMA platforms used in our experiments. Then, we
describe the two numerical scientific applications (ICTM [10] and Ondes 3D [9])
and their main characteristics. Finally, we present the results and their analysis.
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4.1 Cache-Coherent NUMA Platforms

The first platform is an eight dual core AMD Opteron 2.2 GHz. It is organized in
eight nodes of two processors with 2 MB of shared cache memory for each node.
It has a total of 32 GB of main memory (4 GB of local memory). The NUMA
factor for this platform varies from 1.2 to 1.5. The compiler that has been used
was the GCC (version 4.3). A schematic representation of this machine is given
in Figure 4 (a). We have chosen to use the name Opteron for this platform.
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Fig. 4. NUMA platforms: (a) Opteron (b) SGI

The second ccNUMA platform is a SGI Altix 350 with twelve Itanium 2 pro-
cessors of 1.5 GHz and 4 MB of shared cache memory each. It is organized in six
nodes of two processors with a total of 24 GB of main memory (4 GB of local
memory). The NUMA factor for this platform varies from 1.2 to 1.3. The com-
piler that has been used was the ICC (version 9.0). A schematic representation
of this machine is given in Figure 4 (b). We have chosen to use the name SGI
to make reference to this platform. The operating system that has been used for
both platforms is Linux 64-bits version with support for NUMA architecture.

4.2 Numerical Scientific Parallel Applications

In this section, we present applications Interval Categorizer Tessellation Model
(ICTM) [10] and Simulation of Seismic Wave Propagation (Ondes 3D)[9]. Such
applications represent important memory-bound numerical scientific problems.
The applications have been implemented in C with OpenMP.

ICTM: Interval Categorizer Tessellation Model. ICTM is a multi-layered
tessellation model for the categorization of geographic regions considering sev-
eral different characteristics (relief, vegetation, climate, etc.). The number of
characteristics that should be studied determines the number of layers of the
model. In each layer, a different analysis of the region is performed. The in-
put data is extracted from satellite images, in which the information is given
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in certain points referenced by their latitude and longitude coordinates. The
geographic region is represented by a initial 2-D matrix of the total area into
sufficiently small rectangular subareas. In order to categorize the regions of each
layer, ICTM executes sequential phases. Each phase accesses specific matrices
that have previously been computed and generates a new 2-D matrix as a result
of the computation. Depending on the phase, the access pattern to other matri-
ces can either be regular or irregular. Since the categorization of extremely large
regions has a high computational cost, a parallel solution for ccNUMA platforms
has been proposed in [10]. In this paper, we have carried out experiments us-
ing 6700x6700 matrices (2 Gbytes of data) and a radius of size 40 (number of
neighbors to be analysed by status matrix phase). As shown in Figure 5 (a),
the algorithm basically uses nested loops with short and long distance memory
accesses (Figure 5 (b)) during the computation phases.

ICTM Access patterns
short distance

long distance

Ondes3D

x
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z

x

x

y

x

y

x

y

x

y

x
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function init():
  for i ← 0 to _rows do
    for j ← 0 to _columns do
      mat_interval[i][j] ← read(i, j)

function compute_interval_matrices():
  for i ← 0 to _rows do
    for j ← 0 to _columns do
      mat_interval[i][j] ← compute(i±1, j±1)

function compute_status_matrices():
  for i ← 0 to _rows do
    for j ← 0 to _columns do
      while r is inside radius do
        mat_status[i][j] ← compute(i±r, j±r)

for i ← 0 to Nx do
  for j ← 0 to Ny do
    for k ← 0 to Nz do
      M[i][j][k] ← read(i, j, k)

for i ← 0 to Nx do
  for j ← 0 to Ny do
    for k ← 0 to Nz do
      M[i][j][k] ← compute_velocity()

for i ← 0 to Nx do
  for j ← 0 to Ny do
    for k ← 0 to Nz do
      M[i][j][k] ← compute_stress()

(a) (b) (c)

Fig. 5. Access patterns: ICTM and Ondes 3D

Ondes 3D: Simulation of Seismic Wave Propagation. Ondes 3D is an
application that simulates seismic wave propagation in three dimensional geo-
logical media based on finite-difference discretization. It has been developed by
the French Geological Survey (BRGM - www.brgm.fr) and it is mainly used for
strong motion analysis and seismic risk assessment. The particularity of this
simulation is to consider a finite computing domain even though the physical
domain is unbounded. Therefore, the user must define special numerical bound-
ary conditions in order to absorb the outgoing energy. Ondes 3D has three main
steps: data allocation, data initialization and propagation calculus (composed by
two calculus loops). During the first two steps, the three dimensional arrays are
dynamically allocated and initialized (400x400x400, approximately 4.6 Gbytes
of memory). During the last step, the two calculus loops compute velocity and
stress of the seismic wave propagation. In all three steps, the three dimensional
arrays are accessed in a regular way (same data access pattern) [9]. Figure 5 (c)
presents a schema of the application with its three steps. On contrary to ICTM,
Ondes 3D has only short distance memory accesses, as presented in Figure 5 (b).



288 C. Pousa Ribeiro et al.

4.3 Experimental Results

In this section we present results that have been obtained for each application
and platform. We have carried out series of experiments using Minas and three
Linux solutions (first-touch policy, numactl and libnuma).

The results have been obtained through the average of several executions
varying the number of threads from 2 to the maximum number of cpus/cores
of each platform. Our results are organized by application (ICTM and Ondes
3D). For each application, we have divided the results into two groups according
to the memory affinity management (automatic: First-Touch and Minas-MApp;
explicit: Minas-MAi, numactl and libnuma).

Regarding the explicit memory affinity solutions, we have changed applica-
tions source codes (Minas-MAi and libnuma) or their executions parameters (nu-
mactl). In order to use Minas-MAi and libnuma, the developer must add specific
data management functions. The results with Minas-MAi have been obtained
by applying the most suited memory policy for each array of the application.

Depending on the application and platform, we have chosen one of the follow-
ing memory policies (cyclic, prime mapp and bind block). The first two memory
policies are ideal for irregular applications (ICTM) over ccNUMA platforms that
have a small NUMA factor, since they spread data among nodes. The latter mem-
ory policy is suitable for regular applications where threads always access the
same data set (Ondes 3D). Since libnuma has a limited set of memory policies, we
have used two strategies. The interleave policy (similar behavior of Minas-MAi
cyclic policy) has been applied for ICTM whereas the numa tonode memory()
function has been used for Ondes 3D. The last explicit solution, numactl, does
not require source code modifications. However, we had to change the execution
command line of all applications to specify which memory policy should have
been applied as well as the nodes and cpus lists.

Figure 6 shows the speedups for ICTM on Opteron and SGI platforms with
the automatic (Figure 6 (a) and (b)) and the explicit (Figure 6 (c) and (d))
memory affinity solutions. As it can be observed, Minas has outperformed all
other memory affinity solutions on both platforms.

Considering the automatic solutions applied to ICTM, Minas-MApp has pre-
sented satisfactory results on both platforms (Figure 6 (a) and (b)). Minas-MApp
heuristic has chosen cyclic memory policy to control data allocation and place-
ment on both platforms. The chosen policy has resulted in better performance
gains than first touch (on average, 10% Opteron and 8% on SGI). After a careful
analysis of these results and application characteristics, we have concluded that
first touch policy has generated more remote accesses.

The explicit solutions have presented different behaviors depending on the
platform (Figure 6 (c) and (d)). On Opteron, the Minas-MAi cyclic memory
policy has presented the best results. However, there is not a significant differ-
ence between Minas-MAi and other explicit solutions (libnuma and numactl). It
can be explained by the fact that libnuma and numactl also offer a similar policy,
named interleave. It seems that the slight performance gains of Minas-MAi are
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Fig. 6. Performance of ICTM on Opteron and SGI platforms

due to the array optimizations (specialized allocation functions and false shar-
ing reduction). On SGI, Minas-MAi has also presented a better performance
thanks to the array optimization included in allocation functions and memory
policies. In the case of Minas-MAi, different cyclic memory policies (cyclic and
prime mapp) have presented equivalent performance gains. The network inter-
connection characteristics (short distance between memory banks) and the small
NUMA factor of the platform can explain this insignificant difference. In this fig-
ure, we can also observe that Minas-MAi was the most scalable solution on both
platforms in comparison to libnuma and numactl.

In Figure 7, we show the speedups for Ondes 3D application on Opteron
and SGI platforms with the automatic (Figure 7 (a) and (b)) and the explicit
(Figure 7 (c) and (d)) memory affinity solutions. On both platforms, Ondes 3D
application with Minas has presented better performance gains than the other
solutions for memory affinity control.

The results obtained with automatic solutions in Ondes 3D have shown that
first touch and Minas-MApp had similar performance gains. The Minas-MApp
heuristic has chosen cyclic as the best policy according to the platform charac-
teristics. However, as discussed before, the best policy for this application on
such platforms is Minas-MAi bind block. Since, first touch and bind block have
similar behavior, their results are expected to be equivalent or superior to the
Minas-MApp choice.
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Fig. 7. Performance of Ondes 3D on Opteron and SGI platforms

Finally, the results with explicit solutions in Ondes 3D (Figure 7 (c) and (d))
have shown that libnuma and numactl have had a worse performance than Minas-
MAi. Since this application has a regular memory access, it is important to keep
both thread and their data as close as possible. In order to do so, data should be
divided among NUMA nodes and threads should be fixed on cores/cpus of such
nodes. This strategy can be achieved by either Minas-MAi or libnuma. However,
libnuma demands considerable codification efforts, since developers must imple-
ment all data distribution algorithm and thread scheduling. Additionally, the
same solution may not work on platforms with different architecture character-
istics. In contrast with libnuma, Minas-MAi provides a specific policy for this
purpose which is called bind block. This policy automatically fixes threads and
distributes data among the NUMA nodes (architecture abstraction). Thus, no
source changes are needed when the same solution is applied on different plat-
forms. Numactl is the less flexible of all explicit solutions and it does not provide
such data distribution strategy (in this case we have used the interleave policy).

In Table 1, we present the minimum and maximum performance losses of
Minas automatic tuning mechanism (Minas-MApp) in comparison with Minas
explicit tuning mechanism (Minas-MAi) for each application and platform. We
can notice that in some cases, Minas-MApp had an insignificant impact in terms
of performance in relation with Minas-MAi (ICTM on both platforms and Ondes
3D on Opteron). However, according to our experiments, the performance loss
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Table 1. Impact of Minas automatic tuning (Minas-MApp) mechanism

ICTM Ondes 3D
Opteron [0%; 0%] [0%; 3%]

SGI [0%; 0%] [10%; 13%]

may be important (up to 13%). Considering all the experiments and results, we
can conclude that Minas-MApp can be a viable solution when developers do not
choose to explicitly modify the application source code.

5 Conclusion and Future Work

In this paper we have focused our work on Minas, a memory affinity management
framework to deal with memory placement on ccNUMA platforms for numerical
scientific HPC applications. We have carried out some experiments over two
ccNUMAs to evaluate the efficiency of Minas when used to guarantee memory
affinity of two Geophysics applications. Such experiments have shown that Minas
has improved the overall performance of applications in comparison with other
solutions available on Linux. We have observed that the automatic mechanism
of Minas (Minas-MApp) have presented improvements when compared with the
Linux native first touch policy. Considering the explicit mechanisms, Minas-MAi
has shown better results than other explicit solutions (numactl and libnuma).

Our future work on Minas includes providing dynamic memory policies, pro-
viding a NUMA aware allocator for dynamic data structures [7] as tcmalloc [11],
support of memory policies created by developers on Minas-MApp as well as a
support for other runtime systems (e.g., Charm++ [12] and TBB [13]).
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Abstract. High Performance Computing (HPC) is becoming much more popular 
nowadays. Currently, the biggest supercomputers in the world have hundreds of 
thousands of processors and consequently may have more software and hardware 
failures. HPC centers managers also have to deal with multiple clusters from dif-
ferent vendors with their particular architectures. However, since there are not 
enough HPC experts to manage all the new supercomputers, it is expected that 
non-experts will be managing those large clusters. In this paper we study the new 
challenges to manage HPC environments containing different clusters with dif-
ferent sizes and architectures. We review available tools and present LEMMing 
[1], an easy-to-use open source tool developed to support high performance 
computing centers. LEMMing integrates machine resources and the available 
management and monitoring tools on a single point of management. 

Keywords: parallel and distributed computing. 

1   Introduction 

High performance computing (HPC) systems are typically found on universities and 
research centers. Broadly used to process large-scale scientific experiments and com-
plex simulations, they are also very popular among enterprises. About 62% of the 500 
most powerful supercomputers in the world are in the industry sector [2]. Recently, 
the PetaFlop barrier has been broken [3]. In other words, it is the capacity to sustain 
more than 1015 floating point operations per second. That was achieved using super-
computers with more than 100,000 processing cores. They are on the top of the list of 
the 500 biggest supercomputers in the world. Since 1993, the TOP500.org portal 
collects information about the 500 world’s most powerful systems. It publishes a 
ranking twice a year with the performance of many supercomputers measured by the 
LINPACK benchmark [4]. Observing the TOP500 statistics, it is possible to follow 
the evolution and trends of the HPC technology. 

Figure 1 shows the historical growth of the number of processors per system to ob-
tain more powerful computers. Today, the vast majority of the TOP500 supercomput-
ers have more than two thousand processors. Nowadays, the development of new 



294 J. Dias and A. Aveleda 

technologies produces better hardware. However, the greater the number of nodes in a 
supercomputer, the greater is the chance of a failure in any of these nodes. Thus, 
management processes need to be faster and easier to handle failures quickly.  

 

 

Fig. 1. Growth of the number of processors on supercomputers. (Source: TOP500.org historical 
charts) 

Most cluster management and monitoring tools can handle huge supercomputers. 
However, they usually do not present very organized information and they are not 
user friendly. For example, most tools present the listing of the compute nodes of a 
cluster sequentially. On small clusters, it is not a problem, since it is easy to check 
several nodes listed on a screen. But on huge supercomputers, to find a single node on 
a sequential list with hundreds or even thousands of nodes is not practical. To solve 
this problem, the nodes can be easily organized on a hierarchy, but no tool has ever 
presented such solution. The user interface usability may not be so important for an 
expert manager, but with the spread of HPC, many supercomputers are managed by 
non-expert administrators, which may need an easy-to-use interface. 

To manage a supercomputer includes ensuring the full access to its functionalities 
and resources, handling defects and problems as fast as possible. A queue system may 
be offered to distribute the access between users equally or due to some internal pol-
icy. For example, on an engineering company, the engineer group may have greater 
priority over the development group. It is also interesting to have monitoring tools to 
show the status of the machines over time and store critical scenarios that may be 
repeated. HPC centers usually have a complex and non-uniform infrastructure with 
different types of supercomputers. They use a variety of tools, including their own, to 
manage their HPC environment. It may be very hard to keep control of many re-
sources using multiple tools. Each tool has its own user interface, web address and 
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features. Often the system administrator may have to deal with more than two differ-
ent tools to accomplish a single management process. For example, the network 
monitoring software alerts that a cluster is reporting an error regarding some of its 
nodes being down. The manager may need to access the specific monitoring cluster 
tool and, after detecting where the problem is, access the cluster server through a 
secure shell to solve the problem through command lines. 

There are few software for analysis and administration of HPC centers in the mar-
ket. The available solutions are mostly proprietary and usually do not integrate with 
software from other vendors. Therefore, a center with heterogeneous machinery may 
have to deal with multiple software systems. Some products also lacks in usability, 
especially when it is necessary to manage a huge number of nodes. 

We believe that the development of an open source tool for HPC environments 
with improved usability and integration is needed. Thus, we propose LEMMing, an 
open source tool that let you administrate a HPC environment with multiple clusters 
and servers through a single Rich Internet Application (RIA). LEMMing is meant to 
be a single point of management. It supports deployment, management and monitor-
ing of clusters and servers focused, mainly, on high performance computing, taking 
advantage of other available tools. It also lets the manager to customize the interface 
with the preferred resources, widgets and external tools. 

The remainder of this paper is organized as follows. Section 2 provides an overall 
comparison between different types of management and monitoring tools for super-
computers. Section 3 describes the LEMMing project and section 4 concludes and 
discusses future work. 

2   Available Tools 

LEMMing takes advantage of other available tools to deploy, manage and monitor 
supercomputers. Thus, it is necessary to discuss these tools, but is not possible to give 
many details and discuss all of them. We will discuss here the tools we believe are the 
most important, according to our experience. Proprietary software is not referenced 
directly in accordance to trademark law restrictions.  

2.1   Deployment Tools 

There are many possibilities to setup a cluster but there are few tools that offer an 
easy way to do it. The most popular ones are OSCAR (Open Source Cluster Applica-
tion Resource) [5], Rocks [6] and xCAT (Extreme Cloud Administration Toolkit) [7]. 
OSCAR runs a graphical user interface (GUI) on the cluster head node that configures 
and deploys the cluster in several steps. Alternatively, Rocks installation involves the 
Linux operating system and a customizable set of other packages. OSCAR and Rocks 
install useful tools for management and monitoring. Rocks has a group of tools and 
commands that simplifies management tasks like: components listing, node addition 
and removal and change in properties like IP address, hostname, gateway and DNS 
server. OSCAR supports these operations on the GUI or through scripts. xCAT pro-
vides support for the deployment and administration of high scale systems and also 
has plenty of useful scripts. The focus of xCat is not, actually, the ease of installation 
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and configuration but robustness and scalability. It does not mean that OSCAR and 
Rocks are not robust and do not scale. It just means that xCAT can be harder to install 
and OSCAR and Rocks may need some adjustments after installation for improved 
results. Table 1 summarizes a comparison among OSCAR, Rocks and xCAT involv-
ing important characteristics for cluster deployment. 

Table 1. Comparison of different cluster deployment tools 

 
Cluster 

Installation 
Node Adding MPI 

Queuing 
System 

Monitoring 
Tool 

OSCAR GUI 
GUI + Network 

listening 
Yes Yes Yes 

Rocks GUI 
UI +  Network 

listening 
Yes Yes Yes 

xCAT 
Command 

Line 
Command Line + 
Manual Adding 

No No No 

 
Both OSCAR and Rocks provide a GUI to deploy the cluster environment while 

xCAT is completely installed through command line and requires the manual editing 
of SQLite tables to set up cluster configurations and available resources. OSCAR 
installation GUI includes a node-adding step. Rocks provides an ASCII user interface 
to handle node adding. OSCAR and Rocks have the option to listen the network to 
automatically add new booted nodes. On xCAT the nodes must be manual added 
editing a set of database tables using command line. OSCAR and Rocks can install 
MPI libraries [8,9], a workload and resource-management tool (shortened as Queuing 
System) such as Sun Grid Engine [10] or TORQUE [11]. They both can also install a 
monitoring tool, usually Ganglia [12]. On xCAT, these tools must be installed and 
integrated separately. 

2.2   Monitoring Tools 

Network monitoring tools, such as Nagios [13] and Cacti [14], are very useful for 
HPC environment management. Nagios monitors the status of the environment hosts 
and possibly some of their services. If anything stops working, Nagios sends alerts to 
the administrators. Cacti shows statistical data on graphics about CPU load, network 
bandwidth and others metrics. Together, they provide a global view of the available 
resources and services on the whole network. Nagios and Cacti are prepared to be 
extended and customized through plug-ins with specialized functionalities. This level 
of customization is very interesting since different HPC centers have specific necessi-
ties, like the monitoring of its critical services or some specific cluster. 

Another very popular and useful tool is Ganglia [12]. Ganglia shows many moni-
toring metrics about the cluster nodes on a web page. It plots graphics of the metrics 
over time. Ganglia uses XML to report the available metrics for each node of the 
cluster or grid, so it is easy to integrate Ganglia with other applications. Table 2 gives 
a comparison among Cacti, Ganglia, and Nagios monitoring tools.  
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All the described monitoring tools are web based, but none is a rich internet appli-
cation (RIA). Only Nagios send alerts if something goes wrong on the network. How-
ever, Cacti has plug-ins that also do it. Nagios and Cacti can be extended by plug-ins. 
Ganglia only lets the user to add extra metrics to monitor the cluster.  Ganglia moni-
toring focus differs from Nagios and Cacti, since it is designed to monitor a single 
cluster or grid, while Nagios and Cacti are prepared to manage a whole network. 
However, a supercomputer or a grid can also be considered a private LAN. Anyway, 
this focus difference implies that Ganglia provides more detailed information about 
the cluster or grid nodes while Nagios and Cacti may show an overview of the net-
work status. 

Table 2. Comparison of the mentioned monitoring tools 

 Web Based RIA Send Alert Plugins 
Monitoring 

focus 
Cacti Yes No No Yes Network 

Ganglia Yes No No No Cluster/Grid 
Nagios Yes No Yes Yes Network 

2.3   Proprietary Solutions 

Proprietary cluster solutions normally use a set of open source systems and tools 
(Linux, Ganglia, compilers and MPI Libraries). Many vendors use OSCAR, Rocks or 
xCAT to handle its base cluster installation. In addition, they tune the cluster configu-
ration and install their proprietary environments to administrate the cluster. These 
tools are designed for specific machines and do not deal with other types of hardware. 
Actually, different machine models from the same vendor commonly come with dis-
tinct software to handle administration tasks. Sometimes there is a separate tool for 
each part of the system, for example: a tool to handle the storage system, other to 
handle the compute nodes and yet others to handle users and job queues. 

Some proprietary software provides integration offering the management of varied 
equipment through a single graphical user interface. The difficulties found on this 
software are the usability and incompatibility with varied hardware. Since they are all 
proprietary, there is usually no collaboration. These tools typically do not have a web 
interface. As an illustration, one of these integrated management software understands 
each node of a cluster as an isolated resource. It then lists the nodes as items in the 
same level of a tree on a side panel. For example, there is a tree item called MyCluster 
and all the nodes are appended under this item as leaves. There is no problem if the 
cluster has few nodes, but on a large-scale system, it is impractical to find a specific 
node in the middle of a huge list of names. 

Many of the discussed software are not prepared to handle the new challenges to 
manage large-scale supercomputers. These challenges are related to the increasing 
number of processors on clusters, the heterogeneous environments, the particular tools 
an environment needs to use and the different type of administrators, with varied level 
of knowledge, managing these clusters. HPC centers with huge clusters need a tool that 
presents the cluster resources as a whole but presents it organized and customized by 
the user. It must be prepared to show thousand of nodes smartly, highlighting problems 
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and warnings and providing an easy mapping to the hardware position on the equip-
ment room. The software needs to be easy to use, to configure and to customize, also 
prepared to integrate with other tools easily. It should make easier for a non-expert 
manager to handle the main operations of a HPC center environment. Integration, 
flexibility and great usability are the most important features to deal with these new 
challenges.  

The need to have a free tool that integrates many resources and tools providing an 
easy-to-use web interface for easy HPC environment administration lead us to design 
LEMMing. LEMMING uses the open source collaboration model to integrate HPC 
management and monitoring software stack with improved usability. 

3   The LEMMing Project 

The LEMMing project is inspired on the Zimbra Collaboration Suite[15]. Zimbra is a 
groupware [16] centered on e-mail and contact exchanging. It combines a set of open 
source tools, configuring them together. Zimbra offers an easy way to deploy and 
manage an e-mail server and web client with improved usability. Taking advantages 
of AJAX (Asynchronous JavaScript And XML) [17] features, it offers a rich web 
interface that behaves like a desktop application. 

We decided to implement LEMMing instead of extending another tool because we 
need an application with great usability enhanced by a RIA. No cluster management 
and monitoring open source tool is developed as a RIA. Extending another tool would 
also make LEMMing dependent on it. For example: neither OSCAR nor Rocks in-
stalls Nagios as a monitoring tool; if LEMMing was a Nagios plug-in, it would com-
pel the administrators to install Nagios to use LEMMing on a OSCAR or Rocks clus-
ter system. However, administrators may not want to monitor the cluster using 
Nagios. They may prefer Ganglia. OSCAR and Rocks install Ganglia to monitor the 
cluster and LEMMing, actually, depends on Ganglia. 

LEMMing is an acronym of Linux Enterprise Management and Monitoring but 
also makes reference to a species of small rodents that live near the Arctic region. The 
lemming population increases drastically on a period of the year and the little animals 
start searching for a new habitat. They normally die on this process and the population 
is reduced to few specimens. Since the size of clusters is also increasing quickly, 
raising the probability of failure, we found the analogy interesting. The hardware 
technology evolves fast and computers are more robust. Nevertheless, considering a 
hypothetical failure probability of one component in a thousand, a cluster with thou-
sands of nodes has many failures. If these defects are not noticed and corrected 
quickly, the cluster machine may be just like the lemming population – reduced to 
few nodes. 

The main purpose of LEMMing is to consolidate multiple clusters management 
tools on a single web interface of easy access and control. To achieve this objective, 
LEMMing is flexible and provides great usability. LEMMing structure is also pre-
pared to incorporate new features and components easily using a plug-in approach. 
LEMMing is designed as a web application to keep the remote access aspect of clus-
ters for management tasks. To attend the usability requirement, we developed a rich  
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Internet application (RIA) using the AJAX model. Among many toolkits and frame-
works, after some research, we decided to use the ZK [18] framework. ZK was cho-
sen since it provides an easy development model based on interface components and 
lets you produce AJAX content very easily without programming Javascript. It means 
that both server and client side of the web application can be written in Java. 

Since the AJAX model, alone, does not enhance usability, it was also necessary to 
study and discuss a group of user interface components that fit the application neces-
sities but that are also familiar to users. Thus, we decided to keep LEMMing interface 
very simple and similar to a navigational file manager desktop application (such as 
Gnome Nautilus, Mac OS Finder or Windows Explorer). Most computer users are 
familiar to file manager applications since it is an elementary application when using 
an operating system. The web interface is better discussed on section 3.2. 

The web interface is the main component of LEMMing, but, in order to improve 
flexibility, the part of LEMMing responsible by the operations inside the cluster is 
detached from the web interface. The interface may, then, communicate with the 
managed clusters accessing the LEMMing cluster component through Web Services. 
The web services are better described on section 3.1. This approach makes it easier to 
manage multiple supercomputers on a single interface, balancing the workload be-
tween the LEMMing web server and the cluster head node server, since LEMMing 
web application just delegates to the component inside the cluster what they should do 
inside the cluster. Together, the web and the cluster component of LEMMing provide 
the following features: 

• Freeware 
• Web Service based 
• AJAX interface design 
• Integration of other tools 
• Single point of management 
• Support for many cluster topologies organization 
• Integrated with workload management 
• Parallel shell tools 
• Customizable Dashboard 

Being freeware is an important feature since it improves collaboration and let the 
advanced managers of a cluster to improve LEMMing code according to some spe-
cific necessity. LEMMing is also easy to integrate with other tools such as Ganglia, 
Cacti and Nagios. A single point of management means that LEMMing concentrates 
the management of many components of many supercomputers and servers on a sin-
gle interface. It also concentrates other tools that may be associated to a specific re-
source (the Ganglia page of a cluster, for example, or a local particular tool) or may 
represent the whole status of the HPC environment (the Nagios or Cacti web pages). 
LEMMing also reduces complexity of cluster management, providing a quick high-
light of the status of available resources. 

LEMMing is designed to be flexible, i.e., to handle multiple clusters and its com-
ponents with different architectures and installed systems. It is not feasible to build a 
huge tool that can support all the available cluster and server systems solution out of 
the box. Thus, we decided to split LEMMing in two modules. The first module 
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(LEMM-WS) is inevitably associated with a cluster system and is designed to imple-
ment a given application programming interface (API) using the cluster system avail-
able tools. The second module (LEMM-GATE) is the web application that uses the 
API to manage the machines. Thus, to support a new system, only the first module 
may need to be adapted. The cluster system remains transparent to the second module 
that only has to deal with the known API. 

We used web services technology to implement the idealized architecture. The 
module within the cluster exposes a set of web services that work as an API to the 
web module. The administrator access the web application (LEMM-GATE) through a 
browser and the web module access the web services (LEMM-WS) to get cluster 
information and to execute operations on it. This architecture lets the LEMM-GATE 
server to be accessible through an external network while the clusters may remain 
accessible only through internal network. This approach prevents the cluster servers 
from external attack. 

3.1   LEMMing Web Services (LEMM-WS) 

The idea of LEMMing is to take advantage of existent and available tools, before 
obtaining data manually. Thus, the web services deployed inside the cluster system 
explores the reports from Ganglia, from the queue system, like Torque [11] or SGE 
(Sun Grid Engine) [10] and available proprietary systems. The available web services 
take advantages of macro commands and scripts available to execute operations on 
the cluster. They can also connect to database systems or read configuration files.  
The LEMMing web services module is very dependable of the installed cluster sys-
tem, since these operations usually differ between cluster architectures. Since the 
cluster systems are naturally different, there is no way to build a single web service 
capable to control all types of clusters. To amortize this issue, LEMM-WS contains a 
set of libraries to support traditional interfacing mechanisms such as shell command 
execution, database access, XML parsing, and file access. These packages were de-
signed to reduce the effort while developing LEMM-WS for a new cluster system. 
Currently, LEMM-WS fully supports Rocks clusters, but we are already deploying it 
on other cluster systems. 

LEMM-WS works as an API to handle the cluster systems. This API is divided 
into two web services: the Informant and the Operator. The informant web service 
implements the API methods regarding the cluster configuration and status. The op-
erator web service implements the methods that can change the configuration or status 
of the cluster. For example, the informant web service provides the set of available 
nodes of the cluster, their load, processors and memory capacity. It also provides 
information regarding the jobs submitted to the cluster and the users of the cluster. 
The operator web service provides methods such as node renaming, rebooting, adding 
and removal. The implementation of these methods may vary depending on the clus-
ter system, but it is not very difficult since LEMM-WS provides libraries with tradi-
tional integrations approaches. 

An important aspect of LEMMing is the node position on the cluster. This aspect 
influences how the web interface displays the cluster structure through an organized 
manner. Thus, LEMMing uses the concept of dimensionality on clusters. The dimen-
sionality let the system specify the position of the nodes using spatial coordinates. 
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LEMMing also suggests that the position of the nodes on the cluster should be related 
the hostname of the nodes. For example, a 1-dimensional cluster is usually a small 
cluster with a set of PCs that may be referred as node-00, node-01, node-02 and so on.  
Their position can be easily mapped using a single dimension. On a 2-dimensional 
cluster, the machines may be organized on racks. The nodes of the cluster may then 
be referred as node-0-0, node-0-1, node-1-0 and so on. The first number indicated the 
number of the rack where the machine is, and the second number indicates the posi-
tion of the machine inside that rack. The 3-dimensional and 4-dimensional are analo-
gous and may be used on cluster systems that divide the machines in chassis and 
blades. The informant web service may then, provide the coordinates of a node in the 
cluster. For example, if the web service method returns (7,5,3,1), it means that the 
node is the machine number one of the blade number three of the chassis number five 
of the rack number seven of the cluster. This approach makes it easier to organize the 
cluster on the graphical interface, especially when there are many nodes involved. 
Moreover, it makes it easier to keep the names of the nodes more consistent, if the 
cluster is expanded or shrunk. 

LEMM-WS must be deployed inside the cluster system in order to access its con-
figuration, status and resources locally. Thus, it needs a web service container avail-
able on the cluster head node. LEMM-WS can be easily deployed on a web server 
like Apache Tomcat [19].  

3.2   LEMMing Web Application (LEMM-GATE) 

The web application module is responsible to access the web services provided by 
LEMM-WS, showing data obtained from the informant web service and work as the 
graphical interface to access the operations provided by the operator web service. 
LEMM-GATE is a rich Internet application, i.e., it is a web page but behaves like a 
desktop application. LEMM-GATE user interface was designed to be familiar to the 
user. Thus, it is similar to a navigational file manager desktop application. On the left 
side, there is a cluster overview with a navigable tree where the leaves represent the 
nodes of the cluster. On a file manager, the leaves are usually the file system folders. 
The left side panel containing the cluster tree can be resized or hidden to maximize 
the right side panel area, if the user needs more space to visualize the panel.  

LEMM-GATE is prepared to organize the cluster tree on the left panel according to 
the dimensionality of the cluster, which means that the compute nodes are organized 
on a hierarchy that divides the whole set into racks, chassis and blades. Resources 
reporting errors or warnings are highlighted to alert the administrators to examine 
them. The organization of the cluster nodes as a hierarchical tree is designed to en-
hance the navigation over the cluster structure. On machines with a huge number of 
nodes, it is especially necessary because the cluster is displayed in parts, making it 
easier to inspect. This organization is also very important on a cluster expansion, 
since it does not require renaming the old nodes. However, if the nodes are named 
sequentially, but the rack is not full, when new nodes are added on the empty spaces, 
there may be a name inconsistence. 

On the right side of LEMM-GATE interface there is a detailed view of the item se-
lected on the tree. On a file manager, when a folder is selected on the tree, the right 
side panel shows the content of that folder. On LEMMing, when a tree item is  



302 J. Dias and A. Aveleda 

selected, the right side panel shows the configuration of that item, the status and addi-
tional information that may be customized. The user can associate tabs to the selected 
tree item. A tab may display a whole web page from another tool (for example, the 
Nagios page), or it may display some selected widgets. LEMMing offers some wid-
gets by default, like the cluster or node load monitoring widget, the CPU usage share 
widget and the cluster queue viewer widget. It is easy to download new widgets and 
also easy to create them according to local needs. A widget is a self-contained file 
specified in the ZUL language [18], which is an easy XML-like language to specify 
web components based interfaces. The ZUL language lets the specification of scripts 
that can be written in Java to perform more advanced operations, involving, for ex-
ample, the integration of other tools. The ZUL file just needs to be added to the wid-
get folder of LEMMing to become available to use. 

 The user may customize a different set of tabs for each different type of item of 
the tree. For example, items representing a whole HPC environment may have tabs 
with Nagios and Cacti; items representing a cluster may have tabs with Ganglia and 
widgets monitoring cluster load and queue; and compute node items may also display 
monitoring widgets and the Ganglia page for that specific node. Other customizations 
are possible adding content to items representing racks, chassis and blades. Since it is 
possible to integrate different tools inside LEMMing, the interface complexity may 
grow. However, since the interface is customizable and each administrator may have 
its own LEMMing account, an administrator can build its own workspace on LEM-
Ming on a complexity level that is adequate to his skills. All customizations made by 
each user are recorded on XML files. So, when a user logs into LEMMing, it finds its 
own customized workspace. 

LEMM-GATE is also the interface to access the operations of the cluster provided 
by the operator web service. The management operations can be executed accessing 
the context menus of the tree items. The action calls the operator web service on 
LEMM-WS to execute the operation. For example, to reboot a node, the user right 
clicks it on the item and selects the 'Reboot' option on the context menu. This action 
calls the web service and executes the reboot method passing the selected node as an 
argument. A video demonstration of LEMMing can be found at the project page [1]. 
Figure 3 shows two sample screens of LEMMing to give an idea of its interface. 

The web services module being developed detached from the AJAX interface al-
lows the building of some specific deployment scenarios. As said, LEMM-GATE and 
LEMM-WS are independent modules and can be deployed on different servers. How-
ever, they can also be put in the same server on the same web container. On a simple 
environment with only one cluster, for example, it is reasonable to deploy both 
LEMMing modules on the cluster head node. However, on big HPC environments, 
the web application should be deployed on a web server and the web services inside 
each cluster. Therefore the single web application will access all the LEMM-WS 
modules deployed on every cluster and manage the clusters through them. The scal-
ability of LEMMing has not been measured yet. However, LEMMing has already 
been used to manage three different clusters simultaneously and it worked nicely. 
Although we still cannot affirm that LEMMing scales well, we believe that the load 
balancing provided by the LEMM-GATE being deployed separately from LEMM-
WS brings good performance to the system. 
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Fig. 3. LEMMing web interface 

4   Conclusion 

The new challenges to manage HPC environments with high scale supercomputers 
require new solutions to support multiple and heterogeneous resources on a single 
point of management with improved usability. We are proposing LEMMing, a tool to 
integrate the cluster management and monitoring software stack and operate it 
through a rich Internet application. LEMMing does not replace existing tools or any 
proprietary tool, it just combine them on a smart interface to make it easier to manage 
a huge supercomputer. 
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We believe that a tool designed to attend a huge variety of systems and architec-
tures should not be developed by a single group or company. Collaboration is essen-
tial to take LEMMing to other platforms. We expect that, being open source, it grows 
up with the community and support a great number of environments. LEMMing uses 
great available tools (Rocks, Torque/SGE, Ganglia) through a flexible architecture 
and a smart and easy-to-use web interface. Since LEMM-GATE, the web interface, is 
detached from LEMM-WS, the component that integrates with the cluster, another 
possible scenario is where the vendors build their LEMM-WS module for their cluster 
systems and provide it to their clients. 

We are now working on LEMMing to support different cluster systems. We are 
also adding new features like an integrated IPMI [20] support, users administration 
and queuing system management. For future work, we are planning an experiment to 
measure the scalability of LEMMing. We believe LEMMing attends most HPC man-
agement scenarios, even with multiple supercomputers with thousands of processors. 
More information and a video demonstrating LEMMing can be found on the LEM-
Ming project web page at http://lemm.sf.net/ [1]. 
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Abstract. This work presents a performance evaluation of single node and 
subdomain communication schemes available in EdgeCFD, an implicit edge-
based coupled fluid flow and transport code for solving large scale problems 
in modern clusters. A natural convection flow problem is considered to assess 
performance metrics. Tests, focused in single node multi-core performance, 
show that past Intel Xeon processors dramatically suffer when large work-
loads are imposed to a single node. However, the problem seems to be  
mitigated in the newest Intel Xeon processor. We also observe that MPI non-
blocking point-to-point interface sub-domain communications, although more 
difficult to implement, are more effective than collective interface sub-
domain communications. 

Keywords: Parallel Computing, Message Passing, Communication Patterns, 
Coupled Problems, Edge-Based. 

1   Introduction 

In 2008 the petascale barrier has been broken. According to Kogge [5] such sys-
tems can carry out real computations 1,000 times more challenging than those comput-
able by early terascale systems. The size of such systems raises particular challenges, 
including performance on each node, scalable programming models, performance and 
correctness debugging, and improving fault tolerance and recovery. On the applica-
tions side, Gropp [6] stresses the fact that when discussing such systems researchers 
often overlook the increasing complexity of individual nodes, processors and the un-
derlying network. Particular applications may benefit from the sheer power of such 
systems, but the majority of them have to be re-examined. Again, according to Gropp 
[6], researchers are creating new tools to develop, debug, and tune applications, as well 
as creating new programming models and languages that could enhance scalability by 
reducing communication overhead. The Computational Fluid Dynamics (CFD) com-
munity is aware of these new developments [7]. 
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In Brazil there is a growing need to understand complex processes in the oil and 
gas industry. Particularly, understanding these processes is therefore critical to effec-
tive exploration for oil and gas in the recently discovered pre-salt fields in ultra-deep 
waters offshore in Brazil. Several of such complex processes can be recast in the 
general framework of fluid-structure interaction and coupled fluid flow and transport 
problems, involving multiple spatial and temporal scales. This paper presents a paral-
lel performance evaluation of computation and communication models implemented 
in EdgeCFD, an implicit edge-based coupled fluid flow and transport solver for large-
scale problems in modern clusters. EdgeCFD currently supports stabilized and multis-
cale finite element formulations and has been used in problems ranging from Newto-
nian and non-Newtonian fluid flows, free-surface flow simulations with fluid-
structure interaction, gravity currents and turbulence (details available in [2] and ref-
erences therein). Of particular interest in the present work is EdgeCFD’s performance 
in the current multi-core processors, particularly process placement within processors 
and the impact of several subdomain communication models. The target machines are 
modern clusters with the latest processor and network technologies, paving the way 
towards sustained petascale performance. Following [4] and [10], where strategies for 
massive parallelism computations in unstructured grids are discussed, EdgeCFD 
adopts peer-to-peer non-blocking communication among processes. 

The remainder of this paper is as follows. Next section details the benchmark soft-
ware and communication models currently supported. The natural convection prob-
lem used to access parallel performance metrics is given in Section 3. The paper ends 
with a summary of our main conclusions.  

2   EdgeCFD: The Benchmark Software 

EdgeCFD was chosen to evaluate performance in several aspects, such as: parallel 
models, system architecture and processors. EdgeCFD was developed to exploit par-
allel architectures in four different ways, which broaden the range of machines that 
can be efficiently used. Three of them rely on message passing interface (MPI)  
implementations while the fourth one is based on threaded parallelism for shared 
memory systems or system components such as many-cores processors with shared 
memory at cache levels. 

For the message passing implementations, the three variants differ in how data are 
split and message exchanges are scheduled among processors. The simplest case is 
based on collective communication calls. In this strategy, nodes are divided in two 
groups: parallel interface and internal nodes. Interface nodes, all hollow and solid ver-
tices in Figure 1a, are known by all processors. On the other hand, nodes owned exclu-
sively by a processor are internal nodes.  Computation of matrix-vector products and 
residuals are performed in just one, blocking, step where the parallel interface values 
are combined using MPI_ALLREDUCE operations. This collective communication 
model was further extended to remove the need of excessive data exchange as well as 
redundant information storage. In this case, globalization operations are also performed 
in one step but, now, using MPI_ALLGATHER calls. The more complex message  
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passing parallel model employs peer-to-peer (p2p) message exchanges among proces-
sors and takes advantage of communication and computation overlapping. Following 
[4], the point-to-point (p2p) communication strategy is based on a master-slave rela-
tionship between processors. This relationship is established by creating a hierarchy 
based on host partition numbers. Thus, the processor Pi is slave of Pj if Pi and Pj are 
neighbors and i < j. Note that a processor can be slave and master at the same time, 
depending only on the number that identifies it in relation to its neighbors. Figure 1a 
illustrates a two dimensional mesh which is decomposed into four partitions. The hol-
low vertices denote the nodes, or degrees of freedom of the system of equations, that 
will be sent to the receiver (a master processor). On the other hand, the solid vertices 
represent the nodes or degrees of freedom that will be received from donors (a slave 
processor). Figure 1b shows the communication graph corresponding to this mesh. In 
this case, P1 is slave of P2 and P3. P2 is slave of P3 and P4 but it is master of P1. P3 is 
slave of P4 and master of P1 and P2. Finally, P4 is master of P2 and P3. 

 

 
 

(a) Mesh Partition (b) Communication Graph 

Fig. 1. Master-Slave relationship 

The information exchange among neighboring processors is implemented in two 
stages: in the first stage, slave processes send their information to be operated by 
masters (where the interface contributions are accumulated) and, in the second stage, 
the solution values are copied back from masters to slaves. In addition, EdgeCFD uses 
non-blocking send and receive MPI primitives, which allow communication and 
computation overlapping.  

3   Performance Tests 

The three dimensional Rayleigh–Benard convection problem is used to investigate code 
performance in situations ranging from small to large scale simulations in different 
architectures and system configurations. The problem consists in a fluid, initially at rest, 
contained in a 3D rectangular domain with aspect ratio 4:1:1 (Length:Depth:Height) and 
subjected to a unity temperature gradient [3]. For a 4:1:1 container aspect ratio, with  
no-slip boundary conditions at walls, the flow is three dimensional and must gives rise 
to four convection cells. The fluid properties are set to result in Rayleigh and Prandt 
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numbers of 30,000 and 0.71 respectively. For the performance tests two meshes with 
different discretizations are used. The coarser mesh (MSH1) is formed by 178,605 tet-
rahedra elements and 39,688 nodes while the finer one (MSH2) is made by splitting the 
domain in 501×125×125 divisions, which gives rise to 39,140,625 tetrahedral elements. 
In both cases the solution is evolved towards steady-state using EdgeCFD's block se-
quential implicit time-marching scheme. In this scheme the Navier-Stokes block is 
solved by the Inexact-Newton method and the temperature block by simple multi-
correction iterations. The inner iterative driver for both Navier-Stokes and temperature 
transport is an edge-based preconditioned GMRES method. A nodal block-diagonal 
preconditioner is used for the Navier-Stokes equations while a simple diagonal precon-
ditioning is employed for the temperature equation. GMRES tolerance for the tempera-
ture is fixed at 10−3 while the maximum tolerances for the inexact Newton method is set 
to 0.1. For both, flow and transport, the number of Krylov vectors is fixed in 25. We 
consider that steady state is achieved when the relative velocity increment differs by less 
than 10−5. 

Tests are carried out in three different Intel Xeon-based HPC systems. All systems 
are equipped with quad core CPUs.  

 

• SGI Altix ICE cluster with 32 compute nodes. Each node has eight 2.66 GHz 
cores (in two Intel Xeon Processor Quad-Cores, Clovertown - X5355). L2 cache 
size 8MB on-die for Quad-Core; 4MB per core pair; shared by the two cores. 
Memory Blade:  16GB. All nodes are interconnected using InfiniBand technol-
ogy in a Hypercube topology. 

• DELL cluster PowerEdge M1000e with 16 compute nodes (M600). Each node 
has eight 3.00 GHz (in two Intel Xeon Processor Quad-Cores, Harpertown - 
E5450). L2 cache size 12MB on-die for Quad-Core; 6MB per core pair; shared 
by two cores. Memory Blade:  16GB. All nodes are interconnected using Infini-
Band technology in a full-CLOS topology.  

• Intel Nehalem server with eight 2.8 GHz (in two Intel Xeon Processor Quad-
Cores, Nehalem – X5560). L3 cache size 8 MB shared by all cores. Memory: 12 
GB.  

 

All systems have similar configurations in terms of number of sockets per node 
and cores per socket. Tests were performed using Intel Fortran compiler using the 
same compilation options in all cases. The cache sharing scheme in older Intel Xeon 
processors, although behaving as Quad-core are, in fact, two Dual-core processors put 
together. Mesh entities are ordered to improve data locality as described in [1].  

In the performance tests, initially, we evaluate single node performance and multi-
core performance according to the parallel models described in Section 2. Tests are 
primarily conducted in the coarser mesh (MSH1), for runs using up to 8 intra-node 
cores. In other words, no network connection was employed in order to reveal intrin-
sic CPU aspects, such as: cache size, memory sharing, load balance, process place-
ment, etc. Figure 2 shows the speedup for EdgeCFD, running the parallel schemes 
presented in section 2, using 2 different systems, SGI Altix ICE 8200 (Figure 2a) and 
the Nehalem server (Figure 2b). The systems are chosen to show the performance 
evolution between 2 Xeon family processors, X5355 and X5560 respectively. 
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(a) SGI Altix ICE (clovertown) (b) Nehalem server (i7) 

Fig. 2. Speedup for two Xeon systems running up to 8 intra-node cores 

As can be seen from Figure 2, the overall performance is much better in the newer 
Xeon processor (Nehalem or i7) than in previous version (Clovertown/Harpertown). 
Regarding the parallel scheme, the peer-to-peer model resulted in the best perform-
ance, as expected, reaching a particularly good speedup in the Nehalem processor. 
However, for the Clovertown CPU, the poor performance led us to investigate this 
issue from other aspects, such as: cache size and sharing, node architecture, etc. In 
both architectures peer-to-peer message passing is clearly superior. Earlier experi-
ments [11] on a HP ProLiant DL145 G3 cluster with 912 cores powered with Opteron 
2218 dual core processors and Gigabit network have shown that p2p was also faster 
than collective communication when using more than one computational node. 

Figure 3a show a raw comparison among the benchmark systems when running se-
rial cases (using one core). It clearly shows the performance increase for the Intel 
Xeon processor between releases from 2006 (Clovertown) until 2009, when Nehalem 
processor was launched.  The wall time reduction, in our tests, reached 37% for proc-
essors with 3 years of difference. The performance gains are even more pronounced 
when we analyze the multi-core case running in a single node (Figure 3b). Other in-
teresting result is the parallel performance shown by Nehalem which is faster than the 
Cluster Dell and SGI Altix-ICE systems, where older Intel Xeon CPUs are present.  
It seems that these results are mainly influenced by the cache memory system that 
Nehalem processor has.  

Motivated by the results presented so far, tests were also conducted considering 
different combinations of cores per nodes. Figure 4a shows the elapsed wall time 
spent to solve the Rayleigh-Benard problem in parallel (message passing with peer-to-
peer scheme), using 8 cores for several arranges of cores × nodes. Tests were per-
formed in Cluster Dell but similar results were also obtained in the SGI Altix ICE 
8200.  

From Figure 4a, we note that diminishing the number of cores per node, the per-
formance increases substantially, which points out that older Xeon processors suffer 
when all cores are simultaneously busy. It is important to remember that the main  
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(a) CPU (serial run) (b) System (8 cores, 1 node) 

Fig. 3. System comparisons for CPU performance in serial runs (a) and peer-to-peer MPI  
performance using 8 cores in 1 node (b) 

EdgeCFD’s kernels (matrix-vector product, stiffness matrix build up and assembly of 
elements residual) strongly relies in indirect memory addressing operations and are, 
thus, influenced by how mesh entities are accessed and used during these operations. 
In EdgeCFD, mesh entities are reordered to makes efficient use of cache memory as 
explained in details in [1]. However, due to the complexity of the main loops of the 
software, cache misses are expected even for reordered meshes.  To better understand 
the meshing ordering effect we have also run this problem considering two mesh 
configurations: original nodal ordering and nodes reordered using Reverse Cuthill 
Mckee (RCM).  In the latter case, edges and elements were ordered in ascending 
order of edge (element) nodes. All tests were made in a single node. For the first case, 
it was necessary 24:26 (mm:ss) to solve the Rayleigh-Benard problem on MSH1, 
while for the reordered, the wall time decreased to 17:57 (mm:ss). The parallel profil-
ing information was obtained using TAU (Tuning Analysis Utilities [9]) and, for the 
case using one core per node, where all communication is made through InfiniBand 
network, the time spent in MPI_WaitAll  calls was around 3.2% of the total wall time. 
For the case using all cores available in one node, where all communication is made 
using memory bus, the largest MPI cost, due to MPI_WaitAll routine, was around 
2.4%. This may be an indication of the MPI inability to provide efficient communica-
tion in non-homogeneous systems (here memory bus/InfiniBand) as described in [8]. 

Figure 4b presents the speedup curve obtained with p2p communication pattern 
and using the best combination of cores per nodes in the Cluster Dell system. Com-
paring with Figure 2a, which presents the same metric for the SGI Altix ICE 8200, 
but using only one node, we can conclude that using a large number of cores per node 
dramatically reduces performance. Note that using one core per node, 12.5% of the 
theoretical processing power, an ideal speed-up is reached. This also supports the 
previous argument, because in this case, communication is homogeneous and uses 
only InfiniBand network. 

 



312 R.N. Elias et al. 

  

(a) CPU (serial run) (b) Best speedup - one core per node 

Fig. 4. Performance impact according to cores x nodes distribution on Cluster Dell 

In order to illustrate the impact of the performance issues discussed in previous 
sections, tests are also conducted for the same problem in the finer mesh (MSH2) 
described in section 3. For this test, 64 cores are employed to solve 31,140,625 flow 
equations per nonlinear iteration per time step and 7,843,248 transport equations for 
each multi-correction iteration per time step. The number of time steps considered 
was enough to make the initialization process negligible. Two runs with different 
combinations of cores × node are used. In the first run, all cores of 8 nodes are used in 
order to exhaust nodes resources. In the second case, only 4 cores are used from 16 
nodes, 50% of each node resources. In the first case, it is necessary 01:49:13 
(hh:mm:ss) to solve 10 time steps while in the second case, considering only 50% of 
each node capacity, the walltime substantially decreased to 00:57:05. All runs are 
performed in the Cluster Dell, which uses Intel Xeon E5450.  

4   Concluding Remarks 

This work presented several performance tests for different versions of the Intel Xeon 
processor family running EdgeCFD, a stabilized finite element software for solving 
incompressible flows coupled (or not) to advection-diffusion transport problems. 
Tests focused in single node multi-core performance showing that past Intel Xeon 
processors dramatically suffers when large workloads are imposed to a single node. 
However, the problem seems to be mitigated in the newest Intel Xeon processor 
(codename Nehalem or commercial name Core I7) by the inclusion of a third level 
(L3) of shared cache memory. Other important change made by Intel, in its newest 
Xeon processor, was the construction of a fast linking channel among processors 
called Quick Path Interconnect, QPI for short. As a consequence, performance dra-
matically decreases when systems built with older Intel Xeon processors are subjected 
to large workloads. In the other hand, excellent performances may be reached when 
placement policies, such as using a smaller number of cores per node, are adopted as 
shown in Figure 4.  
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We also investigated message-passing parallelism. We observed that peer-to-peer 
two-stage information exchange among neighboring processors, using non-blocking 
send and receive MPI primitives, present the best performance. Experiments also 
demonstrate the difficulty of MPI to handle heterogeneous communication. Moreover, 
by setting a suitable MPI process distribution, execution time can be reduced by more 
than one half as we observe in the large run with the finer mesh on the Cluster Dell. A 
possible direction to tackle such difficulties is to set-up an architecture aware mesh 
partition, but this remains to be explored in EdgeCFD. 
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Abstract. Process migration is an useful mechanism to offer load bal-
ancing. In this context, we developed a model called MigBSP that con-
trols processes rescheduling on BSP applications. MigBSP is especially
pertinent to obtain performance on this type of applications, since they
are composed by supersteps which always wait for the slowest process. In
this paper, we focus on the BSP-based modeling of the widely used LU
Decomposition algorithm as well as its execution with MigBSP. The use
of multiple metrics to decide migrations and adaptations on reschedul-
ing frequency turn possible gains up to 19% over our cluster-of-clusters
architecture. Finally, our final idea is to show the possibility to get per-
formance in LU effortlessly by using novel migration algorithms.

1 Introduction

A possibility to increase performance on dynamic and heterogeneous environ-
ments comprises the processes’ relocation. Generally, process migration is im-
plemented within the application. This organization results in a close coupling
between the application and the algorithms’ data structures, which makes this
approach non-extensible. Even more, some initiatives use explicit calls in the
application code [2]. A different approach for migration happens at middleware
level, linking the balancer tool with the programming library directly [16]. Com-
monly, this approach does not require changes in the application code nor pre-
vious knowledge about the system.

A typical scheduling middleware applies mechanisms to allocate the processes
with longer computing times to faster machines. Nevertheless, this approach is
not the best one for irregular applications and dynamic distributed environments,
because a good process-resource assignment performed in the beginning of the
application may not remain efficient with time [1,13,15]. At this moment, it is
not possible to recognize either the amount of computation of each process nor
the communication patterns among them. Besides fluctuations in the processes’
computation and communication actions, the processors’ load may vary and
networks can become congested while the application is running. Therefore, an
alternative is to perform process rescheduling through their migration to new
resources, offering application runtime load balancing [7,11,17].
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In this context, we designed a process rescheduling model called MigBSP that
works over BSP (Bulk Synchronous Parallel) applications [9,20,22]. It explores
the automatic and transparent load (processes) balancing at middleware level.
To make decisions about load balancing, the model considers data about the
infrastructure, the processes’ behavior as well as migration costs. MigBSP was
organized to work with BSP applications, once they are based on synchronous
phases (supersteps). Thus, the main idea of the model is to reduce the duration
of each superstep to decrease the application time. MigBSP contributions are
twofold: (i) combination of multiple metrics to select the candidates for migration
and; (ii) minimization of the model’s overhead with adaptation that act over the
rescheduling frequency.

The BSP model is mainly used for the development of scientific applica-
tions such as data mining, sorting and fluid dynamics [4]. Particularly, this pa-
per presents the modeling of a parallel BSP-based version of the widely used
LU Decomposition method [3]. In addition, it describes the execution of this
application when linked to MigBSP over a cluster-of-clusters environment. The
LU decomposition splits a matrix A in the product of a lower triangular ma-
trix L and an upper triangular matrix U . LU is employed to turn the calcu-
lation of linear equations easier, since the solution of a triangular set of equa-
tions is trivial. Besides its usage, we choose LU because some initiatives impose
changes in the code and/or extra executions when offering load balancing for
this application[2,12,19]. Thus, the paper’s final idea is to show the possibility
for getting performance in LU application effortlessly by using novel migration
algorithms.

2 MigBSP: Process Rescheduling Model

MigBSP manages load balancing issues, where the load is represented by BSP
processes. It aims to reduce the time of each superstep of the application. Its
key idea is to migrate processes which have a long computation time, perform
several communication actions with other processes whose belong to a same
site (e.g., a cluster) and present low migration costs. Figure 1 (a) illustrates a
superstep k of a BSP application in which the processes are not balanced among
the resources. Figure 1 (b) shows the expected result with the rescheduling of
the processes after superstep k, which will influence the execution of the next
supersteps, (including k+1, k+2 and so on).

MigBSP’s architecture is heterogeneous and composed by clusters and super-
computers. This architecture is assembled with the abstractions of Sets (different
sites) and Set Managers. Set Managers are responsible for scheduling, capturing
data from a specific Set and exchanging it among other managers. MigBSP can
be seen as a scheduling middleware. There is no need for changes in the appli-
cation code. All data necessary for its functioning may be captured directly in
both communication and barrier functions as well as in other sources like the
operating system. We described the first ideas of MigBSP in [8]. However, such
work presents an evaluation with a synthetic application with a reduced number
of supersteps (up to 400) and processes (up to 10).
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(a) Superstep k: Processes are not balanced among the resources

(b) Superstep > k: Situation after applying the processes reassignment model
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Fig. 1. BSP Supersteps in two different situations

The decision for process remapping is taken at the end of a superstep, after
the barrier. At this moment, we can analyze data from all BSP processes. Aim-
ing to generate as less intrusiveness in application as possible, we applied two
adaptations that control the value of α - the adaptive period between reschedul-
ing calls. The adaptations’ ideas are: (i) to postpone the rescheduling call if the
system is stable (processes are balanced) or to turn it more frequent, otherwise;
(ii) to delay this call if a pattern without migrations in ω calls is observed. A
variable D is used to indicate a percentage of how far the slowest and the fastest
processes may be from the average. Our second adaptation works on increasing
D. The higher its value, the greater the odds to increase α.

We employed a decision function called Potential of Migration (PM) to se-
lect the candidates for migration. Each process i computes q functions PM(i, j),
where q is the number of Sets and j means a specific Set. The main idea con-
sists in performing a subset of the processes-resources tests at the rescheduling
moment. PM(i, j) is found using the Computation, Communication and Mem-
ory metrics (see Equation 1). Computation metric - Comp(i, j) - considers a
Computation Pattern Pcomp(i) that measures the regularity of a process i at
its computation phase. This value is close to 1 if the process performs a similar
number of instructions at each superstep and close to 0 otherwise. This metric
also performs a computation time prediction based on data between reschedul-
ing calls. In the same way, Communication metric - Comm(i, j) - computes the
Communication Pattern Pcomm(i, j) between processes and Sets. Furthermore,
it uses a communication time prediction considering data between the rebalanc-
ing calls. Memory metric - Mem(i, j) - considers process memory, transferring
rate between the process and the manager of target Set, as well as migration
costs.

PM(i, j) = Comp(i, j) + Comm(i, j)−Mem(i, j) (1)
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Fig. 2. Operation of the metrics to evaluate the Potential of Migration (PM) of a
process: (i) Computation and Communication metrics act in favor of migration; (ii)
Memory metric works in the opposite direction as a migration cost

Figure 2 depicts the operation of the considered metrics on process migration.
Firstly, the BSP processes calculate PM(i, j) locally. At each rescheduling call,
each process passes its highest PM(i, j) to its Set Manager which exchanges the
PM of its processes among other managers. We used a heuristic to choose the
candidates which is based on a decreasing ordered list of PMs. The processes
with PM higher than MAX(PM).x are candidates, where x is a percentage.
The PM(i, j) of a candidate process i is associated to a Set j. Therefore, the
manager of Set j will select the most suitable processor to receive this process.
Before a migration, its viability is verified by computing two times: tl and td.
tl means the local execution of process i, while td encompasses its prediction
of execution on the destination processor and includes the migration costs. For
each candidate is chosen a new resource (if tl > td) or its migration is canceled.

3 LU Decomposition Application

Consider a system of linear equations A.x = b, where A is a given n × n non
singular matrix, b a given vector of length n, and x the unknown solution vector
of length n. One method for solving this system is by using the LU Decomposition
technique. This technique comprises the decomposition of the matrix A into a
lower triangular matrix L and an upper triangular matrix U such that A = LU .
A n × n matrix L is called unit lower triangular if li,i = 1 for all i, 0 ≤ i < n,
and li,j = 0 for all i, j where 0 ≤ i < j < n. An n× n matrix U is called upper
triangular if ui,j = 0 for all i, j with 0 ≤ j < i < n.

On input, A contains the original matrix A0, whereas on output it contains
the values of L below the diagonal and the values of U above and on the diagonal
such that LU = A0. Figure 3 illustrates the organization of LU computation.
The values of L and U computed so far and the computed sub-matrix Ak may
be stored in the same memory space of A0. Algorithm 1 presents a sequential
algorithm for producing L and U in stages. Stage k first computes the elements
uk,j , j ≥ k, of row k of U and the elements li,k, i > k, of column k of L. Then,
it computes Ak+1 in preparation for the next stage. Algorithm 2 presents the
functioning of the previous algorithm using just the elements from matrix A.
Figure 3 also presents the data that is necessary to compute ai,j in the last
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Fig. 3. L and U matrices decomposition using the same memory space of the original
matrix A0

Algorithm 1. Algorithm for LU Decomposition
1: for k=0 to n-1 do
2: for j=k to n-1 do
3: uk,j = ak

k,j

4: end for
5: for i=k+1 to n-1 do

6: lki,k =
ak

i,k

uk,k

7: end for
8: for i=k+1 to n-1 do
9: for j-k+1 to n-1 do

10: ak+1
i,j = ak

i,j − li,k . uk,j

11: end for
12: end for
13: end for

Algorithm 2. Algorithm for LU Decomposition using the same matrix A
1: for k=0 to n-1 do
2: for i=k+1 to n-1 do
3: ai,k = ai,k

ak,k

4: end for
5: for i=k+1 to n-1 do
6: for j-k+1 to n-1 do
7: ai,j = ai,j − ai,k . ak,j

8: end for
9: end for

10: end for

statement of the Algorithm 2. Besides its own value, ai,j is updated using a
value from the same line and another from the same column.

4 BSP-Based LU Application Modeling

This section explains how we modeled the LU sequential application on a BSP-
based parallel one. Firstly, the bulk of the computational work in stage k of
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the sequential algorithm is the modification of the matrix elements ai,j with
i, j ≥ k + 1. Aiming to prevent the communication of large amounts of data,
the update of ai,j = ai,j + ai,k.ak,j must be performed by the process whose
contains ai,j . This implies that only elements of column k and row k of A need
to be communicated in stage k in order to compute the new sub-matrix Ak.

An important observation is that the modification of the elements in row
A(i, k + 1 : n − 1) uses only one value of column k of A, namely ai,k. The
provided notation A(i, k + 1 : n − 1) denotes the cells of line i varying from
column k + 1 to n − 1. If we distribute each matrix row over a limit set of N
processes, then the communication of an element from column k can be restricted
to a multicast to N − 1 processes. Similarly, the modification of the elements in
column A(k + 1 : n − 1, j) uses only one value from row k of A, namely ak,j .
If we distributed each matrix column over a limit set of M processes, then the
communication of an element of row k can be restricted to a multicast to M − 1
processes.

Considering the statements above, we are using a Cartesian scheme for the
distribution of matrices. The square cyclic distribution is used as particularly
suitable for matrix computations such as LU decomposition [3]. For them, it
is natural to organize the processes by two-dimensional identifiers P (s, t) with
0 ≤ s < M and 0 ≤ t < N , where the number of processes p = M.N . Figure
4 depicts a 6 × 6 matrix mapped to 6 processes, where M = 2 and N = 3.
Assuming that M and N are factors of n, each process will store nc (number of
cells) cells in memory (see Equation 2).
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Fig. 4. Cartesian distribution of a 6×6 (n × n) matrix over 2×3 (M × N) processors.
The label ”st” in the cell denotes its owner, process P (s, t).

nc =
n

M
.
n

N
(2)

A parallel algorithm uses data parallelism for computations and the need-to-
know principle to design the communication phase of each superstep. Following
the concepts of BSP, all communication performed during a superstep will be
completed when finishing it and the data will be available at the beginning of
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the next superstep [4]. Concerning this, we modeled our algorithm using three
kinds of supersteps. They are explained in Table 1. The element ak,k is passed
to the process that computes ai,k in the first kind of superstep.

Table 1. Modeling three types of supersteps for LU computation

Type of su-
perstep

Steps and explanation

First
Step 1.1 : k = 0
Step 1.2 - Pass the element ak,k to cells which will compute ai,k (k + 1 ≤
i < n)

Second

Step 2.1 : Computation of ai,k (k + 1 ≤ i < n) by cells which own them
Step 2.2 : For each i (k + 1 ≤ i < n), pass the element ai,k to other ai,j

elements in the same line (k + 1 ≤ j < n)
Step 2.3 : For each j (k + 1 ≤ j < n), pass the element ak,j to other ai,j

elements in the same column (k + 1 ≤ i < n)

Third

Step 3.1 : For each i and j (k+1 ≤ i, j < n), calculate ai,j as ai,j+ai,k.ak,j

Step 3.2 : k = k + 1
Step 3.3 : Pass the element ak,k to cells which will compute ai,k (k + 1 ≤
i < n)

The computation of ai,k is expressed in the beginning of the second superstep.
This superstep is also responsible for sending the elements ai,k and ak,j to ai,j .
First of all, we pass the element ai,k, k +1 ≤ i < n, to the other N −1 processes
that execute on the respective row i. This kind of superstep also comprises the
passing of ak,j , k + 1 ≤ j < n, to the other M − 1 processes which execute on
the respective column j. The superstep 3 considers the computation of ai,j , the
increase of k (next stage of the algorithm) and the transmission of ak,k to ai,k

elements (k + 1 ≤ i < n). The BSP application will execute one superstep of
type 1 and will follow with the interleaving of supersteps 2 and 3. Concerning
this, a n× n matrix will trigger 2n + 1 supersteps in our LU modeling.

5 Evaluation Methodology

We applied simulation in three scenarios: (i) Application execution simply; (ii)
Application execution with MigBSP without applying migrations; (iii) Appli-
cation with MigBSP allowing migrations. Scenario ii consists in performing all
scheduling calculus and all decisions about which processes will really migrate,
but it does not comprise any actual migrations. Scenario iii enables migrations
and adds the migrations costs on those processes that migrate from one proces-
sor to another. The difference between scenarios ii and i represents exactly the
overhead imposed by MigBSP. The analysis of scenarios i and iii will show the
final gain or loss of performance when process migration is applied.

We are using the SimGrid Simulator [6] (MSG module), which makes possi-
ble application modeling and process migration. This simulator is deterministic,
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where a specific input always results in the same output. We assembled an in-
frastructure with five Sets, which is depicted in Figure 5. Each node has a single
processor. These Sets are based on a real cluster-of-clusters infrastructure lo-
cated at the Federal University of Rio Grande do Sul, Brazil. Clusters Labtec,
Corisco and Frontal have their nodes linked by Fast Ethernet, while ICE and
Aquario are clusters with a Gigabit connection. The migration costs are based
on real executions with AMPI [13].

Initial Processes-Resources Mapping

25 processes   = L{1-20}, C{1-5}
50 processes   = L{1-20}, C{1-5}, F{1-6}, I{1-8}
100 processes = L{1-20}, C{1-5}, F{1-6}, I{1-58}
200 processes = L{1-20}, C{1-5}, F{1-6}, I{1-112}, A{1-20}, L{1-20}, C{c-6}

Fig. 5. Cluster-of-clusters environment with five Sets and the initial-processes mapping

Figure 5 presents the initial processes-resources mappings for each number of
BSP processes. When the number of processes is greater than processors, the
mapping begins again from the first Set. We modeled the Cartesian distribution
M × N in the following manner: 5 × 5, 10 × 5, 10 × 10 and 20 × 10 for 25, 50,
100 and 200 processes, respectively. Moreover, we are applying simulation over
square matrices with orders 500, 1000, 2000 and 5000. Lastly, the tests were
executed using α = 4, ω = 3, D = 0.5 and x = 80%.

6 Results Analysis

Table 2 presents the results when evaluating the 500 × 500, 1000 × 1000 and
2000×2000 matrices. The tests with the first matrix size show the worst results.
Formerly, the higher the number of processes, the worse the performance, as we
can observe in scenario i. The reasons for the observed times are the overheads
related to communication and synchronization. Secondly, MigBSP indicated that
all migration attempts were not viable due to low computing and communication
loads when compared to migration costs. Considering this, both scenarios ii and
iii have the same time results.

When testing a 1000 × 1000 matrix with 25 processes, the first rescheduling
call does not cause migrations. After this call at superstep 4, the next one at su-
perstep 11 informs the migration of 5 processes from cluster Corisco. They were
all transferred to cluster Aquario, which has the highest computation power.
MigBSP does not point migrations in the future calls. α always increases its
value at each rescheduling call since the processes are balanced after the men-
tioned relocations. MigBSP obtained a gain of 12% of performance with 25
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processes when comparing scenarios i and iii. With the same size of matrix and
50 processes, 6 processes from Frontal were migrated to Aquario at superstep
9. Although these migrations are profitable, they do not provide stability to the
system and the processes remain unbalanced among the resources. Migrations
are not viable in the next 3 calls at supersteps 15, 21 and 27. After that, MigBSP
launches our second adaptation on rescheduling frequency in order to alleviate
its impact and α begins to grow until the end of the application. The tests with
50 processes obtained gains of just 5% with process migration. This is explained
by the fact that the computational load is decreased in this configuration when
compared to the one with 25 processes. In addition, the bigger the number of
the superstep, the smaller the computational load required by it. Therefore, the
more advanced the execution, the lesser the gain with migrations. The tests with
100 and 200 processes do not present migrations owing to the forces that act in
favor of migration are weaker than the Memory metric in all rescheduling calls.

Table 2. First results when executing LU linked to MigBSP (time in seconds)

Processes
500×500 matrix 1000×1000 matrix 2000×2000 matrix

Scen. i Scen. ii Scen. iii Scen. i Scen. ii Scen. iii Scen. i Scen. ii Scen. iii

25 1.68 2.42 2.42 11.65 13.13 10.24 90.11 91.26 76.20
50 2.59 3.54 3.34 10.10 11.18 9.63 60.23 61.98 54.18
100 6.70 7.81 7.65 15.22 16.21 16.21 48.79 50.25 46.87
200 13.23 14.89 14.89 28.21 30.46 30.46 74.14 76.97 76.97

The execution with a 2000 × 2000 matrix presents good results because the
computational load is increased. We observed a gain of 15% with process reloca-
tion when testing 25 processes. All processes from cluster Corisco were migrated
to Aquario in the first rescheduling call (at superstep 4). Thus, the application
can take profit from this relocation in its beginning, when it demands more com-
putations. The time for concluding the LU application is reduced when passing
from 25 to 50 processes as we can see in scenario i. However, the use of MigBSP
resulted in lower gains. Scenario i presented 60.23s while scenario iii achieved
56.18s (9% of profit). When considering 50 processes, 6 processes were trans-
ferred from cluster Frontal to Aquario at superstep 4. The next call occurs at
superstep 9, where 16 processes from cluster Corisco were elected as migration
candidates to Aquario. However, MigBSP indicated the migration of only 14
processes, since there were only 14 unoccupied processors in the target cluster.
The execution of 100 processes presented the same behavior of the execution
with 50 processes. Nevertheless, the performance gain was reduced to 4% with
100 processes given the reduction of the workload per process.

We observed that the higher the matrix order, the better the results with
process migration. Considering this, the evaluation of a 5000×5000 matrix can be
seen in the Figure 6. The simple movement of all processes from cluster Corisco
to Aquario represented a gain of 19% when executing 25 processes. The tests
with 50 processes obtained 852.31s and 723.64s for scenario i and iii, respectively.
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Fig. 6. Performance graph with our three scenarios for a 5000 × 5000 matrix

The same migration behavior found on the tests with the 2000 × 2000 matrix
was achieved in Scenario iii. However, the increase of matrix order represented
a gain of 15% (order 5000) instead of 10% (order 2000). This analysis helps
us to verify our previous hypothesis about performance gains when enlarging
the matrix. Finally, the tests with 200 processes indicated the migration of 6
processes (p195 up to p200) from cluster Corisco to Aquario at superstep 4.
Thus, the nodes that belong to Corisco just execute one BSP process while
the nodes from Aquario begin to treat 2 processes. The remaining rescheduling
calls inform the processes from Labtec as those with the higher values of PM .
However, their migrations are not considered profitable. The final execution with
200 processes achieved 460.85s and 450.33s for scenarios i and iii, respectively.

7 Related Work

Bhandarkar, Brunner and Kale presented a support for adaptive load balanc-
ing in MPI-based LU application [2]. Periodically, the MPI application transfers
control to the load balancer using a special call MPI Migrate(). Processes reorga-
nization on LU application is proposed by Ennes et al [19]. Such work imposes an
extra execution for getting parameters for a communication-graph construction.

Concerning the BSP scope, Jiang, Tong and Zhao presented resource load
balancing based on agents [14]. Load balancing is launched when a new task is
inserted and it is based on the load rank of the nodes. Scheduling service sends
this new task to the current lightest node. Load value is calculated taking such
information: CPU, memory resource, number of current tasks and number of
network links. In addition, we can cite two works that present migration on BSP
applications. The first one describes the PUBWCL library, which exploits the
computing cycles of idle computers [5]. PUBWCL can migrate a process during
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its computation phase and after the barrier. All algorithms just use data about
the nodes and consider the computation times from each process.

Other work on BSP context comprises the implementation of the PUB li-
brary [4]. The author explains that a load balancer decides when to launch the
processes migration, but this issue is not addressed in [4]. He proposed both
centralized and distributed strategies for load balancing. In the distributed ap-
proach, every node chooses c nodes randomly and asks for their load. One process
is migrated if the minimum load found is smaller than the load of its current
node. Both strategies take into consideration neither the processes communica-
tion nor the migration costs.

8 Concluding Remarks

Scheduling schemes for multi-programmed parallel systems can be viewed in
two levels [10,18,21]. In the first level processors are allocated to a job. In the
second level processes from a job are (re)scheduled using this pool of processors.
MigBSP can be included in this last scheme, offering algorithms for load (BSP
processes) rebalancing among the resources during application runtime. Our
model can be seen as a scheduler middleware that does not insert changes in
the application code nor needs knowledge about it or the system infrastructure.
Especially, this paper presented MigBSP shortly as well as a modeling and an
execution of a BSP-based LU application. The tests when linking it to the LU
application enabled us to conclude encouraging results: gains of performance and
a short overhead of MigBSP. Contrary to existing works[2,12,19], these results are
obtained without modifying the application code and without extra executions
to feed the load balancing model.

The short overhead of MigBSP is enabled mainly by using efficient adapta-
tions and through the rapid calculus of the scheduling decisions. Firstly, PM
(Potential of Migration) considers processes and Sets (different sites), not per-
forming all processes-resources tests at the rescheduling moment. Meanwhile,
our adaptations were crucial to enable MigBSP as a viable scheduler. Instead of
performing the rescheduling call at each fixed interval, they manage a flexible
interval between calls based on the behavior of the processes. Their concepts are:
(i) to postpone the rescheduling call if the system is stable (processes are bal-
anced) or to turn it more frequent, otherwise; (ii) to delay this call if a pattern
without migrations in ω calls is observed.

For example, the low overhead of MigBSP may be expressed when executing
50 processes and a 2000 × 2000 matrix. In this context, it adds 3% of costs
(MigBSP algorithms are enabled but no migrations are performed). Firstly, this
feature is due to the simplicity of the PM evaluation, since it considers the
hierarchy notion and employs heuristics. Secondly, MigBSP adaptations work
to turn the model viable, especially when migrations cause performance gains
but the system remains unbalanced. This occurred with a matrix of order 1000
and 50 processes. Besides this, we observed that the larger the matrix size, the
bigger the gain with migrations. Thus, MigBSP obtained the best results with a
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5000×5000 matrix. In this situation, we can observe gains larger then 15% when
applying our migrations decisions on application execution. Gains of 19% and
15% were obtained when running 25 and 50 processes with migrations to the
fastest cluster. Moreover, contrary to other situations, this matrix size enables
migrations when using 200 processes due to its larger computing grain.
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Abstract. Scientific Workflow Management Systems (SWfMS) are being used 
intensively to support large scale in silico experiments. In order to reduce exe-
cution time, current SWfMS have exploited workflow parallelization under the 
arising Many Tasks Computing (MTC) paradigm in homogeneous computing 
environments, such as multiprocessors, clusters and grids with centralized con-
trol. Although successful, this solution no longer applies to heterogeneous com-
puting environments, such as hybrid clouds, which may combine users’ own 
computing resources with multiple edge clouds. A promising approach to ad-
dress this challenge is Peer-to-Peer (P2P) which relies on decentralized control 
to deal with scalability and dynamic behavior of resources. In this paper, we 
propose a new P2P approach to apply MTC in scientific workflows. Through 
the results of simulation experiments, we show that our approach is promising.  

Keywords: Scientific experiments, scientific workflows, Scientific Workflow Man-
agement Systems (SWfMS), many tasks computing (MTC), peer-to-peer (P2P). 

1   Introduction 

The evolution of computer science in the last decade has enabled the exploration of a 
new type of scientific experiments based on computer simulations, known as in silico 
experiments [1]. In such experiments, scientists may use different programs to per-
form an activity. In these scenarios data produced by one activity needs to be passed 
as input to another activity, and conversion steps may need to be performed along the 
execution. This chain of programs that composes a scientific experiment is usually 
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represented as scientific workflows. A scientific workflow is an abstraction that al-
lows the structured composition of programs as a sequence of activities aiming a 
desired result [1]. This sequence is supported by Scientific Workflow Management 
Systems (SWfMS), which are software packages that enable to define, execute, and 
monitor scientific workflows. SWfMS are responsible for coordinating the invocation 
(also called orchestration) of programs (specified within scientific workflows) to be 
executed either locally or in remote environments.  

Due to the exploratory nature of the scientific method [2], an in silico experiment 
may require the exploration of a certain scientific workflow using different parame-
ters or input data. This situation occurs, for example, in Monte Carlo simulations, 
parameter sweep, and data mining, where the same workflow is exhaustively executed 
until the exploration finishes. Recently, these experiments were grouped into a new 
computational paradigm called Many Tasks Computing (MTC) [3]. It consists on 
using various computing resources over short periods of time to accomplish many 
(dependent or independent) computational tasks. 

SWfMS have successfully exploited workflow parallelization in homogeneous 
computing environments, such as multiprocessor or cluster systems. These environ-
ments rely on centralized control of resources which eases parallelization and exploit 
high-throughput, low-latency communication networks which bring performance in 
order to confirm or refute a hypothesis. However, there are now many different het-
erogeneous computing environments which could be exploited for executing scientific 
workflows, for instance, grids, desktop grids, volunteers computing projects (such as 
BOINC [4] and World Community Grid [5]), or hybrid clouds [6], which may com-
bine users’ own computing resources with multiple edge clouds. The main problem is 
that each of these computing environments requires different efforts, resources and 
scientists skills to be applied within a solution for workflow parallelization. However, 
a major requirement for scientists is to model activities or workflows to be parallel-
ized in an implicit way, independent of the target environments. Another important 
requirement for scientists is provenance gathering [7], i.e., the capability of reproduc-
ing the results of a scientific experiment. Nevertheless, provenance gathering in het-
erogeneous distributed environments is still an open problem.  

Peer-to-Peer (P2P) is a promising approach to address the aforementioned chal-
lenges of applying MTC to scientific workflows. Unlike traditional distributed (client-
server) computing, P2P relies extensively on decentralized control and the ability of 
any node (peer) to perform any task which makes it possible to deal with scalability 
and dynamic behavior of nodes (including churns, i.e., frequent joins and leaves of the 
P2P network).  

In previous work [8], the authors have already discussed how P2P techniques can 
be very useful to large-scale grids. More generally, we believe that, in heterogeneous 
computing environments, P2P is a powerful approach to support MTC of scientific 
workflows, with integrated provenance gathering.  

In this paper, we explore a new P2P approach to support MTC through scientific 
workflows in heterogeneous computing environments. We propose SciMule, a P2P 
middleware that allow transparent parallelization of workflow tasks and dynamic 
scheduling of MTC. To evaluate our approach, we developed a SciMule simulation 
environment and performed several experiments under typical scientific workflow 
scenarios.  
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The paper is organized as follows. Section 2 introduces a comparative study based 
on qualitative aspects of the state of art P2P approaches suitable to deal with work-
flow activity distribution. Section 3 describes the SciMule conceptual architecture and 
presents our parallel workflow execution strategies. Section 4 presents experimental 
results. We conclude in Section 5. 

2   Backgrounds on P2P Networks 

P2P systems can be classified into two types: centralized and decentralized [9]. Cen-
tralized systems use one or more servers (also called super-peers) which are responsi-
ble for storing information about other peers and solving P2P network requests such as 
joining the network. Decentralized systems do not rely on specific peers for network 
control, because information is totally distributed between all peers. Furthermore, there 
are hybrid solutions which combine characteristics of the two aforementioned types. 

The hierarchical P2P approach is a hybrid solution to decrease complexity and to-
pology maintenance overhead of large-scale decentralized P2P systems. This approach 
creates several smaller network groups, where the peers still form a decentralized net-
work. Some peers from a group on a given hierarchy level connect with peers from a 
higher hierarchy level, thus forming the hierarchical structure. 

Canon [10] is a DHT-based hierarchical approach. In Canon, each peer creates 
links to other peers on its own hierarchical level generating a domain. The hierarchy 
is constructed by adding links from each peer in one domain to some set of peers in 
other domains, resulting in a higher level group. Messages are routed inside domains. 
If a query regarding some resource discovery cannot be resolved locally, then it is 
routed to a peer p which keeps connection with the next higher level. At Canon, 
churns at lowest levels do not affect the entire network and only internal neighbor-
hood tables need be updated. 

Garcés-Erice et al. [11] proposes a hierarchical approach using the super-peer 
model. They propose a network formed by two types of nodes: ordinary nodes and 
super-peers. Ordinary nodes are organized into groups and exchange messages only 
inside their group. Super peers are gateways between groups. They create links to 
others super-peers for inter-group message exchanging and keep information about 
ordinary nodes and their content.  

Considering the super-peer model, hierarchical structures can be used in Grid Sys-
tems as shown in Mastroianni et al. [12], where each virtual organization in the Grid 
has a single super-peer which establishes connection with other super-peers to form a 
network at a higher level. Super peers control membership requests and resource 
discovery services on the Grid. A similar architecture is discussed in a previous work 
[13], where a CAN-based P2P network is built according to the super-peer model 
using a more sophisticated message routing. Super-peers keep information about local 
nodes and neighboring super-peers. 

The main focus of this work is on executing scientific workflows in large-scale P2P 
networks and includes the network type specification. There are many aspects that 
should be considered to select a suitable approach to deal with distributed workflow 
activities execution. A single workflow activity can generate thousands of tasks that  
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would be distributed over the P2P network. Thus, the load balancing factor is very 
important to keep the network stable without overloading a set of peers.  Scalability is 
also important since it is a large-scale network that deals with thousands of nodes. 
P2P is supposed to be fault-tolerant but churn events are predicted. So, the churn risk, 
i.e., how impactful is a churn event on the worst case scenario in the network, is also 
very important on any P2P system. Maintenance cost of the P2P topology may also be 
an important aspect since it affects the scheduling process, since the node submitting 
a workflow activity should know where it can distribute tasks. Table 1 summarizes  
an analysis considering the types of P2P networks we previously discussed and  
the following factors: (i) Load Balancing; (ii) Scalability; (iii) Churn Risks and;  
(iv) Maintenance Cost.  

Table 1. Analysis of the P2P networks approaches 

Network type 
Factor Centralized Decentralized Hierarchical 

Load Balancing None High Moderate 
Scalability Low Moderate High 
Churn Risks Total Failure Ponctual Failures Domain Failures 
Maintenance Cost Low High Moderate 

 
Centralized P2P networks have no load balancing since the super-peers centralize 

resource discovery and search services. The decentralized approach fully distributes 
control over the network, thus providing high load balancing. The hierarchical ap-
proach centralizes part of the services on some special (inter-group) peers, thus pro-
viding a moderate load balancing. The centralized approach relies on the central node 
capacities, so it does not scale very well. The decentralized approach has a moderate 
scalability since it is hard to maintain a huge network with fully distributed control. 
The hierarchical approach scales better since it establishes part of the control on the 
inter-group peers. 

Regarding the churn risks, in a centralized network, if a churn happens on the cen-
tral nodes, the whole network fails. In a decentralized network, the churn represents 
just a punctual failure, since the nodes are independent. On a hierarchical P2P net-
work, if a churn happens on an inter-group peer, the whole group fails. The mainte-
nance cost of a centralized network is low, since only the information on the central 
nodes has to be updated. In the decentralized approach, though, the information is 
distributed and updates usually involve flooding algorithms. On the hierarchical ap-
proach, the inter-group peer keeps some information about its groups and it is the 
gateway between its group and the others. Flooding may happens only inside the 
groups.  

Considering these aspects, we believe hierarchical P2P networks may be the most 
adequate solution for distributing scientific workflows activities, especially for large-
scale networks that demand great performance. 
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3   Design of SciMule 

SciMule is a middleware designed to distribute, control and monitor the execution of 
activities of a scientific workflow in a P2P environment. We consider P2P environ-
ment as a distributed and heterogeneous computing environment where activities, data 
and parameters are distributed over the network to promote workflow/activity paral-
lelization. These activities can be programs or even independent scientific workflows. 
SciMule was designed considering a hierarchical structured approach. We choose the 
hierarchical approach since it establishes a good tradeoff between the centralized and 
decentralized approaches, which generally scales well for large scale P2P networks, 
while tolerating churn effects. SciMule has a three-layer architecture: (i) a submission 
layer that dispatches activities to be executed in the P2P environment through a ge-
neric SWfMS, (ii) an execution layer that receives experiment packages (i.e. activi-
ties, parameters and data) that need to be executed, and (iii) the overlay layer that 
holds information about how peers are placed on the network and how they are re-
lated together. This type of information is important when a new node needs to be 
inserted on the overlay and also to keep the P2P network balanced.  

During SciMule network lifetime, a peer may play several different roles. It may 
act as a client peer submitting new activities through the submission layer, or it may 
act as an executor peer, receiving tasks to be executed by the execution layer. A peer 
may also be elected as a gate peer. The gate peer is responsible for keeping and pub-
lishing the list of nearby peers and their subjects. A subject is an abstraction that 
represents a set of programs related to a certain domain of knowledge. The gate peer 
role is managed by SciMule through the overlay layer. Each role is strongly coupled 
to a specific layer, but they are all independent. Peers may act only as a client, others 
may act only as executors, but they usually act as both. An elected gate peer may also 
act as client and/or executor. 

SciMule aims at isolating scientists from the complexity of distributing workflow 
activities (or entire workflows) using MTC paradigm over a P2P network. This is 
done by offering a transparent and explicit structure to distribute scientific workflows 
activities that demand high computation. In this way, SciMule is an adaptation of 
Hydra [14] for the P2P environment. Hydra is also a middleware which provides a set 
of components to be included on the workflow specification of any SWfMS to control 
parallelization of activities in clusters. While Hydra and SciMule share many concep-
tual behavior, their architecture design is completely different due to the intrinsic 
characteristics of P2P versus client server architecture. For example, in SciMule, a 
computer may distribute a set of tasks that compose an activity acting as a client peer, 
but it may latter run tasks that arrive from other peers acting as an executor peer. This 
behavior is not supported by Hydra. 

3.1   SciMule Architectural Features 

SciMule shares many important features with Hydra [14]. It was also designed to 
provide two different types of parallelization: parameter sweep parallelism and data 
parallelism. These two types of parallelism may normally represent a barrier for the 
scientists to control and register provenance, since they require a great effort and 
discipline to manage too much information when executed in an ad-hoc manner over 
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any distributed environment. SciMule provides a systematic approach to support both 
types of parallelism with heterogeneous distributed provenance gathering. Some of 
these features are also available in Hydra, but SciMule aims a broader execution ex-
perience running asynchronously and distributed over the dynamic and heterogeneous 
P2P network. Meantime, SciMule architecture is still simple to deploy and able to be 
architecturally linked to any SWfMS with minimum effort. The entire architecture is 
described in the following sub-sections. 

3.2   SciMule Conceptual Architecture 

Figure 1 presents the SciMule architecture. As mentioned before, it is composed by 
three layers: submission, execution and overlay. It is important to observe that each 
peer has all the three layers. Numbers alongside the arrows of Figure 1 denote the 
execution sequence of the architecture components in the scope of each layer.  

 

Submission Layer Components. SciMule submission layer components provide 
transparent ways to parallelize scientific workflows and to distribute activities 
through neighbor peers using MTC paradigm. It is divided in two basic parts: work-
flow components and MTC controller components. The workflow components repre-
sent generic modules that are included in the SWfMS to enable the interaction with 
SciMule. SciMule has two main components to be plugged into the SWfMS: Client 
Setup and Client Dispatch.  
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Fig. 1. SciMule Architecture 
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Similar to Hydra, the Client Setup is the component responsible for general con-
figuration of the type of parallelism to be used during workflow execution and the 
P2P environment, which includes both data files and template files [14] to be trans-
ferred over the P2P network. All these configurations are used by SciMule MTC 
controller. The Client Dispatch distributes activities over the P2P network through the 
MTC controller during workflow executions. The execution on the P2P network is 
transparent while using this component. Once the distributed execution is finished, the 
Client Dispatch returns control to the SWfMS. 

The MTC Controller Components represents the SciMule MTC engine that is re-
sponsible for distributing tasks, gathering distributed provenance data and handling 
churns during workflow execution. The MTC controller components are invoked by 
the Client Dispatch (event s.1 of Figure 1). An activity that needs to be distributed is 
divided into a set of tasks. A task is an experiment package which includes enough 
information for the execution, i.e., workflow code, data and parameter for execution. 
Each task is scheduled considering the status of the peer neighbors (computing power, 
number of tasks being processed and the available bandwidth). The status information 
may be obtained through gossip [15]. After this point, each task contains the executor 
peer address. The peer address may be the local machine, which means that the task is 
going to be executed locally. All the optimization process is static for each distributed 
activity. This means that once a task is scheduled to be executed by peer α, it is exe-
cuted by α, unless α suffers a churn (in this case the task may be redistributed to an-
other peer).  

The MTC distribution component distributes the tasks (event s.2 of Figure 1) and 
monitors all peers that are running one of the distributed tasks (event s.3 of Figure 1). 
Once a task finishes its remote execution, provenance data is collected from the re-
mote peer (event s.4 of Figure 1). Like in Hydra [14], the provenance repository was 
modeled to link the prospective provenance and the retrospective distributed prove-
nance [7] collected during the scientific experiment life cycle. Once all tasks are 
completed, the control is returned to the SWfMS (event s.5 of Figure 1), together with 
the collected provenance data (event s.6 of Figure 1).  

Execution Layer. On the execution layer, there are three main components: the activ-
ity listener, the workspace handler and the task handler. The activity listener is the 
component responsible for listening to the connections with other peers in order to 
receive a task. Each task received is put into a queue (event e.1 of Figure 1) to be 
consumed by the task handler. 

The workspace handler is responsible for setting up the executor peer environment 
to execute the task, i.e., unpack the experiment package for execution (it creates the 
directory structure, sets parameters, etc). Once the task is ready (event e.2 of Figure 1), 
the task handler invokes the corresponding program using the parameters and data that 
were packaged in the task (event e.3 of Figure 1). When the execution is finished, the 
control returns to the MTC distribution. 
 

Overlay Layer. In order to support MTC, SciMule overlay is defined to balance 
peers according to locality principles [15] and to subject. Each subject is a preset tool 
of a certain domain (e.g., bioinformatics). The goal is that peers keep communication 
to other peers that enroll the same subject, which means that they may have the same 
set of programs. The principle of locality establishes that it is also important that peers 
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cooperate with other peers that are close to them in locality. In this way, SciMule is a 
scalable P2P MTC network that is both locality and subject aware.  

In the SciMule approach, most information about the overlay is stored on gate 
peers. Gate peers keep a list of nearby nodes, i.e., nodes that once contacted them to 
join the P2P network. A gate peer has one or more subjects associated to it. Gate 
peers control versions of their related subjects, replicate them on nearby gate peers 
and notify known peers enrolled with the same subject about the new versions, so 
they can update their files. The rules for deploying new versions of subjects assume 
concepts of reputation, i.e., only Gate peers with greater reputation may deploy new 
versions of subjects. Gate peers are elected according to some metrics: they are as-
sumed to have low churn frequency and high reputation. To avoid data loss, gate 
peers also have a backup node that replicates nearby peers list. Data management and 
replica control on large-scale P2P systems are well discussed by Akbarinia et al. [16]. 
Leader election occurs for a promotion of a peer into to a gate peer to guarantee a 
certain rate between gate peers and peers in the network. 

In SciMule, each gate peer keeps a list of ordinary nodes that defines a group, and 
each ordinary node belongs to only one group, which means that it is registered in a 
single gate peer. However, a peer may have neighbors from its own group and from 
two other adjacent groups. Thus, when churn happens, three groups of the network are 
affected, at most. Any node inside a group can submit a task from a workflow activity 
directly to its neighbors. This decentralized submission enhances the load balancing. 

The amount of gate peers in the network directly affects the maximum connectivity 
of a node in the network. On a given network with n peer nodes and g gate peers dis-
tributed on the network, the gate peers keep a mean of n/g nearby nodes. Each node is 
registered on the nearest gate peer, from where it obtains the list of other nearby 
nodes. The node also contacts another nearby gate peer to get a broader listing. Thus, 
a node registered on a given gate peer may have neighbors registered on the same gate 
peer and also from the other two adjacent gate peers. Since each gate peer has n/g 
nodes on its list, the maximum connectivity of the node is 3n/g.  

 

 

Fig. 2. P2P MTC configuration 

Although each peer contacts some gate peers to join SciMule network, it does not 
necessarily establishes inter-peer connections with them, since other peers may be 
better suited to the selection criteria. SciMule limits the number of neighbors that an 
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incoming peer can get. A novice peer only has about half the average of neighbors 
that older peers have. This limitation aims at avoiding free riding [17]. The number of 
inter-peer is also important to maintain the network balanced, which means that new 
incoming peers connect to peers with lower inter-peer connection cardinality. The 
cardinality information of a group is stored in the gate peer and is periodically re-
freshed. When a peer requests the nearby peer list, it comes ordered by cardinality. 
We are also studying the possibility to spread this information using gossip [15]. The 
goal is to balance the P2P network structure along time. Figure 2 presents an example 
of P2P MTC configuration. 

4   SciMule Evaluation 

We have built a simulation environment to evaluate the proposed architecture. We 
chose the simulation approach instead of a real life experiment since it is difficult and 
expensive to build a real P2P infrastructure with thousands of nodes just to test and 
evaluate our architecture [18].  

SciMule Simulator was developed on top of PeerSim [19]. It was necessary to ex-
tend the PeerSim simulator and add some extra components to support SciMule archi-
tectural demands. The PeerSim node component was extended to store locality and 
subjects. It also got the ability to become a gate peer, which means that it can store a 
list of nearby nodes. We also modeled the link between nodes, the data package that 
transit on links, the workflow activity and its tasks. The data transferring system con-
siders the bandwidth of both sender and receiver peers. Since a peer can perform 
multiple data transfers, the system uses a round robin approach to share the band-
width. The workflow activity is modeled as an object that can be decomposed in a set 
of tasks. A task is an object that has a size and a processing cost. The size attribute is 
considered for data transfers while the cost is considered when the task is computed 
by one of the executor peers. Most parts of the simulator were developed following 
SciMule three-layer architecture. 

The simulator allows the control of several variables, like the size of the network 
and characteristics of the workflow activities that are submitted during the simulation. 
For the sake of performance, the simulator uses PeerSim cycle-based approach. The 
variables were parameterized based on a real life experiment [14] assuming that a 
cycle corresponds to 30 seconds.  

Our study has eight independent variables [20]: (i) the number of simulation cycles, 
(ii) the initial number of peers (n) in the network, (iii) average number (k) of neighbors, 
(iv) activities submission frequency (f) that obeys a Poisson distribution, (v) number of 
tasks (tasks) of an activity, (vi) task computational cost (cost) in processing units (p.u.), 
(vii) task data size (size) in kilobits and (viii) churn frequency (churn), also following a 
Poisson distribution. Five of these variables – k, tasks, cost, size and churn – are factors 
[20] which have from two to four treatments [20]. On this aspect, our simulation ex-
periment is a five-factor, four-treatment study [20]. Table 2 summarizes our independ-
ent variables and factors with their respective treatments [14]. 

The combinations of all factors generated 384 instances of simulation. The de-
pendent variables [20], i.e., the values we assess, are the speed up and the time spent  
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transferring data of each activity executed on the P2P network. However, our analysis 
focuses on speed up results, in order to evaluate the general performance of the net-
work due to increase of number of peers involved on execution. 

Table 2. Summary of the study variables 

   Factors 
Independent Variables 

cycles n f k tasks cost size churn 
14400 4096 0.01 32 128 4000 12000 0.00 

      64 512 8000 24000 0.05 
     128   16000 48000 0.10 
      256   32000 96000   

 
Each one of the 384 instances was considered an independent simulation. All the 

simulations instances ran on a SGI Altix 8200 cluster using Hydra [14]. The simulation 
results were stored on a PostgreSQL database. We have made a statistical analysis of 
the data taking the average speed up from the completed executions of the distributed 
activities [21]. We have selected four representative activities for our experimental 
analysis. Two of them have Low task Cost (LCMS and LCBS) with different task 
sizes. And the other two have Small task Size (HCSS and MCSS) with different costs. 
They are described on Table 3. Since we are measuring speed up, the processing units 
(p.u.) do not need to be converted to a real life unit. On the simulations, the peers have 
a computational power that follows a gamma distribution with average of 80 p.u/cycle, 
with scale 30 and shape 2. 

Table 3. Representative Activities for Performance Analysis 

Activity Name Task Cost (p.u.) Task Size (MB) 
LCMS - Low Cost Medium Size 4,000 6 
LCBS – Low Cost Big Size 4,000 12 
HCSS – High Cost Small Size 32,000 1.5 
MCSS – Medium Cost Small Size 16,000 1.5 

 
Figure 3shows the speed up curve of parameter sweep parallelization of the selected 

activities varying the churn events. It shows the scenarios without churn events, with a 
5% and 10% frequency in a Poisson distribution. The first scenario is unrealistic, but it 
presents a baseline for measurements. In the first graphic, even without churn, activi-
ties with tasks of larger size do not scale very well. The peer that submits the activity is 
the responsible for transmitting all the data to the other selected execution peers. 
Transmitting several huge tasks may overload the submitter peer network bandwidth. 
Thus, the data set delivery takes more time, slowing down the overall execution proc-
ess. It seems that involving fewer peers in the execution is more convenient, since, 
with the same data set, a peer may run different executions just by assigning a different 
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set of parameters. Therefore, scheduling several tasks of an activity to a small set of 
peer saves data transmissions and speeds up the overall execution.  

The scenarios with churn show a decrease in speed up, especially on the activities 
with larger size. The larger the number of nodes involved, the higher is the chance of 
a churn in the executor nodes group. When a churn happens, the task needs to be 
rescheduled and, possibly, the task data set needs to be retransferred to another peer, 
if the new peer does not have it. Since smaller tasks are easier to transport in the net-
work, activities HCSS and MCSS suffer less impact from churn events because its 
tasks have only 1.5MB. LCMS and LCBS, in contrast, suffer more impact since their 
tasks have 6MB and 12MB, respectively. 
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Fig. 3. Statistical results for parameter sweep for the selected activities  

Figure 4 shows the speed up results for the same activities, but now considering the 
data fragmentation scenario. Different from the parameter sweep case, each task of 
the activity has a specific data set. Thus, involving fewer peers in the execution may 
not be the best strategy. In Figure 4, the speed up rate is positive in all scenarios. 
However, the impact of churn events is still clear. Compared to the parameter sweep 
cases, the data fragmentation is more sensitive to churn events. This is reasonable 
since, when a parameter sweep task is rescheduled, the chosen node has possibly the 
necessary data packages to process the new assigned task. On a data fragmentation 
task, though, the data set necessarily has to be retransmitted. 

Just like in the parameter sweep case, activities with smaller tasks (HCSS and 
MCSS) also scale better with churn. The activity cost seems to have little influence in 
performance, since data transmission appears to be the major bottleneck. However, it 
is possible to assess that MCSS activity scales better than HCSS. 

These initial results show that P2P networks are suitable environments to distribute 
workflow activities. However, the results also suggest that a lot of improvements need 
to be made in the scheduling and data transmission mechanisms. It is important to 
optimize the ideal number of peers involved in the processing of an activity, the 
choice of the more suitable node to receive a rescheduled task and a better data distri-
bution to not overload the bandwidth of some peers. To minimize churn effects, it is 
possible to use replication of data sets on other available nodes. When a churn hap-
pens, the task can be quickly rescheduled to nodes that already have a replica. 
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Fig. 4. Statistical results for data fragmentation for the selected activities 

5   Conclusions 

SciMule is a hierarchical P2P architecture that provides very good scalability for distri-
bution of workflow activities in heterogeneous environments. We conducted a simula-
tion to evaluate SciMule architecture and obtained positive results regarding the overall 
performance. From our initial results, we believe that hierarchical P2P is a promising 
approach to deal with MTC on heterogeneous environments such as hybrid clouds.  

From the simulation results, we observed that different parallelization methods should 
have different approaches for execution. In the case of data fragmentation, it is preferable 
to have a large number of tasks of small size, than small numbers of tasks of larger size. 
This is promising since data fragmentation parallelism allows this kind of optimization. 
In the case of parameter sweep, it is preferable to restrict the number of nodes involved to 
avoid unnecessary data transfer and minimize the impact of churn events.  

Finally, we observed that some issues must be addressed in future work, such as: 
improving the scheduling mechanism to choose a better number of peers to process an 
activity of a given size; and a better data discovery and distribution system to not 
overload the bandwidth of the submitter peers. The scheduler should consider data 
migration costs before scheduling a task to a node that do not have the data set. Many 
improvements are still possible to be explored using the SciMule simulator, but we 
have observed that our strategy is promising and may be an alternative to other het-
erogeneous distributed environments. 
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Abstract. One of the great benefits of computational grids is to provide
access to a wide range of scientific software and a variety of different
computational resources. It is then possible to choose from this large
variety of available resources the one that solves a given problem, and
even to combine these resources in order to obtain the best solution.

Grid service trading (searching for the best combination of software
and execution platform according to the user requirements) is thus a
crucial issue. Trading relies on the description of available services and
computers, on the current state of the grid, and on the user requirements.
Given the large amount of services that may be deployed over a Grid,
this description cannot be reduced to a simple service name.

In this paper, a sophisticated service specification approach similar to
algebraic data types is combined with a grid middleware. This leads to a
transparent solution for users: they give a mathematical expression to be
solved, and the appropriate grid services will be transparently located,
composed and executed on their behalf.

1 Introduction

Grid computing and distributed computing projects have been very effective in
exposing large collections of services and computational resources to users. But
users still need to handle all the difficulties involved in finding and composing the
appropriate resources to solve their problem. In Figure 1 we express the general
problem of matching user service requests to the appropriate resources. On the
right side of the figure, there is a set of services running on some computational
resources, and on the left side there are end users that want to use these services
to solve their problems. The goal is to find the services or combination of services
that can solve the users problem accurately and efficiently, to execute these
services and return the result to the user.

A corollary part of this problem is providing the user with the appropriate
syntax to express their needs. This syntax has to be sufficiently precise to find
relevant solutions, and it should also be easy for the user to express complex
problems.
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Registration

Registration
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Fig. 1. A simplified overview of the general problem of matching service requests to
available resources

Our solution (see Figure 2) combines a service trader and Grid middleware
that implements the emerging GridRPC API [SHM+02]. In this scenario, the
end user asks the GridSolve [DLSY08, YSS+06] GridRPC middleware to solve
some (possibly complex) problem request. The service trader uses its knowledge
of the available services and matches the problem request with a service or a
combination of services. GridSolve is then used to execute the services and the
final result is returned to the user.

??? =
Find available services

Find combination of these 
services solving the problem

Execute this combination of 
services

GridSolve

Trader

+

Fig. 2. Our solution takes complex user problems and using a service trader matches
them to grid services exposed via GridSolve
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2 Service Trading

A service trader acts on the behalf of a user to find a combination of the available
computational services that will handle the users request. The details of the
service trader used in this work are described in [HDP09]. For this research,
improvements have been made in the way it searches for solutions to the users
request. The computational complexity of the available services is used to select
less computationally expensive solutions from the available services. This leads
to an improvement in the execution time for the users request, since, in practical
situations, we can prune the more computationally complex solutions.

2.1 Inputs for the Service Trader

The trader needs a description of the application domain using an algebraic
specification. To this goal we use an order-sorted signature (S,≤,Σ) where:

S is a set of sorts (usually called types in programming languages, both terms
will be used in this discussion);

≤ is an order to express the subsorting (subtyping) link between sorts;
Σ is a set of symbols standing for constants and sorted (typed) functions.

For a complete definition see [GM92]. The operators used may be overloaded and
some extra equations E are added to describe the properties of the operators (e.g.,
commutativity, associativity, neutral element). For example, a partial represen-
tation for linear algebra over scalars and matrices is: S = {Scalar, Matrix}
Σ = {
0, I :Matrix
0, 1 :Scalar
+ :Matrix×Matrix → Matrix
+ :Scalar × Scalar → Scalar
∗ :Matrix×Matrix → Matrix
∗ :Scalar ×Matrix → Matrix
∗ :Scalar × Scalar → Scalar
}

E = {
Matrix x, Matrix y : x + y = y + x
Matrix x : 1 ∗ x = x
Matrix x : 0 ∗ x = 0
Matrix x : I ∗ x = x
}

The Matrix types can have lots of subtypes to describe and handle different
matrix properties, for example, symmetric, dense, space, triangular and band.

The computational services are described as terms in an order-sorted
signature. This leads to a really natural description, in particular in mathe-
matical domains, since the notations are very similar. For example, the BLAS
(Basic Linear Algebra Subroutines) [BDD+02] saxpy (addition) and sgemm
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(multiplication) functions can be described (in a simplified way) in the algebraic
notation as:

Scalar α, Matrix x, y : saxpy(α, x, y) = α ∗ x + y
Scalar α, β, Matrix x, y, z : sgemm(α, x, y, β, z) = α ∗ x ∗ y + β ∗ z

A user request is also specified in this algebraic notation. For example a request
to add three matrices would simply be expressed as:

Matrix a, b, c : a + b + c

The service trader is generic and the application domain can include anything
that can be described using an algebraic specification. We have performed ad-
ditional work with some optimization libraries [Hur06]. The main types in the
optimization domain are functions and constraints, and the elements manipu-
lated by these functions and constraints (e.g., Real, Matrix). The operators are
minimization and maximization operators, the function description (→), and
the operators for constraints (≤, &, . . . ) and the operators for the manipu-
lated elements (*, +, . . . ). Equations are used to express the constraints on the
optimization.

The optimization libraries we have considered was the Matlab optimization
toolbox1 and the E04 package of the NAG2 library.

2.2 The Trader Output

The trader generates a list of services and combination of services that satisfy
the request. For example, given the linear algebra domain and saxpy and sgemm
services described earlier, for the user request of a + b + c, the possible solutions
satisfy the request include:

saxpy(1, a, saxpy(1, b, c))
saxpy(1, a, sgemm(1, I, b, 1, c))
sgemm(1, I, a, 1, saxpy(1, b, c)),

If the saxpy function is less computationally expensive than the sgemm func-
tion (which is true if for the BLAS functions), then the solution

saxpy(1, a, saxpy(1, b, c))

will be only solution returned by the trader, since the other possible solutions
(saxpy(1, a, sgemm(1, I, b, 1, c)), sgemm(1, I, a, 1, saxpy(1, b, c)), . . . ) are more
computationally expensive. To this end, the complexity of the services are input
to the trader as well as the size of the matrices. Since before finishing the com-
parison we do not know what the parameters will be, we can’t compute the exact
cost. We use a medium size of the data to have an approximate cost and decide
if it is interesting to do the comparison, or if we currently have better answers.
1 http://www.mathworks.com/access/helpdesk/help/toolbox/optim/optim.shtml
2 http://www.csc.fi/cschelp/sovellukset/math/nag/NAGdoc/fl/html/E04_fl19.

html
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We might lose some interesting responses, but by not doing some comparisons,
we will win in the search time taken the trader.

For example, we are trying to find solutions to the request “A ∗B”, where A
and B are matrices. To evaluate if it is interesting to compare another solution
with the sgemm service, we will approximate the cost of the sgemm service. To
do that we use an estimated medium size for the matrices, since the trader does
not know the sizes we will give when calling the sgemm service. This cost can
be compared with the cost other known solutions.

The BLAS saxpy function has additional parameters not related to function
signature (for example, the sizes of the matrices). These need to be available to
do data transfer and execute the services. These parameters are considered after
the analysis of the functional signature . The trader focuses on the functional
aspect and considers the other parameters later. For example, considering the
BLAS strsm (triangular solver) routine:

STRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
M specifies the number of rows of the parameter B (matrix);
UPLO specifies if the matrix A is an upper or a lower triangular matrix;
SIDE specifies if the problem solved is op(A)∗X = α∗B or X ∗op(A) = α∗B.

To be able to find the value for those parameters, we need to complete the
description of the services. For example we have to be able to specify that M is
the number of rows of the parameter B, which is not possible with only one term
for the description of the service. We add some possibilities in the description:

– When a procedure implements several functionalities, we introduce the “switch
/ case” functionality. The procedure will generate different services, each with
one parameter set for a given value. In our example, one service with SIDE
set to ’left’ and one service with SIDE set to ’right’ are generated.

– When some parameters depend on other, we describe this dependence, and
when the value of the first parameter is known, the value of the second one
is computed. In our example, when the exact type of A is known, UPLO
will be set to ’u’ or ’l’.

– When some parameters specify the properties of other parameters or for
default value, a term is assigned to a parameter, using only the constant of
the domain and of the request. In our example, M will be assigned to m(B)
(number of rows of B). When B will be known, m(B) will also be known
and the value of M will be fixed.

– When there is several description are possible for the same parameter (for
example when several matrices have the same size), there are all given with
“||” (for “or”) to separate them.

The full service description of saxpy is:

SAXPY( n,alpha,x,incx,y,incy ):
y <- alpha * x + y
n = m(x) * n(x) || m(y) * n(y);
incx = default 1;
incy = default 1;
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Where m(x) is the number of rows of the x matrices and n(x) the number of
columns. Some default values are given for incx and incy.

2.3 Inside the Trader

As explained in [HDP09], the trader is based on equational unification and more
particularly on the work of Gallier and Snyder [GS89]. It has a type system
adapted to overloaded functions with subtyping, based on the λ&−calculus de-
fined by Castagna [CGL92]. The algorithm of Gallier and Snyder has been modi-
fied by adding an amount of energy to ensure that the computation will end. This
amount is composed by the depth of combination and the number of equations
that can be applied.

Since we are trying to compute an efficient combination of services, we first
check the services that are less complex. To this end, we use the mathemati-
cal expression of the computational complexity of the services (as provided by
GridSolve). The service complexity (e.g., O(2n2)) uses the sizes of its parameters
(e.g.,n) to estimate the execution time. We can thus compare the execution cost
of the various service choices taking into account the size of the parameters. This
has two major benefits:

– We find some efficient solutions;
– We prune branches on search tree, since we do not look at more expensive

solutions.

3 Overview of GridSolve: A GridRPC Middleware

The purpose of GridSolve is to create the middleware necessary to provide a seam-
less bridge between computational scientists using desktop systems and the rich
supply of services supported by the emerging Grid architecture. The goal is to
make it easy for any general user to to take advantage of the many benefits (in
terms of shared processing, storage, software, data resources, etc.) of using grids.

GridSolve is a client-agent-server system which provides a RPC interface (Re-
mote Procedure Call) to software services that are deployed on GridSolve servers.
GridSolve supports a variety of client side interfaces, namely C, Fortran, Matlab
and IDL (Interactive Data Language). GridSolve attempts to make it easy to
create, deploy and access software services over the network. More detailed in-
formation about GridSolve is available in other publications [DLSY08, YSS+06].
The general architecture of GridSolve is shown in Figure 3.

– The Client wishes to execute a remote procedure call from within an exe-
cutable (C, Fortran) or scientific computing environment (Matlab or IDL).

– The Server provides software services that can execute functions on behalf of
the clients. The server hardware can range in complexity from a uniprocessor
to a MPP system and the functions executed by the server can be arbitrarily
complex.

– The Agent acts as a intermediary between the clients and servers and main-
tains information about the available servers and services.
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Fig. 3. Architectural overview of GridSolve

In practice, from the user’s perspective the mechanisms employed by GridSolve
make the remote procedure call fairly transparent. However, behind the scenes,
a typical call to GridSolve involves several steps. The client sends a request for
the desired service to the agent. The agent uses its knowledge of the available
services and servers to return a list of appropriate servers to the client, ordered
by the expected execution time. The client then selects a server from the list
of servers and sends the service request. In the event of a failure, the client can
resubmit the request to another server, providing a basic level of fault-tolerance.
Finally, a server executes the function on the behalf of the client and returns the
results.

4 Integration of Service Trading into GridSolve

As explained in the introduction, the goal is to facilitate a user job by making
transparent calls to the grid, so that the user does not have to be knowledgeable
about the available Grid resources or services.

To this aim, we proceed in four steps:

1. GridSolve provides information about available services.
2. The trader finds the combination of services that solves the user request.
3. The output of the trader is analyzed and the services are called.
4. The response is transferred back to the user.

4.1 Generating the Inputs of the Trader

GridSolve is responsible for providing information about the available services
to the service trader. The service trader requires some additional semantic
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information that has to be added to the standard service descriptions provided
by GridSolve.

This additional information is the mathematical expression of the functions
computed by the service, and some information about the non-functional pa-
rameters. For example, for the BLAS dgemm and the dsymm functions, it will
be:

SUBROUTINE dgemm
APPLICATION_DOMAIN="LinearAlgebra"
TRADER_DESCRIPTION="
c <-((alpha*((op transa a)*(op transb b)))+(beta*c)) ;
value m = (m c) || (m (op transa a)) ;
..."

SUBROUTINE dsymm
APPLICATION_DOMAIN="LinearAlgebra"
PARAMETERS_PROPERTIES = "a symmetric"
TRADER_DESCRIPTION="
c <- if (side=’l’) then ((alpha*(a*b))+(beta*c))

if (side=’r’) then ((alpha*(b*a))+(beta*c)) ;
value m = (m c) ;
...
if ( a instanceof UpTriInvMatrix ) then ( uplo = ’u’ );
..."

4.2 Discover the Combination of Services

Given a user request in the GridSolve client, GridSolve calls the service trader,
which processes the request and returns a file containing a sequence of services
calls that will satisfy the users request. For example, for the request a + b + c:

def, res2, copy c
def, res1, copy a
call, saxpy, m(b)*n(b), 1.0, copy b, 1, res2, 1
call, saxpy, m(res2)*n(res2), 1.0, res2, 1, res1, 1

The GridSolve client side system transparently transforms this sequence of
request into a workflow DAG [LDSY08] and uses the GridSolve runtime to im-
prove the performance and be able to execute different parts in parallel when
possible.

4.3 Call the Services

To do the calls, GridSolve parses the output file. When it finds a “def”, a new
local variable is created and set to the second pointer. When it finds a “copy”,
a copy of the user data is created. And when it finds a “call”, the GridRPC
call is done with the parameters that follow. To do the call, some additional
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information is needed: type of data, sizes of data, pointer to the data. In the C
and Matlab interfaces, those parameters are discovered in different ways:

– Information provided by the user in the C interface.
– Information found via Matlab data querying mechanisms in the Matlab in-

terface.

In fact, a first analysis will create the temporary variables needed for the
computation. Then a second analysis is done in order to make the GridRPC
call. They will not be in sequence when parsing the file. The calls are executed
using DAG interface of GridSolve [LDSY08] in order to improve the performance
and be able to run different parts in parallel when possible.

4.4 The Service Trader C API

We have added two functions to the GridSolve C API for the service trader.

int gs_call_service_trader(char *req,... );

int gs_call_service_trader_stack(char * req, grpc_arg_stack *argsStack);

The first parameter is a string that expresses the request in a simple analytical
or mathematical expression . The other arguments are pointers to the actual
data, and information about the variable name and size. An example call using
the service trader interface:

float *a = malloc (sizeof(float)*ma*na);
float *b = malloc (sizeof(float)*mb*nb);
...
gs_call_service_trader("(a+(b+a))","a",a,ma,na,...);

4.5 The Matlab Interface

The Matlab client interface is substantially simpler than the C interface since
a variety of information about the variable names and sizes can be obtained by
querying Matlab internal data representations. An example service trader call
using the Matlab interface:

a=[1,2,3;4,5,6;7,8,9]
b=[10,20,30;40,50,60;70,80,90]
[output]=gs_call_service_trader("(a+(b+a))"),
output =
12. 24. 36.
48. 60. 72.
84. 96. 108.

The output variable is integrated back into the Matlab workspace and can be
used for later computation in Matlab.
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5 Experiments

In these experiments we show the creation of a DAG from a users problem
request, and the selection of the appropriate services using computational com-
plexities to guide the selection.

For our small test experiment, the relevant Grid services are the previously de-
scribed BLAS services (saxpy, daxpy, sgemm and dgemm) and a service imple-
menting the Strassen-Winograd algorithm for matrix-multiplication (sgemmb).
This variant has a lower computational complexity (approximately O(n2.8)) than
standard matrix-multiplication algorithms (O(n3)), but it only becomes efficient
if the matrix size is sufficiently large. With the complexity information provided
as an input to the trader, it will be able to choose the best algorithm as a func-
tion of the size of the matrices. The “exact” complexity information given to the
trader is 7 ∗ pow(n, log2(7)) + 3 ∗m ∗ k − 6 ∗ n ∗ n for the Strassen-Winograd
algorithm and 2.0 ∗m ∗ n ∗ k + 2.0 ∗m ∗ k for the classic algorithm.

As an example, we want to compute (((a ∗ b)+ c)+ ((ba ∗ bb)+ c)), where a, b
and c are 3x3 matrices, ba is a 3x3000 matrix and bb is a 3000x3 matrix. Using
the Matlab interface:

gs_call_service_trader("(((a*b)+c)+((ba*bb)+c)))")

The trader generates a sequence of 3 service calls that will solve this problem.
GridSolve then creates a DAG based on the data dependencies between these
calls and calls the services.

r1=dgemmb(biga,bigb,c) r2=dgemm(a,b,c)

r=daxpy(r1,r2)

These events are totally transparent to the user, who simply needs to present
the desired mathematical expression.

In this experiment, we observe that based on the size of the matrices, the
service trader uses the complexity information to select the more efficient mul-
tiplication algorithm: the Strassen-Winograd matrix multiplication dgemmb for
the bigger matrices and standard dgemm for the smallest ones.

6 Summary

In this paper we developed a combination of a service trader and a grid middle-
ware system to enable a “novice” user to gain access a remote library, without
knowing about grid computing or about the available library and services.
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The key point for the end user is the transparency of all the details involved
in this process. The fact that the services are evaluated at each call makes the
solution more tolerant to a service crash. If a service disappear, the trader will
find some other solution to the users problem with a different combination of
services. For example, if the dgemmb service is not available, the service trader
will be able to replace it by dgemm. If the daxpy is not available, the trader will
be able to find a solution with dgemm. The user doesn’t have to be aware of all
the alternative services that may satisfy their request.

The execution of the users request is made more efficient by two factors;
firstly, the service trader evaluates the computational complexity of the available
services on the users specific data, and secondly, the GridSolve DAG execution
system enables any parallelism in the execution of the services. There is a cost
for the analysis done by the service trader in this current prototype, however
we expect that this cost can be reduced in the future. Moreover, the major
advantage provided by the work developed here is ease-of-use. The end user
does not have to be knowledgeable in grid computing, mathematical libraries,
algorithmic complexity, data dependency analysis, fault-tolerance, or any of the
details that are transparently handled by this system.
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Abstract. Load balancing is a well known problem, which has been ex-
tensively addressed in parallel algorithmic. However, there subsist some
contexts in which the existing algorithms cannot be used. One of these
contexts is the case of dynamic networks where the links between the
different elements are intermittent. We propose in this paper an efficient
algorithm, based on asynchronous diffusion, to perform load balancing in
such a context. A convergence theorem is proposed and proved. Finally,
experimental results performed in the SimGrid environment confirm the
efficiency of our algorithm.

Keywords: Load balancing, dynamic network, asynchronism.

1 Introduction

In the parallel computation domain, the load balancing is often a central issue
to reach the optimal theoretical performances. As a consequence, that prob-
lem has been extensively studied since the beginning of parallelism in computer
science [4,1,9,12]. It can be observed that the evolution of the load balancing al-
gorithms has rather closely followed the one of the parallel architectures. Hence,
balancing algorithms have muted from static and centralized distributions [10,7]
to dynamic and/or decentralized ones [11,8].

Although those mutations allow for load balancing in numerous parallel con-
texts, there are always emergent architectures which require new breakthroughs
in the balancing schemes in order to fully benefit from the endlessly increasing
computational power. The parallel systems are more and more complex, of-
ten including heterogeneous computational units and interconnection networks.
Moreover, the modularity of those systems sharply increases the number of pos-
sible parallel contexts. So, it becomes less and less interesting to design balancing
algorithms specific to a given context. Thus, there is a strong demand for fully
adaptive algorithms which are as generic as possible, that is to say, which can be
used on any kind of parallel architecture without requiring major modifications.
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Moreover, in addition to the complex architectures, the emergence of more
and more dynamical systems has also been observed during the recent years.
The dynamical aspect typically stands at the level of the communications as the
links between the computing units are only intermittent.

The most suited strategies to such contexts are the neighborhood strategies
based on diffusion algorithms [5]. Unfortunately, most of the current solutions
are either synchronous [8] or assume a static network [3]. In the objective to
respond to these two current issues, we propose in this paper a load balancing
algorithm based on bounded delays asynchronous diffusion.

The following section presents the general computing model used to perform
our theoretical study and design of our algorithm. In section 3, a detailed dis-
cussion on the balancing ratios to be used in our algorithm is given. Then, the
algorithm is provided in section 4 as well as the proof of the balancing con-
vergence in time in section 5.2. Finally, a quality evaluation of our algorithm,
performed with the SimGrid environment, confirms the very good performances
of our approach in section 6.

2 Model

As our balancing algorithm is iterative, its convergence must be proven in order
to ensure that the load will be balanced in finite time till there are no modifi-
cation of the state of the system during the balancing phase. When the system
configuration dynamically evolves during the running of the algorithm being bal-
anced, no load stabilization may be observable although our balancing algorithm
will follow the evolution of the computational power repartition. Hence, as soon
as the system configuration is stabilized, the load repartition will follow with a
slight delay. This behavior of our algorithm is proved in a convergence theorem
given below. Nevertheless, that theorem and its proof require some notations
and a description of the temporal evolution of the system state.

2.1 Notations

For the sake of clarity, we distinguish two kinds of features: those of the platform
and the elements related to the application.

Platform characteristics :

P = {1, . . . , n} : the set of the n processors in the system.
G(t) = (P, L(t)) : the undirected connection graph of the links between the n

processors at time t.
Ni(t) : the set of processors directly connected to processor i at time t.
di

j(t) : the delay of j according to i at time t. By definition, it verifies di
j(t) ≤ t.

B : the bound of the delays, i.e. ∀i, j ∈ P × P, ∀t ∈ N, t−B < di
j(t) ≤ t.
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Application related values :

xi(t) : the load of processor i at time t.
xi

j(t) = xj(di
j(t)) : the load of processor j at time di

j(t). That information rep-
resents the evaluation at time t on processor i of the load on processor j.

sij(t) = αij(t)(xi(t)− xi
j(t)) : the amount of load sent by processor i to pro-

cessor j at time t. Concerning αij(t), we have the following constraints:
∀i, j ∈ P, αij(t) ∈ [0, 1] and

∑n
j=1 αij(t) = 1. Also, sij(t) = 0 if j �∈ Ni(t) or

xi(t) ≤ xi
j(t).

rij(t) : the amount of load received on processor j from processor i at time t.
vij(t) : the amount of load sent by processor i before time t and not yet received

by processor j at time t.

2.2 General Load Balancing Scheme

First of all, we consider that we have an initial total load L such that

n∑
i=1

xi(0) = L (1)

and that there is a conservation of the load in the sense that it is either on the
processors or in transit in the interconnection network. In that context, we use
the following decentralized scheme to balance the load in the system.

Algorithm 1. At each time step t, each processor:
1. Compares its load to the loads of its connected neighbors
2. Determines the load quantities to send to its less loaded neighbors
3. Sends those amounts of load to the corresponding nodes
4. Potentially receives some load from its more loaded neighbors

2.3 Dynamical Evolution of the System State

In the scope of that study, the main issue addressed is the temporal evolution of
the interconnection network of the system. Contrary to classical parallel systems,
we consider dynamic links between the different processing units. However, some
constraints are necessary to ensure the diffusion of the loads through the system.

Concerning the network, we define the extended neighborhood of a processor
i at time t as the set

N i(t) = {j | ∃t′ : t−B < t′ ≤ t such that j ∈ Ni(t′)}

This means that j has been connected at least one time to i during the time
interval {t−B + 1, . . . , t}.

Assumption 1. There exists B ∈ N such that ∀i, j ∈ P × P and t ≥ 0,
max(0, t−B) ≤ di

j(t) ≤ t and the union of the communication graphs ∪t−B+1
τ=t G(τ)

is a connected graph.
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This assumption, known as the jointly connected condition [8], implies that
information can be exchanged between any couple of nodes i and j within any
time interval of length B, and that the delay between two nodes cannot exceed B.

The example given in Fig. 1 shows the effect of that assumption. In the two
consecutive times, the connection graphs G(t) are not fully connected. However,
their fusion yields a virtual graph which is actually connected.

Fig. 1. Jointly connected graph

It is interesting to point out that the load balancing in such a context is
similar to a kind of information percolation in an intermittent network [6].

Assumption 2. ∀t ≥ 0, ∀i ∈ P and ∀j ∈ Ni(t), when xi(t) > xi
j(t), there

exists αij(t) > 0 such that αij(t)(xi(t)− xi
j(t)) ≤ sij(t).

Assumption 2 indicates that as soon as two nodes are connected, the more loaded
sends a non negligible ratio of its load excess to the other node.

Assumption 3.

xi(t)−
∑

k∈Ni(t)

sik(t) ≥ xi
j(t) + sij(t), ∀j ∈ Ni(t) s.t. sij(t) > 0

Assumption 3 is essential to avoid the starvation and the ping-pong phenomena.
It ensures that the remaining load on the sending processor will not become
smaller than the loads on the receptors. A famine occurs when a node has no
more workload. The ping-pong state is established when two nodes continually
exchange load between each other without reaching an equilibrium.

These last two assumptions are similar to assumption 4.2 in [1].
So, according to these assumptions, we have ∀i ∈ P , ∀t ∈ N, the following

load evolution:

xi(t + 1) = xi(t)−
∑

j∈Ni(t)

sij(t) +
∑

j∈N i(t)

rji(t) (2)

where:

– sij(t) is given by αij(t)(xi(t)− xi
j(t)) with the constraints given above. The

values αij(t) ∈ [0, 1] define the strategy of the load balancing algorithm. As
already mentioned, they must be carefully chosen to ensure the convergence
of the algorithm. Their determination is detailed in the following section,
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– the last term corresponds to the total amount of load received by processor
i from the processors in its extended neighborhood.

Although that equation describes the load evolution on the processors, it does
not give any information on the loads in transit. For this, we have:

vij(t) =
t−1∑
s=0

(sij(s)− rij(s))

and vij(0) = 0. Moreover, the constraint of load conservation discussed above
implies that:

n∑
i=1

⎛⎝xi(t) +
∑

j∈N i(t)

vij(t)

⎞⎠ = L, ∀t ≥ 0 (3)

Once again, it is worth noticing that although the convergence of our balancing
is proved in the context of load conservation, our algorithm should provide also
interesting results in a more general context of intermittent load evolutions. In
fact, inside each time interval where the global load stays constant, our algorithm
will tend to balance the current global amount of load among the processors.
Thus, an overall gain in performance may be expected in numerous contexts of
dynamic loads. However, it is obvious that the detailed behavior and applicability
of our algorithm in such cases would require another complete study.

3 Choice of the Load Ratios

As seen above, the values of the αij(t) must be chosen such that the amount of
load on every node converges to L

n .
Let’s denote by j∗, the processor satisfying xi

j∗ = mink∈Ni(t) xi
k(t). It clearly

appears that j∗ depends on both time and processor i.
In order to correctly choose the αij(t), Assumptions 2 and 3 are used to deduce

the constraints. Assumption 2 can be carried out by fixing an arbitrary constant
β ∈ [0, 1[ and choosing:⎧⎨⎩

∑
k 
=j∗∈Ni(t) αik(t)(xi(t)− xi

k(t)) ≤ β(xi(t)− xi
j∗ (t))

αij∗(t) = 1
2

(
1−

∑
k �=j∗ αik(t)(xi(t)−xi

k(t))
xi(t)−xi

j∗ (t)

)
(4)

And we deduce
αij∗(t) ≥ 1− β

2
= α

Finally, it comes that ∀i, j∗, t such that j∗ ∈ Ni(t) and xi
j∗(t) = mink∈Ni(t) xi

k(t),

sij∗(t) = αij∗(t)(xi(t)− xi
j∗(t)) ≥ α(xi(t)− xi

j∗(t)).

We can observe that the load sent cannot exceed the halve of the load difference
between the sender and the receiver.
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Furthermore, Assumption 3, avoiding ping-pong effects, implies to choose
αij(t) such that ∀t ≥ 0, ∀i ∈ P , and j �= j∗ ∈ Ni(t) satisfying xi(t) > xi

j(t),

0 ≤ αij(t) ≤
1
2

(
1−

∑
k 
=j αik(t)(xi(t)− xi

k(t))

xi(t)− xi
j(t)

)
(5)

4 Load Balancing Algorithm

The algorithmic scheme of our load balancing is given below.

Algorithm 2. At each time step t, each processor:

1. Compares its load to the loads of its connected neighbors
2. Determines the αij(t) and deduces the sij(t)
3. Sends those amounts of load to the corresponding nodes
4. Receives some loads from more loaded nodes

Although it does not appear directly, the heterogeneity of the processors can
be taken into account in this algorithm, for example by introducing virtual pro-
cessors of the same power (GCD of the actual powers) and distributing them
among the actual processors according to their relative speeds. Finally, at each
time t and on each node i, the load update is given by (2) and the global behavior
of that algorithm is depicted by the following theorem.

Theorem 1. Under Assumptions 1, 2 and 3, the asynchronous load balancing
Algorithm 2 converges to x∗ = 1

n

∑n
i=1 xi(0).

5 Proof of the Load Balancing Convergence

5.1 Technical Results

Let m(t) = mini mint−B<τ≤t xi(τ). Note that xi
j(τ) ≥ m(t), ∀i, j, t. Lemma 1

and 2 below can be proven similarly to the lemma of pages 521 and 522 in [BT89].
From Assumption 1 we can conclude that the amount of load vij(t) in the

network before time t and not yet received consists in workloads sent in the time
interval {t−B + 1, ..., t− 1} , so vij(t) ≤

∑t−1
τ=t−B+1 sij(τ), ∀i ∈ P, ∀j ∈ Ni(t).

Lemma 1. The sequence m(t) is monotone, non-decreasing and converges and
∀i ∈ P, ∀s ≥ 0,

xi(t + s) ≥ m(t) +
(

1
n

)s

(xi(t)−m(t))

Let i ∈ P, t0 ∈ N and t ≥ t0, we say that the event Ej(t) occurs if there exists
j ∈ N i(t) such that

xi
j(t) < m(t0) +

α

2nt−t0
(xi(t0)−m(t0)) and sij(t) ≥ α

(
xi(t)− xi

j(t)
)
,

where α is deduced from (4).
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Lemma 2. Let t1 ≥ t0, if Ej(t1) occurs, then Ej(τ) doesn’t occur for any
τ ≥ t1 + 2B.

Lemma 3. ∀i ∈ P, ∀t0 ∈ N, ∀j ∈ N i(t),

t ≥ t0 + 3nB ⇒ xj(t) ≥ m(t0) + η

(
1
n

)t−t0

(xi(t0)−m(t0)).

where η = α
2

( 1
n

)B
.

Definition 1. We say that a node j is l-connected to a node i if it is logi-
cally connected to i by l communication graphs, i.e. if there exists a minimal
sequence (without redundancy) {i0(t0), i1(t1), . . . , il(tl)} such that i = i0(t0),
ij−1 ∈ Nij (tj) ∀j ∈ {1, ..., l}, il = j and t1 < t2 < · · · < tl.

Lemma 4. If node j is l-connected to node i then

∀t ≥ t0 + 3nlB, xj(t) ≥ m(t0) + ηl

(
1
n

)(t−t0)l

(xi(t0)−m(t0)) .

5.2 Proof of Theorem 1

Consider a node i and a time t0. Assumption 1 implies that node i is B-connected
to any node j ∈ P and Lemma 4 gives: ∀t ∈ [t0 + 3nMB, t0 + 3nMB + B] ,
∀j ∈ P,

xj(t0 + 3nMB + B) ≥ m(t0) + δ (xi(t0)−m(t0)) ,

where δ > 0. This inequality being true for all i ∈ P , it follows that

m(t0 + 3nMB + B) ≥ m(t0) + δ
(
max

i
xi(t0)−m(t0)

)
.

We show that
lim

t0→∞max
i

xi(t0)−m(t0) = 0,

otherwise we would have limt0→∞ m(t0) = +∞. As limt→∞ m(t) = c and
m(t) ≤ xj(t) ≤ maxi xi(t), we deduce that

∀j ∈ P, lim
t→∞xj(t) = c,

which implies that
lim

t→∞ sij(t) = 0.

Thanks to Assumption 1, we deduce that

lim
t→∞ vij(t) = 0,

and thanks to (1) and (3), we deduce that

nc = lim
t→∞ xi(t) =

n∑
i=1

xi(0),
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i.e.

c =
n∑

i=1

xi(0)/n,

which leads to

lim
t→∞ xi(t) =

1
n

n∑
i=1

xi(0) =
L

n
,

proving Theorem 1.

6 Experimental Evaluation

In order to evaluate the efficiency of our load balancing algorithm, we have
implemented it in the SimGrid environment [2]. This is a simulation-based com-
plete framework for evaluating cluster, grid and P2P algorithms and heuristics.
Among its numerous interests, let’s point out realistic computations and com-
munications models. So, the results presented here are fully representative of
real results that should be obtained with a similar parallel architecture.

As mentioned in the introduction, our load balancing algorithm is quite
generic. However, it should be more interesting in the context of parallel iterative
algorithms in which a pool of tasks is repeatedly executed. In that context, we
model the iterative process by associating to each task a number of iterations
to be performed. Thus, a same task with a constant number of operations is
repeatedly executed until its associated number of iterations becomes null. So,
as the load balancing takes the form of the migration of those tasks from one
node to one of its neighbors, a task may accomplish its iterations on different
nodes.

Temporal dependencies between the tasks only occur in synchronous iterative
algorithms and when there are some data dependencies between the tasks. Clas-
sically, we say that a task A depends on another task B if the computations of
A require the knowledge of the data processed in B (typically at the previous
iteration). In such a case, when two data-dependent tasks are migrated on dif-
ferent nodes, this implies a dependency between those two nodes. However, in
the context of use of iterative algorithms, such dependencies very often already
exist due to the domain decomposition induced by the parallel treatment of the
problem. Indeed, the notion of neighbor between nodes is commonly related to
those data dependencies.

In asynchronous iterative algorithms, there are no temporal dependency be-
tween the tasks, even if there are some data dependencies. This comes from
the fact that each task performs its computations without waiting for the last
version of its data dependencies but by using the version of those dependencies
which are locally available at that time. In that way, asynchronous algorithms
are much more flexible and provide better performances than synchronous ones
in numerous parallel contexts.

Due to that last remark and to the fact that our balancing algorithm is also
asynchronous by nature, the evaluations presented below take place in the case
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of asynchronous iterative algorithms. Moreover, we consider that the domain de-
composition is regular and that all the tasks have the same amount of workload.

Before presenting the results, it is necessary to explain how the efficiency of
the balancing is evaluated.

6.1 Efficiency Evaluation

In the scope of this study, we evaluate the efficiency of the balancing by compar-
ing the performance gains obtained with our algorithm and with a near optimal
scheduling. That theoretical optimal performance is deduced from the nodes
speeds and the tasks workload. As the tasks are composed of a given number of
iterations whose workload is always the same (in terms of flops), the problem is
reduced to the choice of the correct node for each iteration of each task. Thus,
the optimal makespan is deduced by using a list scheduling algorithm that suc-
cessively places each iteration of each task on the node which is able to offer the
soonest termination. It is important to notice that the makespan computed here
has only a theoretical value to give us a hint on the ideal minimal makespan
but it does not take into account any overhead due to the tasks scheduling and
migrations.

6.2 Experimental Contexts

In the following, the efficiency of our algorithm is evaluated for three common
topologies: a line, a ring and a complete graph. Although the line is a bit easier
to manage from the algorithmic point of view, it is actually the worst case in
terms of performances as the load diffusion will be the longest in that case.

The experiments have been conducted in the following conditions:

Cluster
Size 10 and 50 machines
Powers homogeneous or heterogeneous (ratio 10 between slowest and fastest)
Links homogeneous

Initial distribution of the tasks
All on a single nodeor
evenly distributed over the processors

Communications
Always active (permanent links)

or
Intermittent (while ensuring Assumption 1)

Tasks
Number 10000
Data size 80 bytes per task
Iterations randomly chosen in the range [100,500]
Flops 1600 per iteration

6.3 Results

Convergence of the load balancing scheme. Although the convergence of
our load balancing scheme has been theoretically proved, it is interesting to get
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Fig. 2. Evolution of the load imbalance in the system with permanent links (left) and
with intermittent links (right)

an experimental confirmation of this as well as an idea of its speed. In order to
see the evolution of the balancing of the system during the algorithm execution,
we define the imbalance indicator as the standard deviation at time t of the
ratios between the actual load on each node at time t and the ideal load it
should have. The ideal loads are deduced from the speeds of the nodes. So, the
measure is equal to zero when the system is ideally balanced and the measure
increases with the imbalance.

In Fig. 2 (left) are depicted the evolutions of the imbalance indicator for the
three topologies considered, with a homogeneous cluster of 10 nodes and per-
manent links. In this context, the number of iterations is set to 500 for all the
tasks. Moreover, since we want to observe the speed of the load diffusion in the
system, the initial repartition must be as imbalanced as possible, this is why
the entire load (all the tasks) is placed on a single node at the beginning. The
small vertical tick at the end of each curve indicates the termination time of the
program, once there is no more task to compute. It can be seen that the three
curves tend to decrease toward zero, which confirms the convergence of the load
balancing algorithm. Moreover, the curves do not decrease at the same rate but
they follow the hierarchy of the diameters of the topologies, which is coherent
with the respective speeds of data diffusion in those topologies. Finally, the de-
creases are not strict and some small fluctuations are observable on the curves,
especially for the ring and complete graph topologies. Such fluctuations come
from the decentralized and asynchronous nature of the load balancing scheme.
Indeed, the decisions of load transfers are taken on each node according to its
own vision of the system, deduced from information that may be partially out-
dated at the moment of the decision. This behavior is emphasized with more
densely connected graphs because each node is directly linked to more others.
In such contexts there is a greater probability that the load estimation sent by
one node to the others change meanwhile they receive it and use it, implying
potential oversized or undersized load transfers. This phenomenon is difficult
to eradicate but it is strongly limited by the constraints applied on the ratios
of load to be transferred. This is why those fluctuations stay small and do not
prevent the global convergence of the load distribution.
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As the most original feature of our load balancing scheme is to be asyn-
chronous and then to support temporary interruptions of the links, it is inter-
esting to see their impact on the evolution of the load imbalance during the
execution of the program. Hence, the results obtained with the same cluster but
with intermittent links are given in Fig. 2 (right). The general trend of the curves
is similar to the previous context as they all decrease toward the load balance in
the system. Also, as could be expected from the additional communication delays
induced by the intermittent links, the balancing times and total execution times
are longer than with permanent links. Finally, the hierarchy between the topolo-
gies is still respected according to their respective diffusion speeds although the
differences between their convergence speeds are accentuated. In fact, in such
a context of communication delays, the convergence toward the complete load
balance may be longer than the total computation time of the tasks, resulting
in a still perceptible imbalance indicator at the end of the execution, as can be
seen for the line and ring topologies. Nonetheless, this does not mean in any way
that the convergence is no longer ensured and if the execution time had been
longer, the imbalance indicator would have continued to decrease.

This is depicted in Fig. 3 in which
the number of iterations per task
has been set to 3000 in place of
500. This does not modify the initial
load balancing problem as the start-
ing configuration is exactly the same
(same system and same number of
tasks gathered on the same node)
but directly increases the total ex-
ecution time. Finally, we can see
in this figure that the convergence
is systematically reached for suffi-
ciently long computations, whatever
the topology of the system is.
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Fig. 3. Evolution of the load imbalance in
the system with intermittent links and more
iterations per task

Efficiency of the load balancing algorithm scheme. For the sake of clarity,
we present our results in different tables for each topology used. In each cell of
the tables, there are two percentages. The first one (on top) gives the relative
overhead of our balancing relatively to the theoretically optimal one. As men-
tioned in Section 6.1, that reference time only includes the computation time of
all the tasks but not any scheduling or task migration overhead. It is computed
by using a best choice list algorithm at the level of the iterations inside the tasks.
It is quite obvious that this time is not always attainable in practice but it gives
a good reference for the evaluation of our load balancing algorithm. So, 10%
indicates that our balancing makes the whole iterative process terminate in a
time 10% greater than the optimal one. The second value, in italic, indicates the
gain of our balancing relatively to the iterative process without any balancing.
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Table 1 provides the results for the line topology. That topology is the most
difficult case of load balancing as every node has at most two neighbors and this
is the communication network with the largest diameter. Hence, that case will
yield the longest load diffusions. It can be observed that the results are better
for the smaller cluster. This could be expected as a load diffusion will always
be longer in a larger system. Moreover, in large systems, each processor has less
work to do and for the same initial amount of work, the makespan will be much
smaller. This explains the higher ratios according to the optimal makespan. Also,
the results are quite different according to the initial load distribution and it is
interesting to see that our balancing does not imply any overhead in simple
cases like the even distribution on homogeneous nodes. Finally, concerning the
intermittent links, our balancing is farther from the optimal time, but this is
normal for two reasons. The first one is that the load diffusion is more difficult
and naturally longer in such contexts. The second one is that, as mentioned
above, the optimal time is computed without taking into account the scheduling
and migration costs, which are much more important with intermittent links.
Moreover, the absolute performances of our algorithm stay very good in that
context as large gains are still obtained relatively to the unbalanced version.

The results for the ring topology are presented in Table 2. As expected for
a topology with a smaller diameter, the gains are better than with the linear
topology in all the contexts with the small cluster. With the larger cluster, the
results are similar or better, except for the intermittent links with the initial
distribution of the work on only one node. This probably comes from the tuning
of the parameters of our load balancing algorithm which may be optimized.
However, the results stay globally satisfying.

In Table 3 are given the results for the complete graph topology. Here again,
a good behavior can be observed for the small cluster whereas the algorithm
gives rather deceptive results for the larger one. Those results tend to confirm
that the local strategy of work distribution plays a major role. That strategy
gives the rules of how a node distributes its overload to its less loaded nodes
while respecting the constraints given in Section 3. So, it defines the β and αij

values. For example, the use of a slightly different strategy taking into account
the load average among the node and its less loaded neighbors to compute those
parameters produces slightly better results in the context of the complete graph.
In particular, there are no more loss of time in the already balanced cases as we
obtain an overhead of only 4.67% and a gain of 0.92% in the case of an evenly
distributed load on homogeneous processors with constant links and an overhead
of 3.31% and a gain of 2.21% in the same context with intermittent links.

Finally, all those results point out the interest of our asynchronous load bal-
ancing algorithm in both contexts of constant and intermittent links. Also, they
reveal that a single distribution strategy does not seem to be adapted to all
the contexts of parallel systems. A deeper analysis of the behavior of our algo-
rithm according to its inner parameters will be necessary to precisely identify
the potential causes of inefficient results.
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Table 1. Results obtained with a linear topology

Initial tasks Homogeneous processors Heterogeneous processors
distribution 10 50 10 50

31.38 387.82 34.96 367.5All tasks on
one node 86.86 90.24 92.09 83.9

0.44 2.33 16.25 46.26
Constant links

Even
distribution 0.97 3.13 80.64 75.31

55.58 967.35 146.73 832.17All tasks on
one node 84.44 78.65 85.54 67.89

0.48 3.18 52.78 99.89
Intermittent
links Even

distribution 0.93 2.33 74.56 66.26

Table 2. Results obtained with a ring topology

Initial tasks Homogeneous processors Heterogeneous processors
distribution 10 50 10 50

11.55 292.48 23.43 370.14All tasks on
one node 88.85 92.15 92.76 83.8

0.26 2.08 2.78 44.39Constant links Even
distribution 1.15 3.37 82.89 75.63

23.75 1187.76 127.99 1116.72All tasks on
one node 87.63 74.24 86.64 58.09

0.54 3.45 34.94 80.62
Intermittent
links Even

distribution 0.87 2.07 77.53 69.51

Table 3. Results obtained with a complete graph topology

Initial tasks Homogeneous processors Heterogeneous processors
distribution 10 50 10 50

6.12 811.01 15.24 791.51All tasks on
one node 89.39 81.78 93.25 69.29

0.4 7.45 2.8 108.62
Constant links

Even
distribution 1.01 -1.72 82.89 64.79

28.11 4101.52 46.96 1085.86All tasks on
one node 87.19 15.97 91.39 59.15

0.31 6.74 7.93 331.93
Intermittent
links Even

distribution 1.09 -1.04 82.03 27.09

7 Conclusion

An asynchronous decentralized load balancing algorithm has been presented.
Its main advantages are to be usable on dynamic networks where the links are
intermittent. Moreover, it is quite generic and can be applied to numerous com-
putational algorithms.

The convergence of the balancing has been proved and experimentally con-
firmed in the context of load conservation. Also, it has been pointed out that
in case of variable load, the algorithm will implicitly tend to balance the load
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during the time intervals in which the load stays constant and will thus globally
follow the load variations.

Some simulations have been conducted within the SimGrid environment in
the context of an asynchronous parallel iterative algorithm. Globally, the exper-
iments confirm the interest of our algorithm, even in the most difficult context
of data diffusion (linear topology). In most of the cases, our algorithm does not
induce any significant overhead in already balanced contexts and provide sharp
improvements in the other contexts.

However, as it has been pointed out by the simulations, there is still some room
for a finer tuning of our algorithm, especially for the more densely connected
topologies with a large number of elements. So, our next investigations will be
focused on the optimization and auto-tuning of the inner parameters of our
algorithm in order to provide the best efficiency in every context of use. Also,
a deeper study of the context of variable load will be investigated as well as
the management of integer loads and a theoretical evaluation of the maximal
balancing time according to the bound of the communication delays and the
load migration costs.
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University of Lleida, C/ Jaume II, 69, Lleida, Spain
{dcastella,hectorblanco,sisco,francesc}@diei.udl.cat

Abstract. Peer-to-Peer (P2P) computing, the harnessing of idle com-
pute cycles through Internet, offers new research challenges in the domain
of distributed computing. In this paper, we propose an efficient comput-
ing resource discovery mechanism based on a balanced multi-way tree
structure capable of supporting both exact and range queries, efficiently.
Likewise, a rebalancing algorithm is proposed. By means of simulation,
we evaluated our proposal in relation to other approaches of the litera-
ture. Our results reveal the good performance of our proposals.

Keywords: Parallel and distributed computing, P2P computing.

1 Introduction

P2P paradigm takes advantage of the under utilization of personal computers,
integrating thousand or even millions of users into a platform based on the shar-
ing of computational resources [1]. Some current research projects, such as Com-
puP2P [2], CHEDAR [3] or CoDiP2P [4], propose using the P2P paradigm for
distributed computing. P2P computing is distinguished by a mutable amount of
computational resources (CPU, Memory and Bandwidth) provided by each peer.
Thus, the computational resource management becomes a research challenge.

The resource discovery mechanisms in P2P computing are classified in struc-
tured and unstructured ones [5]. The unstructured algorithms are character-
ized by the fact that they use only local information of their neighbors. The
CHEDAR’s searching mechanism [3] fits in this category. Although these sys-
tems adapt easily to frequent node joins and disjoins, they do not scale very well
for very large networks. On the other hand, the searching mechanisms based
on structured information are generally faster and have a predictable service
search time. In this set, we can find the well known Chord algorithm [6], which
is used by the CompuP2P platform [2]. Although the Chord protocol is very
efficient for exact queries, this is not well suited for range queries since hashing
destroys the ordering of data. Recent works, such as Squid [13] supports key-
word searches, including wildcards, partial keywords and ranges queries, based
on DHT. It uses a locality-preserving indexing scheme based on Space Filling
Curves (SFC), where each data element is indexed and shared using a set of
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keywords and mapped to a single point in its key space. Other works, such as
[11, 7], propose network discovery services without the use of DHTs. Caron
et al. [11] present a new architecture, Distributed Lexical Placement Table
(DLP), based on a Prefix Tree which supports automatic completion of par-
tial search string, range queries and multicriteria searches. Likewise, BATON
[7] proposes a balanced tree structure overlay which supports exact and range
queries, also without the use of DHTs. This emphasizes that adding a small num-
ber of links in addition to tree edges, they are able to obtain an excellent fault
tolerance and a balanced congestion. Finally, Harren et al. [12] take advantage
of DHTs to improve the scalability and adapts it to support complex queries
in relational databases. Although these works are very optimized for resource
discovery services, they are very restrictive in providing a discovery mechanism
over a mutable environment. Note that, in a P2P computing environment, the
shared resources change their disponibility over the time. So, it is necessary to
check periodically the resources for better scheduling purposes.

Other works related to Grid environments, [14, 15] propose a distributed
super-peer model for handling membership management and resource discovery
service in large-scale Grids and exploit centralized/hierarchical information ser-
vice provided by the Grid infrastructure of the local PO (Physical Organization).
The related work describes that a Grid is viewed as a network interconnecting
small-scale Grids, referred as PO’s. For each PO, a subset of powerful nodes
having high availability properties are used as super-peers. These nodes are re-
sponsible for the communications with the other POs and maintain metadata
about all the nodes of the local PO. A structured P2P topology of super-peers
implements the join and departure of Grid nodes and the resource discovery
service. The super-peer model is similar to the manager’s peer role used in our
proposal, which controls a set of peers, named Areas, and stores information
about discovery services. However, its organization is different because each peer
of an area can be the manager of the immediate lower level area, whereas in a
super-peer model, each PO is considered as a leaf node.

In this paper, we propose a new structured computing resource discovery
mechanism, which provides exact and range query facilities and scalability fea-
tures with a low algorithmic cost. Our approach is oriented to the CoDiP2P (P2P
Distributed Computing) system developed by our group in previous works [4].
Following the CoDiP2P architecture, the proposed lookup mechanism follows an
structured architecture. It is based on a balanced multi-way tree structure capa-
ble of supporting both exact and range queries efficiently. In addition, this paper
proposes a rebalancing algorithm, which allows the tree to be maintained totally
balanced and re-link any isolated area. Thus, CoDiP2P exploits efficiently the
well known characteristics of a tree topology (θ(log|Area|(Ntree)) lookup length,
where Ntree is the total number of peers, and constant linkage cost) to manage
the mutability of resources. We have analyzed the performance of our proposals
by means of simulation in relation to the Chord algorithm by the case of exact
queries, and the BATON algorithm by the case of range queries. In both cases,
the obtained results reveal the competitiveness of our proposals.
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The outline of this paper is as follows; Section 2 revises the CoDiP2P archi-
tecture. Section 3 presents the discovery mechanism used by CoDiP2P for exact
and range queries. The rebalancing mechanism used for CoDiP2P system is de-
scribed in Section 4. The efficiency measurements of our proposals are performed
in Section 5. Finally, the main conclusions are explained in Section 6.

2 CoDiP2P Architecture

We present a review of the CoDiP2P architecture, explained in detail in [4]. In
order to describe it, some previous concepts must be introduced:

– Area Ai is a logical space made up of a set of workers.
– Manager Mi manages an area and schedules tasks over the workers.
– Worker Wi is responsible for executing tasks scheduled by its manager.
– Replicated managers RMi: Each area Ai maintains a set of Replicated

Managers. Each RMi maintains a copy of the same information kept by Mi.
Thus, if Mi fails, then the oldest RMi of the same area will replace it.

Fig. 1 shows the linked structure of peers in CoDiP2P based on a tree topology
with an area size of 3 peers. Note that this type of structure allows a manager
Mi of an area located at level i to be a worker Wj in an area located at level
i+1 at the same time. In addition, this same node can be also a RMi.The main
functionalities of CoDiP2P system are insertion and departure of peers, updating
system information and the scheduling mechanism to launch a parallel job from
any peer in the system. These three algorithms are explained in detail in [4].

In order to understand better the searching and rebalancing algorithms ex-
plained later in this paper, some highlights of the updating and departure algo-
rithms are needed.

2.1 Updating Algorithm

The main aim of the updating algorithm consists of maintaining the information
about the computational resources available in the system.This is divided in two
parts: the manager updating and the worker updating.

By means of the manager updating, every manager Mi sends, every T seconds,
a message to all the workers belonging to the same area Ai to notify that it is
alive, together with the List of its Top Managers (LTM). The LTM is a list that
contains the addresses of the managers located over the manager Mi in direction
towards the root manager (M1). For instance, the LTM of the manager M8
shown in Fig. 1 would be M4, M2, M1.

Whenever a Peeri receives a messageupd from its manager Mi, it launches
the worker updating function. Each Peeri, depending also on its role, sends
to its manager Mi statistical information (SttInfj) about its locally available
computational resources or the available computational resources managed by
such a peer (if Peeri is the manager of a lower area). Note that the information
SttInfj is only sent when it differs from the previous one sent SttInfj−1. The
cost of the algorithm is θ(|Area|), where |Area| is the number of peers in one
area.
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Fig. 1. Tree topology of peers in CoDiP2P

2.2 Departure of Peers

Whenever a peer leaves the tree, voluntarily or involuntarily, the manager of the
disconnected peer detects the broken link in the updating algorithm, explained
in Sec. 2.1. Whenever this happens, the manager checks if the peer is a worker
node or a manager in the immediate lower level:

– In the worker case, there is no problem in restructuring the system because
it is a final node, and no more work must be performed.

– In the manager case, the restructuring operation, described in Alg. 1, is
applied by the replicated manager RMi of the current area Ai. After T
seconds, this detects that there is no answer from the faulting manager Mi

and executes the mechanism.

Note that the algorithm selects the oldest replicated manager, by issues of peers
reliability. Thus, the oldest peers, which the system considers more reliable, are
in the upper levels of the tree, compared with the youngest peers, which are
considered more irregular and are in the lower levels.

The cost of Alg. 1 is determined by the number of peers affected by the fall
of the peer. The worst scenario happens when the replicated manager RMi,
selected to replace an output manager is also the manager of a lower level. The
cost of the algorithm is θ(log|Area|(Ntree)− 1), where Ntree is the total number
of peers in the CoDiP2P system and |Area| is the size of the areas.
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procedure RMi.Manage Departure in Tree()
Input: RMi,Ai

begin
if |Ai − RMi| �= 0 then

Mi := RMi ∈ Ai;
RMi notifies ∀workers ∈ Ai that it will be manager;
if RMi is also manager of a lower area Aj then

RMi selects the oldest RMj ∈ Aj ;
RMi notifies RMj that it will be manager of Aj ;
if RMj is manager of lower level then

RMj .Manage Departure in Tree();
end

end

else
RMi becomes worker of upper area of Ai;

end

end

Algorithm 1. Departure of peers in CoDiP2P.

3 Searching Algorithms

We have added a new resource discovery mechanism to the CoDiP2P service
layer to provide two different kinds of searching, one based on exact queries and
the other one based on range queries. Both algorithms look up the addresses of
peers throughout the tree that have the desired CPU power available, although
they can be used for looking up any kind of computing resources.

3.1 Exact Query Searching Algorithm

The searching mechanism is designed to take advantage of the topology and roles
of peers. This algorithm is based on looking through the local database (DB)
stored by each peer, which contains the computing resources characteristics of
the peers located below it throughout the tree branch.

According to the Alg. 2, whenever a Peeri requests a CPU query, firstly it
checks on its own DB if there is a peer with the required CPU power. In the
case of a search failure, Peeri forwards the searching query to its manager Mi.
If the search fails again, the next manager located on the branch continues the
same search in a recursive way until it reaches the zero level (M1). Finally, if
the searching is successful then the CPU owners peer address is returned to the
Peeri. Note that the cost of this algorithm is θ(log|Area|(Ntree)).

Note that one important problem related to the tree topology is the traffic
congestion produced by the routing messages of the searching algorithm and
the updating algorithm. Regarding to the searching traffic, only those searches
which requested peers are located in another subtree of Level 1 arrives to the
root peer. So, the updating algorithm can cause even more bottleneck in the
root peer than the searching one. The searching congestion is measured in the
Experimental Results Section (5.1). In addition, it is worth pointing out that
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function Peeri.Search EQuery(CPU query)
Result: Peer Address
begin

foreach register ε DB.CPU Table do
if register.CPU = CPU query then

Peer Address := register.address;
end

end
if Peer Address = NULL then

if Peeri �= M1 then
Peer Address := Mi.Search EQuery(CPU query);

else
Peer Address := NULL;

end

end
return Peer Address;

end

Algorithm 2. Exact Query Searching Algorithm.

the updating traffic is characterized by small messages sent each T period. Thus,
we must fix the value of T by balancing the congestion and the updating of
information.

3.2 Range Query Searching Algorithm

The Alg. 3 shows the range query searching algorithm, to which three parameters
are passed: the low and high limits of the searched CPU range values and the
number of items that the algorithm has to catch. Compared with the Exact
Query algorithm, Alg. 3 differs in two points. The first point is that it returns
a List of Peer Addresses (LPA), which contains the desired CPU power inside
the requested range. The second one is that the algorithm does not finish until
it has filled the LPA up with nr items or it has reached level zero (M1). Note
that the cost of this algorithm is also θ(log|Area|(Ntree)).

4 Rebalancing Mechanism

The churn of peers in a P2P environment can unbalance the tree topology. As
a consequence and as we can see in Fig. 2(left), one tree branch can be much
longer than another (Case 1 and 2) or one area can remain isolated from the
root manager (Case 3). Obviously, the unbalancing of the tree will decrease the
performance of the search mechanisms explained above.

In order to solve this problem, a rebalancing mechanism oriented to a tree
topology is proposed. Alg. 4 allows areas to be moved from one site to another
or lost links to be restored.
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function Peeri.Search RQuery(low CPU, high CPU, nr items)
Result: LPA(=List Peer Addresses)
begin

foreach register ε DB.CPU Table do
if register.CPU ≥ low CPU ∧ register.CPU ≤
high CPU ∧ LPA.size < nr items then

LPA.add(register.Address);
end

end
if LPA.size < nr items ∧ Peeri �= M1 then

LPA+ = Mi.Search RQuery(low cpu, high cpu, nr items−LPA.size);
end
return LPA

end

Algorithm 3. Range Query Searching Algorithm.

Fig. 2. Tree without rebalancing (left) and with rebalancing (right)

Periodically, each Peeri of the tree launches the rebalancing algorithm. As we
can see in Alg. 4, firstly the algorithm tests if any of the three cases shown in
the Fig. 2(left) happens. Whenever it happens, Alg. 4 works as follows in each
case:

– Case 1: Whenever Peeri is also a manager Mi and the area Ai is full, Mi

checks from the List of its Children (LC) which are their sons with the max-
imum (Peermax) and minimum (Peermin) number of levels hanging down
from it. If the difference between both values is greater than one level then
the tree is considered to be unbalanced and as a consequence the rebal-
ancing levels procedure is called. This procedure moves the branch hanging
down from the Peermax son with more levels to the Peermin. As we can see
in the Case 1 of Fig. 2(left), M3 executes the rebalancing mechanism and as
a consequence the Peer W8 hanging down from the son of Peermax is linked
to Peermin. The result is shown in Fig. 2(right). Note as the example of Fig.
2 assumes an areas size of 4.
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– Case 2: This case happens whenever Peermax has levels hanging down from
it and the area Ai is not full. This situation means that the tree is unbalanced
due to the fact that the capacity of the area is not fulled up. In this case,
the half levels below Peermax, denoted as rlevels in Alg. 4, are linked to
Peeri by means of the same rebalancing levels procedure explained above.
As we can see in Case 2 of Fig. 2, W10 is linked to M4 after applying the
rebalancing mechanism.

– Case 3: The third and the last part of the Alg. 4 is activated whenever an
area Ai is isolated from its above manager. According to this goal, Peeri

checks if there is an above manager (Mi) and if there is not then Peeri looks
for a manager from its List of Top Managers (LTM). If the searching is
successful then Peeri is linked to the new manager. As we can see in Case 3
in Fig. 2, M5 is linked to M2 after applying the rebalancing mechanism.

Note that all searching operations, whose peers are affected by one of the three
rebalancing cases, will be aborted. They will be resumed when the rebalancing
procedure was finished.

The cost of this is θ(log|Area|(Ntree) − 1) because the maximum number of
hops is equal to the length of a branch from the root manager M1 to a leaf node
Wi.

5 Experimentation

The performance of our proposals was tested by means of GridSim [8] and Sim-
Java [9] simulators. In order to simulate our P2P platform with GridSim, peers
were modeled as user entities by means of threads. All entities (peers) were con-
nected by network links, whose bandwidth and latency can be specified at the
start time. SimJava features provide the management of events and the mecha-
nism for discovering peers.

All tests were performed with 10,000 peers and a total of 125,000 searches,
which follows a Poisson distribution with a mean frequency of 125 searches/s by
default. According results obtained previously in [4], the updating procedure is
continuously executed in periods of 20 seconds. A summary of the experimental
results is shown in next section.

5.1 Experimental Results

First of all, we tested the influence of the rebalancing algorithm over the search-
ing algorithms. Likewise, the impact of the number of replicated managers (RM)
was also evaluated for both cases, with and without rebalancing. Fig. 3 shows the
percentage of unsuccessful searches in relation to the percentage of failed peers
for 1 an 3 RMs. In the non-rebalancing case, we can see as the rate of unsuc-
cessful searches scaled consistently according to the number of failed peers and
the results ranged up to 40% with only 1 RM and 25% with 3 RMs. When we
applied rebalancing, the results were very satisfactory with a rate of unsuccess-
ful searches below 5% for both cases, 1 and 3 RMs. In this case, the number of
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procedure Peeri.rebalancing()
Data: Mi(=Manager of Peeri), Ai(=Area of Mi), LC(=List of Childs),

LTM(=List of Top Managers)
begin

if Peeri = Mi then
{Peermax, P eermin}:= Peeri.max min child peers(LC);;
// Case 1

if Peermax.levels below − Peermin.levels below > 1 ∧ Ai.isfull()
then

rlevels := �(Peermax.levels below − Peermin.levels below)/2�;
Peermax.rebalancing levels(rlevels, Peermin);

end
// Case 2

if Peermax.levels below ≥ 1 ∧ not Ai.isfull() then
rlevels := �Peermax.levels below/2�;
Peermax.rebalancing levels(rlevels, Peeri);

end

end
// Case 3

if � ∃Mi then
for j := 0 to LTM.size do

Peerj := LTM.get(j);
if ∃Peerj then

new Peeri −→ Peerj;
break;

end

end

end

end
procedure Peeri.rebalancing levels(rlevels, Peerj) begin

if Peeri.levels below ≥ rlevels then

Peerk := Peer ∈ LC | MAX
|LC|
k=1 (LC.get(k).levels below);

Peerk.rebalancing levels(rlevels, Peerj);
else

new Peeri −→ Peerj

end

end

Algorithm 4. Rebalancing Algorithm
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RMs practically does not affect the behavior of the searches and the influence
of the percentage of faulting peers on the system is imperceptible. Therefore,
these results prove the well performance of our rebalancing algorithm.

Next, we evaluated the impact of the searching frequency on the exact query
case. The performance achieved by our proposals, denoted as CoDiP2P, was com-
pared with Chord. Samples were collected for CoDiP2P with 1 and 3 Replicated
Managers (RM) and 1 and 3 successors in the Chord algorithm.

Fig. 4(left) and (right) show the results of the exact query search with a high
(12500 searches/sec) and low (125 searches/sec) searching frequencies, respec-
tively. In general, both plots showed that CoDiP2P obtained better results than
Chord, specially when the frequency was high. On the other hand, we saw how
the influence of the successors in the Chord case was higher than the use of repli-
cated managers in CoDiP2P. This was because the Chord’s successors are active
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Fig. 5. Range queries searching Algorithm versus Baton with a Freq =
12500 searches/sec (left) and Freq = 125 searches/sec (right)

elements in the searching process, whereas in the case of CoDiP2P, the repli-
cated managers do not play such an important role in the searching algorithm.
Focusing on the influence of the searching frequency, we saw that the CoDiP2P
and Chord results ranged up to 40% and 80% with a high frequency (see Fig.
4(left)), whereas they ranged from 15% to 5% with low frequency respectively
(see Fig. 4(right)). This behavior is due to the fact that a low searching frequency
gives both systems enough time to recompose system tables and links. However,
CoDiP2P continues giving better results than Chord because the system has
enough time to rebalance the system completely and thus better performance is
obtained. This is due to the maintaining cost of the overall system in CoDiP2P
is θ(|Area| · log|Area| Ntree) whereas the maintaining cost of Chord is higher,
θ(N · log2 N). In general, we conclude that in any case, the CoDiP2P rebalancing
algorithm performs better than the restructuring of the Chord DHT structure.

Our next evaluation was to compare the performance of our range query
approach in relation to the BATON algorithm, following the same methodology
described above. Fig. 5 shows the percentage of unsuccessful searches in relation
to the percentage of failed peers for high (Fig. 5(left)) and low (Fig. 5(right))
searching frequencies. As we can see in both figures, our approach improves
the BATON results. This improvement is very significant for the case of high
frequency, achieving a maximum difference around 70% (see Fig. 5(left)). This
difference is due to the fact that each peer on the BATON system has stored less
keys than CoDiP2P and as a consequence BATON needs to do more hops than
CoDiP2P for searching a specific set of values. In addition, BATON has a major
dependency of the neighbourhood and by this reason the drop of a neighbour
has a high repercussion on the searching process.

Next, we compared the response time of CoDiP2P for both cases, exact and
range query, in relation to the Chord algorithm. The discovery mechanism needed
a minimum interval, called “response time”, to update the system completely
after a peer fault. According to our aim, we obtained the percentage of unsuc-
cessful searches for an hypothetical massive drop of 50% of the total peers at the
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same time. Thus, we could compare the robustness of both approaches, CoDiP2P
and Chord. From Fig. 6 (left), we can see that CoDiP2P took 255 units of time
to recover the parts of the system affected by the faulting peers in both cases,
whereas Chord needed more than 800 units of time. This is because Chord up-
dates one entry of its finger table in each updating step and as a consequence,
it needs more time to update the tota1 of 160 entries in its finger tables. In
contrast, CoDiP2P only needs a number of jumps equal to the number of levels
of the tree to update the network completely after a massive drop of peers. In
general, we can conclude that CoDiP2P has a response time approximately 3
times faster than Chord.

Finally, Fig. 6 (right) shows the congestion (percentage of messages) achieved
throughout the levels of the tree topology for different areas sizes, when the
searching mechanism is applied. Level 0 represents the root of the tree. We can
see as the congestion increases with the areas size. As it was expected, congestion
is critical in the root and decreases when ascending levels. With an areas size
of 21 peers, congestion is around 100%, causing a bottleneck in the root node.
In order to reduce this congestion, the trees level and the areas size should be
limited below a specific threshold. Therefore, in order to maintain the scalability
of the system, we should group the peers according to its characteristics in a set
of different small trees, which would be connected by a second level topology
with good scalability properties. This will be the main goal of future work.
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6 Conclusions and Future Work

In this paper, a computing resource discovery mechanism oriented to the
CoDiP2P system is presented. Following the CoDiP2P architecture, the lookup
mechanism is based on a balanced multi-way tree structure capable of support-
ing both exact and range queries efficiently. A rebalancing algorithm is also
proposed.
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The exact query proposal was compared with another exact query algorithm
widely used in the literature, Chord. Given that Chord does not implement
range queries, we also compared our range query proposal with a binary-tree
structure, named BATON. In general, our results show that CoDiP2P performs
much better than the other approaches, specially for high frequencies. In this
case, CoDiP2P achieves half the rate of unsuccessful searches as the others.
Likewise, the results obtained reveal the good performance of our rebalancing
algorithm, improving the unsuccessful searches rate by 50%. Robustness was
another goal of our work. In doing so, the response time to update the system
completely after a massive drop of peers was measured. Our results show that
CoDiP2P has a response time approximately 4 times faster than Chord.

The future trend is directed towards extending the tree topology with a second
level topology, which will allow to increase the scalability of the platform. Each
tree would group a set of peers according to any common characteristic (i.e.
locality, computational resources, etc.), whereas the second level would connect
the set of trees by means of a Bruijn graph[10], which is characterized by its high
scalability and low congestion. Thus, we maintain the effectiveness of the tree
topology for searching and overcome its main drawback, the congestion of the
root levels for huge systems. Another important trend is testing and monitoring
the topology and algorithms under real conditions and network. This will allow
to measure the real traffic congestion and bottlenecks caused by the updating
algorithm, the communication times taken by the departure algorithm and the
effectiveness and overhead messages of the rebalancing algorithm.
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FCT, through Centro de Matemática da Universidade do Porto - CMUP, and by the
Spanish Ministerio de Ciencia e Innovación under project TIN2009-07519.

J.M.L.M. Palma et al. (Eds.): VECPAR 2010, LNCS 6449, pp. 380–393, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Parallel Implementation of the Jacobi-Davidson Eigensolver 381

Its introduction, about 15 years ago, was motivated by the fact that stan-
dard iterative eigensolvers often require an expensive factorization of the matrix
to compute interior eigenvalues, e.g., shift-and-invert Arnoldi with a direct lin-
ear solver. Jacobi-Davidson tries to reduce the cost by solving linear systems
only approximately (usually with iterative methods) without compromising the
robustness.

General purpose parallel Jacobi-Davidson eigensolvers are currently available
in the PRIMME [1], JADAMILU [2] and Anasazi [3] software packages. However,
currently PRIMME and JADAMILU can only cope with standard Hermitian
eigenproblems, and Anasazi only implements a basic block Davidson method for
generalized Hermitian eigenproblems, Ax = λBx, where the user is responsible
for implementing the correction equation. There are no freely available parallel
implementations for the non-Hermitian case.

There are several publications dealing with parallel Jacobi-Davidson imple-
mentations employed for certain applications. For instance, the design of res-
onant cavities needs to solve real symmetric generalized eigenproblems arising
from the Maxwell equations [4]. Other cases result in non-Hermitian problems, as
they occur in linear magnetohydrodynamics (MHD): in [5] a complex generalized
non-Hermitian problem is solved using the shift-and-invert spectral transforma-
tion for searching for the interior eigenvalues closest to some target, and a variant
with harmonic Ritz values is presented in [6].

Our aim is to fill the lack of a parallel general purpose non-Hermitian Jacobi-
Davidson eigensolver providing a robust and efficient implementation in the con-
text of SLEPc, the Scalable Library for Eigenvalue Problem Computations [7].
Our previous work addresses the Generalized Davidson method for symmetric-
definite (and indefinite) generalized problems [8].

In this work we focus on important details of the non-Hermitian version of
Jacobi-Davidson: searching for interior eigenvalues using harmonic Ritz values
and the real arithmetic management of complex conjugate eigenpairs in problems
with real matrices. These improvements will be added to a future fully-fledged
Jacobi-Davidson solver in SLEPc. The description of the particular features of
the solver implemented in this work are described in Section 2. The analysis of
the performance of the code is detailed in Section 3. We conclude with some
final remarks.

2 The Jacobi-Davidson Method

The Jacobi-Davidson algorithm combines ideas from Davidson’s and Jacobi’s
methods (see [9]). As all other methods based on projection techniques, it has
an extraction phase and another one of subspace expansion (see Algorithm 1).

Regarding the extraction phase, A is projected on a low-dimensional subspace
K of size m with Ritz values and Ritz vectors, respectively, θj and uj = V sj ,
j = 1, ..., m, being V = [v1v2 . . . vm] the n ×m matrix whose columns form an
orthonormal basis of K.

In the expansion phase, a new direction should be considered in such a way
that K is extended providing better information to obtain a new approximation
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Algorithm 1. Jacobi-Davidson algorithm
1: procedure JD(A, u0, tol, itmax)
2: u ← u0/‖u0‖2, V ← [u], θ ← u∗Au, r ← Au − θu
3: m ← 1
4: while ‖r‖2/|θ| > tol & m < itmax do
5: Solve approximately (I − uu∗)(A − θI)(I − uu∗)t = −r, t ⊥ u
6: V ← Orthonormalize[V, t], and m ← m + 1
7: Compute a desired eigenpair (θ, s) from the projected eigensystem

using standard or harmonic techniques
8: u ← V s, r ← Au − θu
9: end while

10: return θ, u
11: end procedure

of the selected eigenpair (θ, u). Jacobi [10] proposed to correct u by a vector t,
the Jacobi orthogonal component correction (JOCC)

A(u + t) = λ(u + t), u⊥t. (1)

Pre-multiplying (1) by u∗, and considering ‖u‖ = 1, results in

λ = u∗A(u + t). (2)

Projecting (1) onto the orthogonal complement of u, which is done by pre-
multiplying by I − uu∗, and replacing λ, which is unknown, by the available
approximation θ results in the Jacobi-Davidson correction equation,

(I − uu∗)(A − θI)(I − uu∗)t = −r, (3)

being r = Au− θu the eigenpair residual. Far from convergence, θ can be set to
a target τ .

Usually, iterative linear solvers are used to solve the equation (3), for instance
using Krylov methods. Regarding the required precision for the resolution of
(3), a low one is generally accepted. In practice, the performance of the method
largely depends on the appropriate tuning of this parameter.

2.1 Computation of Eigenvalues at the Periphery of the Spectrum

For exterior eigenvalues, the Jacobi-Davidson method uses the Rayleigh-Ritz
approach to extract the desired approximate eigenpair (θ, u = V s), by imposing
the Ritz-Galerkin condition on the associated residual,

r = Au− θu ⊥ K, (4)

which leads to the low-dimensional projected eigenproblem

V ∗AV s = θs. (5)
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At each iteration the implementation updates the matrix of the projected sys-
tem (5), M = V ∗AV , by computing the mth row and column. Then it computes
the Schur decomposition of M (MQ = QT , Q orthogonal, T upper-triangular)
and sorts it in order to have the desired Ritz value and vector as the first one.

However, the Rayleigh-Ritz method generally gives poor approximate eigen-
vectors for interior eigenvalues, that is, the Galerkin condition (4) does not imply
that the residual norm is small. Moreover, spurious Ritz values can appear and
it is difficult to distinguish them from the ones we seek. In that case, the Ritz
vector can contain large components in the direction of eigenvectors correspond-
ing to eigenvalues from all over the spectrum, so adding this vector to the search
subspace will hinder convergence. The harmonic projection methods are an al-
ternative to solve this problem [11,12].

2.2 Computation of Interior Eigenvalues

For interior eigenpairs, Jacobi-Davidson uses, in general, the harmonic Rayleigh-
Ritz extraction, requiring the Petrov-Galerkin condition

(A− τI)−1u− (θ − τ)−1u ⊥ L, (6)

where L ≡ (A− τI)∗(A− τI)K.
This extraction technique exploits the fact that the harmonic Ritz values

closest to the target τ are the reciprocals of the largest magnitude Ritz values of
(A− τI)−1, and avoids working with the inverse of a large matrix. The resulting
projected generalized eigenvalue problem is then

V ∗(A− τI)∗(A− τI)V s = (θ − τ)V ∗(A− τI)∗V s. (7)

Our implementation of the harmonic extraction is based on the algorithm de-
scribed in [13, §7.12.3], which maintains W as an orthogonal basis of (A− τI)V ,
and updates the matrices N = W ∗W and M = W ∗V in each iteration. Thus, in
this case, step 7 in Algorithm 1 has to solve the eigenproblem associated to the
(N, M) matrix pair (see Algorithm 2). The new vectors added to W , as in the
case of the V vectors, are orthogonalized with a variant of the Gram-Schmidt
process available in SLEPc, which is based on classical Gram-Schmidt with selec-
tive reorthogonalization, providing both numerical robustness and good parallel
efficiency [14].

2.3 Computing Complex Eigenvalues with Real Arithmetic

Real unsymmetric matrices may have complex eigenvalues and corresponding
eigenvectors. It is possible to avoid the complex arithmetic by using real Schur
vectors instead of eigenvectors in step 7 of Algorithm 1. The real Schur decom-
position consists of an orthogonal matrix and a block upper triangular matrix,
which has scalars or two by two blocks on the diagonal. The eigenvalues of two
by two blocks correspond to two complex conjugate Ritz values of the original
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Algorithm 2. Harmonic extraction in Jacobi-Davidson algorithm
1: w ← (A − τI)vm, where vm is the last column of V
2: W ← Orthonormalize[W, w], with h the orthogonalization coefficients and ρ the

norm prior to normalization

3: Update N ←
[

N h
0 ρ

]
,

4: Update M such that M = W ∗V
5: Compute generalized Schur decomposition NQ = ZÑ , MQ = ZM̃ such that

|ñ1,1/m̃1,1| is the minimum
6: s ← q1 and θ ← m̃1,1ñ1,1 + τ

matrix. The real Schur form requires less storage, since these Schur vectors are
always real. Another advantage is that complex conjugate pairs of eigenvalues
always appear together.

Our implementation is based on RJDQZ [15], that adapts the extraction pro-
cess and the correction equation to work with the real Schur form. The changes
to the original algorithm are only significant when a complex Ritz pair is se-
lected. In that case, the method works with a real basis U = [u1 u2] of the
invariant subspace associated to the selected complex conjugate pair of Ritz val-
ues, (θ, θ̄), where the corresponding Ritz vectors are u = u1 ± u2 i. The residual
is now computed as

[r1 r2] = A[u1 u2]− [u1 u2]
[
�(θ)  (θ)
− (θ) �(θ)

]
. (8)

Apart from the residual, the correction equation also contains the Ritz value, so
it has to be rearranged as

P

[
A−�(θ)I  (θ)I
− (θ)I A−�(θ)I

]
P

[
t1
t2

]
= −

[
r1
r2

]
. (9)

For this correction equation, we propose three different projectors P , that can
be selected at runtime in our solver. The first option, P0, implements the same
projector that would be used in complex arithmetic,

P0 = I −
[
u1 u2
u2 −u1

] [
uT

1 uT
2

uT
2 −uT

1

]
. (10)

P1 represents the orthogonal projector onto the orthogonal complement of the
subspace U = span{u1, u2},

P1 = I −
[
û1 û2 0 0
0 0 û1 û2

]⎡⎢⎢⎣
ûT

1 0
ûT

2 0
0 ûT

1
0 ûT

2

⎤⎥⎥⎦ , (11)
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where {û1, û2} is an orthogonal basis of U . This basis is cheaply obtained from
the Schur decomposition of the projected problem. Finally, P2 implements the
following lighter projector

P2 = I −
[
û1 0
0 û2

] [
ûT

1 0
0 ûT

2

]
. (12)

2.4 Preconditioning

In some cases, the convergence of the iterative linear solver for the correction
equation (3) can be very slow. Therefore, it is convenient to use a preconditioner.
The preconditioner can be chosen as

K = (I − uu∗)Kθ(I − uu∗), (13)

where Kθ is some approximation of A− θI. Since θ changes in each outer itera-
tion, it would be necessary to rebuild Kθ every time. This high overhead can be
avoided by using Kτ , where τ is the constant target value, but probably losing
effectiveness in the preconditioner. The application of K−1 to a given vector is
done without building K explicitly, in such a way that only one preconditioner
application with K−1

τ is done per inner iteration [9].

2.5 Implementation Details

Our Jacobi-Davidson implementation is intended to be executed on distributed
memory parallel machines using PETSc [16]. The problem matrix and the vec-
tors of size n are distributed by blocks of rows and the corresponding operations
are parallelized. These include the computation of the matrices of the projected
system, the selected Ritz vector and its residual, the solution of the correction
equation and the orthogonalization of V and W . The projected problem decom-
position and other minor computations are replicated in all nodes.

The algorithm is initialized with a randomly generated vector in parallel, tak-
ing care that each processor generates different random sequences. This initial
vector must have a nonzero component in the desired eigenvector. To further en-
sure this feature, and to seek the eigenvalue of largest magnitude, a few iterations
of the power method may be applied.

The real Schur decomposition of the projected problem is computed using
appropriate LAPACK routines, since they are dense and small matrices. Also,
LAPACK is used for sorting the Schur decomposition, keeping the complex con-
jugate pairs together.

The stopping criterion of the algorithm is currently based on the simple
evaluation of the normalized residual ‖Au − θu‖2/|θ|. When the convergence
is achieved then there exists an exact eigenvalue λ such that |λ− θ| must be suf-
ficiently small, although λ may not be the desired eigenvalue. In the symmetric
case, a small relative residual guarantees a small error in the eigenvalue; for the
unsymmetric case, however, the norm of the residual may give an indication of
the error but it is not guaranteed, especially for highly non-normal matrices.
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The correction equations, (3) and (9), are solved using a PETSc Krylov solver
(commonly GMRES) without explicitly storing the coefficient matrices of the
system, and only defining the matrix-vector product. Also, only applying the
left projector is sufficient to guarantee the condition t ⊥ u, provided that a
Krylov solver is used with a zero starting vector, as shown in [17].

As mentioned before, the tuning of the stopping criterion for the correction
equation is crucial since it greatly influences the convergence behavior of the
method. It is widely referred that the required tolerance for the residual on
this inner iteration phase does not need to be tight, yet a loose one can pro-
voke a large number of outer iterations or even lead to non-convergence of the
Jacobi-Davidson method. A good balance between the required precision for the
correction equation and the tolerance of the overall process is thus mandatory.
Generally, one can bound the time spent in the correction equation by limiting
both the number of iterations and the required precision for the solution. We
tested several approaches trying to fulfill the above mentioned ideas as well as
to deliver a default option, which can be used by the user as a first approach
to solve his eigenproblem. We tested several mechanisms, namely, a fixed small
number of GMRES iterations (5, 20 or 40) and a coarse tolerance (10−2 or 10−3).
We also implemented a dynamic criteria such as a variable tolerance, function
of the outer iteration number; for instance, a tolerance of α−Its+1 (among oth-
ers), being Its the outer iteration number, for α = 1.5, 2.0, 3.0. The approach
proposed in the JDQR code [9] is 0.7Its.

In this work restarting techniques were not considered in order to concentrate
on other crucial algorithmic parts and parameters. Details about a restarted
variant, together with numerical results on a plasma physics application, can
be found in [18]. In general terms, the amount of information remaining after a
restart should be neither too small nor too large, in order not to lose too much
information and to prevent many time consuming restarts, respectively. A related
issue is deflation, required for continuing the computation of other eigenpairs
after some of them have converged. Deflation can be implemented by locking
converged vectors at restart time [18], so it has not been covered here either.

3 Computational Results

Several experiments have been performed for testing our implementation. The
sequential tests use a collection of 136 real unsymmetric matrices of moderate
size and density (see Figure 1) chosen from the MatrixMarket1 database and the
University of Florida Sparse Matrix Collection2. The sequential tests are primar-
ily intended to evaluate the performance and robustness of our implementation.
Also, using such a large collection of matrices allows us to extend previous re-
sults comparing standard versus harmonic extraction [6,9] as well as complex
versus real arithmetic versions. In order to avoid biased results, the collection is
very heterogeneous, and cover the case of large condition number and norm (see
Figure 1), clustered eigenvalues and complex conjugate eigenpairs.
1 http://math.nist.gov/MatrixMarket/
2 http://www.cise.ufl.edu/research/sparse/matrices/

http://math.nist.gov/MatrixMarket/
http://www.cise.ufl.edu/research/sparse/matrices/
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Fig. 1. Size, density, estimated 2-norm and estimated condition number for each matrix
used in the sequential tests

Also the Krylov-Schur eigensolver, currently the most powerful method avail-
able in SLEPc, is employed and the results will be compared with Jacobi-
Davidson.

In the tests to be presented, only one eigenpair is requested, since locking is
not available, as mentioned earlier. The convergence criterion is based on the
residual norm divided by the absolute value of the approximate eigenvalue, and
a tolerance of 10−7 was considered. A problem is flagged as unconverged if the
desired tolerance was not reached within a maximum of 500 (outer) iterations.

In order to study the parallel performance of our implementation, some large-
scale tests were run on two distributed memory machines: (i) Odin, from Uni-
versidad Politécnica de Valencia, which is a cluster with 55 dual-processor nodes
(however only one process runs per node in the tests), Pentium Xeon processors
at 2.8 GHz and 1 GB per node, connected by a high-speed SCI network with
2D torus topology; and (ii) CaesarAugusta, from the Barcelona Supercomputing
Center, consisting of 256 JS20 blade computing nodes, each of them with two
64-bit PowerPC 970FX processors running at 2.2 GHz, interconnected with a
low latency Myrinet network, where only 90 processors (i.e., 45 nodes running
up to 90 processes) are used due to account limitations.

3.1 The Exterior Case

For the case of exterior eigenvalues, the developed method was able to compute,
within the specified tolerance, the largest eigenvalue in magnitude and associated
eigenvector in nearly all cases, as it is shown in Table 1. Except for the real
arithmetic version with P0 projector, any other configuration achieves (at least)
132 converged problems out of 136, and increasing the number of inner iterations
or the power iterations helps convergence in especially difficult problems.

On the other hand, the real arithmetic version with P0 was clearly the worst
one. Since the P1 and P2 projectors obtained good results, P0 will be discarded
for subsequent analyses within this subsection.

At this stage we should remark that JDQR3, a Matlab implementation of a
Jacobi-Davidson algorithm as described in [9], solved around 82% of the problems

3 http://www.math.uu.nl/people/sleijpen/JD_software

http://www.math.uu.nl/people/sleijpen/JD_software
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Table 1. Number of converged problems for different combinations of the variant, the
projector, the number of power iterations and the maximum number of iteration for
solving the linear equation system

Power its. 0 5
Max. inner its. 5 20 40 5 20 40
complex arith. 134 135 135 134 136 136
real arith. P0 134 96 103 118 129 129
real arith. P1 132 133 132 133 133 134
real arith. P2 134 133 134 134 133 134

without preconditioning and that Matlab’s function eigs failed to converge in
around 9% of the problems (using default parameters). Although not directly
comparable, these results should be read solely to emphasize the degree of diffi-
culty in the numerical solution of the selected testbed.

When considering the time spent by the solvers, Figure 2 shows that the
real arithmetic version can be twice as fast as the complex arithmetic counter-
part, especially for problems where complex Ritz pairs do not show up often.
In contrast, there is no significant difference between the projector P1 and P2.
However, the plots comparing the number of outer iterations show the penalty
of real arithmetic variants. This can be attributed to the fact that the P1 and
P2 projectors are not mathematically equivalent to the complex case. Still, each
iteration is much faster. These conclusions are statistically significant.

Finally, the influence of the maximum number of linear iterations (MLIts) was
analyzed. Figure 3 compares the performance of solving the Jacobi-Davidson cor-
rection equation with 5, 20 and 40 GMRES iterations at most. It is observed
that the value of this parameter does not seem to influence the number of outer
iterations. As a consequence, the higher the value of this parameter, the more
overall GMRES iterations are required, and the execution time is thus increased
significantly. For the computation of eigenvalues at the periphery of the spec-
trum, taking into account the mechanisms implemented to date in the code and
in light of the successful use of a few linear iterations, extensive tests with a
dynamic criterion were not done.

One could draw the conclusion that a very small value of MLIts is to be
preferred, although this is application dependent, and may not be the case in a
restarted implementation.

3.2 The Interior Case

As a test for evaluating the computation of interior eigenvalues, we looked for
the smallest magnitude eigenvalue of the matrices in the test battery, that is, we
run the harmonic solver with τ = 0. This choice leads to convergence difficulties
in some matrices of the test battery, mainly attributable to a large condition
number with respect to inversion, see Fig. 1. The Jacobi-Davidson eigensolver is
configured to perform 50 iterations of GMRES for solving the correction equa-
tion, with or without a preconditioner.
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Fig. 2. Plots comparing the execution time (top) and outer iterations (bottom) when
solving the problems with the complex arithmetic version and the real arithmetic ver-
sion with projectors P1 and P2
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time (right) when solving the problems with 5, 20 and 40 maximum linear iterations
(MLIts) of GMRES for solving the Jacobi-Davidson correction equation
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obtaining the smallest eigenpairs for the problems qc324 (left) and cavity06 (right)
with different maximum linear iterations of GMRES for the correction equation

The standard Rayleigh-Ritz extraction version of Jacobi-Davidson is able to
reach convergence in 11 problems only, as expected from the theoretical prop-
erties previously discussed. The harmonic extraction version (proposed for this
case) successfully solved up to 60 problems without using any preconditioning
at the correction equation solution, up to 46 problems with a diagonal precondi-
tioner, up to 39 problems with an ILU(0) preconditioner and up to 100 problems
using an LU factorization. These results highlight the impact of the precondi-
tioner in the global convergence of the method. However, a more powerful pre-
conditioner is not always better. We have to recall here that the preconditioner
is built from matrix A − τI (A in this case) and not from A− θI, as discussed
in section 2.4, so its effectiveness may vary widely depending on the problem.
Even a complete factorization such as LU should be considered a preconditioner
in this case.

Just for reference, JDQZ (the companion to JDQR with harmonic extraction)
without preconditioning solved only 15% of the problems.

Regarding the performance, Fig. 4 shows the strong influence of limiting the
maximum number of iterations for solving the correction equation in two sample
problems. It is observed the rapid decrease of the spent time when allowing
more iterations for solving the linear system. Moreover, from a certain point this
benefit ends abruptly. A dynamic criteria combining the usual maximum number
of iterations and a prescribed tolerance with the requirement of improving the
solution quality of the correction equation as the number of outer iterations
progresses is, thus, essential. The criteria for leaving the iterative process to
improve the solution of the linear systems should be more demanding for the
interior case than for the exterior.

3.3 Parallel Performance

The parallel performance is tested with the matrix tmt unsym from the Uni-
versity of Florida Sparse Matrix Collection, arising from a computational elec-
tromagnetics application. The dimension of the matrix is 917,825 and it has
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Fig. 5. Speedup on Odin (left column) and CaesarAugusta (right column) when finding
the largest magnitude eigenpairs of tmt unsym using the complex and real arithmetic
(with projectors P0, P1 and P2) versions of Jacobi-Davidson, and Krylov-Schur (first
row); and when finding the eigenpairs closest to 0 of tmt unsym using the harmonic
version of Jacobi-Davidson without preconditioner and with Jacobi and block Jacobi
preconditioners, and Krylov-Schur using shift-and-invert with MUMPS (second row)

4,584,801 nonzero elements, all of them contained in a narrow band of half-width
around 2000.

Generally, the parallel performance of the matrix-vector product and the ap-
plication of the preconditioner can significantly influence the global performance
of an eigensolver. However, the chosen matrix avoids those problems because of
the fact that its band structure makes these two operations scalable.

Figure 5 (first row) shows the speedup of the different Jacobi-Davidson ver-
sions (real arithmetic using P0, P1 and P2 projectors, and complex arithmetic)
and the Krylov-Schur solver in SLEPc, when computing the largest magnitude
eigenpair. In the case of CaesarAugusta, speedup is computed relative to the
time with two processes (one node). In both machines it can be observed that
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all tested implementations show good parallel performance, although the com-
plex arithmetic version and Krylov-Schur are slightly worse than the rest in
CaesarAugusta.

Regarding the computation of interior eigenvalues, we tried the harmonic
Jacobi-Davidson without preconditioner as well as with Jacobi and block Ja-
cobi preconditioners. The latter uses an ILU(0) decomposition in each diagonal
block (one per process), although in this particular matrix this preconditioner
does not improve over Jacobi. We also compared with SLEPc’s Krylov-Schur
with shift-and-invert, wherein the associated LU factorization is handled via
MUMPS4. Figure 5 (second row) shows the obtained speedups. Again all tested
implementations reveal speedups not far from the ideal one, except shift-and-
invert Krylov-Schur that shows the poor parallel performance of the triangular
backward and forward solves, which is particularly bad in this matrix.

4 Conclusions and Future Work

We have presented a parallel implementation of the Jacobi-Davidson method for
distributed memory machines for non-Hermitian matrices, using the PETSc and
SLEPc libraries. We discuss the design decisions that influence the convergence
and the performance of the method, such as the stopping criterion for solving
the correction equation, the eigenpair extraction method and the parallelization.
The presented results suggest that it is sufficient to perform only a few GMRES
iterations when searching for largest eigenvalues, whereas for interior eigenvalues
it is necessary to use the harmonic extraction technique combined with much
more iterations of the correction equation solver.

Furthermore, a real arithmetic version for real unsymmetric matrices has been
implemented also. The results show the sequential and parallel performance im-
provement of this version with a convergence rate comparable to the complex
arithmetic version using our proposed projectors P1 and P2.

At this stage of the development, the code is already able to compute exterior
as well as interior eigenvalues with a reasonable efficiency despite the lack of a
restarting technique for the search subspace. It is able to solve a wide range of
difficult test problems, showing good speedups for their parallel performance.

These developments will be added to a fully featured Jacobi-Davidson solver
in SLEPc, that will include restarting, locking of converged eigenpairs, and a
more elaborate adaptive stopping criterion for the correction equation solver.
The possibility of estimating, inexpensively, the residual norm of the eigenvalue
problem from the one of the inner linear systems, as presented in [19], is attrac-
tive and will be addressed in a future work.
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Abstract. In parallel computing the data distribution may have a
significant impact in the application performance and accuracy. These
effects can be observed using the parallel matrix-vector multiplication
routine from PBLAS with different grid configurations in data distribu-
tion. Matrix-vector multiplication is an especially important operation
once it is widely used in numerical simulation (e.g., iterative solvers for
linear systems of equations).

This paper presents a mathematical background of error propagation
in elementary operations and proposes benchmarks to show how differ-
ent grid configurations based on the two dimensional cyclic block distri-
bution impacts accuracy and performance using parallel matrix-vector
operations. The experimental results validate the theoretical findings.

Keywords: High Performance Computing, Parallel Computing, Round-
ing Errors, 2-dimensional Blockcyclic Distribution, Verified Computing.

1 Introduction

In many numerical algorithms, problems are reduced to a linear system of equa-
tions. Therefore, solving systems like Ax = b with a matrix A ∈ R

n×n and a
right hand side b ∈ R

n is essential in numerical analysis. There are two major
ways of solving those systems: by direct solvers, which are mainly based on the
Gaussian algorithm, or by iterative solvers which are often based on projections.
The second type usually contains one multiplication of a matrix with a vector
in each iteration step and the precision of such matrix-vector multiplication has
a significant impact on the convergence of the iterative solver [4].

In most modern microprocessors, mathematical operations are performed by
using floating point arithmetics. However, the finite floating-point arithmetic
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can only deliver an approximation of the exact result due to rounding errors.
Since the exact result is usually unknown, it is sometimes difficult to measure
the quality of these approximations. Besides, as a result of several operations,
the accumulation of those errors may have an impact in the accuracy of the
results.

There are many papers proposing different solutions to find more accurate
results. Some authors concern is to improve the numerical accuracy of the com-
puted results in computers through the use of extra precise iterative refine-
ment [5,6]. Others try to use mixed-precision algorithms [9,14,10,1] to obtain a
good accuracy and improve the performance. Another possible way to deal with
this unreliability is to use verified computing [11]. Such techniques provide an
interval result that surely contains the correct result [12,13]. However, the use of
such methods may increase the execution time significantly. This effect is even
worse for large linear systems, that may need several days or even more to be
solved. Based on these researches, it is possible to notice that there is a tradeoff
performance versus accuracy.

Parallel computing is a well-known choice for simulating large problems. Since
many numerical problems are solved via a large linear system of equations, a par-
allel algorithm would be a good approach. In this context, the libraries BLAS [3]
and LAPACK [15] seem a good choice, since they have a parallel version (PBLAS
and SCALAPACK [2]) that could be used in the case of very large systems. How-
ever, it is important to remember that these libraries provide an approximation
of the correct result and not a verified result.

It is well known that the data distribution has a major impact in the per-
formance of a parallel application [2]. However, the data distribution can also
present an important influence on the accuracy of the numerical results. Some-
times a fixed problem can lead to distinct solutions depending on the data dis-
tribution or the number of processes used in its solution. This effect can possibly
be explained by the rounding error theory [16].

Based on that, this paper investigates the impact of different grids config-
uration used in the two-dimensional block cyclic distribution on the accuracy
and performance of the parallel matrix-vector multiplication implemented by
PBLAS. This particular distribution was chosen since it was proved to be a
good choice for parallel matrix distribution on parallel environments with dis-
tributed memory [7]. Other interesting data distribution was proposed in [8],
however it is also based on block distribution and was consider equivalent to the
two-dimensional block cyclic distribution [17].

In this paper, the performance of different grids configuration was measured
and compared among them. To evaluate the accuracy of the approximations
generated by PBLAS, a comparison with the verified solution provided by
C-XSC [12] is done. The experimental results indicate how the grids should be
configured to find a compromise between accuracy and performance considering
the application needs.
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This text is organized as follows. To better understand this problem, section 2
presents two important backgrounds: the theory of rounding errors and the two-
dimensional block cyclic distribution scheme. Section 3 introduces the platform,
input data and results obtained in the numerical experiments. Finally, section 4
present some final remarks and considerations about future work.

2 Background

This section presents the background used in this paper. Section 2.1 introduces
the theoretical background concerning rounding errors, based on a paper of Linz
[16]. Section 2.2 describes the two-dimensional block cyclic distribution used by
PBLAS.

2.1 Theory of Rounding Errors

Let ε be the machine accuracy and fl(a ◦ b) the floating point result for an
elementary composition of two real numbers a and b. An elementary operation
◦ ∈ {+,−, ∗, /} of a and b can be estimated with fl(a ◦ b) = (a ◦ b) + ε(a, b, ◦)
for the worst case. We assume A ∈ R

n×n, x, y ∈ R
n and get yk = akx as result

for the product Ax = y for every entry yk ∈ y. Let ak denote the k − th row of
A. For all yk, the approximation using the floating point arithmetic is ŷk.

Simple approach. The simple strategy for computing each yk ∈ y is to add
the first entry to the next one and then add the following entries one by one to
the previous result. Using floating point arithmetic and the abbreviation fl(ak,i ·
xi) = ak,i · xi + ε(ak,i, xi, ·) =: b̂k,i, this strategy can be written as follows:

ŷk1 := (b̂k,1 + b̂k,2) + ε1

ŷki := ŷki−1 + b̂k,i + εi = yki +
i∑

j=1

εj , i ∈ {2, 3, . . . n− 1}

Let the representation be the normalized floating-point with binary exponent
and q fraction bits and assume the addition to be done by truncating the exact
sum to q bits. Let pi be the exponent of ŷki and ν = 2−q. The error for the ith
step is then |εi| ≤ ν2pi and the global error can be written using the estimates
ak,ixi ≤ b, |ŷki | ≤ ib and 2pi ≤ 2ib in the following way

|yk − ŷk| ≤ ν

n−1∑
i=1

2pi ≤ 2νb

n∑
i=1

i = νbn(n + 1).

This means the error using this approach grows like O(n2).

Advanced approach. The second strategy for the summation is the so called
“Fan-In” algorithm. The values are added to each other in pairs and the algo-
rithm is then executed recursively. Let us define the notation
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yk = ak,1x1 + ak,2x2︸ ︷︷ ︸
ŷn1,1

+ ak,3x3 + ak,4x4+︸ ︷︷ ︸
ŷn2,1︸ ︷︷ ︸

ŷn1,2

. . . + ak,nxn

︸ ︷︷ ︸
ŷn1,m

and

ŷki,j = ŷk2i−1,j−1 + ŷk2i,j−1 + εi,j

where εi,j is the rounding error when computing ŷki,j . For the global error we
have

|yk − ŷk| =
∑
σ1,k

εi,j ≤ ν
∑
σ1,k

2pσ1,k

where p is the exponent of the result and σ1,k is the set of all index pairs needed
to get ŷki,j . Assuming that ak,ixi ≤ b, we have:

ŷki,j ≤ 2jb and 2pi,j ≤ 2j+1b.

Based on that, the error upper bound can be estimated by

|yn − ŷk| ≤ ν
∑
σ1,k

2pσ1,k ≤ 2νb
k∑

j=1

n/2j∑
i=1

2j = 2νbkn ≤ 2νb n log2 n.

For the advanced approach the error grows like O(n log2 n). The proof can be
extended to cases in which more than two entries are added to each other using
the “Fan-In”-algorithm. In that case, the error propagations is bounded by the
one presented by the strategies above.

The two approaches differ in a factor of n/(2 log2 n). This study suggests
that a finer granularity in the summation leads to lower upper boundaries for
rounding errors. The proofs presented above show the impact of rounding errors
in scalar products, which are commonly part of matrix-vector multiplications.

2.2 Data Distribution in Numerical Algorithms

On distributed memory platforms, the application programmer is responsible
for assigning the data to each processor. How this is done has a major impact
on the load balance and communication characteristics of the algorithm, and
largely determines its performance and scalability [2].

PBLAS routines are implemented supposing the matrices are stored in the dis-
tributed memory according to the two-dimensional block cyclic distribution [7].
In this distribution, an M by N matrix is first decomposed into MB by NB
blocks starting at its upper left corner. The distribution of a vector is done con-
sidering the vector as a column of the matrix. Suppose we have the following
10x10 matrix, a vector of length 10 an MB and NB equal 3. In this case, we
would have the following blocks:
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A0,0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7 A0,8 A0,9
A1,0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9
A2,0 A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 A2,8 A2,9

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 A3,8 A3,9
A4,0 A4,1 A4,2 A4,3 A4,4 A4,5 A4,6 A4,7 A4,8 A4,9
A5,0 A5,1 A5,2 A5,3 A5,4 A5,5 A5,6 A5,7 A5,8 A5,9

A6,0 A6,1 A6,2 A6,3 A6,4 A6,5 A6,6 A6,7 A6,8 A6,9
A7,0 A7,1 A7,2 A7,3 A7,4 A7,5 A7,6 A7,7 A7,8 A7,9
A8,0 A8,1 A8,2 A8,3 A8,4 A8,5 A8,6 A8,7 A8,8 A8,9

A9,0 A9,1 A9,2 A9,3 A9,4 A9,5 A9,6 A9,7 A9,8 A9,9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2

b3
b4
b5

b6
b7
b8

b9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Suppose we have 4 processors. The process grid would be a 2x2 grid as follows:(

P 0 P 1

P 2 P 3

)
These blocks are then uniformly distributed across the process grid. Thus, every
processor owns a collection of blocks [2]. The first row of blocks will be distributed
among the first row of the processor grid, that means among P0 and P1, while
the second row will be distributed among P2 and P3, and so on. For this example,
we would have: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0 P 1 P 0 P 1

P 2 P 3 P 2 P 3

P 0 P 1 P 0 P 1

P 2 P 3 P 2 P 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0

P 2

P 0

P 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
According to this distribution, each processor would have the following data:

P 0 :

⎛⎜⎜⎜⎜⎜⎜⎝
A0,0 A0,1 A0,2 A0,6 A0,7 A0,8
A1,0 A1,1 A1,2 A1,6 A1,7 A1,8
A2,0 A2,1 A2,2 A2,6 A2,7 A2,8

A6,0 A6,1 A6,2 A6,6 A6,7 A6,8
A7,0 A7,1 A7,2 A7,6 A7,7 A7,8
A8,0 A8,1 A8,2 A8,6 A8,7 A8,8

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
b6
b7
b8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
P 1 :

⎛⎜⎜⎜⎜⎜⎜⎝
A0,3 A0,4 A0,5 A0,9
A1,3 A1,4 A1,5 A1,9
A2,3 A2,4 A2,5 A2,9

A6,3 A6,4 A6,5 A6,9
A7,3 A7,4 A7,5 A7,9
A8,3 A8,4 A8,5 A8,9

⎞⎟⎟⎟⎟⎟⎟⎠

P 2 :

⎛⎜⎜⎝
A3,0 A3,1 A3,2 A3,6 A3,7 A3,8
A4,0 A4,1 A4,2 A4,6 A4,7 A4,8
A5,0 A5,1 A5,2 A5,6 A5,7 A5,8

A9,0 A9,1 A9,2 A9,6 A9,7 A9,8

⎞⎟⎟⎠
⎛⎜⎜⎝

b3
b4
b5
b9

⎞⎟⎟⎠ P 3 :

⎛⎜⎜⎝
A3,3 A3,4 A3,5 A3,9
A4,3 A4,4 A4,5 A4,9
A5,3 A5,4 A5,5 A5,9

A9,3 A9,4 A9,5 A9,9

⎞⎟⎟⎠
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The two dimensional block cyclic distribution is usually not used when the matrix
has a sparse data structure. Common storage formats, like CRS (compressed row
storage), CCS (compressed column storage) etc., usually lead to distributions
where a certain number of rows or columns are given to each process. The CRS
presents a row-wise data distribution, that could be seen as a np × 1 grid of
processes in the two dimensional block cyclic distribution. In the same way, a
1× np grid could be interpreted as a column wise distribution, e.g. similar to a
strategy taken when the CCS is used.

From the mathematical theory it is clear that the upper bound for the round-
ing errors occurring in a sparse matrix vector multiplication increases with the
number of nonzero elements (nnz) per row. In the proof presented in the last
subsection, the variable n should be replaced with nnz, assuming that the matrix
data is sparse and the vector data has O(n) entries.

It is important to mention that, for a matrix vector multiplication, no benefit
in accuracy can be expected due to parallelization when this is done based on a
row-wise data distribution and assuming that the sequential part on each process
does not use techniques like “fan-in”.

3 Numerical Experiments

This section presents experimental results for different grid compositions. The
accuracy and performance are the focus of these tests.

The results of the considered matrix-vector multiplication were computed
using first the sequential BLAS-routines to obtain the sequential time. After
this sequential test, we used the PBLAS-routines from the MKL package for
different grid compositions. All results have been computed three times to avoid
effects caused by hard- and software problems.

To evaluate which grid presents the best accuracy among the tested grids
we analyzed the accuracy obtained by the parallel implementation through a
comparison with a verified result. The library used to obtain the verified result
was C-XSC, which stands for “extension for scientific computing”, and is a free
programming tool for the development of numerical algorithms which provides
highly accurate and automatically verified results. C-XSC does computations
based on interval arithmetics and direct rounding, providing an enclosure of
the exact solution, which is represented by an interval. This means that for
a matrix-vector multiplication, C-XSC will deliver a vector of intervals, each
entry of the vector containing an interval enclosure of the correct solution. The
diameter of the intervals is usually very small, since C-XSC implementation uses
techniques to iteratively reduce the interval diameter proofing that the interval
result includes the exact result [12].

The average error from the PBLAS result to the C-XSC result is computed
as follows. First, for each component of the result vector it is checked if it is in
the interior of the interval given from C-XSC. If it is inside the interval, it is
considered correct. If it is not inside, the distance to the interval is stored. Then
the arithmetic mean over all distances is computed, which we denote as average
error.
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Next section introduces the platform used for the experiments. Section 3.2 il-
lustrates the input data of four different matrices used in the tests. Finally section
3.3 presents the accuracy and performance results with some considerations.

3.1 Platform

The software platform used for executing the numerical experiments is composed
of optimized versions of the library PBLAS (Intel CMKL in version 10.0.2.018 for
test case M1 and version 10.1.2.024 for the test cases M2, M3 and M4), C-XSC
version 2.2.3 and the standard Message Passing Interface (MPI), more precise
the OpenMPI implementation in version 1.2.8. The compiler used in these tests
was the Intel compiler in version 10.1.021.

The Institutscluster located at the Steinbuch Computing Centre (SCC) at the
Karlsruhe Institute of Technology (KIT) was chosen as hardware platform. It
consists of 200 computing nodes each equipped with two Intel quadcore EM64T
Xeon 5355 processors running at 2,667 GHZ, 16 GB of main memory and an
Infiniband 4x DDR interconnect. 17,57 TFlops is the overall peak performance
of the whole system and 15,2 TFlops in the Linpack benchmark.

3.2 Input Data

The results shown in Section 3.3 refer to four different input matrices and vectors.
M1, the first test matrix, has dimension 16000 and is filled with pseudo random
numbers from the interval [−0, 5; 0.5]. Its properties can be seen in table 1.

Table 1. Sparsity plots and properties of the test-matrices M1 and M2

M1 (Random) M2 (GEMAT11)

problem: Artificial
problem size: n = 16000
sparsity: nnz = 256000000
cond. number: n.a.
Frobenius norm: n.a.

problem: Power flow.
problem size: n = 4929
sparsity: nnz = 33185
cond. number: 3.74e+08
Frobenius norm: 8.2e+02
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M2 is a square matrix with dimension 4929 used as the initial basis for con-
strained nonlinear optimization problem represented by GEMAT1 which is the
Jacobian matrix for an approximately 2400 bus system in the Western United
States. M2, arising in the area of power flow, is a sparse matrix with a medium
condition number, as presented in Table 1. It is important to mention that no
special data storage is used for sparse matrices. They are always stored as dense
matrices.

The third matrix tested was M3. As shows Table 2, it is a dense matrix with
dimension 66. This matrix is used in the generalized eigenvalue problem Kx =
λMx, where M3 is matrix K and matrix M is BCSSTM02 4, from BCSSTRUC14

set. This matrix arises in dynamic analysis in structural engineering.

Table 2. Sparsity plots and properties of the test-matrices M3 and M4

M3 (BCSSTK02)) M4 (MCFE))

problem: Structural eng.
problem size: n = 66
sparsity: nnz = 2211
cond. number: 1.3e+04
Frobenius norm: 5.3e+04

problem: Astrophysics
problem size: n = 765
sparsity: nnz = 24382
cond. number: 1.7e+14
Frobenius norm: 2e+17

Table 2 also presents the properties of matrix M4. It is a sparse matrix with
dimension 765 which presents a very high condition number. This matrix is used
in the real application of nonlinear radiative transfer and statistical equilibrium
in astrophysics.

Detailed information about the creation and properties of the test cases M2
to M4 can be found on the Matrix Market website1.

3.3 Numerical Results

This section discusses the results of a set of experiments using the four different
matrices presented in the previous section. The first analysis is based on the
accuracy obtained using different grid sizes. After that, the performance results
are shown.

1 http://math.nist.gov/MatrixMarket
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Accuracy. Figure 1 presents the accuracy obtained using nine processes and
different grid configurations for test cases M1 and M2. The comparison between
our PBLAS algorithm and the verified results of the C-XSC-algorithm show that
there are constellations of processors grids, namely when the grid is np×1, where
the accuracy of the parallel computation is as precise as the sequential one. In all
other cases when the grid of processors is not np×1, the results present a better
accuracy, suggesting that the accuracy depends on the grid. Another important
observation is that the optimal accuracy for a fixed number of processes can
be found by a 1 × np grid. In general we observed that the more columns the
processes grid have, the better is the accuracy.

Fig. 1. Average error to the verified result for three different grids of processes and a
fixed number of nine processes for the test cases M1 (left plot) and M2 (right plot)

Let us investigate our example in the light of Section 2.1 using, for simplicity,
a number of four processes. Let the dimension of the matrix be n, the number of
processes np = 4, the grid of the processes nr × nc and the block size nb := n

np .
Considering the case of an 2 × 2 grid of processes, the distribution follows the
scheme in the example in section 2.2. For a 1 × 4 and 4 × 1 grid, let us use the
notation P a

Bc, where a (from 1 to np) represents the number of the processes
containing the data, B denotes if it is a matrix(M) or a vector(v) and c is the
number of the data block related to one processor. The data distribution is as
presented in tables 3 and 4.

Analyzing table 3 and 4, it is possible to notice that in the computation
based on a np × 1 grid, each entry of the result vector is computed in just one
process, which means that the summation is done like in the simple approach
from Section 2.1.
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Table 3. Data distribution for two different grids of four processes

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0
M0 P 1

M0 P 2
M0 P 3

M0

P 0
M1 P 1

M1 P 2
M1 P 3

M1

P 0
M2 P 1

M2 P 2
M2 P 3

M2

P 0
M3 P 1

M3 P 2
M3 P 3

M3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0
v0

P 0
v1

P 0
v2

P 0
v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0
M0 P 0

M1 P 0
M2 P 0

M3

P 1
M0 P 1

M1 P 1
M2 P 1

M3

P 2
M0 P 2

M1 P 2
M2 P 2

M3

P 3
M0 P 3

M1 P 3
M2 P 3

M3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0
v0

P 1
v0

P 2
v0

P 3
v0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) Grid (1× 4) (b) Grid (4× 1)

The structure of the result distribution is shown in table 4. The leading entry
is the position of the resulting vector, followed by the explanation of which parts
were combined to compute the result.

Table 4. Processes which contain the final result and parts from which it is computed

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0(P 0
M0P

0
v0 + P 1

M0P
0
v1 + P 2

M0P
0
v2 + P 3

M0P
0
v3)

P 0(P 0
M1P

0
v0 + P 1

M1P
0
v1 + P 2

M1P
0
v2 + P 3

M1P
0
v3)

P 0(P 0
M2P

0
v0 + P 1

M2P
0
v1 + P 2

M2P
0
v2 + P 3

M2P
0
v3)

P 0(P 0
M3P

0
v0 + P 1

M3P
0
v1 + P 2

M3P
0
v2 + P 3

M3P
0
v3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0(P 0
M0P

0
v0 + P 0

M1P
1
v0 + P 0

M2P
2
v0 + P 0

M3P
3
v0)

P 1(P 1
M1P

0
v0 + P 1

M1P
1
v0 + P 1

M1P
2
v0 + P 1

M1P
3
v0)

P 2(P 2
M2P

0
v0 + P 2

M2P
1
v0 + P 2

M2P
2
v0 + P 2

M2P
3
v0)

P 3(P 3
M0P

0
v0 + P 3

M1P
1
v0 + P 3

M2P
2
v0 + P 3

M3P
3
v0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(a) Grid (1× 4) (b) Grid (4 × 1)

The advanced approach presented in section 2.1 can be found on the 1×np grid
where the final result will be placed on process one, but there are intermediate
results on every process leading to a higher quality in the computed result. This
suggests that the number of columns of the processor grid is responsible for the
granularity of the computation - a higher numbers of columns can lead to better
accuracy. So it is not astonishing that a symmetric grid produces results with
an intermediate precision (bounded by the other grids).

It is also possible to notice that the results for the application based problem
M2 show that for all grid sizes the average error is less than 2.58e− 16 which is
excellent considering the double precision format.

Figure 2 presents the average error for matrix M3 and M4. Based on the
M3 graphic, we can see that even for small problems, the data distribution and
the executed computations can have an impact on the result. The average error
to the verified result, depending on the grid configuration, differs in about one
magnitude.
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Fig. 2. Average error to the verified result for three different grids of processes and a
fixed number of nine processes for the test cases M3 (left plot) and M4 (right plot)

For the test case M4 we observe that the 9 × 1 grid delivers, analogue to all
other experiments, the most inaccurate result. The fact that the 3× 3 grid is a
little more accurate than the 1 × 9 grid might be astonishing on the first view
but this is possible because the mathematical theory gives only a upper bound
for the rounding error propagation.

The results in Figure 3 show for different number of processes and grids of
processes the average error to the verified result based on a matrix with dimen-
sion 8192 and input data generated like in M1. For all grids np× 1 the accuracy
is like in the sequential case and independent of the number of processes. The

Fig. 3. Average error to the verified result for different grids and different numbers of
processes. A matrix similar to M1 but with dimension 8192 was taken for the experi-
ments.
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graphic shows that the more processes are used the better is the result. It can
also be observed that the larger the number of processes, the better is the ac-
curacy, following a logarithmic behavior, which corresponds to the theoretical
findings.

Performance. This section presents the performance analysis considering ma-
trix M1. The performance analysis for matrices 2 to 4 were not discussed since
they have small dimensions. In this case it is not worth to parallelize the mul-
tiplication, since the program would spend more time communicating among
the processors than computing the result. Therefore it would maybe increase
the computational time instead of speedup the computation. Since matrix 1 has
dimension 16000, it is the natural choice for the performance test.

Figure 4 shows that directly interrelated to the grid is the processing speed.
It is possible to notice that the computational time for the same problem size is
very different depending on the grid.

Fig. 4. Commutation time for three different grids of processes and a fixed number of
nine processes for the test case M1

This performance variation can be explained by the fact that different grids
communicate differently. The amount, length and topology of such communica-
tion have a significant impact on the performance [7]. In Table 3 is possible to
notice that some of the data that a processes need may be stored in another pro-
cesses, and therefore the processes need to communicate before the computation
to send/receive parts these data. This occurs also after the computation, when
parts of the result have to be collected from each processor and accumulated so
that the result is found. This is the case of the 1× 4 grid in Table 4.

The communication load-balance is optimal if it is equally distributed on all
processes. The impact on the performance depends significantly on the under-
lying hardware (interconnect, memory bandwidth etc.). This means that not a
single process is sending or receiving a big bunch of data to all other processes,
but that all processes are sending little bunches of data to all other processes.
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For the grids shown above, the structure of the communication is:

(a) Grid (1× 4)
before computation after computation

sender → receiver size sender → receiver size
P 0 → P 1 nb P 1 → P 0 n
P 0 → P 2 nb P 2 → P 0 n
P 0 → P 3 nb P 3 → P 0 n

(c) Grid (2 × 2)
before computation after computation

sender → receiver size sender → receiver size
P 0 → P 2 2 ∗ nb P 1 → P 0 n/2
P 2 → P 1 2 ∗ nb P 3 → P 2 n/2
P 2 → P 3 2 ∗ nb

(b) Grid (4× 1)
before computation after computation

sender → receiver size sender → receiver size
P 0 → P 1 nb − −
P 0 → P 2 nb − −
P 0 → P 3 nb − −
P 1 → P 0 nb − −
P 1 → P 2 nb − −
P 1 → P 3 nb − −
P 2 → P 0 nb − −
P 2 → P 1 nb − −
P 2 → P 3 nb − −
P 3 → P 0 nb − −
P 3 → P 1 nb − −
P 3 → P 2 nb − −

4 Final Remarks and Future Work

This paper presents the theory of rounding error propagation for elementary
kernels and validates the theoretical findings based on numerical experiments.
Beside accuracy the influence on performance of the process-grid using the two-
dimensional block cyclic distribution was addressed.

Tests show that the process-grid has a significant impact on both, but in a
different way. The experiments suggested that the more columns the grid has,
the better is the accuracy. However, this is not true for the performance, in
which the effect is the opposite: the more columns the grid has, the worse is the
performance. For symmetric grids, the performance achieved was good due to a
better balance in the communication process. It presented, however, a little less
accuracy then in the best case.

It is important to mention, that the impact of the data distribution on the
results of numerical simulations depend strongly on the particular problem as
well as on the numerical procedures employed to find the solution.

Ongoing research is the evaluation of different hardware platforms like CPUs
from various vendors, GPUs and other accelerators as well as full cluster systems
based on different interconnects. A second focus is the impact of the utilized
software like compilers, optimization flags and different libraries. In addition,
experiments in the context of complete solvers are planned. One goal is to accel-
erate linear solvers like CG or GMRES by performing a data reordering during
the solution process.

Acknowledgement. Mariana Kolberg thanks to FAPERGS for the financial
support through the research project 0905026.
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Abstract. Spectral Clustering is one of the most important method
based on space dimension reduction used in Pattern Recognition. This
method consists in selecting dominant eigenvectors of a matrix called
affinity matrix in order to define a low-dimensional data space in which
data points are easy to cluster. By exploiting properties of Spectral Clus-
tering, we propose a method where we apply independently the algorithm
on particular subdomains and gather the results to determine a global
partition. Additionally, with a criterion for determining the number of
clusters, the domain decomposition strategy for parallel spectral cluster-
ing is robust and efficient.

1 Introduction

Clustering aims to partition a data set by grouping similar elements into sub-
sets. Two general main issues concern, on the one hand, the choice of a sim-
ilarity criterion and, on the other hand, the way to separate clusters the one
from the other. Spectral methods, and in particular the spectral clustering al-
gorithm introduced by Ng-Jordan-Weiss (NJW) [1], are useful when considering
non-convex shaped subsets of points. These methods are widely used in Pattern
Recognition and in particular in Bioinformatics and image segmentation. The
number of targeted clusters k is usually assumed to be known. From the spec-
tral elements of an affinity normalized matrix, data points are clustered in a
low-dimensionnal space made by the first eigenvectors of the normalized affinity
matrix. Several approaches about parallel Spectral Clustering [5], [6], [2] were
recently suggested, mainly focused on linear algebra techniques to reduce com-
putational costs. However, the authors do not get rid of the construction of the
complete affinity matrix and the problem of determining the number of clusters
is still open.

In this paper, we propose to cluster on subdomains by breaking up the data
set into data subsets with respect to their geometrical coordinates in a straigh-
forward way. With an appropriate Gaussian affinity parameter and a method to
determine the number of clusters, each processor applies independently the spec-
tral clustering algorithm on subsets of data points and provide a local partition
on these data subsets. Based on these local partitions, a gathering step ensures
the connection between subsets of data and determines a global partition. We
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analyze in particular two different approaches of the type and we experiment
on a geometrical particular example and on an image segmentation example.
We identify the potential for parallelism of the algorithm as well as numerical
behaviour and limitations.

2 Parallel Spectral Clustering: Algorithm and
Justification

Spectral clustering uses eigenvectors of a matrix, called Gaussian affinity matrix,
in order to define a low-dimensional space in which data points can be clustered
(see algorithm 1).

Algorithm 1. Spectral Clustering Algorithm
Input: data set S, number of clusters k

1. Form the affinity matrix A ∈ R
n×n defined by:

Aij =

⎧⎨⎩exp
(
−‖xi−xj‖2

(σ/2)2

)
if i �= j,

0 otherwise,
(1)

2. Construct the normalized matrix: L = D−1/2AD−1/2 with Di,i =
∑n

j=1 Aij ,
3. Assemble the matrix X = [X1X2..Xk ] ∈ R

n×k by stacking the eigenvectors asso-
ciated with the k largest eigenvalues of L,

4. Form the matrix Y by normalizing each row in the n × k matrix X,
5. Treat each row of Y as a point in R

k, and group them in k clusters via the K-means
method,

6. Assign the original point xi to cluster j when row i of matrix Y belongs to cluster j.

The Gaussian affinity matrix defined by (1) could be interpreted as a dis-
cretization of the Heat kernel [3]. And in particular, it is shown in [8] that this
matrix is a discrete representation of the L2 heat operator onto appropriate con-
nected domains in R

p. Thanks to properties of the heat equation, eigenvectors
of this matrix are an asymptotical discrete representation of L2 eigenfunctions
with support included in only one connected component.

Clustering in subdomains resumes in restricting the support of these L2 par-
ticular eigenfunctions. Therefore, we can apply Spectral Clustering on subdo-
mains to identify connected components. The subdomains can be defined in a
straightforward way by subdividing original data set according to their geomet-
rical coordinates and a partition can be extracted independently and in parallel
from each subset. Then, at the grouping level, spectral clustering algorithm is
made on a subset with geometrical coordinates close to the boundaries of the
previous subdomains. This partitionning will connect together clusters which be-
long to different subdomains thanks to the transitive relation: ∀xi1 , xi2 , xi3 ∈ S,

if xi1 , xi2 ∈ C1 and xi2 , xi3 ∈ C2 then C1 ∪ C2 = P and xi1 , xi2 , xi3 ∈ P (2)
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where S is a data set, C1 and C2 two distinct clusters and P a larger cluster
which includes both C1 and C2.

Two main problems arise from this divide and conquer strategy: the difficulty
to choose a Gaussian affinity parameter σ and the number of clusters k which
remains unknown and may even vary from one subdomain to the other. We
propose two ways to overcome these drawbacks. In the following, let us consider
a p-dimensional data set S = {x1, .., xn} ⊂ R

p. In the next section, we shall
address the proper choice of the parameter σ and in section 2.2, we propose a
way to overcome the problem of not knowing the number of clusters a priori.

2.1 Choice of the Affinity Parameter σ

The Gaussian affinity matrix (1) is widely used and depends on a free parameter
σ. It is known that this parameter affects the results in spectral clustering and
spectral embedding. A global heuristic for this parameter was proposed in [4]
in which both the dimension of the problem as well as the density of points in
the given p-th dimensional data set are integrated. With an assumption that
the p-dimensionnal data set is isotropic enough, the data set S is included in
a p-dimensionnal box bounded by Dmax the largest distance between pairs of
points in S: Dmax = max1≤i,j≤n ‖xi − xj‖.

So a reference distance noted σ could be defined: this distance represents the
case of an uniform distribution in the sense that all pair of points are separated
by the same distance σ in the box of edge size Dmax:

σ =
Dmax

n
1
p

. (3)

From this definition, clusters may exist if there are points that are at a distance
no more than a fraction of σ. We could define such parameter for each subdomain.
However, with a straighforward decomposition as the one proposed, one can find
easily that a local σ in each subdomain will be close to the value of a global σ
defined on the whole data set in the same way. This avoids local computations.
However, this is not the case for the interface data set where a local σ must be
considered. To conclude, we only need to compute two values of σ: one for the
interface where the topology of the volume changes drastically, and one common
to all the other "cubic" subdomains.

2.2 Number of Clusters k

The problematic of the right choice of k is all the more accurate that this number
may vary from one subdomain to the other in such a domain decomposition
strategy. We therefore consider in each subdomain a quality measure based on
ratios of Frobenius norms, see for instance [4]. For instance, after indexing data
points by cluster as followed, for k = 3:

L̂ =

⎡⎣L(11) L(12) L(13)

L(21) L(22) L(23)

L(31) L(32) L(33)

⎤⎦ ,
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the off-diagonal blocks will represent the affinity between clusters and the diag-
onal ones the affinity within clusters. The ratios between the Frobenius norm of
the off-diagonal blocks and that of the diagonal ones could be evaluated:

rij =
‖L(ij)‖F

‖L(ii)‖F
.

By definition, the appropriate number of clusters k corresponds to a situation
where points which belong to different clusters have low affinity between each
other whereas points in same clusters have higher affinity. Among various values
for k, the final number of cluster is defined so that the affinity between clusters
is the lowest and the affinity within clusters is the highest as followed:

k = arg min
k′

2
k′(k′ − 1)

k′∑
i=1

j=i+1

rij . (4)

This last equation (4) provides an average link of the affinity between clusters.
In Fig. 1, the ratio η = 2

k(k−1)

∑k
i=1

j=i+1
rij , function of the number of cluster k,

(a) Smiley example (b) 6 blocks

(c) Ratio η function of k (d) Ratio η function of k

Fig. 1. Examples for determining the number of cluster
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is plotted on two examples with various densities among clusters. The minimum
of the ratio η is reached for the optimal value of k.

Moreoever, dividing the whole data set in subdomains may lead to situations
in which a subdomain contains only one cluster. If the number of clusters k which
satisfy (4) is equal to 2 in one subdomain, we then compare the numerator of

ratio η to its denominator. Based on a threshold β, if the ratio
‖L12‖F

‖L11‖F
is larger

than β, we set the value k to 1 instead of 2.

3 Implementation: Algorithm Components

We shall now detail the different steps, described in Fig. 2, of the algorithm with
respect to the strategy proposed previously.

Fig. 2. Principle of parallel Spectral clustering for q = 2

3.1 Pre-processing Step: Partition S in q Subdomains

Let us include all data points in a box of edge li for the ith-dimension, i =
{1, .., p} where:

li = max1<i1,i2≤n|xi1(i) − xi2(i)|, ∀i ∈ {1, .., p}. (5)

According to the maximum length on each dimension, the box is divided in q
subboxes where q = Πp

i=1qi and qi denotes the number of subdivisions on the
i-th dimension. Then, the affinity parameter σ is computed as indicated in (3).
The number of processors is fixed to nbproc = q + 1.

3.2 Domain Decomposition: Interface and Subdomains

Interface. It includes all points with a maximum norm distance to the bound-
aries less than a given γ bandwidth. This interface should help to reconnect
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together clusters with points in more than one subdomain. Picking up a band-
width value γ = 3σ enables to group together points in the same cluster. As the
interface layer does not cover the same volume as the other "cubic" subdomains,
the isotropic assumption is not anymore satisfied, and a particular affinity pa-
rameter σ∗ must be considered. We therefore follow the same idea as in section
2.1 but with an adequate volume measure for the interface:

σ∗ =
V ol(interface)

n
1
p

interface

where V ol(interface) represents the real volume of the interface and ninterface

the number of data points in the interface. The volume of the interface is function
of bandwidth γ, the number of cut-size q and l1, ..lp the edges of the box in each
direction as followed:

V ol(interface) =
p∑

i=1

(qi − 1)γp−1li − γpΠp
i=1(qi − 1). (6)

Subdomains. Each processor from 1 to nbproc has a data subset Si, i =
1..nbproc which coordinates are included in a geometrical subbox. The affin-
ity of all the subdomains have the same global parameter σ defined by (3).

3.3 Spectral Clustering on Subdomains

Some elements of Algorithm 1 are now precised.

Computation of the spectrum of the affinity matrix (1). Classical rou-
tines from LAPACK library [7] are used to compute selected eigenvalues and
eigenvectors of the normalized affinity matrix A for each subset of data points.

Number of clusters. With an upper bound noted nblimit, the number of
clusters k ∈ {2, .., nblimit} is chosen to satisfy (4).

Spectral embedding. The centers for k-means in the spectral embedding are
initially chosen to be the furthest from each other along a direction.

3.4 Grouping Step

The final partition is formed by grouping partitions from the nbproc − 1 inde-
pendent spectral clustering analyses. The grouping is made with the interface
partition and the transitive relation (2). If a point belongs to two different clus-
ters, both clusters are then included in a larger one. As output of the parallel
method, a partition of the whole data set S and the final number of clusters k
are given.

An example on how our method is applied on a target data set splitted in
q = 4 subboxes (see Fig. 3). On the left, the clustering result for the interface is
plotted. Each color represents a cluster. On the right, the clustering results on
the 4 respective subdomains are plotted.
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Fig. 3. Target example: interface and subdomains

4 Parallel Experiments

As numerical example, this parallel spectral clustering is tested on a 3D geomet-
rical case which represents 2 non-concentric truncated spherical areas included
in a larger one as shown in the left of Fig. 4. On the right of the same figure, one
zoom around each included truncated sphere is plotted. It shows the proximity
between the small spheres and the big one.

Fig. 4. Geometrical example and zooms: n = 4361

The numerical experiments were carried out on the Hyperion supercomputer1.
Hyperion is the latest supercomputer of the CICT (Centre Interuniversitaire de
Calcul de Toulouse). With its 352 bi-Intel "Nehalem" EP quad-core nodes it can
1 http://www.calmip.cict.fr/spip/spip.php?rubrique90
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develop a peak of 33TFlops. Each node has 4.5 GB memory dedicated for each of
the cores with an overall of 32 GB fully available memory on the node. We vary
the number of points of this geometrical example from n = 4361 to n = 15247
points.

For our tests, the domain is successively divided in q = {1, 3, 5, 13} subboxes.
The timings for each step of parallel Spectral clustering are measured. We give
in Table 1, for each problem size and each distribution the number of data in
the interface, the total time and the percentage of this time spent in the spectral
clustering computation on the subdomains.

Table 1. 3 truncated spheres with interface

n Number Number of data Total Time % of Total Time for
of processors in the interface (sec) spectral clustering

1 - 251.12 99.9
4361 5 1596 13.19 97.4

9 2131 30.6 98.3
13 2559 54.36 98.8
1 - 2716.34 99.9

9700 5 3601 156.04 98.4
9 4868 357.42 99.4
13 5738 610.89 99.7
1 - > 3h -

15247 3 5532 549.82 99.5
9 7531 1259.86 99.8
13 8950 2177.16 99.8

We can retain from these results the following information:

– the main part of our algorithm is the spectral clustering on subdomains;
– the time spent in this part is the time of the processor which gets the more

data: there is a synchronization point at the end of this part, before the
grouping step;

– with this example, the interface gets the maximum number of data;
– the speed-up is larger than the ratio between the total number of points to

the maximum data on one subdomain. For example, with n = 4361 points
and 5 processors, the ratio is 2.73 and the speed-up is 15.76. This can be
explained by the non-linearity of our problem with the computation of eigen-
vectors from Gaussian the affinity matrix.

– the spectral clustering on subdomains is faster than considering the whole
data set. Computation of parameters σ, σ∗ and the grouping step doesn’t
penalize our strategy; the time spent in these parts is negligible (less than
2% of total time).

As remarks, the loop implemented to test several values of k in spectral clus-
tering algorithm until satisfying (4) become less and less costly when the num-
ber of processors increase. This is due to eigenvectors computation which is less
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costly with smaller dense affinity matrices. Also, subdividing the whole data set
implicitely reduces the Gaussian affinity to diagonal subblocks (after permuta-
tions). However when the data set is subdivided in larger numbers of subdomains,
the data set of the interface becomes the most time consuming computational
task.

We shall investigate its influence and study the trade-off between subdivisions
and interface size.

5 Discussion and Alternative

As shown in the previous examples, using interface which connects all the parti-
tions could present some limitations. In fact, the more the domain is subdivided,
the larger is the set in the interface. So to limit this drawback, a threshold, noted
τ , should be defined for the number of subdomains in each axis. This threshold
τ represents the ratio between the volume covered by the interface and the total
volume.

τ =
V ol(interface)

V ol
(7)

where V ol(interface) is defined by (6) and V ol is the total volume function of
li defined by (5) for i = {1, .., p}: V ol = Πp

i=1li.
To overcome this drawback of considering the interface as a distinct subdo-

main, the data set of interface could be included in the others subdomains. In
fact, the whole data set is subdivided in q subboxes which have a non-empty
intersection. This leads to reduce the number of processors (nbproc = q) and
avoid computing a special parameter σ∗ for the interface. The main advantage
is that the Spectral clustering method is used on all subdomains with the same
topology of volume and does not break the isotropic distribution. However the
threshold τ is still preserved in order to reduce the time in grouping step. So the
volume of the intersection between subdomains is upbounded by a fraction of the
volume of the whole data set. Thus, this strategy with intersection is resumed
in Fig. 5 for q = 2.

Fig. 5. Principle of alternative parallel Spectral clustering with intersection for q = 2
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In the same way, Fig. 6 illustrates this alternative on the previous target
example divided in q = 4 subboxes. On the left, the final clustering results, after
the grouping step, is plotted.

Fig. 6. Target example: subdomains with intersection

5.1 Numerical Experiments: Geometrical Example

The same examples than in section 4 are tested with this new strategy. In the
same way, the results are resumed in the Table 2 with the timings for respective
steps of parallel spectral clustering with intersection.

Table 2. 3 truncated spheres with intersection between subdomains

n Number Maximum of data Total Time % of Total Time for
of processors by processor (sec) spectral clustering

1 - 232.19 99.8
4361 4 1662 14.73 97.2

8 984 3.37 85.2
12 1004 3.71 82.5
1 - 2716.34 99.9

9700 4 3712 157.76 99.4
8 2265 38.89 97
12 2283 40.43 96.6
1 - > 3h -

15247 4 5760 578.92 99.6
8 3531 133.79 98.1
12 3517 131.83 97.9

We can observe that this alternative has the same main behaviours than the
one with interface:

– very good speed-up, much larger than the ratio of the total number of data
to the maximum number of data on a subdomain;
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– the main part of the time is spent in the spectral clustering step;
– the time of the spectral clustering step is the time of the processor with the

maximum number of data.

We can express some specific remarks for this strategy:

– the times are better than the interface strategy times with an equivalent
number of processor: for example, with q = 12 and n = 15247, the total
time is divided by 16;

– the time is decreasing when the number of subdivisions increases at the
condition that the maximum number of data on a processor decreases. We
observe, for example, that with n = 4361 points and q = 12, the processor
with the maximum number of points has more points that the equivalent
one with q = 8. That explains the larger time with q = 12 than q = 8.

The last remark opens some reflexion about how to divide the domain: a splitting
that balances the number of data among the processors will give better results
than an automatic splitting of the geometry.

5.2 An Image Segmentation Example

An image segmentation in grayscale is now considered. This kind of example
is well designed to the parallel strategy thanks to an uniform distribution with
respect to the geometrical coordinates per processor. The affinity matrix is de-
fined as a 3-dimension rectangular box [4] which includes both geometrical co-
ordinates and brightness. The steps between pixels and brightness are about the
same magnitude. This means that the image data can be considered as isotropic
enough. This approach is tested on an image representing flowers. This image is
a 186× 230 picture i.e n = 42780 data points. Due to the large number of data,
the parallel spectral clustering is applied on q = 20 processors with nblimit = 20.

In Fig. 7, the original data set is plotted on the left and the final clustering
results on the right. The spectral clustering result has determined 111 clusters.

Fig. 7. First example of image segmentation tested on Hyperion
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Compared to the original data set, the shapes of the different flowers are well-
described. Moreover, the details on the lily can be recognized. The total time
spent is equal to 398.78 sec for n = 42780 which confirms the computational
performance with this parallel spectral clustering with intersection. Note that,
with less processors, this example fails because of the lack of virtual memory.

Fig. 8. Second example of image segmentation tested on Hyperion

Let consider a second picture of size 200× 320 which presents more contrasts
and a larger dataset with n = 64000 data points. The parallel method is applied
with the same parameters as for the previous example and Fig. 8 represents both
original data set and clustering result. After the grouping step, 203 clusters were
found in 3110.38 seconds. This total time is larger than the previous example
due to the larger dataset and the complexity of the distribution of data points.
As result, the clown face is well-recognized as well as its hair. This overlapping
strategy is relevant for image segmentation applications but some further investi-
gations should be led specially on color pictures. In fact, considering color picture
remains including both 2D geometrical information and 3D colorness informa-
tion together and an equilibrium between geometrical and color information via
some normalization techniques should be studied.

6 Conclusion and Ongoing Works

By exploiting the property of connected components, Spectral clustering could
be independently applied on geometrical subdomains without altering the fi-
nal partition. With an independant way of determining the number of targeted
clusters k in each subdomain, the method is completely unsupervised. However,
considering an isolated data set for interface presents some limit. It depends on
the trade-off between dividing and grouping. The alternative which consists in
including this interface in all the subdomains improves the parallel approach.

Futhermore, the strategy could be improved with techniques for distributing
uniformily the data per processor and some techniques for sparsifying Gaussian
affinity matrix. On sparse data sets, sparse in the sense of the distribution in
the enclosing volume, we may also benefit from techniques of graph partitioning,
such as Metis techniques. Applied to the graph of nearest neighbours in the data
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set, we partition in a more equilibrated way the data points in subsets. Some
sparsification techniques, such as thresholding the affinity between data points,
could also be introduced to speed up the algorithm when the subdomains are still
large enough. It will permit reducing the time dedicated to spectral clustering
in subdomains.
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Abstract. A hybrid linear solver based on the Schur complement method
has great potential to be a general purpose solver scalable on tens of
thousands of processors. For this, it is imperative to exploit two levels of
parallelism; namely, solving independent subdomains in parallel and us-
ing multiple processors per subdomain. This hierarchical parallelism can
lead to a scalable implementation which maintains numerical stability at
the same time. In this framework, load imbalance and excessive commu-
nication, which can lead to performance bottlenecks, occur at two levels:
in an intra-processor group assigned to the same subdomain and among
inter-processor groups assigned to different subdomains. We developed
several techniques to address these issues, such as taking advantage of
the sparsity of right-hand-sides during the triangular solutions with in-
terfaces, load balancing sparse matrix-matrix multiplication to form up-
date matrices, and designing an effective asynchronous point-to-point
communication of the update matrices. We present numerical results to
demonstrate that with the help of these techniques, our hybrid solver can
efficiently solve large-scale highly-indefinite linear systems on thousands
of processors.

1 The Schur Complement Method and Parallelization

Modern numerical simulations give rise to large-scale sparse linear systems of
equations that are difficult to solve using standard techniques. Matrices that
can be directly factorized are limited in size due to large memory requirements.
Preconditioned iterative solvers require less memory, but often suffer from slow
convergence. To mitigate these problems, several parallel hybrid solvers have
been developed based on a non-overlapping domain decomposition idea called
the Schur complement method [5,7].

In the Schur complement method, the original linear system is first reordered
into a 2 × 2 block system of the following form:(

A11 A12
A21 A22

)(
x1
x2

)
=
(

b1
b2

)
, (1)

where A11 and A22 respectively represent interior subdomains and separators,
and A12 and A21 are the interfaces between A11 and A22. By eliminating the
unknowns associated with the interior subdomains A11, we obtain(

A11 A12
0 S

)(
x1
x2

)
=
(

b1

b̂2

)
, (2)
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where S is the Schur complement defined as

S = A22 − A21A
−1
11 A12, (3)

and b̂2 = b2 −A21A
−1
11 b1. Subsequently, the solution of the linear system (1) can

be computed by first solving the Schur complement system

Sx2 = b̂2, (4)

and then solving the interior system

A11x1 = b1 − A12x2. (5)

For a detailed discussion of the Schur complement method, see [13] and the
references therein.

The existing parallel hybrid solvers typically use a direct method to eliminate
the unknows associated with the interior subdomains, while a preconditioned
iterative method is used to solve the Schur complement system, where most
of the fill occurs. These solvers often exhibit great parallel performance since
the interior subdomains can be factorized independently from one other, and a
direct method is effective for factorizing these relatively small subdomains. Fur-
thermore, for a symmetric positive definite system, the Schur complement has a
smaller condition number than the original matrix [13, Section 4.2], and fewer
iterations are often needed to solve the Schur complement system. General pur-
pose parallel hybrid solvers based on this Schur complement method have been
developed, and their effectiveness has been shown for some applications [5,7].
Unfortunately, for highly-indefinite systems, these solvers can still suffer from
slow convergence when solving the Schur complement systems [14].

In this paper, we present some of the challenges encountered in the develop-
ment of a robust and efficient general purpose hybrid solver targeted for thou-
sands of processors and our approaches to resolving these challenges. Our parallel
implementation consists of the following three phases:

1) Extracting and factorizing the interior subdomains. We use a parallel nested
disection algorithm implemented in PT-SCOTCH [8] to extract interior subdo-
mains. For an unsymmetric matrix A, PT-SCOTCH is applied to the graph of
|A|+ |A|T . Then, these interior subdomains are factorized using a direct method.

There are two approaches to assigning processors to factorize subdomains.
One approach is to assign a single processor to factorize one or more interior
subdomains, which we refer to as a one-level parallel approach. An advantage of
this approach is that multiple subdomains can be assigned to a processor such
that the workload is balanced among the processors. A serious drawback of this
approach, however, is that many subdomains must be generated in order to use a
large number of processors. This increases the size of the Schur complement, and
often leads to slow convergence. An alternative is to assign multiple processors to
each interior subdomain, which allows us to increase the processor count without
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Fig. 1. (a): distribution of the coefficient matrix. Each group g� contains two processors
per subdomain, and the group gS contains three processors. (b): subdomain D� stored
in a 2D block-cyclic format using a 2 × 3 process grid, and its corresponding RHSs
E� with a block size of six. An “x” in E� represents the first nonzero in an individual
column of the supernodal block, and a horizontal dotted line represents the first nonzero
in the entire block.

increasing the number of subdomains or the size of the Schur complement. This
approach is refered to as a two-level parallel approach and is the focus of our
study in this paper.

When k interior subdomains are extracted, the coefficient matrix of Eq. (1)
has the following block-structure:

(
A11 A12

A21 A22

)
=

⎛⎜⎜⎜⎜⎜⎝
D1 E1

D2 E2
. . .

...
Dk Ek

F1 F2 . . . Fk A22

⎞⎟⎟⎟⎟⎟⎠ , (6)

where D� is the �-th subdomain, and E� and F� are the interfaces between D� and
A22. In our implementation, each processor is assigned to a processor groups g�

that factorizes the subdomain D�. Then, the rows of D� and E�, and the columns
of F� are distributed among the processors in the processor group g�. The nonze-
ros of D� and F� are stored in the Compressed Row Storage (CRS) format, while
those of E� are stored in the Compressed Column Storage (CCS) format [3]. An-
other processor group gS is created, which consists of a subset of avaliable pro-
cessors and will be used to solve the Schur complement system. The rows of A22
are distributed among the processors in this processor group gS . The selection of
processors to be assigned to gS will be discussed in Section 2.3. Fig. 1(a) shows
an example of a matrix distribution using our two-level approach. Finally, the
parallel direct solver SuperLU DIST [10] is used to factorize each subdomain.
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2) Computing an approximate Schur complement. In order to provide the
roubustness of solving highly-indefinite systems, our implementation explicitly
computes an approximate Schur complement, which is distributed over the pro-
cessor group gS . This is the most challenging phase of the parallel solution,
especially in a two-level parallel framework. We need to deal with the load im-
balance and communication not only within an intra-processor group assigned
to the same subdomain, but also among the inter-processor groups assigned to
different subdomains. We have developed a number of techniques to enhance
performance of our hybrid solver to compute the approximate Schur comple-
ment S̃. These techniques are the focus of our paper and will be discussed in
Section 2.

3) Computing the solution. A preconditioned Krylov method of PETSc [11]
is used to solve the Schur complement system (4), where the preconditioner is
the exact LU factors of an approximate Schur complement S̃. SuperLU DIST is
used to compute the preconditioner. At each iteration, the matrix-vector multi-
plication with S is computed by applying a sequence of the sparse matrix opera-
tions (3) on the vector, and hence, S is not stored explicitly. To improve the load
balance of the matrix-vector multiplication, the matrices D�, E�, and F� are dis-
tributed among the processors in the processor group g� such that they each own
a similar number of nonzeros. Recall that SuperLU DIST internally uses a 2D
block-cyclic format (see Fig. 1(b)). Hence, the performance of SuperLU DIST to
compute the LU factorization of D� and to solve the corresponding triangular
systems is not affected by the initial distribution of the coefficient matrix D�

and the right-hand-sides (RHSs) E� and F�. We note that at each iteration, the
processors in the processor group gS are used to apply the preconditioner S̃,
while all the available processors are used for the matrix-vector multiplication
with S. The final solution is computed by solving the interior system (5) with
the already-computed LU factors.

2 Efficient Computation of an Approximate Schur
Complement

In this section, we describe the techniques to enhance the performance of our
hybrid solver to compute an approximate Schur complement S̃. To demon-
strate the effectiveness of these techniques, we use the numerical results of a
highly-indefinite matrix from the numerical simulation of an accelerator cavity
design [1,9]; namely, tdr455k of dimension 2, 738, 556 with 112, 756, 352 nonze-
ros. For the numerical experiments, we extracted 16 subdomains D� using PT-
SCOTCH. All the experiments were conducted on the Cray XT4 machine at
NERSC.

Given the LU factorization D� = L�U� of the interior subdomain D�,1 the
Schur complement S can be computed as
1 The matrix D� is scaled and permuted to enhance numerical stability and preseve

the sparsity of L� and U�. For clarity, the scaling and permutation are not shown in
the expression.
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S = A22 −
k∑

�=1

F�D
−1
� E� (7)

= A22 −
k∑

�=1

(U−T
� FT

� )T (L−1
� E�) (8)

= A22 −
np∑

p=1

W (p)G(p), (9)

where np is the number of processors used to solve the entire system, and the
matrices G(p) and W (p) are given by

G(p) = G(jp : (jp+1 − 1), :), W (p) = W (:, jp : (jp+1 − 1)), (10)

such that the p-th processor owns the jp-th through (jp+1 − 1)-th rows of
G = L−1

11 A12 and the corresponding columns of W = (U−T
11 AT

21)
T , where the LU

factorization A11 = L11U11 is given by L� and U�, i.e., L11 = diag(L1, L2, . . . , Lk)
and U11 = diag(U1, U2, . . . , Uk). Once the matrices G(p) and W (p) are computed,
their nonzeros are stored in the CRS format. Then, the p-th processor computes
its update matrix T (p) = W (p)G(p). To efficiently manage the required memory,
the memory for storing each row of W (p) is freed as soon as the correspond-
ing row of T (p) is computed. The rows of T (p) are sent to the q-th processor
which owns the corresponding rows of A22, and the q-th processor computes the
corresponding rows of the Schur complement S.

Large amounts of fill may occur in G(p) and W (p). To reduce the memory
and computational costs, their approximations G̃(p) and W̃ (p) are computed by
discarding nonzeros with magnitudes less than a prescribed threshold, and an
approximate update matrix T̃ (p) is computed by T̃ (p) = W̃ (p)G̃(p). If the p-th
processor belongs to the processor group gS , to compute its local portion of an
approximate Schur complement, it gathers the corresponding rows of T̃ (q) from
all the processors and explicitly computes Ŝ(p) = A

(p)
22 −

∑
q T̃ (q)(ip : (ip+1−1), :),

where the p-th processor owns the ip-th through (ip+1 − 1)-th row of A22; i.e.,
A

(p)
22 = A22(ip : (ip+1−1), :). To further reduce the costs, small nonzeros are dis-

carded from Ŝ(p) to form its approximation S̃(p). Prior to discarding the small
nonzeros, we preprocess Ŝ(p) to enhance numerical stability by permuting large
nonzeros to the diagonal. This preprocessing is performed in a distributed fash-
ion; namely, the p-th processor uses an existing serial code MC64 [4] and com-
putes the permutation of its local matrix that corresponds to the p-th diagonal
block of Ŝ. The off-diagonal blocks are permuted accordingly. This distributed
preprocessing technique enhances the numerical stability without forming the
global approximate Schur complement Ŝ on each processor. See [14] for more
details on the preprocessing technique.
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We now describe several techniques to enhance the performance of computing
the approximate Schur complement S̃(p).

2.1 Sparse Triangular Solution with Sparse Right-Hand-Sides

SuperLU DIST stores the LU factors L� and U� in a 2D block-cyclic format
based on the supernodal structure of L�. RHSs are assumed to be dense, and are
distributed by block rows conforming to the supernodal partition (see Fig. 1(b)).
Since the communication and computation patterns of the triangular solutions do
not change between RHSs, a symbolic triangular solution subroutine is invoked
once to compute static communication and computation schedules. Then, the
triangular systems are solved by a series of scheduled block operations with the
supernodal blocks.

Our first performance-enhancing technique is to exploit the sparsity of RHSs
E� and FT

� when solving the triangular systems to form G(p) and W (p), re-
spectively. For this, we modified the symbolic triangular solution subroutine of
SuperLU DIST so that only non-empty messages are sent and only computa-
tions with non-empty blocks are performed. Since the sparsity pattern of each
column of E� or F� is different, this subroutine is invoked for each triangular
solution with each column. This symbolic subroutine sets up the communication
and computation schedules with respect to the non-empty supernodal blocks of
RHSs, which are typically not dense. Because of the supernodal structure of LU
factors, when the fill occurs in the solution vector, it occurs all the way to the
boundary of the supernodes. Hence, during numerical solution, we keep track of
the first nonzero in each supernodal block of a RHS. Then, the block operations
are performed only for the elements below the first nonzero location so that the
operations with explicit zeros are eliminated. We have observed that exploiting
the sparsity of RHSs leads to an order-of-magnitude speedup in computing W (p)

and G(p).
There are typically tens to hundreds of thousands of columns in E�. Hence, it

could be costly to perform the triangular solution one column at a time. Further
optimization can be achieved by grouping E� into blocks of multiple columns
and solving one block at a time. There are several advantages with blocking: 1)
the symbolic solution only needs to be computed per block, 2) fewer messages
need to be sent to compute W (p), and 3) the data locality to access the LU
factors may be improved. During numerical solution with the multiple RHSs,
we keep track of the first nonzero within each supernodal block of the multiple
columns (see Fig. 1(b)). The disadvantage is that we need to pad explicit zeros
so that these columns have the same nonzero pattern. The padded zeros occur
between the first nonzero position of the multiple columns and that of the indi-
vidual columns. Hence, blocking introduces a trade-off between the data locality
and the number of unwanted padded zeros. Specifically, data locality may be
improved by increasing the block size; however, this increases the number of
padded zeros. In the special case in which the block size is set to be one, there
are no operations with explicit zero operands, but only a small amount of lo-
cality is available. For our test matrix tdr455k, the advantages outweighted
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the disadvantages, and the average and maximum speedups of 5.7 and 7.4,
respectively, were achieved using our defalut block size of 50 and one preocessor
per subdomain.

To reduce the number of padded zeros introduced by blocking, we employ the
following technique: We first permute the rows of E� according to a postorder
of the elimination tree of D�. Then, the columns of E� are permuted in the
descending order of the row indices of their first nonzeros. The columns of FT

�

are similarly permuted. One reason why this ordering reduces the number of
padded zero is as follows: When a column has the first nonzero at the location
corresponding to the i-th node of the elimination tree, then according to the
Gilbert’s path theorem [6], this first nonzero will generate the fill in the solution
vector at the positions corresponding to the nodes on the path from the i-th
node to the root of the elimination tree. After RHSs are sorted based on the
postorder of their first nonzero row indices, the paths of the adjacent columns
are likely to have their starting nodes close together, and the large parts of the
paths overlap in the elimination tree. Hence, the solution vectors in the same
column block are likely to have fill at similar locations, reducing the number
of padded zeros. Furthermore, during the triangular solution, only the columns
of the L-factor corresponding to the nodes on the paths are accessed. Hence,
postordering RHSs also improves the data locality to access the L-factor. For our
test matrix tdr455k, average and maximum speedups of about 1.3 and 1.6 were
achieved using this postordering technique and one processor per subdomain.
Similar topological orderings have been used for a sparse triangular solution
with multiple sparse RHSs [12] and for computing elements of the inverse of a
sparse matrix [2]. We have also introduced another ordering technique using a
hypergraph model to maximize the similarity of the sparsity patterns among the
solution vectors in a column block [15].

2.2 Intra-processor Load Balance

We have developed a technique to improve the intra-processor load balance to
compute the sparse matrix-matrix multiplication T̃ (p) = W̃ (p)G̃(p). This is done
by distributing the columns of W̃ (p) and the rows of G̃(p) so that each processor
in the same processor group g� owns a similar number of nonzeros. Specifically,
Fig. 2 shows the pseudocode to compute G̃(p), where the p-th processor belongs
to the processor group g�, Ê� contains the non-empty columns of E�, Ê(p) is the
rows of Ê� stored by the p-th processor, nc is the number of columns of Ê�, β
is the column block size, and nb is the number of blocks (i.e., nb = �nc

β �). At

Step 1.b of the pseudocode, the consecutive rows of Ê(p) are distributed among
all the processors (see Fig. 1(a)), but the solution vector X(p) is distributed into
block rows conforming to the supernodal partition and only among the diagonal
processors (see Fig. 1(b)). After each triangular solution with a block of RHSs,
the diagonal processor compresses each column of X(p) into X̃(p), excluding the
explicitly padded zeros and discarding small nonzeros (Step 1.c). Then, X̃(p)

is incrementaly stored in Y (p) using the CCS format (Step 1.d). Once all the
solution blocks are computed, Y (p) is redistributed among all the processors
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1. Compute the solution vectors for the 1-st through (nbβ)-th columns
Y (p) := [ ]
for k := 1, . . . , nb do

a. Extract the next right-hand-side block,
B(p) := Ê(p)(:, ((k − 1)β + 1) : (kβ))

b. Compute the sparse triangular solution,
X(p) ← L−1

� B
c. Sparsify the solution vectors,

X̃(p) ← X(p)

d. Store the solution vectors,
Y (p) ← [Y (p)X̃(p)]

end for

2. Distribute Y (p) from the diagonal processors to all the processors
G̃(p) ← Y (p)

3. Compute the remaining solution vectors
a. B(p) := Ê(p)(:, (nbβ + 1) : nc)
b. X(p) ← L−1

� B

c. G̃(p) ← [G̃(p)X̃(p)]

Fig. 2. Pseudocode to compute G(p)

in g� so that each processor owns consecutive rows of the solution vectors and
roughly the same number of nonzeros (Step 2). Note that the remaining columns
of the solution vectors are computed separately (Step 3). This is because the data
structure for the triangular solution inside SuperLU DIST must be reinitialized
when the block size changes, and the redistribution of Y (p) into G̃(p) needs
to be peformed before the block size changes. These remaining colums of G̃(p)

and the solution vectors W̃ (p) of the upper triangular system are distributed
into the format that has been set up to load balance the first (nbβ) columns
of G̃(p). In our numerical experiments using four processors for each of the 16
interior subdomains of tdr455k, without this load balancing technique, some
processors had only a negligible amount of work to compute the matrix-matrix
multiplication, and the load imbalance as measured by the computation time was
an up to five order of magnitude difference. With the technique described here,
the load imbalance became less than a factor of two. As a result, this technique
reduced the time to compute the Schur complement by a factor of 2.6 and the
total solution time by a factor of 1.7.

2.3 Inter-processor Load Balance

In comparison to the original system, the Schur complement system is typically
much smaller in dimension. Hence, only a subset of processors gS is used to fac-
torize the approximate Schur complement S̃. Subsequently, for the computation
of S̃, all the processors compute their local update matrices T̃ (p) = W̃ (p)G̃(p), but
only the processors in the processor group gS compute their local portion Ŝ(p)

of Ŝ by gathering the corresponding rows of T̃ (q). In this section, we study two
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techniques to improve the inter-processor load balance: a strategy to accommo-
date this all-to-subset communication of T̃ (p) and one to select processors to
solve the Schur complement system.

To accomodate the all-to-subset communication of T̃ (p), an MPI all-to-all
communication subroutine can be used. Even though this simpifies the imple-
mentation, there are two shortcomings with this approach. First, there are often
large variations in the sizes of the subdomains D� and in the sparsity of the
interfaces E� and F�. Even though the intra-processor load balance is improved
by the technique described in Section 2.2, this leads to poor load balance among
the inter-processor groups to compute T̃ (p). Since the global all-to-all commu-
nication imposes synchronization among all the processors, this load imbalance
forces some processors to be idle while waiting for the other processors to com-
plete the computation of T̃ (q). Second, the all-to-all communication requires a
large buffer to recieve the corresponding rows of T̃ (q) from all the processors at
the same time.

To mitigate these shortcomings, we designed an asynchronous point-to-point
communication protocol to transfer T̃ (p). Fig. 3 shows the pseudocode of this
protocol, where p is the ID of this processor, ms is the number of processors to
which T̃ (p) needs to be sent, mr is the number of processors from which nonempty
T̃ (q)(p) = T̃ (q)(ip : (ip+1−1), :) will be received, ISend(∗, q, t) and IRecv(∗, q, t)
respectively indicate nonblocking send operation to and receive operation from
the q-th processor with a tag t, Wait(∗, t) blocks until the nonblocking receive
operation with a tag t is processed, and Recv(∗, q, t) is a blocking receive opera-
tion from the processor q, where ANY SOURCE can be used in the place of q to
indicate a receive operation from any source, and SENDER SOURCE indicates
the ID of the sender processor. Furthermore, Allocate(U(k), size(k)) allocates
the buffer U(k) to receive T̃ (q)(p) in the CRS format, where size(k) is the maxi-
mum number of nonzeros that can be stored in the buffer, and Free(U(k)) frees
the buffer U(k). In our implementation, all the matrix operations are performed
by taking advantage of their sparsity. For efficient memory management, rows
of T̃ (p) are freed, once they are received, and we alternatly reuse two receiving
buffers, U(0) and U(1), whose sizes are stored in size(0) and size(1), respectively.

Our point-to-point communication is desinged to overlap the computation
of T̃ (p) with the communication and summation of T̃ (q)(p). Hence, there is a
greater chance of overlap when the processors with less work to compute T̃ (p)

are assigned to form the approximate Schur complement Ŝ(p). To achieve this, we
assign processors from relatively small interior subdomains to the Schur comple-
ment. This not only increases the potential for the overlap, but also improves the
overall load balance of memory requirement. Furthermore, on Line 1 of the pseu-
docode, we set qπmr

= p so that communication of T̃ (q)(p) from other processors
can be overlapped with the computation and summation of the local T̃ (p)(p). For
our test matrix tdr455k, the size of the Schur complement was only about 0.5%
of the total dimension, and the summation of the update matrices required only
a neglibile amout of time (i.e., less than one second out of 120 seconds spent to
compute S̃(p) on 16 processors). As a result, this point-to-point communication
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/* All the processors perform Lines 1 through 10. */
1. for q = qπ1 , qπ2 , . . . , qπms

do
2. T (q) := W (p)(iq : (iq+1 − 1), :) ∗ G(p) /* compute the rows of T to be sent to the q-th processor */
3. if(q == p) then /* sending to itself */
4. size(0) = nnz( eT (q))
5. U(0) := eT (q)
6. else
7. ISend(nnz(eT(q), q, t0)
8. if( nnz( eT (q)) > 0 ) then Isend(eT(q), q, t1)
9. end if
10. end if

/* The processor subset responsible for solving the Schur complement perform Lines 11 through 75. */
11. if( p ∈ gS ) then
12. p0 := p

13. nm := 1 /* number of received messages */
14. while( size(0) == 0 and nm < mr ) do /* find the size of the first nonempty message */
15. Recv(size(0), ANY SOURCE, t0)
16. nm := nm + 1
17. p0 := SENDER SOURCE
18. end do
19. if( size(0) > 0 ) then
20. nk := 1 /* number of received nonempty messages */
21. if( p0 �= p ) then
22. Allocate( U(0), size(0) )
23. IRecv(U(0), p0, t1)
24. end if
25. end if
26. if( nm < mr ) then
27. IRecv(size(1), ANY SOURCE, t0) /* request the size of the next message */
28. end if
29. S := A

(p)
22 /* initialize the Schur complement */

30. if( nm < mr ) then /* find the size of the second nonempty message */
31. Wait(size(1), t0)
32. nm := nm + 1
33. while( size(1) == 0 and nm < mr ) do
34. Recv(size(1), ANY SOURCE, t0)
35. nm := nm + 1
36. end do
37. end if
38. p1 := SENDER SOURCE
39. if( size(1) > 0 ) then
40. Allocate(U(1), size(1)) /* allocate the buffer for the second message */
41. IRecv(U(1), p1, t1)
42. if( nm < mr ) then /* request the size of the next message */
43. IRecv(size(0), ANY SOURCE, t0)
44. end if
45. end if
46. if( p0 �= p ) then
47. Wait(U(0), t1)
48. end if
49. S := S − U(0) /* sparse update of the local Shur complement */
50. while( nm ≤ mr ) do /* while there is more nonempty messages */
51. if( nm < mr ) then
52. Wait(nnz, t0)
53. nm := nm + 1
54. while( nnz == 0 and nm < mr ) do
55. Recv(nnz, ANY SOURCE, t0)
56. nm := nm + 1
57. end do
58. p1 := SENDER SOURCE
59. if( nnz > 0 ) then
60. if( nnz > size(mod(nk − 1, 2))) then
61. Free(U(mod(nk − 1, 2)))
62. Allocate( U(mod(nk − 1, 2)), nnz )
63. size(mod(nk − 1, 2)) = nnz
64. end if
65. IRecv(U(mod(nk − 1, 2)), p1, t1)
66. end if
67. if( nm < mr ) then
68. IRecv(nnz, ANY SOURCE, t0)
69. end if
70. end if
71. Wait(U(mod(nk, 2)), t1)
72. S := S − U(mod(nk, 2))
73. nk := nk + 1
74. end do
75. end if

Fig. 3. Pseudocode of the point-to-point communication to form S
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did not reduce the computation time significantly. However, for other problems
with large interfaces, the solution time may be reduced more significantly using
this point-to-point communication.

More importantly, though, in comparison to the all-to-all communication,
this point-to-point communiation can significantly reduce memory requirements.
This is because the point-to-point communication alternately uses only two re-
ceiving buffers, instead of a large buffer to hold all the receiving updates in the
all-to-all communication. When four processors were used on each of the 16 in-
terior subdomains of tdr455k, the point-to-point communication reduced the
total number of nonzero elements in the receiving buffers by a factor of about 3.1
on average, and up to 6.3. Notice that the size of the all-to-all communica-
tion buffer may increase with the number of processors. As a result when 64
processors were used on each of the 16 interior subdomains of tdr455k, the
buffer size was reduced by a factor of 55.9 on average, and up to 97.0 using the
point-to-point communication.

3 Parallel Performance

We now present parallel performance of our hybrid solver. For the iterative so-
lution of the Schur complement systems, the initial aproximation to the solution
was the zero vector, and the computed solution was considered to have converged
when the �2-norm of the initial residual was reduced by at least twelve orders of
magnitude. This is the solution accuracy required in the actual simulations.

Fig. 4(a) compares the total solution times required by SuperLU DIST and
our hybrid solver to solve the tdr455k linear system. The hybrid solver used
a threshold σ1 to enforce the sparsity of Ẽ and F̃ , σ2 to enforce the sparsity
of S̃, and unrestarted GMRES for solving the Schur complement system. With
the one-level parallel approach of our hybrid solver, the number of interior sub-
domains was set to be equal to the total number of processors. With the two-
level approach, the number of interior subdomains was fixed to be 16, and the
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Fig. 4. Solution times required by SuperLU DIST and our hybrid solver on tdr455k
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processors were evenly distributed among the interior subdomains. The figure
shows that the solution time with our hybrid solver scaled better than that with
SuperLU DIST.

Fig. 4(a) also shows that with the small dropping thresholds σ1 and σ2, the
scaling of the one-level and two-level approaches were similar. This is because
the number of GMRES iterations was nearly independent of the number of in-
terior subdomains, and GMRES converged within 20 iterations even when more
interior subdomains were generated for the one-level approach to use more pro-
cessors. For comparison, we have tested a state-of-the-art hybrid solver HIPS [5],
which implements the one-level parallelization. HIPS computes the precondi-
tioner for solving the Schur complement system based on an ILU factorization
of S̃, where the sparsity of the preconditioner is enforced based on both the
numerical values and locations of nonzeros. Specifically, fill is allowed only be-
tween separators adjacent to the same subdomain. As a result, the computation
of the preconditioner scales to a large number of processors. Unfortunately, this
preconditioner was not effective for tdr455k; specifically, it required 151 itera-
tions on 16 processors, and it failed to converge within 1, 000 iterations on 32
processors even though the dropping thresholds were set to be zero. Moreover,
even when HIPS converged, our solver solved the linear system faster.

Larger dropping thresholds reduce the memory requirement of our hybrid
solver. For example, in Fig. 4(b), less memory was needed since the thresholds
were increased by an order of magnitude from those in Fig. 4(a). Specifically,
in Fig. 4(a), about 15% of the nonozeros were discarded from the matrices E
and F , and about 50% of the nonzeros were discarded from the Schur comple-
ment Ŝ. The respective percentages of the discarded nonzeros for Fig. 4(b) were
about 30% and 75%. However, with the large thresholds, the number of GMRES
iterations may increase as more interior subdomains are generated. For example,
in Fig. 4(b), the number of iterations increased from 32 to 290 when the number
of interior subdomains increased from 16 to 256. As a result, the solution time of
the one-level approach did not scale. On the other hand, the two-level approach
exhibited more robust performance since the processor count can be increased
while fixing the size of the Schur complement. These results illustrate the ad-
vantage of the two-level approach. For our target of solving larger problems, a
more strict sparsity constraint may be needed. Therefore, Fig. 4(b) represents
the more practical behavior of our hybrid solver.

Finally, in Table 1, we show the timing results of our hybrid solver to solve
another linear system tdr8cavity of dimension 17, 799, 228 with 727, 163, 784
nonzeros. For these experiments, we fixed the number of subdomains to be 64,
which resulted in the average subdomain dimension of 277, 220 and the Schur
complement dimension of 57, 150. In the table, np, ng�

, and ngS are the num-
bers of processors used to solve the entire system, to factorize a subdomain,
and to solve the Schur complement system, respectively; itrs is the number of
BiCGSTAB iterations required for the solution convergence; LU(D�), Comp(S̃),
LU(S̃), Solve, and Total are the times in seconds for factorizing the �-th sub-
domain, computing S̃, factorizing S̃, computing the solution vector, and solving
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Table 1. Solution times required by our hybrid solver on tdr8cavity

Time
np ng� ngS itrs LU(D�) Comp(S̃) LU(S̃) Solve Total Speedup
64 1 × 1 8 × 8 9 334.0 305.5 4.4 37.7 681.7

128 1 × 2 8 × 8 9 176.0 165.0 4.3 31.8 377.4 1.81
256 2 × 2 8 × 8 9 91.3 80.1 4.8 24.2 200.6 1.89
512 2 × 4 8 × 8 8 52.5 47.9 4.6 19.3 125.5 1.59

1024 4 × 4 8 × 8 8 32.7 28.1 4.7 20.7 86.4 1.47
2048 4 × 8 8 × 8 10 22.9 20.9 4.9 22.6 71.6 1.19
4096 8 × 8 8 × 8 8 20.3 13.1 4.5 25.2 63.5 1.13

the entire system, respectively; and Speedup is the speedup gained by increasing
the processor count by a factor of two. The table shows that the first two phases
of the hybrid solver LU(D�) and Comp(S̃) scaled to thousands of processors.
Since ngS is fixed to be 64, LU(S̃) stayed the same. Even though the last phase
Solve did not scale, the total solution time scaled to thousands of processors.
We were not able to use SuperLU DIST to solve this linear system due to the
excessive communication required for the triangular solution.

4 Conclusion

We presented several techniques to improve the robustness and scalability of our
parallel hybrid solver based on the Schur complement method. Numerical results
have shown that our solver can be numerically more robust than another hybrid
solver, HIPS, while its solution time scales better than that of the direct solver
SuperLU DIST. We are studying other techniques to further improve the perfor-
mance of our hybrid solver such as improving initial partition, assigning different
numbers of processors to subdomains, distributing the Schur complement based
on the separator boundaries, and other parallel preconditioning techniques for
the Schur complement system.
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Abstract. Automatic result verification is an important tool to reduce
the impact of floating-point errors in numerical computation and to guar-
antee the mathematical rigor of results. One fundamental problem in
Verified Computing is to find an enclosure that surely contains the exact
result of a linear system. Many works have been developed to optimize
Verified Computing algorithms using parallel programming techniques
and message passing paradigm on clusters of computers. However, the
High Performance Computing scenario changed considerably with the
emergence of multicore architectures in the past few years. This paper
presents an ongoing research project which has the purpose of develop-
ing a self-verified solver for dense interval linear systems optimized for
parallel execution on these new architectures. The current version has
obtained up to 85% of reduction at execution time and a speedup of 6.70
when solving a 15,000 × 15,000 interval linear system on an eight core
computer.

1 Introduction and Motivation

In numerical algorithms, the correct implementation of a method does not guar-
antee that the computed result will be correct. Floating point arithmetic uses
finite fractions to represent the real numbers, which are originally defined in
Mathematics as infinite fractions. The difference between the true value and the
approximation is the roundoff error. Floating point operations on computers
are considered of maximum accuracy if the rounded result differs at most by
one unit in the last place from the exact result. Automatic result verification
is an important technique to reduce the impact of arithmetic errors in Numer-
ical Computation [1,2]. Verified Computing guarantees the mathematical rigor
of the results of a given computation by providing an interval result that surely
contains the correct result. This interval result is called an enclosure [3].
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Interval Arithmetic provides the mathematical basis for Verified Computing.
This arithmetic is based on sets of intervals, rather than sets of real numbers.
Typically, the interval evaluation of an arithmetic expression such as a poly-
nomial costs about twice as much as the evaluation of the expression in simple
floating point arithmetic. However, using interval evaluation with directed round-
ings, the algorithm may provide a guarantee of the computed result which could
not be achieved even by thousands of floating point evaluations [1,2,3].

Usually the input of a numerical method are point numbers. Engineering and
scientific problems, however, are frequently modeled by numerical simulations on
computers which are based on real measures that sometimes may be unprecise.
To deal with uncertain data, the computer should be able to support interval
input data as input data instead of point numbers and to do computations using
Interval Arithmetic [3]. Dealing with uncertain data in the context of linear
systems means that an interval linear system must be solved. The solution of
such a system is not trivial, since an infinite number of matrices contained in
the interval should be computed. However, the computation of this solution set
is a NP-complete problem [17]. Thus, the only possible way to find a solution
is to compute a narrow interval that contains the solution set (interval vectors)
and whose overestimation decreases as the widths of the entries in A and b
decrease [3,4].

There are many libraries that compute approximate solutions to point lin-
ear systems. Widely used for that purpose are the optimized software libraries
LAPACK (Linear Algebra PACKage) [5] and SCALAPACK (SCAlable Linear
Algebra PACKage) [6]. These libraries present a great performance and can man-
age to find an approximation of the correct solution, which is needed to compute
the error bounds faster than verified libraries [3,18,19]. However, even when us-
ing highly optimized libraries to solve part of the verified method, finding the
enclosure of an interval linear system still remains a very high computational
cost task when dealing with large dense interval systems. Thus, the use of High
Performance Computing (HPC) techniques appears as a useful tool to drop down
the time needed to solve interval linear systems with Verified Computing [3,4].

2 Parallel and Verified Computing

Many works have been developed for implement self-validated (SV) linear sys-
tems solvers using parallel computing on clusters of computers. These works try
to combine message passing paradigm programming with linear algebra libraries
like ScaLAPACK. Some of these works like [7,8] operate with point input data
while others like [3] propose solvers to treat uncertain input data represented by
intervals matrices and vectors. A first study in the direction of multicore proces-
sors was also presented in [18]. However, this work presents an initial approach
specifically for dualcores processors.

Nowadays computers are almost all built with multicore processors which
cannot be considered as independently processors. Unlike architectures with
multiple independent processors, multicore systems share on-chip resources and
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therefore cannot be considered as the new SMP [9]). On the Top500 List [10]
released in November 2009, 426 systems are using quadcores processors, 59 sys-
tems use dualcores and only four systems still use single core processors. Six
systems use IBMs advanced Sony PlayStation 3 processor with 9 cores and three
systems are using the new 6 cores Shanghai AMD Opteron processor.

Historically, the standard parallelization approach of numerical linear algebra
used by the LAPACK and ScaLAPACK libraries relied on parallel implemen-
tations of BLAS (Basic Linear Algebra Subprograms) [16]. But, although this
approach solves numerous complexity problems, it also enforces a very rigid and
inflexible software structure, where, at the level of linear Algebra, the algorithms
are expressed in a serial way [9].

Recent research efforts are addressing this critical and highly disruptive sit-
uation. In [9], the authors present the Parallel Linear Algebra for Scalable
Multicores Architectures (PLASMA) which should succeed LAPACK and ScaLA-
PACK. PLASMA relies on tile algorithms, which provide fine granularity par-
allelism. Standard linear algebra algorithms are represented as Directed Acyclic
Graphs (DAG) where nodes represent tasks and edges represent dependencies
among them. This programming model enforces asynchronous and out of order
scheduling of operations [9,11]. In [12], it is presented the SuperMatrix, a runtime
system that parallelizes matrix operations for SMP and multicores architectures.
The SuperMatrix idea is based on a number of insights gained from the FLAME
project [13]. Basically, it views matrices hierarchically as blocks that serve as
units of data where operations over those blocks are treated as units of com-
putation. Thus, implementation transparently enqueues the required operations
(internally tracking dependencies) and then executes the operations using out-of-
order execution techniques inspired by superscalar microarchitectures. However,
these optimized software libraries do not implement verified computing meth-
ods. Additionally, support for uncertain input data and interval linear systems
solvers are not provided.

On the other hand, verified computing tools (such as C-XSC [17]) can provide
verified results but the execution times for solving the problem are much higher
since they are not developed for multicore architectures. Additional performance
losses are introduced in the application by the use of special data structures and
operations to implement dot scalar products in C-XSC verified methods. [8].
This effect is even worse when dealing with large interval systems [3]. In this
context, this paper proposes a self-verified solver for dense interval linear systems
optimized for parallel execution on multicore processors.

3 Mathematical Background

Previous researches show the Midpoint-Radius Interval Arithmetic as a good
choice for implementations using floating point arithmetic [3,18,19]. The main
point in using Midpoint-Radius arithmetic is that this representation allows to
employ optimized algorithms and software libraries to implement operations.
The use of such libraries have the striking advantages that they are available
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for almost every computer hardware and that they are individually adapted and
tuned for specific hardware and compiler configurations. A Midpoint-Radius
interval is defined as follows [14]:

〈a, α〉 := {x ∈ �/ |x − a| ≤ α} for a ∈ �, 0 ≤ α ∈ � (1)

Interval operations always satisfy the fundamental property of isotonicity. That
is, if X is contained in another interval X ′, and Y is contained in Y ′, then the
combination of X and Y is contained in the interval computed by combining the
bigger intervals X ′ and Y ′ [2]. Sometimes the standard definition of Midpoint-
Radius arithmetic causes overestimation. However, it was proved by Rump [14]
that the overestimation of Midpoint-Radius Arithmetic is uniformly bounded by
1.5 for the basic arithmetic operations as well as for vector and matrix operations
over �. In the case of an interval presenting a not too large radius, the factor is
quantified to be near 1.

For interval vectors and interval matrices the relations =,
◦
⊂, and ⊆ are defined

component wise. The inner inclusion relation is defined by [x]
◦
⊂ [y] ⇔ [x]i

◦
⊂ [y]i,

i = 1, . . . , n for [x] , [y] ∈ I�n. On the other hand, the proper subset relation is
defined by [x] ⊂ [y] ⇔ ([x] ⊆ [y]and [x] �= [y]). The midpoint and the diameter
of an interval vector or matrix are also defined component wise. For example,
m ([x]) = (m ([x]i)), and d ([A]) =

(
d
(
[a]ij

))
, for [x] ∈ I�n, [A] ∈ I�nxn.

Many algorithms for numerical verification are based on the application of
well known fixed point theorems to interval sets. As an example, the Brouwer’s
Fixed Point Theorem is used to guarantee the convergence. Let X = [x] ∈ I�n

be a machine interval vector. As a box in n-dimensional space, [x] satisfies the
conditions of Brouwer’s Fixed Point Theorem. Supposing its possible to find a
box with f ([x]) ⊆ [x], then [x] is proved to be an enclosure of at least one
fixed point x∗ of f . The assertion remains valid replacing f by its floating point
interval evaluation f� because f� ([x]) ⊆ [x] implies f ([x]) ⊆ [x] since f� ([x]) is
a superset of f ([x]) [2,4].

In order to achieve validated enclosures, the algorithm must enclose all sources
of error that can be generated during the computation. The basic approach of
many SV-methods consists of the computation of an approximate solution, local
linearization and estimation of linearization and numerical errors by means of
suitable theorems the assumptions of which are verified on the computer [21]. A
simple mechanism for implementing these idea follows the principle of iterative
refinement. However, it is important to mention that an interval algorithm differs
significantly from the corresponding point algorithm.

The method we chose is based on the Residual Iteration Scheme of the
Newton-like Method. The main reason for this choice is that besides being a
well-established SV-method, it also allows the use of optimized libraries because
it can be implemented with Midpoint-Radius arithmetic. The description of the
method, fully given by [2], is summarized on the following. Let Ax = b be a
real system of equations, finding a solution of the system Ax = b is equivalent to
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finding a zero of f (x) = Ax − b. Hence, Newton’s method gives the following
fixed point iteration scheme, where x(0) is some arbitrary starting value [2]:

x(k+1) = x(k) − A−1
(
Ax(k) − b

)
, k = 0, 1, . . . (2)

In general, the inverse of A is not exactly known. Thus, instead of A−1, an
approximate inverse R ≈ A−1 of A is used. Replacing the real iterates x(k) by
interval vectors [x](k) ∈ I�n, if there exists an index k with [x](k+1) ⊂ [x](k),
then, by Brouwer’s Fixed point Theorem, the equation has at least one fixed
point x ∈ [x](k). Supposing R is regular, then this fixed point is also a solution of
Ax = b. However, considering the diameter of [x](k+1) the following is obtained:
d
(
[x](k+1)

)
= d

(
[x](k)

)
+d

(
R
(
A [x](k+1) − b

))
≥ d

(
[x](k)

)
. Thus, in general,

the subset relation will not be satisfied. For this reason, the right-hand side is
modified to the following equation, where I denotes the n x n identity matrix:

x(k+1) = Rb + (I − RA) x(k), k = 0, 1, . . . , (3)

It was proved that if there exists and index k with [x](k+1) ◦
⊂ [x](k), then the

matrices R and A are regular, and there is a unique solution x of the system
Ax = b with x ∈ [x](k+1). This result remains valid for any matrix R. However,
it is an empirical fact that the better R approximates the inverse of A, the
faster the inclusion relation will be satisfied. Additionally, it is a well-known
numerical principle that an approximate solution x̃ of Ax = b may be improved
by solving the system Ay = d, where d = b − Ax̃ is the residual of Ax̃. Since
y = A−1 (b − Ax̃) = x − x̃, the exact solution of Ax = b is given by x = x̃ + y.
Therefore, the Residual Iteration Scheme is presented on Equation 4.

y(k+1) = R (b − Ax̃)︸ ︷︷ ︸
=:z

+ (I − RAx̃)︸ ︷︷ ︸
=:C

y(k), k = 0, 1, . . . (4)

The residual equation Ay = d has a unique solution y ∈ [y](k+1) ◦
⊂ [y](k) for the

corresponding interval iteration scheme. Moreover, since y = x − x̃ ∈ [y](k+1), a
verified solution of the unique solution of Ax = b is given by x̃ + [y](k+1). These
results remain valid if replace the exact expressions for z and C in (4) by interval
extensions. However, to avoid overestimation effects, it is highly recommended
to evaluate b − Ax̃ and I − RA without any intermediate rounding [2].

4 Proposed Approach

The Residual Iteration Scheme adaptation to solve interval linear systems us-
ing Verified Computing led to Algorithm 1, proposed on [17]. Its result is a high
accuracy interval vector that surely contains the correct result (enclosure). Verifi-
cation process is composed by steps 5 to 15. These steps use the Midpoint-Radius
arithmetic with direct roundings [2,3].
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Algorithm 1. Enclosure of a square interval linear system
1: R ≈ mid ([A])−1 {Compute an approximate inverse using LU-Decomposition algo-

rithm}
2: x̃ ≈ R.mid ([b]) {Compute the approximation of the solution}
3: [z] ⊇ R ([b] − [A] x̃) {Compute enclosure for the residuum}
4: [C] ⊇ (I − R [A]) {Compute enclosure for the iteration matrix}
5: [w] := [z] , k := 0 {Initialize machine interval vector}
6: while not ([w] ⊆ int [y]ork > 10) do
7: [y] := [w]
8: [w] := [z] + [C] [y]
9: k + +

10: end while
11: if [w] ⊆ int [y] then
12:

∑
([A] , [b]) ⊆ x̃ + [w] {The solution set (

∑
) is contained in the solution found

by the method}
13: else
14: No Verification
15: end if

4.1 Initial Implementation

An initial version of Algorithm 1 using Midpoint-Radius arithmetic was imple-
mented and used to obtain the computational costs of each step. This imple-
mentation was developed in C++ using the Intel MKL 10.2.1.017 [15] library
for optimized LAPACK and BLAS routines for Intel processors. In order to
achieve better performance, the approximate inverse R and approximate solu-
tion x are calculated using only traditional floating point operations and only the
midpoint matrix. Later, to compute the residuum, interval arithmetic is applied
using original interval matrix [A] and interval vector [b] to ensure the accuracy
of the result [3].

Step 1 (approximate inverse calculation using LU-Decomposition) uses the
following LAPACK routines: dgetrf, dlange, dgecon and dgetri. Step 2 (approxi-
mation of the solution) is implemented by BLAS dgemv routine. Steps 3 and 4
compute respectively the enclosure for the residuum and enclosure for the iter-
ation matrix. Since [A] and [b] as well as [C] and [z] are interval matrices and
vectors, the enclosure computation must employ interval algorithms as defined
on [14]. Let A = 〈ã, α〉 ∈ I+F and B =

〈
b̃, β
〉
∈ I+F be two Midpoint-Radius

intervals, the operations of addition and subtraction C := A ◦ B ∈ I+F , with
◦ ∈ {+,−} and C = 〈c̃, γ〉 are implemented in IEEE 754 Standard for Binary
Floating point Arithmetic [22] by Algorithm 2. Similarly, the multiplication is
defined by Algorithm 3. The symbols �, ∇ and Δ indicate respectively the
directed roundings for nearest, downward and upward.

As previously mentioned, the major advantage of Midpoint-Radius Arithmetic
is to allow calculation with pure floating point operations without making any
changes in the rounding mode on interim operations. Therefore, although [C] and
[z] are intervals, they are calculated with dgemv and dgemm BLAS routines with



Solving Dense Interval Linear Systems with Verified Computing on Multicore 441

Algorithm 2. IEEE 754 Midpoint-Radius Interval Addition and Subtraction.

1: c̃ = �
(
ã ◦ b̃

)
2: γ̃ = Δ

(
ε′ |c̃| + α̃ + β̃

)

Algorithm 3. IEEE 754 Midpoint-Radius Interval Multiplication.

1: c̃ = �
(
ã.̃b
)

2: γ̃ = Δ
(
η + ε′ |c̃| + (|ã| + α̃) β̃ + α̃β̃

)

directed roundings. The rounding mode is manipulated by fesetround C++ func-
tion from fenv.h header which supports four rounding modes: FE UPWARD,
FE DOWNWARD, FE TONEAREST, and FE TOWARDZERO.

An error will be generated in the midpoint evaluation. This error should be
compensated using the relative error unit. According to [14], denote the relative
rounding error unit by ε, set ε′ = 1

2ε, and denote the smallest representable (un-
normalized) positive floating point number by η. In IEEE 754 double precision
epsilon = 2−52 and η = 2−1074. Therefore, the evaluation of C midpoint (c̃) and
radius (γ̃) is given by Algorithm 4.

Algorithm 4. IEEE 754 Matrix-matrix Midpoint-Radius Interval Multiplica-
tion.
1: c̃1 = ∇ (R.mid (A))
2: c̃2 = Δ (R.mid (A))
3: c̃ = Δ (c̃1 + 0.5 (c̃2 − c̃1))
4: γ̃ = Δ (c̃ − c̃1) + |R| .rad (A)

At last, steps from 5 to 15 implement the iteration to obtain the enclosure.
Again, Midpoint-Radius Arithmetic and direct roundings are employed. Step
8 ([C] and [y] multiplication) uses BLAS dgemv with directed roundings. The
while loop verifies if the new result is contained in the interior of the previous
result. If it is true, the while loop is finished, and the enclosure was found. If
not, it tries for 10 iterations to find the enclosure. It is an empirical fact that
the inner inclusion is satisfied nearly after a few steps or never [2].

4.2 Initial Approach Evaluation

Two kinds of evaluations were considered around the initial implementation:
accuracy and performance. Aiming at verifying the accuracy, we used an ill-
conditioned matrix generated by the well known Boothroyd/Dekker formula
(Equation 5) with dimension 10, which has a condition number 1.09.10+15. The
radius for both matrix A and vector b were defined as 0.1.10−10.
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Aij =
(

n + i − 1
i − 1

)
x
(

n − 1
n − j

)
x

n

i + j − 1
, bi = i, ∀(i, j) = 1, 2, . . . , N (5)

The results found by the solver are presented in Table 1. It is important to high-
light that despite the implemented solver uses Midpoint-Radius Arithmetic to do
the computation, the results in Table 1 were converted to Infimum-Supremum
notation to facilitate the visualization. Exact Result column indicates the known
exact point result, Infimum and Supremum columns contain the interval bounds
of the enclosure.

Table 1. Results found by implemented solver for a 10x10 Boothroyd/Dekker formula
interval linear system

Exact Result Infimum Supremum
0 0.0 -0.0000119 0.0000108
1 1.0 0.9998992 1.0001113
2 -2.0 -2.0005827 -1.9994736
3 3.0 2.9979758 3.0022444
4 -4.0 -4.0070747 -3.9936270
5 5.0 4.9826141 5.0193190
6 -6.0 -6.0472924 -5.9574730
7 7.0 6.9045776 7.1061843
8 -8.0 -8.2221804 -7.8004473
9 9.0 8.6064275 9.4384110

As expected, the exact result is contained in the interior of the solution set
our solver computed. The interval diameter varies between 2.27 × 10−5 and
8.319835×10−1. This was expected, since the Boothroyd/Dekker formula creates
a very ill-conditioned system. Experiments of well-conditioned systems randomly
generated with values between 0 and 1 were also performed. In these cases, the
diameter was between 0 and 1 × 10−7. The average condition number of these
systems was around 6.12 × 101.

Performance experiments were carried out over a Intel Core 2 Duo T6400
2.00 GHz processor with 2MB L2 and 3GB of DDR2 667MHz RAM operating
in dual channel. The operating system is Linux Ubuntu 9.04 (32 bits version, ker-
nel 2.6.28-13-generic). The compiler used was gcc v. 4.3.3 with the MKL library
v.10.2.1.017. The input for these experiments were linear systems randomly gen-
erated with values between 0 and 1 for A and b and a radius of 0.1 × 10−10 on
both cases. The execution times of each step of the algorithm was computed. For
simplicity reasons, steps from 6 to 15 were joined into one step. Table 2 presents
the average execution times for each step for solving a system with dimension
n = 5, 000.

Table 2 shows that the computation of the approximate inverse R and the
computation of the interval matrix C (steps 1 and 4 respectively) are the two
most computational intensive operations in this algorithm. Step 1 takes more
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Table 2. Average exec. times (sec) for a randomly generated system with n = 5, 000

Task Description Execution times
Computation of approximate inverse R (Step 1) 144.652161
Computation of approximate solution x (Step 2) 0.535467
Computation of enclosure for the residuum z of x (Step 3) 1.949728
Compute enclosure for the iteration matrix C (Step 4) 109.452704
Machine interval vector initialization (Step 5) 0.000117
Iterative refinement and inner inclusion verification (Steps 6 to 15) 4.635784
Total execution time including E/S operations 262.710470

then 55% (144.65 seconds) of the total time while Step 4 takes 42% (109.45 sec-
onds). These two steps correspond to 97% of total processing time, and therefore,
they must be carefully parallelized aiming at a better performance.

4.3 Optimized Parallel Approach

As presented in the previous subsection, steps 1 and 4 are the most time con-
suming operations in the algorithm. Thus, the proposed parallelization focused
on these two steps as follows.

Optimization of the Approximate Inverse Calculation: Since the New-
ton Like Iteration requires only an approximation of R (inverse matrix of A)
and once our approach employs Midpoint-Radius Interval Arithmetic, R can be
computed using highly optimized software libraries. In [3], the pdgetri routine
of ScaLAPACK was employed for R calculation. Our initial approach was im-
plemented using analogous LAPACK routine dgetri. However, although MKL
implementation of LAPACK is highly optimized for Intel processors, LAPACK
algebra algorithms are not efficient on multicore. Hence, as expected LAPACK
routines had no performance gain when increasing the number of cores.

Therefore, our strategy for Step 1 is to explore fine granularity parallelism
as well as asynchronous and out of order scheduling of operations by employing
the PLASMA library. However, the most actual version of PLASMA does not
provide yet a matrix inversion routine. In fact, when dealing with multicore
processors there are no libraries available that can be directly employed for
optimized matrix inversion. Thus, the idea is exploit PLASMA dgesv routine.

The dgesv routine was developed to compute the solution of a system of linear
equations. However, it is possible to operate the right hand side b of dgesv as a
matrix and it is a well-known mathematical property that multiplying a matrix
by its inverse results in the identity matrix. Considering that, we employed
PLASMA dgesv routine passing to A and b parameters, respectively, matrix A
and its identity matrix. Thus, the result computed by dgesv is the approximate
inverse R.
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It is important to mention that while packages like LAPACK and ScaLAPACK
exploit parallelism within multithreaded BLAS, PLASMA uses BLAS only for
high performance implementations of single core operations (often referred to
as kernels). PLASMA exploits parallelism at the algorithmic level above the
level of BLAS. For that reason, PLASMA must be linked with a sequential
BLAS library or a multithreaded BLAS library with multithreading disabled.
PLASMA must not be used in conjunction with a multithreaded BLAS, as this
is likely to create more threads than actual cores, which annihilates PLASMA′s
performance [23]. Since our approach takes advantage of multithreaded BLAS
in operations executed by other steps (like matrices multiplication) we used
multithreaded MKL. To avoid affecting PLASMA performance, the function
mkl set num threads is used to dynamically control the number of threads.

Optimization of the Iteration Matrix Computation: Concerning Step 4,
the computation of the iteration matrix [C], the adopted strategy is to use half
of the available processors to compute the interval upper bound and the other
half to compute the interval lower bound. A similar strategy was successfully
employed in [18] where threads were used to compute the interval bounds on a
dual core processor. In that case, however, synchronization is simpler and it was
not necessary to deal with load balancing.

The main idea is to utilize different threads to execute the operations in each
rounding mode. This strategy avoids the frequent switching of rounding mode
which is a time expensive operation. Additionally, since the cache is shared
between cores, computing distinct bounds over the same data in parallel opti-
mizes data locality. Threads are created and managed using the standard POSIX
threads library [20]. Shared memory and POSIX semaphores primitives are ap-
plied for inter-thread synchronization.

Initially, a routine verifies the number of available cores and distributes the
bound threads among them. Cores identified by odd numbers are assigned to
upper bound computation and the even numbers to lower bound. If the number
of total cores available is odd, then upper bound will be computed with one
more thread than lower bound. The cpu set t variables of sched.h header are
used to create the core pools. Threads are then statically attributed to cores
by calling sched setaffinity function. It is important to highlight, that defining
the processor affinity instructs the operating system kernel scheduler to do not
change the processor used by one particular thread.

After threads are assigned to processors they start setting their rounding
modes and get blocked by semaphores until the main flow releases them all
at once. On the sequence, each thread calls the dgemm BLAS routine for the
matrix-matrix multiplication. The main flow blocks itself with a semaphore until
the computation of upper and lower bounds ends. Once the computation of [C]
is completed, threads send signals to unblock main flow semaphore, which then
follows to next step.
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4.4 Optimized Approach Evaluation

In order to verify the benefits of employed optimizations, two kind of exper-
iments were performed. The first concerns the correctness of the result. The
second experiment was done to evaluate the speedup improvement brought by
the proposed method. The evaluations were executed in a 2 processors quad-
core Intel Xeon E5520 2.27 GHz with 128 KB L1, 1MB L2, 8MB L3 shared and
16 GB of DDR3 1066 MHz RAM. The operating system is Linux Ubuntu 9.04
(kernel 2.6.28-11-server). The compiler used was gcc v. 4.3.3 along with the
libraries MKL 10.2.2.025 and PLASMA 2.1.0.

Once modifications were done in the algorithm, we conducted some experi-
ments with the same well-conditioned and ill-conditioned matrices solved by our
initial approach to confirm that there were no accuracy loss on the result. The
tests generated by the Boothroyd/Dekker formula presented almost the same
accuracy on both versions (initial and optimized). As required by the algorithm,
both interval results contain the exact result. For well-conditioned matrices, both
implementations give exactly the same results.

We carried out performance experiments for matrices dimensions from 1,000
to 15,000. Table 3 presents the execution times in seconds for each algorithm
step when solving a random 15,000 × 15,000 interval linear system varying the
number of cores. Column Imp. refers to the approach where In. is the initial
implementation and Op. is the optimized version. Cores column indicates the
number of cores employed in that execution and columns Step 1..15 refer to the
algorithms steps in the same way as in Table 2. As we had a small standard devi-
ation, we just run the solver 10 times for each situation. The highest and lowest
execution times were removed and the final times were obtained by calculating
the arithmetic mean of remaining times.

Table 3. Execution times in seconds to solve a 15,000 × 15,000 interval linear system

Imp. Cores Step 1 Step 2 Step 3 Step 4 Step 5 Step 6–15 Total
In. 1 1,905.4969 8.3916 23.6316 2,204.0620 0.0002 73.0728 4,488.7467
Op. 1 1,147.8716 5.6718 19.1374 2,218.5130 0.0002 70.4101 3,461.6043
Op. 2 575.8929 5.7024 19.3800 1,169.3131 0.0002 64.8068 1,835.0956
Op. 3 387.9773 5.6246 18.1846 1,058.4973 0.0002 68.9738 1,539.2580
Op. 4 292.6839 5.6923 19.4538 646.0218 0.0002 32.4533 996.3056
Op. 5 249.2505 5.5699 18.1954 626.2732 0.0002 34.9536 934.2430
Op. 6 209.5168 5.7400 19.3016 493.2460 0.0002 33.6801 761.4850
Op. 7 182.3047 5.5987 17.8858 474.7029 0.0002 34.1734 714.6659
Op. 8 160.8892 5.6867 18.9293 451.5206 0.0002 32.9934 670.0196

Figure 1 shows the speedups obtained from the execution times presented
in Table 3. Line Sp T.T.Seq. is the speedup of total execution time comparing
optimized implementation running in n cores to the initial approach in 1 core
(i.e., T Op.(n)

T In.(1) ). Sp T.T.Par. concerns to optimized total time in n cores compared

to optimized algorithm executing in 1 core (i.e., T Op.(n)
T Op.(1) ). Sp Inv. Seq. and
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Sp Inv. Par. illustrate speedups obtained in an analogous manner considering
only the Step 1 execution time. Sp S4. Par. presents the speedup for Step 4 of
algorithm.
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Fig. 1. Speedups obtained solving an interval linear system of size 15,000 × 15,000

In Table 3 and Figure 1 it is possible to see a significant reduction in the
execution time. Sp T.T.Seq. initially presented super linear speed up and slowly
decreased until 6.70 for 8 cores, which is a expected result due to scalability issues
like as the influence of sequential portions of code. Sp T.T.Par. also presented
high speedups and a similar behavior. The main reason for this difference is
the Step 1 of the algorithm. The optimized implementation running in one core
spent only 60% of the time spent by the initial approach. This happens because
PLASMA optimizations not boil down only to the parallelism but also to new
algorithmic approaches for data management and tasks scheduling which are
more suitable for multicore architectures.

Sp Inv. Seq. and Sp Inv. Par. can be explained by these same reasons. It is
important to note that Step 1 computed with LAPACK dgetri routine on 8 cores
spent 1,864.1687 seconds, which means a speedup of 1.02 and confirms that this
is not suitable for multicore.

Sp S4. Par. presented good speedups too. We suppose that this is due to
cache effects. In the sequential version, all matrix elements must be loaded in
the cache to compute [C] with rounding-up, and after that, again, to compute
it with rounding-down. If the entire matrix does not fit in the cache, there will
be many cache misses for each rounding mode. Multithreaded version allows a
more effective utilization of the available cache memory because more threads
use the same data at the same time resulting in a better speedup as expected.

At last, verification steps (6–15) although not explicit parallelized showed
performance gains too. The reason is that the use of dgemm routine benefits
from multithreaded MKL.
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5 Considerations and Future Work

This paper presented the current version of a self-verified solver for dense interval
linear systems optimized for parallel execution on multicore architectures. The
implementation delivered enclosures of the correct solutions for interval input
data with considerable accuracy. The computational costs of each of its inter-
mediate steps were computed and the main time consuming steps among them
were optimized aiming at obtaining performance gain on multicore processors.
The proposed solution led to a scalable implementation which has achieved up
to 85% of reduction at execution time when solving a 15,000 × 15,000 interval
linear system over an eight core computer.

Its important to mention that the presented solver was written for dense sys-
tems. However, sparse systems are also supported although they will be treated
as a dense system. No special method or data storage is used concerning the
sparsity of these systems. Many performance related issues still remain under
investigation. There is a clear tradeoff between the overhead incurred by thread
synchronization and the performance gain, which affects the solver scalability.
Therefore, future directions includes the investigation on how to optimize the
parallelized steps, the identification of other parts of the algorithm to paral-
lelize and the exploitation of new architectures as the hybrid computers that
mix GPUs and multicore processing.

The ability of finding verified results for dense linear systems of equations
increases the result accuracy. The possibility to perform this computation in
multicore architectures reduces the computational time that verified computing
need through the benefits of high performance computing. Therefore, the use
of verified and high performance computing together appears as a suitable way
to increase the reliability and performance of many applications, specially when
those applications deal with uncertain data.
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Abstract. The eigenvector corresponding to the second smallest eigenvalue of
the Laplacian of a graph, known as the Fiedler vector, has a number of applica-
tions in areas that include matrix reordering, graph partitioning, protein analysis,
data mining, machine learning, and web search. The computation of the Fiedler
vector has been regarded as an expensive process as it involves solving a large
eigenvalue problem. We present a novel and efficient parallel algorithm for com-
puting the Fiedler vector of large graphs based on the Trace Minimization al-
gorithm. We compare the parallel performance of our method with a multilevel
scheme, designed specifically for computing the Fiedler vector, which is imple-
mented in routine MC73 FIEDLER of the Harwell Subroutine Library (HSL).

1 Introduction

The second smallest eigenvalue and the corresponding eigenvector of the Laplacian
of a graph have been used in a number of application areas including matrix reorder-
ing [10,9,8,1], graph partitioning [12,13], machine learning [11], protein analysis and
data mining [5,16], and web search [4]. The second smallest eigenvalue of the Lapla-
cian of a graph is sometimes called the algebraic connectivity of the graph, and the
corresponding eigenvector is known as the Fiedler vector, due to the pioneering work
of Fiedler [3].

For a given n×n sparse symmetric matrix A, or an undirected weighted graph with
positive weights, one can form the weighted-Laplacian matrix, Lw, as follows:

Lw(i, j) =
{

∑ ĵ |A(i, ĵ)| if i = j,
−|A(i, j)| if i �= j.

(1)

One can obtain the unweighted Laplacian by simply replacing each nonzero element of
the matrix A by 1. In this paper, we focus on the more general weighted case; the method
we present is also applicable to the unweighted Laplacian. Since the Fiedler vector
can be computed independently for disconnected graphs, we assume that the graph is
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connected. The eigenvalues of Lw are 0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λn. The eigenvector x2

corresponding to smallest nontrivial eigenvalue λ2 is the sought Fiedler vector.
A state of the art multilevel solver [7] called MC73 FIEDLER for computing the

Fiedler vector is implemented in the Harwell Subroutine Library(HSL) [6]. It uses a
series of levels of coarser graphs where the eigenvalue problem corresponding to the
coarsest level is solved via the Lanczos method for estimating the Fiedler vector. The
results are then prolongated to the finer graphs and Rayleigh Quotient Iterations (RQI)
with shift and invert are used for refining the eigenvector. Linear systems encountered
in RQI are solved via the SYMMLQ algorithm.

We describe a novel parallel solver: TRACEMIN-Fiedler based on the Trace Mini-
mization algorithm (TRACEMIN) [15,14] in Section 2 and present results in Section 3
comparing it to MC73 FIEDLER.

2 The TRACEMIN-Fiedler Algorithm

We consider solving the standard symmetric eigenvalue problem

Lx = λ x (2)

where L denotes the weighted Laplacian, using the TRACEMIN scheme for obtaining
the Fiedler vector. The basic TRACEMIN algorithm [15,14] can be summarized as
follows. Let Xk be an approximation of the eigenvectors corresponding to the p smallest

eigenvalues such that XT
k LXk = Σk and XT

k Xk = I, where Σk = diag(ρ (k)
1 ,ρ (k)

2 , ...,ρ (k)
p ).

The updated approximation is obtained by solving the minimization problem

min tr(Xk −Δk)T L(Xk −Δk), subject to Δ T
k Xk = 0. (3)

This in turn leads to the need for solving a saddle point problem, in each iteration of the
TRACEMIN algorithm, of the form[

L Xk

XT
k 0

][
Δk

Nk

]
=
[

LXk

0

]
. (4)

Once Δk is obtained (Xk − Δk) is then used to obtain Xk+1 which forms the section
XT

k+1LXk+1 = Σk+1,XT
k+1Xk+1 = I. The TRACEMIN-Fiedler algorithm, which based

on the basic TRACEMIN algorithm, is given in Figure 1.
In step 4 the columns of the matrix Xk are orthonormal because columns of Vk

and Yk are orthonormal. The most time consuming part of the algorithm is solving
the saddle-point problem in each outer TRACEMIN iteration. This involves, in turn,
solving large sparse symmetric positive semi-definite systems of the form LWk = Xk

using the Conjugate Gradient algorithm with a diagonal preconditioner. Although it is
possible to use other preconditioners, we chose diagonal preconditioner for: (i) its scal-
ability and (ii) effectiveness. Our main enhancement of the basic TRACEMIN scheme
are contained in step 8, solving systems involving the Laplacian, and step 7 concern-
ing the deflation process. In the TRACEMIN-Fiedler algorithm, not only is the coeffi-
cient matrix L is guaranteed to be symmetric positive semi-definite, but that its diagonal
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Algorithm 1:
Data: L is the n×n Laplacian matrix defined in Eqn.(1) , εout is the stopping criterion for

the ||.||∞ of the eigenvalue problem residual
Result: x2 is the eigenvector corresponding to the second smallest eigenvalue of L
p ←− 2; q ←− 3p ;
nconv ←− 0; Xconv ←− [ ];
L̂ ←− L+ ||L||∞10−12 × I ;
D ←− the diagonal of L ;
D̂ ←− the diagonal of L̂ ;
X1 ←− rand(n,q);
for k = 1,2, . . . max it do

1. Orthonormalize Xk into Vk;
2. Compute the interaction matrix Hk ←− VT

k LVk;
3. Compute the eigendecomposition HkYk = YkΣk of Hk. The eigenvalues Σk are
arranged in ascending order and the eigenvectors are chosen to be orthogonal;
4. Compute the corresponding Ritz vectors Xk ←− VkYk;
Note that Xk is a section, i.e. XT

k LXk = Σk,XT
k Xk = I;

5. Compute the relative residual ||LXk −XkΣk||∞/||L||∞;
6. Test for convergence: If the relative residual of an approximate eigenvector is less
than εout , move that vector from Xk to Xconv and replace nconv by nconv +1 increment.
If nconv ≥ p, stop;
7. Deflate: If nconv > 1,Xk ←− Xk −Xconv(XT

convXk);
8. if k = 1 then

Solve the linear system L̂Wk = Xk approximately via the PCG scheme using the
diagonal preconditioner D̂;

else
Solve the linear system LWk = Xk approximately via the PCG scheme using the
diagonal preconditioner D;

9. Form the Schur complement Sk ←− XT
k Wk;

10. Solve the linear system SkNk = XT
k Xk for Nk directly;

11. Update Xk+1 ←− Xk −Δk = WkNk ;

Fig. 1. TRACEMIN-Fiedler algorithm

(the preconditioner) is guaranteed to have positive elements. On the other hand, in
MC73 FIEDLER there is no guarantee that the linear systems, arising in the RQI with
shift and invert, are symmetric positive semi-definite with positive diagonal elements.
Hence, MC73 FIEDLER uses SYMMLQ without any preconditioning to solve linear
systems in the Rayleigh Quotient Iterations.

We should note here that the matrix L is symmetric positive semi-definite with one
zero eigenvalue. As soon as the first eigenvalue has converged, however, the right hand
side Xk is orthogonal to the null space of L due to the deflation step 7. Since the smallest
(i.e. 0) eigenvalue converges after the first iteration of the algorithm we add a small
diagonal perturbation for the first iteration of the algorithm only in order to ensure PCG
will not fail.
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The order of the linear system in step 10 is q× q where q = 6, therefore we solve
these small systems directly. We note that our algorithm can easily compute additional
eigenvectors of the Laplacian matrix by setting p to be the number of desired of smallest
eigenpairs.

3 Parallel Implementation of TRACEMIN-Fiedler

The parallel TRACEMIN-Fiedler algorithm consists of the same basic steps as the serial
algorithm 1. The matrix and vectors are partitioned and distributed in block rows across
the processors. Our parallel implementation is based on the MPI communication library.

One critical part of the parallelization is the matrix vector product. Due to the block
nature of the TRACEMIN algorithm, the matrix L is applied to a set of vectors at a time,
which leads to greater efficiency. The amount of communication needed in the matrix
vector product is problem dependent. The scalability of this operation and therefore of
the overall parallel TRACEMIN-Fiedler algorithm varies depending on the number of
non-zeros in L and their location. The parallel matrix-vector multiplication operation is
performed in Step 2, for the computation of Hk, in Step 5, for computing the residuals,
and once in each iteration of the PCG solve in Step 8.

The other type of communication needed in the parallel TRACEMIN-Fiedler algo-
rithm is the AllReduce operation. This is required in the computation of dot products
and norms. In particular, the AllReduce communication is performed in Step 1, for the
orthonormalization step, in Step 2, for the computation of Hk, on Step 5, in the com-
putation of the residual norms, in Step 7, for the deflation operation and in Step 9, in
the computation of the Schur complement matrix. The AllReduce communication op-
eration is performed three times in each iteration of the PCG solve in Step 8. In our
implementation, most AllReduce operations are applied to a set of vectors, which is
more efficient than doing more reductions one at a time.

4 Numerical Results

We implement the TRACEMIN-Fiedler algorithm in Figure 1 in parallel using MPI. We
compare the parallel performance of MC73 FIEDLER with TRACEMIN-Fiedler using
a cluster with Infiniband interconnection where each node consists of two quad-core
Intel Xeon CPUs (X5560) running at 2.80GHz (8 cores per node). For both solvers we
set the stopping tolerance for the ∞−norm of the eigenvalue problem residual to 10−5.
In TRACEMIN-Fiedler we set the inner stopping criterion as εin = 10−1 ∗ εout , and the
maximum number of the preconditioned CG to 30. For MC73 FIEDLER, we use all
the default parameters.

The set of test matrices are obtained from the University of Florida (UF) Sparse Ma-
trix Collection [2]. A search for matrices in this collection which are square, real, and
which are of order 2,000,000 < N < 5,000,000 returns four matrices listed in Table 1.
If a matrix, A, is nonsymmetric we use (|A|+ |AT |)/2, instead. Furthermore, if the ad-
jacency graph of A has any disconnected single vertices we removed them since those
vertices are independent and have trivial solutions. We apply both MC73 FIEDLER and
TRACEMIN-Fiedler to the weighted Laplacian generated from the adjacency graph
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Table 1. Matrix size (N), number of nonzeros (nnz), and type of test matrices

Matrix Group/Name N nnz symmetric
1. Rajat/rajat31 4,690,002 20,316,253 no
2. Schenk/nlpkkt 3,542,400 95,117,792 yes
3. Freescale/Freescale1 3,428,755 17,052,626 no
4. Zaoui/kktPower 2,063,494 12,771,361 yes

of the preprocessed matrix where the weights are the absolute values of matrix en-
tries. After obtaining the Fiedler vector x2 returned by each algorithm, we compute the
corresponding eigenvalue λ2,

λ2 =
xT

2 Lx2

xT
2 x2

. (5)

We report the relative residuals ||Lx2 −λ2x2||∞/||L||∞ in Table 2.

Table 2. Relative residuals ‖Lx − λx‖∞/‖L‖∞ for TRACEMIN-Fiedler and MC73 FIEDLER
where εout = 10−5

TRACEMIN-Fiedler MC73 FIEDLER
Matrix/Cores 1 8 16 32 1
rajat31 1.1×10−12 1.1×10−12 1.1×10−12 1.1×10−12 3.03×10−9

nlpkkt 9.1×10−6 9.1×10−6 9.1×10−6 9.1×10−6 6.49×10−7

Freescale1 7.5×10−12 7.5×10−12 7.5×10−12 7.5×10−12 1.03×10−7

kktPower 3.1×10−24 3.1×10−24 3.1×10−24 3.1×10−24 4.07×10−8

Table 3. Total time in seconds (rounded to the first decimal place) for TRACEMIN-Fiedler and
MC73 FIEDLER

TRACEMIN-Fiedler MC73 FIEDLER
Matrix/Cores 1 8 16 32 1
rajat31 5.6 1.4 0.7 0.4 81.5
nlpkkt 100.5 24.9 15.3 10.8 83.9
Freescale1 61.5 23.5 16.0 12.5 52.8
kktPower 4.8 1.0 0.7 0.5 341.6

The total time required by TRACEMIN-Fiedler using 1, 8, 16, and 32 mpi pro-
cesses (on 1,1,2,4 nodes, respectively) are presented in Table 3. We note that there
is one core used per mpi processes. We emphasize that the parallel scalability results
for TRACEMIN-Fiedler is preliminary and that there is more room for improvement.
Since MC73 FIEDLER is purely sequential we have used it on a single core. The
speed improvements realized by TRACEMIN-Fiedler on 1, 8, 16, and 32 cores over
MC73 FIEDLER on a single core are depicted in Figure 2, with the actual solve times
and the speed improvement values are given in Tables 3 and 4. Note that on 32 cores,
our scheme realizes speed improvements over MC73 FIEDLER that range between 4
and 641 for our four test matrices. A component of the algorithm that has significant
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Fig. 2. Speed improvement of TRACEMIN-Fiedler compared to uniprocessor HSL MC73 for
four test problems

Table 4. Speed improvement over MC73 FIEDLER (TMC73 FIEDLER/T )

TRACEMIN-Fiedler MC73 FIEDLER
Matrix/Cores 1 8 16 32 1
rajat31 14.5 59.2 116.5 227.5 1.0
nlpkkt 0.8 3.4 5.5 7.8 1.0
Freescale1 0.9 2.2 3.3 4.2 1.0
kktPower 71.2 332.3 501.0 641.4 1.0

influence on the scalability is the sparse matrix-vector multiplication routine. Therefore,
due to the differences in the sparsity patterns, test examples exhibit varying degrees of
scalability.

5 Conclusions

We have presented a new algorithm for computing the Fiedler vector on parallel com-
puting platforms, and have shown its effectiveness compared to the well-known scheme
given by routine MC73 FIEDLER of the Harwell Subroutine Library for computing the
Fiedler vector of four large sparse matrices.
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Abstract. Designing algorithms for data parallelism can create signif-
icant gains in performance on SIMD architectures. The performance of
General Purpose GPUs can also benefit from careful analysis of memory
usage and data flow due to their large throughput and system memory
bottlenecks. In this paper we present an algorithm for template match-
ing that is designed from the beginning for the GPU architecture and
achieves greater than an order of magnitude speedup over traditional
algorithms designed for the CPU and reimplemented on the GPU. This
shows that it is not only desirable to adapt existing algorithms to run
on GPUs, but also that future algorithms should be designed with the
GPU architecture in mind.

1 Introduction

The advent of massively multiprocessor GPUs has opened a floodgate of oppor-
tunities for parallel processing applications, ranging from cutting-edge gaming
graphics to the efficient implementation of classic algorithms [1]. In this paper
please note that we will often refer to the machine containing the GPU as the
“host” and the GPU itself as the “device”.

Figure 1 depicts the structure of the NVIDIA GeForce 8800 series as an ex-
ample of a typical GPGPU (General Purpose GPU) device. The GeForce 8800
contains 16 multiprocessors, each containing 8 semi-independent cores for a to-
tal of 128 processing units. Each of the 128 processors can run as many as 96
threads concurrently, for a maximum of 12,288 threads executing in parallel.
The computing model is SIMD (single instruction multiple data), and the mem-
ory model is a NUMA (non-uniform memory access) with a semi-shared address
space. This stands in contrast to a modern desktop or server PC’s CPU, which is
typically either SISD (single instruction single data) or MIMD (multi-instruction
multiple data), in the case of a multi-processor or multi-core machine. Addition-
ally, from the perspective of the programmer, all memory is explicitly shared
(in multi-threading environments) or explicitly separate (in multi-processing
environments) on a desktop machine.
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Fig. 1. NVIDIA GeForce 8800 Architecture

These differences in processor architectures lead to different programming
models, with different optimal algorithm designs. For an example of an algo-
rithm design under similar architectural constraints, see [2]. Likewise, for a good
introduction to the differences in algorithm analysis for various architectures,
which must take into account not only running time, but also the amount of idle
processing power and the amount of extra work done in a parallel setting over
the best serial algorithms, see [3].

In addition to these considerations, the GPGPU has one more unique con-
straint: the connection bandwidth between the CPU and the GPU is quite lim-
ited compared to the bandwidth of the GPU’s internal memory [4,5]. In fact,
given that the GPU cannot directly access the host’s main memory, hard drives,
or peripherals, and modern hosts can contain multiple interconnected GPU units,
dealing with the GPU can be thought of as distributed computation on a small
local network with the host acting as a control node.

In this paper we present a GPU-based algorithm design for image template
matching, which is a building block for many high-level Computer Vision ap-
plications, such as face and object detection [6,7], texture synthesis [8], image
compression [9,10], and video compression [11,10]. Algorithms of this type are
often infeasibly slow in raw form [12], and there has been much research into
methods for accelerating template matching for various applications.

To date, there have been several attempts at adapting sequential algorithms
to the data-parallel GPU architecture [13,14,15,16] rather than designing with
data-parallelism in mind. In contrast, we designed an algorithm for GPGPU
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execution from the ground up, while analyzing the unique steps taken in the
design process.

1.1 Template Matching Background

Some template matching acceleration methods ignore image information deemed
irrelevant or unnecessary to reduce run time, or make use of statistical analysis
to produce a likely answer, but are unable to guarantee finding the best match
according to the chosen error measure e.g. [17,18,19]. A second set of methods
which has emerged recently makes use of bounds on the error measure to achieve
acceleration without sacrificing accuracy, although the choice in error measures is
somewhat more limited [12,20,21]. Our proposed algorithm falls into this second
set.

Throughout this paper we make use of the l1 norm-based distance measure
(i.e. the sum of absolute differences) between the template and the image sub-
window. We denote the l1 norm of a vector x by |x|.

Let vector x ∈ �n represent the template we are matching. This vector is
formed by concatenating the rows of the template image together into one long
sequence. Let I represent the image we are searching, which is larger in all di-
mensions than the template image. We consider each template-sized subwindow
yi in I a potential match. The subwindows often overlap, and each of them
contains n pixels. Each of these subwindows is converted into a vector using
the same process as for x. For convenience we define Y = {y1, y2, . . . ym} to be
the set of all potential match vectors. In practice, m (the number of potential
matches) is slightly less than the number of pixels in I.

The error for the ith candidate (or sub-window) is: Ei = |x − yi|. Given x
and I, a template matching algorithm attempts to find the yi which minimizes
Ei. In accelerating template matching, we place bounds on the value of Ei,
which we denote as li ≤ Ei ≤ ui. We define those bounds using the triangle
and Cauchy-Schwarz inequalities: |yi| − |x| ≤ |yi − x| ≤ |yi| + |x| Note that if
we define an orthogonal set of masking vectors mj , described in Fig. 2, we can
define a tightening series of bounds on Ei by taking the major diagonal of the
outer product of mj with x and yi to get xj and yj

i , where j is the index of the
masking vector m. This is analogous to the “image strips” of [12]. Using these
values we define a recursive relation on the series of bounds on Ei in Fig. 3.

m0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · ·
m1 1 1 1 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · ·
m2 0 0 0 · · · 1 1 1 · · · 0 0 0 · · · 0 0 0 · · ·
m3 0 0 0 · · · 0 0 0 · · · 1 1 1 · · · 0 0 0 · · ·
...

Fig. 2. The set of masking vectors mj . The length of the sections of 1s and 0s is
typically some constant fraction of image width * image height.
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Fig. 3. Definition of the progressive bounds on Ei

2 Case Study: Full Search and On-Card Memory

We first consider the case of the Full Search Method of template matching, oth-
erwise known as a brute force method. We have selected as that feature set the
pixel values of x and yi. For our purposes, we define Ei as the distance between
the total pixel values of x and yi. The traditional Full Search Method calculates
Ei for all yi ∈ Y , and returns yopt = argminyi Ei. The algorithm is straightfor-
ward: as each Ei is calcuated, the algorithm compares it to a global minimum,
updating as necessary. The first step in adapting an existing serial algorithm for
implementation on a GPU is to analyze the algorithm and determine which parts
(if any) can benefit from parallelization. Our GPU adaptation is very similar to
the original, with the exception that after computing Ei at all locations simu-
latenously, the algorithm uses the “reduce” subroutine [2,16], commonly used in
data parallel environments, to find a minimum or maximum. Given that m is
the number of subwindows, and the template x contains n pixels, this approach
runs in O(mn) time, which comes to ≈ 4 ∗ 1010 operations. GPU implemen-
tation of similar methods has been explored in [16]. The straightforward GPU
implementation should run in O(mn

p + log m) time, where p is the number of
processors, assuming that 1 � n. This bound comes from mn work being done
on p processors, and the reduction step which takes log m time. We present the
actual results in Table 1. Compilation of the CPU code was performed by MS
Visual C++ 2008 with all optimzations turned on, while the GPU code was
compiled by NVIDIA’s nvcc and optimized by open64 [22]. Given the consider-
able differences in architecture, one can see that the ratio of overall runtimes of
the CPU to naive GPU implementation (which we define as “speedup”, S) is
only 23290/3042 = 7.66. Given the number of processing units p is 128, this is
clearly not a cost optimal solution, as it yields an efficiency of .060 (we define
“efficiency” as E = S

p ). The majority of this is due to communication overhead,
as main memory on the GPU is uncached. Experimentation confirms that the
instruction throughput is only .034.
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Most GPGPU architectures include a limited, local, user-controlled cache.
This local cache (which is called “shared memory”) is typically too small to hold
an entire image (in our case it is 16KB in size). Therefore the image must be
loaded a portion at a time, and the threads sharing a given piece of memory
synchronized. The groups of threads which can access a given piece of shared
memory are organized into “blocks”. Threads within a block can typically use
shared memory to communicate and synchronize with one another, but are un-
able to do so (directly) with threads outside of that block. Therefore, the input
data should be broken up according to thread blocks when possible. In the case
of template matching this is relatively easy, given that inputs yi though yi+n are
the only information required to compute Ei through Ei+n. However, the values
yi and yi+1 overlap considerably, leading to a certain amount of replication. The
results of this approach appear in Table 1 as “GPU Shared”. While it repre-
sents a vast improvement, the instruction throughput (processor utilization) is
still only around .5 due to synchronization, bank conflict, and redundant loading
issues.

A fast, cached, read-only memory called “texture memory” is also available
on most GPUs, which in practice operates at nearly the speed of the shared
memory. This memory is effectively a cached version of the the GPU’s main
memory, which becomes read-only to prevent cache inconsistency. Using this
memory eliminates the expensive synchronization step and its associated pro-
cessor idle time. Using the texture memory to hold the template and the image,
we see a speedup of S = 216.89. 1 Furthermore, experimentation yielded the
instruction throughput of this approach to be .966, and given that this method
has only a factor of log m excess computation over the serial algorithm, this
means that theoretical efficiency is near 1. This also gives us our theoretical
run time of O(mn

p + log m). This texture method is fast when compared to Full
Search Methods on the CPU, but performs a great deal of excess computation
when compared to the best serial methods (i.e. accelerated methods), giving it
a low efficiency E = S

p = Ts

pTp
, where Ts is serial execution time, and Tp is par-

allel execution time. In other words, it is not strictly necessary to compute Ei

at all locations. Our algorithm attempts to address this fact, while maintaining
efficient parallel execution.

Table 1. Run time in ms for Full Search Method template matching on a 512x512
image and a 64x64 template. Times are in ms.

Run Time Copy Time
CPU 23290 N/A
GPU 3042 217.7
GPU Shared 200.68 217.7
GPU Text. 107.38 2.361

1 Noting again that p = 128, this would appear to be super-linear, especially con-
sidering that the clock speed of the GPU is considerably slower than that of the
CPU.



Applying Parallel Design Techniques to Template Matching with GPUs 461

The third column in Table 1 represents the amount of time required to copy
the image data from the host to the GPU under these various approaches. As
can be seen, the copy time of this step cannot be ignored. We further explore
this issue in Table 2, where we compare the memory allocation and copy times
for varying sizes of data. We conclude from this that it may be beneficial to
perform some tasks serially on the host if they can reduce the amount of data
that must be transferred to the GPU.

Table 2. Average results over 1000 trials of basic CUDA memory operations. “malloc”
and “malloc 2D” refer to allocating an array and a byte aligned 2 dimensional array
on the GPU, respectively. “copy” and “copy 2D” refer to copying data from the CPU’s
global memory to the GPU’s global memory into the respective data structures. The
first column refers to the amount of data used for that experiment, in bytes. All times
are in ms.

size malloc copy malloc 2D copy 2D
4 ∗ 103 0.067567 0.005253 0.116700 0.014929
4 ∗ 105 0.118616 0.291486 0.122187 0.296680
4 ∗ 106 0.141160 2.576290 0.180513 2.713126
4 ∗ 107 0.241793 23.344471 0.629537 24.801236

3 GPU Acceleration Method

In designing the algorithm in Figure 4, we wanted to off-load as much of the
computation that could be conducted in parallel onto the GPU as possible,
while still minimizing the amount of memory transfer that had to be done. In
addition, we wanted to minimize the total work done by the algorithm, to reduce
the level of excess computation as compared to the best serial algorithms. Lastly,
but with equal importance, we needed to use data parallel design methodologies
in the algorithm.

The unique points of our algorithm when compared to the Full Search Method
are a) the combination of the upper bounds of [21] with the very fast bounding
methods of [12], and more importantly b) the division of steps between the CPU
and GPU such that the CPU deals with the largest amount of memory, and
the largest number of subwindows, while also doing as little real computation
as possible, leaving the GPU to do extensive computation on only a minimal
number of subwindows. The second point has the combined effect of minimizing
memory transfer and excess computation.

Essentially, the algorithm begins by performing an initial scan of the data
on the CPU, performing approximately 5 operations per subwindow to find ini-
tial upper and lower bounds on the match value of each location in the image
using the base case of Fig. 3, as explained in Sectin 1.1. The masking vectors
(or image-strips) were chosen in particular because they reduce the amount of
excess computation over other bounding methods used in template matching,
i.e. [21,20,17]. Every time the bounds of yi are updated, the computed values
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ParallelTemplateMatch(x, Y )
1 InitBounds(Y, x)
2 Eguess, ybest ← FindBestInitMatch(Y, x)
3 Y ← Prune(Y,Eguess)

� From here onwards, the code is executed on the GPU by many
� threads in parallel.

4 while |Y | > 1
5 do

� Tighten the bounds on the remaining members of Y .
6 i ← ThreadID
7 UpdateBounds(yi, x)
8 if li < Eguess

9 then
10 if ui < Eguess

11 then li, ui ← ComputeE(yi, x)
12 Eguess ← ui

13 ybest ← yi

14 else break
15 if Ei < Eguess

16 then Eguess ← Ei, ybest ← yi

17 return ybest, Eguess

Fig. 4. The main method of our GPU based template matching algorithm

can be reused directly for computing Ei. Reduction of excess computation is es-
pecially important in GPU programming, as it is replicated over each processor.

The next step is a single run of the “Prune” method (see Figure 5) on the
CPU before beginning the run of the algorithm on the GPU. The Prune step
reduces execution time because it drastically reduces the number of locations
that the GPU must consider (and therefore the amount of data transfer from
host to GPU), often by 99% or more. Yet this step does only a very small
fraction of the overall work of the algorithm (on the order of a single comparison
operation per yi). Experimentation has shown, however, that as image noise
levels increase, fewer candidates are pruned, resulting in more calculations to be
done, which requires the remaining calculations to be done on the GPU versus
the CPU.

Some of these initial steps could benefit from parallel execution, except that
in our experiments the cost of transferring the full image meta-data from host
to GPU memory more than cancels the benefits. These steps could, however,
be implemented to run on a multicore CPU and one should expect to see a
significant increase in speed. The pruning method is examined in more depth in
Figure 5. All steps after this point take place on the GPU.

We chose to transfer to GPU at this point because the workload increases
dramatically here, as the algorithm begins comparing pixel values directly to
tighten the bounds on the individual yi. The pixel values of the yi are held in
texture memory as opposed to shared memory, as are those of the template,
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FindBestInitMatch(Y, x)
1 lmin , ymin

2 for yi ∈ Y
3 do
4 if li < lmin

5 then lmin ← li
6 ymin ← yi

7 lmin, umin ← ComputeE(ymin, x)
8 return lmin, ymin

Prune(Y, Eguess)
1 for yi ∈ Y
2 do
3 if li > Eguess

4 then Y ← {Y − yi}
5 return Y

Fig. 5. The relevant subroutines called by our main method

since they are not modified during the run of the algorithm. This allows for a
great increase in access and copy speeds. Furthermore, very little data is actually
shared between concurrent threads at run time. This, combined with the very
limited size of the shared memory, led to our decision to only use it to store
pointers to the candidates. The upper and lower bounds of the candidates are
held in global memory initially, but since we have chosen a one-to-one candidate-
to-thread mapping, each thread copies the bounds to local memory (registers)
and performs their calculations there, avoiding costly global memory access.
With the CUDA architecture, threads are organized into blocks that can be
of one, two or three dimensions in geometry. These blocks are then organized
into grids that can likewise be one, two, or three dimesions. Our grids of thread
blocks are two-dimensional grids consisting of three-dimensional thread blocks.
Experimentally we did not notice any significant difference in performance due to
differences in grid and thread block geometries. The sizes of our grids and blocks
were determined based upon the size of the input data. Although branching is
typically avoided in SIMD programming, we stop those threads whose candidates
are no longer possible matches (that is, li > Eguess). These threads wait at a
synchronization barrier, allowing the multiprocessor to allocate more time to
the threads that still contain potential matches. Each thread then compares
its current distance value against a global minimum to allow for a degree of
synchronization between multiprocessors.

The combination of these steps to reduce the memory footprint, memory copy
time, and execution workload on the GPU result in our algorithm’s accelerated
performance. This design is scalable and not hardware specific, and can be ported
to any CUDA GPU with similar results.
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Fig. 6. The standard images “pentagon” (512x512), “airport” (512x512), and “man”
(1024x1024)

Fig. 7. The digital camera images “second” (2306x1535) and “rob ref” (3072x2304)

4 Results

Our experimental design consisted of averaging the results of running our al-
gorithm over a number of trials with a variety of images of different sizes and
resolutions. We first tested with a few standard images (“pentagon” at 512x512,
“airport” at 512x512, and “man” at 1024x1024), and then considered a few im-
ages captured on a modern digital camera (“second” at 2306x1535 and “rob
ref” at 3072x2304. The standard images can be seen in Figure 6, and the digital
camera images can be seen in Figure 7.

We extracted a template from each and tested with noise levels ranging from
noiseless (σ = 0) to very noisy (σ = 70). We then ran the Full Search Method
(using textures as described above) for the same number of trials on the same
GPU using the same input.

Our experimentation yielded the following performance results: When com-
paring the performance of our algorithm to the Full Search Method on small
images (512 x 512) at zero to low noise levels, our algorithm has better perfor-
mance than the Full Search Method. However, as the amount of noise increases to
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extreme levels, our algorithm begins to slow down, while the Full Search Method
remains unchanged. This is due to the fact that at high noise levels, the Prune
step executed on the CPU eliminates fewer candidates and effectively becomes
excess computation or overhead instead of contributing efficiently to returning
a result. The results for these experiments run with the pentagon and airport
images are shown in Figure 8, where we report on the speedup factor compared
to increasing noise levels.
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Fig. 8. Ratio of speedup versus noise level σ of our algorithm for different images of
different sizes

When comparing our algorithm’s performance to that of the Full Search
Method on medium to large images one can see the tremendous performance
increase of our algorithm. With an image size of 1024x1024 and a template size
of 256x256, our algorithm experiences a 12 times performance increase over the
Full Search Method. Note that the size of the template chosen corresponds to the
man’s face in the image, which is a commonly used template matching method.
The comparison of the performance increase for the 1024x1024 man image to
the performance increase of the smaller 512x512 images can also be seen in Fig-
ure 8. Furthermore, with a noiseless image size of 2306x1535 and a template size
of 304x280, our algorithm performed 7 times faster, and nearly 39 times faster
with a noiseless 3072x2304 image and a template size of 584x782 (again with
the templates corresponding to faces in their respective images). The results for
the runnning times on these large images are summarized in Table 3.

4.1 Analysis

The worst case run time of the algorithm is actually no better than the naive al-
gorithm described in Section 2. In practice, however, the expected run time of the
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Table 3. The images “second” and “rob ref” were taken with a modern digital camera,
and are of size 2306x1535 and 3072x2304 respectively. These larger images allow for
comparatively large improvements in run time. The run times for the Parallel and Full
Search algorithm implementations are expressed in milliseconds.

Image Noise Parallel Full Search Improvement
second 0 3979.879 27930.175 7.018
rob ref 0 6123.839 237215.515 38.736

algorithm is significantly lower than this. This is not uncommon in accelerated
template matching techniques, GPU or host based [12,20,21].

Along similar lines, the fact that our algorithm does not make use of a great
deal of the GPU during the final stages of its runtime to avoid excess comptuation
means that the instruction throughput is actually quite low (around .05). This
has positive and negative consequences. The obvious negative is that much of
the GPU is idle, and current GPUs do not allow multiple host threads to use the
GPU simultaneously. The positive consequence is that it means the algorithm is
very efficient, and since next generation GPU architectures do allow multiple host
threads to use the GPU simultaneously [23,24], our algorithm will leave more of
the GPU open to other threads. This would be advantageous in computer vision
settings where template matching is used as a low level algorithm since it would
“leave room” on the GPU for higher level processes.

5 Conclusions and Future Work

We have shown here that while adapting existing algorithms to run on GPUs
can provide considerable increases in performance, an algorithm that is designed
specifically to run on a GPU can have a nearly 39 times performance increase
over algorithms that are simply adapted to run on GPUs. We have shown that
in addition to considerations of data parallel algorithm design and analysis, one
must also carefully consider the unique memory structure and transfer costs of
GPUs to fully harness their power. That power is increasing, with CPU and
GPU manufacturers preparing to release next generation GPU architectures,
which will include features such as full C++ support, error correcting memory,
double precision support, and a chip-wide high-speed communication [23,24].

The work done here could very well be extended to multimedia database
searching, as our algorithm’s ability to eliminate many candidates before calling
the GPU would allow searching a very large database without overwhelming the
GPU’s limited memory. Additionally, using a clever memory copy algorithm,
one could adapt this algorithm to search extremely large images, such as those
generated by astronomical surveys, by loading only image regions representing
likely matches onto the GPU.



Applying Parallel Design Techniques to Template Matching with GPUs 467

References

1. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU com-
puting. Proceedings of the IEEE 96(5), 879–899 (2008)

2. Hillis, W.D., Steele, J.G.L.: Data parallel algorithms. Commun. ACM 29(12), 1170–
1183 (1986)

3. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2002)

4. NVIDIA Corp.: NVIDIA CUDA programming guide v2.3.1 (August 2009)
5. AMD Inc.: ATI stream computing user guide rev1.4.0a (April 2009)
6. Jin, Z., Lou, Z., Yang, J., Sun, Q.: Face detection using template matching and

skin-color information. Neurocomput. 70(4-6), 794–800 (2007)
7. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)
8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In:

Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 341–346. ACM, New York (2001)

9. Luczak, T., Szpankowski, W.: A suboptimal lossy data compression based on ap-
proximate pattern matching. IEEE Transactions on Information Theory 43(5),
1439–1451 (1997)

10. Rodrigues, N., da Silva, E., de Carvalho, M., de Faria, S., da Silva, V.: On dic-
tionary adaptation for recurrent pattern image coding. IEEE Transactions on Im-
age Processing 17(9), 1640–1653 (2008)

11. Li, R., Zeng, B., Liou, M.: A new three-step search algorithm for block motion
estimation. IEEE Transactions on Circuits and Systems for Video Technology 4(4),
438–442 (1994)

12. Tombari, F., Mattoccia, S., Stefano, L.D.: Full-Search-Equivalent pattern match-
ing with incremental dissimilarity approximations. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(1), 129–141 (2009)

13. Abate, A., Nappi, M., Ricciardi, S., Sabatino, G.: GPU accelerated 3D face reg-
istration / recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642,
pp. 938–947. Springer, Heidelberg (2007)

14. Huang, J., Ponce, S.P., Park, S.I., Cao, Y., Quek, F.: GPU-accelerated computa-
tion for robust motion tracking using the CUDA framework. In: 5th International
Conference on Visual Information Engineering, VIE 2008, pp. 437–442 (2008)

15. Stefano, L.D., Mattoccia, S., Tombari, F.: Speeding-up NCC-based template
matching using parallel multimedia instructions. In: Proceedings of Seventh In-
ternational Workshop on Computer Architecture for Machine Perception, CAMP
2005, pp. 193–197 (2005)

16. Massachusetts Institute of Technology: IAP09 CUDA@MIT 6.963 (2009)
17. Goshtasby, A., Gage, S.H., Bartholic, J.F.: A Two-Stage cross correlation ap-

proach to template matching. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-6(3), 374–378 (1984)

18. Rosenfeld, A., Vanderburg, G.: Coarse-Fine template matching. IEEE Transactions
on Systems, Man and Cybernetics 7(2), 104–107 (1977)

19. Pele, O., Werman, M.: Robust Real-Time pattern matching using bayesian sequen-
tial hypothesis testing. IEEE Transactions on Pattern Analysis and Machine In-
telligence 30(8), 1427–1443 (2008)



468 R.F. Anderson, J.S. Kirtzic, and O. Daescu

20. Hel-Or, Y.: Real-time pattern matching using projection kernels. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27(9), 1430–1445 (2005)

21. Schweitzer, H., Anderson, R.F., Deng, R.A.: A near optimal Acceptance-Rejection
algorithm for exact Cross-Correlation search. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, Kyoto, Japan (2009) Poster Session

22. Murphy, M.: NVIDIA’s experience with open64. In: Open64 Workshop at Intl.
Symposium on Code Generation and Optimization (CGO), Boston, Massachusetts,
United States (April 2008)

23. NVIDIA Corp.: NVIDIAs next generation CUDA compute architecture: Fermi
(September 2009)

24. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a many-core x86 architecture for visual computing. ACM
Trans. Graph. 27(3), 1–15 (2008)



Author Index

Agullo, Emmanuel 129
Antas, Rafael 327
Anzt, Hartwig 58
Aveleda, Albino 293, 306

Bahi, Jacques M. 352
Baker, Allison H. 102
Balsa, Carlos 116
Blanco, Hector 366
Boman, Erik G. 32
Bonacic, Carolina 222
Bouwmeester, Henricus 129
Braganholo, Vanessa 327
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Giné, Francesc 366
Grimes, Roger 71
Guivarch, Ronan 116, 408

Heiss, Hans-Ulrich 314
Heroux, Michael A. 32
Heuveline, Vincent 58, 394
Hisada, Toshiaki 28
Hurault, Aurélie 340
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