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Preface

The 2010 Asian Conference on Computer Vision took place in the southern
hemisphere, in “The Land of the Long White Cloud” in Maori language, also
known as New Zealand, in the beautiful town of Queenstown. If we try to segment
the world we realize that New Zealand does not belong officially to any continent.
Similarly, in computer vision we often try to define outliers while attempting
to segment images, separate them to well-defined “continents” we refer to as
objects. Thus, the ACCV Steering Committee consciously chose this remote
and pretty island as a perfect location for ACCV2010, to host the computer
vision conference of the most populated and largest continent, Asia. Here, on
South Island we studied and exchanged ideas about the most recent advances in
image understanding and processing sciences.

Scientists from all well-defined continents (as well as ill-defined ones) sub-
mitted high-quality papers on subjects ranging from algorithms that attempt
to automatically understand the content of images, optical methods coupled
with computational techniques that enhance and improve images, and capturing
and analyzing the world’s geometry while preparing for higher-level image and
shape understanding. Novel geometry techniques, statistical-learning methods,
and modern algebraic procedures rapidly propagate their way into this fascinat-
ing field as we witness in many of the papers one can find in this collection.

For this 2010 issue of ACCV, we had to select a relatively small part of
all the submissions and did our best to solve the impossible ranking problem
in the process. We had three keynote speakers (Sing Bing Kang lecturing on
modeling of plants and trees, Sebastian Sylwan talking about computer vision
in production of visual effects, and Tim Cootes lecturing about modelling de-
formable object), eight workshops (Computational Photography and Esthetics,
Computer Vision in Vehicle Technology, e-Heritage, Gaze Sensing and Inter-
actions, Subspace, Video Event Categorization, Tagging and Retrieval, Visual
Surveillance, and Application of Computer Vision for Mixed and Augmented
Reality), and four tutorials. Three Program Chairs and 38 Area Chairs finalized
the decision about the selection of 35 oral presentations and 171 posters that
were voted for out of 739, so far the highest number of ACCV, submissions.
During the reviewing process we made sure that each paper was reviewed by
at least three reviewers, we added a rebuttal phase for the first time in ACCV,
and held a three-day AC meeting in Tokyo to finalize the non-trivial acceptance
decision-making process.

Our sponsors were the Asian Federation of Computer Vision Societies
(AFCV), NextWindow—Touch-Screen Technology, NICTA-Australia’s Infor-
mation and Communications Technology (ICT), Microsoft Research Asia,
Areograph—Interactive Computer Graphics, Adept Electronic Solutions, and 4D
View Solutions.



VI Preface

Finally, the International Journal of Computer Vision (IJCV) sponsored the
Best Student Paper Award.

We wish to acknowledge a number of people for their invaluable help in
putting this conference together. Many thanks to the Organizing Committee for
their excellent logistical management, the Area Chairs for their rigorous evalu-
ation of papers, the Program Committee members as well as external reviewers
for their considerable time and effort, and the authors for their outstanding
contributions.

We also wish to acknowledge the following individuals for their tremendous
service: Yoshihiko Mochizuki for support in Tokyo (especially also for the Area
Chair meeting), Gisela Klette, Konstantin Schauwecker, and Simon Hermann
for processing the 200+ Latex submissions for these proceedings, Kaye Saunders
for running the conference office at Otago University, and the volunteer students
during the conference from Otago University and the .enpeda.. group at The
University of Auckland. We also thank all the colleagues listed on the following
pages who contributed to this conference in their specified roles, led by Brendan
McCane who took the main responsibilities.

ACCV2010 was a very enjoyable conference. We hope that the next ACCV
meetings will attract even more high-quality submissions.

November 2010 Ron Kimmel
Reinhard Klette
Akihiro Sugimoto
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Abstract. The two view triangulation problem with Gaussian errors,
aka optimal triangulation, has an optimal solution that requires finding
the roots of a 6th degree polynomial. This is computationally quite de-
manding for a basic building block of many reconstruction algorithms.
We consider two faster triangulation methods. The first is a closed form
approximate solution that comes with intuitive and tight error bounds
that also describe cases where the optimal method is needed. The second
is an iterative method based on local sequential quadratic programming
(SQP). In simulations, triangulation errors of the approximate method
are on par with the optimal method in most cases of practical interest
and the triangulation errors of the SQP method are on par with the op-
timal method in practically all cases. The SQP method is faster of the
two and about two orders of magnitude faster than the optimal method.

1 Introduction

Triangulation, finding the point in space that projects to given target points in
images of known cameras, is a fundamental operation in 3D reconstruction. Usu-
ally the target points are inaccurate measurements. Because of this inaccuracy,
the backprojection rays from the cameras will not intersect exactly and the point
has to be chosen according to some criterion. There are many variations on the
theme, such as triangulation with different error metrics [I], triangulation for
special camera configurations, such as the three view case [2], and triangulation
by tensor approximations [3]. Our concern here is two view triangulation, which
is the most basic case. As such, it has many solutions. For example, the direct
linear transform method finds the point by minimizing algebraic error for the
projection equations and the midpoint method finds the midpoint of the shortest
segment between the backprojection rays. [4]

Maximum likelihood triangulation finds the point most likely to generate the
observations with a given error model. For zero-mean isotropic Gaussian errors,
this is the point for which the sum of squared projection errors to the observa-
tions is minimized. Hartley’s and Sturm’s [5] optimal method solves this problem
in the two view case. The method requires finding the roots of a 6th order poly-
nomial, but there are special cases, such as pure translational motion between
the cameras, where finding the roots of a lower degree polynomial or even a
linear equation suffices. One may wonder if solving a 6th degree polynomial is
really necessary in the general case. Unfortunately, it is [6].

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITII, LNCS 6494, pp. 1 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Root finding for high order polynomials is a relatively expensive operation
considering the ubiquity of two view triangulation. In principle, a good approx-
imate or iterative solution can be much faster than the optimal solution while
retaining optimal or near-optimal accuracy in situations of practical interest.
In this paper, we consider two novel methods. The approximate method solves
a local approximation of the optimal triangulation problem in closed form and
the local SQP method is an iterative method based on sequential quadratic pro-
gramming. Both methods perform as well as the optimal method in most cases
of practical interest while being substantially faster. We also analyze the cases
where the optimal method gives better results.

2 Optimal Triangulation

We start by discussing the optimal triangulation method. Our treatment here
differs slightly from the original [5], but it leads to an equivalent method in fewer
steps. The resulting method resembles the approximate method more closely,
which helps in comparing the two. We assume that the reader is familiar with
the relevant background, e.g. [5] or chapters 9 and 12 of [4], and we also try to
follow the notation of the references as closely as possible.

In the optimal triangulation problem we have two cameras and two observed
projections of an unknown point and the goal is to find the point whose projec-
tions minimizes the squared distances to the observations. One way to approach
this problem is to try to find the point directly in space. However, the solution
is easier using the epipolar constraint. Consider the case of two cameras and one
point in space. The camera centers and the point define a plane, called an epipo-
lar plane. All epipolar planes form a pencil around the axis connecting the two
camera centers. The planes cut the camera images on a pair of corresponding
lines, called epipolar lines. The projections of all points on an epipolar plane
fall on these lines. Thus, only image points on corresponding epipolar lines have
coplanar backprojection rays that intersect in space.

As is well known, the epipolar constraint can be expressed algebraically in
terms of the image points x = (z1, 22, x3) in the first image and x’ = (2, 25, %)
in the second image in homogeneous coordinates as

xTFx =0 (1)

where F € R3*3 is the fundamental matriz between the images. [7] From here
on, we will denote analogous objects in the two views with the same symbol
except with an apostrophe marking objects related to the second view. If x is
a point in the first image, then Fx is the corresponding epipolar line in the
second image, and analogously for x’ and F7x’. The matrix F is of rank 2 and
its right null space corresponds to the projection of the second camera center
in the first image and the left null space analogously to the the projection of
the first camera center in the second image. The null spaces considered as image
points are called epipoles and are denoted by e and e’. All epipolar lines contain



Approximate and SQP Two View Triangulation 3

the epipoles. The epipolar line corresponding to x in the same image is given by
[e] xx and analogously for the second image.

In terms of the epipolar constraint, the optimum triangulation problem is
to find the closest exactly triangulable image points X and X’ to the observed
projections x and x/, i.e.

min d(x,%)? + d(x',%)> subject to *TFx=0 (2)

where d is the Euclidean distance. The resulting minimum is the projection error
of the triangulated point. The points X and X’ can be thought of as optimal
corrections to x and x’ so that they can be triangulated exactly. [§] We will not
discuss the linear triangulation procedure to compute the final 3D point, see e.g.
[5], but concentrate instead on the correction procedure before the triangulation.

The closest point on an epipolar line to an observation determines the min-
imum error for all points on that line. To find the nearest points, it suffices to
find the pair of corresponding epipolar lines that minimizes the sum of squared
distances to the observations. This can be done by finding an expression for
the error in terms of an epipolar line, parameterizing the epipolar lines, and
minimizing the error using this parameterization.

Suppose we have a line 1 = (I3, 12, 13) and a point x in homogeneous form. The
distance between 1 and x is |x”1| when [? + 12 = 1 and 23 = 1. For general lines
and points the distance is |x”1]/||z3I1||, where I = diag(1,1,0), and

1"xxT1

- 3

17 (221)1 )
is the squared distance. A point p in the first image specifies the pair of epipolar
lines [e]xp and Fp. The error for these lines is

(p) = pllefxx’le]xp  p"F'x'xTFp _ p"Ap  p’Cp n
pTlell (z31)[e]xp PTFT(z#1)Fp p"Bp p’Dp

The parameterization by a point in the first image is not that useful for opti-
mization, because all points on an epipolar line give the same error. Choosing
just one point on each epipolar line by letting p = x + td, where d is a direction
perpendicular to the epipolar line corresponding to x, results in

¢2(x + td) — xT Ax + 2tdT Ax + t2dT Ad n xTCx + 2tdTCx + t2dTCd (5)
xTBx + 2tdTBx + t2dTBd = xTDx + 2tdTDx + t2dTDd
The minima of (&), a sum of two quadratic rational functions, can be found by
differentation. Note, that due to the special choice of d some of the terms vanish,
yielding the final form (8). The global minimum of (&) occurs at one of the real-
valued zeros of a 6th degree polynomial or at ¢ = oo. The polynomial can be
obtained easily from (Bl using a symbolic mathematics package. The error at
infinity is e?(d). Once the minimizing ¢ is found, the closest points X and X’ to x
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and x’ on the corresponding epipolar lines [e]« (x + ¢td) and F(x+td) (or [e]«d
and Fd for the minimum at infinity case) are the globally optimal solution to
[@). Finally the pair %, %’ can be triangulated exactly using the linear method.
In summary, we have the following procedure.

Correction Procedure for Optimal Triangulation. Given observed points x and x’
in two views and the fundamental matrix F between the views together with the
epipole e in the first view, find points % and %’ that minimize d(x, %)? +d(x’,x’)?
subject to X'TFx = 0.

1. Let
A = [e]lxx"[e] B = [e][(s3D)[e]x d=
C=FTx'xTF D = F (2 I)F (7)

2. Find the finite ¢ that minimizes

t2dT Ad xTCx + 2td"Cx + t2d"Cd

2
td) =
) = 1By 1 2dTBd T xTDx + 26d7Dx + 2d7Dd

(®)

by solving a 6th order polynomial and checking the values at real roots.
3. If
d”’Ad d’cd

2
e“(x +td) < d”Bd + dTDd (9)

set X and X’ to the nearest points to x and x’ on the lines [e]« (x + ¢td) and
F(x + d), respectively. Otherwise, use the lines [e]xd and Fd instead.

3 Approximate Triangulation

The optimal solution is quite demanding from a computational point of view.
One option is to simplify the problem and to solve a closely related easier prob-
lem instead. For example, most numerical iterative processes repeatedly solve
locally linearized versions of nonlinear problems. Here we consider an approxi-
mate method that solves a related easier problem. First, consider the geometry
of optimal triangulation. In every optimal solution, the optimal point must be
the closest point to the observation on an epipolar line. The segment connecting
the closest point on a line to a point is perpendicular to that line, so the closest
point X, the observed point x and the epipole e form a right-angled triangle. By
Euclid II1.21, the locus of points X that produce a right-angled triangle together
with e and x is the circle with the segment from e to x as a diameter (Fig. [I).

The circle containing the optimal solution can be approximated by its tangent
through x in the neighborhood of x. The distance along the tangent is a good ap-
proximation to the actual distance when e is relatively farther from x than X is.
The approximate method minimizes the squared distances along the tangents. Let
d and d’ be unit length direction vectors of the circles’ tangents through x and x’.
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Fig. 1. Left: Locus of solutions to the optimal triangulation problem in one image. In
the other image the situation is analogous. All solutions lie on a circle connecting the
observation and the epipole. Right: Geometric relationship between the true error e
and the approximate error ¢ minimized in the approximate method.

Normalize the points so that 3 = 25 = 1. Now, x + td is ¢t units away from x,
x' 4+ t'd’ is t’ units away from x’, and the epipolar constraint is satisfied, iff

xTFx + tx'TFd

"+ t'd)TF td)=0 < t' =—
(' + ¢'d) F(x + td) d'TFx + td'TFd

(10)

For given values of ¢ and ¢/, the approximate error is t? + t'2. The minimum
approximate error for points on the tangents is the global minimum of

2
Trx +tx'TFd
2+ ¢2 =2 x 11

+ T\ arFx + tdTRd (11)

which can be found at one of the real roots of a 4th degree polynomial. These
roots have closed form expressions and can be found with the approximately the
same amount of computation in all cases. Picking the nearest points to x and x’
on the epipolar lines corresponding to the minimum further decreases the error.
This gives the following procedure.

Approximate Correction Procedure for Triangulation. Given observed points x
and x’ in two views and the fundamental matrix F between the views together
with the epipoles e and €', find points X and X’ that approximately minimize
d(x,%)? + d(x',%")? subject to X'TFx = 0.

1. Normalize x and x’ so that 3 = 4 = 1 and let

!

o 2

_ i[e]xx d = N[e’]xx
1 X[e] x| T[] x|
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2. Find t that minimizes

2
.2 xTFx + txT'Fd
dTFx + td’TFd

The minimum occurs at one of the real roots of
d3t* 4 3cd®t® 4 3c2dt? + (2 + b?c — abd)t + abe — a*d

where ¢ = x'TFx, b =xTFd, ¢ = d7Fx, and d = d’"Fd.
3. Set x and X’ to the nearest points to x and x’ on the lines [e]« (x + td) and
F(x + td), respectively.

3.1 Theoretical Performance Bounds

For an approximate method to be useful it must have some guarantee on the
quality of approximation. First, consider the method in the limit as the approxi-
mation gets closer to the actual error. Denote by d the distance from x to e and
by e the distance from x to the epipolar line through x + td. Connect x + td by
a segment to e. Divide the segment into two parts by a perpendicular line to x
and let a and b be the lengths of the parts (Fig.[Il). By equality of areas and by
the Pythagorean theorem e(a + b) = dt and d? + t*> = (a + b)?. We have

2 t? 2 ¢
T lhwar © Tty (12)
Now e — t? as d — oo. The optimal method minimizes
2 2
62+6/2:1+(t/d)2+1+(t//d/)2*>t2+tl2 (13)

as min(d, d’) — oco. The approximate method converges to the optimal method
when both epipoles move to infinity. Epipoles at infinity is a typical case that
occurs with parallel, non-convergent cameras, for example.

Next, we consider approximation bounds. Denote by ¢ and ¢ the case with
minimum approximate error, by € and €’ the resulting final error, and by é, &
the optimal error. The approximate error corresponding to the optimal solution
bounds the minimum approximate error from above, so that

) ) 52 | 512
5 e € e“te
2?22 < + < =B (14

“1-(e/d)? 1—(&'/d)? — 1—(é?+¢é?)/min(d,d")? (14)
where the latter bound is valid, when é2 + ¢ < min(d,d’)?. The approximate
error quickly converges to the optimal error, when the maximum error in the
images decreases or the minimum distance to an epipole increases.
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Picking closest points on the epipolar lines also decreases the error and makes
the method more accurate. The maximum error attainable given é2 4+ ¢é’? bounds
the final error from above for any particular case. Thus,

2 2 B
24+ 6% < max + =
T 242<Bl + (t/d)2 1+ (t'/d')? 1+ B/(d?+d?)

é2 +é/2

1 1
1 _ 52 | A2
+ (d2+d’2 min(d,d’)2>(e +&%)

The maximization in (IH]) requires a bit of calculus. The effect of picking closest
points on epipolar lines is most prominent in symmetric cases, where the epipoles
are outside the images at approximately the same distance. In these cases it
increases the effect of increasing the distance to epipoles by a factor of v/2. As
an example, a pair of slightly convergent cameras is such a symmetric case.

In summary, the approximate method is close to optimal when the optimal
error is small compared to the distances from the observed points to the epipoles
and performs best, when the observations are almost equidistant from epipoles.
The worst case bound is ([I6]). Worst cases occur when the error is concentrated
in one image in the optimal solution. Intuitively this is not very likely.

(15)

(16)

4 Local SQP Correction

The two previous methods were tailored specifically for the optimal triangulation
problem, but it can also be tackled fairly easily using standard numerical tools.
We consider a local sequential quadratic programming (SQP) solution to (@)). In
short, we solve , ) .
S o ! S/ I
V(d(%,x) —I—C{(l); ,)f) - AXXTFR)| 0 (17)
X" Fx

for x, X', and A\ using Newton’s method. The gradient is taken with respect to
% and X', of course. The SQP method converges quickly when the iterations are
started near a solution or when the problem is otherwise sufficiently simple. For
more details on SQP, see e.g. Chapter 18 of [9]. In practical cases of two view
triangulation the optimal triangulation error should be small, so the original
observed points provide a good starting point for the iterations. Normalizing
input points so that x3 = 25 = 1 and optimizing over the first two coordinates
gives the method below.

SQP Correction Procedure for Triangulation. Given observed points x and x’
(with zg = 2 = 1) in two views and the fundamental matrix F between the views,
find points x and X’ that minimize d(x,%)? + d(x’, x)? subject to X7 Fx = 0.
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1. Let x3 = x, %} =%/, Ay =0.
2. Repeat for k =1,2,...: Solve the SQP step from

21 7>\kFT 7FT)A(;€ A)A(k Q(ch — X)
~MF 21 —Fxp | [A%, | = - [2(%, — X)) (18)
x'F x}[FT 0 Ak+1 T Fxy,

where all non-scalar component expressions are finally truncated to 2 x 2
matrices or 2-vectors (to remove the constant homogeneous part). Set

Rpp1 = R+ A%y Ry, = X + AR, (19)

Stop, when d(Xp11,%k)? + d(X), 1, %)) < e
3. The corrected points are Xj41 and )E;H.

The SQP method requires solving a 5 x 5 linear system. For a practical im-
plementation, the solution of (I8) can be obtained symbolically with a block
LDU-decomposition of the matrix. Multiplication by the inverse of this decom-
position is easy to turn into code, as the decomposition leaves one non-trivial
2 x 2 matrix and 1 scalar on the diagonal and the rest of the factors are very easy
to invert. A practical implementation should also have safeguards against singu-
lar systems for the step, e.g. at the epipoles, and slow convergence, though both
of these occur extremely rarely in practice. In empirical tests, we used e = 1076
for the stopping criterion.

5 Empirical Performance Evaluation

We ran simulations comparing the optimal, approximate and SQP methods on
the exact same data to determine their performance differences in practice. It is
of course impossible to cover all possible cases in simulation, so we focused on
three types of situations with varying parameters. The first is turntable motion
(A), where the cameras converge on an object from a circle surrounding it, the
second is translation (B), where the camera centers are not coplanar, and the
third is an asymmetric situation (C), where the camera centers are coplanar and
the second camera is rotated toward the first camera. In situation (C) one of
the epipoles is at infinity. Finally we tested the methods on real world data to
validate the simulation results.

5.1 Simulation Setup

We implemented the methods in MATLAB and in C/C++ using the MEX
interface and tested their performance on simulated data. In test set (A) two
normalized cameras observe the unit ball from a circle of radius 2. The cameras
converge on the origin and there are five different positions of the second camera.
The camera centers are situated on the circle 11.25° (A1), 22.5° (A2), 45° (A3),
90° (A4), and 180° (A5) degrees apart. In set (B), the second camera is two units
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Fig. 2. The test setup for empirical performance evaluation as seen from above. The
cameras observe points picked at random in the unit ball with a random observation
error. The reference camera (filled) stays in the same place and the position of the
second camera varies. The test sets consist of turntable motion (A), pure translation
(non-coplanar) (B), and an asymmetric case (C).

behind the first camera and displaced by 0 (B1), 1 (B2), and 2 (B3) units to the
side. In test set (C), the second camera is 4 units to the side and pointed at the
first camera. Fig. [2] depicts the situation from above. In addition, we tested cases
where the camera centers are coplanar and the principal directions are parallel
to check that the methods are identical in the case when epipoles are at infinity.
This proved to be the case, so these results are not reported.

For the observations, we generated N = 100000 points at random from an uni-
form distribution on the unit ball using rejection sampling: Pick a point at uni-
form random over the cube [—1, 1]? and discard it if it is outside the unit ball. The
cameras then observe the 3D points with zero-mean isotropic Gaussian noise of de-
viation ¢ from 0 to 0.2 added to the projections. The range is quite extreme as in
typical application cases o < 0.01, but the results will show where the approximate
method breaks. Theoretically the total squared displacement in the test cases is a
x? random variable with 4 degrees of freedom scaled by o2. The total mean squared
displacement of an observation pair is 402 and in a single image the mean squared
displacement is 202.

In the tests, we then used the optimal, approximate and SQP algorithms to cor-
rect the noisy observations using the exact same data and observed the triangula-
tion error, the sum squared distances to the projections, and the estimation error,
the sum of squared distances to the error-free projections.
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Fig. 3. Triangulation error vs. noise level. Cases A1-A5 are shown on the left with the
approximate method dashed. Case A5 has the smallest error. Cases B1-B3 and C are
shown on the right. Case B1 has the smallest error. In case C, the optimal result is dotted
and approximate result dash-dotted.

5.2 Simulation Results

The mean triangulation and estimation errors of the methods were very close in
cases with small observation errors. The local SQP method’s average triangula-
tion errors were < 1.0002 times the corresponding optimal method’s triangulation
error in all cases, so there is little point in presenting the results separately. Fig.
contains the mean triangulation errors of the optimal and approximate meth-
ods for the test sets. The final triangulation error of the optimal method is about
1/4 of the theoretical mean displacement, and the mean estimation error of the
optimal method was about 3/4 of the theoretical mean displacement. There is a
much smaller difference in estimation errors than in the triangulation errors (Fig.
M). The approximate method is more accurate than the optimal method in cases
A1-A5, worse in cases B1-B3, and worst in case C.

Fig.Bldepicts ratios of mean triangulation errors of the approximate and the op-
timal method for the test sets. When observation errors are small, o € [0,0.005],
the approximate method’s errors are < 1.001 times optimal, with cases A5 and
B1 clearly the worst. These cases have epipoles right in the middle of the image
points. In the other cases the errors were much closer to optimal. The ratios in-
crease differently depending on the situation as the observation error increases. In
the case of estimation errors the ratios fluctuate from 0.98 to 1.03.

5.3 Computational Efficiency

Computational efficiency was one of the motivations for the methods, so we com-
pared the efficiency of the methods on the test sets. A rigorous comparison of the
methods is difficult, because, for example, the efficiency of the optimal method de-
pends on the polynomial root finder and its efficiency on the particular test cases.
All methods were implemented in C+4 with about an equal amount of manual
tuning. The abstract descriptions do not give the most efficient ways to implement
the methods, e.g. the ordering of matrix multiplications matters and some of the
multiplications are cross and dot products.
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Fig. 4. Estimation error vs. noise level. Cases A1-A5 are shown on the left with the
approximate method dashed. Case Al has the smallest error. Cases B1-B3 and C are
shown on the right. Case B3 has the smallest error. In case C, the optimal result is
dotted and approximate result dash-dotted.

We tested two different polynomial root finders for the optimal method. The
first method finds the eigenvalues of the polynomial’s companion matrix. Our
implementation used LAPACK’s DGEES subroutine called directly from C++.
The second polynomial solver used was gsl poly complex solve from the GNU
Scientific Library (GSL). For the approximate method, we used the closed form
Ferrari’s method to find the roots of the quartic. The optimal and approximate
methods required a test for the order of the polynomial to be solved. In special
cases the higher order polynomial coefficients that should have been zero were
very small due to roundoff error, which caused havoc in the polynomial solver.

We measured the clock cycles taken by each method on the test sets using
the rdtsc instruction on a Intel Core 2 Quad processor. The SQP method was
the fastest with its speed inversely related to the amount of noise added to the
observations; larger optimal errors required more SQP iterations until conver-
gence. The camera configuration also had an effect. In cases (A) and (B) the
approximate method was 2.8-5 times slower than SQP and the optimal method
with GSL was about 100-150 times slower and with DGEES about 200-400 times
slower. In test set (C) the optimal method with GSL was 50 times slower than
SQP; the optimal method needed to find the roots of a simpler 5th degree poly-
nomial instead of a 6th degree polynomial. In the special case of parallel cameras
the polynomial in the optimal solution is of 1st degree, and the optimal method
is only about 1.5 times slower than SQP.

5.4 Validation with Real World Data

Simulation results should be validated with real world data. To obtain suitable
data, we reconstructed the Leuven castle image sequence [I0] from SIFT[IT] fea-
tures and recorded all two view triangulations that occurred during the
reconstruction process. The resulting reconstruction shown in Fig. [0 consists
of 28 cameras, 8651 points, and 66611 projections giving 7.7 projections per



12 T. Tossavainen

L 12 : : : L 12
5 1.15 5 115F
= = 7
E 1.1 g 1t T
= = P4
- = .
< 1.05 2105t SR s
< < _
o o
a 1 g 1
< <
0.95 0.95
0 005 01 015 02 0 005 01 015 02
(o) (o)

Fig. 5. Ratios of mean triangulation error of the approximate and the optimal error vs.
noise level. Cases A1-A5 on the left in increasing order (cases A1-A3 indistinguishable)
and cases B1-B3 in decreasing order on the right with case C dashed.

point and 2379 projections per camera on the average. In the final result, the
median projection error in the images is 0.17 pixels. Our reconstruction pipeline
performed 73091 two view triangulations during the reconstruction process.
We repeated the recorded triangulations using the optimal, approximate, and
SQP algorithms and observed the triangulation errors. The optimal and SQP
methods produced nearly identical results: All SQP triangulation errors were
smaller than 1.00003 times optimal. SQP took typically 2-3 iterations and at
most 6 iterations to converge. Almost all, 99.96%, of the approximate method’s

va

q 99

P g v 9 g 9%

Fig. 6. A sparse metric reconstruction of the Leuven castle data set from SIFT features.
Two view triangulations that occurred during the reconstruction process were used to
evaluate the triangulation methods.
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triangulation errors were smaller than 1.0001 times optimal, and only 4 cases
were larger than 1.01 times optimal with a maximum of 1.9 times optimal.

In the reconstruction pipeline we used the correction procedure to check if a
feature match is an inlier for a given F while estimating F for the first image pair
using RANSAC. The difficult cases had large optimal triangulation errors and
originated from this stage of the process: Either F was wrong or the match was
incorrect. A different inlier criterion, for example the matching points’ distances
to each other’s epipolar lines, could be used to avoid these cases. The results on
this data set agree with the simulation results.

6 Conclusions and Discussion

We presented two novel methods for two view triangulation. The approximate
method minimizes a local approximation to the optimal triangulation problem.
The SQP method solves the optimal triangulation problem iteratively using se-
quential quadratic programming. Finally, we tested the triangulation methods
using simulations and real world data obtained from a reconstruction process.

The test results for the approximate method are in line with the theoretical
bounds: The triangulation errors are very close to optimal in cases with small
observation error. The cases with the largest differences correspond to situations
where the epipoles are near the object’s images and the observation error is large.
For most cases of practical interest the methods give almost identical results. For
example, in reconstruction from SIFT[11] or SURF[12] feature points extracted
from photographs taken with the same camera, the final error of an observation is
usually on the order of one pixel. This corresponds to errors with approximately
o = 0.0005 for 3072 x 2304 images, for example, given that the mean residual
error is somewhat smaller than the actual error.

While the approximate method produces slightly larger triangulation errors
than the optimal method, it was in cases slightly more accurate in the sense of
estimating the true projections. The reason may be bias. Considering the locus
of solutions in Fig. [[lit seems probable that the optimal method produces cor-
rections that are very slightly biased toward the epipoles, because when epipoles
are finite every non-zero correction is closer to the epipoles than the original
observations. If this geometric reasoning is valid, then the method should be un-
biased when the epipoles are at infinity and the bias should decrease when the
observation error decreases and the distance to epipoles increases. A plausible
bias correction would be to pick closest points on some other curves, perhaps on
circles centered on the epipoles containing the observations. The benefit is likely
to be negligible in most practical cases.

The local SQP method seems to be the fastest and produces results that are
as good as the optimal method, at least on the average. In some rare cases the
method finds a suboptimal solution. These occur when the epipoles are inside
the images and the observation errors can substantially change the projections
relative to the epipoles, e.g. to the other side of the epipole. In these cases the
optimal method will find the global optimum, but the optimum is still wildly
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inaccurate as an estimate. The method in [8] can be obtained by ignoring the
cross terms —\,FT and —\;F in the Hessian of the Lagrangian in (I8]), which
simplifies the iterations, but changes the convergence properties; a theoretical
comparison of the two methods would be interesting.

In summary, the approximate method is a reasonable alternative for the op-
timal method, especially if the observation errors are known to be small and
constant computation time is desired. It is a closed form approximation to the
optimal method that works well when the optimal solution is near the obser-
vations and the observations are far from the epipoles. In terms of estimation
accuracy, the optimal and approximate methods are about equal. It seems that
the optimal method is most useful near the epipoles when the optimal error is
relatively large, but the triangulation results in these cases are of limited value
in practical applications. Given the simulation results, the local SQP method is
in our opinion the best choice of the three for most applications. It should also
generalize fairly easily to more than two views.

Acknowledgement. This work was partially funded by Tivit (DIEM/MMR
project) and by the TKK MIDE programme (UI-ART project).
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Abstract. Many motion segmentation algorithms based on manifold
clustering rely on a accurate rank estimation of the trajectory matrix
and on a meaningful affinity measure between the estimated manifolds.
While it is known that rank estimation is a difficult task, we also point
out the problems that can be induced by an affinity measure that neglects
the distribution of the principal angles. In this paper we suggest a new
interpretation of the rank of the trajectory matrix and a new affinity
measure. The rank estimation is performed by analysing which rank leads
to a configuration where small and large angles are best separated. The
affinity measure is a new function automatically parametrized so that it
is able to adapt to the actual configuration of the principal angles. Our
technique has one of lowest misclassification rates on the Hopkins155
database and has good performances also on synthetic sequences with
up to 5 motions and variable noise level.

1 Introduction

Given a cloud of features tracked throughout a video sequence, the motion seg-
mentation problem consists of clustering together features that follow the same
movement. Such a problem is a fundamental step for many computer vision
tasks like robotics, inspection, video surveillance, and many other applications.
Motion segmentation has become even more important after the introduction
of the structure from motion algorithms, which can mostly deal with only one
motion at a time [§].

A 3D cloud of P points that belong to N independent and rigid motions can
be mapped onto the video sequence through affine projection. The 2D position
of each point at each frame can be stored into a trajectory matric W € R2xP
where F' is the total number of frames of the input sequence. Assuming no
noise and no outliers, most of the rigid motion segmentation algorithms based
on manifold clustering rely on a simple assumption: each independent motion
generates a local subspace of size at most 4, therefore the union of the local
subspaces generates a global subspace of size at most 4N, size that corresponds
to the rank of W.

Two main ideas distinguish the majority of motion segmentation algorithms
based on manifold clustering that can be found in the literature: the first is

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 15126] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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how they estimate the manifold generated by each trajectory, the second is how
they group them through the selection of suitable common properties.

Related Works on Motion Segmentation via Manifold Clustering. In |10]
the authors use the Generalized Principal Component Analysis (GPCA) in or-
der to fit a polynomial of degree N to the data, where N is the number of
subspaces. Then, they estimate the basis of the subspaces using the derivatives
of the polynomial and they build a similarity matrix based on the cos? func-
tion of the principal angles (PAs) between the subspaces. Another way for the
subspace estimation is via the singular value decomposition (SVD) of W, like
in the Local Subspace Affinity [11] framework (LSA). LSA also uses the PAs
between subspaces in order to build the affinity matrix, however, LSA adopts
a different similarity function. An Enhanced LSA (ELSA) is proposed in [12]
where one of the improvements is a more robust model selection for the estima-
tion of the global subspace size. Also in |6] the dimension of the global subspace
is at the center of the study, they suggest lower and upper bounds together with
a data-driven procedure for choosing the optimal ambient dimension. In [3], a
new way for describing the subspaces called Sparse Subspace Clustering (SSC) is
presented. The authors exploit the fact that each point (in the global subspace)
can be described with a sparse representation (obtained by an ¢; optimization)
with respect to the dictionary composed by all of the points. The final similarity
matrix is built using the coefficients of the sparse representation. Another idea
is used in [4], where the authors propose a subspace segmentation algorithm
based on a Grassmannian minimization approach. The estimation of the sub-
spaces is performed via the Maximum Consensus Subspace (MCS) criteria. The
same framework is further extended by using the Normalized Subspace Inclusion
(NSI) similarity measure |5] between the PAs of the estimated subspaces. The
Agglomerative Lossy Compression (ALC) algorithm [7] differs from the previous
methods in that it does not require a similarity matrix. ALC is an agglomerative
strategy that consists of minimizing the segmentation coding length in order to
find the shortest coding length which is theoretically the optimal.

All of these techniques rely on the ability of the algorithms to estimate the sub-
spaces and then to compare them (with exception of ALC). As shown in [9, [12]
the size estimation of the global subspace (when required) is a critical and very
difficult step. Moreover, the similarity measures used until now are rigid as they
always assume that the features between similar and different subspaces are
well separated. However, we show in section [2.4] that such an assumption is
not always verified.

Our Contribution. In this work we provide two main contributions: a new
interpretation of the global subspace size estimation and a new similarity mea-
sure between subspaces. Our new subspace size estimation does not depend on
any sensitive parameter, and it is able to select the dimension of the global sub-
space where the distribution of the PAs is the most suited for the clustering step.
Moreover, our similarity measure is able to dynamically adapt to the distribution
of the PAs.
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The results of these two contributions are evaluated on the LSA framework.
We compared our model with some state of the art techniques |3, |5, [7, 19, [11, [12]
on the Hopkins155 database [9], showing that our proposal outperforms all of
the LSA-based algorithms, providing one of the lowest misclassification rate in
the literature. Our method will be also applied on synthetic sequences from 2
to 5 motions with a controlled noise level in order to test the robustness against
noise and the behaviour with more than 3 motions. Matlab source code of our
algorithm can be found at: http://eia.udg.es/~zappella.

2 Owur Proposal

In this section we present a new rank estimation for W based on the cluster-
ization level of the principal angles and a new adaptive similarity measure for
principal angles. We apply these two techniques to the LSA framework as it
is theoretically able to deal with different types of motion: independent, artic-
ulated, rigid, non-rigid, degenerate and non-degenerate. Before going into the
detail of our proposal we introduce a convenient notation and we discuss some
issues regarding the principal angles.

2.1 Notation

Given a collection of IV subspaces, the PAs between two subspaces S; and 5j,
for j,l = 1,..., N, are defined recursively as a series of angles 0 < 6; < ... <
0; <...<0p <m/2, where M = min{rank(S;), rank(S;)}:

cos(f1) = max ulv=ulv
( 1) u€S;,veS; 1Yl (1)
cos(;) = max ulv=ulv,Vi=2,...M
u€eS;,veS;
such that: |lul = |lv|| = 1, uTu; = 0, vTv; =0, Vj = 1,...,i — 1. The vectors
U1,...,u; and v1,...,v; are the principal vectors (u and v being two generic
principal vectors). We denote with:
0; (S5, 1) (2)

the i*" PA between the subspaces S; and S; computed when the estimated size
of the global subspace is r. As j and [ vary we define the set:

6] = {6(5;.5), j.l=1.....P} 3)

Finally, we define:

Tmax

o, = J ey (4)

where 7.« is the upper bound of the global subspace size. For an at-a-glance
overview of our notation refer to Fig. [Tal
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Fig. 1. Small random subset of the PAs of ©s (largest PAs) of the sequence 1IR2RCT A
taken from the Hopkins155 database. PA between similar subspaces are represented
with blue squares, PAs between different subspaces are represented with red asterisks.

2.2 Issues Regarding the Behaviour of Principal Angles

PAs between two subspaces are an efficient measure of orthogonality when the
exact subspace bases are known. However, when the bases are estimated there are
some issues that should be taken into account, especially when the exact size of
the global subspace is unknown. In [12] the behaviour of PAs, computed following
the LSA algorihtm, when the estimated rank r of the global subspace changes is
studied. The authors explain that the trend of PAs, going from an underestimation
to an overestimation of r, is overall increasing typically starting from 0 radians and
ending in 7/2 radians, as in Fig.[Il In the same study it is explained that despite
the overall increasing trend, the PAs may have oscillations, as in Fig. [[B due to
the fact that when the rank is underestimated the bases are not well defined, while
when the rank is overestimated the extra components introduced act like noise.
In order to reduce the influence of these oscillations we propose a polynomial
interpolation of the PAs across the different ranks. We avoid the trivially useless
interpolation of order 1. The interpolation of order 2 is decreasing after its maxi-
mum, this does not fit with the increasing behaviour of the PAs. The interpolation
of order 3 is able to smoothly follow the PAs trend, as shown in Fig.Tal Interpo-
lation of higher degrees would adhere too much to the data making the interpo-
lation not effective. We conducted different tests on synthetic and real sequences
that confirm the PAs behavior and the reliability of the interpolation of order 3.

2.3 Rank Selection via Principal Angles Clusterization (PAC)

One of the most recognized weaknesses of LSA is the lack of robustness of the
Model Selection (MS) procedure for the estimation of the rank r:

2
>‘r+1

r= arg:nin (Er 32 + k‘r‘) (5)

i=1""



Adaptive Motion Segmentation Algorithm 19

\; being the i*" singular value of W, and k a parameter that depends on the
noise of the tracked point positions. Eq. (@), is extremely sensitive to changes
of the parameter k. On the other hand, k is necessary in order to deal with
sequences with different amounts of noise and number of motions. In [9] the
authors decided to avoid the use of MS due to the difficult task of finding a
value of k that could cope with all of the sequences of the Hopkins155 database.
Therefore, they fixed the global subspace size to 4 N. Fixing the global subspace
size to 4N implies that the motions are all rigid and fully independent. Such an
assumption reduces the efficiency of LSA. In order to solve this problem in [12]
the authors present an algorithm named ELSA with an Enhanced Model Selec-
tion (EMS+). EMS+ consists of computing different affinity matrices, by using
different k values with the MS formula, and selecting the affinity matrix with the
maximum entropy. This technique allows homogeneous affinity matrices (which
correspond to over- or underestimation of the rank) to be discarded, and to use
an affinity matrix with the highest content of information. ELSA with EMS+
performs better than LSA with MS. Nevertheless, as the authors explain, EMS+
tends to underestimate the rank and it fails in the ideal case when the affinity
matrix is binary.

The problem of the rank estimation in real cases, with noise and dependent
motions, is challenging because the eigenvalue spectrum of W tends to become
smooth and the selection of a threshold becomes a difficult task. Therefore, we
decided to renounce the computation of the rank in the traditional way and
we studied the distribution of the PAs in each ©;. The fundamental idea on
which our proposal is based is that the rank r should be selected, for each fized
i, as the one that maximizes the clusterization level of the PAs in the set ©;.
By clusterization we mean that the angles between similar and different local
subspaces are well separated. In the ideal case (no noise and perfectly orthogonal
local subspaces) the PAs would cluster around 0 and 7/2. In real cases the PAs
are not perfectly clustered, however, it is possible to evaluate the clusterization
level for each O] and select the one with the highest clusterization level for each .
We propose to measure the clusterization of each ] by using a function inspired
by the Linear Discriminant Analysis, we call it Principal Angles Clusterization
(PAC):

(pta — ppac)? + (o — ppac)?
o(oa) JrUz(ab)

PAC(O]) = (6)

where ppac is the center of @] computed as the mean of the P largest and
smallest angles, p,, 0, and up, op are the arithmetic means and the standard
deviations of the PAs that are above and below upac, respectively. Our tests
have shown that P = 25% of the O! gives a upac that is robust with respect
to the presence of outliers (due to oscillations of the PAs). Note that upac is
not computed as the mean of all the PAs to avoid biases due to the unbalanced
number of representatives of one or the other class. In our experiments r goes
from 2 to 8N.
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An important component of the formula is the functional exponent (o). If we
used v(o) = 2, as in the LDA formulation, the maximum of the PAC function
would always be in the extremes of its domain. In fact, it was explained in
section that when r ~ 2 the PAs tend to cluster around 0, hence the tiny
values of the ¢’s that appear in the denominator of Eq. (@) would boost the PAC
value, despite the fact that the p’s are very close to each other. At the other
extreme, when r ~ 7., the p’s increase and become well separated even though
the two classes partially overlap. However, as the ¢’s remain smaller than 1, the
global effect would be a magnification of the numerator, boosting again the PAC
value. Hence, it is necessary to use a variable exponent that takes small values
at the extremes while approaching to 2 for middle values.

A simple function that complies with these requirements is the following:
o) = {gf A @)

. ifo>mn/8

The numerical coefficients a; and as are not chosen after a tuning procedure but
are determined through the following reasoning. Assuming an average case with
PAs uniformly distributed, ppac = 7/4, o = 37/8 while p, = /8. Therefore,
the upper bound of o,,0, < m/8. The numerical coefficients a; = —50.63 and
as = 20.13 define a function that fulfills the previous request making the parabola
passing through the points A = (0,0), B = (7/16,2) and C = (7/8,0.1), as shown
in Fig.[2l When o’s > 7/8 the angles are excessively spread and the two classes are
likely to overlap. For this reason we maintain (o) = 0.1.

Summarizing, we select for the next step the set of angles in the ©] with
the highest PAC value for each i. Note that the selected rank may be different
for each ©;. This is a new interpretation of the size of the global subspace: we
are not estimating the rank of W, but we are identifying the “most expressive”
dimension for each set ©; in terms of clusterization level. An example of the
PAC function applied to a ©; can be seen in Fig. Bhl
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Fig. 3. Example of a random subset of the PAs of Oy (largest PAs, 3 rigid independent
motions, hence maximum rank 12). PAs between similar subspaces are represented with
blue squares, PAs between different subspaces are represented with red asterisks. The
affinity functions computed at the rank r» = 6,10, 16, appear in black. In Fig. [3al the
inflection point of the function is denoted with a magenta cross. In Fig. Bblthe magenta
dotted line is upac (which for every r it is also the inflection point of the CbA function),
the green line-dot-line is the value of the PAC function.

2.4 Sum of Clusterization-Based Affinity (SCbA)

Another fundamental step of manifold clustering based algorithms is to compare
subspaces through an affinity measure (as a measure of (dis)similarity). In the
literature it is possible to find many affinity measures with different character-
istics. A discussion of different affinity measures can be found in [5].

All affinity measures applied to PAs share a common assumption: the angles
between similar subspaces are always close to zero, and the angles between dif-
ferent subspaces are always close to m/2. None of them takes into account that
the recursive definition of the PAs tends to force the angle between two sub-
spaces to increase as we move from 6] to O, ;. Moreover, none of them takes
into account that the angles in a given ©; tend to increase when r increases, as
explained in section

In the example of Fig. Bal we have randomly plotted some PAs of @), of the
sequence 1R2RCR (Hopkins155 database). In black it is possible to see the cos?
function. The cos? function always has the same shape and the inflection point
(magenta cross) is always in the same position, regardless of the rank to which
it is applied. As a consequence of this rigidity, if the estimated rank is r = 6 all
of the PAs have an affinity value that falls before the inflection point. Opposite
cases are when r = 10 and r = 16, in which most of the PAs have an affinity
value after the inflection point. Therefore, the cos? function, as well as any other
rigid function, is very sensitive to the rank estimation.

The affinity measure that we propose is able to adapt itself to the distribu-
tion of the PAs in 6], so that it minimizes the negative effects of a wrong rank
estimation and it emphasizes the difference between similar and different sub-
spaces. We define the not normalized Clustering-based Affinity (CbA) between
two generic subspaces S;,S;, for 5,0 = 1,..., P, for a given O] as the function
CbA: O — RT,
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where 0 is the it" principal angle computed at the rank 7. a and 3 are the two
positive parameters (o > 0, § > 2) that allow the function to change in relation
to the distribution of the PAs. We can now define the normalized Clustering-
based Affinity (CbA) as follows:

T(q. B
CbA(L(S;. 51)) = exp <_ﬁ— 1 (9 <sj,sl>> ) N

CbA(07(S;,S1)) — min(CbA)

CbA(6;(S;,51)) = max(CbA) — min(CbA)

)

The arrangement of the parameters of Eq. (8) has been chosen so that CbA
has a negative first derivative over all its domain, while its second derivative is
negative for 6 < «, positive for § > « and equal to zero for § = a. We propose
to set a = ppac so that the inflexion point occurs at the estimated center of the
distribution. In this way the function is always stretched or compressed in order
to fit the distribution of the PAs. The 3 parameter is used in order to emphasize
the differences between similar and different subspaces in an automatic fashion.
In fact, 0 controls the slope of the function: the higher the § the steeper the
slope. We would like an affinity function with a steep slope when the PAs are
well clustered and a more gentle slope when the clusterization is not clear. A
natural candidate for 3 is § = PAC(O})-F, as the PAC function gives a measure
of how well clustered the two groups are and how far away the two centroids
are. F is a constant, a boosting factor, that we use in order to give more or
less importance to 3. In all of our experiments we have used F = 5 which has
empirically shown to be a suitable factor.

In Fig. [3bl we plot three CbA functions applied to different ranks r within the
set Ojy. In this picture it is possible to appreciate that, thanks to the param-
eter «, the inflection point changes so that it always corresponds to the ppac
value, hence minimizing the effect of possible errors in the choice of the rank r.
Moreover, thanks to the parameter § the slope of CbA changes depending on
how well the small angles are separated from the large angles.

The final affinity between two subspaces is defined as the normalized weighted
Sum of CbA (SCbA):

M ra. .
SCbA(S;, S) = L= CbAﬁfi (SJ’SZ))F’AC(Qi) (10)
S, PAC(O)

M being the minimum size between subspaces S; and S;. In this work we have
not investigated the estimation of the local subspace size which was fixed to
4. Note that by weighting the CbA values by the PAC function we give more
importance to @] where the angles between similar and different subspaces are
well separated.
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SCbA respects the axioms of an affinity function proposed in [3]:

— symmetry: from Eq. (I0) we see that SCbA(S;, S;) = SCbA(S;, S;);
— orthogonality consistency: given that

S; LS < 6;(5;,5)=mn/2 (11)
Vi=1,...,M, from Eq. @) and ({IT) it follows that:
SCbA(S;,5) =0 (12)
— inclusion consistency: given that
S; CS <= 67(5;,5)=0 (13)
Vi=1,...,M, from Eq. (I0) it follows that:

SCbA(S;, S)) =1 (14)

2.5 Summary of Our Proposal
In this section we summarize our proposal: LSA+PAC+SCbA.

1. Build a trajectory matrix W;

2. for r = 2 t0 Tmax (in our tests ryax = 8N)

(a) project every trajectory, which can be seen as a vector in R?!, onto an
R"™ unit sphere by singular value decomposition (SVD) and truncation
to the first » components of the right singular vectors;

(b) exploiting the fact that in the new space (global subspace) most points
and their closest neighbours lie in the same subspace, compute by SVD
the local subspaces generated by each trajectory and its nearest neigh-
bours (NNs);

(¢) compute PAs between all of the subspaces;

smooth the PAs;

apply PAC to find the best r for each ©; (i =1...M);

apply SCbA to build the affinity matrix A;

cluster A by K-means in order to have the final motion segmentation.

o Ot W

More details can be found in the source code available at: http://eia.udg.es/
~zappella.

3 Experiments

We tested our proposal on the 155 real sequences of the Hopkins155 database
and we compared our performances with: LSA + MS (with & = 10775, best
k value as explained in [12]), ELSA EMS+ (results extracted using available
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Table 1. State of the art comparison. Misclassification rates on the Hopkinsl55
database. In brackets the number of sequences for each type of video. NA stands for
value not available.

2 Motions Checkboards(78) Articulated(11)  Traffic(31) All types(120)
Method % Avg % Std % Avg % Std % Avg % Std % Avg % Std
LSA + MS 5.15 9.61 3.65 4.29 4.95 8.66 4.96 8.96
LSA 4N 2.57 6.79 4.10 6.47 5.43 11.17 3.45 8.14
ELSA EMS+ 2.20 7.19 2.32 3.87 5.58 10.89 3.08 8.17
ALC 1.49 4.58 10.70  15.00 1.75 1.83 2.40 6.35
MCS + NSI 3.75 7.89 8.05 8.51 1.69 7.00 3.61 7.84
SSC 1.12 NA 0.62 NA 0.02 NA 0.82 NA
Our Proposal 1.00 5.64 1.75 3.13 0.57 1.06 0.96 4.67
3 Motions Checkboards(26)  Articulated(2) Traffic(7) All types(35)

Method % Avg % Std % Avg % Std % Avg % Std % Avg % Std
LSA + MS 19.09 13.02 9.57 13.54  16.06 5.72 1794 1191
LSA 4N 5.70 10.89 7.25 9.30  25.30 19.05 9.71 14.71
ELSA EMS+ 8.76 15.18 6.38 9.03 6.354 12.36 8.15 14.14
ALC 5.00 9.14 21.08 28.87 8.86 13.16 6.69 11.48
MCS+NSI 2.29 5.73 6.38 9.03 1.67 1.51 2.87 5.28
SSC 2.97 NA 1.42 NA 0.58 NA 2.45 NA
Our Proposal 2.41 8.05 3.72 5.26 1.11 1.87 2.22 7.03

code [12]), LSA 4N (results taken from [5]), MSC+NSI (results taken from [5]),
ALC (results taken from [5]), and SSC (results taken from [3]).

Table [I] shows the average misclassification rates and the standard deviations
of each method. The misclassification rates are presented for each type of video
sequence (checkboards, articulated and traffic). Firstly, it is possible to see that
our proposal outperforms every LSA-based technique proving that our method
improves the weaknesses of LSA. Also when the other techniques are taken into
account, our proposal has, together with SSC, the lowest misclassification rates
both with 2 and 3 motions (the average misclassification rate of our proposal on
the whole Hopkins155 database is of 1.25%). However, we would like to remark
that for our algorithm the only two free parameters, (P and F) were fixed for the
whole database whereas it is not clear from [3] whether the results of SSC where
obtained with a fixed set of parameters or each sequence required a different set.

In Fig. @ the histogram of the misclassification rates of our proposal is pre-
sented. The majority of the sequences, 134, has a misclassification rate smaller
than 1%, and the total number of sequences with a misclassification rate below
5% is 145. The median misclassification of every group is always 0% with the
exception of the articulated with 3 motions group where the median is equal to
the mean (due to the presence in this group of only 2 sequences).
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Fig. 4. Histogram of the misclassification rate of our proposal

As far as the computational time is concerned, the bottle neck or our method
is the interpolation process of all the PAs. In fact, on the whole Hopkins155
database our proposal required 147600 seconds, of which 143775 were spent for
the interpolation (Matlab implementation on Quad-Core AMD @ 2.4GHz, with
16 GB RAM).

In order to verify how our proposal performs on a different database, we tested
it on synthetic sequences with 2, 3, 4 and 5 rigid and independent motions
(10 different sequences for each number of motions) and an increasing noise
level. Specifically, each sequence is composed of 50 frames, with rigidly rotating
and translating cubes. Each cube has 56 tracked features. Then we created 2
additional databases adding noise with standard deviations of 0.5 and 1 pixel
to the tracked feature positions. In total we used 150 synthetic sequences. The
misclassification rates are shown in table Pl All the misclassification rates are
smaller than 1%. For a given number of motions the misclassification remains
rather stable even when the noise level increases. Moreover, the behaviour of our
proposal even with 4 and 5 motions (more than the motions in the Hopkins155
database) is very satisfactory.

Table 2. Misclassification rates on synthetic sequences with 2, 3, 4 and 5 motions and
increasing noise level. In brackets the number of sequences for each type of video.

Motions 2(10) 3(10) 4(10) 5(10)

Our Proposal % Avg % Std % Avg % Std % Avg % Std % Avg % Std
Onoise = 0 0 0.0 0.24 0.31 0.36 0.35 0.68 0.39
Onoise = 0.5 0.09 0.28 0.12 0.25 0.31 0.22 0.75 0.43
Onoise = 1 0.27 0.60 0.24 0.31 0.31 0.22 0.75 0.36

4 Conclusions and Perspectives

We presented two improvements for motion segmentation based on manifold
clustering. The first improvement is a new way of selecting the global subspace
size based on the analysis of the principal angles clusterization, such that the
selected size is the one where the principal angles between similar and different
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subspaces are best separated. The second improvement is a new affinity measure
that is automatically able to adapt itself in order to fit the distribution of the
principal angles. The major achievement of this measure is that it can deal with
every distribution of principal angles minimizing the effect of an erroneous rank
estimation of W while maximising the distance between similar and different
local subspaces. The results of our experiments show that, even without changing
the value of the only two free parameters that we have, the misclassification rates
of our proposal are among the lowest in the literature.

Future works should aim to reduce the computational time of the algorithm
by adopting other ways for reducing the principal angles oscillations. Moreover,
better segmentations could be achieved by extending our algorithm to the esti-
mation of the local subspaces size.
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Abstract. Small surface objects, usually containing important informa-
tion, are difficult to be identified under realistic atmospheric conditions
because of weather degraded image features. This paper describes a novel
algorithm to overcome the problem, using depth-aware analysis. Because
objects-participating local patches always contain low intensities in at
least one color channel, we detect suspicious small surface objects using
the dark channel prior. Then, we estimate the approximate depth map of
maritime scenes from a single image, based on the theory of perspective
projection. Finally, using the estimated depth map and the atmospheric
scattering model, we design spatial-variant thresholds to identify small
surface objects from noisy backgrounds, without contrast enhancement.
Experiments show that the proposed method has real-time implementa-
tion, and it can outperform the state-of-the-art algorithms on the detec-
tion of distant small surface objects with only a few pixels.

1 Introduction

Small surface objects always contain important information. Radar system, how-
ever, is ineffective against small objects close to the vessel [6]. In addition, for
objects without hot parts present (e.g., buoys, surface rocks), near infrared im-
ages get unsuitable for detection either [16]. Therefore, detecting small surface
objects from visual images is highly desired.

There has been growing interest in surface targets identification, as most stan-
dard computer vision algorithms for traffic scene are ineffective for maritime
conditions [2L[16]. To avoid collisions of surface vessels, Sanderson et al. have
proposed some maritime targets identification algorithms [I6l[17], using statisti-
cal characteristics of the sea and motions of the targets. Sullivan et al. [I8] use
an optimal trade-off MACH filter to detect vessels from maritime surveillance
videos. But the mach filter for various targets needs to be trained beforehand.
Gupta et al. [6] provides an approach for maritime objects recognition through
case-based statistical relational learning.

Algorithms, described above, require robust detection of image features. Un-
der realistic atmospheric conditions, however, images of outdoor scenes are usu-
ally affected by scattering medium [IT,12] (e.g., small aerosols, water-droplets).
The affection, usually leading to contrast lost or color infidelity, increases expo-
nentially with the distances of scene points from the sensor [I3]. To eliminate

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITI, LNCS 6494, pp. 27 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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the depth-dependent degradation, many haze removal algorithms are provided
to preprocess the hazy images [4L[7[I3,19], which may lead to time-consuming
detection algorithms. Thus, we intent to use the spatial-variant weather effects
for surface objects detection without preprocessing hazy images.

In this paper, we describe an algorithm for small surface objects detection, us-
ing depth-aware analysis of image features by the atmospheric scattering model.
Our purpose is giving early warning sources of information to avoid collisions or
terrorist attacks. The main contributions of the paper are as follows. Firstly, we
locate suspicious small surface objects with the dark channel prior, proposed by
He et al. [7] from the statistics of hazy free outdoor images. The prior is based on
the observation that objects-participating local patches have very low intensities
in at least on color channel because of shadows, high-colored or dark objects.
Secondly, we detect the horizon with dyadic cubic spline wavelet transforms [10],
and estimate the scaled depth map of the sea surface based on the theory of per-
spective projection [5]. Lastly, using the atmospheric scattering model and the
estimated depth map, we obtain spatial-variant thresholds and real-time detec-
tion of small surface objects, without hazy removal manipulations beforehand.
Note that, our algorithm can distinguish objects from moving waves effectively,
and it can outperform the state-of-the-art techniques [I9/I5] for detecting small
objects with only a few pixels. In addition, when sequential information is used
for the estimation of the depth map, the computational complexity for detecting
objects from an m xn RGB image is Tmn times comparisons.

Our approach does have limitations. It becomes invalid for objects that are in-
herently similar to the sea surface and without any shadows casted on. However,
we believe that the techniques used in this paper (e.g., designing depth-aware
thresholds according to the weather effects, detecting small objects by local fil-
ters) can provide useful indications for other computer vision algorithms.

2 Weather Effects on Vision

In participating medium, light reflected from an object gets scattered by atmo-
spheric particles that have significant size and concentration, leading to weather
degraded images [19]. As the atmosphere on the sea always has high quantities
of hygroscopic particles (e.g., sea salt), weather effects must be considered on
surface objects detection under realistic weather conditions.

2.1 Atmospheric Scattering Model

In computer vision, the widely used model to describe scattering effects is:
E(z) = R(z)t(z) + Fxo [1 — t(x)] (1)

where x is the scene point, F is its observed intensity, R is its scene radiance,
FE is the horizon brightness, and ¢ is its transmission describing the percent of
the light reaching the observer. For homogenous medium, the transmission can

be expressed as:
t(z) = e~ 4@ (2)
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Here, d is the depth of the scene point from the observer. 8 is the scattering
coefficient, related to the meteorology visibility V as = 3'?/12 for homogeneous
medium. Generally, the first term on the right hand side of Eq. () is called

attenuation, and the second term is called airlight, denoted as A in the paper.

2.2 Degradation Analysis
According to Eq. (), the observed contrast for two adjacent points ¢ and j is:

_ |Ri — Rl 3)

E; — E;
(Ri + Rj) + 2E(eP? — 1)

E¢+Ej

This means that the differences of foreground and background degrade exponen-
tially with the depths of scene points. Thus, many haze removal algorithms have
been proposed recently for robust detection of image features [4,7,[12,T3}[14L19].

Real-time vision systems always require single image based contrast enhance-
ment techniques. As depth estimation from a single image is an ill-posed problem,
many algorithms estimate the airlight based on some kind of prior first and then
obtain the depth map [A[7[19]. The dark channel prior [7] indicates that the
dark channel R%"* tends to be zero for most object-participating local patches,

R () = min( min (RC(;;))) (4)

z€R(x)\c€{r,9,b}

where (2(x) is the local patch of z. If we assume the airlight of the points in a local
patch to be identical, it can be estimated by A:m!izn (min (EC)) —t(z)R4ek In

addition, the scaled depths of the objects-participating patches can be estimated
according to Eq. (I) and Eq. @) as:

. . E°
Bd=—Int=—1In (1fmén<mcm E&)) (5)

That is, we can estimate the degradation of hazy images and the 3D structure
of the scene using the dark channel prior.

3 Detection Using Weather Effects
3.1 Dark Channel Prior for Surface Objects

The rationality of the dark channel prior has been verified by He et al. [7], based
on the statistical analysis of large numbers of haze-free outdoor images. The prior
has made great success in haze removal [7] as well as the 3D structure estimation
from a single image [3I[7]. However, the prior becomes invalid for maritime scenes
which have large regions similar to the atmospheric light. Therefore, we directly
detect surface objects without applying haze removal algorithms.

Figure [Tl shows an example of the dark channel image of a sea surface image,
obtained by local minimum filters with 5 x 5 rectangular kernels [8]. Note that,
the dark channel image has the following characteristics. First, small surface
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Fig. 1. Left: input image. Right: the dark channel image with 5x5 rectangular kernels.

objects with only a few pixels are enhanced and enlarged in the dark channel
image. Second, for moving waves, only those near the sensor have low intensity,
which may interfere with distant small objects detection. However, weather ef-
fects analysis can help us remove those waves as they are not dark enough if
considering the additive airlight. Last, because the mountains are farther than
surface objects, the dark channel of the mountains is with higher intensities
according to Eq. ([Il). The observation can distinguish surface objects from the
mountains far away.

In the rest of the paper, we first estimate the depth map of the sea surface. And
then, we compute the scattering effects by the estimated depth map, followed
by surface objects detection with spatial-variant thresholds.

3.2 Depth Map from a Single Image

Our purpose here is estimating each pixel’s rough depth with respect to (w.r.t.)
its row index. Based on the theory of the perspective projection, we have the
following results.

Proposition 1. Denote the pizel’s row index as v. Assuming pixels in the same
row with an identical depth d, then the depths of other pizels can be obtained by:

v9—¢c v—h

d=do (6)

vw—h v—c

here, ¢ is the horizon, v # ¢, h is the height of the image, and dy is the depth of
a special pixel with v=uvyg.

Proof. According to the theory of the perspective projection, the homogeneous
coordinate of a point Ujpg = (u,v,1)" in image plane can be expressed with:

Z - Uimg = M3><4Xw (7)

where X, = (Zw), Yuw, zw)T is the homogeneous coordinate in world, and M3y 4 is
the projection matrix. We only consider the depth map in the horizontal plane,
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and assume the pixels in the same row have the same depth. Then, x,,=0 and
Yy =0 in Eq. ([@). A scene point’s depth w.r.t. its row index can be derived as:

_ @ /
v—zw_i_bJrC (8)

where @ = ™24 —"23034 1 = ™34 gnd ¢/ = "2 We assume the size of the image

ma33 m33 ma33 ma33
is h x w. The parameters in Eq. () are estimated as follows.

(1) Let 2z, = o0, then v = ¢/. That is, ¢’ is the vanishing line or the horizon of
the maritime images, denoted as ¢ in the following.
(2) Assuming the row index h having the minimum depth d,,;,, we obtain h=

dmi‘n,"!‘b +c. ThuS, a = (h — C) (dmin —+ b)

Assume that we have estimated the depth z of some pixel, then the depths of
other pixels can be derived from Eq. (§) as:

z1 va—c a—>blvy—c)

= 9)

zo vi—c¢ a—blva—c)
Substituting estimated a into Eq. (@) and assuming d,;, =~ 0, we obtain

Z1 vo—c v1—h
= . 10
zo vi—c va—h (10)

Denote the depth as d instead of z in Eq. (I0), we finally get

v9—¢ v—~h

d = dy (11)

vo— h v—c
where v and d are the row index and the depth of a scene point respectively, ¢
is the horizon, and dj is the depth of a reference point. Equation (@) indicates
that once the horizon is estimated, the depth map of the maritime scenes can
be computed from a reference pixel with known depth. a

Corollary 1. When misestimate of ¢ occurs, images with smaller ¢ have more
robust estimations of depths.

Proof. Assume the estimated horizon to be ¢ =c+e. According to Eq. (III), the
estimated error is:
e(vg — v)

(v—c—¢)(vo —¢) (12)

d

d ’

Note that, the points of the sea surface usually satisfy v>c in the image plane.
When the detection error e of the horizon cannot be avoided, Equation (I2)
shows that larger |vg—c| implies more robust estimation of d. As the reference
point v is on the sea surface, larger |vg—c| indicates smaller c. |
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Fig. 2. Detection of the horizon. Topleft: detection results of the horizon. Topright: de-
tection of the horizontal edges. Bottomleft: the number of detected horizontal edges for
each row and its corresponding wavelet coefficients at level 3. Bottomright: histogram
of the absolute detection error and its corresponding cumulative distributions.

3.3 Detecting the Horizon

Note that, estimating the depth map needs detection of the horizon. Additionally,
surface objects are usually around the horizon due to the perspective projection.
Therefore, this subsection mainly discuss how to detect the horizon.

To obtain robust detection, we apply the wavelet transforms based singularity
analysis techniques. The wavelet we used is the orthogonal cubic dyadic spline
wavelet transforms, whose coefficients for decomposition are given in Table [
The advantage of the method is that it can detect various types of edges through
multi-resolution analysis [10]. Additionally, the wavelet is translation invariant.
If the low-pass filters and the high-pass filters for decomposition are {h,,} and
{gm} respectively, the wavelet coefficients at level j for input signal a° are:

d% = (a1 x gj_l)n = ngai;lzj—lm (13)
m

al = (a" P xhTh), = thaf;ly,lm (14)
m

For an input image, we detect the horizontal edges by labeling pixels with larger
magnitudes of wavelet coefficients than some threshold. Then, we compute each
row’s number of edges and construct a 1D vector. Moving waves, shown as the



Real-Time Detection of Small Surface Objects Using Weather Effects 33

Table 1. Coefficients of orthogonal cubic dyadic spline wavelet. h,, g, are the low-pass
filters and the high-pass filters respectively for decomposition, where h_, =hn,, g—n=
—gn for n < 4, and h, =0, ¢g»,=0 for |n| > 4.

n 0 1 2 3 4
P /N2 0.3750 0.2500 0.0625 0 0
Gn/ V2 0 0.59261 0.10872 0.01643 0.00008

top right of Fig[2] are hindrances to the horizon detection. However, we discover
that there is a peak around the horizon and the horizontal edges of waves only
existing nearby. Thus, we analyze the wavelet coefficients of the 1D signal at large
scale space, e.g. Level 3. We detect points with the smallest wavelet coefficients
(denoted as v = x), and points with the largest wavelet coefficients (v = ;)
between v=1 and v=x,. The horizon is assumed to be “}** (shown in Fig[2).
For randomly selected 600 maritime images which have land on the horizons
or have sea/sky horizons, we manually label the ground truth horizons. Our
algorithm is tested on the data set and obtains a performance with 0.5 pixel
mean error and 2.7 pixels stand deviation. Figure [2] shows the histogram of the
absolute detection error and its corresponding cumulative distributions.

3.4 Spatial-Variant Thresholds

According to the subsection [3.2] the depth-map of the sea surface can be com-
puted with the horizon and some reference point with known depth. In this
subsection, we firstly discuss how to select the reference point and estimate its
scaled depth. Then, we describe the method for surface objects detection from
the dark channel image, using depth-variant thresholds which are computed from
the estimated depth map in subsection according to the scattering model.

Selecting the Reference Point. As discussed in Section B.2] the depth of the
reference point should be computable. Thus, the reference point must be selected
from the objects-participating local patches which satisfy the dark channel prior.
When multiple objects share the same row index, we choose the furthermost
object’s location as the reference point. The procedure is as follows.

(1) Compute the dark channel image dch for the input image img, the local
minimum operators we used is m x n rectangular kernels;

(2) For dch, compute the histogram of the horizon centered region R;,:, denoted
as Hgen(Left of Fig. B]). Because objects-participating local patches tend to
have pixels with lower intensities, we estimate the reference point’s intensity
Ag as follows.

e Search the first i satisfying Hycn (i) <€ (e.g. e =1)fromi=arg max{ Hg.»(j)}
to 1=0; ’

e For some §, look for the first ii satisfying Hgep, (i1)>d from ii=1 to ii=0,
which is just the Ay we needed.
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Fig. 3. Selecting the reference point Py from the dark channel image. Left: region of
interest Rin: for selecting Pr..r, bounded by the white rectangle. Middle: Estimation of
E and the local patch contains Pr..¢. Right: the estimated airlight of Pres from the
histogram of Rjn:.

(3) As only the row index and the depth of the reference point are concerned,
we label the pixels with intensities Ag and select the one with largest row
index vy as the reference point. Considering the translation of vy caused by
local minimum filters, we adjust vg to vg < vo—"5'.

Then we can compute the depth of the reference point from Eq. (B as:
1 Ew
do= 1 15
0 6 B (Eoo - AO) ( )
Where £ is the scattering coefficient, and E, is the horizontal brightness.

Estimating the Airlight. Using Eq. (@), we can estimate the transmission of

other pixels as:

Int d d/do
hlto do 0 ( )

where tg is the transmission of the reference point. Additionally, the airlight of
other pixels can be estimated by:

A El(1-t) -t d/do
AO_Em(l—to):A_l—to(l fo ) (17)

Estimating E,, with the method described in [7] and substituting Eq. ({0Q) into
Eq. (T0), we compute each pixel’s airlight w.r.t. its row index v by:

A (vo—e)(v—h)
Am o (1) .

where h is the height of the input image, and tp =1 — 123402 Figure [3 shows the
selection of the reference point and the estimation of E,.

Detecting Surface Objects. According to the statistical report of He et al. [7],
90% of the pixels have intensities less than 25 for objects-participating local
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F 3

Fig. 4. Surface objects detection for surveillance videos of the lake scenes. Top: Original
frames of different video clips. The first two images contain objects at various distances
on a sunny day, while the last one is captured on a rainy day. Bottom: detection results
of our method.

patches in the dark channel image. However, the intensities are often larger due
to weather effects (e.g., small aerosols, haze). By quantitative description of the
weather effects with the airlight A, we can design depth-variant thresholds by
A+6" (8'>25), and detect surface objects from the dark channel image by labeling
pixels whose intensities are less than their corresponding thresholds.

4 Experimental Results

In our experiments, the dark channel image is computed using Marcel van Herk’s
fast local minimum operator [§] with 8 x 8 rectangular kernels. To obtain robust
estimation of the airlight, we use ¢ =c—o (0 =20) instead of ¢ in our experiments,
according to the Corollary [[I However, the estimated airlight will shrink due to
the adjustment of c¢. To overcome the problem, we design the thresholds with
the estimated airlight plus a constant § (e.g. 6=10).

Figure [ shows the results of our algorithm on the surveillance videos of the
lake. As can been seen, our algorithm can achieve good performance for objects
at various distances on both sunny days and rainy days. Especially, the method
works for far objects with only a few pixels (shown in the middle of Fig. M.

Furthermore, we test our algorithm on various maritime surveillance videos,
such as objects with various depths, objects in low contrast regions, and objects
in noisy backgrounds. Robust detections are shown in Fig.

To evaluate the performance of our algorithm, we compare our algorithm
with other detection methods, which are based on background modeling [20]
and saliency analysis [1[0,[15]. Different algorithms are tested on large numbers
of images captured on the lake and the sea surface. Quantitative evaluation of
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Fig. 5. Results on maritime surveillance videos. Top: original. Bottom: results.

the algorithms are analyzed by making the precision/recall (PR) curves, which
are obtained by comparing the detection results with the manually labeled ob-
jects. The PR curves for different videos are shown in Fig. 6l As can been seen,
both background modeling based method and saliency detection based methods
have many false detections at large recall values. However, our algorithm make
high detection precision for high recall levels (over 90%) as shown in Fig.
Thus, our algorithm can outperform the methods described in [I9,15L20] for
small surface objects detection.

Computational Complexity Analysis. In our experiment, computing the dark
channel image with Marcel van Herk’s method needs 6mn times comparisons
for an m x n image, independent of the size of the kernels. The detection of
the horizon needs 8mm + 18m multiplications and 8mn+ 14m additives. The
estimation of the thresholds needs about 4m multiplications and 6m additives
respectively. Therefore, the computational complexity of our algorithm is linear
with the number of pixels. We implement our method in C++ and it takes about
30~40ms to process a 352 x 288 image on a PC with 2.6GHZ Intel Pentium-V
processor and 1G memory. The algorithm can be accelerated by using sequential
information for the estimation of the horizon.

5 Discussions and Conclusions

This paper has described a novel algorithm for small surface objects detection
using weather effects. We first compute the depth map of the sea surface from a
single image according to the theory of the perspective projection. Then, using
the estimated depth map, we compute the spatial-variant airlight by the atmo-
spheric scattering model, and design depth-aware thresholds for surface objects
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Fig. 6. Comparison of our algorithm with other methods for different videos. Left:
results on the surveillance videos with multiple objects at various distances and moving
waves presented. Right: results on the maritime surveillance videos with small objects
near the horizon.

Fig. 7. Failure case. Left: input image. Right: the dark channel image.

detection from the dark channel image. As shown in Fig. [Bl our algorithm has
more than 90% true positive rate for high recall values (recall>0.9). Especially,
the proposed method outperforms other algorithms described in [1L0[15,20] for
detecting faraway objects with only a few pixels.

However, for objects which are inherently similar to the atmospheric light
and no shadow is casted on them, our algorithm cannot work because of the
invalidation of the dark channel prior, which is just a kind of statistic. We intend
to integrate other local descriptors of surface objects with the dark channel prior
to improve the performance of our algorithm in the future.
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Abstract. Active contour or snake has emerged as an indispensable in-
teractive image segmentation tool in many applications. However, snake
fails to serve many significant image segmentation applications that re-
quire complete automation. Here, we present a novel technique to auto-
mate snake/active contour for multiple object detection. We first apply
a probabilistic quad tree based approximate segmentation technique to
find the regions of interest (ROI) in an image, evolve modifed GVF snakes
within ROIs and finally classify the snakes into object and non-object
classes using boosting. We propose a novel loss function for boosting
that is more robust to outliers concerning snake classification and we
derive a modified Adaboost algorithm by minimizing the proposed loss
function to achieve better classification results. Extensive experiments
have been carried out on two datasets: one has importance in oil sand
mining industry and the other one is significant in bio-medical engineer-
ing. Performances of proposed snake validation have been compared with
competitive methods. Results show that proposed algorithm is compu-
tationally less expensive and can delineate objects up to 30% more ac-
curately as well as precisely.

1 Introduction

Snake/active contour [I] has made its recognition as an interactive image seg-
mentation tool for the last two decades. However, it is yet to be seen as a com-
pletely automated segmentation tool. Snake algorithms consist of three sequential
steps: snake initialization, snake evolution and snake validation [2]. For multiple
object detection, seeds are chosen inside the objects at the initialization step, then
snakes are evolved from those seed points and finally the evolved snakes are passed
through a validation procedure to examine whether the snakes delineate the de-
sired objects [2]. Substantial endeavors have taken place on the initialization and
evolution steps towards snake automation. Most of the existing initialization algo-
rithms [3] exploit the local maxima or other characteristics of the external energy
that help to generate seed points within the objects. However, clutters in the noisy
and poorly illuminated images generate considerable amount of seed points and
snakes evolved from those seeds do not converge to the object boundaries. This
necessitates a good validation scheme after snake evolution. Unfortunately, the
validation step has not received much attention till date.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITI, LNCS 6494, pp. 395 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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Saha et al. [2] proposed a snake validation scheme using principal compo-
nent analysis (PCA). Their method places seeds randomly on the entire image
and evolve one snake from each seed. When all snakes converge, a pattern im-
age (an annular band) is formed along each snake contour. Each pattern image
is then projected into an already trained PC (principal component) space and
PCA reconstruction error is computed. The snakes associated with lower recon-
struction errors than a threshold are considered as objects. Pattern images bear
information regarding bright-to-dark (or vice-versa) transition across the object
contours and show good discrimination capability between object and non-object
classes. This validation technique is effective when the gradient strength of ob-
ject boundaries is considerably high. Besides, throwing a large number of seeds
blindly over an entire image might not be feasible for some applications, since
the snake evolution can be computationally expensive. Thus, carefully placed
seed points are always desirable.

In this paper, we propose a probabilistic quad tree (QT) based snake initialization
scheme, which is computationally inexpensive. QT automatically seeks ROIs from
an image where the probabilities of locating objects are very high. We throw seeds
only within ROIs and evolve one modified Gradient Vector Flow (GVF) snake [4]
from each seed. Then we validate each evolved snake to verify whether they belong to
object or non-object class. During validation, each snake is passed through a strong
classifier formed by Adaboost [5]. We classify snake contours into objects and non-
objects based on a set of features and we apply Adaboost for selecting important
features. The parameters of the adaboost algorithm are estimated by minimizing an
exponential loss function. Here, it is noted that one shortcoming of the exponential
loss function associated with Adaboost algorithm is that the penalty that increases
exponentially with negative margins incurs high misclassification error rates due to
outliers [5]. We propose anovel loss function that incurs smaller penalties in the neg-
ative margin, and thus make Adaboost more robust to outliers. Also, we can choose
the amount of penalty judiciously from the training set using cross validation. We
exploit the advantages of multiple features including region, edge and shape over
PCA-based intensity feature proposed earlier [2]. Note that our proposed initializa-
tion and validation algorithm could be successfully used as plugins with any existing
snake evolution techniques. We have carried out experiments on two real datasets:
(a) oil sand mining images [4]: analyzing these images helps to improve the perfor-
mance of oil sand extraction process and (b) leukocyte images [6]: processing these
images helps in the study of inflammation as well as in the design of anti/pro in-
flammatory drugs. Results illustrate that our proposed algorithm is faster, more
reliable and robust than competitive methods.

The organization of this paper is as follows. Section[2 discusses proposed quad
tree based snake initialization technique. Section [3] elaborates snake validation
using boosting and illustrates proposed regularization into boosting framework.
SectionFldemonstrates the performances of proposed techniques and displays com-
parative analysis of proposed techiques with competitive methods. Section[5l con-
cludes our proposed work. Appendix includes derivation of proposed discrete
Adaboost algorithm.
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2 Quad Tree Based Snake Initialization

Quad tree [7] based segmentation algorithm receives an image as an input,
and then divides it into four adjacent, non-overlapping quadrants if it meets
pre-specified criteria. Subsequently each quadrant is divided similarly and the
process proceeds iteratively until it fails the pre-defined criteria. Consequently,
the algorithm locates objects by smaller rectangular boxes. In our application
here, the QT algorithm computes a posterior probability and splits the current
region into four quadrants if the value of the posterior probability is between
two predetermined thresholds. If the value of the posterior probability is greater
than the upper threshold then the region is likely to contain objects; if it is
less than the lower threshold then it is likely to contain background. We locate
objects by finding homogeneous regions based on local brightness and texture
properties. We compute the posterior probability of a region (O) being object/
non-object: P(O/T, B) x P(T/O)P(B/O)P(O), where P(O) is the prior proba-
bility. P(T'/O) and P(B/O) are the likelihood of the region regarding texture and
brightness respectively. Proposed probabilistic QT algorithm converges faster
and delineates objects more accurately than deterministic quad tree algorithm if
a suitable, application specific prior can be chosen. We compute texture energy
(T) by the response of Gabor filters [7] and brightness (B) by the maximum
singular value decomposition (SVD) [§] of the region. Maximum SVD encodes
average brightness and Gabor filter response represents discriminative texture
information for the objects. The details of computing posterior probability and
two thresholds are mentioned in Section [l

3 Snake Validation Using Boosting

We compute different features for each converged snake contour, such as, con-
tour shape features (form factor, convexity, extent, modification ratio [9] etc.),
regional features (intra and inter class variance, entropy etc.), and edge based
features (GICOV [6], gradient strength etc.) for snake validation. We use Ad-
aboost (variant of boosting) for selecting important features. At the training
phase, boosting picks only important features for snake validation from a set
of features computed on training snake contours and finds the weights associ-
ated with those features. We place seeds randomly over the training images and
evolve one snake from each seed and classify the snakes as objects manually that
converge at object contours found on the ground truth made by the experts; oth-
erwise consider the snakes as non-objects and thus form a training set consisting
of both positive (object) and negative (background) samples. The Adaboost al-
gorithm forms a strong classifier by combining a set of weak learners linearly in
an iterative manner [5]. We use decision stump (threshold) [5] as weak classifiers.
Decision stump is a single level decision tree. Decision stump, G;(x) for feature
f; is defined as, G (x) = 1 if x; > 0;, otherwise, G;(x) = 0, where 6; is some fea-
ture value of x; chosen as threshold and « = [z1, 2, 23, ...., 2}, ...xy] is the feature
set. Finding the best decision stump at each stage is similar to learning a node in
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a decision tree. We search over all possible features © = [x1, z2, T3, ....... , ] and
for each feature, we search over all possible thresholds 6 induced by sorting the
observed values of x and pick x; with 6; that gives lowest misclassification error
among all given features during training. At test phase, proposed QT algorithm
discussed in Section 2l locates ROIs (rectangular regions/patches) over the test
images where the probability of localizing objects is greater than a predeter-
mined upper threshold. We place seeds only within ROIs and grow one snake
from each seed. When all snakes are fully converged, we compute the values
of the important features for each snake and multiply them with the weights
associated with the features chosen by boosting during training phase and sub-
sequently add them to form a strong classifier, G(z) = sign(zle am G (),
where, o, is the weight associated with weak classifier G, (x). If the sign of the
response of the strong classifier for a snake contour is positive then it is classified
into object class, otherwise it is classified into non-object class.

For classification, Adaboost minimizes an exponential loss function: L(y,f(z))=
exp(—yf(x)), where y is the response and f is the prediction. The drawback of
this exponential loss function is that it incurs substantial misclassification error
rate as the penalty increases exponentially for large increasing negative margin
due to outliers [B]. To address this problem, we propose a novel loss function:
L(y, f(x)) = exp(—yf(z) + Ay — G(x)]), where A < 0 and G(x) is the predic-
tion of the weak classifier chosen at the current stage. We have introduced one
extra term to the existing exponential loss function that acts as a regularizer.
At any boosting iteration, the proposed loss function is the same as the existing
loss function if the misclassification error rate at current stage is zero (proposed
term vanishes when A = 0). The only difference between the proposed and the
exponential loss function is that the penalty associated with the proposed loss
function is less than that of the exponential one, if the misclassification error
rate at current stage is not equal to zero (shown in Fig[la) where loss is plotted
against a function of the classification margin y.f). This modification leads to
a low misclassification error rate and it becomes more robust to outliers. One
additional advantage of this proposed loss function is that the user can adjust
the amount of penalty for negative margins after observing the classifier perfor-
mance over a training data set. Accordingly, we determine the value of A through
cross validation (A is a function of k& shown in the appendix and the value of
k is determined experimentally). We derive a modified Adaboost algorithm by
minimizing the proposed loss function (The derivation is shown in Appendix).

Our modified Adaboost finds the feature weight, ., = log(k(1—erry,)/erry,),
k > 1, where, for the existing Adaboost algorithm the value of k is always 1. This
leads to the weights associated with misclassified observations at any stage being
k times as much as the existing Adaboost (derivation is shown in the Appendix).
The value of k for our modified Adaboost is determined by cross-validation and
is discussed in the next section.

Our proposed term in the existing loss function acts as a regularizer in the
boosting framework. There are two well known regularized boosting algorithms,
e-boosting [5] and ;- regularized boosting [10] available in the literature. Unlike
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Fig. 1. (a) Loss functions for two class classification. (b) Accuracy and (c) F-measure
for three different snake initialization methods.

these two methods, our method can adaptively adjust the effects of regularization
in the boosting framework by selecting the proper value of k from the training
data set. The regularization strategy in € - boosting is imposed through shrinking
the contribution of each feature (feature weight).In [1- regularized boosting, the
exponential loss function is minimized with [1- regularization. This provides
sparse solution and acts as a regularizer.

4 Results and Discussions

We have carried out experiments on two real data sets: oil sand images and
leukocyte microscopy images.

4.1 Oil Sand Images

In the oil sand extraction process, oil sand ore is crushed, broken into smaller
particles through crusher and then passed through screens to reject oversize ores.
Undersize ores are transported to hydrotransport plant for further processing.
Here, ore size is an important measure to estimate crusher as well as screen
efficiency. Towards achieving this goal, oil sand images are captured through
camera mounted over conveyor belt before and after the crusher as well as
screen. Oil sand particles are detected in the images using the proposed method
and then the particle size distribution (PSD) is computed. PSD is a histogram
showing frequency of the particles over their sizes. In this paper, we have con-
centrated on the automatic detection of the oil sand particles. We construct a
training set using 20 images and test set using 100 images sampled randomly
from online video. For QT based snake initialization, we find the distribution
for prior and likelihood as well as the two threshold values ((Pin1) and (Pip2))
of the posterior probability (P(O/T, B)) experimentally from the training set.
We have P(O/T, B) x P(T/O)P(B/O)P(O), where T and B represent texture
and brightness respectively. Maximum Singular Value Decomposition (SVD) en-
codes average brightness of a region where average of the response of the ga-
bor filter on a region encodes texture of the region. Experimentally it is found
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that maximum SVD of the oil sand patch follows doubly truncated exponential
(DTE) distribution. Probability density function (pdf) of DTE [I1] is given by,
P(B) = U[le_zep;;((_ﬁz;;‘_)g;}o)] I20)(B),pp < B < 2. On the other hand, the re-
sponse of the Gabor filter follows doubly truncated normal distribution (DTN);

1 2 2

pdf of DTN is given by, P(T) = a¢2;(eff’£_)£2_(fzu/)20 )I[a,b] (T),a < T < b, where
& is the standard normal cumulative deilsity fuilction(cdf) [11]. The value of in-
dicator function, Ijqp = 1if a <T < b, and is 0 otherwise. I, ,.,)(B) is defined
similarly. A region will have high oil sand particle density if P(O/T, B) > Pipo.
The two threshold values of the posterior probability (Pip1 andPipe) are deter-
mined experimentally from the training set. The parameters of the above dis-
tributions are estimated using maximum likelihood estimation (MLE). Fig. [2(a)
and Fig. [2(b) show the distribution of the brightness and texture of the oil sand
particles respectively.

Regions of Interest (ROI) generated by QT and seeds generated by Center
of Divergence (CoD) [3] method are shown in Fig. @ Table [ illustrates the
number of seeds generated by the proposed QT, CoD and blind initialization
(BI) [2]. CoD refers to the local maxima of the external Gradient Vector Flow
(GVF) field. The point from which the GVF vectors to all of its neighboring
pixels radiate is considered as CoD. CoD is supposed to be located within the
object and the snake evolved from CoD converges to the actual boundary of the
object in noise-free settings. Fig.I{b) and [l(c) show accuracy and F-measure for
CoD, BI and QT techniques with proposed modified Adaboost based validation
technique respectively. F-measure combines both recall and precision into a single
entity [12]. Results show that though all techniques possess the same accuracy,
both BI and QT achieve 30% more F-measure value than that of CoD but QT
generates significantly fewer seeds (Table[Il) than other competitve methods.

Next, we determine the value of k (discussed regarding feature weight in Sec-
tion () using five-fold cross validation [5] technique. We compute misclassification
errors for different values of k and the result is shown in Fig.[B(a). Standard error
bars indicate the standard errors of the individual misclassification error rates
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Fig. 2. Histogram of brightness and texture of oil sand particles
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Table 1. Comparison among three snake initialization techniques

# of seeds generated by
CoD BI QT
Oil Sand 349 3786 3000 686
Leukocyte 193 2402 4375 799

Datasets # of objects

for each of the five parts. It is observed that both the average misclassification
error rate and standard error is minimum for £ = 8 for oil sand images. For
existing Adaboost algorithm, the value of k is always 1. Modified Adaboost al-
ways outperforms the existing Adaboost algorithm because the modified one can
select the best value of k for which the misclassification error is minimum. The
misclassification error rate for boosting with decision stumps [5], as a function
of the number of iterations for k = 8 is shown in Fig. Bi(b).

Fig. @ shows the results of proposed Adaboost, e-boosting [5], I; regularized
boosting [10] and PCA [2] on oil sand images and their comparisons are shown in
Fig.Bland Fig.Bla). Fig. Bla) shows the average Jaccard Score [13] and Fig. B(b)
shows the average Pratts figure of merit (PFOM) [14] for these methods. Jaccard
Score measures the fraction of overlap area among detected and true objects.
Pratt’s figure of merit determines the closeness among detected and actual edge
pixels. Domain expert visually determines actual edge pixels and true object area
from an image. Both Jaccard Score and Pratt’s figure of merit are important to
judge the segmentation quality of an algorithm and both are bounded by 0 and 1.
Superior performance of a segmentation algorithm is indicated by higher PFOM
as well as Jaccard Score values.
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Fig. 3. (a) fivefold cross validation curve with standard error bars; the curve has min-
ima at k = 8. (b) Misclassification error rate over the number of iterations for oil sand
images.
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different methods on oil sand images

4.2 Leukocyte Images

Leukocyte plays an important role in the study of inflammation. Inflammation is
a natural defense mechanism initiated by tissue damage. During inflammatory
responses, endothelium cells are activated, and then leukocytes start deviat-
ing from mainstream blood flow and contact the activated endothelium cells.
This slow movement of leukocytes in contact with endothelium cells is known as
rolling. Finally, from the rolling stage, leukocyte diffuses through the vascular
wall, reaches the injured tissues, and encounters the germs. Although inflamma-
tion is a normal defense mechanism, it sometimes becomes an abnormality in the
context of inflammatory diseases. To combat such diseases, anti-inflammatory
drugs are developed by blocking or controlling any of the necessary processes of
inflammatory response. Here, the rolling velocity distributions of leukocytes is
an important factor in the study of inflammation. To measure and analyze the
rolling velocity distributions of leukocytes from the in vivo experiments, video
recordings of the postcapilary vennule of a cremaster muscle are made through
a CCD camera coupled with the intravital microscope. Then leukocytes are de-
tected from the video frames using the proposed method and a correspondence
analysis is carried out between consecutive images to compute their velocities [6].
In this paper, we have concentrated only leukocyte detection. We have carried
out experiment on a training set of 5 and a test set of 25 leukocyte images. Detec-
tions obtained by proposed Adaboost, e-boosting [5], I regularized boosting [10]
and PCA [2] techniques are shown in Fig. [fl and their performances in terms of
Jaccard Score and Pratt’s Figure of Merit are shown in Fig. [ and Fig. B(b).

4.3 Interpretation of Results

One can interpret that proposed adaboost based validation is better than
e-boosting [5], I3 regularized boosting [I0] and PCA [2] based technique since
it can detect more oil sand particles and leukocytes accurately and precisely.
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Fig. 8. Receiver Operating Characteristic (ROC) curves

Segmentation score (Jaccard Score and Pratt’s Figure of Merit) as well as area
under ROC curve of proposed adaboost is greater than that of other methods.

5 Conclusion and Fututre Works

Towards complete automation of snake algorithm, we have proposed an initial-
ization as well as validation algorithm that could be utilized as a successful
plug-in for existing snake/active contour tools. Existing research mainly focuses
on the snake initialization and evolution steps and ignores the validation step.
Here, we emphasize that we cannot omit the validation step in spite of ap-
plying the smart initialization technique of snake algorithm used for multiple
objects detection. We have proposed probabilistic quad tree based approximate
segmentation for snake initialization. We show that our proposed initialization
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outperforms existing initialization methods. We have successfully incorporated
regularization into boosting framework and we demonstrate that our intended
loss function is more robust to outliers concerning snake classification into ob-
ject and non-object classes. We have also shown that proposed boosting based
snanke validation technique outperforms existing PCA based validation method.
Results of extensive experiments illustrate that proposed method is fast, reliable
and more accurate than existing methods.

In the future, We would like to incorporate our initialization and validation
methods with other well-known snake evolution methods. Also we will further
explore the characteristics of proposed regularization into boosting frameworks
extensively by conducting experiments with available benchmark datasets.

Acknowledgements. The authors acknowledge the support of NSERC, Depart-
ment of Computing Science, University of Alberta, and the Center for Intelligent
Mining Systems (CIMS), University of Alberta, Mitacs internship program for
this work.
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Appendix: Derivation of Proposed Discrete Adaboost
Algorithm

Proposed loss function is: L(y, f(x)) = exp(—y f(x) + M|y — G(z)|), where A < 0.
Let fi(z) = fim-1(x) + BmGm(x) be the strong classifier composed of first m
classifiers. We can pose m-th iteration of adaboost as the following optimiza-

tion, (Bm,Gm) = CL?”QWG”W Zf\;1 exp[—yi(fm—1(xi) + BG(x;)) + A|yi — G(i)|]

= (B Gon) = argmin 321y w*epl—yiSGr:)) + My — Gl

where, w" = exp( ylfm,l(xi)) is free of both § and G(x).
= (Bm, Gm) = argminlexp(=5) 2.y, —a(e,) Wi +€xp(B +2X) Xy 262 Wil

)

= arg?g@n[exp(ﬁ +2X) = exp(=5)) Xy W+ eap(—B) i, wi')-

The solution fors3,, and GG,, can be obtained in two steps. First, for any value of
B > 0, the solution for G,, is: G, = argmin 2121 wI(y; # G(ml)).
G

. N N
Let err,, = arggnn Yo witI(ys # G(xi))/ o2 wit,

then B = 2 (31, wi((exp(B + 2)) — exp(—B))erry, + exp(—p))) = 0.
= B = (loglgf:;’") —-A= (logkleffT"L) where, A = — 1log(k), k> 0.
Now, w"”'1 = wexp(—OBmYiGm(x;)). Using the fact that —y;G., (x;) = 21 (y;

Gle)) — 1, we get, w™! = wieap(an] (y; # Gl:)))eap(~ 5m)

where, a,, = 23, = log(k((1 — erry,)/erry)). So, w™ = wlexp(an,I(y; #
G(ml))) The factor exp(—[(y,) multiplies all weights by the same value, so it has
no effect.
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Abstract. We present different approaches to reconstructing an inex-
tensible surface from point correspondences between an input image
and a template image representing a flat reference shape from a fronto-
parallel point of view. We first propose a ‘point-wise’ method, i.e. a
method that only retrieves the 3D positions of the point correspondences.
This method is formulated as a second-order cone program and it han-
dles inaccuracies in the point measurements. It relies on the fact that
the Euclidean distance between two 3D points must be shorter than
their geodesic distance (which can easily be computed from the tem-
plate image). We then present an approach that reconstructs a smooth
3D surface based on Free-Form Deformations. The surface is represented
as a smooth map from the template image space to the 3D space. Our
idea is to say that the 2D-3D map must be everywhere a local isometry.
This induces conditions on the Jacobian matrix of the map which are
included in a least-squares minimization problem.

1 Introduction

Monocular surface reconstruction of deformable objects is a challenging problem
which has known renewed interest during the past few years. This problem is
fundamentally ill-posed because of the depth ambiguities; there are virtually
an infinite number of 3D surfaces that have exactly the same projection. It
is thus necessary to use additional constraints ensuring the consistency of the
reconstructed surface.

In this paper, we present two algorithms for monocular reconstruction of
deformable and inextensible surfaces under some general assumptions. First,
we consider the template-based case. Reconstruction is achieved from point cor-
respondences between an input image and a template image showing a flat refer-
ence shape from a fronto-parallel point of view. Second, we suppose the intrinsic
parameters of the camera to be known. Third, we assume that the camera is a
perspective camera. These are common assumptions [1-3].

Over the years, different types of constraints have been proposed to
disambiguate the problem of monocular reconstruction of deformable surfaces.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITI, LNCS 6494, pp. 52[66] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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They can be divided into two main categories: the statistical and the physi-
cal constraints. For instance, the methods relying on the low-rank factorization
paradigm [4-10] can be classified as statistical approaches. Learning approaches
such as [1, [11H13] also belong to the statistical approaches. Work such as [1],
where the reconstructed surface is represented as a linear combination of inex-
tensible deformation modes, is also a statistical approach. Physical constraints
include spatial and temporal priors on the surface to reconstruct |14, [15]. Sta-
tistical and physical priors can be combined |5, [7]. A physical prior of particular
interest is the hypothesis of having an inextensible surface [143, [L6]. In this pa-
per, we consider this type of surface. This hypothesis means that the geodesics
on the surface may not change their length across time. However, computing
geodesics is generally hard to achieve and it is even more difficult to incorporate
such constraints in a reconstruction algorithm. There exist several approaches
to approximate this type of constraint. For instance, if the points are sufficiently
close together, the geodesic between two 3D points on the surface can be ap-
proximated by the Euclidean distance [17]. An efficient approximation consists
in saying that the geodesic distance between two points is an upper bound to
the Euclidean distance |3, [16].

Algorithms for monocular reconstruction of deformable surfaces can also be
categorized according to the type of surface model (or representation) they use.
The point-wise methods utilize a sparse representation of the 3D surface, i.e. they
only retrieve the 3D positions of the data points |3]. Other methods use more
complex surface models such as triangular meshes [1,116] or smooth surfaces such
as Thin-Plate Splines [3, [5]. In this latter case, the 3D surface is represented as
a parametric 2D-3D map between the template image space and the 3D space.
Smooth surfaces are generally obtained by fitting a parametric model to a sparse
set of reconstructed 3D points: the smooth surface is not actually used in the
3D reconstruction process. In this paper, we propose an algorithm that directly
estimates a smooth 3D surface based on Free-Form Deformations [18]. Having an
inextensible surface means that the surface must be everywhere a local isometry.
This induces conditions on the Jacobian matrix of the 2D-3D map. We show that
these conditions can be integrated in a non-linear least-squares minimization
problem along with some other constraints that force the consistency between
the reconstructed surface and the point correspondences. Such a problem can be
solved using an iterative optimization procedure such as Levenberg-Marquardt
that we initialize using a point-wise reconstruction algorithm. Our approach is
highly effective in the sense that it outperforms previous approaches in terms of
accuracy of the reconstructed surface and in terms of inextensibility.

Another important aspect in monocular reconstruction of deformable surfaces
is the way noise is handled. It can be accounted for in the template image 3] or
in the input image [1]. There exist different approaches for handling the noise.
For instance, one can minimize a reprojection error, i.e. the distance between
the data points of the input image and the projection of the reconstructed 3D
points. It is also possible to hypothesize maximal inaccuracies in the data points.
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Table 1. Notation used in this paper

Notation Description
P Matrix of the intrinsic parameters of the camera (P € R3*3)
(The camera is assumed to be at the coordinate origin, so the matrix P
may be assumed to be square and invertible.)
P kth row of the matrix P
Ne Number of point correspondences
qi ith point in the template image
q; ith point in the input image; ¢ € {1,...,nc}
Qi Point q; in homogeneous coordinates
u; Sightline corresponding to the point q (u; = (P~'q})/||IP~ &)
i Depth of the point Q;
Q: Reconstructed 3D point ¢
dij Euclidean distance between points ¢ and j (di; = ||q: — q;|)
T True value of = (for z = q}, q:, Qi, Wi, i, dij)

We propose a point-wise approach that accounts for noise in both the tem-
plate and the input images. This approach is formulated as a second-order cone
program (SOCP) [19].

2 Related Work on Inextensible Surface Reconstruction

A popular assumption made in deformable surface reconstruction is to consider
that the surface to reconstruct is inextensible [143, [16]. This assumption is rea-
sonable for many types of material such as paper and some types of fabrics.
Having an inextensible surface means that the surface is an isometric deforma-
tion of the reference shape. Another way of putting it is to say that the length
of the geodesics between pairs of points remains unchanged when the surface
deforms. An exact transcription of this principle is difficult to integrate in a
reconstruction algorithm. Indeed, while it is trivial to compute the geodesic in
a flat reference shape, it is quite difficult to do it for a bent surface (especially
when the surface is represented as a sparse set of points or a triangular mesh).
Many approximations have thus been proposed.

The first type of approximation consists in saying that if the surface does not
deform too much then the Euclidean distance is a good approximation to the
geodesic distance. Such an approach has been used for instance in [2,[12, (16, [20].
Note that these types of constraints are usually set in a soft way. For a given
set of point pairs on the surface, the Euclidean distance should not diverge too
much from the geodesic distances. This approximation is better when there are a
large number of points. Depending on the surface model it is not always possible
to vary the number of points.

Although the Euclidean approximation can work well in some cases, this ap-
proximation gives poor results when creases appear in the 3D surface. In this
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Template image 3D surface

Isometric
Qi <d

deformation HQI Q}H = Yy
dij = llai — a;l

qi q;

Fig. 1. Inextensible object deformation. The Euclidean distance between two points is
necessarily less than or equal to the length of the geodesic that links those two points
(this length is easily computable if we have a template image representing the flat
reference surface from a fronto-parallel point of view).

case, the Euclidean distance between two points on the surface can shrink,
as illustrated in figure [[I The ‘upper bound approach’ is a now classical ap-
proach [1, 3] which consists in noticing that even if the Euclidean distance be-
tween two points can shrink it can never be greater than the length of the corre-
sponding geodesic. In other words, the inextensibility constraint |Q;—Q;|| < d;;
must be satisfied for any pair of points (Q;, Q;) lying on the surface. The second
principle of such algorithms is to say that a 3D point Q; must lie on the sight-
line uy, i.e. Q; = p;u;. These two constraints are not sufficient to reconstruct the
surface. Indeed, nothing prevents the reconstructed surface from shrinking to-
wards the optical centre of the camera. This problem is ‘solved’ using a heuristic
that has been proven to be very effective in practice. It consists in considering a
perspective camera and in maximizing the depth of the reconstructed 3D points.

These ideas have been implemented in different manners. For instance, [3]
proposes a dedicated algorithm that enforces the inextensibility constraints. This
algorithm accounts for noise only in the template image (by simply increasing
a little bit the geodesic distances in the template, i.e. by replacing d;; with
d;j+er where e, is the maximal inaccuracy of the points in the template image).
Another sort of implementation is given by [1,[16]. In these papers, a convex cost
function combining the depth of the reconstructed points and the negative of
the reprojection error is maximized while enforcing the inequality constraints
arising from the surface inextensibility. The resulting formulation can be easily
turned into an SOCP problem. A similar approach is explored in [2]. These last
two methods account for noise in the input image. The approach of 3] is a point-
wise method. The approaches of [1,12, [16] use a triangular mesh as surface model,
and the inextensibility constraints are applied to the vertices of the mesh.

3 Convex Formulation of the Upper Bound Approach
with Noise in All Images

In this section, we propose a convex formulation of the principles sketched in §2]
that, compared to [3], accounts for noise in both the template and the input
images. We can express this in terms of image-plane measurements. As in [1, |16],
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our approach is formulated as an SOCP problem. However, contrary to [1, [16],
our approach is a point-wise method that does not require us to tune the relative
influence of minimizing the reprojection error and maximizing the depths.

3.1 Noise in the Template Only

Let us first remark that the basic principles explained in §2] can be formulated
as SOCP problems. In this first formulation, the noise is only account for in the
template image. The inextensibility constraint ||Q; — Q;|| < dij + €7 can be
written:

[piws — pyu;|| < dij + e (1)
Including the maximization of the depths, we obtain this SOCP problem:

=1
2
subject to ||p;w; — pjuj|| < dij +er V(i j) €€ @)

pi >0 ie{l,...,n.}

where pu’ = (,u1 . Mnc), and & is a set of pairs of points to which the inexten-
sibility constraints are applied.

3.2 Noise in Both the Template and the Input Images

Let us now suppose that the inaccuracies are expressed in terms of image-plane
measurements. Suppose that points are measured in the image with a maximum
error of €7, i.e.

l&; —dill <ez,  Vie{l...,nc}. 3)
Since we are searching for the true 3D position of the point Q;, we say that:
1 pTQ‘)
N 1 Qi
q. = . 4
’ ngi <P5Qi (4)

Equation (8] can thus be rewritten:

)<
p;,rQZ P2 Qi ‘

We finally add the inextensibility constraints and the maximization of the depths
(which are given by p1Q;) and we obtain the following SOCP problem:

< e;. (5)

Ne
max pi > Qi

i=1
pT
subject to Lﬁ] Q; — qugQi <eg ngi Vie{l,...,n.} (6)
2
1Qi — Qjll < dij V(i,j) € €
psQi >0 Vie{l,...,n}

where Q is the concatenation of the 3D points Q;, for ¢ € {1,...,n.}.
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4 Smooth and Inextensible Surface Reconstruction

Although the strategem of maximizing the sum of depths Z?;l w; described in
the previous section gives reasonable results, it is merely a heuristic, not based
on any valid principle related to surface properties. We therefore consider next
a new formulation based on the principle of surface inextensibility.

Let the surface be modelled as a function W : R? — R3, mapping the planar
template to 3-dimensional space. The inextensibility constraint is equivalent to
saying that the map YW must be everywhere a local isometry. This condition
may be expressed in terms of its Jacobian. Let J(q) € R3*2 be the Jacobian
matrix OW/dq evaluated at the point q. The map W is an isometry at q if the
columns of J(q) are orthonormal. This local isometry can be enforced for the
whole surface with the following least-squares constraint:

/ / 13(@) () — 1o * dg = 0. (7)

In practice, we consider a discretization of the quantity in equation (), namely

EOV) =3 |Pe) ey el (8)

where {g; ;L;l is a set of 2D points in the template image space taken on a fine

and regular grid (for instance, a grid of size 30 x 30). This term &;(W) measures
the departure from inextensibility of the surface W.

Our minimization problem is then to minimize this quantity, over all possible
surfaces, subject to the projection constraints, namely that point W(q;) projects
to (or near to) the image point g}, for all i.

4.1 Parametric Surface Model

The problem just described involves a minimization over all possible surfaces.
Instead of considering this as a variational problem over all possible surfaces,
we consider a parametrized family of surfaces. For this purpose, we chose Free-
Form Deformations (FFD) [18] based on uniform cubic B-splines [21]. Let Wp :
R? — R3 be the parametric FFD, parametrized by a family of 3D points Ly J €
{1,...,n.}, k€ {1,...,n,}, which act as ‘attractors’ for the surface.

For a point q = (u,v) in the template, the surface point is explicitly given as

Ny Moy

We(@) =D > £iN;(u)Ni(v). 9)

j=1k=1

The functions N; are the B-spline basis functions [21] which are polynomials of
degree 3. If point q; = (u;,v;) is fixed and known then the surface point Wy(q;)
is expressed as a linear combination of the points £;;, and hence can be written
in the form Wpy(q;) = W;£, where W; is a 3 x n,n, matrix depending only on the
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point q;, and £ is the vector obtained by concatenating all the points £;;. Thus,
the 3D point is a linear expression in terms of the parameter vector £. Since the
polynomials N; and N depend only on a local set of the attractor points £;p,
the matrix W, is sparse, which is important for computational efficiency.

4.2 Surface Reconstruction as a Least-Squares Problem

By replacing Q; by W, £ in (@) we may arrive at a constraint:

T
(] o me oo
2

We may then formulate the optimization problem as minimizing the inexten-
sibility cost &(We) given in () over all choices of parameters £, subject to
constraints (I{). The constraints are SOCP constraints, but the cost function
@) is of higher degree in the parameters. To avoid the difficulties of constrained
non-linear optimization, we choose a different course, by including the reprojec-
tion error into the cost function, leading to an unconstrained problem.

To simplify the formulation of the reprojection error, we introduce the depths
1; as subsidiary variables, for reasons that become evident below. This is not
strictly necessary, but reduces the degree of the reprojection-error term. The
minimization problem now takes the form:

miél Ea(p, L) + a&;(€) + BES (L), (11)

122

where &g, &;, & are the data (reprojection error), inextensibilty, and smoothing
terms respectively. The data term ensures the consistency of the point correspon-
dences with the reconstructed surface. &; forces the inextensibility of the surface.
&, promotes smooth surface in order to cope with, for instance, lack of data. The
relative influence of these three terms are controlled with the weights a € R
and 8 € Ry.

The inextensibility term has been described previously. We now describe the
two other terms in (ITJ).

Data term. Replacing Q; by W, £ in ({]) gives an expression for the reprojection
error associated with some point. However, the resulting expression is non-linear
with respect to the parameters £. We thus prefer a linear data term expressed
in terms of ‘3D errors’, which is the reason why we introduced the depths g of
the data points in the optimization problem. The data term is then defined by:

Ea(p.0) =Y |Wla) — P (12)
=1

which measures the distance between the point Wp on the surface and the point
at depth p; along the ray defined by q.
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Smoothing term. In some cases, the point correspondences and the hypothesis
of an inextensible surface are not sufficient. For instance, imagine that there is
no point correspondence in a corner of the surface. In this case, there is nothing
that indicates how the surface should behave. The corners of the surface can
bend freely as long as they do not extend or shrink (like the corners of a piece
of paper). To overcome this difficulty, we can add a third term (the smoothing
term) in our cost function that favours non-bending surfaces. Note that usually,
such terms are used to compensate for the undesirable effects of under-fitting and
over-fitting. Doing so is usually a problem because it requires one to determine
a correct value for the weight associated to the smoothing term (value (8 in
equation (IIJ)). This is a sensible and critical way of balancing the effective
complexity of the surface against the complexity of the data. Here, we do not
have to care too much. Indeed, the complexity of the surface is limited by the
fact that it is inextensible. Any small value (but big enough to be not negligible,
for instance 3 = 10~*) is thus suitable for the weight of the smoothing term. We
define our smoothing term using the bending energy:

05[]

where W&(q) is the i-th coordinate of the point, and || - || = is the Frobenius norm
of the Hessian matrix. With FFD, there exists a simple and linear closed-form
expression for the bending energy:

82W€
dq. (13)

Es(€) =||BY?¢)?> = £"Be (14)

where B € R?"*3P is a symmetric, positive, and semi-definite matrix which can
be easily computed from the second derivatives of the B-spline basis functions.

Initial solution. The problem of equation (I]) is a non-linear least-squares min-
imization problem typically solved using an iterative scheme such as Levenberg-
Marquardt. Such an algorithm requires a correct initial solution. We used an
FFD surface fitted to the 3D points reconstructed with one of the point-wise
methods presented in §3l Subsequently, since we use a surface model which is
linear with respect to its parameters, the initial parameters € can be found by
solving the least-squares problem:

mjn > [W(a) ~ Qul* e mpn > (Wt - Qi (15)
=1

i=1

An alternative is to modify the problem (@), expressing Q; in terms of the
required parameters £, according to Q; = W;£. Then one may solve for £ directly
using SOCP. If necessary, the linear smoothing term of equation (I3) can be
included in equation ().
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5 Experimental Results

5.1 Experiments on Synthetic Data

In this section, we experiment several aspects of different reconstruction algo-
rithms. We first use synthetic piece of papers, such as those of figure[2l randomly
generated using the code provided by [@] The piece of papers are square and
200mm wide. The input images are simulated by projecting the deformed piece
of paper with a virtual camera placed at approximately 1 meter of the paper
sheet and with a focal length of 36mm. A set of n. point correspondences are
generated by taking random locations on the 3D surface. A zero mean Gaussian
noise with standard deviation of 1 pixel is added to the point correspondences.
There are no self-occlusion in the data.

Fig. 2. Example of randomly generated piece of paper. Left: 3D surface. Middle: tem-
plate image. Right: input image. The blue dots are examples of point correspondences.

Several algorithms are compared in our experiments:

— SOCPimg: our point-wise method described in §3.21;

— FFDref: our smooth reconstruction algorithm described in §4.2] ;

— FFDinit: the initial solution of our smooth reconstruction algorithm, as de-
scribed in §4.7 ;

— Salz: the convex formulation proposed in @] This method is similar to
SOCPimg except for the noise that is not handled the same way. In @],
the author minimizes a cost function that includes a ‘reprojection error’ in
order to cope with the noise. In SOCPimg, the noise is handled with hard
constraints.

— Perriolnit: the ‘upper depth bound’ approach of E, } which is a point-wise
algorithm that iteratively enforces the inextensibility constraints;

— PerrioRef: the ‘refined approach’ of E, } which minimizes a cost function
resulting in a refined estimation of the 3D points obtained with Perriolnit.

Reconstruction Errors. The discrepancy between the reconstructed and the
ground truth surfaces are quantified with two measures, depending on the sur-
face model used by the algorithms. The point-wise reconstruction error (PWRE),
denoted e, can be used for all the algorithms. It is defined by:

Cc .

1 .
= 2 1Qi-Qil. (16)
i=1
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For algorithms that uses more complex surface models, such as triangular meshes
or FFD, we measure the surface reconstruction error (SRE), denoted e;. It is the
difference between the reconstructed surface Wy and the ground truth surface W:

es://HWg(q)*W(q)qu- (17)

In this experiment, we use 1,000 randomly generated paper sheets with 150
points correspondences. Figure [B(a) shows the PWRE for all the algorithms and
figure B(b) shows the SRE for the algorithms that use a complex surface model.
The main result of this experiment is that our approach FFDref gives the smallest
reconstruction errors (PWRE and SRE). Globally, the methods that use complex
surface models get better results than the point-wise approaches.
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(a) Point-wise reconstruction error (b) Surface reconstruction error

Fig. 3. Comparison of the reconstruction errors for different algorithms. The central
red line is the median. The limits of the blue box are the 25th and the 75th percentiles.
The black ‘whiskers’ cover approximately 99.3% of the experiment outcomes. The green
crosses are the maximal errors over the 1000 trials.

Length of Geodesics. When a reconstructed 3D surface is reconstructed in a
truly inextensible way, the transformation of the straight line linking two points
in the template image must be the geodesic linking the corresponding two 3D
points on the surface. In particular, the length of these two paths must be identi-
cal. Testing this hypothesis for our algorithms FFDinit and FFDref is the goal of
this experiment. To do so, we use the same data as in the previous experiment.
For each surface, we choose randomly 10,000 pairs of points in the template im-
age. For each pair of points (g;, g;), the length lij of the deformed path linking
the 3D points Wp(gi) and Wp(g;) on the surface is approximated by the length
of the polygonal line linking these two points with the following formula:

g
3D __ E

k=1

Wele: + 5 lgi — &ill) - Welei+ e —&l) | (18)

where ng is the number of intermediate points used for the approximation (we
use ngy = 200 since we experimentally observed that the approximation stabilizes
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for values of ng greater than 180). The lengths of the deformed paths are plotted
against their reference length in the template image in figure[(a) for FFDinit and
in figures @l(b,c) for FFDref. Figures fl(b) and Ml(c) show that, with the surfaces
reconstructed with FFDref, the length of the deformed paths are almost equal to
the length they should have if they were actual geodesics. In other words, our
approach FFDref reconstructs 3D surfaces which are truly inextensible. On the
other hand, figure [dl(a) shows that the initial solution FFDinit (which is just an
FFD fitted to a sparse set of reconstructed 3D points) seems to be much less
inextensible.

sz o sz o £T _
SES SES RED
B2 B2 B2
38 39 39 g
2o 2o 2o*
=28 =28 ZZ
(= (= (=
F=) =) =]
2z | A P2 2z,
23%o 2%o 33 =l
0 100 200 300 0 100 200 300 149 150 151
Length of the reference straight Length of the reference straight Length of the reference straight
path in the template image (mm) path in the template image (mm) path in the template image (mm)
(a) FFDinit (b) FFDref (c) Magnification of (b)

Fig. 4. Plot of the length of deformed paths against the length they should have if the
reconstructed surface was truly inextensible. The red diagonal line is the place where
all the blue points should be for inextensible surfaces.

Let Z?J-D be the Euclidean distance between the points g; and g;. Table[2 gives

some statistics on the relative error between the computed length lng and the
reference length 127, i.e. the quantity (177 —12P)/13P. These numbers confirm
the results seen in figure [l

Table 2. Statistics on the relative errors between the length of transformed paths and
the length they should have

Mean Std deviation Median Minimum Maximum

FFDinit  0.0119 0.0417 0.0036 —1.9689 0.8931
FFDref 2.0084 x 107° 7.1965 x 10~* 5.8083 x 107% —0.0505 0.3396

Gaussian curvature. The Gaussian curvature is the product of the two prin-
cipal curvature (which are the reciprocal of the radius of the osculating circle).
For an inextensible surface, the Gaussian curvature is null. In this experiment,
we check if this property is satisfied by the smooth surfaces reconstructed with
FFDinit and FFDref. We used the same 1,000 reconstructed surfaces as in the pre-
vious experiment. The Gaussian curvature, denoted k, is computed for 10,000

randomly chosen points on the surface with the formula k = det(n), where 1
det(I)
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and IT are the first and the second fundamental forms of the parametric sur-
face M] The results of this experiment are reported in table [l It shows that,
in average, the Gaussian curvature of the surfaces reconstructed using FFDref
are consistently close to 0. It also shows that FFDref gives Gaussian curvatures
which are 100 times smaller than the ones obtained with FFDinit. These results
demonstrate that the surfaces reconstructed with our approach FFDref are in-
deed inextensible. Note that this kind of experiment cannot be achieved if a
smooth surface is not available.

Table 3. Statistics on the (absolute value of the) Gaussian curvatures for 1,000 recon-
structed surfaces and 10,000 points per surface

Mean Std deviation Median Minimum Maximum

FFDinit 4.9458 x 10~* 0.0875 9.7302 x 107° 7.5122 x 10™** 258.2379
FFDref 5.0046 x 1076 7.1320 x 10™% 1.7333 x 107 2.2325 x 107"  1.5199

5.2 Experiments on Real Data

The algorithms used in the synthetic experiments of §5.1] are applied to real data
in figures Bl and [0l These figures show that our approaches give good results on
real data. In particular, figure [}l shows that our method FFDref outperforms the
other approaches in the presence of a self-occlusion. This comes from the fact
that FFDref requires the surface to be inextensible everywhere, even if there
are no point correspondences (which is the case on the self-occluded part of the
paper sheet). An accurate stereo reconstruction of the surface in figure [0 were
available. We compare in table Ml the average 3D errors between the surfaces
reconstructed with a monocular approach to the stereo reconstruction. Again,
our method FFDref is the one giving the best results.

Template

c e 5 =<\ s ™
S
(+ point b Nt
corresp.) M

Fig. 5. Illustration of monocular reconstruction algorithms in the presence of a self-
occlusion (the point correspondences were automatically extracted using Iﬁ]) Note
how our algorithm FFDref is able to recover a reasonable shape for the occluded part.
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Stereo reconstr. PerrioRef SOCPimg
Fig. 6. Illustration of the results obtained with several monocular reconstruction al-
gorithms. First row: input image along with a reprojection of the reconstructed 3D
surface. Second row: reconstructed surface from a different point of view. Note that
the stereo reconstruction (first column) is not a monocular algorithm: it is just used

to assert the quality of the other reconstructed surfaces (see table [).

Table 4. Average 3D error (in millimeters) with respect to the stereo reconstruction
of the surface for the surfaces of figure [6]

PerrioRef SOCPimg Salz FFDinit FFDref
2.388 2.261 4.743 2.259 1.991

6 Conclusion

In this paper, we presented new approaches for monocular reconstruction of
inextensible surfaces imaged by a perspective camera. In particular, we proposed
a SOCP formulation of the problem that accounts for noise in both the template
and the input images. We also designed an algorithm that directly reconstruct
a smooth surface based on free-form deformations. This algorithm outperforms
previous approaches in terms of precision of the reconstructed surface. Besides,
we experimentally showed that the surfaces reconstructed with this algorithm are
truly inextensible. The only drawback of this approach is that it is formulated as
a non-linear least-squares minimization problem with a non-convex cost function.
However, we proposed a method to build an initial solution which is close to the
optimum. It allows us to get rid of the difficulties linked to the non-convexity of
the cost function.

Acknowledgement. This work has been partly founded by the Regional Coun-
cil of Auvergne. NICTA is funded by the Australian Government, in part through
the Australian Research Council.
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Abstract. The k-nearest neighbors (k-NN) classification rule is still an
essential tool for computer vision applications, such as scene recognition.
However, k-NN still features some major drawbacks, which mainly reside
in the uniform voting among the nearest prototypes in the feature space.

In this paper, we propose a new method that is able to learn the “rel-
evance” of prototypes, thus classifying test data using a weighted k-NN
rule. In particular, our algorithm, called Multi-class Leveraged k-nearest
neighbor (MLNN), learns the prototype weights in a boosting frame-
work, by minimizing a surrogate exponential risk over training data. We
propose two main contributions for improving computational speed and
accuracy. On the one hand, we implement learning in an inherently mul-
ticlass way, thus providing significant computation time reduction over
one-versus-all approaches. Furthermore, the leveraging weights enable
effective data selection, thus reducing the cost of k-NN search at classi-
fication time. On the other hand, we propose a kernel generalization of
our approach to take into account real-valued similarities between data
in the feature space, thus enabling more accurate estimation of the local
class density.

We tested MLNN on three datasets of natural images. Results show
that MLNN significantly outperforms classic k-NN and weighted k-NN
voting. Furthermore, using an adaptive Gaussian kernel provides signif-
icant performance improvement. Finally, the best results are obtained
when using MLNN with an appropriate learned metric distance.

1 Introduction

In this paper, we address the task of image categorization. This task aims at
automatically classifying images into a predefined set of scene categories, like the
natural scenes represented in Fig. [[l (See Sec. Bl for a detailed description of
the databases we used in our experiments). Despite lots of works, much remains
to be done to challenge human level performances, not only because there is a
huge number of natural categories that should be considered in general. In fact,
images carry only parts of the information that is used by humans to categorize,
and parts of the information available from images may be highly misleading:
for example, natural image categories may exhibit high intra-class variability

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITI, LNCS 6494, pp. 67}81,|2011.
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. The first dataset we used in our experiments consists of 8 categories of natural
scenes [1]

‘Query 1 lk—NN }—«>{ Classes 1 ‘
‘ Dataset [Boosting]| (PS)'—[ ‘ ‘

‘Qucfy n l k-NN }—«>{ Cl;;sscs n ‘

Fig. 2. Optimizing k-NN via MLNN (up, blue) and SVM-KNN [2] (down, green).
MLNN uses a boosting algorithm before being presented any query, while SVM-KNN
learns support vectors after each query is presented. Bold rectangles indicate induction
steps (PS = prototype selection; see text for details).

- -

(i.e., visually different images may belong to the same category) and low inter-
class variability (i.e., distinct categories may contain images that are visually
similar).

For the purpose of automatic classification of images, the k-NN classification
has shown to be very effective [3]. Its use is supported by a wide spectrum of argu-
ments, ranging from the field of philosophy to that of mathematics [2]. The sim-
plicity of the method — use the labeled neighbor(s) of a query to predict its class
— makes it a good candidate for further improvements, desirable in part because
of statistical and computational drawbacks [2]. So far, the literature has favoured
two main ways to cope with these issues: improve classification accuracy by means
of local classifiers [2/4U5l6], or filter out ill-defined examples [7], with intermediate
approaches [§]. Many of these algorithms can be viewed as primers to improve
the (continuous) estimation of class membership probabilities [9], but none has
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completely succeeded in this task. This problem has been reformulated by Marin
et al. [10] as a strong advocacy for the formal transposition of boosting to k-NN
classification. This issue is challenging as k-NN rules are indeed not induced,
whereas formal boosting algorithms combine two induction steps, inducing so-
called strong classifiers by combining weak classifiers (also induced). Previously,
Athitsos and Sclaroff [I1] had already proposed an approach to bring the boost-
ing principle into the k-NN classification framework. However, their method con-
sisted in “boosting” the distance measure, i.e., learning a combination of metric
distances that could improve the generalization of classifier. Furthermore, their
classification framework was not intrinsically multiclass, as they formulated the
problem as binary learning on random triplets of training data.

In this paper, we tackle the issue of integrating k-NN in a boosting framework
from a different perspective. In particular, our algorithm, called MLNN, induces
a multiclass leveraged k-nearest neighbor rule that generalizes the uniform £-NN
rule, using the examples directly as weak hypotheses (that we also call proto-
types). Our MLNN method does not need to learn a distance function, as it
directly operates on the top of k-nearest neighbors search. Furthermore, it does
not require an explicit computation of the feature space, thus preserving one of
the main advantages of prototype-based methods. Compared to the well-known
SVM-E-NN local learning approach [2], MLNN also speeds up query processing:
instead of learning a local classifier for each query, MLNN performs learning
upwards, once and for all, and does not need to be run again or updated de-
pending on queries (Fig. 2)). Finally, the most significant advantage of MLNN
lies in its ability to find out the most relevant prototypes for categorization, al-
lowing to filter out the remaining less reliable examples. Experimentally, signifi-
cant data reductions are observed with a simultaneous increase in categorization
performances.

In Sec. [2] we present our MLNN approach, along with the statement of its
theoretical properties. In order not to laden the paper’s body, the proofsketches
of the results have been postponed to an appendix. Then, Sec. Bl displays the
behavior of MLNN on three standard databases of real-world image categoriza-
tion. Finally, we conclude with some observations (Sec. [).

2 Method

2.1 Problem Statement and Notations

In this paper, we address the task of multiclass image categorization. It consists
in assigning an image to one of several predefined categories (or classes, or labels).
Instead of splitting the multiclass problem in as many one-versus-all (binary)
classification problems — a frequent approach in boosting [12] — we directly
tackle the multiclass problem, following Zou et al [13]. For a given query image,
we compute its classification score for all categories. While we basically use this
vector for single-label prediction using the category with the maximum score,
our algorithm can be straightforwardly extended to multilabel prediction and
ranking [12]. We suppose given a set S of m annotated images. Each image is
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a training example (x,y), where x is the image feature vector and y the class
vector that specifies the category membership of the image. In particular, the
sign of component y. gives the positive/negative membership of the example
to class ¢ (¢ = 1,2,...,C). Inspired by the multiclass boosting analysis of Zou
et al [I3], we constrain the class vector to be symmetric, i.e.: 2521 ye = 0, by
setting: yz = 1, Yoz = — 01—17 where ¢ is the true image category. Furthermore,
we denote by K (x;,x;) a symmetric similarity kernel on the pair of examples
Ti, Tj.

2.2 (Leveraged) k-Nearest Neighbors

The vanilla k-NN rule is based on majority vote among the k-nearest neighbors
in set S, to predict the class of query x4. It can be defined as the following
multiclass classifier h = {h., ¢=1,2,...,C}:

2= 3 e > 0] | (1)

1™~kq

where h. € [0,1] is the classification score for class ¢, ¢ ~ ¢ denotes an example
(z;,y;) belonging to the k-nearest neighbors of x, and square brackets denote
the indicator function.

In this paper, we propose to generalize () to the following leveraged k-NN
rule h? = {h’}:

he(ay) ZO‘J (Tq,@;)yjc € R, (2)

where prediction h’ takes values in all R. In (&), we have introduced the three
following elements to generalize ({):

— leveraging coefficients «;, that provide a weighted voting rule instead of
uniform voting;

— kernel K, which takes into account “soft” (real-valued) similarities between
query x4 and prototypes x;, instead of “hard” selection of the most similar
(k-NN) prototypes;

— size T of the set of prototypes that are allowed to vote.

This last point is particularly interesting for computational purposes, as our
classification rule actually involves only a (possibly sparse) subset of the training
data as prototypes to be used at query time. Indeed, a prototype selection step
is to be performed while training our classifier, in order to determine the most
relevant subset of training data, i.e., the so-called prototypes, forming aset P C S
(Figure[2). The prototypes are selected during the training phase, which consists
in fitting their coefficients a;, while removing the least relevant annotated data
from S.
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2.3 Multiclass Surrogate Risk Minimization

In order to fit our leveraged classification rule () onto training set S, we focus
on the minimization of a multiclass surrogate@ (exponential) risk:

o (1,8) = S exp {—p(h i)} 3)
where:
0 1o ¢
b0 = o D wchi() @)

is the multiclass edge of classifier h’ on training example x;. In particular, this
edge averages over the C classes the “goodness of fit” of classifier h? on example
(z;,y:), thus being positive iff the prediction agrees with the example’s anno-
tation. Therefore, counting the number of negative edges enables to quantify
the so-called empirical risk, i.e., the actual misclassification rate on the training

data, as follows:
m

0/1 L K 1 0 -
€ (h,S)—m;[p(h,z)<0] : (5)
Rather than directly tackling the problem of minimizing £°/! — which is not
differentiable and often computationally hard to minimize [14] — we concentrate
on the optimization of surrogate (B)), which is an upper bound of the empirical
risk.

In order to solve this optimization, we propose a boosting-like procedure, i.e.,
an iterative strategy where the classification rule is updated by adding a new
prototype (x;,y;) (weak classifier) at each step ¢ (t = 1,2,...,T), thus updating
the strong classifier (2] as follows:

hff)(:ci) = hgtfl)(mi) + 6, K (xi, j)yjc - (6)

(j is the index of the prototype chosen at iteration t.) Using (@) into (), and
then plugging it into (B]), turns the problem of minimizing (3] to that finding ¢;
with the following objective:

arg minz w; - exp{—0;ri;} . (7)

J i=1

In (@), we have defined w; as the weighting factor, depending on the past weak

classifiers:
1 &
w; = exp {_ C ; ?/ichgt_l)(wz‘)} ; (8)

1 We call surrogate a function that upperbounds the risk functional we should mini-
mize, and thus can be used as a primer for its minimization.
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and r;; as a pairwise term only depending on training data:

c
1
Ty = K(ﬁ%wj)c E YicYjc - 9)
c=1

Finally, taking the derivative of (@), the global minimization of surrogate risk
@) amounts to fitting J; so as to solve the following equation:

m
Z w;I;5 €XP {—(5]'1‘,‘]'} =0. (10)
i=1

Algorithm 1. MULTI-CLASS LEVERAGED k-NN MLNN (S)
InplIt: ‘S = {(mlayl) ) 7’ = 1525 w1, Yi € {701_171}0}
1 Let iy = LY K@i, ;) yicyje (11)
2 Let a; 0, Vj=1,2,...,.m
3 Let w; —1/m, Vi=1,2,..m
4 fort=1,2,...,T do

5 [I.0] Weak index chooser oracle:
6 Let j — Wic({1,2,...,m},t);
7 [I.1] Compute §; solution of:
> wiry exp{—d;ri;} =0 ; (12)
i=1
8 [I.2] Let
w; «— wi exp(—0;ri;), Vi @ j o (13)

[1.3] Let aj — oy + 5j
Output: hi(z,) = i QicYies, Ye=1,2,...,C

2.4 MLNN: Multi-class Leveraged k-INN Rule

Pseudocode of MLNN is shown in Alg. 1. The main ingredient to compute
leveraging coefficients relies on the so-called edge matriz R with general entry
r; ; (Eq.[@). This term depends on the pairwise similarity between two training
examples, as it is given by the kernel, as well as on the ground-truth annotations.
Indeed, it combines a “labeling” term, which determines the sign, ¢.e., being
positive iff labels of ¢ and j agree, with a “geometric” term, which influences the
magnitude, i.e., being larger when the two examples are closer to each other in
the feature space.

We distinguish the following two cases, depending on which kernel is selected:

k-NN kernel. In the most basic setting, i.e., when using k-NN kernel, term
K (x;,y;) behaves like an indicator function that only selects the k-NN of i.
Therefore, in this case (@) simplifies to:
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1 C . . .
.= JcC 2021 YicYjc if jopi 14
Tid { 0 otherwise (14)

and (I0) has the following closed-form solution:

5 — (€ ;”2 log <(C ;1)‘”7 ) , (15)

J
with:

w;-': Z wi, w; = Z w; . (16)

i 15 >0 it 145<0

general kernel. When using any kernel, entries of the edge matrix (Eq.[]) are
real-valued and, in general, not sparse. Moreover, the equation (I0) is tran-
scendental, thus not admitting a closed-form solution. Hence, we compute
the solution numerically, implementing a Newton’s iterative method. This
method gives the following approximation at step k + 1, given the previous
one at step k:

S wirij exp {*5(’6)1“2-]-}
S exp (-5, )
A critical setting for obtaining quick convergence of the solution is the ini-

tialization. Here, we propose to initialize the algorithm with the root of a
linearized version of Eq. (I0):

sk = gk 4 (17)

m
50 — i1 Wilij (18)

m . 2 N
Dic Wil

A suitable choice for the kernel is the Radial Basis Function (RBF), which
provides “smooth” pairwise similarities between feature points:

L; — I; 2
K(:ci,acj)exp{| 202JH }, (19)

where parameter o may be either constant or adapted to the local sample
density (e.g., one may set o = pi(x;), where pi(x;) is the k-NN distance
to x;, thus “enlarging” the window size where training data are sparser.)
In particular, in the following experiments we use a Gaussian kernel that is
truncated to the first k nearest neighbors, thus providing a straightforward
generalization of the k-NN kernel. In this case the edge matrix writes as
follows:

C i— . 2 . . .
Iy - é Zc:l exp {* ll Qamzjll }yicyjc if J ~E ] (20)
0 otherwise

Another ingredient of MLNN is more common to boosting algorithms: MLNN
operates on a set of weights w; (i = 1,2, ...,m) defined over training data. These
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weights are repeatedly updated, such that those of mislabelled examples are
increased, and vice-versa.

At each iteration ¢ of the algorithm, a weak index chooser oracle
Wic({1,2,...,m},t) determines index j € {1,2,...,m} of the example to leverage
(step 1.0). Various choices are possible for this oracle. The simplest is perhaps
to compute Eq. (6 [I2)) for all the training examples. §; in Eq. (I2) can indeed
be used to obtain a local measure of the class density [I4], which is as better as
0; gets large. This simple oracle thus picks j maximizing d;:

: 1,2, m}ht) : 6; = 0 - 21
j— Wic({1,2,....,m},t) J je{{?gzi}.(.,m} I 2!

This oracle allows an example to be chosen more than once, thus letting its
leveraging coefficient «; be updated several times (step 1.3). It is known that, in
order to be statistically consistent, some boosting algorithms require to be run
for T' <« m rounds [15]. Cast in the setting of MLNN, this constraint precisely
supports prototype selection, as T' is an upperbound for the number of examples
with non-zero leveraging coefficients.

MLNN shares the property with boosting algorithms of being resources-
friendly: since computing the leveraging coeflicients scales linearly with the num-
ber of neighbors, the time complexity bottleneck of MLNN does not rely on
boosting, but rather on the complexity of k-NN search. Furthermore, notice
that, when whichever w;r or w; is zero, d; in (I2) is not finite. There is a simple
way to eliminate this drawback, inspired by [12]: we add 1/m to both the numer-
ator and the denominator of the fraction in the log term of (I2]). This smoothes
out 65, guaranteeing its finiteness without impairing convergence of MLNN.

In the following section, we provide formal details about the boosting analysis
of MLNN.

2.5 Properties of MLNN

Two fundamental theorems hold for MLNN.

Theorem 1. MLNN converges with T to h® realizing the global minimum of
the exponential risk (3).

MLNN is a specialization of a very general learning algorithm which keeps the
same convergence guarantee when replacing the surrogate risk ([B]) by elements
of a broad class of surrogates risk [T4/T5].

The second theorem provides a convergence rate for MLNN, which is based
on a fundamental assumption on weak classifiers.
Theorem 2. Let p; = wj/(w;r +wj ). If the following weak index assumption
(WIA) holds for 7 < T steps in MLNN:

(WIA). There exist some v > 0 and 1 > 0 such that the following two inequal-
ities hold for index j returned by Wic({1,2,...,m},t):
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1
\prcl >, (22)
(wf +wy)/||w|ly =7 . (23)

Then: €”'(h*,S) < eXp(—C€1 me2T).

(Proofsketch in appendix) Ineq. (22) is the usual weak learning assumption, used
to analyze classical boosting algorithms [16/12], when considering examples as
weak classifiers. A weak coverage assumption ([23]) is needed as well, because in-
sufficient coverage of the reciprocal neighbors could easily wipe out the surrogate
risk reduction due to a large v in (22)). In the framework of k-NN classification,
choosing k£ not too small is enough for the WIA to be met for a large number
of boosting rounds 7, thus determining a potential harsh decrease of P (h, S).
This is important, as a big difference with classical boosting algorithms (e.g. Ad-
aBoost [16]) is that oracle Wi1c(.,.) has only access to m different weak classifiers,
i.e., one per example. Finally, the bound in Theorem [2 shows that classification
[@2) may be more important than coverage (23] for nearest neighbors.

3 Experiments

In this section, we present experimental results of MLNN with different kernel
settings and comparison with both k-NN and ITML [6], which is a state-of-the-
art metric learning algorithm. In particular, our experiments aim at evaluating
the effect of UNN sparse prototype selection on the classification accuracy. For
this purpose, we measured the classification performances when varying the num-
ber of prototypes retained at test time. In MLNN), prototype selection is carried
out by setting T' < m, which corresponds to retaining at most 7' relevant pro-
totypes. When running the other methods, we carried out random prototype
selection and averaged the results over a number of iterations.

3.1 Scene Categorization

We validated our MLNN algorithm on three well-known image categorization
databases.

8-cat: firstly proposed by [1], includes 2,688 color images grouped into eight cat-
egories: 360 coast, 328 forest, 374 mountain, 410 open country, 260 highway,
308 inside of cities, 356 tall buildings, and 292 street (Fig. [I).

13-cat: adds five more categories of gray-scale images to the 8-cat database [17]:
241 suburb residence, 174 bedroom, 151 kitchen, 289 living room, and 216
office.

15-cat: includes 13-cat database plus two more categories (gray-scale images) [18]:
315 store, and 311 industrial.

In the following section we report results obtained by splitting each database in
two distinct subsets, one for training, the other for test. We always used about
2,000 randomly selected training images. Namely, 250 images per category were
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selected from the 8-cat database, 150 from the other two datasets. The remaining
images were used for testing. In our experiments, we mostly concentrated on
evaluating the trade-off between classification accuracy and computational time,
as provided by selecting a sparse prototype dataset from the training data. In
particular, fixing the number of prototypes amounts to fixing the computational
cost of classification, as this latter only depends on the cost of k-NN search on the
prototype set. (So as for k-NN, a random sample of the training set was selected
and results were averaged over a number of random sampling realizations.) All
the results we present were obtained with £ = 11 and pre-processing Gist features
[1] with PCA down to dimension d = 128.

We compared different implementations of our MLNN algorithm. In partic-
ular, we tested:

— MLNN with the basic setting, i.e., the uniform k-NN kernel of Eq. (I4);

— WMLNN, i.e., MLNN with fixed-size Gaussian kernel (I9) (with o = 0.25);

— AdaWMLNN, i.e., MLNN with adaptive-size Gaussian kernel ([Id)) (with
o = V2pi(x;), pr(x;) being the k-NN distance from example x;);

— MLNN “one-versus-all”, i.e. Alg. 1 with C' = 2 applied to each category
independently (considering examples in the current category as “positives”,
the remaining ones as “negatives”).

Furthermore, we compared our method with different k-NN—based classification
methods, which either rely on metric learning or not. Namely, we tested:

— classic non-parametric k-NN voting;

— weighted k-NN (Wk-NN) voting with Gaussian weights, as proposed by
Philbin et al. [I9]; we used (I9) with 0 = 1 as a weighting factor;

— k-NN voting combined with ITML metric learning [6].

We tested all these methods for a fixed number of prototypes, i.e., for a fixed
computational cost of classification. In particular, a random sample of the train-
ing set was selected and results were averaged over a number of random sampling
realizations.

Finally, we integrated the ITML method with MLNN in order to provide
a unique method for addressing simultaneously both the choice of the metric
distance and the rejection of “noisy” examples, which are the two fundamental
issues of k-NN classification.

3.2 Categorization Results

The categorization test consists in assigning each test image to one of the prede-
fined categories. We measured the overall performance rate as the mean Average
Precision (mAP), which is the average of the classification rates for each category.

In Fig. we compare the results of MLNN with the abovementioned
settings. Interestingly, these results show the significant improvement provided
by using a “smooth” kernel for learning the prototypes. Namely, the adaptive-
size kernel provides the best performances. Furthermore, the gap over the basic
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Fig. 3. Experimental results of categorization on 8-cat database in terms of mAP as
a function of the number of prototypes, for k¥ = 11 and Gist descriptors of dimension
d = 128 (after PCA). (a) Comparison between 3 different implementations of MLNN
and one-versus-all MLNN. (b) Comparison between MLNN with adaptive Gaussian
kernel (AdaWMLNN), k-NN, weighted k-NN and MLNN one-versus-all (UNN).

MLNN is more consistent when retaining less prototypes, as AdaMLNN enables
a finer class density estimation even with very sparse examples (see, for instance,
the performance gap of 7% between MLNN and AdaWMLNN for 7' = 200). Fur-
thermore, notice that the multiclass version of our algorithm outperforms the
one-versus-all implementation (gap between 1% and 3%). Hence, our multiclass
MLNN not only is much less computationally expensive than one-versus-all
MLNN;, as it avoids to run the boosting procedure C' times independently, but
also provides better classification accuracy.

On the same 8-cat database we compared AdaWMLNN to k-NN voting with
or without metric learning (Fig. . First of all, we notice that our AdaWMLNN
method significantly outperforms k-NN and WE-NN; i.e., non-learned voting
rules (up to 6% improvement). Then, performances of our method are overall
comparable to those of ITML, being slightly inferior to them, but the computa-
tional cost of MLNN is considerably lower than that of metric learning. Finally,
our results show that, when combined with a metric learning strategy, MLNN
is able to significantly outperform all the other classification methods, thus en-
abling a significant accuracy improvement over the state-of-the-art (up to 3%
when retaining few prototypes, see for example performance at 7' = 200).

In Fig. [ we focus on a more extensive comparison between regular MLNN
and classic k-NN on the 13-cat and 15-cat datasets. Here, we report the mean
Average Precision as a function of the number of prototypes per category. (Since
this number varies from category to category, we report the average number of
prototypes over all categories.) Notice that the gap between the two methods is
most significant when retaining less than half prototypes, namely 6% improve-
ment with 80 prototypes on 8-cat database, 7% with only 60 prototypes for both
13-cat and 15-cat. Besides considerably improving precision over k-NN, we also
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Fig. 4. Performance of MLNN with different settings (see the paper for details) com-
pared to k-NN and weighted k-NN as a function of the number of prototypes per class

for 13-cat (4(a))) and 15-cat (4(b)|) datasets.
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drastically reduce the computational complexity of classification, which deals
with finding nearest neighbors on a sparse dataset (gain up to a factor 4 when
discarding half prototypes).

4 Conclusion

In this paper, we have proposed a novel boosting algorithm, MLNN, which
learns a leveraged k-NN rule following the minimization of a multiclass surro-
gate (exponential) risk. This rule generalizes k-NN to weighted voting. Under
mild learning and coverage assumptions, MLNN convergence is proven to be
exponentially fast. Experiments on benchmark image categorization databases
display that MLNN is significantly more accurate than k-NN (up to 6%), achiev-
ing very significant improvement on image databases with only few thousand
images. Since the number of weak hypotheses available for boosting is in the
order of the number of images, improvements may rapidly become dramatic as
databases get larger. MLNN also provides us with a very simple and efficient
prototype selection method reducing the cost of searching for neighbors at clas-
sification time. MLNN precision is comparable with that of a state-of-the-art
metric learning method [6]. Since MLNN is still fully compatible with any un-
derlying distortion and data structure for k-NN search, it also take advantage
from learning a metric distance, thus simultaneously solving both major issues
of k-NN voting: selection of a suitable metric distance and rejection of “noisy”
prototypes. Last but not least, MLNN is simple and modular enough, so that it
can be easily extended to work on global image descriptors (like Bags of Features,
Fisher Kernels ...)
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Appendix

Proofsketch of Theorem[3. Without loss of generality and to simplify notations,
assume that j = ¢t in Alg. 1, and denote w; the weight vector on which we
compute ([[2) — thus, the weight update in ([I3]) gives w; 1, and the first weight
vector is wy. Let us denote Z; = ||wgy1||1 the normalization coefficient for
weights, and W(;41); = wy;/Z; the normalized weight of example (x;,y;) in the
(t + 1)*" weight vector. Few derivations lead:

T
e (h',8) =[] 2 - (24)
t=1

We now compute an upperbound for Z;, removing the ¢ index for readability. For
this objective, we extend notations (6] to the normalized tilda notation above,
and let ¢ = min; 4. g (2, 2,)>0 K (%, ;) and ¢ = max; ; K (x;2:). Due to the lack
of place, we make the proof in the simpler case where ¢ = p = 1. We obtain:

“ - C - Dw/
Z = Zu} exp (—d;ri;) < ﬁ;j' exp <QCC 1 log <( w_)w] )) +
i=1
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T +w; ) and ﬁ); =w; [(w; +
wj) Using the WIA [23) and the fact that 1 — 2 < exp(—z), we obtain from

©9):

where we have used the shorthands uzjj = wj /(w?

Z < exp [-n (1~ f(w)))] , (26)
f@) =~ (C-Da)¢ (1-a)'"¢ wel0],
f(z) is concave on [0, 1] and admits a maximum in z = 1/C; Assuming the WIA
@2), we get \wj — &l = e < L=, then f(z) <g_(7), and if 2 > }, + 7,
then f(z) < g (7), with:

g-(v) = (1-Cy)° (H c(i 17>1é :

gr(7) = (14 Cy)e (1 3 C? 17>1_c

But it can be shown that both g_(v) and g+ () can be upperbounded by g(vy) =
1—Cy?/(C —1),VC > 2,Vy € [0,1]. Plugging the bound in (26), we obtain:

Z <exp [-n (1 - g(@])))] = exp [CC— 1"72}

Finally, Z < 1 because 0 < fo(x) < 1 for any = € [0,1], and @24)) yields
P (Rt S) < exp(—Cny?1/(C—1)). Using the fact that /' (h*,S) < e™P(h,S)
yields the proof of Theorem
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Abstract. In this paper, we propose a novel graph based approach for
still-to-video based face recognition, in which the temporal and spatial
information of the face from each frame of the video is utilized. The spa-
tial information is incorporated using a graph based face representation.
The graphs contain information on the appearance and geometry of facial
feature points and are labeled using the feature descriptors of the feature
points. The temporal information is captured using an adaptive proba-
bilistic appearance model. The recognition is performed in two stages
where in the first stage a Maximum a Posteriori solution based on PCA
is computed to prune the search space and select fewer candidates. A
simple deterministic algorithm which exploits the topology of the graph
is used for matching in the second stage. The experimental results on the
UTD database and our dataset show that the adaptive matching and the
graph based representation provides robust performance in recognition.

1 Introduction

Face recognition has long been an active area of research, and numerous algo-
rithms have been proposed over the years. For more than a decade, active re-
search work has been done on face recognition from still images or from videos of
a scene [I]. A detailed survey of existing algorithms on video-based face recog-
nition can be found in [2] and [3]. The face recognition algorithms developed
during the past decades can be classified into two categories: holistic approaches
and local feature based approaches. The major holistic approaches that were
developed are Principal Component Analysis (PCA) [4], combined Principal
Component Analysis and Linear Discriminant Analysis (PCA+LDA) [5], and
Bayesian Intra-personal/Extra-personal Classifier (BIC) [6].

Chellappa et al. [7] proposed an approach in which a Bayesian classifier is used
for capturing the temporal information from a video sequence and the posterior
distribution is computed using sequential importance sampling. As for the local
feature based approaches, Manjunath and Chellappa [8] proposed a feature based
approach in which features are derived from the intensity data without assuming
any knowledge of the face structure. Topological graphs are used to represent
relations between features, and the faces are recognized by matching the graphs.
Ersi and Zelek [9] proposed a feature based approach where in a statistical Local
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Feature Analysis (LFA) method is used to extract the feature points from a face
image. Gabor histograms are generated using the feature points and are used to
identify the face images by comparing the Gabor histograms using a similarity
metric. Wiskott et al. [I0] proposed a feature based graph representation of the
face images for face recognition in still images. The face is represented as a graph
with the features as the nodes and each feature described using a Gabor jet. The
recognition is performed by matching graphs and finding the most similar ones.
A similar framework was proposed by Ersi et al. [I1] in which the graphs were
generated by triangulating the feature points.

Most of these approaches focused on image-based face recognition applica-
tions. Various approaches to video-based face recognition have been studied in
the past, in which both the training and test set are video sequences. Video-based
face recognition has the advantage of using the temporal information from each
frame of the video sequence. Zhou et al. [I2] proposed a probabilistic approach
in which the face motion is modeled as a joint distribution, whose marginal
distribution is estimated and used for recognition. Li [13] used the temporal in-
formation to model the face from the video sequence as a surface in a subspace
and performed recognition by matching the surfaces. Kim et al. [I4] recognized
faces from video sequences by fusing pose-discriminant and person-discriminant
features by modeling a Hidden Markov Model (HMM) over the duration of a
video sequence. Stallkamp et al. [I5] proposed a classification sub-system of
a real-time video-based face identification system. The system uses K-nearest
neighbor model and Gaussian mixture model (GMM) for classification purposes
and uses distance-to-model, and distance-to-second-closest metrics to weight the
contribution of each individual frame to the overall classification decision.

Liu and Chen [I6] proposed an adaptive HMM to model the face images in
which the HMM is updated with the result of identification from the previous
frame. Lee et al. [I7] represented each individual by a low-dimensional appear-
ance manifold in the ambient image space. The model is trained from a set of
video sequences to extract a transition probability between various poses and
across partial occlusions. Park and Jain [I8] proposed a 3D model based approach
in which a 3D model of the face is used to estimate the pose of the face in each
frame and then matching is performed by extracting the frontal pose from the
3D model. Xu et al. [T9] proposed a video based face recognition system in which
they integrate the effects of pose and structure of the face and the illumination
conditions for each frame in a video sequence in the presence of multiple point
and extended light sources. The pose and illumination estimates in the probe
and gallery sequences are then compared for recognition applications.

In this paper, we propose a novel graph based approach for image-to-video
based face recognition which utilizes the spatial and temporal characteristics
of the face from the videos. The face is spatially represented by constructing
a graph using the facial feature points as vertices and labeling them with their
feature descriptors. A probabilistic mixture model is constructed for each subject
which captures the temporal information. The recognition is performed in two
stages where in the first stage the probabilistic mixture model is used to prune
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the search space using a MAP rule. A simple deterministic algorithm that uses
cosine similarity measure is used to compare the graphs in the second stage.
The probabilistic models are updated with the results of recognition from each
frame of the video sequence, thus making them adaptive. Section ] explains
our procedure in constructing the graphs and the adaptive probabilistic mixture
models for each subject. The two stage recognition is explained in section Bl

2 Face Image Representation

In this section, we describe our approach in extracting the facial feature points
and their descriptors which are used in the spatial representation of the face
images. Every face is distinguished not by the properties of individual features,
but by the contextual relative location and comparative appearance of these
features. Hence it is important to identify those features that are conceptually
common in every face such as eye corners, nose, mouth, etc. In our approach,
the facial feature points are extracted using a modified Local Feature Analysis
(LFA) technique, and extracted feature points are described using Local Binary
Pattern (LBP) [20], [21] feature descriptors.

2.1 Feature Point Extraction

The Local Feature Analysis (LFA) proposed by Penev and Atick [22] constructs
kernels, which are basis vectors for feature extraction. The kernels are con-
structed using the eigenvectors of the covariance matrix of the vectorized face
images. LFA is referred to as a local method since it constructs a set of kernels
that detects local structure; e.g., nose, eye, jaw-line, and cheekbone, etc. The
local kernels are optimally matched to the second-order statistics of the input
ensemble [22]. Given a set of n d-dimensional images z1, ..., x,, Penev and
Atick [22] compute the covariance matrix C, from the zero-mean matrix X of
the n vectorized images as follows:

c=xxT. (1)

The eigenvalues of the covariance matrix C are computed and the first k largest
eigenvalues, A1, Ao, ..., Ag, and their associated eigenvectors 1, ..., ¥ to
define the kernel K,

K=wApT (2)

where ¥ = [¢)1 ... 9], A = diag(\/l)\l).

The rows of K contain the kernels. These kernels have spatially local proper-
ties and are "topographic” in the sense that the kernels are indexed by spatial
location of the pixels in the image, i.e., each pixel in the image is represented by
a kernel from K. Figure shows the kernels corresponding to the nose, eye,
mouth and cheek positions. The kernel matrix K transforms the input image
matrix X to the LFA output O = K7 X which inherits the same topography as
the input space.
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Hence, the dimension of the output is reduced by choosing a subset of kernels,
M, where M is a subset of indices of elements of K. These subsets of kernels
are considered to be at those spatial locations which are the feature points of
the face image. Penev and Atick [22] proposed an iterative algorithm that uses
the mean reconstruction error to construct M by adding a kernel at each step
whose output produces the maximum reconstruction error,

argmax(||0(x) — 0" (x)[|?) 3)

where O"¢¢(z) is the reconstruction of the output O(x).

Although mean reconstruction error is a useful criterion for representing data,
it does not guarantee an effective discrimination between data from different
classes as the kernels selection process aims at reducing the reconstruction error
for the entire image and not the face region. Hence, we propose to use the Fisher’s
linear discriminant method [23] to select the kernels that characterize the most
discriminant and descriptive feature points of different classes. We compute the
Fisher scores using the LFA output O. Fisher score is a measure of discriminant
power which estimates how well different classes of data are separated from each
other, and is measured as the ratio of variance between the classes to the variance
within the classes. Given the LFA output O = [o0; ... 0,] for ¢ classes, with each
class having n; samples in the subset x;, the Fisher score of the =" kernel, J(x)

is given by
iz ni(mi(z) — m(z))?
Doim1 oey, (0(x) —mi(x))?

where m(z) = ! 377 nymi(z) and m(z) = ! > ocy: 0(z). The kernels that
correspond to high Fisher scores are chosen to represent the most discriminative
feature points of the image. Figure shows the set of feature points extracted

using the Fisher scores.

(a) K(z,y) derived from a set of 315 (b) The first 100 feature points ex-
images tracted from the training images

J(x) = (4)

Fig. 1. shows K(z,y) at the nose, mouth, eye, and cheeks and shows the
feature points extracted (best viewed in color)

2.2 Feature Description with Local Binary Pattern

A feature descriptor is constructed for each feature point extracted from an
image using Local Binary Pattern (LBP).
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The original Local Binary Pattern (LBP) operator proposed by Ojala et al.
[20] is a simple but very efficient and powerful operator for texture description.
The operator labels the pixels of an image by thresholding the n xn neighborhood
of each pixel with the value of the center pixel, and considering the result value
as a binary number. Figureshows an example of the basic LBP operator and
ﬁgure shows a (4, 1) and (8,2) circular LBP operator. The histogram of the
labels of the pixels of the image can be used as a texture descriptor. The grey-
scale invariance is achieved by considering a local neighborhood for each pixel,
and invariance with respect to scaling of the grey scale is achieved by considering
just the signs of the differences in the pixel values instead of their exact values.
The LBP operator with P sampling points on a circular neighborhood of radius
R is given by,

P-1
LBPpr=> s(gp—gc)2" (5)
p=0
where .
lifz>0
S(f”){mfxzo ©

Ojala et al. [21] also introduced another extension to the original operator which
uses the property called uniform patterns according to which a LBP is called
uniform if there exist at most two bitwise transitions from 0 to 1 or vice versa.
Uniform patterns can reduce the dimension of the LBP significantly which is
advantageous for face recognition.

517 |0 01|l ) o
‘ Binary: 01110001
s ls Threshold aF | Decimal: 113 o + + +
L/
3|4 0o (o o]
(a) The Basic LBP operator (b) (4,1) and (8,2) circular LBP
operator

Fig. 2. The basic LBP operator and the circular LBP operator

In our experiments, we use LBP{;)% operator which denotes a uniform LBP
operator with 8 sampling pixels in a local neighborhood region of radius 2. A
5x 5 window around the pixel is chosen as the neighborhood region and a feature
vector of length 59 is obtained.

3 Image Graph Construction

The most distinctive property of a graph is its geometry, which is determined by
the way the vertices of the graph are arranged spatially. Graph geometry plays
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an important role in discriminating the graphs of different face images. In our
approach, the graph geometry is defined by constructing a graph with constraints
imposed on the length of the edges between a vertex and its neighbors.
Considering that we extract around n feature points from each face image,
at least n! graphs can be generated for each image. Evaluating this number of
graphs for each probe image would be very computationally expensive. Hence,
a graph generating procedure that generates a unique graph with the given set
of vertices is proposed. At each iteration, vertices and edges are added to the
graph in a Breadth-first search manner and considering a spatial neighborhood
distance for each vertex. This generates a unique graph for a set of feature points.
The procedure to generate a graph given a set of vertices is given as follows;

1 Pick a random vertex v from the list of vertices of the graph.
2 Add v to the end of the queue gq.
3 While NOT all the vertices have been visited
Pick a vertex u from the front of the queue q.
If u is not wvisited
Find the Neighbors N of u who are within a Euclidean distance.
Add N to the queue gq.
Mark u as wvisited
endif
endwhile

The idea behind representing face images using graphs is mainly due to the
spatial properties of the graph, as a graph can represent the inherent shape
changes of a face and also provide a simple, but powerful matching technique to
compare graphs.

4 Probabilistic Graph Appearance Model

The appearance of a graph is another important distinctive property and is de-
scribed using the feature descriptors of the vertices of the graph. An efficient as
well as effective description of the appearance of the vertices of the graphs is re-
quired in order construct a graph appearance model that elevates the distinctive
properties of the face of an individual. Modeling the joint probability distribu-
tion of the appearance of the vertices of the graphs of an individual produces an
effective representation of the appearance model through a probabilistic frame-
work. Since the model is constructed using the feature descriptors, it is easy to
adapt the model to the changes in the size of the training data for the individ-
ual. Given N individuals and M training face images, the algorithm to learn the
model is described as follows:

1. Initialize N model sets.
2. For each training image I7, (j** image of the ¢ individual)
a. Extract the feature points (as described in Subsection 21]).

jth
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b. Compute feature descriptors for each feature point (as described in Sub-
section 222)).
c. Construct Image graphs (as described in Subsection []).
d. Include the graph in the model of the ¢** individual.
3. Construct the appearance model for each individual using their model sets.

In our approach, a probabilistic graph appearance model is generated for each
subject and is used for training purposes. Given a graph G(V, E), where V is the
list of vertices in the graph, and E the set of edges in the graph, the probability
of G belonging to a model set (subject) k is given by,

Ry, = max P(G|®,,) (7)

where P(G|®,,) is the posterior probability, and @,, is the appearance model for
the n*" subject constructed using the set of feature descriptors F of the set of
vertices of all the graphs of the subject. The appearance model @,, is constructed
by estimating the joint probability distribution of the appearance of the graphs
for each subject. Ry, is called the Maximum a Posteriori (MAP) solution. In our
approach, we estimate the joint probability distribution of the graph appearance
model for each subject using the Gaussian Mixture Model (GMM) [24] which
can efficiently represent heterogeneous data, the dominant patterns which are
captured by the Gaussian component distributions.

Given a training face database containing images of L subjects and each
subject having at least one image in the training database, the set of feature
descriptors X for each subject to be used to model the joint likelihood of the
subject will be a (m x f) x t distribution, where m is the number of images for
each subject, f is the number of feature points extracted for each image and ¢
the dimension of the feature vector (in our case, it is 59 and is reduced to 20).
To make the appearance model estimation more accurate and tractable, we use
the Principal Component Analysis (PCA) to reduce the dimensionality of the
feature vectors.

Each subject in the database is modeled as a GMM with K Gaussian com-
ponents. The set of feature descriptors X of each subject is used to model the
GMM of that individual. Mathematically, a GMM is defined as:

P(X|0) = sz (X s, 04). (8)

where

_(x—p)?

N(X|pi, o) = 0“1/2#43 202

are the components of the mixture, 6 = {w;, p;, Uf}fil includes the parameters
of the model, which includes the weights w;, the means y;, and the variances o2
of the K Gaussian components.

In order to maximize the likelihood function P(X|4), the model parame-

ters are re-estimated using the Expectation-Maximization (EM) technique [25].
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The EM algorithm is an iterative procedure to compute the Maximum Likeli-
hood (ML) estimate in the presence of missing or hidden data. In ML estimation,
we wish to estimate the model parameters for which the observed data are the
most likely:

0¢ = arg max P(X]10). 9)

At each iteration of the EM algorithm the missing data are estimated with
the current estimate of the model parameters, and the likelihood function is
maximized with assumption that the missing data are known. For more details
about the EM algorithm see [25].

5 Adaptive Matching and Recognition

In this section, we describe our two stage matching procedure to adaptively
match every frame of the video sequence and the trained appearance models
and the graphs. In the first stage of the matching process, a MAP solution is
computed for the test graph using the trained appearance models. The MAP
solution is used to prune the search space for the second stage of matching. A
subset of individuals’ appearance model and their trained graphs are selected
based on the MAP solution. This subset of appearance models are used in the
second stage of matching process. In the second stage, a simple deterministic
algorithm that uses the cosine similarity measure and the nearest neighborhood
classifier to find the geometrical similarity of the graphs is proposed. The GMM
is adapted with the result of recognition from each frame of the test video se-
quence. We use the likelihood score and the graph similarity score to decide
on the correctness of the recognition and update the appropriate GMM. The
recognition result of a frame is considered correct if the difference between the
highest likelihood score and the second highest likelihood score is greater than
a threshold. A similar difference in graph similarity scores is also computed to
support the decision. This measure of correctness is based on the same idea as
Lowe [26], that reliable matching requires the best match to be significantly bet-
ter than the second-best match. For a given test sequence, the difference in the
likelihood scores and the difference in the similarity scores are computed and the
GMM is updated if these values are greater than a threshold. Given an existing
GMM 6,4 and observation vectors O from the test sequence, the new GMM
is estimated using the EM algorithm with 6,4 as the initial values. The entire
matching procedure is given as follows;

1. For each frame f in the video sequence

a. Extract the facial feature points and their descriptors from f.

b. Reduce the dimension of feature descriptors using the projection matrix
from training stage.

c. Construct the image graph G.

d. Obtain the probability of G belonging to each appearance model, and se-
lect the k model sets with highest probability. & is 10% in our
experiments.
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e. Obtain the similarity scores between G and the graphs of k£ individuals.

f. Update the appropriate appearance model based on the likelihood score
and similarity score.

2. Select the individual with the maximum number of votes from all the frames.

The algorithm to find the spatial similarity between two graphs is given as
follows;

1. For each vertex v in the test graph with a spatial neighborhood W, a search
is conducted over W (in the trained graph) and the best matching feature
vertex u is selected, such that

fo-fu
[follful

where f, and f, are the feature vectors of v and u respectively, and S, is
the similarity score between v and w.

2. Repeat step [l with neighbors of v and so on until all the vertices have been
matched. The sum of the similarity scores of all the vertices gives the measure
of similarity between the two graphs.

Sy = (10)

6 Experiments

In order to validate the robustness of the proposed technique, we used a set
of close range and moderate range videos from the UTD database [27]. The
database included 315 subjects with high resolution images in various poses.
The videos included subjects with neutral expression and also walking towards
the camera from a distance. We also generated a set of moderate range videos
(both indoor and outdoor) with 6 subjects. Figure [l shows sample video frames
from the UTD dataset and figure [ shows sample video frames from our dataset.

In the preprocessing step, the face region is extracted from the image, nor-
malized using histogram equalization technique and are resized to 72 x 60 pixels.
150 features were extracted and a LBP is computed for each feature point.
PCA is performed on the feature vectors to reduce the dimension from 59 to 20
(with nearly 80% of the non-zero eigenvalues retained). A graph is generated for
each face image with a maximum spatial neighborhood distance of 30 pixels. A
graph space model is constructed for each subject using GMM with 10 Gaussian
components.

During the testing stage, in order to mimic the practical situation, we consider
a subset of frames in which an individual appear in the video and use it for testing
purposes. We randomly select an individual and a set of frames that include the
individual. The preprocessing and the graph generation procedure similar to
those performed in the training stage are applied to each frame of the video
sequence. The likelihood scores are computed for the test graph and the GMMs
and the training graphs are matched with the test graph to produce similarity
scores, and the appropriate GMM is updated using the similarity and likelihood
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(b) Sample frames from moderate-range videos of UTD dataset

Fig. 3. Sample video frames from the UTD video dataset

Table 1. Comparison of the error rates with different algorithms

HMM AGMM Graphs AGMM+Graphs

UTD Database (close-range) 24.3% 24.1%  232%  20.1%
UTD Database (moderate-range) 31.2% 31.2% 29.8% 25.4%
Our Dataset 82%  3.4% 2.1% 1.1%

scores. The threshold is determined by the average of the difference in likelihood
scores and similarity scores between each class of data. Though the threshold
value is data dependent, the average proves to be an optimum value.

The performance of the algorithm is compared with video-based recognition
algorithm in [T6] which handles video-to-video based recognition. The algorithm
in [I6] performs eigen analysis on the face images and uses an adaptive Hid-
den Markov Model (HMM) for recognition. We also test the performance of the
system with only the adaptive graph appearance model (AGMM) and the ap-
pearance model with the graph model sets (AGMM+Graphs). The results are
tabulated in the Table [[l Figure [l shows the Cumulative Match Characteristic
curve obtained for various algorithms (HMM, AGMM and AGMM+Graphs) on
the UTD dataset.

From the error rates we can see that the performance of our approach is
definitely promising when compared with the other approaches. The account
of spatial and temporal information together improves the performance of the
recognition process. The number of images in the training dataset played an
important role in the performance, as it is evident from the error rates. The close-
range videos of the UTD database has lower error rates than the moderate-range
videos. This is due to the reason that the frame of the video sequence mostly
contains the face region thus gathering more details of the facial features than
the moderate-range videos. The number of training set images for each subject
played a role in the performance. The UTD dataset included 3 training images
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(b) Sample frames from outdoor videos of our dataset

Fig. 4. Sample video frames from our video dataset
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Fig. 5. Cumulative Match Characteristic curves for close-range and moderate-range
videos

for each subject whereas our dataset included at least 5 training images. The
algorithm shows a high recognition rate when experimented on our dataset as it
can be seen for the error rates. Though there were limited number of subjects in
the dataset, the videos in the dataset included both indoor and outdoor videos
taken using a PTZ camera which is mainly used for surveillance. The system
provided a better performance with both indoor and outdoor videos which has
different illumination, pose changes and in moderate range.

The system performs better as a video based face recognition system than a
still image based face recognition system, due to the wealth of temporal informa-
tion available from the video sequence and the effective use of it by the proposed
adaptive probabilistic model. As a still image based face recognition, an image
with a frontal pose of the face yields better performance than non frontal pose
image. Thus, pose of the face image plays a role in the recognition. Also, the sys-
tem’s performance is affected by the comparison of a single high resolution image
with a low resolution frame in a still image based face recognition system. Thus
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the adaptive matching technique combined with the graph based representation
is significantly an advantage in matching images with videos.

From our experiments, we found that changing the value of the parameters did
not significantly change the performance of the system and the values that we
used tend to be the optimum. For example, increasing the maximum Euclidean
distance between two vertices of a graph to a value greater than the width or
length of the image will have no effect as the graph will always be connected as
the distance between two vertices will never be greater than these values.

7 Conclusion

In this paper, we proposed a novel technique for face recognition from videos.
The proposed technique utilizes both the temporal and spatial characteristics of
a face image from the video sequence. The temporal characteristics are captured
by constructing a probabilistic appearance model and a graph is constructed
for each face image using the set of feature points as vertices of the graph and
labeling it with the feature descriptors. A modified LFA and LBP were used to
extract the feature points and feature descriptors respectively. The appearance
model is built using GMM for each individual in the training stage and is adapted
with the recognition results of each frame in the testing stage. A two stage
matching procedure that exploits the spatial and temporal characteristics of the
face image sequence is proposed for efficient matching. A simple deterministic
algorithm to find similarity between the graphs is also proposed. Our future
work will handle video sequences involving various pose of the faces, different
resolutions, and video-to-video based recognition.
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Abstract. Vocabulary generation is the essential step in the bag-of-
words image representation for visual concept recognition, because its
quality affects classification performance substantially. In this paper, we
propose a hybrid method for visual word generation which combines un-
supervised density-based clustering with the discriminative power of fast
support vector machines. We aim at three goals: breaking the vocabulary
generation algorithm up into two sections, with one highly parallelizable
part, reducing computation times for bag of words features and keeping
concept recognition performance at levels comparable to vanilla k-means
clustering. On the two recent data sets Pascal VOC2009 and Image-
CLEF2010 PhotoAnnotation, our proposed method either outperforms
various baseline algorithms for visual word generation with almost same
computation time or reduces training/test time with on par classification
performance.

1 Introduction

Bag of words features [I] have turned into a widely-acknowledged tool for con-
cept recognition which has shown superior performance in many recent contests
on wide-domain image collections with high background and concept variance
as well as presence of clutter [2I3/4J5]. Most prominent methods for visual vo-
cabulary generation are unsupervised techniques like the density-based k-means
algorithm, radius based clustering [6], and supervised methods like extremely
randomized clustering forests (ERCF) [78[9]. Since people have tried more and
more difficult images recently, one can observe an increase in the typical word
size. See for example the 300 words used in [I0] on the seminal Caltech101
benchmark [IT] which has less clutter and rather low variance versus 4000 words
[12] on Pascal VOC challenge data. Such an increase implies higher running
times during visual vocabulary creation and bag of word computation. Several
schemes have been proposed to deal with the runtime issue like hierarchical
clustering [13/14] or ERCF. From our own experience both methods can suffer
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drawbacks in concept recognition performance compared to k-means clustering
even though hierarchical k-means (HKM) speeds up notably over k-means and
ERCF shows superb computational efficiency. In this paper, we propose a novel
algorithm which uses the hierarchical clustering idea together with linear support
vector machines (SVM) trained locally within each cluster and and has faster
computation speeds in theory compared to vanilla k-means-based bag of words
representations, while still maintaining the recognition performance of k-means
visual vocabularies.

This paper is organized as follows. In Section 2, we explain our hybrid combi-
nation approach. After describing the datasets in Section 3 and the experimental
setup in Section 4, we compare our method in Section 5 against k-means, hierar-
chical k-means and ERCF baselines on the two recent datasets Pascal VOC2009
and ImageCLEF2010 PhotoAnnotation.

2 Visual Word Generation

Bag of word features are based on three steps. At first one computes for each
image a set of base features. In the second step the base features from the train-
ing data are used for computing a discretization of the input space of the base
features into N regions. In the third step the base features extracted from one
image are used to compute a histogram of dimensionality N based on assign-
ments of the base features to the bins of the discretization obtained in the second
step.

2.1 Hybrid Supervised-Unsupervised Approach

In order to generate a vocabulary of N visual words, we start with an unsuper-
vised clustering of the base features into N/2 centers. For simplicity we relied on
k-means clustering. At each of the clusters we train one support vector machine
(SVM) in order to divide the cluster region into two parts. This gives rise to
a partition of the space of the base features into N regions. The binary labels
of the base features used for the SVM training are constructed from the image
labelling which is inherited down to the base features belonging to one image,
as we will explain in the following.

For multi-label concept recognition problems one issue remains to be solved.
Each image can belong to several concept classes. At each cluster we have to
select one partition of the set of all concept labels into two sets used for labelling
the base features for binary SVM training. Since we are not interested in a
perfect classification at a local cluster, we adopted an approximate randomized
process to obtain good candidates for partitioning of the label set to be used to
define a binary labeling.

The candidate labelling generation process was motivated by two ideas. We
want to select a binarization such that

1. balancedness: the number of base features having a label in the positive
class is approximately half of all base features within one cluster.
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2. overlap: the number of base features which have at the same time labels in
the positive as well as the negative class is low.

The second constraint comes from the fact that a base feature is assigned for
SVM training to the positive class if it has at least one image label in the set
of positive classes. We assign all image labels to the base features independent
of the position of the base features within an image. This can lead to an ad-
versary situation where a base feature is assigned to the positive class although
its position in the image belongs to an object from the negative class. Such a
problem can be avoided in an object detection scenario with bounding box or
object position information which is not available here.

We implemented the first constraint as follows. At first, starting from an
empty set for positive classes, we randomly draw a class from the set of all
concepts and add to the positive set. Then, we iterate this procedure, i.e. we
add a class selected randomly from the set of the remaining categories. This
gives a series of growing sets of positive classes. For each of these sets within
the series we can count how many of the base features will be labeled positive,
because they have at least one label belonging to the set of positive classes. Let
S be the set of all base features and {(S) be its original multi-label vector, then
we count

bal(positives) :== | |S|/2 — |{s € S| I(s) N positives # B}|, (1)

where |S| denotes the cardinality of the set S, i.e. the number of its elements.
We select the set from this series which has the number of base features without
the labels in the positive sets being closest to half of the total number of base
features.

This procedure can be repeated M times to obtain M candidates which get
subsequently checked for their overlap constraint. For the overlap constraint we
count directly

ol :={s € S |l(s) Npositives # 0, (s) N negatives # B}, (2)

which is the number of the base features labeled with concepts in positive and
negative sets simultaneously and select the best T' candidates to be used to define
a binary labelling for SVM training.

Each of the T candidates was evaluated using five-fold cross validation in
order to select one final classifier used at a local cluster node. This is admittably
inspired by the ERCF algorithm which also uses a randomized generation of
candidate partitions. On the other hand, ERCF chooses local dichotomies along
one axis and deploys an entropy criterion. The pseudo-code for the two-class
labeling procedure is summarized at the next page.

2.2 Relation to the Baseline Procedures

Figure [ illustrates the proposed method in comparison with the three base-
lines with a synthetic example of two class data marked with red and blue.
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Generation of Candidates for Two-Class Labeling for SVM Training

choose M = number of random trials,
T = number of candidates for SVM training
input: S = set of base features, 1(S) their multi-labels
input: num_concepts= number of concepts in multi-label problem
output: Candidates = T partitions of the set of all concepts into two

for m=1:M
positives(m,0) = {}

for index=1:num_concepts
class = random_select( concepts\positives(m,index-1) )
positives(m,index) = {positives(m,index-1),class}

end for

i = argmin_{index} bal( positives(m,index) )
mid(m) = positives(m,i)
compute 0l( mid(m) )
end for
Candidates = the T elements from mid with smallest overlap ol

The proposed procedure is comparable to hierarchical k-means (HKM) with
N/2 clusters at the top level and 2 clusters at the second level. Because we
deploy a supervised technique instead of k-means with 2 centers at each clus-
ter, the proposed method can capture the class information correctly. On the
other hand, k-means and HKM fail to separate the red and the blue classes.
ERCF uses image labels as well, however its appealing speed gains come from
restriction of the partition process to axis-parallel splits of the input space. The
class boundary in Figure[Il is however not aligned to the axes, thus the proposed
procedure works best in Figure [Il

Compared to vanilla k-means we have practical speed-ups of visual vocabulary
generation with the proposed method, because our method requires a smaller
number of clusters in the initial step. The local classifier training step consists
of N/2 independent jobs which can be run separately on a vanilla CPU cluster,
thus computation time of the extra step is negligible.

Another advantage comes at the step of computing the bag of words his-
tograms: k-means requires for each base feature to compute N distances. This
can however be speeded up empirically by computing a distance matrix between
cluster centers and employing the triangle inequality to exclude certain candidate
centers. The proposed method uses N/2 distance computations and one SVM
function evaluation. For the linear SVMs we used here this amounts to comput-
ing one inner product. Note that for normalized base features || f||?> = const the
distance computation is equivalent to an inner product

If = gll> =2c—2(f,9) (3)
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k-means HKM

Fig. 1. An example of two blobs of two class data, marked red and blue and the results
of different clustering algorithms with 4 clusters: Upper Left: k-means, Upper Right:
Hierarchical k-means, Lower Left: ERCF, Lower Right: The proposed method

Thus, our method requires a computational amount of N/2 + 1 inner products
compared to N inner products for vanilla k-means.

The advantage in computational speed enables us to double the word sizes
of the standard k-means vocabularies with tiny extra runtime. Although the
proposed method requires the same amount of time for feature computation as
a k-means-based visual vocabulary, it increases the time to constructing kernels
by a factor of two. We remark that this is still acceptable, because vocabulary
generation is the bottle-neck in the entire process.

We have pursued a hybrid algorithm for visual word generation, where an un-
supervised clustering method is done prior to the local supervised classification.
This is because we do not expect to find a reasonable linear separation on the
global input set of all base features. We conjectured that pure supervised proce-
dures on entire base features such as ERCF can potentially suffer from degraded
performance due to this problem. Furthermore, they also may have computa-
tional difficulties. The large cardinality in the order of hundred thousands or
millions of input features necessary for visual word generation algorithms slows
down linear SVMs and is still prohibitive for non-linear SVMs.

In this paper, we presented one special instance of an interpolation between
unsupervised clustering and local classification. In general one can generate NV
visual words by using unsupervised clustering to obtain N-27* base clusters and
train k supervised classifiers at each cell which generates 2¢ additional words at
the NV - 27F clusters.
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Fig. 3. ImageCLEF2010 example images

3 Datasets

Pascal VOC2009 data set has been used for the Pascal Visual Object Classifi-
cation Challenge [4]. The part with disclosed labels is comprised of 7054 images
falling into twenty object classes. The objects typically have highly varying sizes,
positions and backgrounds.

ImageCLEF2010 PhotoAnnotation data set has in its labeled part 8000 im-
ages from flickr with 93 concept classes with highly variable concepts containing
well defined objects as well as many rather ambiguously defined concepts like
Citylife, Cute or Visual Arts which makes it highly challenging for any recogni-
tion system.

4 Experimental Setup

As the base features, we computed for each image grey and rgb SIFT features [15]
on a dense grid of pitch size six. Our choice is a reduced set inspired by the win-
ners’ procedures of ImageCLEF2009 PhotoAnnotation and Pascal VOC2009 [4].
The base features are clustered with the proposed method, and three baselines,
i.e. vanilla k-means, hierarchical k-means (HKM) and ERCF. HKM extracts
N/2 clusters at the top and 2 clusters at the lowest level which is close to the
proposed method. Due to huge number of all base features, we used randomly
drawn SIFT features for clustering: 2.4 millions for the grey color channel and
800000 for rgb-SIFT which has the triple dimensionality of grey SIFT. We have
chosen these two color channels exemplarily for their different dimensionality as



Hybrid Supervised-Unsupervised Vocabulary Generation Algorithm 101

it is known that the quality of density estimation which is implicitly performed
by k-means may deteriorate in higher dimensions.

The local SVMs were trained with five-fold cross validation over regularization
constants 0.25, 1 and 4. For each cluster, the best SVM was selected from 10
candidates generated by our procedure based on the cross validation scores. Due
to computational costs, we limited for SVM training the number of base features
to 5000 by random selection from all base features in each local cluster.

For visual concept classification, we deployed the y2-kernel based on bag-of-
word features whose width is set to the average y2-distance. Then, all kernels
were normalized to standard deviation one in Hilbert space, which allows to use
the regularization constant 1 as a good approximative rule of thumb for SVM
training, where we employ the shogun toolbox [16]. The performance is mea-
sured with average precision (AP) and area under curve (AUC) which are both
threshold-invariant ranking measures. We evaluate all settings with 10 random
splits to see statistical significance.

In order to advantages of proposed method in performance and runtime, we
considered the following two settings.

Experiment 1. Comparison between the vocabularies with the same size of
500 words.

Experiment 2. Comparison of vanilla k-means with 4000 words and the other
vocabularies with 8000 words.

In the first case, the vocabularies except for k-means can be computed much
faster. Therefore, it is still OK, if the alternatives perform at least on par with
k-means. In the second case, the larger 8000 vocabularies can be generated eas-
ily from the 4000 k-means prototypes by our algorithm and HKM with small
computational costs, while ERCF can construct 8000 words quickly. Here, we
are interested in performance gains over the standard bag-of-words procedure
based on k-means.

5 Results

5.1 Concept Recognition Performance

The recognition performances using rgb SIFTs are summarized in Table [ and
for VOC2009, and B and @ for ImageCLEF2010. Results using grey SIFTs with
qualitatively the same outcome are given in Appendix.

In Experiment 1, we compared vocabularies with 500 word in total. For both
data sets (Table [ & Bl the proposed method achieved slightly higher scores
than k-means within shorter runtime, while the other faster variants degraded
their performances to some extent. We further tried variants of our method with
early-stopped clusters, where we reduced the number of k-means iterations to
five. The performance did not drop much, because the clustering served only
as a rough initialization for local classifications. This suggests that an exact
density based clustering does not play a too large role and sheds an interesting
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Table 1. Recognition performances of the baselines with 500 words versus those by
our approach with 250 clusters and local SVMs (Experiment 1) on VOC2009 (summary

from 10 repetitions)

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM250x2 43.87 £ 5.15 8583 £ 1.71
baseline: rgb-SIFT, ERCF4x128 42.19 £ 5.33  85.39 £ 1.53
baseline: rgb-SIFT, KM500 44.46 £ 5.58 86.14 £ 1.78
proposed: rgh-SIFT, KM250, 5 iters+250 lin SVM 45.16 + 5.28 86.19 £+ 1.70
proposed: rgb-SIFT, KM250+4250 lin SVM 44.99 + 5.25 86.50 + 1.45

Table 2. Recognition performances of the baselines with 4000/8000 words versus

those by our approach with 4000 clusters and local SVMs (Experiment 2) on VOC2009

(summary from 10 repetitions)

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM4000x2 50.04 £ 5.18 88.04 + 1.62
baseline: rgb-SIFT, ERCF16x512 47.54 £5.11 8732 £ 1.54
baseline: rgb-SIFT, KM4000 48.94 £ 5.08 87.54 + 1.73
proposed: rgb-SIFT, KM4000+4000 lin SVM 52.70 + 5.41 89.11 + 1.64

light on claims that density-based clustering is inferior to alternatives such as
radius-based clustering [6I17].

In Experiment 2, we compared vocabularies whose sizes are closer to the ones
used in recent competitions (k-means with 4000 words and the faster methods
with 8000 words). Note that we did not compute vanilla k-means 8000 as cluster-
ing would take almost two weeks and is deemed too slow given the used setting.
This is another way of fair comparisons, i.e. under equal time limitations. For
VOC2009, our approach achieved notable gain over the k-means baseline, while
HKM improved only slightly or ERCF even lost against the baseline. On the
other hand, on ImageCLEF2010, all larger vocabularies of size 8000 did not

Table 3. Recognition performances of the baselines with 500 words versus those by
our approach with 250 clusters and local SVMs (Experiment 1) on ImageCLEF2010
(summary from 10 repetitions)

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM250x2 3253 £0.86 73.55 £ 1.30
baseline: rgb-SIFT, ERCF4x128 32.50 + 1.40 73.62 £+ 1.56
baseline: rgb-SIFT, KM500 33.07 + 1.03  73.91 + 1.44
proposed: rgh-SIFT, KM250, 5 iters+250 lin SVM 33.45 + 0.94 74.38 + 1.51
proposed: rgb-SIFT, KM2504-250 lin SVM 33.58 £ 0.92 74.40 + 1.41
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Table 4. Recognition performances of the baselines with 4000/8000 words versus those
by our approach with 4000 clusters and local SVMs (Experiment 2) on ImageCLEF2010
(summary from 10 repetitions)

Method / Score AP AUC

baseline: rgb-SIFT, hierarch KM4000x2, 36.29 £ 1.28 76.20 4+ 1.50
baseline: rgb-SIFT, ERCF16x512 36.48 £ 1.19 76.04 £ 1.48
baseline: rgb-SIFT, KM4000, 36.16 £ 1.18 75.97 4+ 1.40

proposed: rgb-SIFT, KM4000+4000 lin SVM 36.78 + 1.19 76.60 + 1.44
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Fig. 4. Class-wise differences by AUC for VOC2009, rgb channel between proposed
method, 8000 words and vanilla k-means 4000 words (left), hierarchical k-means 8000
words (mid), ERCF 8192 words (right)

improve the 4000 k-means significantly. We will see that for some of the abstract
concepts in ImageCLEF2010 our algorithm degraded recognition performances.

By inspecting the differences between the proposed method and vanilla k-
means in Figure [ (left) and [B we see some gains on most classes and a small
fraction of setbacks For VOC2009 data we observe larger gains for classes bot-
tle(5), cow(10) and pottedplant(16) which belonged to the rather difficult classes
according to their performance on test data results for the winners’ submis-
sion. For ImageCLEF2010 data the trends are more diverse. For the rgb chan-
nel we lose performance with the proposed method in 15 concepts out of 93
like birthday(65),grafitti(67),abstract(72),cat(76) and bicycle(82), while having
many gains across a variety of narrow and broad concepts like in Partylife(1),
River(14), Motion Blur(39), Architecture(53), Visual Arts(66), Train(84), Skate-
board(86) and Child(90). We assume that it is harder to create a meaningful
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Fig. 5. Class-wise differences by AUC for CLEF2010, rgb channel between proposed
method, 8000 words and vanilla k-means, 4000 words (other 2 omitted for readability)

binarization of all concepts into two classes when the number of concepts in-
creases from 20 in VOC2009 to 93 in ImageCLEF2010. Here using a multi-class
classification with several classes of approximately equal size could turn out to
be beneficial.

5.2 Runtime Considerations

For 8000 visual words the classifier training required merely about 10 minutes
on a 128 CPU cluster when using liblinear [I§]. The linear SVMs are compa-
rably fast despite the involved optimization problem, because they run on a
small local set of features only. The k-means distance computation step is a
simpler algorithm but gets executed globally on the set of all features (800000
for rgb SIFT, 2.4 Mio for grey SIFT). A single core k-means implementation
required two hours for each iteration of k-means in order to generate 4000 visual
words. For 8000 words the time would roughly be doubled. Typically multi-core
implementations of k-means can be used to speed up this process as well as
the unsupervised part in our proposed method, however they tend to end at
parallelizations to 8 CPUs or require specialized hardware to use more cores.
The proposed approach allows the distribution of the supervised classification
part to independent CPUs. It has been already mentioned in Section [ that
our algorithm requires during bag of word computation time for IV visual words
N/2 + 1 inner product evaluations compared N such steps for vanilla k-means.
This theoretical claim is consistent with the average feature computation times
we observed per image for rgb-SIFT: KM4000 takes 58.73 s, ERCF16x512 takes
7.8 s, hierarchical KM4000x2 requires 64.09, a bag of words feature based on
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Fig. 6. Cumulative distribution functions of the label entropy across all visual words,
rgb channel for the proposed method, 8000 words and hierarchical k-means, 8000 words,
Upper: CLEF2010, Lower: VOC2009

KMS8000 based on a prematurely terminated clustering needs 128.43 s. The run-
ning times for bag of words computation using such kind of clustering are fully
comparable, whereas classification performance might be slightly degraded. The
proposed method KM4000 + 4000 linear SVMs takes 68.28 s which is in the
range of the other k-means based methods which include a vocabulary of size
4000.

In practice running times are affected by many additional factors. Our system
for example stores sift features in bzip2-ed form for keeping disk space within
reasonable bounds. This requires to uncompress them in memory which adds a
certain offset to each bag of words computation step.
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5.3 Label Distribution Statistics across Visual Words

We have seen in Section [B.1] that the proposed method performs better in terms
of error measures. The performance was examined class-wise in the aforemen-
tioned section. Now we would like to assume the word-wise viewpoint. For sanity
checking we examine whether the usage of local classifiers leads to a difference
in base feature assignments to visual words. To this end, we computed for each
visual word the entropy of label distribution given by all base features which
are assigned to the visual word in question. Consider a visual vocabulary V'
and a set of K base features with {0, 1}-valued multi-labels from C' concepts
{(bs,y51),5=1,...,C,i=1,..., K} Define using proper normalization

P(Ye, v) ox > Yei (4)

ilv=arg minyev d(bi,w)

We can compute the corresponding entropy 7(v) of the label distribution for a

fixed word [19].
c

7(v) = =Y ply;lv) log(p(y;|v)) (5)
j=1

A lower entropy suggests a better separation of base features assigned to different
labels for a given word. To compare a visual vocabulary as a whole we consider the
cumulative sums of distribution of these entropies over the set of all visual wordsin a
vocabulary. Figure[flcompares this distribution between the proposed method and
hierarchical k-means with 4000x2 clusters, which is structurally the closest base-
line, both using 8000 words. We observe that the proposed method has a higher
mass of visual words at lower values of the label distribution entropy, which indi-
cates that more informative words about some visual concepts were selected.

6 Conclusion

In this paper, we proposed a hybrid algorithm of unsupervised clustering and
supervised linear SVMs for visual codebook generation. On VOC2009 and Im-
ageCLEF data sets, we showed clear advantages either in recognition perfor-
mance or in computation speed over purely unsupervised (e.g. k-means, HKM)
and purely supervised (e.g. ERCF) procedures. In particular, our approach can
reduce runtime of word generation and assignment almost half without losing
performance, while the fastest choice ERCF often loses unignorable amounts
in performance scores. Furthermore, we can double the standard k-means vo-
cabularies with small extra costs, which brought substantial improvements in
VOC2009 and for majority of concepts in ImageCLEF2010. Further research
should be done to incorporate fast linear multi-class classifiers or to find better
binarization procedures used for the SVM training.

Acknowledgement. This work was supported in part by the German Federal
Ministry of Economics and Technology (BMWi) under the project THESEUS
(01MQO7018).
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Appendix: Results for Grey SIFT Features

Table 5. Results for VOC2009 dataset with grey SIFT, 10-fold cross-validation

Method / Score AP AUC

baseline: SIFT, hierarch KM250x2 words
baseline: SIFT, ERCF4x128 words 41.11 £ 5.21 84.84 + 1.54
baseline: SIFT, KM500 44.03 £ 5.74 85.81 £+ 1.90
proposed: SIFT, KM250, 5 iter+250 lin SVM 44.28 + 5.75 85.94 + 1.91
proposed: SIFT, KM250 +250 lin SVM 44.60 + 5.18 85.93 + 1.86
baseline: SIFT, hierarch KM4000x2 49.49 £ 5.03 87.71 £ 1.67
baseline: SIFT, ERCF16x512 52.04 + 5.14 88.60 + 1.71
baseline: SIFT, KM4000 51.28 & 5.59 88.47 £+ 1.47
proposed: SIFT, KM4000+4000 lin SVM 52.07 £ 5.08 88.85 £ 1.63

43.27 £5.23 8548 + 1.93

Table 6. Results for CLEF2010 PhotoAnnotation dataset with grey SIFT, 10-fold
cross-validation

Method / Score AP AUC

baseline: SIFT, hierarch KM250x2 3237 £1.04 73.49 £ 1.28
baseline: SIFT, ERCF4x128 3148 £ 1.28 72.57 £ 1.84
baseline: SIFT, KM500 words 32.62 £ 0.96 73.57 4+ 1.40
proposed: SIFT, KM250, 5 iters+250 lin SVM 3231 £1.08 73.49 £ 141
proposed: SIFT, KM250, 120 iters+250 lin SVM 32.78 + 1.16 73.82 4+ 1.39
baseline: SIFT, hierarch KM4000x2 35.42 £ 1.09 75.78 &£ 1.36
baseline: SIFT, ERCF16x512 34.82 + 1.05 75.00 &+ 1.50
baseline: SIFT, KM4000 35.13 £ 1.32  75.30 + 1.32
proposed: SIFT, KM4000+4000 lin SVM 35.74 £ 1.26 76.04 + 1.25



Image Inpainting
Based on Probabilistic Structure Estimation

Takashi Shibata, Akihiko Iketani, and Shuji Senda

NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki,
Kanagawa 211-8666, Japan

Abstract. A novel inpainting method based on probabilistic structure
estimation has been developed. The method consists of two steps. First,
an initial image, which captures rough structure and colors in the missing
region, is estimated. This image is generated by probabilistically inter-
polating the gradient inside the missing region, and then by flooding
the colors on the boundary into the missing region using Markov Ran-
dom Field. Second, by locally replacing the missing region with local
patches similar to both the adjacent patches and the initial image, the
inpainted image is synthesized. Since the patch replacement process is
guided by the initial image, the inpainted image is guaranteed to pre-
serve the underlying structure. This also enables patches to be replaced
in a greedy manner, i.e. without optimization. Experiments show the pro-
posed method outperforms previous methods in terms of both subjective
image quality and computational speed.

1 Introduction

Inpainting is a technique for restoring damaged paintings and photographs by
filling in missing regions with textures surrounding them. In computer vision,
this technique has been applied for removing selected objects in images and has
become one of the most active research areas in the field.

Various inpainting methods have been proposed. These methods can be classi-
fied into two categories: diffusion-based and exemplar-based methods. Diffusion-
based methods [2,[4] construct a diffusion equation for each pixel in the missing
region that relates the color expected at the pixel and in its neighbor. Solving
these equations, the colors surrounding the region are diffused into the region.
Although these methods work effectively on relatively narrow regions, the result
tends to be oversmoothed, especially in case of larger regions, since they assume
the color smoothness inside the missing region.

On the other hand, exemplar-based methods [56L7USOITONTIIT3IT4] restore the
missing region by pasting square patches sampled from the exterior of the region.
Since the missing region is filled in the unit of a patch, which is large enough to
capture textural patterns, the result is less likely to be oversmoothed. Exemplar-
based methods can be further classified into two categories: greedy and globally
optimal methods. Greedy methods iteratively paste patches into the missing
region until no missing area is left. This method was first proposed by Harrison

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 109 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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(a) original image (b) greedy method [6] (c) globally optimal method [14]

Fig. 1. Inpainted results by previous methods

et al. [7], and since then, various modifications have been proposed. Criminisi
et al. introduced a “priority” measure that specifies which part of the missing
region should be inpainted prior to the others [6]. Other methods improve the
accuracy of patch selection [BL8LITLI3]. Although these methods are faster than
globally optimal methods (to be described later), they are inherently subject
to a local minima problem due to their greedy procedure, often resulting in
discontinuity in the inpainted region. An example is shown in Figlll In Fig[i(a),
meshed regions show regions to be inpainted. The inpainted result synthesized
by Criminisi et al. [6] is shown in Fig[T(b). Discontinuity is apparent on handrails
and walls.

On the other hand, globally optimal methods treat inpainting as combinatorial
optimization on patch selection [9,T0,[14]. These methods estimate the optimal
combination of patches to fill in the missing region by minimizing the overall
discontinuity within the region for a given set of patches. Patch selection is
optimized by belief propagation [10] or by EM algorithm [I4]. To avoid ambiguity
in patch selection, Kawai et al. introduced an additional constraint that narrows
down the search area for candidate patches [9]. These methods, in contrast to
greedy methods, are capable of synthesizing continuous inpainted regions. This,
however, does not ensure that the underlying structure in the missing region
is preserved. An example of this, generated by Wexler et al. [14], is shown in
Figlli(c). Although a continuous inpainted region is obtained, the underlying
structure (e.g. handrails, boundaries between the floor and the walls) is not
preserved. Another issue with these methods is that the optimization process
requires far more computation than greedy methods.

Some of the recently proposed methods focus on structure preserving inpaint-
ing. In Shift-Map editing [12], regions are copied into the missing region with
uniform shifts. Since each region is uniformly shifted, structure within each re-
gion is expected to be preserved. However, the method often generates discon-
tinuity on boundaries where different regions meet. PatchMatch [I] carries out
structure-preserving inpainting by manually specifying the underlying structure.
Although this method works well on a variety of images, the need for manually
specifying the structure limits its application.

We propose an inpainting method that can preserve the structure underlying
the missing region and is also computationally efficient. In the proposed method,
first, an initial inpainted image, which captures rough structure and colors in the
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missing region, is estimated assuming the underlying structure consists of lines.
Then, using this image as a guide, patches are sampled from the exterior of the
region and pasted into the region iteratively. Patch selection guided by the initial
image not only ensures the underlying structure is preserved but also enables
the patches to be selected in a greedy manner, i.e. without optimization. This
makes our method substantially faster than globally optimal methods [9,[1014],
in which selected patches must be optimized.

2 Proposed Method

The overview of the proposed method is shown in Figl2l As shown in Figll the
proposed method consists of two steps: initial image construction and texture
synthesis.

In the first step, an initial image, which captures rough structure and colors
in the missing region, is estimated. This image is generated by three processes:
1) extracting edge segments intersecting the boundary of the missing region,
2) probabilistically interpolating the gradient inside the region, and 3) flooding
colors on the boundary of the region to the topographic relief formed by the
gradient magnitude.

In the second step, patches are sampled from the exterior of the missing region
and pasted into the missing region iteratively in a greedy manner. Each step is
detailed below.

2.1 Initial Image Construction

Edge Segment Extraction. An example of an image with a missing region is
shown in FigBl(a). This step starts from extracting edge segments intersecting
d€, the boundary between the missing region {2 and the source region ®. First,
end points of the edge segments, depicted with x marks in FiglB[(b), are de-
tected by searching local maxima of gradient along d2. Then, Hough transform
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(a) missing region (b) end points (c) edge segments

Fig. 3. Extracting end points and edge segments

is applied to ® to detect edge segments intersecting the end points, as shown in
FigBl(c). Note that only the votes for the lines that intersect the end points are
considered.

Probabilistic Gradient Interpolation. Next, the gradient inside €2 is inter-
polated. Here, the basic idea is to extend each edge segment into the missing
region, and to assign the gradient of the edge segment to every pixel on the
extended edge. Previous methods extend edge segments manually [IL[I3] or au-
tomatically based on some heuristics [5,[§]. In general, however, it is unknown to
what extent they should be extended. For example, in Figll(a), obviously edge
segments on one side of the boundary should be fully extended to the other side,
whereas in Figllb), edge segments should be terminated where they intersect
with other edges. These examples suggest that 1) if an end point has a corre-
sponding point on the other side of the boundary, the edge segment is likely to
be fully extended, and 2) the more intersections an edge encounters, the less
likely it is to be further extended.

On the basis of this idea, we probabilistically determine to what extent each
edge segment should be extended. We refer to the former type of edges as full
edges and the latter as half edges. First, for each edge segment detected in the
previous process, we consider two hypotheses: one for being a full edge and the
other for being a half edge. Then, for every pixel in the missing region, the
likelihood for belonging to each hypothetical edge is computed. Finally, each
pixel is determined to belong to an edge that gives maximum likelihood. Further
details are described below.

Let us begin by defining the two likelihoods. The former likelihood, i.e. the
likelihood that a pixel at x belongs to a full edge connecting end points x; and
X7, is given by

2
qull (X, k7 l) = LO exp[f d;la(_:) - p();ko_,:q)] (1)
where dy;(x) is the distance from x to the edge connecting x; and x;(see Fig[Hl),
and p(xg, X;) is the dissimilarity between end points at x; and x;, which increases
as the differences in gradient and edge direction become larger, i.e.,
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(a) full edges (b) half edges
Fig. 4. Two types of edges considered Fig. 5. Definition of Ou,0uk
and dkl
poekx) = Y VIi(xk) = V()2 + AOF + 03) (2)

i=R,G,B

where VI;(x) is the gradient at x for each color component i = R, G, B, and
O (or Ox;) is the angle formed by two lines: the line connecting end points at
x; and x;, and the edge segment detected at xi (or x;). 04, 0p, Lo and X are
parameters determined empirically.

The latter likelihood, i.e. the likelihood that x belongs to a half edge starting
from an end point xg, is given by

di (%)

Lhalf (Xa k) =w " exp[— 2Ud

] ®3)
where w is a constant less than 1, n is the number of intersections with other
edges encountered between x; and x, and di(x) is the distance from x to the
edge from xj. Note that each time the edge intersects another, this likelihood
diminishes by a factor of w.

These likelihoods are used to determine to which edge each pixel x belongs.
First, assuming that x belongs to a full edge, Lsu(x, k,1) is computed for every
pair of edge segments k,[, and the full edge that x most likely belongs to is
determined by maximum likelihood estimation:

k,’:“”, l,{"” = arg max Lyuu(x, k1) (4)

where kf% 17u! denote the two end points of the full edge.

Similarly, assuming that x belongs to a half edge, Lpair(x,k) is computed
for every edge segment k, and the half edge to which x most likely belongs is
estimated as follows:

k}}éalf — argm]?X Lhalf (Xa k) (5)

where k"%/ denotes the end point of the half edge.
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Given both likelihoods, we finally determine whether x belongs to a full or
a half edge, and estimate the gradient for x. Here again, maximum likelihood
estimation is used. The gradient VI (x) is given as the intensity gradient of the
edge to which it belongs, weighted by the likelihood, i.e.

Vf(x) _ { v[)}j{"ulllqu”(x’ k,{u”, liull) Zf qu”(X, k,{u”, l)jzull) Z Lhalf(xa kl;alf)
VIR Ly gr g (x, KRS else
(6)
where VI is the average of intensity gradient vectors at x; and x;, and VI!@f
is the gradient at x.

Color Flooding. An initial image is generated by flooding colors on df) to the
topographic relief formed by the gradient magnitude.

We formulate this problem on Markov Random Field (MRF). We consider a
regular grid on the original image that covers the entire {2 and its neighbors in
®. Each node corresponds to a pixel in the image. The energy function to be
minimized is given as follows:

E(M) = Fgata(M) + Egmootn (M) (7)

where M = {My, Ms,--- ,M,,--- ,Mn} is a set of labels assigned to each of
the N nodes in MRF, and M, is a label given to the node at x,. Each label is
uniquely associated with a color by function f(M,). Note that the color space is
quantized to 64 levels in order to decrease the number of possible labels, thereby
making the problem more tractable. The data term in the above function is
defined as follows:

EaataM) = Y [1f (Mp) = T(xp)ll2 (®)

ped

where T'(x,) is the color at x, in the original image. This term penalizes the
estimated colors deviating from its original colors. Note that this term is only
computed at nodes in ®, where original colors are available. The smoothness
term is defined as follows:

Esmootn(M) = Y Vigll f(Mp) = f(M,)ll2 9)

P,aER

where R is a set of adjacent nodes. V,, is a weight for the smoothness term,
which is designed such that the closer the direction from x, to x4 is to the
gradients at x,, and x4, the lighter it becomes, i.e.,

Viq = expl—alnyg - (VI(xy) + VI(xg))l] (10)

where n,, is the unit vector the direction of which coincides with that from x,,
to X4, - denotes the inner product of vectors, and « is a parameter determined
empirically. This weight adds an edge-preserving property to the smoothness
term, where abrupt color transition is tolerated along the gradient, i.e. across
the edge, while imposing color uniformity in the other directions.
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(a) Initial image (b) Final inpainted image

Fig. 6. Result synthesized by proposed method

The suboptimal solution for this problem is obtained by graph cuts [3]. The
initial image generated by this process for the original image in Figl[li(a) is shown
in Figlf(a). While the image recovers the underlying structure in the missing
region, close shots on the right seem somewhat posterized. This will be corrected
by the subsequent patch selection process.

2.2 Patch Selection

In the second step, patches are sampled from ® and pasted into () iteratively
in a greedy manner. Here, a patch centered at x; in ® is selected as a patch
to be pasted to x; in accordance with the following criteria: 1) a patch at x; is
continuous to the already pasted patches in the neighbors of x;, and 2) is similar
to the corresponding region in the initial image. Formally,

Xj = arg mill Cog) (Xis Xq) + Cinit(Xis Xq) (11)
q

where cqq5(X;, X4) is the sum of squared differences (SSD) between the patch at x;
in the inpainted image under construction and the patch at x4, and ¢init (X, Xq)
is SSD between the patch at x; in the initial image and the patch at x,. Note that
in cqq5(xi, %q), difference is computed only at pixels already filled by previously
pasted patches.

The final result obtained by this process is shown in Fig[6(b). As can be seen,
smooth gradations induced by highlight and shade have been recovered.

Table 1. Parameters used in experiments

Size of patches 7 x T[pixel] Lo 9.00
w 0.50 A 125 x 1071
op 6.125 x 10°  « 1.67

o4 0.50
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(a) original image (b) Wexler’s method (c) Kawai’s method (d) proposed method

Fig. 7. Experiment on house image

(a) original image (b) Wexler’s method (c) Kawai’s method (d) proposed method

Fig. 8. Experiment on indoor image

= -

- -

(a) original image (b) Wexler’s method (c) Kawai’s method (d) proposed method

Fig. 9. Experiment on tree image

3 Experiments

We experimented on 70 images in an image inpainting dataset [15] collected by
Kawai et al. for evaluating their method [9]. This section first presents the in-
painted results obtained by the proposed method and previous methods. Then,
these results are compared in terms of subjective image quality. Finally, compu-
tational time of the proposed methods is presented. Note that all the images used
in this experiment have the resolution of 200 x 200 pixels, and were processed
on a PC with 3.2GHz CPU, 2.0 GB RAM. Refer to Table [Tl for the parameters
used in the proposed method.

3.1 Inpainted Results

Figure [ to Fig[Il show 4 of the 70 experimental results. Each figure shows the
original image, results by Wexler’s method [14], Kawai’s method [9], and the
proposed method in (a), (b), (¢) and (d), respectively.
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(a) original image (b) Wexler’s method (c) Kawai’s method (d) proposed method

Fig.10. Experiment on temple image

—. [

(a) house (b) indoor (c) tree (d) temple

Fig. 11. Initial images generated by the proposed method

In Figll(b) and (c), linear structures in the inpainted regions fade away, re-
sulting in blurry images. The same problem also occurs in Fig[f{b) and (c). On
the other hand, in Figll{d) and Figl8(d), the proposed method gives sharper
images. The reason for this is that the proposed method successfully recovers
the structures underlying the missing regions in constructing the initial images,
shown in Fig[IT}(a) and (b), and these images are utilized as a guide in generating
Figlf(d) and Fig§(d).

In Figl(b) and (c), previous methods erroneously select patches from the
background gray area. Similarly in Fig[I0(c) and (d), patches from the back-
ground trees are selected. On the other hand, in Figl(d) and Figll(d), the
proposed method, guided by the initial images shown in FigllTl(c) and (d), suc-
cessfully selects correct patches. These results also show the effectiveness of the
two-step algorithm in the proposed method.

3.2 Subjective Evaluation of Image Quality

For all 70 images, results obtained by each method were evaluated by 4 subjects
in terms of image quality. Each subject rated every result on a scale ranging from
1 (very bad) to 5 (very good). For each method, Table[Plshows the average rating
(i.e. ratings averaged over every image and subject), the number of images that
had average ratings equal to or higher than 4 (good), and the number of images
that acquired the highest ratings among the 3 methods. On all 3 measures, the
proposed method outperformed the other methods.

In some images, however, the proposed method performed more poorly than
the others. Such an example is shown in Fig[T2l Rating for each result is shown in
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(a) original image (b) Wexler’s method (c) Kawai’s method (d) proposed method
(3.5) (4.5) (2.0)

Fig. 12. Experiment on road image

Table 2. Evaluation of subjective image quality

Average rating Number of images Number of highest

with rating > 4 rated images
Wexler’s method [13] 341 21 18
Kawai’s method [9] 3.64 30 28
Proposed method 3.76 40 36

parenthesis. As can be seen, the proposed method fails to recover the texture on
the stone wall in Fig[T2[(d). This is a typical failure that occurs when patches are
too small to capture the periodicity of texture. Using larger patches can improve
the result, as shown in Fig[l4l Here, instead of 7 x 7 pixel patches, 15 x 15
pixel patches were used. Note that the texture on the stone wall is successfully
recovered. This result implies a method is needed to find the optimal patch size
automatically. Developing such an algorithm remains our future work. Learning
optimal values for parameters shown in Table. 1 from a set of images will be
another interesting issue.

Finally, we present an image where none of the methods were successful. Fig
[[3] shows the results for an image where a barrel is partially occluded by a
person. Note that every method failed in reconstructing the rim of the barrel,
which led to equally low ratings. The reason for this failure can be summarized
into two points: 1) in pasting patches of the rim, they need to be rotated in
accordance with the normal of the rim, which none of the methods currently
does, and 2) a guide is needed that forces patches to be aligned on an arc.
Although the proposed method guides the patch pasting process by means of an
initial image, it assumes the underlying structure to be composed of lines. For
nonlinear structures, the method would fail in constructing the initial image,
as shown in Figllhl Extending the method to deal with more general types of
structures is our future work.

3.3 Computational Time

The average computational time of the proposed method for all 70 images is
shown in Table[3 According to Kawai [9], the time for Wexler’s method [14] and
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(a) original image (b) Wexler’s method (c) Kawai’s method (d) proposed method
(2.8) (2.8) (3.0)

Fig. 13. Experiment on barrel image

Fig. 14. Experimental result with larger Fig. 15. Initial image for barrel image
patch size

Table 3. Computational time of the proposed method

Processing Running time [sec]
Edge segment extraction 3.9
Probabilistic gradient interpolation 0.4
Color flooding 8.0
Patch selection 14.8
Overall 27.1

Kawai’s method [9] are at the order of 10% to 10? sec. This shows the proposed
method outperforms the previous methods by a factor of 10.

4 Conclusion

A novel inpainting method based on probabilistic structure estimation has been
developed. Experiments show the method is more than 10 times faster than
previous methods, while achieving better image quality. Currently, the method
assumes the structure in the missing region is composed of linear edges. Ex-
tending the method to deal with more general objects, e.g. those with curves,
remains our future work.
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Abstract. We describe an approach using local features to resolve prob-
lems in text localization and recognition in complex scenes. Low image
quality, complex background and variations of text make these problems
challenging. Our approach includes the following stages: (1) Template
images are generated automatically; (2) SIFT features are extracted and
matched to template images; (3) Multiple single-character-areas are lo-
cated using segmentation algorithm based upon multiple-size sliding sub-
windows; (4) An voting and geometric verification algorithm is used to
identify final results. This framework thus is essentially simple by skip-
ping many steps, such as normalization, binarization and OCR, which
are required in previous methods. Moreover, this framework is robust as
only SIFT feature is used. We evaluated our method using 200,000+ im-
ages in 3 scripts (Chinese, Japanese and Korean). We obtained average
single-character success rate of 77.3% (highest 94.1%), average multiple-
character success rate of 63.9% (highest 89.6%).

1 Introduction

Our goal is to read text from an image in complex scenes. There are many
applications for such a technology, for example, recognizing sign from natural
scenes, recognizing book/CD cover, license plate recognition, image and video
search engine and web mining.

However, variations of text due to differences in size, style, orientation, and
alignment, as well as low image quality, complex background and deformation
in complex scenes make text localization and recognition a challenging task.

Previous methods [6-9] often consist of following stages, as shown in Fig-
ure[Il(a), (1) Text localization and extraction; (2) Preprocessing; (3) OCR recog-
nition. Of note, every stage consists of multiple steps that each has its own
algorithm and usually operates sequentially.

Local features |IH5], which are distinctive and robust to noise, complicated
background, and many kinds of geometric and photometric deformations, have
been applied successfully in a wide range of systems and applications, such as
wide baseline matching, object recognition, image retrieval, building panoramas,
and video data mining. Moreover, as Figure[2 shows, local features matching can
be potentially extended to text recognition problems.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITT, LNCS 6494, pp. 121 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Inspired by the success of utilizing local features in image matching, we de-
scribe a local-feature-based approach for text localization and recognition. Con-
sidering the difference between text recognition and general image matching,
we improve several steps in our approach accordingly, (1) we develop a new
template-build method to automatically generate template images while elim-
inate the influence of complex scenes; (2) we develop a voting algorithm and
a geometric verification algorithm for optimizing matching results and locating
text; (3) we develop a segmentation algorithm based upon multiple-size sliding
sub-windows to handle multiple characters efficiently.

Our framework, as shown in Figure [I{b), is essentially simple by skipping
many usual steps, such as normalization, binarization, layout analysis and OCR,
which are required in OCR-based methods. Moreover, this framework is robust
and applicable in complex scenes as only SIF'T feature is used during the process.

\ 4
Text Localization Feature Extraction Database Build
and Extraction and Matching atabase Bul
Detection SIFT Fegture TemplateBuilding
- Extraction
Layout Analysis, v
ete Feature Matching \
Using MPLSH TCFD
A
Preprocessing l
‘ Norma‘lization ‘ Text Localization
‘ Enhancenment ‘ and Recognition
I ‘ Segmentation ‘
‘ Binarization, etc ‘ v
‘ Voting ‘
v v
Recognition Geometric
g Verification
‘ Feature Extraction ‘

I

Transformation
I

Classifier

(a) (b)

Fig. 1. Block diagram. (a) OCR-based framework; (b) Local feature-based framework.
TCFD is template characters features database.
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Fig. 2. Local features matching. (a) Object matching; (b) Characters matching.

1.1 Related Work

There have been a number of successful text localization and recognition works
reported in ﬂa—ll_ln Most of them follow the OCR-based framework. Chen et al ﬂ]
reported an approach of detection and recognition of sign from natural scenes.
Laplacian of Gaussian (LOG) edge detector, color modeling, layout analysis and
affine rectification are used to detect text. Then normalization is used as prepro-
cessing. At last, intensity-based OCR is applied to recognize the text. Koga et al
E] introduced a camera-based Kanji recognition system for mobile-phones. The
first stage consists of 4 steps: preliminary binarization, coarse layout analysis,
line direction detection and line segmentation. The second stage consists of an-
other 4 steps to identify the text: fine binarization, pre-segmentation, character
classification and post processing. More detailed surveys can be found in M]

Our approach is most similar to the work of Campos ﬂﬁ], which utilizes local
features and bag-of-visual-words model (BoW) to recognize single character in
English and Kannada. Yet the main differences between these two approaches are
quite clear: (1) Our approach could handle the detection and recognition of mul-
tiple characters other than single character; (2) Template images are machine-
generated instead of manually collected in our approach, providing tremendous
convenience for Chinese and Japanese text recognition.

2 Local Feature-Based Approach

Our framework (Figure [[I(b)) consists of four stages: (1) Template images are
obtained automatically via our template-build method, then template charac-
ters SIFT feature database (TCFD) is built. (2) The SIFT features of query
image are extracted and matched to TCFD using MPLSH. (3) Multiple single-
character-areas are located based on our segmentation algorithm. (4) For each
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single-character-area, a voting algorithm is used to identify candidate characters,
which are then subjected to a geometric verification algorithm for final results.
We describe these stages and methods in detail in the rest of this section.

2.1 Method of Building TCFD

Generation of template images for text matching is often challenged by the
variation of characters (e.g. font, size, style). In some cases, the huge amounts of
characters make the task even harder. For example, a total of 27474 characters
are used in Chinese language compared with 26 letters in English.

In the field of image retrieval and object recognition, natural scene images
are often used as template images. However, the local feature points in single
character image are far less than that in a scene image. As a result, these inter-
ferences will greatly affect the matching accuracy if natural images are used as
template images. Of note, for languages such as Chinese and Japanese, to obtain
natural scene images will be indeed expensive and time consuming.

We applied the following strategies to build TCFD:

(1) The template images are machine-generated in monochrome mode without
any additional noise and texture.

(2) According to fonts’ similarity, a selected subset of fonts is used to generate
template images per character.

(3) Every font per character will have two template images in TCFD (white-
foreground/black-background or black-foreground/white-background) as
shown in FigureBla). Using only one template image per font in some cases
will result in zero matching points as shown in Figure B(b). Furthermore,
experimental results showed that using two template images readily gained
33.0% improvement over using one template image. Increasing the num-
ber of template images, however won’t necessarily achieves further obvious
improvement.

Table 1. Flowchart of Voting Algorithm

(1) Given an image, the initial vote of a candidate character is A, A = the number
of matched features in query image. A = 3 in Figure dl(a).

(2) Given a candidate character, B is the number of matched features in the candidate
image. B = 6 Figure[d{a).

(3) A is not always equal to B due to the similar matching. Then, the final vote is
V = Min(A, B). V = 3 in Figure (a).

(4) The template characters with top C votes are identified as final candidate images,
C = R/V, we have chosen to use R = 60 and C'is limit from 2 to 20. The more V is
identified, the fewer candidates are retrieved.
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(b)

Fig. 3. Example of template images. (a) Fig.4. Example images for voting
Two kinds of template images; (b) Only algorithm and geometric verification
one template image has feature points algorithm. (a) Result before voting; (b)
matched for query images, so matching Result after voting; (c) Result after geo-
could be failed if only one template im- metric verification.

age is used.

2.2 Voting and Geometric Verification Algorithm

During text matching using local features, many mismatches can be caused by
many factors, such as, similarities among characters, deformations and noises.
Examples of mismatches could be found in Figure [f(a).

We designed a voting algorithm and gained 13.5% improvement. Optimized
candidate characters are retrieved by using this algorithm. Flowchart of this
algorithm is shown in Tab. [

Although the voting algorithm is helpful, there are still many mismatches in
matching since local features are lack of global information. Such example results
can be found in the left side of Figure E(b).

Geometric verification can be used in character recognition for optimizing
final results. This task however is often challenged by high computational cost
and limited number of matched pairs.

Based upon the idea of pairwise constraint [16], we designed a geometric
verification algorithm: Maximal Clique Matching for Text Recognition (MCM-
TR). In MCM-TR, the global geometric constraint problem is expressed as the
maximal clique problem in graph theory. MCM-TR starts from building a geo-
metric correspondence graph (GCG) based upon the weak geometric constraint
(WGC) information in local features. Then the global geometric relationship can
be found by finding the maximal cliques in GCG. Given the characteristics of the
global optimality of maximal cliques, MCM-TR is robust to occlusion, clutter,
non-rigid deformations with the need of very few matched pairs.

We implemented MCM-TR as shown in Tab. Pl and achieved 9.5% improve-
ment. The average matching time is 0.008 sec for two images with 60 matched
pairs. Example results after geometric verification can be found in Figure Ec).
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Table 2. Flowchart of Geometric Verification Algorithm

(1) Given an image, and a candidate image identified by voting algorithm, all corre-
spondences between these two images are labeled.

(2) For every matched pair, the space, scale and rotation information of SIFT features
are extracted to estimate the WGC. To reduce the computational complexity, those
match pairs whose points are not close in space and scale will be directly discarded.
(3) WGCs of all matched pairs are used to build GCG. GCG is an undirected and
unweighted graph, in which each vertex represents a correspondence. The vertices
are adjacent only when the correspondences are consistent with WGC. We make the
projection from correspondences to GCG.

(4) The approximation algorithm proposed in [16] is extended to finding the maximal
cliques in GCG. The maximal cliques just represent the global geometric relationship
between the query image and the candidate image. To reduce the computational
complexity, the maximal cliques containing too many or too few vertices are rejected.
(5) The candidate with max number of the matched pairs in the maximal clique is
indentified as the final result.

2.3 Segmentation Algorithm and Multiple-Character Recognition

Segmentation algorithm is used to locate multiple single-character-areas in whole
image. We call each area a sub-window, as Viola [17] use in face detection. We
don’t need to select all the feature points in the sub-window. The feature points
of the same character are always similar in scale. We can filter the feature points
by scale, which can greatly reduce the number of the local features. Furthermore,
Hash table is used to rapidly obtain the local features in a sub-window.

Detail of algorithm is shown as following: Obtain the range of the location
and scale of the local features matched in the MPLSH matching process. Let
Winin = Smink, Wiaz = Smazk. Wiin and Wi, .. represent the minimal and
maximal size of the sub-window. The size of sub-windows increases by a factor
of As between Wy, and Wy, ... For each size, the sub-windows are shifted by
some number of pixels wAl. w is the size of sub-window. In each sub-window
with size w, only those feature points whose scale is in the range of (w/k, wAs/k)
are kept. The choice of Al and Ad affects both the speed of recognition as well
as accuracy. In this paper, Al =2 and Ad = 0.5.

Many sub-windows will be extracted in a query image. For example, in a
640x480 image, if the Wi = 48 and Wi,q, = 256, 561 sub-windows will be
extracted. It is high cost to recognize every sub-window.

The sub-windows will be subjected to the voting and geometric verification
algorithm. However, it is not needed to recognize every sub-window. The reasons
are: 1) there are few local features in some sub-windows. It is of low probability
that there exist characters. 2) Some sub-windows cover the same region. If the
characters in this region are recognized in one sub-window, the features of those
characters do not need to be recognized anymore.
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Table 3. Flowchart of Multiple Character Recognition Process

1. Statistic the number of the matched points in each sub-window. Those whose point
number is less than threshold ¢ will be removed from the heap. The sub-windows left
are used to build a max heap.

2. While the point number of the top sub-window of the max heap is more than ¢:
2.1 Recognize the top sub-window. Let define the recognized character is C and the
point number is n.

2.2 If n < t and n is less than half number of template character, we determine there
is no character in the sub-window. The sub-window will be removed from the heap.
2.3 If C is recognized, the accurate region and orientation of C can be computed
by the transformation between the character and the template. The points of C are
removed from the query image. Then update the point number of the sub-windows
that cover C.

2.4 Update the max heap.

3. Combine overlapped recognized characters. Only the character with the most fea-
ture points will be left.

(d) third step (a)
Fig. 5. An example of multiple-character recognition. (a) is the query image containing
two characters; Figures in (b), (¢) and (d) are the sub-windows extracted from the query
image. The yellow lines represent local features. The left sub-window is selected for
recognition. In the first step, a character is successfully recognized. The local features
of the character will be removed in every sub-window. In the second step, no character
is recognized. The left sub-window will be removed. The right sub-window will be
removed because of too few points. In the third step, the other character is correctly
recognized. The selected sub-window will be removed because of too few points left.

The multiple characters recognition process is shown in Tab.[8l An example
is shown in Figure
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Fig. 6. Datasets. Examples of images used for the evaluation. (a) Dataset-A: Single
Chinese characters; (b) Dataset-B: Multiple Chinese characters; (¢) Dataset-C: Single
Chinese characters from images of natural scenes; (d) Dataset-D: Multiple Chinese
character images from natural scenes; (e) Dataset-E: Single and multiple characters of
3 languages scripts.

3 The Datasets

We built 5 datasets for the test: dataset-A, dataset-B, dataset-C and dataset-D
are datasets containing only Chinese characters, dataset-E contains 3 language
scripts (Chinese, Japanese and Korean). A summary of these five datasets is
listed in Tab. @l Examples of each dataset are shown in Figure

4 Experimental Results

We performed 5 tests to evaluate our approach. Descriptions of these tests are
shown in Tab.[dl In our experiments, we use Andrea Vedaldi’s sift+-+1 and Wei
Dong’s LSHKITH for our SIFT and MPLSH M] implementation.

The results of Test-1, Test-2, and Test-3 are shown in Tab. Bl and Tab. [
accordingly. For Chinese text in complex scenes, we obtained average success

! http://www.vlfeat.org/ vedaldi/code/siftpp.html
2 http://lshkit.sourceforge.net /index.html
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Table 4. Description of each test

Tests  Datasets Dataset Description Objective of Test

Test-1 Dataset-A 3500 Single Chinese Characters; To evaluate the success rate of
168,000 machine-generated test- single Chinese character, and
ing images in 12 fonts; 3 fonts in describe the effect of various
template characters. algorithms.

Test-2 Dataset-B  Multiple Chinese characters; To evaluate the success rate of
36,000 machine-generated test multiple Chinese characters.
images in 12 fonts; 3 fonts in
template characters.

Test-3 Dataset-C  Single Chinese character image; To evaluate the success rate of
Obtained from natural images; single Chinese character from
1,000 testing images; 3 fonts in natural scenes, and compare
template characters. to commercial OCR.

Test-4 Dataset-D Multiple Chinese characters ob- To evaluate the success rate
tained from natural scenes; 120 and false rate of multiple Chi-
Hei-like-font test images; 2 fonts nese characters from natural
in template characters. scene images.

Test-5 Dataset-E Chinese, Japanese, Korean; To evaluate the success rate

Single character and multiple
characters; Machine generated;
15,700 testing images in 1 font;

of single character and multi-
ple characters in 3 languages
scripts.

1 font in template characters.

rate of 77.3% (highest 94.1%) for single character and average success rate of
63.9% (highest 89.6%) for multiple characters. Compared with commercial OCR
software, our approach improved the recognition accuracy by 12.9%. Given the
character images all vary in fonts, lighting conditions, rotation, scale and affine
deformation, these results are indeed encouraging.

There is 33.0% improvement by using our method to build the template im-
ages, 9.5% improvement by the geometric verification algorithm. The results
demonstrated the efficiency of each steps of our approach.

It is also quite obvious from our studies that depending on the used fonts,
the accuracy of text recognition changes dramatically too ( e.g. the lowest rate
56.7% in the case of FangSong font). It indicated the importance of the selection
of fonts in template images.

The results of Test-5 are shown in Tab.[Bl Our approach also achieves encour-
aging results for language scripts other than Chinese script. We found the more
SIFT points in a character images (the more complicated structure), the higher
success rate.

The results of Test-4 are shown in Tab. [8l Results show that our approach
is robustness in complex scenes. Some positive results are in Figure [[Ja). We
also found the success rate decreased for multiple characters from both natural
scenes and machine-generated images. The main reasons are:



130 Q. Zheng et al.

Table 5. Results of Test-1 and Test-2 (success rate of single Chinese character and
multiple Chinese characters). E-1 is the approach without template-build method, E-2
is the approach without geometric verification algorithm. E-Single represents single
character. E-Multi represents multiple characters.

Fonts E-1 E-2 E-Single  E-Multi
Hei 53.3% 90.6% 94.1% 89.6%
MSYaHei 45.1% 70.4% 78.5% 63.2%
XiHei 49.4% 74.9% 84.3% 74.3%
PingHei 44.0% 65.4% 75.7% 66.7%
DengXian  48.8%  76.3%  84.6% 62.8%
YouYuan 37.1% 43.0% 58.7% 56.2%
GWArial 47.9% 80.6% 87.3% 66.1%
Song 44.5% 66.6% 76.4% 60.3%
FangSong  30.8%  40.8%  56.7% 50.7%
Kai 48.3% 81.2% 87.2% 67.8%
STKai 42.8% 67.0% 76.4% 60.2%
BWKai 39.7% 56.4% 67.5% 48.6%
Average 44.3%  67.8%  77.3% 63.9%

Table 6. Test results of Test-5

Language Chinese Japanese  Korean
Average number of SIFT points 60.3% 40.4% 28.5%
Success rate of single character 94.1% 88.3% 78.5%
Success rate of multiple characters 89.6% 77.1% 70.5%

Table 7. Test results of Test-3

Methods Our Approach Hanwang-Wenhao OCR 7600 Tsinghua-OCR 9.0 Pro
Success Rate 73.1% 60.2% 44.7%

Table 8. Test results of Test-4. SROC: the rate of the correct recognized characters
among all the characters. FROC: the rate of false characters among all the recognized
ones. SROI: The rate of the images with all characters correctly recognized and no
false ones. FROI: the rate of those images with no characters correctly recognized.

Language SROC FROC SROI FROI
Chinese 60.4% 30.6% 12.5% 15.8%

(1) The complex change in natural scenes, such as joined characters (Figure[dl(b)),
varied foreground (Figure[T(c)), shadows, vertical characters, outline charac-
ters, large deformation (Figure[(d)) and large illumination change will lead
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Fig. 7. Datasets. Examples of images used for the evaluation. (a) Dataset-A: Single
Chinese characters; (b) Dataset-B: Multiple Chinese characters; (¢) Dataset-C: Single
Chinese characters from images of natural scenes; (d) Dataset-D: Multiple Chinese
character images from natural scenes; (e) Dataset-E: Single and multiple characters of 3
languages scripts. Yellow rectangles represent correct recognition. Black ones represent
false recognition. Red rectangles are manually drawn for further explanation.

to the great change in the scale, orientation and description of the feature

points, which result in rejection of many matching pairs in both matching

and geometric verification process. Moreover, low resolution (Figure [T{e))

and too thin strokes will cause very few SIFT feature detected.

Threshold ¢ will rejected characters with simple structures as well as the

background noises. It is tradeoff between success rate and false rate. Fig-

ure [7[(f) is the sample image that a simple character is rejected.

(3) Similar characters possibly received more votes than the character itself even
after geometric verification, if wrong sub-windows are extracted and selected.
In Figure[l(g), the selected sub-windows are either too big or too small.

—~
[\
~

5 Conclusion

In this paper, we describe a local-feature-based framework for text localization
and recognition by only using SIFT features. The essential components in this
framework include template-character-feature database buildup, a segmentation
algorithm, a voting algorithm and a geometric verification algorithm. Our re-
sults demonstrated this approach performed well for texts in complex scenes,
especially for those language scripts with complicated structures.
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Although the robust performance of our approach suggests the local features
matching can be utilized to address common problems in text localization and
recognition, more works are needed toward a mature application. We plan to
investigate other geometric verification methods and local features for better
recognizing multiple characters with simple structure. We will explore such an
approach in our future work.

Acknowledgement. This work was supported by National Natural Science
Foundation of Shanghai (Grant No.10ZR1416400).
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Pyramid-Based Multi-structure
Local Binary Pattern for Texture Classification
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Abstract. Recently, the local binary pattern (LBP) has been widely
used in texture classification. The conventional LBP methods only de-
scribe micro structures of texture images, such as edges, corners, spots
and so on, although many of them show a good performance on tex-
ture classification. This situation still could not be changed, even though
the multiresolution analysis technique is used in methods of local binary
pattern. In this paper, we investigate the drawback of conventional LBP
operators in describing some textures that has the same small struc-
tures but differential large structures. And a multi-structure local binary
pattern operator is achieved by executing the LBP method on different
layers of image pyramid. The proposed method is simple yet efficient to
extract not only the micro structures but also the macro structures of
texture images. We demonstrate the performance of our method on the
task of rotation invariant texture classification. The experimental results
on Outex database show advantages of the proposed method.

1 Introduction

Texture classification has been extensively investigated during the last several
decades. Some methods for texture classification focus on the statistical analysis
of texture images. The representative methods include the co-occurrence matrix
method [2] and filtering based approaches |4, 111, |15]. Varma and Zisserman [16]
present a good statistical algorithm, MRS, which uses 38 filters to build a ro-
tation invariant texton library from a training set for classifying an unknown
texture image. Recently, a simple but more powerful operator the local binary
pattern (LBP) [13] that is based on the signs of differences of neighboring pixels is
used for image description. And it has been successfully applied to texture anal-
ysis [10]. For texture classification, Ojala et al. [12] show a good performance of
LBP for texture classification by comparing with other methods. And Méaenpéaa
et al. |§] introduce a uniform pattern to robust texture description by selecting
subsets of patterns encoded in LBP forms. With this technique, they propose a
rotation invariant uniform pattern (LBP"%?) |14] to describe the texture image.
By utilising the temporal domain information, Zhao and Pietikainen |17] extend
the LBP to the VLBP for dynamic texture classification. Ahonen et al. [1] use
the local binary pattern histogram Fourier features (LBP-HF) to describe rota-
tion texture. Guo et al. [3] take the local variance as a weight of local binary

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITT, LNCS 6494, pp. 133 2011.
© Springer-Verlag Berlin Heidelberg 2011
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pattern to adjust the contribution of the LBP code in histogram calculation and
propose the LBPV operator for rotation invariant texture classification. Liao et
al. [6] use the 80% dominant local binary pattern (DLBP) to classify the tex-
ture. And combining with Gabor features, it attains a high classification rate.
The LBP-HF, LBPV and DLBP are both state-of-the-art algorithms and yield
good results in the task of rotation invariant texture classification.

Although these operators perform well, most of them base on the same idea of
LBP which only extracts isotropic micro structures of images. These micro struc-
tures are not enough to describe the texture information. The problem still can’t
be solved by the multiresolution LBP method |14] that just combines the limited
neighbor sample points and radii. At the same time, the stability of LBP value
deteriorates rapidly with the increasing of neighbor radius, because the sam-
pling points have less correlation with the centre pixel with the present of larger
radius. Multi-scale binary patterns (LBPF) [9] employs exponentially growing
circular neighborhoods with Gaussian low-pass filtering to extract binary pat-
terns for texture analysis. The LBPF also shows isotropic micro structures of
images but a little bigger than the structures extracted by basic LBP methods.
Our work considered the structures extracted by basic LBP. We carried out the
rotation invariant uniform pattern LBP in an image pyramid to extract both
micro and macro structures of texture images. The pyramid technique had been
used in texture field by Heeger and Bergen [4] many years ago, but they focused
on texture synthesis. In our work, four anisotropic filter templates ensured the
collection of anisotropic structures in the image pyramid. Later, weights of dif-
ferent structural histograms were set to enhance the performance of proposed
method. The results of experiment on Outex database show the superiority of
our method.

The rest of this paper is organized as follows. Section 2 gives a brief overview of
the basic LBP method and discusses the structures extracted by the conventional
LBP. Section 3 devotes to the details of the proposed method. Section 4 presents
the implementation of our experiments. Section 5 concludes his paper.

2 Local Binary Pattern

In this section, we review the LBP methods and points out the structures of
texture images that are neglected by the conventional LBP. This is necessary for
understanding the advantage of our method.

2.1 The LBP Methods

The local binary pattern (LBP) [14] is an illumination invariant texture operator
which characterizes the local structure of the texture image. The basic LBP
considers a small circularly symmetric neighborhood that has P equally spaced
pixels on a circle of radius R. The LBP value of the center pixel is computed
by thresholding the gray value of P sampling point with their center value, and
summing the thresholded values weighted by powers of two. Thus, the LBP label
for the center pixel (z,y) is obtained by
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P-1

LBPpR(z,y) = Z s(gp — gc)2P (1)
p=0

@ =g 120 @

where g, is the gray value of the center pixel, g, (p=0,...,P-1) correspond to
the gray values of P sampling points. If the coordinates of g. are (0,0), then the
coordinates of g, are given by (—Rsin(2np/P),Rcos(2mp/P)) . The gray values
of neighbors which do not fall exactly in the center of grids are estimated by
interpolation.

The rotation invariant version of LBP is achieved with the uniform measure.
Méenpéad et al. |§] first defined the nonuniformity measure U (‘pattern’) as the
number of transitions (0/1 or 1/0 changes) in the circular bitwise presentation of
the LBP code. Later, Ojala et al. [14] designated patterns that have U value of
at most 2 as ‘uniform’ and propose a rotation invariant uniform pattern operator
LBP];%Q for texture description:

P-1
i s(gp — 9¢), if U(LBPp,r) <2
LBPp? = p; (3)
P+1, otherwise
where
P-1
U(LBPpr) = |s(gp—1 — gc) — 5(g0 — go)| + > |5(9p — 9¢) — 5(gp-1 — g¢)| (4)
p=1

According to the definition of ‘uniform’, there are P41 ‘uniform’ binary patterns
in a circularly symmetric neighbor set of P pixels. Equ. (B]) assigns a unique la-
bel to each of them, corresponding to the number of ‘1’ bits in the pattern
(0,1,...,P), while the ‘non-uniform’ patterns are grouped under the ‘miscella-
neous’ label (P+1). Thus, the LBP};’Z'}“%2 has P42 distinct output values.

2.2 Structures Extracted by Conventional LBP

The uniform LBP, as a classical version of LBP, has achieved a good performance
in texture analysis. Therefore, it is necessary to select the uniform LBP method
to analysis the structures that are extracted by LBP. According to the definition
of uniform, there are 58 different uniform patterns in (8,R) neighborhood. The
pattern ‘0’ means the gray values of P neighbor points smaller than the central
pixel’s, and corresponds to a plot structure. Patterns that have equal numbers
of continuous ‘0’ and ‘1’ correspond to an edge structure. The pattern ‘255’ cor-
relates with two structures. If the gray values of P neighbor points greater than
the central pixel’s, the pattern expresses a plot structure. And the flat structure
is described when the P neighbor points and their central pixel have the same
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Fig. 1. 1st column: Two texture images have same micro structures. 2nd column:
Uniform LBP (P=8, R=1) histograms of left textures. 3nd column: Uniform LBP (P=8,
R=1) histograms of the second level of pyramid of left textures. All the histograms are
normalized. The Euclidian distances of histograms in subimages (b) and (c) are 0.0029
and 0.0454, respectively.

gray value. The remained uniform patterns are ‘L’ type corners of the image.
These structures are the micro structures of images because the conventional
LBP methods only consider a small neighborhood. The non-uniform patterns
also correspond to small structures (‘Y’ corner, ‘X’ corner, short line and so on).

The performance of conventional LBP is limited, because these methods only
consider micro structures of images. The weakness is clear when different tex-
ture images have same micro structures. We give an extreme example in Fig. [Il
In first column, there are two texture images which have same micro struc-
tures but different macro structures. The second column presents uniform LBP
(P=8, R=1) histograms of the textures in first column. It’s clearly that the
uniform LBP worked on orignal images have no contribution to classify the two
textures because they have similar LBP feature histograms. The third column
gives uniform LBP (P=8, R=1) histograms of the second level of pyramid of
texture images in first column. Some differences of the two histograms can be
seen in the third colum. The details of image pyramid will be described in next
section.

3 Multi-structure Local Binary Pattern

In image field, the isotropic means doing the same operation in every direction,
while the anisotropic is just opposite. Studying from the section 2, we can easily
find that the basic LBP only considers the isotropic micro structures of images,
because it samples with equal space in a small circularly symmetric neighbor-
hood. In this section, we execute the rotation invariant LBP on an image pyramid
to extract three different kinds of structures: (1) isotropic micro structures; (2)
isotropic macro structures; (3) anisotropic macro structures.
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3.1 Image Pyramid

An image pyramid can be created from the original image. We use the sign
I;; to indicate sub-images of an image pyramid. The subscript [ stands for the
level of the image pyramid and t indicates what template is used to create
the sub-image I; ;. There are five templates in total. The first template is a 2-
dimension Gaussian function G(x,y, o), which is used to smooth image. Referred
to SIFT [7], we select the variance o=1.5.

1 2 2 2
G - —(@"+y7)/20 5
(0,0:0) = 5 e %)
Other four anisotropic filters T;~T,4 are used to create anisotropic sub-images
of the pyramid. Fig. 2 shows the structures of templates T1 ~T4. The templates
To~T4 are created by rotating the template T; clockwise in three different angles
(45°, 90° and 135 ° ).

0 |1/3| 0 0|0 |1/3 0100 17310 | O

0 |1/31 0 0 |1/3] 0 173 | 1/3|1/3 0 |1/3] 0

0 |1/3| 0 17310 | O 0100 0|0 |1/3
Tl T2 T3 T4

Fig. 2. Four templates (T1~T4) for drawing anisotropic macro structures

The original image is Iy . The sub-image [; ; (I>0) are created from the image
I;_1 o by the following formula:

{ (oxG) 12, t=0
-1t =

6
(Lo*Ty) 12, t=1,---,4 (6)

where * is the convolution operation, | 2 means downing sample by 2. Here,
an approximation is used for extracting anisotropic sub-image by | 2 operation.
This approximation is able to reduce the calculations and has little influence
when an operation is implemented in small neighborhood. Fig. Bl gives a three-
level pyramid for extracting different structures.

3.2 Rotation Invariant Multi-structure Local Binary Pattern

The multi-structure local binary pattern (Ms-LBP) can be achieved by run-
ning the basic LBP on the image pyramid. The isotropic and anisotropic macro
structures are obtained by LBP methods in the sub-images I; ¢ (I>0) and I; (I
>0,t=1,2,3,4), respectively. The isotropic micro structures are obtained by LBP
methods in original image. Similarly, the rotation invariant multi-structure bi-
nary pattern can be achieved by carrying out the rotation invariant uniform pat-
tern operator LBP];?’]‘? on different pyramid levels. Thus, the sign of our method



138 Y. He, N. Sang, and C. Gao

i Anisotropic
Isot .
Sf/ﬁrrocrgc LBP | Origin Image Macro
Structures loo Structures
LBP
ook l(lo'm”z o T)2 (o2 (oo T2
Y Y \ Y
Isotropic | o0 l1o 1.1 2 he lha
Macro
Structures
(11,0"G){2 (11,0°T1)|2 (11.0*T2)}2 (11¢*T3)|2 (l1.0°Ta) 12
y

Fig. 3. Extraction of multi-structures in a three-level pyramid

is rewritten as MS-LBP];%Z, where ‘P’, ‘R’ and ‘riu2’ have the same meaning
with the operator LBPI’;%Q. The final histogram of Ms—LBPI’;f}Jf is grouped with
LBPp# histograms of every single sub-images of pyramid:

N M
Hig(k) =Y f(LBP{E p(i, 1), k). k € [0, K] (7)
i=1 j=1
)L T=y
Flay) = {0, otherwise )

where LB]Dfof‘PQ’R(i,j) is the LBP];?I“%2 value of pixel I; (4, j); K is the maximal
pattern, H;; is the LBP};’Z'}“%2 histogram of the sub-image I; ;; M and N are the
sizes of the sub-image of the pyramid.

3.3 Similarity Metric

The similarity of sample and model histograms can be evaluated by a test of
goodness-of-fit, which is measured with a nonparametric statistical test. The
nonparametric test can avoid making any assumptions about the feature distri-
butions. The log-like distance that is employed by many literatures [9, [14, [17]
is a goodness-of-fit statistics and useful for measuring the similar between his-
tograms. The log-like distance between a model M and a sample S is computed

as follow:
B

D(S,M) = Sylog(My) (9)
b=1
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where B is the number of bins and S, and M, are, respectively, the values of the
sample and model images at the bth bin.

The final similarity distance contains three parts because of the existing of
three different kinds of structures. Considering the rotation variance of texture
images, we take four anisotropic sub-images I; ;(I >0,t=1,---,4) in one level as a
whole to compute the distance. And the procedure is iteratively run four times
to find the minimal similarity as the distance of anisotropic macro structures.
Comparing with the micro structures, the macro structures located in the pyra-
mid top show little statistical because of the small sizes of sub-images in high
levels. Intuitively, the distances of structures on higher level make fewer contri-
butions to classifying samples than the distances of structures on lower level.
Thus, the final similarity distance (Dg(S, M)) is computed by adding the three
groups of distance with different weights in different levels:

L L
Dp (8, M) = wo,0D(S0,0, Moo)+ Y wio0D(S10, Mio)+ > wia Dimin (Si™, M{™)
=1 =1

4
Diin (S, M™) = i ZD(Sz,mod(t+k—1,4)+1a M)

t=1 (10)

k= argmin(d > " D(Symod(t+j—1,4+1: Mia),j = 0,1,2,3)
s =

where S+ and M;; stand for sub-images of pyramid of sample S and model M,
respectively; w are the distant weights and L is the maximum level of the image
pyramid.

The classification rate is a good candidate as the distant weight. There are
two parts in every level of the image pyramid except level zero. One part is
used for obtaining isotropic macro structures and the other part is used for
collecting anisotropic macro structures. But the 0th level of the image-pyramid
is an exception, because there is only a sub-image Iy o that is used to extracted
isotropic micro structures. We use one part of the pyramid at a time to achieve
the task of rotation invariant texture classification. Different parts get different
classification rates which correspond to different weights. The result of a log-like
distance between two histograms is always a nonpositive value. Therefore, the
normalized wrong classification rates are selected as the distance weights.

4 Experimental Results

We demonstrate the performance of our operators on the public texture database,
Outex, which is used to study rotation invariant texture classification by many lit-
eratures [1,13,14]. We used this database because their texture images are acquired
under more varied conditions (viewing angle, orientation and source of illumina-
tion) than the widely used Brodatz database. There are 24 classes of textures in
Outex database. And these textures are collected under three illuminations and
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at nine angles. Our experiments were performed on two test suites of Outex: Ou-
tex TC 00010 (TC10) and Outex TC 00012 (TC12). TC10 is used for studying
rotation invariant texture classification and TC12 is used for researching illumi-
nant and rotation invariant texture classification. The two test suites contain the
same 24 classes of textures as shown in Fig.ll Each texture class is collected under
three different illuminants (‘inca’, ‘t184” and ‘horizon’) and nine different angles
of rotation (0°, 5°, 10°, 15°, 30°, 45°, 60°, 75° and 90°).

Fig. 4. 128x128 samples of the 24 textures from Outex database

There are 20 non-overlapping 128 x128 texture samples for each class under
each setting. The experimental setups are as follows:

1. For TC10, classifiers were trained with the reference textures of illuminant
‘inca’ (20 samples of angle 0° in each texture class), while the 160 (8x20) sam-
ples of the other eight rotation angles in each texture class were used for testing
the classifier. Hence, there were 480 (24x1x20) models and 3840 (24x8x20)
testing samples in total.

2. For TC12, classifiers were trained with the reference textures (20 samples of
illuminant ‘inca’ and angle 0° in each texture class) and tested with all samples
captured under illuminant ‘t184’ or ‘horizon’. Hence, in both of the two illumi-
nant experiments, there are 480 (24x20) models and 4320 (24x20x9) validation
samples in total for each illuminant. In order to simplify the name of TC12 test
suite, ‘TC12t’ is short for TC12 ‘t184’ test suite, and ‘T'C12h’ is short for TC12
‘horizon’ test suite.

4.1 Calculation of Distance Weights

Both TC12 and TC10 have the same training set that contains 480 samples
of illuminant ‘inca’ in total. There are 20 samples of angle 0° in each texture.
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The distance weights were learned on the training set of TC12 and TC10, al-
though the training samples have some differences with the testing samples in
angles and illuminants. One sample of each texture was selected as a new train-
ing sample for the training classifier at a time, the rest of samples (19x24 sam-
ples) were used to test the classifier. We executed the process twenty times,
and twenty classification results were given by dividing the samples sets twenty
times. The final classification results were the average of the twenty results. In
the experiments, the LBPI’;‘I“%2 histograms of different parts of pyramid were used
to calculate the classification rates. Table[I] presents the right classification rate
of different parts of the pyramid in three different sample points P and radius
R. The sign “~’ in Table [ presents that no anisotropic structures are extracted
in level zero. Five levels are extracted on 128128 image.

Table 1. Right classification rates (%) with different parts of image pyramid on the
training sets of TC10 and TC12

Isotropic Parts Anisotropic Parts
PR level0 levell level2 level3 leveld level0 levell level2 level3 level4d

81 76.75 70.78 50.60 38.37 13.44 - 77.21 73.67 48.53 18.43
16,2 81.55 74.44 55.71 33.62 8.66 - 77.98 70.21 38.22 8.00
24,3 81.68 76.79 5531 13.32 5.04 - 81.88 65.42 1543 4.67

Results in Table[I] present that the classification rates deteriorate rapidly with
the increase of levels, because the sizes of images in high levels are too small to
supply enough statistics of structures. Four anisotropic templates cause more
anisotropic structures to be extracted than isotropic structures, and give a good
performance to the anisotropic parts of image pyramid. As can be seen from
Table [l the classification rates of anisotropic parts are usually higher than the
results of isotropic parts in the same levels of image pyramid.

The distance weights were computed by normalizing the wrong classification
rates which were obtained by subtracting the correct classification rates from
one. Table 2 shows the value of distance weights with different (P, R).

Table 2. Distance weights of different structures

Isotropic Parts Anisotropic Parts
PR level0 levell level2 level3 leveld level0 levell level2 level3 leveld

81 0.05 007 011 014 0.20 - 0.05 0.06 0.12 0.19
16,2 0.04 0.06 0.10 0.15 0.20 - 0.05 0.07 0.14 0.20
24,3 0.04 005 0.09 017 0.19 0.04 0.07 0.17 0.19
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4.2 Implementation of Multi-structure Local Binary Pattern

The performance of texture classification algorithms is characterized with the
percentage of correctly classified samples. The best results of each test suite in
experiment are marked in bold font. Five-layered pyramid were used in the exper-
iment according to the size of testing images. Weights in Table 2 were combined
with the distances of different parts of the image pyramid to calculate similarity
between samples and models. We employed the 3-NN method as a classification
principle that has been used by other literatures [9, [14]. The effects of proposed
method were compared against six methods: LBP"“2 LBP""“?/V AR, LBP-
HF, LBPV];{%%GMES7 DLBP and M RS8. The method LBP""? is a useful rota-
tion invariant method. And combining with local variance (VAR), LBP™™2/V AR
obtains a good performance. LBP histogram Fourier features (LBP-HF'), LBP
variance with global matching (LBPVﬁ%%GM rs) and dominant local binary pat-
terns (DLBP) are improved versions of basic LBP. For comparing, we gave the
results of DLBP under best parameters (DLBPr—3 + NGF') in Table[Bl MR8 is
a state-of-the-art statistical algorithm.

TableBlshows the advantages of the proposed method. The high scores 99.30%,
98.26% and 97.08% are obtained by the operator Ms-LBP[i%? on three different
suits(TC10, TC12t and TC12h), respectively. The superiority of our method is
obvious on the test suits TC12 which contains both illuminant and rotation
variant of textures. Textures under different illuminant usually have different
micro structures, but their macro structures are very similar. Thus, compared
with other operators, our method works well on testing sets TC12. It could find
that the Ms-LBPL%? method usually excel its counterparts under the same
parameters (P,R) and in the same testing sets. This situation is particularly
clear when the parameter (P,R) equals to (8,1) because macro structures are
also extracted in Ms-LBFg %42 The best results of our method are obtained
with parameter (16, 2). And the performance degrades a little with parameter
(24,3). The phenomenon is distinct in Table [Il especially the results on large
levels of image pyramid. Because the sizes of sub-image in high level of image
pyramid are very small, the total numbers of feature is very few. At the same
time, the dimension of histogram increases with the number of sampling points
P. Tt’s known that a high-dimensional histogram with few features is not enough
to describe the distribution of features in the statistical sense. And the operator
M S—LBPQ’Z,%2 belongs to this situation. As can be seen from the Table B] the
performance of M s—LBPI’;f%2 degrades a little with large sample points P=24,
because the high levels of image pyramid supply few feature with large number
of bins of the histogram.

Although good results are obtained, our method needs more time to classify
a texture than most LBP operators. We select the best parameter (P,R)=(16,2)
and execute these operators on a computer with the Intel CPU 2.8GHz. Our
method needs 0.466s to classify a texture, while LBP];?’]‘? only needs 0.012s. The
classification time of our method is less than the MR8 operator (2.257s), because
the MR8 needs to find 8 maximum responses after 38 filters convoluting with
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Table 3. Correct Classification rate (%) for TC10 and TC12 using different methods

PR 8,1 16,2 24,3

TC10 TC12t TC12h TC10 TC12t TC12h TC10 TC12t TC12h
LBPp? 83.31 69.86 62.94 92.29 86.25 83.61 96.38 89.81 88.75
LBPE#/VARp R 95.81 7873 77.27 97.97 87.06 85.90 97.48 86.81 87.27
LBP-HFp 83.26 76.20 78.45 93.93 88.15 86.46 97.97 91.50 87.66
LBPVE2.GMps 73.64 7247 76.57 93.90 90.25 94.28 97.76 95.39 95.57
MS-BPE%, 97.87 94.98 91.76 99.30 98.26 97.08 98.26 96.46 94.72
MR8 92.5(TC10), 90.9(TC12t), 91.1(TC12h)

DLBPr—3s+NGF 99.1(TC10), 93.2(TC12t), 90.4(TC12h)

the image and compare very 8-dimension vector in an image with all the textons
to build histograms.

5 Conclusions

The conventional LBP methods only focus on micro structures of images, although
they have already been powerful in texture analysis. In this paper, we executed the
rotation invariant uniform LBP on the image pyramid to extract three different
structures (isotropic micro structures, isotropic macro structures and anisotropic
macro structures). The experiment results on Outex database demonstrate the
advantages of our method. The performance of proposed method is limited by
the size of images, because small images are not enough to supply large macro
structures. Fortunately, the texture images are different from other images, due
to they are full of repeat patterns. So in the future, some texture synthesis methods
could be used to create large size texture image. And more stable multi-structure
local binary patterns could be achieved on the synthesized texture images.
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Abstract. Generalized Hough Transform-based methods have been suc-
cessfully applied to object detection. Such methods have the following
disadvantages: (i) manual labeling of training data ; (ii) the off-line con-
struction of codebook. To overcome these limitations, we propose an un-
supervised moving object detection algorithm with on-line Generalized
Hough Transform. Our contributions are two-fold: (i) an unsupervised
training data selection algorithm based on Multiple Instance Learning
(MIL); (ii) an on-line Extremely Randomized Trees construction algo-
rithm for on-line codebook adaptation. We evaluate the proposed al-
gorithm on three video datasets. The experimental results show that
the proposed algorithm achieves comparable performance to the super-
vised detection method with manual labeling. They also show that the
proposed algorithm outperforms the previously proposed unsupervised
learning algorithm.

1 Introduction

The detection of moving objects in videos, especially pedestrians or vehicles,
is an important task in many vision applications, such as video compression,
video surveillance, and content-based video retrieval. Numerous approaches have
been proposed in the literature for object detection. Currently the predominant
approach for object detection is the sliding window approach [I], [2], in which a
learned classifier examines the image features over locations and scales to predict
the presence of objects in subwindows. Though it has been demonstrated effective
in many cases, it can be easily affected by background clutters and occlusions.
To cope with the occlusion problem, part-based approaches [3], [4] which model
objects as collections of parts are proposed.

The Generalized Hough Transform based methods [5], [6] can be categorized
as part-based approaches. Each of them requires a class-specific codebook to
cast probabilistic votes for object hypotheses. The codebook can be generated
using generative clustering methods [B], and discriminative clustering methods
[6]. Each cluster centroid corresponds to one codebook instance. At runtime,
feature descriptors from the testing data are matched against the codebook
instances, and valid matches then cast probabilistic votes for object hypotheses.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITII, LNCS 6494, pp. 145 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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The additive nature of Generalized Hough Transform makes the detector robust
to partial occlusions. However, these methods have the following disadvantages:
(i) manual labeling of training data is required for the codebook construction;
(ii) the codebook is constructed in an off-line manner, which cannot adapt to
new data after the construction ends.

Several approaches have been proposed to tackle the problem of manual label-
ing of training data. The idea of co-training is proposed to incrementally generate
alarge amount of labeled data automatically from a small manually labeled set [7].
Given a small hand labeled set, a pair of classifiers are trained on two independent
“views” of the data [7]. Co-training then generates the additional training data
from the unlabeled data, by using each classifier’s prediction to enlarge the other
classifier’s training set [§]. Alternatively, Wu et al. uses a small labeled training set
to train an automatic labeler, which is then used to collect the training samples for
the on-line boosting in [9]. Both approaches require hand labeled sets for initializa-
tion. To overcome the limitation of hand labeling, the idea of automatic labeling
is proposed. Nair et al employs the motion based object detector as the labeler
in [10]. However, motion based object detector is not robust, and can be affected
by shadows, reflections and illumination changes. To improve such labeler, Roth et
al. uses the PCA-based reconstructive model [11], to verify the motion detection
results. As for the codebook construction for the Generalized Hough Transform,
tree-based codebooks have become popular recently. The Extremely Randomized
Trees [6], and the Random Forests [12] have been demonstrated to improve the
performance of the Generalized Hough Transform. Such trees are usually learned
offline, however Saffari et al. recently propose an on-line algorithm to enable the
on-line learning of Random Forests [13].

In this paper, we propose an unsupervised moving object detection algorithm,
with on-line Generalized Hough Transform. Our contributions are two-fold: (i)
an unsupervised on-line training data selection algorithm based on Multiple In-
stance Learning (MIL); (ii) an on-line Extremely Randomized Trees construction
algorithm for on-line codebook adaptation. The most related algorithm to our
automatic training data selection algorithm is the co-training algorithm [7], and
also the conservative learning algorithm [I1]. Unlike the co-training algorithm,
our algorithm does not require any hand labeling. In the conservative learning
algorithm, a reconstructive model is employed to verify the motion detection re-
sults. Only the sufficiently consistent motion detections would be used to build
the reconstructive model, and hence it might result in a biased training set. In
contrast, our algorithm employs an instance selection scheme to produce a train-
ing set with less selection bias. For our proposed on-line Extremely Randomized
Trees algorithm, the most related work is the on-line Random Forest algorithm
by Saffari et al. in [13]. Different from the on-line Random Forest, our on-line
Extremely Randomized Trees do not require the bootstrapping, and hence it is
more computationally efficient.

The rest of the paper is organized as follows: the proposed work is described in
Section 2] followed by the experimental results in SectionBl Our final conclusions
are presented in Section Ml
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2 Proposed Work

In this section, we present our unsupervised moving object detection algorithm
with on-line Generalized Hough Transform. We design our automatic labeler
based on Multiple Instance Learning for training sample selection. Given a set
of noisy detection results from the background subtraction, the automatic labeler
selects training samples automatically and unbiasedly. The on-line learning al-
gorithm then uses the selected samples for codebook adaptation.

2.1 Automatic On-line Instance Selection

We present our automatic labeler design in this section. An automatic labeler
is actually an object detector, which selects sub-windows that contain objects.
Generally speaking, there are two issues in the design of a labeler for object de-
tection. One issue is the labeler’s error, which can be categorized as the alignment
error and the labeling error. An alignment error occurs when the sub-window se-
lected by the labeler contains an object with inaccurate size of positions, whereas
a labeling error occurs when the selected sub-window contains no object. The
other issue is the labeler’s bias. The labeler should not introduce any bias into
the produced training data, otherwise it may mislead the detector. For instance,
if the labeler systematically fails to collect some certain type of training sample,
the detector would not be able to recognize the corresponding object. We will
show how our design can cope with these two issues.

We begin our design with background subtraction. Given a video, background
subtraction generates a set of foreground blobs, which comprise the training sam-
ples for selection. Since background subtraction is not robust against environ-
mental factors, alignment and labeling error might occur. To handle the errors,
we introduce the Multiple Instance Learning (MIL) to our labeler design. In MIL,
the training data comes in the form of “bags”, where all the instances in one bag
share a label. A positive bag means it contains at least one positive instance,
whereas a negative bag means all the instances are negative. The advantage of
MIL is that, it can handle both the ambiguity and noises in the instance labeling.
In our problem, each foreground blob corresponds to a positive bag. Given one
foreground blob, in order to locate the possible locations of individual persons,
a smoothed histogram of foreground heights over the z-axis is computed. We as-
sume that the tops of objects correspond to the peaks of the histogram. After the
peaks are located, we crop the corresponding instances using bounding boxes.
Figure [[al depicts the image frame, and Figure demonstrates the detected
foreground blob and its bag formulation. In Figure [[H the blue rectangle is the
foreground blob, while the red rectangles correspond to the instances inside the
bag. As shown in Figure [[D] the foreground blobs contains two pedestrians, but
there are more than two instances found in the corresponding bag due to the
noisy motion detection result.

To deal with the noisy detection, we propose to use the following scheme to
select instances from all the bags. Let B = {B;, By, ..., B} be the set of all
positive bags. The goal of the selection is to select the instance By, that has
high confidence Conf(Byp,), which is defined in the follows:
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Fig. 1. The formation of a positive bag. (a) The image frame. (b) The detected fore-
ground and its bag formulation. The blue rectangle is the foreground blob, while the
red rectangles correspond to the instances inside the corresponding bag. This figure is
best viewed in color mode.

Conf(Bgn) = [[ Pr(BenlBi), 1 <k<n, k#g, (1)
k

where Pr(Bg,|B;) is estimated based on the Noisy-OR model [14]:

Pr(Bgn|Bf) oc {1 = [][1 = Pr(Bgu|Bi)]}- (2)

J

We can design different estimations for Pr(th\B,jj) based on different data.
For the task of object detection, we intend to evaluate the similarity between
two object blob silhouettes, and Pr(th\B,jj) is estimated as Pr(th|B,jj) x
exp{—D(By, B,jj)}, where D(Bgn, B,j]) measures the distance between the sil-
houettes By, and B,jj. In this paper, we design the distance based on distance
transform. To make sure our method is as general as possible, only positive bags
are required for the computation of the evidence. In the situations when the neg-
ative bags are also available, we can use the Evidence Confidence metric proposed
in [15].

The aforementioned instance selection scheme is a batch process. To enable
the on-line selection, we propose an on-line algorithm for the above selection
algorithm. We choose to realize the on-line learning by selecting the instances
from every R frames, where R is a pre-defined value to determine the size of the
interval. The proposed on-line learning algorithm is presented in Algorithm [II

2.2 On-line Extremely Randomized Trees

Given a set of selected instances, we attach shape context descriptors to the sam-
pled points from the corresponding silhouettes. The obtained descriptors are used
to construct a codebook of shapes for object silhouettes. The codebooks for the
Generalized Hough Transform are usually generated using unsupervised k-means
clustering [5], [16]. We call them generative codebooks as there is no discrimina-
tion involved. Recently discriminative codebook generation methods are proposed
[12], [6]. The generated codebooks are considered as discriminative codebooks as
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Algorithm 1. Automatic On-line Instance Selection

INPUTS:
F; - The extracted foreground from frame ¢ to frame ¢ + R, where R is a
pre-defined value
K - The number of instances to select from all the instances
OUTPUTS:
A set of instances B;; for training the randomized trees

1: Form the positive bags B = {B;", By , ..., B} based on F,

2: Compute the confidence for all the instances B;;

3: Select the top K instances B;; with the highest confidence

they are trained in a supervised way. The supervision enables the codebook entries
to cast more reliable probabilistic votes. In [12], a Random Hough Forest is con-
structed using both positive and negative image patches, with an objective func-
tion that measures the class and offset uncertainty. On the other hand, a set of
Extremely Randomized Trees are constructed in [6], and the trees are grown using
an objective function that combines the discrimination and regression. The dis-
criminative codebooks are shown to outperform the generative codebook in the
experiments. As a result, we use the discriminative codebook in our paper.

We choose the Extremely Randomized Tress [I7] as our discriminative code-
book. The randomized trees algorithm [I7] constructs an ensemble of decision
or regression trees. And each tree is grown by splitting each node into two child
nodes, using the random split that achieves the best decision or regression perfor-
mance based on the whole training set. The randomized trees algorithm is firstly
proposed for classification, and Okada employs it as the codebook for the Hough
voting [6]. Each primitive image feature passes through each randomized tree
until it reaches one of the leaf node. The leaf node contains information about
the discrimination of the image feature(whether it belongs to an object or not),
and possible object locations are collected during the training. The response of
one image feature is an ensemble of the responses from all the trees. Using the
responses, each feature can cast probabilistic votes for object hypotheses. The
randomized tree construction algorithms in [I7], [6] are all based on the whole
training set. It is not appropriate to use them under our problem settings, as we
want to be able to update the trees in an on-line fashion. Inspired by the on-line
random forest algorithm in [I3], we propose an on-line learning algorithm for
constructing the randomized trees here. It is noted that the randomized trees
are different from random forests as there is no bootstrapping involved in the
randomized trees [17].

We build each randomized tree as a decision tree, which contains the decision
nodes and the leaf nodes. Unlike the leaf node, each decision node retains no
object location but only a split condition s = {f4,04}, where f; and 6, are
a randomly chosen attribute from the image feature vector, and its threshold
respectively. The split s is the best split chosen from a set of random splits
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S = {s1, $2, ..., SN } based on some quality measure. In our paper, the information
gain is chosen as the quality measure. Denote M as the set of image features
in the current node. Let M and Mg be the images features in the left child
node and right child node respectively, according to the split s. The information

gain of split s is IG,(M) = ' B(My) + VR E(Mg) — B(M), where E(M) =

- chd p; log(p;) is the entropy for C classes.

When in off-line mode, all the data is available, and therefore a robust estimate
can be made at each decision node. In the on-line mode, however, the data is
gathered over time, and hence, when to split depends on the following factors: i)
whether there is enough data for the robust estimate of statistics; ii) whether the
split is good enough in terms of the quality measure. Based on the these factors,
two hyper-parameters are introduced for the on-line learning of a random tree:
i) the minimum number of training data (i.e., shape context descriptors) v to
gather before making a split; ii) the minimum information gain § for a node to
split. And therefore, a node can be split into two child nodes only if |M]| > v
and Js € S, IGs(M) > 4. The values of v and § are set in a similarly way to
method mentioned in [13].

The on-line learning algorithm for the randomized trees construction is pre-
sented in Algorithm Pl The input to algorithm is either a positive or negative
training sample ( x, y ), which contains a feature descriptor x and its label
y € {1,0}. In this paper we use the shape context as the feature descriptor.
The positive feature descriptors describe the sampled points from the selected
instance B;; from Algorithm [Il whereas the negative descriptors describe the

Algorithm 2. On-line Extremely Randomized Trees

INPUTS:

(@, y ) - a training sample from a sampled keypoint

~ - The minimum number of training data to gather before making a split
6 - The minimum information gain for a node to split

T={t1,t2,...,tn} - A set of Extremely Randomized Trees

OUTPUTS:

T'={t},15,...,tn} - The updated Extremely Randomized Trees

1: for Each Extremely Randomized Tree t; do
2 l; < locateLeaf(x, t;)

3:  l; « appendData( I;, (z,y))

4: if |l;| >~ then

5: S « createSplts( ;)

6: if 3se€ S, IGs(l;) > ¢ then
7 createLeftChild( [;, s)
8 createRightChild( [;, s)
9 end if
0 end if
1: end for
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sample points from the background edges. Positive samples also retain the off-
sets to the centroids of an object, so that the constructed randomized tree can
be used for probabilistic voting, which is detailed in Section When updat-
ing a tree, a training sample firstly passes each randomized tree until it reaches
the leaf node. After appending the new feature to the leaf node, we calculate
whether it is necessary to split the current leaf. In the case of a split, the data
retained in the old leaf node will be propagated to its child nodes, and the old
leaf node becomes a decision node.

2.3 Object Detection

We begin the moving object detection with identifying moving edges between
adjacent frames. We apply Canny edge detection [18] to obtain the edge map
for each frame. Moving edges are then extracted by comparing edges between
adjacent frames. We then sample keypoints from the moving edges, and attach
shape context descriptor to each sampled keypoints. Let F = {f1, fa,...fn} be
the shape context descriptors obtained from the current frame, F' will be then
fed into the randomized trees T" = {t1, 12, ..., t,} to cast probabilistic votes for
an object o and its location x. The probabilistic vote p(o, x| f;, T) from feature
fi can be decomposed as p(o|f;, T)p(z|o, fi,T). The first term p(o|f;,T) is a
probabilistic output from the ensemble of trees. Denote My, ¢, as the set of
training features belong to the leaf node to which f; reaches in tree t;. Let
the number of training features in My, ;. be Ny, ;. = |Mjy, +,|, and that of the
positive features be N ity =|M? . - The purity of the leaf node can be defined

N?
— fistj
as ’Yf'ut] - Nf,

higher than a predeﬁned threshold. Assume the number of such trees to be

. We only consider the trees with leaf nodes whose purity is

N?
N, and p(o|fi,T) is defined as p(o|f;, T) = Ni, where N is the number of
randomized trees.

Algorithm 3. Moving Object Detection with On-line Generalized Hough Transform

AUTOMATIC LABELING AND ON-LINE LEARNING

for every R frames do
Perform background subtraction, and group foreground pixels into blobs
Use the Algorithm [Tl to select instances from the foreground blobs
Attach descriptors to sample edge points from instances and background
Use the descriptors to update the randomized trees based on Algorithm
end for

ON-LINE MOVING OBJECT DETECTION

for Each frame do

Identify moving edges

Attach descriptors to the sample edge points from the moving edges

Use the randomized trees to cast probabilistic votes based on the descriptors
end for
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The second term p(z|o, f;,T) describes the distribution of possible object
centroid location in regard to f; supposing f; being part of the object. The
distribution is estimated using a non-parametric density estimation using all the
trees:

(2lo, fur T Zm, (" ‘”E“)}, 3)

keMp bx})

where K(.) is a window function, b(.) is its bandwidth, and 2% (f;) corresponds
to the object centroid location relative to the feature f; based on the positive
training feature 7.

The complete unsupervised moving object detection algorithm is summarized
in Algorithm [Bl The proposed algorithm updates the randomized trees using the
collected training samples from every R frames, and then the updated trees are
used to cast probabilistic votes for object hypotheses based on the moving edge
detection results.

3 Experiments

Experimental Setup. We evaluate the performance of the proposed framework
on moving object detection using three video datasets. The first two of them,
including the PETS2006 benchmark sefl] and the i-LIDS datause‘cE7 are indoor
video surveillance on pedestrian activities. The third dataset contains outdoor
traffic surveillance video captured in a highway during daytime.

Evaluation Metric. We follow the evaluation criteria employed in [5] that
covers three categories, and they are relative distance, cover, and overlap. The
relative distance measures the distance between the center of a bounding box
and that of the ground truth. The cover and overlap measure how much area of
the ground truth bounding box is covered by the detection hypothesis, and vice
versa. A hypothesis is classified as a true positive if the relative distance < 0.5
and both cover and overlap are above 50%.

3.1 The PETS2006 Dataset

We evaluate the two components of the proposed framework using the PETS2006
dataset. We extract four sequences from the dataset, and use one sequence for
training, and the rest three for testing. The number of moving objects in the
testing sequences are 842, 312 and 413 respectively.

The Automatic On-line Instance Selection. To evaluate our automatic
labeler; we collect two training sets from the training sequence using manual se-
lection and the proposed labeler respectively. We then use them to train two sets
of batch Extremely Randomized Trees [6] respectively. The obtained random-
ized trees are tested on the testing sequences based on the detection algorithm

! http://www.cvg.rdg.ac.uk/PETS2006/data.html
2 http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007.html
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detailed on Section The precision recall curves of both sets of trees are de-
picted in Figure 2al As shown in the figure, the randomized trees trained on the
automatic labeled set achieve comparable performance with the trees trained on
the hand labeled set. It is noted that, the former even outperforms the latter on
the third testing sequence. This might be due to the selection bias of the manual
labeling. Sample detection results can be found in Figure Bl

The On-line Extremely Randomized Trees. We compare the proposed on-
line learning algorithm for the randomized trees with the corresponding batch
learning algorithm [6]. Given the same training set, we construct two sets of
randomized trees using the on-line and batch learning algorithm respectively.
These two sets of randomized trees are then tested on the testing sequences.
Figure Rhl depicts the precision recall curves of both sets of randomized trees on
the testing sequences. It can be seen from the curves that, the on-line learning
algorithm reaches comparable or even better precision than the batch learning
algorithm at the same recall value. These indicate that the proposed on-line
learning algorithm for the randomized trees adapts to the incoming data better
than the batch learning algorithm.
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Fig. 2. The precision recall curves on the PET'S2006 dataset: (a) the curves correspond

to manual and automatic labeling, (b) the curves correspond to batch and on-line
learning

3.2 The i-LIDS Dataset

As our second experiment, we compare the proposed algorithm with the un-
supervised on-line conservative learning algorithm in [IT]. The labelers of both
algorithms are based on the simple background subtraction results from the
training video. In [I1], a reconstructive model based on appearance and shape
is employed to verify the foreground blobs. In this experiment, only the shape
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(a) Sequence 1 (b) Sequence 2 (c) Sequence 3

Fig. 3. Sample detection results of randomized trees based on manual and automatic
labeling. For each pair of results, the manual labeling-based detection is shown on the
left, and the automatic labeling-based detection is shown on the right.

information is used for a fair comparison of both frameworks. The conservative
labeler only considers the foreground blobs whose aspect ratio are within the
predefined limits. For instance, Figure [Il depicts one frame in the training set,
and also the corresponding foreground blob. The aspect ratio of the blob exceeds
the predefined limit, and hence is not considered by the conservative learning.
The conservative learning algorithm might fail to capture the multi-modal na-
ture of the data due to its conservativeness. On the other hand, our proposed
labeler does not have such requirement, and also accepts this blob for instance
selection. As a result, the proposed algorithm would have less selection bias. For
the object detection, we use the proposed on-line randomized trees for object
detector for both algorithms.

We extract three sequences from the i-LIDS dataset, and each of them con-
tains 250, 202, and 262 objects respectively. We compare both algorithms on
these sequences, and their performances are shown in the precision recall Curves
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Fig.4. The performance of the proposed algorithm and the conservative learning
algorithm on the i-LIDS dataset

S b 3
(a) Sequence 1 (b) Sequence 2 (c) Sequence 3

Fig. 5. Sample detection results on the i-LIDS dataset. For each pair of results, the
detection obtained by the proposed algorithm is shown in the left, and that obtained
by the conservative learning is shown on the right.
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in Figure @ It can been observed from the figure that, the proposed algorithm
outperforms the conservative learning framework. Our framework reaches higher
precision in all testing sequences. This indicates that the proposed framework
captures the multi-modal nature of pedestrian silhouettes better than the con-
servative framework. Sample detection results can be found in Figure [

3.3 The Traffic Dataset

As our last experiment, we compare the proposed algorithm with the unsu-
pervised on-line conservative learning algorithm in [I1] for vehicle detection.
Similarly, only shape information is used here, and we also use the on-line ran-
domized trees for object detection. The performance of both learning algorithms
are shown in Figure [6l It is seen in the figure that, the proposed algorithm
slightly outperforms the conservative learning algorithm. This result indicates
that the silhouettes of the vehicles might follow a unimodal distribution, since
most vehicles in the videos are vans and trucks. Sample detection results can be
found in Figure [

.
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Fig. 6. The performance of the proposed algorithm and the conservative learning
algorithm on the traffic set

(a) Sequence 1 (b) Sequence 2 (¢) Sequence 3

Fig. 7. Sample detection results on the traffic dataset. For each pair of results, the
detection made by the proposed algorithm is shown in the left, and that made by the
conservative learning algorithm is shown on the right.

4 Conclusions

We have presented a novel algorithm for on-line unsupervised learning of object
detection system. The basic idea is to start with a simple motion detection
system, and then select the optimal foreground blobs based on the Multiple
Instance Learning. Subsequently the selected blobs are used to construct a set
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of Extremely Randomized Trees in an on-line manner. We have evaluated the
algorithm on three video datasets. The experimental results demonstrate that
our algorithm outperforms the on-line conservative learning algorithm.

Acknowledgements. National ICT Australia (NICTA) is funded by the Aus-
tralian Government as represented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian Research Council through
the ICT Center of Excellence program. Dr. Wei Wang is supported by ARC
Discovery Grant DP0987273.

References

1. Dalai, N., Triggs, B., Rhone-Alps, I., Montbonnot, F.: Histograms of oriented gra-
dients for human detection. In: CVPR, vol. 1 (2005)

2. Munder, S., Gavrila, D.: An experimental study on pedestrian classification.
TPAMI (2006)

3. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-
detection-by-tracking. In: CVPR (2008)

4. Fergus, R., Perona, P., Zisserman, A.: Weakly supervised scale-invariant learning
of models for visual recognition. IJCV (2007)

5. Leibe, B., Leonardis, A., Schiele, B.: Robust Object Detection with Interleaved
Categorization and Segmentation. IJCV (2008)

6. Okada, R.: Discriminative Generalized Hough Transform for Object Detection. In:
ICCV (2009)

7. Balcan, M., Blum, A., Yang, K.: Co-training and expansion: Towards bridging
theory and practice. In: NIPS (2005)

8. Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects
using progressively improving detectors. In: CVPR (2005)

9. Wu, B., Nevatia, R.: Improving part based object detection by unsupervised, online
boosting. In: CVPR (2007)

10. Nair, V., Clark, J.: An unsupervised, online learning framework for moving object
detection. In: CVPR (2004)

11. Roth, P.; Grabner, H., Skocaj, D., Bischof, H., Leonardis, A.: On-line conservative
learning for person detection. In: VS-PETS (2005)

12. Gall, J., Lempitsky, V.: Class-Specific Hough Forests for Object Detection. In:
CVPR (2009)

13. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line Random
Forests. In: The 3rd On-line learning for Computer Vision Workshop (2009)

14. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS
(1998)

15. Li, W., Yeung, D.: Localized content-based image retrieval through evidence region
identification. In: CVPR (2009)

16. Maji, S., Malik, J.: Object detection using a max-margin hough transform. In:
ICCV (2009)

17. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning
(2006)

18. Canny, J.: A computational approach to edge detection. TPAMI (1986)



Interactive Event Search
through Transfer Learning

Antony Lam®, Amit K. Roy-Chowdhury?, and Christian R. Shelton!

! Dept. of Computer Science & Engineering, University of California, Riverside
{antonylam,cshelton}@cs.ucr.edu
2 Dept. of Electrical Engineering, University of California, Riverside
amitrc@ee.ucr.edu

Abstract. Activity videos are widespread on the Internet but current
video search is limited to text tags due to limitations in recognition
systems. One of the main reasons for this limitation is the wide variety
of activities users could query. Thus codifying knowledge for all queries
becomes problematic. Relevance Feedback (RF) is a retrieval framework
that addresses this issue via interactive feedback with the user during the
search session. An added benefit is that RF can also learn the subjective
component of a user’s search preferences. However for good retrieval
performance, RF may require a large amount of user feedback for activity
search. We address this issue by introducing Transfer Learning (TL)
into RF. With TL, we can use auxiliary data from known classification
problems different from the user’s target query to decrease the needed
amount of user feedback. We address key issues in integrating RF and
TL and demonstrate improved performance on the challenging YouTube
Action Dataset].

1 Introduction

The growth of video sharing websites has resulted in a wealth of Internet videos
(mostly of activities) available to users. Automated search of these videos present
interesting challenges as the number of activities is arbitrarily large. In addition
to the high variability of activities themselves, Internet videos typically exhibit
greater variability in quality, camera movement, and lighting when compared
with those of TV programs such as news broadcasts. Thus retrieval of such
videos is still largely limited to the use of associated text tags.

However, search based on only text is limiting so direct analysis of video
content is still desirable. The problem is that users could query for a vast array
of activities and it would be very difficult to train high-level semantics for every
possible query. In addition, if a user query were subjective (e.g. what the user
thinks are “nice basketball shots”), there would be no way to train a system
a priori for search. In this paper, we tackle these challenges in activity video
retrieval through a combination of Relevance Feedback and Transfer Learning.

! This work was partially supported by NSF IIS 0712253 and the DARPA VIRAT
program.
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Volleyball Basketball

Fig. 1. Example of similarity between two different classes. If training data for “vol-
leyball” were abundant while training data for “basketball” were scarce, the knowledge
on classifying volleyball could be used to supplement the basketball training process.

To deal with difficulties in training systems for the vast array of queries users
could make, Relevance Feedback (RF) [15] can be used and has been effectively
applied to image retrieval [24]. The idea is to first search a database with respect
to an initial query and return retrieval results to the user. If the user is dissat-
isfied with the results, user feedback on the relevance of retrieved items may
be provided. The system could then use the feedback to better learn what the
user has in mind and return refined results. If the user is still dissatisfied, then
another iteration of user feedback may be repeated and retrieval results refined
until the user is satisfied. Since user feedback is provided in RF, it is possible
build custom classifiers in an online fashion for the user. Thus a wide range of
queries can be made without the need to train them a priori.

However, a drawback of RF is when used to search videos of complex activities,
a large amount of user feedback may be needed for good performance. (In other
words, the few rounds of feedback a user would tolerate would provide too scarce
a training set.) Transfer Learning (TL) [14] is a Machine Learning formulation
where knowledge learned from one or more classification tasks is transfered over
to a target task where the target task training data is scarce. If the abundant
training data of source task(s) are related to the target task, it can be used to
bias the classifier for the target task so that generalization performance can be
improved.

As an example, consider the related activities “volleyball” and “basketball”
(see Fig. [[). Say we are interested in classifying whether videos are of “basket-
ball” but the amount of training data available is very limited. If the amount
of training data for the task of classifying “volleyball” or “not volleyball” were
abundant, the knowledge from the “volleyball” classification task could be used
to supplement the training of the “basketball” task in order to improve general-
ized accuracy on classifying “basketball” videos.
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Source Task Datasets: {D.1,0z,...,Dee}
D
Ba 4 Bc
¢ h 4
Dr Ds.l'
.| Add to set D; Select Best | Transfer
P Source Task g Learning
———— 3 B,
. Feedback fix) .
J Ranking v g
Solicit User U;":"“:f'*‘: Rank
it Wi ankmng:
Initial Relevant Feedback Database
Videos f #
User Video Database

Fig. 2. Flowchart of system. Set D, is initially empty before execution. After the first
execution of block Ba, set D: should consist only of the initial relevant videos.

Provided system designers built a set of source task datasets for a variety of
activities (this set of activities would only account for a small fraction of possible
queries users could make), we could use the source data within a TL framework
and combine it with RF to reduce the amount of needed user feedback. One
of the key issues in combining RF and TL is determining which source task(s)
are related to the target query, which is one of the main contributions of this
work.

1.1 Overview and Contributions of Proposed Approach

Overview. We now provide and overview of our proposed approach. In our for-
mulation, the user first submits a few example videos representing their target
query that can be used as initial queries to start the RF process. This is a reason-
able assumption as it should be possible for users to obtain some sample videos
at least similar to what they have in mind. For example, if a user wanted to find
videos of cross country cycling, a few example videos of people riding bicycles in
general should suffice. Such initial seed results might be obtained through a text
query which often generates only a few relevant examples, especially when videos
are only sparsely tagged. For example, a text search on Google.com for “rally
racing video game” videos results in some relevant footage being retrieved but
the search results are also swamped with footage from “X Games” rally races
(real-life sporting events). If the user cannot refine his text query to improve
search results, he can select the few relevant examples and use them to start a
RF loop to refine his search results.

The basic flow of our proposed system is as follows: (The following steps are
annotated with corresponding blocks in Fig. )
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Let D; be an empty set.

User submits a few initial query examples of relevant videos.

The initial query examples are added to set D;. (Block B,.)

The source task datasets and D; are then processed in our algorithm (Sec.

B3) for finding the best source task to transfer from. (Block By.)

5. The best source task’s training dataset and training data in D; are then used
in TL to obtain a classifier f for ranking the video database. (Block Be.)

6. The classifier f is used to rank the video database. (Block Bq.)

7. The top N ranked videos from the database are then shown to the user.

8. If the user is satisfied with the results, the process terminates. Otherwise the
system solicits user feedback (details to follow later). (Block Be.)

9. The user feedback is added to set D; (block B,) and the process continues

from step 4.

Ll

The feedback strategy in step 8 is a simple but effective approach to RF based on
Active Learning [I§]. Rather than solicit feedback on retrieved items, SVMactive
[20] showed effective performance in image retrieval when soliciting feedback on
the items considered most ambiguously relevant by the system.

Contribution. Despite the effectiveness of SVMactive in image retrieval, the
complexity of video activities limits the effectiveness of this framework. The main
contribution of our work is in extending SVMctive to use TL for incorporating
prior knowledge thus decreasing the required amount of user feedback. One of
the key issues in combining RF with TL is in deciding what source task to
transfer to the target task and we offer a solution in Sec. B3l As we explain
in Sec. B, our work is also one of the first to explore combining RF and TL.
As we show in experiments on the YouTube Action Dataset [10], our framework
provides benefits in improved ranking performance over standard RF frameworks
for retrieval of complex activities.

2 Relation to Existing Work

Existing work in activity recognition demonstrates a trend of moving toward
more complex activities. [8,[0,[10,[I7] The main approaches of such work is to
use new features, feature pruning techniques, and classification methods for im-
proved complex activity recognition. However when applied to video retrieval,
the subjectivity of human users is not modeled in these approaches. As a result,
we propose a RF method that addresses this issue.

We note the main goal of this work is not to improve over previous work in
terms of raw accuracy in activity recognition. Our focus is on the mechanism for
quickly learning a user’s subjective notions of activity class membership through
user interaction. In fact, current work on designing features and algorithms for
activity recognition is complementary to our work and could be integrated into
our framework for overall improved retrieval. We now provide a review of related
work in the two core tasks of our RF and TL framework for activity retrieval.
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2.1 Relevance Feedback for Video Retrieval

In early work [I1], RF for video was implemented by allowing the user to set
weights in a scoring scheme utilizing various video features. In [4], this idea was
extended to adaptively tune weights in a color and motion scoring scheme based
on RF on top ranked videos. Other work [7] utilized more features such as speech
recognition text, color, and motion in a weighted scoring scheme where weights
were adaptively tuned based on RF of retrieved videos. In addition, semantic
concept (e.g. “car”) weightings were learned. A departure from the use weighted
scores can be found in [I3] where different scoring algorithms were adaptively
chosen at each iteration of user feedback. However, the adaptive selection of
scoring algorithms had to be manually trained by expert human users.

These systems showed good performance in their results. However, some can
be complex, employing many different components. In applying them on larger
scale problems, tuning the many parameters involved could be a daunting task.

Furthermore, most of the approaches described in this section do not make
use of prior knowledge from the world to decrease the required amount of user
feedback. While [7] used prior knowledge by explicitly building in high-level
concepts like “cars”, this approach requires learning a large number of classes
that still would not cover the full range of queries users could make. We therefore
address this issue by integrating TL into RF so that auxiliary training data
of different classification problems from the target query can still be used to
introduce prior knowledge into the system’s learning process.

2.2 Basics of Transfer Learning

Before discussing related work in TL, we introduce a few TL concepts to provide
context. In TL, there can be different relationships between the source and target
tasks. Let task S be the source task and D, be the source training set and task T’
be the target task and Dy be the target task’s training set (where |Ds| >> | Dy|).
Then TL can be subclassed into the following scenarios of interest:

1. S and T classify for the same class (e.g. running) but the distributions over
the data for S and T are not the same. This is called the Cross-Domain
problem in some work. As an example, if the training data D, had been
collected with camera A and D; had been collected with camera B, simply
combining Dy with D; to improve classification accuracy on videos taken
with camera B may not work well. (The cameras may have been positioned
differently or have other differing characteristics.) The goal is to adapt the
knowledge from D, to augment the knowledge from D;.

2. S and T classify for different but related classes. For example, S could be
“volleyball” and T could be “basketball” (see Fig.[Il). Since task S is related
to task T, it should be possible to use the knowledge learned from D; to
improve generalization on D;. This is the problem we focus on in this work.

There are more relationships between source and target tasks in TL described
in [T4] but the above mentioned ones are the most pertinent to our discussion.
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2.3 Transfer Learning with Multiple Source Tasks

TL has been shown to be effective in transferring knowledge when source and
target tasks are related. However, when there are multiple source tasks, deciding
which to transfer from is still a difficult problem [I4]. If a source task is too
unrelated to the target task, transferring from such a source may result in neg-
ative transfer (transferring knowledge hurts target classification performance).
The following work addresses TL in the presence of multiple source tasks.

In [23], the authors offer two methods for learning from multiple source
datasets where some source tasks can be unrelated to the target. One method is
effective but inefficient. The other finds a weighted linear combination of source
classifiers and is efficient but only shows benefits when target data is very scarce.

In [21122], they propose the Adaptive-SVM (A-SVM) for regularizing a target
Support Vector Machine (SVM) [1] hyperplane to be similar to a related source
hyperplane while still fitting the scarce target training data. The problem they
focus on is the Cross-Domain problem (see Sec.2.2). For example, the detection
of concepts such as “weather” between news programs on different TV stations.
The editing style and camera work of different TV stations causes the data for the
same classes to be distributed differently. In addition to transferring knowledge
from related tasks, they also explore determining which source tasks would result
in positive transfer. To achieve this, they determine which source classifiers have
the best estimated performance on the target class. Since we use the SVM active
approach [20], the TL described in this work is most related to our focus. Thus
we extend the ideas from [21,22] beyond the Cross-Domain case.

Recent work related to A-SVMs [3,[6], present new mechanisms for Cross-
Domain transfer of video actions and events. However, they do not present meth-
ods for source task selection. Furthermore, these mechanisms were designed for
Cross-Domain transfer which may not be directly applicable to our problem of
general TL. As the focus of the TL component in our work is in source task
selection, we leave investigations into the possibility of adapting the transfer
mechanisms in [3,[6] to general TL for future work. Finally, the related work
mentioned here do not interact with the user which as mentioned before is cru-
cial for capturing user subjective views of relevance.

2.4 Transfer Learning for Relevance Feedback Search

To the best of our knowledge there is no work on the general use of TL in
RF. The RF surveys [B,[16,24] do not even mention TL being applied to RF.
Recent related work in the literature is mainly concerned with the Cross-Domain
transfer problem for RF.

In [I9], a study on how social tagged images could aid video search is pre-
sented. Their work is mainly concerned with how well manual relabeling of social
tagged images without adaptation would work in a Cross-Domain scenario for
video retrieval. They show results using RF and the benefits of simply cleaning
up noisy labels without using adaptation. This framework does not apply in our
case since we are working in a more general TL scenario.
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In [I2], two Cross-Domain learning methods are presented for RF. The first
method uses a linear combination of the source and target classifier outputs with
equal weighting. The second involves solving a regularized regression problem.
Both methods performed similarly but combining the two via a heuristic for
which method to use for each iteration of RF gave better overall performance.

While there is a little work on combining Cross-Domain transfer and RF in
the literature, Cross-Domain transfer is only a special case of TL. The type of
TL we explore involves transfer from different but related classification tasks and
we offer a means of automatically determining task relatedness. Thus we present
a complete system for RF search based on general TL. As stated earlier, this
will also be one of the first explorations in combining RF and TL.

3 Relevance Feedback Using Transfer Learning for
Activity Search

3.1 Scoring Videos and Relevance Feedback

In this work, we assume that videos can be represented as fixed length vectors of
extracted feature histograms such as STIP [9]. These vectors could then be used
in SVM training of classification tasks. Once trained, the relevance score of a
video is interpreted as its distance to the SVM decision surface where the higher
the score, the more relevant a video. For example, if we used a linear SVM for
scoring, we would have score(x;) = w-x; + b where w is the normal to the SVM
hyperplane, x; is a video from the database, and b is the bias term.

Following the SVMactive framework [20], our system solicits feedback on the
N videos the system finds most ambiguously relevant (those nearest the SVM
hyperplane) and the user labels these videos as either relevant or irrelevant.
Once relevance labels have been solicited from the user, the system can use the
additional labels to retrain a more accurate classifier. This classifier could then
be used to assign a new score to each video in the database and rerank them to
better fit the user’s target query. Our work extends SVM 4 ctive by incorporating
TL. We now describe the components of our TL system.

3.2 Transferring Knowledge from a Source Task

Let Ds and D; be the training data for source task S and target task T respec-
tively. (Where |Dg| >> |D;|.) Then ideally if the source and target tasks were
the same, we could just train a more powerful classifier for the target task by
augmenting D; with D;. In practice, the source and target tasks are unlikely to
be the same but they could still be related. Then we could still augment D; with
Ds but with less weight given to the data in Dy.

We accomplish this by adjusting the C' parameter in the SVM formulation.
Recall that training an SVM involves solving the following optimization problem:

1 n
min{, [wl* + €'Y &) M

i=1
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stoyi(xi-wH+b) —1+&>0,6>0

where x; is the i*" datapoint and y;, & are the label and slack variable associated

with x;. w is the normal to the hyperplane. C' is the parameter that trades off
between training accuracy (high C) and margin size (low C).

Let Dgug be Dy augmented with D, and let the data from D, be indexed
from 1 to n in Dgyg while the data from D; be indexed from n + 1 to n +m in
Dgyg. Then to weight the source data and target data in the SVM training of
Dy we solve the following:

. 1 n n+m
min{, [wl* +C ) &+ C } o &} (2)
’ i=1 i=n+1

st yi(xi - w+b) =14+ >0, >0

where all the variables are as described in Eq.[[land Cs and C; are the different
parameters trading off the “hardness” versus “softness” of fitting the associated
datapoint. (Note that we set Cy < Ct.)

We note that there was little difference between using all the source data to
bias the target SVM and using just the support vectors from the source SVM.
Since using only the support vectors results in faster training speeds, we train
only on the source task support vectors in our implementation.

The A-SVM [21122] could have been used in place of this section’s proposed
method of transfer (which they call the “aggregate approach”). However the A-
SVM does not offer benefits in improved accuracy over the aggregate approach
and can even perform worse in some tests. The main advantage of using A-SVM
is shortened training time. As the focus of this paper is on the feasibility of
combining RF and TL for improved accuracy and the aggregate approach is
more standard, we chose to use the aggregate approach.

3.3 Determining Which Source Task to Transfer From

Sec. assumed we knew which source classifier to transfer from. However,
transferring from the wrong classifier can hurt performance on the target task.

In [21], a number of strategies for choosing which source classifier to transfer
from were presented. One method was to use score aggregation from multiple
source classifiers. The basic idea was to use the “average” of multiple source
classifiers with the hope that this would result in a more accurate classifier for
assigning pseudo-labels to the unlabeled data. These pseudo-labels would then
be used to evaluate how much individual source classifiers help improve ranking
performance on the unlabeled examples. This approach does not work in our
case. Since the authors were transferring knowledge in a Cross-Domain setting,
all the source classifiers were assumed to classify for the same class. In our case,
the source classifiers can be very unrelated to each other and thus combining an
“average” of the source classifiers results in very poor performance.

Another proposed method was to assign scores to all unlabeled items using a
potential source classifier (one trained on source data) and use the Expectation
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Maximization (EM) algorithm to fit two Gaussian components to the scores. If
the scores separate the data well then the means of the found Gaussian compo-
nents should have greater distance between them. While a good idea, this is still
not directly applicable to our problem because the target data are never used in
this process; thus the same source classifier would always be selected regardless
of the user feedback. However, if we first transfer the source classifier to the tar-
get classifier and then use the resulting classifier to score the unlabeled data, EM
can be used to determine how well the transferred classification separates the
data. We use this new procedure for determining which source classifier would
help the target classifier produce the best separation of items in the database.

Formally, let Dy and D; be the source and target training data and let
TL(Ds, D;) be a function that produces a classifier where D, was used to trans-
fer knowledge to the target task (as described in Eq.[2]). Then the following steps
are taken to evaluate the quality of using D, for the transfer:

1. Produce SVM T = TL(Ds, Dy).

2. Use SVM Ty to compute scores (Sec. B1l) Sc on the unlabeled database.

3. Use EM to fit Gaussian components N (i1, 0%) and N (uz,03) to scores Sc.
4. Determine the distance d,, = (1 — pa)?.

The distance d,, can be used to indicate how well transferring the given source
task to the target task would separate the unlabeled data (larger values are
better). This provides an indication of whether the source task helps improve
target task classification. The same procedure can be used to score the transfer
for each of the available source tasks and the best source task could be chosen
as the one to transfer from. We call this the Score Clustering (SC) method.

We note that projecting all source training data onto the subspace of the
unlabeled database was found to be a helpful preprocessing step for determining
what to transfer. Thus we first performed Principal Components Analysis on
the unlabeled videos to obtain a set of basis vectors V. We then projected all
source task videos and unlabeled videos onto V. So in our implementation, the
projected videos were used instead of the original STIP histograms in all learning
components of our system.

3.4 Integrating Relevance Feedback with Transfer Learning

We now formally describe the process of selecting a source task and transferring
knowledge to the target task (user query) in the RF framework. Let Spiasks =
{Ds1, Dsa, ..., Dsi } be the set of source task training sets and D; be the target
task’s training set. The TL portion of our framework operates as follows:

1. Given training data D, from user feedback, determine the best source task
training data Dy; from set Spiasks to transfer from using SC (Sec. B3).
2. Use Dy; to bias the learning of D; using Eq. Bl and produce an SVM T;.

SVM Tj; is then used to rank the database of videos and if needed, feedback will
be solicited on videos nearest the hyperplane of Ty;. (Note that on each iteration
of feedback, the choice of which task to transfer from is revisited.)
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4 Experiments

Feature Representation and SVM Training. We first converted all videos
into fixed length vectors representing histograms of STIP features [9]. The first
step to getting these histograms was to build a codebook of STIP features. We
did so by taking 100,000 random STIP features from videos and using K-means
to identify 1,000 centers. The set of centers were then treated as the codebook.
Afterward, for each video in our experiments, we extracted its STIP features,
quantized them according to the codebook, and created a 1,000 dimensional vec-
tor with counts how many occurrences of each type of quantized STIP feature
was present in the video. For SVM training, we used the SVM and Kernel Meth-
ods Matlab Toolbox [2] and selected the linear kernel as it provided sufficient
accuracy for our study.

Dataset. We used the YouTube Action Dataset [10] in our experiments. This
dataset consists of about 1,600 videos collected from YouTube.com with 11 cate-
gories of actions ranging from “basketball shooting” to “dog walking.” Its videos
are very challenging as they were taken outside of controlled settings and feature
camera shake, differences in lighting, video quality, and camera position.

We note that in [10], their goal was to obtain high classification accuracies of
video activities through new feature extraction and pruning techniques. Here,
we are not attempting to obtain the best performance in terms of classification
accuracies. Instead we are aiming to obtain the best improvement in performance
through the use of TL. More sophisticated feature extraction and classification
algorithms could be used in our framework but we chose to use standard features
and learning algorithms so as to establish a control in our experiments.

Experimental Setup. We chose all videos in the classes basketball, biking,
diving, golf swing, and horse riding to be in our unlabeled database and all re-
maining videos to be source data. For TL, we set Cs = 1074 and C; = oo in Eq.
Bl There were a total of 778 videos in our unlabeled database with on average
150 videos per class. The source data was used to define a set of 1-versus-all
classification problems (for example volleyball versus not volleyball). The target
queries were for distinguishing one of the five classes listed above from the total
unlabeled database. Feedback was seeded with five randomly selected positive
and five randomly selected negative examples. Each query session involved three
rounds of simulated user feedback where 10 examples nearest the SVM hyper-
plane would be labeled. By simulated, we mean that ground truth labels were
used to judge the relevance of videos. In future work, we plan to compare system
performance with simulated and real user feedback. Note that iteration 1 in the
results only uses the initial examples from the user. Iteration 2 is when feedback
is first used. Thus by iteration 4, the user would only have given feedback on
30/778 =~ 4% of the database.

We also ran experiments on a variant of our system where no TL was used.
That is, we replaced blocks By, and B, in Fig. ] with a single block that only
takes in the target training data D; and trains an SVM for it. In addition to
testing against the no TL case, we also tested against a straightforward heuristic
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Fig. 3. Plots of percent improvement in AP of TL over not using TL for two methods
of choosing source task: Score Clustering (left) and Score Accuracy (right). The distri-
bution of improvements over all tasks and all initial video inputs are shown. Quartiles
are plotted since percent improvements are highly varied but skewed toward positive
values. The 50th percentile indicates the median percent improvement for a given iter-
ation. The left graph’s 75th percentile mark in iteration 1 indicates that 25% of the test
queries had percent improvements over 100%. Note that iteration 1 only uses initial
seeded examples from the user. Iteration 2 is where user feedback is first incorporated.

for source task selection. (To compare against our SC method.) If a source task
S and target task T are related, we would expect TL from S to T' to improve
performance. Thus we did a set of experiments where By, from Fig.2lwas replaced
with the following procedure:

1. Given target task training data Dy, train an SVM T;.

2. Determine the classification error of each source task training set D; with
respect to SVM T;.

3. Choose training set Dy; with the lowest error as the source to transfer.

The intuition is if tasks S and T are related, using a classifier trained on one
task’s training data to classify the other should result in less degradation than
if the tasks were not related. We call this the Score Accuracy (SA) method.

Metrics Used. As different combinations of initial examples can affect perfor-
mance, we tested querying for each category 100 times. (With the same initial
queries used for both TL and non-TL tests.) We computed Average Precision
(AP) to assess ranking performances (on only the currently unlabeled videos)
for each iteration of feedback as:
AveragePrecision = ! ZN:(P(T) x rel(r)) (3)
g - num =
where N = 50 in our experiments, P(r) is the precision at rank r, and rel(r) is
the indicator function for whether the 7" item in the ranking is relevant. We set
num = 50 so AP values range from 0.0 to 1.0 with 1.0 being an ideal ranking.
A natural way to measure overall improvement from TL for all target queries
would be to determine the average percent improvement in AP between corre-
sponding TL versus no TL tests. However we found that although a majority of
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Table 1. MAP for Different Queries (row) over Feedback Iterations (col.) The source
tasks were soccer juggling, swing, tennis swing, trampoline jumping, volleyball spiking,
and dog walking

Transfer Learning

Feedback Iteration 1 2 3 4
Basketball 0.26 & 0.12 0.31 £+ 0.14 0.34 + 0.13 0.35 £ 0.12
Biking 0.55 + 0.15 0.63 + 0.14 0.70 £+ 0.13 0.74 £ 0.13
Diving 0.21 4+ 0.16 0.25 £+ 0.15 0.29 + 0.15 0.31 £ 0.15

Golf Swing 0.21 +£0.12 0.26 4+ 0.15 0.29 £ 0.17 0.26 £ 0.18
Horse Riding  0.19 + 0.07 0.30 + 0.11 0.40 + 0.13 0.46 &+ 0.13

No Transfer Learning

Feedback Iteration 1 2 3 4
Basketball 0.17 + 0.11 0.25 & 0.13 0.28 £+ 0.13 0.29 £ 0.13
Biking 0.49 4+ 0.11 0.59 £+ 0.12 0.66 + 0.12 0.72 £ 0.11
Diving 0.13 & 0.13 0.18 £ 0.15 0.24 + 0.15 0.28 £ 0.15

Golf Swing 0.14 £ 0.12 0.16 + 0.14 0.19 £ 0.15 0.23 £ 0.16
Horse Riding  0.21 + 0.09 0.28 + 0.12 0.34 + 0.15 0.41 4+ 0.16

our tests resulted in positive transfer, there was a large amount of variation in
percent improvement. For example, in one case we observed a AP value of 0.0016
for no TL but with TL, we obtained a AP of 0.4. In other cases, we observed
improvements in AP of +0.2. So determining means and standard deviations in
percent improvement does not adequately summarize our results.

Thus we plotted quartiles over all observed percent differences in our tests
across the feedback iterations (Fig. B]) as this more adequately illustrates how
our percent improvements in AP were distributed. The 50th percentile marks
on the figure are the median percent improvements (as a function of feedback
iterations) observed from all of the test runs conducted. The median line in the
score clustering (SC) method’s results indicates that half of all tests conducted
resulted in at least about 20% improvement. The 25th percentile mark in the
first iteration of the SC graph indicates that 75% of the tests resulted in some
improvement from TL. Similarly, the first iteration 75th percentile mark in the
SC graph shows that 25% of tests run resulted in over 100% improvement.

Results. Fig. Blindicates that SC is better than SA (see Sec.[) in determining
which source task to transfer from. This is probably because the SC method at-
tempts to find which source task’s bias would improve classification with respect
to the target data on the particular unlabeled database being searched. So SC
does not attempt to transfer knowledge for generalized performance and instead
bases its criterion on the data being searched instead. The SA method does not
consider any of the unlabeled data in the database which limits its ability to
find a source task good for separating data on the database of interest. It is also
not surprising that percent improvement tends to drop as the amount of user
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Fig. 4. Ranking results for “Horse Riding.” The first two rows show the top 8 videos
for the first and second feedback iterations with TL. The bottom two rows are the first
and second feedback iterations without TL. With TL, there is less confusion between
biking and horse riding and a greater variety of relevant videos are captured.

feedback is increased. As the amount of target task training data increases, one
would expect the target classifier to generalize better without the need for TL.

While we could not show meaningful averages and standard deviations for
individual percent improvements, we can show the overall Mean AP (MAP) for
each class query to give readers a concrete idea of how MAP improves over
feedback iterations. Results for TL (using SC for source task selection) and no
TL are shown in Table[l Fig.[[d also shows sample results for retrieval of “horse
riding” videos for the first two user feedback iterations of the TL and no TL
cases. (More such results are provided in the supplementary materials.)

5 Conclusion

We presented a framework in RF for complex activity video retrieval through
a combination of RF and TL and demonstrated its utility on a real-life dataset
of Internet videos. The primary contribution of this work was the use of EM to
determine the best source task data to use for knowledge transfer resulting in
overall less required user feedback in the search process. We also made one of the
first explorations of combining RF with general TL. As the key problem in this
framework is the choice of source task data to transfer, we hope to improve on
our current results in the future through improvements in source task selection.
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Abstract. Hair is a very important part of human appearance. Robust
and accurate hair segmentation is difficult because of challenging vari-
ation of hair color and shape. In this paper, we propose a novel Com-
positional Exemplar-based Model (CEM) for hair style segmentation.
CEM generates an adaptive hair style (a probabilistic mask) for the in-
put image automatically in the manner of Divide-and-Conquer, which
can be divided into decomposition stage and composition stage natu-
rally. For the decomposition stage, we learn a strong ranker based on
a group of weak similarity functions emphasizing the Semantic Layout
stmilarity (SLS) effectively; in the composition stage, we introduce the
Neighbor Label Consistency (NLC) Constraint to reduce the ambiguity
between data representation and semantic meaning and then recompose
the hair style using alpha-expansion algorithm. Final segmentation re-
sult is obtained by Dual-Level Conditional Random Fields. Experiment
results on face images from Labeled Faces in the Wild data set show its
effectiveness.

1 Introduction

In computer graphics, hair acquisition [I] [2] and hair geometry modeling [3] have
achieved significant progresses. While in computer vision, hair style analysis or
hair segmentation discussed in this paper is still an ongoing research issue. Hair
is a very important part of human appearance especially in consumer images.
In visual surveillance condition or criminal cases, face details usually cannot
be seen or remembered or described clearly. However, hair style is easier to be
identified and described in most cases, so it usually becomes one of the most
important descriptors for some specific target person. For this application, hair
segmentation becomes a necessary intermediate step to hair style identification.
Moreover, with the rapid development of internet, online makeup has become
more and more popular. When people want to see whether or not some hair style
fits them, a good hair style identification or search tool could help a lot, which
also makes hair segmentation necessary. Nevertheless, there are challenges for
segmenting hair area in consumer images because of the variation of shape and
color. Robust hair segmentation is by far an unsolved problem.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITI, LNCS 6494, pp. 171 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. It is easy to tell bald from the long hair. But it is extremely hard to tell the
long hair from longer ones.

Yacoob and Davis [4] build a hair color model and then adopt a region growing
algorithm to modify the hair region. However, this method will only work when
the hair color doesn’t change significantly, especially for the dark hair. Consumer
images do not fit in this constraint.

Lee et al [5] give a more practical algorithm for consumer images. They first
cluster hair style and the color of hair and face into several typical patterns
manually. And then for each hair style, choose the fittest hair and face color
model and modify it according to the input image. A Markov Random Field is
built and inferred to maximize the joint probability distribution of each pixel
on each label. The one whose labeling result has the minimized distance to its
corresponding hair style is chosen as the final hair style. Their work gives a
practical idea to solve the problem; nevertheless there are still several issues
we need to focus on. Hair style classification is a hard issue. It is difficult to
decide how many patterns are appropriate even for just front view, let alone
cases with side view. With a predefined cluster label, it is still hard to decide
which hair style an input image belongs to. It may be easy to tell bald from long
hair, but extremely hard to tell long hair from longer one, as shown in Figure
[ Unfortunately, this classification is vital because unary term plays dominant
role in graph model [6].

In Borenstein and Ullman [7], a combined top-down and bottom-up algo-
rithm is proposed to solve the problem of figure-ground segmentation. During
top-down procedure, image fragments and the corresponding figure background
labels are extracted from training data first and then used to optimally cover
an object in a novel image to induce the final segmentation result. Wang and
Tang [§] approached the problem of face photo-sketch synthesis and recognition.
The input image is normalized and divided into overlapped rectangles. For each
rectangle, K candidate patches from the training set are selected. A multi-scale
Markov Random Field model is used for the selection of optimal combination
of patches. Jolic et al. [9] model the spatial correlations in image class struc-
ture by introducing the Stel to make image models invariant to changes in local
measurement, while sensitive to changes in image structure.

Inspired by these works, we build a Compositional Exemplar-based Model
(CEM, section 2) for hair style generation, which could generate an appropri-
ate hair style for the input image. In our paper, actually four labels are used:
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Fig. 2. Work flow of Compositional Exemplar-based Model. Color code for labels are:
white - background, yellow - face, black - hair and blue - clothes. (This figure is best
viewed in color.)

background, face, hair and clothes. CEM works in the Divide-and-Conquer way
as illustrated in Figure

In the decomposition stage, we design a group of Semantic Layout Similarity
(SLS) features (section 2.1), which are combined together to get a strong and
effective similarity function for each location respectively. Based on the similarity
function, candidate segmentation results are collected for each local patch from
a manually labeled library in this stage.

In the composition stage, we introduce a Neighbor Label Consistency (NLC)
Constraint and organize local patches as a Markov Network (section 2.2). A
well-defined consistency function promises the regularity [10], which allows us
to optimize the CEM using a-expansion algorithm [10] [II] [12]. CEM finally
generate a probabilistic mask as illustrated in Figure 2l With the favor of the
mask, we obtain the final segmentation result using a dual-level Conditional
Random Fields (section 3).

2 Compositional Exemplar-Based Model

It is hard to model the hair styles integrally, since hair styles have large variation
as shown in Figure [[l The basic idea is to decompose a hair style into local
patches and model each patch respectively. The reason is that although hair
styles can differ from each other dramatically in global, they can still share some
common Semantic Layout in local. In our paper, Semantic Layout means the
actual label patterns of patches. There is intuitional evidence in the diagram
of the Decomposition Stage in Figure 2l The purple patch of the input image
covers forehead and hair root regions. The first three searching hair style are
very different from the query one, but just in this local patch, they seem the
same. This is why we can model hair style locally.

In the decomposition stage, candidate segmentation results are obtained in-
dependently. However, the independence of searching will lead to ambiguity
sometimes, because we use the similarity defined in data representation level
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Fig. 3. Ambiguity of patches. Although the two green patches seem very similar to
each other in date representation level, the dark color parts of the patches have totally
different semantic meanings. When neighbor patch (in red) are considered together,
the ambiguity can be avoided.

to approximate the actual one in semantic level. We give an example in Figure
Bl where the local patches from two images are almost the same in the data
representation level but have totally different meanings for the dark color part
in the semantic level. However, if its neighbor patch (in the red rectangle) is
considered together, this ambiguity can be avoided most of the time. From this
point, we introduce the Neighbor Label Consistency (NLC) Constraint to reduce
the ambiguity.

There are two key problems in the model. The first one is how to define a
similarity to capture the Semantic Layout information. And the second one is
how to select the best candidates for all patches together when NLC Constraint
is introduced. They will be described in the next subsections respectively. Before
that, we define some notations.

P; is the local patch of the image and its corresponding label result is denoted
as L;. The local patches are required overlapping with its adjacent ones. Then
the neighbor patch indices of P; is denoted as N (i). For each patch P;, there is an
exemplar library for it, which is denoted as {Pf} The manually labeled result
for the exemplar library is {L? } The similarity function in data representation
level between patch P and @ is defined as H (P, Q). The similarity function
C (P, Q) for Semantic Layout between patch P and @ is defined as follows:

C(P,Q)= ZZd(L;”:Lg) (1)

m

where A is the size of region P and Q. ¢ (-) is Kronecker delta function.

2.1 Learning Similarity Function by SLS Features

In this subsection, we focus on how to define a similarity function to capture the
Semantic Layout information. Similarity can be defined on the statistic infor-
mation, such as histograms, or on the data structure, such as Euclid distance,
or on a fusion of them. One thing should be noticed in the problem is that the
feature compactness of different labels are not the same. For example, face and
hair have some typical pattern of color or texture distributions; while clothes
feature distribution is looser and background feature distributions barely share
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Fig. 4. Green patches of the two images have very similar Semantic Layout. However, if
the similarity is defined based on the whole feature of the patch, background difference
will dominate the similarity between them and cause a loss of the good exemplar can-
didate. Our SLS feature is calculated in selected sub-patches, such as the red rectangle.
In this way, better consistency between data representation and semantic meanings can
be achieved.

anything from one image to another. This characteristic will cause loss of good
exemplar labels sometimes, as shown in Figure[dl To achieve a better consistency
between data representation and semantic meanings, our similarity function is
constructed based on the features in local sub-patches. A similar work to capture
the Semantic Layout information is that of Shotton et al. [6] which presents a
discriminative model to fuse shape, appearance and context information to rec-
ognize efficiently the object classes. Our algorithm is different from that since we
focus on the explicit similarity of Semantic Layout of patches, while they focus
on the classification of pizel using Semantic Layout as a learning cue.

Formally, denote the SLS feature set & = {¢o, 1, ,dn} . Our algorithm
use color and texture as basic features, such as RGB, HSL color space, Gabor
wavelet, which are represented as histograms (Gabor wavelet is transformed as
LGBP [13](Local Gabor Binary Pattern)). Each SLS feature in & is determined
by a triple (Fi,, R, Bm). Fi, denotes the feature type, which can be histogram
of R channel in the RGB color space or LGBP in some specific frequency and
orientation. R,, is the rectangle where F;,, histogram is calculated. B,, is the bin
index of the histogram. Let ¢., (P;) = ¢¢F,. r,..B,.} (Pi) be the B, bin value
of F, histogram extracted from P; in the rectangle R,,. Then the weak ranker
ham (Ps, Pj) is calculated as:

(6m (Pi) = 6m (P)))?
¢m (PZ) + ¢m (Pj)
which actually is the opposite number of one addend term from the Chi-Square

Distance equation. So the final similarity function is a generalization of Chi-
Square Distance.

han (Pi, Pj) = — (2)
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Table 1. Preference Pairs Generation Algorithm

Input: Exemplar library in specific location {Pf }, threshold 7
Output: Preference Pair Set (Training Set) {7}

— Initialization: {7} «— &
— For each P/

e Sort the other patches based on C (775,735), and get a permutation of the
other patches 7 (m), which maps the patch’s sorting index m to its original
index 7 (m) in {Pf}

e For each ”PZT<m)7 which satisfies that C (’Pij,Piw(m)> <T

« Add (735,79;“%73;”’) in {T;}
e End For
— End For

To get a good enough similarity function, we apply the RankBoost [14] learn-
ing algorithm to select the best SLS features and evaluate their weights. For the
RankBoost algorithm, preference pairs should be defined to serve as the training
data. In our problem, the preference is defined by the manually labeled result
similarity of the two exemplar patches C (P;,P;). For each exemplar library
{732-’“}, one of them is used as the query patch, and the others are sorted based
on C (P;,P;). And we prefer that the similarity between the query one and the
first one is larger than that between the query one and the end ones. Specifically,
the preference pairs (training set) generation algorithm is shown in Table [T}

The training objective of our algorithm is to construct a strong ranker function
(similarity function in our paper) so that:

v (PLPIO P ey i (PLPT) s H (PLPI) @)
The similarity function H (-) is the weighted sum of weak rankers, the same as
other boosting algorithm. The details of RankBoost training algorithm can be
found in [I4].

2.2 Introduce NLC Constraint into CEM

In CEM, NLC Constraint is achieved by enforcing pixel to be assigned the same
label no matter which patch it locates in. So the consistency function can be
defined by Cy4 (P, Q), which is C (P, Q) restricted on the overlapping area A of
P and Q. The CEM can be represented formally as a Markov Network. The
Node is the patch set {F;}, and the neighborhood system is just defined before.
Suppose C best candidate exemplars are reserved. The optimization of CEM can
be done by minimizing the following energy function:
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EP) =) [wil)+ Y wijlcc) (4)
i JEN()
where ¢; denotes the index of exemplar that P; finally take. The unary function
©i (¢;) is defined as:

i (ci) = —log (H (P;, i) ()
And the pairwise function ¢; ; (¢;, ¢;j) is defined as:
Vi j (C,‘,Cj) = —log (CA (735177)?)) (6)

However, the straightforward definition is not regular [I0]. According to the
theorem of [I0], the regularity of pair wise term is a necessary and sufficient
condition for graph-representability. So this energy function cannot be minimized
by graph-cut based algorithm. The problem can be solved by expanding the
node label set from £ = {0,1,---,C —1} to £L = {0,1,--- ,nC — 1}, where
n is the vertices number. All possible candidate exemplars of all patches are
grouped together. Since each patch i can only take label ranged between iC and
(i +1) C — 1 actually, the other assignment should be set as a maximum value.
The mapping function between label index is f (¢;) = ¢; — ¢L. The unary term
is computed as:

max others

- i ¢))iC<c¢<(i+1)C
&i (c;) = {SD (f (i) ( ) (7)
To satisfy the regular condition in [I0], the pair wise term is modified as follows:

Beij (f (i), f(ej)iC<ec;i<(i+1)CjC<c¢;<(j+1)C
@i,j (Civ Cj) - 0 Ci = ¢j
mazx others
(8)
The proof of the regularity of @; ; (ci,c;) is given in supplementary files. With
the constraint of unary term, ¢; and c; will always satisfy the first condition in
pair wise term, when the assignment is optimal. So the labeling result of graph
model with the expanding label set is equivalent to the former one. Although
the expanding label set will increase computation load, in practice the inference
is still fast enough, because the number of super pixels is very small in general.
Denote the optimal solution of CEM as {L;}. The probabilistic hair style mask
is constructed to retain all the information of overlapping patches. The mask M

is calculated as: .
Siger (L =1) +e
2ijep L te€

where M;; denotes the probability of assigning pixel ¢ with label [. Eg is the
manually labeled result of optimal exemplar in index j which is the corresponding
index of pixel j in patch P;.

M;, = 9)
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Fig. 5. Diagram of Dual-Level Conditional Random Fields
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3 Segmentation with Dual-Level Conditional Random
Field

Conditional Random Filed with higher order constrained has been used in seg-
mentation problem and gets significant achievement recent years [15] [16] [17].
In this paper, we use a dual-level CRF to incorporate higher order constraint
from super pixels obtained by JSEG [18].

There are two level vertices in the graph model of dual-level CRF. Vertices
in level 1 are pixels in images and vertices in level 2 are super pixels produced
by JSEG [18]. The structure of dual-level CRFs is illustrated in Figure Bl The
edges only exist between vertices in level 1 and vertices between the two levels,
while there are no edges between vertices in level 2, because superpixels are used
as soft constraint in our model and final labeling results are obtained from level
1. The energy function is defined as follows:

22@ Z ¢1J Li, Tj +Z¢z ) Z (gi,j (xivmj> (10)

,JEN (3 1,1€R;

where z; is the label assigned to Correspondmg pixel or super pixel. ¢; and ¢Z g
is the energy term defined on pixel level. ¢; is the super pixel unary term. ¢; i
is the pair wise term between pixel and its corresponding super pixel, which
represent the higher order constraint by super pixel.

¢; (2;) and @; (;) have similar definition.

i (mz) = wmask(mm(wk (xz> + wcolorgbg()lor (mz) (11)

where ¢k (z;) = —log (M, z,). ¢5°'°" (;) is defined as the minus log of prob-
ability that current pixel’s color in color distribution for the z; label. In our
experiment, the color distribution is represented as histograms. In ¢; (z;), the
mask probability is the average of probabilities of the pixels in its corresponding
superpixel, and the color probability is defined as the similarity between color
histogram of superpixel’s and corresponding label’s.

b1 (@ir;) = vexp (=B = LII) 6 (@i # ) (12)

-1
where [ is set as (2 <||IZ — Ij||2>) . 7y is the model parameters.
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Assuming ¢ in level 1, j in level 2 and pixel ¢ belongs to super pixel R; ,
¢i.j (x5, ;) is defined as Potts Model:

0 Ty =Ty

&i’j (@i, 25) = {’yexp (fﬁ \Rj|) other (13)

where |R;| is the cardinality of super pixel R;. (3 is the inverse of the average
over all super pixel sizes. 7 is model parameters just like v. We use a-expansion
algorithm to get the labeling result of the dual-level CRF.

4 Experimental Result

First of all, we label the training data, also called exemplar library, manually.
Training data comes from Labeled Faces in the Wild database [19]. The reason
for choosing this database is that images in LFW are general consumer images
that are much less constraint than those used in face recognition researches,
which is very good for validating the proposed algorithm. We manually labeled
1026 images. For each image, each pixel is assigned a label from the label set:
background, hair, face or clothes. These images are divided into two halves ran-
domly. One of them is used for learning similarity function and the parameters
of CEM. The other is used for testing. The training and testing procedure is
shown in Table [2 and Table Bl respectively. These dividing, training and testing
procedure are repeated 10 times to get the experiment data.

The parameters of CEM are determined empirically. In consideration of speed,
images are normalized as 72 x 72 and divided into 16 x 16 patches with step of 8
in both x and y directions. R,, in the training data are rectangles with sizes of
4x4,8x 8 and 16 x 16. The threshold is set as 7 = 0.5. The candidate number
is set as C' = 10. § in formula[§is 8. For the CRF model parameters, v = ¥ = 8
, Wmask = 1.6 and weejor = 0.4. Both the max in formula[d and B are set as 1000
to prevent an invalid inference result.

In Figure [l we show some segmentation result by our algorithm. Hair style
changes from bald to long and in different colors, it can be seen that our algo-
rithm works robustly in the condition of large variation of hair shape and color
and clutter background.

It takes us about 95 hours to train the SLS-based rankers. The training al-
gorithm is applied independently for each local patch. So it can be extended
on a distributed system easily to shorten the training time. To show the effec-
tiveness of our similarity function, we used Normalized Discounted Cumulative
Gain (NDCG) [22] to estimate the ranking quality. For a list of images sorted in
descending order of the scores output by a learned ranking model, the NDCG
score at the m-th image is computed as:

Zlog]+2 (14)
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Table 2. Training algorithm

Detect Face [20] and Eye locations [21] for each image and normalize it in the same
size
— For each location, extracted the exemplar patch set {Pf }
e Generate training data as Table[Il
e Generate strong ranker using RankBoost algorithm [14].
— End For

Table 3. Testing algorithm

— Detect Face [20] and Eye locations [2I] for each image and normalize it in the
training size
— For each location, extracted the exemplar patch set {Pf }
e Using strong ranker H (-) for current location to sort {’Pf}
e Keep C exemplars as candidates
— End For
— Optimize CEM by alpha-expansion algorithm and get mask M
— Inverse transform M to original image
— Build dual-level CRF with as stated in section 3. Final segmentation is obtained

by a-expansion [10] [II] [I2].

Fig. 6. Examples of Segmentation result. (a) Original Image (b) Manually labeled
result (¢) Our Segmentation Result. Color code for labels are: white - background,
yellow - face, black -hair and blue - clothes.

where 7 (j) is the rating of the j-th image and C,, is the normalization constant
to make that a perfect ordering gets NDCG scores 1. In our experiment, r (j) =
C (Po, Pj). In Figure [[(a), we illustrate our result of m = 1 in each location
with comparison with a straightforward ranking algorithm using histogram and
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Fig.7. (a) NDCG at the first image. (b) Best Pixel Precision from the first and the
first ten candidate exemplars.

Euclid distance in RGB space. Our algorithm outperforms the straightforward
one in almost every location. Especially in the difficult patches, the precision
can be improved by 8% to 10%.

And we also test the pixel precision of the best candidate obtained by our
strong rankers. Pixel level segmentation accuracy defined as:

7o (L= Li)

i (15)

presion =
where n is the size of the current image. L; and L; denotes the label of algorithm
result and ground truth of pixel respectively. In Figure [f(b), we show the pixel
precision of the best candidate in each location respectively. For most patches,
our ranker can find acceptable exemplars for them.

In Figure[§] we give a qualitative CEM example with and without neighbor-
hood consistency constraint. As explained before, independent search for exem-
plar patch can cause ambiguity inevitably. Neighborhood consistency constraint
enforces the continuity between overlapped patches to improve the model ro-
bustness for ambiguity.

CEM without neighborhood consistency constraint can achieve a pixel preci-
sion of 84.6%. Incorporate the constraint into CEM can improve the precision to
86.3%. As numerous work [15] [16] [I7] suggested, incorporating segments prior
benefits the segmentation accuracy and robustness. In our problem, the precision
of final segmentation result by Dual-Level CRF can reach 89.1%, which outper-
form Single-Level one by 1.5%. Although they bring only a slight increase in the
segmentation accuracy quantitatively, they contribute significantly to subjective
quality improvement on segmentation, just as stated in [I5], a small increase in
the pixel-wise accuracy will actually make a large improvement on the quality
of segmentation.

We also test images not included in our manually labeled library. Some of the
results are given in Figure[@to demonstrate its generalization ability. Due to lack
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of technique details of [5], we have not tried to compare with it. Nevertheless we
think our method is more powerful in dealing with various hair styles. We tested
on 1000 selected face images in front view that are somewhat similar to the
exemplars, and about 80% of segmentation results are subjectively acceptable.
Unsatisfactory cases occur where hair is confused with background or shadows.
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However, if a test image exists in the exemplar library, it will get the exact
result. This characteristics guarantees our approach’s extensibility since a new
hair style can be easily extended by adding its manually labeled result into the
exemplar library.

5 Conclusion

In this paper, we propose a novel Compositional Exemplar-based Model for hair
style representation and segmentation. CEM generates hair style for the input
image in the Divide-and-Conquer manner, which can be divided into the decom-
position stage and composition stage naturally. For the decomposition stage, we
design a group Semantic Layout Similarity features and combine them into a
strong ranker by RankBoost algorithm. In the composition stage, we introduce
the Neighbor Label Consistency Constraint to CEM and define the consistency
function skillfully to ensure its reqularity. Final segmentation result is obtained
by the inference of Dual-Level Conditional Random Field. Experiment results
on face images from Labeled Faces in the Wild data set show its effectiveness.
In future, we will try to include side views into the library and speed up the
searching procedure.
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Abstract. This paper proposes a novel method to deal with the repre-
sentation issue in texture classification. A learning framework of image
descriptor is designed based on the Fisher separation criteria (FSC) to
learn most reliable and robust dominant pattern types considering intra-
class similarity and inter-class distance. Image structures are thus be
described by a new FSC-based learning (FBL) encoding method. Unlike
previous handcraft-design encoding methods, such as the LBP and SIFT,
supervised learning approach is used to learn an encoder from training
samples. We find that such a learning technique can largely improve the
discriminative ability and automatically achieve a good tradeoff between
discriminative power and efficiency. The commonly used texture descrip-
tor: local binary pattern (LBP) is taken as an example in the paper, so
that we then proposed the FBL-LBP descriptor. We benchmark its per-
formance by classifying textures present in the Outex TC 0012 database
for rotation invariant texture classification, KTH-TIPS2 database for
material categorization and Columbia-Utrecht (CUReT) database for
classification under different views and illuminations. The promising re-
sults verify its robustness to image rotation, illumination changes and
noise. Furthermore, to validate the generalization to other problems, we
extend the application also to face recognition and evaluate the proposed
FBL descriptor on the FERET face database. The inspiring results show
that this descriptor is highly discriminative.

1 Introduction and Previous Work

Texture is an inherent property of objects and scenes. Texture analysis aims
to interpret and understand real-world visual patterns, which would be used in
image filtering, classification, segmentation, indexing and synthesis. The gen-
eral texture classification problem being addressed can be concluded as: given a
texture image obtained under certain illumination and viewpoint condition, cat-
egorize it as belonging to one of the pre-learned texture classes. In this paper,
we will focus on the classification of textures from their appearance taken un-
der varying conditions. This is difficult as changing viewpoint and illumination
could have dramatic impacts on the appearance of materials and may lead to
large intra-class variation and small inter-class distance.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITII, LNCS 6494, pp. 185 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Automatic texture classification has been extensively studied in the past
decades. Existing features and techniques vary from image patch exemplars to fil-
ter or wavelet based methods [I]. Some representative ones include
scale-invariant feature transform (SIFT) and related methods [2/[3], local binary
patterns (LBPs) and its extensions [4}[5[6,7,[8,9], texton-based representation
methods [LOJTI] [1], grey level difference or co-occurrence statistics [12], methods
based on multi-channel filtering or wavelet decomposition [I3,1415], Gaussian
Markov random field (GMRF) and other random field methods [I6,[17]. Im-
pressively, descriptor based approaches performed surprisingly well in real world
situations, such as LBP, SIFT and Histogram of Oriented Gradients (HOG) [1§].
No matter they encode relative intensity magnitudes or quantized image gradi-
ents, an encoding method or descriptor would be better to get an ideal balance
between discriminative ability (meanwhile the robustness against condition vari-
ance) and efficiency. However, as these handcrafted descriptors produce unevenly
distributed histograms, they would inevitably encounter the problem brought
by rarely occurring codes. The resulting histogram might be less informative
and less compact, which could degrade the discriminative ability of the image
descriptor.

For example, it has been pointed out that LBP, a widely used texture descrip-
tor, using the full set of histogram may not be reliable to describe the input image
and yield good classification result because some pattern types rarely happen [7].
Uniform patterns [5], an extension of the LBP, are supposed to represent funda-
mental images structures, such as edges, flat areas and spots, which are usually
dominant patterns among all LBP types (i.e., have proportion above 85%). Us-
ing non-dominant LBP histogram bins as image features would lead to severe
problems because the histogram might be sparse and many bins might have too
few pattern occurrences. However, in some cases, uniform patterns are still not
dominant patterns. When texture images have complicated shape and edge type,
uniform patterns only occupy a small proportion among all LBP types [9]. As
the radius and number of neighboring samples increase, uniform patterns will
have a much smaller proportion among all LBP types [5]. Especially, when the
number of neighboring samples increases, it is difficult for a particular LBP to
match the criteria to become a uniform pattern. Because uniform patterns are
defined to have at most two bit-wise transitions across binary digits of each
neighboring pixel, the more neighboring samples the center pixel has the more
possible transitions there will be. Meanwhile, the number of all possible pattern
types will increase faster than that of the possible uniform patterns. In this way,
it becomes difficult to cover a significant proportion among all LBPs.

Then the issue becomes whether effective dominant patterns could be learned
so that those pattern types which are reliable, robust and highly discriminative
can be used for image representation. One recent method is dominant local bi-
nary patterns (DLBPs) which extract dominant patterns from the original LBPs
by statistics [§]. It was later combined with filter banks and reported a better re-
sult than LBP [9]. However, as it calculates the average pattern occurrence of all
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images in the training set regardless of intra-class similarity and inter-class differ-
ences, the discriminative ability can easily be weakened under varying conditions.

In this paper, we first propose the FSC-based learning framework, then apply
it with LBP and present the FBL-LBP descriptor to extract dominant patterns
as features for classification. The main contributions of the framework lie in:
1) learning the most reliable and robust dominant pattern types of each class
instead of using fixed pattern types; 2) taking both the intra-class similarity and
inter-class distance into account in the learning stage, which makes it obtain
optimized pattern types according to its particular application; 3) considering
dominant pattern type, which is the complementary discriminative information,
and pattern type occurrence in image description; 4) being easily generalized by
combining with other histogram descriptors for different purposes. The rotation
invariance can be implemented by replacing the original histogram with, for
example, rotation-invariant LBPs.

2 Texture Image Representation by FBL Descriptor

In this section, we describe the details of the FSC-based learning framework and
the feature extraction by FBL-LBP descriptor. The learning framework includes
three stages: (1) The learning stage. Determine most reliable dominant types for
each class. Then, all the learnt dominant types of each class are merged and form
the global dominant types for the whole database; (2) Extract global dominant
types learnt in stage (1) of the training set; (3) Extract the global dominant
types learnt in stage (1) of the testing set. Finally, features obtained in stages
(2) and (3) are served as inputs to the classifier. Each stage will be explained in
the following subsections, respectively.

2.1 The Learning Stage

The learning stage of the proposed framework is based on FSC [19,20], which
is often used to evaluate the discriminative ability of features. According to
the Fisher criterion, the maximum ratio of between-class scatter to within-class
scatter leads to the best separation among projected sets. Given a training set
containing classes of objects, let the similarities of histograms from different
samples of the same class compose the intra-class similarity space. Those sam-
ples from different classes compose the extra-class similarity space. The optimal
discrimination among data can be obtained by maximizing the sample mean
among different classes and, meanwhile, minimizing the intra-class scatter of
data. In this way, to learn most reliable and robust dominant pattern types, we
carry out FSC in the learning stage by first filtering reliable dominant types
from the original histograms for each class to keep the intra-class similarity, and
then form the global dominant types by merging dominant types among differ-
ent classes. LBPs are adopted as the original histograms in this framework as
its broad use in texture classification. We will explain how it could be combined
with the FSC-based learning framework and obtain the FBL-LBP descriptor.
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Supposing a training image set x1, x2, .., T, which belongs to C' classes, we
have n. images belonging to class c. Let f; denote the histogram of all possible
LBP types of interest in image 4 for given radius R and neighboring samples V.
If rotation invariant property is required, the framework should consider all pos-
sible rotation invariant LBP types in this step. Each LBP type is characterized
by the general LBP type label, defined as Equation [

N-1

LBPx =) ulti—t.)2, 1)
=0

where u(z) is the step function with u(x) =1 if x > 0 and u(x) = 0 otherwise.
t; denotes the intensity of neighboring pixel [, and ¢, denotes the intensity of the
center pixel. When the rotation invariant property is required, LBP labels can
be calculated by Equation

N-1
= i _ [(I+d)mod N]
LBPn R OgllilN (Z w(t; — te)2 > . (2)

Let p denote the total possible number of LBP types of interest and f; ; denote
the number of occurrences of pattern type j in image x;. We define the set of
dominant LBPs of each image as the following definition.

Definition 1: Dominant LBP set of an image is the minimum set of LBP
types which can cover n% of all LBPs of the image.

Definition 1 is expressed using Equation [§ in order to find a set J; for image x;
(i=1,...,m), which can be implemented by Algorithm [Tt

. Z Ji fi’j
Jx:argmm( I
‘ il \ Dohemi fik

where p is the total number of all possible local binary pattern types and |J;|
denotes the number of elements in set J; (J; C [1,2,...,p]).

Based on the FSC, the most discriminant features should have large inter-class
mean distance and small intra-class variation. Thus, to learn reliable dominant
LBP set of each class, we remove the outlier caused by noise or illumination
variation for individual images in the same class, only considering the common
features. This is reflected by Fig.[l It is also shown that not only pattern types
but also the number of dominant LBP set elements of each image belonging to the
same class might be changed as illumination changes or due to other distortion
factors. If we consider all possible pattern types that belong to dominant LBP
set of each sample, the image description will be not robust and stable enough to
characterize the whole class. Therefore, only the pattern types that consistently
belong to dominant pattern type sets of each image in this class are adopted
as the dominant pattern type set of this class. The procedure is described by
Algorithm 2

After the learning of most reliable dominant pattern set of each class ¢ (c
=1,...,C), we construct the global dominant pattern set of interest for the whole

) > n% 3)
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Fig. 1. The left circle denotes the ideal situation: three samples (i.e., S1, S2, S3)
belonging to the same class should have the same set of dominant LBPs (denoted by
TN, where N is the pattern type label). The right circles denote the resulting dominant
pattern types of each sample after distortion. Some dominant pattern types are changed
because of imaging conditions. The number of the dominant LBP set elements of each
sample might be different. In this example, only the pattern types T3 and T5 remain
as dominant patterns for all samples after distortion, which would construct the most
reliable dominant pattern set of this class.

database using Algorithm [3l In this stage, pattern occurrences of pattern types
are considered in Jgope instead of using fixed pattern set as in conventional
methods, e.g., the uniform LBP. This has at least two advantages. First, pattern
types in Jgiopq are more reliable to characterize the property of each class, as
only the pattern types that consistently belong to the dominant pattern set of
each sample are preserved for each class. Second, Jgiopa; is guaranteed to be able
to cover all dominant patterns across different classes, as it is the union of the
most reliable dominant patterns of each class. In following stages, each element
of Jgiobar Tepresents a pattern type of interest whose frequency occurrence will
be calculated.

2.2 The Training Stage

Given the global dominant pattern set of interest Jy;ope; Obtained in the learning
stage, we extract occurrence histogram of pattern types in Jgopqi as features for
each image. Then image x;, belonging to training set St.qin, can be represented
by feature vector y;, which not only encodes the occurrence frequency of each
dominant pattern type, but also considers pattern type information. Each di-
mension of y; represents a particular fixed type of dominant pattern and these
dominant pattern types also contain discriminative information as the pattern
occurrence, which makes the proposed feature more powerful in classification.

2.3 The Testing Stage

In the testing stage, the dominant LBP histogram is calculated for each testing
image based on Jgiopa: similar to the procedure performed on the training set.
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Algorithm 1. Find the dominant LBP set of an input image x;

1 Input: The original histogram f,; of x; for all LBP types of interest.

2 Ou%put: The dominant LBP set J; of image x;.
1. Initialize a reference pattern type record vector V' where V[i|= (i — 1) (i=L1,...,p).

2. Sort f; in descending order, resulting in a new histogram f;. Change the
configuration of V according to the element switching order from f; to fi,
resulting in a new vector V. Now the top h entries of f, denote the occurrence
frequencies of the top h most dominant patterns and the top h entries of V
record the pattern labels of the top h most dominant patterns.

3. FORk=1top

kh
P () 2 %)
BREAK;
END IF
END FOR
4. J; = {V[l], s V[k}}
5. Return J;

Algorithm 2. Find the dominant LBP set of class ¢

1 Input: ne input training images belonging to class c.

2 Qutput: The dominant LBP set JC. of class c.
1. Calculate the dominant LBP set Ji of the first image belonging

to class ¢, and initialize JC,. = J;.
2. FOR each image i = 2 to n. belonging to class ¢
Calculate its dominant LBP set J; by Algorithm [
JC. = JC.N J;.
END FOR
3. Return JC..

The learning-based LBPs extracted from the training and testing set will be
finally served as inputs to classifier for classification. The pipeline of the FSC-
based learning framework is shown in Fig. 2l

3 Experimental Design and Results

We test the performance of the proposed method for texture classification on
the Outex TC 0012 database [2I], KTH-TIPS2 database [22] and Columbia-
Utrecht (CUReT) database [23] in three different scenarios: rotation invariant
texture classification, material categorization, and texture classification under
variant imaging conditions. The proposed descriptor is compared against the
non-invariant uniform local binary pattern LBPY2? (or the rotation invariant
version LBP""2) and DLBP on all these databases. Some well-known methods
are also compared with on some of these databases. The rotation invariant LBP
is adopted as the original histogram of the framework for all texture classification
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Fig. 2. The FSC-based learning framework

tasks in this paper and the threshold is set to be 90%. The descriptor is further
evaluated on the FERET face database [24] to prove its ability in Biometrics.

3.1 Rotation Invariant Texture Classification

We use the Outex TC 0012 database to test rotation invariant texture classifi-
cation methods. This database consists of 9120 images representing 24 different
textures imaged under different rotations and lightings. The test set contains
20 training images for each texture class. The training images are under single
orientation whereas different orientations are present in the total of 8640 testing
images. The total classification rates over all test images are listed in Table 1,
which are derived from the setup by using the nearest neighbor (NN) classifier.

Algorithm 3. Construct the global dominant pattern set

1 Input: The dominant LBP set JC. (c = 1,...,C) of each class obtained by
Algorithm A
2 Output: The global dominant pattern set Jgiobai-

1. Initialize Jgiopar = 0.
2. FORi=1to C
ngobal = ngobal U JC%
END FOR
3. Return Jgopai-
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It can be observed at all tested scales that rotation invariant features L BPT#2
LBP-HF, DLBP and FBL-LBP provide higher classification rates than non-
invariant feature LBP"2. The performance of the new features is clearly better
than that of the LBP™2. This improvement demonstrates its effectiveness in
feature extraction. As the number of neighboring samples increases, the total
number of possible LBPs will dramatically increase. In this case, many patterns
will be produced with low occurrence frequencies and the pattern histogram be-
comes sparse, which makes the image representation unstable. The FBL frame-
work solves this problem by considering only the most dominant patterns and
eliminating unreliable patterns to reduce negative effects.

LBP-HF is cited as one representative method combining the LBP with
pattern transform. FBL-LBP performs better than it at the scales (24,3) and
(16,2)+(24,3). In addition, the proposed descriptor is compared with the recent
DLBP, which is also a learning-based method. To be specific, in this paper, we
adopt the nearest neighbor classifier for DLBP and do not use any preprocessing
prior to feature extraction. The best result in Table[is achieved by our method
at the scale (8,1)4+(16,2)+(24,3). For fair comparison purpose, the dominant
pattern threshold of DLBP is set to 90%, which is the same as FBL-LBP For
further comparison, we refer to the MRS, a filter bank based texton method [I1],
which got 76.1% on this database [7], but not listed here.

Table 1. Texture classification rates on Outex T'C 0012 dataset

Parameters LBP"? [7] LBP™™?|7) LBP-HF [7] DLBP [0] FBL-LBP
(8,1) 0.566 0.646 0.773 0.560 0.691
(16 2) 0.578 0.791 0.873 0.687 0.825
(24,3) 0.450 0.833 0.896 0.754 0.901
(8,1)+(16,2) 0.595 0.821 0.894 0.778 0.833
(8,1)+(24,3) 0.512 0.883 0.917 0.820 0.905
(16,2)+(24,3) 0.513 0.857 0.915 0.837 0.927
(8,1)+(16,2)+(24,3) 0.539 0.870 0.925 0.849 0.928

3.2 Material Categorization

Image descriptors are tested on the KTH-TIPS2 database [22] for material cat-
egorization. This database contains four samples of 11 different materials, each
sample imaged at nine different scales and 12 lighting and pose setups, totaling
4572 images. The NN classifier is trained with one sample (i.e. 9 X 12 images)
per material category. The remaining 3 x 9 x 12 images are used for testing.
This is repeated with 10000 random combinations as training and testing data
and the mean categorization rate over the permutations is used to assess the
performance.
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Results of the LBP"?, LBP"™2? LBP-HF and DLBP are listed in Table 2
It can be observed that FBL-LBP has obvious superiority compared to other
methods in all cases. This is most likely that abundant orientations are present
in the training data for learning. Similarly, the performance of LBP"*2 is con-
sistently lower probably because different orientations are contained in training
samples so rotational invariance does not benefit much [7]. The multi-resolution
(8,1)+(16,2)+(24,3) is able to give a good result but not the best as the scale
(24,3) does not work well, which also happens to other methods at this scale.
This might be brought by the scale variation properties of this database. How-
ever, FBL-LBP with the scale (8,1)+(16,2) achieves a slight improvement over it
possibly as more discriminative information is contained within smaller radius.

3.3 Texture Classification under Variant Imaging Conditions

The CUReT database contains images of 61 materials and includes many surfaces
commonly seen in our environment [23]. Each of the materials in the database has
been imaged under 205 different viewing and illumination conditions. The effects
of surface normal variations such as specularities, reflections and shadowing are
evident. This database also includes some man-made textures, and is highlighted
due to abundant imaging conditions. These make it far more challenging and
become a benchmark widely used to assess classification performance.

The experiments are conducted on the CUReT database in the same way as
in [I]. The cropped database has a total of 5612 images. Out of these, 46 images
per class are randomly chosen for training and the remaining 46 per class are
chosen for testing. The cropped CUReT database can be downloaded from [25].
Table [l lists the best classification rates of different features. For comparison,
results obtained by LBP™*?  texton based representation method and DLBP
are presented. L BP"2 and FBL-LBP follow the same setting (8,1)-+(8,3)+(8,5),
and DLBP is set to (16,2) with its best results. It is observed that FBL-LBP can
even achieve a slightly higher classification rate 97.61% than 97.47% obtained by
texton method when training samples are chosen randomly for 61 class problems.

From experimental results conducted on the three main challenging texture
databases, the proposed descriptor is shown to be stable and discriminative
enough to represent texture images.

3.4 Face Recognition

The last experiment is performed to assess whether FBL-LBP could provide
effective representation in face recognition. The experiment is conducted on the
FERET face database following the standard FERET protocol in [24] which is
more challenging than the one used in [6] as less training images are available.
For the FERET database, we use Fa as gallery, which contains 1196 frontal
images of 1196 subjects. The probe sets consist of Fb, Fc, Dup I and Dup II.
Fb contains 1195 images of expression variations, Fc contains 194 images taken
under different illumination conditions, Dup I has 722 images taken later in time
and Dup II (a subset of Dup I) has 234 images taken at least one year after the
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Table 2. Comparison of classification results for material categorizations

Parameters LBP"? [7] LBP™™?|7) LBP-HF [7] DLBP [9] FBL-LBP
(8,1) 0.528 0.482 0.525 0.458 0.619
(16,2) 0.511 0.494 0.533 0.460 0.624
(24,3) 0.502 0.481 0.513 0.459 0.609
(8,1)+(16,2) 0.536 0.502 0.542 0.456 0.631
(8,1)+(24,3) 0.542 0.507 0.542 0.468 0.613
(16,2)+(24,3) 0.514 0.508 0.539 0.458 0.623
(8,1)+(16,2)+(24,3) 0.536 0.514 0.546 0.461 0.626

Table 3. Comparison of classification results on CUReT database

LBP™™2 [5] Texton method [I] DLBP [9] FBL-LBP
0.9624 0.9747 0.9593 0.9761

corresponding Gallery images. Using Fa as the gallery, we design the following
experiments: (i) use Fb as probe set to test the efficiency of the method against
facial expression; (ii) use Fc as probe set to test the efficiency of the method
against illumination variation; (iii) use Dup I as probe set to test the efficiency
of the method against short time; (iv) use Dup II as probe set to test the efficiency
of the method against longer time. All images in the database are cropped and
normalized to the resolution of 128 x 128 using eye coordinates provided. They
are uniformly divided into 7 X 7 non-overlapping sub-regions.

The feature extraction using FBL-LBP for face recognition includes these
procedures: (1) divide each image from the training set uniformly into 7 x 7 sub-
regions. Global dominant pattern sets are constructed for each region and then
connected to be the overall dominant types for the whole database. (2) calculate
LBP histogram of dominant types for the training set and testing set, which
will be served as inputs to classifier. The recognition rates of different methods
are listed in Table [l We use the same setting as [6]: eight neighboring samples,
radius two and the same block weights. The result is lower than that in [6] as
a more strict protocol is adopted. For FBL-LBP, we also use the (8,2) setting
and normal patterns as the original histogram with threshold 70%, while DLBP
follows (16,2) setting with its best result on this database. The threshold has a
different value from the one used in texture classifications considering that the
number of classes and intra-class variations are higher in face database. As the
number of classes increases, more dominant pattern types are needed, so that
more patterns are used to construct dominant pattern histograms. However, the
dominant pattern proportions of all original patterns in this experiment is just
34.77%, which means the learning-based method does not degrade with this
threshold.
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Table 4. The recognition rates on the FERET database probe set

Methods  Fb Fc DupI DuplII

PCA [27] 0.749 0.113 0.302 0.081
LBP"? [6] 0.874 0.572 0.389 0.385
DLBP [9] 0.881 0.516 0.362 0.349
FBL-LBP 0.899 0.536 0.449 0.389

From the comparison, FBL-LBP has a better performance on the Fb, Dup I
and Dup II than that of the uniform LBP, especially on Dup I. Although the
classification rate is not the best on Fc, it is still higher than most other face
recognition methods in [26], which follow the same protocol. FBL-LBP does not
perform significantly better probably because the condition variations needed are
not present enough in the training data, which could influence the performance
of learning-based method.

4 Discussion

In this section, we will discuss how the FBL-LBP retains the discriminativeness
of the original histogram and its relationships with DLBP, uniform LBP and
texton-based approaches.

The concern is that previous methods mainly take pattern occurrence into
account in image representation, which may not be able to provide enough dis-
criminative patterns for texture classification. As illustrated in Fig. Bl(a), there
are two texture images G1 and G2 from the CUReT database belonging to two
classes. We extract patterns using the DLBP (N = 8, R = 1, proportion =
90%). F1 and F2 are pattern occurrences of their first 23 dominant patterns in
descending order, which are very similar to each other. Their histograms T1 and
T2 are given for comparison in Fig. B(b). The labels L1 and L2 listed in Fig.
Bi(c) are the dominant pattern types of F1 and F2 for each entry, respectively.
Their corresponding dominant pattern types are obviously different from each
other. In this case, it becomes difficult to classify them just using the pattern
type occurrence. But it becomes possible when adding dominant pattern type
information as we proposed in image representation, as shown in Fig. [ the pat-
terns that are obtained using the proposed framework (N = 8, R = 1, threshold
= 90%). Moreover, considering intra-class similarity and inter-class distance of
the database, FBL-LBP uses the intra-class intersection and inter-class unit as
statistics to extract dominant patterns from the original histogram, instead of
calculating the average pattern occurrence on the whole training set as in [9],
from which its performance could further benefit in the texture classification.

In order to prove the ability in extracting discriminative patterns, we explore
the relationship between the FBL-LBP and widely used uniform LBP by calcu-
lating the average uniform pattern proportions of FBL-LBPs, as listed in Table
Bl The recognition rates of FBL-LBP remain higher even with less intersection
with the uniform LBP, which shows it could capture effective patterns from the
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(a) Two texture images G1 and G2 belonging to two classes
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(b) The histograms T1 and T2 of pattern occurrences of the first 23 dominant patterns
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Fig. 3. The dominant patterns produced by DLBP

Table 5. The average uniform pattern proportions of all FBL-LBPs (n=90)

Outex TC 0012 KTH-TIPS

(N,R) Proportions LBP""? FBL-LBP (N,R) Proportions LBP""> FBL-LBP
(8,1) 88.13% 0.646  0.691 (8,1) 82.68% 0.482  0.691
(16,2) 67.71% 0.791  0.825 (16,2) 58.91% 0.494  0.624
(24,3) 42.97% 0.833  0.901 (24,3) 29.83% 0.481  0.609
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Fig. 4. The dominant patterns produced by FBL-LBP
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original histogram discarded by uniform LBP. Especially, when the number of
neighboring samples increases, non-uniform patterns could be effective for image
representation. We would suppose when the number of the neighboring samples
and radius increase, FBL-LBPs performs even better comparing to the uniform
patterns, since the former can take non-uniform patterns that are in dominant
set but discarded, while the latter are not that dominant as with smaller number
of neighboring samples and radius.

5 Conclusions

In this paper, we propose a descriptor learning framework for texture classifica-
tion. The framework is based on FSC to learn most reliable and robust dominant
pattern types considering intra-class similarity and inter-class distance. LBP was
taken as an input to this framework for texture classification and face recogni-
tion. Non-dominant LBP histogram would lead to severe problems caused by
sparse histogram, however, it is shown that FBL-LBP, the descriptor obtained
by combining the proposed framework with LBP, can retain dominant patterns
and eliminate unreliable patterns to reduce negative effects. FBL-LBP differs
from previous LBP approaches since FBL framework learns robust dominant
types of each class instead of using fixed pattern types. To get reliable patterns
adaptive to particular applications, the learning process takes intra-class simi-
larity and inter-class distance into account. To strengthen the discriminativeness
of image description, dominant pattern type is adopted as a complement to the
pattern type occurrence. In addition, this framework is easy to generalize for
other purposes by introducing different histogram descriptors.
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Abstract. Over the last decade, supervised and unsupervised subspace
learning methods, such as LDA and NPE, have been applied for face
recognition. In real life applications, besides unlabeled image data, prior
knowledge in the form of labeled data is also available, and can be in-
corporated in subspace learning algorithm resulting in improved perfor-
mance. In this paper, we propose a subspace learning method based on
semi-supervised neighborhood preserving discriminant learning, which
we call Semi-supervised Neighborhood Preserving Discriminant Embed-
ding (SNPDE). The method preserves the local neighborhood structure
of face manifold using NPE, and maximizes the separability of different
classes using LDA. Experimental results on two face databases demon-
strate the effectiveness of the proposed method.

1 Introduction

Biometric face data are data of high dimensions and are susceptible to the
well-known problem of the curse of dimensionality when using machine learn-
ing techniques. A common approach is to transform the high dimensional data
into a lower dimensional subspace which preserves the perceptually meaningful
structure of these images. Fisherface [I], and NPEface [2] are two face subspace
learning methods. Fisherface, which is a supervised method based on LDA [3],
projects the data points along the directions with optimal class separability, and
performs subspace learning based on global Euclidean properties of the image
data. NPE on the other hand, is an unsupervised subspace learning method,
which performs subspace learning based on local neighborhood properties of the
high dimensional image data. In this method, an image is considered as a high
dimensional vector, that is, a point in a high dimensional vector space, and the
set of all faces are assumed to lie on or near a lower dimensional manifold. The
aim of NPE is to discover this manifold structure and perform subspace learning
with the objective of best preserving the manifold structure.
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© Springer-Verlag Berlin Heidelberg 2011
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The assumption of NPE is that nearby points share class information, and
recognition of points are based on their closest neighbors in the reduced face
subspace. However, in face recognition, variability in illumination and expres-
sion makes it hard to discern identities based solely on similarity of images. In
other words, images in a small neighborhood might belong to different identi-
ties. Therefore, in addition to the neighborhood preserving criteria, there is also
a need for discriminant analysis of data, so that the projection of two similar
images that belong to different identities is not close in the reduced subspace.

In recent years graph-based subspace learning methods have been studied,
which encode discriminant information or manifold structure of image data
as graphs and perform subspace learning based on graph preserving criterion.
Graph Embedding (GE) [4] was introduced as a general framework for dimen-
sionality reduction enabling popular methods of subspace learning to be inter-
preted and implemented as graph based methods. In addition, Cai et al. [5]
provided a general framework for subspace learning, and discussed the possibil-
ity of constructing multiple graphs to learn the intrinsic discriminant structure
of the image data. In addition, they showed that their framework follows the GE
view of subspace learning.

In this paper, along the framework introduced by Cai et al. [5] for content-
based image retrieval, we propose a semi-supervised subspace learning method
for face recognition which uses two graphs that are constructed to encode the
necessary information of image data. We call this Semi-supervised Neighbor-
hood Preserving Discriminant Embedding (SNPDE) for face representation and
recognition. Our method is constructed based on: (i) graph view of NPE, which
builds an adjacency graph that best reflects the geometry of the face manifold;
and (ii) graph view of LDA, which builds a graph with edge weights that reflect
the discriminant structure of data. The projection function then consists of a
set of basis vectors obtained based on a unified objective function incorporating
the graph preserving of NPE and LDA. Since SNPDE combines the objective
of NPE with discriminative objective of LDA, it is expected to perform better
than NPE for face recognition, and this is demonstrated in our results section.

The rest of the paper is organized as follows. In Section 2l We review GE view
of subspace learning and discuss the graph view of NPE and LDA. The SNPDE
method is described in Section Bl The experimental results are discussed and
compared with other methods in Section @l followed by concluding remarks in
Section

2 Graph Embedding and Graph Based NPE and LDA
2.1 Graph Embedding View of Subspace Learning

A given set {x;}¥; C R™ of N images can be represented as an image matrix
X = [x1,X2,...,xn]. The essential task of subspace learning is to find an optimal
mapping function that projects the high dimensional face data into a lower
dimensional face space Y = {y;}; C R%where d << n. That is,

Y =ATX (1)
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where A is an n x d matrix consisting of a set of basis vectors a* = [ay, ..., a4],
(where a; € R™ for i = 1,...,d). In graph based subspace learning methods,
the data vector is represented as a graph G, such that vertex i of the graph
represents vector x;. An n x n weight matrix W is then defined such that each
edge weight W;; reflects the relationship between data points x; and x;. The
objective of Graph Embedding (GE) is to represent each vertex of a graph as a
low dimensional vector where the relationship between vertex pairs (i, 7) is best
preserved.
The GE formulation of subspace learning is as follows

a* = argmin E#j(aTXz‘ —alx;)* Wy (2)
a: yT' Dy=1

= argmin al XLXTa (3)
a: yT Dy=1

where L = D — W is the graph Laplacian [0], and D is a diagonal matrix whose
entries are column (or, since W is symmetric, row) sums of . The optimization
in (3) can also be written as

aTXLXTa (4)
al’XDXTa

a* = arg min
which reduces to solving the general eigenvalue problem
XLXTa=)XXDX"a, (5)
or equivalently as

T T
al XWX*a 6)

*
a = argmax
SWAX T XDXTa’

which reduces to solving the general eigenvalue problem
XWXTa= A XDX"a. (7)

In sections and 23] we will show that graph view of NPE and LDA can be
derived from the GE formulations in {) and (@]).
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2.2 Graph View of NPE

In this section, we will review the NPE algorithm and discuss the graph GNFF

which can model the learnt manifold structure based on NPE algorithm. We
will also reformulate the NPE method based on the GE formulation of subspace
learning in (@), and this will help us develop our SNPDE algorithm.

NPE [2] is an unsupervised subspace learning method that inherits the local
linear but global nonlinear learning characteristics of Locally Linear Embed-
ding (LLE) [7], a well-known nonlinear dimensionality reduction method. Unlike
LLE, which is only applicable to input training data, NPE obtains a linear map-
ping function based on the training data, that is also applicable to unseen test
data. NPE assumes data to lies on a nonlinear manifold and obtains its lin-
ear mapping with the aim that the local neighborhood characteristics of the
manifold are best preserved. Similar to LLE, NPE characterizes the local neigh-
borhood structure of each data point by linear coefficients W;; such that each
data point x; can be (approximately) reconstructed from its k-neighbors {x; }2?:1

by xX; = Z?Zl Wi;x;. NPE then obtains a linear mapping function such that the
local linear characteristics identified by W;; are best preserved in the lower di-
mensional subspace. The actual computations for obtaining the linear mapping
by NPE involve solving a generalized eigenvalue problem derived from the cost
function of LLE.

The computations for NPE can be divided into the following three steps.

1. Construct the neighborhood graph
The neighborhood weights are obtained by the following optimization:

2

mlnz X; — Z Wiij(j) (8)
i J

subject to the constraints:

k
ZWijzl,foreachjzl,...,k. (9)
j=1
The neighborhood weight matrix W forms a k x n matrix, where k is the
number of neighboring points for each image data and n is the number of

data points in the image database. The n x n weight matrix W~PE of graph
GNPE is obtained as
WNPE _ (W+WT—WIW)y; ifi#] (10)
" 0 otherwise

W,NPE

i was first introduced

The structure of the similarity weight matrix
in [].
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2. Compute the optimal linear projections
He et al. [2] obtained the neighborhood preserving mapping of NPE, that is,
they obtained the matrix A such that the mapping X — Y where Y = ATX
preserves the neighborhood characteristics of the data manifold. Thus similar

to @), we select y* = [y1,...,yn] as:

‘ 2

y = argmin ), |ly; — >; Wijyng)
y

= argmin yZ' (I - W)T'(I - W)y (12)
y: yTy=1
= argmin alX{I -W)'I-W)XTa (13)

a: a¥ XXx%Ta=1

— argmin a’XMXTa (14)
a: a¥ XX%Ta=1

Here I is the n x n identity matrix and M is the n X n matrix given by
M= (I-W)(1-w). (15)

The optimal linear projections in ([4l) are the eigenvectors associated with
smallest eigenvalues of the generalized eigenvalue problem

XMXTa=XXX"a (16)

When NPE is applied on face image data, the eigenvectors a are called NPE-
faces.

Yan et al. [4] discussed that the LLE algorithm can be considered as the
direct GE formulation in (B). The matrix M in ([I4) can be considered as
the Laplacian matrix LYP¥ of the graph GNPF | that is M = D — WNPE =
LNPE  giving

*

y* = argmin al XLVNPEXTa (17)
a: a”XXTa=1

This GE formulation of NPE in () will help us develop our algorithm.

2.3 Graph View of LDA

LDA is a supervised linear subspace learning algorithm that obtains a discrimi-
nant projection function according to class label information of the input data.
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The aim of LDA is to find projection directions that maximize the separability
of data points belonging to different classes while simultaneously minimizing the
distance between data of the same class. Suppose we have N high dimensional
image vectors belonging to [ classes of faces. LDA maximizes the ratio of the
between-class scatter Sy to the within-class scatter S,,, where

Sy =Y b(x® —x)(x* —x)T (18)
k=1
and
(& lk
Sw=>_ O™ —x) () —xM)T), (19)
k=1 =1

where x is the total sample mean vector, [; is the number of samples in the k-th

class and X,Ek) is the i-th sample in the k-th class. That is, LDA selects optimal
a’s as

aTSpa

. 20
a’S,a (20)

a* = argmax

a

Define the total scatter matrix S as [§]

It can be easily shown that
St =Sy + Su. (22)

Therefore, the optimization (20) can be rewritten as

aTSya

a* = argmax
aTS,a

a

That is, the optimal a’s are the eigenvectors corresponding to the largest non-
zero eigenvalues of the generalized eigenvalue problem

Spa = AS;a (24)

According to Yan et al. [4], the LDA algorithm can also be reformulated as
a direct GE by constructing ¢ complete subgraphs {G}{_, each representing
data belonging to the corresponding class. Assuming each subgraph Gy has I
vertices, the weights of each subgraph are defined as an [ x [ weight matrix
W) with each element equal to 1/1.
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Assuming that X *) = [Xl(k)7 ceey Xl(kk)] is the data matrix of the k-th class, the
between class scatter S, can be written as

Sp=> XBwk (xW)T (25)
k=1

and the total scatter matrix S; can be written as
Sy =xx7T (26)

where X is the data matrix. If the data are ordered based on their class labels,
so X = [XM .. X(©)] then the I x [ weight matrix W;x; of the graph GLP4
consisting of all the ¢ subgraphs is defined as

w® o ...00

0 wW® ... 0
Wik = . - . (27)

0 0 ..w®
Then the optimization in (23] can be rewriteen as

al’ XWX Ta

(28)
al’XXTa

*
a = argmax

This formulation of LDA in (28]) was first introduced in [9] and will help us
develop our semi-supervised learning method.

3 Semi-supervised Neighborhood Discriminant
Embedding

In this section we develop a semi-supervised subspace learning algorithm which
incorporates the manifold structure provided by unlabeled data and the dis-
criminant structure provided by labeled data. Cai et al. [5] provided a general
framework for semi-supervised subspace learning for Content Based Image Re-
trieval (CBIR) and discussed the possibility of constructing multiple graphs to
learn the intrinsic discriminant structure of the image data. Following the gen-
eral framework in [5], we construct two graphs; one to encode the neighborhood
preserving information based on the NPE method and the other to encode dis-
criminant class label information based on the LDA method. We exploit the
information encoded by the two graphs by formulating a constrained optimiza-
tion problem consisting of the GE objectives of NPE and LDA. The computation
of the projection function reduces to solving a general eigenvalue problem. The
Semi-supervised Neighborhood Preserving Discriminant Embedding (SNPDE)
algorithm enables us to introduce a new image representation and an improved
precision for subspace learning and classification of face images.



206 M. Mehdizadeh et al.

3.1 The Objective Function

Let X; = [x1,X2,...,%;] be the labeled data set and X1 = [x)41,...,X,] be

the unlabeled data set, where each sample x; (i = 1,...,n) is from one of ¢
classes. Let [, be the number of labeled samples in class k, (k = 1,...,¢), so
(ZZ:I lk = l) Put X = [XhXH-l] and
Wixi 0
LDA _ Ix1
i [V -

where the Wy is defined in (27)). The SNPDE objective consists of two parts
corresponding to the objectives of the graph views of LDA and NPE. Put

_ al XWEDPAXTy
OLpa = argmax T X XTa (30)
and
Onpr = argmin a’ XLVPEXTa, (31)

When sufficient labeled data is not available, the LDA algorithm tends to over-
fit the objective function. In order to avoid overfitting, we use the regularized
version of LDA [3]:

Al XWLPAXTy

al’ XXT + aJ(a) (82)

arg max

a

where J(a) is the regularization term. This term provides us the flexibility to in-
corporate graph objective of NPE in the GE objective of LDA. The combination
of LDA objective with other graph based objective function for subspace learn-
ing are discussed and applied in [10] and [5]. We append the graph embedding
criteria of NPE as a regularization term to LDA. That is, define

Ossnpe = Orpa“+"OnpPE (33)
B al XWLPAXTy (34)
arg tax al’XXTa+ aaT XILNPEXTy
Al XWLPAXTy
= argmax - (35)
al’X(I +aLNPE)XTa

a

where I is defined as

~n
I
| — |

ég] (36)

and I is the [ x [ identity matrix.
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The objective function in (B3] reduces to solving the maximum eigenvalue
solution to the generalized eigenvalue problem

XWEIPAXTa = \X (I 4+ aLVPE)XTa (37)

To get a stable solution of (), the matrix X (I + aLVNPE)XT is required to
be non-singular [I1], which is not the case when the image dimension is larger
than the number of image samples. We apply Tikhonov Regularization [12], a
well studied solution to ill-posed problems in statistics, to solve the singularity
problem. The generalized eigenvalue problem in ([B7)) then becomes

XWIPAXTa = ) (X(f +aLVPEYXT 4 51)) a (38)

which has stable solutions for 8 > 0.

3.2 The Algorithm
The SNPDE algorithm consists of the following steps.

1. Construct the labeled graph G“P4: Construct the n x n weight matrix
WEDPA of the labeled graph.

2. Construct the unlabeled graph GN*F: Construct the k-nearest neigh-
bor graph matrix WNF# based on ([0) and calculate the graph lapla-
cian LNPE = D — WNPE where D is a diagonal matrix with entries
the column (since WNPE is symmetric, or row) sums of WNPE that is,
D;; = Zj W;}'PE.

3. Compute the projection matrix: The n x ¢ transformation matrix A =
[a1,...,a.] consists of eigenvectors corresponding to the largest non-zero
eigenvalues of the generalized eigenvalue problem in (B8]). Since W P4 is
of rank ¢, we will have exactly ¢ eigenvectors corresponding to the nonzero
eigenvalues.

4. Embed sample images into c—dimensional subspace: Each image sam-
ple can be embedded into c—dimensional subspaces by

Xi 7 Yi— ATXi

4 Experiments and Discussions

We present experiments and comparisons to demonstrate the effectiveness of
our proposed semi-supervised subspace learning algorithm. In section 1] we
describe the face image datasets that we used in our experiments. In section
we illustrate the face representations in lower dimensional subspace. The
implementation details and recognition error rates are reported in section
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4.1 Data Sets

We tested our proposed method on two face databases of CMU PIE [13], and
ORL [I4]. The CMU PIE database contains 68 subjects with 41,368 images of
varying poses, lighting and expressions. The ORL database includes 400 images
of 40 individuals under different poses and expressions. In our experiments on
the PIE database, we chose the frontal pose C27 with varying lighting and
illumination which leaves us with 43 images for each subject. In our experiments
on ORL database, we used all of the available 400 images in the dataset. Figure
[[ and 2 show a sample of images from PIE and ORL databases respectively.

The original images from the CMU PIE database were cropped (The ORL
images were already cropped) and the cropped images from both databases were
then resized to 32 x 32 pixels. Each image was represented by a 1024-dimensional
vector in the original image space. The training dataset which included labeled
and unlabeled data was used to learn a projection matrix to project the high
dimensional face images to a lower dimensional subspace. We then applied the
nearest neighbor classifier in the subspace to determine the recognition error
rate of the unlabeled data and the unseen test data. In all cases the training
and the test datasets were randomly selected from the database without mixing
between the training and testing data points. The results were averaged over 20
different runs.

BEEE O R
FAIEELCERF EEEEE

Fig. 1. Sample face images of the CMU PIE face database. Each subject has 43 different
images of frontal poses under different lighting conditions.

Fig. 2. Sample face images of ORL face database. Each subject has 10 face images
with a different pose and expression.

4.2 Face Representation

As mentioned earlier, a high dimensional vector such as the face image vector is
prone to the curse of dimensionality and is better studied in lower dimensional
subspaces. We compare three algorithms - NPE, SDA, and SNPDE for face
representation. In each of these methods, basis functions are thought of as basis
images, where each sample image is constructed as a linear combination of the
basis images. In Figure. Bl we illustrate first 10 SNPDFE faces together with
NPE faces and SDAfaces.
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(c) SNPDEfaces

Fig. 3. The first 10 NPEfaces, SDAfaces, and SNPDEfaces obtained from samples from
the PIE database

4.3 Face Recognition

Table [ and Table Bl summarize the recognition error rates of four different
algorithms. The baseline approach is simply the nearest neighbor approach on
the original image space. For the other approaches, training images (labeled
and unlabeled) are used to learn a subspace - in NPE approach the training
data is constructed in a similar way to the SDA and SNPDE approach, only
NPE considers labeled training data as unlabeled. After learning the projection
function and projecting the high dimensional data to the image subspace, nearest
neighbor classification is performed for recognition purposes. There are two kinds
of error rates reported here; the unlabeled error rate, and the test error rate.
Although the unlabeled data are used in the training stage, their labels still need
to be recognized by the subspace learning algorithm. Therefore, the unlabeled

Table 1. Comparison of recognition error rates on PIE database

Number of Error Rate(%)

Labeled Baseline(1024) SDA(68) NPE(30) SNPDE(68)

Samples Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test
1 68.10 68.80 61.12 61.23 55.02 57.06 49.77 49.75
2 56.40 56.49  43.26 43.78 39.93 45,58 31.45 33.61
3 51.36  46.43 3274 29.21 36.30 36.19 23.72 22.45
4 45.13  46.32  25.03 25.26 30.31 33.81 18.98 20.86
5 39.11 3847 19.18 18.04 2555 28.66 10.80 12.70
6 30.67  33.17 1549 14.58 20.85 23.37  8.20 8.22
7 26.89 27.68 1266 9.64 1734 20.52 5.24 4.69
8 29.50 27.25 11.02 948 1885 20.66 5.92 5.88
9 26.50  24.07 8.81 7.18 16.00 17.88 4.51 4.42

—_
o

18.02 17.53 4.39 4.33 11.36 14.37 1.97 2.95



210 M. Mehdizadeh et al.

Table 2. Comparison of recognition error rates on ORL database

Error Rate(%)

NPE(30) SNPDE(68)
Samples Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test
27.67 29.38 31.34 39.00 21.27 21.00
17.34 2275 20.32 38.13 13.80 15.13
11.50 1525 11.88  30.88 7.73 10.25
8.78 30.25 5.88 9.00
7.47 28.50 4.69 5.75

Number of

Labeled Baseline(1024)

U W N~

60

Recognition Rate %

50

40

30,
2

31.03
17.61
10.90
7.10
5.34

30.38
17.38
11.25
7.50
5.25

SDA (68)

9.93 12.50
8.00 9.00
ORL

—#— SNPDE
~— SDA
—tt— NPE

I
8 10
Number of Neighbors (k)

851

80

Recognition Rate (%)

651

—#— SNPDE
—#— SDA
—t— NPE

60
6

Fig. 4. The effect of the number of neighbors (k) on

7

8

9

I
10 11
Number of Neighbors (k)

subspace learning algorithms discussed in this paper

12

the performance of the three
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error rate is the error rate associated to the unlabeled data used at the training
stage, and the test error rate is the error rate associated with the unseen test
images.

The nearest neighbor approach does not consider the manifold structure, and
since its decision making is only based on Euclidean distance between images,
it provides a very poor performance due to illumination and pose changes. The
other approaches learn from the manifold structure, and their difference in per-
formance is due to whether or not they take into account labeled information
in their algorithm, and the way the manifold structure is modeled by graphs.
SDA is a subspace learning algorithm that considers both labeled and unlabeled
data, but since its graph cannot model the manifold structure as accurately as
the NPE algorithm does, its performance is inferior to SNPDE.

The error rate of NPE decreases, by increasing the amount of data used in its
training stage. The error rate of SDA and SNPDE decreases by increasing the
amount of labeled data used at their training stage.

Figure M illustrates the sensitivity of three graph-based subspace learning
algorithms - NPE, SDA, and SNPDE - to the number of nearest neighbors k in
the construction of graphs. The performance of graph-based subspace learning
algorithms depend on whether a data point and its nearest neighbors belong to
the same class. Therefore, when the number of points in each class in the training
data is less than the number of nearest neighbors k, then the possibility of
nearest neighbors belonging to different classes increases, consequently reducing
the performance of these graph-based methods. This is the case with ORL,
a small data set. In contrast, PIE is a large dataset, so in this case all the
methods are less sensitive to k. However, the SNPDE still maintains the highest
recognition rate of all three algorithms and also is less sensitive to k for both
datasets.

5 Conclusion

In this paper, we propose a new linear subspace learning algorithm called
Semi-supervised Neighborhood Discriminant Embedding. It can learn from both
labeled and unlabeled data to optimize the projection matrix based on both
discriminant and geometrical information of high dimensional data. The exper-
imental results on PIE and ORL database demonstrate the effectiveness of our
algorithm. As in real applications of biometric face recognition, data becomes
available to the system in incremental fashion, we will consider incremental semi-
supervised learning based on SNPDE in our future work.
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Abstract. We investigate a fundamental problem in computer vision:
unsupervised image segmentation. During the last decade, the Normal-
ized Cuts has become very popular for image segmentation. NCuts
guarantees a globally optimal solution in the continuous solution space,
however, how to automatically select the number of segments for a given
image is left as an open problem. Recently, the lossy minimum description
length (LMDL) criterion has been proposed for segmentation of images.
This criterion can adaptively determine the number of segments, how-
ever, as the optimization is combinatorial, only a suboptimal solution can
be achieved by a greedy algorithm. The complementarity of both crite-
ria motivates us to combine NCuts and LMDL into a unified fashion,
to achieve a better segmentation: given the NCuts segmentations under
different numbers of segments, we choose the optimal segmentation to be
the one that minimizes the overall coding length, subject to a given dis-
tortion. We then develop a new way to use the coding length decrement
as the similarity measure for NCuts, so that our algorithm is able to
seek both the optimal NCuts solution under fixed number of segments,
and the optimal LMDL solution among different numbers of segments.
Extensive experiments demonstrate the effectiveness of our algorithm.

1 Introduction

A fundamental problem in computer vision is to automatically partition a nat-
ural image into regions with homogeneous texture, commonly refers to as image
segmentation. Segmentation is widely accepted as a crucial function for many
visual tasks such as object recognition, scene understanding and monocular in-
ference of 3D structure. These recent vision applications have led to a renewed
interest in automatic image segmentation algorithms.

In the literature, investigators have explored several important models and
criteria that can lead to good image segmentation. Traditional clustering algo-
rithms aim at extracting the statistical characteristics of the region data, such
as k-means [I] and Mean Shift [2]. The graph based region merging algorithm
F&H [3] attempts to partition image into regions such that the resulting seg-
mentation is neither too coarse nor too fine. While region contours/edges contain

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 213 2011.
© Springer-Verlag Berlin Heidelberg 2011
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useful shape information about the saliency of the objects in the image [4], sev-
eral approaches have been proposed to combine the cues of homogeneous color
or texture with contours in the segmentation process [5] [6].

In recent years, much attention has been paid to spectral clustering algo-
rithms [7], in particular the Normalized Cuts criterion [§], which provides a way
of integrating global image information into the grouping process. The original
NCuts criterion is concerned on the 2-way situation, which aims at partitioning
image into two parts. Two recent variants extent the NCuts criterion to the
k-way multi-class and multi-scale situation, known as the Multi-class NCuts [9]
and Multi-scale NCuts [I0]. These progress address segmentation in a k-way
global optimization framework and guarantee a globally optimal solution in the
relaxed continuous solution space. However, the k-way NCuts criterion can not
automatically select the number of segments, k, since the objective function of
k-way NCuts increases monotonically as k is varied. In many applications such
as natural image segmentation, due to the diversity and complexity of image
contents and semantemes, the optimal number of segments k£ may be different
for varying images. For unsupervised segmentation, how to adaptively select the
number of segments k for varying images is a fundamental open problem left
in [9] and [I0]. We also note that how to construct affinity matrix is another
important issue in NCuts framework, which significantly influences the segmen-
tation performance [5] [IT].

More recently, an objective criterion based on the notion of lossy minimum
description length (LMDL) has been proposed for evaluating segmentation of
images [I2]. The “optimal segmentation” is defined as the one that minimizes
the number of bits needed to code the segmented data, subject to a given distor-
tion. The most recent progress based on LMDL [13] [I4] [I5] have shown that this
criterion is highly consistent with human segmentation of images. Preliminary
success of LMDL suggests that: firstly, it is appropriate for evaluating segmen-
tation performance objectively; secondly, the coding length serves as a reliable
similarity measure between pairs of regions; last, but not the least, LMDL can
adaptively determine the optimal number of segments for a given image. How-
ever, as the minimization problem is NP hard, a suboptimal solution is found by
iteratively merging regions to reduce the coding length. There is no theoretical
proof for the optimality of the greedy algorithm.

Although there are numerous criteria that address segmentation problem,
there is little consensus on what criteria strike a best balance between objec-
tive measures that depend solely on the intrinsic statistics of imagery data and
subjective measures that try to empirically mimic human perception. Some re-
cent works such as [I6] [I7] focus on giving a unified perspective and evaluation
procedure addressing the problem “what is a good segmentation”.

Paper contributions. In this paper, we contend that, much better results
can be obtained by properly combining different criteria for segmentation into
a unified fashion. We propose a unified framework combining both NCuts and
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LMDL criteria, to achieve an “optimal segmentation”. The main novelty and
the specific contributions of this paper are as follows:

1. We propose a method to automatically select the number of segments for
Multi-class NCuts, using LMDL criterion. The optimal number of segments
in NCuts is the one that the corresponding segmentation minimizes the over-
all coding length, subject to a given distortion. This perspective combines
both NCuts and LMDL criteria into a unified framework, to achieve the
optimal segmentation of given data.

2. We develop a new way to use the coding length decrement directly as a pair-
wise affinity measure, to build the affinity matrix in NCuts. This procedure
allows the proposed algorithm to seek both the optimal NCuts solution under
fixed number of segments and the optimal LMDL solution among different
numbers of segments, thus achieves a better segmentation.

3. The experiments validate that the proposed algorithm captures the advan-
tages of both NCuts and LMDL, thus achieves comparable or even better
segmentation results compared with the state-of-the-arts.

2 Related Work

We begin by reviewing Multi-class NCuts criterion and lossy minimum descrip-
tion length criterion, which are closely related to our work.

2.1 k-Way Normalized Cuts Criterion

Here, we focus on the k-way Normalized Cuts [9], which means partitioning an
image into k segments. Given an image I, we construct a graph G = (V, E, W).
Here the graph nodes V' can represent either pixels or “superpixels”, which is a
commonly used initiation in image segmentation [18]. Suppose there are in total
N nodes in the graph. Each pair of nodes is connected by a graph edge E. A
weight value W (i, j) represents the affinity between nodes 4, j, which measures
the likelihood of nodes ¢ and j belonging to the same image segments. For a
bipartition of the graph V =V, UV, U--- UV, VV;NV; = ¢,7 # j, the k-way
Normalized Cuts criterion is defined as:

min kNcuts(V) = h Z Ca‘?s%"‘jl\w) (1)

In the above equation, cut(V;, V\V}) = > W(i,j) measures how many
i€V, jeV\V,

edge weights escape from V}. assoc(V;,V) = >  W(i,j) measures how many
ieV,jeV

edge weights connects V.
Although directly optimizing the k-way NCuts is NP-hard, relaxing the
partition indication matrix into the continuous domain turns it into a tractable
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continuous optimization problem and can be solved by eigenvalue decomposition
of the normalized affinity matrix. This procedure is commonly known as spectral
relaxing [9]. Based on the relaxed continuous solution, the final discrete solution
is obtained by spectral rotation.

From Corollary 1 in [9], the k-way NCuts objective increases monotonically
as k increases. This result indicates that k-way NCuts can not adaptively select
the number of segments k for a given image. Consequently, how to adaptively
choose k remains an open problem.

2.2 Lossy Minimum Description Length Criterion

In [12], Ma et.al proposed an objective measure to evaluate the quality of seg-
mentations, which is based on the lossy minimum description length (LMDL)
criterion. This criterion draws strong connection between data compression and
segmentation. The optimal segmentation is defined to be the one that mini-
mizes the number of bits needed to code the segmented data, subject to a given
distortion.

First, we consider a single region V; with m,; pixels. Based on [12], for a fixed
distortion e, the number of bits needed to code V; under Gaussian case can be
written as:

T
Ly =""1" e, 2)
where p; and X; are the sample mean and variance of region V;, p is the sample
dimension of data.

Suppose an image I can be segmented into non-overlapping regions V =
ViuVaUu- - UV, VV;NV; = ¢,% # j. The LMDL criterion seeks to minimize
the overall coding length of the image I:

log, det (I + :;Zi) + 12’ log, (1 +

k
min L(Vi, Ve, .., Vi) = D [L(V;) + mi(— logy(m; /m))] 3)
i=1
In the above expression, m is the total number of pixels in an image, i.e., m =
mq + mo + ... + my. The second term is the number of bits needed to code the
membership of the m samples in the k groups (using the Huffman coding).

It is worth noticing that, once the distortion ¢ is fixed, the number of segments
in the segmentation is automnatically determined [12]. This completely avoids the
necessity of additional interaction usually required with traditional segmentation
methods, such as k-way NCuts.

However, as this minimization problem is combinatorial, all the LMDL based
algorithms seek a suboptimal solution via an agglomerative way: first initialize
superpixels and assume each superpixel forms its own group, then iteratively
merge adjacent pair of regions that yields the largest decrease in coding length
until the overall coding length achieves a local minima.
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3 LMDL-NCuts: A Combined and Unified Criterion

We now describe our approach, which aims at combining both NCuts and LMDL
into a unified fashion. We describe the general criterion below, then discuss the
construction of the affinity matrix using the coding length decrement.

3.1 The Combined Criterion

From the previous section, it is clear that k-way NCuts addresses segmentation
in a global optimization framework and guarantee a globally optimal solution in
the continuous solution space. However, how to adaptively choose the number of
segments k is left as an open problem, especially in the semantically complicated
scenario such as natural image segmentation. On the other side, LMDL crite-
rion can automatically determine the number of segments. However, the LMDL
optimization is combinatorial, only local minima can be guaranteed. The com-
plementarity of both criteria motivates us to combine both criteria into a unified
fashion, to achieve a better segmentation. That is, given the NCuts segmenta-
tions under different ks, we choose the optimal segmentation to be the one that
minimizes the overall coding length, subject to a given distortion. We refer this
combined criterion to as LMDL-NCuts criterion. Note that under this criterion,
the optimal number of segments is adaptively determined.

3.2 Initializing

In the original NCuts algorithm, the segmentation is directly performed on the
image pixels. There are two problems for such a processing. First, each pixel
will be a node in the graph so that the computational cost will be very high.
Second, two pixels are connected in a graph if and only if their spatial distance
is smaller than a graph connection radius G, [10], which makes the original
NCuts not able to catch the global graph topology and information. It has been
investigated in [10] that larger G, generally makes segmentation better. These
problems can be solved by initializing an image with millions of pixels into a few
hundred or thousand “superpixels”. A superpixel is a small region that does not
contain strong edges in its interior. There are several algorithms that can be used
to obtain a superpixel initialization [3] [19] [20]. We have compared the three
methods in the experiments and found that [20] works best for our purpose.
Such superpixel initialization greatly reduce the computational cost, and also,
the graph connection radius constraint is no longer a necessity in our approach.

3.3 Construct Affinity Matrix

Since we build the segmentation based on the superpixel level, how to define the
similarity between two superpixels is another important issue.

! We use the publicly available code for this method available at
http://wuw.cs.sfu.ca/~mori/research/superpixels/|with parameter Ny, = 200.
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Since we are potentially seeking for the segmentation that can yield minimum
lossy coding length, a direct way is to link the coding length with the similarity
measure. In the LMDL based algorithms, the coding length decrement is used
implicitly as a similarity measure between pair of regions, i.e., the decrease in
the coding length essentially captures the similarity of the regions [15}. The
larger coding length decrement means the pair of regions is more similar, so that
they are merged in the LMDL based algorithms. Previous success of the LMDL
based algorithms [12] [I3] [15] suggests that the coding length decrement is a
reliable similarity measure between regions. In our work, we directly use the
coding length decrement as the affinity W (¢, j) between superpixels V; and Vj.
Based on Equation 2 and Bl the affinity can be written as:

Wi, j) = L(Vi, Vj) = L(V: U V)

m;+ m;+p T . T, .
_10 [‘I+sp2 Zz' E p|1+;; Z]‘ 72 . (1+u’i;1)g(1+ui:J)g .(m)'rn,y(m)'rnj]
o (RS (1++5)3 mi/ Ay

22

Here (p, X)) are the sample mean and variance of region V; UV}, respectively.
Note that W(i,j) < 0 means merging V;,V; will increase the overall coding
length, which indicates that V;,V; are dissimilar. In this case, we simply set
W (i,j) = 0. The calculated affinities are then normalized into the range [0,1].
The NCuts optimization is conducted based on the affinity matrix.

3.4 The Algorithm

Based on the previous discussion, we summarize the overall segmentation algo-
rithm in Algorithm 1, which we refer to as LMDL-NCuts Segmentation (LNC).

Algorithm 1. LNC

1. Input: image data I, distortion ¢;
2. Initialization: superpixels as graph nodes: V := {V; = {v} |v € V};
3. Construct affinity matrix based on the coding length decrement;
4. for k =1 : M do
SegmentationResults(k) = NCuts(k);

5. Choose SegmentationResults(¢) that yields the smallest overall coding length;
6. Output: SegmentationResults(z).

N0 A WwN e

Note that for the maximum number of segments M , one can choose it to be the
initial number of superpixels. However, we found that for most natural images,
the number of segments larger than 40 leads to serious oversegmentation. So in
our experiments, we set M = 40.

2 The general spirit of a bottom-up segmentation process is to merge the “similar”
regions. In the LMDL based algorithms, the pair of regions that yields the largest
decrease in the coding length is merged in each iteration, which means they are
“most similar” measured by the coding length similarity measure.
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4 Experiments

In this section, we conduct extensive evaluation on two publicly available
datasets: Berkeley Segmentation Dataset [21] and MSRC Object Recognition
Dataset [22], to validate the performance of the proposed LNC algorithm. We
will first describe the features used in our method. In section 4.2, we will validate
that LMDL-NCuts is effective on selecting the appropriate number of segments.
In section 4.3, we will discuss the effect of distortion parameter and make a close
comparison with LMDL based algorithm. Both qualitative and quantitative re-
sults compared with the state-of-the-arts are listed in section 4.4.

4.1 Feature Construction

As shown in Figure[I] given an image, we convert it to the L % a x b color space.
In order to capture the variation of a local texture, we directly use the 7 x 7
cut-off window around each pixel and stack the color values inside the window
into a vector form. Each texture window is smoothed by convolving with a 2D
Gaussian kernel before stacking. Finally, for the ease of computation, we project
the feature vectors into a D-dimensional space using PCA. We have observed
that for most natural images, the first eight principal components of original
feature data contain over 99% of the energy. So we set D = 8. The feature
extraction and pre-processing are similar as in [I5].

Fig. 1. Feature construction. The 7 x 7 windows around each pixel on the L xa * b
color space are convoluted with 2D Gaussian kernel, stacked into a one column vector
and then use PCA.

4.2 Adaptively Select the Number of Segments

We conduct experiments on the MSRC Object Recognition Dataset [22] to val-
idate that our LNC algorithm can adaptively select the appropriate number of
segments for NCuts. MSRC dataset consists of 591 images grouped into 20 cat-
egories. Each image consists of a salient object, and the background is not so
complicated so that it is visually not hard to validate the appropriate number
of segments. We found that under ¢ = 0.20, the minimum description length
solution provides the best visually appealing results, i.e., for most of the images,
our algorithm can adaptively determine a reasonable number of segments. Some
sample results are listed in Figure
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Fig. 2. (color) Qualitative results on the MSRC Object Recognition Database. For
each result, the top is the original image, and the bottom is the segmentation results
with each region colored by its mean color.

4.3 Comparison with LMDL Based Algorithm

We then conduct experiments on the Berkeley Segmentation Dataset (BSDS) [21].
BSDS consists of 200 training and 100 test images, and each of them has been
manually segmented by a number of different subjects. Since the proposed algo-
rithm is based on the LMDL criterion, it is worth comparing our algorithm with
the LMDL based algorithms. Because we use the coding scheme proposed in the
pioneer work [I2], in this section, we compare LNC with the algorithm proposed
in [12], namely Pairwise Steepest Descent (PSD). More comparison with other
LMDL based algorithms can be found in section 4.4.

Note that the distortion € is the only parameter in LMDL criterion. In the
experiment, we compare PSD’s results with our results under 4 different choices
of £: 0.10, 0.15, 0.20 and 0.25. We use three quantitative measures to evalu-
ate the segmentation results: the average overall coding length (under given
distortion), the Probability Rand Index (PRI) [23] and the Variation of Infor-
mation (VoI) [24]. The objective of LMDL is to seek for the smallest coding
length, so the smaller average overall coding length, the better the segmentation
is. PRI and Vol aim at comparing the segmentation results with ground-truth
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Table 1. Comparison between LNC algorithm and PSD algorithm. For average coding
length, lower is better. For PRI, higher is better. For Vol, lower is better. Boldface
indicates the better results.

€=20.10 €=20.15 € =0.20 €=0.25

Method/Index LNC PSD LNC PSD LNC PSD LNC PSD

avg. code length (kb) 2361 2321 1868 1865 1562 1573 1331 1364

PRI 0.777 0.756 0.783 0.758 0.791 0.748 0.776 0.724

Vol 2.069 2.316 1.883 2.062 1.804 1.925 1.763 1.896
&=0.15 &=0.20 &=0.25

Fig. 3. (color) Segmentation results under different €. Left: Input image. Right: Seg-
mentation results under ¢ = 0.15, 0.20, 0.25, respectively.

results. For PRI index, the larger, the better. And for Vol, the smaller, the bet-
ter. For brevity, we refer the reader to the stated references for the definition of
each metric.

The results are listed in Table [l For both PRI and VoI under all choices of
€, LNC consistently outperforms PSD. As choosing the distortion is the main
difficulty in the LMDL based algorithms, here we note that the LNC algorithm is
less sensitive to the choice of distortion. And, as illustrated in Figure[3] the effect
of the distortion to the segmentation result is the same as in [I5]: smaller choice
of € turns to over-segment images and larger ¢ turns to under-segment images.
We also note an interesting result that LNC achieves comparable or even smaller
average coding length compared with PSD, which is designed to directly mini-
mize the coding length. These results suggest that the LNC algorithm captures
both advantages of LMDL and NCuts, thus achieves a better segmentation.

4.4 Qualitative and Quantitative Comparison

We compare the performance of the LNC algorithm with five publicly available
image segmentation methods: Mean-Shift (MS) [2], F&H [3], Multi-scale NCuts
(MNCuts) [10], Compression-based Texture Merging (CTM) [13] and Texture
and Boundary Encoding-based Segmentation (TBES) [I5], on the Berkeley
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Table 2. Quantitative comparison on the BSDS. Boldface indicates the best results.

Index/Method Human LNC MS FH MNCuts CTM TBES

PRI (Higher is better) 0.868 0.791 0.772 0.770 0.742 0.742  0.787
Vol (Lower is better) 1.163 1.804 2.203 2.844 2.651 2.002 1.824

Fig. 4. (color) Qualitative results of LNC algorithm on the BSDS. For each result, the
top is the original image, and the bottom is the segmentation with each region colored
by its mean color.

Segmentation Dataset (BSDS). The performance of these five methods and that
of human’s, based on PRI and VOI measures, were obtained by personal commu-
nication with the authors of [I5]. The user-defined parameters of these methods
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Fig. 5. (color) Qualitative results of LNC algorithm on the BSDS

have been tuned to achieve the best overall tradeoff between PRI and Vol. In
particular, we report our results under € = 0.20. Table 2 summarize the quanti-
tative results on the BSDS.

Among all the algorithms in Table Pl LNC achieves the best result on both
PRI and Vol. More qualitative results are shown in Figure 4l and

5 Conclusion

In this paper, we have proposed a unified approach to image segmentation. It
seeks both the optimal NCuts solution under fixed number of segments, and
the optimal LMDL solution among segmentations under different numbers of
segments. Our approach can automatically select the number of segments for
NCuts, subject to a given distortion in LMDL criterion.We also develop a novel
way to directly use the lossy coding length decrement as the affinity measure
between superpixels, and use this affinity measure to construct affinity matrix.
The experiments validate that the proposed algorithm can adaptively select the
appropriate number of segments for a given image, and can yield comparable or
even smaller overall coding length compared with the LMDL based algorithms.
The segmentation results match well with human segmentations, compete or
exceed with the best segmentation algorithms.

Acknowledgement. This work was supported by NBRPC(2011CB302400),
NSFC/(60635030), NSFC(61075003) and NSFC(60775005).

References

1. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley and Sons, Chich-
ester (2001) 0-471-05669-3

2. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. PAMI 24, 603-619 (2002)

3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
1JCV 59, 167-181 (2004)

4. Ren, X., Fowlkes, C., Malik, J.: Learning probabilistic models for contour comple-
tion in natural images. IJCV 77, 47-63 (2008)



224

5.

6.

7.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Jiang et al.

Malik, J., Belongie, S., Leung, T.K., Shi, J.: Contour and texture analysis for image
segmentation. IJCV 43, 7-27 (2001)

Zhu, S.C., Tu, Z.W.: Image segmentation by data-driven markov chain monte carlo.
PAMI 1I, 131-138 (2002)

Chung, F.R.K.: Spectral graph theory. Regional Conference Series in Mathematics,
vol. 92, pp. 1-212. American Mathematical Society, Providence (1997)

. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22, 888-905

(2000)

. Yu, S.X., Shi, J.B.: Multiclass spectral clustering. In: ICCV, pp. 313-319 (2003)
. Cour, T., Benezit, F., Shi, J.B.: Spectral segmentation with multiscale graph de-

composition. In: CVPR, vol. II, pp. 1124-1131 (2005)

Kim, T H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral seg-
mentation. In: CVPR (2010)

Ma, Y., Derksen, H., Hong, W., Wright, J.: Segmentation of multivariate mixed
data via lossy data coding and compression. PAMI 29, 1546-1562 (2007)

Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Unsupervised segmentation of natural
images via lossy data compression. CVIU 110, 212-225 (2008)

Rao, S.R., Mobahi, H., Yang, A.Y., Sastry, S.S., Ma, Y.: Natural image segmenta-
tion with adaptive texture and boundary encoding. In: Zha, H., Taniguchi, R.-i.,
Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 135-146. Springer, Heidel-
berg (2010)

Mobahi, H., Rao, S.R., Yang, A.Y., Sastry, S.S., Ma, Y.: Segmentation of natural
images by texture and boundary compression. In: arXiv:1006.3679v1 (2010)
Bagon, S., Boiman, O., Irani, M.: What is a good image segment? A unified ap-
proach to segment extraction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV
2008, Part IV. LNCS, vol. 5305, pp. 30—44. Springer, Heidelberg (2008)

Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: An
empirical evaluation. In: CVPR, pp. 2294-2301 (2009)

Ren, X.F., Malik, J.: Learning a classification model for segmentation. In: ICCV,
pp. 10-17 (2003)

Ren, X.F., Fowlkes, C.C., Malik, J.: Scale-invariant contour completion using con-
ditional random fields. In: ICCV, vol. II, pp. 1214-1221 (2005)

Mori, G.: Guiding model search using segmentation. In: ICCV (2005)

Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: ICCV, vol. 2, pp. 416-423 (2001)

Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp.
1-15. Springer, Heidelberg (2006)

Rand, W.M.: Objective criteria for the evaluation of clustering methods. American
Statistical Association Journal 66, 846-850 (1971)

Meila, M.: Comparing clusterings: An axiomatic view. In: ICML (2005)



A Phase Discrepancy Analysis of Object Motion

Bolei Zhou'?*, Xiaodi Hou®*, and Liqing Zhang'

! MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems,
Dept. of Computer Science and Engineering, Shanghai Jiao Tong University
2 Dept. of Information Engineering, The Chinese University of Hong Kong
3 Dept. of Computation and Neural Systems, California Institute of Technology
zhoubolei@gmail.com, xiaodi.hou@gmail.com, zhang-1q@cs.sjtu.edu.cn

Abstract. Detecting moving objects against dynamic backgrounds
remains a challenge in computer vision and robotics. This paper presents
a surprisingly simple algorithm to detect objects in such conditions.
Based on theoretic analysis, we show that 1) the displacement of the
foreground and the background can be represented by the phase change
of Fourier spectra, and 2) the motion of background objects can be ex-
tracted by Phase Discrepancy in an efficient and robust way. The algo-
rithm does not rely on prior training on particular features or categories
of an image and can be implemented in 9 lines of MATLAB code.

In addition to the algorithm, we provide a new database for moving
object detection with 20 video clips, 11 subjects and 4785 bounding boxes
to be used as a public benchmark for algorithm evaluation.

1 Introduction

Detecting moving objects in a complex scene is one of the most challenging prob-
lems in computer vision. It is closely related to a variety of critical applications
such as tracking, video analysis, content retrieval, and robotics. Generally speak-
ing, motion detection methods can be categorized into three main approaches:
background modeling, detection by recognition, and view geometry.

Many models try to attack the problem of detection under controlled situa-
tions. For instance, some algorithms assume a stationary camera. This assump-
tion leads to a branch of techniques called background subtraction. The main
idea is to learn the appearance model of the background [I] [2]. A moving ob-
ject in the scene is then detected by subtracting the background image from the
current image. However, scene appearance captured by a moving camera, with
foreground and backgrounds in arbitrary depths and viewpoints, can be very
complicated. Thus, most of the background models perform poorly on moving
camera recordings [3].

Another branch of popular algorithms stems from object detection and recog-
nition. Based on pre-trained detectors, an algorithm can detect objects from
particular categories, such as faces [4] or pedestrians [5]. These algorithms usu-
ally require offline training and can only handle a very limited number of ob-
ject categories. Moreover, finding an invariant object detector that overcomes

* These two authors contributed equally to this paper.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITI, LNCS 6494, pp. 225 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. An illustration of moving object detection from a perspective of optical flow
analysis. A): A video sequence with both object motions and camera motion. B):
The corresponding optical flow. C): The segmentation result that detects the moving
objects.

illumination/view-point changes and occlusion, is already a challenge in
computer vision.

To circumvent these problems, some other algorithms detect motion via cam-
era geometry [6] [7]. This approach estimates the camera parameters under
certain geometric constraints, use these parameters to compensate for camera-
induced motion, and separate the moving object from the residual motion in the
scene [§].

In principle, a visual system needs only motion cues to detect an moving ob-
ject —even if the scene is disturbed by camera’s ego-motion. With full knowledge
of the optical flow, the mission of object detection is to find the cluster of consis-
tent motion that is induced by the foreground. Nevertheless, the computational
burdens of an optical flow algorithm is usually very heavy.

Related Work. In 2001, Vernon [9] proposed using a Fourier transform to
untangle the complexity of object motions. In his theory, object segmentation
and exact velocity recovery can be achieved by solving a linear system. Based
on the translation property of Fourier transform, a moving object corresponds
to a phase change in the Fourier spectrum. For a scene composed of m objects,
exact recovery is achieved by solving a linear equation with 2m unknowns. The
drawback of this approach is that the number m of objects must be specified
beforehand. Moreover, the segmentation and velocity recovery requires observing
2m frames, which every object moving at a constant speed. These constraints
preclude Vernon’s approach from real-world applications.

An Outline of Our Approach. We start from a similar perspective to that
of Vernon: spatially distributed information can be efficiently accumulated in
the Fourier spectrum. However, instead of finding the exact solution for a con-
strained problem, we find an approximate solution using a minimal number of
assumptions.

To extract moving objects from dynamic backgrounds, our model follows the
idea of predictive coding. First, we predict the next frame only considering back-
ground movements. Then by comparing our prediction against the actual obser-
vation, pixels representing the foreground emerge due to the large reconstruction
error. With rigorous analysis, we show that a 9-line MATLAB approximation
recovers the camera motion with bounded error.
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2 The Theory

We denote f(x,t) as our observation at time 4, where x = [z1,22]T is the 2-
dimensional vector of a spatial location. Let Z be the ensemble of pixels. For any
image, we have the partition Z = {F;, B;}. Every pixel belongs to the foreground
F: or the background B;.

For typical sampling rates, the ego-motion of the camera is well approximated
by a uniform translation of the background. If we know this displacement v =
[’017’02]T7 we can predict the appearance of the background in the next frame
based on the intensity constancy assumption [I0] that the spatial translation
does not change pixel values:

flxt) = f(x+v,t+1), wherex € B )|Bis (1)

This assumption requires that pixels x at ¢ and x + v at ¢ + 1 belong to the
background. We further denote B, = Bt+1 = B Biy1-

Once we have the ground-truth of the ego-motion, we can reconstruct the next
frame by shifting every pixel from x to x 4+ v. This reconstruction is expected
to perform poorly for pixels in Z — B;, the foreground. Thus, we can take the
error as a likelihood function of the appearance of moving objects at certain
locations. In other words, the reconstruction error map s(x,t) can be considered
as a saliency map [I1] for moving objects:

dxﬂz[ﬂx+mt+nffwjﬂ% (2)

2.1 Phase Discrepancy and Ego-motion

In order to generate the saliency map, we need to know the displacement vector
v. In the Fourier domain, the spatial displacement in Eq[l can be efficiently
represented by the phase of the Fourier spectrum.

Let Fx, +(w) = F[f(x,t)-0x,(x)] denote the 2-D Discrete Fourier transform of
a single pixel, where w = [wy,ws] ", and the indicator function dy, (x) is defined

as:
1if x € x;,
0xi (%) = {O otherwise.
The Fourier spectrum of the entire image F;(w) can be obtained by:
Fw) =Y Fx(w)

x; €T

Known as the translation property [12], a spatial displacement entails a phase
change, yet leaves the Fourier amplitudes intact:

Frivii1(w) = B g(w)e M), (3)

! For simplicity, we only consider gray-scale images in this section. A simple extension
to color images is provided in Section
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where &(v) = w'v =wv + wove, which we call the phase discrepancy in the
following discussions.

Because the entire background has approximately the same displacement v,
EqB has a compact form for By:

Z Fyitr1(w Z Fya( ﬂ@(v)- (4)

x; €811 x;€B:

We have the following decomposition:

Fiyi(w Z Fy, 141 (w Z Fy, t(w _M;(V) + Z Fy; t41(w)

x;€T x;EB; xieffl’;’“rl
= F(w)e ™™ — 3" Fou(w)e ™M+ 3" Fon(w).
X, €EL—By x;€L—Bii1

Although it seems impossible to calculate $(v) without the foreground /background
partition, in the next section we show that good approximations of phase discrep-
ancy is achievable in some cases.

2.2 Approximating the Phase Discrepancy

Since it is impossible to quantify the appearance and location of the pixels in
T — B, we assume Fy, ;(w) follows an independent normal distribution in the
complex domain, that is:

Real{ Fx, +(w)} ~ N(0,1); Imag{Fy, +(w)} ~ N(0,1). (5)

For a simpler notation, we define a complex variable z; = Fy, ;(w). Let Z, =
>, 2z be the sum of this sequence. We have the following:

Real{Z,} ~ N(0,n)
lnag{Zu} ~ N(0,)
Because |Z,| = \/Real{z;}2 + Imag{z;}2, it follows a y distribution with 2 de-

grees of freedom:
2
p(|Zn| = 2) = Vnoze /2, (6)

Thus, the expectation of the spectral amplitude is determined by the number of
pixels in the summation. More specifically:

B(RW))  _ V#@) (1)
B Y Br@)) (/48
XiEBt,

The number of pixels in the foreground and background are estimated from our
hand labeled database (see Section[3). On average, our bounding box of the
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foreground (an over-estimation of the actual foreground) occupies 5% pixels of
the frame . Thus we approximate the phase discrepancy in Eq[hl by:

O(v) = LFiq1(w) — LF(w). (8)

The estimation error comes from the pixels of the foreground and occluded parts
of the background. The cumulative effect of these pixels at frequency w can be
considered as added noise to variable 7 to the original variable Ft(w)e_i“p(") in
EqB where:

n=- Z P, i(w)e 7PN + Z Fyi 1 (w).

xz‘GIth xiGIfl%H,l
From Eq[T we set Fj(w)e *?™) to 1 to determine the distribution of #:

B
E(n|) = TRV~ U(0,27). (9)

The upper bound of error in <1~5(v) is therefore:

max [$(v) — ii(v)] = max { tan""' [E(|n|)] } ~ 0.31. (10)

| \ \(D(V) Re

Fig. 2. A diagram of the angular error calculation. Given E(|n|) = v/0.1, the upper
bound of the angular error is 0.31 (17.6°), the mean angular error is 0.21 (12.3°).

As long as the approximation in E~q holds, we can construct the estimated
spectrum Fii1(w) from Fi(w) and &:

Ft.t,.l((d) = Ft(w)e—i~43(v) = |Ft(w)| . e_i[éFt(“))""‘i;(V)]
= |Fy(w)| - e~ 4 1 (w)]

Finally, the saliency map has the simple form:

2

s, t) = { T R @)] - 7[R @)] |
(B (@)] - [B@)]) - <R @) ()

2 In other databases such as [I3] and [I4], objects are in a similar size.
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2.3 Eliminating Boundary Effects

The 2-D Discrete Fourier Transform implicitly implies periodicity of the signal.
This property invalidates Eq[Il since pixels around the edge of the frame do not
have their correspondences in the next frame. As a result, these frame-edges
often have very large reconstruction errors and mislead the saliency maps (see
FigBlC).

Assume we have two adjacent image frames. We use C; and Cy to denote the
pixels that lead to boundary effects. That is:

C1:{X¢|Xi€B1,Xi+V¢I}; ng{xi\xieBz,xi—v¢I} (12)

If we predict frame 2 based on frame 1 (as EqlIl states), we will have a large
error at C;. However, using Eq[ITl we have no problem in recovering pixels in
C>. Reciprocally, if we reverse the temporal order — reconstructing frame 1 from
frame 2, only Cy has boundary effect.

In a more rigid format, we denote the temporally ordered saliency map that
compares the predicted frame 2 with observed frame 2 as 5 (x,t), and the
saliency map using reversed sequence (predicting frame 1 from frame 2) as
S (x,t +1). We have:

S (x4,t) >, wherex; € Cy; S (x5,t+1) <e, wherex; €C;
S (x,t) <&, where x; € Co; S5 (xi,t+1) >¢, where x; € Co,

where ¢ is bounded by Eq[I0
In an elegant form, we finally eliminate the boundary effect by combining the
two maps:

s, t) = /T, t) - Tt +1) (13)

For Vx; € C1|JCa, it is easy to see that s(x;,t) — 0 as either s (x;,t) — 0, or
5 (x,t+ 1) — 0. The saliency map generated by Eq[[3 is shown in Fig[BlD.

o) D)

Fig. 3. An illustration of the boundary effect. A) & B): Two adjacent frames. Green
and red shadows in each frame indicates C1 and Ca, respectively. C): The saliency map
based on single sided temporal order. Note that the border effect is as strong as the
moving pedestrian in the center. D): The final saliency map.
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3 Experiments

3.1 Implementing the Phase Discrepancy Algorithm
In MATLAB, the phase discrepancy algorithm is:

FFT1=fft2(Framel) ;

FFT2=fft2(Frame2) ;

Ampl=abs(FFT1);

Amp2=abs (FFT2) ;

Phasel=angle(FFT1) ;

Phase2=angle(FFT2) ;

mMapl=abs (ifft2( (Amp2-Amp1l) . *exp (i*Phasel)));
mMap2=abs (ifft2( (Amp2-Amp1) . *exp (i*Phase2)));
mMap=mat2gray (mMap1l . *mMap2) ;

Framel and Frame2 are consecutive frames. In our experiment, the size of image
is gray-scaled and shrank to 120 x 160. On a 2.2GHz Core 2 Duo personal
computer, this code performs at refresh rates as high as 75 frames per second.

One natural way to extend this algorithm to color images is to process each
color channel separately, and combine saliency maps for each channel linearly.
However, by tripling computational cost, the foreground pixels of color images
does not seem to violate the intensity constancy assumption three times stronger
than the gray-scale image. Indeed, our observation is corroborated by experi-
ments. A comparison experiment of color image detection is in Section[3.3l Since
our algorithm emphasizes processing speed, we use gray scale images in most of
our experiments.

We also notice that in real world scenes, the intensity constancy assumption
is subject to noises, such as background perturbation (moving leaves of a tree),
sampling alias, or CCD noise. One way to reduce such noise is to combine the
results from adjacent frames. However, we can only do so when the sampling rate
is high enough such that the object motion in the saliency map is tolerable. In
our experiments, we produce a reliable saliency map from 5 consecutive frames.
At 20Hz, 5 frames takes about 0.25 second, this approach reduces the noise
effectively without causing a drift in the salient region (see FigH]).

B) Q) D)

Fig. 4. A comparison of combining the saliency maps of different frames. A):One frame
of one video clip. B): The saliency map computed by 2 frames. C): The saliency map
by combining 5 frames (0.25 second). D): The saliency map by combining 20 frames
(1 second).
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3.2 A New Database for Moving Object Detection

There are several public databases for evaluating motion detectors and trackers,
such as PETS [I3] and CAVIAR [I4]. However, very few of them considered
camera motion. In this section we introduce a new database to evaluate the
performance of an moving object detection algorithm.

Fig. 5. Sample frames of clips in the database of object motion detection. Both scenes
and moving objects vary from clips to clips.

Our database consists of indoor/outdoor scenes (see Fighl). All clips were
collected by a moving video camera under 20 FPS sampling rate. Different cate-
gories of objects are included in the video clip, such as walking pedestrians, cars
and bicycles, and sports players. Given the high refresh rate, motion in adjacent
frames are very similar. Therefore it is unnecessary to label every frame. The
original 20 FPS videos are given to our subjects for motion detection. For label-
ing, we asked each subject to draw bounding boxes on a small number of key
frames by sub-sampling the sequence on a 0.5-second interval. Eleven naive sub-
jects labeled all moving objects in the video. Some numbers from this database
are in Table[Il

Table 1. A summary of our database

Items Clips Frames Labelers Key frames Bounding boxes
Number 20 2557 11 297 4785

The evaluation metric of the database is the same as PETS [15]. Although we
have data from multiple subjects, the output of an algorithm is compared to one
individual at a time. Let Rgp denotes the ground truth from the subject. The
result generated by the algorithm is denoted as Rp. A detection is considered a
true positive if:

Area(RgT N Rp)
Area(Rgr U Rp)

The threshold Th defines the tolerance of a post-system that is connected
to an object detector. If we use a loose criterion (Th is small) even a minimal
overlap between the generated bounding box and ground truth is considered a
success. However, for many applications, a much higher overlap, equivalent to a
much tighter criterion and a larger value of T'h, is needed. In our experiments,
we use Th = 0.5.

> Th, (14)



A Phase Discrepancy Analysis of Object Motion 233

For the n'" clip, using the i*" subject as the ground truth, we use GT:, TP!,

FP! to denote the number of ground truth, true positive, and false positive
bounding boxes, respectively. The Detection Rate(DR) and False Alarm Rate
(FAR) is determined by:

TPt CFP?
DRn:Z’ n FAR, = Z’, noo.
> GT} > TP+ FP}

In a frame where multiple bounding boxes are presented, finding the correct
correspondence for Eq[I4lcan be very hard. Given a test bounding box, we simply
compare it against every ground truth bounding box, and pick the best match.
Although this scheme does not guarantee that one ground truth bounding box
is used only once, in practice, confusions are rare.

(15)

3.3 Performance Evaluation

To determine bounding boxes from the saliency map, an algorithm needs to
know certain parameters such as spatial scale and sensitivity. To achieve a good
performance without being trapped by parameter tuning, we use Non-Maximal
Suppression [16] to localize the bounding boxes from the saliency map. This
algorithm has three parameters [07, 02, 03].

First, the algorithm finds all local maxima within a radius ;. Every local
maximum greater than 6s is selected as the seed of a bounding box. Then, the
saliency map is binarized by threshold #3. Finally, the rectangular contour that
encompasses the white region surrounding every seed is considered as a bounding
box.

It is straightforward to assume that the parametrization is consistent over
different clips in our database, and the locations of objects are independent
among different clips. Therefore, we use cross-validation to avoid over-fitting
the model. In each iteration, we take 19 clips as the training set to find the
parameters that maximizes:

Z DRm(l - FAR»,”),

me{training}

And use the remaining clip to test the performance. The final results of DR
and FAR are the average among different clips. Samples of detected objects are
shown in Figl6l The quantitative result of our model is listed in Table

3.4 Comparison to Previous Methods

To evaluate the performance of our algorithm, four representative algorithms are
introduced to give comparative results on our database: the Mixture of Gaus-
sian model [I], the Dynamic Visual Attention model [I7], the Bayesian Surprise
model [I§], and the Saliency model [I1]. MATLAB/C++ implementation of all
these algorithms are available on authors’ websites. Examples of the generated
saliency maps are shown in Fig[ll As for the quantitative experimental part, the
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parameters of Non-Maximal Suppression is trained in the same way as we de-
scribed in Section[3.3] to generate bounding boxes from the saliency maps. The
quantitative results are shown in Table2l Our phase discrepancy model is the
best in detecting moving objects.

It is worth noting that not all of these algorithms are designed to detect
moving objects in a dynamic scene. In fact, the performance of an algorithm is
determined by how well its underlying hypothesis is consistent with the data. In
our database, an “object” is defined by its motion in contrast to the background.
There is no assumption such as objects possessing unique feature, or background
being monotonous. Therefore, it is not surprising that some algorithms did not
perform very well in this experiment.

3.5 Database Consistency

The motivation behind the analysis of database consistency comes from the
fact there is no objective “ground truth” for moving object detection. Although
ground truth consistency issue is not widely concerned in the object detection
and tracking databases, List et.al. [I9] analyzed the statistical variation in
the hand label data of CAVIAR [14], and showed that inter-subject variability
can compromise benchmark results. In our database, we also observed that the
same video clip can be interpreted in different ways. For instance, in FiglR A,
some subjects label multiple players as one group, yet other subjects label every
individual as one object.

A good benchmark should have consistent labels across subjects. To evaluate
the consistency of our database, we assess the performance of the i*" subject

Fig. 6. Result saliency maps and the bounding boxes. In each image/saliency map
pair, red bounding boxes are generated by our algorithm. Yellow bounding boxes are
the ground truth drawn by a human subject.
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/ﬂ 1 d

Fig. 7. Saliency maps generated by different algorithms. A): Original image. B): Our
model. C): Dynamic Visual Attention [I7]. D): Bayesian Surprise [18]. E): Saliency [11].
F): Mixture of Gaussian [1].

Table 2

Detection Rate False Alarm Rate

Human average 0.84 +£0.08 0.15 £ 0.08

Our model 0.46 +£0.14 0.58 £ 0.24

Our model (color) 0.48 +0.18 0.57 +£0.24
Dynamic Visual Attention [I7]  0.32£0.22 0.86+0.10
Bayesian Surprise [18] 0.12+0.09 0.92+0.04
Saliency [11] 0.09+£0.08 0.98+0.01
Mixture of Gaussian [I] 0.00£0.00 1.00+£0.00

based on the j* subject’s ground truth. Therefore, for each individual we have 10

points on the FAR-DR plot. As a comparison, the performance of our algorithm
is also provided. Each data point is generated by selecting one individual as the
ground truth and perform cross-validation over 20 trials. The result is shown in
FigRl

From these results we see that even a human subject cannot achieve perfect
detection. In other words, a computer algorithm is “good enough” if its perfor-
mance has the same distribution as humans’ on the FAR-DR plot.

Threshold and Accuracy Tolerance. Note in Eq[I4], the choice of Th = 0.5
is arbitrary. This parameter determines the detection tolerance. To evaluate T'h’s
influence, FAR and DR are computed as functions of Th (see Table [3).

The Influence of Object Sizes. As we have shown in Eq[I0, the upper bound
of error is a function of object size. To provide a empirical validation of our
algorithm performance on large objects, we selected 2 clips in our database that
contains the biggest objects, and tested our algorithm. The average area of the
foreground objects is 10% of the image size (comparing to 5% of the original
experiment). The new performance is shown in Table @l
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Fig. 8. A): Different interpretations of moving objects by different subjects. This image
overlays the bounding boxes of 11 subjects. Boxes in the same color are drawn by the
same person. We see that the incongruence among different subject is not negligible.
B): The FAR-DR plot of all subjects and our algorithm. Each + in the same color
represents the assessment of the same subject. Each o indicates the performance of
our algorithm. Among different subjects the DR fluctuates from 0.65 to 1, whereas the
FAR fluctuates from 0 to 0.4. The average human performance is FAR = 0.15 + 0.08,
DR =0.84+0.08.C): Color bars indicate the FAR and DR for the subjects. The gray
bars is the performance of our algorithm.

Table 3. Human average (DR,FAR) and model average (DR,FAR) with respect to
threshold

Th 0 01 02 03 04 05 06 07 08 09 1.0

Human Detection Rate 0.92 0.91 0.91 0.90 0.88 0.84 0.77 0.62 0.37 0.15 0.00
Human False Alarm Rate 0.07 0.07 0.07 0.08 0.11 0.15 0.22 0.37 0.62 0.85 1.00

Model Detection Rate 0.83 0.82 0.80 0.75 0.63 0.46 0.20 0.07 0.02 0.00 0.00
Model False Alarm Rate 0.18 0.20 0.24 0.31 0.43 0.58 0.80 0.93 0.98 1.00 1.00

4 Discussion and Future Work

4.1 Sources of Errors

One of the challenges is to estimate the bounding boxes for adjacent, sometimes
occluded objects that move in the same direction (such as in FigldF'). To unravel
the complexity of multiple moving objects, either long term tracking, or a more
powerful segmentation from saliency map to bounding boxes is required.

In some cases, we also need to incorporate top-down modulations from a level
of object recognition. Since the saliency map is a pixel based representation, it
favors moving parts of an object (such as a waving hand) over the entire object. A
canonical interesting example is in FiglfD: our algorithm identifies the reflection
on the floor as an object. Yet none of our subjects labeled the reflection as an
object.

4.2 Connections to Spectral Residual

In 2007, Hou et.al. proposed an interesting theory called the Spectral Residual
[20]. This algorithm uses the Fourier transform of a single image to generate
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Table 4. The algorithm performance over large object database. The performance
drop is small.

Original experiment Clips with large objects
Detection Rate 0.46 + 0.14 0.41 +£0.14
False Alarm Rate 0.58 +0.24 0.65 = 0.08

the saliency map of the static scene. As a follow-up paper suggests [21], the
actual formulation of the Spectral Residual algorithm is to take the phase part
of the spectrum of an image, and do the inverse transform. In other words,
the saliency map generated by the Spectral Residual is the asymptotic limit of
Phase Discrepancy when the second frame has v — 0. However, v — 07 is ill-
defined in our problem, as the displacement approaches infinitesimal, no motion
information will be available. To fully unveil the connections between these two
algorithms, further research on the statistical properties of natural images is
necessary.

4.3 Concluding Remarks

In this paper, we propose a new algorithm for motion detection with a moving
camera in the Fourier domain. We define a new concept named Phase Discrep-
ancy to explore camera motions. The spectrum energy of an image is generally
dominated by its background. Using this, we derive an approximation to the
phase discrepancy. A simple motion saliency map generation algorithm is intro-
duced to detect moving foreground regions. The saliency map is constructed by
the Inverse Fourier Transform of the difference of two successive frames spectrum
energies, keeping the phase of two images invariant. The proposed algorithm does
not rely on prior training on a particular feature or categories of an image. A
large number of computer simulations are performed to show the strong perfor-
mance of the proposed method for motion detection.
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Abstract. The ignorance on spatial information and semantics of visual
words becomes main obstacles in the bag-of-visual-words (BoW) method
for image classification. To address the obstacles, we present an improved
BoW representation using spatial pyramid coding (SPC) and visual word
reweighting. In SPC procedure, we adopt the sparse coding technique
to encode visual features with the spatial constraint. Visual features
from the same spatial sub-region of images are collected to generate
the visual vocabulary. Additionally, a relaxed but simple solution for
semantic embedding into visual words is proposed. We relax the semantic
embedding from ideal semantic correspondence to naive semantic purity
of visual words, and reweight each visual word according to its semantic
purity. Higher weights are given to semantically distinctive visual words,
and lower weights to semantically general ones. Experiments on a public
dataset demonstrate the effectiveness of the proposed method.

Keywords: spatial pyramid coding, bag-of-visual-words (BoW), reweight-
ing, image classification.

1 Introduction

In recent years, the bag-of-visual-words (BoW) model becomes popular in image
classification. This model extracts appearance descriptors from local patches
and quantizes them into discrete ”visual words”, and then a compact histogram
representation is used to represent images. The descriptive power of the BoW
model is severely limited because it discards the spatial information of local
descriptors. To overcome this problem, one popular extension method, called
the spatial pyramid matching (SPM) by Lazebnik et al [1], has been shown to
be effective for image classification. The SPM partitions an image into several
segments in different scales, then computes the BoW histogram within each
segment and concatenates all the histograms to form a high dimension vector
representation of the image.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IIT, LNCS 6494, pp. 239249, |2011.
© Springer-Verlag Berlin Heidelberg 2011
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To obtain good performances, researchers have empirically found that the
SPM should be used together with SVM classifier using nonlinear Mercer ker-
nels, e.g. Chi-square kernel or intersection kernel. However, the computational
complexity is O(n?) and the memory complexity is O(n?) in the training phase,
where n is the size of training dataset. This constrains the scalability of the
SPM-based nonlinear SVM method. To reduce the training complexity, a linear
spatial pyramid matching method using sparse coding (ScSPM) is proposed by
Yang et al [2]. This method is more robust to local spatial translations and is
biological plausible [3]. Inspired by this, Wang et al [4] used locality in feature
space to constrain the linear sparse coding phase (LLC) of ScSPM which fur-
ther reduced the computation time. However, the performance improvement of
LLC over ScSPM on real world images is not obvious. In fact, there is another
constraint which was neglected in [4], i.e., the spatial locality constraint. For
example, ’sky’ often lies on the upper side of images, while 'beach’ often lies
on the lower side of images. When we try to encode an image region about the
upper ’sky’, it is more meaningful to use the bases which are generated by the
local features on the upper side of images. Similarly, it is more meaningful to
encode the lower 'beach’ with the bases generated from the local features on the
lower side of images.

Besides, the semantic meaning of visual word has not been considered too
much in literature, which has become another obstacle to affect the performance
of the BoW model. Ideally, the correspondence between visual words and seman-
tics, namely the semantic embedding into the BoW representation, will bring the
more representative and discriminative description for image classification than
solely on visual features. However, the well-known semantic gap becomes a nat-
ural barrier to achieve such correspondence. Some recent work appeal to various
supervised learning approaches [5, 6] to learn discriminative visual vocabulary.
In fact, such supervised refinement emphasizes on the discriminative abilities of
visual words rather than truly embedding semantics into image representation.
We believe that the semantic embedding can further enhance the discriminative
ability of visual words in image classification, but not vice versa. Consequently,
it is necessary to find a suitable way to obtain such a semantic embedded BoW
presentation for image classification.

In this paper, we present a novel image classification method by using spatial
pyramid coding (SPC) along with visual word reweighting, as shown in Figure
1. We first partition images into sub-regions on multiple scales, and adopt the
sparse coding approach to encode visual features of images with the spatial con-
straint. Different from SPM [1], the SPC-based visual vocabulary is concatenated
with each encoding results from the sub-regions which have the same spatial lo-
cality and segmentation scale. For the semantic embedding, we adopt a relaxed
but simple solution to reweight the SPC-based BoW representation according
to the semantic purity of each visual word, instead of the obtainment of the
semantic correspondence. Specifically, we give higher weights to semantically
distinctive visual words, and lower weights to semantically general visual words.
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Fig. 1. Flowchart of the proposed spatial pyramid codebook (with two scales) and
visual word reweighting methods. It is best viewed in color

Comprehensive experimental evaluations on the Scene-15 dataset demonstrate
the effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2 gives an overview of
some related work. In Section 3, we present the details of the proposed spatial
pyramid coding and visual word reweighting method. Experimental results and
comprehensive analysis are given in Section 4. Finally, the conclusions and future
research issues are discussed in Section 5.

2 Related Work

The bag-of-visual-words model (BoW) has been widely used due to its simplicity
and good performance. Many works has been done to improve the performance
of the traditional bag-of-visual-words model over the past few years. Some liter-
atures devoted to learn discriminative visual vocabulary for object recognition
[7-9]. Perronnin et al [7] used the Gaussian Mixture Model (GMM) to perform
clustering. To alleviate the drawback of k-means clustering, Jurie and Triggs
[8] tried to use a scalable acceptance-radius based clustering method instead.
Moosmann et al [9] used random forests to construct codebook which helps to
improve the classification performance. Others tried to model the co-occurrence
of visual words in a generative framework [10-13]. Boiman et al [10] tried to clas-
sify images by nearest-neighbor classification. Bosch et al [11] tried to classify
scene images using a hybrid generative/discriminative approach. Besides, many
researchers also [1, 14-19] tried to learn more discriminative classifiers by com-
bining the spatial and contextual information of visual words. Oliva and Torralba
[15] modeled the shape of the scene by using a holistic representation. Gemert et
al [16] proposed to learn visual word ambiguity through soft assignment. Zhang
et al [17] utilized nearest neighbor classification for visual category recognition.
Motivated by Grauman and Darrell’s [19] pyramid matching in feature space,
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Lazebnik et al [1] proposed the spatial pyramid matching (SPM) which has been
proven efficient for image classification.

Although the SPM method works well for image classification, it has to be
used along with nonlinear Mercer kernels for good performance. However, the
computational cost is O(n?) in training phase. To improve the scalability, Yang
et al [2] proposed a linear spatial pyramid matching method using sparse coding
along with max pooling to classify images, which has been shown very effec-
tive and efficient. The approach relaxes the restrictive cardinality constraint of
vector quantization in traditional BoW model and uses max spatial pooling to
compute histogram which reduces the training complexity to O(n). Motivated
by this, many researchers [4, 20-21] proposed novel methods to further improve
the performance. Wang et al [4] proposed to use locality constraints in feature
space during the sparse coding phase of [2] and the theoretical justifications are
given by Yu et al [20]. Boureau et al [21] also proposed a novel method to learn
a supervised discriminative dictionary for sparse coding.

Obviously, not all of the visual words are equally useful for image classifica-
tion. [22-23] showed that the human visual system employs an effective attention
mechanism and can recognize different object categories robustly by focusing
on the interesting parts in an image. To choose the most discriminative visual
features, Liu et al [24] tried to select the most discriminative visual word combi-
nation with Adaboost while Mutch and Lowe [25] used sparse, localized features
for multiclass object recognition. Cai et al [26] also tried to learn weights for
each visual word by solving a quadratic programming problem.

3 Spatial Pyramid Coding and Visual Word Reweighting

This section gives the details of the proposed spatial pyramid coding (SPC) and
visual word reweighting method. For each image, we first densely extract local
image features and then utilize the spatial pyramid principle to encode local
features. Then we concatenate the BoW representation of different segments
and reweight each visual word based on its semantic purity. Figure 1 shows the
flowchart of the proposed spatial pyramid coding and visual word reweighting
method.

3.1 Spatial Pyramid Coding

The idea of using spatial pyramid along with the BoW representation of images
has been proven very effective for image classification by many researchers. This
method partitions an image into increasingly finer spatial sub-regions and com-
putes the histogram of local features from every sub-region [1]. Usually, 2! x 2!
subregions, with [ = 0,1,2 are used. Other partition method such as 3 x 1 is
also used to incorporate top and bottom relationships, which has been proven
very useful on the PASCAL VOC Challenge. Take the 2! x 2! for example, for
L levels and M channels, the resulting concatenated vector for each image has
a dimensionality of M Y/, = M (454 —1).
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To preserve the discriminative power of local image features as much as pos-
sible, researchers have tried many coding methods, among which the most pop-
ular is the k-means model. Formally, let X be a set of D-dimensional local
features. The number of local features is N, i.e. X = [x1,79,...,xy5] € RP*N
where z; € RP*!. Suppose we have a codebook B with M visual words, where
B = [by,ba,...,bar] € RP*M_ To convert each descriptor into a M-dimensional
vector to represent images, k-means based vector quantization (VQ) method
tries to solve a constrained least square fitting problem as:

N
C:argminZ:H z; — B xc |? (1)

i=1
s.t. || C; ||10: 1, || C; ||11: ].,Cij Z O,VZ,]

where C' = [¢1, ¢g, ..., cn] is the codes for X and ¢;; is the j-th element of ¢;.

The constraints in the k-means model are very restrictive with only one el-
ement of ¢; is set to 1. In practice, this is often achieved by nearest neighbor
search. To alleviate the discriminative power loss during vector quantization,
Yang et al [2] proposed to use sparse coding instead. They relaxed the restric-
tive cardinality constraint in Eq. (1) by using a sparsity regularization term
instead.l* norm of ¢; is used. Thus, Eq. (1) becomes a standard sparse coding
problem [27] as:

N
C’:argmmZ:H i —Bxe |2+ el (2)
i=1
where ) is the regularization parameter and || . ||; is the /' norm which sums

the absolute value of each element. This can be solved by optimizing over each
individually.

However, as introduced in [4], locality is more essential than sparsity because
locality leads to sparsity but not necessary vice versa. It allows sparse recon-
struction of features in the appearance space using sparsity along with locality
constraints. However, this discards the spatial information in the coding phase.
This paper proposes an ”orthogonal” approach: we perform pyramid coding in
the two-dimensional image space and use sparse coding method [1, 27] in feature
space. Specifically, we first partition the image into increasingly finer spatial sub-
regions with 2! x 2!, I = 0, 1, 2. For each sub-region, the sparse coding parameters
and the codebook are then jointly learned using the local image features within
this sub-region. This is achieved by alternatively optimizing over the codebook
B and the coding parameters C' while keeping the other fixed. We use the al-
ternative optimization method as did in [1, 27] to solve this problem. In our
experiments, about 45,000 SIFT descriptors extracted from random patches of
each segment are used to train the codebooks. Once we have learned the code-
book for each sub-region, we are able to code efficiently for each local feature
using Eq. (2). Max pooling [1] is then used to generate the BoW representation
for each segment which has been shown very effective when combined with sparse
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class |1 class 2 class 3

visual word 1 @>(

visual word 2 visual word 3

class 1 class 2 class 3 class 1 class 2 class 3

Fig. 2. Toy example showing the semantic meaning of visual words. Different colors
represent local features extracted from different classes. Since visual word 3 is the most
semantically distinctive, we believe the word is more discriminative than visual word
1 and 2 in a specific classification task. It is best viewed in color.

coding. Finally, the BoW representations of all segments are concatenated into
a long vector to represent images.

3.2 Visual Word Reweighting

Although the bag-of-visual-words model is inspired by the bag-of-words approach
to text categorization, the semantic meaning of visual word has not been consid-
ered too much in literature. We believe the semantic information of visual words
can also be utilized to improve the image classification performance.

During the vector quantization of traditional BoW model or the sparse cod-
ing process, many local features are assigned to one visual word. These local
features may come from different classes of images hence have different semantic
meanings. Assuming each local image feature having the same semantic label
as the image from which it is extracted, we can use the frequency distribution
of classes of local features assigned to each visual word to represent this visual
word. Formally, let Q = [q1,q2,...,qu] € RE*M is the semantic distribution
of all the visual words, where ¢; € R¥*! and K is the number of classes. We
believe that the purity of each visual word is correlated with its discriminative
power. For example, sky often exists on the outdoor scene images. While classi-
fying outdoor images of different classes, visual words representing the upper sky
are often generated by local features extracted from different classes of images.
These visual words are noisy for classification and should be given lower weights.
On the contrary, if one visual word is generated mainly by the local features of
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the same class, the discriminative power of this visual word is much stronger
than visual words which are generated by local features from diverse classes of
images. Figure 2 shows a toy example reflecting showing the semantic purity of
visual words.

To measure the semantic purity of each visual word quantitatively, we choose
to use the entropy of each visual word’s semantic distribution, because it has
been proven very effective and efficient to implement. The larger the entropy, the
less pure the visual word and vice versa. Formally, let e; to represent the entropy
of visual word b; whose semantic distribution is ¢;. e; can then be calculated as:

ei=— Y qixln(qir) 3)
k=1

Let w; to represent the weight of visual word i,s € 1,2, ..., M. The weight of each
visual word can then be computed as:

w; = exp(—e;/a) (4)

where « is the scaling parameter. In our experiments, we simply set « to 1. The
weight of each visual word can then be computed in an efficient way as:

K
w; = ] ¢f* (5)
k=1

4 Experiments

We evaluate the proposed spatial pyramid coding and visual word reweighting
method on the fifteen natural scene dataset by provided Lazebnik et al [1]. The
fifteen scene dataset composes 4,485 images, which vary from natural scenes
like forests and mountains to man-made environments like offices and kitchens.
Thirteen were provided by Fei-Fei and Perona [12] (eight of these were originally
provided by Oliva and Torralba [15]) and two were collected by Lazebnik et al
[1]. We perform all processing in grayscale of images even when sometimes the
color images are provided. As to the feature extraction, we follow Lazebnik et
al [1] and densely compute SIFT descriptors on overlapping 16x16 pixels with
an overlap of 8 pixels. The codebook size is set to 1,024, as Yang et al [2] did.
Multi-class classification is done via the one-versus-all rule: a SVM classifier is
learned to separate each class from the rest and a test image is assigned the label
of the classifier with the highest response. The average of per-class classification
rates is used to quantitatively measure the performance.

We show some example images of the Scene-15 dataset in Figure 3. The ma-
jor picture sources in this dataset include the COREL collection, personal pho-
tographs and Google image search. Each category has 200 to 400 images, and
the average image size is 300x250 pixels. We follow the same experiment pro-
cedure of Lazebnik et al [2] and randomly choose 100 images per category as
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il B

bedroom

CAL -.u]]ul}l

MITtallbuilding PARof fice store

Fig. 3. Example images of the Scene-15 dataset

Table 1. Classification rate comparison on the Scene-15 dataset. Numerical values in
the table stand for mean and standard derivation.

Algorithms Classification Rate
KSPM[2] 76.73 £ 0.65
KCJ[16] 76.67 £0.39
ScSPM[2] 80.28 £0.93
ScSPM 78.77 £0.50

SPC 81.14 £ 0.46
SPC+Reweighting 82.98+ 0.23

the training set and use the remaining images as the test set. This process is
repeated for five times.

Table 1 gives the detailed comparison results. We compare the proposed meth-
ods with the kernel codebook proposed by Gemert et al [16], the ScSPM and
the reimplementation of nonlinear kernel SPM by Yang et al [2]. Our imple-
mentation of ScSPM is not able to reproduce the results reported by Yang et
al [2] probably due to the feature extraction process and normalization process.
We can see from the results that the proposed SPC outperforms ScSPM, which
shows the effectiveness of combining spatial information in the coding phase.
Besides, the classification rate can be further improved by reweighting each vi-
sual word based on its semantic purity. This demonstrates the effectiveness of
the proposed method.
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Table 2. Classification rate per concept for the ScSPM, SPC and SPC+Reweighting

Class ScSPM SPC SPC+Reweighting
Bedroom 67.24+ 5.57 83.62+ 1.16 84.48+ 1.28
CALsuburb 99.29+ 1.42 99.29+ 0.95 99.29+ 1.00
Industrial 56.40+ 2.00 57.35+ 2.67 57.82+ 3.22
Kitchen 66.36+ 3.44 65.45+ 2.54 69.09+ 4.96
Livingroom 62.43+ 2.92 64.02+ 2.55 65.61+ 3.42
MITcoast 97.69+ 1.51 96.15+ 0.61 98.08+ 1.87
MITforest 97.81+ 0.91 99.12+ 1.30 97.37+ 1.00
MIThighway 86.25+ 2.67 88.12+ 4.34 88.12+ 3.71
MITinsidecity 88.94+ 1.16 88.94+ 1.43 89.90+ 1.50
MITmountain 84.67+ 2.70 86.50+ 2.96 85.77+ 2.83
MITopencountry 74.19+ 3.33 79.03+ 4.55 100+ 0.00
MITstreet 91.15+ 2.29 94.79+ 3.31 92.71+ 3.01
MITtallbuilding 97.27+ 0.35 98.05+ 0.33 99.22+ 0.28
PARoffice 86.96+ 2.25 87.83+ 2.84 83.48+ 0.78
Store 69.77£ 2.70 73.03£ 3.50 73.95+ 3.59

To analyze the detailed classification performance, we give the classification
rate per concept in table 2. Generally, four conclusions can be made. First,
we can have similar observation as [1] did that the indoor classes (e.g. kitchen,
livingroom) are more difficult to classify than the outdoor classes (e.g. MITopen-
country, MITtallbuilding). Second, the advantages of SPC over ScSPM mainly
focus on indoor classes, e.g. bedroom, livingroom and store. This is because the
SPC method is able to combine the spatial information into the coding process;
hence helps make correct categorization of images. Third, the improvement of
SPC+Reweighting over SPC mainly lies on outdoor classes, this is because im-
ages of the outdoor classes (e.g. ”MITopencountry”) are relative simple and with
less objects compared with images of indoor classes. We believe this is the reason
why the reweighting works. Finally, the proposed SPC and SPC+Reweighting
methods outperform ScSPM for all the fifteen classes.

5 Conclusion

This paper proposes a novel method for image classification using spatial pyra-
mid coding (SPC) and visual word reweighting. SPC is easy to compute and can
incorporate spatial information in the coding phase which is lost in the sparse
coding spatial pyramid matching (ScSPM). SPC applies spatial constraint in the
coding phase for each sub-region of images; hence is more discriminative than
ScSPM. Besides, we relax the semantic embedding from ideal semantic corre-
spondence to semantic purity of visual words and reweight each visual word ac-
cording to its semantic purity, giving higher weights to semantically distinctive
visual words, and lower weights to semantically general ones. The experimental
evaluations on the Scene-15 dataset demonstrate the effectiveness of the proposed
spatial pyramid coding and visual word reweighting for image classification.
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Our future work includes the following possible directions. First, More efficient
coding methods, such as semi-supervised methods will be studied. Second, how
to further reduce the computation cost will also be investigated. Third, how to
integrate the spatial information of local features more efficiently will also be
studied.
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Abstract. In this paper we propose a new general framework to ob-
tain more distinctive local invariant features by projecting the original
feature descriptors into low—dimensional feature space, while simultane-
ously incorporating also class information. In the resulting feature space,
the features from different objects project to separate areas, while locally
the metric relations between features corresponding to the same object
are preserved. The low—dimensional feature embedding is obtained by
a modified version of classical Multidimensional Scaling, which we call
supervised Multidimensional Scaling (sMDS). Experimental results on a
database containing images of several different objects with large varia-
tion in scale, viewpoint, illumination conditions and background clutter
support the view that embedding class information into the feature rep-
resentation is beneficial and results in more accurate object recognition.

1 Introduction

Local invariant features like SIFT [I], SURF [2], HOG [3], etc. are becoming in-
creasingly popular in computer vision and pattern recognition, finding numerous
applications and often being the tool of choice in as diverse areas as image registra-
tion, 3D reconstruction, image retrieval, robot navigation and object recognition,
to name just a few. A comprehensive survey of local invariant features is given
in [4], which also provides a qualitative evaluation of their strengths and weak-
nesses. In the context of object recognition, especially, one inconvenience with
local features is that they cannot be fed directly into a classifier, like in global
appearance—based methods [5], where either the whole image, or the response of
a pre—determined number of filters on the image is used as a feature. This problem
stems from the fact that usually a different number of features are extracted from
each image of an object, and there is no obvious way how to organize them in a
vector form, suitable for input to a standard classifier. This difficulty has been sur-
mounted to some extent in the recently popular bag—of—keypoints (BoK) frame-
work [6], where the features extracted from all training images are clustered in
feature space, and each image is represented by a histogram in which the cluster
centers, also called “visual words” [7], determine the bins.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 250 2011.
© Springer-Verlag Berlin Heidelberg 2011



Class-Specific Low-Dimensional Representation of Local Features 251

However, one problem with the BoK approach is that features extracted from
different objects can be clustered together, which may lead to a similar rep-
resentation of different classes of objects. This makes recognition difficult and
unreliable. Using a good classifier in a classification step after the representation
step can partially improve the situation, but a better and more natural solution
might be to take measures earlier, at the representation step, not allowing the
features from different objects to be clustered together in the first place. In this
way, the available class information can be used more efficiently, resulting in an
easier classification problem.

Our main idea is to embed the local feature descriptors in a low—dimensional
space where the features from different classes of objects are well separated from
each other. Then the cluster centers for different classes will also be located
widely apart from each other, and this would lead to more accurate classifica-
tion in the framework of the bag—of-keypoints approach. In order to accomplish
this, we propose a new low—dimensional embedding method, Supervised Multidi-
mensional Scaling (sMDS), which is based on classical multidimensional scaling
(MDS), but the low—dimensional embedding of the data is modified to reflect
the available class information. Classical MDS [§], also known as Principle Co-
ordinates Analysis, is similar to Principle Components Analysis (PCA) [9], but
it operates on the distance matrix of the data, rather than on the data itself, as
PCA does. In our case, we manipulate the distance matrix obtained from the
data to ensure that in the low—dimensional embedding, the features correspond-
ing to different objects are separated from each other. An additional benefit is
the lower—dimensionality of the features, which can speed up significantly the
clustering process in the BoK framework.

The rest of the paper is organized as follows. In section 2 we briefly review
related work, concentrating more specifically on the PCA-SIFT algorithm. In
section 3, the Supervised Multidimensional Scaling (sMDS) algorithm is ex-
plained, which is used to illustrate and implement the general class—specific
low—dimensional feature representation framework proposed in this paper. Ex-
perimental results comparing the performance of the features obtained by using
sMDS, PCA-SIFT, LDA-SIFT (an LDA version of SIFT, explained below) and
SIFT in a BoK based object recognition task and a feature matching based image
retrieval task are shown in section 4, and section 5 concludes the paper.

2 Related Work

Our work is most strongly related to the PCA-SIFT algorithm of Ke and Suk-
thankar proposed in [10]. They apply Principle Component Analysis (PCA) to
the normalized gradient patches in an image, centered at locations where key-
points (interest points) have been detected by a SIFT detector. The SIFT al-
gorithm [I], like many other algorithms for local invariant feature extraction,
consists of two main parts: a feature detector and a feature descriptor. The
SIFT feature detector finds interest points in an image by searching for local
extrema in the scale-space pyramid built with Difference-of~Gaussian (DoG)
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filters. Apart from its location, the detected keypoint is assigned also scale and
dominant orientation, and these are used to build a canonical view of the lo-
cal gradient of the image patch that is invariant to similarity transforms. The
standard SIFT descriptor then constructs smoothed orientation histograms to
represent the structure of the patch around the keypoint. In PCA-SIFT, the last
step (building of the orientation histogram) is substituted by a low—dimensional
projection of the normalized gradient patch using PCA. The motivation for this
is to achieve a more compact (low—dimensional), faster, more accurate and the-
oretically simpler descriptor, avoiding the somewhat heuristic choices behind
the design of the SIFT descriptor. Since the detector part of SIFT is kept un-
changed, the advantages it provides in terms of good feature localization ability
and repeatability are retained. In [10], the authors compare the performance of
SIFT and PCA-SIFT in a number of feature matching tasks and in an image re-
trieval application, demonstrating that PCA—SIFT results in a more distinctive,
compact and robust descriptor. The authors suggest that one of the most impor-
tant reasons for the success of PCA-SIFT can be linked to the low—dimensional
projection of the gradient patch, which appears to retain the identity-related
variations, while discarding the distortions induced by other effects of the imag-
ing process.

The main contribution of the present paper is to develop further the main idea
of PCA-SIFT — low dimensional mapping of local invariant features — by incorpo-
rating also object class information. This would result in more distinctive features,
which is highly desirable for object recognition applications. Surprisingly, in the
context of local image descriptors, this direction has not attracted much atten-
tion, although quite a few works based on PCA have been reported, e.g. [11], [12].
Some previous work in the direction of trying to obtain more distinctive local fea-
tures has been done in [I3], where the authors suggest using Linear Discriminant
Analysis (LDA) [14] to obtain low—dimensional projection of the features. How-
ever, in that work the projection is determined by only two classes — matching
and non—matching pairs of features — which might be advantageous in the con-
text of wide—baseline matching or other feature matching applications, but would
be less relevant for object recognition tasks, especially in the bag—of-keypoints
(BoK) framework, where many features are grouped in a single cluster, and the
gain in matching precision would anyway be lost in the clustering.

In the approach proposed in the present paper, embedding of class information
into the features is achieved by projecting them to a low—dimensional space, in
which the features from different objects project to separate areas, while at the
same time the metric relations between features corresponding to the same ob-
ject are preserved. This is accomplished by using the supervised Multidimensional
Scaling algorithm introduced below which directly manipulates the distance ma-
trix of the features, thus guaranteeing (by construction) that features from dif-
ferent classes would map to well-separated areas in low—dimensional space. In
this way, it is expected (and later experimentally verified) that the “averaging”
or “blurring” effect of the feature clustering in the BoK framework can be allevi-
ated, resulting in more precise and reliable recognition.
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3 Low-Dimensional Feature Representation by
Supervised Multidimensional Scaling (sMDS)

The supervised Multidimensional Scaling (sMDS) algorithm proposed in this
paper is a modification of the classical (unsupervised) Multidimensional Scaling
algorithm [I5], [I6], which is first briefly reviewed here. Multidimensional scaling
is a term used to denote a group of techniques which obtain a low—dimensional
representation of a set of data points by analyzing the distance matrix of the
data. There are many types of MDS, but the classical MDS proceeds as follows.

From the n x n distance matrix D = (d;;) of the data (feature descriptors
@i, : 1...n, extracted from the training images in our case), the following n x n
matrix is formed:

1
A= (ay), ay=—,dy (1)

Then, the “doubly centered” matrix B=H AH is formed, where H is the cen-
tering matrix

H=I-n1'J,J,=1,1F (2)

and J, is an (n x n) matrix of ones. Next, the eigenvectors v; corresponding
to the t largest positive eigenvalues A; of B are found, and the required t¢-
dimensional embedding of the data is given by

Y =VA: = (VAo1, e VA = Y10 9,) T (3)

y, are called the principle coordinates of the original high-dimensional data x;,
and their inter—point distances are equal to the corresponding distances in the
original distance matrix D.

In order to ensure that features coming from different objects are mapped
to well-separated locations in low—dimensional space, in sMDS, the supervised
version of MDS, we propose to manipulate the distance matrix D in the following
manner:

D := D + max(D){2 (4)

where max (D) is the maximum entry in D, and §2 is a matrix of the same size
as D, defined as £2;; = |c(z;) — c(x;)|. Here, c(x;) returns the class number
of the i-th feature (i.e. an integer value between 1 and C, assuming we have C
different classes in total). In this way, in the modified version of D, the distances
between features belonging to the same class are preserved unchanged, while any
features belonging to different classes, say class 1 and class 3, will be separated
by a distance of at least 2 x max (D). This will force Egs. (I)~@) to project such
features in different sufficiently separated local neighborhoods of the resulting
low—dimensional space, while at the same time the intra—class distances (the
distances between features coming from the same object) are preserved. We call
the low—dimensional map obtained by using Eq. ) a “retinotopic map” (see
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Fig. ), as it resembles the topographic organization of certain structures in the
brain responsive to visual input (e.g. the visual cortex, the visual nuclei in the
brain stem and the lateral geniculate nucleus in the thalamus), where the centers
of receptive fields of spatially adjacent neurons form an orderly sampling mosaic
to cover adjacent portions of the visual field [I7]. In our case, adjacent object
classes are stored in adjacent areas in the low—dimensional map, without overlap.

An algorithm must also be available to map new features coming from test
images. A similar problem in the context of classical MDS has been investigated
in [I8)], where it is shown that the principal coordinates y, for a new (unseen,
or out—of-sample) data & are given by:

yr= (YY) YT dr )
d" = diag(Y'Y) — dr.p, (6)
dr, = (d®(xr,x1),...,d*(x7, 2,))T (7)

where dr,, is a column vector of the squared distances between the test data
and each of the training data. We use dr,, above also to eliminate test features
which are farther away than a threshold T,, from the nearest training data, as
such features usually correspond to incorrectly detected keypoints. The value of
T, is determined so that to obtain best performance on the validation set of the
data (explained in the next section).

Figure [Il shows a plot of the feature embedding in three—dimensional feature
space constructed by sMDS (corresponding to the three largest eigenvalues, i.e.
t = 3 in Eq. [@)). As can be seen from the figure, the features belonging to
different objects (shown in different color and markers) are well separated. This
is in contrast to the embedding found by PCA-SIFT (Fig. ), where all features
are intermixed and no structure is visible. For comparison, we implemented also
an LDA version of SIFT (LDA-SIFT), which uses Linear Discriminant Analysis
instead of PCA to map the SIFT descriptor, and the resulting map is shown in
Fig. Bl As can be seen, three of the objects which happen to be quite different
from the rest are separated relatively (at least partly) well, but the objects from
the remaining 7 classes are all mapped to an overlapping area in the center.

4 Experimental Results

In order to demonstrate the efficacy of the proposed framework for class—specific
low—dimensional feature embedding in the context of view-invariant object recog-
nition, we have conducted several experiments in which the supervised MDS
(sMDS) algorithm is compared to both PCA-SIFT and SIFT. We created a
database of 10 different objects (see Fig. M), which contains large variations in
scale, viewpoint, illumination conditions and background clutter. The database
is of approximately similar difficulty as the one in which [I0] compares PCA-
SIFT to SIFT, however our database is divided into a training, validation and
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Fig. 1. 3D plot of the low-dimensional feature mapping obtained by sMDS. Different
objects are shown in different color or in similar color but different markers.

Fig. 2. 3D plot of the feature space obtained by PCA-SIFT

test sets, and has a much larger number of test images. In this way, we believe
it is possible to test more accurately the performance of the different algorithms
(for comparison, only 3 images per object are available in the dataset in [I0]).
The training set (Fig. Bh) contains 3 images for each object class, taken on
predominantly black background. The validation set (see Fig. @b) contains 5
images for each object, with a large level of background clutter, and is used to
tune any parameters for each of the methods which influence its performance,
e.g. the number of clusters for the bag—of-keypoints based object recognition
experiment, and the matching thresholds for the feature matching based image
retrieval experiment (explained below). Then, the parameters for which best per-
formance is obtained are fixed and each method is applied to the test set, which
has 10 test images for each object (see Fig. k). This setting simulates the com-
mon situation where a limited number of images are available for learning and
validation, with a larger number of test images. Our dataset can be downloaded
from http://www.eml.hiroshima-u.ac.jp/include/database. We have im-
plemented the sMDS algorithm and the bag-of-keypoints algorithm in Matlab,
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Fig. 3. 3D plot of the feature space obtained by LDA-SIFT

while for SIFT we used Lowe’s original implementation and for PCA-SIFT the
implementation provided by the authors of [10], which is available at [19]. In the
implementation of sMDS used for the experimental evaluation, the input fea-
tures x; are identical to those used in PCA-SIFT, i.e. 3042—dimensional feature
vectors obtained from the normalized gradient patches of size 41 x 41 pixels, cen-
tered at locations in the image where keypoints have been detected by a SIFT
detector. Additionally, as a baseline, we implemented also an LDA-SIFT algo-
rithm, where standard LDA is used instead of PCA to obtain a low-dimensional
map for the features (in the case of LDA, the maximum dimension of the feature
space is C' — 1, where C is the number of object classes [14]). Our implemen-
tation of the bag—of-keypoints uses the standard k—means clustering algorithm.
The Euclidean distances between the histograms obtained for the test data and
those obtained for the training data were compared and the class of the test
images was determined by the nearest neighbor method.

The results obtained for the BoK—based object recognition experiment are
shown in Fig.[Bl The plots show the recognition rates (percent correctly classified
test images) obtained by each method, as a function of the number of cluster
centers used. As can be seen from the results, sMDS significantly outperforms
the other methods. Somewhat surprisingly, the performance of PCA-SIFT is
actually slightly worse than SIFT, and LDA-SIFT performs even worse than
PCA-SIFT.

In the Introduction we made the conjecture (which motivated our work)
that distinctive feature representation at an earlier stage might be more im-
portant than using a sophisticated classifier at a later stage. In order to test this
statement, we further conducted another experiment, substituting the nearest—
neighbor classifier from the previous experiment with a Support Vector Machine
(SVM) using a radial basis function (RBF) kernel. The results are shown in
Fig.[6l Here again sMDS significantly outperforms the other methods (note that
good performance is obtained even for as few as 200 cluster centers), while the
performance of the other three algorithms seems to be quite similar this time.
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Fig. 4. The database used for the experiments: (a) the training set; (b) the validation
set; (c) the test set
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Fig. 5. Comparison of sMDS, PCA-SIFT, LDA-SIFT and SIFT for BoK (using nearest
neighbor as a classifier)

Also, when SVM is used, the performance of all methods seems to be less influ-
enced by the number of cluster centers.

Since both sMDS and PCA-SIFT construct a low—dimensional representation
of the original high—dimensional features, it is interesting to see how performance
depends on t, the dimension of the low—dimensional feature space. This depen-
dence is shown in Fig. [{l For sMDS, performance seems to be stable over large
range of values for ¢, and very good performance is achieved even for as low value
as 10 dimensions. The confusion matrices obtained for each of the four methods
are also given in Fig. B below.

In order to make sure that the improvement in recognition accuracy obtained
by sMDS is valid not only for the BoK scheme, we performed another experiment,
similar to the image retrieval task given in [I0]. We used the same dataset as in
the previous experiment, but this time recognition was based on simple feature
matching. The features obtained from each test image were directly matched to
the features obtained for the training images, using a threshold to determine the
matching pairs. The number of matches to each class was used as a similarity
measure. We used the following scoring method to evaluate the precision of the
retrieval: if the correct object class was retrieved the algorithm was awarded 3
points; if the correct object appeared in the top two positions the algorithm was
awarded 2 points, and if the correct object appeared in the top three positions
the algorithm was awarded 1 point. Otherwise no points were given. The total
scores and the correct retrieval percentage obtained for each algorithm for all
test images are given in Tab. [Il The thresholds for each method were tuned to
give best results on the validation set, and then the same values were used to
obtain the final results on the test set. In this experiment again, sMDS achieved
the best performance.
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Fig. 6. Comparison of sMDS, PCA-SIFT, LDA-SIFT and SIFT for BoK (using SVM
as a classifier)

Fig. 8. Confusion matrices for sMDS (top-left), PCA-SIFT (top-right), LDA-SIFT
(bottom-left) and SIFT (bottom-right)
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Table 1. Results for the feature matching tasks

METHOD FEATURE THRESHOLD SCORE CORRECT

DIMENSION RETRIEVAL
SIFT 128 150 125/300  41.6 [%]

PCA-SIFT 20 2600 178/300  59.3 [%)]

LDA-SIFT 9 16 130/300  43.3 [%]
sMDS 10 300 221/300  73.7 [%]

5 Conclusions

In this paper we have proposed a general framework which can be used to ob-
tain more distinctive local invariant features by projecting the original feature
descriptors into low—dimensional feature space, while simultaneously incorporat-
ing class information. In the resulting feature space, the features from different
classes of objects project to well-separated distinct areas. Experimental results,
obtained both in a bag—of-keypoints setting and for a simple feature matching
task indicate that embedding class information into the low—dimensional feature
representation is beneficial and results in more accurate object recognition.

In the present implementation we have used classical MDS as a tool to ob-
tain low—dimensional embedding of the data, because it is a well-known and
theoretically well-understood method, but instead of the supervised version of
MDS proposed here, a supervised version based on other linear or nonlinear di-
mensionality reduction methods, like manifold learning methods [20], etc. could
also have been used. In a future work, we intend to compare the performance
of different dimensionality reduction methods in the context of the general ap-
proach proposed in this paper. Also it would be interesting to apply the proposed
method to other local feature descriptors.
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Abstract. In this paper, we present a novel method to overcome the
common constraint of traditional camera calibration methods of surveil-
lance systems where all objects move on a single coplanar ground plane.
The proposed method estimates a scene model with non-coplanar planes
by measuring the variation of pedestrian heights across the camera FOV
in a statistical manner. More specifically, the proposed method automat-
ically segments the scene image into plane regions, estimates a relative
depth and estimates the altitude for each image pixel, thus building up
a 3D structure with multiple non-coplanar planes. By being able to esti-
mate the non-coplanar planes, the method can extend the applicability of
3D (single or multiple camera) tracking algorithms to a range of environ-
ments where objects (pedestrians and/or vehicles) can move on multiple
non-coplanar planes (e.g. multiple levels, overpasses and stairs).

Keywords: Camera calibration, non-coplanar planes, region segmenta-
tion, motion variety, depth and altitude estimation.

1 Introduction

In recent years, a significant amount of research effort has been put on 3D
pedestrian tracking from single or multiple surveillance cameras. Most of the
existing methods that perform 3D object tracking, assume that all objects move
on a single flat ground plane that is defined either manually or automatically
from tracking observations. However, such a simple model is not able to handle
scenes that contain multiple non-coplanar structures such as ramps, stairs and
overpasses. In this paper, we propose a method for estimating the 3D geometry
for such scenes from noisy 2D observations of walking pedestrians.

Hoiem et al [I] proposed a probabilistic modeling of the scale and location
variance of objects in the scene, thus they built up a relationship between the size
of objects and their positions and then could filter out false detections. Saxena
et al [2] assumed that the world consists of vertical structures and a single flat
ground surface. Then, a classifier was trained to model the relation between local

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IIT, LNCS 6494, pp. 262 2011.
© Springer-Verlag Berlin Heidelberg 2011
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material properties (colour and texture), 3D orientation, and image location.
Other automatic ways for calibrating a ground plane from observed tracks of
walking people were proposed in [3], [4] and [5], which assumed accurate head
and foot positions of single pedestrians. All the above methods can only deal
with situations where all the objects move on a single coplanar ground plane.
Breitenstein et al [6] proposed an online learning approach for estimating a
rough 3D scene structure from the outputs of a pedestrian detector. They divide
the image into small cells and compute the relative depth for each image cell.
However, their scene model is actually a depth map that does not explicitly
represent the real 3D spatial dimensions of scene features.

Different from other methods, the main novelty of the proposed approach is
the accumulation of evidence for the presence of different planar regions in the
scene through pedestrian tracking, once enough tracks are available, a form of
clustering is applied and each image pixel is associated with a cluster which
defines a separate planar surface in the scene. The framework for estimating
non-coplanar planes is summarized in the following diagram:

Motion tracking
&Noise Filtering (Sec.2.1)

|
‘Walkable regions Height variation across
(Sec.2.2) multiple planes (Sec.2.3)

[ Motion variety & +

reference plane (Sec.3.2)

Image segmentation to ]

scene planes (Sec.3.1)
} h 4

[ Altitude estimation (Sec.4.2) ]“. { Depth estimation (Sec.4.1) ]

Fig. 1. Framework overview

1.1 Camera Projection Model

In this work, we use a model which assumes a linear relationship between the
2D image height of an object and its image vertical position (see Fig. [2]), similar
to [7]:

h= R(yp — Hr) (1)

where h is the object 2D image height, R is the object height expansion rate,
yp is the vertical image position of the detected object (foot position) and Hy, is
the image y-coordinate of the horizon line. The object pixel height h is zero at
the horizon Hy and maximum at the bottom row of the image. Note that this
projection model can only apply for objects moving on a single flat plane.
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The horizon Huo

Zero

The horizon: W“‘

Ye Flat plane
Fig. 2. Camera projection model

This camera projection model assumes that the camera roll angle is zero
so the horizon is parallel to the x-axis. When this is not the case, an image
transformation can be applied to satisfy this condition. In addition, the rest of
camera parameters (e.g. tilt angle, height, focal length) have appropriate values
that allow the variation of objects sizes with respect to their y coordinates. The
above assumptions are typical for the majority of surveillance cameras.

1.2 Image Patch Model

The image plane is divided uniformly into small patches Py, , , where m and n
are the row and column index of each patch:

Pm,n = {Wm,'m Man,yu Am,rm (Cm,ny dm,n)} (2)

where W, , is a binary variable that indicates whether this image patch is
walkable or not (Sec.2.2), pg,n is the average pedestrian height located in this
patch (Sec.4.1), Ay, n is the estimated altitude (Sec.4.2), and (Cym.n, dm.n) are
line parameters that indicate the relationship between pedestrian height and
image vertical positions (Sec.3.1).

2 Processing of Tracking Observations
2.1 Motion Tracking

For each pedestrian in the scene, a track (or an observation) is derived by a blob
tracking algorithm, e.g. [I3]. For a pedestrian j = [1,2..M], atrack O; is defined as:

O — {[ ;n]én7 ;n]gac7 y;rzkwrz’ y‘;nkl:lﬁ]} (3)

where k is the frame number. The bounding box [:n;”,g", zTe", y;”g", y;”,g“"] defines
the object width ( Wj = 2’0 - 27%") and height ( Hjx= yJ¢* - y%") and
its centre bottom point (Bj x,Cj k). where B; i is the lower y-coordinate of the
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bounding box (Bj 1, = y}*) and Cj is the middle x-coordinate (Cjx = (z7{"
+ a}'® ) /2).In practice, before any further processing, it pays to filter tracks to
remove unreliable measurements. In our case, we use the LOWESS method [14]
to smooth the bounding box sizes for each track (10% of the track length as
the window size), and also remove bounding boxes where the ratio between the
height and width is below a threshold T}, (experimentally set to 2), which are

likely to violate the assumption that we are processing walking pedestrians only.

2.2 Walkable Regions

For a given scene, people normally appear on regions which can be called ” walk-
able” (e.g. not on walls or buildings). Therefore, detecting where people appear
can help us to identify walkable regions in the camera FOV. A patch is walk-
able if the number of observations (B, ,C; %) located inside a patch is above
a threshold Tj,. Then, by a connected component analysis, image patches are
grouped and labeled as walkable regions (see Fig.11). Walkable regions will be
further segmented in Sec.3.1.

2.3 Height Variation across Multiple Planes

The linear camera projection model (EqlIl) is valid if objects move on a single
flat plane. However, this is not true for scenes that contain ramps or stairs. Fig.3
shows that when a pedestrian moves across different planes (at the boundary
between the flat area and the stairs at around y=480), there is a noticeable
change of slope of the object height/y-axis plot.

We adopt a Hough transform approach to detect the slope change and conse-
quently determine the number of planes for each walkable region. Let’s assume
that the frame span of a track O; is from K, to Kj . Firstly, we divide the track
uniformly in time into N parts. Each track segment ¢ (¢ = [1...N]), consists of a
set of points Q; =(Bj « ,H; 1), where k is the frame index of Q;, (K ,-K;,)/N is

w0 %0 e Too
Image Y-axis

Fig. 3. Bounding boxes of a tracked pedestrian j (left) and the relationship between
object heights H; ; and vertical position on the image of By (right)
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the length of each track segment.Each point (B, ,H, ;) reflects the relationship
between pedestrian heights and the vertical position on the image plane. Then,
we perform least square line fitting for all points between K;, and K;,. We
find the line parameters (c; ;,d;;) in slope-intercept form, which minimize the
average square distance from points to the line segment.

The 3" fitted line function for track j is:

Hjk = ¢jiBjx + dja (4)
and the average square distance error is:
EZ}:U%&*%ﬂ%k*%H 5)
— (Kjp— Kjo)/N

Therefore, for each track O;, we obtain a set of line parameters (c;;,d;;) or
equivalently (6;;,5;,), where 0;,= arctan(c;;) is the angle between each line
and the x-axis and S; ;= -d;;/c;; is the intercept. Each fitted line represents a
linear relationship between the pedestrian height and the image vertical position
or equivalently a plane that the pedestrian moves on. For further analysis, a
histogram of angles 6, ; is obtained. Fig[ll shows that for pedestrians moving
across planes, their height curves will change its slope and more than one peak
will occur in the histogram (left side of Figlhl). For pedestrians moving only on
one of the planes (right side of Fighl), their height curves will be a single line
ideally, the variation of angles of fitted lines will be small and one peak will occur
in the histogram.

Finally, we obtain the histogram of angles of all the tracks for a specific
walkable region. After applying a moving average to smooth the histogram, we
obtain all the peaks (local maxima). Each peak corresponds to a plane in the
scene and is described as a single Gaussian:

(,U,?,J?HU,;S,U;S) i =1...Nciass (6)

where p¢ | 0¥ are the mean and standard deviation of angle 6, ;, and 7, o are

the mean and standard deviation of intercepts S; ; for each class i. Njqss is the
total number of classes for the given walkable region (see Fig.12).

0

H -
H=cB+d *

&

#

Object height
: 3 B

B

fo = = w

®O B¢ 7
Image Y-axis

Fig. 4. Least square line fitting (red: tracking data points, blue: fitted lines)
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3 Image Segmentation to Scene Planes
3.1 Segmentation of Walkable Region

After the number of planes (classes) for a given walkable region were estimated
as described in the previous section, all image patches are classified to different
planes. The steps to segment a walkable region into planes are summarized as
follows:

1. For each image patch P, , of the walkable region, we obtain all the tracked
pedestrians (B, ,H; 1) whose centre bottom points are located inside this patch
(see Figld)).

2. A least square line fitting algorithm is applied to obtain the line parameters
Cm,n,dm n for this image patch. The angle between the line and the x-axis, 0., », =
arctan (¢, ) and the intercept Sy, = -dpm n,/Cm,n, will then be used as a feature
of this image patch in order to classify it into different planes.

3. A segmentation method similar to the one described in [9] is applied. The
image patch P, , is labelled by the class (plane) ¢ (Eqlfl) that minimizes the
difference:

52
(Sm’(r;s)fl) ] (7)

gmn* 92
Arg  min [a( ’ i)

ie[lchlass] (05)2

+(1-a)

where 0, ,, is the angle feature for the image patch, and S, , is the intercept
for the image patch, and a controls the combination weights between the two
parts.

ol n . L . L
-i00 -80 -80 -a0 20 0 20 40 60 80 100 -0 80 -80 -40 20 0 20 0 80 8 100

. I I S 0

Fig. 5. Example of line angles and their histograms (Top: bounding boxes of pedestri-
ans, middle: angles, bottom: histogram of angles)
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Fig. 6. Examples of line features for image patches (the red rectangles)

4. Due to noise, a few image patches get an incorrect label during step 3. To
address this issue, the label of an image patch may change by minimizing the
following cost function:

m-+c,n+c

. (9m n — /Je)2 o,k
A s (2 )
Tg ie[llaljl\}}:}ass][ (0-6)2 + ﬂ Z |9m,n - 90,k|] (8)

K3
the cost function takes the difference between the patch P, ,, and its neighbour
patches into consideration (assuming eight neighbours here). p, =0 when P, ,,
and P, have the same label, and jio ;=1 when P, , and P, have different
label. The parameter (3 is set experimentally to 0.5
5. We repeat step 4 until no change of class label is observed.

o=m-—c,k=n—c

3.2 Global Motion Variety

People are likely to move towards certain directions when they move on certain
geometric structures. For example, people often follow the path on a bridge,
also, go straight up or down on stairs statistically. Since their motion patterns
can differ on different planes (e.g. the overpass, stairs, the ground), we detect
such difference to distinguish between planes and define a reference plane. We
compute statistics about which direction each pedestrian takes and how many
times: each time a pedestrian’s centre bottom point Bj j is located within P, ,,
we compute a motion vector for the next few frames which indicates the direction
of the pedestrian’s motion., Then, all motion directions are accumulated to a
histogram of motion directions, consisting of N, direction bins, as shown in
Figl

{Vidi=[1..N,] (9)

where i indicates the direction of motion (N, = 4 in this work), and V; is the
count of the number of times pedestrians have taken that direction.
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Fig. 7. Four direction motion mode

We compute the "motion variety” for each image patch P, ,, as follows:

Y > [Vi — max(V;))?
vm,n—{zgw\/ ! N, 1 } (10)

Then, a reference plane needs to be chosen arbitrarily and the rest of the planes
are defined relative to this reference plane. We choose the region with largest
motion variety as the reference plane. Although this reference plane is not neces-
sarily the flat ground plane, it is more likely to be a plane parallel to the ground
plane, as stairs and slopes tend to have smaller motion variety (see Figlldb).

4 3D Scene Model Estimation

4.1 Estimating Average Heights

A relative depth map is established by accumulating height observations of
tracked objects for each image patch. We model the noise observations of object
heights of each patch with a single Gaussian to address the issue of noisy. Specif-
ically, for each patch P, n, the pedestrian height Hj ; information is obtained,
whose (Bj,,Cj 1) is located inside this patch. Then, the heights are modelled as
a mean /’[’g,n and standard deviation Ug’n. Note that some image patches will
have very few or no observation at all which implies that those areas are not
walkable by pedestrians.

Grid6906, mean232.01, SD4.08 Grid2212, mean74.57, SD4.36
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Fig. 8. Pedestrian height information for image patches (red rectangles)
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4.2 Altitude Estimation

As the reference plane has been chosen in section 3.2 and the pedestrian height
information for each image patch has also been obtained in section 4.1, the next
step is to estimate the relative altitude for each image patch in the scene with
regard to the reference plane.

As illustrated in Figl8 for each image patch (red rectangles), an average
pedestrian height ,ug’n is obtained as mentioned in section 4.1. One can always
find a position with the same pedestrian height somewhere on the reference plane
using EqTTL y;, ,, is called the reference vertical position (green rectangles).

u
The expansion rate R, and the horizon y;, (where the pedestrian height is zero)
for the reference plane is estimated using the line fitting method mentioned in
section 3.1.

If there is a difference between the vertical position of the image patch and
the reference vertical position yy, ,,, this indicates that the image patch may not
be located on the reference plane but on other planes that are higher or lower
than the reference plane. We estimate the relative altitude Ary, , for the image
patch P, , by taking the difference of vertical positions and normalize it by
the average pedestrian’s height ,uﬁ’n, we will get an estimation of the relative
altitude Ary, , for the image patch:

R
Arm,n _ (yman " ym,n) (12)
Him,n

Finally, we assume an average height of pedestrians Hg, (e.g. 1.70 meters) to
convert the altitude of each image patch P, , into meters.

Am,n = Arm,nHav (13)

Relative

= Attitude

Fig. 9. lustration of how altitude been estimated
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5 Dataset and Results
5.1 Dataset

The dataset used in this work is called Kingston Hill dataset which is captured
in Kingston Hill campus of Kingston University, London and is available at
http://dipersec.kingston.ac.uk/NCGMdata. It is a multiple camera dataset
with two cameras monitoring roughly the same area and time synchronized.
These videos were recorded by HD cameras. The image resolution is 1280x720.
The dataset contains several hours of videos with pedestrians moving around fre-
quently (with low object density in the scene). There are non-coplanar structures
in the scene such as stairs and overpass.

To the best of our knowledge, there is no existing public surveillance dataset
which deals specifically with scenes of multiple non-coplanar planes. Therefore,
we have made our dataset public available to allow researchers to work on track-
ing in multi-planar environments and compare results.

5.2 Results and Evaluation

In order to verify our method, we tested our algorithm on the dataset described
above. The frames from HD videos are divided into regular 10pix x 10pix patches.
A motion tracker is used to obtain the position and size of each pedestrian when
they walk through the scene and more than 200 tracks are obtained. In Fig[IT]
we show the results of grouping the camera FOV into walkable regions (Sec.2.2).

FigTZh and FigI2b show the result of the histogram of angles of all the tracks
for each walkable region (Sec.2.3). Fig[[3k and FiglI3b show the intermediate
and final scene segmentation results respectively (Sec.3.1). At this stage, the
walkable region (1) was split to a flat area (red) and the stairs (green).

Figll4h shows the motion variety for different coplanar regions for camera
one (Sec.3.2). We can see that the motion vectors on the overpass are very clear
and uniformed (mainly on direction 0). Motion on the stairs is fairly uniformed
(mainly on direction 1). However, on the flat area, the motion vectors are diverse,
therefore, the motion variety will be larger.

Figll4b shows a relative depth map based on average pixel-wise pedestrian
height for each image patch where different colours represent different pedestrian
heights (Sec.4.1).

Fig. 10. Kingston Hill Dataset, camera view 1(left) and camera view 2(right)
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Fig. 11. Group of walkable regions for cameral

Fig. 12. a) Histogram of angles of lines for walkable regionl b) Histogram of angles of
lines for walkable region2

Fig. 13. a) Intermediate segmentation result for camera 1, b) Final segmentation result
for camera 1

FigllBh and FigIob show the results of estimated altitude for each image
patch of both camera views. The x, y axes are the image coordinates and the z
axis is the estimated altitude. We can see a rough 3D structure of the scene: the
flat area, the stairs and the overpass which is higher than the stairs. In order
to evaluate the accuracy of the altitude estimation, we measured the real sizes
of the stairs and overpass. There are 19 steps, the first 18 of them are 18 cm in
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Fig. 14. a) Global motion variety for cameral with histograms showing motion direc-
tion frequency, b) Pedestrian height for each image patch for cameral

Table 1. Evaluation on altitude estimation in meters

Ground truth Cameral Camera2

Overpass: 5.0 5.1 5.0
Stairs: 3.4 3.3 3.5
Flat area: 0.0 0.0 0.1
:
'"“’9;' ' - & A-Axis .
Ainls Image Y-Axis Image Y-Axis

Fig. 15. a) Estimated attitude for each image patch for cameral, b) Estimated attitude
for each image patch for camera2

height, and the last step is 16 cm in height. Hence the height of the stairway is
3.4 meters in total. The height of the overpass is 5 meters.

In table 1, we can see that our estimations of the heights of the stairs and
the overpass for the first camera view are 3.3 and 5.1 meters respectively (3.5
and 5.0 for the second camera view). Therefore, the proposed method estimated
accurately (overall error: less than 0.1 meter) the real altitude for 3D scene

structures.
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6 Conclusion and Future Work

We proposed a method to automatically estimate a non-coplanar scene model
by statistically exploring the variation of pedestrian heights across the camera
FOV. The proposed method is able to find out the relative depth, segment the
image plane into regions which belong to the same geometric coplanar plane,
identify a reference plane and estimate the altitude for each image pixel, thus
building up a 3D scene model which contains multiple non-coplanar planes.
Such a method is very useful for surveillance applications, as it allows 3D (single
or multiple camera) tracking in scenes which contain non-coplanar structures
such as multiple levels, overpasses and stairs. We also demonstrated that our
estimation of altitude is sufficiently accurate.

For future work, we aim to build up a 3D model which reflects the real world
scale of the scene structures by taking the real scale of pedestrians into con-
sideration. We also aim to extend our method to multiple cameras. Such an
approach will not only produce more accurate 3D representations but also will
map each of the 2D image views into a common 3D scene model that will allow
multiple-camera tracking in wide area non-coplanar environments.
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Abstract. In this paper, we explore region-based 3D representations of
the human face. We begin by noting that although they serve as a key
ingredient in many state-of-the-art 3D face reconstruction algorithms,
very little research has gone into devising strategies for optimally de-
signing them. In fact, the great majority of such models encountered in
the literature is based on manual segmentations of the face into subre-
gions. We propose algorithms that are capable of automatically finding
the optimal subdivision given a training set and the number of desired
regions. The generality of the segmentation approach is demonstrated on
examples from the TOSCA database, and a cross-validation experiment
on facial data shows that part-based models designed using the proposed
algorithms are capable of outperforming alternative segmentations w.r.t.
reconstruction accuracy.

1 Introduction

Many problems in computer vision deal with objects that can be subdivided into
meaningful parts by a human observer. It is widely believed—both in psychol-
ogy [I] and in computer science—that such a decomposition can enhance our
understanding of an object. This may enable us for example to identify partially
occluded or locally deformed objects, or to extrapolate from known examples
of an object class. Because of its social relevance, one of the most frequently
studied object classes in computer vision is the human face.

In this paper we demonstrate that—taking faces as a good case in point—the
optimal subdivision into parts does not follow the intuitive subdivisions that
have been used so far. We derive a method to extract better parts and show
their superiority in 3D face reconstruction experiments.

Many authors have demonstrated the usefulness of intuitive part-based rep-
resentations in automatic face recognition tasks. In one of the earliest works,
Brunelli and Poggio [2] showed that a template matching scheme based on a com-
bination of facial features such as the eyes, nose, and mouth provides better facial
recognition rates than a similar technique based on the face as a whole. More
recently, variations on this approach incorporating eigenfeatures have proven to
be particularly useful when dealing with partial occlusions and facial expres-
sions [3[41[5]. Similar results have also been found for 3D face recognition [6].

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 276 2011.
© Springer-Verlag Berlin Heidelberg 2011
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An important aspect of part-based representations is that they enable more ac-
curate reconstructions of novel examples of the object class. Blanz and Vetter [7]
augmented their 3D Morphable Model (3DMM) of the human face by manually
partitioning the face into four regions. By independently adjusting the shape
and texture parameters for these regions, and blending the results into a single
face model, they were able to obtain more accurate 3D face reconstructions than
with a holistic approach. Similarly, Peyras et al. [8] used region-specific Active
Appearance Models (AAMs) to enable accurate facial feature fitting on unseen
faces. The same principle has been adopted by various authors [9T0TTIT2|13lT4]
to enhance the performance of SDMMs in 3D face modeling, 3D face reconstruc-
tion, and automatic face recognition tasks. The main difference between these
contributions regarding the part-based representation lies in the way the parts
are joined at the boundaries to form a complete face model.

The previously mentioned works have abundantly shown the merits of part-
based representations, but they do not provide any automatic tools for obtaining
the subdivision into parts, instead relying on manual segmentation of the regions.
While this approach may be acceptable for objects where the underlying regions
are intuitively clear, other object classes may benefit from automatic partition-
ing techniques. Furthermore, we will demonstrate that even for familiar object
classes like the human face, a manual segmentation is not necessarily optimal.

In the literature, a large amount of research has gone into the development of
automatic 3D mesh segmentation techniques [15]. The vast majority of these are
based on geometric properties such as curvature or geodesic distances. While
these methods tend to work well for articulated objects like full-body scans,
they are less reliable for faces, where the parts are ill-defined from a geometri-
cal standpoint. Indeed, we believe that in general a method for automatically
subdividing an object class into meaningful parts should not be based solely on
geometric properties, and could benefit greatly from deformation statistics. This
is especially true when the available data is not geometrical in nature, which for
example is the case for color images. In this paper, we demonstrate that good
segmentations can be obtained using only deformation statistics.

For automatic blendshape segmentation in facial animation, Joshi et al. [16]
proposed to apply a thresholding operation to a maximum deformation map,
followed by some post-processing to clean up the resulting regions. A promis-
ing candidate for automatic object decomposition is the Nonnegative Matrix
Factorization (NMF) framework, due to Lee and Seung [I7]. NMF and its rela-
tives [I8,19] have been applied to databases of facial images, resulting in a set
of nonnegative basis images capable of reconstructing the original images with
minimal error. By applying sparseness constraints, the basis images can be made
to correspond more or less with facial features, but it is not entirely clear how
to extract distinct facial regions.

While researching transform invariant models for pedestrian detection, Stauf-
fer and Grimson [20] introduced the concept of Similarity Templates as a statis-
tical model of pixel co-occurrences within images of the same object class. By ap-
plying hierarchical clustering to an aggregate Similarity Template of a database
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of aligned pedestrian images, they were able to automatically construct a region
segmentation that corresponds well to meaningful parts of pedestrian images.
Our approach is similar as it uses statistical information about the relationships
between vertices in an aligned database of 3D face models, and applies clustering
techniques to obtain a decomposition into regions of high correlation. Addition-
ally, we present a technique to automatically determine optimal blending weights
for recombining facial parts into a complete 3D face model.

2 Preliminaries

Before introducing our methods for automatically subdividing an object, it is
worth mentioning the problem we set out to solve. Although the data used in
our experiments was derived from a set of laser scanned faces, the formulation
and algorithms are general enough to be applied to any object class that can be
modeled as a linear combination of eigenfeatures.

2.1 Facial Data

The facial data used in this paper is based on the USF DARPA HumanID
3D Face Database of laser scanned faces in a neutral pose. A subset of 187
laser scans has been selected from the original database so that each person’s
face is present only once in the dataset. The laser scans have been brought
into dense correspondence using a regularized non-rigid registration procedure
derived from [2I]. The resulting dataset consists of 187 3D face shapes, each
composed of 60 436 vertices. Encouraged by the results of [2212324], we decided
to exploit the mirror symmetry properties of the human face space by extending
the dataset with a mirror image of each face.

2.2 Linear Subspaces for Reconstruction

Given a set of data vectors, the optimal set of basis vectors for linearly re-
constructing the original set in the least squares sense is given by Principal
Component Analysis (PCA). This inherently entails some restrictions.

1. The reconstructions are linear combinations of basis vectors. Better results
may be possible when this linearity restriction is removed.

2. The reconstruction error is minimized in a least squares sense. Depending
on the application, this may not be the best error measure.

3. Minimal squared reconstruction error is only guaranteed when reconstructing
vectors from the training set. When a dataset is split into a training set and
a test set, the basis vectors obtained by applying PCA to the training set
may not optimally reconstruct the vectors in the test set.

The third issue is what we are trying to address in this paper. It occurs when
the training set is not large enough for PCA to reliably estimate all the modes
of variation in the population, which is normally always the case when dealing
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Fig. 1. Example of applying the segmentation technique to synthetic data. The data
was generated by applying three independent overlapping gaussian deformations to
a cylinder. Top row: four of the 20 available training examples. Bottom row: three-
component segmentations based on (left) statistically normalized displacement vec-
tors, (center) displacement magnitudes, (right) statistically normalized displacement
magnitudes. Only the last type of feature vectors leads to the correct part subdivision.

with non-synthetic data. One way of improving the reconstruction quality for
vectors outside the training set is by incorporating prior knowledge about certain
regularities in the population. For example, the mirror symmetry of human faces
can be exploited by adding mirrored examples of the original faces to a training
set. When the number of training vectors is less than the size of the vectors, this
trivially boosts the reconstruction quality by increasing the number of degrees
of freedom in the PCA model. Much more importantly, as shown in [23] for
grayscale images of faces, this also improves the quality of the computed basis
vectors, resulting in increased signal-to-noise ratios for reconstructions even when
using a fixed number of basis vectors. This effect was shown to persist even with
large training sets of 5627 images of 64 x 60 pixels. Another popular approach
is to subdivide the original training vectors into separate regions, preferably
corresponding to localized features in the object class, and train a PCA model
on each of those regions. This is known as the eigenfeatures approach [3]. By
doing so, the number of available basis vectors is multiplied by the number of
subregions, resulting in greater representational power, while retaining the ability
to perfectly reconstruct the original training vectors. In principle, one could keep
subdividing the training vectors into more and more regions until the desired
reconstruction accuracy is achieved. However, in most applications it is desirable
to keep the number of basis vectors as low as possible. Therefore, our objective
is—given a limited number of regions—to automatically find those regions that
minimize the reconstruction error outside the training set. It is expected that
these regions will correspond to meaningful parts of the object class.

3 Automatic Segmentation of Facial Regions

Suppose we have a training database of M objects, each sampled at N corre-
sponding vertex locations. When subdividing this set of 3D surfaces into regions,
we wish to cluster vertices together according to some measure of similarity. In
this section, we will design a similarity measure suitable for this context.
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Fig. 2. Segmentations of models from the TOSCA high-resolution 3D database using
weighted k-means clustering of the proposed feature vectors. Weighted k-means was
used to compensate for large variations in local mesh density.

The dataset of 3D surfaces that we wish to segment consists of M surfaces,
each composed of N vertices s;;, ¢ € {1,...,N}, j € {1,...,M}. Denote by
n; = 1\14 Z]Ail s;; the mean position of the i-th vertex, averaged over all sur-
faces. Then d;; = ||s;j — pil|2 is the euclidean distance from the i-th vertex of
the j-th surface to its mean position. The reason why we prefer to work with
distance values rather than displacement vectors is because we want vertices to
be clustered together even if they move in different directions w.r.t. their mean
positions. For example, consider two vertices located on opposite sides of the
nose. If the training set contains faces with noses of varying sizes, then these
vertices will move further apart or closer together, causing them to have differ-
ent displacement vectors. Since such a scaling operation could be represented by
a single basis vector in the eigenfeatures approach, it is more efficient to assign
both vertices to the same region. Based on similar reasoning, we choose not to
work with the distances directly, but rather with the normalized distance values

dij
tij = A; ,
\/21:1 i

where the normalization is performed w.r.t. the entire range of displacements
the vertex undergoes throughout the training set. The normalized vectors t; =
[ti1,--->tin] T3 € {1,..., N} can now be used as feature vectors for determin-
ing similarities between vertices across the training set. By applying a suitable
clustering algorithm to the feature vectors, a segmentation into regions of max-
imum deformation similarity can be obtained. In our experiments, we used the
k-means++ algorithm [25] with 1000 random restarts. The effect of using differ-
ent types of feature vectors is illustrated in Fig. [ for an artificially generated
dataset. Results on models from the TOSCA high-resolution 3D database [26]
are shown in Fig. Bl For the face dataset described in Section BT we obtained
the facial components shown in Fig.

(1)
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Fig. 3. Facial components found by applying the k-means++ clustering algorithm to
the similarity features described in Section [BI The features were computed on the
3D shape of a dataset of 187 registered laser scans of the human face. The red box
(right) shows manual segmentations of the face into four and five regions as used in
our experiments (Section [B.I)). The manual subdivisions correspond well with those
commonly found in the literature.

4 Optimal Region Blending

While a subdivision of an object class into disjoint parts can be useful in itself,
it is not enough for optimal part-based reconstructions of a particular object.
Consider a part-based 3D shape model of an object. If one of the model parts is
allowed to change shape while the rest of the model remains constant, disconti-
nuities are likely to occur at the boundaries between the morphing part and the
rest of the model. This is counterproductive in at least two ways:

1. If not properly taken care of, such discontinuities will show up as visible
artifacts in the reconstructed object shape. Traditionally [7,[ITL1314], this
is resolved by blending at the boundaries in a post-processing step.

2. When a part-based model is used in an automatic fitting algorithm, discon-
tinuity errors at the boundaries will be taken into account in the objective
function. This may steer the optimization away from the optimal solution,
towards a solution that provides a better fit near the boundaries. This issue
is not solved by post-processing.

To address both issues, the basis vectors of the part-based model need to be
continuous across the entire object. An easy way to achieve this is by training
the model on smoothly overlapping training examples, rather than examples that
contain all the information of a single region, and are abruptly cut off beyond
the region boundaries. The question that remains is how to design the regions
of overlap.

4.1 Algorithm Derivation

In this section, we present an algorithm for automatically determining the op-
timal regions of overlap for a linear part-based model. Recall from Section
that we have a training database of M objects, each sampled at N correspond-
ing vertex locations. Ideally, the vertices should be organized such that vertices
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with the same index retain the same physical meaning across all objects. E.g.,
the vertex located at the tip of the nose should have the same index in all face
models of the dataset, and similarly for all other points of the face. To keep the
derivation as general as possible, we assume that each vertex can be represented
by a D-dimensional vector. Furthermore, without loss of generality we assume
that each object is vectorized by vertically concatenating its vertices, and mean-
normalized by subtracting the corresponding mean from each vertex. lL.e., the
j-th object in the training set is represented by the D N-dimensional vector

sj =[S0 Sn;]T = Il pn]t (2)
The entire training set can then be written in matrix form as
S=1s1,...,8M] (3)

One of the assumptions of the traditional PCA approach is that a particular
instance of an object class can be approximated by a linear combination of
training examples. Formally, if y is a (mean-normalized) vector representing a
particular instance of the object class, then y can be approximated as

M
y ~ ZC,‘S,‘ (4)
=1

This principle can be extended to part-based models by introducing a N-
dimensional per-vertex weighting vector w; for each region j € {1,..., K}. After
extending the weighting vectors to the full dimensionality of the training vectors
by replicating each element D times (which we shall write as w;), we obtain

K
y & Zdiag(wj)Scj (5)

j=1

where c; is the vector of linear coefficients corresponding to the j-th part of
the object. The weighting vectors w; contain per-vertex weights specifying the
influence that each of the K regions has on the final position (or value) of
each vertex. Note that given the weighting vectors, the coefficient vectors that
minimize the reconstruction error in the least squares sense are found as

el ek]" = [diag(w1)S, ..., diag(wk)S] "y (6)

where the superscript (*) denotes the Moore-Penrose pseudoinverse. In the in-
terest of brevity, we introduce the notations

W = [wy,...,Wg] (7a)
Sw = [diag(w1)S, ..., diag(wk)S] (7b)

for the matrix containing the region weights and the matrix formed by horizon-
tally concatenating the weighted training vectors.
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The objective is now to find the weights that allow us to minimize the expected
reconstruction error, given the training set. Formally,

Wopi = argmin Ey [[ly — Sw (Sw) " y/3] (8)

where, in theory, the expectation should be taken w.r.t. the entire population of
possible test vectors. Obviously, we don’t have access to all possible test vectors.
If we did, the optimal basis vectors would be given by a straightforward PCA and
the problem would be solved. Here, we only have the training set available and
we will have to base the expectation on what’s available in there. The solution
we propose is to split the training set in two disjoint parts. One part is used for
building the region-based subspaces, while the other part serves as a source for
generating out-of-training-set examples. To make maximum use of the available
data, and to reduce the danger of overfitting, we propose to randomly reassign
vectors to both sets in each iteration of the algorithm. The optimal weights can
be iteratively estimated with the following alternating least squares algorithm.

Step 1. Given a DN x Mx matrix of training vectors X, a DN x My matrix
of test examples Y, and a N x K matrix of region weights W, we need to find
the coefficient matrix C of dimensions K Mx x My that optimizes

C* = argmin||Y — XwCl| (9)

where we have used the notations in Eqgs. (Tal) and (7h). The subscript F indicates
the Frobenius norm. Similar to Eq. (@), the solution is given by

C'=Xw)'Y (10)
Step 2. In the next step, we search for the weight matrix W* that optimizes

W :argn‘%nHY—XWC*H% (11)

given X, Y, and C*. First, note that the difference can be rewritten as
K
Y - PCVV(T!< = [yla ceey yMY] - Z diag(wi)[vﬂ? ceey viMy} (12)
i=1

by forming the example vectors v;;, i € {1,..., K}, j € {1,..., My} as linear
combinations of the training vectors in X, based on the coefficients in C*. By
examining Eq. ([I2)), it becomes clear that the least squares solution to Eq. ()
can be found by solving N independent linear systems (one system of DMy
equations and K unknowns per vertex). Therefore, at least My > K/D test
vectors are needed to find a solution[]

! In some applications, particularly where multimodal data is involved, it might be
beneficial to use different weights for each dimension of the vertices. In that case,
the requirement becomes My > K.
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The following additional notes complete the algorithm:

1. The weights computed in Step 2 of the iteration may include negative values,
which is not physically meaningful. As is standard practice in the NMF
framework [27], a valid weight matrix can be found by setting the negative
values to zero after each iteration.

2. By additionally constraining the weights to sum to one for each vertex of the
model, we ensure that the resulting set of basis vectors retains the ability to
perfectly reconstruct the original training vectors.

3. For high dimensional data—such as high-resolution 3D scans—the algorithm
converges rather slowly. In our implementation, this is resolved by using a
coarse-to-fine approach with four pyramid levels.

4.2 Final Algorithm

To conclude, the final algorithm as used to generate the results in this paper
(Fig. M) can be stated as follows:

Input:
— Mean-normalized training set S.
— Number of desired regions K.
Initialization:
— Compute pyramid representation of S.
— Compute initial hard segmentation by applying the method described in
Section [3]
— Set initial weights W according to the hard segmentation.
Iteration:
— For each level of the pyramid:
e [terate until convergence or desired number of iterations reached:
* Randomly split training set into X and Y.
Compute coefficients C (Step 1).
Compute weights W (Step 2).
Set negative entries in W to zero.
* Force W to sum to one for each vertex.
e Upsample W to the next pyramid level.
Output: W

* X ¥

5 Evaluation

Since the objective of the proposed algorithms is to minimize the reconstruction
error for faces that are not present in the training set, the best way to evaluate
their performance is by building region-based models using the output W, and
experimentally testing the reconstruction accuracy on a test set. An important
aspect is to compare the results of using different subdivisions.

First, we need to specify how to build a part-based model starting from a set of
regions and a training set. The models used in our experiments were constructed
according to the following approach:
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Fig. 4. Optimal weights computed with the algorithm described in Section B on a
dataset of 187 laser scanned faces, for four (top), five (center), and six (bottom) regions
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Fig. 5. Average reconstruction errors for the 10-fold cross-validation experiments de-
scribed in Section Bl The standard deviation of the curves is less than 5 um, and
roughly corresponds to the line thickness. Note that the approach using the optimal
weights computed with the proposed algorithm (red solid line) clearly outperforms the
approach using manually segmented regions (blue solid line).
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1. Create a global training set by subtracting the mean face from the set of
training examples.

2. Create region-specific training sets by applying the per-vertex region weights
to the global training set (Eq. (7H)).

3. Gather the global and region-specific training sets into a single set and com-
pute basis vectors by applying PCA.

This procedure combines the desirable properties of PCA-based models with
the advantages of part-based models. Specifically, the models have the following
properties:

— The basis vectors are orthogonal, which avoids redundancy in the model and
facilitates the reconstruction task.

— The basis vectors are sorted according to their ability to explain the training
data. This ensures that truncating the model by removing some of the least
significant basis vectors does not greatly impair the reconstruction quality.

— The model was trained on the set of complete faces as well as their parts,
and therefore has knowledge of both global and local deformation statistics.
This is in contrast to models trained on only the parts, which would lack
any knowledge of statistical relations between the parts.

To avoid discontinuity artifacts at the boundaries for those region-based PCA
models that are based on a hard segmentation (either manually or automati-
cally determined), a smooth overlap between regions was created by convolving
the hard partition masks with a Gaussian filter having a standard deviation of
approximately 10 mm. An alternative approach to the region blending problem
that deserves special attention is the method used by Blanz and Vetter [7] for
their 3DMM. Instead of simply blending the surface patches at the boundaries
according to some weighting factor, they employ a blending technique based
on Laplacian pyramids. By simultaneously blending the patches at multiple
pyramid levels, a wavelength-dependent overlap size is obtained, which provides
discontinuity-free blending, while preserving high-frequency detail. To discrimi-
nate between the two blending schemes, we will use the term Weighted PCA for
all region-based PCA models that use a single matrix W to define the regions,
and Laplacian Pyramid PCA for models using different regions of overlap—or
equivalently, different weight matrices—for different spatial freqencies.

5.1 Experiments

In our experiments, we compare the reconstruction accuracy on a test set for
various part-based models of the 3D shape of human faces. Our experimental
setup is as follows. As mentioned in Section [2.1], the dataset consists of 187 laser
scanned faces and their mirror images. We test two scenarios: one where 50 faces
(100 scans when including the mirror images) are available for training, and one
with 100 training faces (200 scans). Ten cross-validation tests are performed. In
each test the dataset is randomly partitioned into a training set and a test set
(taking care to always assign mirrored scans to the same set as the original ones).
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Fig. 6. Examples of face reconstructions based on 50 training faces using four facial
regions. Left: Original face. Center: Reconstructed with a region-based model using
optimal region blending (Section H). Right: Reconstruction based on manual regions.

First, a global PCA model is trained, and its reconstruction accuracy is evalu-
ated on the test set for a wide range of model truncations (by model truncation,
we mean the operation of retaining the first few basis vectors of a model, while
discarding the rest). The process is repeated for region-based models. As a base-
line, we manually define segmentations into four components (eyes, nose, mouth,
rest) and five components (eyes, nose, mouth, ears, rest) (Fig.[Bl), and compare
models based on these segmentations against the automatically generated ones.

The results are presented in Fig. Bl As expected, the best results were ob-
tained with a weighted PCA approach based on optimal weights computed with
the proposed algorithm from Section L2 The second-best results were obtained
with a weighted PCA model based purely on the automatically clustered regions
from Section [3l Given four regions, part-based models based on the method by
Joshi et al. [16] still managed to outperform the manual segmentations, while
for five regions this method came out last. Our results also show that the per-
formance of Laplacian pyramid PCA models can be improved by using our au-
tomatic segmentations. All region-based PCA models in our tests succeeded in
outperforming the baseline global PCA from about halfway its number of avail-
able basis vectors. Without constraining the number of basis vectors, it is easily
feasible to cut the reconstruction error of global PCA in half, or even in three.

Typical examples of the quality improvements that can be expected when
upgrading from a manually segmented model to a model with optimal region
blending are shown in Fig. [0l Note the overall improved signal-to-noise ratio,
and the improved reconstruction quality of facial features (most visible in the
nose, mouth, and chin regions).

The main conclusion of these experiments is that part-based models can seri-
ously boost the performance of linear eigenspace-based reconstruction methods,
and that there are better alternatives than segmenting the relevant parts by
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hand. When compared to other part-based models, the proposed technique pro-
vides a significant improvement that is essentially for free, since for a given
number of basis vectors the quality improves. Even better: for a given recon-
struction accuracy, models using optimally blended regions often get away with
less than half the number of basis vectors needed by others.

Given the generality of the derived method, it would be interesting to test it
on different modalities, like facial textures, or thermal infrared data. It seems
likely that the optimal regions would differ from those obtained for 3D shapes.

6 Conclusion

We have noticed that although the advantages of part-based 3D face represen-
tations are widely accepted, the mechanics behind them are only superficially
understood. Many state-of-the-art approaches rely on them for enabling lifelike
3D reconstructions, yet none of them seem to have pursued optimality in the
design of the regions. Most of the methods are based on manual segmentations,
and blending at the boundaries is usually done as a post-processing step. In this
paper, we have presented two complementary methods for automatically finding
the underlying parts in vectors representing objects of the same class. The first
method uses suitable features for finding disjoint regions of maximum deforma-
tion similarity, while the second method relaxes the constraints in favor of finding
optimal per-vertex weights that minimize the expected reconstruction error on
objects outside the training set. In our experiments, the resulting part-based
models have been shown to outperform models based on other segmentations.

In future work, it would be interesting to see how these techniques perform
on datasets representing other object classes, or the same object class (i.e. faces)
seen through different modalities. Also, we intend to check whether the im-
proved reconstruction quality translates to better face recognition results in
reconstruction-based approaches.
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Abstract. Upsampling with preserving image details is highly demanded
image operation. There are various upsampling algorithms. Many up-
sampling algorithms focus on the gray image. For color images, those
algorithms are usually applied to a luminance component only, or in-
dependently applied channel by channel. However, we can not observe
the full-color image by a single image sensor equipped in a common
digital camera. The data observed by the single image sensor is called
raw data. The raw data is converted into the full-color image by demo-
saicing. Upsampling from the raw data requires sequential processes of
demosaicing and upsampling. In this paper, we propose direct upsam-
pling from the raw data based on a kernel regression. Although the kernel
regression is known as powerful denoising and interpolation algorithm,
the kernel regression has been also proposed for the gray image. We
extend to the color kernel regression which can generate the full-color
image from any kind of raw data. Second key point of the proposed color
kernel regression is a local density parameter optimization, or kernel
size optimization, based on the stability of the linear system associated
to the kernel regression. We also propose a novel iteration framework
for the upsampling. The experimental results demonstrate that the pro-
posed color kernel regression outperforms existing sequential approaches,
reconstruction approaches, and existing kernel regression.

1 Introduction

Upsampling with preserving image details is one of highly demanded image op-
erations. The upsampling is sometime called a single image super-resolution, an
interpolation, or an inpainting in different context. In this paper we call enlarge-
ment of regularly sampled data upsampling. Imaging from irregularly sampled
data is refered interpolation. There are various algorithms for the upsampling or
the single image super-resolution in the literature [IL23L4L5[6]. These upsam-
pling algorithms mainly focus on gray image. For color images, these upsampling
algorithms are usually applied to luminance component, while chroma compo-
nents are upsampled by relatively simple algorithms which include a bilinear
interpolation and a joint bilateral upsampling [7]. However, we can not directly
observe the luminance component by common consumer digital cameras, since
the common consumer digital cameras usually use a single image sensor with a
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color filter array (CFA). Each pixel element of the single image sensor can record
an intensity of one primary color component, typically red, green, or blue. The
most popular CFA is the Bayer CFA [8]. The data observed by the single image
sensor with the CFA is called raw data. The raw data are then interpolated
into a full-color image by a demosaicing process. Then, the luminance compo-
nent is extracted from the interpolated full-color image. Since the quality of the
full-color image strongly depends on the demosaicing process’ performance, var-
ious demosaicing algorithms have been developed in the literature [9L10L1T12].
In order to obtain upsampled full-color image, we need to apply demosaicing
and upsampling sequentially. In this paper, these sequential processes are called
sequential approach.

One of other approaches is a reconstruction-based algorithm. A multi-frame
color direct super-resolution which reconstructs a high-resolution full-color image
from multiple raw data has been proposed [I3J14]. Although these reconstruction-
based algorithms have been proposed as multi-frame super-resolution, the main
idea can be applied to the upsampling or the interpolation. The reconstruc-
tion approach with a sparse gradient prior is known as high-performance algo-
rithm [I5]. The sparse gradient prior can be also applied to direct upsampling
from the raw data.

Recently, kernel regression with an adaptive steering kernel is used in various
applications such as denoising and image interpolation [I]. The kernel regres-
sion was developed fundamentally for gray images as well as above upsampling
algorithms. The kernel regression can interpolate irregularly sampled data. The
interpolation of the irregularly sampled data is general algorithm and includes
the direct upsampling from the raw data. In this paper, we propose a color kernel
regression for robust direct upsampling from the raw data of the general CFA
pattern. The proposed color kernel regression can also upsample from the raw
data of the general CFA pattern. In the proposed color kernel regression, lumi-
nance is modeled by the quadratic polynomial to represent the details, whereas
chroma is modeled by the constant polynomial to suppress the color artifacts.
We also propose kernel size optimization based on the stability of the linear sys-
tem associated with the kernel regression. Then, a novel iteration framework for
upsampling is presented.

The experimental results demonstrate that the proposed color kernel regres-
sion outperforms existing sequential approaches, reconstruction approaches, and
existing kernel regression.

2 Interpolation with Kernel Regression

Locally weighted least-squares regression is called kernel regression in [I]. The
weighting function is called a kernel and is designed to localize the data. The typ-
ical kernel is the Gaussian kernel. Although the goal of this paper is to upsample
from the raw data of the general CFA pattern, we discuss the interpolation of
irregularly sampled data. The direct upsampling from the raw data is the special
case of the interpolation of the irregularly sample data.
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Fig. 1. Interpolation with kernel regression

Let us consider interpolation of the pixel value at the location x, using irreg-
ularly sampled data {(x;, z;)}, where © = (u,v)? represents a two-dimensional
image coordinate, T represents the transpose operator, z is for the sampled
pixel value, and suffix 7 represents the i-th sampling. The pixel value around the
location «x,, is approximated as

22) = f (2 - 2i0(x,)) M

where f(x;0) is the regression function and 0 is the parameter of the regression
function. The parameters 8(x,) are estimated as

O(x,) = arg meinz k(@i — @) [2 — (i — 330)]°

where k(z) is the kernel function. The pixel value at the location «, is interpo-
lated as

2 (@y) = 1 (0:6(z,)) -

In this paper, we consider the Gaussian kernel and the polynomial regression
function. We can interpolate the image by performing this pixel interpolation
for every necessary pixel location. The case of the constant polynomial (zero-
order polynomial) is also known as the Nadaraya—Watson estimator (NWE) [10].
Figure [l shows the schematic of the interpolation by the kernel regression in one
dimensional case. The triangle and the square in Fig. [l represent the value
interpolated with quadratic and constant polynomials, respectively.

2.1 Steering Kernel [1]

Takeda et al proposed an adaptive steering kernel for kernel regression [1]. The
steering kernel for the location ), is represented as

2h2u2,

z'Clz
kwp (CC) = €exXp | — )
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where Cy, is the covariance matrix of the Gaussian kernel, h is called the global
smoothing parameter, and fi¢, is the local density parameter, which controls the
kernel size. The covariance matrix, Cy, is estimated based on the derivatives
around the location x4, as

Z zu(x ) 2u(T5) Z 2u(T )20 ()

1 x;EN, x;EN,
oyl = e e @
7 |Ng,l > zu(@)z(x) Y @)zl |
z;ENg, z;ENg,

where z, is the horizontal derivative, z, is the vertical derivative, N, is neighbor
pixels around the location x4,, and |Ng,| is pixel number of Ny . In [I], the
global smoothing parameter is estimated through cross validation, and the local
density parameter is estimated as the following [I7].

3 Proposed Color Kernel Regression
3.1 Simultaneous Color Kernel Regression

Color images are usually represented by three channels: R, G, and B. For color
image processing, the existing kernel regression algorithms [ILI8] handle each
channel independently. However, it is well known that natural images have strong
color correlations, which are used in the color direct super-resolution [I3] and in
various color demosaicing algorithms [9]. The performance of the kernel regres-
sion would be improved if we could involve color correlation into the regression
model.

The YCrCb color space is easy to handle color correlation. The luminance, or
Y channel, includes high-frequency components, although the chroma, or Cr and
Cb channels, include low-frequency components only. Using these properties, we
parameterize the regression function in the YCrCb color space as

Y (u,v)
CI‘(U, U) = Q(U, U) 0, (3)
Cb(u,v)

where 0 is the eight-dimensional vector that represents coefficients of the regres-
sion polynomial, and matrix Q(u,v) is expressed as

w2 uvv?uv100

Q(u,v) =10 0 000010

0 0000001

In this regression model, luminance is modeled using quadratic polynomials to
represent the high-frequency components; the chroma are modeled by the con-
stant polynomials to suppress the high-frequency color artifacts.
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We presume that the input irregularly sampled color data has only a single
channel of pixel value at each sampling point. In order to represent the irregu-
larly sampled color data, we introduce the pixel value vector z; and the mask
vector m; as

r

T m;
— _ g
zZ; = gi m; = mi (4)
b; ’ mf ’

where (r;, gi,b;)T is the pixel value of each channel for i-th sampled data, and
(m&,m?,m?)T is the sampling mask for each channel. The pixel value of the sam-
pled channel represents the sampled value, and the pixel values of non-sampled
channels are set to zero. The sampling mask is set to one if the associated color
channel is sampled, and is set to zero for the other.

Using the color regression function model presented in Eq. (@) and the sampled
data representation in Eq. [, the proposed color kernel regression is formulated
as an optimization problem to minimize the cost function :

Emp(ezp) = Z {kmp (wl - wp;ﬂmp) [Zi - RQf Gmp}T dla‘g(ml) [Zi - RQ’IL) ezp]} )

()

where R is a matrix representing the transformation from the YCrCb color space
to the RGB color space, diag(m) is a diagonal matrix whose diagonal elements
are elements of m, and Q¥ is defined as

Qf = Q(Ui — Up, Vi — Up) . (6)

The covariance matrix of each kernel is calculated by Eq. (2)), where the previous
estimated luminance component is used for the derivative estimation. The cost
function in Eq. (@) is a quadratic form with respect to the regression parame-
ter, 84,. Consequently, the optimal solution is obtainable by solving the linear
system :

A(/pr) pr = b(ﬂwp) ’ (7)

where

A(pe,) = Z_ ka, (i — @p; ta,,) (R Q)" diag(mi)RQY,

blua,) = Y ka, (@i — T pa,) (RQY)" diag(mi)zi .

For later discussion, we represent the linear system as a functior} of the local
density parameter pi,,. Once we obtain the regression parameter 8, the inter-
polated pixel values for each channel of the location x, are calculated as

=

= RQ(()?O) amp . (8)

[« PN}Y
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Horizontal
kernel

Fig. 2. Kernel shape, kernel size, and data density

3.2 Local Density Parameter Optimization

The local density parameter can control the kernel size. The kernel with the
smaller local density parameter is the smaller size of the kernel. Consequently, the
kernel with the small local density parameter yields sharp interpolation results.
However, the kernel regression with the very small local density parameter is
impossible because the coefficient matrix of the linear system in Eq. ([l) becomes
unstable and singular. When we apply the kernel regression with the small local
density parameter for the low data density region, the number of the data which
contribute to the regression is insufficient. For this reason, the linear system
associated to the kernel with the small local density parameter becomes unstable.

Then, we propose the adaptive local density parameter estimation algorithm.
The proposed algorithm estimates the local density parameter, so that the mini-
mum singular value of the coefficient matrix A(uz,) equals the stability param-
eter which is set as small as possible. We manually put 0.01 for the stability
parameter. The minimum singular value of the coefficient matrix is known to
be one of the stability indexes of the linear system. The proposed algorithm can
estimate the minimum local density parameter in the sense of the stability of the
linear system in Eq. (). In this regard, the local density parameter is optimized
by the proposed algorithm.

Figure [2 illustrates the schematic relation among the kernel shape, the ker-
nel size, and the data density. The kernel regression with the horizontal kernel
is stable because the data exist in a horizontal direction. However, the kernel
regression with the vertical kernel is unstable because no data exist in a vertical
direction. The stability of the linear system depends on the data density and the
kernel shape. The local density parameter estimation based on the data density
is insufficient. For these reasons, we measure the stability of the linear system
directly to estimate the local density parameter.

3.3 Iterative Color Kernel Regression

In the kernel regression, the derivatives are required to calculate the covariance
of the steering kernel as mentioned in Section 2l In the proposed color kernel
regression, the steering kernel is spatially adapted, but it is common to color
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Fig. 3. Block diagram of the proposed iterative color kernel regression, where dashed
line represents initial process
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Fig. 4. Block diagram of Takeda’s iterative kernel regression [I], where dashed line
represents initial process

channels since we simultaneously perform kernel regression for all color chan-
nels. For the color kernel regression, the common covariance is calculated based
on the derivatives of the luminance component because the luminance compo-
nent represents the structure or the texture of the image. This is a kind of the
chicken and egg problems. In order to handle this problem, we propose an iter-
ation framework. First, we apply initial interpolation for the initial covariance
calculation. Then, the covariances of the steering kernels are updated based on
the regression result as shown in Fig. Bl

Takeda et al also mentioned an iteration [1]. Figured shows the block diagram
of their iteration. The difference between the proposed and Takeda’s iteration is
the input data of the kernel regression. The input data of the proposed iteration
is the observed raw data, while the input data of the Takeda’s iteration is the
previous upsampled data. In this sense, the upsampling of Takeda’s iteration
is only performed in the initial kernel regression. The following steering kernel
regressions of Takeda’s iteration play as denoising. In the contrast, the color
kernel regressions of the proposed iteration play direct color upsampling.

4 Experiments

4.1 Direct Upsampling from the Raw Data of the CFA Pattern

Typical six images as shown in Fig. [5] are used as original images for the exper-
imental comparisons. First, the original images are spatially downsampled by



Robust Direct Upsampling from Raw Data of General Color Filter Array 297

Monarch Sail Lena Peppers Girl Oldman

Fig. 5. Six test images

Raw data of Upsampled Raw data of Upsampled
Bayer CFA pattern full-color image random CFA pattern full-color image
(a) Byaer CFA pattern (b) Random CFA pattern

Fig. 6. Upsampling from raw data of Bayer and random CFA patterns

a factor of two. Then, downsampled images are color-sampled assuming Bayer
CFA pattern and random CFA pattern, respectively. A white Gaussian noise is
also added to the color-sampled data to synthesize the raw data. We perform
upsampling by a factor of two from the synthesized raw data as shown in Fig. [6]
so that we restore the same-sized image to the original image.

We compare five algorithms; the proposed color kernel regression, Takeda’s
kernel regression [I], the gradient sparse prior reconstruction [I5], the sequential
approach without denoising [6J11], and the sequential approach with denoising [6],
[ITI9]. The gradient sparse prior reconstruction is performed by minimizing the
cost function :

N
I(h) = IIZ—Dh||§+€M||Ah||o‘s, (9)

where z is the vectorized input raw data, h is the vectorized upsampled image
to be estimated, Ah is the gradient of the upsampled image, D is the matrix
which represents downsampling and color-sampling, IN is the pixel number of
the input raw data, M is the pixel number of the upsampled image, and ¢ is
a regularization parameter. We experimentally set 10~8 for the regularization
parameter. There are various combinations of demosaicing and upsampling algo-
rithms for the sequential approach. It is infeasible to compare all combinations.
In this paper, we use Xiaolin’s algorithm [11] for the demosaicing and Xiangjun’s
algorithm [6] for the upsampling. Since we add the Gaussian noise when the raw
data are synthesized, we also apply denoising for the sequential approach. The
BM3D algorithm [19] is used for the denoising. The BM3D requires the noise
level. We put the true noise level for the BM3D denoising.
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Table 1. PSNR comparisons of upsampled images from the noise-free raw data of
Bayer CFA pattern

Monarch Sail Lena Peppers Girl Oldman Average
Proposed color kenel regression 28.58 25.47 29.97 31.45 35.62 31.56 30.44
Takeda’s kernel regression [I] 25.65 23.24 27.41 30.25 35.71 31.30 29.02
Gradient sparse prior 24.65 23.03 26.95 29.01 25.42 31.02 28.40
Sequential approach w/o denoising 29.80 26.69 30.32 33.14 37.27 33.07 31.72

Table 2. PSNR comparisons of upsampled images from the noisy raw data of Bayer
CFA pattern, where noise level is 10

Monarch Sail Lena Peppers Girl Oldman Average
Proposed color kenel regression 27.96 24.99 29.02 30.47 33.80 29.08 29.48
Takeda’s kernel regression [I] 2446 2252 26.10 27.51 29.51 28.00 26.35
Gradient sparse prior 24.01 22.58 26.15 27.44 30.81 28.78 26.63
Sequential approach w/o denoising 26.90 24.92 27.15 28.38 29.36 28.34 27.51
Sequential approach with denoising 26.35 25.22 28.31 29.90 31.69 29.86 28.81

32
—-Proposed color kernel
31 regression
30 —0~—Takeda's kernel
E 29 regression
= 28 == Gradient sparse prior
2
Q27
26 —4—Sequential approach
25 w/o denoising
24 =>=Sequential approach

with denoising

0 15

Noise IevJeI0

Fig. 7. Average PSNRs of upsampled image from the raw data of Bayer CFA pattern

Tabledlshows the PSNR comparisons of upsampled images from the noise-free
raw data of Bayer CFA pattern. The higher PSNR represents that the upsampled
image is closer to the original image. In the noise-free case, the sequential approach
with denoising is not performed. In this case, the sequential approach shows the
highest PSNR for every test images. Table [2is the PSNR comparisons from the
noisy raw data of Bayer CFA pattern, where noise level is 10. In the noisy case, the
proposed color kernel regression shows the highest PSNR for many test images.
We also evaluate the PSNRs for four noise levels; 0, 5, 15, and 20. The average
PSNRs are shown in Fig. [[l These results demonstrate that the proposed color
kernel regression can robustly upsample from the raw data of the Bayer CFA pat-
tern compared to the sequential approach with denoising, especially in the high
noise case. Note that the demosaicing algorithm [IT] of the sequential approach
is specialized for the Bayer CFA pattern, while the proposed color kernel regres-
sion can be applied to the arbitrary CFA pattern. This is one of advantage of the
proposed color kernel regression.
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Table 3. PSNR comparisons of upsampled image from the noise-free raw data of
random CFA pattern

Monarch Sail Lena Peppers Girl Oldman Average
Proposed color kenel regression 27.63 24.83 29.53 30.85 36.02 31.94 30.17
Takeda’s kernel regression [I] 22.71 21.96 25.52 26.94 33.47 29.52 26.68
Gradient sparse prior 20.64 21.03 24.05 24.36 32.66 28.31 25.17

Table 4. PSNR comparisons of upsampled image from the noisy raw data of radom
CFA pattern, where noise level is 10

Monarch Sail Lena Peppers Girl Oldman Average
Proposed color kenel regression 27.00 24.33 28.61 30.08 33.99 30.81 29.13
Takeda’s kernel regression [I] 22.51 21.79 25.14 26.41 31.52 28.63 26.00

Gradient sparse prior 20.54 20.92 23.82 24.10 31.28 27.75 24.74
31
30 «=ill=Proposed color kernel
regression
29
= 28 =®-Takeda's kernel regression
T
E 27
826 N ==Gradient sparse prior
25
N
24
23
0 Noise Ieve‘0 15

Fig. 8. Average PSNRs of upsampled image from the raw data of random CFA pattern

Next, we consider to upsample the image from the raw data of the random
CFA pattern. The random CFA pattern is shown in Fig. [B(b). We upsample
the image with the same manner to those of the Bayer pattern. However, the
sequential approach can not be applied since the demosaicing algorithm of the
sequential approach is specialized to the Bayer pattern. Tables [}l and E] show
PSNR. comparisons of upsampled images from the noise-free and the noisy raw
data of the random CFA pattern, respectively. The average PSNRs for each noise
level are also shown in Fig.[8l These results demonstrate that the proposed color
kernel regression outperforms existing algorithms for the random CFA patterns.

4.2 Interplation from Irregularly Sampled Data

The kernel regression can interpolate irregularly sampled data. We compare the
interpolation performance of the proposed color kernel regression and Takeda’s
kernel regression [I].

Three input data are synthesized from the standard color lena image by irreg-
ularly sampling in the space and the color channel, so that their respective data
densities are 0.1, 0.2, and 0.3, as presented in Fig. [0 Then, we interpolate color
images using the proposed color kernel regression and Takeda’s kernel regression.
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Data density is 0.1 Data density is 0.2 Data density is 0.3
Fig. 9. Input irregularly sampled data

|

Data density is 0.1 Data density is 0.2 Data density is 0.3
(26.86 [dB]) (29.37 [dB]) (30.54 [dB])

(a) Interpolated images by Takeda’s kernel regression [IJ.

/7
\ 4 7
(V4
/
/

Data density is 0.1 Data density is 0.2 Data density is 0.3
(29.73 [dB]) (32.03 [dB]) (33.45 [dB])

(b) Interpolated image by the proposed color kernel regression.

Fig.10. Comparisons of the interpolation results. The PSNRs are shown in the
subcaption.

Figure shows the interpolation results, where the PSNRs are shown in the
subcaption. For all data density case, the proposed color kernel regression shows
higher PSNR than Takeda’s kernel regression. Interpolation results by Takeda’s
kernel regression include color artifact, especially in a low data density case. In
the contrast, the color artifacts are effectively suppressed by the proposed color
kernel regression.

5 Conclusions

We proposed color kernel regression directly to upsample color image from the
raw data of the general CFA pattern. The key of the proposed algorithm is to
incorporate color correlation into the regression function models. Using the pro-
posed algorithm, the luminance and the chroma are modeled, respectively, as
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quadratic and constant polynomials. The other salient point of this proposal is
local density parameter optimization based on the stability of the linear system
associated to the kernel regression. We have also proposed the iteration frame-
work for the upsampling and the interpolation. The experimental results show
that the proposed color kernel regression robustly upsample the color image from
the raw data.
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Abstract. This paper proposes an intelligent video surveillance sys-
tem to estimate the crowd density by effective region feature extract-
ing (ERFE) and learning. Firstly, motion detection method is utilized
to segment the foreground, and the extremal regions of the foreground
are then extracted. Furthermore, a new perspective projection method
is proposed to modify the 3D to 2D distortion of the extracted regions,
and the moving cast shadow is eliminated based on the color invariant of
the shadow region. Afterwards, histogram statistic method is applied to
extract crowd features from the modified regions. Finally, the crowd fea-
tures are classified into a range of density levels by using support vector
machine. Experiments on real crowd videos show that the proposed den-
sity estimation system has great advantage in large-scale crowd analysis.
And more importantly, better performance is achieved even on variant
view angle or illumination changing conditions. Thus the video surveil-
lance system is more robust and practical.

1 Introduction

Over the past decade, crowd control and management has attracted wide atten-
tion from technical and social research disciplines along with the steady popu-
lation growth and worldwide urbanization. The main reason is on account of a
succession of fatal accidents caused by lost control of large-scale crowd around
the world, such as the Ivory Coast event during the World Cup Qualifier in 2009
and stampede incident during the Hajj pilgrimage in Saudi Arabia in 2006. To
prevent the happening of the sorrowful events, the crowd phenomenon becomes
an important research scene in social activities. Among various parameters of
crowd phenomenon, crowd density is an important issue of crowd feature analy-
sis, which is closely related to the security level [I]. An intelligent video surveil-
lance system for crowd density estimation is proposed in this paper, which is
based on effective region feature extraction (ERFE).

The purpose of the crowd density estimation is to analyze the density level
of the crowd. Early in 1995, Davies [2] started to estimate the crowd density
according to the foreground occupied area ratio in the image. Later, Chow [3]
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utilized the neural network to analyze the pixel statistical features and obtained
the density level of the crowd, which improved the estimation accuracy remark-
ably. However, these methods work under the assumption that the number of
foreground pixels is nearly proportional to the number of people, which is only
true when there are no serious occlusions between people. In this case, the effec-
tiveness decreases with increasing density or the obvious occlusion. Alternative
methods employed the texture feature of the crowd, such as grey level depen-
dence matrix [4L5], wavelet [6], chebyshev moments [7] to estimate the density
of the crowd. Comparing with [3], the methods based on texture could solve the
occlusion to some extent, but it is incapable to obtain a desirable result when
the density is low. To summarize, previous research failed to obtain an ideal
result whin the whole density scope. In addition, if the installation or the visual
angle of the camera is changed, the parameters of the estimation model need to
be modified, which limits the practicability of the system.

In this paper, the authors present a crowd density estimation system based on
region feature extraction. In contrast to the previous methods, the region feature
deals with the effective regions rather than all the pixels of the foreground.
Logical inference and experimental study both prove that the region features
have distinct properties with different density levels of crowd, which makes the
system robust in all scale density level. Additionally, the system do not depend
on individual detecting or tracking, which is too complicated to implement with
heavy crowded scene. Therefore, the system is more suitable and practical for
large-scale crowd analysis.

The contributions of this paper are three-fold. Firstly, we present a visual
surveillance system which is able to estimate the large-scale crowd density of
the input video frames with effective region feature extraction. Secondly, we
propose a perspective projection method to modify the 3D to 2D distortion of
the extract region, and utilize the regions to fulfill the shadow elimination. Both
of the methods improve the accuracy of the system greatly. Finally, we propose
a crowd feature extraction method based on region feature. Experiments on real
surveillance videos show that the system could achieve a desirable result via
analyzing the feature with support vector machine (SVM) [g].

The remainder of this paper is organized as follows: the structure of the system
is presented in section 2l Then the details of the crowd estimation algorithm are
discussed in section B} containing the methods to extract and modify the region
feature, and the method to extract the crowd feature based on the region feature,
then we analyze it with SVM to obtain the density level. In section  experiment
results of our system will be shown and compared with the traditional methods.
Finally, the conclusion is made in section

2 System Architecture

The system mainly includes three modules, which is shown in Figure [[] with dif-
ferent colors: module I denotes the foreground detection; module IT and module
IIT denote crowd feature extraction based on region feature and crowd density
analysis based on SVM, respectively.
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Fig. 1. System Structure of Crowd Density Estimation

Referring to Figure [Il motion detection segments foreground from the back-
ground based on mixture-of-Gaussian background modeling and the noise is fil-
tered. Then, the effective region of the foreground are extracted. After that, the
corresponding region scale parameters are searched and moving cast shadow is
eliminated to improve the accuracy. Then the statistics feature of the regions de-
scribing the crowd is exacted. Finally, support vector machine (SVM) is utilized
to analyze the crowd density level.

In this paper, we focus our attention on the second module, the crowd feature
extraction module. We propose a crowd feature description method based on effec-
tive region extraction rather than the individual people segmentation. The main
reason are two-fold: first, for highly crowded sites the chances for successfully ex-
tracting the effective regions is far above that for segmenting the individuals; sec-
ond, we are only interested in estimating the crowd density level of the pedestrians
and there is no need for separating every people or tracking. Besides, a scale pa-
rameter is introduced to modify the region and the influence of moving cast shadow
is suppressed with region statistics, both of which improve the performance of the
system greatly.

3 Crowd Density Estimation
3.1 Region Feature Extracted and Modified

Region, simply referring to a set of pixels with a certain property, plays an im-
portant role in computer vision. The region feature can provide complementary
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information about the image, which is not obtained from other descriptors, so we
utilize the region feature to represent the crowd. The Maximally Stable Extremal
Region (MSER) detector proposed by Matas et al. [9] is the most robust region
detector in many cases [I0], such as viewpoint or light changing. MSER denotes
a set of distinguished regions that are detected in a gray scale image, which is
initially used to find correspondences between image elements from two images
with different view points. In this paper we employ it as a region extraction
prototype for the crowd feature description.

MSER is defined by an intensity function in the region and on its outer bound-
ary, which has two properties: extremal and stable. The extremal property of
region R implies that

VpeR,qe IR — I(p) >1(q) or I(p) <I(q), (1)

where OR denotes the boundary of region f, and I(-) denotes the gray level of
the pixel. The stable property of region R implies that when the threshold e
varies over a large range, there still exists

I(p) > 1(q) £ or I(p)<I(q)te,VpeR,qec IR (2)

MSER can form their superior performance as stable local detector and it can
also represent the crowd feature reasonably. In many cases, the gray-level of an
unique individual is relatively consistent with a high probability, so the area
of the maximally stable extremal regions extracted from an individual should
appear to be large and the number of the regions would be relatively small.
However, with the density level of the crowd increasing, the occlusion between
people would break the regions, so the extracted regions will appear to contain
less pixels and the number of the regions would be larger. Experiments with
different levels of crowd density in Figure 2] further prove the correctness of the
logical inference.

In Figure @ we mask each maximally stable extremal region with different
colors in order to distinguish them. From the examples, we can find out that with
the increasing of the density level, the number of the extracted regions become
larger and the average area of each region become smaller. The problem, which
is caused by the typical assumption of previous methods that the number of

Fig. 2. Effective Region Extraction of Different Density Crowd
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foreground pixels is approximatively proportional to the density level, is solved
by means of extracting crowd feature based on region feature extraction, to great
extent. Actually, the region feature could be regarded as the effective pixels
in the foreground, and it can also reduce the noise influence that results from
background modeling or moving cast shadow, which will be explained later. More
accuracy, the traditional MSER need to be modified in two respects, which are
focused as follows.

Region Scale Modified. This problem is caused by the 3D to 2D projection,
especially for the large-scale crowd. Obviously, object with the same sizes will
be smaller in the image when it is farther from the camera, so the region size
should be modified in order to have the same measurement before the crowd
feature is extracted.

In this paper, we present a method based on perspective projection model.
Four restrictive conditions are assumed in the model: all the people are assumed
to have similar size; all the people are located in a horizontal plane; the image
center and the camera optical center are coincide; and all the pixels in the same
row have the same distortion parameter. We will calculate the parameter along
each row first.

Under the previous assumptions, all three-dimensional (3-D) lines with a
nonzero slope along the optic axis have perspective projections on the image
plane that meet at the same point, called the vanishing point. Let f be the focal
length of the CCD (charge-coupled device) sensor and [,, be the distance between
the vanishing point and the center of the CCD sensor. Referring to Figure Bl ©
denotes the horizontal plane and {2 denotes the CCD sensor plane. The visual
angle between them is 6, and could be calculated by the equation (3], which is
presented in [I1]:

f = arctan lf . (3)

We explain the method in Figure B for more details. Suppose there are several
equidistant parallel lines which are parallel to the CCD sensor on the horizontal
plane in the real world. Referring to Figure [3] AB and OD are the parallel lines
in the horizontal plane, which are .alss) paraﬂi to the CCD sensor plane and
symmetrical to the optical center. A’B’ and C’D’ are corresponding lines in the
CCD sensor plane. The point M, M’, N and N’ are intersection points of the

vertical plane and the corresponding lines in @ and 2. By using similar triangles,
the following relation can easily be found:

o
= |
— (4)
o| - ™D
iR
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—
where AA’ denotes a line segment begins from point A to point A’. Considering

— —
that ‘AB‘ = ‘C’D , therefore,
— —_— =
‘A’B’ ’FM’ ‘FN‘
="' (5)
‘C’D’ ’FM’ ‘FN"

Fig. 3. Model of Horizontal Distortion

Figure [4] shows the vertical plane pass through the optical center. Suppose that
the distance between the optic center O of the camera and the ground is h, and
the real length of a pixel in the image is . According to the geometry analysis,
FM
|m could be calculated as equation ({):

- =
FM/ ; / ! 3

~hy sign(OM") |OM'| - p-sinf + f - cos (6)
’FM‘ifh h—f-sin0 ’

—

where OM points to the objects that are far away from the camera. Obviously,
FN

‘W‘ could be calculated similarly. Consequently, the distortion parameter along

the row could be calculated as equation ()

- —_—
‘A’B’ sign(OM”) |OM'| - - sin@ + f - cos 6

Td = |—| = e N D (7)
‘C’D’ sign(ON") |ON'| - - sinf + f - cos @
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Fig. 4. Chart of Vertical Section through the Focus Point

Given the distortion parameter of the row that pass the center of the image,
the parameters in the other rows could be calculated iteratively. In this case, the
distortion of the extracted regions R could be calculated by surface integral, as
equation (8) shows, where N denotes the total pixels number in the regions.

wi= / /m ral, y)dR. (8)

Shadow Elimination. Shadow is another principal factor that affects the
recognition precision of the system. The method proposed in this paper focuses
on the moving blobs and analyzes the properties of the blobs in the image. Con-
sequently, if the moving blobs are shadow in fact, the estimation tends to be
higher than the practical level. It needs to separate real objects from moving
shadows to make the algorithms robust. However, detecting moving shadows is
still a challenge in computer vision. Considering the complexity and efficiency,
we proposed a shadow elimination method based on the extracted regions.

In order to distinguish between moving cast shadows and moving object
points, Jacques et al. [12] proposed a method for detecting shadow after extract-
ing foreground region. A pixel is considered to be shadow pixel if the following
condition in equation (@) is satisfied:

Li(z,y) Ii(z,y)
Az, y) M, y)

where I;(x, y) denotes the intensity of the pixel (z,y) at frame ¢, A(x, y) denotes

the media of the pixel (z,y). Additionally, std;R(It(x’y)) denotes the standard

Az,y)
deviation of quantities 1;:((;3)) over the region R, and Lgtg, Loy are thresholds.

stdy ( ) < Lsta and Loy < ( ) <1, (9)

It suggests that the intensity of the pixels in the shadow region tends to be
more color invariant than the moving object pixels. Due to the homogeneity of
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Fig. 5. Shadow Detection based on the Extracted Regions

the intensity of the pixels, the shadows in the image tend to be detected as a
larger block of maximally stable extremal region, comparing with the moving
people. In this case, the large blocks of shadow that form when the density is low
could be detected and eliminated. Although the small blocks of shadow could not
be detected effectively when the crowd density is large, they have little influence
on the system performance. The example shown in Figure Blillustrates the result
of shadow detection based on the extracted regions, which are marked blue. As
it can be observed, the pixels of shadow are correctly identified in the frame.

3.2 Crowd Feature Extraction Based on Region Extraction

As analyzed previously, the size and number of the extracted regions have close
relationship with the crowd density. In this section, we compute the modified
region size histogram of the extracted regions to obtain the density level of the
crowd. Let Hy(i) denotes the count for bin 4, s(i) denotes the size for bin 4,
which is threshold according to different situations. And M (k) denotes the size
of every extracted regions, the region size histogram is formed as equation (I0):

Hy(i) = {#M(k) | s(i) <wa- M(k) <s(i+1)}, (10)

where #M (k) denotes the number of the extracted regions that the modified size
is between s(i) and s(i + 1). Since the sizes of extracted regions vary sharply,
ranging from tens of pixels to several thousands, we compute the logarithm
of the region size before calculating the histogram to make them concentrate.
Therefore, the equation ([I0) should be modified, that is:

Hiog (1) = {#Miog(k)|S10g(%) <logwg +log M (k) < S109(i +1)}. (11)

Crowd Features of different density levels are shown in Figure [al

In this paper, we extract the crowd feature of ten dimensions with histogram
calculation. The experiment further prove the previous logical inference that the
region size and number distinguish with different density level of crowd. Through
theoretical analysis and experiment, the small blocks of regions predominate the
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Fig. 6. Crowd Feature of Different Density Level based on Extracted Regions

density level of the crowd, but the regions with a large area above a threshold
tend to be shadow. In this case, different dimensions of the crowd feature have
different impact on the estimation result.

Beyond that, the extracted regions based on maximally stable extremal region
can obtain good result with viewpoint, scale or light changing [10], which makes
the system more robust and practical.

3.3 Density Estimation Based on Support Vector Machine

In this section, we will establish the relationship between the crowd feature
vector and the output density, which is a typical regression problem. The support
vector method [8] is a powerful tool to solve the nonlinear regression estimation
problem. The traditional decision function of SVM is shown in equation (I2)):

l

F(@) = sign(d_ i K (i, %) +b), (12)

i=1

where «; is Lagrangian multiplier, and z; are support vectors. In this paper we
employ the gaussian RBF function as kernel function, as equation ([I3) shows:

Iz — 2|2

K(Z;,T) = exp(— 902

). (13)
The support vector machines are originally designed for binary classification, but
the crowd density estimation is a multi-class problem. Therefore, there is a need
to extend it for multi-class problem. Considering the computation complexity
and the feature vector property, the one-against-one method [I3] is introduced
in the crowd density system. This method constructs k(k—1)/2 classifiers where
each one is trained on data from two classes, and then utilizes the MazWins
strategy to decide the density level of the crowd.
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4 Experiments and Results

In this work, the video sequences are captured from a camera located with
an angle less than 45° towards the ground, which is common position setting
in video surveillance applications. The crowd images are first separated into
four groups according to the congesting degree of the crowds, i.e., low density
(0 ~ 0.6Peds/m?), moderate low density (0.6 ~ 1.25Peds/m”), moderate high
density (1.25 ~ 2Peds/m?) and high density (> 2Peds/m?). These four ranges
of crowd densities correspond with the service levels of pedestrian flow, which
are defined by Polus [I] as free flow, restricted flow, dense flow and jammed flow.
For each crowd density level, we labeled 1000 frames. The system is trained on
first 300 frames, and tested on the remaining 700 frames.

In the first experiment, we compare our proposed crowd feature based on
region with the pixel statistics feature, and the texture feature based on gray
level dependence matrix. The estimation result tested on different feature set is
shown in Figure [

As the Figure [ shows, the estimation accuracy based on region feature per-
forms well on all-scale density level, since it extract the effective blobs of the
crowd and the feature between different density crowds differ more obviously.
With the density level growing, the accuracy of the pixel statistics feature de-
creases significantly, because the area and edge ratio could not represent oc-
clusions between people effectively. And for restricted flow or dense flow, the
estimation based on texture feature does not have a good result, because the
texture feature for these density of crowd is not very distinct.

In addition, we test the proposed system on visual angle varying conditions.
For an actual surveillance system, there always exists need to install a pan/tilt
to monitor a large scale scene. Besides, the installation location of the camera
would also lead to the visual angle varying. All of these conditions would result
in the case that the testing samples are captured from a different angle with
the training samples. The region extracted based on maximally stable extremal
region is invariant with view angle change [I0], but the texture feature has a
close relationship with the view angle. The result of the estimation result for
variant view angle problem is shown in Figure

Estimation Result on Different Feature Set

o Pixel Statistics Feature
B Texture Feature

Region Feature

Estimation Accuracy (%)

Tree Flow Restricted Flow  Dense Flow Jammed Flow

Crowd Density Level

Fig. 7. Estimation Result on Different Feature Set
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Fig. 8. Estimation Result on Different Feature Set for Variant View Angle Problem

As the figure shows that, the accuracy of crowd density estimation is high
for all scale density, compared with the pixel statistics feature and the texture
feature.

5 Conclusion

In this paper, the authors propose a system to estimate the crowd density map
for the input video frame, which is essential for crowd management in intelligent
surveillance system. In this proposed system, the foreground is firstly detected
using mixture-of-Gaussian background modeling. Afterwards, the regions are ex-
tracted based on maximally stable extremal region. Furthermore, we propose a
perspective projection method to modify the 3D to 2D distortion and a mov-
ing cast shadow elimination method based on the extracted region. After that,
the crowd feature is extracted on the modified region with histogram method.
Finally, the system analyze the crowd feature with support vector machine.

Experiments on real videos show that the method proposed in this paper has
a good performance within all scale density level crowd. Besides, on account that
the region extracted based on maximally stable extremal region is invariant to
affine transform and insensitive to light change, the system is more robust and
practical than the previous method.

Other than the density, people counting and abnormal detection are also es-
sential issues for crowd surveillance. Therefore, some approaches to estimate the
number of people in the scene and understand the crowd behavior are desirable
directions in the future.
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Abstract. In this paper, we show how to efficiently and effectively ex-
tract a rich class of low-rank textures in a 3D scene from 2D images de-
spite significant distortion and warping. The low-rank textures capture
geometrically meaningful structures in an image, which encompass con-
ventional local features such as edges and corners as well as all kinds of
regular, symmetric patterns ubiquitous in urban environments and man-
made objects. Our approach to finding these low-rank textures lever-
ages the recent breakthroughs in convex optimization that enable robust
recovery of a high-dimensional low-rank matrix despite gross sparse er-
rors. In the case of planar regions with significant projective deformation,
our method can accurately recover both the intrinsic low-rank texture
and the precise domain transformation. Extensive experimental results
demonstrate that this new technique works effectively for many near-
regular patterns or objects that are approximately low-rank, such as
human faces and text.

1 Introduction

One of the fundamental problems in computer vision is to identify certain feature
points or salient regions in images. These points and regions are the basic build-
ing blocks of almost all high-level vision tasks such as 3D reconstruction, object
recognition, and scene understanding. Throughout the years, a large number
of methods have been proposed in the computer vision literature for extract-
ing various types of feature points or salient regions. The detected points or
regions typically represent parts of the image which have distinctive geometric
or statistical properties such as Canny edges, Harris corners, and textons.

One of the important applications of detecting feature points or regions is to
establish correspondence or measure similarity across different images. For this
purpose, it is desirable that the detected points/regions are somewhat stable
or invariant under transformations incurred by changes in viewpoint or illumi-
nation. In the past decade, numerous “invariant” features and descriptors have
been proposed, studied, compared, and tuned in the literature (see [1l2] and ref-
erences therein). A widely used feature descriptor is the scale invariant feature
transform (SIFT) [3], which to a large extent is invariant to changes in rotation
and scale (i.e., similarity transformations) and illumination. Nevertheless, if the
images are shot from very different viewpoints, SIF'T may fail to establish reliable
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(a) Input (r =35) (b) Input (r =15) (c) Input (r =53) (d) Input (r =13)

(e) Output (r =14) (f) Output (r =8) (g) utpu (r : 19) (h) Output (r = 6)

Fig. 1. Low-rank Textures Automatically TILTed. From left to right: a butterfly;
a face; a tablet of Chinese characters; and the Leaning Tower of Pisa. Top: windows
with the red border are the original input, windows with the green border deformed
texture returned by our method; Bottom: textures in the green window are matrices
of much lower rank.

correspondences and its affine-invariant version becomes a better choice [4,[5].
While deformation of a small distant patch can be well-approximated by an
affine transform, projective transform becomes necessary to describe the defor-
mation of a large region viewed through a perspective camera. To the best of
our knowledge, from a practical standpoint, there are no feature descriptors that
are truly invariant (or even approximately so) under projective transformations
or homographies.

Despite tremendous effort in the past few decades to search for better and
richer classes of invariant features in images, there seems to be a fundamental
dilemma that none of the existing methods have been able to resolve ultimately:
On the one hand, if we consider typical classes of transformations incurred on
the image domain by changing camera viewpoint and on the image intensity by
changing contrast or illumination, then in strict mathematical sense, invariants
of the 2D image are extremely sparse and scarce — essentially only the topology
of the extrema of the image function remains invariant, known as attributed
Reeb tree (ART) [6]. The numerous “invariant” image features proposed in the
vision literature, including the ones mentioned above, are at best approximately
invariant, and often only to a limited extent. On the other hand, the 3D scene is
typically rich of reqular structures that are full of invariants (with respect to 3D
Euclidean transformations). For instance, in an urban environment, the scene
is typically filled with man-made objects that have parallel edges, right angles,
regular shapes, symmetric structures, and repeated patterns. These geometric
structures are rich of properties that are invariant under all types of subgroups
of the 3D Euclidean group and as a result, their 2D (affine or perspective) images
encode extremely rich 3D information about objects in the scene [7,[8.[9].
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In this paper we propose a technique that aims to resolve the above dilemma
about invariant features. We contend that instead of trying to seek invariants of
the image that are either scarce or imprecise, we should

aim to directly detect and extract invariant structures of a scene through
their images despite (affine or projective) domain transforms.

Many methods have been developed in the past to detect and extract all types
of regular, symmetric patterns from images under affine or projective transforms
(see [10] for a recent evaluation). As symmetry is not a property that depends on
a small neighborhood of a pixel, it can only be detected from a relatively large
region of the image. However, most existing methods for detecting symmetric
regions and patterns start by extracting and putting together local features such
as SIF'T points [9], corners, and edges [I1]. As feature detection and edge extrac-
tion themselves are sensitive to local image variations such as noise, occlusion,
and illumination change, such symmetry detection methods inherently lack ro-
bustness and stability. In addition, as we will see in this paper, many regular
structures and symmetric patterns do not even have distinctive features. Thus,
we need a more general, effective, and robust way of detecting and extracting
regular structures in images despite significant distortion and corruption.

Contributions of this Paper. In this paper, we aim to extract regions in a 2D
image that correspond to a very rich class of regular patterns on a planar surface
in 3D, whose appearance can be modeled as a “low-rank” matrix. In some sense,
many conventional features mentioned above such as edges, corners, symmetric
patterns can all be considered as special instances of such low-rank textures.
Clearly, an image of such a texture may be deformed by the camera projection
and undergoes certain domain transformation (say affine or projective). The
transformed texture in general is no longer low-rank in the image. Nevertheless,
by utilizing advanced convex optimization tools from matrix rank minimization,
we will show how to simultaneously recover such a low-rank texture from its
deformed image and the associated deformation.

Our method directly uses raw pixel values of the image and there is no need of
any pre-extraction of any low-level, local features such as corners, edges, SIFT,
and DoG features. The proposed solution and algorithm are inherently robust to
gross errors caused by corruption, occlusion, or cluttered background affecting a
small fraction of the image pixels. Furthermore, our method applies to any image
regions wherever such low-rank textures occur, regardless of the size of their
spatial support. Thus, we are able to rectify not only small local features such as
an edge and a corner but also large global symmetric patterns such as an entire
facade of a building. We believe that this is a very powerful new tool that allows
people to accurately extract rich structural and geometric information about the
scene from its images, that are truly invariant of image domain transformations.

Organization of This Paper. The remainder of this paper is organized as follows:
Section [ gives a rigorous definition of “low-rank textures” as well as formulates
the mathematical problem associated with extracting such textures. Section [
gives an efficient and effective algorithm for solving the problem. We provide
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extensive experimental results to verify the efficacy of the proposed algorithm
as well as the usefulness of the extracted low-rank textures.

2 Transform Invariant Low-Rank Textures

2.1 Low-Rank Textures

In this paper, we consider a 2D texture as a function I°(z,y), defined on R2.
We say that I° is a low-rank texture if the family of one-dimensional functions
{I°(z,y0) | yo € R} span a finite low-dimensional linear subspace i.e.,

r = dim (span{I°(z,y0) | yo € R}) <k (1)
for some small positive integer k. If r is finite, then we refer to I° as a rank-r
texture. FigurePlshows some ideal low-rank textures: a vertical or horizontal edge
(or slope) can be considered as a rank-1 texture; and a corner can be considered
as a rank-2 texture. By this definition, it is easy to see that the image of regular
symmetric patterns always lead to low-rank textures.

Given a low-rank texture, obviously its rank is invariant under any scaling of
the function, as well as scaling or translation in the z and y coordinates. That
is, if g(z,y) = cI®(ax + t1,by + t2) for some constants a, b, c,t1,to € Ry, then
g(z,y) and I°(z, y) have the same rank according to our definition in ().

For most practical purposes, it suffices to recover any scaled version of the
low-rank texture I°(z,y), as the remaining ambiguity left in the scaling can often
be easily resolved in practice by imposing additional constraints on the texture
(see Section B.2)). Hence, in this paper, unless otherwise stated, we view two
low-rank textures equivalent if they are scaled version of each other: I9(z,y) ~
cI%(ax +t1,by + t2), for all a,b, ¢, t1,t2 € Ry

In practice, we are never given the 2D texture as a continuous function in R2.
Typically, we only have its values sampled on a finite discrete, say m X n, grid in
Z2. In this case, the 2D texture I°(x,y) is represented by an m x n real matrix.
For a low-rank texture, we always assume that the size of the sampling grid is
significantly larger than the intrinsic rank of the texturd] i.e.,

r < min{m,n}

Thus, the 2D texture I°(z,y) (discretized) as a matrix has very low rank relative
to its dimensions.

Remark 1 (Low-rank Textures versus Random Teztures). Conventionally, the
word “texture” is used to describe image regions that exhibit certain spatially
stationary stochastic properties (e.g. grass, sand). Such a texture can be con-
sidered as a random sample from a stationary stochastic process [12] and is
generally of full rank as a 2D function. The “low-rank textures” defined here are
complementary to such random textures: It is supposed to describe regions in
an image that have rather regular deterministic structures.

! It is easy to show that as long as the sampling rate is not one of the aliasing frequen-
cies of the function I°, the resulting matrix has the same rank as the continuous
function.
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Fig. 2. Representative examples of low-Rank textures. From left to right: an
edge; a corner; a symmetric pattern, and a license plate. Top: deformed textures (high-
rank as matrices); Bottom: the recovered low-rank textures.

2.2 Deformed and Corrupted Low-Rank Textures

In practice, we typically never see a perfectly low-rank texture in a real image,
largely due to two factors: 1. the change of viewpoint usually induces a trans-
formation on the domain of the texture function; 2. the sampled values of the
texture function are subject to many types of corruption such as quantization,
noise, occlusions, etc. In order to correctly extract the intrinsic low-rank textures
from such deformed and corrupted image measurements, we must first carefully
model those factors and then seek ways to eliminate them.

Deformed Low-rank Textures. Although many surfaces or structures in 3D ex-
hibit low-rank textures, their images do not! If we assume that such a texture
I°(z,y) lies approximately on a planar surface in the scene, the image I(z,y)
that we observe from a certain viewpoint is a transformed version of the original
low-rank texture function 1°(z,y):

I(a,y) =" or H(a,y) = I° (17} (z,y))
where 7 : R? — R? belongs to a certain Lie group G. In this paper, we assume
G is either the 2D affine group Aff(2) or the homography group GL(3) acting
linearly on the image domain. In general, the transformed texture I(z,y) as a
matrix is no longer low-rank. For instance, a horizontal edge has rank one, but
when rotated by 45°, it becomes a full-rank diagonal edge (see Figure 2l(a)).
Corrupted Low-rank Textures. In addition to domain transformations, the ob-
served image of the texture might be corrupted by noise and occlusions or contain
some surrounding backgrounds. We can model such deviations as:
I=I"+E

2 Nevertheless, in principle, our method works for more general classes of domain

deformations or camera projection models as long as they can be modeled well by a

finite-dimensional parametric family.
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for some error matrix E. As a result, the image I is potentially no longer a low-
rank texture. In this paper, we assume that only a small fraction of the image
pixels are corrupted by large errors, and hence, F is a sparse matrix.

Our goal in this paper is to recover the exact low-rank texture I° from an
image that contains a deformed and corrupted version of it. More precisely, we
aim to solve the following problem:

Problem 1 (Robust Recovery of Transform Invariant Low-rank Textures). Given
a deformed and corrupted image of a low-rank texture: I = (I° + E) o 771,
recover the low-rank texture I° and the domain transformation 7 € G.

The above formulation naturally leads to the following optimization problem:
En}iEnT rank(I°) 4+ v||E|jo subject to Ior=1I1"+E (2)
where ||E|o denotes the number of non-zero entries in E. That is, we aim to
find the texture I° of the lowest rank and the error E of the fewest nonzero
entries that agrees with the observation I up to a domain transformation 7.
Here, v > 0 is a weighting parameter that trades off the rank of the texture
versus the sparsity of the error. For convenience, we refer to the solution I°
found to this problem as a Transform Invariant Low-rank Texture (TILT)E.

Remark 2 (TILT versus Affine-Invariant Features). TILT is fundamentally dif-
ferent from the affine-invariant features or regions proposed in the literature [41/5].
Essentially, those features are extensions to SIFT features in the sense that their
locations are very much detected the same way as SIFT. The difference is that
around each feature, an optimal affine transform is found that in some way “nor-
malizes” the local statistics, say by maximizing the isotropy of the brightness
pattern [13]. Here TILT finds the best local deformation by minimizing the rank
of the brightness pattern in a robust way. It works the same way for any image
region of any size and for both affine and projective transforms (or even more
general transformation groups that have smooth parameterization). Probably
most importantly, as we will see, our method is able to stratify all kinds of re-
gions that are approximately low-rank (e.g. human faces, texts) and the results
match extremely well with human perception.

Remark 3 (TILT versus RASL). We note that the optimization problem (2) is
strikingly similar to the robust image alignment problem studied in [14], known
as RASL. In some sense, TILT is a simpler problem as it only deals with one
image and one domain transformation whereas RASL deals with multiple images
and multiple transformations, one for each image. Thus, in the next section, we
will follow a similar line of development to solve our problem as that in [14].
However, there are some important differences between TILT and RASL. For
example, to make TILT work for a wide range of textures, we have to incorporate
new constraints so that it achieves a large range of convergence. Moreover, we
use a much faster convex optimization algorithm than the APG-based method
used in [I4], which will be described in the next section.

3 By a slight abuse of terminology, we also refer to the procedure of solving the opti-
mization problem as TILT.
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3 Solution by Iterative Convex Optimization

Although the formulation in (Z)) is intuitive, the rank function and the ¢°-norm
are extremely difficult to optimize (in general NP-hard). Recent breakthroughs
in convex optimization have shown that under fairly broad conditions, the cost
function can be replaced by its convex surrogate [I5]: the matrix nuclear norm
1%+ (sum of all singular values) for rank(I") and the ¢*-norm || E||; (the sum
of absolute values of all entries) for ||E||o, respectively. As result, the objective
function becomes:

Ignin I1°)« + M| E|l1 subject to Tor=I"+FE (3)
BT

where A > 0 is a weighting parameter. Notice that although the objective func-
tion is now convex, the constraint Jor = I+ FE remains nonlinear in 7 € G. Theo-
retical considerations in [I5] suggest that A must be of the form C'/+/max{m,n},
where C is a constant, typically set to unity, and I® € R™*",

As suggested in [I4], to deal with the nonlinear constraint effectively, we may
assume that the deformation 7 is small and so we can linearize the constraint
ITor =1°+ F around its current estimate: I o (1 + A7) ~ I o7 + VIAT, where
V1 represents the derivatives of the image w.r.t the transformation parametersﬁ.
Thus, locally the above optimization problem becomes a convex optimization
subject to a set of linear constraints:

uin 119« + A|E|l1  subject to Tor+VIAT =1+ E (4)

As this linearization is only a local approximation to the original nonlinear prob-
lem, we solve it iteratively in order to converge to a (local) minima of the original
problem. Although it is difficult to derive exact conditions under which this con-
vex relaxation followed by linearization converges, in practice, we observe that
the procedure does converge to a locally optimal solution, even when we start

from a large initial deformation 7°.

3.1 Fast Algorithm Based on Augmented Lagrangian Multiplier

In [14], the accelerated proximal gradient (APG) method was employed to solve
the linearized problem (@]). Recent studies have shown that the Augmented La-
grangian multiplier (ALM) method [16] is more effective for solving this type
of convex optimization problems [15], and typically results in much faster con-
vergence. For the sake of completeness, we will derive the ALM method to the
linearized problem () and then summarize the overall algorithm for solving the
original problem (B]). We leave some detailed implementation issues for improving
stability and range of convergence to the next subsection.

The Augmented Lagragian Multiplier method aims to solve the original con-
strained convex program (@) by instead minimizing the augmented Lagrangian
given by:

4 Strictly speaking, VI is a 3D tensor: it gives a vector of derivatives at each pixel
whose length is the number of parameters in the transformation 7. When we “multi-
ply” VI with another matrix or vector, it contracts in the obvious way which should
be clear from the context.
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L(I°,E,A1,Y, 1) =
1O + M|E|: + (Y, ToT+VIAT — I° — E) + ;‘||IOT+V1AT Sy LRy 53

where Y is a matrix of Lagrange multipliers, and p > 0 denotes the penalty for
infeasible points. It is known from convex optimization literature [I6] that the
optimal solution to the original problem (@) can be effectively found by iterating
the following two steps till convergence:

{ ([£+1, Ek+17 ATk+1) — minIO,E,AT L(IO7 E, AT7 Yk, /Jk) (5)
Pkl — Py Yirr — Y+ pp(loT+ VIAT, 1 — II?-&-I — Frt1)
for some p > 1.

In general, it might be expensive to find the optimal solution to the first step of
(@) by minimizing over all the variables I°, E, At simultaneously. So in practice,
to speed up the algorithm, we adopt an alternating minimization strategy as
follows:

IISJFI — minjo L(IO, Ek, ATk, Yk, /Lk)
B« ming L(IY, , B, Ay, Yy, px) (6)
ATk+1 — Il'linAT L(Ik+17 Ek+1, AT7 Yk, Mk)
Given the special structure of our Lagrangian function L, each of the above

optimization problem has a very simple solution. Let S;[-] be the soft thresholding
or shrinkage operator defined as follows:

Si(z) = sign(z) - max{|z| — t,0} (7)

where ¢ > 0. When applied to vectors or matrices, the shrinkage operator acts
element-wise. Suppose that (Uy, Xk, Vi) = svd(I o7+ VIAT, — E}, + ,ulzlYk).
Then the optimization problems in (@) can be solved as follows:

Ry = UGS, [Z]V]
By — S)\M;l[f o7+ VIAT, — I£+1 + [LIZIY]C} (8)
ATy — (VITVI)_1V[T(—[OT+I,8+1 + Epy1 — M}?lYk)

We summarize the ALM approach to solving the problem in (3] as Algorithm [II

3.2 Additional Constraints and Implementation Details

The previous section lays out the basic ALM algorithm for solving the TILT
problem (@B]). However, there are a few caveats in applying it to real images of
low-rank textures. In this section, we discuss some additional constraints which
make the solution to the problem well-defined and some special implementation
details that improve the range of convergence.

® It can be shown that under fairly broad conditions, this does not affect the conver-
gence of the algorithm.
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Constraints on the Transformations. As we have discussed in Section [Z.1] there
are certain ambiguities in the definition of low-rank texture. The rank of a low-
rank texture function is invariant with respect to scaling in its value, scaling
in each of the coordinates, and translation in each of the coordinates. Thus, in
order for the problem to have a unique, well-defined optimal solution, we need to
eliminate these ambiguities. In the first step of Algorithm [I], the intensity of the
image is renormalized at each iteration in order to eliminate the scale ambiguity
in pixel value. Otherwise, the algorithm may tend to converge to a “globally
optimal” solution by zooming into a black pixel.

To resolve the ambiguities in the domain transformation, we also need some
additional constraints. For simplicity, we assume that the support of the initial
image window {2 is a rectangle with the length of the two edges being L(e1) = a
and L(ez) = b, so that the total area S(§2) = ab. To eliminate the ambiguity in
translation, we can fix the center x of the window é.e., 7(xg) = xo. This imposes
a set of linear constraints on A7 given by :

AtAT =0 (9)

To eliminate the ambiguities in scaling the coordinates, we enforce (typically only
for affine transforms) that the area and the ratio of edge length remain constant be-
fore and after the transformation, i.e. S(7(£2)) = S(£2) and L(7(e1))/L(7(e2)) =
L(e1)/L(e2). In general, these conditions impose additional nonlinear constraints
on the desired transformation 7 in problem (3]). As outlines earlier, we can linearize
these constraints against the transformation 7 and obtain another set of linear con-

straints on Ar: A AT =0 (10)

As a result, to eliminate both scaling and translation ambiguities, all we need
to do is to add two sets of linear constraints to the optimization problem (@l).This
results in very small modifications to Algorithm[to incorporate those additional
linear constraintdl.

Multi-Resolution and Branch-and-Bound. To further improve both the speed
and the range of convergence, we adopt the popular multi-resolution approach in
image processing. For the given image window I, we build a pyramid of images by
iteratively blurring and downsampling the window by a factor of 2 until the size
of the matrix reaches a threshold (say, less than 30 x 30 pixelsﬁ). Starting from
the top of the pyramid, we apply our algorithm to the lowest-resolution image
first and always initialize the algorithm with the deformation found from the
previous level. We found that in practice, this scheme significantly improves the
range of convergence and robustness of the algorithm since in the low-resolution
images, small details are blurred out and the larger structures of the image
drive the updates of the deformation. Moreover, it can speed up Algorithm [ by

5 By introducing an additional set of Lagrangian multipliers and then appropriately
revising the update equation associated with A7y 1.

" In order for the convex relaxation (@) to be tight enough, the matrix size cannot be
too small. In practice, we find that our method works well for windows of size larger
than 20 x 20.
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Algorithm 1. (TILT via ALM)

Input: Initial rectangular window I € R™*"™ in the input image, initial

transformations 7 in a certain group G (affine or projective), A > 0.
While not converged Do
Step 1: normalize the image and compute the Jacobian w.r.t. transformation:

Ior 3] IoC )
lTor «— , VI~ :
[ToT|r ¢ (||IOCHF ‘CZT

Step 2: solve the linearized convex optimization (H):
min ||I°). + A||E|; subject to Tor+VIAT=1°+E,

I0E,Ar
with the initial conditions: Yo = 0, Eo =0, A1 =0, u0 > 0,p > 1,k =0:
‘While not converged Do
(Uk, D, Vi) ;= svd(I o7 + VIAT, — By + i, ' Ya),
118+1 i UkSH;1[Zk}VkT,
Eiy1 5 Sy, -1l o7+ VIAT, — Iy + p 'Y,
ATy 3 (W”va)*lvﬂ(ff oT + Ipyy + Exsr — ' Ya),
Yit1 ;¢ Yo+ u(I o7+ VIAT 1 — I — Ert1),
Bkt1 54— Phk,

End While
Step 3: update transformations: 7 «— 7 + A7py1;
End While
Output: I°, E, 7.

rotation
rotation

008 2 00

warp warp
Fig. 3. Convergence of TILT. Left: representative input images in different regions;
Right: the range of convergence (# of successes out of 20 random trials in each region)

hundreds of times. We tested the speed of our algorithm in MATLAB on a PC
with a 3 Ghz processor. With input matrices of size 50 x 50, the average running
time over 100 experiments is less than 6 seconds.

Apart from the multi-resolution scheme, we can make Algorithm [l work for a
large range of deformation by using a branch-and-bound approach. For instance,
in the affine case, we initialize Algorithm [I] with different deformations (e.g., a
combination search for all 4 degrees of freedom for affine transforms with no
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translation). A natural concern about such a branch-and-bound scheme is its
effect on speed. Nevertheless, within the multi-resolution scheme, we only have
to perform branch-and-bound at the lowest resolution, find the best solution, and
use it to initialize the higher resolution levels. Since Algorithm [ is extremely
fast for small matrices at the lowest-resolution level, running multiple times with
different initializations does not significantly affect the overall speed. In a similar
spirit, to find the optimal projective transform (homography), we always find
the optimal affine transform first and then use it to initialize the algorithm. We
observed that with such an initialization, the branch-and-bound step becomes
unnecesary for the projective transformation case.

Results in all examples and experiments shown in this paper are found by
Algorithm [ using both the multi-resolution and branch-and-bound schemes,
unless otherwise stated.

4 Experiments and Applications
4.1 Range of Convergence of TILT

For most low-rank textures, Algorithm [Il has a fairly large range of convergence,
even without using any branch-and-bound. To illustrate this, we show the result
of the algorithm with a checkerboard image undergoing different ranges of affine
transform: y = Az + b, where x,y € R%2. We parameterize the affine matrix A as
A(,t) = {Z?SZ C;HHQ} Ll) ﬂ . We change (6, t) within the range 6 € [0, 7/6]
with step size 7/60, and ¢ € [0,0.3] with step size 0.03. We observe that the
algorithm always converges up to # = 10° of rotation and skew (or warp) up to

(i) Input I (j) Output To7 (k) Low rank I° (1) Sparse error E

Fig. 4. Robustness of TILT. Top: random corruption added to 60% pixels; Middle:
scratches added on a symmetric pattern; Bottom: containing cluttered background
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t = 0.2. Due to its rich symmetries and sharp edges, the checkerboard is a
challenging case for “global” convergence since there are multiple local minima
possible. In practice, we find that for most symmetric patterns in urban scenes (as
shown in Figure []), our algorithm converges for the entire tested range without
any branch-and-bound.

4.2 Robustness of TILT

The results shown in Figure @ demonstrate the striking robustness of the pro-
posed algorithm to random corruptions, occlusions, and cluttered background,
respectively. For the first two experiments, the branch-and-bound scheme was
not used.

4.3 Shape from Low-Rank Texture Detection

Obviously, the rectified low-rank textures found by our algorithm can better
facilitate almost all high-level vision tasks than existing feature or texture de-
tectors, including establishing correspondences among images, recognizing texts
and objects, or reconstructing 3D shape or structure of a scene, etc. Due to
limited space, we show a few examples in Figure [l (left) to illustrate how our
algorithm can extract rich geometric and structure information from an image
of an urban scene.

The image size in this experiment is 1024 x 685 pixels and we use affine
transformations on a grid of 60 x 60 windows to obtain the low-rank texture. If the
rank of the resulting texture drops significantly from that of the original window,
we say that the algorithm has “detected” a salient regionﬁ In Figure B, we have
plotted the resulting deformed windows, together with the local orientation and
surface normal recovered from the optimal affine transformation. Notice that for

Fig. 5. Left: Low-rank textures detected by the TILT algorithm with affine transform
on a grid of 60 x 60 windows and the recovered local affine geometry. Middle: low rank
textures recovered by TILT with projective transform, which correspond to the regions
marked with yellow lines; Right: the resulting image with the marked regions edited.

8 The image rank is computed by thresholding the singular values at 1/30 times the
largest one. We also throw away regions whose largest singular value is too small,
which typically correspond to a smooth region such as the sky.
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Fig. 6. Representative results of our method. Top: various patterns and textures;
Middle: various texts and signs; Bottom: objects with bilateral symmetry.

windows inside the building facades, our algorithm correctly recovers the local
geometry for almost all of them; even for patches on the edge of the facades, one
of its sides always aligns precisely with the building’s edge.

Of course, one can initialize the size of the windows at different sizes or scales.
But for larger regions, affine transformations will not be accurate enough to
describe the deformation. In this case, we use projective transformations. For
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instance, the entire facade of the middle building in Figure Bl (left) obviously
exhibits significant projective deformation. Nevertheless, if we initialize the pro-
jective TILT algorithm with the affine transform of a small patch on the facade,
the algorithm can easily converge to the correct homography and recover the
low-rank textures correctly, as shown in Figure [l (middle).

With both the low-rank texture and their geometry correctly recovered, we can
easily perform many interesting tasks such as editing parts of the images using
the true 3D orientation and the correct perspective. Figure [l (right) illustrates
this application with an example.

4.4 Rectifying Different Categories of Low-Rank Textures

Since the proposed algorithm has a very large range of convergence for both
affine and projective transformations and it is also robust to sparse corruptions,
we observed that it works remarkably well for a very broad range of patterns,
regular structures, and objects that arise in natural images or paintings. Figure
shows a few examples. We observe that with a simple initialization with a
very rough rectangular window, our algorithm can converge precisely onto the
underlying low-rank structures of the images, despite significant deformation.
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Abstract. An important finding in our understanding of the human
vision system is perceptual grouping, the mechanism by which visual el-
ements are organized into coherent groups. Though grouping is generally
acknowledged to be a crucial component of the mid-level visual system, in
computer vision there is a scarcity of mid-level cues due to computational
difficulties in constructing feature detectors for such cues. We propose
a novel mid-level visual feature detector where the visual elements are
grouped based on the 2D translation subgroup of a wallpaper pattern.
Different from previous state-of-the-art lattice detection algorithms for
near-regular wallpaper patterns, our proposed method can detect multi-
ple, semantically relevant 2D lattices in a scene simultaneously, achieving
an effective translation-symmetry-based segmentation. Our experimen-
tal results on urban scenes demonstrate the use of translation-symmetry
for building facade super-resolution and orientation estimation from a
single view.

1 Introduction

Symmetry is an essential concept in perception and a ubiquitous phenomenon
present in all forms and scales in the real world, from galaxies to atomic struc-
tures [I]. Symmetry also is considered a preattentive feature [2] that enhances
object recognition. Much of our understanding of the world is based on the per-
ception and recognition of repeated patterns that are generalized by the math-
ematical concept of symmetry [3].

A translation-symmetry is a translation transformation that keeps a pattern
setwise invariant [4]. Mathematically, such a pattern has to be periodic and
infinite. In practice, we view a finite portion of a periodic pattern in an im-
age as an occluded infinite pattern, thus the term ‘translation-symmetry’ is
equally applicable [5]. 2D translation symmetry detection (lattice detection) has
been gaining more attention in computer vision and computer graphics in re-
cent years [BL[6,[7,8], 9L 1011112, 13,14, 1516, 1718]. The underlying topological
lattice structure of a near-regular texture (NRT) under a set of geometric and
photometric deformation fields was first acknowledged and used by Liu et al.
for texture analysis and manipulation [6,[19]. Subsequently, Hays et al. [7] de-
veloped the first deformed lattice detection algorithm for real images without

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IIT, LNCS 6494, pp. 329 2011.
© Springer-Verlag Berlin Heidelberg 2011
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pre-segmentation. Hays et al. [7] formulated the lattice detection problem as a
higher order correspondence problem using a spectral method that produces im-
pressive results. Later, Park et al. [8[9] formulated 2D deformed lattice finding as
an inference problem on a Markov Random Field (MRF) and showed improved
speed and accuracy on single lattice detection. Regular lattice detection has also
been formulated by Han et al. [10] using statistical model selection.

In applications, Shindler et al. [I5] use lattice detection to geo-tag user photos
and many efforts have been made to remove clutter from real world 2D lattices
and synthesize new views [I4,20]. Canada et al. [IT] developed lattice detection
for automatic high throughput analysis of histology array images. Liu et al. [21]
apply a lattice detection algorithm to detect and remove a fence region that
occludes interesting objects behind the fence.

However, state-of-the-art lattice detection algorithms cannot detect multiple
lattices in the scene, which prevents wide applicability of 2D translation symme-
try features for many computer vision and graphics applications. In this paper
we present, for the first time, an algorithm for detecting multiple 2D lattices.

2 Translation-Symmetry-Based Perceptual Grouping

The human visual system can detect many classes of patterns and statistically
significant arrangements of image elements. Perceptual grouping refers to the
ability to extract significant image relations and structure from lower-level prim-
itive image features without prior knowledge of high-level image content. Our
proposed method follows this concept. We first detect lower-level primitive im-
age features such as Kanade Lucas Tomasi corners (KLT) [22], Maximally Stable
Extremal Regions (MSER) [23], and Speeded Up Robust Features (SURF) [24].
Then, each set of feature points is grouped by that feature’s descriptor and
2D lattice structures are proposed from each group. The proposed grouping
method is an iterative procedure similar to a standard clustering algorithm such
as K-means or mean-shift clustering, except that the similarity metric reflects
higher-level knowledge of 2D translation symmetry such as texel appearance,
(t1,t2) basis vector pair, and lattice coverage in the image. Once we obtain
this information, we can rectify the perspective distortion of the 2D translation
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Fig. 1. (a) Lower-level visual primitives (KLT, MSER, and SURF) (b) Visual grouping
of each type of feature (c) (¢1,t2) basis grouping by RANSAC (d) 2D lattice completion
and grouping
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symmetry as well as collect additional valid lattice points that were not de-
tected by any of the low-level features detectors. This increases the quality of
the detected 2D translation symmetry.

2.1 Low-Level Feature Aggregation

The use of different types of lower-level primitive features is beneficial because
KLT features, MSER, MSER on the inverted image, and SURF with a positive
or negative laplacian generate different responses to different visual elements,
and therefore we can reliably find a wide range of 2D lattice points. As can be
seen in Figure[2] some of the valid 2D lattice points are only identified by one or
two of the detector types, thus justifying using a set of complementary feature
detectors.

(a) KLT () MSER (c) SURF

Fig. 2. Low-level primitive visual features detected by KLT, MSER, and SURF. Some
of the valid lattice points are not identified by all of the feature detectors but only a
subset of them. MSER and MSER on the inverted image are displayed in green and
red, respectively, and SURF features with a positive and negative laplacian are colored
red and green.

2.2 Grouping of Low-Level Features

Since the number of repeating patterns is not given a priori, we use the mean-
shift algorithm with a varying bandwidth to cluster the different types of lower-
level features. Since KLT only specifies the 2D location of points and MSER
only gives a 2 by 2 scatter matrix of the region, we extract 11 by 11 subimages
centered at each KLT feature and the center of the MSER region. Each subimage
is normalized by subtracting the mean pixel value, and dividing by the standard
deviation of pixel values to compensate for illumination changes.

2.3 Translation-Symmetry-Based Grouping

We seek a (t1, t2)-vector pair that represents the generators of the translation
symmetry subgroup using a RANSAC-based method, similar to the work of Park
et al. [9] and Schindler et al. [I5]. Schindler et al. [15] randomly select 4 points
from a set of SIFT features, whereas Park et al. [9] improve this random proposal
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(a) KLT | (b) MSER (c) SURF

Fig. 3. Sample results of mean-shift clustering of low-level features. For clarity we
manually choose clusters that are on the 2D lattice structures.

by considering proximity of KLT points to avoid proposals with an invalid affine
transformation. We further examine whether the proposed 4 points form a valid
quadrilateral to increase the likelihood of finding a feasible perspective mapping.
Using this proposal, we iteratively complete the 2D lattice structure under a
perspective deformation model while allowing some tolerance using a normalized
threshold that is independent of the image.

Proposals of a basis quadrilateral: For each detected feature point cluster,
we randomly sample three points {a;b; ¢} to form a (¢1, t2) vector pair given by
b—a and ¢ — a, compute the fourth point, d given by t; +t2 + a, and compute the
perspective transformation that maps these four points from image space into
the integer lattice basis {(0,0), (1,0),(0,1),(1,1)}. We can now transform all
remaining points from image space into their equivalent lattice positions via the
same perspective transform, and count as inlier points those whose lattice space
coordinates are within some threshold] of an integer position (z,y) . If the four
chosen points {a; b; c; d} define a valid basis quadrilateral of a 2D translational
pattern, many additional supporting votes should emerge from other interest
points having a similar spatial configuration.

Lattice completion: Since many of the valid lattice points are not detected
by any of the lower-level primitives, we further seek to recover all missed lattice
points that are not initially identified by the feature detectors. For this task
we evaluate normalized cross correlation between the basis quadrilateral and in-
put image. Note that this is not possible without the hypothesized perceptual
grouping of low-level features since otherwise we do not know whether there
are repeating patterns, how many there are, and what they look like. Due to
possible foreshortening effects, identifying all of the valid lattice points in one
iteration using cross correlation suffers from inaccurate localization of the likeli-
hood peaks. To avoid this problem we first rectify the image using the mapping
from the current observed lattice points, {p.(j,?)|1 <j < M,1 <i < N} to the

10.2 is used for all our experiments and this threshold is image independent since all
the points are transformed to normalized coordinates (integer coordinates).
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(a) Proposals of quadrilateral (b) Final grouping

Fig. 4. Sample results of quadrilateral proposals and final grouping result: (a) Note
that there are many duplicate basis quadrilaterals found on the same building. (b)
These are further clustered and filtered by the proposed algorithm.

regular lattice constructed by the found (¢1, t2) basis vector pairs. The (1, t2)
basis vector pair and regular lattice point, p,(j,7) are given by

tl = pC(L 2) - p(L 1)7 t2 = pC(27 1) - p0(17 1)

pr(jai) :pc(1a1)+t1(i71)+t2(j71) (1)

We then compute a perspective mapping, H,, from p.(j,%) to p,.(j,4) and warp
input image I; to get a rectified image I, = H(I;). Next, we compute a me-
dian quadrilateral, T, from all the quadrilaterals centered at lattice coordinates
pr(4,1) defined by (t1,ts) basis pairs. We compute the normalized cross corre-
lation between median texel T, and the rectified image I, (NCC(I,,T,,)) and
get local peaks (z,y) by non-maxima suppression.

At this stage, the procedure becomes iterative. We propose a refined mapping,
HY from p&t)(j,i) to (4,7) at each iteration ¢. Only the peaks that are trans-

foﬁned to neighborhoodsﬁ of integer positions (Z,¢) are chosen as valid lattice
points and used to update the lattice point set p£t+1) (4,9) = pg) (4,9)U(&,9). We
then recompute the rectification mapping HSH) using correspondences between
p£t+1) (j,1) and (j,¢) and repeat the entire procedure until pffﬂ)(j, i) = pfat)(j, i).
This is summarized by pseudo code in Figure

Perceptual grouping of lattices: From all candidate proposals, { Pr;|i =1 ~
N} we sort all the proposals by the normalized A-score introduced in [6]. The
more that quadrilaterals in the lattice look alike and the higher the number
of quadrilaterals in the lattice, the smaller the A-score. Starting from the best
proposal in terms of the normalized A-score, we group Pr; while performing
the lattice-completion algorithm (section 23]). As can be seen in Figure [7 the

2 The same tolerance threshold as section 23] is used in all of our experiments.
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1: set t=0, Compute (t1, t2) and p&t)(j, i) by equation ()

2: Compute mapping H., using correspondences p(j,1) to pr(J, %)

3: Rectify the input image I; by H.» to get the rectified image, I,

4: Compute median quadrilateral Ty,

5: Compute normalized cross correlation NCC (I, Ty) between T, and I,.
6: Compute non-maximum suppressed peaks (z,y) from NCC(I,,Tn)
7: repeat

8:  compute Hx) from pg)(j, i) to (4,7)

9:  if distance between H'![x;y] and round(H ! [x;y]) < 0.2 then
10: p V) = () U ()
11:  end if
12: t=t+
13: until p' ™ (5, 4) = pi (4, 4)

Fig. 5. Pseudo code for the lattice-completion algorithm

output of the lattice-completion algorithm (section 23) gives rough segmenta-
tions of the scene, therefore, we use this information to group the Pr;. Let the
input lattice proposal and output lattice be Pr; and L; respectively and let the
lattice-completion algorithm (section[Z3]) be F(), then L; = F'(Pr;). The initial
cluster center, which is a completed 2D lattice, is initialized by Ly = F(Pry)
and we then group {Pr;|2 < i < N} only when more than 70% of the 2D
lattice points in Pr; are contained in the quadrilaterals in L;. From the Pr;
that are not grouped to the first cluster center we choose the best proposal in
terms of its normalized A-score and we generate a second cluster center using
the lattice-completion algorithm (section 23]). This procedure repeats until no
more ungrouped proposals are left. For example, Figure[7al has 72 proposals and
the proposed method is successful in grouping all of the proposals. Pseudo code
for grouping is given in Figure

2.4 Quantitative Evaluation

We have compared the proposed perceptual grouping algorithm, which we will
refer to as PG, against Park et al. [9], which we will refer to as PAMI09. We
have tested the PAMIO9 and PG algorithms on a publicly available dataset
containing 120 real-world urban scene images with ground-truth [9]. We eval-
uate the precision and recall rate of the detected lattices using the automated
evaluator described in [9]. The number of true positives (TP) is given by the
number of correctly identified texels, the number of false positives (FP) is given
by the number of falsely detected texels, and the number of false negatives (FN)
is given by the number of ground-truth texels minus the number of true posi-
tives. When NV is the number of 2D lattices in the entire data set, the precision
and recall rates are given as

N N
S, TP Sio, TP
=1 Recall = =1

Precision = N , N
> i1 (TP + FP) SN (TP + FN;)

(2)
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1: For every Pr; for 1 <i< N

2: Sort Pr; by normalized A-score

3: Enqueue each Pr; to Qp, Enqueue(Qp, Pr;)
4: Initialize queue, Qr, for lattice grouping. Qr, = NULL
5: while Q! = NULL do

6: L=F(Dequeue(Qy))

7:  Enqueue(Qr,L)

8:  Initialize temporary queue Q: = NULL
9:  while Q,! = NULL do

10: P=Dequeue(@p)

11: if L D P then

12: Group P to LL

13: else

14: Enqueue(Q+,P)

15: end if

16:  end while

17: Qp = Qt

18: end while

Fig. 6. Pseudo code for perceptual grouping

Instead of computing average precision and recall rates, equation (2)) is used
to reflect the difference between the successful detection of lattices with, for
example, 1000 texels versus 4 texels.

Accuracy: We measure the detection rate of PAMIO9 and PG only when
these two algorithms detect the same lattice structure, since PAMIO9 [J] is
intended for detecting only a single deformed lattice (14672 ground-truth texels).
Second, we measure detection rates against all of the ground-truth to show
the multiple lattice detection capability of PG (23753 number of ground-truth
texels). Since PAMIO9 [9] is not intended for multiple lattice detection, we first
run PAMIO9 [9], then remove the portion of image where the 2D lattice is
found, and repeat until no more lattices are found.

As can be seen in Figure B, the precision rate of PG has improved by 8.4 %
over PAMIOQ9 [9] for both single and multiple lattice detection and the recall
rate of PG is improved by 10% and 20% over PAMIO09 [9] for single and multiple
lattice detection respectively. In addition, the precision and recall rates of PG
and PAMIO9 [9] for detecting multiple lattices does not drop significantly from
the rates on single lattices, as can be seen in Figure [8l This effectiveness of
our method comes from: 1) feature aggregation from a variety of interest point
detectors, which is more reliable at exposing repeating structures; 2) modeling
the deformation of the lattice by perspective projection rather than non-rigid
deformation for fast, simple, and accurate application to rigid objects; and 3)
perceptual grouping of multiple lattices.



336 M. Park et al.

(a) (b)

Fig. 7. Sample results of translation-symmetry-based perceptual grouping are shown.
Different colors mean different groups.

Precision and Recall

09 7

o
o
3
Precision Recall
B PAMIOT 0.7831 0.5891
@0ours 0.8489 0.6538
OPAMIOT on Multiple Lattices 0.7646 0.5151
|B0urs on Multiple Lattices 0.8289 | 0.6196

Fig. 8. The blue and red bars indicate precision and recall rate of single lattice detection
(14672 ground-truth texels) for the PG (red) and the PAMIO9 [9] (blue) algorithms.
The green bar indicates precision and recall of sequential runs of PAMIO9 [9] and
the purple bar indicates precision and recall rate of PG for detecting multiple lattices
within a single image (23753 ground-truth texels).

Efficiency: The PG algorithm takes 4.2 + 2.07 min using a 2.4 GHz Intel
P8600 4GB machine in MATLAB while PAMIO9 [9] takes 15.8 &+ 11.3 min.
This confirms that the new method is more efficient and more accurate.

3 Application

To demonstrate a possible application using the 2D lattice grouping proposed
in this paper, we have used the detected lattices for single view super-resolution
and urban scene analysis.



Translation Symmetry-Based Perceptual Grouping 337

3.1 Super-Resolution from a Single View

Recently Glasner et al. [25] showed the power of super-resolution from a single
view. Recurrence of similar patches in an image forms the basis for their single
view super-resolution approach in [25], and therefore correctly identifying cor-
responding patches is very important in this. As can be seen in our results in
Figure [l we solve this correspondence problem for texels in a lattice structure.

Instead of running a state-of-the-art super-resolution algorithm such as [25],
we took a basic approach where multiple images of the same scene are regis-
tered, a median image is computed, and de-blurring is performed. In our case
we rectify each quadrilateral in the 2D lattice into the same coordinate system,
compute a median texel, and perform deconvolution to get a high resolution
(HR) image. We map each recovered HR image back to the original space and
combine the existing original low resolution (LR) image to transfer high fre-
quency HR information while retaining original lighting and shadow changes.
We first perform a discrete cosine transform (DCT) on the HR image to isolate
the high frequency components by truncating absolute DCT coefficients larger
than 80% of the largest absolute DCT components to get truncated DCT block
lﬂ. Inverse DCT is then performed to get H Ry s and H Ry, ¢ is added back to the
original LR image, thus preserving local informationtd. Sample results are shown
in Figure

3.2 Frontal View Facades Estimation from a Single View

Before we attempt to analyze an urban scene, we need to resolve ambiguity of
(t1,t2) vector pairs under perspective distortion since there could be many choices
of valid (t1,t2) vector pairs for a given perspective distortion of a 2D wallpaper
pattern. This can make estimation of frontal facets of buildings ambiguous. We
want the (¢1,t2) vector pair to be aligned to vertical and horizontal edges of the
building, since these edges are typically aligned with meaningful directions, either
parallel to or perpendicular with the ground. Figure [[Tl (a) shows (¢1,t2) vector
pairs that are not aligned with the horizontal and vertical edges of the building.
Figure[dl (b) shows (¢}, t;) vector pairs after the desired correction. In the follow-
ing section we will explain in detail how we correct (¢1, t2) vector pairs.

Resolving ambiguity of (t1,t2) vector pairs: Most modern architecture
falls into either the pmm or p4m subgroup of the 17 possible 2D wallpaper
patterns [I5]. In such cases, the (¢1,t2) vector pair should be aligned with both
the reflection axes and the horizontal and vertical edges of the buildingﬁ. First,
we enumerate variations of (¢1,t2) from the current detected lattice. Let a lattice
point at row j and column 4 be given by p(j,4), then the current ¢; and t2 are

3 This is the inverse of JPEG procedure where one wants to discard high frequency
information to achieve compression.

4 For further details, please refer to our supplemental material.

5 We do not examine horizontal and vertical gradient information to correct (¢1,t2)
as there might be severe perspective distortion.
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(a-]) (a-B) (a-SR1) (a-SR2)

RS

(b (b-B) (b-SRI) (a-SR2)

(c-I) (¢c-B) (c- SRl) (c- R2)

(d-I) (d-B) (d-SR1) (d-SR2) =

Fig. 9. Sample single view SR results are shown. I stands for original input, B stands for
bicubic interpolation, SR-1 stands for super-resolution with the exact copy of the texels,
SR-2 stands for super-resolution with a local information transfer such as lighting and
shadow. (a-d) input selection. (a-B ~ d-B) results of 2x bicubic interpolation. (a-SR1,2
~ d-SR1,2) results of 2x SR.

given as t; = p(j,i + 1) — p(4,i) and t5 = p(j + 1,4) — p(j,4) respectively.
The variation of (t1,t2) can be given as t| = p(j,i + 1) — p(j,i) and t§ =
p(.] +1,1+ 1) _p(j7 i)7 or tll = p(j7i+ 1) _p(jvi) and t5 = p(.] +1,0— 1) _p(jvi)
as can be seen in Figure or Figure

We then compute a median texel from quadrilaterals which have been trans-
formed from their 4 observed points in the lattice, {p(j,?),p(j, %) + t1,p(j, 1) +
t1 +ta,p(J, i) + ta}, to rectified points, {(1,1), (w, 1), (w, k), (1, h)} where h and
w are the height and width of rectified texels (both set as 50 pixels). Then we tile
nine copies of the computed median texel in a 3 by 3 grid to form a small reg-
ular lattice pattern and attempt to find the two reflection axes. We only search
through x and y directions near the center of the rectified median texel. This is
sufficient and necessary because, if reflection axes exist, they must be parallel to
the (1,t2) vector pair.
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(a) (b) (c)

Fig.10. (a) The current (t1,t2) vector given as t1 = p(j,i + 1) — p(4,4) and t2
p(j + 1,7) — p(j,4) (b) The variation of (¢1,t2) vector given as t; = p(j,i + 1) — p(j,
and t5 = p(j + 1,7 + 1) — p(j,i) (c) The variation of (t1,t2) vector given as #]
p(j,i+1) = p(j,i) and ty = p(j + 1,4 — 1) — p(j, i)

=

) Before (b) After

= L_II_

) Best Chosen (d) Candidate 1 (e) Candidate 2 (f) Candidate 3

Fig. 11. Sample results of correction of (¢1,t2) vector pair using reflection axes analysis.
(a) before (b) after (c) best texel shape (d-f) candidate texel shapes.

We repeat this procedure for all the enumerated (¢1,t2) vector pairs and seek
reflection axes. The sum of the absolute difference between the median texel and
the flipped median texel is computed and we select the (¢1,t3) vector pair that
generates the minimum sum as the best pair. Sample results are shown in Figure
[ (c,d,e,f). As can be seen in Figure [IT] the analysis is successful in aligning
(t1,t2) to the vertical and horizontal edges of the building facade.

Computation of Frontal View: Collins and Beveridge [26] showed that when
the vanishing points of a 3D plane projected onto an image and the angular field
of view of the camera are known, a 3D rotation matrix can be used to relate
observed image locations on the plane to the image coordinates they would have
if the plane were rotated to face the camera (having a normal vector pointing
directly along the camera view direction). Their formulation shows that if the
vanishing line of the plane is given by the formula ax+by+c = 0, then the normal
to that plane, in camera coordinates, is n = (a, b, ¢)/||(a, b, ¢)||. The matrix that
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will perform the projective transform simulating the desired 3D rotation is, in
homogeneous coordinates,

x; E Fal |
kilyi|=|F Gbl||u 3)
f —a—bec f
where ) . B ) 2 2
a‘c—+ ab(c—1 a4+ b“c
a? +0b2’ a2 402"’ a? + b2 (4)

where f is the focal length given by f = , tan FOV /2) where w is the image width
and F'OV is the camera’s angular field of view.

A perspectively distorted lattice that has been identified by our method will
converge to two vanishing points, one in each direction of 2D repetition. We can
calculate the vanishing points for a lattice covering the facade of a building, then
calculate the line connecting the vanishing points in the form ax + by 4+ ¢ = 0.
From that equation, the values (a,b,c) are the normal vector to the plane in
camera coordinates [26]. We use these values to draw the normal vectors to
building facades in Fig.

Fig. 12. This figure shows the computation of surface normals from a lattice detected
on a building facade. The blue arrow indicates the surface normal of the building.

We cannot perform the projective transform that would simulate bringing
the building facade into a frontal view without knowing the angular field of
view of the camera. However, we assume that the two directions of repetition on
a building facade are orthogonal in a frontal view. If an incorrect field of view
were assumed and used to bring the lattice into a frontal view, the two directions
generating the lattice would not be orthogonal. Specifically, an incorrect field of
view used to generate the frontal view will induce a scaling along the direction of
the facade normal in image coordinates. In our supplemental material, we show
that a simple search routine can quickly converge upon the one unique value
for angular field of view that can be used to bring a lattice into a frontal view
while preserving the orthogonality of the directions of 2D repetition. We show
the computed size and shape of the lattice and texels for three images in Fig.
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This is a powerful application of our method because computation of building
facade normals can be used for 3D reconstruction and geotagging. The calcu-
lation of a frontal view of a building facade also can enable extraction of the
building appearance as a 2D texture, and can be useful for building recognition
where only the frontal appearance of a building is known.

4 Conclusion

A novel 2D translation-symmetry-based method of perceptual grouping is pre-
sented that shows superior performance in terms of detecting single and multiple
lattices in an image over the state-of-the-art algorithm. Perceptual grouping is
possible when mid-level information of scene structures is successfully obtained.
Also, we have demonstrated that the detected lattice structure can be used for
single view super-resolution as well as for 3D orientation estimation in urban
scenes. We plan to extend this work on single view 3D urban scene reconstruc-
tion and apply mid-level visual features for object categorization.
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0729363 and a Google Research Award to Dr. Liu.
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Abstract. We propose a novel algorithm for unsupervised segmentation
of images based on statistical hypothesis testing. We model the distribu-
tion of the image texture features as a mixture of Gaussian distributions
so that multi-normal population hypothesis test is used as a similar-
ity measure between region features. Our algorithm iteratively merges
adjacent regions that are “most similar”, until all pairs of adjacent re-
gions are sufficiently “dissimilar”. Standing on a higher level, we give a
hypothesis testing segmentation framework (HT), which allows different
definitions of merging criterion and termination condition. Further more,
we derive an interesting connection between HT framework and previous
lossy minimum description length (LMDL) segmentation. We prove that
under specific merging criterion and termination condition, LMDL can
be unified as a special case under HT framework. This theoretical result
also gives novel insights and improvements on LMDL based algorithms.
We conduct experiments on the Berkeley Segmentation Dataset, and our
algorithm achieves superior results compared to other popular methods
including LMDL based algorithms.

1 Introduction

Image segmentation, the task of partitioning an image into regions with homoge-
neous texture, is a crucial first step for high-level image understanding. A good
segmentation can significantly reduce the complexity of many visual tasks such
as object recognition and scene understanding.

In the literature, many models and principles that can lead to good segmenta-
tion have been proposed. Traditional clustering algorithms aim at extracting the
statistical characteristics of the region data, such as k-means and Mean Shift [I].
NCuts [2] [3] and F&H [] formulate the segmentation as a graph-cut problem,
while several approaches such as [5] aim at combining the cues of homogeneous
color or texture with contours in the segmentation process. Because of the huge
diversity of definitions of “optimal segmentation”, some recent work such as [0]
focused on giving a unified evaluation procedure addressing the problem “what
is a good segmentation”.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 343 2011.
© Springer-Verlag Berlin Heidelberg 2011
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More recently, an objective metric based on the notion of lossy minimum
description length (LMDL) has been proposed for evaluating segmentation of
images [7] [8] [9] [I0]. This metric is built on the definition of an “optimal seg-
mentation”, which is the one that minimizes the number of bits needed to code
the segmented data, subject to a given distortion. According to the previous
LMDL based algorithms, this objective has been shown to be highly consistent
with human segmentation of images. Preliminary success of this approach leads
to the following important question: why such objective metric fits well for hu-
man understanding of images? It has also been noticed that how to choose the
distortion parameter is still a main difficulty in LMDL based approaches.

From another point of view, segmentation is widely accepted as an inference
problem, i.e., what caused the observed data. The image data can be character-
ized by sample points from complicated mixed distribution. It is widely accepted
that a good segmentation should group image pixels into regions whose statistical
characteristics(e.g. color or texture) are homogeneous. Also, in a good segmen-
tation, segments should be statistically different, i.e., they are corresponding to
significantly different distributions. In this view, segmentation can be viewed
as a hypothesis testing problem, which tests the equality of distributions. Sta-
tistically identical or similar regions should be merged, otherwise split. There
are simple choices of hypothesis test such as Fisher’s test and homogeneous ML
test [I1]. However, such tests can not distinguish between two distributions with
the same means but different variances.

Paper Contributions. In this paper, we propose a simple yet effective algo-
rithm for segmentation of images via hypothesis testing. Based on the obser-
vation that a homogeneously textured region of a natural image can be well
modeled by a Gaussian distribution, we model segmentation as a multi-normal
population hypothesis test problem, which tests the equality of normal popu-
lation means and variances at the same time. A generalized hypothesis testing
(HT) framework is then proposed. The main advantages of the HT framework
and the specific contributions of this paper are as follows:

1. HT is a general framework that allows different criteria embedded to yield
good segmentations. Under this framework, we propose a specific segmenta-
tion algorithm, which is comparable or even better than the best segmentation
algorithms.

2. We have proved an interesting result that under specific merging crite-
rion and termination condition, the previous lossy minimum description length
(LMDL) segmentation can be unified into our HT framework as a special case.
This theoretical contribution reveals the statistical base of LMDL criterion.

2 Segmentation by Hypothesis Testing

2.1 Statistical Model of Image Segmentation

We start by introducing the hypothesis testing model of segmentation. For a
given image I, we denote the feature vector as V' = (v1,v2,...,Um) € Rpxm,
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in which m is the number of pixels and p is the feature dimension. The goal
of image segmentation can be viewed as grouping the image pixels into regions
with homogeneous feature properties which will hopefully correspond to objects
or object parts. A region R is considered to be homogeneous if its feature values
are consistent with having been generated by a particular distribution P(I | ©),
where © are the parameters of the distribution. In a good segmentation, different
region should correspond to statistically different distributions. Consequently,
segmentation can be viewed as a hypothesis testing problem, i.e., testing the
equality of the corresponding distributions that generate the image region data.
We focus on the case that data are drawn from multivariate Gaussian distri-
bution. In [10], it has been carefully investigated that a homogeneously textured
region of a natural image can be well (not exactly) modeled by a Gaussian
distribution. We denote the feature vector in each region R; as V;, such that
Ui]\il V; = V. For the Gaussian case, each V; is the observed data from a multi-
normal distribution P(I|u;, X;), in which p; and X; are the mean and variance
of multi-normal distribution. In a bottom-up process, the merging of two regions
can be viewed as a multi-normal population hypothesis test problem [12] [13]:

Hy:py = pg and Xy = X (1)
Hllp,l;ép,QOT 217522
Under certain significance level, if null hypothesis Hy is accepted, these two
regions R; and Ry are statistically “similar” so that can be merged.

2.2 Multi-normal Population Hypothesis Test

We then give the likelihood ratio of the hypothesis test specified in ().
Suppose each population has m; observed sample points denoted as v;;, ¢ =
1,2;5 = 1,2,...,m;. Note that each sample point v;; has dimension p. Denote
m;
) Z Vij, 1= 1,2; The
)

2
vij,m = > m;. The
i=1

3~

the sample mean vector for each population as V; =

3

i

e

total mean vector of these two populations is V' = 51

7 1

1j

my

scatter matrix for each population is A; = Y (vi; — Vi)(vi; — V)T, i = 1,2;

j=1
2 my
And the total scatter matrix 7= Y > (vi; — V) (vi; — V)T.
i=1j=1
The likelihood ratio for the null hypothesis Hy has the following form [12] [13]:
2
Ml
=1 o m (2)
- T 7; 2 m;p
‘ ‘ H m. 2
i=1

If we have a large number of sample points m, the likelihood ratio A has the
following approximately distribution when Hy is true: —2(1 —b)In A ~ x2(f), in
2
. 2p*+3p—1
which f = 3p(p+3),b= (21 mie1 ~ me2)( p6(;g+%) ) = (m-2)p+3)°
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Under given significance level a, we have P(A < A,) = « when Hy is true.
This means in hypothesis testing, the probability that Hy is wrongly rejected is
at most a. Based on the likelihood ratio method, when the calculated value of
A is smaller than A,, the null hypothesis Hy should be reject, otherwise accept.
Consequently, {\ < A, } induces the rejection range of Hy. If the likelihood ratio
falls into the rejection range, the corresponding two regions are statistically
“dissimilar”.

2.3 Segmentation by Hypothesis Testing

The above hypothesis test gives a measure of “how similar two regions look
like”, from statistical perspective. Before presenting our hypothesis testing seg-
mentation algorithm, another two essential components have to be made clear:
merging criterion and termination condition, i.e., which two regions are chosen
to be merged in each bottom-up iteration and how to terminate the algorithm.

Merging Criterion. Denote the merging criterion as M C. A reasonable choice
is, in the group of pairs of regions that the corresponding null hypothesis Hgs
are accepted, the pair of regions that “most likely” to be the same should be
merged. In the likelihood ratio mehod, a large value of A\ indicates that the
corresponding two populations have a large probability to be the same. From this
perspective, we merge the two regions that the corresponding Hy has maximum
A: MC = {max \}.

Termination Condition. Denote the termination condition as T'C'. One choice
is to use the threshold A\, induced by a given significance level «. If there isn’t
any pair of regions that the corresponding likelihood ratio is larger than A, the
algorithm will terminate. We searched « from 0.00001 to 0.5 and found that
a should be very small (less than 0.0001) to achieve good segmentations in the
Berkeley Segmentation Dataset. This result implies that segmentation of natural
images may require very small type I error (The probability that Hy is wrongly
rejected) to derive segmentations that are consistent with human perception.
Although this TC is feasible, the choice of « is difficult for the user because a
very small change of it will make significantly different segmentations.

In our algorithm, instead, we use a direct way to define the TC. Since we use
hypothesis test to merge the pairs of “similar” regions, a natural idea is that
TC should be that feature distributions in adjacent regions must be sufficiently
dissimilar. In statistics, the Mallows distance is a commonly used metric between
two distributions. For two Gaussian distributions N (u1, X1) and N (usg, Xs2), the
Mallows distance has the following expression [14]:

By = (1 — p2)T (1 — p2) +tr( S+ Za — 2(2122)2) (3)

For a given segmentation, we calculate the Mallows distance between all pairs of
adjacent segments. The termination condition is defined to be that the minimal
dps is larger than a preselected threshold 6. That is: TC' = {min das > 6}. While
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in essence, this TC is the same as using test level, both of which can be viewed
as the statistical measures of dissimilarity between adjacent regions.

Algorithm. After defining MC and TC, the hypothesis testing segmentation
algorithm is summarized as below:

Algorithm 1: Hypothesis Testing

1. Input: image data V = (v1,v2, ..., Um) € Rpxm and parameter 6 > 0;

2. Initalize: sets (regions): R :={R; = {v}|v € V'};

3. do
apply multi-normal hypothesis test on each pair of adjacent regions in R;
choose distinct sets R1, Rs such that the corresponding Hy has maximum

value of \; (MC is satisfied)
merge Ri, Ro: R := (R\{R1, R2}) U (R1 U R»);

While |R| > 1 and {min dj; < 0}; (TC is not satisfied)
4. Output: R.

Since hypothesis test requires a certain number of sample points, it is better
to obtain the initial regions R by an over-segmentation procedure. In our experi-
ments, we use the publicly available over-segmentation code [15] with parameter
Ngp = 200.

Hypothesis Testing Segmentation Framework. In fact, different definitions
of MC and TC induce a different segmentation algorithm. Based on the use of
hypothesis testing as the region similarity measure, we can build a segmentation
framework, which allows different definition of MC and TC. In the next section,
we will prove that segmentation by lossy minimum description length (LMDL) [7]
[10] [8] can be unified into hypothesis testing framework as a special case, under
specific MC and TC.

3 Segmentation by Hypothesis Testing and Lossy Data
Coding: A Unified Approach

In this section, we will first modify the likelihood ratio by considering noise, and
then, derive the connection between LMDL and HT framework.

3.1 Noise Modified Likelihood Ratio

In statistical point of view, the image data may have outliers or noise. We as-
sume that images are perturbed with independent additional noise n,,: E(n,,)
= 0,var(ny,)= X,. This noise can either be viewed as noise in the original im-
age, or the perturbation caused from data filtering, quantization, down-sampling
or lossy compression. Then the noise-perturbed image region vector V; can be
viewed as having been generated by the noise-mixed distribution: P(I|u}, X)),
in which pf = p; + E(ny) = w4, X = X; + Xy Here p; and X; are the mean
and variance of original normal distribution corresponding to V; without noise.
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Given finite samples, X; can be estimated as: X; = ;‘L’ ,©=1,2. Denote X as
the total sample variance matrix for the two normal populations without noise
2 = ?;L For mathematical tractability, here we use the biased variance. Then
we get the following theorem:

Theorem 1. The noise-modified likelihood ratio for the null hypothesis Hy is:

0|zss+ 1™
=1

* —
A= —1 S (4)
|25t + 1|
Proof. Rewrite equation (2] considering noise:
2 m; 2 ) my
[T [Ai+m: Tl 2 mp 1|0 +%w| 2
2= =t . m 2 __ i=1 N
= mip =
IT+mS.| 2 qom 2 | T+ 2
I m,
2 . my ";'i 2 . m;
=2+ 2 2l 2] I1 | =35+ 2
__ i=1 _ i=1
B 1 m K - —1 m
|Z2a +1] 2 | Dl |Zsu 41|

3.2 Lossy Minimum Description Length Segmentation: A
Hypothesis Testing Perspective

In [7], Ma et.al proposed an objective segmentation quality measure, which is
based on the lossy minimum description length (LMDL) criterion. Given a po-
tentially mixed data set, the “optimal segmentation” is that, over all possible
segmentations, minimizes the coding length of the data, subject to a given dis-
tortion. For data drawn from a mixture of Gaussians, the optimal segmentation
can often be found efficiently using an agglomerative clustering approach, called
Pairwise Steepest Descent (PSD) algorithm. LMDL criterion has later been ap-
plied to image segmentation, known as CTM algorithm [§].

In both approaches, at each iteration, a pair of regions V; and V5, is merged
such that the decrease in the coding length due to coding V; and V5 together is
maximal. Let L(V') denote the total number of bits needed to encode the region
data V. The algorithms terminate when the coding length can no longer be
reduced by merging any pair of regions. That is to say, if their exist two regions
V1 and V5 such that

L(ViuVa) = L(V1,V2) <0, ()

PSD and CTM will continue to merge regions.

Consider that the data distribution is Gaussian: N(u, X). For region data
V = (v1,v2,...,9m) € Rpxm, we assume m > p so that we can ignore the
asymptotically insignificant terms in the coding length function, which is also
done in [7]. Followed by their result, the coding length function for V is:

T
m p p
L(V) =" logy det(I + F, Z) + ] logs(1+ “62“) (6)
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Here ¢ is the distortion. We consider two regions’ merging case. If V1, V5 are coded
separately, each V; has m; sample points, m is total number of sample points:
2

m =Y m,, then the total number of bits needed is [7]:
=1

2
L(V1, Vo) = S [L(V) + my( Loy (my /m) (7)
i=1
Then we have the following proposition:

Proposition 1. When the noise variance X, satisfies X, = (¢2/p)I, then the
merging condition in LMDL segmentation specified in (A) is equivalent to

1+ 1)
(m)ml(ﬂg)mg( +H1H1) (1+N2M2)

mi m

in which X* is the noise-modified likelihood ratio defined in ().

A >

(®)

Proof. Replace L(V; U Vz) and L(V1,Vz) in (@) using (6) and (@), we can get:

ma
fn2/p‘ : ) (,Z?l)m1(7T2)7n2(1+u1 u1)2(1+u2;»2)2 . (9)
2 (1+u52;») y

AN

E2/10‘

‘ +52/p
in Which 21, Yo are sample variance matrices of V4 and V5. Under given condition

Yw = (£2/p)I, the first term in the left side equals to A*. Move the second term
in the left side to the right side of the above inequation, we can get (g]).

Note that ¢ is a special case of the noise variance X, because the distortion ¢
implies that the noise in all feature dimensions are i.i.d distributed, with variance
e2/p. In real situation, different feature dimensions may have different noise
variances and they may be correlated, as in the general case of X,.

We will next show that under specific merging criterion and termination con-
dition, LMDL can be unified into HT framework.

Proposition 2. (Merging Criterion) The merging criterion (MC) in LMDL
segmentation 1s:
G )™ )*”2‘(1+“1 Y12 (1+“2 F2yh

MC = {max[\* -
(1++5)E

I}
Proof. In PSD and CTM, two regions Vi, V5 are merged if and only if L(V;, V2)—

L(V1 U Va) is positive and maximum. This is equivalent to maximizing the left
side of ([@).

In the special case where the data are i.i.d samples from a zero-mean Gaussian
distribution, the above MC can be simplified as
Z (=m0
MC = {max[\*-e i=t 1}
The second term in this simplified MC is closely related to the entropy. It can
be understood as a reliability-weight of the likelihood ratio: firstly, if we fix the
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sample proportion "' and "2, it has a large value when total sample number
m is large, which means larger sample number generally makes the hypothesis
test more reliable; secondly, if we fix the total sample number m, this term has
a maximum value when mj = mz = 7. This means under the constraint that
there are fixed m samples available, the hypothesis test is reliable when sample
number in both populations are balanced because both populations can have
plenty of sample points for sample mean/variance estimation.

Proposition 3. (Termination Condition) The termination condition (TC)
i LMDL segmentation is that for all pairs of adjacent regions, the corresponding
A* satisfy \* < Ao The threshold A\, is given by :
(1)
Ao = Eu{m 14 uguz)g .

Gy (e )2 (L) 5 (142

Proof. From proposition 1, if there is no pair of regions satisfies (), PSD and
CTM will terminate. Let A\, equals to the right side of (§]), then the proposition
holds.

Under this TC, the rejection range of Hy is adaptively determined by A, which
is a function of sample number, sample mean and preselected distortion €. Con-
sequently, the meaning of this TC is that under adaptively determined rejection
range, the corresponding null hypothesis Hys of all pairs of adjacent regions are
rejected, i.e., statistically dissimilar. Briefly speaking, LMDL criterion tries to
find an optimal segmentation that each region has a high self-similarity, and
different regions are sufficiently dissimilar. The so-called “similarity” here is
measured by multi-normal population hypothesis test. Similarly, the recently
proposed TBES algorithm [I0] can also be viewed as a special case of HT with
a boundary penalty term as the reliability-weight of the likelihood ratio.

HT Framework: Insights and Improvements. According to [g], a typical
difficulty in LMDL is the choice of distortion, which reveals the noise scale of image.

Fig. 1. (color) Result comparison between CTM algorithm and our HT based algo-
rithm. Top row: Original images. Middle row: CTM’s results. Bottom row: Our results.
Our algorithm better extracts the subject of images from background.
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As illustrated in Fig. [ (row 2): it is often failed to segment out the subject
from the background, under the same segmentation scale. This is because CTM
uses a fixed € to code the feature vectors of the entire image, despite the fact
that these textures may have different noise variances (e.g., foreground versus
background). In a word, distortion is not easy to determine, and is not global
consistent even in a single image.

Under HT framework, we require no particular choice of distortion (in the
likelihood ratio form in (2])). While the distortion controls the segmentation
scale, in our algorithm, instead, we use the Mallows distance threshold 6 to play
the similar role. It doesn’t rely on the distortion, and provides a global consis-
tent measure of the region dissimilarity. As a result, our algorithm successfully
extracts the subject of an image from the background (row 3, Fig. [J).

4 Experiments

We conduct extensive experiments to validate the performance of Algorithm 1
on the Berkeley Segmentation Dataset (BSD) [16], which consists of 300 natural
images and each of them has been manually segmented by a number of different
subjects. We will first describe the feature construction, and then show both
qualitative and quantitative results.

4.1 Feature Construction

As shown in Fig. @ given an image in RGB format, we convert it to the L *
a * b color space, which has been investigated in [9] that such color space better
facilitates representing texture via mixture of Gaussians. In order to capture the
variation of a local texture, we directly apply the 7x7 cut-off window around each
pixel. Since the likelihood ratio (2]) is uniquely determined by the sample mean
and scatter matrix of regions, to estimate them empirically, we need to exclude
the windows that cross the boundary of region R. Such windows contains pixels
from the adjacent regions, which can not be well modeled by a single Gausssian
distribution.

In the next step, we stack the color values inside the window into a vector
form. Each window is smoothed by convolving with a 2D Gaussian kernel before
stacking. Finally, for the ease of computation, we project the feature vectors
into an 8-dimensional space using PCA. The whole procedure and pre-processing
are similar as in [I0]. From computational point of view, when calculating the
likelihood ratio in (2]), one can add a relatively small positive number to the
diagonal elements of each scatter matrix to ensure that the scatter matrices are
positive definite.

4.2 Verification

Qualitative Verification. We first verify the segmentation results on the BSD
visually. Since our algorithm relies on the choice of dissimilarity threshold 6, a
reasonable result is that smaller 6 tends to oversegment images, while larger 6
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Fig. 2. Feature construction. The 7 x 7 windows around each pixel on the L xa * b
color space are convoluted with 2D Gaussian kernel, stacked into a one column vector
and then use PCA.

Fig. 3. (color) Results of Hypothesis Testing (HT) segmentation under different 6.
Left: Originals. Middle left: # = 0.30. Middle right: 8 = 0.45. Right: 8 = 0.60.

tends to undersegment images. Fig. Blshows the results under 6 = 0.30,0.45 and
0.60. Fig. @ illustrates more representative segmentation results.

Quantitative Verification. To provide a basis of comparison for the perfor-
mance of the HT algorithm, we make use of five unsupervised algorithms that
have been made publicly available: NCuts [2], F&H [], mean-shift (MS) [II,
CTM [§] and TBES [I0]. To obtain quantitative evaluation of the performance
between our algorithm and the ground truth segmentations in the BSD, we use
two widely used quantitative measures: the Probabilistic Rand Index (PRI) [17]
and the Variation of Information (VoI) [18]. For brevity, we refer the reader to
the stated references for the definition of each index.

The performance of these five methods and that of human’s, based on PRI
and VOI measures, were obtained via personal communication with the authors
of [I0]. The user-defined parameters of these methods have been tuned to achieve
the best overall tradeoff between PRI and Vol. In particular, we report our results
with 6 = 0.60.

Note that in Table 1, our method achieves the best result on PRI and the
second best result on Vol. It is perhaps not surprising that TBES achieves better
Vol since TBES uses additional boundary penalty term to penalize non-smooth
contours, while in essence, it can be unified as a special case of HT framework. We
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Fig. 4. (color) Qualitative results of our algorithm on the BSD. Each region in the
segmented image is colored by its mean color.
Table 1. Quantitative comparison on the BSD. Boldface indicates the best results.

Index/Method Human HT MS FH NCuts CTM TBES

PRI (Higher is better) 0.868 0.792 0.772 0.770 0.742 0.742  0.787
Vol (Lower is better)  1.163 1.897 2.203 2.844 2.651 2.002 1.824

also found that, if we could choose 6 to optimize the PRI, the average PRI would
become 0.804, while similar optimization would bring the Vol down to 1.692.

5 Conclusion

In this work, we have proposed a hypothesis testing segmentation framework
which tests population means and variances at the same time.We have proved
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that the lossy minimum description length segmentation can be unified into our
framework as a special case. This result has found the statistical prototype of
LMDL, and gives novel insights and improvements over LMDL based algorithms.
Our future direction is to extend this work to non-Gaussian case.

Acknowledgement. This work was supported by NBRPC(2011CB302400),
NSFC(60635030), NSFC(61075003) and NSFC(60775005).
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A Convex Image Segmentation: Extending
Graph Cuts and Closed-Form Matting
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Abstract. Image matting and segmentation are two closely related top-
ics that concern extracting the foreground and background of an image.
While the methods based on global optimization are popular in both
fields, the cost functions and the optimization methods have been devel-
oped independently due to the different interests of the fields: graph cuts
optimize combinatorial functions yielding hard segments, and closed-
form matting minimizes quadratic functions yielding soft matte.

In this paper, we note that these seemingly different costs can be rep-
resented in very similar convex forms, and suggest a generalized frame-
work based on convex optimization, which reveals a new insight. For the
optimization, a primal-dual interior point method is adopted. Under the
new perspective, two novel formulations are presented showing how we
can improve the state-of-the-art segmentation and matting methods. We
believe that this will pave the way for more sophisticated formulations
in the future.

1 Introduction

Estimating the foreground and background of an image is of great importance in
computer vision. When the boundary details are not critical, hard segmentation
methods are usually employed that assign a label to every pixel. Graph cuts are
among the most successful methods in this class. This might be sufficient for some
tasks such as recognition, however, an accurate soft matte (foreground opacity)
is often required, for instance, in image editing. Recently, the closed-form for-
mulation using matting Laplacian [I5] has been proven to be very effective for
matting [26]. While generating accurate boundaries, however, it usually requires
the unknown region to be small unlike graph cuts. This sort of complementary
property has triggered the development of algorithms that take advantage of
both sides [I§]. Our work reveals the link between the two problems, and the
better approaches are obtained through generalization. Note that we will con-
sider the two-layer (foreground and background) segmentation and matting only,
but multiple layers can be handled in a standard manner [51[23].

Segmentation is one of the most intensively studied topics in computer vision.
Among many others, graph cuts methods have gained the popularity due to their
capability to infer globally consistent labels incorporating various local cues.
While the original formulation is in a combinatorial form [10], it is known that its

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IIT, LNCS 6494, pp. 355 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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continuous relaxation results in a convex function. In particular, [2] reformulated
graph cuts as an unconstrained /; minimization problem, and solved it using the
barrier method, a general algorithm for solving convex problems. Similarly, we
reformulated the cost function into the following form (Sec. [ZT)):

Ji(@) = [[Kali + [V(e = a1l (1)

where « is the relaxed soft segmentation labels. The two terms on the right side
corresponds to smoothness and data terms.

The problem of finding an accurate matte has gained attention relatively
recently. Currently, many of the state-of-the-art methods [12,17[1822,27] are
derived from the work of [15]. Generalizing the cost function of these methods
yields the following expression (Sec. 22]):

Ja(a) = |L2alf + W2 (a - a2)|3 (2)

The similarities of the two expressions are apparent; they are l; and I norms of
the same form.

We recognize this close relationship between the two. Since they are both
convex, the sum of them also yields a convex function allowing us to efficiently
find a global minimum. Hence, we can see graph cuts and closed-form matting
methods within the convex optimization framework. As a result, we propose a
new convex segmentation framework whose cost function is given as

J(@) = Ji(a) + Jao(a) = [[Aa+ b, + (1/2) |Ca + dl3 3)

In this expression, we further merged the smoothness and the data terms, and
simply obtained /; and I3 norms of the linear functions of . While it is possible
to consider other types of convex functions, we focus on this combination since
each of them is well studied.

This generalization is of more than just the theoretical interests; in fact, by
properly choosing the parameters A, b, C, and d, we can improve both segmen-
tation and matting quality. We will show two particular examples in Sec. [fl For
matting, Sec. 5.l incorporates [; data terms, and this makes the method robust
to erroneous data estimates. For segmentation, Sec. adopts matting Lapla-
cian as smoothness terms, and shows that the shrinking phenomena of graph
cuts are mitigated.

One related work is [24]. They have obtained a new segmentation algorithm
based on I, norms by generalizing graph cuts and random walker [9]. We further
generalize the formulation so that the closed-form matting can be included, and
try optimizing joint cost function.

For the optimization, we used a primal-dual interior point method which is
a standard technique for convex optimization. Since our problem is often very
large including millions of variables and inequality constraints, most general
solvers cannot handle it; we implemented new software for minimizing Eq. ().
Exploiting GPU computing technology, we could make it fast enough to be
practically used.
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Similar formulations and optimization methods often occur in some other
fields including sparse signal reconstruction, feature selection, and statistics [13].
For image restoration, [7] also used a primal-dual interior point method mini-
mizing mixed [y and Iy norms. [I] adopted a similar cost function for the feature
learning problem.

In summary, this paper gives a new perspective on segmentation and mat-
ting. We showed the relationship between graph cuts and closed-form matting.
Following the observation, we developed a new method and obtained promising
results. We believe that developing new convex objectives is an attractive future
research direction.

2 Previous Works

We start by clarifying our notation. The ¢ channel color input image is denoted
as Z, and Z; is a ¢ x 1 vector representing colors of the ith pixel. We want
to estimate the foreground opacity 0 < « =< 1, a column vector of length n
where n is the number of pixels. The curled inequality denotes componentwise
inequality. 0 and 1 are column vectors of 0 and 1, respectively, whose size should
be apparent from the context. Also, ||-||; represents I; norm. Thus, ||z|1 = Y, |z
and ||z[|3 = Y, 27 for a vector z.

2.1 Graph Cuts

Graph cuts methods treat the image as a graph, and divide it by finding a
minimum cut of it [I0]. The cost function is given as

J@)= > fijlaw )+ file) (4)

(@.4)eN g

where N is the neighborhood or edge set, and a; € {0,1}. It consists of two
parts: the smoothness terms that are functions of two neighboring pixels, and the
data terms encoding local likelihoods. Smoothness terms are designed to prefer
similar pixels to be in the same segment, thus, usually defined as a dissimilarity
of neighboring pixels.

The minimum cut is usually found by solving its dual problem: max flow
problem. It involves the classic Ford-Fulkerson [0l8] or Push-relabel with their
specialized improvements.

While the original formulation restricts the labels to the discrete values, its
continuous relaxation allows o € [0, 1] instead. The cost function should also
be adapted to be defined on the continuous domain. In fact, it is known that a
convex continuous relaxation is possible, if f;; is submodular; that is, if f;;(0,0)+
fi;(1,1) < £i5(0,1) + fi;(1,0). One possible form is presented in [2], leading to
an unconstrained /; minimization problem, and it is solved using the barrier
method.

Similarly, we reformulate Eq. [ ) as the following convex continuous form:

Ji(@) = [[Kali + [V(e = a1l ()
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where each row r of K corresponds to an edge (i,j) € N with its two non-zero
elements being defined as

Ky =—Kpj = (=/i;(0,0) + fi5(0,1) + £i;(1,0) — fi;(1,1)) /2 (6)
and the diagonal matrix V and & are given as

1 ifw; >0,
0 ifw; <0,

Vii = |lwi|], b1; = {

where w; is defined as

wi = fi(1) = £(0) — Z fi;(0,0) + fi;(0,1) ; fi;(1,0) — fi;(1,1) (8)
Jl(i,j)eN

It is easy to verify that any minimum of Eq. () is also a minimum of Eq. ().

2.2 Closed-Form Matting

Matting problem is to estimate a foreground and a background of an image along
with a opacity for each pixel. Most algorithms typically assume compositing
equation:

i=0Fi + (1 —u)B; 9)

where F; and B; are ¢ x 1 vectors representing foreground and background colors
of the ith pixel, respectively. Since the problem is ill-posed, usually a trimap
indicating definite foreground Cr, background C'p, and unknown region is given.
We enforce a; =1 for ¢ € C'r, and a; = 0 for i € Cp.

Currently, matting-Laplacian-based methods produce the best results. They
define a quadratic cost function of a:

J(@) =a"La (10)

where L is a n X n symmetric matrix referred as the matting Laplacian that we
define:

Li= ¥ (8- 0 (r@-mmer 7@ - ) ay

kli,jEwy ‘wk‘ ‘wk|

where §;; is Kronecker delta, X, is a ¢ X ¢ covariance matrix, py is a ¢ X 1 mean
vector of the colors in a window wyg, and I is the ¢ x ¢ identity matrix. Typically,
¢ = 3 for color images. See [15] for the original derivation.

There is another way of defining matting Laplacian. While the above is based
on color line assumption, [22] assumed locally constant color model for an alter-
native derivation. In both cases, the cost function is in a quadratic form.

Often, quadratic data terms or priors are added [12}[17,18]27].
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J(a) =a’La+ (a — &)W(a — &) (12)

where W is a diagonal matrix penalizing « from deviating from a.

We may see Eq. (IZ) as a combination of closed-form matting and random
walker segmentation [9,[17,27]. Similarities of their cost functions allow easy
integration; the same optimization method, solving the following sparse linear
system, can be applied.

(L+W)a=Wa—1b (13)

One noticeable shortcoming of matting Laplacian methods is that the solution
often includes mid-range values; in reality, the alpha values of 0 and 1 are more
likely. Enforcing sparsity prior in quadratic forms are inherently difficult as we
will see in Sec. B.11

Rewriting Eq. ([I2)) yields the following expression:

Ja(a) = (1/2)|IL a3 + (1/2) W (o — a2)|13 (14)

3 A Convex Segmentation

Many of the best segmentation algorithms can be understood as optimizing
a convex function. We refer those as convex segmentation methods. They are
particulary interesting since the convexity allows the efficient computation of
a global optimum. Among numerous possible convex functions, we suggest a
particular form comprising /7 and ls norms.

Formally, given an input image Z with n pixels, we obtain a foreground opacity
«; for each pixel i, by solving the following optimization problem:

minimize  J(a) = Ji(a) + Jo(@) = [|[Aa + b, + (1/2) |[Ca +d|f5

«
subject to a; =1, i € Cp, (15)
a,»:O, iECB,
0<a;<1l,i=1...n

where C'r and Cp are the sets of pixels that are pre-specified as definite fore-
ground and background, respectively. Each component of « is constrained to be
in [0, 1].

3.1 Specializations
The convex segmentation problem of Eq. (IH) includes graph cuts and closed-

form matting methods. If we let A = K , b= OA ,C =07, and d =0,
14 fVal

then Equ. (I5]) reduces to graph cuts cost of Eq. (). If we let A = 07, b = 0,

1/2
[5/1/2], and d = [W?/2&2]7 then Eq. (IE) reduces to closed-form
matting of Eq. (I4)). Note that since L and W are positive semidefinite, L'/?
and W1/2 are valid.
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3.2 Remarks

In our framework, we have no restriction on A, b, C, and d. This means that
we may have the expressive power beyond the simple mixture of graph cuts and
closed-form matting. For example, the components of &; are constrained to be
either 0 or 1 in graph cuts, but any value is possible in the new form (Fig. [I);
Sec. B Ilshows the usefulness of this extension. Also, supermodular cost functions
that graph cuts cannot minimize are allowed in this formulation. In fact, Fig. [I]
(a) depicts such a case: f;;(0,0) + fi;(1,1) > f;;(0,1) + fi;(1,0).

The I; and I3 norm minimization problems are well studied in convex op-
timization. [; norm minimization is robust to data noise and usually leads to
a sparse solution; lo norm minimization is not robust but has stable solution.
These properties also apply to our segmentation problem as we will see in Sec. [Bl
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Fig. 1. Possible cost functions: the top row shows the level contours of the cost with
respect to two labels, and the bottom row plots the cost as a function of a single label.
Our new formulation allows complicated relationships such as (c) and (f) previously
impossible.

4 Optimization

This section gives a summary on solving the problem of Eq. (IH]) using a primal-
dual interior point method. Although the derivation here is tailored for the [y
and [y norms, other convex forms might be added harmlessly. We assumed that
readers have some knowledge of convex optimization due to the page limit. Refer
the text of [3] for deeper understanding.
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4.1 Reformulation

First, we reformulate the problem so that it can be better handled. First, we
remove the equality constraints by substitution. Though we may incorporate
them into data terms using large coefficients as in [12], or may just leave it
since the primal-dual interior point method can handle them [3], substitution
is a better strategy since it reduces the number of variables significantly when
dealing with a large trimap. Substituting o; = 1 for i € Cr and «; = 0 for
1 € Cp yields:

minimize J(av) = [[Acpyav + A p 1+ 0]+ (1/2)[|Cevav+ Crpl+d]

subject to 0 < ay =<1

(16)
where -(, ;) and -(; gy give new matrices only with the columns corresponding
unconstrained and foreground pixels, respectively, and oy is « only with un-
constrained pixels. Since A, py1 + b and C(; )1 + d are again constant column
vectors, this substitution does not change the form of the equation; it just re-
moves some columns and rows. Hence, without loss of generality, we will assume
the case with no equality constraints from Eq. (I5):

minimize  J(@) = ||[Aa + b, + (1/2) [|Ca + d]| )
o 1
subject to 0<o; <1,72=1...n

Second, we introduce an auxiliary variable w to deal with the nondifferentia-
bility of {1 norms. It is a standard technique, and is also used in [2].

minimize  J(o,w) = 17w + (1/2)||Ca + d||3
a,w

subject to —w XAa+b=w (18)
0<a<x1

Eq. (I8) is equivalent to Eq. ([I7), but has a differentiable objective with ad-
ditional inequality constraints. Rewriting once more the inequality constraints
gives the final smooth form that we will handle:

minimize  J(o,w) = 17w + (1/2)||Ca + d||3

a,w
—A-I —b
a AT p | (19)
subject to Z +Y <0, where Z = and Y =
w -1 0 0
I 0 -1

4.2 A Primal-Dual Interior Point Method

We start from the Karush-Kuhn-Tucher (KKT) optimality conditions for

Eq. (M9):
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Z[a:]—I—Y < 0,
w
A =0,
diag(\*) (Z[iﬂ—ﬂf) = o0, (20)
T * T
[c Ca1+C d]+ZTA* N

where the column vector A is a dual variable of length m associated with m
inequality constraints. These conditions must be satisfied by any pair of primal
and dual optimal points o, w*, and \*.

We cannot find such a point analytically, so we resort to a sequential numerical
algorithm. We update the current point («, w, A) following the primal-dual search
direction (Aa, Aw, AX). Until the convergence, the next point (o™, w™, A\T) is
obtained:

at =a+7A0, wh=w+TAw, AT =X+TAX (21)

where 7 is called a search step.
Search directions are obtained by Newton’s method applied to a series of
modified KKT equations expressed as r¢(a,w,\) = 0, where we define: (cf.

Eq. 20))

1

[CTC’a +C7d
—diag()\) (Z {g] + Y> —(1/t1

]+ZT>\

re(o,w, A) = (22)

The search step 7 is decided so that the updated values still satisfy the two
inequality constraints of Eq. (20):

a+ TAx

Tsup{T€[0’1]|Z[w+TAw

:|+Y50,>\+TA)\EO} (23)
After one update, t is recalculated using the surrogate duality gap [3:

=/ (=2 || + V)N (24)

where p is a parameter that works well on the order of 10.

Note that as t increases, the modified KKT equation better approximates the
equality conditions of Eq. (20)), while the inequality conditions are satisfied by
Eq. 23). Hence, the solution converges to a global minimum satisfying all the
KKT conditions.
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4.3 A Newton Step

The Newton step solves the nonlinear equation r¢(a,w,\) = 0 for a fixed ¢
by forming Taylor approximation at the current point z = (o, w, \) yielding a
search direction Ax = (Aa, Aw, AN):

ri(z + Azx) = ri(z) + Dri(x)Az =0 (25)

In terms of o, w, and A,

H zT A«
—diag(\)Z diag((Z[g] +Y) 3&’ = nlaw, ) (26)

ctco

whereH{ 0 0

} . A block elimination yields:

[H + Z" diag(\)diag(s) " Z] [ﬁg} = - [CTICQ

} — (1/t)Z" diag(s)~*1 (27)

where s = —(Z [z] +Y).

We solve the sparse linear system of Eq. (217]) using the conjugate gradient
method. Our GPU implementation is influenced by [4]; we also used Jacobian
preconditioner. This leaves rooms for further significant speedup using sophisti-
cated preconditioners.

Once the primal search direction (Aa, Aw) is obtained, the dual search direc-
tion AN\ is given as

Aa

A\ = diag(s) *diag(\)Z [ Aw

} — X\ +diag(s) "1 (1/t)1 (28)

5 Applications

Having defined the new convex form and knowing that we can optimize it, this
section shows the examples that actually benefit from that. Note that the cost
functions of this section need to be transformed to fit in Eq. (IH]) before being
optimized. This should be easy following Sec. Pl For every experiment in this
section, the computation time for each image was less than 10 seconds.

5.1 Matting

Many of the current state-of-the-art matting methods incorporate l5 data terms
based on certain global color models resulting in the following cost function (see

Sec. 22)):
J(a) =o' La+ (o — &)W(a — &) (29)



364 Y. Park and S.I. Yoo

0.16 ‘ ‘ ‘ ‘ 0.16 :
———1,MAD ———1,MAD
0141l 1 mAD 1 O 1 mAD
o2t - - —1, MsE o2t - - —1, MsE
— — 1, MSE — — 1, MSE
0t 1 oql
0.08} { 008} ]
006~ - {1 0.06f ]
T S
0.04} { ooaf |
- 7 T~ _—
002k _ _ o oo} .
10 10 10 10 10 10 10 10 10 10
w w
(a) e=0.2,0 =02 (b) e=0.1,0 =0.1

Fig. 2. Robust data terms for matting: using /; data terms almost always give lower
errors under the assumption of the estimation model Eq. BI)): varying € and o does
not change the general shape of the plot.

where &; is the most likely opacity value for the pixel i. However, often the
estimation of ¢&; is erroneous due to imperfect color models, and the final result
is easily affected by small amount of outliers. In such cases, it is known that using
l1 norms, instead, gives robust results. Hence, we designed a new formulation:

J(a) = o La+ [|[W(a—a)|, (30)

Our expectation is that minimizing Eq. (B0) gives more accurate matte than
minimizing Eq. ([29), and we have experimentally confirmed this. For the fair
comparison of the two, we have assumed the following hypothetical estimation
model rather than resorting to a particular method:

) {U(O7 1) with probability e, 31)

“r vi + N(0,0?) with probability (1 — ¢)

where U(0,1) is a uniform distribution, v; is the ground truth opacity, and
N(0,0?) is a Gaussian distribution with variance o2; we simulate the measure-
ment of the term &;. Hence, the measurement is incorrect with the probability e.
Also, W is assumed to be a diagonal matrix whose diagonal elements are all w.

This experiment requires the ground truth matte, so we used the training
dataset of [I9]. We have measured the error with respect to w, which is the
weight of the data term. Fig. Pl shows that using /1 norm significantly reduces
the errors. This is the result averaged over all 27 images.

Since the two error measures, mean absolute difference (MAD) and mean
squared error (MSE), are sometimes inconsistent with the perceptual quality [19],
we also examined the results qualitatively, but we found no inconsistency in this
case. Fig. Bl shows the close-up look at one of the results. As expected, we could
find the problem of non-sparse solution is relieved when the new [y data terms
are used.
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(a) Input Image (b) Trimap (¢) Ground Truth ) Zoomed-In GT

() w=40x10"° (Hw=16x10"* (k) w=064x10"* (1) w=4.1x 1072

Fig. 3. Qualitative comparison between different data terms for matting. It shows the
zoomed-in results for a particular region. The second row: Eq. (B0 with /; data terms.
The third row: Eq. ([29) with l> data terms. (f) and (j) are the best cases. We can see
that the hairs stand out clear in the [ case.

5.2 Segmentation

We may also improve the segmentation quality by replacing the smoothness term
of graph cuts with the well-defined matting Laplacian term. Our new formulation
has the following form:

J(a@) = da’ Lo+ Z filew) (32)

Of course, since f; is only defined when «; € {0, 1}, the continuous relaxation (in
Sec. 2)) is required. In this way, we can avoid the heuristic step often involved
in defining the smoothness terms. Also, a well known shrinking bias of graph
cuts can be mitigated. However, since this results in a soft segmentation, the
final thresholding step is required; we used the fixed threshold of 0.5.

We first implemented GrabCut method [21] and tried substituting the matting
Laplacian term for the smoothness term. The weighting constant A is set to 10
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Fig. 4. Segmentation results for GrabCut [2I] (blue contour) and our new formulation
(red contour). The grayscale image shows the raw results (the minimum of Eq. (32))
before thresholding. The new formulation shows accurate results for thin parts and
blurry boundaries.
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upon the normalization of data terms: exp(—f;(0)) + exp(—fi(1)) = 1. For the
calculation of L, 5 x 5 windows are used. Then, we tested two methods on the
dataset of [20].

As expected, we could see the performance gain especially in the presence of
fuzzy or blurry boundaries. However, the overall error stayed almost same, be-
cause the new formulation is sensitive to non-Gaussian noise; the image compres-
sion noise often affects the result largely because GrabCut framework relies on
iterative estimation. The qualitative comparison confirmed that the new method
is very promising. Fig.[d] presents some of the results on the segmentation dataset
of [16120).

6 Conclusion

We presented a novel segmentation framework based on convex optimization by
extending graph cuts and closed form matting methods: we obtained a unified
viewpoint to see segmentation and matting. While many of the previous works
have focused on how to refine the cost function within the fixed forms, e.g. trying
various data terms and smoothness terms, the new formulation suggests that we
may consider altering the form itself. By doing so, we can overcome the inherent
limitation imposed by a certain form.

Encoding new types of prior would be good future research, since some of
the recent works showed that incorporating proper prior often boosts the per-
formance: e.g. bounding box prior [14], geodesic star convexity [I1], and connec-
tivity prior [25]. It is interesting that many of them have convex objectives.

Hoping it to be useful for solving large scale problems, we release the reference
implementatio of the primal-dual interior point method that exploits GPU
computing technology.

Acknowledgement. The ICT at Seoul National University provides research
facilities for this study.
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Linear Solvability in the Viewing Graph

Alessandro Rudi, Matia Pizzoli, and Fiora Pirri
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Abstract. The Viewing Graph [I] represents several views linked by
the corresponding fundamental matrices, estimated pairwise. Given a
Viewing Graph, the tuples of consistent camera matrices form a family
that we call the Solution Set.

This paper provides a theoretical framework that formalizes different
properties of the topology, linear solvability and number of solutions of
multi-camera systems. We systematically characterize the topology of
the Viewing Graph in terms of its solution set by means of the associ-
ated algebraic bilinear system. Based on this characterization, we provide
conditions about the linearity and the number of solutions and define an
inductively constructible set of topologies which admit a unique linear
solution. Camera matrices can thus be retrieved efficiently and large
viewing graphs can be handled in a recursive fashion. The results apply
to problems such as the projective reconstruction from multiple views or
the calibration of camera networks.

1 Introduction

In this paper we extend the notion of solvability for a Viewing Graph as given
in [I], namely the graph relating several views accounted for by fundamental
matrices. We introduce the notion of Solution Set together with a new taxonomy
taking into account both linear solvability and the number of solutions of the
Viewing Graph. In particular we introduce an inductively constructible set of
topologies admitting a unique linear solution. We also show that the method
provided allows for a building blocks design that can be used to inductively
construct more complex topologies.

Inductive topologies are very useful to combine global and incremental meth-
ods for camera matrix estimation. Our formalisation, beside providing a general
theoretical framework, it contributes to the hierarchical and recursive approaches
for solving the n-view problem in 3D reconstruction and, building on linear-
solving subgraphs, it does not involve choosing between multiple solutions or
disambiguating results.

Relying on multiview tensors requires establishing feature correspondences
between pairs [2], triples [3] or quadruples [4] of images. The geometry of a
n-focal system cannot be described by a tensor for n > 4. The fundamental
matrix is the most basic tool to estimate camera matrices and it can be used
as building block to address complex configurations [5]. It can be conveniently
estimated from pairs of views and constitutes a less redundant representation

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 369 2011.
© Springer-Verlag Berlin Heidelberg 2011
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than higher order tensors. On the other hand, fundamental matrices for triples
of views should be compatible [6], a condition that is satisfied in the case of the
trifocal tensor.

Automatic approaches to the computation of structure and motion involve
an estimation of camera matrices to initialise the bundle adjustment [7]. The
problem of how to initialise the estimation, the order and techniques by which
views can be added to the existing ones has been widely faced in literature and
several solutions have been proposed. In particular, global methods, based on
factorisation [8,[], allow for the computation of sets of views. These methods
require to compute feature correspondences across the entire sequence. On the
other hand, hierarchical approaches [10] overcome this limitation but introduce
the need to merge subsequences in consistent projective frames.

The Viewing Graph was introduced by Levi and Werman in [I] to model
the bifocal constraints from pairs of views. They studied different topologies
and obtained methods to linearly compute the fundamental matrices that can
complete the graph. In [11] camera triplets from fundamental matrices constitute
the basic subgraphs used to inductively solve triangular topologies using the
linearity results from the Viewing Graph.

In this work we start from very well known results on the computation of
projective camera matrices and provide a theoretical framework with two aims:
to collect and systematise the above results about topologies and linear solvabil-
ity in a common formalisation and to characterise the topologies for which the
estimation is linear and admits a unique solution. Thus, the proposed method is
particularly suitable when dealing with the high changeability and severe occlu-
sions that characterise for example the unstructured image datasets collected by
web crawling. The paper is organised as follows. We first introduce the Viewing
Graph and define the Extended and Non Redundant Solution Set, giving also
a sufficient condition for their non-emptiness. In Section [3] a characterisation
of the two solution sets is derived in terms of the Viewing Graph System; dif-
ferent conditions on the number of solutions and on the linear solvability are
formulated and the Linear Minimal Solution Superset and the Linear Mazimal
Viewing Subgraph are introduced. Both the taxonomy of the Viewing Graphs and
the inductive construction of Linearly Solvable Viewing Graphs are addressed in
Section Ml Finally, in Section Bl the application to projective reconstruction is
sketched and the conclusions are drawn.

2 The Viewing Graph

According to [I] an N-view scene can be represented as a graph G = (V, E) whose
nodes V' are the views and whose edges E are the fundamental matrices between
the views. Levi and Werman in [I] are concerned with the following problems:
1. Given a subset E' C E, what further edges can be computed using only E’?
2. Which are the graphs G such that, given G and £/ C E, E can be identified
univocally? They give algorithms to solve graphs up to 6 views.



Linear Solvability in the Viewing Graph 371

2.1 The Solution Set of the Viewing Graph

We introduce here a weaker notion of solving graph [I], namely, the notion of
Solution Set of a Viewing Graph.

Definition 1 (Solution Set). Given a viewing graph G = (V, E), a solution set
is the set of n-tuples of camera matrices (Py, ..., P,) which satisfy the constraints
associated with the fundamental matrices Fy; in E.

Let pg be the set of all n-tuples of camera matrices which solve the Viewing
Graph G. We have that, for any projective transformation Z and for any n-
tuple t € pg, the tuple tZ, obtained applying Z to any camera matrix in ¢, is a
solution for the system and so is tZ € pg. Moreover, since any projective matrix
is defined modulo a scale factor, if we have that ¢t = (Py,..., P,) € pg then we
have that ' = (A Py, ..., \nPy,) € pg for any A; # 0 as well.

In order to avoid these redundancies of representation we are interested in
finding only the set ¥g = (pg/GL(4)) /R* of all the orbits of pg under the action
of the group of projective transformations and element-wise multiplication by a
scalar.

Definition 2 (Extended and Non-Redundant Solution Set). Given a
Viewing Graph G, the extended Solution Set is the set of all n-tuples of cam-
era matrices which satisfy the constraints imposed by the fundamental matrices
in E. We denote this set by pg. The quotient set of pg, with respect to pro-
jective transformation and scalar multiplication, is the non-redundant Solution
Set, which we denote by Yg.

Note that, for practical purposes, only ¥g is of interest.

We shall state now a sufficient condition for the existence of a solution set. We
recall that three fundamental matrices F;;, F; and Fj; are said to be compatible
if they satisfy the following conditions:

T T T
eikFijejk = ekijieij = e,ﬂ-ijeji =0 (1)

with e;; # e;; the non collinearity conditions for the camera centers [6]. Here
e;; is the epipole arising in view ¢ from view j.

Theorem 1 (Existence of a solution). Let G = (V, E) be a Viewing Graph
on n views. If all the triples of fundamental matrices satisfy the compatibility
condition () then there exists a non empty solution set for G.

Proof. Let Fiji, be the set {F;;, Fi, Fjr} related to the views v; v; and vy.
Note that, from any initial set of compatible triples we can build a solution for
G recursively starting from a triple of fundamental matrices, finding its solution
and then adding to the solution an unsolved view at a time. The construction
of a solution is illustrated in Section E.Tl O

In the following a Viewing Graph G, in which all triples of fundamental matri-
ces satisfy the compatibility condition, is said to be a fully compatible Viewing
Graph.
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3 The Viewing Graph System

In this section we give a characterisation of the Eztended and Non-Redundant
solution sets of a viewing graph and, in particular, we show both the conditions
to obtain a linear solution and a simple computation method.

Let us consider Triggs’s F-e closure [12]:

Two views equation: Fio Pr+7yi2(€l,], Po=0 (2)

where Fps is the fundamental matrix relating the camera matrices P; and P,
e’ is the left epipole, -], is the cross matrix operator and 72 is a free scale
parameter. Since the scale parameter is made explicit, the equation carries 8
constraints and 23 degrees of freedom due to the two camera matrices Py, Ps,
including their scale and the overall scale parameter ;5. The two views equation
@) completely defines two camera matrices given a fundamental matrix, modulo
a projective transformation.

3.1 Characterisation of the Extended and Non-redundant Solution
Sets

Let G = (V, E) be a Viewing Graph and, for homogeneity of representation, let
us define A;; = Fj; and By = [e,’ij] o for any Fj; € E. The extended solution
set pg is characterised by the set of two views equations for any Fj; related to
the constraints it imposes, namely:

g = {(P17 .oy Pn) | Aij P + 75 Bi; Pj= 0, Vij such that there exists F;; € E}
3)
On the other hand, the quotient set ¥g can be characterised choosing an arbitrary
projective frame to which all the solutions should belong. In particular, let Fj €
E, we select the projective frame in which P; = [I|0] and P, = [[e],], Fiale]s].
Moreover, since any projective matrix is defined modulo a scale factor, for
any P; one of the ;; is redundant, hence for any ¢ one of 7;; can be set to 1.
The non-redundant system characterising the set g is:

Aij Py +v;;B;i; P; = 0, Yij such that there exists F;; € E, with F;; # Fia}
Py = [[e}o], Frzlel,]

Py = [I0]

Yik(i) = 1 Vi € {377,}

(4)
here k(i) is a total function defined on {3..n}.
As we can see, the characterisation of the two Solution sets [@B]) (@) are algebraic
bilinear systems for which, in general, there is no known solution except for very
simple special cases [13]

Definition 3 (Linear and Non-Linear Viewing Graph System). Given
a non-redundant Solution Set Wg, the system associated with Wg is the Viewing
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Graph System, Xg. Whenever Xg is linearly solvable then Xg and G are, respec-
tively, the Linear Viewing Graph System and the Linear Viewing Graph. Given
a Two Views Equation E, € Xg, of a Linear Viewing Graph System, this must
be equivalent to one of the following three forms:

Q,‘j AZJH—FBUPJ =0
Anl : AKZPK + BKIB =0 (5)
Am : AZKPZ + ’YZRBZRP& =0

Here u,v € {1,...,n},k = {1,2},4,5 € {3,...,n} and Py the two constant
projective matrices.

When Xg and G are non-linearly solvable they are, respectively, the Non-linear
Viewing System and the Non-Linear Viewing Graph.

An example of this kind of systems (and of the choice of k(7)) is illustrated in
Section Ml for the Base Case I, II and III.

At this point we are ready to discuss the condition for a Viewing Graph
System to be linear, the number of solutions and the induced properties on the
Viewing Graphs.

Theorem 2 (Unique solution for the Viewing Graph Topology). Let G
be a Viewing Graph of m edges and n + 2 views. Let Xg be the related non-
redundant Viewing Graph System.

If X¢ has a unique solution then m > [17171 - 175]

Proof. Xg has, by definition, m Two Views Equations in n unknown projec-
tive matrices and m — n unknown scale parameters as in {@l). Let x5 and dx
be, respectively, the number of constraints and degrees of freedom of Yg. We
note that x> = 8m because any Two View Equation carries 8 constraints and
dx = 12n+1(m — n), due to the unknown projective matrices and scale factors.
Hence 7m > 11n. Note that the inequality states that there should be enough
fundamental matrices in order to constrain the degrees of freedom of the un-
known camera matrices. Therefore if Yg has a unique solution it must be also
that G has m > {17171 — 1751 edges. O

We show, now, the conditions for a viewing graph to be linearly solvable. Con-
sider Figure[Il this illustrates a Viewing Graph that can undergo a construction

Fig. 1. The Graph G, on the left, satisfies the condition of linear solvability. On the
right the construction required by the condition.
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inducing linear solvability. Linear solvability, indeed, requires a suitable assign-
ment of the scale factor, therefore the Viewing Graph that can be adjusted so
as to guarantee this assignment is linearly solvable. More specifically, consider
the two constant views v; and vy associated with the constant cameras, which
therefore must be connected by an edge, and their neighbours. Let us define the
open neighbour set n(v1,v2) to be the set of all nodes connected to v; and wva,
excluding v; and wvy. Let us cut all the edges between any node v, € n(vy,vs)
and vy, vy. Take any node I € n(vy, v). If it is possible, starting from [ to build
a unique path from [ to all the nodes in V' — {v1,v2} then we can use this path
to ensure that the scale factor is inherited, through [, to all the nodes. If this
construction is possible, this means that the graph H(v1,v2), illustrated on the
right of Figure [I] can be obtained, hence the starting graph G, as illustrated on
the left of the figure, is a linear Viewing Graph.
More formally:

Theorem 3. Let G = (V| E) be a Viewing Graph with n > 3 views. Let n(vy, vs)
be the union of the open neighbourhood of vi,ve € V, let H(v1,v2) = G[V —
{v1, v2}] the induced subgraph of G over the vertex set V — {v1,va}.

If there exist vi,v9 € V, 1 € n(v1,v2) and a unique orientation for each edge
in H(vi,v2) such that:

— the in-degree of any node in V — {v1,v2,l} is 1 and the in-degree of I is 0,
then G is a Linearly Solvable Viewing Graph.

Proof. We show the statement by constructing directly the linear system accord-
ing to Definition B] Now we prove by construction that if exist v1,v9,l € V and
H(v1, v2) that satisfy the hypothesis, then the Viewing Graph System associated
to G is linear.

Suppose that v1,ve,l € V and H(v1,v2) exist and satisfy the statement. First
of all, we note that H(v1,v2) has at most n — 3 edges, because any node except
[ can have at most an entering edge and the nodes in H(v1,v2) are n — 2. Then
we proceed in the construction of a Viewing Graph System Y. We start from a
system X which contains only the equations P, = [[e},], Fiz|e},] and Py = [I]0]
For any edge e;; (edge from v; to v;) in H(v1,v2) we add in X the equation (2;;.
We choose an edge from G which connects [ to v, with x € {1,2} and add to X
the equation A,;. For any other edge e;, which connects the nodes v1, v to their
neighbourhood n(vy,v2) we add to X' the equation A;,. The equations 2, A, A
are, thus, as in Definition Bl The system, specified by {2, A, A, mentions the two
equations defining P, and P,. For any edge in G there is the related equation in
Yg and for any camera matrix P;, with ¢ = 3...n, the scale parameter is set to
1 (the missing parameter 7;; in the equation (2;; and v, in the equation A,;).

Thus, according to Definition [3] Xg is a linear Viewing Graph System. ]

We can note that this sufficient condition allows us to speak directly about linear
solvability of a Viewing Graph G from a topological point of view without using
the related algebraic representation Xg.
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Resolution of a general linear Viewing Graph System. Let X be a non-
redundant Viewing Graph System composed by m Two Views Equations in n
unknown camera matrices Ps,..., P,4+3 and r = n — m scale parameters repre-
sented by the vector I' = (fyg(l), . ,fyg(r)), where g is a function which associates
the position in the vector I" to the indices of the fundamental matrix related to
that scale parameter and ¢! its inverse. The solutions can be found vectorising
the system such that it assumes the form Az = b where A and b are suitable
constant matrices and z is the unknown vector. In that case the space of all
solutions is © = A*b + null(A)z, with z a free vector of suitable dimension.

In order to transform X in the form Ax = b first of all we represent the
unknowns of X' in the form of a vector x = (vec(Pg,)T, oy vec(Pays) T, Yg(1)s -+

fyg(r))T of length 12n + r and define two matrices selP; = (¢pn; @ I12x12,0;),
sely; = (012n, gpr’gq(ij)) useful to select respectively only the matrix P; from x
and only the scale parameter ;;. Here vec is the vectorisation operator, ® is the
Kronecker product, ¢, ; is a row vector of length n with all components equal
to 0 excepts the i-th which is 1, 0, is the row vectors of length n of all zeros
and I, x, the identity matrix of dimension n x n.

Thus, to transform X in the form Ax = b, we simply rewrite the equation in
[B) of Definition Bl with respect to = as follows:

Qij = {(I4><4 X Alj) selPi —+ (I4><4 X B”) sele}:n = O
Ay = {(I4x4 ® By;) sel P} ¢ = vec (AgiPx) (6)
Nire = {(Taxa ® A;y) sel P, + vec (B Py) selyitx =0

Fig. 2. Given a nonlinear Viewing Graph G on the left, the associated Linear Maximal
Viewing Subgraph I'G on the right.

3.2 The Linear Minimal Solution Superset of a Nonlinear Viewing
Graph

Given a Nonlinear Viewing Graph G we are interested in simplifying as much
as possible the search for the solution set Wg. In order to do so we introduce
the Linear Minimal Superset of ¥g and the Linear Maximal Viewing Subgraph
of G.

Given a Viewing Graph G = (V, E)) and the associated Viewing Graph System
XYg, an edge e in G corresponds to a constraint ¢ in Xg. This means that removing
e from G, and so obtaining G’ = (V, E — {e}), then the corresponding Viewing
Graph System Xg is less constrained than Xg indeed Ygr = Xg — {c}. Thus
!pg - yv/g/.
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Definition 4 (Linear Maximal Viewing Subgraph). Given a Viewing
Graph G, and letting lin(G) be the set of all the Linear Viewing Subgraphs of G,
the Linear Mazimal Viewing Subgraph of G is the Viewing Graph I} € lin(G),
such that the associated linear solution set is minimal :
N .

Ig =arg min @r|. (7)
See Fig. 2l The definition is well-posed, indeed given a Nonlinear Viewing Graph
G = (V,E) we can always remove edges from G in order to obtain a linearly
solvable Viewing Subgraph £ = (V,E’) with E/ C E and so ¥g C W,. This
means that a Linear Viewing Subgraph of a Viewing Graph System G always
exists (for example £ = (V,0)).

Definition 5 (Linear Minimal Solution Superset). Given a Viewing Graph
G, the Linear Minimal Solution Superset of G, Ilg, is the Solution Set of the
Linear Mazimal Viewing Subgraph I

Iig =Yy (8)

The Linear Minimal Solution Superset of a nonlinear Viewing Graph is impor-
tant because we have always that Wg C IIg and Ilg is linearly computable. As
a consequence, when we are searching for a solution to G we have only to search
in the minimal linear space IIg instead of in the huge Cartesian product of all
camera matrices.

Moreover, when Ilg contains only a solution and the fundamental matrices
expressed by G are fully compatible, we have that |IIg| =1, |¥g| > 1, ¥g C Iig
and thus ¥g = Ilg. This means that in this case we have only to solve the linear
graph I to have the solution of the bigger and possibly nonlinear G.

4 Topology and Solvability

First of all we collect from the previous sections some results about the Topology
of a Viewing Graph, the linearity and the number of solutions of the related
Viewing Graph System.

Any Viewing Graph with m edges and n nodes where m < (17171 — 175W and
any linear Viewing Graph whose system is underdetermined has a family of
solutions in the Solution Set.

Any full compatible linear or nonlinear Viewing Graph G for which |IIg| =1
admits only one linear solution.

Finally we can introduce the taxonomy of the set of Viewing Graphs in terms

of number of solutions and linear solvability (fig. B).

4.1 An Inductively Constructible Set of One Solution Linear
Viewing Graphs

If we are able to solve a linear Viewing Graph I" which admits a unique solution
then we are able to solve all Viewing Graphs for which I" is the Linear Maximal
Viewing Subgraph.
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Fig. 3. Taxonomy of the Set of Viewing Graphs. I) One Solution Linear Viewing
Graphs; II) Viewing Graphs whose Linear Maximal Subgraph has one solution; III)
Viewing Graphs whose Linear Maximal Subgraph belongs to the set of the Recursive
Topologies we presented in subsection 11

Thus, it is important to find a cheap way to span the space of topologies
that lead to Linear Viewing Graphs with unique solution. With this aim, in the
following we give a characterization of a constructible subset of the set of the
One Solution Linear Viewing Graphs.

We apply the results from the previous sections.

Base Linear Case I: Three Views. Consider the Viewing Graph G = (V, E)
given by three views V' = (v1,v2,v3) and the three fundamental matrices linking
them E = (Fi2, Fa3, F31) (fig. M). This topology satisfies the necessary and suf-
ficient conditions in section Bl and so it is linear. In addition, when the camera
matrices are in general position, it admits at most one solution. When it satis-
fies the full compatibility condition then G has a unique solution. This is a well
known result [6L[1]. The interesting thing here is that we demonstrated it only
using the tools from the previous sections.

For completeness, we algebraically find a close solution for G. The orbit set of
solutions ¥y is represented by the related non-redundant Viewing Graph System
as follows:

A3 Py + BogP3 =0

A31 P34+ 31 B13P, =0 )
Py = [I[0]

Py = [[eﬁz]x Fl?‘e/m]

where in the first equation 23 has been set to 1 in order to disambiguate the
scale of P3 with respect of P, (see proof of the sufficiency condition in Section
21). Thus the system is linear; in general it is overdetermined but, when the
fundamental matrices are compatible, it admits at least one solution which can
be stated in closed form:
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P = [I\O]
P2 = [[6/12]>< };12‘6112] (10)
P Bos APy
s Az Y23B31 P
where ()+ is the pseudo-inverse operator and o3 = f%:, with ¢ = UAg3 Py,
d= VB P, and (UV) = null (323).
Az

Base Linear Case II: Five Views. Let G = (V, E) be the Viewing Graph
with V = (’017 ce 7’05) and F = (}‘127}‘—‘317}—‘417 }‘357 F357F45) as in ﬁgure (ﬁg m)
This topology satisfy the conditions of section Blso that it’s linear and, when the
camera matrices are in general position, it admits at most one solution. When
it satisfies the full compatibility condition, then G has a unique solution [I].

For completeness: the set of solutions ¥y is represented by the following Linear
Viewing Graph System

A31P3 + 31831 P, =0
APy +v41BuPr =0
Aos Py + Bos Ps =0

AsaPs + Bsy Py =0 (11)
As3Ps + BssP3 =0
Py = [1[0]

P, = [[6/12]>< F12|6/12]

here 25, V54, 753 have been set to 1 in order to disambiguate the scale respectively
of Ps with respect to Py, Py with respect to Ps and P with respect to Ps (see
the proof in Section [ZT]).

Base Linear Case III: Six Views. Let G = (V| E) be the Viewing Graph
with V = (v1,...,v6) and E = (F3q, Fso, F1, F12, F13, F54, Fu5, F56) as in figure
(fig. H]).

Even in this case G satisfies the two topological conditions of section 2l Con-
sequently, it is linearly solvable. If the camera matrices are in general positions it
admits at most a solution which exist when the full compatibility holds (see [1])

For completeness: the set of solutions ¥y is represented by the following Linear
Viewing Graph System

Az P3 +v32B32P2 =0

As2Ps + 52 B52P2 = 0

Ap1Ps +v61B61P1 =0

AP+ Bi3P3 =0

A34P3 4 B3y Py =0 (12)
Aus Py + BysPs =0

AsgPs 4+ Bs¢ Ps = 0

Py = [1)0]

Py = [[e]5], Fizlely]
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here 13, Y34, V45, V56 have been set to 1 in order to disambiguate the scale re-
spectively of P3 with respect to Py, P,y with respect to P3, P5; with respect to Py
and Ps with respect to Ps (see the proof in Section 2).

,UQ U1 Us V6
V.
V4 -
v2
b1 v3 U5 V2 vy

Fig. 4. In order: Base Linear Case I, Case II, Case III

Composition 1 II 111 v
rule

Merging two Merging two Adding a new Merging two
solved  graphs solved  graphs double con- solved  graphs

which share two which share a nected view with three edges
views view and are

linked by an

edge

Composition Rule I: Merging two solved graphs which share two
views. Let G be a Viewing Graph composed by two already solved graphs
I' and 7" which share two views v; and vs. The solution of G tg can be built
from the solutions tp = (P, Ps,...) and tr = (P{, Ps,...) (Fig. B). Indeed,
since the cameras Py, P, and Pj, P} are linked by the same fundamental matrix
Fi2, a projective transformation exists that maps P; on P/ for ¢ = 1,2. We can

find it simply by
+
#~(n) (#)
Py Py

Once we have Z we have to right multiply all the camera matrices in ¢, in order
to express them in the same projective frame of 7" such that P; and P/ coincide
fori=1,2.

Composition Rule II: Merging two solved graphs which share a view
and are linked by an edge. Let G be a Viewing Graph composed by two
already solved graphs I' = (V, E) and 1" = (W, L) which share a view v; and are
linked by a fundamental matrix Fb3 with the related views vo € V and v3 € W
(fig. ). We can solve G by finding the solution to © = ({v1,v2,vs}, { F12, Fis, Fas})
through Base Case I and then apply Composition Rule I two times, first to I, ©
and then to (I"'UO),T.
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Composition Rule III: Adding a new double connected view. Let G be
a Viewing Graph with n views composed by an already solved graph I' = (V, E)
of n — 1 views connected by Fi,, Fb, to a view v, and let t = (Py,..., P,_1)
the solution for I" (Fig.Bl). We are able to solve the Viewing Graph G as follows.
First of all we calculate Fi2 by P; and P, from ¢. Then we solve the Viewing
Graph System related to the Viewing Graph 1" = ({v1,v2,vn}, {F12, Fin, Fon})
using the Base Case I and then we merge the two already solved Viewing Graphs
I, T using the Compositional Rule I.

Composition Rule IV: Merging two solved graphs with three edges.
Let G be a Viewing Graph composed by two already solved graphs I' = (V, E)
and 7 = (W, L) which are linked by three fundamental matrices Fi4, Fas5, F56
with the related views vy,va,v3 € V and vy, vs5,v6 € W (Fig. ). Supposing
that I' and 7 are already solved, we can calculate Fis, Fb3, F13 from I’ and
Fy5, Fs from 7. Then we can solve G by finding the solution to © = (H, K) with
H = {v1,v2,v3,v4,v5,06}, K = {Fia, Fp3, F13, Fys, F56, F14, F25, F36} through
Base Case III and then apply Composition Rule I two times, first to I, © and
then to (I"U©),Y.

U2
v
U1 Vo (%1 2
U3
U1 Un,

Fig. 5. In order: Compositional Rule I, Rule II, Rule III, Rule IV

In this subsection we substantially sketched a compositional topology that
allows to compute the solution to the Linear Maximal Viewing Subgraph of a
given Graph G in a bottom-up fashion. We can solve arbitrarily chosen parts
of this subgraph and merge them in arbitrary order (in agreement with the
conditions of the composition rules) arriving to the same result, because of the
linearity of the problem under the sufficiency condition of Theorem [l at least
in the unique solution case.

In the end, due to this invariance to the order, this incremental bottom-up
linear approach makes the problem of choosing a right view order less critical.

5 Conclusions and Discussion

This paper integrates in a common framework previous results on the estimation
of camera matrices from unstructured collections of views with a characterization
of a subclass of topologies for which the solution is linear and unique. The
Viewing Graph has been equipped with its algebraic counterpart, the Viewing
Graph System. This characterization provides a sufficient condition for the linear
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solvability of the system of bilinear equations and the associated Viewing Graph.
Indeed, we translated the linear solvability condition to be directly applied to
the topology of Viewing Graphs, bridging from the algebraic to the graph based
representation. In future works we are going to use the tools described in this
paper to develop heuristic and approximated graph algorithms operating on
Viewing Graphs in order to compute the Linear Maximal viewing Subgraph and
find the Minimal Solution Set. A similar approach is particularly suitable to deal
with the high changeability and severe occlusions that characterize, for example,
the large, unstructured image datasets collected by web crawling.
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Abstract. In this paper, we incorporate shape detection into contextual
scene labeling and make use of both shape, texture, and context informa-
tion in a graphical representation. We propose a candidacy graph, whose
vertices are two types of recognition candidates for either a superpixel or
a window patch. The superpixel candidates are generated by a discrim-
inative classifier with textural features as well as the window proposals
by a learned deformable templates model in the bottom-up steps. The
contextual and competitive interactions between graph vertices, in form
of probabilistic connecting edges, are defined by two types of contextual
metrics and the overlapping of their image domain, respectively. With
this representation, a composite clustering sampling algorithm is pro-
posed to fast search the optimal convergence globally using the Markov
Chain Monte Carlo (MCMC). Our approach is applied on both lotus hill
institute (LHI) and MSRC public datasets and achieves the state-of-art
results.

1 Introduction

As Fig. [Millustrates, this paper presents an semantic scene understanding (label-
ing) method, motivated by partitioning or segmenting an entire image in (a) into
distinct recognizable regions in (b). This task requires classify all pixels, while
preserving accurate segmentation. By generating recognition candidates by su-
perpixel classification and object detection in the bottom-up steps as shown
in (c) and (d) respectively, we present a candidacy graphical representation to
integrate shape, texture, and context information.

We start by reviewing the literature on two research streams: semantic image
segmentation and structural object detection that are related to the bottom-up
steps of our work.

(i) Many approaches of image segmentation often explore textural appearance
features, and use flat graphical representation to encode local confidence and
pairwise consistency. Examples include the methods based on Markov random
fields (MRFs) and the conditional random fields (CRFs). The former models
the joint probability of the image and its corresponding semantic labels [,
and latter models the conditional probability of the labels [2[3]. Recently, the
global and contextual information based on the graphical representation are

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 382 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Nlustration of the proposed method. Given an input images in (a), the recog-
nition candidates of over-segmented superpixels (denoted by red letters), as well as
the candidates of template-based detector (denoted by blue rectangles), are extracted
in (c¢) and (d) respectively. A candidacy graphical representation is constructed with
these candidates as illustrated in (e). The final labeling result is exhibited in (b).

explored by some innovative work [4[BL[67,[8]. The inference task on graphical
models can be formulated as energy minimization problems with soft and hard
constraints. The algorithms can be divided into deterministic approximation
algorithms, such as the graph cuts [9] and the belief propagation (BP) [10], and
stochastic algorithms, like constraint-satisfaction solvers [11], Gibbs sampler [12].

(ii) Some other methods are aimed at detect and localize object-of-interest
from cluttered scene by capturing shape information. These methods usually
represent structural objects by a spatial or context configuration with a small
number of primitives, such as the PAS-based model [13], the shape context [14],
and the recent proposed active basis model [I5].

Though the research in these two streams has made remarkable progress, it
still remains a challenge to combine the two types of method for the entire scene
understanding due to the difficulty of integrating shape and texture model. A
few pioneer work demonstrates this path with some special cases [I7,[18].

In this paper, we study (i) a candidacy graphical representation that incorpo-
rates the shape information and textural appearance in a Bayesian framework
(ii) a composite cluster sampling algorithm for energy convergence globally.

Given an input image, we first generate a batch of recognition candidates
(proposals) by two types of classifiers: superpixel classifier and shape detector.
The superpixel classifier is learned by JointBoost method with a bank of low-
level features, inspired by [3], and it gives the possible labels to each superpixel.
The active basis model [I5] is employed as shape detector to learn deformable
templates of structural object, and used to generate possible matchings on the
testing image, as shown in Fig. [l (d). We thus build up an adjacency candidacy
graphical representation with these candidates, as illustrated in Fig. [l (e) and
Fig. [Bl where each graph vertex is equivalent to a recognition candidate. Each
two vertices can be linked by a probabilistic edge denoting the competitive or
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contextual interaction. Thus the semantic parsing can be solved by validating
these candidates while accounting for the interactions among them.

With this representation, we present a composite cluster sampling algorithm
using the Markov Chain Monte Carlo (MCMC) mechanism [19]. Unlike the tra-
ditional single-site sampler [11L[12], this algorithm updates large portions of the
solution space quickly to minimize constraint energy, by clustering connected
components in each sampling step. It can be viewed as an extension of the
multiple-site sampler [20] by dealing with the soft (contextual) and hard (com-
petitive) constraints simultaneously. Given the candidacy graphical representa-
tion, this algorithm contains two iterative steps: (i) Sampling the competitive and
contextual edges to form a composite cluster; (ii) Validating the graph vertices of
this cluster following the Markov Chain Monte Carlo (MCMC) mechanism [19].

The remainder of this paper is arranged as follows. We first present the
bottom-up proposal and candidacy representation in Sect. 2l and follow with
a description of the problem formulation in Sect. Bl The inference algorithm is
discussed in Sect. [l The experimental results are shown in Sect. Bl and the paper
concludes with a summary in Sect. [(] .

2 Representation

In this section, we first introduce the recognition candidate generation by two
types of classifiers and then discuss a candidacy graphical by these candidates.

2.1 Bottom-Up Candidates Generation

Given an input image I, we first use two types of classifier to generate recogni-
tion candidates: one for superpixels with low-level (textural appearance) features
and the other for structural objects with shape templates. A candidate is de-
fined as a universal form ¢; = (4;,1;). A; = (Xi, I, A;,w;) denotes the candidate
attributes, including location X;, outer contour I; and image domain A;, respec-
tively. w; € {0,1} is the binary variable that denotes the validation or not of ¢;.
l; = ('car’, grass’, cow’, . ..) denotes the semantic label.

We start by discussing generation recognition candidates by these two
classifiers.

(i) Superpixel-based candidate.

Superpixels are often used to effectively reduce the solution complexity in
image segmentation. In this work, we use an over-segmentation scheme used
in [24] to obtain the superpixels of both training and testing images. In practice,
each image contains around 30 ~ 50 superpixels.

Given the annotated training images, we collect a pool of textural features,
including texton filters [3], color [22], and location [4], and then learn a discrim-
inative classifier formed by a set of selected features using a boosting frame-
work [23]. In the testing stage, each superpixel receives a recognition score for
each semantic label by this classifier, and a batch of superpixel candidates are
generated.
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Thus the energy cost for each superpixel-based proposal can be computed by

n(T)
Er(ci|ll) = Z ;[ (A, i), (1)

j=1

where f;(A;,1;) is one selected feature (weak classifier) over superpixel and se-
mantic label, and «; is the weight parameter. n(T") denotes the number of shape
templates.

(ii) Template-based candidate.

A recent proposed active basis model [I5] is utilized to capture shape informa-
tion of structural object categories (car, cow, and horse, etc.). Using the model
with a shared sketch algorithm, deformable templates can be learned for each
object category on a small set of aligned positive samples in the same pose with-
out negative samples. A template B;, for category l;, consist of a set of active
Gabor basis {B;} that are allowed to slightly perturb their locations and ori-
entations before they are linearly combined to generate the image. One can use
other object detection approaches [16] without major algorithmic changes.

0O Car D Rhinoceros

Fig. 2. Template-based recognition candidates generated by active basis model [I5].
(a) illustrates the deformable template learning from a set of aligned positive samples
and (b) shows an example of template detection.

In Fig. [ (a), we intuitively illustrate the template learning process from
several aligned training images, and Fig. [ (b) shows an example of detecting
the structural object instances by matching the templates in cluttered image,
(red rectangle for car detection and blue rectangle for rhinoceros).

We solve the energy cost for each candidate by template matching [15], as

n(S)
Es(eilI) = Y [\h(] < I(4), By > [P) —log Z(\))], (2)

=1

where h(-) is transformation function on filter response. \; denotes the learned
weight parameter for each basis Bj, and Z(J;) is the normalizing constant and
it can be computed using [I5]. n(S) denotes the number of superpixels.
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(b)

(d

Fig. 3. Incorporating contextual and competitive interactions in the candidacy graph-
ical representation. The blue rectangles indicate the detected object templates. The
polygons on thick line denote the template-based candidates and polygons on thin line
denote the superpixel-based candidates. The different polygons with different colors
denote recognition label. The dashed line and solid line denote the contextual and
competitive edge link respectively. The competitive edges exist between two candi-
dates sharing image domain (as shown in (a) and (b)), and the contextual edges for
connecting candidates defined by context features (as shown in (c) and (d) ).

2.2 Candidacy Graph Construction

With these generated recognition candidates, we establish an adjacency graphical
representation G = (V, E), whose vertex v; is equivalent to a candidate ¢;. We
thus define the graph vertex set as,

V= VTUVS ={vi=ci = (A, l;),i=1,..n(T) +n(S5)}, (3)

where Vr and Vg are candidate sets from superpixel classifier and shape detec-
tor, respectively. In this graph, the parsing problem can be formulated as the
candidate validating task.

For any two vertices v; and v; specified by two adjacent superpixels, a prob-
abilistic edge e =< v;,v; >,e € E is defined to indicate the competitive or
contextual interaction between them, this leads to £ = Et U E~. Each contex-
tual edge ET exists between two vertices that share the contextual correlation,
while each competitive edge E~ accounts for the mutual exclusion between
two vertices that share overlapping in image domain. Fig. [3] illustrates a typical
example of the candidacy graphical representation.

Competitive edges are defined for the mutual exclusion constraint that the
two vertices should not both be validated if they overlap with each other in image
domain. The overlapping often occurs with two neighboring template candidates
or one template candidate including a superpixel proposal, as illustrated in Fig. 3]
(a) and (b) respectively. The connecting probability p_ of the competitive edge
is thus defined as

AN A,
eXp{:AZDA]:}, Ui,UjEVS,AiﬂA]’#@
i j
Pe = 0, Vi, Vj EVS,AiﬂA]’ =0 (4)
1, AiCAj or A]CAZ
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Fig. 4. Pairwise co-occurrence matrix for superpixel candidates

Contextual edges play a key role in our model, which imply contextual
information between two graph vertices. We explore two types of contextual
metrics: the co-occurrence between two superpixel candidates and the layout
between a template candidate and an adjacent superpixel proposal.

— Co-occurrence context, constrains the two connected superpixel candi-
dates according to a learned distribution of related object categories, as
represented by a pairwise co-occurrence matrix HO(-,-) in Fig. @ In this
figure, the co-occurrence probabilities are scaled to gray-levels with the di-
agonals contributing zero energy. The darker gray-scale intensity denotes
higher co-occurrence probability. For example, the “car” to “grass” pair has
comparatively low probability because they seldom appear adjacently in our
dataset. Conversely, the probability between “sky” and “mountain” is in-
tuitively high as a result of their frequent co-occurrence in natural scene
images.

— Layout context, constrains the relative location of a superpixel candidate,
given a template candidate. For each structural category and surrounding
superpixels in training set, we learn a 2D probability histogram Hl’i(, )
that encodes normalized pixel number with variational quadrant index and
category index. Fig. [l illustrates this layout context and the histogram.

Based on the definition of two context metrics, the probability of contextual
edges pf is thus defined as,

O(li,lj), Vi, Vj € Vr

p={ ) 6
Z# N Dy, Hl (Dk,l ), v;€Vs and v;EVr

where Dy, refers the pixel map of the j-th quadrant. n(D) denotes the number
of quadrant and we set it as 10. H, lL(, -) is the layout context histogram with
respect to template candidate v;. A; and I; indicate image domain and semantic
label of the superpixel candidate v; respectively.
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Fig. 5. Layout context probability histogram for the template candidates with sur-
rounding superpixel candidates. (a) illustrates the definition of the layout context
histogram. Given a structural object in training images, the annotated surrounding
superpixels are projected to a number of quadrant (denoted by the Rome number).
Thus the pixel number distribution over the quadrant index and category index can
be calculated as shown in (b).

3 Probabilistic Formulation

Assume two sets of candidates are validated from the candidate set V: Q =
{@:;} € Vp,U ={u;} C Vs withw = 1, and sizes of Q, U are Ny, Ng respectively.
The solution configuration of parsing is defined as,

W = {Nr,Q = {a:}5, Ns.U = {ui}}%5 } (6)

We further formulate the solution W in Bayesian framework and solve it by
maximizing a posterior probability as

W* = arg max p(W|I) = arg max p(W)p(I|W). (7)

Prior term. We define the prior probability over the candidate numbers Ny, Ng
and the validating set ¥ = (QJU), as,

P(W)=P(Nr)P(Ns)P(Q,U) (®)
xexp{—arNr}exp{—asNg}-P(Q,U),
where ar and ag are tuning parameters and are set as 1 empirically. Since @

and U are two types of candidates sharing the same definition as graph vertices,
we define

P(Q,U)=]T exp{B1(wi = w)}] [ exp{BL(wi # w))}. 9)

ecE+ e€E—

B € [0,1] is the tuning parameter and it set as 0.5 in practice. 1(-) € {0,1} is
an indicator function for a Boolean variable. The probability is maximized when
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all contextual edges have same vertices state and all competitive edges connect
two vertices with differently state labels.

Likelihood term. Using the classifiers for the recognition candidate generation, we
define the likelihood probability of our model with the validated proposals, as

P(IW) = P(1|Q.U) o« [] exp{~Er(a)} ] exp{~Es(uw)},  (10)

¢ €Q u; €U

where Ep and Eg are energy costs for each validated candidate given the two
types of classifiers, as defined in Eq. [l and Eq.

4 Inference by Composite Cluster Sampling

Based on the candidacy graph G =< V, F >, our algorithm simulates a Markov
chain that consist of a sequence of states in the solution space, and travels
the space by realizing reversible jumps between any two successive states. For
each stochastic jump step, whether a new state is accepted is decided by the
Metropolis-Hastings [19] method that guarantees the global convergence of the
inference algorithm. Given two successive states A and B, the acceptance rate
is defined as,

(B — A)P(B) 1 (1)
(A— B)P(A)

where P(A) and P(B) are the posterior probability. Q(B — A) and Q(A — B)
are canidae probability of “jumping” between two states. Following the theoret-
ical analysis reported in [20], Q(B — A)/Q(A — B) can be simplified by cluster
sampling, which contains two steps: 1) forming a composite cluster, called con-
nected component (CCP), by sampling the probabilistic edge connection; 2)
flipping the generated CCP by re-validating graph vertices.

Forming a composite CCP in G =< V,E > is equivalent to sampling
the edge probability (defined in Eq. d and Eq. Bl). For each probabilistic link
e =< v;,v; >, we define the sampling protocol for edge sampling (cutting) as

o, Q
o(4 - B)={L ¢

— Deterministic cut, as illustrated by black “x” in Fig. [ is performed
(i) on contextual edges connecting two different state vertices, and (ii) on
competitive edges connecting two same state vertices.

— Probabilistic cut, is illustrated by black “||” in Fig.[8l (i) The contextual
edges connecting two same state vertices are turn off with probability 1—p7,
and (i) the competitive edges connecting two different state vertices are turn
off with probability 1 — p_ .

Note we then select one CCP with equal probability if more than one is formed.
Thus the generation of the composite cluster can be calculated by the probability
of “turning oft” the edges (as the black “||” and “x” denote in Fig. [f]) around
the composite cluster, as

ecery= [ a-pH I -ro) (12)

ecEtNC ecE-NC
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1P ilisti cut X D inisti cut

State A Composite Cluster Vee State B

N

State A State B

Fig. 6. The illustration of composite cluster sampling. (a) shows a current state and
the edge links are cut deterministically or probabilistically denoting by black “x” or
“|I”; (b) shows a composite cluster (in the black ellipse) including three conflicting con-
nected components (CCPs) (in the dashed rectangles), and each one includes vertices
connected by contextual (dashed) links while any neighboring CCPs are connected by
a competitive (solid) link; (c) is the new state resulting from the re-validating in the
composite cluster, and all vertices in a CCP are compatibly validated as a whole; (d)
and (e) are the real segmentation solutions corresponding to states (a) and (c). Note

the solid vertices imply validated candidates.

where C is a set of the edges that has been “turned off” around CCP. The edge
probability pf and p_ are defined in Eq. [l and Eq. l respectively. Note we then
u.a.r select one CCP if more than one is formed.

Flipping the CCP is equivalent to re-validating vertices in the CCP. We split
the selected CCP to many sub-CCPs, as showed in Fig. [fl (b), and then simply
reverse the state of each vertex thus keeping the current constraints satisfied,
since our candidacy representation is a typical Ising model where each site only
has two states.

Thus Q(B — A)/Q(A — B) only depends on the generation of CCP, and
computed by

HeeE+ Ncs (1_pj)HeeE— NCs (1-p2)
[leer+nea A=p)]ecn- nea(l=pe)

A representative composite cluster CPP with three conflicting connected com-
ponents (sub-CCPs) is shown in Fig. [l (b), and all vertices in each sub-CCP
should be compatibly validated with the other neighboring ones. Fig. [l (c) and
(d) demonstrate the real segmentation solutions corresponding in a step of re-
versible jump, taking fully advantage of the composite cluster.

(13)
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The overall description for this composite cluster sampling algorithm is sum-
marized in Algorithm [l

Algorithm 1. Inference Algorithm

Input: testing image I, superpixel-based candidate set Vr , template-based
candidate set Vs
Output: convergence solution W* ~ P(W|I)
1 Construct graph representation: G =< V, E >.
2 repeat to sample loop for W to get the final solution
3 begin Cut edges to form CCP sets {V;i,i =1,2,..., M} by edge strength

4 for each contextual edge do

5 if two vertices have the same state then
6 cut the edge by probability 1 — p

7 else

8 cut the edge deterministically

9 for each competitive edge do

10 if two vertices have the same state then
11 cut the edge deterministically

12 else

13 cut the edge by probability 1 — pg
14 end

15 Randomly select a composite CC P;
16 Revalidated each sub-CCP of CCP to form a new state W';
17 Calculate the accept probability a(W — W) by Eq. [ to move to next

solution or not.
18 until Predefined criterion is satisfied.;

5 Experiments

We evaluate our approach on two public data sets: (i) MSRC 21-class database [3]
that contains 591 images in total, and (ii) LHI 17-class database [2I] including
17 x 15 = 255 images. Compared to the LHI database, the MSRC database
was published earlier and many researchers reported result on it, however its
groundtruth annotation is relatively rough as a benchmark for semantic parsing
task. For both data sets, the images are normalized into size of 320 x 213 and
all images are split randomly into roughly 45% for training, 10% for validation
and 45% for testing as well as [3] does. The algorithm is implemented by C++
on a PC with Core Duo 2.8 GHZ CPU. The computation cost is comparatively
lower and it spends around 40 ~ 60s per image. The average sampling cost time
for convergence is only around 4 ~ 6 seconds based on the generated candidates.
The speed reported in [3] was 3 minutes and 70 seconds in [§].

MSRC 21-calss databae. We randomly split the dataset into 337 images for
training and 254 ones for testing, like in [3]. Some typical results are shown
in Fig. [d and the quantitative overall pixel-wise accuracy with comparison is
reported in Table [l
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Table 1. Overall pixel-wise accuracy on MSRC 21-class database [3] and LHI 17-class
database

Methods MSRC LHI
Proposed 77.6% 77.2%
CRF + Rel.Loc. [ 76.5% N/A
Bag of Keypoints [24] 75.1% N/A
Auto-Context [§] 72.9% N/A
TextonBoost [3] 72.2% 67.2%
Geodesic-distance [22] N/A 71.4%

Fig.7. A few typical results on MSRC 21-class data set. From the top row to the
bottom row are: original images, annotated label maps, Result by [3], and our results.
The different color denotes the different object category. The overall pixel-wise accuracy
is proposed in Table. [I}

LHI 17-class database. We further test our approach on more challenging LHI
database that provides more accurate annotated groundtruth. A number of origi-
nal images, annotation labeling, superpixel-based candidates, template-based can-
didates, and the final results are presented in Fig.[dl A few examples of iterative
sampling are exhibited in Fig.[I0(b). The confusion matrix of multi-class recogni-
tion for total 17 categories is proposed in Fig.[§] and the overall pixel-wise accuracy
on this dataset is 77.2%. The TextonBoost [3] on this dataset outputs 67.2%.

In another comparison, we implement a recently presented geodesic-distance
method [22] to achieve segmentation based on our superpixel-based candidates.
Like the graph cuts [9], geodesic-distance algorithm deterministically assigns
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Fig. 8. Confusion matrix of labeling for total 17 categories on the LHI 17-class [21]
database. The overall accuracy is 77.2%.

Legend

Image

— ---
Superpixel-based
proposals

Template-based
proposals

Final labeling

Fig. 9. Example results on LHI 17-calss database [2I]. We demonstrate a few original
images, annotation labeling, superpixel-based candidates, template-based candidates,
and the final results from the top row to the bottom row. The column on the right is
a failure example.

(@)

Fig.10. (a)A comparison with geodesic-distance method (in the middle row). The
original images and our results are shown in the top row and the bottom row respec-
tively. (b)An illustrative examples of iterative sampling. The top two rows exhibit the
original images and the groundtruth annotation. The other rows (3-rd ~ 6-th) show
the results in iterative sampling.
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label to each pixel based on confident initialization. In this experiment, we set
the initialization by a few candidates with low energy cost. The overall accuracy
reaches 71.4%. However, this deterministic algorithm often depends on confident
initialization and may stuck in local minimal. Three typical examples of geodesic-
distance method are exhibited in Fig. [0(a) to compare with our method.

6 Summary

For the semantic scene understanding task, this paper studies a candidacy graph-
ical representation of integrating the textural appearance and shape information.
In contrast to the current methods using textural appearance and pixel-level
context information, we additionally explore the object structural model in the
candidacy representation, as well as the competitive and contextual interactions.
An efficient composite sampling algorithm based on this representation is pro-
posed in the Bayesian framework. Unlike the traditional single-site sampler, this
algorithm updates large portions of the solution space quickly to minimize con-
straint energy, by clustering connected components in each sampling step. Our
approach is test on both LHI and MSRC public data sets and outperforms the
state-of-art methods.
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and Yu Zhou for their helpful discussions. This work was supported by NSFC
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Abstract. Accurate localization of the salient object from an image is
a difficult problem when the saliency map is noisy and incomplete. A
fast approach to detect salient objects from images is proposed in this
paper. To well balance the size of the object and the saliency it con-
tains, the salient object detection is first formulated with the maximum
saliency density on the saliency map. To obtain the global optimal so-
lution, a branch-and-bound search algorithm is developed to speed up
the detection process. Without any prior knowledge provided, the pro-
posed method can effectively and efficiently detect salient objects from
images. Extensive results on different types of saliency maps with a pub-
lic dataset of five thousand images show the advantages of our approach
as compared to some state-of-the-art methods.

1 Introduction

Detection of the salient object from an image has many applications in object
recognition [I], image/video retargeting [2], compression [3], retrieval etc. To find
the salient object, a saliency map of the image is firstly generated, where each
pixel is associated with a value that indicates the importance of the pixel. Then
the salient object can be detected or segmented from the saliency map.

A lot of efforts have been reported in saliency detection. However, accurate
localization of the salient region or salient object from an image is still a challeng-
ing and non-trivial problem. First of all, it is not uncommon that the obtained
saliency map is noisy and incomplete. As shown in Fig. [l only several salient
parts of the flower are highlighted, while the rest are missing. Due to the distrac-
tion from the cluttered background, it is not easy to find the salient region and
accurately crop it out. Moreover, most existing methods apply exhaustive search
for the smallest region that covers a fixed amount of fixation points [Al56], e.g.
95 % of the total salient points [4]. The major limitation is that it is difficult
to predefine the amount of saliency the salient region should contain, as it de-
pends on the size and shape of the salient object, as well as how cluttered the
background is. Ideally, the salient region should be adapted to the shape of the
salient object.

To address the mentioned problems, we propose a novel method to efficiently
detect salient object from the saliency map. Given the saliency map, the goal is to
locate a bounding box from the image that has a small size and contains most of

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 396 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Fig.1. Our salient object detection result based on the saliency map proposed
in [7](The first image is the saliency map by [7]. The second image is the binarized
result of the saliency map. The third image is the result of salient object detection by
searching method in [§]. The red bold rectangle is the detected result while the blue
plain one is the ground truth from [4]. The last one is the result by our MSD detection
method.).

the salient parts of the image. We formulate the problem as region localization
with the maximum saliency density (MSD). As a new formulation of salient
object detection, it balances the size of the object and the saliency it contains,
and can tolerate the noise and incompleteness in the saliency map. As shown in
Fig. [l even though the salient pixels distribute sparsely, the detected saliency
region with highest saliency density accurately crops the object out. Our method
does not require any prior knowledge of the salient object and can automatically
adapt to its size and shape through bounding box search. To avoid an exhaustive
search of all possible bounding boxes of various sizes and at different locations,
a branch-and-bound (B&B) search algorithm is proposed to efficiently find the
global optimal bounding box.

There are several advantages of our method. First of all, it can automatically
adapt to the size and shape of the salient object, despite the cluttered back-
ground. There is no need to find salient object with fixed fraction of saliency
and it does not require the binary mask of the saliency map, where pixels need to
be classified into salient and non-salient ones. Instead, it directly finds the bound-
ing box of maximum saliency density from the original saliency map. Moreover,
by using the branch-and-bound search, it is fast to find the optimal bounding
box, e.g. in tens of milliseconds. Last but not least, our new formulation and
search algorithm can be well applied to different types of saliency maps. A bet-
ter performance is achieved when performed on a fused map of different types
of saliency maps.

2 Related Work

2.1 Saliency Map

Literally, there are two categories of computational saliency map models: local
or edge/corner based [71[89L10] and global or region based [4[11L12]. The first
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row in Fig. Bl shows several examples. The 15! and 4" columns are based on
Hou’s method [7]. The 3" and 6" columns are from Bruce’s method [9]. And
the 27 and 5** columns are from Achanta’s [I2], which generates larger visually
consistent object regions than that of the previous two. In this paper, saliency
map generation method is not our focus. Our main work is to detect salient
objects from various saliency maps.

2.2 From Saliency Map to Salient Object

The simplest method to obtain the salient object region is by thresholding the
saliency map to get a binary mask. Methods to threshold saliency map are in-
tensively discussed in [BL[12,13[14]. This method is restricted on the selection of
threshold and detection accuracy. In order to accurately detect salient objects
from saliency maps, image segmentation result is combined with the saliency
map [I0,[8,12]. However, the performance heavily relies on the accuracy of im-
age segmentation results. Some heuristic methods [4,[15,[16}17] are proposed to
improve the performance of salient object detection. For example, exhaustive
search is adopted in [4] to find the smallest rectangle window containing 95%
salient pixels. Liu et al. [5] noticed the disadvantages of exhaustive search and
proposed to use dynamic threshold and greedy algorithm to improve the search
efficiency. However, their method is still based on thresholds and not sovled by a
standard optimization method. In [§], the search of the rectangle subwindow is
speeded up by applying the efficient subwindow search (ESS). ESS is a recently
proposed branch-and-bound search method for sliding window search [18]. It has
many applications in image/video analysis [8/[18,19].

3 The Proposed Method

Given an image I and its associated saliency map S, where S(z,y) indicates the
saliency value of the pixel at (x,y), our goal is to accurately locate the salient
object, i.e. to locate a salient region W C I. We first review existing methods
then propose our new approach.

3.1 Existing Schemes

Exhaustive search (ES). Some previous approaches proposed to obtain salient
object regions with fixed fraction of saliency by exhaustive search from saliency
maps [5,[12] or binary saliency maps [4]. We take the binary saliency map as
in [4] and the formulation can be written as in Eq. [Tt

W = arv%glIin area(h(W)) (1)
hW)={W| Y Siz,y) =X Y Sizy)
(z,y)eW (z,y)erl

where Sp(z,y) is the binary image of S(z,y). Sp(z,y) = 1 when S(z,y) > 7 and
Sp(z,y) = 0 when S(x,y) < 7. 7 is the threshold and W is the subwindow of
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the whole image region I. X is the fraction threshold. The brute force method
works, however, it is not time efficient and A is heuristically decided.

Maximum saliency region (MSR). Other approaches proposed to detect the
salient object by efficient subwindow search [8]. Since efficient subwindow search
is based on the maximum subarray problem [I820], the idea of salient object
detection in [§] can be formulated as in Eq.

W* = argmax h(W) (2)
WCI

V) =30 LS.

where Sy(z,y) is obtained in the same way in Eq.[Il with a slight difference that
Sp(x,y) = —1 when S(z,y) < 7. From Eq. 2 the salient object is located with
the region W* that contains the maximum of saliency. We call this method as the
maximum saliency region (MSR). However, there are two major limitations of
this method: (1) it highly relies on the selection of threshold 7, which is difficult
to optimize; (2) when the binary saliency map is sparse, it prefers to detect a
small region as shown in Fig. [l

3.2 Our New Formulation

Before giving our new formulation, we first introduce the concept of sparse and
dense saliency map. Fig. 2] shows two examples. Since different saliency map
generation method emphasizes different aspect, edges or corners of the salient
object in Fig. B(b) are highlighted while in Fig. 2ic) the whole salient object
is popped out with uniform highlighted intensities. Therefore, we can say that
the salient object in Fig. 2ib) is sparsely represented by Hou’s saliency map
and it is densely represented by Achanta’s saliency map in Fig. [J(c). Sparse
saliency map accurately detects the salient parts of the object but the boundary
of the salient object is not well defined. Dense saliency map represents the salient
object completely but some cluttered background is also included in the detection
result. However, one thing is in common: the averaged density of the salient
object region is much larger than that of any other regions on the saliency map.

(a) (b)

Fig. 2. (a)Original image (b) Sparse saliency map example by [7] (c¢) Dense saliency
map example by [12]
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To address the above characteristics and the problems in section 3.1 we pro-
pose to find the salient region W* with the maximum saliency density from the
raw saliency map S(z,y). Thus we do not need to select the threshold 7 and the
fraction ratio A. Moreover, it balances the size of the salient object when the
saliency map is sparse. We formulate our objective function f(W) as:

W* = argmax f(W) (3)

wcr
f(W) _ Z(m,y)GW S(LI}, y) + Z(m,y)GW S(LI}, y)
X @yer S(@y) C + Area(W)

where C'is a positive constant to balance the size of Area(W). The first term in
f (W) prefers that W contains more salient points, while the second term ensures
that the detected region W is of high quality in terms of the saliency density.
Therefore, by maximizing the two terms together in f(W), we balance the size
of the object and the saliency it contains. We call our new formulation as the
maximum saliency density (MSD).

4 Owur Algorithm

Exhaustive search of W* from Eq. Bl is time consuming. W* = [T, B, L, R] con-
tains four parameters, where 7', B, L, R are the top, bottom, left, and right
position of W*, respectively. Suppose the frame is of size m x n, the original
hypotheses space is [0,n— 1] x [0,n — 1] x [0, m — 1] X [0, m — 1], where we need to
pick up T', B, L, R from each dimension respectively. To solve this combinatorial
problem, an exhaustive search is of complexity O(m?n?). A branch-and-bound
search method is proposed in [I§] to accelerate the search by recursively parti-
tioning the parameter space until it reaches the optimal solution. It shows that
under certain conditions, such a branch-and-bound search can lead to the ex-
act solution as the exhaustive search, while with a practical complexity of only
O(mn). The details of the branch-and-bound search can be referred to [I8].

The original branch-and-bound only works for the saliency map having both
positive and negative pixel values. However, in our case, the saliency map only
contains positive elements and we do not want to deliberately introduce negative
pixels. Therefore we need to derive our own branch-and-bound search method.
Considering the efficiency of branch-and-bound search depends on the upper
bound estimation, we derive the upper bound of our f(W) first. Denote the set
of regions by W = {W7y,..., W}, where each W; C I. Suppose there exists two
regions Winin (Winin € W) and Wiae (Winae € W), such that for any (W € W),
Winin € W C Wiaz. Given the set W, we denote by f(W) the upper bound
estimation of the best solution that can find from W. In other words, we have
fW) > f(W), VW € W, using Wy, and W,,4., the upper bound can be
estimated as:

£ Z(IJJ)GWWW S(:L‘, y) Z(z,y)eme S($7 y)

T = s e 8@y T O+ Arca(Wonin) (4)
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Based on this upper bound estimation, we propose our MSD salient object de-
tection algorithm as shown in table[] in which the branch-and-bound procedure
is similar to that of [I§].

Table 1. MSD Salient Object Detection Algorithm

Require: Image saliency map S C R™*"
Upperbound function f(W) as Eq. @
Ensure: W* = argmax f(W)
wcI

Initialize P as an empty priority queue
Set W=1[0,n—1] x [0,n—1] x [0,m — 1] x [0,m — 1]
Repeat
Split W =W; UWsy and W; "Wy =0
Fori=1to2
Find W™ and W;"** from W,
Push (W;,f (W,) into P
End For
Retrieve top state W from P
Until W contains only one window, e.g. W™ = W/™me®
Return W* = W™

5 Experimental Results

5.1 Database

In order to evaluate the results, a public dataset [4] is used to test our algorithm.
The dataset provides 5000 high quality images each of which contains a salient
object. Each salient object is labeled by nine users by drawing a bounding box
around it. Since different users have different understanding of saliency, the point
voted more than four times is considered as the salient point. The averaged
saliency map S, is then obtained from user annotation.

Given the ground truth S, which is the binary mask of the salient object,
we evaluate the performance of our method based on precision, recall, and F-
measure. Suppose Sy is the salient region found by our method, the precision,
recall and F-measure can be defined as:

> Sg % Sq 7ZngSd’Fim€asure:(1+a)><pre><rec.

>S4 ree= > S, a X pre +rec 5)

pre =

where « is a positive constant which weights the precision over recall while
calculates F-measure. We take o = 0.5 as suggested in [8/4].

5.2 Comparison MSD with Exhaustive Search

First of all, we compare our method with the exhaustive search. \ is set to 95%
as [] suggested. Fig. Bl shows the results obtained by the exhaustive search and
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Fig. 3. Detection results comparison among our MSD, exhaustive search and MSR.
The first row are two examples of saliency maps for Hou’s [7], Achanta’s [I2] and
Bruce’s [9] methods respectively. The second row are localization results by exhaustive
search on the three saliency maps. The third row are results by MSR. And the last
row are our MSD results. Detected results are labeled with bold red line. Blue plain
rectangles are ground truth from [4].
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Fig. 4. Precision, recall and F-measure for exhaustive search with four A {95%, 90%,
85%, 80%} on Hou’s saliency map

our method on the second and the last rows respectively. As 95% is an arbitary
value and not decided based on the content of the saliency map, the detected
results include a large part of the nonsalient object area. While, in our method,
small salient area away from main salient object region is dropped under the
constraint of the saliency density. Therefore, our result is more accurate than
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Fig. 5. Comparisons precision, recall and F-measure for our MSD to exhaustive search
(ES) and MSR on (a) Hou’s saliency map, (b) Bruce’s saliency map and (c¢) Achanta’s
saliency map

the exhaustive search. Performaces of precision, recall and F-measure on Fig.
further validate our claim. In order to balance the bias caused by arbitarily
choosing ), we test four different X\ values as Fig. @ shows. Precision is improved
while recall is reduced as A becomes smaller and there is no direct way to choose
an optimal .

5.3 Comparison MSD with MSR

To compare our MSD with MSR, we test both of the methods on three differ-
ent saliency maps. The threshold 7 is obtained by Otsu [22] for all saliency maps
in MSR. C is set to be 60625, 2025 and 16200 for Hou’s, Bruce’s and Achanta’s
saliency map respectively in MSD, through parameter evaluation. Fig.Blshows the
comparison results. The average of precision, recall and F-measure are reported
on each group. On Hou’s saliency map, edges/corners are detected as salient parts.
By using MSR, very small region is bounded while larger salient regions are de-
tected by our MSD. The F-measure and recall are significantly improved by our
MSD. For the other two saliency maps, our MSD also outperforms MSR. The re-
sults on three different types of saliency maps show that our method improves the
F-measure, and at the same time, keeps the high precision rate.

5.4 Evaluation on Different Saliency Maps

Since the salient object detection result is based on the saliency map, the more
accurate the saliency detection is the better performance of the object detec-
tion method obtains. It is worth noting that a single salient object region in [4]
is obtained through supervised learning. Both [I0] and [8] have prior knowl-
edge about the region size provided by image segmentation. Thus, they are not
directly comparable with our method. However, even without any prior knowl-
edge of the salient object, our method on Bruce’s saliency map outperforms
Ma’s method [16] which directly uses detected salient region (F-measure 61%)
and search result on Itti’s saliency map [2I] which finds the minimum rectangle
containing 95% salient points by the exhaustive search (F-measure 69%). For
our method on Hou’s saliency map, it obtains comparable result compared with
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Fig. 6. Comparison our MSD to other salient object detection results by precision,
recall and F-measure. 1: Ma’s saliency map and their salient region detection result [I6];
2: Exhaustive search smallest subwindow containing 95% salient points from Itti’s
saliency map [21]; 3: MSD on Hou'’s saliency map; 4: MSD on Bruce’s saliency map; 5:
MSD on Achanta’s saliency map; 6: MSD on the combined saliency map.

o

mn

the exhaustive search on Itti’s saliency map. Though our result on Achanta’s
saliency map is not as good as the result on [21], the precision is still higher
than searching result on Itti’s and Ma’s saliency maps.

Since different bottom-up saliency map generation method has different ad-
vantages and disadvantages, to minimize the influence to the saliency object
detection result, three previous saliency maps are fused together. Each saliency
map is normalized into [0,1] and the combination saliency map is obtained by
adding them together then normalizing the summation into [0, 1]. As shown in
Fig. [0l method 6, after combining three saliency maps together, F-measure is
74.67% which is 1.61% larger than the optimal result (73.06%) from Bruce’s
saliency map. This performance is comparable to the learning based salient ob-
ject detection results e.g. [48] but our method is much simple and time efficient
than them.

5.5 Parameter Evaluation

To evaluate the influence of the only parameter C in our MSD method, different
values C' are tested as shown in Fig. [l When C' is small, the method is sensitive
to the density change and prone to converge to a region with higher average
density but relative smaller size. When a large value of C is selected, density term
becomes trivial in objective function f(WW) and the whole algorithm converges
to a larger region with lower average density. In Fig. [[l(a), within the range of
[35000, 84000], it is thus not sensitive to the selection of C'. Similarly, when C is
in the range [1500, 3300], the F-measure is above 71.3% in Fig. [[{b); when C in
the range [14200, 23500], the F-measure is above 63.5% in Fig. [{(c). From these
results, we can see that the region based saliency map has a smaller optimal C'
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Method

Table 2. Time complexity comparison by seconds

saliency map by [7] saliency map by [9] saliency map by [12]

Exhaustive Search

MSR
Our MSD

22.2359
0.0039
0.0113

22.1646 23.3587
0.0048 0.0056
0.0351 3.4718

than edge/corner based methods (As Fig. Blshows Bruce’s saliency map is denser
than Achanta’s.). That further indicates that density term in Eq.[Blis important
when the salient points are densely distributed on the saliency map.

5.6 Time Complexity

The average computational time tested on 5000 images for exhaustive search,
MSR and our method based on Hou’s, Bruce’s and Achanta’s saliency map are
shown in table [2 It is obvious from table [2] that our method is very time effi-
cient compared to the exhaustive search and has comparable time efficiency to
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Fig. 8. More salient object localization results by our MSD method (The first row are
our results on Hou’s saliency map [7]. The second row are our results on Achanta’s
saliency map [12] and the last row are based on Bruce’s saliency map [9]. The red bold
rectangle is the detected result while the blue plain one is the ground truth from [4]).

MSR. The algorithm is tested on a Duo Core desktop of 2.66GHz, implemented
with C4++.

6 Conclusion

We propose in this paper a novel method to efficiently detect salient objects
from images. Salient object detection is first formulated with the saliency den-
sity. A branch-and-bound search algorithm is developed to optimize the newly
formulated problem globally. Without a prior knowledge of the salient object,
our method can adapt to different sizes and shapes of the object, and is less sen-
sitive to the cluttered background. The experiments on a public dataset of 5000
images show that our method greatly improves the existing baseline methods on
the measurements of precision, recall and F-measure. Our method gains com-
parable performance compared to learning based salient object detection results
with a high time efficiency. Tests on different saliency maps indicate our method
works well with different types of saliency maps. Our future work includes the
localization of multiple salient objects in images and content based image and
video retargeting.
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Abstract. This paper presents a new hybrid bronchoscope tracking
method that uses an electromagnetic position sensor, a sequential Monte
Carlo sampler, and its evaluation on a dynamic motion phantom. Since
airway deformation resulting from patient movement, respiratory mo-
tion, and coughing can significantly affect the rigid registration between
electromagnetic tracking and computed tomography (CT) coordinate
systems, a standard hybrid tracking approach that initializes intensity-
based image registration with absolute pose data acquired by electromag-
netic tracking fails when the initial camera pose is too far from the actual
pose. We propose a new solution that combines electromagnetic tracking
and a sequential Monte Carlo sampler to address this problem. In our
solution, sequential Monte Carlo sampling is introduced to recursively
approximate the posterior probability distributions of the bronchoscope
camera motion parameters in accordance with the observation model
based on electromagnetic tracking. We constructed a dynamic phantom
that simulates airway deformation to evaluate our proposed solution. Ex-
perimental results demonstrate that the challenging problem of airway
deformation can be robustly modeled and effectively addressed with our
proposed approach compared to a previous hybrid method, even when
the maximum simulated airway deformation reaches 23 mm.

1 Introduction

During minimally invasive diagnosis and surgery of lung and bronchus cancer,
bronchoscopy is a useful tool that enables physicians to perform transbronchial
biopsies (TBB) to obtain samples of suspicious tumors and to treat or remove
precancerous tissue. However, it is still difficult to properly localize the biopsy
needle in the region of interest (ROI) to sample tissue inside the airway tree
because the TBB procedure is usually guided by conventional bronchoscopy,
which only provides 2D information (bronchoscopic video images) and needs to
be performed inside the very complex bronchial tree structure. To deal with such
limitations, navigated bronchoscopy systems have been developed to help the
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bronchoscopist by fusing pre-interventional and intra-interventional information
such as 3D multi-detector CT image data and real-time bronchoscopic video to
provide two fundamental functions: (1) visualization of anatomical structures
beyond the bronchial walls and the anatomical names of the currently displayed
branches; (2) TBB guidance by showing the planned path of the bronchoscope
and localizing the current bronchoscope camera inside the airway tree.

To develop such a bronchoscopic navigation system, the exact pose of the
bronchoscope camera must be tracked inside the airway tree for which many
techniques have been proposed. Image registration-based methods compare the
similarities between real and virtual bronchoscopic images generated from pre-
interventional CT data [I,[2]. However, such an optimization procedure is con-
strained heavily by its initialization and bifurcation or fold information to be
clearly observed on real bronchoscopic images. Sensor-based electromagnetic
tracking (EMT) uses a sensing coil (sensor) attached to the tip of the broncho-
scope and localized by an electromagnetic tracking system, such as the
commercially available superDimension navigation system [3]. However, such
navigation systems suffer from the following bottlenecks: (1) sensitivity to local-
ization problems resulting from patient movement (i.e., airway deformation). An
EMT measurement usually provides the position and orientation of the bron-
choscope camera relative to a fixed, world coordinate system and hence the
current measurement under airway deformation does not correspond exactly to
the current bronchoscope camera pose; (2) measurement inaccuracies because of
magnetic field distortion caused by ferrous metals or conductive material within
or close to the working volume. To address airway deformation, Gergel et al.
applied particle filtering to all camera positions and orientations acquired by
EMT and projected them to a previously segmented centerline of the bronchial
tree [4], so they assume a bronchoscope camera that is always moving along
the centerline of the airways; however this is a hard constraint since it is easily
violated by a bronchoscopist in the operating room. Otherwise, the measure-
ment inaccuracies of EMT are difficult to correct, unless combined with optical
tracking [5L[6]. Furthermore, a combination of image- and sensor-based methods
for bronchoscope tracking was originally proposed by Mori et al. [7]. Their hy-
brid method was improved by Soper et al. [§] who integrated electromagnetic
tracking, image-based tracking, Kalman filtering, and a respiratory motion com-
pensation method using a surrogate sensor. According to their evaluation of the
state-of-the-art methods, the hybrid method is a promising means for broncho-
scope tracking and definitely outperforms other methods.

In our paper, we modify hybrid bronchoscope tracking using a sequential
Monte Carlo (SMC) sampler to improve tracking performance and to deal with
the disadvantages of EMT and the restrictions of image-based methods. Broncho-
scope tracking based on Bayesian or motion filtering has already been proposed
in [9.10]. However, [9,[I0] only focused on how to improve the initialization of
image registration methods without estimating the rotational part of the bron-
choscope camera motion. Our proposed method incorporates electromagnetic
tracking and a sequential Monte Carlo sampler to directly estimate the posterior
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probability distribution of the current bronchoscope camera motion parameters.
This modified method significantly increases the accuracy and the robustness of
bronchoscope tracking, as shown in our experimental results.

2 SMC Sampler-Based Bronchoscope Tracking

Our modified hybrid bronchoscope tracking method consists of three stages: (1)
during camera and hand-eye calibration, we apply camera calibration to obtain
the intrinsic parameters of the bronchoscope camera and employ hand-eye cali-
bration to perform electromagnetic sensor and camera alignment; (2) the CT-to-
physical space registration step obtains the initial rigid registration between the
EMT and CT coordinate systems. We can use a landmark-based or a landmark-
free method to calculate this transformation; (3) the sequential Monte Carlo
sampler-based camera motion estimation stage estimates the posterior proba-
bility distribution of the current bronchoscope camera motion parameters and
determines the estimated camera pose at the maximal probability to correspond
to the current bronchoscope camera pose.

Since the first two stages of the proposed method closely resemble the work
of Luo et al. [II], we do not describe them here. We focus on modeling and
predicting the bronchoscope camera motion based on a sequential Monte Carlo
sampler and electromagnetic tracking.

Sequential Monte Carlo samplers such as frameworks [12l[13][14] are a general-
ized class of algorithms dealing with the state estimation problem for nonlinear/
non-Gaussian dynamic systems that sequentially sample a set of weighted par-
ticles from a sequence of probability distributions defined upon essentially arbi-
trary spaces using importance sampling and resampling mechanisms. They have
been used previously for vision on the basis of structure from motion (SFM),
for example, the usage of a general Monte Carlo sampler for SFM in the work
of Forsyth et al. [I5] and the investigation of particle filtering for simultaneous
localization and mapping (SLAM) in [16].

Generally, sequential Monte Carlo samplers are quite similar: samples are
determinately drifted and stochastically diffused to approximate the posterior
probability distributions of interest. We use an SMC sampler, which resembles
the approach of Qian et al. in [I7], and only sample the 3-D camera motion pa-
rameters; however, Qian et al. sampled the feature correspondences for motion
depth determination. We use sequential importance sampling with resampling
(SIR) at each iteration to estimate the posterior probability distribution of cur-
rent bronchoscope camera motion.

2.1 SMC Sampler

Before camera motion estimation, in this section, we briefly review the sequential
Monte Carlo sampler based on the SIR scheme.

Suppose a set of state vectors X; = {x; : i = 1,..., N} and similarly a set of
measurements with their history ; = {y; : ¢ =1, ..., N}, where N is the number
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of states or measurements. The sampler using the SIR scheme constructs and
approximates the posterior probability distribution p(x;|);) of the current state
vector x;, given all available information, for example, the previous posterior
probability distribution p(x;_1|Yi—1). To estimate p(x;|);), the SIR algorithm
first generates a set of random samples X* = {x¥ : k = 1, ..., M} with associated
weights WF = {wF : k = 1,..,M} (M is the sample size) at time i based
on the previous posterior probability distribution p(x;—1]);—1) and the current
measurement Yi. After that, p(x;|);) is approximated by these samples with
respect to x¥ and wf [13]:

p(xi| Vi) = Zwké x;), (1)

where §(+) is the Dirac delta function. w can be calculated by

k k plyalxf)p(xF|xF ;) )

w; i
P gk ye)

where the proposal ¢(-) is called an importance density function that affects the
degree of sample degeneracy. Usually, it is convenient to choose ¢(+) as the prior:
Qb ye) = p(xE[xk_,), then wh o wh_yp(y;[x) [L3].

Basically, a pseudo-code description of an SMC sampler using SIR can be
generalized in Algorithm 1 as follows:

Algorithm 1. SMC Sampler Using SIR Scheme [12]

1 At i = 0, generate M samples X = {x§ :k=1,..., M}:
2 Set initial importance density q(x&|x§, yo) = p(x )

3 for k=1to M do

4 Draw sample {(x&, wf)} ~ q(x§|xE, yo);

5 Assign the sample with weights w;

6 Compute total weights: Wy = Zgil w, and normalization: wf = Wo_lwg;
7 fori=1to N do

8 Calculate the effective sample size: ESS [I7], define a threshold: TSS;
9 if ESS <TSS then

10 Resample {(x¥ 1, wF 1)} to obtain {(XF_,,@F ;)};

11 else

12 Set {(XF_,,wF )} = {(xF_,wF D}

13 for k=1 to M do

14 Draw sample {(x},w;’)} ~ g(xF[xi_1,y1);

15 Weight w¥ « wF  wk where incremental importance weight
16 w¥ is defined as: wf = p(y:|x¥);

17 Compute total weights and normalize each Welght wl Wl wk;

18 Output current estimated state vector X; = Z o1 whx
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Fig. 1. Relationship between coordinate systems in our navigated bronchoscopy

2.2 Definitions of Bronchoscopic Camera Motion

We must define the coordinate systems to be used since bronchoscope tracking
seeks a transformation matrix “7T¢ including translation ““'to and rotation
CTR¢ from the bronchoscope camera coordinate system to the CT coordinate
system. Fig. [l outlines the relationships and transformation matrices between
each coordinate system. ' T's describes the relationship between the sensor and
magnetic field coordinate systems. "W T is from the magnetic field coordinate
system to the world coordinate system, and 7Ty is from the world coordinate
system to the CT coordinate system. We formulate the relationship between the
sensor and world coordinate systems as WTE;) = WTFFT(;), where FT(;) is the
i-th sensor output. Additionally, the transformation between the camera and
the sensor (both attached at the bronchoscope tip) is represented by ST,

In our study, we use the SMC sampler to predict the posterior probability
distributions for the bronchoscope camera pose parameters. The camera motion
state is described by translation “”'t¢ and rotation ““R¢ from the bronchoscope
camera coordinate system to the CT coordinate system. For the rotation part,
we use a quaternion but not a rotation matrix ““R¢ in our implementation.
The quaternion has been demonstrated to be very powerful to characterize the
rotation part since it has such advantages as compactness and the avoidance of
discontinuous jumps compared to other representations (e.g., Euler angles).

A quaternion representation of rotation can be conveniently considered as a
normalized vector with four components:

a=[w0 @& @& ¢]. @ +aite’+te’=1 (3)

Global motion state x; that corresponds to the current camera frame can be
parameterized by a seven-dimensional vector:

x; = CTq(é) CTt(CZ;) } 7 (4)
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where ¢ means the camera motion state at time i or denotes the i-th electro-
magnetic tracking result.

According to a sequential Monte Carlo sampler, each random sample (xf7 wf)
represents a potential pose of the bronchoscope camera and involves an impor-
tant weight defined as the similarities between the real and virtual bronchoscopic
images in our case. A random sample set SF = {(x¥,wF) : k = 1,2,3,..., M}
is used to approximate the posterior probabilistic density of the current bron-
chocope camera pose at time i.

2.3 SMC Sampler for Camera Motion Estimation

Our proposed hybrid bronchoscope camera motion tracking process is mainly
performed by the following steps described in this section.

After parameterizing the current camera motion state x; involved with the
SMC sampler, bronchoscope tracking continuously estimates the posterior prob-
ability distribution p(x;|);) using a set of random samples S¥, where the sample
weights are proportional to p(y;|x¥), as defined in Algorithm 1. To obtain
these random samples SF, the SMC sampler requires the probabilistic model
p(x¥|xF_ ) for the state dynamic between the time steps and likelihood function
(or an important density function) q(x¥|x¥ |, y;) for the observations (or mea-
surements) shown in Eq. 2l Additionally, to characterize a random sample Sf,
the weight w¥ also needs to be determined by incremental importance weight
wk that equals p(y;|x¥). Therefore, the following steps are implemented for the
SMC sampler to estimate the bronchoscope camera motion.

[Step 1] State Dynamic. During this state transition step, the bronchoscope
motion dynamic at frame 7 is usually characterized as a second order process
that is described by a second order difference equation [17]

xF =UxF | +VnF, (5)

where the matrix U describes the deterministic drift part of the state dynamic
model and depends on the EMT measurements y; and y;_; while the matrix
V' represents the stochastic diffusion component of the state dynamic model or
describes the uncertainty of inter-frame camera motion defined on the basis of
Eq. Bl We note that n¥ is an independent stochastic variable or a noise term
that is discussed in the following paragraph.

Since we have no prior knowledge of the bronchoscope camera movement, we
utilize a random walk model to characterize p(x¥|x¥ ) for the pointwise state
evaluation. As bronchoscopic frames are used as image sources, the changes of
the motion parameters are usually quite small. For example, in our case the
frame rate of the bronchoscope camera is 30 frames per second; however, the
typical moving speed of the camera is around 10 mm per second, so the magni-
tude of inter-frame motion changes at 0.33 mm per second. Therefore, we used a
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random walk on the basis of normal density with respect to noise vector nf:
n¥ ~ N(u,0?) to approximate the state dynamic in accordance with Eq. Bl [18]:

p(xy I} ) o exp(—(V7H(x} = Ux{_,) — p)*/20%), (6)

1
V210

After undergoing a random walk based on normal density, the drifted and
diffused state x¥ has a probabilistic distribution in accordance with Eq.

[Step 2] Observation Model. A good choice of the important density func-
tion q(x¥|x¥ | y:) can alleviate the sample degeneracy problem. In the SIR
algorithm, it is appropriately chosen as prior density p(x¥|xF ;) [13], as men-
tioned above. We follow this choice: ¢(xF|x¥_;,y;) = p(xF|xF_;). Therefore, in
our case, the observation density p(y;|x;) can be decided by:

M
plyilxi = %) o ’wf(z w]) ™t (7)
j=1
We clarify that the observation y; is defined as the EMT measurement and
modeled as y; = Hx;, where H is the observation matrix and is usually defined
as the transformation from the CT to the EMT coordinates.

[Step 3] Determination of Sample Weight. During the two steps described
above, a sample weight w¥ must be computed to assess the sample performance.
In our study, a sample weight wf“ is defined as the similarity between the

current real bronchoscopic image I%) and the virtual bronchoscopic image Iy
generated using estimated virtual camera parameters x¥ based on a volume
rendering technique. Based on the selective image similarity measure [2], after
the division of images I%) and Iy into subblocks and the selection of subblocks,
we use a modified mean squared error (MoMSE) to calculate the similarity:

2

|A(z)\ 2 |D|Z(I() PIP) - Ay —PI)) L 9

cA®)

MoMSE(IY) 1y) =

where |A®)| is the number of selected subblocks in the list of selected subblocks

A and DI%) and Vp are the respective mean intensities of all subblocks D

of I%) and Iy,. The mean intensities of I%) and Iy may be different in an actual
bronchoscopic image because of the different strengths of the light sources. To

reduce this effect, DI%) and PIy are subtracted from each pixel.
The weight w’ can be formulated as

= MoMSE(Ty) , Ty (xF)). (9)

Finally, in our case, the output of the SMC sampler for the current estimated
motion state can be determined in accordance with wf:

X, = argn}ljax{(x L, wh)l, (10)

i
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that is, sample X; with maximal weight w; corresponds to the maximal similarity
between the current bronchoscope camera frame and the generated virtual frame.

Our modified hybrid bronchoscope tracking based on an SMC sampler can be
summarized in Algorithm 2 as follows.

Algorithm 2. SMC Sampler-Based Bronchoscope Tracking

input : Bronchoscopic video images I(Ié), CT-based virtual images Iy,
. Wm (%)
electromagnetic sensor measurements " Tg

output: A series of estimates CT’T‘g) of the bronchoscope camera poses

1 Before SMC sampling:
1. Camera and hand-eye calibration to calculate s Te;

w N

2. CT-to-physical space registration for 7 Ty
Start SMC sampling < 3. Compute CT’Tg)
Initialization: At ¢ = 0,
Compute CTT(C?) = CTTWWTgO)STc, observation: CTT(C?) < yo;
Generate M samples XF = {x{ :k=1,..,M}:
for k=1 to M do

Draw sample {(x5,w5)} ~ p(x§), p(x6) = 5
10 xE = yo;

11 wh = MOMSE(I%)), Iv(x§)), according to Eq. [

© N o »oh

12 Compute total weights: Wy = Zk 1 w, and normalization: wf = Wy Lwk;
13 fori=1to N do

14 Calculate effective sample size: ESS [17], define a threshold: TSS;
15 if £ESS <TSS then

16 Resample {(x¥_;,w 1)} to obtain {(XF_, v 1)};

17 else

18 Set {(&i_1, w7 1)} = {(x}_1,wi 1)}

19 Compute CTT(CZ) = CTTWWTg)STc, observation: CTTg) S yi;
20 for k=1to M do

21 Draw sample {(xF, wF)} ~ p(xF|xF_,) by:

22 Drift and diffusion: x¥_; = x¥ according to [Step 1];

23 Calculate observation densities p(y;|x;) according to [Step 2];
24 Weight: w? MoMSE(I%),Iv( %)) according to [Step 3];
25 Compute total Welghts Wl Zk LW

26 Normalization: w¥ = Wl wk;

27 The current estimated state %;: X; = arg max, {(xF, wf)};

28 Return: x; < CT’T‘g)

3 Experimental Results

For evaluating the performance of our proposed tracking method, we manu-
factured a dynamic bronchial phantom (Fig. [2) to simulate breathing motion.
We connected the rubber phantom to a motor using nylon threads. A LEGO
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a0
=]

The NXT

Fig. 2. Dynamic motion phantom: (a) picture of real phantom and (b) drawing of
phantom movement

Mindstorm (LEGO, Denmark) was utilized as power source to generate move-
ment. With the controller part (NXT: a programmable robotics kit included in
LEGO Mindstorm), we can manipulate the motor motion including the direc-
tions and the rotational speeds. The phantom simulates respiratory motion when
the thread changes its length. We can adjust the amount of simulated motion,
and its maximum deformation is about 24 mm.

For dynamic phantom validation, we compare four tracking schemes: (a)
Solomon et al. [3], only using EMT, (b) Mori et al. [7], intensity-based im-
age registration directly initialized by the EMT results, (¢) Luo et al [11], the
better one of two proposed schemes in [II], and (d) our method, as described
in Section 23

Table 1 shows the quantitative results of the evaluation of the methods. Here
we counted the number of frames that were successfully registered by visually
inspecting the similarities between the real and virtual images. The maximum

Table 1. Comparison of registered results (the unit of maximal motion is mm)

Experi. Maximal Number (percentage) of successfully registered frames

(frames)  motion  Solomon et al. [3] Mori et al. [7] Luo et al. [II] Our method

A(1285)  6.13 850 (66.1%) 958 (74.6%) 1034 (80.5%
B(1326)  11.82 783 (59.0%) 863 (65.1%) 1018 (76.8%
C(1573)  18.75 894 (56.8%) 972 (61.8%) 1153 (73.3%
D(1468)  23.61 716 (48.8%) 850 (57.9%) 1036 (70.6%

1224 (95.3%)
1244 (93.8%)
1431 (91.0%)

)
)
)
) 1300 (88.6%)

(
(
(
(

Total(5652) 3243 (57.4%) 3643 (64.5%)4241 (75.0%)5199 (92.0%)
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simulated respiratory motion for different experiments is also shown in Table 1.
Our proposed method significantly improved the tracking performance. Further-
more, examples of experiments C and D for successfully registered frames are
displayed in Fig. Bl which shows examples of real bronchoscopic (RB) images
and corresponding virtual bronchoscopic (VB) images generated from the cam-
era parameters predicted by each method.

4 Discussion

The objective of this study is to design and improve the performance of hybrid
bronchoscope tracking under airway deformation during bronchoscopic naviga-
tion, in particular, to deal with the limitations of electromagnetic tracking. We
used a sequential Monte Carlo sampler to modify previous hybrid bronchoscope
tracking methods. According to the experimental results, the posterior prob-
ability distributions of the bronchocope camera poses are almost completely
approximated using the sequential Monte Carlo sampler. Hence we improved
our previous proposed hybrid tracking methods [7,11] in various aspects.

As for the previous hybrid method [7], its tracking robustness and accuracy
usually suffer from the following: (1) dependencies on the initialization of im-
age registration and visible characteristic structures (i.e., folds or bifurcations
of the bronchi) for similarity computation; (2) airway deformation, in particular
respiratory motion. For the registration step (an optimization procedure), the
optimizer is unavoidably trapped in local minima. We have already addressed
these limitations and improved the tracking performance by modifying the ini-
tialization of image registration in our previous work [II]. In this study, our
modified method was more effectively disengaged from these constraints using a
sequential Monte Carlo sampler, compared to our previous methods [7,[I1]. We
greatly approximate the posterior densities of the state parameters by collecting
a set of random samples and sequentially predict the camera motion parameters
on the basis of the importance sampling, which provides the ability to main-
tain potential importance modes that either they are confirmed or moved to
be the subsequent observations. This results in our proposed method that can
avoid the optimization registration algorithm which is trapped in local minima in
most cases and particularly has the ability to automatically retrieve the tracking
loss even in case of image artifacts. Hence, our method shows the best tracking
performance in Table 1 and Fig. Bl compared to the previous methods.

However, in our experiments, the modified methods still failed to correctly
register all RB and VB frames when continuously tracking the bronchoscope
for the following reasons: (1) the dynamic error of EMT (because of the ferrous
material contained inside the bronchoscope), as mentioned in Section [l affected
the observation accuracy; (2) our simulated breathing motion is rather big and
not realistic enough. Currently it is only in the left-right and superior-inferior
directions for the peripheral lung. The trachea does not move. The magnitude of
the motion can be adjusted to 6 ~ 24 mm. However, for a real patient, respiratory
motion is greatest in the superior-inferior direction (~ 9 mm), moderate in
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Fig. 3. Results of bronchoscope tracking for different methods under simulated breath-
ing motion using our dynamic phantom. The top row shows selected frame numbers
and the second row shows their corresponding phantom RB images. The other rows
display virtual bronchoscopic images generated from tracking results using the meth-
ods of Solomon et al. [3], Mori et al. [7], Luo et al. [I1], and our method. Our proposed
method shows the best performance.

the anterior-posterior direction (~ 5 mm), and lowest in the left-right direction
(~ 1 mm) [19].

Additionally, the average runtime of our proposed method per frame (1.7
seconds) is higher than that of the previous hybrid method (0.5 seconds), because
each random sample must compute its weight based on the similarities between
real and virtual images; this is really time-consuming.

5 Conclusions and Future Work

This paper presented a modified hybrid bronchoscope tracking method that used
an electromagnetic position sensor and a sequential Monte Carlo sampler and
evaluation on a dynamic phantom. We used a sequential Monte Carlo sampler
to approximate the posterior probability distributions of the bronchoscope cam-
era motion parameters. Experimental results demonstrated that the modified
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method gives impressive approximations to the bronchoscope camera motion
and successfully registered a total of 5199 (92.0%) bronchoscopic images, increas-
ing the tracking performance by 17.0% compared to the state-of-the-art hybrid
method. We conclude that our method significantly alleviates the sensitivity to
the localization problems of electromagnetic tracking that usually result from
airway deformation, particularly respiratory motion. Our future work includes
experiments on patient datasets using our proposed method in the operating
room and improvement of its computational efficiency.
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Abstract. We propose a new framework that allows simultaneous mod-
elling and tracking of articulated objects in real time. We introduce a
non-probabilistic graphical model and a new type of message that prop-
agates explicit motion information for realignment of feature constella-
tions across frames. These messages are weighted according to the rigid-
ity of the relations between the source and destination features. We also
present a method for learning these weights as well as the spatial relations
between connected feature points, automatically identifying deformable
and rigid object parts. Our method is extremely fast and allows simul-
taneous learning and tracking of nonrigid models containing hundreds of
feature points with negligible computational overhead.

1 Introduction

Articulated object models have become an active research topic in recent years.
In the vast majority of applications, an object is represented by a graphical
model connecting rigid body parts [1L2]. While those models are usually designed
by hand, some solutions have been proposed to automatically learn articulated
models from tracks of feature points [3l[4]. Unfortunately, robust feature tracking
proves to be a challenge on its own in long sequences.

Tracking those points becomes much easier when they can rely on a feature
graph to assist them. Since good tracking requires a model and a model is learnt
based on good tracking, the most obvious solution is to simultaneously track
and learn the feature graph. While some solutions have already been proposed
for offline learning [5] or learning based on a short initialisation period [6], very
few are dedicated to online learning. This domain is indeed very challenging:
not only must both learning and tracking be computed in real time, but also
tracking must rely on an incomplete intermediate model. Although we addressed
the latter issue with an uncertain Gaussian model that explicitly accounts for
its predictive power [7], we were then only able to achieve real-time tracking on
very small feature graphs. Most of the computational time was not dedicated to
learning but to tracking using the popular Belief Propagation solution [8,@] to
propagate position likelihoods between nodes of the graph.

Here, we propose a new tracking solution that sacrifices the multimodality
of nonparametric, probabilistic methods for a significant gain in computational

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part ITII, LNCS 6494, pp. 422{435| 2011.
© Springer-Verlag Berlin Heidelberg 2011
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efficiency. The main idea here is to keep the benefits of a propagation scheme
to share information between nodes, but formulated for a new, non-probabilistic
feature graph. While each node of the graph still represents the current position
of its associated feature point, propagated messages do not convey a potential
function but simply the information needed to align feature points in the new
image. Thanks to this solution, we will show that large feature graphs can be
simultaneously learnt and tracked in real time. As feature points, we will present
our method using edgels (i.e. points along edges) because they are more robust
to illumination changes and lack of texture. This also allows us to show that,
even if each edgel only provides a 2D translational constraint, it can be tracked
properly in a 6-dimensional affine space thanks to our propagation method.

After discussing some background in Section Bl we will introduce in Section
the image alignment of a template based on the motion of a complete set of
feature points. This will give us a first idea of the information that has to be
conveyed in order to align features in a new image. In Section [ we will consider
each feature as a template but with a connection only to its direct neighbours,
and show how information from further features can be propagated in order to
be used in its alignment. In Section Bl we explain how spatial relations between
feature points are learnt and used during Affine Warp Propagation. Finally,
experimental results are presented in Section

2 Related Work

Various methods have been proposed for simultaneous learning and tracking
of rigid graph models [7,[I0,[IT]. The main drawback of these methods is their
limitation to rigid objects or so small that feature displacements can be assumed
spatially coherent.

Unsupervised learning of articulated models from a video sequence usually re-
lies on existing feature trajectories that are processed off-line [3/4]. Ramanan et al.
[5] proposed an off-line unsupervised method that simultaneously discovers, tracks
and learns articulated models of animals from video. Unfortunately, their method
is slow and requires the whole video to be treated as a block, making it impossi-
ble to adapt to an on-line process. Krahnstoever et al. [6] presented an automatic
on-line acquisition and initialisation of articulated models. Their method extracts
independently moving surfaces and tracks them using Expectation-Maximisation
during a short initialisation period. An articulated model is deduced from these
motions and is used for tracking in subsequent images. Since no model update is
provided, it is strongly dependent on the key-frames selected for learning. Finally,
Droin et al. [12] developed a method to incrementally segment the rigid parts of an
object on-line. It maintains a set of possible models learnt from previous frames,
and uses them for tracking. Although interesting, their technique suffers two main
drawbacks: it requires a foreground extraction, and it doesn’t learn or use any spa-
tial relations during tracking.

In terms of feature-graph tracking, the most popular solution is Belief Prop-
agation (BP) [8l9] and its derivatives like Nonparametric Belief Propagation or
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Sequential Belief Propagation [9JI3[14] that combine BP with particle filters. Al-
though our method is completely different from BP since it is a non-probabilistic
solution, its message passing process is strongly inspired from it. Apart from that,
our method is more closely related to image alignment techniques such as the
Lucas-Kanade algorithm [15[16].

3 Image Alignment via Affine Warps

Consider, first, that we have a model of the object we want to track. This model

consists of a weighted set of n edgels and their positions X = (x1,...,%,) in the
model’s referential. In order to align this model with a set of target positions
T = (t1,...,t,) in a given image, we use an affine warp:
"y
l+p1 p3s ps ’
W(x;;p) = i 1
(i) { P2 1+ Dpape yf S

where p = [p1, p2, 3, P4, P5, Pe| corresponds to the warp’s parameters, and x; =
[, y:]. Alignment of the model with target positions is given by the warp that
minimises the sum of squared residuals

R:Zwi”W(Xi;p) — ;|| (2)

with w; representing the weight of point 1.

In the case of tracking, we can assume that a current estimate of p is known
and target positions T' = (ti,...,t,) can be obtained using the new image (using
the closest contour points to each edgel for example). Alignment of the template
in the new image is then obtained by minimising R for the incremental warp

W(x, Ap) :
R = ZwZ-llW(W(Xi;p);Ap) —ti? 3)

Then parameters p are updated such that
W (x; Pnew) = W(W(x; Pola); AP). (4)

In order to solve the warp update, the expression in equation Bl is linearised by
performing a first-order Taylor expansion on W(W (x; p); Ap) to give:

Since W(x;0) is the identity warp, W (W (x;p);0) then simplifies to W (x; p).
Following the notational convention that partial derivatives with respect to a

oW 2

W (W (xs;p); 0) + op

Ap; — t; (5)
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column vector are laid out as a row vector and with W (x;p) = [W,, W, |7, the
Jacobian %Vg of the warp at equation [il is given by:

ow |G OWe . e 20y010
op — = (6)

Op1  Opa Ipe

Op1  Op2 Ope

Notice that %‘g is computed for W (W (x; p); Ap), which means that values used
in equation [0 are the current coordinates of the points in the image.

The solution to the minimisation of equation Al is obtained by setting to zero
its partial derivatives with respect to Ap:

B ow 1t
Ap—H 1Ziwi[ap} D, (7)

where D; = [t; — W(x;; p)]T is the displacement required of point ¢, and H is
the n x n Hessian matrix (here with n = 6):

w3

The warp update then consists of iteratively applying equations [ and [ until
estimates of the parameters p converge (in the case of affine transformation, one
iteration is sufficient since the system is linear in the parameters which wouldn’t
be the case with a parameter such as orientation for example).

The solution obtained in equations[7and [§is interesting because it means that
ow]”
op
sizes are independent of the number of points used. The fact that both matrices
are computed as a sum over the points is also advantageous since information
provided by new points will be easily added to the current matrices. Those two
conditions met, a message containing them seems an attractive candidate to
propagate motion information.

Ap is computed using only the two matrices Hand S =", w; [ D; whose

4 Affine Warp Propagation

In the case of a feature graph, no feature point is connected to a global model.
Each one has only access to a set of learnt relations with its direct neighbours.
Since the motion of an edgel is locally ambiguous, it will require information
from the biggest possible neighbourhood. Moreover, if relations between edgels
have to be learnt, it would be more convenient to express edgel configurations
in an affine space instead of simply 2D space. In order to compute the affine
warp needed to align a point and its surrounding in a new image, information
will then have to be propagated in the graph. Before getting into the details of
which information is required and how to propagate it, let’s first consider the
representation of the non-probabilistic graphical model we wish to learn.
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Fig. 1. Simple line graph situation where all spatial relations between connected points
are rigid except for the relation between o and 8. This means that this graph represents
two uncorrelated rigid sets of points: one on the left and one on the right of the relation
between « and (. The learnt weights between a node k and the node to its right are
given by wy|(x+1) (centre panel). In the case where messages are propagated from left
to right, the bottom panel illustrates the resulting influence wy; on the rightmost point
Jj of each upstream point k. Here, the null weight w3 eliminates the influence on p;
of the points that are not in the same rigid set.

4.1 Non-probabilistic Graphical Model Definition

A node i of a graph contains the set of parameters p; used to warp the corre-
sponding edgel ¢ and its neighbourhood from the origin to a position that aligns
them with the current image. In that sense, a node is similar to the template
discussed in Section [3] except that it doesn’t have direct connection to all the
points used for its alignment.

An edge going from node i to node j represents two types of information.
First, it contains the learnt affine parameters r;; of i as they were previously
observed in the affine space of j, i.e. the parameters that align i and its sur-
roundings from the origin to their observed positions in the space of j. Secondly,
it contains the weight w;; node j should give to the information coming from
node ¢. This weight is directly related to the rigidity of the relation: the lower the
correlation between two features, the lower the weight and then the smaller the
influence of messages passing through this connection. This means that infor-
mation coming from points behind a non-rigid connection will have no influence
on image alignment (see Figure [I] for an example).

4.2 Message Definition

In this section, we will use, for the sake of explanation, the simple line graph
shown in Figure[Il If node j had access to the displacement Dy, of all the points
on the graph, its warp update using equation [ would be

Wi 1"
Ap; =Hj! Zwklj { apk'lj} Dy, 9)
k<j J

AWy
whereweuse "
Opj

i.e.fortheprojectionintheimage coordinatesofthe 2D position ¥y ; = [r4 k|5, 7y,k|5]

toindicate that the Jacobian is computed for W (W (¥;; p;); 0),
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of node k in the referential of node j. Now, if we define wy; = wy;w;); for the
graph of Figure[I] the sum can be decomposed the following way:

Wy 1"
Sj:ZwkU[ J:| Dk
k< op;

oW, 1t oW 1%
:wj[ ]_IJ} Dﬁmewku[ kl} Dy,

(10)

(11)

Ip; ki opi
=5;+ w,»USZ- (12)
where w; = wj; is the weight node j gives to its feature point and, more
importantly, where we made the assumption that
OWy;  OWyy,
k|j _ k|i (13)
Ip; op;

This assumption means we consider that point k is projected in the same image co-
ordinates by nodes i and j, i.e. W (¥4;; pj) = W (¥4);; Pj) which is actually correct
if nodes ¢ and j are linked by a perfectly rigid spatial relation. Since the weights
are null for non-rigid relations, this assumption seems valid. Unfortunately, we
will see in Section [43] that even if the weights are all correct (which is not guar-
anteed during the learning phase), small numerical errors can trigger a drift from
the correct tracking result. While this will motivate a more general formulation
in Section 3], we propose to continue with this assumption for now in order to
understand more easily what type of information a message should contain.
Decomposing H; in a similar way to Equation [[2], we obtain:

Equations and [[4] mean that the warp update for a node j based on all the
points of the graph in Figure[Il can be computed using only the information from
itself and that accumulated by node 7. In the case of affine warps, S; and H; are
given by:

Sj =wj [2;Dyj €Dy j yiDej yiDyj Daj Dy ;1" (15)
x? 0 zjy; 0 =z; 0
0 fﬂ? 0 fﬂjyj 0 l’j
vy 0 y? 0 y; 0
Hj=w; |9 i i 16
J 710 zy; 0y 0y (16)
z 0 y 0 10
0 X 0 Yj 01

where we used D; = [Dy j, Dy ;l, ©j = Pa.j, Yj = Dy,;- Note that H; has a lot of
null or identical elements. Without any loss of information, we can thus reduce
it to the vector:

T
H; = w;, [1 zj Yj xf z;Y; ng] (17)
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A message containing the two vectors S and H is then enough to convey all the
information needed to align the nodes in the new image. Notice that the messages
are not expressed in the same space as the feature points or the nodes. This way,
displacements can be accumulated through small 12-element messages in order to
compute the affine alignment of the nodes without any loss of information. More-
over, an affine warp can be computed (given that enough nodes have been visited)
with those messages while each node only needs to provide a translation. With a
propagation scheme inspired from Belief Propagation [8,[9], the computation of
the warp update for each node 7 can be summarised in 3 steps :

1. Initialise the information for each node k of the graph using equations
and [[7 and send a first message to each neighbouring node i € N'(k):

Sgi = Sk; (18)
0
H,;, = Hy; (19)

2. Propagate the information between the nodes for [ iterations (for a message
sent from node 4 to node j):

SL=S+ > wySE! (20)
kEN(@)\J
! -1
H;=H;+ Z wy; Hy, (21)
kEN (i)\j

3. Compute the update of the warp parameters for each node j:

S; =S+ > wySi (22)
keN(j)
l
Hj = Hj + Z wkUij (23)
keN(5)
H, — H; (24)
Ap; = H}''S; (25)

with NV (j) representing the set of neighbouring nodes to node j. This solution
provides a very fast propagation method that allows each node to align itself in
a new image using as much information as possible provided by other feature
points. Notice that no information is lost in the message passing process. This
means that updating the warp parameters by Equation[7 using a template or by
Equation 28] using the message passing process will give exactly the same result
(given that the messages went once through all the nodes of the template).

4.3 Message Correction

In the previous section we made the assumption that W (¥ ;; pj) = W (¥x)i; Ps)
in order to obtain Equations [[2 and [[4 This assumption means that a node k
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Fig. 2. Consider the edgels in Figure 2al Those edgels should be in straight line but
are not, due to tracking inaccuracy. If nodes ¢ and j are aligned in this new image
using displacement of their direct neighbours, they will drift even further from each
other while they should align along the contour. On the other hand, if they know where
their neighbours should be and compute their displacement from there, the nodes will
be able to correct for the current drift (see Figure bl where Prii = W(#p;p:) and
Pjj; = W (#;;; p:) represent the positions nodes h and j should have with respect to
node 7).

should be expected in the same position by all the nodes belonging to the same
rigid block. Even if all the nodes are indeed rigidly connected to each other, this
assumption might not be correct simply because of numerical inaccuracies in
the tracking result. Consider, for example, the case of tracking a set of nodes as
shown in Figure[2l Edgels have been extracted along a line segment and tracked
for a few frames. Due to some inaccuracy in the tracking, the edgels are not in
a straight line anymore. If node ¢ aligns itself using its two direct neighbours’
motion information, it will be pushed up while it should actually go down (it will
also be dramatically scaled down on the vertical direction in case of affine nodes).
Similarly, node j will be forced to move down making it drift even further from
the correct tracking result. The reason for this problem is quite simple: each
node acts as the model described in Section [3] but does not itself evaluate the
displacement of the points used. This displacement is indeed provided by each
individual node without any consideration of whether it belongs to the model
of another node or not. If the assumption W (¥y;;p;) = W(Fx);; ps) is verified,
the points used by a model are located exactly where they are supposed to
be, and the displacement information is therefore correct. If it is not verified
(for numerical reason for example), the node will simply try to match this new
configuration of edgels to the current image instead of trying to get back to
its initial configuration. For the example of Figure 2al this means matching the
v-shape form by &, i and j to a line segment.

By learning the correct relative positions and using them as the origin of the
displacement (as shown in Figure RH)), the proper relative position of the nodes
can be maintained and the drift problem eliminated. Concerning a message to a
node ¢, this means that every occurrence of a position py = W(f‘k|k = 0; px;) must
be shifted to the expected position py); = W(f‘k“; pi). By the same idea, every
displacement Dy = t; — pr must be replaced with the expected displacement
Dyji = tr — Prji- Notice that the target tx is not modified and is then only an
approximation of the true target py|; should have provided. Indeed, the correct
target ty|; cannot be computed since the information about py; is merged into S;
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Fig. 3. Position correction: Py represents the current 2D position of the edgel associated
with node k, py|; its position as expected by ¢ and Py, its position as expected by j.
In this example, nodes should be align along a straight line while they are more in a
curve configuration. If node i has already corrected the position of the nodes on its left
into a straight line, all is left to do for node j is to apply a single warp to all the py; to
align them with the py;. The warp needed to do that is the one that aligns the affine
parameters p; to p;|;.

and H;. However, since the drift is corrected at each frame, it is kept very small
and ty is therefore a good estimate of ty);. With these modifications applied, we
can see in Figure 2b] that node ¢ will receive coherent information, causing it to
move downwards as needed.

The correction of the positions and displacements of all the points used in
the alignment of a node j is a little tricky because a node j has only access to
the information (r;;and p;) related to its direct neighbours and the messages

mél = {Sil,Hél} they send. This means that a message coming from a neigh-
bour ¢ must already be corrected for ¢ (since no spatial relation has been learnt
with further points) and then adapted for j. Figure Bl shows an example of this
situation where, again, we consider the case where all the points should be in
a straight line while they are obviously not. So, assume that all the positions
Pr and displacements Dy of the points k£ included in the message mél have
already been corrected into pyj; and Dy; respectively. In order to obtain the
positions Py|; expected by j, the only thing left to do is to adapt the positions
{f)”i, R f)i“} proposed by node ¢ to the positions {1?)1|j7 ... ,f)i|j} expected by
node j. The correction is the same for all the positions included in the message.
Given that p; and p;; are known by node j they can be used to compute the
transformation needed to go from pyj; to Pgj;. This transformation is simply
given by

Xl = W (W (Brjis P )i pifj) (26)

for any py;. Equation 26 means that a position py; is warped back into the refer-
ential of node ¢ and then warped into the image using the warp parameters p;);.
Since we do not have direct access to positions py|;, we will have to apply this

. . . l . .
transformation directly to the message, i.e. to Sé»i and H ;. Using the notation

xk|j acuv Ik”

ki | = WV (Briip; )ipagg) = | bdw | | ywps (27)
1 001 1
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for the correction of the points in the message, we will now apply this correction
directly to the Hessian part of the message corrected by node i and sent to 7,
ie. T
l 2 2
Hj; = Zwkﬁ [1 Tl Ykli Ty); ThliYkli yk;|i:| (28)
k

. l
The corrected Hessian part H ;) ;
terms of, which gives

is obtained using equation on each of its

1 0 0 0 0 0
v a c 0 0 0
l w b d 0 0 0 l
Hji; = v 2av 20 a® 2ac Hjiji (29)

vw aw + bv cw + dv ab ad + be cd
w?  2bw 2dw b 2bd d?

The correction of S;; is somewhat more difficult because it also depends on

Dyji = tr, — Prji- The target position t is not modified by the correction, so we
replace Dyj; = [Dy kjis Dy kjs] DY [tee — Zijir tyx — Yja] in

St = Zwku (ki Do wji @i Dy ili Ynti D kli Ui Dyl Daki Dy g )" (30)
%

. l .
and apply the same correction as for Hji|z‘ to yield

L
a0cOv 0 OvO0acO Hlﬂlj(4)
0a0c0 v 00v0ac H;i|j(5)
b0d0Ow 0 OwO0bdO| H.,.(5)

S5 = 0b0d0w| Suli T [00woba| Hili - H?_,“.@ (31
000010 010000 H?"J(Q)
000001 001000 Jili

[H;;3) ]

Using these two equations to correct the messages allows us to solve the drift
problem by maintaining the nodes at their learnt relative positions, making the
tracking more robust to occlusions and clutter.

5 Learning Spatial Relations and Weights

As we noted above, the learnt relations are key to successful tracking with Warp
Propagation. Not only do they define the shape of the correlated neighbourhood
used in the tracking through their weight, but they also model the expected
relative configurations that keep the feature points in proper relative positions.
The relative expected configuration r;; of a node 4 with respect to a node j is
learnt from the observed affine parameters of ¢ in the affine space of j. Since
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those relations are learnt online during tracking, they should be reliable from
the first frame even with an obviously incomplete data set to be learnt from.
This means that, while the relations are expected to assist in tracking, they can-
not exert an overly strong bias that would hamper it. Earlier we proposed an
Uncertain Potential Function that solves this problem for visual feature graph
tracking with Sequential Belief Propagation by combining an informative Gaus-
sian model learnt from the previous observations with a non-informative part [7].
This potential function for the relative position of a node i expressed in the affine
space of a node j was given by

e VST Y (s =1
T/Jz‘|j(Pian) = >‘i|je 2 (S5 — i) 25 (811 —74)5) +(1- )‘ilj) (32)

where s;|; represents the observed parameters p; expressed in the space defined
by pj, ry; is the learnt relative configuration (i.e. the mean of the relative con-
figurations already observed), \;; is the probability that the model is indeed
Gaussian and ffﬂ ;j is a covariance matrix that accounts for the uncertainty re-
lated to the incomplete data set. Due to lack of space here, we refer the interested
reader to our earlier work [7] for more details.

While this spatial relation representation is specially designed to be used
for the tracking during its learning phase, it is also specific to probabilistic
feature graphs, which our representation is not. Nevertheless, very few changes
are needed to adapt this uncertain model to our problem. Indeed, the computed
mean r;; already represents the most likely relative affine configuration we used
in Section E so we simply have to compute our relational weight using the

covariance matrix Y;; and model probability A;; from the uncertain model [7]:

L~1nn,i|j
— 0—2 -
n

where Z:’,m’ﬂj represents the nth diagonal element of Z:’Z-U, and o;); = [0135, - -
06,“]-] defines the level of variance accepted for each parameter. This way, the
more variance we observe in the relative configuration of two feature points, the
less weight each one will give to a message coming from the other.

6 Experiments

In this section, we demonstrate the performance of our method on a set of
representative examples of simultaneous learning and tracking. Since we are in-
terested in articulated objects, we propose to use points extracted along their
skeleton (let’s call them skedgels) in addition to edgels. Those points do not
have an appearance in the image and instead rely on edgels to infer their dis-
placement. Models are initialised as shown in the first row of Figure [ where
relations are created between each pair of skedgels within a distance lower than
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Fig. 4. Examples of simultaneous modelling and tracking of articulated objects. The
first row shows the graphs as they are initialised in the first frame. The three central
rows show intermediate results during the video (arm: frames 40, 90 and 255, body:
60, 130 and 330, finger: 90, 230, 310 and hand: 70, 230 and 310). Connections in red
between skedgels correspond to relations with a weight lower than 0.5. The last row
shows the weights of the relations in the last frame of the video. The y-axis corresponds
to the weights (range between 0 and 1) and the x-axis correspond to the index of the
relation. Although the correspondences of these indices to the feature graphs are not
shown, it is evident that there are clean cuts in the graph with weights close to 0 that
correspond to non-rigid parts, while the rigid relations have a weight close to one.

a given threshold and between skedgels and edgels using Delaunay triangula-
tion. The model is tracked using Warp Propagation with 10 iterations, and rela-
tions between skedgels are updated at each frame with the method explained in
Section Results can be found in Figure @ where the last row represents
the relation weights between skedgels at the end of the video. Notice that,
while edgels and skedgels on their own would slide long the objects, here their
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correct position is maintained thanks to Warp Propagation. Thanks to the learnt
relations, the influence neighbourhood is limited to the rigid parts.

On a Pentium Core 2 Duo 2x2 GHz with 2Gb of RAM, the tracking time for
each frame (including the likelihood propagation) is between 1.6 and 3.6ms, and
the learning time is between 0.3 and 0.7ms. The slowest sequence is the hand
with 99 skedgels, 319 edgels and 99 relations. The fastest is the finger with 42
skedgels, 203 edgels and 41 relations.

7 Discussion

We presented a new framework for efficient propagation of alignment informa-
tion through a feature-point graph. Instead of propagating potential functions
as is usually done, we propagate only the motion information needed to align
feature points and their surroundings in the image. We showed that this solution
allows us to simultaneously track and learn unknown, articulated objects in a
few milliseconds per frame, making our solution practical in real-time scenarios
even with a large number of feature points. This article focused mainly on track-
ing but, in the future, it would be interesting to provide a learning scheme for
articulated relations instead of simple Gaussian models.

Acknowledgement. This work is supported by a grant from the Belgian Na-
tional Fund for Research in Industry and Agriculture (FRIA) to A. Declercq and
by the EU Cognitive Systems project PACO-PLUS (IST-FP6-IP-027657).
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Abstract. Human action recognition is an important problem in com-
puter vision. Most existing techniques use all the video frames for action
representation, which leads to high computational cost. Different from
these techniques, we present a novel action recognition approach by de-
scribing the action with a few frames of representative poses, namely
kPose. Firstly, a set of pose templates corresponding to different pose
classes are learned based on a newly proposed Pose-Weighted Distribu-
tion Model (PWDM). Then, a local set of kPoses describing an action are
extracted by clustering the poses belonging to the action. Thirdly, a fur-
ther kPose selection is carried out to remove the redundant poses among
the different local sets, which leads to a global set of kPoses with the
least redundancy. Finally, a sequence of kPoses is obtained to describe
the action by searching the nearest kPose in the global set. And the pro-
posed action classification is carried out by comparing the obtained pose
sequence with each local set of kPose. The experimental results validate
the proposed method by remarkable recognition accuracy.

1 Introduction

Human action recognition in videos has great potentials in applications such
as video surveillance, content-based video search, human-computer interaction,
etc. In general, an action recognition process can be divided into three steps
briefly: feature extraction, action representation and classification. To extract
features over complex conditions like different person appearances, backgrounds,
viewpoints and resolutions and keep the representation good enough to carry out
robust classification, most conventional approaches employ all the video frames
of an action as the representation [IL2,3], which leads to extreme spatial cost
for feature storage.

When the action representation is ready, human action recognition becomes
a classification problem. There are two groups of action classification meth-
ods: time-dependent models and time-independent models. The time-dependent
model consists of states linked together wherein each states summarizes the ac-
tion performance at a certain moment, e.g., Hidden Markov Model [4].
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The time-dependent model describes the complicated actions well but lacks dis-
criminative ability for some related action such as walking and jogging. In con-
trast, the time-independent models deal with this problem well by providing
more discriminative ability, but need extremely high time and memory cost for
computation, such as k-Nearest Neighbor (NN) [3].

It is proved that very few frames are enough to perform action recognition
[EL6L78L9LT0], which leads to extraordinarily decreasing in spatial and temporal
cost. Schindler et al. [9] combine both shape and flow responses as features and
compare 10 different frame lengths from 1 to 10 as action descriptor. Thurau
and Hlavéac [10] use Histogram of Gradient (HoG) [II] as the basis feature and
focus on human pose in each frame by background subtraction and non-negative
matrix factorization. Hatun et al. [5] model an action templates as a string
of poses which are identified by HoG. Novel actions are matched to templates
by applying well-known string comparing method, about a half of poses are
needed only. However, these methods use the fixed same number of frames for
all actions without considering the different characteristics of each action. On one
hand, the frames for an action may be not enough to describe the discriminative
information which leads to misclassification; on the other hand, the frames used
are more than requires which causes extra computation and storage cost.

Action training

Training N S a=thod ’ Distribution of inter- and ’ Pose-Weighted
poses ﬂ intra-class distance Distribution Model
Training N
i 7| KP jack =[%1,55,78,..]
on oses bend = {52,510, #23....]
Global set Further for each :
of kPose kPose action | runm = (45 419 425)
selection

Action classification

L 2
Testing , Nearest kPose N Recognition
action @y v result

Fig. 1. Overview of our approach

Motivated by these issues, we introduce a novel representation of human action
and the corresponding classifying method in this paper. Fig. [l shows the work-
flow diagram of the proposed approach. The representative pose, namely kPose
which is extracted from a class of poses in our approach, is introduced to describe
the human action and reflects the main state of the action. Different actions are
described by different numbers of kPoses where the numbers are decided auto-
matically by pose-weighted distribution model.

In our approach, HoG is extracted as features from each video frame. All the
poses belonging to an action are clustered ten times, into a certain number of
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classes where the class number is from 1 to 10. To compare the clustering results
of different class number, we computed the distances between poses and divided
them into two sets: intra- and inter-class distance set. These sets are used to
construct the PWDM, which takes the pose templates as directrix and estimates
the impact of class number on clustering results. With maximal estimate value,
the class number is selected as the kPose number for the action. Then, kPoses are
extracted from each class and forms a local set. However, as it is probable that
the local sets from different actions have overlap, further selection is carried out
to remove the redundant kPoses to obtain a global set for action representation.
For the action classification in our approach, each pose in the video is com-
pared with the kPoses in the global set and represented by the the nearest one.
So each action can be described by a set of kPoses and encoded by a series of
numbers indicating the kPoses. Finally, a straight forward matching process is
carried out to identify the action type by referring to the training actions.

2 Feature for Pose Description

Reliable feature extraction and pose detection are crucial for successful pose-
based action recognition. Most difficulties in poses matches arise from back-
ground and pose articulation. Local features, such as interest-point, speedup
robust feature (SURF) [12], are extracted reliably and robust to different back-
ground and localization. Laptev and Lindeberg [I3] use Harris corner descrip-
tor [I4] as the interest-point in 3D.space-time model where the spatial and
temporal neighborhood undergo a translation in time. In a similar fashion, Dollar
et al. [15] apply Gabor filter on the spatial and temporal dimensions individually
after interest-point extraction. In these approaches, the pose representation is
organized as a collection of local features which often leads to the loss of spatial
correlation and the decreasing of pose detection rate.

Global features, such as silhouette, edge and optical flow which are obtained
through background subtraction or tracking, are powerful because most of the
information in the feature are useful for the description of pose articulation.
However, the global features are usually sensitive to noise, viewpoints and ap-
pearance. To overcome the limitation of global features, Danafar and Gheis-
sari [16] divide the extracted optical-flow into cells, each of which is computed
locally. Davis et al. [2] organize a sequence of silhouettes as history energy image
(HEI). However, overwriting HEI leads to less discriminative ability for action
recognition in moving scene.

Very recently, HoG descriptor shows its robustness in pedestrian detection and
recent works [BL[I0,[17] show its power for pose detection in action recognition.
Therefore, as a basis feature for describing poses we use the HoG descriptor which
divides the oriented gradient of each pixel into cells and modelled to histogram.

3 Pose Weighted Distribution Model

At the beginning of this section, we would like to describe the pose template
labelling method which intended to decrease the disagreement between human
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labelling and assumed ground-truth which has been discussed in [I8]. Then
the distribution function of intra- and inter-class distance, i.e., the basement
of PWDM, are computed on pose templates. At last, we introduce the PWDM
model which estimates the clustering result to decide the class number for each
action.

Table 1. Semantic labelling method. Each 1 ~ 2 bits indicate a articulation of a part of
human body, and different value of these bits indicate clear different pose articulations.
This method describes 14 pose templates and corresponding class of poses as present