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Preface

The 2010 Asian Conference on Computer Vision took place in the southern
hemisphere, in “The Land of the Long White Cloud” in Maori language, also
known as New Zealand, in the beautiful town of Queenstown. If we try to segment
the world we realize that New Zealand does not belong officially to any continent.
Similarly, in computer vision we often try to define outliers while attempting
to segment images, separate them to well-defined “continents” we refer to as
objects. Thus, the ACCV Steering Committee consciously chose this remote
and pretty island as a perfect location for ACCV2010, to host the computer
vision conference of the most populated and largest continent, Asia. Here, on
South Island we studied and exchanged ideas about the most recent advances in
image understanding and processing sciences.

Scientists from all well-defined continents (as well as ill-defined ones) sub-
mitted high-quality papers on subjects ranging from algorithms that attempt
to automatically understand the content of images, optical methods coupled
with computational techniques that enhance and improve images, and capturing
and analyzing the world’s geometry while preparing for higher-level image and
shape understanding. Novel geometry techniques, statistical-learning methods,
and modern algebraic procedures rapidly propagate their way into this fascinat-
ing field as we witness in many of the papers one can find in this collection.

For this 2010 issue of ACCV, we had to select a relatively small part of
all the submissions and did our best to solve the impossible ranking problem
in the process. We had three keynote speakers (Sing Bing Kang lecturing on
modeling of plants and trees, Sebastian Sylwan talking about computer vision
in production of visual effects, and Tim Cootes lecturing about modelling de-
formable object), eight workshops (Computational Photography and Esthetics,
Computer Vision in Vehicle Technology, e-Heritage, Gaze Sensing and Inter-
actions, Subspace, Video Event Categorization, Tagging and Retrieval, Visual
Surveillance, and Application of Computer Vision for Mixed and Augmented
Reality), and four tutorials. Three Program Chairs and 38 Area Chairs finalized
the decision about the selection of 35 oral presentations and 171 posters that
were voted for out of 739, so far the highest number of ACCV, submissions.
During the reviewing process we made sure that each paper was reviewed by
at least three reviewers, we added a rebuttal phase for the first time in ACCV,
and held a three-day AC meeting in Tokyo to finalize the non-trivial acceptance
decision-making process.

Our sponsors were the Asian Federation of Computer Vision Societies
(AFCV), NextWindow–Touch-Screen Technology, NICTA–Australia’s Infor-
mation and Communications Technology (ICT), Microsoft Research Asia,
Areograph–Interactive Computer Graphics, Adept Electronic Solutions, and 4D
View Solutions.



VI Preface

Finally, the International Journal of Computer Vision (IJCV) sponsored the
Best Student Paper Award.

We wish to acknowledge a number of people for their invaluable help in
putting this conference together. Many thanks to the Organizing Committee for
their excellent logistical management, the Area Chairs for their rigorous evalu-
ation of papers, the Program Committee members as well as external reviewers
for their considerable time and effort, and the authors for their outstanding
contributions.

We also wish to acknowledge the following individuals for their tremendous
service: Yoshihiko Mochizuki for support in Tokyo (especially also for the Area
Chair meeting), Gisela Klette, Konstantin Schauwecker, and Simon Hermann
for processing the 200+ Latex submissions for these proceedings, Kaye Saunders
for running the conference office at Otago University, and the volunteer students
during the conference from Otago University and the .enpeda.. group at The
University of Auckland. We also thank all the colleagues listed on the following
pages who contributed to this conference in their specified roles, led by Brendan
McCane who took the main responsibilities.

ACCV2010 was a very enjoyable conference. We hope that the next ACCV
meetings will attract even more high-quality submissions.

November 2010 Ron Kimmel
Reinhard Klette

Akihiro Sugimoto
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Fast Computation of a Visual Hull

Sujung Kim, Hee-Dong Kim, Wook-Joong Kim, and Seong-Dae Kim

Department of Electrical Engineering,
Korea Advanced Institute of Science and Technology, Korea

Abstract. Two techniques for the fast computation of a visual hull
without simplification are proposed. First, we tackle the most time con-
suming step for finding the intersections between projected rays and
silhouette boundaries. We use the chain coding representation of silhou-
ette boundaries for fast searching and computing with sub-pixel accuracy.
Second, we analyze 3D-2D projection and back-projection relations and
formulate them as 1D homographies. This formulation reduces compu-
tational cost and ambiguity that can be caused by measurement errors
in the back-projection of 2D intersections to 3D. Furthermore, we show
that the formulation is not limited to the projective space but also useful
in the affine space. We generalize our techniques to an arbitrary 3D ray,
so that the proposed method is directly applicable to both volume-based
and surface-based visual hull methods. In our simulations, we compare
the proposed algorithm with the state-of-the-art methods and show its
advantages in terms of computational cost.

1 Introduction

A visual hull is a three-dimensional (3D) boundary constructed by the silhouettes
of an object from multiple views. Visual hull computing is relatively simple
and robust, and so it is commonly used in various applications such as image-
based modeling, real-time geometry capture systems, and gesture recognition.
In [7], Laurentini et al. first defined a visual hull and presented its fundamental
properties. Since then, a number of studies have been devoted for obtaining
geometric details about a visual hull in efficient ways.

Generally, visual hull computing is classified into two types: volume-based
approach and surface-based approach. Volume-based approaches, which are tra-
ditional, consider a visual hull as the union of voxels whose projections are
inside 2D silhouettes. These approaches are straightforward to implement but
voxel resolution has to be increased for building a precise visual hull, which con-
sequently leads to a heavy computational burden. In practice, the computational
complexity of voxel carving algorithm is O(n3) where n is the resolution of sin-
gle dimension. To reduce computational cost, a number of schemes using octree
data structure have been developed to efficiently compute a visual hull [3, 13].
In [9, 11, 14], the complexity issue was tackled by modifying voxel-wise com-
putation into the intersection problem of line-to-silhouette boundaries. These
are, however, still heavy to compute a precise object for real time applications.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 1–10, 2011.
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Recently, for speeding up the computational time, computations in a volume-
based approach are effectively parallelized and implemented on the GPU [6,14].

In comparison, surface-based approaches compute a visual hull with the inter-
sections of visual cones which are the back-projections of silhouettes in the 3D
space. These approaches can provide more detailed information about original
surfaces. However, when the shape of an object is complicated, it is likely to
yield numerical instability due to a degenerate case or the singularity problem.
In [1,10], to resolve the instability, 3D intersections and surfaces were computed
on the 2D domain based on epipolar geometry. Additionally, they approximated
silhouette boundaries as polygons to reduce a computational cost, but such sim-
plification makes a final visual hull lose details of shapes. Lazebnik et al. [8]
proposed an image-based method to represent a visual hull without simplifica-
tion, but it is impractical for fast and robust computations. Recently, Franco et
al. [2] presented a simpler alternative to compute a visual hull with pixel-exact
boundaries. Even though it improved previous results in terms of geometric pre-
cision as well as computational efficiency, it requires considerable computational
time to estimate a visual hull with sub-pixel contours.

To determine the performance of visual hull computing algorithms, geometric
accuracy and computational efficiency are two crucial aspects. So far, most meth-
ods have mainly focused on obtaining detailed geometric information about a
visual hull. When it comes to a computation cost, they attempted to simplify the
representation of a visual hull through lowering voxel resolution or approximat-
ing silhouette boundaries. However, as we can easily expect, such simplification
makes a final visual hull include unnecessary parts or lose details of shapes.
Recently, to meet both goals which are geometric accuracy and computational
efficiency, higher voxel resolution and sub-pixel silhouette boundaries are used.
Hence, in order to improve computational efficiency without simplification, it is
necessary to reduce the most consuming part in computation of a visual hull.

In this paper, we propose a fast visual hull computing algorithm without
simplification on a visual hull. In the overall process of visual hull computing,
the step for finding the intersections of 3D rays and 2D silhouettes is the most
time consuming part. The proposed algorithm tackles this step by following
two techniques: first, we use the chain-coding representation for fast searching
of the intersections with sub-pixel accuracy; second, we analyze the projection
(3D-to-2D) and back-projection (2D-to-3D), and formulate them as line (1D)
homographies. In this formulation, we can avoid ambiguity in back-projecting
2D intersections to 3D and also can achieve compact computations. This paper
is organized as follows: Section 2 introduces the representation of silhouettes
using the chain codes and presents the fast search method of intersections. In
Section 3, we describe the proposed line homography techniques. In Section 4,
experimental results are presented, and finally, we conclude in Section 5.

2 The Proposed Method

In computing a visual hull, for given a single 3D ray, following steps are usu-
ally required: 1) projection of a ray onto a silhouette image; 2) computation
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Fig. 1. Computing intersections based on chain coding representation of silhouette
boundaries

of a line segment connecting the intersections between a projected ray and sil-
houette boundaries; and 3) transformation of the line segment to a 3D ray by
back-projection. Among these steps, we reduce the complexity of step 2), which
is the most time consuming, by chain-coding representation. Chain-coding rep-
resentation is one of the fundamental processes for binary image processing and
is computationally cheap. In step 2), we only use chain codes instead of prepro-
cessing such as rectifications [1] or edge bins according to contour points [10].
The proposed method has a lower incremental rate of computational complexity
compared to previous methods when image resolution is increased. In addition,
we generalize this technique to an arbitrary 3D ray, so that it is also useful in
a volume-based approach which is improper to use epipolar constraints. Fur-
thermore, in step 1) and 3) we formulate the 3D and 2D relations as 1D line
homographies to alleviate inaccurate computation that might be caused by cam-
era parameter errors or measurement noises. This interpretation leads to the
reduction of a computational cost.

2.1 Computation of Intersections

A chain code is a data structure which defines a regional boundary (contour)
by means of eight (or four) directional vectors, and chain code representation is
the process for generating a sequence of chain codes based on the neighborhood
relationship among adjacent boundary pixels. In our algorithm, we use the chain
coding representation of [4], which contains a start code so that a closed con-
tour can be represented by multiple segments, and traces internal and external
boundaries in clockwise and counter-clockwise directions, respectively.

Chain coding representation of silhouette boundaries can bring following
two benefits: first, it enables the computation of the intersections between
silhouettes and projected rays with sub-pixel precision because the intersection
can be considered as a line-crossing problem between a projected 3D ray and
a chain-code vector. Second, since the location of a boundary pixel is identified
simply from a corresponding chain code, we can easily exclude irrelevant pixels
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Fig. 2. Validity test: valid line segments of a target object are found using the cross
product of directional vectors of a chain code and a projected ray

for fast computing. For instance, if a boundary pixel is far enough from a pro-
jected ray, we can ignore neighboring pixels of it because these are unlikely to
be near an intersection point.

Now we describe the chain code based method for finding ray-to-silhouette
intersections. Assume that l is the projection of a 3D ray onto an image plane con-
taining a silhouette S. Line l is determined by its start point xs = (xs0, xs1, 1)T

and directional vector v = (v0, v1, 0)T, and silhouette S is represented as a se-
quence of N chain codes as S =

⋃N
i=1 si, where si is the ith chain code. Given

the chain codes and the projected ray, first, we conduct a crossing test which
identifies the intersection between l and S. For the crossing test, we compute
the signed distances between l and two neighboring pixels constituting si as:

C = {(v1x
i
0−v0x

i
1)− (v1xs0−v0xs1)}{(v1x

i+1
0 −v0x

i+1
1 )− (v1xs0−v0xs1)} (1)

where, xi = (xi
0, x

i
1, 1)T and xi+1 = (xi+1

0 , xi+1
1 , 1)T are the corresponding pixels

to si. If si intersects with l, C becomes negative (otherwise, C is positive).
Meanwhile, in the crossing test, it is unnecessary to compute the signed dis-

tance for every single chain code. As illustrated in Fig.1(left), assume that the
shortest Euclidean distance from xi+1 of a chain code si to l is d(>0). Since the
possible maximum distance between neighboring pixels is

√
2 (i.e., Euclidean

distance between two diagonal pixels), following �d/
√

2� chain codes never in-
tersect with l, which subsequently accelerates scanning speed by deleting the
irrelevant chain codes. In our experiments, more than 96% of chain codes were
excluded in the crossing test.

Once a chain code si is determined to meet with l using (1), next, we com-
pute the location of an intersection point. In this computing, instead of find-
ing the point in an image grid, we compute distance μ from starting point
xs = (xs0, xs1, 1)T on line l as:

μ =
ai
1(xi

0 − xs0) − ai
0(xi

1 − xs1)
(ai

1v0 − ai
0v1)

(2)

where, as in Fig.1(right), ai = (ai
0, a

i
1, 0)T is the directional vector of si. After

the intersections are found, finally, we conduct the validity test to find valid
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line segments which construct a visual hull. Fig.2 illustrates this test by an
example. Given four intersection points on a projected ray (circles with dots or
crosses inside), a projected ray can be divided into five line segments. Among
them, only two segments correspond to an object region whereas others have
to be eliminated. Due to chain coding, the validity of line segments can be
simply identified by computing the cross product of the directional vectors of an
intersecting chain code and a projected line as:

ai × v =

∣∣∣∣∣∣
i j k
ai
0 ai

1 0
v0 v1 0

∣∣∣∣∣∣ =

⎡
⎣ 0

0
ai
0v1 − ai

1v0

⎤
⎦ (3)

Since the external boundary and the internal boundary of a silhouette are coded
in counter-clockwise and clockwise directions, respectively, silhouette regions for
a target object must be located on the left side of the boundaries. Therefore,
as illustrated inside of green circle in Fig. 2, if ai

0v1 − ai
1v0 is negative (circle

with a cross), a target object lies on the decreasing direction of a projected ray
(represented as the red segment, i.e., dμ < 0), otherwise, a target object on the
increasing direction (i.e., dμ > 0).

2.2 1D Line Homography for 3D Ray Back-Projection

Generally, the projection (3D ray to 2D line) and its back-projection (2D line to
3D ray) are computed using a camera projection matrix (or epipolar geometry)
and its pseudo-inverse respectively. In practice, such computation might cause
numerical instability due to camera parameter errors or measurement noises.
Especially, since the estimation of back-projected 3D rays, Bi in Fig.3, is sus-
ceptible to even small errors in measurement noises, the crossing points of Bi

and L often become ambiguous. To resolve this computational instability, we
analyze the 2D and 3D relations, and present that those relations can be formu-
lated as 1D line homographies. Such interpretation can bring not only compact
computation but also computational robustness in finding a 3D ray intersection.

Given a 3D ray defined by a start 3D point X0 = (Xo0, Xo1, Xo2, 1)T and
a directional vector D = (D0, D1, D2, 0)T, 3D point X on the 3D ray can be
defined as X0 + λD, where λ represents the distance from X0 along a 3D ray.
For a given camera having its projection matrix P = [M|t], the projected point
x of X (i.e., x = PX ) is represented as x = x0 + λd, where x0 = PX0 and
d = (d0, d1, d2)T is from d = MD̃, where D̃ = (D0, D1, D2)T.

According to the oriented projective geometry theorem [12], if xo2 of x0 =
(xo0, xo1, xo2)T is negative when P = [M|t] and X0 are oriented, x0 cannot be
found on an image plane. Hence, to avoid this invisibility issue, we define an
arbitrary visible point xv as xv = xo + λvd. Then we force xo2 + λvd2 to be
always positive (Here, we set xo2 + λvd2 by 1 for the simple representation of
1D homography), so that we can measure the distance corresponding to λ on a
silhouette image. Representing x with xv, we have

x = xv + (λ − λv)d (4)
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Fig. 3. The relationship between a 3D ray and a projected ray on a silhouette image

However, since d might not be the direction vector of a projected ray l containing
x, we modify (4) using directional vector v = (v0, v1, 0)T as

x = xv + μv (5)

where μ is the distance from a visible point xv along l. Note that
xv = (xv0, xv1, 1)T and μ are measurable on the image plane. For obtaining
v from (4), we differentiate it by λ and hence v is represented as[

v0
v1

]
≡

[
∂x/∂λ
∂y/∂λ

]∣∣∣∣
λ=λv

=
[
d0xo2 − d2xo0
d1xo2 − d2xo1

]
(6)

Now, we have all elements in (4) and (5), and so we can obtain the relations
between λ and μ as (7) using directional vector (6) and the distance between xv

and x in (4).

μ =
λ − λv

xo2 + λd2
(7)

Finally, we formulate (7) in the form of line (1D) homographies as:[
kμ
k

]
=

[
1 −λv

d2 xo2

] [
λ
1

]
(8)

[
kλ
k

]
=

[
xo2 λv

−d2 1

] [
μ
1

]
(9)

(8) and (9) are projection(from 3D to 2D) and back-projection(from 2D to 3D)
in the form of 1D homographies respectively. Note that for back-projecting a
2D intersection point to 3D, instead of computing pseudo-inverse of camera
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Fig. 4. Input datasets. From left to right: temple, dino, alien, dinosaur, and predator.
(top) a sample input image from each dataset, (bottom) reconstructions of the proposed
method in a surface-based approach.

projection matrix, we only compute last elements of x0 and d (xo2 and d2),
and a visible distance λv can be computed by xo2 + λvd2 = 1. Furthermore,
in the affine space, we can obtain simpler version of the 3D-to-2D and the
2D-to-3D projections as (10) and (11). The third row of a affine camera ma-
trix P is represented by p3T = (0, 0, 0, 1)T, so that the last elements of x0 and
d are one and zero respectively, and finally it results in the identity matrix for
transformations between 2D and 3D in the affine space.[

kμ
k

]
=

[
1 0
0 1

] [
λ
1

]
(10)

[
kλ
k

]
=

[
1 0
0 1

] [
μ
1

]
(11)

Therefore, with (8) and (9) for the projective space, and with (10) and (11) for
the affine space, we can simplify the process of mapping between 3D and 2D
while avoiding the ambiguity of intersection points.

3 Experimental Results

We tested our proposed method on two data sets containing multiview cali-
brated images: the first data set [5] is composed of two sequences, temple and
dino, 16 views each, and has the resolution of 640x480; and the second data
set [8] contains 24 views of alien(1600x1600), dinosaur(2000x1500) and preda-
tor(1800x1700). Fig.4 shows one of input images in each data set and the corre-
sponding reconstructed 3D points using the proposed method in a surface-based
approach.

First, we compared the computational time with the method for finding inter-
sections in [2], which is recent and widely used. All the experiments are conducted
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Table 1. Comparisons of computational time on a surface-based approach: the
second column represents the average number of contour points per image, and last
two columns show the running times of both methods running time(sec)

Average contour pts. Vertices Method in [2] Proposed method

Temple 1995 38254 2.866 2.118
Dino 1484 39212 2.838 1.716
Alien 6450 114202 62.578 17.572

Dinosaur 5337 150948 47.165 14.164
Predator 7277 211414 84.471 21.296

Table 2. Comparisons of computational time with a conventional voxel carving method
running time(sec)

Voxel carving Proposed method Voxel carving Proposed method
Voxel size 256x256x256 512x512x512

Temple 90.064 1.188 712.610 4.375
Dino 94.767 1.282 714.687 4.750
Alien 88.188 1.281 701.750 4.625

Dinosaur 88.859 1.218 705.172 4.484
Predator 88.500 1.312 705.219 4.813

with a 2.67 GHz Intel Core i5 processor and 3 GB of RAM. As Table 1 shows,
our method outperforms the method in [2] on both data sets. And especially
for the second data set which has higher resolution, the computational gain was
about three-times higher than the previous method. Since the complexity of our
method is not proportional to the number of contour pixels (i.e., edge bins in [2]),
it is likely that the higher resolution images we have, the better computational
efficiency we obtain.

Second, we applied the proposed method to a volume-based approach. Re-
cently, Lee et al [9] proposed an efficient way to reduce a computational cost
by modifying voxel-wise computation into the intersection problem of line-to-
silhouette boundaries. We combined our method with Lees and compared com-
putational times with a conventional voxel carving method. Table 2 shows its
results. Though no optimization was used in the conventional voxel carving, the
computational time was drastically reduced down to 1% compared to the con-
ventional method. In practice, an octree based volume representation is widely
used for a real time rendering system on the GPU. When the computational time
of the conventional voxel carving algorithm is N3 where, N is the resolution of
single dimension, that of the octree based volume representation is computed by∑N−1

i=0 8 ·(8q)i where, q is an accept ratio. If an accept ratio is 0.7 on each octree,
the computational time of the octree based method is decreased to 7% of that
of the conventional method, but it is still higher than the result of the proposed
method. Recently, in [14] the computational time is significantly reduced using
pre-defined bins which are the modification of [10]. As shown in the experiments
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of a surface-based approach, even though using pre-defined edge bins can accel-
erate to find intersections, our method outperforms it, especially when image
resolution is higher. Additionally, since the computation of our method can be
perfectly parallelized, it is well suited to be implemented on the GPU. Hence
we can presume that the proposed method can be also used effectively for a
volume-based approach.

4 Conclusion

We presented the fast computation algorithm of a visual hull using chain coding
representation of silhouette boundaries. Additionally, we formulated the relations
between 3D and 2D (projection and back-projection) as 1D line homographies,
so that we were able to improve computational resilience to noises. The proposed
method is directly applicable to both methods for computing a visual hull since
we generalized our method to an arbitrary 3D ray. In experiments, we showed
that the proposed method is computationally efficient compared to the recent
method in [2]. In the future, we will implement our method on the GPU. We
believe that our techniques will be useful tools for speeding up a real time 3D
reconstruction system.
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Abstract. Providing training data for facial age estimation is very ex-
pensive in terms of age progress, privacy, human time and effort. In
this paper, we present a novel active learning approach based on an on-
line Two-Dimension Linear Discriminant Analysis for learning to quickly
reach high performance but with minimal labeling effort. The proposed
approach uses the classifier learnt from the small pool of labeled faces
to select the most informative samples from the unlabeled set to in-
creasingly improve the classifier. Specifically, we propose a novel data
selection of the Furthest Nearest Neighbour (FNN) that generalizes the
margin-based uncertainty to the multi-class case and which is easy to
compute so that the proposed active learning can handle a large num-
ber of classes and large data sizes efficiently. Empirical experiments on
FG-NET, Morph databases and a large unlabeled data set show that the
proposed approach can achieve similar results using fewer samples than
random selection.

1 Introduction

Facial age estimation is an approach to classify images into one of several pre-
defined age-groups. There are many applications of facial age estimation, e.g.
digital signage in which the statistics of peoples’ age ranges can provide refer-
ence to manage the advertising. Another interesting application is for interactive
games. An intelligent toy can perform different games based on the player’s age
range, e.g. it can automatically provide easy games such as popular crossword
puzzles or board games when an elderly person is detected and card games, video
games and computer games when a teenager is detected. One of the difficulties
in age estimation using face images is that the training database is highly in-
complete. In order to collect photos of a person, the subject could be required
to scan his/her photos captured during the past at his/her different age. On the
other hand, there are a lot of unlabeled face images. Although the age range can
be roughly estimated by humans from a face image, labeling such large data set
is very time consuming. Furthermore, there is possibility of incorrect labeling
due to the subjective nature of the observer, the quality of the face images, the
viewpoint, scenery, familiarity and the fact that there are people whose look de-
fies their age. Hence, in this paper, we hope to provide a framework to reduce the
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� Springer-Verlag Berlin Heidelberg 2011
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amount of labeling effort needed by selecting the most informative face images
to be labeled.

Recent research in the area of active learning [2, 4, 7, 13, 18, 20, 26] has been
reasonably successful in handling the problem of active selection of the examples
to be labeled. The purpose of active learning is to minimize the selection of
samples from the unlabeled pool to be labeled by the oracle in order to fully
learn the complete data available. The idea for selecting a sample is that the
worst samples (with the biggest error) should be added to the training samples
and a new classifier will be learned using the new training database. However,
as the data is unlabeled, one cannot tell which is the violating data. In the
conventional methods using SVM classifiers, the selection of unlabeled data for
further learning are the ones nearest to the current optimal hyperplane [28]. In
addition, when both the data set and the dimension of the feature vector become
very large, training with the complete data set is infeasible. Hence, it is clear that
an incremental (sequential) learning scheme is needed for the sample selection
and updates the discriminant eigenspace with light computation instead of full
re-training. Therefore, we will combine the two tasks of active learning and
sequential learning. In this paper, a novel Incremental Two-dimensional Linear
Discriminant Analysis (I2DLDA) with active learning is proposed to classify
face image into one of several age categories. The key issue here is that for the
LDA approach, unlike other methods [8,28], the notion of selecting the next most
informative image for labeling has not been examined. For our proposed 2DLDA
with nearest neighbour classifier, the unlabeled data with the most uncertainty
will have to be measured and chosen differently. In principle, they are the data
which are the furthest among the nearest neighbours. For the cases where the
selection turns out to be correctly classified by the current 2DLDA classifier
or even where it is wrongly classified, it will give the highest probability of
generalization. We propose here to apply the measure of choosing the Furthest
Nearest Neighbour (FNN). The rationale and the experimental verification that
this is indeed a viable measure will be dealt with in detail later in the paper.

So far there is relatively few literature on automatic age estimation
[5, 11, 12, 23, 32] compared to other facial processing such as face recognition
and facial gender recognition. A recent survey can be found in [24]. The related
work closest to our approach is that by Gen et al. [6] who noticed the incomplete
data problem and proposed an aging pattern subspace, named AGES (AGing
pattErn Subspace), for estimating age from appearance. In order to handle in-
complete data such as missing ages in the training sequence, the AGES method
models a sequence of individual aging face images by learning a subspace repre-
sentation. The age of a test face is determined by the projection in the subspace
that can best reconstruct the face image. However, their approach assumes all
data has been labeled.

Most of the conventional methods for age estimation are intended for accurate
estimation of the actual age. However, it is difficult to accurately estimate an ac-
tual age from a face image because age progression is person-specific and the aging
subspace is obtained based on a incomplete database. For some applications, such



Active Learning with the FNN Criterion for Facial Age Estimation 13

as digital signage, it is unnecessary to obtain the precise estimates of the actual
age. Therefore, in this paper, we invoke the mechanism of human age perception,
i.e. we limit the estimation to a few age ranges. We aim to use both labeled and
unlabeled data. It is possible and easier for a user to label an age range of a per-
son based on his/her face image, whereas it is very hard to label the actual age
required in a actual age estimation system. This is the main reason why the exist-
ing methods, e.g. Geng et al.’s method, cannot use unlabeled data. To the best of
our knowledge, we are the first to estimate age using both labeled and unlabeled
face images.

Our contributions in this paper are two-fold.One is to propose the 2DLDA-FNN
as a generic on-line or active learning paradigm and the second is to show that it
can be another viable tool for active learning of facial age range classification.

The rest of this paper is organized as follows. The 2DLDA is introduced in
section 2, An incremental version of the 2DLDA and active based on the 2DLDA
are discussed in section 3. The experimental results are given in Section 4 and
conclusion is presented in Section 5.

2 An Overview of 2DLDA

Suppose {(X1
1 , C1), . . . , (X1

n1
, C1), . . . , (XN

1 , CN ), . . . , (XN
nN

, CN )} are T image
samples from N classes. Xk

i ∈ Rr×w (r × w image matrix) is the ith sample of
the kth class Ck, for i = 1, . . . , nk and nk is the number of samples in class Ck.
Denote Xk = 1

nk

∑nk

i=1 Xk
i as the mean matrix of samples of the class Ck. Let

M =
∑N

k=1
nk

T Xk be the mean matrix of all samples. Several 2DLDA methods
[15,34] have been proposed in face recognition. Without loss of generality, Kong”s
bilateral 2DLDA (B2DLDA) [10] is adopted in this paper as the 2DLDA to
be extended to incremental 2DLDA. Concisely put, the B2DLDA is a general
2DLDA which finds a pair of discriminant vectors Wl and Wr satisfying:

{Wl, Wr} = arg max
(Wl,Wr)

∑N
k=1

nk

T WT
l (Xk − M)WrW

T
r (Xk − M)T Wl

1
T ΣN

k=1Σ
nk

i=1W
T
l (Xk

i − Xk)WrWT
r (Xk

i − Xk)T Wl

(1)

The optimal Wl and Wr can be corresponding to the eigenvectors of S−1
wl Sbl

and S−1
wr Sbr respectively, where Swl, Sbl are the left within-class and between-

class scatter matrices of the training samples respectively; Swr, Sbr are the right
within-class and between-class scatter matrices of the training samples respec-
tively. The pseudo-code for the B2DLDA algorithm is given as follows.

Algorithm B2DLDA (Wl, Wr, LB1
1 , LB2

1 , . . . , LBn1
1 , . . . , LB1

N , LB2
N , . . . ,

LBnN

N , RB1
1 , RB2

1 , . . . , RBn1
1 , . . . , RB1

N , RB2
N , . . . , RBnN

N ) = B2DLDA(X1
1 , X1

2 ,
. . . , X1

n1
, . . . , XN

nN
, ml, mr, N, n1, n2, . . . , nN )

Input: X1
1 , X1

2 , . . . , X1
n1

, . . . , XN
nN

, ml, mr. ml and mr are the number of the
discriminant components of left and right B2DLDA transforms respectively.

Output: Wl, Wr, LBj
i , RBji . LBj

i and RBj
i are the reduced representations of

Xj
i by Wl and Wr respectively.
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1. Compute the mean, Xi, of the ith class, i = 1, 2, . . . , N
2. Compute the global mean, M .
3. Update Sbl and Swl

Sbl = ΣN
i=1ni(X i − M)T (X i − M) (2)

Swl = ΣN
i=1Σ

ni

j=1(X
i
j − Xi)T (X i

j − Xi) (3)

4. Compute the first ml eigenvectors, {ψL
i }ml

i=1, of S−1
wl Sbl

5. Wl ← [ψL
1 , ψL

2 , . . . , ψL
ml]

6. Update Sbr and Swr

Sbr = ΣN
i=1ni(Xi − M)(Xi − M)T (4)

Swr = ΣN
i=1Σ

ni

j=1(X
i
j − Xi)(X i

j − Xi)T (5)

7. Compute the first mr eigenvectors, {ψR
i }mr

i=1, of S−1
wr Sbr

8. Wr ← [ψR
1 , ψR

2 , . . . , ψR
mr]

9.
LBj

i = X i
j ∗ Wl, j = 1, 2, ...ni, i = 1, . . . , N (6)

RBj
i = (X i

j)
T ∗ Wr, j = 1, 2, ...ni, i = 1, . . . , N (7)

3 Incremental 2DLDA and Active Learning

Inspired by the work on Incremental Linear Discriminant Analysis (ILDA)
[9,22, 30], we derive an exact solution of Incremental 2DLDA (I2DLDA) in this
paper for updating the discriminant eigenspace where bursts of new class data
are coming in sequentially. The idea is that the between-class and within-class
matrices can be updated without much re-calculations. This extension of the
2DLDA is important because the I2DLDA inherits the advantages of the 2DLDA
and the ILDA. Based on the I2DLDA, the small sample size problem [10] can
be avoided as well, and it does not have to redo the entire training when a new
sample is added. While our formulation provides an exact solution, the exist-
ing ILDA [9, 30] gives only approximate updates and thus it may suffer from
numerical instability.

3.1 I2DLDA

Assume we are given t new samples and their labels, Y = {(Y1, l1), (Y2, l2), . . . ,
(Yt, lt)}. Without loss of generality, assume there are qm new samples, which
belong to the mth class. The mean of the mth class is updated as follows:

X
′

m =
nmXm + ΣYk∈Y ∩lk=mYk

nm + qm
(8)
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n′
m = nm + qm (9)

The updated overall mean is

M ′ =
TM + Σt

i=1Yi

T + t
(10)

The between-class scatter matrices are updated by

S′
bl = ΣN

c=1n
′
c(X

′

c − M ′)T (X
′

c − M ′) (11)

S′
br = ΣN

c=1n
′
c(X

′

c − M ′)(X
′

c − M ′)T (12)

where n′
c and X

′

c are the updated number of samples and mean of class C. The
within-class scatter matrices are updated by

S′
wl = ΣN

c=1Σ
′
c = ΣN

c=1{Σc + (Y c − Xc)T (Y c − Xc)+

n2
c

(nc + qc)2
ΣYk∈Y ∩lk=c(Yk − Xc)T (Yk − Xc)+

qc(qc + 2nc)
(nc + qc)2

ΣYk∈Y ∩lk=c(Yk − Y c)T (Yk − Y c)}

(13)

S′
wr = ΣN

c=1Σ
′
c = ΣN

c=1{Σc +
n2

cq
2
c

(nc + qc)2
(Y c − Xc)(Y c − Xc)T +

n2
c

(nc + qc)2
ΣYk∈Y ∩lk=c(Yk − Xc)(Yk − Xc)T +

qc(qc + 2nc)
(nc + qc)2

ΣYk∈Y ∩lk=c(Yk − Y c)(Yk − Y c)T }

(14)

where Yc is the mean of the new samples in Y belonging to the class c. If the
samples belong to a new class, assume there are qN+1 new samples belong to
the (N + 1)th class, n′

N+1 = qN+1, the between class matrices are updated as

S′
bl = Σn′

c(Xc − M ′)T (Xc − M ′) (15)

S′
br = Σn′

c(Xc − M ′)(Xc − M ′)T (16)

The within-class matrix is updated

S′
wl = Swl + Σ(N+1)l (17)

S′
wr = Swr + Σ(N+1)r (18)

where Σ(N+1)l and Σ(N+1)r are the left and right covariance matrices of the
(N + 1)th class

Σ(N+1)l = ΣYk∈Y ∩lk=c(Yk − Y c)T (Yk − Y c) (19)
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Σ(N+1)r = ΣYk∈Y ∩lk=c(Yk − Y c)(Yk − Y c)T (20)

Very recently, Li et al. [14] proposed an incremental 2DLDA based on a unilat-
eral 2DLDA [15] which only does transform on one side of the image matrix,
i.e., either left side or right side. Our method is different from [14] in that the
2DLDA adopted by our approach first extracts the 2D-LDA discriminative pro-
jections on both sides of the image matrix independently and then combine them
through further processing. The principle motivation is to increase the informa-
tion extracted from the covariance matrix. In order to do incremental learning,
both ILDA and I2DLDA need to maintain one between-class covariance matrix
and one within-class covariance matrix of every class. However, the size of the
between-class covariance matrix and one within-class covariance matrix is much
smaller than the ones of ILDA. Thus I2DLDA can overcome the limitation of
the number of the class or chunk size in ILDA.

The experiments on a large database including labeled and unlabeled data
show that active learning based on the I2DLDA approach trained in this manner
can achieve results comparable or even outperform a framework trained in the
conventional manner that requires much more labeling effort.

3.2 Pool-Based Active Learning

For many real-world learning problems including text classification and facial
age estimation discussed in this paper, large collections of unlabeled data can be
gathered at once. This motivates pool-based sampling [13]. In active learning,
there is a pool of unlabeled points U and a (much smaller) pool of labeled
points L. The goal is to iteratively pick the most informative points in U for
labeling, obtain the labels from some oracle or teacher, add the labeled points
to L, incrementally update the classifier using the newly added samples from U ,
and then iterate and see how fast the classifier converge to the final solution. An
active learner has three components: (1) a classifier trained on the current set of
labeled data; (2) a querying function that decides which instance in U to query
at the next round and (3) an updated classifier after each query. We consider
that a classifier is initially trained using a small number of randomly selected
labeled examples called the seed set. Then repeat the process until either the
evaluation rate reaches at a predefined value, or U is an empty set or until the
oracle is no longer able to provide labels. During each round of active learning,
n points are selected for labeling. We will refer to this as the batch size. The
main difference between active learners is in the method to determine whether
a point in U will yield valuable information if labeled.

Uncertainty sampling. The difference between an active learner and a passive
learner is in the querying component, which brings us to the criterion for choosing
the next unlabeled instance to query. All active learning scenarios involve eval-
uating the probability/believe of informativeness of unlabeled instances, which
can either be generated de novo or sampled from a given distribution. There



Active Learning with the FNN Criterion for Facial Age Estimation 17

have been many ways of formulating such query strategies described in the lit-
erature. A good survey can be found in [26]. For example, unlabeled examples
to query are selected based on minimizing the version space within the SVM
formulation [28]. Seung et al. [27] propose an algorithm called query by com-
mittee in which a committee of students is trained on the same data set and
the next query is chosen according to the principle of maximal disagreement. In
this paper, we use an uncertainty sampling approach [13] as a query strategy to
perform active learning. Uncertainty sampling works by assigning an uncertainty
score to each point in U and picking the n points with the highest uncertainty
scores. These uncertainty scores are based on the predictions of the classifier
currently trained on L. Uncertainty sampling method relies on probability esti-
mates of class membership for all the examples in the active pool. Margin-based
classifiers, for example SVM, has been used as a notion of uncertainty in pre-
vious work where class membership probabilities of the unlabeled examples are
first estimated using the distance from the hyperplane for classifiers. The uncer-
tainty score is inversely proportional to the absolute value of the distance from
the present optimal hyperplane, where points closer to the hyperplane contain
more uncertainty as to their class memberships. In this paper, we will compare
our proposed approach with the SVM-based on entropy sampling [8] as state-
of-the-art algorithm. LDA and its variants are feature extractors. It has to be
coupled to a classifier, with the extracted feature vector serving as the input.
Any classifier can be used. For simplicity, we choose the nearest neighbour classi-
fier for investigation. How can the uncertainty be measured in the LDA domain?
The output of the 2DLDA classifier is the distance of the query sample to the
class instead of probabilities. For our 2DLDA, we will use the nearest neighbour
classifier, which is one of the simplest classification schemes and can naturally
handle multi-class problems. But, 2DLDA-nearest neighbour does not admit a
natural notion of uncertainty in multi-class classification, and hence, it is unclear
how to estimate the probability of misclassification for a given data point.

Data selection. We propose to select the unlabeled data that is the furthest
nearest neighbour to the 2DLDA classifier among all the nearest neighbours for
all the classes. We call this sample selection method as FNN (Furthest Nearest
Neighbour). This means all the unlabelled or uncertain data is tested and for
each, compute its nearest neighbour in the 2DLDA projection subspace as before.
Choose the one which has the furthest nearest neighbour. The FNN is heuristic
but we offer the following rational.

Rationale: The data with the furthest nearest neighbour distance is deemed
to have the highest probability of uncertainty.

If the nearest neighbour turns out to be incorrectly classified, this will
imply a very drastic step forward in learning. If we assume that the nearer
the example is to a data the higher the probability that the example is classi-
fied correctly, then one that is furthest away will have the least probability of
being correctly classified. On the other hand, if the selected data turns out to
be correctly classified, then it provides the highest generalization learning among
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Fig. 1. An example for showing the FNN data selection

all other unlabeled data. Either way, the learning will, with high probability, be
fast. So we want to learn from this example.

The computation of the FNN is explained thus. Assume the projection ma-
trices of the bilateral 2DLDA to Wl and Wr respectively, and the vector of an
image, X , in the subspace is WlXWr. The data in the active pool U will be
selected next according to the FNN criterion as follows :

max
i

{min
X∈L

||WlZiWr − WlXWr||, i = 1, 2, . . . , u} (21)

where L represents the current training set, assuming there are u samples in U ,
represented as Zi, i = 1, 2, . . . , u. An example of the FNN is shown in Fig. 1.
Assume we have two classes of samples, marked as ” ◦ ” and ” × ” and their 2D
feature space distributions are shown in Fig. 1. Symbol ”
” represents the four
unlabeled samples been projected to this subspace. The nearest neighbours of the
four unlabeled samples are shown connected with them respectively. ”A” is the
first sample to be selected by the FNN selection method because it is the furthest
nearest neighbour. Furthermore, our method does not make any assumption
about the number of the new class to be labeled and allowing application to
huge datasets with a large number of categories.

The new classifier is incrementally learned using the added samples, and un-
certainty scores are produced for the unlabeled data in the pool. The learning
process is shown in Fig. 2. The threshold in Fig. 2 is the value of the accuracy
that the user expected. It can be set by the user depend on the application.
In the following experiments, we set the threshold to be 1, i.e. active learning
continues till the active pool is exhausted. It should be noted that the algorithm
can select more than one sample at each iteration and this make it possible to
incremental update classifier by processing selected samples in one batch. This
is very important to speed up the active learning to reach an expected accuracy.

In order to remove possible outliers, we introduce a criterion to reject a fur-
thest NN if it exceeded a certain threshold distance. Thus it will not affect the
active learning significantly. The threshold is determined empirically from ex-
periments. In our experiments, we found that the case of outliers is not serious.
This can be observed by the variance of the furthest nearest neighbour distances
for active learning rounds which are found to be small. Hence, the sensitivity of
the performance on the threshold is minor. In principle though, note that by the
very nature of the nearest neighbour rule, outliers will not be selected.
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Fig. 2. The flowchart of the proposed active learning

4 Experimental Results

There are few publicly available age databases. The FG-NET [3] and Morph
[25] databases have been made available for research in areas related to age-
progression. The FG-NET database contains 1,002 face images from 82 subjects,
with approximately 10 images per subject. In the MORPH database, there are
1,724 face images from 515 subjects. Each subject has around 3 aging images.
We use these two databases (a total of 2726 images) together with an unlabeled
data set collected by us to evaluate the performance of the proposed method.
For the unlabeled face data, we collected a database which consists of three
sources: (1) collected in our lab and Singapore Science Centre; (2) frontal face
images in public databases including LFW (Labeled Faces in the Wild), PEAL
(Pose, Expression, Accessories, and Lighting) and PIE (Pose, Illumination, and
Expression); (3) collected from internet. There are a total of 4000 unlabeled face
images of 1713 persons. The Viola-Jones face detector [21,31] was used to detect
faces and all detected faces are then geometrically normalized to 88×88 images.
Some labeled samples can be seen in Fig 3 and some unlabeled samples can be
seen in Fig. 4.
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Fig. 3. Some labeled samples. From first row to the fourth row: child, teen, adult and
senior adult.

Fig. 4. Some unlabeled samples

In this paper, we are interested in the perceived age range instead of actual
age. For our study, we define four age groups: child, teen, adult and senior
adult. The age ranges of the four groups are 0-11, 12-21, 22-60 and 61 and
above respectively. Our focus is only investigating our proposed method and the
partitioning adopted is only for proof of principle. Nevertheless, this partition
is not without basis. In general, a person’s appearance will undergo noticeable
changes due to physiological and social factors. The first is at puberty, for girls
it is around the age of twelve. The average graduation age of the undergraduate
study and find the first job is about 21. The retirement age of the male people
in the world is about 60. If different age groups (slight different on the boundary
of age ranges) are used, the results should not be affected seriously because in
general there is no large variance of the face appearance within each of the ranges
defined in this paper. E.g. the large variance could happen from 0-11. The user
is queried about the age range of the selected unlabeled data and labels it to
one of four age groups defined in this paper. It is very hard for the user to label
the actual age by observing a face image. So our method can not predict the
exact age given the face unless we are provided with labeled age data, i.e. it is
true that the method proposed in this paper can predict actual age if the user
can label the selected data with actual age. However, However, there is greater
likelihood to wrongly label actual age of given image respectively for a large
dataset. We can predicate more age group by dividing the age range into more
groups. However, the accuracy depends on the ability of the human to estimate
finer age groups.

An initial classifier is trained using a seed set which is composed of randomly
selecting half of the subjects of the FG-NET and Morph database respectively.
The remaining is used as the testing set. For each round of the active learning,
the samples in the unlabeled samples pool are sorted by the FNN and then 5
samples which are at the top of the pool are selected and labeled by the user.
They are then added to the training set and the 2DLDA classifier is updated
using the newly added samples. It should be noted that the test data does not
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contain the images of persons also used for training. This avoids the inadvertent
learning of face recognition instead. Two-fold cross-validations have been con-
ducted and the average classification accuracies versus the number of the learning
rounds are shown in Fig. 5. One interesting aspect of the results, particularly on
the data set, is that the error rate can be much lower when only a subset of U
has been labeled as opposed to when all of U being labeled. This phenomenon
has been observed in other works on active learning as well (e.g., [19]). Stop-
ping the labeling process early can therefore be very useful in reducing overall
classification error. One possible reason is that stopping the process early helps
to avoid over-fitting. The performance of the proposed FNN active learning is

Fig. 5. Performance comparison of random selection (bottom), FNN active learning
(middle) and active SVM. Five samples are selected at each learning round.

compared with the baseline random sampling method and the state-of-the-art
method: active multi-class Support Vector Machines (SVM) [8] that are based on
the one-vs-one formulation of binary classifiers (a classifier trained for each pair
of classes) to handle multi-class problems. Probability estimates for the multi-
class case are obtained through pairwise coupling [33] and binary probabilities
needed are estimated follow Platt method [17].The results are shown in Fig. 5.
In our approach, we found that the method converges quickly, thus verifying our
proposed criterion for the unlabeled data with the highest probability of uncer-
tainty. It has comparable accuracy with active multiclass SVM. The convergence
rate is faster for SVM i.e. it needs less selected examples for labeling. However,
the active 2DLDA is much faster in terms of generating the training results.
In our implementation of the active multiclass SVM, LIBSVM toolbox [16] is
adopted that implements the uncertainty sampling and probability estimation in
the multclass problem mentioned above. ”Linear” kernel is adopted. The com-
parison of the training time is given in Table 1. The Acer Veriton 7900 C2D
2.66Ghz 4GB/320GB personal computer is used and the speed for training the
active 2DLDA is found to be about 8 times faster than the active SVM.

We quantify the reduction in the number of training examples required for the
FNN to obtain similar accuracy as random selection. In Fig. 5, for each round
of active learning, the number of rounds to achieve similar accuracy by fixing
a value at Y-axis. The results, tabulated in Table 2, show that FNN selection
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Table 1. The comparison of the training time between the active 2DLDA and active
multiclass SVM

Method Active SVM Active 2DLDA Random
Training time (s) 2267 283 221

Table 2. Reduction of the number of the learning rounds needed for the active 2DLDA
(A-2DLDA) and active SVM (A-SVM) for getting the similar accuracy with random
selection. The number needed and corresponding accuracy are represented as ”num-
ber(accuracy)” in the first three columns

Random A-SVM A-2DLDA reduction(A-SVM) reduction(A-2DLDA)
95 (62.5%) 10 (63.1%) 30 (62.7%) 89.47% 68.42%
115 (65.7%) 25 (66.2%) 50 (66%) 78.26% 56.52%
160 (71.2%) 30 (70.8%) 80 (71%) 81.25% 50.00%
370 (86.3%) 170 (86.6%) 220 (86%) 54.05% 40.54%
790 (94.7%) 248 (95.2%) 380 (95%) 68.61% 51.90%

74.33(average) 53.48% (average)

can obtain similar accuracy with random selection but uses about 55% fewer
samples.

Based on the proposed active learning approach, an age classification proto-
type has been developed. The age ranges of the subjects can be simultaneously
estimated automatically. We used the Logitech Webcam Pro 9000 to capture face
images while face detection and tracking are done using the face detector of the
OpenCV 2.0 library [21] and the kernel-based mean shift algorithm [1] respec-
tively. Future research includes the robustness to expression, pose and lighting
variation.

5 Conclusion

In this paper, an active learning approach has been proposed to classify a face
image to pre-defined age category. In order to solve the incomplete data problem
in facial age estimation, both labeled and unlabeled data have been used. The
proposed methods that combine active learning with a solution to the age esti-
mation provide a good trade off between achieving a low error rate and reducing
data labeling cost better than the random baseline. Instead of using a randomly
selected training set, the learner has access to a pool of unlabeled instances and
can request the labels for some number of them using a new data informative
measure called FNN. An incremental 2DLDA is proposed to update the dis-
criminant subspace instead of full re-training whenever a new training sample is
added. A closed-form solution for updating the between-class scatter matrix and
within-class scatter matrix using the new samples is derived. Empirical exper-
iments on FG-NET, Morph data and a large unlabeled face database collected
by the authors for age classification problems show that approach can achieve
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results much faster than random selection and get the similar result with random
selection using about 55% fewer samples. It can achieve the comparable results
with active SVM but is much faster than active SVM in terms of generating the
training results.

In the future, we could relax the condition of applying 2DLDA to use LDA
also, then we can apply the FNN on other 1D databases, e.g. UCI data sets [29].
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Abstract. Many conventional human detection methods use features
based on gradients, such as histograms of oriented gradients (HOG),
but human occlusions and complex backgrounds make accurate human
detection difficult. Furthermore, real-time processing also presents prob-
lems because the use of raster scanning while varying the window scale
comes at a high computational cost. To overcome these problems, we
propose a method for detecting humans by Relational Depth Similar-
ity Features(RDSF) based on depth information obtained from a TOF
camera. Our method calculates the features derived from a similarity of
depth histograms that represent the relationship between two local re-
gions. During the process of detection, by using raster scanning in a 3D
space, a considerable increase in speed is achieved. In addition, we per-
form highly accurate classification by considering of occlusion regions.
Our method achieved a detection rate of 95.3% with a false positive rate
of 1.0%. It also had a 11.5% higher performance than the conventional
method, and our detection system can run in real-time (10 fps).

1 Introduction

There has recently been interest into the implementation of techniques that will
assist in comprehending the intentions of people within spaces such as offices,
homes, and public facilities. In order to implement techniques of monitoring peo-
ple in this manner, it is necessary to know where people are within such a space,
and it has become a challenge to implement human detection that is highly
accurate and also fast. There has been much research in the past into human
detection, and various different methods have been proposed [1] [2] [3] [4] [5].
Among human detection methods that use conventional visible-light cameras,
there are methods that involve statistical training with local features and boost-
ing. Gradient-based features such as HOG [1], EOH [2], and edgelets [5] are
often used as local features, and there have been reports that these enable the
implementation of highly accurate human detection. However, gradient-based
features obtained from visible-light camera images encounter difficulties in per-
ceiving the shapes of human beings when there are complex backgrounds and
when people overlap each other, and the detection accuracy can drop as a result.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 25–38, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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To counter this problem, Ess et al. have proposed a highly-accurate human de-
tection method for confusing scenes, using depth information obtained by stereo
cameras [6]. However, the acquisition of depth information by stereo cameras
necessitates correspondence calculations between images by camera calibration
and stereo matching, so the processing costs are high and real-time detection
is difficult. In addition, since the sizes of the humans within the image is un-
known, conventional human detection methods also have problems in that re-
peated raster scans while varying the scale of the detection window increases the
computational cost and makes real-time processing difficult.

This paper proposes a real-time human detection method that uses depth
information obtained from a time-of-flight (TOF) camera and can cope with
overlapping people and complex scenes. The proposed method uses depth infor-
mation obtained from the TOF camera to calculate relational depth similarity
features (RDSFs) that determine depth information for local regions, and con-
structs a final classifier by Real AdaBoost. It uses the thus-constructed classifiers
to detect humans, and implements faster raster scanning of detection windows
in a 3D space and also improves the detection accuracy by considering occlusion
regions.

2 Local Features Based on Depth Information

A TOF camera is a camera that measures the distance to an object by mea-
suring the time taken for infrared light that is emitted from LEDs located
around the camera to be reflected by the object being detected and observed by
the camera. In this study, we use a MESA SR-3100 as the TOF camera. The
SR-3100 can acquire depth information in real-time from 0.3 m to 7.5 m (with a
resolution of 22 mm at 3 m), but it cannot photograph outdoors so it is limited
to use indoors. When detecting humans, it is considered effective to use depth
information obtained by a TOF camera to perceive the depthwise relationships
of human bodies and the background. Thus this method proposes the use of a
relational depth similarity feature obtained from depth distributions of two local
regions.

2.1 Relational Depth Similarity Features

A relational depth similarity feature is used to denote the degree of similarity of
depth histograms obtained from two local regions. As shown in Fig. 1, we divide
each depth image into local regions that are cells of 8 x 8 pixels, and select two
cells. We compute depth histograms from the depth information of each of the
two cells selected in this way, then normalize them so that the total value of each
depth histogram is 1. If each bin of the two normalized depth histograms p and
q created from the thus computed m bins is pn and qn, we compute the degree
of similarity S between them from the Bhattacharyya distance [7] and use that
as an RDSF.

S =
m∑

n=1

√
pnqn (1)
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Fig. 1. Calculation of RDSF

Since the RDSF is a feature obtained from the degree of similarity of depth
information for two regions, it becomes a feature that expresses the relative
depth relationship between the two regions.

2.2 Varied Rectangular Region Sizes

Based on the processing of Section 2.1, we calculate an feature vector of RDSF by
calculating the degrees of similarity for all combinations of rectangular regions,
as shown in Fig. 2. During this process, we use Equation (2) for normalization.
In this case, if pn is the nth bin of the depth histogram, the nth bin p′n of the
normalized depth histogram can be obtained from the following equation:

p′n =
pn

m∑
i=1

pi

(2)

With this method, the detection window size is set to 64 x 128 pixels so it
can be divided into 8 x 16 cells. There are 492 rectangular regions obtained by
varying the cell units of the rectangular region from 1 x 1 to 8 x 8 to compute
depth histogram. To calculate the RDSF from combinations of the 492 rectan-
gular regions, 492C2 = 120, 786 feature candidates are extracted from within one
detection window.

2.3 Faster Depth Histogram Calculations by Integral Histograms

To reduce computational costs during the feature calculations, this method uses
integral histograms [8] to compute the depth histograms rapidly. We first quan-
tize the depth of each pixel to a 0.3-m spacing. Since this study divides the
distances 0 m to 7.5 m by a 0.3-m spacing, that means we compute depth his-
tograms formed of 25 bins. We then create 25 quantized images in corresponding
to bin n, as shown in Fig. 3, and compute an integrated image iin(u, v) from the
quantized images in(u, v), using Equations (3) and (4):

sn(u, v) = sn(u, v − 1) + in(u, v) (3)
iin(u, v) = iin(u − 1, v) + sn(u, v) (4)
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Fig. 2. Normalization of depth histograms for various rectangular region sizes

Fig. 3. Calculation of integral histogram

In this case, sn(u, v) denotes the sum of pixels in the rows of bin n and iin(u, v)
denotes the sum of sn of the columns. Note that we assume that sn(u,−1) = 0
and iin(−1, v) = 0. In the calculation of the nth bin Dn of the depth histogram
from the region D in Fig. 3, it would be sufficient to obtain the sum from four
points of the nth integrated image iin, from the following equation:

Dn = (iin(u, v) + iin(u − W, v − H)) −
(iin(u − W, v) + iin(u, v − H)) (5)

This makes it possible to rapidly obtain the value of the nth bin of the depth
histogram, irrespective of the size of the region.

3 Human Detection Using Depth Information

The flow of human detection in accordance with the proposed method is shown in
Fig. 4. The proposed method first performs a raster scan of the detection windows
in a 3D space. It then computes the RDSFs from the detection windows. It judges
whether there are occlusions in the calculated features, and uses Real AdaBoost
to classify whether each detection window is of a human or a non-human object.
Finally, it integrates the detection windows that have been classified as human
by mean-shift clustering in the 3D space, to determine the location of human.
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Fig. 4. Flow of human detection using depth information

3.1 Construction of Classifiers by Real Adaboost

The proposed method uses Real AdaBoost [9] in the human classification. Real
AdaBoost obtains degrees of separation from the probability density functions for
each dimension of features in positive classes and negative classes, and selects the
features that enable the greatest separation between positive and negative classes
as weak classifiers. Since the degrees of separation are handled as evaluated values
during this process, the output of the classification results can be done as real
numbers. If a weak classifier selected by the training is ht(x), the final classifier
H(x) that is constructed is given by the following equation:

H(x) = sign(
T∑

t=1

ht(x)) (6)

3.2 Raster Scanning in 3D Space

Conventional human detection methods involve repeated raster scans while the
scale of the detection window is varied, so there are many detection windows
that do not match the dimensions of humans. With the proposed method, we
determine the detection windows to correspond to the sizes of humans, by using
depth information to perform raster scans in a 3D space, which speeds up the
processing. With yw = 0, 60 x 180 [cm] detection windows in the xw − zw plane
are subjected to raster scanning, as shown in Fig. 5. The 3D coordinates of each
detection window obtained by the raster scan in the 3D space are projected
onto image coordinates [u, v]T, using Equation (7), and a feature is calculated
from the depth information within the region corresponding to the projected
coordinate position. ⎡

⎣u
v
1

⎤
⎦ = P

⎡
⎢⎢⎣

xw

yw

zw

1

⎤
⎥⎥⎦ (7)

P = A [R|T ] (8)

The matrix P is a perspective projection matrix which is computed from an
intrinsic parameter obtained by camera calibration, a rotation matrix R that
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Fig. 5. Raster scanning in 3D space

is an extrinsic parameter, and a translation vector T . Simple camera calibra-
tion can be done to enable the TOF camera to acquire the global coordinates
(xw, yw, zw) within a 5 x 4 x 7.5 [m] space corresponding to the image coordi-
nates (u, v). In this case, the TOF camera uses a CCD sensor to observe infrared
light, so the intrinsic parameter A is similar to that of an ordinary camera. In
addition, Mure-Dubois, et al. have compared published intrinsic parameters and
the results of actual calibrations and confirmed that the intrinsic parameters are
close [10].

3.3 Classification Adjusted for Occlusions

In a confusing scene in which a number of people are overlapping, occlusions can
occur in the human regions that are being observed. Depth information extracted
from an occlusion region is the cause of the output of erroneous responds for weak
classifiers. Thus we ensure that any output of weak classifiers that perceive such
occlusion regions is not integrated into the final classifier without modification.
Since the proposed method performs a raster scan of a detection window in a 3D
space, the position of the window in global coordinates is known. In this case, we
determine that any object region that is closer to the camera than the detection
window is an occlusion, by comparing depth information acquired from the TOF
camera, and use that in the classification. In this study, we assume that when
there is natural overlapping between people, the depth from one person who is
in the front and another person who is in the rear will be at least 0.3 m, and
that any object region that is at least 0.3 m closer than the detection window
for a person being detected is an occlusion.

Extraction of occlusion regions. We use the depth zw of the detection win-
dow during the raster scanning of the 3D space to determine the threshold for
occlusion judgement. If we assume that each pixel in the detection window is
(u, v) and the depth map thereof is d(u, v), the occlusion label O(u, v) at each
set of coordinates is given by the following equation:

O(u, v) =
{

1 if d(u, v) < zw − 0.3 m
0 otherwise (9)
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Fig. 6. Examples of occluded regions

The extracted occlusion regions are shown in Fig. 6 as black areas.

Classification from consideration of occlusion regions. If we assume that
the proportion of occlusion regions existing within a rectangular region Bt, which
is the target of the tth weak classifier ht(x), is an occlusion rate ORt, it can be
obtained from the following equation:

ORt =
1
Bt

∑
(u,v)∈Bt

O(u, v) (10)

Using the thus-computed occlusion rate ORt, the final classifier H ′(x) from
consideration of occlusion regions is expressed by Equation (11). During this
time, the output of weak classifiers that have been computed from regions in
which occlusions occur can be restrained by applying the proportion of occlusions
as weighting to the weak classifiers.

H ′(x) = sign(
T∑

t=1

ht(x) · (1 − ORt)) (11)

If the classification by final classifiers is done without considering occlusion re-
gions, as shown in Fig. 7(a), the output of a large number of weak classifiers
is a disadvantage and as a result, non-human objects are mistakenly classified.
On the other hand, Fig. 7(b) shows an example in which the output of final
classifiers is obtained from consideration of occlusion rates, in which humans are
classified correctly.

3.4 Mean-Shift Clustering in 3D Space

In conventional human detection with a visible-light camera [3], the detection
windows that have been classified as representing humans are integrated by
mean-shift clustering [11] and taken as detection results. However, with mean-
shift clustering alone in an image space, detection windows could be erroneously
integrated if humans overlap in them, as shown in (b) and (d) of Fig. 8. With
the proposed method, mean-shift clustering is done within a 3D space, as shown
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Fig. 7. Examples of classifications with and without consideration of occlusions

in (c) and (e) of Fig. 8. Since this enables the separation of clusters by depth
information, even when humans are overlapping, the erroneous integration of
detection windows can be suppressed.

3D mean-shift clustering calculates the mean-shift vector m(x) from Equation
(12). In this case, x denotes the center coordinate of the detection window and
xi denotes the 3D coordinate of each data item. k is a kernel function and h is
the bandwidth, which in this study is taken to be h = 0.3 m.

m(x) =

n∑
i=1

xik
(∣∣∣∣∣∣x − xi

h

∣∣∣∣∣∣2)
n∑

i=1

k
(∣∣∣∣∣∣x − xi

h

∣∣∣∣∣∣2)
− x (12)

4 Evaluation of the Proposed Method by Classification
Experiments

We performed evaluation experiments to confirm the validity of the proposed
method.

4.1 Database

For the database, we used sequences shot by a TOF camera. We installed the
TOF camera at a height of approximately 2.5 m indoors, and targeted scenes of
people walking and scenes in which a number of people overlap. We used 1346
positive examples for training and 10,000 negative examples for training, taken
from sequences that had been shot indoors. In the evaluation, we used 2206
positive samples for evaluation and 8100 negative samples for evaluation. Since



Real-Time Human Detection Using Relational Depth Similarity Features 33

Fig. 8. Integration of detection windows by using mean-shift clustering

the TOF camera was set up to take pictures up to a maximum distance of 7.5
m indoors, it was difficult to use it to photograph the whole bodies of a number
of humans. For that reason, the top 60% of the whole bodies of the humans
were the targets for these experiments. Part of the database that was used for
evaluation is shown in Fig. 9.

4.2 Feature Evaluation Experiments

Using the database for evaluation, we performed human classification experiments
and compared them by feature classification accuracy. In the experiments, we
compared features by using HOG features extracted from depth images, RDSFs,
and both HOG features and RDSFs. Note that since these experiments were in-
tended to evaluate features, there was no classifications adjusted for occlusions.
We use receiver operating characteristic (ROC) curves in the comparison of the
experiment results. A ROC curve plots false positive rate along the horizontal axis

Fig. 9. Examples of test data
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Fig. 10. Results of using features

Fig. 11. Examples of missed detection during classification

and detection rate along the vertical axis. It is possible to compare detection rate
with respect to false positive rate by varying the classifier thresholds. The detec-
tion performance is better towards the top left of the graph.

The results of feature evaluation experiments are shown in Fig. 10. RDSFs
gave a detection rate of 95.3% with a false positive rate of 1.0%, which is an
improvement of 11.5% over the classification rate of HOG features of depth
images. A comparison of RDSFs alone and features obtained by both HOG
features and RDSFs showed that the detection accuracy was the same. This
shows that RDSFs are mainly (98%) selected during the weak classifier training
and HOG features do not contribute to the classification. Examples of missed
classifications are shown in Fig. 11. It is clear that the samples that tended to
be erroneously classified involved large variations in shape or occlusions.
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Fig. 12. Results of occlusion consideration

4.3 Evaluation Experiments Adjusted for Occlusions

To demonstrate the validity of occlusion adjustment in the proposed method,
we evaluated it by human classification experiments.

The results of evaluation experiments with and without occlusion adjustment
are shown in Fig. 12. RDSFs with occlusion adjustment gave a detection rate of
97.8% with a false positive rate of 1.0%, which makes it clear that this method
enables highly accurate classification even when occlusions occur. In addition,
the detection rate improved even with HOG features with occlusion adjustment.
This shows that it is possible to suppress the effects of occlusion regions by using
occlusion rates to weight weak classifiers that are valid for the classification, to
obtain output of the final classifiers.

4.4 Features Selected by Training

Features that weak classifiers have selected in the Real AdaBoost training are
shown in Fig. 13. With the HOG features of (a), features are selected in such
a manner that the boundary lines between humans and the background such
as the edges of the head and shoulders are perceived. It is clear that features
of the upper half of bodies with few shape variations are often selected, as the
tendency of training of up to 50 rounds. Next, with the RDSFs of (b), the
selection is such that combinations of adjoining human regions and background
regions are perceived in the first and third training rounds. Differing from the
perception of boundaries at lines, such as with HOG features, boundaries are
perceived by regions with RDSFs. This is considered to make the method robust
in positioning humans. Boundaries were also perceived in the ninth and eleventh
training rounds, but separated rectangular regions were selected, which differs
from the first and third rounds. This is considered to make it possible to absorb
variations in boundary position, since there are large variations in the lower
halves of human bodies. In each of the second, fifth, and seventh training rounds,
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Fig. 13. Features selected by learning

Table 1. Computational costs per frame [ms]

regions that tend to determine vertical or lateral symmetrical depth relationships
of the human shape were selected. In each of the thirty-fourth and fortieth
training rounds, two regions in the interior of the human were selected. When
there are rectangular regions of the same depth, those two rectangular regions
can be taken to represent a surface of human. The tendency with up to 50
rounds of training makes it clear that large rectangular regions were selected
during the initial training rounds to determine the depth relationships of large-
scale human regions. As the training proceeded, the selection was such that local
depth relationships were perceived by selecting smaller rectangular regions.

4.5 Real-Time Human Detection

The examples of human detection using raster scanning of detection windows in
a 3D space are shown in Fig. 14. From (a), we see that an object of a similar
height to people is not detected erroneously and only the people are detected.
From (b) and (c), we see that the 3D position of each person can be detected
accurately, even when there is overlapping of people who are facing in different
directions. The processing times for one frame (361 detection windows) when
an Intel Xeon 3-GHz CPU was used are shown in Table 1. Since the proposed
method performs the processing in approximately 100 ms, it enables real-time
detection at approximately 10 fps.
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Fig. 14. Example of human detection

5 Conclusions

In this paper, we proposed a real-time human detection method that uses depth
information obtained from a TOF camera and can cope with overlapping peo-
ple and complex scenes. The results of evaluation experiments show that this
method enables a 11.5% improvement in detection rate over the use of HOG
features, which is a conventional method. In addition, we have confirmed that
the proposed method enables highly-accurate classifications even when occlu-
sions occur, by calculating the occlusion rate within the detection window, and
performing classifications from consideration of occlusion regions. Since the pro-
posed method requires a total processing time of only approximately 100 ms for
the computation and classification of features and the integration of detection
windows, it enables real-time detection at approximately 10 fps. In the future,
we plan to perform motion analysis using depth information and its variation
with time.
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Abstract. In this paper, we incorporate the concept of Multiple Kernel
Learning (MKL) algorithm, which is used in object categorization, into
human tracking field. For efficiency, we devise an algorithm called Mul-
tiple Kernel Boosting (MKB), instead of directly adopting MKL. MKB
aims to find an optimal combination of many single kernel SVMs focus-
ing on different features and kernels by boosting technique. Besides, we
apply Locality Affinity Constraints (LAC) to each selected SVM. LAC
is computed from the distribution of support vectors of respective SVM,
recording the underlying locality of training data. An update scheme to
reselect good SVMs, adjust their weights and recalculate LAC is also
included. Experiments on standard and our own testing sequences show
that our MKB tracking outperforms some other state-of-the-art algo-
rithms in handling various conditions.

1 Introduction

Visual tracking has been popular in the computer vision community for decades.
In this paper, we consider tracking as a binary classification, aiming to discrim-
inate the object from the background in successive frames. Collins et al. [1] pro-
pose a method to adaptively select color features that best separate the object
from the background. Grabner et al. [2] design an online version of Adaboost clas-
sifier for object tracking, which accumulates samples to train a strong classifier
and then use the classifier to find the object in videos. To solve drifting problem,
SemiBoost tracker [3], also a boosting classifier combined with semi-supervised
learning, is proposed. Avidan proposes support vector tracking (SVT) [4] which
utilizes an off-line SVM to discriminate the target vehicle from the background,
and an ensemble tracking approach [5]. The main concept of “ensemble” is to
collect a number of weak classifiers to learn the difference between the object
and the background, and then iteratively train new weak classifiers to replace old
ones. Tian et al. [6] devise an ensemble SVM classifier based tracking algorithm.
They use linear SVM to automatically select “key frame” of the target as sup-
port vectors. By combining several linear SVM classifiers, history information is
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� Springer-Verlag Berlin Heidelberg 2011
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integrated into the tracking framework. More recently, Babenko et al. [7] propose
a tracking framework utilizing Multiple Instance Learning (MIL) algorithm to
augment training and update samples.

Noticing that the SVM-based classifier can effectively solve classification
problem in tracking field, we focus on the kernel learning technique used in object
classification. The basic idea of kernel used in non-linear SVM is to map train-
ing samples from the input space to a higher dimensional feature space, where
they are linearly separable, without explicitly defining the mapping function. In
particular, we are interested in Multiple Kernel Learning (MKL) [8,9,10], which
has shown great advantages in the recent object classification task [11,12]. MKL
aims to learn an optimal kernel combination and assign appropriate weight to
each kernel in supervised learning settings. Standard MKL displays remarkable
ability to solve multi-class classification problems. However, for better classifica-
tion, many improvements have been proposed. Rakotomamonjy et al. [8] propose
an improved MKL algorithm, named SimpleMKL, for simplifying the optimiza-
tion process based on mixed-norm regularization. Localized MKL (LMKL) [13]
and Bayesian Localized MKL (BLMKL) [14] are devised to exploit the distri-
bution of training data on each kernel space and give higher weights to appro-
priate kernel functions if data has underlying localities. Motivated by LMKL,
Cao et al. [15] propose Heterogeneous Feature Machines (HFM) to learn a non-
linear combination of multiple kernels; Yang et al. [16] propose group-sensitive
multiple kernel learning (GS-MKL) to accommodate the intra-class diversity
and the inter-class correlation for object categorization. Boosting method is
also incorporated into MKL to implement feature combination [17] and feature
selection [18].

Impressed by the remarkable performance of MKL, we propose a Multiple
Kernel Boosting (MKB) algorithm with Locality Affinity Constraints (LAC)
for human tracking. To describe an object, we use 3 feature descriptors, RGB
histogram, Histogram of Gradient (HoG) [19] and SIFT [20]; to map the input
space to the kernel space, we use 4 kernels, linear kernel, polynomial kernel,
RBF kernel and sigmoid kernel. We consider each single kernel SVM as a “weak
classifier”. To find the best combination of these SVMs, we utilize boosting
technique instead of a global optimization used in most MKL algorithms. We
also introduce locality affinity information of input data, which is computed
from the distribution of support vectors of the respective single kernel SVM,
into the final decision function. In each new frame, we apply particle sampling
to generate a number of candidates. Tracking is then accomplished by finding
the best candidate. For update, we retrain the set of single kernel SVMs, reselect
some discriminative ones by MKB, and recalculate LAC.

The remainder of the paper is organized as follows: Section 2 and Section 3
introduce our Multiple Kernel Boosting (MKB) algorithm and Locality Affinity
Constraints (LAC) respectively. Main tracking framework is in Section 4 and
experimental results on various sequences are shown and discussed in Section 5.
The last section gives out conclusion.
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2 Multiple Kernel Boosting

2.1 Standard MKL

The main difficulty of single SVM is to choose a proper kernel for the given
training dataset. However, MKL aims to find an optimal convex combination of
multiple kernels and the associated classifier simultaneously. For binary classifi-
cation, assuming that we have training samples {xi, yi}D

i=1, where xi is the ith

sample and yi = {±1} indicates the label of the sample, our task is to train a
multi-kernel based classifier F (x) to classify an unlabeled sample into a class.
Let {Km}M

m=1 be the kernel matrices computed for different feature modalities.
The combination of multiple kernels is defined as

K(x, xi) =
M∑

m=1

βmKm(x, xi) (1)

where kernel weights βm ≥ 0 and
M∑

m=1
βm = 1. Km can be the same kernels

with different hyperparameters or different kernels. Also, they can be applied to
different feature sets. Then the decision function is defined as

F (x) =
D∑

i=1

αiyi

M∑
m=1

βmKm(x, xi) + b (2)

where {αi} and b are the Lagrange multipliers and the bias in the standard SVM
algorithm. We can learn {αi}, {βm} and b from a joint optimization process.
Details can be found in [10].

2.2 Multiple Kernel Boosting

Despite its success in object categorization, MKL cannot be directly applied to
tracking due to time-consuming optimization process, large amount of training
samples and constant weights. However, Gehler and Nowozin [17] have discussed
a boosting version of MKL for feature combination, which inspires us to propose
Multiple Kernel Boosting (MKB) for tracking applications. For a sample x, we
construct a vector by concatenating its kernel values with all the training samples
{xi, yi}D

i=1 to indicate the mth kernel response

Km(x) = [Km(x, x1), Km(x, x2), ..., Km(x, xD)]T (3)

So we can rewrite Equation 2 as the following form

F (x) =
M∑

m=1
βm

D∑
i=1

αiyiKm(x, xi) + b

=
M∑

m=1
βm(Km(x)T α + b)

(4)
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where α = (α1y1, α2y2, ..., αDyD)T . So we convert standard MKL to a linear
combination of the real value output of M separate SVMs Km(x)T α+b. Accord-
ing to [17], we can separately train M SVMs with different parameters {αm, bm}
at first, and then optimize {βm} in the second step. Each individual SVM is
not restricted to share the same parameter. By letting hm(x) = Km(x)T α + b,

we convert the decision function of standard MKL to F (x) =
M∑

m=1
βmhm(x). To

determine {βm}, we can simply use other methods. In this paper, we use boost-
ing method, so we name our algorithm Multiple Kernel Boosting (MKB). In the
boosting form, the decision function can be written as

F (x) =
L∑

l=1

βlhl(x) (5)

where L indicates the iteration time. We regard MKL as choosing multiple
“weak” single kernel SVMs into a final strong classifier. MKB avoids complex
global optimization, thereby making the concept of MKL applicable to tracking.
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Fig. 1. Illustration of Multiple Kernel Boosting (MKB) process

As Figure 1 shows, we extract {f1, f2, ..., fN} features from a set of positive
and negative samples and send them into {K1, K2, ..., KM} kernels. Then we get
M × N combinations; for each combination, we train a single kernel SVM. The
classification error of a single kernel SVM is defined as

ε =

D∑
i=1

w(i) · |h(xi)| · U(yih(xi))

D∑
i=1

w(i) · |h(xi)| · U(−yih(xi))
(6)

Here U(x) is a function that equals 1 when x > 0, otherwise it equals 1. w(i)
is training samples’ weight. h(xi) is the real value classification output of the
SVM on the input xi. We aim to adaptively select multiple features and kernels
that are of the most discriminative ability from the pool. So we use boosting
technique to iteratively choose an SVM and add it to the final decision function.
The complete process of MKB is shown in Algorithm 1.
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Algorithm 1. Multiple Kernel Boosting (MKB)

Input: training sets {xi, yi}Di=1, feature functions {fn}Nn=1, kernel functions
{Km}Mm=1, the decision function F (x) = 0
1: for each n ∈ N and m ∈M , train a single kernel SVM hm,n(x) on feature fn and

kernel Km on the entire training set {xi, yi}Di=1 to form a pool of candidate single
kernel SVMs, denoted as h

2: initialize samples’ weights w1(i) = 1/D
3: for l = 1 to L do

1) For each hm,n(x), compute classification error εm,n using Equation 6
2) Select hl(x) = arg min

hm,n∈h
εm,n

3) Compute weight βl = 1
2

log 1−εl
εl

for hl(x)
4) If βl < 0, break; otherwise add hl(x) to F (x)← F (x) + βlhl(x)
5) wl+1(i) = wl(i)

Zl
e−βlyihl(xi)

4: end for

Output: final strong classifier F (x) =
L∑

l=1

βlhl(x)

3 Locality Affinity Constraints

Although MKB produces promising tracking results, we find that it is not stable
enough in some cases. So we try to improve the original MKB. Motivated by
LMKL [13] and GS-MKL [16], we incorporate the distribution of training data
into F (x) to enhance the robustness of MKB. Rewriting Equation 2, we obtain

F (x) =
D∑

i=1

αiyi

M∑
m=1

βm(x)Km(x, xi) + b (7)

where βm(x) is a function of input x, rather than a constant βm in the standard
MKL. It can be learned from an iteration algorithm [13]. However, we find that
the optimization process is intolerantly time-consuming [16]. Moreover, iteration
cannot guarantee convergence to global optimum and unsuitable initial param-
eters may also degrade the performance. Considering the problem of limited
training samples in tracking, we devise a simple but effective method to exploit
the underlying distribution of training data.

We assume that an SVM trained in MKB has recorded the property of training
data with respect to the feature and kernel. Since support vectors of each SVM
reserve most information, we utilize those support vectors for computing the
locality of data. Letting βl = β∗

l Al(x) and rewriting Equation 5, we get

F (x) =
L∑

l=1

β∗
l Al(x)hl(x) (8)

where β∗
l is the same as βl in Equation 5, which is calculated by MKB. Al(x)

is a function of input x, indicating the similarity of x with the trained SVM,
which is called Locality Affinity Constraint (LAC) in our algorithm. Locality



44 F. Yang, H. Lu, and Y.-W. Chen

affinity means that if the input sample complies with the distribution of support
vectors in a specific SVM, we think that the importance of the corresponding
SVM is high, thus assigning it larger weight. We construct a probability model
to describe the locality affinity, which is defined as

Al(x) = 1 − exp(− |σl(x)|) (9)

where σl(x) = log
[

pl(y=1|x)
pl(y=−1|x)

]
. For each trained SVM hl(x), we compute the

mean μ+
l and μ−

l of positive and negative support vectors respectively. Then
pl(y = 1|x) and pl(y = −1|x) are computed as follows

pl(y∗|x) = exp(− |x − μ∗
l |) (10)

where y∗ = 1 or y∗ = −1 when μ∗
l is μ+

l or μ−
l . Here, Al(x) ∈ (0, 1), which

can be seen as the probability of sample x belonging to the support vectors. If
x is similar with training data on a specific combination of feature and kernel,
the importance of the corresponding SVM is high, and vice versa. Therefore,
we formulate the distribution of training samples and impose such constraints
on testing samples, thereby improving the discriminative ability of the decision
function.

4 Main Tracking Framework

In this section, we will introduce how tracking proceeds based on the afore-
mentioned algorithms. In 1st frame, we draw a bounding box x1 enclosing the
object we want to track, where x1 = (c1

x, c1
y, s1, θ1) records the center, size and

rotation angle of the object. The superscript indicates the current frame num-
ber. To augment the number of training samples, we crop out a set of images
X+ = {xi|0 ≤ l(xi) − l(x1) < rα}D+

i=1 to collect positive samples. Here rα is a
small constant and l(x) indicates the center of x. Similarly, we crop out a set
of negative samples X− = {xi|rβ ≤ l(xi) − l(x1) < rγ}D−

i=1. We set rβ > rα to
allow less than 1/4 overlap between positive and negative samples. Note that we
only use 1st frame to collect (D+ + D−) training samples. Extracting features
on these samples, performing MKB and adding locality affinity functions, we
obtain a multi-kernel based decision function.

To improve efficiency, we adopt particle sampling technique in the following
frames. The predicting distribution of xt given all available observations z1:t−1 =
{z1, z2, ..., zt−1}, denoted by p(xt|z1:t−1), is recursively computed as

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (11)

When the observation zt is obtained at time t, the state vector is updated as

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(12)
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Algorithm 2. MKB Tracking with Locality Affinity Constraints

Input: training sets {xi, yi}Di=1, feature functions {fn}Nn=1, kernel functions
{Km}Mm=1, the decision function F (x) = 0, empty sample queue Q
Output: tracking results in each frame {x1, x2, ..., xt}
For the first frame It (t = 1)
1: given the bounding box x1 = (c1

x, c1
y , s1, θ1), extract D+ positive samples and D−

negative samples
2: extract features {fn(xi)}D++D−

i=1 and train individual single kernel SVMs hm,n(x)
3: compute the locality affinity function Am,n(x) according to the distribution of

support vectors for each trained SVM hm,n(x)

4. apply Algorithm 1 to obtain the strong classifier F (x) =
L∑

l=1

β∗
l Al(x)hl(x)

For each new frame It (t > 1)
1: sample D particles {xt

i}Di=1 around the tracked object xt−1 according to distribution
p(xt|xt−1). The weight of each particles {wt

i = 1}Di=1

2: use F (x) to compute classification results of {xt
i}Di=1, then {wt

i =
exp(F (xt

i))/Zt}Di=1, where Zt is a normalized value

3: the tracked object is find by xt =
D∑

i=1

wt
ix

t
i

4: regard xt as positive sample and collect 4 negative samples around xt, push them
into the sample queue Q

5: if the length of sample queue Length(Q) = 5Tu, do
1) select SVM hm,n(x) from weak SVM pool h, extract feature SQ = fn(x), x ∈

Q. Form new training sample groups S
′
m,n = Sm,n ∪ SQ, where Sm,n are

support vectors of hm,n(x). Train hm,n(x) again using S
′
m,n

2) remove hm,n(x) from the pool h
3) repeat 1) and 2) until the pool is empty
4) update μ+

m,n and μ−
m,n of new trained support vectors to obtain new Am,n(x)

5) perform Algorithm 1 again to reselect appropriate hl(x) to form a new

F (x) =
L∑

l=1

β∗
l Al(x)hl(x)

6) clean up the sample queue Q
6: otherwise output xt and proceed to the next frame

where p(zt|xt) is the observation likelihood. The posterior probability p(xt|z1:t)
is approximated by D particles {xt

i}D
i=1 with importance weight wt

i , which are
drawn from a reference distribution q(xt|x1:t−1, z1:t). We let q(xt|x1:t−1, z1:t) =
p(xt|xt−1) then the weights wt

i = wt−1
i p(zt|xt

i). We think that p(xt|xt−1) com-
plies with a Gaussian distribution and affine parameters in xt are independent.
So in frame It, we have D candidates with different affine parameters around the
tracked object xt−1 in frame It−1. Then we apply p (zt|xt

i) = eF (xt
i) to compute

p(zt|xt
i), which is particle’s weight. Subsequently, we normalize {wt

i}D
i=1 and com-

pute the weighted sum of particles to find the object, denoted as xt =
D∑

i=1
wt

ix
t
i.

Moreover, to capture the variance of the object, we also incorporate an up-
date scheme into the tracking framework. In each frame, we consider the tracked
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object xt as positive sample, and extract four negative samples from four direc-
tions (up, down, left, right) without overlap with the positive one. We accumulate
these samples for Tu frames, then retrain individual SVMs using new samples
and corresponding support vectors. Subsequently, we perform MKB again to
obtain a new F (x). Al(x) is also recalculated from new support vectors. The
complete process is shown in Algorithm 2.

5 Experiments

5.1 Experimental Settings

We implement our tracking algorithm by Matlab. In 1st frame, both positive
and negative samples are 20. The pool of weak SVMs contains 12 single kernel
SVMs, each of which focuses on a specific combination of 3 features (64-dim RGB
histogram, 128-dim HoG and 128-dim SIFT descriptor) and 4 kernels (linear
kernel, polynomial kernel, RBF kernel and sigmoid kernel). The iteration time
of MKB is 10, while the number of selected SVMs varies according to different
sequences. In each new frame, we sample 200 particles according to a pre-defined
distribution and send them to F (x) to get 200 real values. The update rate also
varies according to the property of different sequences. Note that all parameters
are fixed except the distribution for sampling affine parameters of sequences.

We also run other three tracking systems: Online Adaboost tracking (OAB)
[2], Multiple Instance Learning tracking (MIL) [7] and color-based particle filter
tracking (PF) [21]. Similar with our MKB tracking, both OAB and MIL tracking
rely on a boosting technique and use new samples to change weak classifiers and
corresponding weights. Also, our approach includes the particle sampling that
generates a number of candidates used to approximate the current state of the
object. We are going to show that the good performance of our MKB tracking is
not necessarily attributed to particle sampling, so our approach outperforms PF
in most sequences. In our experiments, the number of selectors in OAB remains
100; PF uses 512-dim RGB feature (8×8×8 bins) and its sampling parameters
are constant on all sequences.

5.2 Results

We compare our method with OAB, MIL and PF tracking. To better display the
advantages of the proposed method, we will analyze the tracking results under
various situations.

Occlusion. Figure 2 shows a comparison under occlusion. The testing sequence
is from CAVIAR database. Our MKB tracking continuously keeps track of the
person even when he is occluded by another person in similar color. While all
other methods drift away from the object when occlusion occurs (OAB and MIL)
or when the object’s size changes (PF). We also find that HoG plays the most
important part when occlusion occurs. Because the color of the two persons is
almost the same, color feature is unreliable.
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Fig. 2. Comparison of tracking results when there is occlusion. Top row shows results
of our approach. Results of other approaches are shown in the bottom row.

Fig. 3. Comparison of tracking results when there is scale change. Top row shows
results of our approach. Results of other approaches are shown in the bottom row.

Scale change. To test the ability to handle the object’s scale change, we also
compare the four algorithms on another sequence also from CAVIAR database,
as shown in Figure 3. In the sequence, a person walks away from the camera,
so his size becomes smaller than that in the first few frames. There is also
simple occlusion by other people. Our approach can locate the person’s position
accurately and the tracking result is quite stable. In contrast, lacking a scheme
of adaptively adjusting the size of the tracking window, both OAB and MIL lose
the object when large scale change occurs. PF is even confused by the other three
persons close to the real object, even though they do not occlude the object.

Complex background. We also run the four algorithms on our own testing
sequences. Figure 4 shows tracking results on a sequence, in which a figure skater
exhibits a set of actions in a skating rink. As the figure shows, the background
is complex, including various colors. Sometimes the dark background is even the
same as the skater’s black clothes. MIL, OAB and PF cannot find the precise
position of the skater, especially when he changes his poses under the dark back-
ground; while PF even loses the skater when he changes his skating direction. In
contrast, our approach can locate the skater, resulting in more accurate results.
Therefore, our MKB tracking has the ability to deal with complex background.
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Fig. 4. Comparison of tracking results when background is complex. Top row shows
results of our approach. Results of other approaches are shown in the bottom row.

Fig. 5. Comparison of tracking results when there is fast motion. Top row shows results
of our approach. Results of other approaches are shown in the bottom row.

Fast motion. The last experiment we will report is to show the ability to han-
dle fast motion of the object. We aim to keep track of the famous sprinter Bolt
in the sequence that includes part of a 100m dash competition. The main diffi-
culty is that the runner moves fast. From Figure 5, we can see that both MIL
and OAB drifts away just in the first few frames when Bolt starts to accelerate;
while our MKB tracking and PF find Bolt accurately until about 120th frame.
However, we also find that PF is much sensitive to the sampling parameters:
slight change of initial parameters may affect the performance severely. Com-
pared with it, our method is more robust. The change of sampling parameters
within an appropriate range does not decrease the accuracy.

5.3 Discussions

In this section, we will briefly discuss some properties of our proposed method.
Table 1 shows quantitative comparisons on 7 testing sequences. Numbers indicate
the average error of center of the object per frame on testing sequences.

MKB tracking vs. single kernel SVM. First, we compare the proposed
algorithm with single kernel SVM using only one feature. We observe that in
most sequences, HoG+linear kernel and SIFT+linear kernel perform well. So we
compare the tracking results of the two single kernel methods. In Table 1, S1
and S2 indicate HoG+linear kernel and SIFT+linear kernel respectively. From
Table 1, we can see that only using one combination of feature and kernel cannot
achieve good results. Both the average position errors of the two methods are
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Table 1. The average position error per frame

OAB MIL PF MKB S1 S2 LAC-
ShopAssistant2cor 67.6 68.2 13.1 4.5 4.8 19.8 2.8

ThreePastShop2cor 15.2 17.7 35.8 3.5 129.8 19.8 4.2
MeetWalkSplit 9.0 21.5 9.0 8.0 12.0 89.4 11.9

skate 20.7 13.8 25.1 12.4 26.3 23.4 13.3
dash 129.4 206.9 11.1 4.1 18.8 12.4 16.1

Browse1 13.6 8.4 36.0 7.5 152.5 108.6 5.4

OneLeaveShopR1cor 7.3 10.7 8.9 4.6 31.8 46.2 51.6

much larger than that of our MKB tracking, although in some cases HoG+linear
kernel can produce more accurate results than other state-of-the-art approaches.

MKB tracking vs. other approaches. Besides qualitative comparisons in
the previous section, we also give out quantitative comparisons of our proposed
tracking and other algorithms. From the table, we can see that our MKB tracking
is much more robust. The adaptive selection of kernels and features shows its
advantage, compared with other approaches.

Impact of LAC. To test the effectiveness of LAC, we also run our tracking
system without such constraints (see “LAC-” column in Table 1). LAC shows
predominant advantage in most cases, leading to lower average position error,
although in only two sequences it does not outperform MKB tracking without
LAC. Therefore, by incorporating LAC, we boost the performance of original
MKB tracking. Moreover, we can see that even we use standard MKB for track-
ing, the results are not inferior to other existing approaches.

6 Conclusion

In this paper, we incorporate the concept of Multiple Kernel Learning (MKL)
algorithm, which is used in object categorization, into human tracking field. We
devise an algorithm called Multiple Kernel Boosting (MKB), instead of directly
adopting MKL. In MKB, we treat individual single kernel SVMs as weak classi-
fiers and utilize boosting technique to adaptively select a number of good SVMs
into a final decision function focusing on different features and kernels. Compared
with standard MKL, MKB is much efficient. To strengthen the discriminative
ability of the stong classifier formed in MKB, we also apply Locality Affinity
Constraints (LAC) to each selected SVM. LAC is computed from the distribu-
tion of support vectors of respective SVM, recording the underlying locality of
training data. An update scheme to reselect good SVMs, adjust their weights
and recalculate LAC is also included in our tracking framework. Experiments
on some standard and our own testing sequences show that our MKB tracking
outperforms some of its rivals in handling simple occlusion, scale change and
complex background.
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Abstract. In this paper we extend the latent Dirichlet allocation (LDA)
topic model to model facial expression dynamics. Our topic model inte-
grates the temporal information of image sequences through redefining
topic generation probability without involving new latent variables or
increasing inference difficulties. A collapsed Gibbs sampler is derived
for batch learning with labeled training dataset and an efficient learn-
ing method for testing data is also discussed. We describe the resulting
temporal latent topic model (TLTM) in detail and show how it can be
applied to facial expression recognition. Experiments on CMU expression
database illustrate that the proposed TLTM is very efficient in facial ex-
pression recognition.

1 Introduction

Facial expression recognition has become an active research topic in recent years
due to its potential applications in human computer interfaces, data-driven ani-
mation, etc. Most facial expression recognition methods attempt to recognize six
prototypic expressions (namely joy, surprise, anger, disgust, sadness and fear)
proposed by Ekman [6]. Over the past decade, many techniques (e.g. Neural
networks [22]) have been applied to still facial images recognition. Psychological
studies show that facial image sequences often produce more accurate and ro-
bust recognition compared to mug shots [1]. Therefore, recent attention has been
moving to model the facial expression dynamics through integrating temporal
information [12] [18] [19].

The approaches to modeling temporal behaviors of facial expressions are gen-
erally classified as designing dynamic features (e.g. Dynamic Texture [27]) or con-
structing sequential data modeling tools (e.g. Dynamic Graphical Model [26]).
Yang et al. [24] designed a dynamic Haar-like feature to represent facial image
sequences. Zhao et al. [27] extended the well-known local binary feature (LBP)
to the temporal domain and applied it to facial expression recognition. Yeasin
et al. [25] captured the dynamics of facial image sequences by Hidden Markov
Models (HMMs). To better model the relative change of emotional magnitude,
Zhang et al. [26] presented a probabilistic framework by integrating the Dynamic
Bayesian networks (DBNs) with the facial action units (AUs) [6]. Their methods
can reflect the evolution of a spontaneous expression. DBNs are natural for mod-
eling facial expression variations, and can be easily extended by combining them
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with other models (e.g. Neural Networks) or incorporating semantic relationships
between AUs. Nevertheless, modeling the temporal order of facial expression ex-
plicitly is risky, because noise in the facial features can easily propagate through
the model. Moreover, these models often suffer from too many latent variables
or too complex model structures, which makes learning and inference difficult.

Recently, in the statistical text community latent topic models (e.g. LDA [2])
have achieved significant success in semantic clustering. Besides modeling text
generation, LDA has also been widely used to solve computer vision problems,
e.g. object discovery [23] and scene categorization [15]. However, directly apply-
ing a language model to computer vision problems has some difficulties, since
in LDA the “bag-of-words” representation relies on the assumption that the or-
der of words or documents can both be ignored. As pointed out by Wang et
al. [23], the spatial and temporal structure of documents or words are mean-
ingless in a language model, but important for many computer vision problems.
Therefore, studies on extending the LDA to model the spatiotemporal structures
of words, topics, documents or corpora have gained more and more attention.
Wang et al. [23] proposed a spatial LDA to include the spatiotemporal structure
among visual words. Hanna [8] considered word order information by incorporat-
ing n-gram statistics. Hospedales et al. [9] combined HMM with LDA to model
behavior dynamics. In this paper, we propose a new latent topic model (TLTM)
which considers the temporal structure of facial image sequences. In TLTM,
facial expression dynamics is included by redefining topic generation probabil-
ity to ensure that successive images are most likely to have the similar topic
distributions. Compared to existing extensions, our TLTM does not use new
latent variables nor increase inference difficulties, which makes it as efficient as
LDA. Experiments on CMU facial expression dataset [11] show that our gener-
ative TLTM model outperforms the generally used HMM models and achieves
comparable performance as some discriminant models.

The rest of this paper is organized as follows. In Section 2, we describe the fea-
ture extraction method. In Section 3, we introduce the proposed TLTM and ap-
ply it to facial expression recognition. In Section 4, the performance of proposed
method is evaluated by the CMU dataset. Section 5 summarizes this paper.

2 Feature Extraction and Indication

In facial expression recognition, there are two types of facial features: perma-
nent and transient features. The permanent facial features are the shapes and
locations of facial components (e.g. eyebrows, eye lids, nose, lips and chin). The
transient features are the wrinkles and bulges appeared with expressions. In
this work, we do not consider transient features and use the movement of facial
features away from neutral positions to measure facial expression variation.

We applied the well-known Active Appearance Model (AAM) [5] on facial
image sequences to track the movement of facial features. Figure 1(a) shows the
shape model consisting of 58 facial points which is identical with the one given
in [4]. Figure 2 displays the facial feature localization results of one subject’s six



A Temporal Latent Topic Model for Facial Expression Recognition 53

Fig. 1. (a) The facial landmarks(58 facial points) and (b) selected feature points

basic expressions. In [4], the (x, y) coordinates of the 58 localized facial points
forming a 116-dimensional vector are used to represent an image. Based on the
analysis of facial action coding system (FACS) [6], we found that the movements
of some facial points (e.g. facial points 1 and 13) are not essential to measuring
facial deformation, so a subset is selected from the 58 facial points as feature
points which are depicted in Fig. 1(b), in which the solid triangles and rectangles
represent that only the X or Y-coordinates are used as feature and the solid
circles represent that both the X and Y-coordinates are used. The midpoint of
the inner corners of the two eyes (facial points 18 and 26) is defined as the origin.
A facial image is thus represented by a 52-dimensional feature vector.

Fig. 2. The tracking results of one subject’s six basic expressions

To further reduce the inter-personal variations with regard to the amplitudes
of facial actions, feature points are quantized into a fixed number of words
according to movements away from neutral positions. The movement in the
X-axis direction is quantized into a word of the vocabulary VocabularyX =
{Lefti, Righti, MotionlessXi|i = 1, 2, · · · , 58}, where the word Lefti (Righti) rep-
resents that the i-th facial point moves at lest two pixels left (right) to its neutral
position, otherwise it will be quantized to the word MotionlessXi. Similarly, the
vocabulary describing the movement types in the Y-axis direction is defined as
VocabularyY = {Upi, Downi, MotionlessYi|i = 1, 2, · · · , 58}. With the two vo-
cabularies at hand, for a given facial image di, its 52-dimensional feature vector
is changed to a bag-of-words representation {wi,1, · · · , wi,52}. Our image collec-
tion (corpus) is constructed by concatenating these bag-of-words representations
one after the other.
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3 TLTM for Facial Expression Recognition

Facial expressions can be described by the FACS, in which each expression is
characterized by the co-occurrence of atomic facial AUs which are represented
by some low-level features. LDA is a hierarchical generative topic model, which
is very suitable for discovering the co-occurrence of low-level visual words (or
higher-level topics). We can find there is a good correspondence between the
FACS and LDA model. When LDA is applied to modeling facial expression
variations the low-level visual words (i.e. the movements of feature points away
from neutral positions) are clustered into higher level topics which correspond
to atomic facial action units. In this section we will first briefly review LDA and
establish notations, then particularly study how to extend LDA to model facial
expression dynamics.

3.1 Latent Dirichlet Allocation

LDA is a generative model for topic discovery which has attracted a lot of in-
terest from the field of machine learning, language processing and computer
vision community. Figure 3 shows the graphical model of LDA. In this model,
documents are represented as random mixtures over latent topics, which are
characterized by discrete distributions over words.

z

N

D

T

w

Fig. 3. Plate notation for LDA

Each individual word token wn in a corpus w = {w1, w2, · · · , wN} is assumed
to have been generated by a latent topic zn, which is drawn from a document-
specific distribution over T topics. The probability of generating a word w from
a topic t is defined by φw|t = P (wn = w|zn = t). These probabilities are recorded
by a T × W matrix Φ, where W is the size of vocabulary and T is the number
of topics. Similarly, the topic generation is characterized by another conditional
probability θt|d = P (zn = t|dn = d). These probabilities are recorded by a
D × T matrix Θ, where D is the number of documents in the corpus. Thus
the joint probability of the corpus w and a set of corresponding latent topics
z = {z1, · · · , zN} is

P (w , z |Φ, Θ) =
N∏

n=1

φwn|zn
θzn|dn

(1)

where wn is the n-th word of the corpus w , zn is the topic assignment for the
n-th word and dn is the document number of the n-th word.
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To make the model fully Bayesian, symmetric Dirichlet priors with hyper
parameters α and β are placed over Θ and Φ

P (Θ|α) =
∏
d

Dirichlet(θd|α) and P (Φ|β) =
∏

t

Dirichlet(φt|β) (2)

where θd is the d-th row of the matrix Θ, φt is the t-th row of the matrix
Φ. Combining the two priors with equation (1) and integrating over Θ and Φ
gives the joint probability of corpus and latent topics given hyperparameters:
P (w , z |α, β). Consequently the posterior probability for latent topics z is cal-
culated

P (z |w , α, β) =
P (w , z |α, β)∑
z P (w , z |α, β)

. (3)

Unfortunately, exact inference is intractable for LDA, since computing the equa-
tion (3) involves evaluating a probability distribution on a large discrete state
space. However, there have been three approximating methods to learn LDA,
EM with variation inference [2], EM with expectation propagation [16], and
Gibbs sampling [7]. In this work, we adopted Gibbs sampling, since this method
is better tolerant to local optima and its performance is comparable with the
other two methods.

To sample from the posterior distribution (3) using the Gibbs sampling
method, we need the full conditional distribution

P (zn = t|z−n,w , α, β) ∝ N
(wn)
−n,t + β

N
(·)
−n,t + Wβ

N
(dn)
−n,t + α

N
(dn)
−n + Tα

(4)

where z−n denotes all the zj with j �= n, N
(wn)
−n,t is the number of times the

word wn assigned to topic t and N
(·)
−n,t is the number of words assigned to topic

t. N
(dn)
−n,t is the number of times topic t occurring in document dn and N

(dn)
−n is

the number of words in document dn. All the four numbers do not include the
current assignment of zn. With a set of samples the parameters Θ and Φ can be
estimated from w and z by

θ̂t|d =
N

(d)
t + α

N (d) + Tα
, and φ̂w|t =

N
(w)
t + β

N
(·)
t + Wβ

. (5)

In the context of facial expression recognition, low-level visual words are clus-
tered into higher level topics by LDA which correspond to atomic facial action
units. In the next section, our TLTM model will be built based on LDA by
including temporal information of image sequences.

3.2 Temporal Latent Topic Model

Before using LDA to model facial expressions dynamics, we need to first define
the meaning of “document” for facial expression recognition. If we treat each
facial image sequence as a document, the document order information will be
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changed to word order information. However, in the standard LDA words are ex-
changeable, so document structure information will be ignored. To include word
order information, Hanna [8] incorporated n-gram statistics. If we define each
image as a document, LDA still misses document order information, since LDA
is developed for unstructured documents. In [9], Hospedales et al. introduced a
Markov chain to model the temporal structure of image sequences. In TLTM,
we adopt the latter way that the bag-of-words representation of one facial im-
age is defined as a document. In order to include the temporal information of
facial image sequences, we modify the topic generation probability θt|d to be
θt|d,pre(d), where pre(d) is the index of the previous image of the d-th image.
Since our image collection is constructed by stacking image sequences one after
the other and preserving the inner sequence structure, the value of pre(d) will
be (d − 1) or null if image d is the first slice of a sequence. In the case of null,
the topic generation probability will be reduced to θt|d.

Fig. 4. The graphical model of TLTM

Figure 4 shows the graphical model of TLTM, in which the repeated topic
and word generation within the corpus is explicitly drawn. In this figure, Nd is
the number of words in the d-th document (image) and has the value of 52 in
this work. wi,j is the j-th word of the i-th document and its topic assignment
is zi,j . The index of the word wi,j in the whole corpus is calculated as n =
((i − 1) × 52 + j). Compared to the standard LDA as shown in Fig. 3, it can
be observed that the topic generation probability θt|d does not only depend on
θd but also depends on θ(d−1). Use the topic assignment of the word w2,1 as
an example, the generation probability for z2,1 depends both on θ1 and θ2. The
generation probability of z2,1 is changed from P (z2,1|θ2) to P (z2,1|θ1, θ2). The
joint probability P (w , z |Φ, Θ) becomes to

P (w , z |Φ, Θ) =
N∏

n=1

φwn|zn
θzn|dn,(dn−1). (6)
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According to the Bayes’rule, the distribution θt|d,(d−1) can be calculated from
the distributions θt|d and θt|(d−1) as follows

P (t|θd, θ(d−1)) =
P (t)P (θd, θ(d−1)|t)

P (θd, θ(d−1))
=

P (t)P (θd|t)P (θ(d−1)|t)
P (θd, θ(d−1))

=
P (θd)P (θ(d−1))
P (θd, θ(d−1))

P (t|θd)P (t|θ(d−1))
P (t)

∝ P (t|θd)P (t|θ(d−1))
P (t)

, (7)

where P (t) is the prior probability of topic t and the prior knowledge here is
defined as the set of words, which have the same sequence number as wn does,
and their corresponding topic assignments. So the prior probability P (t) can
be regarded as a sequence level topic generation probability with respect to
document level topic generation probability (i.e. θt|d), and it is characterized
by a conditional probability ψt|s = P (zn = t|sn = s). These probabilities are
recorded by a S ×T matrix Ψ , where S is the number of sequences in the image
collection.

As in LDA, we place symmetric Dirichlet priors with hyper parameters α,
β and γ over Θ, Φ and Ψ , respectively. P (Θ|α) and P (Φ|β) are given as in
equation (2). P (Ψ |γ) is given as follows

P (Ψ |γ) =
∏
s

Dirichlet(ψs|γ) (8)

where ψs is the s-th row of the matrix Ψ . Combining the three priors with
equation (6) and integrating over Θ, Φ and Ψ gives the joint probability of
corpus and latent topics given hyperparameters:

P (w , z |α, β, γ) =
T∏

t=1

B(CT
t + β)

B(β)

D∏
d=1

B(CD
d + CD

d+1 + α)
B(α)

S∏
s=1

B(γ)
B(CS

s + γ)
, (9)

where B(·) is the multinomial beta function, α, β and γ are vectors with const
elements α, β and γ, respectively. CT , CD and CS are three count matrixes.
CT

t , CD
d and CS

s are the t-, d- and s-th row of the matrixes CT , CD and CS ,
respectively. The (t, w)-th element of CT is the number of times that topic t is
assigned to word w. The (d, t)-th element of CD is the number of times that
topic t is assigned to words in document d. The (s, t)-th element of CS is the
number of times that topic t is assigned to words in sequence s. Finally, the
Gibbs sampling update for the topic zn is obtained as follows

P (zn = t|z−n,w , α, β, γ) =
P (zn = t,w , z−n|α, β, γ)

P (w , z−n|α, β, γ)

∝ N
(wn)
−n,t + β

N
(·)
−n,t + Wβ

N
(dn−1)
t + N

(dn)
−n,t + α

N (dn−1) + N
(dn)
−n + Tα

Ndn−n,t + N
(dn+1)
t + α

Ndn−n + N (dn+1) + Tα

N
(sn)
−n + Tγ

N
(sn)
−n,t + γ

(10)
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where sn is the sequence number of the word wn, N
(sn)
−n,t is the number of times

topic t occurring in the the facial image sequence sn and N
(sn)
−n is the number

of words in the sequence sn(both excluding zn). With a set of samples from the
posterior distribution P (z |w), we can estimate Θ, Φ, and Ψ from w and z by
equations

θ̂t|d =
N

(d)
t + N

(d+1)
t + α

N (d) + N (d+1) + Tα
, φ̂w|t =

N
(w)
t + β

N
(·)
t + Wβ

, and ψ̂t|s =
N

(s)
t + γ

N (s) + Tγ
. (11)

3.3 Applying TLTM to Facial Expression Recognition

In facial expression recognition, TLTMs are learned for facial expression train-
ing dataset. The learned TLTM for the i-th facial expression is denoted by a
compact notation TLTM[Tri] = (w [Tri], z [Tri], Θ[Tri], Φ[Tri], Ψ [Tri]), here w [Tri] is
the image corpus of the i-th facial expression and z [Tri] is the learned latent
topic assignments. For a new facial image not contained in training dataset,
we need to quickly assess the topic assignments, while the standard inference
method described above is offline. Recently, some online [3] or efficient inference
methods have been proposed [20], we adopt the efficient Monte Carlo algorithm
as described in [20]. The basic idea of this method is to run only on the word
tokens in the new image.

Given a testing facial image sequence {d[Te]
1 , d

[Te]
2 , · · · , d

[Te]
j , · · · }, where the

j-th image d
[Te]
j has the bag-of-words representation {w[Te]

j,1 , w
[Te]
j,2 , · · · , w

[Te]
j,52}.

The trained TLTMs are used to classify the current image slice into one of
the six basic expressions. Let l

[Te]
j denote the label of the j-th testing image.

Once the j-th image is obtained, we will sample new assignments of words to
topics by applying equation (10) only to the word tokens in the j-th image. After
several sampling iterations (20 iterations in our simulation), we can get the topic
assignment z

[Te]
j,k for each word in d

[Te]
j . The topic generation probabilities for

image d
[Te]
j in both document and sequence levels can be estimated by equation

(11), and the probability θ
[Te]

t|d[Te]
j ,d

[Te]
j −1

can thus be calculated by equation (7).

Finally, the observation probability of d
[Te]
j conditioned on the i-th expression is

calculated by

P (d[Te]
j |l[Te]

j = i) =
52∏

k=1

T∑
t=1

φ
[Tri]

w
[Te]
j,k |tθ

[Te]

t|d[Te]
j ,d

[Te]
j −1

. (12)

According to the Bayes’s rule, the probability of sequence {d[Te]
1 , d

[Te]
2 , · · · , d

[Te]
j }

classified to the i-th expression is calculated as

P (l[Te]
j = i|{d[Te]

1 , d
[Te]
2 , · · · , d

[Te]
j }) ∝ 1

N(j)
P (d[Te]

j |l[Te]
j = i)

6∑
k=1

P (l[Te]
j = i|l[Te]

(j−1) = k)P (l[Te]
(j−1) = k|{d[Te]

1 , d
[Te]
2 , · · · , d

[Te]
(j−1)}), (13)
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here N(j) is a scale factor to ensure
∑6

i=1 P (l[Te]
j = i|{d[Te]

1 , d
[Te]
2 , · · · , d

[Te]
j }) = 1

and P (l[Te]
j = i|l[Te]

(j−1) = k) is the transition probability from expression k to i.
To facilitate the computation of transition probabilities, a 6 × 6 matrix R is
constructed. The (k, i)-th entry of R records the number of times transmitting
from the expression k to i in two consecutive time slices. R is initialized to a
matrix with all ones. The transition probability P (l[Te]

j = i|l[Te]
(j−1) = k) is simply

calculated as Rk
i /

∑
i Rk

i , where Rk
i is the (k, i)-th entry of the matrix S. All

the probabilities involved in (13) are obtained, a testing facial image sequence
is classified to expression i∗

i∗ = arg max
i=1,...,6

P (l[Te]
j = i|{d[Te]

1 , d
[Te]
2 , · · · , d

[Te]
j }), (14)

if P (l[Te]
j = i∗|{d[Te]

1 , d
[Te]
2 , · · · , d

[Te]
j }) > 0.40, otherwise Neutral expression is

assigned.

4 Experiments

4.1 Dataset and Parameter Settings

We use the Cohn-Kanade Database to evaluate the performance of TLTM. This
database consists of 100 university students ranging in age from 18 to 30 years.
Sixty-five percent were female, fifteen percent were African-American and three
percent Asian or Latino. For our experiments, we selected 72 whole image se-
quences (totally, 1085 images) from the database. Each expression contains 12
sequences. The original frames are normalized to 170 × 210 pixels facial images
based on the positions of two eyes. Before using TLTM and LDA, we need to first
set the hyperparameters α, β, γ and the number of latent topics T . For all runs
of our algorithm, we set α, β and γ to constant values α = 50/T , β = 0.1 and
γ = 60/T . T is a very influential parameter for any latent topic models, and some
Dirichlet Processes based methods have been proposed to estimate the value of T
automatically [21]. In our simulation, we used the generally acceptable empirical
methods to determine the optimal value for T . We run our model for different T
values and found five latent topics provides the best recognition rate.

Table 1. The recognition rates (%) of LDA and TLTM

JOY SUR ANG DIS SAD FEA Overall Rate
LDA 66.67 100.00 83.33 94.44 100.00 88.89 88.89
TLTM 75.00 100.00 91.67 100.00 100.00 95.83 93.75

4.2 Experimental Results

We used a three-fold cross validation in our experiments to verify the benefits
of using TLTM to model facial expression dynamics. Table 1 presents the recog-
nition results of LDA and TLTM. It can be observed that the TLTM method
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outperforms the LDA method for the recognition of joy, anger, disgust and fear
expressions, which confirms the benefit of using temporal information of im-
age sequences. Furthermore, we can see that both methods perform relatively
worse for the joy expression, since the joy expression mainly includes two AUs:
AU6(Cheek raiser) + AU12(Lip corner puller) and the AU6 depends on some
transient features such as nasolabial furrows presence and eye wrinkles increased,
however AAM is not particularly suitable to track these features. Other tools
(e.g. Canny edge operator) will be used to quantify the intensity of furrows and
wrinkles in future work to obtain better performance.

Table 2. Comparisons with other methods

Methods ParzenHMM KnnHMM DynamicLBP SVMLBP LDA TLTM
Overall Rate 86.11 91.67 96.26 92.10 88.89 93.75

Table 2 summarizes a comparison to some other representative approaches.
Here “ParzenWHMM” denotes a modified HMM in which the generation prob-
ability is estimated by a nonparametric density estimation method-Parzen Win-
dows [10]. “KnnHMM” denotes a discriminate HMM proposed by Lefevre [14], in
which the discrimination ability at hidden state level is improved by a k-nearest
neighbors (k-NN) estimation method. “SVMLBP” denotes the method proposed
by Shan [17], they used LBP to represent facial features and SVM as classifier.
The “DynamicLBP” method used dynamic LBP to represent facial features and
used SVM as classifier [27]. It can be observed that the LDA method performs
better than the HMM based method and slightly worse than its discriminant ver-
sion KnnHMM. Our method achieves the similar performance as the SVMLBP
method, although TLTM is a generative model and does not use the information
of other classes in the training stage. The main difference of the methods Dy-
namicLBP and SVMLBP is LBP is replaced by dynamic LBP, which confirms
the benefit of considering the temporal information for sequential data classifi-
cation. The DynamicLBP method performs better than our generative model,
since SVM is a discriminant model which uses the information of other classes in
the training stage. Recently, some works on increasing the discriminant ability
of LDA have been proposed such as DisLDA [13] and MedLDA [28]. We will
use some discriminant rules to train our TLTM in future work to get higher
recognition rate.

4.3 Some Recognition Examples

In this section, we will use two examples to illustrate the efficiency of the pro-
posed method in an intuitive way. In the first example, we created a short image
sequence as shown in Figure 5(a) in which the subject performed smiling with
blinking her eyes in the frames 4 and 5. We can observe that from the sec-
ond frame lip corners begin to be pulled obliquely and cheeks are raised. From
Fig. 5(b), we can see the probabilities of the six expressions are close in the first



A Temporal Latent Topic Model for Facial Expression Recognition 61

Fig. 5. Example 1: (a) An image sequence shows a subject performing smiling with
blinking eyes in the frames 4 and 5, (b) the probability distributions of facial expressions

frame. As the expression progresses with time the probability of joy increases
gradually and decreases in the frames 4 and 5 resulted by the eyes blinking ac-
tion. In the 7-th frame, the probability of joy rises to nearly 0.7 and implies
that this frame has the apex joy expression. This experiment illustrates that our
method can well model the evolution of facial expression.

Fig. 6. Example 2: (a) An image sequence shows a subject performing surprise
with tracking error in the frames 3 and 5, (b) the probability distributions of facial
expressions

Figure 6(a) shows another image sequence in which the subject performed
surprise with some frames mis-tracked. In frames 3 and 5, we can see that the
locations of mouth and chin are tracked in error. Fig. 6(b) gives the result of
our method, from which we can observe that although the probability of sur-
prise visibly decreases in the 5-th frame, the facial expression can still be cor-
rectly recognized. This example illustrates that our method is robust to tracking
error.
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5 Conclusions and Future Work

This paper proposed a new latent topic model TLTM for facial expression analy-
sis by integrating the temporal information of image sequences. We redefined the
topic generation probability without involving new latent variables or increas-
ing inference difficulties. Experiments on CMU expression database confirmed
the efficiency of the TLTM in facial expression recognition. In future work, we
will pay more attention to feature extraction and use some discriminant training
rules to increase the discriminant ability of TLTM to get better performance.
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From Local Features to Global Shape
Constraints: Heterogeneous Matching Scheme

for Recognizing Objects under Serious
Background Clutter

Martin Klinkigt and Koichi Kise

Graduate School of Engineering, Osaka Prefecture University

Abstract. Object recognition in computer vision is the task to cate-
gorize images based on their content. With the absence of background
clutter in images high recognition performance can be achieved. In this
paper we show how the recognition performance is improved even with
a high impact of background clutter and without additional information
about the image. For this task we segment the image into patches and
learn a geometric structure of the object. In evaluations we first show
that our system is of comparable performance to other state-of-the-art
system and that for a difficult dataset the recognition performance is
improved by 13.31%.

1 Introduction

To categorize images is a long researched task in computer vision which belongs
to the field of image recognition. Recently this field is of high interest and the
results are remarkable. In the more challenging object recognition only a part of
the image is showing the object of interest, while the other would show unrelated
object which we name background. If the amount of information extracted from
the background overweight the amount of useful information extracted from the
object, the results of object recognition can become unreliable. To avoid this
problem the image is often not described in a global manner. By only looking
like through a peephole the information in the image is described in tiny uncor-
related parts so-called local features. The drawback of this approach is that it
lose discriminative power which would be needed to distinguish between similar
objects.

For the gain of more discriminative power even for images with background
clutter, researchers often apply pragmatic solutions, e.g., segment the object in
the image from the background [1] or apply clustering [2] to learn frequently
used visual words. However, also these approaches have some drawbacks which
make their application difficult. A segmentation of the object can hardly be done
automatically and thus must be provided by human. With the help of clustering
it can be distinguished between information of the object and the background.
This approach relies on a large number of images, which can only be provided
in some impractical contexts.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 64–75, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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One possible way to increase the discriminative power is the weak geometric
consistency as proposed by Jegou et al. [3] which verifies some global geometric
information. However, it can address the problem of background clutter only to
a limited extend, e.g., the image must mainly show the object.

By understanding the nature of background clutter we go stepwise from local
features to more powerful global description. In that way we can even work
with only one training image per object. In such a case it is normally not clear
which parts of the image belong to the object and which to the background.
To address these problems, we assume that information from the background
is mainly unstructured concerning the shape which involves two ideas. First,
smaller patches of the image can only belong either to the object or to the
background which holds for all reasonable use cases. Second, during recognition
it is possible to distinguish between object and background with a shape model.
Matching information with a consistent and structured shape is a hint for the
object, while unstructured matching could be background clutter and will be
ignored. By going from these small patches to larger areas, with a novel use of a
shape context and finally defining a overall global shape with the reference point,
we can even handle occlusions or distinguish between similar looking objects. In
an evaluation on a challenging dataset we compare our system to an approach
at only works on local features and the model of the weak geometric consistency.
Our system achieves an increased recognition performance of 13.31%.

2 Related Work

Our motivation is to improve recognition performance for images containing
background clutter by keeping the additional work for the user low. Concerning
this objective only a few has been done. Since we only work with the information
of the images itself, the environment is the same as in the context of similar image
search. A representative of such a task is provided by Jegou et al. [4] which
works with local features. Jegou et al. use a sophisticated Hamming embedding
to search within a large image database. This system was not designed to address
the problem of background clutter and could be easily disturbed. This due to
the fact that it was designed for image rather than object recognition.

In recent research scientists have put some interest on the configuration of
features to use more discriminative global information. All proposed approaches
can not fully address the problem of background clutter. The weak geometric
consistency (WGC) [3] is such an approach. In this model the system makes
use of the scale and orientation of the Scale-Invariant Feature Transform (SIFT)
proposed by Lowe [5]. The idea of the WGC is that the features of the object
are transformed consistently, and therefore, beside some noise these changes in
the shape are for all features the same. However, this holds only if the system
has not to struggle with much background clutter. The used global histograms,
which describe the whole image at once, are easily disturbed by features from
the background which will finally become meaningless.

By working on pre-segmented image patches Plath et al. [6] improve object de-
tection and its segmentation. The two major differences to our proposed method
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are that the system of Plath et al. is designed to work on large learning datasets
for the objects and a bounding box is used to limit the effect of the background.

The use of a shape context to improve recognition performance in images was
also proposed by Mortensen et al. in [7]. In their approach maximum curvature
at each pixel is stored in the shape context. Such a curvature is not robust
against background clutter and can hardly be improved to be so. Since it can
not be distinguished between curvature from the background and the object,
curvature from background will suppress curvature from object, if their amount
becomes too large. In contrast we use geometric information from more robust
PCA-SIFT features as provided by Rahul et al. [8].

The implicit shape model as proposed by Leibe et al. [9] express the shape
of features concerning one selected reference point. The system of Leibe et al.
requires several hundreds of images with a bounding box around the object to
limit the effect of background clutter. This highly engrosses the user who has to
provide this data. In our utilization of such a reference point we create the shape
model during recognition and learn images without a bounding box. Compared
to previous work [10], we work on the pre-filtered features to reject irrelevant
information.

3 Proposed Method

The source of the background clutter problem is erroneous matching of local
features. To identify such erroneous matches it makes sense to take into account
the configuration of these local features. However, this lead to the new problem of
defining a suited model. Such a model must be strong enough to detect erroneous
matches and on the other hand it can not be too strict to endure occlusions of
the object of interest. Facing these problems the use of only one model easily
fails to achieve both.

In our proposed method we go stepwise from local features to a description of
the local area around the feature and finally to a more global shape. Figure 1 gives
an overview of our system. From the training images we extract PCA-SIFT fea-
tures [8]. These features are frequently used in computer vision and good results
have been achieved. The features together with some information about their lo-
cation in the image are stored in a database.

In the first step a reduction of erroneous matching is achieved by working
on smaller patches of the image. The same type of local features are extracted
and compared with features stored in the database. The reason for the use of
these local features are their stability. Even for changing lighting conditions
and blurred image, these features could be extracted reliable. For these patches
we assume that they can only belong either to the object or to background.
Therefore, patches with a even evidence for many different objects are ignored.

For the remaining patches the local configuration of the features is verified.
This is done by the calculation of a local shape context from the features. In
small regions changes in the configuration due to noise, perspective changes etc.
are only little. A strict model as the shape context is suited for such a task. To
be fault-tolerant concerning occlusion and to separate between similar objects,
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Fig. 1. System overview

we use an additional model by utilizing a reference point. This is needed, since
different objects can have a high similarity even in relatively large parts, e.g.,
windows or doors of buildings. Concerning the global shape such differences can
be detected.

This section is organized as follows: First we explain the voting scheme in
section 3.1 followed by the description about the image patches and how we
discard them in section 3.2. After that give the details about the shape context
in section 3.3 and the reference point in section 3.4. At the end in section 3.5 we
describe how we use this information to score for the object.

3.1 Voting Scheme in Object Recognition

Voting is often used to recognize objects, since its implementation is simple and
much faster compared to complex vocabulary learning.For voting local features
are used to represent an image and, therefore, an object. These features together
with the object ID are stored in a database. For each feature extracted from the
query image similar feature in the database is searched. If features are found
which fulfill a certain threshold in similarity, the match cast a vote for the
corresponding object. The object with the most votes is supposed to be the
correct result.

3.2 Image Patches

By processing the whole image at once including all background clutter, it can
not be distinguished between the background and the object. Instead we work
on smaller pre-segmented image patches for which we assumed that they can
only belong either to the object or to the background. These small patches can
be discarded, if there is no clear evidence for one object. This assumption holds
for most of the realistic use cases. A simple solution for the task of segmentation
is to take the color information. Our implementation is based on the graph-
based segmentation as provided by Felzenszwalb et al. [11]. Figure 2 shows such
a segmentation for a real image. On the left side (Fig. 2a) we see the original
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(a) A query image (b) Image segmented into patches

Fig. 2. Example segmentation of a query image

image and on the right side (Fig. 2b) the individual colored patches after the
application of the segmentation algorithm. We can see the object is segmented
into many different patches. However, problems do not result from this over
segmentation and our assumption still holds.

For each patch we decide which object it is showing. Here we only use the
PCA-SIFT features and the voting scheme described in section 3.1. The system
returns a ranked list with confidence values zSPo

for the objects o ∈ O by count-
ing the number of good matching features of o. If the patch cannot be assigned
to a few objects with a high confidence, the whole patch is discarded. Here we
just apply a simple threshold based on the number n of objects which have some
similarity with the patch and ntop be the number of objects with high confi-
dence. The patch will be used only if ntop = 1 or ntop/n < 3/4. If a patch has
similarity to too many different objects, it cannot be used for object recognition,
since information from this area is not reliable.

3.3 Shape Context

After ambiguous patches have been discarded based on the PCA-SIFT features
we verify the local configuration of the features in the remaining patches. First
we utilize a shape context for this task. We take the position of the features and
ignore from which patches they are extracted. This is due to the fact that the
object maybe was segmented into several patches, as we can see in Fig. 2. With
this approach we build a strict model of the near surrounding of a feature.

The shape context was introduced by Belongie et al. in [12]. For a certain
point a log-polar histogram is calculated. This histogram describes the number
of points from the border of the object in a small region. Figure 3a indicate
such a shape context with its segmentation of the surrounding area into regions.
To achieve a proper recognition the orientation γSC and scale dSC of the shape
context must be the same during training and recognition. Otherwise the content
of the areas are not comparable. By using SIFT features we can ensure these
conditions by making use of the scale l and the orientation θ. These properties
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Fig. 3. Illustration of used local configuration information

are adjusted to the size and orientation of the object in the image and illustrated
in Fig. 3a.

Let mi = (ld, θd, lq, θq) ∈ M the set of matching features between the query
and the database image. Let ld be the scale of the feature from the database,
θd is its orientation and let respective lq and θq are these values for the feature
extracted from the query image.

Calculation of a Shape Context. For the calculation of one shape context
we place it over the PCA-SIFT feature which we call the center feature c of
the shape context. We adapt the orientation γSC of the shape context to be
same as the orientation θ of the center feature c and the diameter dSC of the
shape context is adapted relatively to the scale l of the center feature c. The
shape context now segments the surrounding area into smaller regions vi ∈ V
as illustrated in Fig. 3a. For the other matching features we analyse in which
certain region vi they are laying. The costs for this are minor, since we only have
to store some pointers to the already stored features.

For the parameters of the shape context we choosed the following setting: 4
sectors each 90◦ for the orientation, a default starting size of 200 pixels of the
diameter γSC multiplied with the scale l of the feature separated into 2 regions.

Verification of a Shape Context. After we made the first filtering of ambigu-
ous patches we first analyse whether the matching features from the database
and the query image lay in the same region of the shape context. If the matched
features are in different regions, then this is a hint that the shape is teared to
pieces. These features are removed from the shape context.

One of the major difficulties in using a shape context is the definition of a
distance or similarity function. Our approach is inspired by the weak geomet-
ric consistency. Jegou et al. claimed that features from the object can only be
transformed consistently. We make the same simplifications to calculate a score
of similarity. The differences in the scale l and orientation θ of the features are
quantized and stored in histograms δl and δθ. Let g(δlj ) be the score in scale dif-
ference histogram bin δlj and respectively h(δθj ) the score in a bin of orientation
difference histogram. The score s resulting from the matches mi ∈ M is:
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s = min

(
max
δlj

∈δl

g(δlj ), max
δθj

∈δθ

h(δθj )

)
. (1)

The sum of the scores s of all shape context is the final confidence value zSCo

for a certain object o ∈ O based on the shape context.
Since the shape context is so strict, the number of false positives is really low

with the drawback that occlusions or perspective changes can only be addressed
to a limited extend. Also if the shape context is used to describe the global
shape it will run into the same problems as the weak geometric consistency. To
benefit from information about the global shape and have a more flexible model
to address the problem of occlusions we use the reference point.

3.4 Reference Point

The shape context is a strict model and can become fragile like in the case of
occlusion. With a global model such a problem can be addressed. However, a
proper cleaning from features with low evidence is needed to ensure that is cre-
ated for the object which we have done in section 3.2 by discarding ambiguous
regions. For the global shape we choose a fixed reference point approach. Con-
cerning this reference point the location of all features in the image is expressed.
During recognition we create dynamically our reference point RP from the re-
maining features of the database image. The local configuration of the features
in the query image is verified with the help of this RP . In this section we only
give a short explanation. For more details we refer to previous work [10].

Learning. In the learning phase of such a reference point the additional effort is
low. Beside storing the position P = (Px, Py), the scale l and orientation θ of the
features nothing must be done. The main calculation is done during verification.

Verification. Let M be as before our set of matched features cleared from
features of ambiguous patches. The reference point is created from the features
of the database image. Therefore, let FD be the set of features in the database
image and P = (Px, Py) the position in the image of such a feature from FD.
We select the centroid of all features in FD as position of the reference point
RP = (RPx, RPy). This reference point RP is used to obtain two new values.
These are the distance t of the feature to this reference point RP and the enclosed
angle α which are shown in Fig. 3b. The feature attached with these properties
is then placed over the corresponding feature from the query image. After we
adapted the scale and the orientation of P to be equal to the values of the feature
from the query image, we get a proposal for the position of the reference point in
the query image. These steps are done for all matches. Dense regions of reference
point proposals indicate well fitting feature configurations, while sparse regions
would give a hint that the shape is again teared to pieces. Only dense regions
are used to vote for the object. Sparse regions are ignored. Taking the number of
features leading to dense agglomerations of reference points, gives the confidence
value zRPo for a certain object o ∈ O.
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3.5 Final Scoring

For the final score any balancing between the different approaches can be imple-
mented. We found such a balance with the help of the machine learning approach
learning-to-rank. We took into account the patch score zSPo

of useful patches, the
shape context score zSCo and the score zRPo from the reference point approach
of an object o ∈ O. The final score zo for the object o is:

zo = αzSPo
+ βzSCo

+ γzRPo
(2)

with the weights α = 0.45, β = 0.35 and γ = 0.2. These weights were determined
based on preliminary experiments. We can see that the image patches have the
highest contribution to the final score. Concerning the both shape models, the
shape context plays a more important role as compared to the reference point.
As we pointed out in section 3.3 the shape context is a strict model resulting in
a small number of false positives.

4 Experiments

We performed evaluations on three different datasets. First we used the publicly
available N-S dataset [13] and INRIA holiday dataset [14]. With these evaluations
we determied the performance of ours to other state-of-the-art systems. The
last evaluation was done on our own dataset, which is more challenging since it
includes a higher impact of background clutter. As performance measurement we
used the mean average precision (mAP) [15] which combines precision and recall
for a ranked list of results. Higher values indicate better recognition performance
of the system.

4.1 Comparison Datasets

The N-S dataset consists of 4 images for each of the 2550 objects. Hence this
dataset contains 10200 images. In this evaluation all images are used as database
and query images at the same time. Ideally the system returns the relevant 4
images at the first 4 ranks in a ranked list. A large number of the objects was
taken in front of exactly the same structured background (carpet), which is one
of the most challenging problem for our system on this dataset. The feature
descriptors and the shapes become almost the same for many different objects.
However, our achieved mAP is 61.58% or a score of 2.5 in the terms of Nistér et
al. and is comparable to the results from smaller quantizer reported on [16].

INRIA’s holiday dataset [14] consists of 1491 images separated into 991 train-
ing and 500 query images. For the query images the system should again rank the
correct images at the top position. On this dataset we achieve a mAP of 71.83%
and again this is comparable to 75.07% which was reported by the authors on
this dataset.

At this point we note that we achieved these scores only with simple voting
based on the PCA-SIFT features. The use of image patches or additional shape
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Fig. 4. Example query images from the temple data set. From left to right 1 images
of Ginkaku-ji, 2 images of Kinkaku-ji and 1 image of Kiyomizu-dera are shown.

information cannot improve these results significantly, since these datasets are
not well suited for our objective to handle background clutter. We discuss about
this in the next section. Also we mention that up to now we have not applied any
affine region detector nor time consuming clustering and vocabulary training, as
the authors in [13] and [3] did. So we left some space for further improvements
on these datasets.

4.2 Temple Dataset

The evaluations on the N-S dataset and INRIA’s holiday dataset show that our
system is of equal performance even without vocabulary learning or clustering.
These datasets are somehow simple for our use case. On one hand they some-
times include large affine transformations and rotations and on the other hand
only moderate changes in scale. Hence, the impact of background clutter is lim-
ited. These datasets are suited for image recognition where the challenge against
background clutter is not the major objective. Therefore, we created our own
dataset which contains only a few “good” images showing the object nearly per-
fectly. This dataset consists of various images of temples and shrines in Japan.
Due to the nature of such scenery images as a normal tourist would take them,
they contain many side objects, e.g., persons or trees. Figure 4 shows a short
sequence of these images. All 107 images are used as queries and the system
returns a ranked list of objects rather than images as it was the case in the
previous evaluations. As the training dataset we did not prepare any images. We
used all images provided by Wikipedia for these buildings. In detail we learned
all buildings, which belong to the classes “temple in Kyoto Prefecture” and
“treasure of Japan”. The number of objects is 84 while the number of provided
images is 819. So on average the system has less than 10 images per object. By
taking all instances of these classes, the objects among which the system has to
distinguish, look quite similar.

This construction of the evaluation is suited for our objective. The objects
have only minor differences and the impact of background clutter is huge (com-
pare the first and the last image of Fig 4). There might be some connection of
the building with its background, since they appear together with trees. How-
ever, these trees are shown together with all objects and still we have to struggle
with natural changes like different seasons (red autumn leafs or snow covering
the building).
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Table 1. Results for the temple dataset. Shown is the mean average precision (mAP)
in percentage.. For column (1) we set the weight β = 0 of the shape context in equation
2. Column (2) shows the result for our proposed method with equal weights α, β, γ.
The last give the best results for any possible combination of the WGC with the other
scores.

single score results combined score results
SIFT WGC SP SC RP (1) (2) (3)

Ginkaku-ji 24.72 29.87 28.87 22.60 31.20 31.68 41.92 37.67
Kinkaku-ji 45.36 44.02 43.83 33.91 23.41 50.71 52.05 49.73
Kiyomizu-dera 15.87 26.47 18.25 23.41 21.37 22.97 31.92 25.94

Again we use the mAP as our performance measurement. As we constructed
our use case in the manner of object recognition only one result is correct. A low
rank leads directly to a dramatically decreasing mAP. The results are shown in
Table 1 split for the different objects and scoring functions. For further analysing
of the behavior on increasing databases, we loaded in a similar manner as Jegou
et al. [3] 100,000 images from Flickr. These images have no relation to any
object and are just added to disturb the system. The results of experiments
with distractor images are shown in Fig.5.

We used the following abbreviations: simple SIFT matching (SIFT), segmen-
tation into image patches (SP), weak geometric consistency (WGC), shape con-
text approach (SC) and reference point voting (RP). As we can see from the
results in Table 1 none of the approaches alone has the overall best performance
for all objects. From this we can conclude that for the objects different type of in-
formation is important. For Kinkaku-ji this seems to be the PCA-SIFT features.
The reason for this may be that this object can be well recognized concerning
small details. When we look at the third image of Fig. 4 we notice that only a
small part of the object is visible. This small part is enough to recognize the
object. For the other two objects we can conclude that the shape information
plays an important role. These objects have only less characteristic features since
both of them have the same type of roof and are constructed from wood.

For the results showing in column (1) we set β = 0 in equation 2. So only
the results from the image patches and the reference point are used. By using
only these two scores the recognition performance is improved for all objects.
In the case of our full proposed method shown in column (2), the results for
all objects are improved significantly. For the results of column (3) we modified
equation 2 to make use of the WGC with global histograms. Shown are the best
achieved results and as we can see our proposed method with the shape context
is superior.

Working on a larger database our proposed method can keep the good perfor-
mance with a mAP of around 10% even up to 100k distractor images as shown in
Fig. 5. In an interval from 10k to 30k distractor images the approach of images
patches outperforms all other approaches. For the WGC we can see that it can
only achieve an improvement in recognition performance for a database without
distractor images. As soon as distractor images are included in the database, the
performance drops significantly.
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Fig. 5. Mean average precision for temple dataset with increasing number of distractor
images. Shown are the graphs for the single scores (SIFT, WGC, SC, RP) and our
proposed method (PM).

5 Conclusion

In this paper we have discussed object recognition systems and the resulting
problems of background clutter. We have addressed this problem by keeping
the additional effort at training time low. During recognition we work on image
patches and use information about the local configuration of features.

With two evaluations on publicly available datasets we have shown that our
system is of comparable performance by refrain from applying time consuming
tasks like affine region detectors or clustering to obtain visual words. Working
on our own challenging dataset with a high impact of background clutter, we
achieved an improvement of 13.31% in terms of mean average precision. The
results were achieved without a segmentation of the object from the background
of the image.

Further research will concentrate on an object dependent combination of the
shape information and how this information can be used to localize the object
in the image.
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3D Structure Refinement of Nonrigid Surfaces
through Efficient Image Alignment
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Abstract. Given a template image with known 3D structure, we show
how to refine the rough reconstruction of nonrigid surfaces from existing
feature-based methods through efficient direct image alignment. Under
the mild assumption that the barycentric coordinates of each 3D point
on the surface keep constant, we prove that the template and the input
image are correlated by piecewise homography, based on which a direct
Lucas-Kanade image alignment method is proposed to iteratively recover
an inextensible surface even with poor texture and sharp creases. To ac-
celerate the direct Lucas-Kanade method, an equivalent but much more
efficient method is proposed as well, in which the most time-consuming
part of the Hessian can be pre-computed as a result of combining ad-
ditive and inverse compositional expressions. Sufficient experiments on
both synthetic and real images demonstrate the accuracy and efficiency
of our proposed methods.

1 Introduction

3D recovery of non-rigid surfaces from individual images is still a challenging
task in computer vision due to its inherent ambiguity, which requires taking
full advantage of available image information and other proper constraints to
disambiguate the reconstruction. Such additional constraints range from phys-
ical knowledge in physics-based 3D recovery, e.g. [1, 2] among many others, to
temporal consistency in 3D tracking [3, 4] and template-free recovery [5], and
to geometric constraints in non-rigid 3D detection [6, 7, 8]. In this paper, we
consider inextensible non-rigid surfaces and incorporate the constraints on the
surface mesh edges as in [6,8]. Our concentration is on the usage of the surface
texture so as to handle sparsely textured nonrigid surfaces with sharp shape
details, such as creases and folds as shown in Fig.1. Many other image cues,
like silhouettes and contours ( [1, 9, 10] to cite a few), have also been used for
non-rigid 3D recovery, but we do not consider them here.

According to how to make use of surface texture, the majority of existing
methods for non-rigid 3D recovery can be roughly categorized into two groups:

Feature-based methods: The feature-based methods establish 3D-2D feature
correspondences in template-based recovery [3,4,6,7,8], or 2D-2D ones for a long
video sequence in Deformable Structure from Motion [11, 12] or simply for two
consecutive frames [5], and then recover 3D structure by minimizing, explicitly or
implicitly, certain measurement of reprojection error. The objective function is

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 76–89, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Reconstruction of inextensible surfaces from single images. Existing feature-
based methods tend to oversmooth the sparsely textured and sharply creased surface
in (a); For a relatively well-textured surface with sharp folds (c), our image alignment
method can improve its photo-consistency. (b) and (d) are their corresponding 3D
meshes, respectively.

relatively easy to optimize, thus best suited to detect shape from a single image.
However, to obtain a reliable reconstruction, the surface should be well-textured
with dense salient features over the whole surface, which is generally not the
case in practice. To tackle poorly textured surfaces, some prior cues, like the
smoothness assumption [13] and the deformation model [6, 7, 8], are frequently
introduced, whose results are roughly correct but weak in photo-consistency,
like Fig.1(c). More seriously, such prior knowledge tends to oversmooth sharp
details, thus can not be used to accurately recover sharply creased surfaces. An-
other possible alternative is to establish dense correspondences through non-rigid
2D registration as in [3, 6]. However, even the state-of-the-art methods [14, 15]
introduce some shape terms to penalize sharp deformation, thereby inapplicable
for sharp creased and folded surfaces.

Appearance-based methods: The appearance-based methods (or direct meth-
ods) take advantage of the intensity of each pixel of the surface image, and
consequently are able to obtain photo-consistent reconstruction even for poorly
textured surfaces. Unfortunately, the resulting objective function is highly non-
convex, thereby commonly used in a tracking scenario. Another well-known
drawback of the appearance-based methods is its inefficiency due to re-evaluation
of the Hessian for each pixel at each iteration. Interestingly, some efficient In-
verse Compositional Image Alignment (ICIA) algorithms have been proposed
for 3D tracking of human face [16]. To the best knowledge of the authors, no
such efficient algorithm exists for generic non-rigid surfaces.

In order to accurately reconstruct (or more exactly detect) the 3D structure of
sparsely textured surfaces from a single image, it is desirable to fuse the featured-
based and appearance-based methods, so that we can initialize the non-convex
image alignment by using the easy-to-solve feature-based methods and derive
photo-consistent shape from each pixel of the surface image, rather than from
the prior knowledge. Such fusion has been proved feasible for fast non-rigid 2D
recovery [14]. In this paper, we extend it to 3D case.

Given a template image whose 3D structure is known, we follow the feature-
based robust convex method combined with local deformation model [8] and the
closed-form solution with global deformation model [6] to derive rough recon-
structions, which are used to initialize the iterative appearance-based methods.
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Under the mild assumption that the barycentric coordinates of each point on
its corresponding patch of the 3D surface are constant, a basic assumption un-
derlying many non-rigid 3D surface recovery methods [3,4, 6,7,8], we show that
the template image and the input image are correlated by piecewise homograpy.
Based on this homography warp, we propose a direct Lucas-Kanade method, also
known as Forward Additive Image Alignment method [17], to recover sparsely
textured surfaces by integrating the constraints on mesh edges to disambiguate
the reconstruction. Since we never introduce the smooth term or the deforma-
tion model at this step, the direct image alignment method enables us to tackle
sharp details with strong photo-consistency. The well-known downside of the
direct Lucas-Kanade image alignment lies in its inefficiency, since the Jacobian
and Hessian should be recomputed for each pixel at each iteration. To improve
efficiency, an equivalent method is proposed as well by combing the additive
and inverse compositional expressions. Although the Hessian is not completely
constant across iteration, the most time-consuming part can be computed of-
fline, while the inconstant part needs only to be recomputed for each patch of
the surface, not for each pixel on the input image. This makes it much faster
than the direct Lucas-Kanade method, although the folds of acceleration are
dependent on the resolution of the surface mesh. In a typical experiment with
a 11x16 triangulated mesh and 720x576 images, it takes about 0.2s to compute
the Hessian, in contrast to 2.8s in the direct Lucas-Kanade method.

In the remaining of the paper, we first derive the warp function between the
template and the input image in section 2, based on which the appearance-based
methods for non-rigid 3D recovery are introduced in section 3. We present the
fusion method in Section 4. Section 5 shows the extensive experimental results for
both synthetic and real images and section 6 includes some concluding remarks
of this paper.

2 Warp between the Template and the Input Image

In this section, we disclose the warp function that relates the template and the
input image. Before that, we introduce the notations and assumptions we made.

2.1 Notations and Assumptions

The deformable surface is explicitly parameterized as a triangulated mesh, as
in Fig.1, with Nv vertices Vi = (xi, yi, zi)T , 1 ≤ i ≤ Nv. The unknown to be
estimated is X, a column vector obtained by concatenating x-,y-,z- coordinates
of the Nv vertices. Specifically, X =

[
x1 y1 z1 · · · xNv yNv zNv

]T
. The known 3D

mesh corresponding to the template image is denoted by X̃, thereafter named
as template 3D mesh for short. The mesh is composed of Np patches and Ne

edges. For patch j, 1 ≤ j ≤ Np, its three vertices are noted by Vj1, Vj2 and
Vj3, whose corresponding vertices in the template 3D mesh are Ṽj1, Ṽj2 and
Ṽj3, respectively. For simplicity, all these vertices are in the camera referential
without loss of generality.
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The mesh is assumed to be flexible but inextensible, thus preventing the dis-
tance between two neighboring vertices from expanding or shrinking too much.
We also assume a pinhole perspective camera model, whose intrinsic parameter
matrix K is known and keep constant.

2.2 2D-2D Warp Function

The 3D warp of a non-rigid mesh is often modeled as piecewise affine transfor-
mation. Specifically, it is usually assumed, as in [3,4,8,6,7], that the barycentric
coordinates of each point on its corresponding 3D patch are constant across de-
formation. The constancy of barycentric coordinates indicates that the surface
patches are always planar across deformation, thus one can easily expect that
the 2D warp between the template and the input image is piecewise homography.
In the following, we present the explicit formulation of the 2D warp.

For any point Q̃ on the jth patch of the template 3D mesh, its coordinates
can be expressed as

Q̃ =
[
Ṽj1 Ṽj2 Ṽj3

]
ε, (1)

where ε is the barycentric coordinates of Q̃ on this patch. Its homogeneous
projection q̃ on the template image T is:

λ̃q̃ = K
[
Ṽj1 Ṽj2 Ṽj3

]
ε, (2)

with unknown scalar λ̃ accounting for the depth.
On the unknown 3D mesh corresponding to the input image I, Q̃ is transferred

to Q after some deformation. Since we assume its barycentric coordinates keep
constant, the coordinates of Q can be written as

Q =
[
Vj1 Vj2 Vj3

]
ε, (3)

whose homogeneous projection q on the input image I should be:

λq = K
[
Vj1 Vj2 Vj3

]
ε, (4)

where λ is a unknown depth scalar.
Combing eq.(1)-(4), we get

(λ/λ̃)q = K
[
Vj1 Vj2 Vj3

] [
Ṽj1 Ṽj2 Ṽj3

]−1
K−1q̃. (5)

Considering that Vjk and Ṽjk , 1 ≤ k ≤ 3 are the vertices of the jth triangular
patch, the 3x3 matrix P is invertible, where

P = K
[
Vj1 Vj2 Vj3

] [
Ṽj1 Ṽj2 Ṽj3

]−1
K−1, (6)

meaning that the 2D-2D warp P is a homography. Therefore, the template image
T and the input image I are correlated by piece-wise homography.
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3 Appearance-Based Non-rigid 3D Recovery

Based on the 2D warp, we show how to directly use appearance-based image
alignment to recover sparsely textured surface from a single image.

3.1 Direct Lucas-Kanade Method for Non-rigid 3D Recovery

The direct Lucas-Kanade image alignment method [18] is an iterative method
to minimize the Sum of Squared Difference (SSD) between the template image
T and the input image I by additively adjusting the parameters from a given
starting point.

Minimizing SSD. The direct Lucas-Kanade method uses an additive update
for the unknown parameter X ← X+ΔX , where ΔX is the increment in current
iteration. The Warp W for the jth patch is P , which can be updated as:

P = K
[
Vj1 + ΔVj1 Vj2 + ΔVj2 Vj3 + ΔVj3

] [
Ṽj1 Ṽj2 Ṽj3

]−1
K−1. (7)

Under the assumption of constant intensity, the increment ΔX can be solved by
minimizing the SSD energy term ESSD(X):

minΔXESSD(X + ΔX) =
Np∑
j=1

∑
u∈Cj

[I(W (u, X + ΔX)) − T (u)]2 , (8)

where Cj is the set of pixels in the image of the jth patch. After using Gauss-
Newton approximation, the increment ΔX can be calculated by

ΔX = H−1
SSD{

Np∑
j=1

∑
u∈Cj

[∇I
∂W

∂ΔX
]T [T (u)− I(W (u; X))]}, (9)

where the Hessian HSSD for the SSD energy term ESSD(X) should be

HSSD =
Np∑
j=1

∑
u∈Cj

[∇I
∂W

∂ΔX
]T [∇I

∂W

∂ΔX
]. (10)

Ambiguity Analysis. According to eq.(6), there are 9 unknowns in the homog-
raphy, whereas the homography has only 8 independent parameters. Therefore,
even assuming perfect alignment for each pixel in the projection of this patch,
there is one scalar ambiguity in the estimated patch coordinates. For the whole
triangulated mesh, assuming perfect alignment for each patch and considering
the connectivity between mesh patches, ideally there is still a global scalar am-
biguity in the reconstruction if we only minimize the SSD energy term ESSD as
in eq.(8). Actually, we find in our experiment that the Hessian HSSD is minus
1 rank-deficient with some (about one third) close-to-zero eign-values, demon-
strating that monocular recovery of deformable surfaces is an ill-posed problem.



3D Structure Refinement of Nonrigid Surfaces 81

Our observation is consistent with the ambiguity analysis in [19] on the basis
of dense and uniform feature correspondences. This is understandable since the
correct image alignment can be regarded as establishing extremely dense corre-
spondences, i.e. one feature correspondence for one pixel. Although the image
alignment does not better constrain the reconstruction for a well-textured sur-
face, we can indeed expect that it works better for sparsely textured surfaces,
the recovery of which becomes more under-constrained when using sparse cor-
respondences only.

Disambiguating Reconstruction. To obtain an unique and stable recon-
struction, we introduce constraints on each edge of the mesh by penalizing it
from expanding and shrinking too much. For the k th, 1 ≤ k ≤ Ne, edge of
the mesh defined by two neighboring vertices Vk1 and Vk2, the constraints can
be written as: ||Vk1 − Vk2|| = lk, where || · || represents L2 norm, and lk is the
length of kth edge in the template 3D mesh. It can be rearranged into matrix
form ||SkX || = lk. Rather than using them as hard constraints, we minimize the
equivalent side-length energy term Es(X), which is defined by

Es(X) =
Ne∑
k=1

(||SkX ||2 − l2k)2. (11)

Combined with the SSD energy term ESSD(X), the direct Lucas-Kanade image
alignment method can be formulated as:

minΔX{ESSD(X + ΔX) + ωsEs(X + ΔX)}, (12)

where ωs is a user-defined weighting factor. Using Gauss-Newton approximation,
the increment ΔX can be easily calculated.

Without introducing any a priori knowledge that tend to oversmooth sharp
details, our appearance-based method can be used to accurately recover inex-
tensible surfaces with poor texture and sharp creases.

From eq.(10), we can see that the Jacobian and the Hessian should be re-
computed for each pixel at each iteration, since they are evaluated at current
estimation of the vertex parameters X . Generally it is computationally demand-
ing. In the following, we show how to accelerate this direct Lucas-Kanade method
by using ICIA, in which the most time-consuming part can be precomputed.

3.2 Efficient Image Alignment for Non-rigid 3D Recovery

Combining Additive and Inverse Compositional Expressions. In ICIA
[17], the warp is updated by W ← W̄ ◦(ΔW )−1, where the operator ‘◦’ means the
composition of the current warp W̄ and the increment warp ΔW . Specifically, for
a homography warp, it can be updated by P ← P̄ (I +ΔP )−1, where ΔW = I +
ΔP is the incremental homography warp, and W̄ = P̄ is the current homography.

Since we need to estimate the vertex coordinates embedded in the homogra-
phy, rather than the homography in itself, we have to devise the update rule for
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the mesh parameters X . Same as the direct Lucas-Kanade method, we use an
additive update rule for X , i.e. X ← X + ΔX . To make the warp updated from
the inverse composition equivalent to that from the additive updating in eq.(7),
we let the following equation hold:

P = P̄ (I + ΔP )−1, (13)

where P is from eq.(7), while P̄ from eq.(6). This rule has been used in [20]
for fast surface reconstruction from stereo. Note that it is not completely the
same as the original ICIA image alignment in [17], since the parameter X can be
directly updated through the additive rule. In the following, we still name our
method as an ICIA method, considering that the homography warp is updated
by inverse composition.

It is obvious that when ΔX → 0, the incremental warp ΔW → I, which means
that it is an identity warp. Before giving the explicit relationship between ΔP
and ΔX , we first show how to use the ICIA method in non-rigid 3D recovery.

According to [17], image alignment can alternatively be formulated as:

minΔXESSD(X + ΔX) =
Np∑
j=1

∑
u∈Cj

[T (ΔW (u, ΔX))− I(W (u, X))]2 . (14)

Using Gauss-Newton approximation, the increment ΔX can be derived from:

ΔX = H−1
SSD{

Np∑
j=1

∑
u∈Cj

[∇T
∂ΔW

∂Δp

∂Δp

∂ΔX
]T [T (u) − I(W (u; X))]}, (15)

where Δp represents the elements in ΔP , and the Hessian

HSSD =
Np∑
j=1

∑
u∈Cj

[∇T
∂ΔW

∂Δp

∂Δp

∂ΔX
]T [∇T

∂ΔW

∂Δp

∂Δp

∂ΔX
]. (16)

To calculate HSSD, we need to compute ∂Δp/ΔX , which is presented in the
following subsection.

Computing ∂Δp/ΔX. When ΔP → 0, the inverse of the incremental warp
can be approximated (first order approximation) by

(I + ΔP )−1 = I − ΔP. (17)

From eq.(13) and eq.(17), we can calculate ΔP as follows:

ΔP = −K
[
Ṽj1 Ṽj2 Ṽj3

] [
Vj1 Vj2 Vj3

]−1 [
ΔVj1 ΔVj2 ΔVj3

] [
Ṽj1 Ṽj2 Ṽj3

]−1
K−1,
(18)

from which, the ∂Δp/ΔX can be straightforwardly computed, since Δp is a
linear function of ΔX .
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Efficiency Analysis. From eq.(16), the gradient of the template image ∇T and
that of the increment warp ∂ΔW/Δp, i.e. the most time-consuming pixel-related
parts of the Hessian, are constant across iteration, since they are evaluated at
ΔX = 0. However, ∂Δp/ΔX is dependent on the current estimation of X , thus
should be recomputed at each iteration. Fortunately, it is irrelevant to pixel
coordinates, and needs only to be recomputed for each patch. Specifically,

HSSD =
Np∑
j=1

(
∂Δp

∂ΔX
)T Hconst

∂Δp

∂ΔX
, (19)

where Hconst is the constant part of the Hessian,

Hconst =
∑

u∈Cj

[∇T
∂ΔW

∂Δp
]T [∇T

∂ΔW

∂Δp
]. (20)

To disambiguate the reconstruction, we should introduce the side-length energy
term Es(X) as in section 3.1. The Hessian for this term should also be recom-
puted. However, the number of sides is always much smaller than that of pixels,
thus can be evaluated very fast.

4 Fusing Features and Appearance

The appearance-based image alignment methods are usually sensitive to distur-
bance on the pixel intensity. When lighting changes or small occlusion occurs,
it is helpful to fuse feature correspondences and appearance-based image align-
ment [14], since these feature points, serving somewhat as anchors, are able to
prevent the mesh from drifting. In addition, introducing feature correspondences
poses little increase in computational burden, since the Hessian for this part can
be easily computed. The feature set used here is the inlier set from the feature-
based methods whose reprojection error is lower than 1 pixel. The feature energy
term Ef (X) is measured by

Ef (X) = ||MX ||2, (21)

where M is the structure matrix constructed by following [6,7,8]. Specifically, we
simultaneously minimize the SSD energy term ESSD(X), the side-length term
Es(X) and the feature energy term Ef (X):

minΔX{ESSD(X + ΔX) + ωsEs(X + ΔX) + ωfEf (X + ΔX)}, (22)

where ωf is a user-defined weighting factor. This equation can be easily solved
by using Gauss-Newton approximation. Note that the Hessian for the SSD en-
ergy term ESSD can be calculated either by eq.(10) in the direct Lucas-Kanade
method or by eq.(19) in the ICIA method.
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Fig. 2. Synthetic 100-frame mesh sequence. (a) The mesh in rest position. (b) The 50th
frame with largest deformation. The sequence is retextured by using sparse texture (c),
and reprojected onto images (d) by a virtual camera.

5 Experimental Results

In this section, we use both synthetic data and real images to test the perfor-
mance of our proposed methods. For feature-based methods, we use 60 modes for
the global deformation model [6] and 20 modes for each of the local deformation
model [8].

5.1 Synthetic Data

We generate a 100-frame sequence of a piece of paper with sharp creased defor-
mation by using motion capture devices (Fig.2(a,b)), then we synthesize sparse
texture (Fig.2(c)) on the meshes, which are backprojected onto 2D images using
a synthetic projective camera (Fig.2(d)). The mesh resolution is 11x16, and size
is 200mm x 300mm.

Convergence w.r.t. Rough Initialization and Intensity Noise. Here, we
use the 50th frame as the target, whose deformation is the largest in the sequence.
We add zero mean Gaussian noise with deviation σ on the ground-truth 3D mesh
to simulate rough initialization. Both the template and the input image are
corrupted by zero mean Gaussian noise with deviation 2 grey levels. 100 sparse
feature correspondences are also randomly generated for the fusion methods.
We measure the average vertex-to-vertex error between the ground-truth 3D
mesh and the estimated 3D mesh from image alignment after 20 iterations. The
result is said to be convergent when the average 3D error is lower than 2mm.
We compare the performance of the direct Lucas-Kanade method (DLK), the
Inverse Compositional Image Alignment method (ICIA), and their fusion with
features, shown in Fig.3(a) as (F+DLK) and (F+ICIA), respectively. We vary σ
from 0.4 mm to 4 mm, and repeat each method for 500 times at each noise level.
From Fig.3(a), we can see that the DLK and the ICIA have almost the same
performance, which is understandable since they are almost equivalent. When
noise is large, the ICIA method is slightly weaker than the DLK method due to
the first-order approximation used in eq.(17). Both methods can be improved by
fusing feature correspondences.
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Fig. 3. Synthetic experiments. (a) Use the 50th frame (with largest deformation) to test
the convergence performance w.r.t. rough initialization with intensity noise. (b) The
average 3D vertex-to-vertex error for the whole 100-frame sequence from four different
methods. (c) The average intensity of the residual image for four different methods.
We can see that when large deformation occurs (in the middle of the sequence), the
feature-based methods (FG) and (FL) can not accurately recover the mesh, which can
be improved by our fusion methods (F+DLK) and (F+ICIA).

Table 1. Time Performance in direct Lucas-Kanade (DLK) and ICIA methods

Methods Precomputation Compute Hessian One Iteration

DLK - 2.827s 3.462s
ICIA 2.672s 0.212s 0.718s

In the following, we initialize the appearance-based methods by using the
rough results from feature-based methods. Considering that the fusion methods
work better, we shall only use the two fusion ones (F+DLK) and (F+ICIA).

Improving Feature-Based Methods by Fusion. Here we use SIFT [21] to
establish 3D-2D feature correspondences for the whole sequence, and follow the
feature-based closed-form solution with global deformation model (FG) [6] and
the convex method with local deformation model (FL) [8] to get rough initial-
ization. The fusion methods (F+DLK) and (F+ICIA) are initialized by both
feature-based methods (FG) and (FL), and only the results with less residual
intensity are presented. Both the template and the input image are corrupted by
Gaussian noise with zero mean and deviation 2 gray levels. Fig.3(b) shows the
average 3D vertex-to-vertex error and Fig.3(c) the average intensity on the resid-
ual image. The results of the 50th frame are also presented in Fig.4. From these
results, we can see that, compared with the local deformation model, the global
deformation model is more likely to oversmooth the sharp creases. However,
when large deformation occurs, the shape from the local deformation model is
somewhat irregular. This is due to the fact that the local deformation model re-
lies not so heavily on the training data. These problems can be reliably remedied
by our fusion methods, both of which have almost the same performance.
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Fig. 4. Visual comparison of the results from different methods for the 50th frame
with largest deformation. From left to right are the results from the global deformation
model (FG), the local deformation model (FL), the fusion method with direct Lucas-
Kanade (F+DLK), and the fusion one with ICIA (F+ICIA), respectively. From top
to bottom are the recovered 3D mesh(green) together with the ground truth(red),
the same 3D meshes observed from side view, the input image overlaid by the mesh
projection, and the residual images, respectively.

Time Performance. We implement all the methods in a 1.6GHz laptop with
2GB RAM by using MATLAB. The image resolution is 720x576, and the mesh
size is 11x16 with 528 variables, 475 edges and 300 patches. The time perfor-
mance is shown in Table 1 for one iteration averaged from 50 iterations. The
precomputation of the constant part of the Hessian for the ICIA method takes
2.672s. It only takes 0.212s in the ICIA method to compute the full Hessian, in
contrast to 2.827s in the direct Lucas-Kanade method, which is about 14 times
faster. The ICIA method takes 0.718s in one iteration, while the direct Lucas-
Kanade method takes 3.462s, with an acceleration rate about 5 times. The ac-
celeration rate shrinks, because some other pixel-related process, like bilinear
interpolation, takes about 0.4s, which is a bottleneck when using MATLAB.

5.2 Real Images

We also have some preliminary results on a piece of paper with sparse tex-
ture and sharply creased deformation. To show that our methods can accurately
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Fig. 5. Five frames of a piece of paper with sparse texture and sharp creases. First
row: Images overlaid by the projection of the mesh reconstructed from our method.
From 2nd to 4th row: 3D meshes from the Global deformation model (FG), Local
deformation model (FL), and our fusion method (F+ICIA), respectively. Last row:
The residual images after image alignment.

recover the sharp creases, we intentionally make the creases coincident with the
mesh edges, otherwise the recovered creases would be smoothed due to surface
discretization. The images are captured by a FLea2 camera with 800x600 resolu-
tion. Generally the matched 3D-2D feature pairs are less than 200. Considering
the efficiency of the (F+ICIA) method and its equivalence to the (F+DLK)
method, we only use the (F+ICIA) method here, which is initialized by the
(FL) method. From Fig.5, we can see again that the global deformation model
can only approximate the sharply creased surface, while the shape from the
local deformation model is somewhat irregular due to severe lack of features,
although not so seriously being oversmoothed. By observing the residual images
in the last row, we see that our fusion method works well in case of local inten-
sity changes caused by significant variation in surface orientation. We also show
our method (F+ICIA) can improve the photo-consistency of the results from
the (FL) method [8] for a piece of cloth with relatively dense texture and sharp
folds, which can be concluded by comparing the residual images in Fig.6.
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Fig. 6. Four frames of a piece of cloth with relatively dense texture and sharply folded
deformation. First row: Images overlaid by the projection of the mesh reconstructed
from our method (F+ICIA). From 2nd to 4th row: 3D meshes from Global deformation
model (FG), Local deformation model (FL), and our method (F+ICIA), respectively.
From 5th to 6th row: The residual images for (FL) and for (F+ICIA), respectively.

6 Conclusion

Wehave shownhow to efficiently refine the3D structureof poorly texturednonrigid
surfaces, even with sharp details, from a single image by fusing feature correspon-
dences and appearance-based image alignment. To our knowledge, this work is the
firstonethatcanaccuratelyrecoversharplycreasedsurfaces incaseofsparsetexture.

We should mention that it is still a challenging task to recover sharp details in
case of large occlusion. When large occlusion occurs, it is inevitalbe to introduce
some prior knowledge, which tends to oversmooth sharp details. In addition, we
partially conquer the disturbance on pixel intensity by fusing features, which
is insufficient in case of large lighting changes. The potential lighting variation
can be further compensated, by using the Dual ICIA method [22] for efficiency,
which is left to the future.
Acknowledgement. This work was partly supported by Grant-in-Aid for Sci-
entific Research (21240015) from the Japan Society for the Promotion of Science.
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Abstract. We extract local empirical templates and density ratios from
a large collection of surveillance videos, and develop a fast and low-
cost scheme for people counting. The local empirical templates are ex-
tracted by clustering the foregrounds induced by single pedestrians with
similar features in silhouettes. The density ratio is obtained by com-
paring the size of the foreground induced by a group of pedestrians to
that of the local empirical template considered the most appropriate for
the region where the group foreground is captured. Because of the lo-
cal scale normalization between sizes, the density ratio appears to have
a bound closely related to the number of pedestrians that induce the
group foreground. We estimate the bounds of density ratios for groups
of different numbers of pedestrians in the learning phase, and use the es-
timated bounds to count the pedestrians in online settings. The results
are promising.

1 Introduction

People counting is one the central issues considered in the field of intelligent video
surveillance (IVS), although its application scope goes beyond surveillance. A
few approaches were proposed in the last decade, and will be reviewed later
in this paper. Because of expensive computation, some of the existing meth-
ods cannot perform in real time. We propose a method able to perform in real
time. It consists of two phases: offline learning and online counting. In the of-
fline learning phase, we extract the templates of single pedestrians from a large
collection of video samples taken under different viewpoints, distances, depths
of views, and movement patterns. Although these empirical templates vary in
size as the pedestrians move across the scene, in different local regions the size
ratios between the foregrounds made by group pedestrians and the empirical
templates appear to be bounded. We call these bounds density ratio bounds,
and the single-pedestrian templates local empirical templates. From our exper-
iments the density ratio bounds seem to be robust to viewpoint changes and
size variations across the scene. In the online counting phase, both of the local
empirical templates and density ratio bounds are used to estimate the number
of people in a foreground extracted from a scene.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 90–101, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Two assumptions are needed for the proposed method to work: (1) pedestrians
must be in upright pose; (2) no vehicles or other moving objects appear in the
scene, which means that people are the only moving objects considered. A few
cases are also excluded in our study: (1) pedestrians far away from the camera
so their sizes appear very small1; (2) groups with serious occlusion which even
challenge human eyes to count.

The proposed methods are evaluated on both PETS 2009 benchmark datasets
and our in-house video samples collected from real scenes with various parame-
ters, such as viewpoints and occlusions.

The rest of this paper is organized as follows. Section 2 reviews related works.
The proposed method is presented in detail in Section 3. The performance eval-
uation and comparison with other methods are given in Section 4, followed by
the conclusion and possible future research in Section 5.

2 Related Works

To count people in entrance/exit gates and in elevator zones, overhead view was
usually used [1,2,3]. There is no occluded people in this viewpoint thus it is easy
to segment and count individuals. However, the region of interest is limited by
the constraint of ceilings. Through the training, Park et al. [4] obtained the mean
and variance values of person’s size in each sector of 72-sector-divided images
which were sensitive to camera height and were used to count people later. His
method only work for overhead viewpoint cases.

Haritaoglu et al. [5] developed W4 system for real-time detecting and track-
ing multiple people. It counts groups of people by roughly finding heads through
corresponding peaks of vertical projected histogram. Human shape models were
used to interpret the foreground in a Bayesian framework that was implemented
by Markov Chain Monte Carlo method [6]. It could segment a group into indi-
viduals at the expense of high computational cost.

Human appearance models were used to detect people in occlusion. Elgammal
and Davis [7] built appearance models for unoccluded people entering the scene
and subsequently tracked them in occlusion. Xi Zhao et al. [8] presented a people
counting approach based on face detection and tracking. A standard face detector
located faces and tracked them. Free camera viewpoint is achieved but people
need to turn their faces to cameras. Li et al. [9] trained offline Adaboost HOG
(Histogram of Oriented Gradients) features of heads and shoulders to detect
people in each frame.

Multiple-camera and stereo solution is another class of approaches to re-
solve the problem of occlusion. Kelly et al. [10] discussed a stereo solution for
counting people in both indoor and outdoor crowded scenes under various view-
points. They developed 3D clustering process by using bio-metrically inspired
constraints for people detection and track matching process by using a weighted
maximum cardinality matching scheme. However, in general multiple cameras

1 Quantitatively, the height of the pedestrian is less than 5% height of the view.
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and stereo solutions require prior deliberate calibration and a significant amount
of work for registration.

For dense groups in crowded areas, foreground may not be easily segmented.
Davies et al. [11] used linear fitting to find the relationship between the number
of edge pixels and the number of moving people in a region of interest. Texture
was measured as different qualitative labels since they argued that images of
sparse and dense crowds were often made up of low and high frequency pat-
terns, respectively [12]. The link between these qualitative labels and the count
depends on specific applications. The classification was done by self-organizing
map that involved an intensive training. Kilambi et al. [13] provided a solution
in the light of using geometric projections, dealing with the entire area occupied
by a group as a whole rather than trying to detect individuals separately. Esti-
mated occupied areas were combined with some social statistics of interpersonal
distance to determine the count. Chan et al. [14] adopted Gaussian process re-
gression for segment, internal edge and texture features which are normalized
to account for perspective to estimate the number of people. Albiol et al. [15]
analyzed moving corners to count people. They assumed that each person, on
average, has a particular number of moving corners. However, it does not hold
in general since the average number of moving corners per person may vary in
accordance of tilt angle and distance from people to cameras.

In this paper, we take advantage of treating a group of people as a whole.
Our system consists of low cost but effective enough modules in order to ensure
both the real-time performance and good accuracy.

3 Proposed Method

The proposed method is composed of an offline learning phase and an online
counting phase. In the offline learning phase, we extract foregrounds from a
large collection of videos taken from surveillance cameras with various view-
points and viewing areas, and under different weather conditions. Clustering on
the extracted foregrounds leads to the generation of local empirical templates
and density ratio bounds. The former are templates for the foregrounds induced
by single pedestrians, and the latter can be used to estimate the number of
pedestrians in the foregrounds induced by multiple pedestrians. In the online
counting phase, the LET and the density ratio bounds are both used to estimate
the number of pedestrians in a foreground captured online.

3.1 Offline Learning and Local Empirical Template Extraction

A large set of videos is collected from stationary surveillance cameras installed at
different locations, with different viewpoints and various fields of views, and un-
der different weather conditions. The Gaussian Mixture Model (GMM) proposed
by Stauffer and Grimson [16] is applied to extract foregrounds from these videos.
The extracted foregrounds are inspected manually, and corrected in cases when
the foregrounds fail to be accurately detected by the GMM approach. We split
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Fig. 1. Examples of single foregrounds (first row) and group foregrounds (the last row)

the foregrounds into two categories: single foregrounds and group foregrounds.
The former are contributed by single pedestrians, and the latter are induced
by two or more of pedestrians that generate overlapping foregrounds. The over-
lapping foregrounds, or group foregrounds, can be caused by pedestrians with
close proximity to each other or pedestrians parted away from each other but
with occlusion from the view of the camera. Examples of single foregrounds and
group foregrounds are shown in Fig. 1.

Video Collection

GMM

Manual
Classification

GroupSingle Ground Truth Annotation

Local Density
Ratio

Local
Empirical
Templates

Ratio

p
Density Ratio

Bounds

Fig. 2. Flowchart of the offline learning phase

The local empirical templates of single foregrounds are represented by their
width, height, and trajectories or their positions in the image. Depending on
different settings, especially the viewpoints of the camera, the number of LET
in a fixed-view window can be as few as a couple or as many as tens. Experiments
on the single LET and group foregrounds reveal the following observations:



94 D.H. Hung, S.-L. Chung, and G.-S. Hsu

– The LET of single foregrounds can be used to discriminate single foregrounds
from group foregrounds. The relative sizes of the extracted foregrounds from
each other reveal the corresponding crowd densities in many cases, and there-
fore the foregrounds with sizes smaller than most of the others are likely to
be caused by single pedestrians. The decision can be made using a distance
measure between the foreground and the LET.

Fig. 3. Local density ratio versus the number of people Np

– If the viewing window is divided into M × N cells by a grid, as shown in
Fig. 3c, the local density ratio, D(m, n), can be defined for each cell (m, n),
n = 1, ..., N ; m = 1, ..., M , as follows,

D(m, n) =
Sg(m, n)
Ts(m, n)

=
Sg(m, n)

Htemp(m, n) × Wtemp(m, n)
(1)

where Sg(m, n) is the size of a group foreground captured at cell (m, n) and
its neighbors because a group foreground may not appear in one cell, and
Ts(m, n) is the size of the local empirical template, measured by its width
Wtemp(m, n) and height Htemp(m, n) at the cell (m, n). It is observed that
although both Sg(m, n) and Ts(m, n) vary across the viewing window, the
variation in D(m, n) appears limited by a bounded range when the crowd
density in the group foreground is kept a constant. In other words, the fol-
lowing bounds can be observed,

DM (Np) > D(m, n, Np) > Dm(Np) (2)

whereDM andDm are the upper and lower bounds of density ratioD(m, n, Np)
of a group foreground containing Np pedestrians at cell (m, n).

Eq. 2 shows that the local density ratios seem independent of the cell’s location
(m, n), and depend on Np only. Because Np can be considered an absolute crowd
density of a group foreground which has different sizes over the viewing window,
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Table 1. Bounds of local density ratio and corresponding count of a group of people

Local Density Bounds Np

0.3 ∼ 0.6 1
0.6 ∼ 1.1 2
1.1 ∼ 1.4 3
1.4 ∼ 1.9 4
1.9 ∼ 2.45 5
2.45 ∼ 2.85 6
2.85 ∼ 3.3 7
3.3 ∼ 3.7 8
3.7 ∼ 4.2 9
4.2 ∼ 4.7 10
> 4.7 11

the local density ratio D(m, n, Np) normalizes its size variation to that of the
LET.

The overall offline learning phase can be summarized by the flowchart shown
in Fig. 2.

From our collection of videos, local density ratios of many group foregrounds
which are different from the number of people, Np, in groups are computed. The
relationship between the number of people in groups and their local density ratios
are obtained and sketched in Fig. 3. Given a fixed number of Np, we consider the
distribution of local density ratios as a triangle. [DM , Dm], the bounds of local
density ratios for various Np are found at the intersections of these triangles and
given in Table 1.

3.2 Online Counting

The online counting phase is composed of the following steps:

1. Foregrounds are firstly extracted from the input video using the GMM [16],
similar to the first step in the offline learning.

2. A nearest neighbor classifier trained in the offline learning phase by using a
feature vector formed by the height-normalized size and the normal vectors
extracted along the smoothed contour of a foreground is used to classify
single foregrounds from group foregrounds in the online counting phase. This
classification is based on multiple instances captured across a few successive
frames. LET of test videos are manually initialized like in the learning phase
if the knowledge of test videos is available, or are self-discovered by the
following scene-based template update mechanism.

3. The single foregrounds, their trajectories, and the LET that have validated
the single foregrounds are kept in a memory buffer for the cells where the
single foregrounds are captured. That is, these single foregrounds are used to
update corresponding LET, so-called scene-based template update, accord-
ing to the following formulae.
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Fig. 4. Flowchart of the online counting phase

Htemp(new)(m, n) = (1 − α)Htemp(old)(m, n) + αHsing(m, n) (3)

Wtemp(new)(m, n) = (1 − α)Wtemp(old)(m, n) + αWsing(m, n) (4)

where, Hsing(m,n) & Wsing(m,n) are height and width of a detected sin-
gle foreground, respectively, Htemp(m,n) & Wtemp(m,n) are sizes of LET at
the cell (m,n), and α is the learning rate. Because single foregrounds may
not appear all over the viewing window, interpolations and extrapolations
on sections of their trajectories are performed to estimate and extend the
most part of regions that foregrounds appear. It is not a rare condition that
single foregrounds only appear in certain segments of a walkway because
of occlusion, merging, and low contrast to the backgrounds, etc. Therefore,
some cells are short of LET, and some LET’s trajectories can be broken
or segmented. In the online counting phase, trajectories of both single and
group foregrounds will be kept in the buffer and analyzed to map out walk-
way regions. When single foregrounds appear in segments of these regions,
interpolation and/or extrapolation based on the observed single foregrounds
will be performed to fill in the cells with ”virtual” single foregrounds passing
through. This step helps to distinguish the regions with foregrounds from the
rest without foregrounds, and establish the scene-based spatial distribution
of LET with appropriate sizes.

4. With the established scene-based spatial distribution of the LET, the count
of pedestrians in a foreground captured in a local cell (m, n) on the viewing
window can be estimated by the local density ratio in Eq. 1 with Table 1.
Because local density ratio is computed per frame at each cell, each cell
will end up with one to a few local density ratios when a foreground moves
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through. The majority of these density ratios are averaged and considered
as the density ratio of the cell. Together with the density ratios evaluated at
all cells where the foreground passes, the density ratio of the foreground can
be properly determined by a majority voting. To ensure the accuracy of the
people count on the foreground, the current count is checked for consistency
with the counts obtained along the trajectories of the foregrounds appeared
in the previous frames. Possible split and merge of foregrounds are also
considered in this consistency check.

The above online counting can be summarized in the flowchart in Fig. 4.

4 Experimental Results and Performance Evaluation

The proposed method is evaluated using both of the PETS2009 benchmark data
and our own collection of test data. The implementation is on the Visual C++
platform with libraies from OpenCV 1.1, running upon an Intel core 2 Duo
T9300 2.5 GHz.

4.1 Evaluation on PETS2009 Benchmark

PETS2009 benchmark provides a training dataset S0, containing subsets for
background model learning. Frames in dataset S0 contain people walking through
the scene. Therefore, we exploit sizes of these people in dataset S0 for initializing
local empirical templates which are used in the online counting phase.

Fig. 5 shows some typical visual results of testing on both subsets in view 001
of dataset S1, L1. The number at the bottom of each bounding box is its esti-
mated count. The number in the top-left corner of the image is the total esti-
mated count throughout entire image. Manually counted ground truth of each
frame is compared with the total estimated counts of our proposed method, of
moving corners-based method [15], and of holistic properties-based method [14],
tested on the same dataset. These results are adapted from their papers [14,15].
Fig. 6 depicts the comparison by graphs sketched in the same coordinate.

Results tested on subset Time 13-59 seem to be better than those tested
on subset Time 13-57, since it contains fewer patterns of fully and nearly fully
occluded people. In comparison with other methods tested on the same bench-
mark [14, 15, 17, 18], the results of our proposed method are competitive.

4.2 Evaluation on In-House Collection

In this section, we further assess the performance of the proposed method against
various viewpoints, brightness illumination, and arbitrary human movement, etc.
via six video samples. Fig. 7 shows some sample frames and the counting results.

The first row of Fig. 7 shows a scene recorded at noon. This scene is challeng-
ing since the left hand side of the scene is under strong sunshine and the right
one is much darker. Its background contains a lot of texture. When a pedestrian
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Fig. 5. Results of the proposed approach on dataset S1, L1 (view 001); the first row is
of subset Time 13-57, the second row is of subset Time 13-59

Fig. 6. Comparison between the results of our proposed approach, of methods of using
moving corners [15], and of method of using Holistic properties [14], tested on the same
datasets, and ground truth. These results are adapted from their papers [14, 15]. The
left graphs are for subset Time 13-57, the right ones are for subset Time 13-59.
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move from bright to dark regions and vice versa, the foreground pattern changes
considerably that causes difficulty. However, our approach can handle this sit-
uation since local empirical templates in these regions are different. Therefore,
shadow seems to be tolerated in the left hand side of the image, even when peo-
ple are in occlusion. In our system, we also incorporate an algorithm to remove
moving cast shadow [19]. The first row shows two pairs of resulting images in two
cases of using and not using the algorithm of moving cast shadow elimination.

Fig. 7. Typical visual results of our proposed approach tested on our video collection
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The next two rows of Fig. 7 show a scenario under different tilt angles, includ-
ing the overhead viewpoint. The fifth row illustrates some groups of people are
far from camera. The last row shows a crowded scene of a road intersection, con-
taining large groups of people in occlusion. In the road intersection, pedestrians
really move in unconstraint fashions. Although good results are often observed,
some false positive and false negative occur in the situations of nearly full and
full occlusion and of moving bicycles.

5 Concluding Remarks and Future Works

We have presented a method that uses knowledge of single foregrounds to es-
timate the number of people in group foregrounds. It is the fact that density
of group foregrounds varies according to that of single foregrounds in a local
region of the image. The ratio of density of group foregrounds which contain a
same number of people to that of corresponding single foregrounds falling into a
particular bounded range is proved by a large collection of videos covering var-
ious viewpoints and scenarios, and illumination conditions. Bounds of the local
density ratio obtained in the offline learning phase and local empirical templates
are used in the online counting phase. Most importantly, these obtained denstiy
ratio bounds seem to be independent of camera viewpoints and human positions
in the image. We have tested the validity of these density ratio bounds and
good performance of the online counting of our proposed method on Benchmark
of PETS 2009 and some our video samples. Our system runs in real-time with
standard-resolution videos, with average processing rate of around 30 fps.

There are still many rooms for improving this work. We must improve the
confidence in large groups of people by conducting more experiments. We can
integrate multichannels working simultaneously in the same PC, since we are
developing a low-cost solution to counting people. That is, we could count people
in different places simultaneouly without using extra processing devices.
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Abstract. We propose a novel, self-validating approach for detecting
curved reflection symmetry patterns from real, unsegmented images. Our
method benefits from the observation that any curved symmetry pattern
can be approximated by a sequence of piecewise rigid reflection patterns.
Pairs of symmetric feature points are first detected (including both inliers
and outliers) and treated as ‘particles’. Multiple-hypothesis sampling and
pruning are used to sample a smooth path going through inlier particles
to recover the curved reflection axis. Our approach generates an explicit
supporting region of the curved reflection symmetry, which is further
used for intermediate self-validation, making the detection process more
robust than prior state-of-the-art algorithms. Experimental results on
200+ images demonstrate the effectiveness and superiority of the pro-
posed approach.

1 Introduction

Symmetry is pervasive in nature and man-made environments [1, 2]. It is one
of the most important cues for human and machine perception of the world [1].
Automatic perception of symmetry patterns from images has been a standing re-
search topic in computer vision. Reflection symmetry [2], as one of the four basic
symmetries, is the most common and has received most attention in psychology
as well as in computer vision [1]. Various applications utilize reflection symmetry
such as face analysis [3], multi-target pattern analysis and tracking [4], vehicle
detection [5] and medical image analysis [6].

Reflection symmetry detection algorithms dominate the literature of all types
of symmetry detections [1, 7]. For example, Sun and Si [8] used histogram of
gradient orientations to find the orientation of dominant reflection axis. Masuda,
et. al. [9] explored edge features to measure symmetry similarity and Loy and
Eklundh [10] matched feature points and then extracted reflection (and also
rotation) symmetry patterns via clustering; Mitra et. al. [11] developed partial
or approximate Euclidean reflection symmetry detection in subsampled 3D data.

Besides rigid reflection symmetry, Kanade in 1983 proposed the term skewed
symmetry denoting reflection symmetry of an object going through global affine or
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Fig. 1. Some example images containing curved reflection pattern, including real-
world/synthesized, segmented/unsegmented, nature/man-made object images

perspective skewing [12]. Symmetry recognition from global affinely and perspec-
tively distorted views has also been well studied in [13,14,15,16,17], where the re-
flection axis is assumed to be a straight line. In real world however,
many symmetrical objects/patterns present curved reflection axles as shown in
Figure 1. Automatically recognizing curved symmetry axis from unsegmented im-
ages is motivated by a wide range of applications. For example, symmetric region
segmentation and curvature analysis from spine x-ray images, as well as leaves
recognition and classification, can all benefit from a curved reflection detection
algorithm.

Lee and Liu in [18] proposed the first, state-of-the-art curved glide-reflection
symmetry extraction algorithm from real, unsegmented images. Their algorithm
detects symmetric feature points first, which we refer to in this paper as sym-
metry ‘particles’ and then clusters these particles in the parameter space, sub-
sequently fits a polynomial function to obtain the curved symmetry axis. The
weakness of this approach is the ability against potential outliers (in some cases
much more than the number of inliers) contained in the particles, which can se-
riously affects the robustness of clustering and curve fitting of the reflection axis.
Besides, the polynomial fitting of symmetry axis misclassifies many inlier/outlier
particles, as a result, the supporting region of the detected symmetry is not well
defined thus making it hard to quantitatively assess the reliability of the detected
pattern online.

Based on these facts and the abundance of real world curved reflection symme-
tries (Fig.1), we propose a curved reflection symmetry detection approach that
explicitly selects symmetry ‘particles’ with local supporting regions and achieves
more robust performance than [18] on curved reflection symmetry extraction
by being able to effectively self-validate the detected results.

We adopt the bottom-up framework of [18,10] that first detects and matches
symmetric feature points to form symmetry particles (including both inliers and
outliers), while build up symmetric regions in the higher level. The major novel
advantage of detecting deformed symmetry patterns from bottom-up is that
feature points are free of global deformation, meanwhile local deformation can be
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handled by more sophisticated feature points such as SIFT [19], which is robust
against scale change and rotation with good repeatability and high efficiency.

A crucial part of our approach is to discover a smooth path going through
inlier particles on the image to approximate a valid curved reflection axis. One
challenge is that the set of symmetry particles detected in the first step can be
misleading. This is because feature point matching only considers local patches
around the feature points, and symmetry, on the other hand, is a non-local, con-
tinuous feature [20]. There always exist many outlier feature point pairs, that
only appear symmetrically in a small local region. To effectively validate the
symmetry particles, region-based evaluation and verification are more robust
and should be adopted. It can be seen that one symmetry particle is uniquely
specified by a pair of feature points, while 2 particles, consisting of 4 feature
points, form a closed quadrilateral region. If we approximate the local symme-
try axis using straight line within the quadrilateral, a region-based reflection
symmetry evaluation step can be done easily and reliably. Therefore given any
pair of symmetry particles, we can quantitatively measure the symmetry-ness
within the corresponding region, which we refer to as ‘consistency between sym-
metry particles’, and establish a graph structure with all vertexes representing
symmetry particles and the edges representing a straight reflection axis between
two particles and the weight on this edge indicating the consistency or local
symmetry score. (Figure 2 -C,D)

By establishing the graph of linked symmetry particles, we turn this problem
of curved symmetry pattern recognition into a problem of seeking a smooth path
in the graph that maximize the symmetry property along the path. We will show
in Section 2.3 that this is a global optimization problem and we thus propose a
multiple hypothesis path sampling and pruning approach for real world curved
reflection symmetry detection. Validation results on more than 200 images of
three categories show superior curved reflection symmetry detection rates of our
algorithm than [18].

One important advantage of explicitly selecting symmetry particles to approx-
imate curved reflection is that we can obtain a well-defined continuous support-
ing region of reflection symmetry along the curved axis. As we use thin-plate
spline (TPS) warping to rectify the axis, we can evaluate quantitatively and
globally how symmetric the rectified region is, thus achieving self-validation,
making the algorithm more robust.

2 Our Approach

The bottom-up framework for curved reflection symmetry pattern detection
starts with recognizing symmetric feature point pairs. Each pair of feature points
xi1, xi2 provides us with a symmetry axis particle li = {xi, αi}, where xi1, xi2,
xi ∈ R2 are the image coordinates of the two symmetric feature points and their
middle point, αi is the orientation perpendicular to the line joining the points
xi1 and xi2, with ambiguity of angle π. In the next stage, we evaluate the pair-
wise consistency among all symmetry particles and establish an undirected graph
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Fig. 2. The framework of our approach: (A)input image; (B)detected SIFT feature
points marked as pink dots and successfully matched feature point pairs connected
using green dashed lines; (C)representing feature points pairs as yellow particles
with red short lines indicating the directions of potential reflection symmetry axis
αi; (D)Maximally connected components in particle pairwise consistency graph G;
(E)Sampled optimal path from G; (F)Rectified region via TPS warping

G{V, E}, with V = {li} being the set of all particles and any edge (i, j) ∈ E
means the line segment joining particle xi and xj reflects the symmetry property
locally. The recognition of curved reflection patterns thus becomes a problem of
discovering a smooth path from the graph G, which goes through a subset of its
vertices (particles), (li1 , li2 , · · · , lik

), to approximate the curved reflection axis
(Figure 2).

2.1 Symmetry Particles Discovering

We adopt SIFT feature for effective symmetric points recognition since it is
rotation and scale-invariant [19]. By rearranging the SIFT descriptor vectors vi,
we can describe the same local patch in the mirror image, denoted by v

(m)
i . The

symmetry distance between two feature points is defined to be the Euclidian
distance of the description vectors

d(i, j) = ‖vi − v
(m)
j ‖2 (1)

For each point, we find top 3 best matches with smallest symmetry distance and
then reject matches either having different scales or do not satisfy the angular
constrains. Let a pair of SIFT feature points be (xi1, φi1, si1) and (xi2, φi2, si2),
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where φi1, φi2 and φi12 are the orientation angles of two feature points and
the line connecting them, respectively. We specify the angular constraint that
the orientation of two feature points should also be symmetric, which means
(φi1 + φi2)/2 ⊥ φi12. Each accepted pair of feature points then corresponds to a
symmetry particle as illustrated in Figure 3 (a).

Fig. 3. An illustration of angle constrains and quadrilateral rectification

2.2 Generating Pairwise Consistency Graph

Given two symmetry particles, li = (xi, αi) and lj = (xj , αj), and let the direc-
tion from xj to xi be αij , as illustrated in Figure 3 (b), we evaluate whether
they form a near-symmetry region based on both of their geometric consistency
and the appearance symmetry score. Assuming αi and αj are the tangents of the
symmetry axis curve at locations xi and xj respectively, the geometric consis-
tency requires that the curve be smooth, which means αi, αj and αij are along
the similar directions, leading to the following two conditions:

|αi − αj | < TH1 (2)

|αij − 1
2
(αi + αj)| < TH2. (3)

In our experiments, we set both thresholds to be TH = π/8. Once the pair of
particles passed the geometric consistency, we rectify the local image patch to
evaluate the appearance symmetry score by warping the quadrilateral formed by
vertexes xi1, xi2, xj1, xj2 into an equilateral trapezoid, where the length of the
parallel sides are ‖xi1 − xi2‖2 and ‖xj1 − xj2‖2 respectively, and the height is
‖xi−xj‖2, as illustrated in Figure 3 (c). TPS warping is used in our approach to
deal with the most general transformation without assuming any specific cases
like affine or perspective.

To evaluate the symmetry score of an equilateral trapezoid, we flip the trape-
zoid according to the middle axis and calculate normalized cross correlation
(NCC) with the original patch, which returns a score between −1 and 1. If the
NCC score is above a threshold (0.5 in our experiments), we impose an edge be-
tween particles li and lj and record the NCC score as well as the area (supporting
region) of the trapezoid for future use.
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2.3 Multiple Hypothesis Path Sampling and Evaluation

The pairwise consistency graph can be further divided into several subgraphs
based on connectivity. In cases where multiple symmetry patterns exist, each
subset possibly contains one symmetry pattern. In cases of single symmetry
pattern detection, we only focus on the subset with maximum number of vertices,
which in most cases contains the most dominant pattern.

We then look for a smooth path within the subgraph(s) that maximizes the
‘symmetry’ along it. The symmetry score of a path can be obtained after we
use TPS warping to rectify the whole path into connected equilateral trapezoids
and evaluate its symmetry score the same way as we do for a single trapezoid.
For the sake of computation time, it is also reasonable to approximate the path
symmetry score using weighted summation of piecewise scores.

Let a path p going through N vertexes p = (v1, . . . , vi, . . . , vN ), or N −1 edges
p = (E1, . . . , Ei, . . . , EN−1), with Ei = (vi, vi+1, NCCi, si), where NCCi and si

are the symmetry NCC score and the area of the trapezoid corresponding to the
pair of particles li, li+1. We approximate the NCC score of a path using

sp =
N−1∑
i=1

si (4)

NCCp =
1
sp

N−1∑
i=1

si · NCCi (5)

To ensure the smoothness of the path, we require the turning angle at each
vertex be less than a threshold of π/5, which means

∠(xi − xi−1) − ∠(xi+1 − xi) < π/5, i = 2, 3, . . . , N − 1, (6)

where ∠() is the orientation of a vector, xi correspond to the 2D coordinate of
vi in the image.

We define 2 criteria c1 and c2 given a path p for its ranking, one is the
approximation of the path symmetry score, the other also favors paths covering
more area:

c1(p) = NCCp (7)
c2(p) = NCCp + λ · log(Sp) (8)

The traditional graph solutions for finding optimal paths such as Dijkstra’s al-
gorithm is not suitable here for the criteria in equations 7 or 8 and the smooth-
ness condition in equation 6, all involves global information of the paths. The
enumeration of all possible pathes is also computationally unaffordable. As an
alternative, we try to selectively sample the paths with high likelihood.

Once a path is initiated, we can enumerate the next valid vertexes to extend
the current path. Each enumeration would generate an extended path hypothesis,
each of which can be further extended recursively. Such an iterative approach
forms a multiple hypothesis sampling of all possible pathes. The complexity of
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this sampling scheme grows exponentially and is unbounded depending on the
density of the graph, thus we need to perform efficient pruning to cut unlikely
paths in the first place. In each iteration after all current paths having been
extended, we prune paths with low likelihood, and only keep a maximum number
of K hypothesis in the pool. When K = 1, this becomes a greedy algorithm that
starts at a random vertex and finds the local optimum; When K = ∞, we find
global optimum by enumerating all valid paths in the graph that contains the
initialization vertex. In our experiment, we take paths ranked top 100 either
under criteria 1 or criteria 2. The reason we set up 2 criteria is that although
we favor longer curves finally, we want to protect potential paths in the pool
before they have been fully extended. This punning policy effectively bounds
the computation within linear complexity meanwhile providing us with good
enough solutions.

The algorithm for sampling and pruning paths recursively is illustrated in
Table 1, note that once a path p is extended by a new vertex vN+1, its NCC
score approximation can be updated also in an efficient recursive form,

NCC(new)
p =

NCC
(old)
p · s(old)

p + NCCN · sN

s
(old)
p + sN

. (9)

For the complete paths (can not be extended any more) returned by the multiple
hypothesis sampling, instead of using equation 5 for approximation, the one with
highest score according to equation 8 is selected to be the final result.

Algorithm 1. Multiple Hypothesis Path Sampling
Input:

G(V, E), with V = {vi}, E = {(vk1, vk2, NCCk, sk)|k = 1, 2, . . . , K};
Initialize:

Randomly pick a vertex vi, mark it as incomplete and put it into the path pool;
while exists incomplete paths in the pool

for all incomplete paths in the pool
if the path can be further extended

replace the path with all valid extend paths;
update path NCC score (Eq.9) and mark them as incomplete.

else
Mark the path as complete.

Prune paths in the path pool with low likelihood score.
Return:

All paths remaining in the pool.

For the final candidates returned by the multiple-hypothesis sampler, we use
criteria c2 in 8 to rank them, however, instead of using NCC score approxima-
tion as equation 5, we use TPS warping to straighten the curved reflection axis
to calculate the accurate NCC score. based on the c2 ranking, the path that
produces highest score is selected as final result.
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3 Experimental Results and Comparison

We test our algorithm on 210 images including 2 subcategories of the Swedish
Leaf dataset [21]–one has curved reflection symmetry pattern on every single leaf
(Quercus rober, 75 images), the other has curved reflection symmetry pattern
among the leaves on a branch (Sorbus aucuparia, 75 images), as well as a human-
spine X-ray dataset containing 30 images that we collect ourselves. We also
collected a set of miscellaneous real-world and synthesized images with curved
reflection symmetry patterns (30 images). In addition, we compare our approach
with the method in [18] on the same image sets.

3.1 Our Results

A representative selection of our results on the Swedish leaf dataset, spine X-ray
dataset and miscellaneous images is shown in Figures 4, 5, 61. For each image,
we tag the detection results of curved reflection axis, as well as its support region
specified by symmetric feature points. We also straighten the curved reflection
axis and show the rectified image in the supporting region on the right.

(H) and (I) in Figure 6 show 2 different reflection patterns being detected
from the same image. This is achieved when we separate the consistency graph
G into several connected components, each of which could be checked for the
existence of reflection patterns.

It can be seen from these results and rectified images that piece-wise rigid
reflection is a reasonable approximation for curved reflection. Our method is
effective and robust in selecting a small subset of inlier symmetry particles ex-
plicitly to represent the reflection pattern. If necessary, curve fitting can be
further applied on the selected inlier particles to obtain a smoother curve.

Although we introduced several heuristic thresholds in the algorithm, e.g.,
TH1 = TH2 = π/8, THNCC = 0.5, they are mainly for efficiency concerns. A
stricter threshold helps saving time by pruning bad hypothesis in an earlier stage;
Relaxing the thresholds would result to more outliers being included in the path-
sampling stage. However the final results are relatively insensitive against the
threshold changes, which is because our approach has the self-validation ability,
making it perform robustly in finding the correct inlier particles even when the
outliers are more than inliers (which is usually the case).

In addition, we make some extra tests on images containing human perceived
straight-reflection symmetries (Figure 7). The results demonstrate a more ac-
curate capture of the slight deformations of the seemingly straight reflection
axes by our piece-wise curve approximation algorithm, indicating the rarity of
perfectly straight reflection symmetries in real world.

Some failure examples are also shown in Figure 8, where (a) failed due to
severe background clutter; (b) and (c) failed because not enough feature points
are detected in the first place so that the dominant reflection symmetry pattern

1 See our project page for a complete set of Data and Results at
http://vision.cse.psu.edu/research/curvedSym/index.shtml
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(a) (A) (b) (B) (c) (C)

(d) (D) (e) (E) (f) (F)

Fig. 4. Results of Swedish leaf data set. top row: single leaf with curved reflection
symmetry pattern; bottom row: multiple leaves form curved reflection symmetry pat-
tern; a-f: original images tagged with detected curved reflection axis(pink), supporting
region(green); A-F: rectified images with a straightened reflection axis(pink).

(a) (A) (b) (B) (c) (C)

(d) (D) (e) (E) (f) (F)

Fig. 5. Results of Spine X-ray data set. a-f: original images tagged with detected
curved reflection axis(pink), supporting region(green); A-F: rectified images with a
straightened reflection axis(pink).
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(a) (A) (b) (B) (c) (C)

(d) (D) (e) (E) (f) (F)

(g) (G) (h) (H) (i) (I)

(j) (J)

(K) (K)

Fig. 6. Results of miscellaneous images. a-k: original images tagged with detected
curved reflection axis(pink), supporting region(green); A-K: rectified images with a
straightened reflection axis(pink).
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(a) (b) (c)

Fig. 7. Examples of detecting almost-straight reflection symmetries

(a) (b) (c)

Fig. 8. Examples of failed cases, where (a) failed due to severe background clutter; (b)
and (c) failed because not enough feature points are detected in the first place thus
missed the dominant reflection pattern, while finding some local reflection symmetries

is not (fully) recognized. From the experiment, most of the failure cases are due
to not enough feature points being extracted. Therefore to make our approach
more robust, multiple types of feature point detection can be adopted here e.g.,
Harris-Laplace [22], which detects corner like points and is complement with
Hessian-Laplace (blob-like) feature points.

3.2 Quantitative Evaluation and Comparison with [18]

We also apply Lee and Liu’s approach [18] to the same data sets and make
quantitative comparisons. For each image, we tag it success if more than 4/5
of the curved reflection axis is detected, and failure otherwise. Our method has
higher success rate on all three datasets as reported in Table 1.

Some of the detection results of Lee and Liu’s in [18] are also shown here
in Figure 9 for an intuitive comparison. It can be seen that by defining an

Table 1. Success rates of our proposed algorithm and Lee & Liu’s [18]

Dataset Leaf dataset Spine dataset Miscellaneous images Overall
# images 150 30 30 210

proposed 83.3% 80.0% 73.3% 81.4%
Lee & Liu [18] 40.0% 66.7% 70.0% 48.1%
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(a) (A) (b) (B) (c) (C)

Fig. 9. Comparisons of our proposed approach with Lee & Liu in [18]. a-c: Lee & Liu’s
approach; A-C: our approach.

explicit supporting region and TPS warping to rectify the curve, we achieve self-
validation in our method thus being more robust against outliers and yield to
better performance.

4 Conclusions

In this paper, we propose a bottom-up curved-reflection symmetry detection
approach, starting from recognizing symmetric points pairs (particles) in the
bottom level and extract a consistent structure among the particles to form the
symmetry pattern in the higher level. Multiple-hypothesis sampling and pruning
method is shown to be effective in discovering the optimal curved structures
from real world images. As a by-product, we obtain the supporting regions from
selected particles and use them for self-validation. Quantitative evaluation and
comparison against state-of-the-art algorithm on 210 real images confirm the
superior robustness of our proposed approach.
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Abstract. This paper presents a novel approach to Automatic Image
Annotation (AIA) which combines both Hidden Markov Model (HMM)
and Support Vector Machine (SVM). Typical image annotation meth-
ods directly map low-level features to high-level concepts and overlook
the importance to mining the contextual information among the anno-
tated keywords. The proposed HMM-SVM based approach comprises
two different kinds of HMMs based on image color and texture features
as the first-stage mapping scheme and an SVM which is based on the
prediction results from the two HMMs as a so-called high-level classi-
fier for final keywording. Our proposed approach assigns 1-5 keywords
to each testing image. Using the Corel image dataset, Our experiments
have shown that the combination of a discriminative classification and a
generative model is beneficial in image annotation

1 Introduction

The modern developments of the Internet make it the most efficient platform
for obtaining and sharing various kinds of information from anywhere. For this
reason the research into search engines for retrieving and managing multimedia
data has become very important and attractive [1]. Existing search engines are
well-developed in the case of textual data. However, more research is still required
for image search and retrieval due to the so-called semantic-gap. At the early
stage of research, image retrieval was performed by relying on manually assigned
keywords. The manual labeling of images however is tedious and difficult for large
image collections. To address these drawbacks, content-based image retrieval
using low-level image features such as color, texture and shape is proposed [2].
These low-level features representing visual content of an image can be used to
measure the similarity between images. This allows images from datasets to be
automatically indexed and searched. To improve the process of retrieval, this
line of research based on low-level features was soon replaced by the use of the
approach of AIA which associates multiple keywords with objects in images.
Some researchers argued that if we can associate multiple keywords with the
identified object in the image, the retrieval of images could become much easier
and more straightforward [3,4, 5, 6].

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 115–126, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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For this reason, AIA has become a focus in the area of content-based image
retrieval to bridge the semantic gap [7]. In recent years, the classifier ensem-
bles approach has attracted much more attention. Some results report that it
is more reliable than most one-level classifier in performing automatic image
annotation [8]. Another trend of classification is the fusion with other tech-
niques to enhance the performance [9]. In practice, the intrinsic advantages of
generative model have been widely accepted and used in the area of automatic
image annotation. Recently, one representation of generative models, namely the
Hidden Markov Model has been utilized to resolve automatic image annotation
problems [10]. However, there are still opportunities to improve the quality of au-
tomatic image annotation for two reasons. First, images which are semantically
similar often contain different low-level features. Therefore the direct mapping
of the low-level features to high-level concepts may lead to errors. Second, most
existing approaches overlook the significance of keyword correlation in image re-
trieval. For instance, ‘boat’ and ‘water’ tend to co-occur much more often in one
image than ‘boat’ and ‘grass’. This suggests the correlation information among
keywords can be of great help to improve the performance of AIA.

In this paper, we present a two-stage mapping AIA technique based on both
Support Vector Machine and Hidden Markov Model. The first stage comprises
two HMMs constructed separately from color and texture features of images for
mapping the low-level features to mid-level features. Co-occurrence based key-
word correlation is also constructed to enhance the mapping precision. In the
second stage we employ support vector machine to map the so-called mid-level
features to high-level concepts. The proposed scheme fuses both a discrimina-
tive classification and a generative model to avoid the two problems discussed
above.

The outline of this paper is as follows: Recent image annotation methods based
on both SVM and HMM are briefly reviewed in Section 2. Our proposed SVM-
HMM based annotation approach is explained in Section 3. Section 4 presents
the experimental results and the performance analysis of the proposed method.
The paper is then concluded in Section 5.

2 Related Work

Automatic image annotation techniques first appeared about two decades ago.
Below is a review of some selected milestones in AIA using SVM and HMM.

Support Vector Machine was first introduced into this area during the last
decade. As a very strong data mining technique, one of the first SVM based im-
age classification system paper is [11]. However they only use global color features
to solve a small scale classification problem. With the aim to improve the clas-
sification accuracy based on a single classifier, a sophisticated classifier system
called “classifier ensembles” was introduced to further improve AIA precision.
Gao et al. [12] use a combination of multiple SVM classifiers. These classifiers
are obtained by combining the output of several effective weak classifiers using a
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Boosting technique. Subsequently, Qi and Han [13] also use a combination of two
sets of SVMs which relies on the regional image features found using Multiple
Instance Learning (MIL) and global image features respectively. Tsai et al. [8]
present an image indexing and classification system called CLAIRE. Their sys-
tem is based on a Two Stage Mapping Model (TSMM) [14]. In their system,
three SVMs are constructed as low-level feature classifiers focusing on classifying
color and texture features respectively. Another SVM called high-level classifier
is constructed based on the outputs of the first low-level classifiers. This system
avoids the direct mapping of the low-level features to high-level concepts, and
the results show a promising way to assign keywords to images.

As one representative work of generative models, HMM has also been adopted
by some researchers to perform AIA. In [15], a one-dimensional hidden Markov
model (HMM) was trained on vector-quantized color histograms of image blocks.
However, their system can only be used to solve a binary image classification
problem. Li and Wang [16] proposed a system called ALIP which is based on
a two-dimensional multi-resolution HMM fed by regional image features. Mod-
estino and Zhang [17] use a Markov random field model to capture the spatial
relationships between regions and apply a maximum posteriori rule to inter-
pret images. Ghoshal et al. [10] use an HMM for image and video annotation
based on two datasets individually, which are COREL and TRECVID. A novel
TSVM-HMM based annotation scheme is proposed in [18]. Compared with pre-
vious annotation methods, the proposed TSVM-HMM based annotation scheme
can achieve better annotation performance with less labeled training images as
demonstrated.

3 Proposed Approach

In order to overcome the problems discussed above, we propose a Two-Stage
Mapping Model to perform Automatic Image Annotation (AIA). An overview
of the proposed approach is shown in Fig.1. The first module is composed of
two Hidden Markov Models which are responsible for classifying low-level color
and texture features respectively. The second module is an SVM classifier which
serves as a high-level classifier as in the work of [8] to determine the final an-
notation results. Unlike that paper, our approach substitutes the SVM with an
HMM during the first stage aiming at mining keyword correlations. Meanwhile,
we directly use the category names to define the output of the HMMs. This is
to overcome the difficulty of only using twelve colors to describe a large number
of images. Moreover, all the image regions of our training set are used as op-
posed to using only the central region. Therefore the image regions used in our
approach may contain different objects. This change also adds difficulty to the
process of describing image regions with only twelve color names. Once these
two stages are completed, five keywords corresponding to the five sub-blocks can
automatically be assigned to a test image. Below is a description of each module
of our approach in Fig. 1.
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Fig. 1. A block diagram of our proposed approach

Fig. 2. The tilting scheme

3.1 Image Sub-blocking and Feature Extraction

It is well known that automatic image segmentation is a hard task and no ap-
proach can achieve perfect results. Moreover, some results show that those mod-
els using a sub-blocking scheme perform better than those using object-based
segmentation [19]. We use a tilt scheme which was proposed in [8] to divide
images into five regions. The original image size in our dataset has 384 × 256
pixel resolution, and the region size is 192× 128 as shown in Fig.2. The regions
include four quadrants. The one in the center is used to increase the weight of
the object of interest.

We extract color features and texture features as image descriptors. We do
not consider other features such as shape for two reasons. First it is well known
that image shape feature extraction is difficult to achieve and computationally
expensive. In addition it should be noted that image regions whether contain-
ing homogeneous objects or not is not a focus in our approach. Therefore it is
meaningless even if image shape feature extraction is applied.

The color features include the mean and standard deviation of every region in
the RGB and Lab color spaces. It has been proved that Garbor filter performs
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well on extracting image texture features. Therefore we apply a set of Garbor fil-
ters with 12 orientations (i.e. 0◦, 30◦, 60◦,..., 270◦) on the luminance component
of image regions. We then extract the mean and standard deviation values of
the 12 filtered images and use them as texture features. This results in a feature
vector of length 36 for each region (i.e. 12 color features and 24 texture features).

3.2 Hidden Markov Model for Low-Level Annotation

Hidden Markov Model for AIA. According to HMM’s definition, it is easy
to provide a density function to model image features of image regions which
belong to the same keyword. By introducing keyword correlation, the context-
dependent HMM can improve its accuracy for image annotation.

For the sake of brevity, let Ti = {Ii1, Ii2..., Iin} be the feature set of image
regions obtained from our training set for the ith keyword, where n is the total
number of image regions. The keyword set K = {k1, k2..., ki} represents all the
keywords appearing in the whole training set. Given an image, it will be divided
into five regions as described above, where the regions are ordered according
to the quadrants as shown in Fig. 2. The upper-left one is considered as the
first while the center one as the last. Meanwhile, we use Ir = {Ir1, Ir2..., Ir5}
to denote its region feature set and Ic = {Ik1, Ik2..., Ik5} to denote its keyword
set. We propose to model the AIA task as a Hidden Markov process. Thus, by
combining Ir and Ic, the joint likelihood function can be formulated as

f(Ir1, Ir2..., Ir5, Ik1, Ik2..., Ik5|k0) =
∑

kt∈Ik

5∏
t=1

f(It|kt)p(kt|kt−1) (1)

According to Eq. (1), an HMM model is mainly affected by the emission density
function f . This function corresponds to the image region feature distribution
of one keyword. The transition probability function p on the other hand reflects
the keyword correlations. The problem then becomes how can we formulate the
emission density function and transition probability function.

Low-level Feature Distribution. As discussed in the last subsection, we
should establish a useful emission density function for each keyword [10]. Gaus-
sian Mixture Model (GMM) is one of the most statistically mature methods
for density estimation [18]. GMM is the weighted average of Gaussians, and
each Gaussian has its own mean and covariance matrix which has to be esti-
mated separately. In the proposed approach, we use GMM to model the low-
level image features via relevant image regions. Let Tc = {Ic1, Ic2..., Icn} and
Tt = {It1, It2..., Itn} denote the extracted color and texture features of image
regions assigned with keyword k. We then employ a Gaussian mixture model
with three components to construct the color and texture feature distribution
functions fc(Tc|c) and ft(Tt|c) as follow,
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fc,t(Tc,t|k) = α1g(Tc,t; μ1, Σ1) + α2g(Tc,t; μ2, Σ2) + α3g(Tc,t; μ3, Σ3) (2)

g(Tc,t; μi, Σi) =
1√

(2π)dc,t |Σi|
exp[−1

2
(Tc,t − μi)T Σ−1(Tc,t − μi) (3)

where α1, α2, α3 represent the weight of each Gaussian component respectively,
and α1 + α2 + α3 = 1 . μ and Σ denote the mean and covariance matrix re-
spectively. d denotes the dimension of an image region feature. Here dc = 12 for
color features and dt = 24 for texture features.

Keyword Correlation. The transition probability p(kt|kt−1) reflects the corre-
lation between the keywords kt and kt−1. Here we use ki and kj to replace kt and
kt−1 respectively. The keyword correlation p(ki|kj) is measured by counting the
frequency of paired words assigned to each image. We can estimate conditional
and joint probabilities of p if we take: p(ki|kj) = p(ki,kj)

p(kj) , and p(ki, kj) = N(ki,kj)
|D| ,

where N(ki, kj) indicates the number of times ki and kj appear together in one
image, and |D| is the total number of image regions in the training set. If we
repeat this process for each pair of words in the keyword set we can obtain an
i × i conditional probability matrix PM , which reflects the keyword correlation.

A problem with the PM matrix is that some of the keywords never appear
in the same image. Thus some p(ki, kj) may take a value of zero. We apply a
widely used smoothing technique known as “interpolation smoothing” to solve
this problem. It can be summarized by Eq. 4.

p(ki|kj) = β ∗ N(ki, kj)
N(kj)

+ (1 − β) ∗ N(kj)
|D| (4)

where β is an interpolation parameter and |D| is the number of words in the col-
lection. This formula is an interpolation between the empirical estimate N(ki,kj)

N(kj)
and the empirical distribution of the term kj . Therefore even if two keywords
never appear together, we will not have a zero value in PM . It should be noted
that both the color and texture HMMs share the same PM . It is easy to un-
derstand that although the feature sets are different, they should have the same
keyword correlation.

Predictions of HMM. The objective of AIA is to find the optimal hidden
keyword sequence for regions with learnt HMM. Once the density estimation of
fc,t(Tc,t|k) for color and texture features of all keywords and transition prob-
abilities have been estimated, given a test image, we perform the Balm-Welch
algorithm to compute the posterior probability of each prediction as the first-
stage annotation. The posterior probability dj(It) of being predicted with kj is
iteratively achieved using:

dj(It) = f(It|kj)
M∑
i=1

di(It−1)p(ki|kj) (5)
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In Eq. 5, the posterior probabilities of M keywords, i.e. dj(It), j = 1, ..., M , are
acquired through the association with a visible region It. The color and texture
predictions j

′
c,t of the hidden keyword for the region It can be gained based on

the following criterion:

j
′
= argmaxj(dj(It)) (6)

3.3 High-Level Concept Classifier

Training Set for High-level concept classifier. Unlike [8], our approach
directly extracts the predictions from the colour and texture Hidden Markov
Model. Let Ti = {Ii1, Ii2, ..., Iin} be all the feature set of one keyword. We then
apply the constructed color HMMs and textures HMMs to the set and collect
the color and texture predictions. After this process, we collect the prediction
set Ti = {(ci1, ti1), (ci2, ti2), ..., (cin, tin)}.

Let us take the concept ‘grass’ as an example. After applying the HMMs to
the training set, we collect all predictions belonging to the image regions which
are labelled ‘grass’. Let Tgrass = {Igrass1, Igrass2, ..., IgrassN} be all the image
regions under the keyword ‘grass’. We assume the color and texture predic-
tions for Igrass1 as (tree− color, grass− texture) and for Igrass2 as (grass-color,
sky-texture). If we repeat the application of the HMMs for all the image re-
gions belonging to the keyword ‘grass’, we can collect all the predictions for
that keyword. Then we use this kind of predictions as mid-level features for each
keyword. Let Mgrass denotes the output of the HMM for the keyword
‘grass’, and Mgrass = {(tree − color, grass − texture), (grass − color, sky −
texture), ...}.

In fact, every image region for all the keywords is mapped into a space that
we call the HMM prediction space. This space maps color feature predictions
on the X-axis and texture feature predictions on Y-axis. According to the total
number of keywords over all the training set, which is 120, both the X- and
Y-axis will take values ranging from 1 to 120. Fig. 3 shows an example of an
HMM prediction space.

Fig. 3. An example of HMM prediction space to illustrate the use of SVMs for learning
predictions based on different keywords
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High-level concept SVM. For classifier design, support vector machines
(SVMs) are chosen for the image classification task because of their general-
ization performance superiority. For the selection of the kernel function for the
nonlinear mapping, a degree-2 polynomial kernel is used. We use the predictions
of HMMs as input to the SVM, and when the number of keywords is i, therefore
this method constructs i SVM classifiers. Similar to the multi class classifica-
tion employed in this paper, the one-against-all method is used. Each input is
classified into one positive (+1) and C − 1 negative (−1) classes.

3.4 Summary of the Training Procedure

– Step 1. Given training set image regions for all keywords. These training sets
are composed of 12 color features and 24 texture features.

– Step 2. Use the extracted color and texture features to construct the color
and texture feature distribution functions fc and ft used as density estimates
for HMMs as shown in Equations 2 and 3.

– Step 3. Investigate the keyword correlation based on the labelled regions to
obtain the co-occurrence matrix PM as transition probability function as
described in Equation 4.

– Step 4. Return to the training sets in Step 1. Use the constructed HMMs
to collect the color and texture predictions of all the image regions. By this
time, the training set belonging to each keyword would have been mapped to
the prediction space. At the end of this step, the first mapping stage would
have been generated.

– Step 5. Use the prediction space of each keyword to obtain the high-level
concept SVMs. At the end of this step, the second mapping stage would
have been generated.

4 Experiments

4.1 Dataset

We tested the proposed AIA approach on the Corel dataset with 5600 images. A
selection of 3456 images in the dataset was initially divided into five regions, and
all regions were grouped into 120 keywords. Since a region may contain different
objects, if one object occupies more than half in the region, the object name will
be assigned to this region. We also discarded some regions which are difficult to
label. During the training process, every keyword contained around 54 to 810
regions, with a total of 13754 training regions. Next, another 635 images which
had no regions appeared in the training set. They were randomly chosen from the
dataset and used as testing images. The proposed approach comprises one color,
one texture HMMs and 120 SVMs. The color and texture names are the same
as the 120 keywords predicted using our HMMs. During the testing process, 5
keywords were automatically assigned by the proposed approach to the testing
images.
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Fig. 4. Some region samples of four keywords used for training

Table 1. Performance comparison with other methods in terms of average precision
and recall for all keywords

4.2 Comparison with Other Methods

The contribution of the proposed HMM-SVM based annotation scheme is to
integrate both the discriminative classification and the generative model so
as to take full advantage of their combined merits. To evaluate its effective-
ness, we compared our HMM-SVM based approach with other two related ap-
proaches, namely CLAIRE [8] and HMM-based image annotation [10]. For each
method, we assess the annotation performance using the average precision and
recall, over all testing images. The precision and recall values are defined in
Eq. (7):

precision(c) =
numc

numca
; recall(c) =

numc

numcm
(7)

where numc denotes the number of image correctly annotated with keyword
c, numca denotes the number of images automatically annotated with keyword c
and numcm denotes the number of images manually annotated with
keyword c.

Table 1 shows the average annotation precision and recall over the total 120
keywords. Clearly, we can see that the proposed HMM-SVM based annotation
method achieves a significant improvement on our experimental dataset. Com-
pared to the other two methods, it shows an improvement of about 26% and
0.13% in recall and 26% and 13% in precision. Moreover, the number of key-
words with positive recalls has increased by 43 and 26. Fig. 5 presents some
examples of the annotations produced by the proposed approach. The potential
reasons for this improvement can be associated to the following: (1) with the
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Fig. 5. Examples of image annotation

two-stage mapping scheme involved, it is believed that HMM-SVM can outper-
form those use only single-mapping approaches such as HMM method; (2) the
enhanced keyword correlation is also introduced into the proposed AIA approach
and hence keyword semantics is capable of being modelled well compared to other
methods that do not consider such correlation (e.g. CLAIRE). More details are
provided in the next section.

4.3 Effectiveness of the Proposed Approach

To construct a reliable generative model, i.e. HMM, our approach employs a
keyword correlation with an interpolation smoothing technique and further pro-
motes the performance of HMM. Three schemes are used to obtain the keyword
correlation, i.e. the co-occurrence based keyword correlation, the co-occurrence
based keyword correlation without interpolation smoothing, and without key-
word correlation which is set to be uniform. As shown in Fig. 6, the performance
of annotation is greatly improved when taking into consideration keyword cor-
relations, a concept not used in previous annotation approaches. By combining
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co-occurrence correlation measurements and the interpolation smoothing tech-
nique, it can provide more reliable keyword correlation to avoid zero values.

We further examine the relationship between the precision results and the
number of training samples. The ten keyword samples randomly selected from
the training set, as in Fig. 7, shows an approximately linear relationship between
the number of training samples and the annotation precision. We see that a larger
number of training samples is a major factor for a better annotation. Therefore,
performance should be heavily dependent on the low-level feature representations
which employ visual feature distribution functions.

5 Conclusion

In this paper, we proposed an approach for Automatic Image Annotation based
on the concept of two-stage mapping. Unlike existing two-stage mapping mod-
els, the proposed approach combines the advantages of two-stage mapping and
keyword correlation. This two-stage mapping scheme avoids the direct mapping
of low-level features to high-level concepts. The keyword correlation mechanism
is able to capture to a certain extent the meaning of words to improve the per-
formance of AIA. Our experimental results using the Corel image dataset show
that, in the case of annotating images with few words, the combination of the
discriminative classification and the generative model can improve annotation
performance. Thus, the combination of HMM and SVM provides a promising
way to perform and improve automatic annotation of images.
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Abstract. Video camera is now commonly used and demand of captur-
ing a single frame from video sequence is increasing. Since resolution of
video camera is usually lower than digital camera and video data usually
contains a many motion blur in the sequence, simple frame capture can
produce only low quality image; image restoration technique is inevitably
required. In this paper, we propose a method to restore a sharp and high-
resolution image from a video sequence by motion deblur for each frame
followed by super-resolution technique. Since the frame-rate of the video
camera is high and variance of feature appearance in successive frames
and motion of feature points are usually small, we can still estimate scene
geometries from video data with blur. Therefore, by using such geomet-
ric information, we first apply motion deblur for each frame, and then,
super-resolve the images from the deblurred image set. For better result,
we also propose an adaptive super-resolution technique considering dif-
ferent defocus blur effects dependent on depth. Experimental results are
shown to prove the strength of our method.

1 Introduction

Demand for retrieving a high quality single image from video sequence is increas-
ing, such as surveillance and handheld video capture and so on. Since image qual-
ity of video camera is usually lower than digital camera, simple frame capture is
often insufficient for actual purpose. Although the main reason of the low quality
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of video data is a low resolution of video camera, motion blur is another important
reason of degradation; it commonly occurs because video usually captures moving
object, whereas, still camera mainly captures static scene only. Another problem
on quality of video data is narrow depth of field; it is also common because video
camera requires high frame-rate with fast shutter speed, resulting in wide aper-
ture. Because of the narrow depth of field, the scene other than target object is
blurred by defocus blur. Thus, simple frame capture can produce only low quality
image and image restoration technique is inevitably required.

To deal with the problem mentioned above, hybrid camera systems are pro-
posed [1,2]. However, since those systems require additional sensors, the systems
become complicated and the technique cannot be applied for common video
data. On the other hand super-resolution technique using several input frames
are proposed. However, most of them does not consider motion blur and only
several papers take the problem into account; they treat motion blur as noise [3].
Therefore, quality of image restoration is limited.

In this paper, we propose a method to restore a sharp and high-resolution
image from a video sequence by applying a motion deblurring technique for each
frame followed by super-resolution technique for multiple frames. To conduct
a motion deblur from an image, motion information is required. Since typical
device of deblurring techniques is a still camera, they assume long exposure
time and complicated camera motion; thus, sophisticated blind kernel estimation
technique is usually required. To the contrary, with video camera, motion is
usually small and simple for each frame. One important problem for video is
that several objects move independently. In our method, by taking account of
such feature of video camera, we propose a motion deblurring technique using
optical flow of the scene with scene segmentation technique.

In terms of super-resolution of the image sequence, sub-pixel registration is
required and it is usually difficult to achieve with blurry image. Since motion
blur is reduced by our method in the first step, the problem is greatly reduced. In
addition, since the scene contains several independently moving objects, segmen-
tation and area based registration for each segment is required; it is efficiently
solved by our pixel-based plane approximation technique. Further, image quality
is further improved by considering the different defocus blur for each segment
dependent on different depth with our adaptive super-resolution technique.

2 Related Work

In terms of deblurring techniques for motion blur, since the blur is a convolution
process, restoration technique has been proposed as a deconvolution technique
for known kernel [4, 5]. If the kernel is unknown, such condition is common for
usual photos, the problem is ill-conditioned and it cannot be solved without ad-
ditional information [6]. For simple and straight-forward solution, an additional
sensor is used to estimate the blur kernel [1, 7]. Recently, blind deconvolution
techniques using the information of natural scene, i.e., “heavy tailed distribution
in the gradients” are proposed [8, 9, 10, 11]. We also use the same knowledge to
estimate the motion blur kernel.
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Generally, the main reason of motion blur is assumed to be a camera motion,
such as camera shake, thus, previous technique usually uses a single blur ker-
nel for deblurring. Currently several researches are proposed considering object
motion in the scene [7, 12]. In addition, more general cases, such as an indepen-
dent blur kernel for each depth of an object is proposed [13]. We also estimate
independent blur kernel for each segment.

In terms of super-resolution techniques, reconstructing a high-resolution im-
age from multiple low-resolution images is intensively researched [14, 15, 16]. In
those techniques, it is assumed that scenes are either static or dynamic, but
consist of single depth or planar objects with little motion, and the camera is
also assumed to be static. With such assumptions, registration between frames
can be simplified and it can be done with sufficient accuracies with 2D affine or
homography transformation. However, for applying techniques to more general
purposes, it is necessary to allow 3D scenes containing multiple independently
moving objects, non-rigid motion objects (e.g. cloths), etc. With existing super-
resolution techniques, it is difficult to achieve this, because of significant ap-
pearance changes caused by objects’ motion and viewpoint changes. To perform
super-resolution for such objects or scenes, 3D information should be consid-
ered. Tung et al. [17] have applied super-resolution technique to construct a
high-resolution 3D video. However, the technique is based on approximating 3D
objects by triangular patches, and thus, accurate and dense 3D data is required;
it cannot be easily acquired in general.

The technique to achieve both motion deblur and super-resolution is also
proposed by Tai et al. [2]. The central idea is similar to ours, however, the
method to estimate the motion of the scene is totally different; we estimate it
only from video data, whereas Tai et al. use additional device as hybrid system.

3 Algorithm Overview

A simple solution to restore the images that are degraded by blur kernels per
each frame and object is to prepare each kernel for calculation. However, the
considered input is a video sequence captured by a handheld camera, and thus,
such blur kernels are not usually given. In this paper, since the input is a video
sequence, we estimate those blur kernels for each segmented region of objects in
the scene; those regions are detected by segmentation using optical flow field.

In terms of motion deblurring, we assume that the blur of the region to be
combination of motion blur and defocus blur, where defocus blur is constant
for each region. With such video data, feature points are also blurry because of
motion blur and it is difficult to achieve high accuracy to detect them, however,
optical flow field can be accurately acquired with area based method. Therefore,
we use the optical flow field to estimate motion blur kernel.

On the other hand, restoration of low resolution image with defocus blur
has been researched for long time, typically via super-resolution techniques; it is
known that the quality is low if only a single image is used, and thus, many tech-
niques using multiple images and MAP estimation are proposed to achieve rea-
sonable results [15,16]. To super-resolve images from low-resolution and blurred
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images, sub-pixel registration is required. In previous methods, where the scene is
assumed to be a single plane, accurate registration can be easily achieved. How-
ever, natural scenes consist of multiple dynamic 3D objects, and thus, achieving
an accurate and robust registration is not easy. In this paper, we propose a plane
based registration method to achieve sub-pixel accuracy for registration of all
the pixels in the images.

As already described, we assume that image blur to be combination of mo-
tion and defocus blur. Since we assume that there are several objects at different
depths in the scene, all objects do not suffer from the same defocus blur. There-
fore, we propose an adaptive deblurring method to change kernels for defocus blur
adaptively for each object. Certainly, estimating blur kernels for each object is
not easy, therefore, for simplicity, we assume in this paper that the kernels of
defocus blur can be described as one-parameter point spread functions (Bessel
function). Since we consider moving objects in the scene, defocus blur kernels
may vary for each frame. However, since we use between 20 and 40 frames for
super-resolution, i.e., just 1 to 2 seconds of video, we assume that large changes
of defocus blur kernels are unlikely, and thus, we use the same kernel for the
process. Actual algorithm is as follows.

Fig. 1. Flow of the deblurring process

First, we estimate optical flow field of the input image sequence by using
block matching technique. (Fig. 1(a)). The optical flow field is segmented by
graph cut method, where each of the regions include almost constant flow vec-
tors (Fig. 1(b)). Then, an initial blur kernel is estimated for each segments
(Fig. 1(c)). Simple super-resolution may not bring good results when the in-
put images contain motion blur, because it is difficult to achieve high accuracy
registration with such blurry images. Therefore, motion deblurring technique is
applied before a super-resolution (Fig. 1(d)). Finally, these frame-wise deblurred
results are further improved by using super-resolution technique, simultaneously
improving the resolution and defocus blur (Fig. 1 II).

4 Motion Deblurring for Multiple Moving Objects

In this paper, we estimate the motion of each region by segmenting the optical
flow field, and use the flow vectors for the regions to estimate motion blur kernels.
For simplicity, we model image blur as a convolution of a line-shaped motion blur
kernel and one-parameter isotropic defocus blur kernel. Certainly, a line-shaped
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motion blur kernel sometimes results in an insufficient quality, especially for a
large camera motion (e.g., severe ringing effects), however, camera motion is
usually small and simple in our research, because all images are captured by
video camera where a shutter speed is usually faster than 1/60 to keep 30 fps,
and such simple kernel can achieve enough restoration in reality.

As the line-shaped motion blur kernel estimation, we use a direction of optical
flow for its direction, and the knowledge of the derivatives histogram of natual
scene to estimate the scaling parameter; note that such scaling parameter esti-
mation is currently common and used by several research groups [10, 18]. The
actual kernel estimation proceeds as follows:
1. The optical flow field is estimated for all the images based on block matching.
2. Input images are segmented into regions, each of which has almost constant

motion vectors.
3. For each region, a line-shaped motion blur kernel is estimated from optical

flow and the derivatives histogram of the image.
4. Motion blur is reduced by deconvolution algorithm by using the line-shaped

blur kernels.

These processes are explained in the following sections in detail.

4.1 Segmentation of Blurry Image Sequence

An input data of the proposed method is a captured sequence of images. The
image may be captured by a static or moving camera. The captured scene may
include multiple objects that may be static or moving. Therefore, segmentation
for each object is required. Since input image is blurry, feature based method
may not work, and thus, area based approach is used. In this paper, optical flow
field is obtained by pyramid based block matching method. Then, multi-value
graph-cut method is applied to those flow field. In our implementation, we put a
large value on a direction rather than a length of the optical flow for data-term
of graph-cut from our experience of several experiments. We also assume only 3
to 5 segments in the scene for fast calculation.

4.2 Blur Kernel Estimation Using Optical Flow

For each extracted region, blur kernel is estimated. In our research, we assume
that the shape of the motion blur kernel to be linear as mentioned above. We use
a direction of optical flow for its direction, and estimate the scaling parameter
by using the knowledge of the derivatives histogram of natural scene; i.e., the
derivatives histograms of the scene for all directions are usually the same in
natural scene. Therefore, actual algorithm is as follows.

First, we calculate the derivatives histogram along optical flow vector direc-
tion. Then, we add blur to the perpendicular direction by changing the kernel
size so that the both derivative histograms become similar. Fig.2(a) and (b) show
the both derivatives histogram along optical flow direction and its perpendicu-
lar direction. Fig.2(c) shows the derivatives histogram along the perpendicular
direction after applying the estimated blur kernel. We can clearly see that the
shapes of Fig.2(a) and (c) look similar.
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(a) Derivatives histogram
along optical flow

direction

(b) Derivatives histogram
along perpendicular

direction to the optical
flow

(c) Derivatives histogram
along the perpendicular
direction after applying

motion blur

Fig. 2. Motion blur kernel estimation

4.3 Motion Deblurring for Each Segment

In terms of deconvolution algorithm, several techniques exist; Iterative Back
Projection [5] is applied in our approach.

5 Super-Resolution Technique for Multiple Depth

We adopt a multi-frame super-resolution technique to restore both low-resolution
and defocus blur. To realize an efficient removal of defocus blur, we first carry
out a piecewise planar segmentation of the scene, in order to accomplish accurate
registration and set appropriate blur kernels dependent on depth in 3D scenes.
The segmentation algorithm basically consists of two steps; (1) plane candidate
generation by using feature tracking results and (2) pixel-based segmentation
by minimizing re-projection errors. For super-resolution, we use a MAP image
reconstruction formulation with the registration result for each segment.

5.1 Estimating Candidate Planes Based on Feature Point Tracking

A number of studies have already been reported related to the extraction of
planes from the scene for the purpose of 3D reconstruction [19,20,21]. In these
studies, planar areas are extracted as patches by clustering feature points. How-
ever, in practice, it is often difficult to perform an accurate plane-based approx-
imation because individual feature point tracks are easily affected by outliers,
the aperture problem and view-dependent appearance changes, even if the global
ego-motion estimation is accurate. In addition, since features are often not de-
tected along object boundaries, patch creation is another difficult problem.

In this paper, we propose a pixel-based plane estimation which is more suitable
than a patch-based technique. More specifically, instead of dividing the scene into

Fig. 3. Candidate plane detection
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patches, candidate planes are first extracted, each of which is defined by a group
of tracked feature points included in a single plane. To achieve good results, a
sufficient number of candidate planes should be extracted to approximate the
3D scene. A simple solution is to extract as many planes as possible from all
combinations of the feature points. On the other hand, the smaller the number
of candidate planes, the more efficient the computation. Therefore, we propose
an efficient method to reduce the number of candidate planes to approximate
the 3D scene by using the knowledge that neighboring feature points usually
belong to the same plane.

Our candidate plane estimation method is described in Algorithm 1. First, cor-
responding feature points between input frames are computed. Then, an initial
candidate plane which described by feature point tracks is generated. Using the
tracks, the homography matrices between the base frame and the other frames
are calculated. Next, the candidate plane is updated. Feature points whose eval-
uation values are less than the threshold value (0.2 pixel in our case), are added
to the plane. We use the average of the re-projection errors of all the correspond-
ing points as the evaluation value. And then, the homography matrix calculation
and updating the candidate plane are iterated until the feature point tracks on the
plane are converged.Repeating this manner, candidate planes describing the scene
are obtained. Fig. 3 shows an example for the generation of three groups, where the
black points represent the feature points which are already calculated or assigned
to some planes, and the white points represent unselected and unlabeled points.

5.2 Pixel-Based Segmentation by Minimization of Re-projection
Errors

Since the candidate planes (groups of feature points each of which is included in a
single plane) extracted by the aforementioned method are represented as groups
of feature points rather than explicit patches, the dense pixel correspondence
is not yet determined at this stage. Since transformation parameters of each
candidate plane between frames are calculated in the previous step, pixel-based
correspondences can be estimated by assigning each pixel to one of the candidate
planes by minimizing the re-projection error using the parameters.

In this paper, the homography matrices obtained from the candidate planes
are used as transformation parameters. Then, the differences of intensity for each
pixel from a reference frame to all other frames are computed, the average of
the differences is stored for each plane, and the pixel is assigned to the plane

Fig. 4. Plane selection for each pixel
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for which that average is the smallest. The actual calculation is as follows. We
denote the number of input frames as N , the homography matrix (as obtained
from the i-th candidate plane, i.e., the i-th group of feature points) between
the reference frame and the k-th frame as H(k)

i , and the respective intensity
levels of arbitrary points in the reference frame and the k-th frame as I(·) and
I(k)(·), respectively. Then the following equation is obtained for each pixel in
the reference frame.

îp = argmin
i

⎡
⎢⎣

∑M
k=1

{
I(p) − I(k)(H(k)

i p)
}2

M

⎤
⎥⎦ (1)

Here, M(≤ N) denotes the number of frames for which the pixels were effective
before the projection (in other words, the pixels were within the image), and p
represents a coordinate vector. By finding the minimum projection difference,
each pixel is assigned to plane îp. Note that since we can reject pixels whose
difference measure is large, our method can handle occlusions. The process is
shown in Fig. 4.

5.3 Adaptive SR by MAP Estimation

We use a maximum a posteriori (MAP) image reconstruction formulation for
multi-frame super-resolution as follows:

X̂ = argmin
X

[
N∑

k=1

||DkHkFkX − Yk||22 + λ||ΓX ||22
]

(2)

Algorithm 1: Candidate plane estimation.
1: X is defined as the set of all corresponding feature point tracks across input

frames.
2: P (x) is defined as a predicate that is true if point track x is not selected and

unlabeled.
3: while ∃x ∈ X; P (x) do
4: Select a feature point track a(⊆ {x ∈ X; P (x)}) and the k nearest neighbors

b(⊆ X) (in this paper k := 7).
5: A(0) := φ, A(1) := a ∪ b, i := 1
6: while A(i) �= A(i−1) do
7: Compute the homography matrix H of A(i) for each frame.
8: A(i+1) := φ
9: for ∀y ∈ X do

10: if Adequateness of H for y ≥ threshold then
11: A(i+1) := A(i+1) ∪ y
12: end if
13: end for
14: i := i + 1
15: end while
16: A(i) is a group of feature point tracks residing in the same plane.
17: end while
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(a)Image capturing scene (b)Optical flows

(c)Segmentation with GC (d)Detected planes for SR

(e) Blur kernels for each
segment (left:motion blur
kernel, right:defocus blur

kernel)

(f)Input image (g)Motion deblurred image

(h)SRI without motion deblurring (i)Proposed method

Fig. 5. Multiple object motion by motorized stage

where Fk is the geometric motion operator between the high-resolution (HR)
frame X and the kth low-resolution (LR) frame Yk, Hk is the defocus blur matrix
representing the camera’s point spread function and Dk stands for the decima-
tion matrix (Fk is previously estimated, see Sec. 5.2). ||ΓX ||2 is the Tikhonov
regularization cost function and λ is the regularization parameter. Generally, a
high-pass operator is used as Γ ; we use the Laplacian.
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(a)Image capturing scene (b)Optical flows

(c)Detected planes for SR

(d)Blur kernels (left:motion blur kernel,
right:defocus blur kernel)

(e)Input image (f)Motion deblurred image

(g)SRI without motion deblurring (h)Proposed method

Fig. 6. Motion deblur and super-resolution for curved surface

If we assume that all the decimation operations are the same (i.e. ∀k, Dk = D)
and all the blur operations are the same (i.e. ∀k, Hk = H), (2) may be written as

X̂ = argmin
X

[
N∑

k=1

||DFkHX − Yk||22 + λ||ΓX ||22
]

. (3)

We decompose this minimization problem into the following two separate steps,
as suggested in [3].

1. Compute a defocus blurred HR image Ẑ(= HX̂) from the LR images.
2. Estimate the HR image X̂ from the defocus blurred HR image Ẑ.

In this paper Ẑ is calculated by solving the following minimization problem:

Ẑ = argmin
Z

[
N∑

k=1

||DFkẐ − Yk||22
]

. (4)
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(a)Optical flows (b)Segmentation with GC (c)Detected planes for SR

(d)Blur kernels for each segment (left:motion blur kernel, right:defocus blur kernel)

(e)Input image (f)Motion deblurred
image

(g)SRI without
motion deblurring

(h)Proposed method

Fig. 7. Video data capture by handheld camera

In the deblurring step, the deblurred HR image X̂ is obtained through the
following formulation:

X̂ = argmin
X

[||W (HX − Z)||22 + λ||ΓX ||22
]
. (5)

where W is a diagonal matrix, each of whose diagonal values equals the number
of measurements for one pixel. With this formulation, different blur kernels can
be set to each pixel.

6 Experiments

6.1 Evaluation of the Method Using Real-Data

To test the effectiveness of the method, we conducted experiments using motor-
ized stage. In this data, the scene consists of two planes with texture as shown
in Fig.5(a). We set the nearest plane to be in focus and the other plane undergo
a depth-dependent defocus blur by the camera aperture. We moved the two
objects with different speed and different direction by two different motorized
stages. The super-resolution image (SRI) with our method is shown in Fig.5(i).
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(a)Optical flows (b)Segmentation with GC (c)Detected planes for SR

(d)Blur kernels for each segment (left:motion blur kernel, right:defocus blur kernel)

(e)Input image (f)Motion deblurred image

(g)SRI without motion deblurring (h)Proposed method

Fig. 8. Video data captured by static camera

We can still observe small ringing effects remaining near edges, however, strong
motion blur is removed and super-resolution is successfully conducted.

Next, we apply the technique to curved surfaces. The result is shown in Fig.6;
in Fig.6(c), we can see that the scene is successfully segmented into several
planes to approximate the curved surfaces. In Fig.6(h), we can clearly see that
the motion blur is removed and super-resolution is successfully applied even if
the shape has no planer area.

6.2 Handheld Video Data Scene

In this experiment, we conducted an experiment using a handheld video camera
as shown in Fig.7(a). The motion deblurred image with our method is shown
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in Fig.7(f). We can see that motion blur was successfully removed. The result
of plane segmentation applied on the motion deblurred image sequence and the
final super-resolved image are shown in Fig.7(c) and (h). Even for such natural
sequence captured by handheld video, each plane was successfully segmented
and super-resolution is successfully achieved.

The super-resolution image without motion deblurring is shown in Fig.7(g).
We can clearly see that our method gives the best restoration.

6.3 Multiple Moving Objects Captured by Static Camera

Finally, we conducted the same experiment with static camera and multiple
moving objects. Fig.8(a) shows example and optical flows of the input data.
Fig.8(f) shows a motion deblurred image and Fig.8(h) shows the final result by
applying adaptive MAP estimation on the motion deblurred images. Fig.8(g)
shows the result of simple super-resolution and we can confirm that our method
achieved the best restoration.

7 Conclusion

In this paper, we propose a method to restore a sharp and high-resolution im-
age from video data captured by a handheld camera in which both independent
motion and defocus blur are observed. The method is based on a motion de-
blurring technique using estimated blur kernels for each frame and object and
super-resolution technique with adaptive defocus blur kernel. A motion blur ker-
nel is efficiently estimated by using optical-flow and natural scene statistics and
motion blur is reduced by a deconvolution algorithm. A defocus blur is removed
by an adaptive MAP estimation technique with pixel-wise plane segmentation
method. We conducted several experiments using real data which successfully
show the effectiveness of our method. Extended research on deforming object
with independent motion blur is our next step.
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Abstract. We present a method for recovering source images from their
non-instantaneous single path mixtures using sparse component analysis
(SCA). Non-instantaneous single path mixtures refer to mixtures gener-
ated by a mixing system that spatially distorts the source images (non-
instantaneous and spatially varying) without any reverberations (single
path/anechoic). For example, such mixtures can be found when imaging
through a semi-reflective convex medium or in various movie fade effects.
Recent studies have used SCA to separately address the time/position
varying and the non-instantaneous scenarios. The present study is de-
voted to the unified scenario. Given n anechoic mixtures (without mul-
tiple reflections) of m source images, we recover the images up to a
limited number of unknown parameters. This is accomplished by means
of correspondence that we establish between the sparse representation
of the input mixtures. Analyzing these correspondences allows us to re-
cover models of both spatial distortion and attenuation. We implement
a staged method for recovering the spatial distortion and attenuation,
in order to reduce parametric model complexity by making use of de-
scriptor invariants and model separability. Once the models have been
recovered, well known BSS tools and techniques are used in recovering
the sources.

1 Introduction

In many real world applications, input signals to a system are mixtures of some
more meaningful source signals (image layers, different speakers, musical in-
struments, etc). The problem of recovering m sources from n mixtures with
only limited knowledge of the mixing process is well known as the Blind Source
Separation (BSS) problem. Most research in the field of BSS has focused on
instantaneous and time invariant cases [13]. Convolutive mixtures are being cur-
rently extensively studied, using SCA as well as the popular independent compo-
nent analysis (ICA) techniques [16]. However, only few recent studies addressed
the general1 time varying scenario [6, 7, 18] or the general non-instantaneous
case [8,9]. Some specific parametric families of the single path problem were also
addressed by recent studies [4, 5]. The term single path (or anechoic) mixtures

1 By ’general’ we mean that the spatially dependent model is not limited to the linear
or convolutive scenarios but may be arbitrarily non-linear.
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is used throughout this paper to address the general case that covers both non-
instantaneous and time varying anechoic mixtures. Single path time/position
varying mixtures are common physical phenomena. One such example is of im-
ages taken through a semi reflective distorting medium (lens), where the target
and superimposed reflected image are differently affected [9]. Another example
is audio signals distorted by the Doppler effect and attenuated by the scattering
medium (assuming an anechoic medium).

In this paper we propose a framework which copes with the general single path
scenario. The proposed method assumes that the mixtures and the temporal
distortions are known up to a small number of parameters. However, it can be
extended to nonparametric models as well. The following preliminary remarks
are in place:
– The proposed method is applicable to the general problem of m sources and

n mixtures. To simplify the presentation we address the case of 2 mixtures
and 2 sources

– We consider two-dimensional signals (i.e. images). One-dimensional signals
(such as audio signals) are addressed in 3.1.

The rest of the paper is organized as follows. In Section 2 we define the problem
at hand. In Section 3 we present the sparsification and alignment technique which
is the key to the separation procedure. In Section 4 we outline the separation
process. Representative results are presented in Section 5.

2 Problem Definition

The single path BSS problem can be formulated as follows [9]:⎡
⎢⎣

z1
...

zn

⎤
⎥⎦ =

⎡
⎢⎣

g11 · · · g1m

...
. . .

...
gn1 · · · nnm

⎤
⎥⎦ �

⎡
⎢⎣

s1
...

sm

⎤
⎥⎦ (1)

where {zi} are the given mixtures, {si} are the unknown sources and {gij}
are the unknown mixing kernels. The mixing operator � is considered to be an
integral operation with multidimensional kernel function, possibly non-linear.
For the special case of single path mixtures, the kernel functions {gij} are of the
special form:

gij(x, y, u, v) = âij(u, v)δ(u − T x
ij(x, y), v − T y

ij(x, y)) (2)

Applying the kernel to any of the source signals produces the anticipated result:

(gij � si)(x, y) =
∫ ∫

s(u, v)âij(u, v)δ(u − T x
ij(x, y), v − T y

ij(x, y))dudv

= s(T x
ij(x, y), T y

ij(x, y))âij(T x
ij(x, y), T y

ij(x, y))
= aij(x, y)s(T x

ij(x, y), T y
ij(x, y)) = wij(x, y) (3)

aij (x, y) = âij(T x
ij(x, y), T y

ij(x, y)) (4)
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where âij and aij are the attenuation and the spatially distorted attenuation,
respectively, and Tij is the spatial distortion.

By analyzing this result we notice that every single mixed signal component
wij is an attenuated and spatially distorted version of the source si. The atten-
uation factor is aij , while the spatial distortion is (x − T x

ij(x, y), y − T y
ij(x, y)).

The mixed signals can be written as:

zi(x, y) =
∑

j

wij(x, y) =
∑

j

aij(x, y)sj(T x
ij(x, y), T y

ij(x, y)) (5)

The following sections deal with the problem of estimating mixing parameters
aij and Tij , and consequently estimating the source signals si.

3 Mixture Alignment

As in every mixed signal, the sources may have undergone different spatial dis-
tortion. We have no trivial way to track the contribution of a sample originated
in one source signal across the different mixed signals. In fact, this prohibits us
from directly applying known SCA BSS techniques. To overcome this limitation,
we apply a signal alignment scheme proposed by [8,9] and extend it to the general
single path scenario. This approach uses local features to find correspondences
across the mixed signals’ sparse representations. We denote the correspondences

between mixed signals zi and zj as the set of sample index pairs
{
(pij

k , qij
k )
}K

1
.

The correspondence process requires the sparsifying function to:

1. Retain significant signal details
2. Repeat itself across mixtures
3. Be easy to track across mixtures.

These requirements have to be satisfied in the presence of varying attenuation
and spatial distortion. When dealing with images, one candidate that yields such
representation is the Scale Invariant Feature Transform (SIFT) [12]. SIFT key-
point detection can be regarded as a sparsification of the source, while the SIFT
descriptor and key-point matching scheme assume the roles of the local feature
detector and feature corresponder. Although SIFT can be replaced by any other
detector/descriptor pair, it provides scale, translation, rotation and amplitude
invariance which are key features for the success of matching distorted signals.
Finding a significant number of key-point matches enables us to proceed to the
separation stage. An alternative related candidate is the wavelet-type corner
detector [2].

Having established the image correspondences, we can track source originated
features from one mixture to another and thus apply the sparse separation ap-
proach [2]. This approach states that a sparse representation of the mixed signal
will locally resemble only one of the original sources. Let F be a sparsifying func-
tion and

{
ci
k

}
a set of points, where the sparse representation of a signal is non
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zero. The following equation should hold for a sufficiently large number of points
in the sparse representation:

∃l : F {zi(·)} (ci
k) ≈ F {wil(·)} (ci

k) (6)

By applying this logic to the mixed signals’ correspondences we may conclude
that both correspondence samples are originated in the same source signal, sl:

∃l : F {zi(·)} (pij
k ) ≈ F {wil(·)} (pij

k )
F {zj(·)} (qij

k ) ≈ F {wjl(·)} (qij
k )

(7)

3.1 1D/N-D Signals

The same approach can be applied to one-dimensional, or to N-dimensional
signals. However, some modification have to be made to fit the nature of audio
signals:

1. Sparsification - Extensive research has been conducted in the field of audio
feature detection [1,10]. Existing results can be used as a good sparsification/
key-frame detection algorithms.

2. Descriptor - While the SIFT descriptor for images relies on local gradient
histograms, local audio frame descriptor should rely on the spectral contents
of the frame. This is due to the oscillatory “textural” nature of audio signals.
Tolerance to local temporal distortion (Doppler effect) can be achieved by
spectrally normalizing the descriptor.

3. Matching - If we assume that temporal distortion does not change the tem-
poral order of audio events, we can use techniques such as dynamic time warp
(DTW) [17] or spectral matching [11] to improve the matches by imposing
constrains on the matching process.

4 Separation Process

Having the mixtures {zi} locally aligned using key-point correspondences, the
separation can be dealt with by using the staged approach [9]:

1. Estimate the mixing system ({aij(·)} ,
{
T x

ij(·), T y
ij(·)

}
)

2. Invert the mixing operation to recover the sources.

4.1 Assumptions

1. Both spatial distortion, T , and attenuation, a, factors can be represented by
means of parametric representations.

2. Images can be sparsely represented using some kind of sparsification trans-
formation

3. Each of the source images dominates at least some local segments of the
mixtures

4. Sources have undergone significantly different spatial distortions.
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(a) (c)

(b) (d)

Fig. 1. An example of data separation. (a)-(b) Two mixtures of the sources from Fig. 2.
(c)-(d) Classified key-points on both mixtures. Green circles are classified as belonging
to source #1. Blue squares are classified as belonging to source #2. Red crosses are
classified as outliers. Observe that key-point classification segregates the key-points
corresponding to the sources well.

4.2 Mixing System Estimation

Let R2j(·) = T1j(·)−T2j(·) = R(·, P2j) be a parametric representation (up to pa-
rameter vector P2j) of a spatial distortion function. We use this notation since
only relative spatial distortion between two distorted sources can be detected
having no reference. Using the correspondences

{
p12

k = (x2
k, y2

k), q12
k = (u2

k, v2
k)
}K

1 ,
we can now estimate the spatial distortion model. It consists of two distortion
models; one for every source. We can find the models either by finding a joint
model which is the union of the individual models, or by extracting the mod-
els sequentially. We choose the latter since it scales better when the number of
sources increases. We use RANSAC [3] to achieve robust model estimation. The
estimation steps are listed in Algorithm 1. Figure 3 visualizes the input to the
spatial distortion estimation phase and its results.

The first RANSAC iteration recovers the first model and the second reveals
the other. In addition to estimating the models we now have a classification
of the correspondences according to their origins (up to source permutation){
(x21

k , y21
k ), (u21

k , v21
k )

}
and

{
(x22

k , y22
k ), (u22

k , v22
k )

}
. Matches left after the esti-

mation process are considered to be outliers. See Fig. 2 and Fig. 1.
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Fig. 2. Two source images used to demonstrate the proposed methods

Algorithm 1. Spatial Distortion Estimation
1. For i = 1 to Number of Sources

(a) Detect dominant model, based on correspondences, using RANSAC
(b) Tag RANSAC inliers as belonging to source i
(c) Remove RANSAC inliers from corresponding points’ list.

The mixing coefficients are estimated in the same manner. This time, for each
correspondence set i ∈ {1, 2} we consider the ratio

A2j =
z1(x

2j
k , y2j

k )

z2(u
2j
k , v2j

k )
≈

a1j(·)
a2j(·)

Since the attenuation model, a, is parametric, we can use RANSAC once again
to find the parametric representation of the ratio A2i.

We improve attenuation model estimation accuracy by taking advantage of
the now known spatial distortion model to enrich the number of correspondences.
Having estimated the spatial distortion model we can now transform the mix-
tures in a way that accurately aligns one of the sources. Having one of the sources
aligned and using the sparse representation approach we add more samples to
the attenuation model estimation process. Although this phase adds additional
noise to the separation process, it is not significant since all other sources are
not aligned and therefore add only random noisy samples. These samples are
easily detected by the robust model fitting scheme.

This stage completes the mixing system estimation process, since we recover
the relative spatial distortion, R2i, and the relative attenuation function a2i. To
simplify notations we define Mij = (Rij , aij).
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Fig. 3. Scatter plot of distortion vectors (dx, dy) of correspondences between two mix-
tures. In this example the spatial distortions are translations of the sources. The clusters
correspond to two different distortions. One for each source. Clusters were extracted
using Algorithm 1.

(a) (b)

(c) (d)

Fig. 4. Results of separation of the mixtures shown in Fig. 1, where mixtures were
produced by spatial rotation and constant attenuation. (a) and (b) are the results of
the separation process outlined in the text. (c) and (d) are results of using the real
spatial distortion and attenuation models and separating the images as described in
4.3. This comparison shows that for this example separation quality is not limited by
the mixing system estimation framework. Note that source order is not preserved.
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4.3 Signal Separation

Having estimated the mixing unknowns, we can revert the mixing process.
We use a simple matrix representation although variational methods [9] and
quadratic programming methods [4] are suitable as well. Column stacking rep-
resentation allows us to write the mixing system as:[

z̄1
z̄2

]
=
[

I I
G21(M21) G22(M22)

] [
s̄1
s̄2

]

The matrices Gij can be easily constructed using the by-now-known to us models

Mij . We set the first block row of the matrix G =
[

I I
G21 G22

]
to identity, since

we have estimated only the relative distortion parameters. We arbitrarily choose

z1 as the reference. Solving the linear system for
[

s̄1
s̄2

]
provides the desired

separation. Although the dimension of the mixing matrix G is very large, it is
also very sparse. The matrix is sparse as our mixing system is assumed to be
anechoic. This observation limits the number of non-zero elements in every row
of G to be not more than 2. Using various interpolation methods for sub-pixel
accuracy may increase this number significantly. Such systems can be solved
using methods like conjugate gradients or LSQR [14].

Solving the system may be a hard problem since it is usually under deter-
mined. A way to overcome this obstacle is by adding regularization terms, such
as the Tikhonov regularization, into the matrix G. The regularization terms may
add any prior knowledge constraints to the linear problem. Popular choices are
smoothness and sparseness terms. When we have hard constraints (such as pos-
itivity) on the valid solutions, we may use the iterative projection onto convex
sets (POCS) method to limit the solutions space. Using POCS we project the
current solution onto the constrained solution space. We use this projection as
an initial guess to the next solver iteration.

4.4 Generalizing to the m × n Scenario

We would like to use the same mixing system estimation and source separation,
used for 2 sources and 2 mixtures, to separate m sources from n mixtures. For
this purpose, we have to find the relative spatial distortion and attenuation Mij

between distorted sources wij and one of the mixtures, for simplicity z1. Our only
obstacle is the unknown source permutation. Let us consider the 3× 3 scenario.
The desired outcome of the estimation stage would be the mixing matrix G:

G =

⎡
⎣ I I I

G21 G22 G23
G31 G32 G33

⎤
⎦ (8)

However, the source estimation process does not provide us the second (column)
index of the matrix block, and provides us with the mixing matrix G up to a
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permutation of its row blocks. This is known as the permutation problem and
was previously studied when separating sources in the frequency domain [15,19].
Since we are not interested in the real signal permutation we can leave the second
block row permutation arbitrary (as in the 2 × 2 case) and permute the third
block row accordingly.

We add a consistency constraint to find the correct permutation . We require
mixtures zi, zj to align on their source components wik, wjk originated in source
sk when inverse applying the inverse of operators Gik, Gjk respectively. We may
use this constraint to find pairs {(Gik, Gjk)} that minimize some similarity cri-
teria such as correlation or mutual information. We can use pairwise consistency
as well as global consistency that measures the amount of agreement among all
estimated models. If the models are too complex to simply apply the inverse
transform, we may add another model estimation stage and find the relative
distortion between zi, zj . By doing so me way also require model consistency
that requires the transformations z̄i → z̄1 and z̄j → z̄i → z̄q to be identical. The
latter method can be used by itself to avoid image data similarity measurements.

The proposed method assumes that the estimated models significantly differ
one from another, and that the mixed signals contain enough information from
the sources to distinguish their contributions.
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Fig. 5. Average spatial model error histogram. Mixtures were generated using ran-
dom affine spatial distortions. The error per mixture was measured by comparing the
estimated spatial distortion model with the model used. The models were compared
pixel-wise using euclidean metric. The error has pixel units. We can observe that the
vast majority of models were estimated up to a few pixels accuracy.

5 Results

We have tested the proposed framework on a variety of synthetic image mixtures.
The separation results were evaluated both by visually comparing the separated
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Separation of spatially-varying non-instantaneous data. (a)-(b) Input mixtures
with spatial translation and linear (fade) attenuation (c)-(d) Images unmixed using
estimated models. (e)-(f) Images unmixed using known models.
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images to their originals and by comparing the estimated mixing parameters
to those that were used. Two such results are depicted in Fig. 4 and Fig. 6.
Figure 5 shows the spatial distortion error distribution statistics, measured from
350 random mixtures. Mixture configurations that yielded low confidence, small
consensus, model estimates were automatically detected and omitted from the
chart. Such cases can be dealt with by using other set of parameters or even
using different sparsification and correspondence detection techniques.

In general, reconstruction results are good when the model is estimated cor-
rectly. However small errors in the estimated model can lead to significant vi-
sual differences. As implied by the alignment algorithm, the quality of model
estimation is determined by the quality and spread of the key-point correspon-
dences and the sparseness of the problem. [Full sized results can be found at:
http://www.technion.ac.il/˜albert/SinglePathBSS/samples.html ]

6 Conclusions

The proposed framework produces good results when the input signals meet
a set of requirements such as sparseness, good key-point spread and paramet-
ric mixture model. However, since the algorithm is based on selected key-point
correspondence, rather than dense (pixel to pixel) correspondence, significant
information is unused. By combining the power of such sparse methods with
dense correspondence, far more robust separation results can be achieved. The
proposed method suffers from a reconstruction error induced by the model es-
timation error. For better separation a reconstruction scheme that allows small
errors in model estimates should be applied.
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Abstract. In many computer vision applications for recognition or clas-
sification, outlier detection plays an important role as it affects the accu-
racy and reliability of the result. We propose a novel approach for outlier
detection using Gaussian process classification. With this approach, the
outlier detection can be integrated to the classification process, instead
of being treated separately. Experimental results on handwritten digit
image recognition and vision based robot localization show that our ap-
proach performs better than other state of the art approaches.

1 Introduction

Outliers refer to the data which do not fall into any learned classes in a classifica-
tion system. Outlier detection is the identification of the unknown data or signal
that a classification system is not aware of during training [1]. It is also usually
referred to as novelty detection or abnormality detection. It is a common issue
encountered in many computer vision applications, such as in robot vision [2],
face recognition [3], and other image classification applications [4, 5]. Machine
learning is a popular methodology for image classification. Using machine learn-
ing methods, outlier detection is usually treated as a one-class learning problem.
Treating the given training samples as the ‘normal class’, a pre-assumed model
is used to describe the normal class. In the test phase, a sample is classified as
‘normal’ or ‘abnormal’ by comparing it to the model. To model the normal class,
various approaches have been explored, including clustering [6], nearest neigh-
bor [7], mixture models [8], neural networks [4], self organizing maps (SOM) [9],
and one class support vector machines (SVM) [5, 10, 11].

As the above works focus on the ‘one class’ problem, i.e., only concern about
whether a new sample is normal or abnormal, it cannot solve the multi-class
classification problem directly. There are plenty of applications that require both
classification of a test sample into the existing classes as well as detection of out-
liers. When the application requires a multi-class classification, it needs 2 clas-
sification processes. One is the classification of normal and abnormal, namely,
the outlier detection. The other is the classification of different normal classes.
The method proposed in this paper is able to solve the multi-class classification
problem with outlier detection simultaneously in one classification process. This

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 153–164, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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is because the proposed outlier detection method is inherently part of the Gaus-
sian process classification process. Besides the outlier detection, the classifier can
also refrain from making a decision when the confidence level is low as indicated
by the winning class’s probability estimate. In other words, the classifier will
reject the unreliable classification results so that the classification can be more
reliable to reduce the potentially high cost of misclassifications.

Although a few papers have discussed the multi-class problem in outlier detec-
tion, the objectives and problem scope are quite different. Masud et. al. proposed
an outlier class detector within a decision tree or k nearest neighbor classifier [12].
It is specifically targeted for classification of data stream with possible concept-
drift. The outliers must have some degree of coherence in order to form a novel
class. In [3], a multi-class classifier with outlier detection is formed by combining
multiple one-class classifiers. Multiple thresholds can be tuned to each of the
one-class classifiers to improve the performances. However, solving a multi-class
classification problem using one-class models will decrease the discrimination ca-
pability because the between-class variations is not considered. Hempstalk and
Frank use a multi-class classification approach to solve outlier detection prob-
lem by assuming that training samples from the new classes are available [13].
Different from the above, our proposed approach solves a generic multi-class
classification problem with more reliable detection of outliers in the test data.
It does not require sample data from the abnormal class for training. During
testing, the classifier will classify a test sample into one of the training classes,
or detect it as an outlier, or refrain from making a decision if not sure. Gaussian
process classification (GPC) produces a probabilistic classifier which includes
both prediction of probabilities of a sample belonging to the training classes, as
well as a covariance matrix of the predicted probabilities. We make use of the
covariance matrix for outlier detection. The proposed approach is evaluated on
2 benchmark datasets for handwritten digit recognition and robot localization
and shows promising results.

2 Multi-class Gaussian Process Classification

We first give a brief introduction to multi-class Gaussian process classification.
For more details, the readers are referred to [14]. For a multi-class problem,
we are given at set of input vectors X = (x1,x2, ...,xn)T and a target vector
y = (y1

1 , ..., y
1
n, y2

2 , ..., y
2
n, ..., yC

1 , ..., yC
n )T , where n is the number of input vectors,

C is the number of classes, yc
i = 1 if the ith input vector belongs to the cth class,

and it is all zero otherwise.
In order to make inference, a vector of latent function values f is introduced.

f = (f1
1 , ..., f1

n, f2
2 , ..., f2

n, ..., fC
1 , ..., fC

n )T . It is assumed that the C latent pro-
cesses are uncorrelated. A prior over the latent function is specified. It follows a
normal distribution with a mean of 0 and a covariance matrix K:

f ∼ N (0, K) (1)
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The covariance matrix K is block diagonal with sub-matrices K1, ..., KC on the
diagonal. The covariance matrix for each of the C classes is defined by its own
covariance function:

Kc(i,j) = kc(xi,xj), i, j = 1, ..., n (2)

The target vector y is related to the latent function vector f by:

p(yc
i |fi) = πc

i =
exp(f c

i )∑
c′ exp(f c′

i )
(3)

where fi = (f1
i , ..., fC

i )T .
The posterior p(f |X,y) is proportional to the joint probability p(y|f)p(f |X),

based on the Baye’s theorem. The log of the un-normalized posterior is shown
to be:

Φ(f) = −1
2
fT K−1f + yT f −

n∑
i=1

log(
C∑

c=1

exp f c
i ) − 1

2
log |K| − Cn

2
log 2π (4)

As the posterior is not analytically tractable, the Laplace approximation is used
to give a Gaussian approximation q(f |X,y) to the posterior p(f |X,y). To do this,
a second order Taylor expansion of log p(f |X,y) is needed around the maximum
of the posterior. Denote the value that maximizes the posterior as f̂ ,

f̂ = argmax
f

Φ(f) (5)

and it is found using the Newton’s method.
To predict the label of a new input x∗, the posterior distribution q(f∗|X,y,x∗)

is given by

q(f∗|X,y,x∗) =
∫

p(f∗|X,x∗, f)q(f |X,y)df (6)

Both p(f∗|X,x∗, f) and q(f |X,y)df are Gaussian. Therefore q(f∗|X,y,x∗) is also
Gaussian. Its mean is given by

Eq[f(x∗|X,y,x∗)] = QT
∗ K−1f̂ = QT

∗ (y − π̂) (7)

where

Q∗ =

⎛
⎜⎜⎜⎝

k1(x∗) 0 · · · 0
0 k2(x∗) · · · 0
...

...
. . .

...
0 0 · · · kC(x∗)

⎞
⎟⎟⎟⎠ (8)

where kc(x∗) is the vector of covariances between the test point and each of the
training points, evaluated by class c’s covariance function.

The covariance is given by

covq(f∗|X,y,x∗) = Σ + QT
∗ K−1(K−1 + W )−1K−1Q∗

= diag(k(x∗,x∗)) − QT
∗ (K + W−1)−1Q∗

(9)
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where Σ is a diagonal C ×C matrix with Σcc = kc(x∗,x∗)−kT
c (x∗)K−1

c kc(x∗),
and k(x∗,x∗) is a vector of covariances, whose cth element is kc(x∗,x∗).

The marginal likelihood log p(y|X, θ) can be similarly approximated as

log p(y|X, θ) � log q(y|X, θ)

= −1
2
f̂T K−1f̂ −

n∑
i=1

log(
C∑

c=1

exp f̂ c
i ) − 1

2
log |ICn + W

1
2 KW

1
2 | (10)

The marginal likelihood can be used to tune the parameters of the covariance
functions which are also known as the hyperparameters of the model.

3 Outlier Detection in Gaussian Process Classification

To detect outliers under the Gaussian process (GP) classification framework,
the covariance in prediction plays an important role. Recall from the previous
section that the prediction made by GP classification is characterized by a mean
(Eq. (7)) and a covariance matrix (Eq. (9)). In Gaussian process, the variance
in prediction is large when the new sample is out of the support of the training
samples. (See e.g., illustrations in [15, 16]) The total variance in the covariance
matrix is an indicator of how familiar the classifier is about a particular test
sample. We propose to use the determinant of the covariance matrix as the
measure of novelty, and the rule is given by:{

l(x∗) = −1 if det(covq(f∗|X,y,x∗)) > t
l(x∗) = argmaxc p(yc

∗|f∗) otherwise (11)

where l(x∗) refers to the label of the sample x∗, and −1 is used as the label
of the outliers. As in Eq. (3), p(yc∗|f∗) = exp(fc

∗)∑
c′ exp(fc′∗ )

. Alternatively, we can sort
the test data according to the novelty measure (which is the determinant of
covariance matrix) in a descending order, and classify a certain amount of test
samples with largest novelty measures as outliers, if such information is given
by prior knowledge.

The choice of using the determinant of the covariance function as the novelty
measure is not just heuristic. Recall that the determinant is equal to the sum
of the eigenvalues of the covariance matrix. We know that the eigenvalues of
the covariance matrix indicate the portions of variance that are explained by
the principal components (see principal component analysis [17]). Therefore the
sum of all eigenvalues reflects the total variance involved with the particular
prediction. To illustrate the idea, a toy data is designed. It consists of three 2-d
Gaussian clusters to form the three classes. A few mis-labeled samples are also
simulated. We use the squared exponential covariance function,

k(xi,xj) = α exp(−‖xi − xj‖2

2β2 ) (12)

The hyperparameters α and β are determined by optimizing the likelihood func-
tion in Eq. (10). In Fig. 1, we show a contour plot of the novelty measure
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Fig. 1. Contour plot of the proposed novelty measure and partition of the input space
into different classes

det(covq(f∗|X,y,x∗)) in the input space. It is observed that the proposed novelty
measure gets larger when moving away from the cluster centers. In the mean-
time, the GP classifier also partitions the input space into the three training
classes.

4 A Well-Rounded Classifier

With the proposed method for outlier detection, Gaussian process classification
may offer advantages over other alternative classifiers to many real problems.
Recall that GP classification produces a probabilistic prediction. The probability
of a test sample belonging to all training classes are explicitly obtained by the
classifier (Eq. (3)). As mentioned in [14], the probability of of the test sample
belonging to the winning class can be used to reject unreliable predictions. If it
is low,it shows that the classifier is not confident in classifying the test sample
into a particular class. In this case, it might be advantageous to refrain from
making a decision than making a wrong decision with high probability. This is
known as the reject option in classification. To show how it works, we also plot
the winning classes’ probabilities for the three class classification problem in the
previous section in Fig. 2. It is observed that the winning classes’ probabilities
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Fig. 2. Contour plot of the winning classes’ probabilities

are smaller in between two training classes where it is most likely to make wrong
predictions from a Bayesian point of view.

With the capabilities of detecting outliers and rejecting unreliable predictions,
Gaussian process classification is well suited for some applications such as the
robot localization application discussed in section 5.2.

5 Experiments

We implement the multi-class GP classification using Laplace approximation as
outlined in section 2 and the outlier detection method in section 3 in Matlab.
We compare the proposed outlier detection scheme with one class support vector
machines which have been shown to be a state of the art for outlier detection,
and have been popularly used in various applications [5,11,18,19,20]. The basic
idea of one-class SVM is to find an enclosing boundary for the normal samples
in the kernel space. The classification performance is compared to multi-class
support vector machines (SVM). In SVM, the Gaussian radial basis function
(RBF) is used as the kernel. The Gaussian width is set to the mean of pairwise
distances among training samples. For one class SVM, the parameter ν that
is used to control the percentage of training data that is allowed outside the
enclosing boundary is set to 5%. For multi-class SVM, the cost parameter for
controlling tradeoff between complexity and training accuracy is set to 100 [21].
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Fig. 3. Sample images from the USPS handwritten digit image dataset (left) and the
alphabet and digit (AlphaDigs) image dataset (right)

5.1 Handwritten Digits Recognition

We first experiment on handwritten digit recognition and consider alphabet im-
ages as outliers. The USPS handwritten digit dataset is used. It consists of 4649
training images and 4649 test images of 10 digit classes1. The raw image intensity
is used as the image feature. For Gaussian process classification, the square ex-
ponential covariance function (Eq. (12)) is used.The hyperparameters are tuned
by maximizing the marginal likelihood and we simply adopt the values according
to that in [14]. On the test data, an overall accuracy of 96.5% is achieved, which
is consistent with that reported in [14]. To evaluate the proposed outlier detec-
tion scheme, we test the classifier trained on the USPS data on a completely
different alphabet and digit (AlphaDigs) dataset2. It consists of 39 images for
each of the 10 digit classes and 26 alphabet classes. Sample images from both
the USPS dataset and the AlphaDigs dataset are shown in Fig. 3.

For outlier detection, the images in the AlphaDigs dataset are sorted accord-
ing to the novelty measure that is used to determine if a sample is an outlier.
In the proposed method, it is the determinant of the covariance matrix in a de-
scending order. For one-class SVM, it is the distance to the enclosing hyperplane
(with distance outside the hyperplane being positive) in a descending order. A
certain amount of test samples with largest novelty measures are then classified
as the outliers. We evaluate the outlier detection performance using the receiver
operating characteristic (ROC) curve. The ROC curve is a plot of sensitivity
(true positive rate) against specificity (false positive rate). The true positive
rate is equal to the number of alphabet images that are correctly detected as
outliers divided by the total number of alphabet images. The false positive rate
is the number of digit images that are wrongly detected as outliers divided by
the total number of digit images. The threshold is set at various values in order
to obtain a set of points to plot the curves. From Fig. 4, the proposed outlier
detection scheme clearly out-performs that of one-class SVM.

It is also worth mentioning the relative classification performance of Gaussian
process classification and multi-class SVM. The results are shown in Table 1. It
is observed that while Gaussian process classification and SVM give comparable
results on the test data from USPS dataset, the former gives a much better result

1 Available at http://www.gaussianprocess.org/gpml/data/
2 Available at http://cs.nyu.edu/~roweis/data.html

http://www.gaussianprocess.org/gpml/data/
http://cs.nyu.edu/~roweis/data.html
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Fig. 4. ROC curves for outlier detection using the proposed method and one class
SVM

on the digit images from the AlphaDigs dataset. Since the AlphaDigs dataset is
independently collected, and the classifiers are trained on the USPS data, it is
considered a more difficult dataset compared with the test set from the USPS
data. This shows that Gaussian process classification has a better generalization
capability on a different dataset as compared with that of SVM. Note that on the
AlphaDigs dataset, only the digit images are used to evaluated the classification
performance. This is because the AlpahDigs dataset is dominated by outliers
(alphabet images), thus including them will make the evaluation of classification
accuracy heavily biased towards detecting more outliers.

Table 1. Classification accuracy comparison using multi-class Gaussian process clas-
sification (mcGPC) and multi-class support vector machine (mcSVM)

mcGPC mcSVM
On USPS test dataset 96.5% 97.2%
On digit images from the AlphaDigs dataset 72.31% 62.31%

5.2 Localization of Mobile Robots

In this experiment we show the capabilities of Gaussian process classification in
terms of both outlier detection and rejection of unreliable predictions. In a robot
localization problem, a set of training sequences of various locations are acquired
for training a classifier. The classifier answers the question“where am I” when
presented with a test sequence. The test sequence may contain locations that
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were not imaged in the training sequences. These locations should be classified
as the ‘unknown’ class. In addition, the classifier may refrain from making a
decision when it is not confident about a particular prediction. Therefore, there
are two types of uncertainties faced by the classifier when trying to classify a test
sample into the training classes. One is that the new sample is not similar to any
of the training classes and therefore it is likely to come from a new class. The
second type is that the new sample is equally similar to two or more training
classes and therefore cannot be classified with strong confidence.

The training and validation data are from the IDOL2 database [22]. The
image sequences in the database are acquired using the MobileRobots PowerBot
robot platform. The training sequence consists of 1034 image frames of 5 classes
according to the robot’s topological location, namely, one-person office(BO),
corridor(CR), two-persons office(EO), kitchen(KT), and printer area(PA). The
test sequence consists of 1690 image frames classified into 6 classes, 5 of which
are the same as those of the training sequence, and one additional unknown(UK)
class corresponding to the additional rooms that are not imaged previously. The
test sequence is acquired 20 months after the training sequence. For more details
please refer to [23].

Gradient based features are chosen as the robot is in indoor environment with
strong edge characteristics. Each training image in the training sequence is de-
scribed by normalized Gaussian derivatives on the L component of the LAB color
space. 5 partial derivatives (Lx, Ly, Lxx, Lyy, Lxy) are computed and quantized
into 32 bins built by k-means. A three-tier spatial pyramid of histograms is then
obtained on each image. Each image is represented by a 672 dimensional feature
vector.

Using Gaussian process classification, an overall classification accuracy of
55.8% is obtained (the unknown class is treated equally as the training
classes in calculation of classification accuracy). Note that the test data include
about 20% outliers which are from locations that were not imaged in the training
sequence. Without outlier detection, these 20% outliers will be classified into one
of the training classes and this explains the low overall classification accuracy.
Fig. 5 (a) shows the improvement in classification accuracy if a certain amount
of samples are classified as outliers based on the proposed novelty measure.
If the prior knowledge that about 20% outliers are present, the classification
accuracy is improved to about 59%. We compare the performance with that of
multi-class support vector classification with outlier detection by one class SVM.
As addressed earlier, in this case, the classification process is independent from
the outlier detection. Without outlier detection, the classification accuracy is
56.45%, which is slightly better than that of Gaussian process classification.
With outlier detection using one class SVM, the classification accuracy also
improves with a certain amount of samples detected as outliers. But the im-
provements are not as much as that of the proposed method, and we observe
a narrower window before the classification accuracy drops below the baseline
(Fig. 5(a)).
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Fig. 5. (a) Classification accuracy using multi-class GPC and multi-class SVM, with
or without outlier detection. (b) Rejection of unreliable predictions.

Further, if we make use of the rule proposed in section 4 to reject unreliable
predictions at a threshold of winning classes’s probability exceeding 0.4, 0.5, and
0.6, the classification accuracy further improves to 62.19%, 66.51%, and 71.61%,
respectively. Figure 5(b) shows the relative proportions of correctly classified
and misclassified in the rejected samples. It is observed that it is dominated
by misclassified samples, showing that the reject rule is useful in reject unre-
liable predictions. If rejection of a sample has a lower cost than misclassifying
a sample, the reject rule could help reduce the overall cost of the classifica-
tion. For example, if the cost of correctly classifying a sample is 0, wrongly
classifying a sample is 1, and making no decision about a sample is 0.5, the
savings in cost by rejecting at the three thresholds are 50.5, 93.5, and 106,
respectively.

6 Conclusion

In this paper, we explore the outlier detection capability of a Gaussian process
classifier. It is shown that the determinant of the covariance matrix from the
output of the Gaussian process classifier is a good measure of how novel a test
sample is compared to the training samples. With this discovery, Gaussian pro-
cess classifier, as a probabilistic classifier, is able to handle both outlier detection
and rejection of unreliable predictions. Experiments on two practical applica-
tions show the advantages of the Gaussian process classification with outlier
detection.
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10. Muñoz, A., Moguerza, J.M.: One-class support vector machines and density esti-
mation: The precise relation. In: Sanfeliu, A., Mart́ınez Trinidad, J.F., Carrasco
Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 216–223. Springer, Heidel-
berg (2004)

11. Chen, Y., Zhou, X.S., Huang, T.: One-class Svm for Learning in Image Retrieval,
vol. 1, pp. 34–37 (2001)

12. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: Integrating novel
class detection with classification for concept-drifting data streams. In: Buntine,
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Abstract. We propose a novel tracking algorithm for the balance be-
tween stability and adaptivity as well as a new online appearance model.
Since the update error is inevitable, we present three tracking modules,
i.e., reference model, soft reference model and adaptive model, and fuse
them using biased multiplicative formula. These three contributors are
built through the same appearance model with different update rate.
The appearance model, Pixel-wise Spatial Pyramid, employs pixel fea-
ture vectors instead of SIFT vectors, to combine several pixel character-
istics. In particular, the reserved pixel feature vectors are used to create a
new codebook together with the earlier codebook. A hybrid feature map
consisting of the reserved pixel vectors and anti-part of previous hybrid
feature map is built to represent the new target map. Experimental re-
sults show that our approach tracks the object with drastic appearance
change, accurately and robustly.

1 Introduction

Visual object tracking is one of the well-known problems in the computer vi-
sion community. Tracking intrinsically focuses on comparison problem: In gen-
eral, tracking system can be thought of similarity metric-based algorithm or
classification-based algorithm. Many similarity metric-based trackers have been
proposed, such as probabilistic models using mean-shift [1, 2] or particle filter-
ing [3], IVT [4] and FragTrack [5]. Classification-based algorithms [6,7,8], mean-
ing to optimally discriminate the object from the current background, perform
well on various challenging conditions. Our tracker based on pixel-wise spatial
pyramid and biased multiplicative formula falls into the first category.

To deal with the significant appearance variations in the video sequences,
due to the pose variation, shape deformation, scale change, illumination change,
camera motion, and occlusions, tracking algorithm should be adaptive through
the online update. The most of previous online tracking algorithms using a self-
learning policy, i.e., the tracker relies on its own predictions, unfortunately faces a
severe drifting problem. This trouble can be explained by the stability-plasticity
dilemma [9]: If the tracker is built only with the initial information, it is the least
error-prone to drift but can not survive undergoing appearance and viewpoint

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 165–176, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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changes. On the contrary, the self-learning online tracker is highly adaptive but
easily drifts. Some methods have been proposed to find the trade-off between
adaptivity and stability.

Grabner et al. [10] developed tracking as a semi-supervised learning prob-
lem using online boosting. It has shown to be less susceptible to drifting while
adaptive, but it keeps the non-optimal prior. Recently, they [11] have advanced
the tracker by extending the semi-supervised learning approach with adaptive
priors, making it robust to track multiple similar objects.

Babenko et al. [8] successfully used online multiple instance learning to over-
come the ambiguities of bounding boxes during tracking, and got the state-of-
the-art results. Santner et al. [12] tackled this problem by combining several
complimentary trackers operating at different timescales.

We also address the robustness and adaptivity of online appearance-based
tracking regarding the reliability or credit of the tracking model in this paper.
The underlying assumption is that the update can not be absolutely correct and
drifting risk always exists, because the supposed objects used to update are more
or less wrong, with ambiguity or label jitter. For the initial appearance model, it
is the most reliable one during the tracking period, then different update rate of
the model means different confidence, i.e., the more modified the model is, the
less trustworthy it is. Specially, we make use of the initial (stable) appearance
model, a soft stable appearance model and a novel adaptive appearance model,
eventually fuse them using biased multiplicative principle (Fig. 1). Note that
the appearance models are built using the same method, only with different
adaptivity rates.

Biased
Multiplication

Fig. 1. Fusion of the three models

There is no doubt that effectively modeling appearance variations plays a
critical role in visual tracking. Many researchers [1, 2, 3, 4, 13, 14] focus on the
design of appearance model to strengthen the discriminability. Porikli et al. [13]
proposed a covariance matrix descriptor for characterizing the appearance of an
object to capture both statistical and spatial properties of object appearance. In
particular, the covariance matrix descriptor offers a principal way to fuse several
features through pixel feature vector style. Meanwhile, Arif et al. [14] employed
the individual pixel feature vectors as observation in the KPCA eigenspace to
create a pixel-wise appearance model which is robust to noise and occlusions,
whereas previous approaches used vectorized image regions as observation.
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Bag of words (bag of features) [15,16] representations have become popular for
content based image classification and object localization owing to their simplic-
ity and good performance. The main idea is to treat images as loose collections
of independent local features, using the cluster label distribution in feature space
as a characterization of the image. However, because these methods disregard all
information about the spatial layout of the features, they have markedly limited
descriptive ability. Lazebnik et al. [17] developed “spatial pyramid”, a simple
and computationally efficient extension of the orderless bag of features image
representation, and gained significantly improved performance on challenging
scene categorization tasks.

The second contribution of this paper is to present a novel online learning
tracker with a new appearance model and an update scheme designed for the
model. We build “spatial pyramid” using pixel-wise feature vectors in the region
of interest. Pixel-wise feature vector consists of several individual pixel-features.
During the process of update, a codebook built by K-means is carefully modified
through the distance-based scheme. We generate a hybrid feature map, i.e., the
new valuable information in the current frame and the cumulative information
from previous images, to absorb the essence and reject the dross as much as
possible.

We briefly depict an overview of our method in section 2, describe the online
learning approach with pixel-wise spatial pyramid for visual tracking in section 3,
give a detailed analysis of model fusion rule in section 4, and discuss the experi-
mental evaluation in section 5, followed by conclusions and future work in the last
section.

2 Overview of the Method

This section gives an overview of our tracking system, which is summarized in
Fig. 2. Our goal is to make the tracking algorithm to be adaptive to drastic
appearance changes and recoverable from drifting. Therefore, we elaborately
develop a discriminative appearance model and considerate update approach,
then make the tracker more robust and stable using the biased multiplicative
principle. The functional result is to find the biased balance point among the
three tracking components with dissimilar update.

Pixel-wise Spatial

Pyramid

Build Appearance Model

Input Image

No

update

Little update

Plastic

update

Matching

between the

target models 

and

candidates

Fusion of the three 

matching results

Pixel-wise Feature

Vectors

Fig. 2. An overview of our tracking algorithm
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Pixel-wise feature vector, combining manifold traits instead of using one kind
of feature, could be made more discriminative. We use these pixel-wise features
instead of local features (e.g., SIFT [18] or HOG [19] ) in the building of “spatial
pyramid” to employ multiple features. The tracker’s performance proves that it
is feasible and effective.

We introduce the model update rate α, where α denotes the level of the
update of the appearance representation, i.e., the percentage of the reserved
current pixel feature vectors unlike the adaptivity rate in [12]. The adaptivity
rate in [12] denotes the number of frames a tracker needs to fully adapt to
appearance changes. (i) The most reliable reference information without update
does not suit appearance changes with α = 0. (ii) The soft stable appearance
model with mid-update, to some extent, copes with the appearance variations
with 0.1 < α < 0.4. (iii) Frame-to-frame online tracker with a moderate ratio
of update fits the appearance changes as well as possible from the premise of
eliminating the noise information, with 0.4 < α < 0.9. In this paper, the soft
stable model with α = 0.15 is updated every three frames. The online model is
updated each frame, with α determined by an empirical threshold.

3 Our Online Learning Tracker

3.1 Sequential Inference Model

Our on-line tracker meets the Bayesian Inference for visual tracking, which is a
Markov model with hidden state variables. Using Bayes’ theorem, the tracking
equation can be written as follows:

p(Xt/Dt) ∝ p(It/Xt)
∫

p(Xt/Xt−1)p(Xt−1/Dt−1)dXt−1 (1)

To benefit the building of appearance model, an affine motion sampling model
as in [4] is used to attain the candidates. Hidden state variables Xt denote
the affine motion parameters by six parameters Xt = {xt, yt, θt, st, αt, φt}, and
xt, yt, θt, st, αt, φt denote x, y translation, rotation angle, scale, aspect ratio, and
skew direction at time t, It describes the observed image at t frame, and Dt =
{I1, I2, ..., It} contains observed image at the t frame and those before t frame.
The term p(Xt/Xt−1) is called dynamical model, and usually modeled by a
Gaussian distribution in which each parameter of Xt is treat independent. And
p(It/Xt) is called observation model, which is a probability to describe the target
tracked.

As the integration in Eq. (1) is intractable analytically due to the non-
Gaussian form of p(It/Xt), we resort to particle filtering-based sampling. The
particle is represented by the pixel-wise spatial pyramid.

3.2 Pixel-Wise Spatial Pyramid

The image I is represented as a two-dimensional lattice of a one- dimensional in-
tensity image or a three-dimensional color image. Let F (x, y) be the d-dimensional
appearance vector extracted from I at the spatial location (x, y)
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F (x, y) = Γ (I, x, y) (2)

where Γ can be any mapping such as color, intensity, image gradient Ix, Ixx, ...
, edge, texture etc. The original pixel feature vector in [13] includes spatial
attributes that are obtained from pixel coordinate values, but we only use the
d-dimensional appearance vector and the spatial layout is exploited through the
spatial pyramid. So a M × N rectangular region R forms a two-dimensional
matrix of pixel feature vectors W ,

W(M∗N)×d = [F1, F2, ..., FM×N ] (3)

Here, we employ the intensity and texture information to generate the five-
dimensional individual pixel vector F (x, y),

F (x, y) = [I(x, y), |Ix(x, y)| , |Iy(x, y)| , |Ixx(x, y)| , |Iyy(x, y)|] (4)

In order to introduce spatial information, we follow the scheme proposed by
Lazebnik et al. which is based on pyramid matching [20]. Spatial pyramid match-
ing is a simple yet effective approach to compare similarity between images. The
image is divided into a sequence of increasingly finer spatial grids by repeatedly
doubling the number of divisions in each axis direction. Let X and Y be two sets
of vectors in a d-dimensinal feature space which are obtained from two images. In
general, SIFT vectors are used, but here they are pixel feature vectors. Pyramid
matching is implemented by taking a weighted sum of the number of matches
that occur at each level of resolution. Supposing we have constructed a sequence
of resolutions 0, 1, ..., L, then we have 2l sub-regions for the l th resolution. Let
H l

X and H l
Y denote the histograms of X and Y at resolution l , so the histogram

intersection can be computed as I(H l
X , H l

Y ) =
2l∑

i=1
min(H l

X(i), H l
Y (i)). Then the

overall similarity between X and Y is defined as

S(HX , HY ) =
L∑

l=0

wlI(H l
X , H l

Y ) (5)

where the weight is wl = max( 1
2L , 1

2L−l+1 ). The details can be found in [19].
In our case, the set of pixel feature vectors are quantized by K-means with a
codebook size 25, and the number of levels is limited to L = 2 to prevent over
fitting.

3.3 Update Scheme

Though the trackers such as [1, 5] without update perform well under some
circumstances, the update of tracking model is essential to cope with appearance
changes. The template tracking methods is often updated by the approach based
on matching score. For example, the template update mechanism in [2] is defined
as

qi+1 = απqi + (1 − α)(1 − π)p(yi) (6)
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where α = 0.85 is a weighting factor to control the speed of the updates, qi

is the template at frame i, and π = ρ[p(yi), q] is the Bhattacharyya coefficient
between the current template and the optimal candidate found in the ith frame.
The rule indicates that the update of the template will become minimal, if the
template and the optimal candidate are well-matched. However, this method
is not suitable in our tracker, because both the codebook and the histogram
representation need to be updated. On the other hand, since there is no weak
learner in our tracker, our appearance model also cannot evolve like the methods
in [6,7].

We develop a distance-based scheme to update the codebook and hybrid fea-
ture map to obtain the target appearance model, as depicted in Fig. 3.

Reserved part

Part of the 
earlier hybrid 
feature map

The new 
hybrid feature 

map

Reserved
feature vectors

Recreate

Old
Codebook

New
Codebook

Fig. 3. Update Scheme

Each pixel feature vector in the current frame has a minimal distance to the
code words. Note that the new pixel feature vectors those are nearer to the pre-
vious code words in the current frame are more likely to be the target elements.
All the current pixel feature vectors are sorted in a queue ascendingly according
to the minimal distances. During the process of update, for the adaptive module,
an empirical threshold is used to keep the valuable information and remove the
noise, particularly part of the occlusion sector. The top 15 percent in the queue is
captured as the reserved feature vectors for the soft stable module. The current
valuable information, i.e., part of the pixel feature vectors, together with the
previous cluster centers (code words) are employed to generate a new codebook.

Since the spatial pyramid matching focuses on the matching between images,
we propose a hybrid feature map according to the spatial layout to keep the
cumulated instrumental information. The pixel feature vectors currently reserved
are part of the hybrid feature map, and the remainders are the opposite spatial
part in the earlier hybrid feature map. Figure 4 shows some of the hybrid maps
in Girl and Shaking sequences (f denotes the frame number). The left shows the
object region, the center depicts the hybrid maps of the adaptive module, and
the right displays the hybrid maps of the soft stable module. It can be found
that the hybrid maps of the adaptive module catch more appearance changes
than the maps of soft stable module do, because of the different update rates of
them.
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Fig. 4. Hybrid Maps of Girl and Shaking

4 Biased Multiplicative Formula

In order to take advantage of the reference information, the soft reference model,
as well as online updated appearance model at the same time, we use biased
multiplicative formula to fuse them. Suppose that the similarity metric matching
scores are Sr, Ssr, So , i.e., likelihood scores between the candidates and the above
three models. The fusion equation is defined as

Sf = Sr ∗ Ssr ∗ So (7)

Firstly, this can be interpreted that the (soft) reference model is used to verify
the judgment of the online appearance model. Furthermore, this fusion scheme
can find the balance key between the three tracking modules. Finally, to make
the tracker less prone to drift, we choose the candidate which has a bigger Sr or
Sr ∗ Ssr.

5 Implementation and Experiments

During the experiments, we compare our algorithm to current state-of-the-art
methods, i.e., IVT, FragTrack and MILTrack, on publicly available datasets.
Babenko et al. showed superior results comparing their method (MILTrack)
to On-line Boosting and FragTrack. IVT is a successful online learning algo-
rithm using incremental subspace representation. FragTrack benefitting from
the division-combination patches scheme is robust to occlusion and perform well
on several challenging sequences.

Throughout the experiments, we use seven challenging video sequences regard-
ing e.g. moving cameras, occlusions, background clutters, 3-D motion and illumi-
nation changes. The ground truth for sequences: Girl and Faceocc2 are from [8].
ShopAssistant2cor and MeetWalkSplit come from the CAVIAR database. Shak-
ing, Football and Skating1(low frame rate) are from [21].

5.1 Quantitative Evaluation

In this experiment, we would like to benchmark our method on the following
sequences: Faceocc2, Shaking, Football and MeetWalkSplit. Table 1 and Fig. 5
depict the results based on the mean pixel error: our method yields the best
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Table 1. Average center location errors in pixels

Sequence IVT FragTrack MILTrack Our approach

Faceocc2 7.5 19.9 14.3 16.1
Shaking 170.4 70.6 15.1 19.8
Football 37.3 7.5 7.5 6.1

MeetWalkSplit 4.9 14.2 16.0 2.8
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Fig. 5. Error curves of some testing video sequences

scores in two sequences: MeetWalkSplit and Football, and gains the second best
results in the sequence: Shaking. IVT performs best in Faceocc2 seq., but fails
in Shaking and Football sequences, due to the severe illumination variation, out
of plane rotation or viewpoint changes. FragTrack fails in Shaking seq. because
of the drastic illumination changes. Though our tracker locates the object ac-
curately in the first part of Shaking seq., it drifts in the tail because there is a
combination of pose change and drastic illumination change. Our tracker even
loses the target in the middle of Faceocc2 seq. because of the severe occlusion,
but then recovers due to the utilization of stable and soft stable modules.

5.2 Performance of the Individual Tracking Module

Here we investigate the behavior of our three appearance modules respectively
on two sequences, Girl and Shaking. The average pixel error is given in Fig. 6.
The reference module works well when the appearance of the object is close
to it. The soft reference module and adaptive module seem to perform poor in
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Fig. 6. Evaluation of the separate modules and fusion tracker

Fig. 7. Comparison between IVT, FragTrack, MILTrack and our method in Football

the sequences. But through the biased multiplicative formula, the fusion result
becomes much more accurate and robust. Unfortunately, in the later part of
sequence Shaking, all the results of three modules are far from the ground truth,
leading drifting of the final output.

5.3 Qualitative Evaluation

We evaluate the performance of our tracking method through comparing with
IVT, FragTrack and MILTrack. The bounding boxes for target of IVT, Frag-
Track, MILTrack and our approach are blue, yellow, green and red respectively.

Background clutter. In Fig. 7, we test Football seq. that includes severe back-
ground clutter, of which appearance is similar to that of the target. In the case
of IVT, the bounding box drifts when two players collided with each other and
cannot recover as illustrated in the second row of Fig. 7. Our method, FragTrack
and MILTrack overcome this problem, and our approach is more accurate than
them.

Occlusion. Figure 8 shows the tracking results for the pedestrian in ShopAs-
sistant2cor. While the person of ShopAssistant2cor is severely occluded in the
frames from 185 to 220, all the methods successfully track the target. But after
that, the three other trackers only locate part of the object. Note that there



174 H. Lu, S. Lu, and Y.-W. Chen

Fig. 8. Comparison between IVT, FragTrack, MILTrack and our method in
ShopAssistant2cor

are also persons with similar color distribution comparing to the object. Our
approach never drifts throughout the sequence.

3-D motion and moving camera. We present the tracking results of Girl in
Fig. 9. Since our method and IVT employ the affine motion model, so we can
find more accurate location of the object. Note that, in order to evaluate the
motion model, the initial bounding boxes in IVT and our approach are made
to be a little smaller than the boxes in MILTrack and FragTrack. The results
demonstrate that IVT can track the girl in the first few frames, but fails after
the girl rotates. Our method, FragTrack and MILTrack can locate the girl, but
FragTrack fails during the frames from 20 to 60, MILTrack drifts in the end.

Fig. 9. Comparison between IVT, FragTrack, MILTrack and our method in Girl

Illumination change and pose variations. We assess the capability of the
tracking methods regarding illumination change and drastic pose variations in
Skating1(low frame rate). As shown in Fig. 10, our method covers these chal-
lenges, while IVT drifts after a few frames, the other two methods locate part of
object during some of the frames. Note that there are also abrupt motion and
occlusion in this sequence. For example, abrupt motion and serious occlusion
can be found in frame 75 and 141 respectively.
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Fig. 10. Comparison between IVT, FragTrack, MILTrack and our method in
Skating1(low frame rate)

6 Conclusion and Future Work

In this paper, we present a new algorithm to track object whose appearance
changes drastically. We fuse three tracking modules with different update rate
through biased multiplicative formula to achieve the balance between robust-
ness and adaptivity of the tracker. Particularly, the pixel-wise spatial pyramid
including several appearance features and spatial layout and the hybrid feature
map accommodating the cumulated valuable pixel feature vectors play the cru-
cial role during tracking process. We demonstrate comparative performance with
the state-of-the-art tracking methods in sequences of challenging circumstances.

Future work: Through the experiments, we find that the K-means clustering is
not strong enough to quantize the pixel feature vectors, because the dimension
of the vector is high or the different information locates in different feature
space. Other quantification methods, e.g. Gaussian Mixture Model (GMM) or
Histogram Intersection Kernel (HIK), could be used to create a better codebook.
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Funds for the Central Universities, No. DUT10JS05, and the National Natural
Science Foundation of China (NSFC), No.61071209.
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Abstract. The powerful theory of compressive sensing enables an effi-
cient way to recover sparse or compressible signals from non-adaptive,
sub-Nyquist-rate linear measurements. In particular, it has been shown
that random projections can well approximate an isometry, provided that
the number of linear measurements is no less than twice of the sparsity
level of the signal. Inspired by these, we propose a compressive anneal
particle filter to exploit sparsity existing in image-based human motion
tracking. Instead of performing full signal recovery, we evaluate the ob-
servation likelihood directly in the compressive domain of the observed
images. Moreover, we introduce a progressive multilevel wavelet decom-
position staged at each anneal layer to accelerate the compressive eval-
uation in a coarse-to-fine fashion. The experiments with the benchmark
dataset HumanEvaII show that the tracking process can be significantly
accelerated, and the tracking accuracy is well maintained and compara-
ble to the method using original image observations.

1 Introduction

Compressive sensing (CS) acquires and reconstructs compressible signals from
a small number of non-adaptive linear random measurements by combining the
steps of sampling and compression [1,2, 3,4]. It enables the design of new kinds
of compressive imaging systems, including a single pixel camera [5] with some
attractive features, including simplicity, low power consumption, universality,
robustness, and scalability. Recently, there has been a growing interest of com-
pressive sensing in computer vision and it has been successfully applied to face
recognition, background subtraction, object tracking and other problems. Wright
et al [6] represented the test face image in a linear combination of training face
images. Their representation is naturally sparse, involving only a small fraction
of the overall training database. Such a problem of classifying among multiple
linear regression models can be then solved efficiently via L1-minimisation which
seeks the sparsest representation and automatically discriminates between the
various classes presented in the training set. Cevher et al [7] cast the background
subtraction problem as a sparse signal recovery problem and solved by greedy
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methods as well as total variation minimisation as convex objectives to process
field data. They also showed that it is possible to recover the silhouettes of fore-
ground objects by learning a low-dimensional compressed representation of the
background image without learning the background itself to sense the innova-
tions or the foreground objects. Mei et al [8] formulated the tracking problem
similar to [6]. In order to find the tracking target at a new frame, each target can-
didate is sparsely represented in the space spanned by target templates and triv-
ial templates. The sparse representation is obtained by solving an L1-regularised
least squares problem to find good target templates. Then the candidate with
the smallest projection error is taken as the tracking target. Subsequent tracking
is continued using a Bayesian state inference framework in which a particle filter
is used for propagating sample distributions over time.

Unlike above works, many data acquisition/processing applications do not re-
quire obtaining a precise reconstruction, but rather are only interested in making
some kind of evaluations on the objective function. Particularly, human motion
tracking essentially attempts to find the optimal value of the observation likeli-
hood function. Therefore, we propose a new framework, called Compressive An-
nealed Particle Filter, for such a situation that bypasses the reconstruction and
performs evaluations solely on compressive measurements. It has been proven [1]
that the random projections can approximately preserve an isometry and pair-
wise distance, when the number of the linear measurements is large enough (still
much smaller than the original dimension of the signal). Moreover, noticing the
annealing schedule is a coarse-to-fine process, we introduce the staged wavelet
decomposition with respect to each anneal layer so that the increasing anneal
variable is absorbed into the wavelet decomposition. As a result, the number
of compressive measurements is progressively increased to gain computational
efficiency.

The rest of the paper is organised as follows. Section 2 describes the hu-
man body template. In Section 3, we provide a brief overview of the theoretical
foundation of Compressive Sensing, followed by Compressive Annealed Particle
Filter in Section 4 and the results of experiments with the HumanEvaII dataset
in Section 5. Finally, Section 6 concludes with a brief discussion of our results
and directions for future work.

2 Human Body Template

The textured body template in our work uses a standard articulated-joint
parametrisation to describe the human pose, further leading to an effective rep-
resentation of the human motion over time. Our articulated skeleton consists of
10 segments and is parameterised by 25 degrees of freedom (DOF) in Figure 1.
It is registered to a properly scaled template skin mesh by Skeletal Subspace
Deformation (SSD) [9]. Then, shape details and texture are recovered by an in-
teractive volumetric reconstruction and the texture registration procedure. At
last, the template model is imported to commercial software to be finalised ac-
cording to the real subject. The example of the final template model is illustrated
in Figure 1.
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Fig. 1. From left to right: the articulated skeleton parameterised by 25 DOF and the
textured template model after manual refinements used in this work

3 Compressive Sensing

The novel theory of Compressive Sensing (CS) [1,2,3,4] provides a fundamentally
new approach to data acquisition that provides a better sampling and compres-
sion when the underlying signal is known to be sparse or compressible, yielding
a sub-Nyquist sampling criterion.

3.1 Signal Sparse Representation

We consider that a signal f ∈ RN is sparse in some orthonormal basis Ψ ∈ RN×N

and can be represented as f = Ψf ′. If there are only a few significant entries in
f ′, and insignificant entries can be discarded without much loss, then f ′ can be
well approximated by f ′K that is constructed by keeping the K largest entries of
f ′ unchanged and setting all remaining N −K entries to zero. Then fK = Ψf ′K
is so called K-sparse representation. Since Ψ is an orthonormal matrix, hence
‖f − fK‖2 = ‖f ′ − f ′K‖2. If f ′ is sparse or compressible in the sense that the
sorted magnitudes of its components xi decay quickly, then the relative error
‖f−fK‖2

‖f‖2
is also small. Therefore, the perceptual loss of fK with respect to f is

hardly noticeable.

3.2 L1 Minimisation Recovery

Compressive sensing nevertheless surprisingly predicts that reconstruction from
vastly undersampled non-adaptive measurements is possible-even by using ef-
ficient recovery algorithms. Let us consider M (M << N) non-adaptive linear
measurements z (so called Compressive Measurement) of a signal f using z = Φf ,
where Φ ∈ RM×N denotes the measurement matrix. Since M << N , the re-
covery of f from z is underdetermined. If, however, the additional assumption
is imposed that the vector f has sparse representation, then the recovery can
be realised by searching for the sparsest vector f ′∗ that is consistent with the
measurement vector z = ΦΨf ′. The finest recovery f∗ = Ψf ′∗ is achieved when
the sparsest vector f ′∗ is found. This leads to solving a L0-minimisation problem.
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Unfortunately, the combinatorial L0-minimisation problem is NP hard in gen-
eral [10]. In [2] Candes et al have shown that the L1 norm yields the equivalent
solution to the L0 norm, resulting in solving an easier linear program, for which
efficient solution methods already exist. When the measurement process involves
a small stochastic error term ‖η‖2 ≤ ε, z = ΦΨf ′ + η, the L1-minimisation ap-
proach considers the solution of:

min ‖f ′‖1 subject to ‖ΦΨf ′ − z‖2 ≤ ε (1)

This is an instance of second order cone programming [3] which has a unique
convex solution.

The exact recovery from non-adaptive linear measure is not universal but
conditional. The primary result [4] of CS states, if Φ is incoherent with Ψ so
that the coherence μ(Φ,Ψ) =

√
N maxl,k∈[1,N ] |〈φl, ψk〉|1 is close to 1 and M �

Cμ2(Φ,Ψ)K log N/σ for some positive constant C and small values of σ, then f ′

in z = Φf = ΦΨf ′ can be exactly recovered with overwhelming probability 1−σ.
Moreover, it turns out that a randomly generated matrix Φ from an isotropic
sub-Gaussian distribution (e.g. from i.i.d. Gaussian or Bernoulli/ Rademacher 1
vectors) is incoherent with high probability to an arbitrarily fixed basis Ψ.

4 Compressive Annealed Particle Filtering

The proposed approach resides on the APF framework that is first introduced
in human tracking by Deutscher et al. [11]. APF incorporates simulated anneal-
ing [12] for minimising an energy function E(yt,xt) or, equivalently, maximising
the observation likelihood p(yt|xt) that measures how well a particle (an esti-
mate pose configuration) xt fits the observation yt at time t. The observation
likelihood is essential for APF in order to approximate the posteriori distribu-
tion, and it is often formulated in a modified form of the Boltzmann distribution:

p(yt|xt) = exp{−λE(yt,xt)} (2)

where the annealing variable λ is ,1/(kBTt), an inverse of the product of the
Boltzmann constant kB and the temperature Tt at time t. The optimisation
of APF is iteratively done according to a predefined L-phase schedule {λ =
λ1, ..., λL}, where λ1 < λ2 < ... < λL, known as the annealing schedule. At time
t, considering a single phase l, initial particles are outcomes from the previous
phase l−1 or drawn from the temporal model p(xt|xt−1). Then, all particles are
weighted by their observation likelihood p(yt|xt) and resampled probabilistically
to select good particles which are highly likely to near the global optimum.
Finally, particles are perturbed by a Gaussian noise with a diagonal covariance
matrix Pl

2.

1 φl is a row of Φ. ψk is a column of Ψ. To simplify the notation, φl can be concatenated
as the basis with N elements so that 〈φl, ψk〉 is always computable.

2 The perturbation covariance matrix Pl is used to adjust the search range of particles.
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Considering the pose space model in a dynamic structure that consists of a
sequence of estimate poses xt at successive time t = 1, 2, ..., and each pose is
associated with an image observation yobs

t or a compressive measurement zd
t . At

time t, the compressive measurement can be defined by:

zd
t = ΦΨyd

t

= ΦΨ(yobs
t − ybg

t )

= zobs
t − zbg

t (3)
where, Ψ denotes wavelet basis. In particular, yd

t is the difference image gen-
erated by subtracting the background image ybg

t from the original observation
image yobs

t . It is known that the images acquired from the natural scene have
highly sparse representation in the wavelet domain. The difference image calcu-
lated by subtracting the static background from the observation image has more
pixel values close to zero, hence, the difference image Ψyd

t is also highly sparse
and compressible in general.

On the other hand, given the estimate state xt, the estimate compressive
measurement ẑd

t of the difference image can be calculated by subtracting the
background image ybg

t from the synthetic foreground image sfg(xt), which is
generated by projecting the human model with the pose xt and camera param-
eters onto the image plane. This difference image is also compressible in the
wavelet domain so that it can be defined by:

ŷd
t,i = sili(xt) ∗ (sfg

i (xt) − ybg
t,i) i = 1, ..., N

ẑd
t = ΦΨŷd

t (4)

where, sil(xt) is a synthetic silhouette mask generated by the estimate state xt

which has 0s on all background entries and 1s on all the foreground entries. This
mask operation is used to make the synthetic difference image is comparable to
the original difference image.

4.1 Restricted Isometry Property and Pairwise Distance
Preservation

Another important result of CS is the Restricted Isometry Property (RIP) [1]
which characterises the stability of nearly orthonormal measurement matrices. A
matrix Φ satisfies RIP of order K if there exists an isometry constant σK ∈ (0, 1)
as the smallest number, such that (1 − σK)‖f ′‖2

2 ≤ ‖Φf ′‖2
2 ≤ (1 + σK)‖f ′‖2

2
holds for all f ′ ∈ ΣK = {f ′ ∈ RN : ‖f ′‖0 ≤ K}. In other words, Φ is an
approximate isometry for signals restricted to be K-sparse and approximately
preserves the Euclidean length, interior angles and inner products between the
K-sparse signals. This reveals the reason why CS recovery is possible because Φ
embeds the sparse signal set ΣK in RM while no two sparse signals in RN are
mapped to the same point in RM .

If Φ has i.i.d. Gaussian entries and M ≥ 2K, then there always exists
σ2K ∈ (0, 1) such that all pair-wise distances between K-sparse signals are well
preserved [13]:
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(1 − σ2K) ≤ ‖Φf ′i − Φf ′j‖2
2

‖f ′i − f ′j‖2
2

≤ (1 + σ2K). (5)

Meanwhile, Baraniuk and Wakin [14] present a Johnson-Lindenstrauss (JL)
lemma [15] formulation with the stable embedding of a finite point cloud un-
der a random orthogonal projection, which has a tighter lower bound for M .

Lemma 1. [14] Let Q be a finite collection of points in RN . Fix 0 < σ < 1 and
β > 0. Let Φ ∈ RM×N be a random orthogonal matrix and

M ≥
(

4 + 2β

σ2/2 + σ3/3

)
ln(#Q)

If M ≤ N , then, with probability exceeding 1− (#Q)−β, the following statement
holds: For every f ′i , f

′
j ∈ Q and i �= j

(1 − σ)

√
M

N
≤ ‖Φf ′i − Φf ′j‖2

‖f ′i − f ′j‖2
≤ (1 + σ)

√
M

N

where a random orthogonal matrix can be constructed by performing the House-
holder transformation [16] on M random length-N vectors having i.i.d. Gaussian
entries, assuming the vectors are linearly independent.

4.2 Multilevel Wavelet Likelihood Evaluation on Compressive
Measurements

The above Equation (5), Lemma (1) and orthonormality of Ψ guarantee the
pairwise distance to be approximately preserved provided that M is sufficient
large. Therefore the CS recovery is not necessary to evaluate the observation
likelihood. Instead, the observation likelihood can be directly calculated via the
distance of compressive measurements in Equation (3) and (4).

p(yt|xt) = exp{−λ‖zd
t − ẑd

t ‖2} (6)

Notice λ > 0, the above equation can be transformed as:

p(yt|xt) = exp{−‖λzd
t − λẑd

t ‖2}
= exp{−‖Φλ(Ψyd

t − Ψŷd
t )‖2} (7)

In the equation (7), Ψyd
t and Ψŷd

t are wavelet coefficients. According to mul-
tilevel wavelet decomposition, we construct two wavelet coefficient sequences
of C = {ci|i = 1, 2...} and Ĉ = {ĉi|i = 1, 2...} for Ψyd

t and Ψŷd
t . Further-

more, ci ⊂ ci+1 the current level wavelet coefficient are always a subset of
its super level wavelet coefficient. Hence, ‖ci‖1 < ‖ci+1‖1 and C is consid-
ered a monotonically increasing sequence in terms of the magnitude (the same
can be applied to Ĉ). For instance, a four-level wavelet coefficient sequence is
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Fig. 2. The number of wavelet coefficients is progressively elevated as the wavelet de-
composition process so that details are gradually enhanced through the anneal schedule.
From left to right, we show 4 levels wavelet decomposition coefficients at the top of
the figure. 1) using only the K4 = 2805 largest coefficients (about 18.39% over all the
level 4 coefficients) at the level 4, 2) K3 = 4345 (7.18%) at the level 3, 3) K2 = 12086
(5.01%) at the level 2 and 4) K1 = 30000 (3.11%) at the level 1. The observation images
at the bottom are reconstructed by using corresponding Kg sparse wavelet coefficients.

shown in the top of Figure 2. Obviously, CΔ = C − Ĉ has the same mono-
tonically increasing property ‖cΔ

i ‖1 < ‖cΔ
i+1‖1. If defining a series of variables

λi = ‖cΔ
i+1‖1/‖cΔ

1 ‖1 i = 1, 2, ..., where λi < λi+1, alternatively, this monoton-
ically increasing sequence CΔ can be described by CΔ = {cΔ

1 , λ1cΔ
1 , λ2cΔ

1 , ....}.
In other words, we always can construct a monotonically increasing wavelet co-
efficient sequence CΔ that has an equivalent counterpart series of λ. The precise
value of λ for each anneal layer is not very critical, since λ is only used to
roughly control the optimisation convergence rate. Therefore, we design directly
evaluating the coarse-to-fine wavelet coefficients in difference levels to simulate
increasing λl at each layer l. Then, an alternative of Equation (7) is given by:

p(yt|xt) = exp{−‖Φ(l)(Ψ(l,yd
t ) − Ψ(l, ŷd

t ))‖2} (8)

where, Ψ(l,yd
t ) is wavelet coefficients of yd

t at the l layer associated to the
level g decomposition, and it has Nl wavelet coefficients. With l is increasing, g
is decreasing and the more details encoded in wavelet coefficients Ψ(l,yd

t ) are
used. For instance, as shown in Figure 2. Φ(l) is a Ml × Nl sub-matrix of Φ.
Ml = 2Kg is determined according to the sparsity Kg of the g level wavelet
coefficients.

5 Experiments

Experiments are conducted on the benchmark dataset HumanEvaII [17] that
contains two 1260-frame image sequences from 4 colour calibrated cameras syn-
chronised with Mocap data at 60Hz. Those tracking subjects perform three dif-
ferent actions including walking, jogging and balancing. To generate compressive
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Fig. 3. Wavelet Coefficient Histogram and Wavelet Coefficient Histogram (close-up
view) showing that 95% coefficients have very small values close to zero

measurements, we apply the 8-level haar wavelet 2D decomposition [18] to all
observation images. The wavelet coefficients appear highly sparse, most of which
are close to zero as illustrated in Figure 3. For instance, using solely the 30000
largest wavelet coefficients we are able to reconstruct the 964320 colour com-
ponents of 656 × 490 RGB image with hardly noticeable perceptual loss. For
the multilevel evaluation (Equation 8), the four sparsity levels K1 = 30000,
K2 = 12086, K3 = 4345 and K4 = 2805 are evenly allocated in the 10 anneal
layers3. The Ml = 2Kg rows of Φ are drawn i.i.d. from the normal distribution
N(0, 1/Ml) to approximately preserve the isometry as shown in Equation (5).
On the other hand, the single level evaluation Equation (6) is used with a tight
lower bound for M shown in Lemma (1). We presume there are one observation
image and maximum 20004 synthetic images generated in the evaluation for each
view and each frame. Then, for the 1260-frame sequence, there are total 2521260
unique compressive measurements required for tracking. Let σ = 0.1, β = 1 and
#Q = 2521260, so M =

(
4+2β

σ2/2+σ3/3

)
ln(#Q) = 16583. Moreover, the M rows

of the Φ are constructed by drawing i.i.d. entries from the normal distribution
N(0, 1/M) and performing the Householder transformation to orthogonalise Φ.
Therefore, with high probability 1 − 1/2521260, Φ approximately preserves the
pairwise distance. we also verified the performance of the number of compressive
measurements in cases of M = 10000 and M = 5000.

As illustrated in the experimental results of HumanEvaII Subject 2 (the top
of Figure 4), the evaluation using original images as the evaluation input ob-
tains 54.5837±4.7516mm5. The multilevel evaluation achieves the stable results
56.9442±4.4581mm which is comparable with the results using original images.
When using the single level evaluation with M = 16583 compressive measure-
ments, the tracking performance appears poorer than the multilevel evaluation
but still maintains within 65.7548 ± 5.4351mm. When the number of compres-
sive measurements are further reduced to M = 10000 and M = 5000, the

3 Using M1 = 2 × 2805, M2 = 2 × 2805, M3 = 2 × 2805, M4 = 2 × 4345, M5 =
2× 4345, M6 = 2× 4345, M7 = 2× 12086, M8 = 2× 12086, M9 = 2 × 30000, M10 =
2× 30000.

4 Given 10 layers and 200 particles as the maximum.
5 The results are statistically presented by mean± standard deviation in Millimetres.
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Fig. 4. From top to bottom, 1) tracking results of HumanEvaII Subject 2, 2) tracking
results of HumanEvaII Subject 4 (the ground truth data is corrupted at 298-335 frames)
and 3) computational time for one frame using the different number of compressive
measurements
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Fig. 5. HumanEvaII visual tracking results of Subject 4 and 2 are shown at the top
four rows and the bottom four rows, respectively. The transparent visual model is
overlapped with the tracking subject.

performance is degraded dramatically and we merely obtain 70.4249±7.5613mm
and 68.2124±11.6153mm, respectively. The middle of Figure 4 shows the exper-
imental results of HumanEvaII Subject 4. The evaluation using original images
achieves 54.2207± 4.9250mm which is slightly better than 57.1705± 6.0227mm
achieved by the multilevel evaluation. Using M = 16583 compressive mea-
surements experiences slightly more fluctuations comparing with the results
of Subject 2. When the number of compressive measurements is decreased to
M = 10000 and M = 5000, there are significant mistrackings and drifts with
larger errors 71.6053±15.4005mm and 96.3663±32.8075mm. More visual track-
ing results are shown in Figure 5.

The computational performance is also evaluated via the computational time
for one frame using the different number of the compressive measurements shown
in the bottom of Figure 4. As expected, the computational times from 40 to
75 seconds roughly correspond to increasing the number of the compressive
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measurements M . On the other hand, the multilevel evaluation is able to reach
the level of computational speed similar to merely using M = 10000 compres-
sive measurements. Overall, the utilisation of progressive coarse-to-fine multi-
level evaluation allows our approach to achieve the computational efficiency as
only using M = 10000 compressive measurements and maintain the comparable
tracking accuracy as using the original images.

6 Conclusion and Future Work

This paper has presented a compressive sensing framework for human tracking.
It is realised by introducing a compressive observation model into the annealed
particle filter. As the restricted isometry property ensures the preservation of
the pairwise distance, compressive measurements with relative lower dimensions
can be directly employed in observation evaluations without reconstructing the
original image. Furthermore, noticing that there is a similar progressive pro-
cess between the annealing schedule and the wavelet decomposition, we propose
a novel multilevel wavelet likelihood evaluation in the coarse-to-fine fashion in
which a fewer wavelet coefficients are used at the beginning, and then elevated
gradually. This saves computational time and hence boosts the speed of evalua-
tions. Finally, the robustness and efficiency of our approach are verified via the
benchmark dataset HumanEvaII.

In compressive sensing recovery, many signal processing problems do not re-
quire full signal recovery and rather prefer to work on the compressive domain
to benefit from dimensionality reduction. Indeed, RIP which approximately pre-
serves an isometry allows to conduct evaluations and analysis on compressive
measurements. However, the computational complexity of generating the sparse
basis representation (in our case the wavelet decomposition) and compressive
measuring still remains very high. In future work, we therefore would like to
explore more about how to design more efficient the sparse basis representation
and compressive measuring to handle the problem.

Acknowledgement. Authors would like to thank the support from National
ICT Australia, and Leonid Sigal from Brown University provides the HumanEva
dataset available.
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Abstract. This paper introduces a method for reconstructing water
from real video footage. Using a single input video, the proposed method
produces a more informative reconstruction from a wider range of possi-
ble scenes than the current state of the art. The key is the combination of
vision algorithms and physics laws. Shape from shading is used to capture
the change of the water’s surface, from which a vertical velocity gradient
field is calculated. Such a gradient field is used to constrain the tracking
of horizontal velocities by minimizing an energy function as a weighted
combination of mass-conservation and intensity-conservation. Hence the
final reconstruction contains a dense velocity field that is incompressible
in 3D. The proposed method is efficient and performs consistently well
across water of different types.

1 Introduction

In recent years, fruitful progress has been made in reconstructing complex ob-
jects and scenes from images or videos, for example: faces [6], human bodies [1]
hair [16], trees [21] [20] and fluids [2]. Among them, water brings unique chal-
lenges, a solution to which is of great interest to many research areas such as
mechanical engineering [19] and computer graphics [23]. Traditional vision tech-
niques are found to work less well in these cases. Major challenges include: a
water surface generally lacks visually salient features; its complex dynamics, in-
cluding topological changes, yield extreme difficulties for tracking; ground truth
data is difficult to acquire – even active acquisition systems such as laser scanners
will fail due to the over complicated reflection and refraction conditions.

This paper advances the current art of image based water reconstruction to
work with a single input video captured in ordinary outdoor conditions, where
the water is of a large scale and appears opaque. In these cases the traditional
refraction and reflection based techniques as well as sophisticated experimental
setups are impractical.

The proposed method is not only more flexible than previous methods of
modelling the surface geometry but also reconstructs extra information in the
form of a dense grid of 3D velocities. The key is the combination of shape from
shading and optical flow using a physical constraint. First, shape from shading is
used to estimate the geometry of the water surface for each frame. Although this

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 189–201, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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is an unusual method for reconstructing reflective and refractive materials, we
will demonstrate in our experiments that the opaque appearance of large bodies
of water outdoors, and our choice of shape from shading algorithm cause this
method to produce a convincing result (figure 2). We then produce a vertical
velocity gradient field calculated from the change of the recovered surface over
time. This vertical gradient is coupled with the law of mass-conservation to
constrain the tracking of horizontal velocities on the water surface. The final
vertical velocity is recovered from the tracked horizontal velocities, producing
the dense 3D velocity field.

Compared to the existing state of the art, the proposed method has the
following advantages:
– It is designed to work with a single input video recorded by an ordinary

capturing device. All the example videos are recorded by a digital video
camera in an outdoor environment, where the water is of a large scale and
appears opaque.

– It is more informative as not only the surface geometry is recovered, but so
is a dense 3D velocity field.

– The recovered velocities comply with the conservation of mass in 3D.
– It is practically efficient and stable. No complex optimization schemes are

used and experiments show it performs consistently well across different
scenarios with fixed parameters.

(a) (b) (c)

Fig. 1. The proposed single video based water reconstruction method. a: One frame
from the input video. b: The fluid surface is recovered using combined shape from
shading and optical flow. The surface geometry is demonstrated in 3D. c: Details of
the 3D velocities and geometry inside the yellow box shown in (a). All height field
results are normalised to [0, 1] for visualization.

2 Related Work

The proposed method aims to reconstruct both the geometry and the velocity
of the water. Two major research areas will be reviewed: water surface geometry
reconstruction and fluid tracking.

2.1 Surface Geometry Reconstruction

Various types of physical properties have been used to reconstruct the water
surface geometry, for example, refraction [3,12,13] and reflection [23], as well as
others [10] [8].
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Murase [13] reconstructs a water surface from the apparent motion of a re-
fracted pattern. The distortion of an underwater pattern is tracked by opti-
cal flow, from which the water’s surface normal is calculated using a refraction
model. The water surface is then recovered by 2D integration of the surface nor-
mal. Balschbach et al. [3] also use a refraction approach, but based on a shape
from shading technique where multiple illuminations are used to better deter-
mine surface gradients. Morris and Kutulakos [12] show that refractive index is
not indispensable by assuming light is refracted only once. Their system recon-
structs the water surface by minimizing the refractive disparity. These refraction
based methods are generally called “shape from distortion” and they work well
for transparent water. The disadvantages are they can not work with opaque
liquids and specially designed devices are required to capture the distortion of a
known pattern being located underneath the surface of the water. These methods
are not suitable for outdoor conditions where water often appears opaque.

Shape from stereo techniques have been explored to reconstruct liquids that
are opaque. Wang et al. [23] dye water with white paint and light patterns are
projected onto its surface. A depth field is first reconstructed by dense recon-
struction and then refined using physically-based constraints. This method shows
very accurate reconstructions of surface details. Ihrke et al. [10] dissolve the
chemical Fluorescein in the water and measures the thickness of the water from
the amplitude of the emitted light. The visual hull of the water surface is then cal-
culated by utilizing weighted minimal surfaces using the thickness measurements
as constraints. Hilsenstein [8] reconstructs water waves from thermographic im-
age sequences acquired from a pair of infrared cameras. As a viable approach,
infrared stereo reduces the problem associated with transparency, specular re-
flection and lack of texture at visible wavelengths. These techniques all require
sophisticated equipment and complex experimental setups.

Missing from the literature is a solution for reconstructing water surfaces from
a single video captured in an ordinary outdoor environment, as demonstrated by
Figure 1 (a). In this case, nothing can be put under or dissolved in the water. The
water is almost opaque, where refraction based approaches are impracticable but
reflection based approaches tend to gain performance. This paper demonstrates
shape from shading is able to perform consistently well across different types of
such water surfaces.

2.2 Fluid Tracking

Although surface geometry is important, it does not contain the full set of water
properties. It only describes the change of the water surface height over time,
while horizontal velocities are missing. Various types of trackers are proposed to
acquire the fluid flow field.

Traditional 2D tracking algorithms such as Horn-Schunck optical flow [9] are
found to perform less well for water where the conservation of intensity rarely
holds. As an improvement, Nakajima et al. [14] propose an energy function as a
weighted combination of conservation of intensity, conservation of mass, and mo-
mentum equations. The resulting flow complies with physical properties of fluids
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in 2D. Doshi and Bors [5] use a robust kernel which adapts to the local data ge-
ometry in the diffusion stage of the Navier-Stokes formulation. The kernel ensures
that smoothing occurs along the structure of the motion field while maintaining
the general optical flow structure and the main optical flow features. Sakaino [18]
proposes a method to model abrupt image flow change. Flow is modelled using a
number of base waves and their coefficients are found to match the input sequence.
Although these methods significantly improve 2D flow tracking, their physical
constraints are not designed to work in 3D.

Papadakis et al. [15], and Heas and Memin [7] estimate 3D motions of a strat-
ified atmosphere by minimizing an object function that describes the dynamics
of an interacting stack of atmospheric layers. Li [11] treats the image as a wave-
front surface and derives a general brightness constraint to model brightness
variation in terms of fluid dynamics of the velocity potential. The gradient of
the 3D velocity potential describes the actual motion flow. The general bright-
ness constraint separates the flow dynamic from the brightness variation, hence
one can replace the fluid dynamics model with other physical models and reuse
the same solution process.

The method proposed in this paper recovers 3D velocities, producing a more
informative reconstruction than previous 2D tracking algorithms. Compared
with [7, 11, 15] the novelty of the proposed method is the combination of shape
from shading and optical flow. Surface information acquired from the former is
used as a prior to improve the performance of the latter, where physical rules
are incorporated. The method is efficient and performs consistently well across
different types of water captured in an outdoor environment.

3 Reconstructing 3D Mass-Conserved Water

The proposed method reconstructs the surface geometry and a dense 3D veloc-
ity field of water captured with a single video camera. The key is the law of
mass-conservation, which is used as a physical link between the change of the
surface height and the horizontal velocities. The proposed method uses shape
from shading to acquire the change of surface height over time. It is then used
as a prior to constrain the optical flow tracking. The final water surface will be
reconstructed back from the horizontal velocities.

The rest of this section will first introduce the water model and the law of
mass-conservation; then demonstrate shape from shading in acquiring surface
geometry for a wide range of water; the physically constrained fluid tracking is
explained at the end.

3.1 Conservation of Mass

A height field h(x, y, t) is used to represent the water surface at time t. A vector
u = (u, v, w) is used to represent the 3D velocity for each point on the surface.
The law of mass-conservation constrains the 3D divergence of the velocity to
zero, which leads to
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∂w

∂z
= −(

∂u

∂x
+

∂v

∂y
) (1)

We first shown how the vertical velocity w can be approximated from the di-
vergence of the horizontal velocities (u, v). By assuming the horizontal velocities
do not vary along the z-direction, the right-hand side of this equation does not
depend on z, so ∂w

∂z is a constant along the z-direction. This means the vertical
velocity w is a linear function of the water depth z. The velocity at the bottom
of the water comes from the boundary condition u ·n = 0 where n is the normal
of the water bed. By further assuming a flat bottom, we have n = (0, 0, 1) hence
w needs to be zero to satisfy the boundary conditions. Integrating ∂w

∂z along
z-direction gives the vertical velocity:

w = h
∂w

∂z
= −h(

∂u

∂x
+

∂v

∂y
) (2)

The vertical velocity can also be calculated from the material derivative of the
surface height with respect to time:

w =
dh

dt
=

∂h

∂x
u +

∂h

∂y
v +

∂h

∂t
(3)

Here we simplify the fluid dynamic by not considering the advection part ∂h
∂xu+

∂h
∂y v. Hence the Eulerian measurement of the surface change is used as an ap-
proximation of the vertical velocity w ≈ ∂h

∂t = h(x, y, t + 1) − h(x, y, t). This
significantly simplifies the later optimization process and experiments show the
results are generally plausible.

The evolution of water surface can then be directly linked to horizontal ve-
locities via:

h(x, y, t + 1) − h(x, y, t) = −h(x, y, t)(
∂u

∂x
+

∂v

∂y
) (4)

Accurate horizontal velocities are expected to satisfy the surface change over
time based on equation 4. The rest of this section first demonstrates shape from
shading can be used to acquire a prior for water surface and then explains how
to use such a prior to improve the tracking of horizontal velocities.

3.2 Recovering the Water Surface Using Shape from Shading

Shape from shading deals with the recovery of shape from a gradual variation
of shading in the image, see Zhang et al. [24] for a detailed survey. A general
assumption made by shape from shading techniques is that the scene follows
the Lambertian model, in which the grey level at a pixel in the image depends
on the light source direction and the surface normal. For specular surfaces, this
assumption holds less well and more complex reflection/refraction models [4] are
expected to be needed.
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Although water is expected to be a highly reflective and refractive substance,
we show that shape from shading can provide a high quality reconstruction of an
outdoor water surface. Figure 2 shows eight scenes captured in ordinary outdoor
conditions with their shape from shading recovered surfaces underneath (using
Tsai et al.’s method [22]). One important reason for shape from shading to
perform so well is that the water in these scenes appears visually opaque because
of its depth and the suspension of dirt, mud and air. Also the particular shape
from shading algorithm [22] used here is reported to have good performance with
specular surfaces.

Fig. 2. Despite distortions from strong reflections (bottom right), experiments show
shape from shading performs consistently well in recovering water surfaces of different
types

Our experiments also show shape from shading can work for dynamic water
with very few adaptations. Videos are low-pass filtered to remove noise, such
as extreme bright or dark points. A height field h(x, y, t) is then individually
recovered for each frame t to represent the water surface. For a T -frames video
of resolution M by N , the average height of each surface 1

MN

∑N
i=1

∑M
j=1 h(i, j, t)

is rectified to the same level 1
TMN

∑T
k=1

∑N
i=1

∑M
j=1 h(i, j, k) to remove the affect

of global luminance change:

h′(x, y, t) = h(x, y, t) − 1
MN

N∑
i=1

M∑
j=1

h(i, j, t) +
1

TMN

T∑
k=1

N∑
i=1

M∑
j=1

h(i, j, k) (5)

An example is shown in figure 3, where the shape from shading surface success-
fully follows the movement of the water in the video. However, surface geometry
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(a) (b) (c)

Fig. 3. Experiments show shape from shading is able to reconstruct the change of the
fluid surface over time. a - c: different frames in the sequence and their shape from
shading reconstructions.

is not a completely informative description for water, but can be used to con-
strain optical flow to obtain the velocities of the surface using the law of mass
conservation.

3.3 Combined Shape from Shading and Optical Flow

The general idea is to use shape from shading water surfaces to constrain the
tracking of horizontal velocities based on the conservation of mass. As explained
in section 3.1, the vertical velocity w is approximated as the Eulerian derivatives
of the shape from shading surfaces with respect to time. Its gradient along the
z-direction ∂w

∂z is consequently calculated as h(x,y,t+1)−h(x,y,t)
h(x,y,t) . The horizontal

velocities (u, v) are then whatever it takes to make the water incompressible.
The objective energy function is a weighted combination of intensity-

conservation, mass-conservation and smoothness:

E =
∫ ∫

[(Ixu + Iyv + It)2 + α2(|∇u|2 + |∇v|2) + β2(ux + vy + wz)2]dxdy (6)

(Ixu + Iyv + It)2 and |∇u|2 + |∇v|2 are the intensity-conservation term and
smoothness terms from the Horn-Schunck [9] optical flow. (ux + vy + wz)2 is
the mass-conservation term that describes the 3D divergence of the velocity. In
practice, w is calculated by subtracting the current shape from shading surface
from its successor. Then wz is calculated as w

h . The following Euler-Lagrangian
equations are used to minimize the objective function 6:

Ix(Ixu + Iyv + It) − α2�u − β2(uxx + vxy + wxz) = 0 (7)

Iy(Ixu + Iyv + It) − α2�v − β2(uxy + vyy + wyz) = 0 (8)
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In practice �u, �v, uxx and vyy are approximated numerically using finite dif-
ferences: ũ(x, y)−u(x, y) = u(x−1,y)+u(x+1,y)+u(x,y−1)+u(x,y+1)

4 −u(x, y), ṽ(x, y)−
v(x, y) = v(x−1,y)+v(x+1,y)+v(x,y−1)+v(x,y+1)

4 − v(x, y), u(x, y) − u(x, y) =
u(x−1,y)+u(x+1,y)

2 − u(x, y), v(x, y) − v(x, y) = v(x,y−1)+v(x,y+1)
2 − v(x, y). The

Lagrange multipliers α2 and β2 are fixed to 1000 across all scenes. The solution
of equations 7 and 8 is found using the Gauss Seidel method. The resulting hor-
izontal velocity (u, v) is then used to calculate the final vertical velocity w and
the change of the water surface using equation 4. Due to the mass conservation
constraint the surface produced from these new vertical velocities is very similar
to the shape from shading surfaces, which have been shown to model the real
water dynamics well.

4 Experiment

To evaluate the quality of our method we compare our method with several state
of the art flow estimators on different water scenes. Our hypothesis is that our
method will track the horizontal flow of the fluid more plausibly than previous
methods, the major improvement being that our result conforms with the move-
ment of fluid in 3D. We compare both the appearance of the tracked horizontal
velocities alone, and the surface reconstructed using mass-conservation.

This paper chooses the classical Horn-Schunck [9] optical flow and the more
contemporary physics-based flow tracker [14] to compare with. These two meth-
ods, like ours, both minimize an energy function as the weighted combination of
some energy terms such as the intensity-conservation term and the smoothness
term. The difference is Nakajima et al.’s [14] method contains extra terms for 2D
momentum equations and 2D mass-conservation; the proposed method in this
paper contains an extra term for mass-conservation in 3D and Horn-Schunck [9]
flow does not employ any physical constraint. In this paper, same weight coeffi-
cients (Lagrangian multipliers) are used to combine different energy terms and
they are fixed across all the experiment sequences.

Figure 4 shows the horizontal flow fields acquired using the three different
methods. The flow produced by the Horn-Schunck [9] method clearly over-
smooths the velocities and only captures the global flow of the different image
regions. The flow field produced by Nakajima et al. [14] improves on this but
still oversmooths the finer details of the water movement. As demonstrated, our
method manages to create a flow field which captures the detailed sharp features
of the flow successfully.

We have produced reconstructions of the surface geometry using the velocities
by both the Horn-Schunk [9] and Nakajima et al. [14] methods. Figure 5 shows
the surface geometries produced using these vertical velocities and an initial
height at frame 1 produced by shape from shading. This experiment evaluates
how well the velocities produced by each algorithm comply with the movement
of fluid in 3D. Our results show that both methods tend to “halt” the water
surface due to the lack of vertical velocity. As error accumulates in time, the
water surface drifts away from its real appearance in the video. These results
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Horn-Schunck [9] Nakajima et al. [14] Our Method

Fig. 4. Results of different methods. Our method successfully captures the sharp
velocity features, while previous methods tend to over smooth the flow.

Original frame Horn-Schunck [9] Nakajima et al. [14] Our Method

Fig. 5. Results of reconstructions produced from horizontal velocities given by different
flow estimators. The Horn-Schunck and Nakajima reconstructions are “halted” and
noisy, while the proposed method is significantly better.
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(a) (b) (c)

Fig. 6. Results of different water surfaces. a: the original input video frame. b: the
mass-conserved surface reconstructions. c: 3D velocities and geometry of the surface
inside the yellow box shown in (a). Each pair of results are two frames from the same
video sequence.

are due to the lack of a 3D physical constraint and therefore the vertical velocities
calculated using the 3D law of mass-conservation are incorrect.

The robustness of the proposed method is tested on a wide range of water
sequences. 40 water sequences from the Dyntex database [17] are used. These
include water of calm, wavy and turbulent motion. The sequences are filmed
outdoors with an ordinary digital video camera with a fixed tripod. A common
property of these videos is the water generally appears opaque which allows
the shape from shading surface a veridical prior to constrain the optical flow
tracker. Results show the proposed method performs consistently across these
test sequences. Some of the reconstructed water surfaces and velocity fields are
shown in figure 6. The fluid dynamics caused by objects interfering, such as an
animal swimming, can also be well captured.

An advantage of the proposed method is its efficiency. Solving equations 7
and 8 is a linear optimization process without any extra complexity compared
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to the classic Horn-Schunck [9] optical flow. A C++ implementation of the whole
system, including shape from shading and flow estimation, is able to process over
10 frames of resolution 352 × 288 per second on an Intel quad-core processor,
which makes realtime applications practically possible.

There are several limitations of the proposed method. First, it strongly de-
pends on the surface prior acquired from shape from shading. Although it has
been shown in this paper that shape from shading works consistently well over a
wide range of water that has opaque and Lambertian properties, failure modes
can appear when the water is transparent or highly specular. In this case the
refraction/reflection will distort the reconstructed surface. A good example is
shown in the last picture of figure 2 where the reflection of the trees yield valleys
on the surface. Currently the proposed method simply uses a low-pass filter to
remove the extreme bright or dark pixels in the image, this can be replace by
better specular/shadow removal methods. Also, the height field representation
works efficiently well for calm water surfaces but does not well describe complex
scenes such as splashing and breaking waves. In these cases a more sophisticated
fluid representation is needed to handle the topological change.

In summary an important characteristic of the reconstruction is it is physi-
cally sound, as the velocity field complies with the conservation of mass in 3D.
Compared to previous flow estimators our method captures sharp velocity fea-
tures and reconstructs a water surface that successfully models the change of
the water surface geometry. Our method works fully automatically and requires
only a single input video. It has been tested on a wide range of scenes and found
to perform consistently (figure 6).

5 Conclusion

This paper studied the problem of image-based water reconstruction for a single
input video that is captured in ordinary outdoor conditions. In this case the
water is of a large scale, appears opaque and traditional refraction and reflection
based reconstruction techniques are impractical. One important discovery is the
capability of shape from shading to recover different water surfaces of this kind.
Consistent performance is demonstrated by experimenting on a wide range of
scenes. Based on this discovery, the paper proposes a method for reconstructing
water by combining shape from shading and optical flow. It essentially uses
the vertical velocity acquired from shape from shading to constrain the optical
flow tracking of horizontal velocities. The advantages of the proposed method
are: 1) it works fully automatically and requires only basic input resources;
2) the reconstruction is more informative as it contains not only the surface
geometry profile but also a 3D velocity field; 3) the recovered velocities are mass-
conserved in 3D; 4) it is efficient and generally stable, as tested by a wide range of
water. We also discussed several failure modes where the water is highly specular.
Interesting future avenues include finding better solutions for removing shadows
and highlights from the water surface and integrating more sophisticated fluid
dynamics, for example the full Naiver-Stokes equations.
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7. Héas., P., Mémin, E.: Three-dimensional motion estimation of atmospheric layers
from image sequences, vol. 46, pp. 2385–2396 (2008)

8. Hilsenstein, V.: Surface reconstruction of water waves using thermographic stereo
imaging. In: Image and Vision Computing, New Zealand, pp. 102–107 (2005)

9. Horn, B.K.P., Schunck, B.G.: Determing optical flow. Artificial Intelligence 17,
185–203 (1981)

10. Ihrke, I., Goldluecke, B., Magnor, M.: Reconstructing the geometry of flow-
ing water. In: Proceedings of the International Conference on Computer Vision,
pp. 1055–1060 (2005)

11. Li, F., Xu, L.W., Guyenne, P., Yu, J.Y.: Recovering fluid-type motions using navier-
stokes potential flow. In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (2010)

12. Morris, N.J., Kutulakos, K.N.: Dynamic refraction stereo. In: Proceedings of the
International Conference on Computer Vision, pp. 1573–1580 (2005)

13. Murase, H.: Surface shape reconstruction of a nonrigid transport object using
refraction and motion. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 14, 1045–1052 (1992)

14. Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii,
S.: Physics-based flow estimation of fluids. Pattern Recgonition 36, 1203–1212
(2003)
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Earth Mover’s Morphing: Topology-Free Shape
Morphing Using Cluster-Based EMD Flows
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Abstract. This paper describes a method for topology-free shape mor-
phing based on region cluster-based Earth Mover’s Distance (EMD)
flows, since existing methods for closed curve/surface-based shape mor-
phing are inapplicable to regions with different genera. First, the shape
region is decomposed into a number of small clusters by Fuzzy C-Means
clustering. Next, the EMD between the clusters of two key shapes is cal-
culated and the resultant EMD flows are exploited as a weighted many-
to-many correspondence among the clusters. Then, the fuzzy clusters are
transported based on the EMD flows and a transition control parameter.
Unlike the closed curve/surface-based methods, the morphs using clus-
ter transportation are not guaranteed to be a binary image, and hence
graph cut-based binary denoising is applied to a volumetric image of the
two-dimensional position and the one-dimensional transition control pa-
rameter. The experiments demonstrate that the proposed method can
perform morphing between shapes with different genera, such as walking
silhouettes or alphabetical characters.

1 Introduction

For a long time, image morphing [1] has attracted much attention in the im-
age processing and computer graphics fields, because it serves as a powerful
image/video editing tool for creating unique visual effects in view morphing [2]
and 3D face synthesis [3]. Image morphing techniques are further used in com-
puter vision and pattern recognition areas to generate view-interpolated images
for efficient supervised learning [4] and training samples for deformable shape
matching [5] [6].

In the early stages of morphing research, correspondences between geometric
primitives including points, lines, and curves were manually given and various
types of warping functions were proposed, such as mesh warping [7], field morph-
ing [8], the radial basis function [9], thin plate spline [10], energy minimization-
based function [11], and Multilevel Free-Form Deformation (MFFD) [12] [13].
During the middle stages, methods for automatic correspondence were proposed
to reduce burdens of user input [14] [15] [16] [17] [18]. As the above methods rely
on image texture, they are not applicable to shape morphing without texture.

On the other hand, the shape morphing problem is treated predominantly
as a shape contour/surface deformation problem because of its compact expres-
sion [19] [20]. The morphing target is, however, limited to shapes with the same
genus; in other words, most of the existing methods cannot deal with morphing

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 202–215, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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(a) Disk and
annulus

(b) Hand (c) Gait (d) Split disks

Fig. 1. Examples of pairs of shapes: (a), (b) and (c) with different genera (left: 0
genera, right: 1 genus), and (d) with a different number of shapes

of shapes with different genera, such as morphing from a disk to an annulus
in a 2D domain (Fig. 1(a)) or from a ball to a torus in a 3D domain. Indeed,
this limitation is critical for many silhouette-based applications including hand
posture recognition (Fig. 1(b)), gait recognition (Fig. 1(c)), and action recog-
nition. Although several methods [21] [22] can treat such topology differences,
they suffer still from a tedious process which requires significant user input.

To cope with such topological changes, volume-based approaches were pro-
posed and they generally fall into two categories, distance field approaches [23]
[24] and level-set approaches [25] [26].

The distance field approaches first constructs a signed distance field to con-
tour/surface for each shape and then generates an intermediate contour/surface
by interpolating the signed distance fields. It is, however, reported that the
distance field approaches sometimes produce undesirable pop-up artifacts [25].
For example, in case of morphing from a single disk to two distantly split disks
(Fig. 1(d)), while the center disk disappears by erosion, the two split disks emerge
as points and are dilated to the destination disks.

The level-set approaches also constructs the signed distance field and then
a contour/surface is evolved based on a partial differential equation within so-
called ”narrow band” in the Level-Set Method (LSM) [27]. Because the narrow
band gradually moves in the evolution process and it never pops up from the
other region, it sometimes fails in reaching the destination shape. For example,
in case of morphing from a single disk to two distantly split disks (Fig. 1(d)),
the two split disks never emerge because the narrow band disappears after the
center disk erosion and does not pop up from a region of the two split disk.

Consequently, we propose a method for topology-free shape morphing based
on region cluster-based EMD flows in a 2D domain. The shape region is first
decomposed into a set of small clusters and then EMD flows between the clusters
of two key shapes are calculated. Each cluster is morphed and blended according
to the many-to-many correspondence of the EMD flows and transition control
parameter. Since the proposed method relies on the EMD flows, that is, a kind
of warping motion, it is applicable not only to shapes with different topologies,
but also to a different number of shapes as in (Fig. 1(d)), which results in more
interesting split-process morphing as shown in Fig. 10.
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2 Related Work

Automatic morphing of textured image: Gao et al. [14] proposed an en-
ergy minimization approach based on image feature consistency and deformation
amount, while Tekalp [16] and Toshev et al. [15] exploited optical flow-based fea-
ture correspondences and saliency region correspondences, respectively. Chen et
al. [17] exploited pixel correspondence based on range data and camera pose for
view interpolation. Shechtman et al. [18] proposed a regenerative morphing from
small pieces of the two source images based on source similarity and time coher-
ence. Zhu et al. [28] [29] formulated morphing of textured images as optimal mass
transportation problem and solved it in iterative energy minimization framework.

Polygonal/polyhedral shape morphing: Sederberg [19] proposed a 2D polyg-
onal shape morphing method based on work minimization of the vertex deforma-
tion. Kent et al. [20] extended the idea to 3D polyhedral shape and computed a
transformation process by interpolating between corresponding vertex positions.
These methods is, however, not applicable to free-form shape.

Non-rigid shape matching and registration: In addition to pure morph-
ing techniques, it is possible to include shape contour matching techniques,
such as those based on geodesic distance [30] or the Earth Mover’s Distance
(EMD) [31], in the shape morphing, as the matching results give the correspon-
dence of each point on the contour. Non-rigid shape registration is also related
to contour/surface-based shape morphing. Non-rigid shape is usually expressed
as line segments for a 2D shape or surface meshes for a 3D shape and the cor-
respondences of the contour/surface between two shapes are obtained in the
registration process based on minimum distortion criteria [32], a data-driven
deformation prior [33], or a elastic convolved ICP [34]. Then, interpolated non-
rigid shapes can be generated based on the correspondences. These methods are,
however, not applicable to shapes with different genera.

3 Earth Mover’s Morphing

3.1 Construction of Floating-Bin Histogram

The first step involves constructing a floating-bin histogram from a shape sil-
houette. First, the 2D position in the image is defined as x = [x, y]T and subse-
quently, a silhouette image I(x) is defined as

I(x) =
{

1 for inside shape
0 for outside shape. (1)

The shape silhouette can also be expressed as a set of points within the shape as
Xs = {x|I(x) = 1}. In addition, an area A(I) =

∑
x I(x) and area-normalized

weight w(x) = I(x)/A(I) are calculated in preparation of our formulation.
Next, Nc fuzzy clusters are obtained by Fuzzy C-Means (FCM) clustering [35].

The reason that fuzzy clusters are chosen instead of a hard clustering method
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(a) Key shapes (b) Cluster means (c) Membership

Fig. 2. Results of Fuzzy C-Means clustering. In each pair, the left and right images
are the source and destination, respectively. Cluster mean positions are depicted as a
red cross in (b). In (c), each color corresponds to a cluster and the membership for all
the clusters is depicted with alpha blending.

such as k-means clustering, is the effectiveness of the fuzzy property in the
denoising process in the final step described in 3.4.

Let the cth clusterfs mean, weight, and membership at x be x̄c, w̄c, and
mc(x), respectively, which satisfy

x̄c =

∑
x∈Xs

mc(x)x∑
x∈Xs

mc(x)
(2)

wc =

∑
x∈Xs

mc(x)w(x)∑
x∈Xs

mc(x)
(3)

Nc∑
c=1

mc(x) = 1. (4)

Thus, a floating-bin histogram is composed of a set of bin means X̄ = {x̄c}
and a set of bin weights w = {wc}. Examples of the FCM clustering results are
shown in Fig. 2.

3.2 Acquisition of EMD Flow

The second step involves acquiring EMD flows from a source to a destination
shape. Let sets of histogram bin means and weights for the source shape be X̄s, ws

and those for the destination be X̄d, wd, respectively. Then, the transportation
cost and a flow (transportation amount) from the jth bin of the source shape to
the kth bin of the destination shape are denoted as tjk and fjk, respectively.

Though the transportation cost is typically defined as the Euclidean distance
between the bin means djk = ||xs

j − xd
k||, this sometimes induces an inhomoge-

neous work assignment, that is, a situation in which the transportation distances
of a few flows are too long, while the majority of the others are relatively short. As
this inhomogeneity is undesirable in morphing in particular, we use the squared
Euclidean distance tjk = d2

jk instead. Since the squared distance is more sensi-
tive to a distant transportation, the transportation distances tend to be similar
to one another, in other words, the clusters tend to move closer together.
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Fig. 3. NOR region-crossing distance

Moreover, when a large deformation is necessary in the morphing process,
it often happens that several flows cross a NOR (Not-OR) region as shown in
Fig. 3. Although it depends on the particular situation whether or not crossing
the NOR region is undesirable, this can be suppressed by adding a NOR region-
crossing distance to the transportation cost as

tjk = d2
jk + λNORdNOR

jk

2
, (5)

where λNOR is a coefficient of the NOR region-crossing distance.
Finally, the EMD flows are optimized in the following framework in conjunc-

tion with the Hungarian algorithm.

{fjk}∗ = arg min
{fjk}

∑
j

∑
k

fjktjk (6)

s.t.
∑

k

fkl = ws
k ∀k

∑
l

fkl = wd
l ∀l

fkl ≥ 0 ∀k, l

Now, we can regard the obtained {fjk}∗ as the cluster-based many-to-many
warping weight coefficients, whereas most of the existing methods use one-to-
one warping functions. Examples of the EMD flows and mean flows obtained
from each cluster are shown in Fig. 4(a)(b).

3.3 Cluster-Based Morphing

The third step is the cluster-based morphing process using the obtained EMD
flows {fjk}∗. First, we consider a morphing from the jth cluster in the source
shape to the kth cluster in the destination shape at a transition rate α as shown
in Fig. 5. Next, let the interpolated position at the transition rate α between the
jth cluster mean x̄s

j and the kth cluster mean x̄d
k be

x̄jk(α) = (1 − α)x̄s
j + αx̄d

k (7)

Then, suppose that a rate (fjk/ws
j ) of the jth cluster is planned to be transported

forward from xs
j to xd

k and that it is dropped at the interpolated point x̄jk(α) on
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(a) (b) (c) (d) (e)

Fig. 4. EMD flows and morphing process between the key shapes in Fig. 2(a). (a)
Raw EMD flows. (b) Mean flow of each cluster is calculated as a mean motion vec-
tor weighted by flow amount for visibility. (c) Blended morphing with artifacts. (d)
Denoised binary morphing. (e) Boundary-dithered morphing.

(a) Forward morphing (b) Backward morphing (c) Alpha blending

Fig. 5. Cluster-based morphing

the way in the forward transportation as shown in Fig. 5(a). In this paper, we
call this process forward morphs. The forward morphs for all the EMD flows are
blended to create a forward morphing image IF

morph(x; α). In the same way, a
backward morphing image IB

morph(x; α) is created (Fig. 5(b)) and then the for-
ward morphing image IF

morph(x; α) and backward morphing image IB
morph(x; α)

are alpha-blended to create a blended morphing image (Fig. 5(c)) as

Iblend(x; α) = (1 − α)IF
morph(x; α) + αIB

morph(x; α) (8)

3.4 Graph-Cut Denoising

The last step is the denoising process for the blended morphing image
Iblend(x; α). Unfortunately, the blended morphing image obtained by the cluster-
based method suffers from ”artifacts”, that is, non-uniform silhouette intensity
as shown in Fig. 4(c). Therefore, graph-cut denoising is applied to a volumetric
blended morph image Iblend(x; α) with 2D spatial positions and a 1D transi-
tion parameter α to create a volumetric binary image Ibin(x; α). Let a three-
dimensional site and its label be u = [xT , α]T and lu, respectively. In this paper,
the label is set to 1 for the silhouette region and to 0 otherwise.

Now, graph-cut denoising is formulated as the following energy minimization
problem.

E(L) =
∑
u∈U

gu(lu) +
∑

(u,v)∈V

huv(lu, lv), (9)
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where L is a combination of labels for each site, U is the set of all sites, and
V is all the combinations of neighborhood sites. The first term is referred to as
the data term and the second term as the smoothness term. The data term is
determined based on the pixel intensity of the blended morphing image as

gv(l) =
{

1 − Iblend(x; α) (l = 0)
Iblend(x; α) (l = 1) (10)

The smoothness term is formulated by the Potts model as

huv(lu, lv) = λpotts(1 − δlulv ), (11)

where λpotts is the smoothness term weight and δ is Kroneckerfs delta. Based on
the data and smoothness terms defined above, the max-flow algorithm gives the
globally optimized binary volumetric image Ibin(x; α) (Fig. 4(d)).

Moreover, considering the effect of boundary dithering, boundary pixels are
replaced by the blended morphing image to create the final resultant image
Imorph(x; α) (Fig. 4(e)) as

Imorph(x; α) =
{

Iblend(x; α) x is inner or outer boundary
Ibin(x; α) otherwise. (12)

As mentioned in 3.1, FCM clusters are preferable to k-means clustering in terms
of denoising. They also tend to create a smoother blended morphing image than
k-means clusters, with the result that artifacts such as holes and cracks in the
silhouette region become less prominent, and are more easily recovered by graph-
cut denoising.

4 Experiments

4.1 Simple Shapes

In these experiments, several morphing examples of shapes with different genera
are shown. The first example is the simplest, that is, morphing from a disk to
an annulus as shown in Fig. 6.

Starting from the disk (α = 0.0), a silhouette hole appears near the center
of the disk at α = 0.2 and the genus of the shape changes from 0 to 1 at this
time. Then, the hole is gradually dilated as the transition parameter increases
and the shape coincides with the annulus at the end of the transition (α = 1.0).
This kind of topological change is unique to the proposed approach.

Although the artifacts are visible in the blended morphing (top row of
Fig. 6), they are deleted by the graph-cut denoising (middle row of Fig. 6) and
the boundary dithering (bottom row of Fig. 6) provides a visually desirable result.

Additional examples of morphing from a disk to double, triple, and quad
annuli are shown in Fig. 7. In a similar manner to the previous example, multiple
silhouette holes appear in the early stage of the transition and these are gradually
dilated. Note that the number of holes appearing coincides with the genus of the
corresponding destination shape.
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Fig. 6. Morphing from a disk (leftmost) to an annulus (rightmost). The middle four
images are morphing images with transition parameters α = 0.2, 0.4, 0.6, and 0.8, re-
spectively. Top row: blended morphing, middle row: denoised binary morphing, bottom
row: boundary-dithered morphing.

Fig. 7. Morphing from a disk (leftmost) to multiple annuli (rightmost). The middle
four images show morphing with transition parameters α = 0.2, 0.4, 0.6, and 0.8, re-
spectively. Top row: double annulus, middle row: triple annulus, bottom row: quad
annulus.

4.2 Real Shapes

The following examples involve gait silhouette morphs between two postures
selected from gait silhouette sequences captured at a 60 fps frame-rate. The
source posture includes a silhouette hole in the leg region (leftmost image in
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Fig. 8. Morphing from a 1 genus gait silhouette (leftmost) to a 0 genus one (rightmost).
First and second rows: boundary-dithered morphing and an original gait sequence,
respectively, from an oblique view. Third and fourth rows: the same, but from a side
view.

Fig. 8) while the destination shape is expressed as a single closed curve (rightmost
image in Fig. 8).

We can see that the resulting morphed images (the first and third rows of
Fig. 8) are similar to the original gait sequences between the two postures (the
second and fourth rows of Fig. 8). Therefore, the proposed method has real
potential for use in many pattern recognition and image processing areas. For
example, in a shape matching problem, intermediate shapes of the two key shapes
can be generated for the purpose of training sample enhancements even in the
presence of topological changes. In addition, when a low frame-rate sequence is
provided in an action recognition or gait recognition problem, inter-frame silhou-
ettes can be interpolated and a temporal super-resolution sequence provided for
better recognition without worrying about topological changes in the postures.



Earth Mover’s Morphing 211

4.3 Shapes with Large Deformation

The third example shows morphing between alphabetical characters, which in-
volves much larger deformation than in the previous two examples. First, we
focus on morphing from ”A” to ”B”. When the squared Euclidean distance djk

is used as the transportation cost tjk, cluster flows around the horizontal middle
bar in ”A” are directed mainly in two directions: those that go upwards and
others that go downwards across a wide NOR region as shown in the first row
of Fig. 9. On the other hand, when the NOR region-crossing distance dNOR

jk is
combined with the transportation cost tjk, all the clusters in the middle bar
go upwards across a narrower NOR region than the one in the row below (see
the leftmost image in the second row of Fig. 9), as the flows crossing the wide
NOR region below are penalized by additional transportation costs. As a result,
isolated morphs that appear when using only the squared Euclidean distance
are suppressed (see the second row of images in Fig. 9). The morphing from ”B”
to ”C” is also a similar case with that from ”A” to ”B”. While cluster flows of
the middle horizontal bar of B go in various directions when using the squared
Euclidean distance (the third row of images in Fig. 9), they are limited to three
directions when the NOR region-crossing distance is added (the fourth row of
images in Fig. 9).

This kind of character morphing can possibly serve as a novel transition effect
technique for video editing applications. Compared with existing transitions such

Fig. 9. EMD flows (leftmost) and morphing between alphabetical characters ”A”
(1 genus), ”B” (2 genus) and ”C” (0 genus). In EMD flow acquisition process, the
squared Euclidean distance is used in each odd-row image, whereas the NOR region-
crossing distance is used in conjunction with the squared Euclidean distance in each
even-row image.
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Fig. 10. Morphing from a single disk (leftmost) to two split disks (rightmost). Top row:
signed distance field interpolation [23], middle row: narrow-band level-set method [25],
bottom row: the proposed method.

as cut, fade-in/out, slide, and wipe, the proposed morphing method provides a
unique transition effect. In addition, considering the recent progress in interac-
tive/automatic segmentation techniques [36], not only the characters in a title
or caption scene, but also arbitrary objects’ silhouettes, can be morphed once
they have been extracted by a particular segmentation method. When applying
morphing to such textured objects, color transfer on the morph should also be
considered in the future.

4.4 Split Disks

Our final example is morphing from a single disk to two split disks as shown in
Fig. 10. If the signed distance field interpolation [23] is applied to this example,
the source disk is eroded and finally disappears in the transition process, while
the two destination disks appear as points in the centers and are dilated to the
destination disks. By applying level set-based morphing [25], only the source
disk is eroded and finally disappears in the transition process. Unlike these ap-
proaches, the proposed method gives a more interesting morphing process where
the source disk is initially split into two hemisphere-like shapes, which then move
to the destination position by changing their shapes from hemispheres to disks.
This kind of morphing process is unique to the proposed method.

5 Discussion

In the proposed morphing process, a many-to-many correspondence of cluster-
based EMD flows is used directly for cluster-based morphing. The automatically
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obtained correspondence is also provided to construct the existing warping func-
tions [7] [8] [9] [10] [11] [12] between shapes with arbitrary genera.

Another point is that the cluster-based EMD flow can be applied to achieve
many purposes, that is, not only morphing, but also shape matching, deformable
model construction, and motion analysis without worrying about topological
changes, since existing contour-based methods [31] are used within the closed
curve/surface shapes. Unlike the optical flows extracted from a textured image
sequence that correspond to real motion, the region cluster-based EMD flows
do not correspond to real motion, but to pseudo motion. This pseudo motion,
however, still has potential as a novel motion feature for silhouette-based motion
analysis.

On the other hand, the EMD framework allows too much flex flows in sev-
eral cases (e.g., large deformation of alphabetical characters in 4.3). We need
to introduce additional schemes such as regularity constraints and non-linear
interpolation in order to maintain shape well during the morph in the future.

6 Conclusion

This paper described a method for topology-free shape morphing based on re-
gion cluster-based EMD flows. First, the region was decomposed into a num-
ber of small clusters by FCM clustering and a histogram of the clusters was
constructed. Next, the EMD between the two histograms was calculated with
the resultant flows and position displacement between the clusters serving as a
weighted many-to-many correspondence. A fuzzy cluster-based morphing transi-
tion was provided by the obtained correspondence. Finally, the three-dimensional
graph-cut binary denoising was applied to reduce artifacts caused by the cluster-
based morphing.

Future works are listed below.

– Texture transfer on the morph in conjunction with automatic/interactive
segmentation.

– Warping function reconstruction from the weighted many-to-many corre-
spondence based on the EMD flows.

– Application of pseudo motion within the shape to silhouette-based recogni-
tion, as in action recognition and gait-based person identification.

Acknowledgement. This work was supported by Grant-in-Aid for Scientific
Research(S) 21220003.
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Abstract. We propose a new method of background modeling for ob-
ject detection. Many background models have been previously proposed,
and they are divided into two types: “pixel-based models” which model
stochastic changes in the value of each pixel and “spatial-based mod-
els” which model a local texture around each pixel. Pixel-based models
are effective for periodic changes of pixel values, but they cannot deal
with sudden illumination changes. On the contrary, spatial-based mod-
els are effective for sudden illumination changes, but they cannot deal
with periodic change of pixel values, which often vary the textures. To
solve these problems, we propose a new probabilistic background model
integrating pixel-based and spatial-based models by considering the illu-
mination fluctuation in localized regions. Several experiments show the
effectiveness of our approach.

1 Introduction

Background subtraction is one of the most widely used techniques to detect
moving objects from image sequences. It enables us to detect objects by calcu-
lating subtraction of a background image from an observed image without any
specific prior information about moving objects. However, when we use a simple
background image in outdoor scenes, it will detect not only object regions but
also a lot of noise regions. This is because it is very sensitive to changes in the
pixel values caused by waving trees, fleeting clouds, illumination changes and so
on. Therefore, many approaches to model these background changes have been
proposed [1–9].

In general, the approaches of background modeling can be divided into two
types: “pixel-based approach” and “spatial-based approach”. In the case of pixel-
based background models, they commonly have a probability density function
(PDF) for each pixel to represent the pixel value distribution observed in a video
sequence. Stauffer et al. proposed a background estimation method, in which
mixture-of-Gaussians is used to describe the background model [4], and Shimada
et al. augmented this method by introducing a mechanism to change the number
of Gaussians dynamically in each pixel [5]. Elgammal et al. employed Parzen
density estimation to estimate the PDF of the pixel value non-parametrically

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 216–227, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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[6]. These pixel-based models are effective for periodic changes of pixel values,
which are caused by fleeting clouds, movement of tree branches or leaves, waves
on water and so on. However, they cannot adapt for sudden illumination changes.
This is because they construct their models based on statistical information of
the pixel values observed in the past.

In the case of spatial-based background models, they model local textures in
a localized region centered around each pixel to evaluate the similarity between
the background image and the observed image [2, 3]. These models define sev-
eral pairs of a target pixel and its neighbor pixels, and establish a background
model using magnitude relations of pixel values of those pairs. Therefore, spatial-
based background models are more robust than pixel-based one against sudden
illumination changes, because there are little changes in magnitude relations of
pixel values before and after a sudden illumination change. On the other hand,
they cannot deal with periodic changes of pixel values, which are caused by the
movement of tree branches or leaves and so on, since the textures change in such
situations.

The hybrid background models are also proposed, in which both a pixel-based
and spatial-based background models are utilized. Tanaka et al. proposed a hy-
brid background model [9], in which they combined the results of a pixel-based
background model [8] and spatial-based one using “logical AND”. Their model
is more robust than pixel-based or spatial-based ones, since it can utilize both
properties by combining the results of two different models. However, objects
should be detected accurately by both models, and mis-detection in either of
the two models reduces the detection accuracy. Therefore, hybrid models re-
quire more sophisticated combinatorial algorithm for integrating the results of
two different models with high accuracy.

In this paper, we propose a new probabilistic background model by integrating
the methodology of both a pixel-based and a spatial-based approaches. Note that
our approach, unlike previous works [9], does not combine two approaches in a
naive way. We will give a detail explanation about our proposed method in
Section2.

2 Probabilistic Background Model Considering
Illumination Fluctuation in Localized Region

We propose a new probabilistic background model, as shown in Fig.1, by con-
sidering the illumination fluctuation in a localized region centered around each
pixel.

2.1 Design of Local Difference Pattern

In our background model, the methodologies of both a pixel-based and a spatial-
based approaches are naturally integrated. In the case of pixel-based model, the
problem is that spatial information (e.g. texture) was not considered. On the
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Fig. 1. Probabilistic background model using LDP: Our proposed model defines several
pairs of focused pixel and its peripheral pixels in localized region which is a circular
region with radius r. Eeach pair has a Gaussian Mixture Model (GMM) to model the
distribution of the difference between the pixel values of them.

contrary, in the case of spatial-based model, local texture was represented in mag-
nitude relations of pixel values in a background image and multiple hypotheses
of the background can not be maintained, which causes a problem.

To solve these problems, we propose a new probabilistic background model
integrating pixel-based and spatial-based models by considering the illumination
fluctuation in localized regions, as shown in Fig.1. In the proposed model, we
define several pairs of a focused pixel and its peripheral pixels, i.e., its surround-
ing pixels, in a localized region (Fig.1 is an example where the number of pair
is 6), and we give each pair a Gaussian Mixture Model (GMM) to model the
distribution of the difference between pixel values of each pair. Here, we call
these pixel value differences in the localized region “Local Difference Pattern”
(LDP).

The advantages of using LDP are as follows (see Fig.2). In most cases where
sudden illumination changes occur, there are little changes in a LDP, since the
pixel values in a localized region similarly increase and decrease in their val-
ues. Therefore, our proposed method can deal with sudden illumination changes
as shown in Fig.2 (a). Furthermore, our proposed method can also deal with
periodic changes of pixel values, since GMM represents multiple hypotheses of
the background as shown in Fig.2 (b). Thus, our background model can utilize
both properties of pixel-based and spatial-based model, without decreasing the
accuracy.

2.2 Construction of Local Difference Pattern

A focused pixel in an observed image is represented by a vector pc = (xc, yc)T .
A directional vector aj(j = 1, . . . , Npair), which represents the direction of each
reach or the direction of each peripheral pixel, is defined as follows.

aj =
(

cos
j − 1
Npair

2π, sin
j − 1
Npair

2π

)T

(1)
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Fig. 2. Adaptivities of the proposed model to background fluctuation: (a) shows the
case that illumination suddenly changed (e.g. when sunlight is blocked out by clouds,
etc.). LDP can absorb the effect of illumination changes, since it globally affects pixel
values as a bias. (b) shows the case that texture is periodically changed (e.g. effect of
movement of tree or grass, waves on water, etc.). GMM can also adapt to these kinds
of deriodic changes, since it allows for multiple hypotheses of the background.

Each peripheral pixel pj = (xj , yj)T , which is present on the circumference of
a circle with radius r centered around a focused pixel pc, is represented by
pj = pc + raj(j = 1, . . . , Npair), where Npair is the number of peripheral pixels.

We define Npair pairs of a focused pixel pc and its peripheral pixels pj .
Then, a LDP observed at a focused pixel pc at time t is defined by the dif-
ference between the pixel values of each pair, and we represent it by Dt =
{Xt

1, . . . , X
t
j , . . . , X

t
Npair

}. Here, Xt
j = f(pc) − f(pj), where f(p) is the

d-dimensional vector representing the value of pixel p (d = 3 in case of RGB
color images). Fig.1 shows an example of Npair = 6.

In most cases where sudden illumination changes occur, there is little change
in the LDP. Therefore, our proposed method based on the LDP can deal with
sudden illumination changes.

2.3 Probabilistic Background Model Based on LDP

In our proposed method, we give each pair a GMM to represent the PDFs of
a LDP. Here, we focus on the j-th pair of a LDP, and we model the difference
between the pixel values of the j-th pair Xt

j . Let {X1
j , . . . , X

t
j} be the difference

between the pixel values of the j-th pair observed until time t, then we can
represent a PDF of them by a mixture of K Gaussian distributions. Then, the
probability of observing the difference is
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P (Xt
j) =

K∑
k=1

wt
j,kη(Xt

j |μt
j,k, Σt

j,k) (2)

where j is a subscript representing the direction of the peripheral pixel based
on the focused pixel, wt

j,k, μt
j,k, Σt

j,k are a weight, the mean and the covariance
matrix of the k-th Gaussian in the mixture at time t, and η is a Gaussian
probability density function as follows.

η(Xt
j |μt

j , Σ
t
j) =

1

(2π)
d
2 |Σ| 12

exp
(
−1

2
(Xt

j − μt
j)

T Σ−1(Xt
j − μt

j)
)

(3)

K is determined by the available memory and computational power. Also, to
reduce the computation cost, the covariance matrix is assumed to be of the
form:

Σt
j,k = σt

j,kI (4)

In the case of RGB color space, this means that the red, green, and blue pixel
values are independent and have the same variances. While this is certainly not
the case, the assumption allows us to avoid a costly matrix inversion at the
expense of some accuracy.

Thus, a PDF of the difference between pixel values of a pair of a LDP observed
until time t is characterized by a mixture of K Gaussian distributions. A new
difference value will be represented by one of the components of the mixture
model and used to update the model. We will describe the background model
estimation process in 6 steps.

Step1. Every new difference value Xt
j is examined against the existing K Gaus-

sian distributions until a match is found. Here, the match is defined as a
difference within 2.5 standard deviations of distribution.

Step2. The prior weights wt
j,k of the K distributions of j-th GMM at time t

are updated as follows

wt
j,k = (1 − α)wt−1

j,k + αM t
j,k (5)

where α is the learning rate and M t
j,k is 1 for the matched distribution and

0 for the remaining distributions. After this process, these weights wt
j,k are

renormalized.
Step3. The μt

j,k and σt
j,k parameters for unmatched distributions remain un-

changed. The parameters of the distribution which matches the new obser-
vation are updated as follows

μt
j,k = (1 − ρ)μt−1

j,k + ρXt
j (6)

σt
j,k = (1 − ρ)σt−1

j,k + ρ(Xt
j − μt

j,k)T (Xt
j − μt

j,k) (7)

where ρ is the second learning rate and is defined as follows.

ρ = αη(Xt
j |μt

j,k, Σt
j,k) (8)
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Step4. If none of the K distributions match the current difference value in
Step1, a new Gaussian distribution is created as follows

wt
j,K+1 = W (9)

μt
j,K+1 = Xt

j (10)

σt
j,K+1 = σt

j,K (11)

where W is the initial weight value1 for the new Gaussian. After this process,
the weights are renormalized.
Step4-1: When the weight of the least probable distribution is smaller
than a threshold, the distribution is deleted, and the remaining weights are
renormalized.
Step4-2: When the difference between means of two Gaussians (the one
is ηa and the other is ηb) is smaller than a threshold, these distributions
are integrated into one Gaussian. The new wight, mean and variance of
integrated Gaussian ηc are calculated as follows.

wt
j,c = wt

j,a + wt
j,b (12)

μt
j,c =

wt
j,aμt

j,a + wt
j,bμ

t
j,b

wt
j,a + wt

j,b

(13)

σt
j,c =

wt
j,aσt

j,a + wt
j,bσ

t
j,b

wt
j,a + wt

j,b

(14)

Step5. The Gaussians are ordered by the value of w/σ. This value increases as
the distribution gains more evidence and as the variance decreases.

Step6. The first B distributions are chosen as the background model, and B is
represented as follows

Bj = argmin
b

(
b∑

k=1

wt
j,k > T

)
(15)

where T is a measure of the minimum portion of the data that should be
accounted for by the background. If a small value for T is chosen, the back-
ground model is usually unimodal. If T is higher, a multi-modal distribu-
tion is created by repetitive background changes (e.g. fleeting clouds, the
movement of tree branches or leaves, the waves on water, etc.) could result
in multiple colors being included in the background model. This results in
a transparency effect which allows the background to accept two or more
separate colors.

1 If W is higher, the distribution is chosen as the background model for a long time.
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2.4 Object Detection Using LDP

Object detection based on the LDP using Npair GMMs is defined by following
equation.

f(x, y) =

⎧⎨
⎩ background if

Npair∑
j=1

φ(Xt
j) > th

foreground otherwise
(16)

In Equation 16, φ(Xt
j) is a function which returns 1 or 0, according to whether

the matched distribution found in Step1 is one of the background models (de-
scribed in Step6) or not. In addition, th is a threshold for determining whether
a focused pixel pc belongs to the background or the foreground.

3 Experimental Result

We conducted two kinds of experiments. First, we examined the parameters
(r, Npair) ofLDP and decided one of the goodparameterswhich was used in the fol-
lowing experiment. Second, we compared the accuracy with state-of-the-art meth-
ods. Due to space limitation, we’ll report the result of PETS20012 dataset.

3.1 Preliminary Experiment for Adjusting Parameters

In our proposed method, we focus on a localized circular region of radius r
centered around each pixel, and model a LDP using Npair GMMs. Therefore, we
investigated the parameters (r, Npair) of LDP by several experimental analyses.
Fig.3 shows that the variation of the accuracy across the parameters. Here, we
employed Recall and Precision for the accuracy, and used manually-produced
Ground Truth3 dataset to evaluate them.

Fig.3 shows that there were little changes in the accuracy, when the number
of pair Npair was more than 4. Also it shows that the change of radius r caused
little or no change in the accuracy, when Npair was more than 4.

We evaluated the computational cost. The image size was 320 × 240 (pixel)
and the PC had Core 2 Duo 2.8 GHz CPU and 4GB memory. Table 1 shows
that computational cost increases in proportion to Npair . Therefore, we have
employed Npair = 6 and r = 10 as an optimal parameter for PETS2001 dataset
in terms of the balancing point of the accuracy and the computational cost.

We carried out preliminary experiments for using other data sets and con-
firmed that Npair is not so changed depending on video contents. Therefore,
Npair was not critical for the performance. On the other hand, the radius r de-
pends on the video content. However, it is easy to decide the parameter r from
2 Benchmark data of International Workshop on Performance Evaluation of Tracking

and Surveillance. Available from ftp://pets.rdg.ac.uk/PETS2001/
3 The Ground Truth image denotes foreground regions which should be detected by

background subtraction. We made Ground Truth for some Benchmark data in-
cluding PETS2001 manually, and have published them to the web. Available from
http://limu.ait.kyushu-u.ac.jp/dataset/



Object Detection Using Local Difference Patterns 223

0

20

40

60

80

100

0 20 40 60 80 100

P
r
e
c
is

io
n

 (
%

)

Recall (%)

Npair = 2 Npair = 4 Npair = 6

Npair = 8 Npair = 10 Npair = 12

r = 15

r = 10

r = 5

r = 15

r = 10

r = 5

Fig. 3. The accuracy of object detection in relation to the parameters of LDP

a prior knowledge of the object sizes. In most cases (e.g. surveillance, security,
etc.), we would predict the size of the objects, since the camera is stationary
and observes similar objects in these applications. Hence, it does not lose a gen-
erality or effectiveness of the proposed method, although the parameter can be
determined by the prior knowledge.

3.2 Object Detection Accuracy

We evaluated the accuracy of object detection based on Recall and Precision.
According to experimental result in Section3.1, the parameters of LDP were

Table 1. Computational cost in relation to the parameter Npair

Parameter Average processing time (ms)

Npair = 2 68.4
Npair = 4 149.6
Npair = 6 231.1
Npair = 8 321.7
Npair = 10 391.4
Npair = 12 472.3
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Fig. 4. The accuracy of object detection in relation to the changes of several parameters
in each method: Star signs indicate the best performances on each method

fixed Npair = 6 and r = 10 respectively. However, our approach has some other
parameters; the parameters of GMM (e.g. the initial weight W, threshold T, etc.),
which affect the accuracy. Thus, we conducted some experiments with varying
the parameters. We used GMM method [5] and Hybrid method (Parzen + RRF)
[9] to compare the accuracy with our proposed method. These methods had also
several parameters, therefore we performed some experiments with varying the
parameters of them as well as our proposed method. Fig.4 and Table 2 show the
accuracy of each method. The representative results of background subtraction
are shown in Fig.5. In Table 2 and Fig.5, the states flagged with a star sign in
Fig.4 have been used as the parameters of each method.

We can see that Precision of the Hybrid method was high but Recall of it
was low. This was also confirmed form Fig.5 since there was little noise but

Table 2. The accuracy of object detection

Recall Precision

Proposed method 72.0% 88.9%

Hybrid method (Parzen + RRF) [9] 38.6% 89.9%
GMM method [5] 76.3% 42.6%
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(a) Input image

(b) Ground Truth

(c) Proposed method

(d) Hybrid method (Parzen + RRF) [9]

(e) GMM method [5]

Fig. 5. Object detection by the Proposed method, Hybrid method and GMM method

object regions detected by the Hybrid method were abnormally-small. Fig.4 and
Table 2 also show that Recall of the GMM method was high but Precision of it
was low, and the GMM method detected not only objects but also many noises
in Fig.5. On the other hand, both Recall and Precision of our proposed method
were high, and object regions were accurately detected with little noise.
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Fig. 6. Problem with Our Proposed Method

3.3 Discussion

Totally, LDP gave use better results than state-of-the-art methods. However, we
found out that following problems were caused by the characteristic of LDP that
it used the difference values between focused pixel and peripheral pixels.

– The objects with uniform texture:
We assumed that the LDP ignores global changes such as illumination
changes. However, the LDP sometimes causes a problem in the case where
“a object with uniform texture” appears on “the background with uniform
texture”. In this case, if radius r is smaller than foreground object, the local
changes caused by the objects are mistakenly regarded as global changes. As
the result, our proposed model fails to detect internal regions of the objects
and False Negative increases (see blue-rectangle in Fig.6).
As discussed in Section3.1, this problem can be avoided by selecting a suit-
able radius r from a prior knowledge of a scene. It would be desirable to
decide the parameter automatically, which will be our future work.

– Color similarity between object and background:
In the case where “an object has similar color with background” appears, the
difference between the object and background becomes smaller. It is difficult
to detect such objects in our method (see orange-rectangle in Fig.6).

4 Conclusion

In this paper, we have proposed a new probabilistic background model using sev-
eral GMMs. We considered the illumination fluctuation in the localized region,
and model LDP (the difference values between the values of focused pixel and its
peripheral pixels, which is present on the circumference of circle centered around
focused pixel) using GMMs. We could integrate pixel-based and spatial-based
model themselves by using LDP, and background model using LDP could utilize
both properties without decreasing the accuracy, unlike traditional model. In
our experiment, we have got a good result where both Precision and Recall were
superior to the traditional background subtraction methods.

Future works are summarized as follows.

– Reduction of computational time
Our proposed method have the Npair GMMs, therefore it is cost to up-
date them, where Npair is the number of peripheral pixels. In the case of
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Image Size = 320 × 240 (pixel) and Npair = 6, computational time was
about 230ms using a PC with a Core 2 Duo 2.8GHz CPU and 4GB memory.
It is not good for real-time processing, and therefore we should develop a
mechanism to reduce the computational time.

– Improvement of the accuracy of object detection
Our proposed method has some problems associated with objects, as de-
scribed in section 3.3. Therefore, it is necessary to sophisticate our proposed
method to cope with the objects described in section 3.3.
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Abstract. In set-based face recognition, each set of face images is often
represented as a linear/nonlinear manifold and the Principal Angles (PA)
or Kernel PAs are exploited to measure the (dis-)similarity between man-
ifolds. This work systemically evaluates the effect of using different face
image representations and different types of kernels in the KPA setup
and presents a novel way of randomised learning of manifolds for set-
based face recognition. First, our experiments show that sparse features
such as Local Binary Patterns and Gabor wavelets significantly improve
the accuracy of PA methods over ’pixel intensity’. Combining different
features and types of kernels at their best hyper-parameters in a multi-
ple classifier system has further yielded the improved accuracy. Based on
the encouraging results, we propose a way of randomised learning of ker-
nel types and hyper-parameters by the set-based Randomised Decision
Forests. We observed that the proposed method with linear kernels effi-
ciently competes with those of nonlinear kernels. Further incorporation
of discriminative information by constrained subspaces in the proposed
method has effectively improved the accuracy. In the experiments over
the challenging data sets, the proposed methods improve the accuracy
of the standard KPA method by about 35 percent and outperform the
Support Vector Machine with the set-kernels manually tuned.

1 Introduction

Unlike traditional access control scenarios, face recognition in dynamic environ-
ments is yet extremely challenging due to uncontrolled lighting conditions, large
pose variations, facial expressions and severe occlusions. For the past decade
set-based face recognition has gained a huge interest in related fields. Over con-
ventional single-shot based face recognition, the main benefits have been two
folds: a) its ability to represent and match data over a combination of face
exemplars and b) its natural extension to videos where a tracked object can
be represented as a set of images. This has led to significant improvement in
accuracy and efficiency for face recognition.

Among different methods for set-based face recognition, the most widespread
one is the Principal Angle (PA) method. It represents a set of face images as
a subspace and matches one set to another set using subspace angles. Despite
the popularity of the Principal Angle based methods, it has not received much

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 228–242, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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attention on its efficacy using state-of-the-art face image representations (e.g.
Local Binary Patterns, Gabor features) other than ’pixel intensity’: one reason
for this could be that their very sparse representations might be thought difficult
to be constrained on linear subspaces. Nonlinear extension of the Principal Angle
method by a kernel trick [26] or a set of linear subspaces [15,31] and discrimina-
tive versions of the PA technique e.g. Constrained Mutual Subspace Method [8]
have been successfully developed. They have shown significantly improved accu-
racy over the standard method but their good performance is highly subjective to
the settings in the methods. In the Kernel Principal Angle technique (KPA) [26],
it is not a trivial problem to automatically set the best types of kernels and ker-
nel hyper-parameters. This paper systematically evaluates the Principal Angle
methods over a number of respective issues and proposes a novel way of ran-
domised learning for the PA methods using Randomised Decision Forests [2, 3].
In this work we look at the following key areas in the framework of Principal
Angle based face recognition:

– Performance of features such as Local Binary Patterns (LBP) and Gabor
wavelets, both are sparse representations, over the pixel intensity represen-
tation.

– Combining different features and kernels for the KPA method by a multiple
classifier system.

– Proposing randomised manifold (or kernel) learning by Random Decision
Forests.

– Using the idea of CMSM to incorporate discriminative information for the
proposed method.

We demonstrate these for a video-based face recognition problem.
Rest of the paper is structured as follows. In Section 2 we briefly review re-

lated work. Section 3 details KPA using non-linear feature extraction techniques
and LBPs, followed by the method for combining these features with different
kernels as a multiple classifier system. The Random Manifold Forest is pro-
posed in Section 4. Experimental setup and the results obtained are presented
in Section 5. We conclude our work in Section 6.

2 Related Work

Use of the principal angles(PA) for matching sets of face images was initially
proposed by Yamaguchi et al. [28]. This has become more widely applicable since
the Kernalized version was proposed by Wolf et al. [26]. A large number of related
methods including Boosted Manifold Principal Angles [15], Constrained Mutual
Subspace Method(CMSM) [8] and Orthogonal Subspace Method(OSM) [9] have
been proposed as an improvement over the original PA or KPA method. The
PA-based methods have shown superior to other alternatives such as parametric
distribution matching and simple aggregation of individual sample matching
consistently in literature e.g. [32,31]. However all of the PA methods above have
considered raw pixel intensity images for their input and have not paid much
attention to representations.
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Nonlinear extension of the PA methods has been obtained largely either by
a kernel technique [26] or by expressing a manifold as a set of linear sub-
spaces [15, 31]. Although they have been shown better than the standard PA
method, their good performance is highly dependent on how to form a nonlinear
subspace or manifold. Despite the popularity of the KPA for face recognition, it
has not received attention on its effectiveness using different kernels and hyper-
parameters. Based on the encouraging results by the LBP and Gabor features,
we investigate a way to combine different features and different types of kernels
in a multiple classifier system, firstly assuming the best hyper-parameters given,
and later propose a novel method of randomised learning for both kernel types
and their hyper-parameters by the KPA and random decision forests [2].

CMSM as a discriminative method has been shown to significantly improve
standard PA and KPA techniques. It has since then been used for automatic
character listing in videos [14], recognition in image sets [8]. The main drawback
in CMSM is the choice of the sum space and its dimensionality. Methods such
as multiple CMSM [29] and boosted CMSM [30] have been proposed to address
this problem to a certain extent. But its efficacy is still restricted to a certain
range that needs to be estimated. Here we propose a method that circumvents
this question similar to the problem of choosing a kernel and its hyper-parameter
in the PA or KPA methods.

Multiple classifier system refers to techniques to aggregate the evidences from
multiple sources (or classifiers) and typically provides better performance than
individual base classifiers. These techniques have been widely used in combin-
ing results obtained in biometric systems and also in face recognition exam-
ple [11, 16]. A large number of methods have been developed for combining the
classifier outputs at different levels: the simplest yet robust methods are the sum
and the product rules which combine the classifiers at the measurement/or con-
fidence level [16]. These methods assume that individual classifiers are uncorre-
lated. Some methods fuse classifiers at the classifier confidence level, establishing
the classifier weights by their performances on a validation set [6]. Mixture of
experts (MoE) [10] jointly learns multiple classifiers, their weights and data par-
titions for binary class problems. This was extended to multi-class problems in
Chen et al. [5]. MoE provides an unified framework of multiple classifier
learning and fusion, though it resorts to a local optimal solution due to the iter-
ative algorithm, EM used for optimisation. We have formulated a novel closed-
form solution for learning classifier weights for multi-class problems and have
shown that this outperforms the sum, product, minimum score, maximum score
and weighted sum rules, where the weights were set according to the classifier
accuracies.

Random Decision Forests (RF) introduced by Breimen [2] and Geurts et al. [3]
is a powerful ensemble learning technique and has been used in various applica-
tions such as image segmentation [23], classification [1] and tracking problems
and has shown competitive results in these areas. It is inherently for multi-classes
and shows fast learning and classification performance. Randomised learning
is useful particularly when features to be learnt are difficult to be explicitly
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represented due to a high dimensional space. Comparative studies have been
performed on the accuracy of RF against Support Vector Machines (SVM) [24]
and in many cases, for example in Gene selection [7], RF was shown superior
to the traditional SVMs. In this paper, a novel method for randomised kernel
learning is proposed by RF and in the process, Random Manifolds are defined.
In the experiments over the challenging data sets, the proposed methods have
been shown to outperform the Support Vector Machine with the set-kernels
manually tuned.

3 Combining Features and Kernels for KPA

3.1 Base Classifier Design

Previous face recognition methods based on PA have used raw pixel values as
features. We use LBP (and Gabor) features which have gained an increasing
interest owing to its good performance for classification. Despite having sparse
representations these features have shown to perform very well in our setup
and have significantly improved the accuracy over the exisitng methods using
raw pixels. In addition, we consider nonlinear feature extraction in KPA before
computing the principal angles. In the previous KPA method [26] the dimension
of the set subspace is fixed as the set cardinality. However, the intrinsic dimension
of the subspace by the set is in general much lower than the number of data
points for faces as shown by Kriegman et al. [20]. We apply the Kernel PCA
technique [22] to get ’k’ (� cardinality of set) dimensional approximation of the
original subspace before calculating the principal angles. We get the eigenvectors
associated with the k largest eigenvalues as Qk(Φ(A)), Qk(Φ(B)) for the reduced
dimensional subspaces. The principal angles between two reduced subspaces are
then computed using a kernel trick [26]. Each base classifier is defined as Nearest
Neighbor (NN) classifier in terms of the KPA similarity as

d(A, B) =
1
k

k∑
i=1

cos θi (1)

where A, B are two sets of the LBP (or Gabor) vectors and cos θi, i = 1, ..., k are
the kernel principal angles for the reduced dimensional subspaces and the kernel
used. Here all k principal angles are equally considered and feature selection for
better recognition accuracy [15] is left as future work. The two features, LBP [27]
and Gabor, and three different kernels are used: Gaussian kernel is defined as
K(x, y) = exp(‖x−y‖2

2
σ2 ), Fractional power kernel as K(x, y) = (sign(xT y) ×

(xT y))a, 0 < a < 1, and Polynomial kernel as K(x, y) = (xT y)b, b ≥ 1
respectively.

3.2 Combining Features and Kernels

We propose a novel way of learning classifier weights in multiple classifier system
by a closed-form solution. We later show in experiments that this technique
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outperforms some baseline methods. The classifiers obtained using two different
features (LBP and Gabor) and three different kernels are considered giving a
total of six base classifiers.

Let, ŷc
i ∈ RZ be an indicator vector representing the predicted output of

the c-th classifier for the i-th sample with one in the predicted class and zeros
elsewhere, yi ∈ RZ is an indicator vector for the true class label where Z is the
number of classes. The cost F is defined by:

F = min
wc

∑
i

||
∑

c

(wcŷc
i ) − yi||22. (2)

Also, if Ŷi = [ŷ1
i , ŷ2

i , . . . , ŷ
C
i ] ∈ RZ×C and w = [w1, w2, . . . , wC ]T ∈ RC×1, where

C is the number of classifiers (here six), then the cost is rewritten as:

F = min
w

∑
i

||Ŷiw − yi||22.

Now if Ŷ = [Ŷ T
1 , Ŷ T

2 , . . . , Ŷ T
N ]T ∈ RNZ×C and Y = [yT

1 , yT
2 , . . . , yT

N ]T ∈ RNZ×1

where N is the number of data points (or data sets), then the cost function can
be further rewritten as: F = minw ||Ŷ w − Y ||22 ⇒ F = minw

(
wT Ŷ T Ŷ w −

wT Ŷ T Y − Y T Ŷ w − Y T Y
)
. Differentiating it with respect to w and equating it

to zero gives:

⇒ wF =
(
Ŷ T Ŷ

)−1
Ŷ T Y. (3)

Thus a least square solution for w is obtained using the cost function F .
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Node 1 (branch)              
Rule:  GK , 1.3 , 4 < 0.284911

Node 2 (branch)               
Rule:  FK , 0.65 , 2 < 0.167327

Node 3 (branch)              
Rule:  GK , 0.7 , 3 < 0.421695

Node 4 (branch)            
Rule:  PK , 3 , 5 < 0.511238

Node 5 (branch)               
Rule:  FK , 0.95 , 5 < 0.256295

Node 10 (branch)             
Rule:  GK , 1.1 , 4 < 0.272696

Node 16 (branch)           
Rule:  PK , 4 , 1 < 0.478916

Node 7 (branch)              
Rule:  FK , 0.6 , 5 < 0.268887
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Fig. 1. Example trees in random manifold forests. (left) Decision Rule: First two char-
acters represent the type of kernel (’GK’: Gaussian, ’PK’: Polynomial, ’FK’: Frac-
tional) this is followed by the hyper-parameters of the kernel, next is the reference set
followed by the threshold. (right) More example trees in the forests.
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4 Random Manifold Forests

Until this section we have not discussed how to obtain the hidden parameters
like the hyper-parameters used by the kernels in KPA or the constraint subspace
dimension in CMSM. In this section we propose the set based Random Forest
method and define Random Manifolds for randomised kernel learning. We have
also tested the proposed method with linear kernels and have observed it to effi-
ciently compete with nonlinear kernels. Encouraged by this we go on to propose
a method to incorporate discriminative information.

4.1 Random Manifold Forests for Randomised Kernel Learning

We begin by considering a reference set R for each class. At every node we
randomly select the following: 1) a kernel type, 2) kernel hyper-parameters and
3) a reference set. The split function at a node for a data set X is defined by

f(X, R) = d(X, R) − t =
1
k

k∑
i=1

cos θi − t, (4)

where k is the reduced subspace dimension, R is the reference set randomly
chosen at that node and d is the sum of kernel principal angles for the chosen
type of kernel and its hyper-parameters. Note that a set of vectors is taken as
input of the spit function, whereas a single vector is the input in traditional RFs
This choice is repeated m times from which we select the one that gives us the
best split in terms of the information gain [3] [2]. Figure 1 shows the example
trees built using this method. The decision taken at few of the nodes for one of
the trees is also displayed. At every node we observe that the tree is projecting
the data sets to a different feature space depending upon the choice of the kernel
and its hyper-parameters. This feature space is split into two regions based on
the choice of the reference set R and the threshold t calculated at that node. A
decision is taken based on the region in which the subspace spanned by the test
data set X lies. The decision surface is given by

L : f(X, R) = 0 (5)

It is the separating region at that node. Based on this region the sets X will
either go to the left or the right child of the node, i.e:

Il = {i|f(Xi, R) < 0}
Ir = In \ Il

(6)

where In is the total data sets arriving at the node n.
For a better intuition let us consider that at a particular node in a tree the

sets are projected into a three dimensional feature space and the reference set
spans a line as shown in Figure 2 then, the split function and the separating
region are given by

f(X, R) = cos θ1 − t.

L : f(X, R) = 0 ⇒ cos θ1 = t. (7)
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i.e, the threshold t parameterizes a cone as a separating surface. All the sets
which span a line (plane) that lies in (passes through) this cone go to the left
child and the rest to the right child of this node. This goes on until we reach a leaf
node. Thus in essence a leaf node signifies a group of such discriminating regions
lying in different spaces. As a result we are no more concerned about choosing
a kernel and obtaining its best hyper-parameters since this method allows us to
obtain a combination of discriminating regions lying in different spaces. We call
this region a Random Manifold. Based on this node split strategy, we choose
best split functions that maximize the information gain by Shannon entropy [2].

Fig. 2. A three dimensional example for a separating surface. Note that, unlike stan-
dard Random Decision Trees, we use set-similarity for splitting nodes.

More Randomness. Inspired from the work on random sampling [25] we also
consider using random face subspace for the reference sets, i.e instead of choosing
the best k rank approximation, as explained in Section 3.1, we choose the best
k/2 rank approximates and randomly choose the other k/2 bases from the rest
of the columns in QΦ(X).

In order to further increase the diversity of individual trees in a forests we
consider another setting for RF. In this, the threshold t in equation (4) is set
randomly rather than being chosen optimally in terms of the information gain.
Thus at every node the following need to be randomly chosen: a kernel type, its
hyper-parameter, a reference set, its random subspace and the threshold. At each
node from all the possible combinations we choose m combinations and retain
the one that gives us the best split. This setting is denoted as the Randomised
Threshold Random Forest (RtRF).

4.2 Constrained Random Manifold Forests

We have observed that the linear kernels in tree structures were able to capture
the inherent non-linearity of the data and gave competitive results compared
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with non-linear kernels This motivated us to furtherincorporate discriminative
information obtained from Constrained Mutual subspace matching. CMSM uses
only that information which is essential for recognition. However the main prob-
lem in CMSM is obtaining the optimal constraint space and its dimension. Sim-
ilar to our approach in randomised kernel learning we use Random Manifold
Forest to learn this. At every node we randomly choose the following parame-
ters: 1) a fixed number of sets per subject from the training data to build the
constraint space 2) the dimension of the constraint subspace. As a result of this,
similar to the previous setup, during classification at every node, the test set is
projected onto a different constraint subspace. The combination of discriminat-
ing regions at each leaf node that form the Random Manifolds thus lie in these
constrained subspaces.

Fig. 3. Large variations in pose, illumination, expression and scale for a subject in the
database. Red outlines show the detected/tracked faces.

More Flexibility. In order to increase the flexibility of random manifolds, in-
stead of a single reference set per subject, we use multiple reference sets. Each of
these are obtained by randomly choosing different combinations of the training
data.

5 Experimental Results

Experiments were performed in a video based face recognition framework. We
have built our own database1. This database contains 10 subjects having 35
tracks (face sets) which were taken from two sitcoms ‘Coupling’ and ‘Two and
a half Men’. These tracks contain anywhere between 10-350 face images in
them. Tracks were obtained using a slightly modified version of Anoop et al’s
tracker [21]. Detector used in this is the Viola Jones detector which detects
frontal, left and right profile faces, if the detection is missed then a tracker is
initiated to locate the face. Thus apart from the cropped location of the face, the
detector/tracker also outputs the state of the face, i.e pose of the detected face
(left profile, frontal, right profile) or a tracked face. This additional information
was used to build separate manifolds for each detected pose and matching is
done only winthin each these poses. Final similarity is given as the average of
the measures obtained from each pose. Large variations in facial poses, illumina-
tions, expressions and backgrounds contained in the database are shown for one
of the subjects in Figure 3. The detected/tracked faces are shown by rectangles.
Detected faces were resized to 100 × 100 and passed through the Multi-Scale
Retinex filters [12] for compensating illumination changes. See Figure 4.
1 Database will be made available on requesting the author.
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Table 1. Performance of different features using Gaussian kernel and Polynomial kernel
and CMSM. Results of Fractional Powered kernel are not given due to space constraint.
N* is the number of images in the set.

No. of Gaussian Kernel Polynomial Kernel CMSM
Training
Images

Feature k =
N*

k =
50

k =
25

k =
15

k =
10

k =
5

k =
N*

k =
50

k =
25

k =
15

k =
10

k =
5

k = 30

LBP 91.6 94.4 94.8 94.3 93.2 88.5 94.0 95.4 95.3 95.4 95.4 94.6 98.7
750 Gabor 91.4 93.8 93.7 93.5 93.3 92.9 93.9 93.4 94.0 94.2 94.1 93.2 97.7

Raw 72.3 86.2 85.1 82.9 80.8 71.6 74.2 90.7 90.6 88.9 86.7 78.2 95.7

LBP 87.6 91.6 91.8 91.5 90.3 85.2 91.7 93.6 94.2 94.3 93.8 92.7 95.1
500 Gabor 88.9 90.9 91.1 91.0 90.9 90.2 91.2 91.8 91.6 91.2 90.8 89.9 88.1

Raw 65.1 82.3 81.2 79.5 76.9 68.9 70.0 85.7 85.8 84.7 82.6 74.7 87.8

LBP 76.6 80.6 82.9 83.4 83.5 80.9 81.7 84.4 85.4 86.3 86.4 85.4 86.7
250 Gabor 80.3 81.9 82.6 82.9 82.7 81.5 85.3 85.5 85.9 86.0 85.3 84.8 79.7

Raw 56.9 71.4 75.6 75.5 74.2 70.0 59.0 73.6 78.0 77.9 77.5 72.8 75.3

To further validate our claims we perform experiments using the Oxford
database. This database contains detected face of characters from the movies
‘Player’ and ‘Groundhog Day’. We considered 6 subjects that had at least 100
images. We divided these images equally into 10 sets. We used only raw intensity
features with a single manifold for all poses.

Fig. 4. Example of normalised face images in the sets

5.1 Performance of KPA and CMSM with Different Features and
Kernels

For this experiment only 5 subjects were used from the sitcom database. Three
different features, raw pixel intensity, Gabor and LBP were used. As in [27],
the LBP feature vectors were set to have the length of 9440 and the Gabor
feature vectors the length 9000. For raw pixel we resized the image to 15 × 15
and raster-scanned it to form a vector of size 225. Results are reported for the
three kernels i.e Gaussian, Polynomial and Fractional powered kernels whose
best performing kernel hyper-parameters were set with respect to the test set.
For the training images (reference sets), tracks (face sets) of each subject were
randomly selected so as to have a fixed number of images (750,500 and 250).
These images were considered as a single set and were matched against the
remaining sets. Each feature and the corresponding kernel projects the faces to
a different feature space. The face subspace dimension (described in Section 3.1)
at which it performs best needs not be the same. For this reason, we examined
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various k values to get the best result. Table 1 shows the accuracies in percentage
averaged over 15 different training/testing splits. For CMSM a fixed subspace
dimesnion(30) was considered. LBP and Gabor significantly outperformed the
raw pixel features in both KPA and CMSM setup. LBP performed slightly better
than Gabor. Note also that the accuracy of the methods by the best k is much
better than that of (k = the set cardinality as in [26]). The polynomial kernel
delivered the best accuracy among the three kernels for all the cases.

Table 2. Performance of individual classifiers against the sum, product, weighted
sum(W-Sum), minimum score(Min), maximum score(max) least square methods. N*
is the number of images in the set.

Classifier k =
N*

k =
50

k =
25

k =
15

k =
10

k = 5

C1 89.0 90.9 91.1 91.1 90.9 90.2
C2 21.0 71.5 85.6 89.1 90.7 90.9
C3 91.2 91.8 91.6 91.2 90.8 89.9
C4 87.6 91.6 91.8 91.5 90.4 85.2
C5 80.3 91.4 92.1 92.5 92.0 87.1
C6 91.7 93.6 94.2 94.3 93.8 92.7
Min 91.2 91.8 91.6 91.2 90.8 89.9
Max 22.1 81.2 90.9 92.2 92.0 86.9
W-Sum 92.1 93.7 93.8 93.6 93.5 93.0
Product 91.1 93.6 93.8 93.8 93.5 93.2
Sum 88.7 93.3 94.2 93.8 94.1 93.6
LS 92.9 94.5 95.0 95.2 95.2 94.0

5.2 Multiple Classifier System for KPA

For the multiple classifier system the six base classifiers (2 features * 3 kernels)
were considered: C1: Gaussian kernel with Gabor feature, C2: Fractional power
kernel with Gabor feature, C3: Polynomial kernel with Gabor feature, C4: Gaus-
sian kernel with LBP feature, C5: Fractional power kernel with LBP feature, C6:
Polynomial kernel with LBP feature. The kernel hyper-parameters were set to
perform best for the test set. The product, sum, weighted sum, minimum score
and maximum score rules along with the proposed least square solution (LS)
were compared in the multiple classifier systems. Table 2 shows the accuracies
when the number of training images was 500. As shown our Least square formu-
lation outperforms the individual classifiers and the baseline fusion methods for
all k’s.

5.3 Random Manifold Forests

For convenience, only LBP was exploited in the experiment for Random Manifold
techniques. However, by using the type of features (i.e. LBP or Gabor) as one of
the random choices at a split node, better recognition accuracy may be achieved.
In this experiment, we considered the following choices: a kernel type, a kernel
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Table 3. Performance of RF and RtRF with LBP features for four choices of train-
ing data. ‘Raw’ represents the best performance using raw pixel images with different
kernels and k = No. of images in the set (as in [26]), ‘Max-R’ represents the best
performance using raw pixels with different kernels across k, ‘Max-LBP’ represents the
best performance using LBP features with different kernels across k, ‘sum’ stands for
sum rule (LBP only) and ‘LS’ is for the least square method (LBP only).

Training Without Random Face Subspace(RFS) With RFS
Data Raw Max-R Max-LBP Sum LS RF RtRF RF RtRF

1) 61.11 76.98 92.86 91.27 95.24 94.44 96.03 95.24 96.84
2) 47.20 75.20 86.40 81.60 87.20 91.20 92.00 92.80 92.80
3) 55.22 82.09 88.81 88.81 90.30 87.31 89.55 88.06 90.30
4) 59.50 90.08 94.21 93.39 95.04 92.56 94.21 92.56 94.21

hyper-parameter, a subject. For the reference set we randomly chose 500 images
as explained earlier. For this experiment only 5 subjects were used from the
sitcom database. Due to time and space complexity, we restricted the number of
choices for kernel hyper-parameters to the following values: for Gaussian kernel:
σ varies from 0.5 − 1.4 in steps of 0.1, for Fractional Power Kernel: a varies
from 0.5 − 0.95 in steps of 0.05, for Polynomial Kernel: b varies from 1 − 5
in steps of 1. The total number of choices (M) is thus given by: number of
kernels and its hyper-parameter choices (10 + 10 + 5) × reference sets (5) =
125. We also considered the random face subspace dimension and have shown
the results separately for this. To set the same number of random choices for
different kernels, we considered ten different random face subspace dimensions
for each hyper-parameter choice from the Gaussian and Fractional kernels and
twenty different random face subspace dimensions for each hyper-parameter in
Polynomial kernel. In this case the total number of choices is: (10∗10+10∗10+
5 ∗ 20) ∗ 5 = 1500.

As mentioned in Section 4.1, we considered another setting to increase the
diversity among the trees and denoted the method RtRF. The following threshold
values were experimented: 0.1−0.95 in steps of 0.05, i.e a total of 18 choices. Thus
the total number of choices in this case is 125 ∗ 18 = 2250 without the random
face subspace and 1500 ∗ 18 = 27000 with the random face subspace. Table 3
shows the performance of these two settings for different choices of training data
as the reference set.

5.4 Constrained Random Manifold Forests

In the previous subsection we compared RF results using out-of-bag Error. But
for a fair comparison with SVM techniques we have split the data into two sets
training/testing. We have used 25 face sets per subject for training and 10 for
testing. For the kernel gram matrix in SVM we used the KPA measure between
two sets as given in equation 1. i.e KPA is taken as a kernel between two sets.
The best kernel parameters were manually set for the SVM in the experiments.
We compare this with the RtRF setup which gave the best result in Table 3. We
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Table 4. Comparison on Sitcom database. CRMF-1 refers to a single reference set
and CMRF-4 referes to 4 reference sets CS and CSD denote the number of constraint
subspaces and the number of constraint subspace dimensions used, respectively.

Training CMSM SVM RtRF with RFS CRMF - 1 CRMF - 4
Data Linear Non-L Linear Non-L 1CS,1CSD 5CS,5CSD 1CS,1CSD 5CS,5CSD

1) 81 95 96 89 92 97 100 99 99
85.2 90 96.9 99.1 99 99

2) 89 91 96 92 92 93 97 98 99
88.88 90.1 92.1 96.6 97.5 99

3) 90 93 94 87 90 90 93 96 96
82.27 88.5 87.9 92.4 94.6 95.5

4) 86 94 96 91 93 93 95 98 98
87.54 90.7 91.4 94.2 98 98

Avg 86.71 93.71 96.14 86.6 89.28 92.43 95.74 97.31 97.73

also compare this while using linear kernels where the random choice at every
node are: 1) subject(10) 2) random Face subspace(20) 3) threshold(18). Thus
the total number of choices at every node is 10∗20∗18 = 3600. As mentioned in
Section 4.2 we use discriminative information from CMSM. The constraint spaces
are constructed using randomly selected 10 sets per subject. For space and time
constraints we restrict the choices for constraint spaces to five possible subspace
which are initially computed. We also restrict the dimension of these subspaces
to 50% − 90% (in steps of 10%) of the total (least)significant eigenvalues. To
increase flexibility we consider multiple references sets per subject each of which
is obtained by randomly choosing 500 images from the training data as explained
earlier. Thus the choices at every node are: 1) subject(10) 2) reference set(4)
3) constraint subspace(5) 4) constraint subspace dimension(5). Thus the total
choices are 10∗4∗5∗5 = 1000. Results are shown in Table 4 and compared with
SVM(1-vs-1) and original CMSM. For CMSM, from the training set we randomly
choose 500 images as reference and rest are used to build the constraint space.
Face subspace dimension(k) is kept as 30 and constraint subspace dimension as
90% of the (least)significant eigenvalues. 10 different trails are considered for
RMF and the best along with the average performance is quoted.

For validation purpose, we also show results of the constraint random mani-
fold forests on the Oxford dataset. Here we use raw pixel intensities, face sub-
space dimension(k) is kept at 10 and constraint sapce dimension is 90% of the
(least)significant eigenvalues.

We have successfully included discriminative information(CMSM) in the
linear version of random manifold forest and further improved its accuracy. Tak-
ing Non-Linear SVM as the baseline we get an average increase of 4% on the
sitcom dataset and 32% on the Oxford database. Note that the best kernels
were manually set for the SVM whereas they were automatically learnt in the
proposed method.
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Table 5. Comparison on Oxford database. CRMF-1 refers to a single reference set
and CMRF-4 referes to 4 reference sets. CS and CSD denote the number of constraint
subspaces and the number of constraint subspace dimensions used respectively.

Training CMSM SVM CRMF - 1 CRMF - 4
Data Non-L 1CS,1CSD 5CS,5CSD 1CS,1CSD 5CS,5CSD

1) 87.5 75 83.3 91.67 87.5 100
81.67 88.75 86.67 99.58

2) 91.67 66.67 83.3 95.83 100 100
82.08 91.67 99.17 99.58

3) 87.5 70.83 91.67 100 95.83 100
87.92 97.08 92.92 100

4) 91.67 66.67 87.5 95.83 100 100
84.17 93.33 96.67 100

Avg 85.12 67.26 82.74 92.92 93.04 99.7

6 Conclusions

In this paper we have explored the use of different features/kernels for KPA-
based face recognition and have shown that the accuracy of the KPA method
is significantly improved by using the sparse representations such as LBP and
Gabor features. A novel least square formulation has been proposed for combin-
ing multiple classifiers and it has been shown to outperform some of the existing
combining techniques. Both, the proposed and previous combining methods re-
quire setting the kernel hyper-parameters a priori, which is difficult in practice.
To address this, we propose Random Manifold Forests that is learnt to combine
discriminating regions obtained from different spaces (parameterized by the ker-
nel type and its hyper-parameters).Hence, the method automatically learns the
kernels and hyper-parameters. Taking the KPA with the raw-pixel representa-
tion as a base line, we have achieved the accuracy improvement by about 35
percent on the challenging sitcom data set. We have successfully included dis-
criminative information(CMSM) in the linear version of random manifold forests
and further improved its accuracy.Compared to the non-linear SVM, whose ker-
nels were manually tuned, we obtained an average increase of 4% on the sitcom
dataset and 32% on the Oxford dataset.
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Abstract. Estimating the atmospheric or meteorological visibility dis-
tance is very important for air and ground transport safety, as well as for
air quality. However, there is no holistic approach to tackle the problem
by camera. Most existing methods are data-driven approaches, which
perform a linear regression between the contrast in the scene and the
visual range estimated by means of reference additional sensors. In this
paper, we propose a probabilistic model-based approach which takes into
account the distribution of contrasts in the scene. It is robust to illumi-
nation variations in the scene by taking into account the Lambertian
surfaces. To evaluate our model, meteorological ground truth data were
collected, showing very promising results. This works opens new per-
spectives in the computer vision community dealing with environmental
issues.

1 Introduction

Estimating the atmospheric or meteorological visibility distance is very impor-
tant for transport safety and for air quality monitoring. Dedicated optical sensors
exist but are very expensive. For this reason, they are deployed only in crucial
places like airports. Thus, the use of outdoor cameras is of great interest since
they are low cost and already deployed for other purposes like showing current
traffic and weather conditions [1].

Some attempts are reported in the literature to estimate the visibility using
outdoor cameras or webcams. However, the visibility range differs from one ap-
plication to another, so that there is no holistic approach to tackle the problem
by camera. For road safety applications, the range 0-400 m is usually consid-
ered. For meteorological observation and airport safety, the range 0-1000 m is
usually considered. Visual range is also used for monitoring pollution in urban
areas. In this case, higher visual ranges, typically 1-5 km, are usually considered.
In this paper, we propose a method which copes with the different application
constraints.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 243–254, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Two families of methods are proposed in the literature. The first one estimates
the maximum distance at which a selected target can be seen. The methods dif-
fer depending on the nature of the target and how to estimate the distance. For
intelligent vehicles as well as for visual monitoring of highway traffic, a black
target at the horizon is chosen and a flat road is assumed. Bush [2] uses a
wavelet transform to detect the highest edge in the image with a contrast above
5%. Based on a highway meteorology standard, Hautiére et al. [3] proposed a
reference-free roadside camera-based sensor which not only estimates the visi-
bility range but also detects that the visibility reduction is caused by fog. For
meteorological observations, regions of interest whose distance can be obtained
on standard geographic maps are selected manually [4]. An accurate geometric
calibration of the camera is necessary to operate these methods.

A second family of methods correlates the contrast in the scene with the
visual range estimated by reference additional sensors [5]. No accurate geometric
calibration is necessary. Conversely, a learning phase is needed to estimate the
function which maps the contrast in the scene to the visual range. The method
proposed in this paper belongs to this second family. Usually, a simple gradient
based on the Sobel filter or a high-pass filter in the frequency domain are used
to compute the contrast [6–8]. Luo et al. [9] have shown that the visual range
obtained with both approaches are highly correlated. Liaw et al. [6] proposed to
use a homomorphic filter in addition to the high-pass filter in order to reduce
the effects of non-uniform illumination. Once the contrast is computed, a linear
regression is performed to estimate the mapping function [5, 6, 8]. Due to this
step of linear regression, these methods can be seen as data driven approaches.

Unlike previous data-driven approaches, we propose a probabilistic model-
driven approach which allows computing a physics-based mapping function. Un-
like existing approaches, our model is non-linear, which allows encompassing the
whole spectrum of applications. In particular, our model takes into account the
distribution of contrasts in the scene. Unlike existing approaches, e.g. [8], our
model is robust to illumination variations in the scene by taking into account
the physical properties of objects in the scene. To assess the relevance of our
approach, we have collected ground truth data. Using these rare experimental
data, we are able to present very promising results, which might open new trends
in the computer vision community dealing with environmental issues.

The remainder of this paper is organized as following. In section 2, we recall
the Koschmieder’s model of fog visual effects on which we base our work. In
section 3, we present a model-driven approach, whose experimental evaluation
is carried out in section 4. Finally, we discuss the results and conclude.

2 Vision through the Atmosphere

The attenuation of luminance through the atmosphere was studied by
Koschmieder [10], who derived an equation relating the extinction coefficient
of the atmosphere β, the apparent luminance L of an object located at distance
d, and the luminance L0 measured close to this object:
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L = L0e
−βd + L∞(1 − e−βd) (1)

(1) indicates that the luminance of the object seen through fog is attenuated by
e−βd (Beer-Lambert law); it also reveals a luminance reinforcement of the form
L∞(1 − e−βd) resulting from daylight scattered by the slab of fog between the
object and the observer, the so-called airlight. L∞ is the atmospheric luminance.

On the basis of this equation, Duntley developed a contrast attenuation law
[10], stating that a nearby object exhibiting contrast C0 with the fog in the
background will be perceived at distance d with the following contrast:

C =
[
L0 − L∞

L∞

]
e−βd = C0e

−βd (2)

This expression serves to base the definition of a standard dimension called mete-
orological visibility distance V , i.e. the greatest distance at which a black object
(C0 = −1) of a suitable dimension can be seen on the horizon, with the threshold
contrast set at 5% [11]. It is thus a standard parameter that characterizes the
opacity of a fog layer. This definition yields the following expression:

V ≈ 3
β

(3)

More recently, Koschmieder’s model has received a lot of attention in the com-
puter vision community, e.g. [12–17]. Indeed, thanks to this model, it is possible
to infer the 3D structure of a scene in fog presence, or to dehaze/defog images by
reversing the model. However, it is worth mentioning that in these works a rela-
tive estimation of the meteorological visibility is enough to restore the visibility.
In this paper, we use Koschmieder’s model to estimate the actual meteorological
visibility distance, which makes the problem quite different.

3 The Model-Driven Approach

3.1 Contrast of a Distant Target

Assuming a linear response function of the camera, the intensity I of a distant
point located at distance d in an outdoor scene is given by Koschmieder’s model
(1):

I = Re−βd + A∞(1 − e−βd) (4)

where R is the intrinsic intensity of the pixel, i.e. the intensity corresponding
to the intrinsic luminance value of the corresponding scene point and A∞ is
the background sky intensity. Two points located at roughly the same distance
d1 ≈ d2 = d with different intensities I1 �= I2 form a distant target whose
normalized contrast is given by:

C =
I2 − I1

A∞
=
[
R2 − R1

A∞

]
e−βd = C0e

−βd (5)
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In this equation, the contrast C of a target located at d depends on V = 3
β and

on its intrinsic contrast C0. If we now assume that the surface of the target is
Lambertian, the luminance L at each point i of the target is given by:

L = ρi
E

π
(6)

where ρi denotes the albedo at i. Moreover, it is a classical assumption to set
L∞ = E

π so that (5) finally becomes:

C = (ρ2 − ρ1)e−βd ≈ (ρ2 − ρ1)e−
3d
V = Δρ × e−

3d
V (7)

Consequently, the contrast of a distant Lambertian target only depends on its
physical properties and on its distance to the sensor and on the meteorological
visibility distance, and no longer on the illumination. These surfaces are robust
to strong illumination variations in the computation of the contrast in the scene.

3.2 Probabilistic Modeling

Let us consider an outdoor scene where targets are distributed at different dis-
tances from the camera. Let us denote φ the probability density function of
observing a contrast C in the scene:

P(C < X ≤ C + crfC) = φ(C)crfC (8)

We denote ψ the p.d.f. of there being a target at the distance d. Thanks to (7),
φ can be written as a function of ψ:

φ(C) = − V

3CΔρ
ψ(d) (9)

The mean contrast in the scene can thus be computed thanks to the density of
targets in the scene:

m =
∫ 1

0
Cφ(C)crfC =

∫ +∞

0
Δρψ(d)e−

3d
V crfd (10)

To express m, a realistic expression for the density of targets ψ in the scene is
needed.

3.3 Expectation of the Mean Contrast

In this paragraph, we search an analytical expression of (10). In this aim, we as-
sume a scene which contains n Lambertian targets with random albedos located
at random distances between 0 and dmax. For a given sample scene, we can com-
pute the mean contrast of the targets with respect to the meteorological visibility
distance and plot the corresponding curve. Some sample curves are plotted in
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Fig. 1. Blue: curves depicting the mean contrast in random scenes with respect to the
meteorological visibility distance. Red: expectation of the mean contrast.

blue in Fig. 1 (n = 100 and dmax = 1000 m). We can compute the mathematical
expectation of the mean contrast and obtain the following analytical model:

mu =
V Δρ̄

6dmax

[
1 − exp

(
− 3dmax

V

)]
(11)

where Δρ̄ is the mean albedo difference of the targets in the scene. We plot this
model in red in Fig. 1. If we do not have any a priori on the targets distribution
in the scene, this analytical model is the most probable with which to fit the
data. That will be experimentally assessed in section 4.

At this stage, we can make a comparison with the charging/discharging of
a capacitor. The capacitance of the system is determined by the distribution
of Lambertian targets in the scene. The smaller the capacitance of the system
is, the faster the curves go to 0.5. We thus define an indicator τ of the system
quality which is the meteorological visibility distance at which two thirds of the
”capacitance” is reached. A high value of τ also means a lower sensitivity of the
model at low meteorological visibility distances.

3.4 Model Inversion and Error Estimation

In the previous section, we have computed an analytical expression of the mean
contrast expectation mu with respect to the meteorological visibility distance
V . Ultimately, we would like to compute V as a function of mu. In this aim,
we need to invert the mean contrast expectation function (11). The inversion of
this model exists and is expressed by:

V (mu) =
3mudmax

1 + muW

(
e

−1
mu

mu

) (12)
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(a) (b)

Fig. 2. Instrumentation of our observation field test: (a) the camera grabbing pictures
of the field test;(b) the scatterometer along with the background luminancemeter

where Lambert W is a transcendental function defined by solutions of the
equation WeW = x [18].

4 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed model for
visibility estimation. In this aim, we have collected ground truth data. First, we
present the methodology. Second, we present our method to estimate wether a
surface is Lambertian or not. Third, we present the results.

4.1 Methodology

Instrumentation. The observation field test we used is equipped with a refer-
ence transmissometer (Degreane Horizon TI8510). It serves to calibrate different
scatterometers (Degreane Horizon DF320) used to monitor the meteorological
visibility distance on the French territory, one of which provided our data. They
are coupled with a background luminance sensor (Degreane Horizon LU320)
which monitors the illumination received by the sensor. We have added a cam-
era which grabs images of the field test every ten minutes. The camera is an
8-bit CCD camera (640 × 480 definition, H=8.3 m, θ = 9.8o, fl = 4 mm and
tpix = 9 μm). It is thus a low cost camera which is representative of common
video surveillance cameras. Fig. 2(a) shows the installed camera and its orien-
tation with respect to the field test. Fig. 2(b) shows the scatterometer and the
background luminancemeter.

Data Collection. We have collected two fog events at the end of February
2009. The fog occurred early in the morning and lasted a few hours after sunrise.
During the same days, there were strong sunny weather periods. Fig. 3 shows
sample images. Figs. 3(a) is a sample of sunny weather. Fig. 3(b) is a sam-
ple of cloudy weather. Fig. 3(c) is a sample of foggy weather. The corresponding
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Fig. 3. Samples of data collected in winter 2008-2009: (a) images with strong illumi-
nation conditions and presence of shadows; (b) cloudy conditions; (c) foggy weather
situation; (d) meteorological visibility distance data and (e) background luminance
data collected in the field test during two days

meteorological visibility distances and luminances are plotted in Fig. 3(d,e). As
one can see, the meteorological visibility distance ranges from 100 m to 35.000
m and the luminance ranges from 0 to 6.000 cd.m−2.

We have thus collected quite rare experimental data. Indeed, during a short
period of time, we had rapidly changing weather conditions. The ranges of me-
teorological visibility distance and luminance were very large. In the literature,
works are dedicated to limited ranges of visibility distances. For example, road
safety applications are dealing with 0-400 m whereas people working on envi-
ronmental issues are dealing with meteorological visibility distances which are
above 1000 m. We are among the first to have collected data encompassing both
ranges. Moreover, since the data were collected in a short period of time, we
can consider that the content of the scene did not change. For example, we can
consider that the phenology of the trees did not change, so that the amount of
texture in the scene without fog remains constant. This database is available
on LCPC’s web site http://www.lcpc.fr/en/produits/matilda/ for research
purpose.
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4.2 Location of Lambertian Surfaces

To estimate m and thus V , we compute the normalized gradient only on the
Lambertian surfaces of the scene as proposed in section 3.1. We thus need to
locate Lambertian surfaces in the images. In this aim, we compute the Pearson
coefficient, denoted PL

i,j , between the intensity of pixels in image series where the
position of the sun changes and the value of the background luminance estimated
by the luminancemeter. The closer PL

i,j is to 1, the stronger the probability that
the pixel belongs to a Lambertian surface. This technique provides an efficient
way to locate the Lambertian surfaces in the scene. For our field test, the mask
of Lambertian surfaces is shown in Fig.4. The redder the pixel, the more the
surface is assumed to be Lambertian.

Having located the Lambertian surfaces, we can compute the gradients in the
scene by means of the module of the Sobel filter. For each pixel, we normalize the
gradient Gi,j by the intensity of the background. Since our camera is equipped
with an auto-iris, the background intensity A∞ is most of the time equal to
28 − 1, so that this step can be avoided. Each gradient is then weighted by PL

i,j ,
the probability of a pixel to belong to a Lambertian surface where no depth
discontinuity exists (PL is mostly very small). Consequently, only relevant areas
of the image are used, and the scene need not be totally Lambertian. Finally,
the estimated contrast in the scene m̃u is given by:

m̃u =
H∑

i=0

W∑
j=0

Δρi,j exp
(
−3di,j

V

)
≈

H∑
i=0

W∑
j=0

Gi,j

A∞
PL

i,j (13)

where Δρi,j is the intrinsic contrast of a pixel (7), and H and W are respectively
the height and the width of the images. Finally, the approach makes the best
use of the physics of the scene and would be able to process scenes without any
Lambertian surfaces (at the cost of lowering the quality of the results).

Fig. 4. Mask of Lambertian surfaces on our field test: The redder the pixel is, the
higher the confidence that the surface is Lambertian
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Fig. 5. Visibility estimators: (a) the estimator is based on the contrast on Lambertian
surfaces; (b) the estimator is only based on Sobel’s gradient module

4.3 Results

Contrast Estimators. We have computed (13) for our collection of 150 images
with different meteorological visibility distances. For comparison purposes, we
have also computed the simple sum of gradients in the image without taking into
account the segmentation of the Lambertian surfaces. The results are shown
in Fig. 5. Using the Lambertian surfaces, we can see that the shape of the
distribution in Fig. 5(a) looks like the curve proposed in Fig. 1, which is very
satisfactory. Conversely, when all the pixels of the scene are used, the points are
more scattered when the meteorological visibility distance is above 2500 m (see
Fig. 5(b)). When the visibility is above 2500 m, the illumination by the sun does
influence a lot the gradients in the scene. When the weather is sunny, i.e. the
visibility is better, the influence of the sun is more important so that the gradient
is changing with respect to the sun position. Consequently, the estimation of the
visibility is altered. These two distributions show the benefit of selecting the
Lambertian surfaces to estimate the visibility distance.

Model Fitting. We have to fit the mean contrast model (11) to the data shown
in Fig. 5(a) using robust regression techniques. To ensure a mathematical solu-
tion, we have fitted the model (14), which is slightly different from the theoretical
model. Three unknown variables a, b and dmax have to be estimated, which can
be easily done using classical curve fitting tools.

m̃u =
aV

dmax

[
1 − exp

(
− 3dmax

V

)]
+ b (14)

This model fits well with the data (R2 = 0.91). In particular, we obtain dmax =
307.2 m. The fitted curve is plotted in Fig. 6. We estimated a capacitance of the
system τ ≈ 950 m.
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Fig. 6. Data fitting with the mean contrast model. Dots: data. Red curve: fitted model.

Discussions. From the fitted model, we can now invert the model using (12)
and estimate the meteorological visibility distance Ṽ based on the mean contrast
mu:

Ṽ =
3dmax(b − mu)

(b − mu)W
(

ae
a

b−mu

b − mu

)
− a

(15)

Having estimated the meteorological visibility distance, we can compute the
error on this estimation. The results are given in Table 1. Since the applications
are very different depending on the range of meteorological visibility distances,
we have computed the error and the standard deviation for various applications:
road safety, meteorological observation and air quality. One can see that the
error remains low for critical safety applications. It increases for higher ranges
of visibility distances, and becomes huge for visibility distances above 7 km.

Table 1. Relative errors of meteorological visibility distance estimation with respect
to the envisaged application

Application Highway fog Meteorological fog Haze Air quality

Range [m] 0-400 0-1000 0-5000 0-15000
Number of data 13 19 45 150
Mean error [%] 12.6 18.1 29.7 -

Std [%] 13.7 18.9 22 -

Different points may be discussed. First, the model used in this paper is rele-
vant for uniform distribution of distances which happen in many environments,
such as highway scenes. The scene from which the experimental data used in this
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paper are issued may be not meet this assumption. Second, the Sobel operator
is certainly not the best estimate for the gradient. Indeed, it is a simple high-
pass filter which is problematic because of the impulse noise of camera sensors.
Different filters may be used to beforehand enhance the images, or to compute
the contrast more robustly.

5 Conclusion

In this paper, we propose a probabilistic model-driven approach to estimate
the meteorological visibility distance through use of generic outdoor cameras
based on a mean contrast expectation function. Unlike previous data-driven ap-
proaches, we use a physical model which allows computing a mapping function
between the contrast and the meteorological visibility estimated by an additional
reference sensor. Our model is non-linear which allows dealing with a large spec-
trum of applications. The calibration of our system is less sensitive to the input
data due to its intrinsic physical constraints. In particular, our model takes into
account the distribution of targets in the scene. It is also robust to illumination
variations in the scene by taking into account the Lambertian surfaces. To evalu-
ate the relevance of our approach, we have collected ground truth data with the
help of our national meteorological institute. Using these rare experimental data,
we obtain promising results. In future work, we intend to estimate the contrast
expectation function without any additional meteorological sensor, based only
on the properties of the scene (geometry, texture) collected by remote sensing
techniques and the characteristics of the camera. Such a model-driven approach
paves the road to methods without any learning phases.
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7. Hagiwara, T., Ota, Y., Kaneda, Y., Nagata, Y., Araki, K.: A method of processing
CCTV digital images for poor visibility identification. Transportation Research
Records 1973, 95–104 (2007)

8. Xie, L., Chiu, A., Newsam, S.: Estimating atmospheric visibility using general-
purpose cameras. In: Bebis, G. (ed.) ISVC 2008, Part II. LNCS, vol. 5359,
pp. 356–367. Springer, Heidelberg (2008)

9. Luo, C.H., Wen, C.Y., Yuan, C.S., Liaw, J.-L., Lo, C.C., Chiu, S.H.: Investigation
of urban atmospheric visibility by high-frequency extraction: Model development
and field test. Atmospheric Environment 39, 2545–2552 (2005)

10. Middleton, W.: Vision through the atmosphere. University of Toronto Press (1952)
11. CIE: International Lighting Vocabulary. Number 17.4 (1987)
12. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput.

Vis. 48(3), 233–254 (2002)
13. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images.

IEEE Transactions on Pattern Analysis and Machine Intelligence 25(6), 713–724
(2003)
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Abstract. The state of the art for large database object retrieval in
images is based on quantizing descriptors of interest points into visual
words. High similarity between matching image representations (as bags
of words) is based upon the assumption that matched points in the two
images end up in similar words in hard assignment or in similar rep-
resentations in soft assignment techniques. In this paper we study how
ground truth correspondences can be used to generate better visual vo-
cabularies. Matching of image patches can be done e.g. using deformable
models or from estimating 3D geometry. For optimization of the vocab-
ulary, we propose minimizing the entropies of soft assignment of points.
We base our clustering on hierarchical k-splits. The results from our
entropy based clustering are compared with hierarchical k-means. The
vocabularies have been tested on real data with decreased entropy and
increased true positive rate, as well as better retrieval performance.

1 Introduction

One of the general problems in computer vision is to automate the recognition
process using computer algorithms. For problems such as object recognition and
image retrieval from large databases, the state of the art is based on the bags
of words (BOW) framework [18, 20, 21, 23]. Firstly a set of interest points are
extracted in each of the images using interest point detectors[6, 11, 13, 14] or
dense sampling. Then feature descriptors e.g. SIFT or SURF [2, 11, 15] are
computed at each interest point. To enable fast matching, feature descriptors
are quantized into visual words as a vocabulary, where the descriptors assigned
with the same word are regarded as matched. Finally, the co-occurrence of visual
words between a query image and those in the database is then used to generate
hypotheses of matched images. The matching is often based on the histograms of
visual words and the L1 norm or L2 norm of differences between two histograms
(or the intersection of two histograms) after normalization.

A good vocabulary in the quantization step of the BOW pipeline is crucial for
the recognition and retrieval system. Traditional approaches [9, 18, 21, 23] con-
struct vocabulary by clustering descriptor vectors derived from training images
in an unsupervised way, i.e. without ground truth information on which corre-
spondence class a specific feature belongs to. These approaches either suffer from
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quantization errors or have difficulties in matching wide variety of appearances
of objects in images, due to large differences in view points, lighting conditions
and background clutter as well as the large intra-class variations of the ob-
jects themselves. One way to resolve this is through learning, with the presence
of large amount of correspondence ground truth data. While obtaining ground
truth data from raw images can be expensive, incorporating such information
with proper schemes can enable efficient and accurate recognition performance.

Efforts have been made on learning vocabulary with ground truth information.
Winn et al. [26] quantized features with k-means after which the resulting words
were merged to obtain intra-class compactness and inter-class discrimination.
On the other hand, Moosman et al. used random forests as the quantizer such
that at each split an entropy measure based on the class labels is maximized [17].
In [19] Perronnin et al. used class-level labels and proposed to train class-specific
vocabularies modeled by GMMs and combine them with a universal vocabulary.
The most related work to ours in technical aspects, is the work by Lazebnik et al.
in [10], where they simultaneously optimize the quantizer in Euclidean feature
space and the posterior class distribution. All these previous works imposed the
supervision such that each word in the vocabulary has a discriminative repre-
sentation of the different object classes. However, they have mainly focused on
object categorization and the number of class labels is relatively small (≈ 20)
except for the the work in [7] introduced hidden Markov random fields for se-
mantic embedding of local patch features with relatively large number of class
labels ( ≈ 3600). Our approach is designed for image retrieval and uses very
large scale (≈ 80K − 250K) partially labeled patch correspondences to quantize
feature space in a hierarchical manner.

For object recognition, the learned vocabulary has to be more specific regard-
ing matching features. Each word in the vocabulary should contain only small
number of features such that each word might encode the appearance variations
of a single physical point. In [16], Mikulik et al. start with an unsupervised vo-
cabulary and apply a supervised soft-assignment afterwards, where words are
connected based on the statistics of matched feature points from a huge dataset
with ground truth correspondences. Another line of work [22, 24], is to incor-
porate the supervision into the feature metric learning before quantization such
that the matched pairs of features have small distances than non-matched pairs
in the new mapping. Both methods achieves substantial improvement in the re-
trieval tasks. Our approach works on the original feature space and encodes the
ground truth correspondences in the process of vocabulary generation.

In this paper, we focus on vocabulary for recognition and would like to address
systematically the following questions: (i) How large should the vocabulary be?
In the current literature the sizes range from less than a thousand to millions of
words in the vocabulary. This could of course be highly application dependent.
(ii) How can we evaluate the quality of the vocabulary? (iii) What is the optimal
division of the feature space into words and How do we avoid splitting matching
features into different words? To address the first two questions, we first studied
statistically how true positive rates and false positive rates in matching features
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of a vocabulary affect the retrieval performance. We then present a framework
for supervised vocabulary training using partial or full ground truth information
on correspondences. In such a way, we obtain a vocabulary that encodes the
intra-class variation of each correspondence class leading to improved retrieval
performance.

The rest of the paper is organized as follows. Section 2 contains brief discussion
on methods for obtaining the ground truth correspondences. In Section 3 we
present the modelling of mAP from vocabulary matching statistics. In Section 4
we describe our optimization method for training the vocabulary using ground
truth data. The method is then tested on real image data in Section 5.

2 Ground Truth Correspondence Data

In order to obtain a good visual vocabulary for object recognition in images, we
propose to learn the vocabulary using ground truth information on corresponding
points. The motivation is that we believe that this strengthens the vocabulary
as opposed to just doing unsupervised clustering and we expect the gain to be
worthwhile since the the more expensive training with ground truth is a off-line
process in the retrieval pipeline.

In order for the learned visual vocabulary to be robust a wide variety of
appearances of objects in images, the ground truth datasets should preferably
present for the same physical point or same object (i) Large intra-class variability
of the objects themselves. (ii) Large differences in lighting conditions. (iii) Large
differences in view points. We will discuss in the following some of the methods
for obtaining such data sets.

a b

Fig. 1. Two methods of obtaining ground truth correspondences for vocabulary training
using (a) deformable shape model and (b) structure and motion algorithms

For object categorization, intra-class variability that is present for most object
categories that are interesting for recognition. Deformable models can be used
here to generate correspondences. Training these models can be cumbersome,
but we believe that this will benefit the training process of the visual vocabulary
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enabling a very fast but accurate bottom up search process, that is based on
learned high level features. In Figure 1(a) a deformable shape model estimated
from image data is shown, where the correspondences are based on optimizing the
minimum description length according to [8]. The images are from the starfish
category of the Caltech-256 object category dataset [4].

The lighting variabilities could be achieved by having images of static scenes
taken under substantially changing lighting conditions. View points variabilities
could be obtained by estimating the geometry of objects from images taken at
different view points using a RANSAC framework in combination with epipolar
geometry estimation such as in e.g. [1, 5]. In Figure 1(b) the typical result from
the geometry estimation is shown. From the corresponding points in the images,
feature descriptors can then be extracted from the images. In [16], Mikulik et
al. present an efficient way of generating large scale ground truth dataset from
collections of images by image matching graph. An alternative in [24], Strecha
et al. also utilize geo-tags in their 3D-reconstruction pipeline to obtain geomet-
rically consistent patches. In the experimental section of this paper the visual
vocabularies are trained on partial ground truth data obtained from the UBC
Patch Data [25].

3 Modelling Mean Average Precision from Vocabulary
Statistics

One key argument made in this paper is that good retrieval systems, e g as
measured by mean Average Precision (mAP) can be obtained by studying the
properties of the vocabulary on the statistics of descriptor distribution both for
random (not necessarily matching) descriptor pairs and for matching descriptor
pairs. By matching descriptor pairs we do not mean descriptors that end up in
the same word in the vocabulary, but rather descriptors of matching interest
regions, i.e. regions which are matching in a ground truth sense.

We can evaluate a vocabulary with two simple characteristics, (i) the false
positive rate pfp, which is the probability that two random descriptors end up
in the same word and (ii) the true positive rate ptp, which is the probability that
two matching descriptors end up in the same word.

We argue that the mapping from true positive and false positive rates to mean
average precision can be modelled and analyzed. High mean average precision is
obtained using vocabularies with low false positive rates and high true positive
rates.

The mapping depends on many characteristics of the test, such as the number
of features in each image, the number of images in the database, the proportion
of positive vs negative answers to a image retrieval query etc. In this model we
have for simplicity assumed that histograms are measured with the normed L1
distance, but other distance metrics could be used. In fact the modelling could
come to good use in determining which metrics to use.
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Modelling the L1-distance Distribution for Two Random Images
Assuming that the distribution of features in different visual words is known,

and assuming that features in two random images are independent, it is possible
to simulate and model the distribution of L1 distances. In Figure 2a three such
distributions are shown for small, medium and large vocabularies.

For large vocabularies the histograms are sparse. A reasonable approximation
here is that the distance is d = (2n − 2o)/n, where n is the number of features
in the images and o is the number of common features. The number of over-
lapping features o can be approximated reasonably using binomial distributions
using n samples with probability p = n/w. For increasing vocabulary size this
distribution is pushed towards the right end of the spectrum.

Modelling the L1-distance Distribution for Two Matching Images
For two matching images we assume that there are a number of matching

features. For each matching feature pair there is a certain probability pt that
they end up in the same word. For the remaining features we assume that they
end up in random words according to the distribution above. The resulting
distribution of L1-distance is similar to that of two random features, but pushed
slightly to the left. In Figure 2a three such distributions are shown, again for
small, medium and large vocabularies.

Modelling Precision, Recall and Mean Average Precision
For each vocabulary as characterized by its true and false positive rates

(ptp, pfp), we can estimate the probability distribution of matched image
L1-distance, pm, and the probability distribution of two random image L1-
distance, pr.

Assuming that in a random query there are Ninlier matching images and
Noutlier non-matching images. For each threshold D of L1-distances we obtain
a query result with precision

R =
Ninlier

∫D

0 pm(x)dx

Ninlier

∫ 2
0 pm(x)dx

=
∫ D

0
pm(x)dx

and recall

P =
Ninlier

∫ D

0 pm(x)dx

Ninlier

∫D

0 pm(x)dx + Noutlier

∫D

0 pr(x)dx
=

∫ D

0 pm(x)dx∫ D

0 pm(x)dx + K
∫D

0 pr(x)dx

where K = Noutlier

Ninlier
is the ratio of outliers to inliers in a typical query.

Note that the domain of the normalized L1 distance is between [0,2]. There-
fore, in the equation for recall, we have used 2 as the integration limit in de-
nominator. It follows that the integral in the denominator is 1. From these two
curves it is straightforward to estimate the mean average precision.

Figure 2b shows how the mean average precision depends on the 10-log of the
true and false positive rates (ptp, pfp). Notice that this confirms the theory that
quite large vocabularies are needed for good performance.

A key argument made here is that e.g. for hierarchical vocabulary building,
increased levels of splitting of the vocabulary gives lower true and false positive
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rates. But already for small vocabularies, by demonstrating that one obtains
higher true positive rates, while retaining a low false positive rate will be bene-
ficial for the end performance as measured by the mean average precision.
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Fig. 2. (a) L1-distance distributions for random image pairs (red) and matching image
pairs (green) for three vocabularies of different size. (b) Mean Average Precision as a
function of 10-log of false positive rate (x-axis) and 10-log of true positive rate (y-axis).

4 Optimizing the Vocabulary with Respect to Entropy

We will concentrate on hierarchical divisions of the descriptor space. The result-
ing vocabularies have the advantage that visual word generation is extremely ef-
ficient. Another advantage during training is that the learning and corresponding
optimizations only have to be done at each hierarchical split in the tree.

We assume that a number of descriptors are given, xi ∈ Rd, i = 1 . . .N ,
and that correspondences among such descriptors are known. Here we have rep-
resented such correspondences as the correspondence class Ci for each point i.
The number of correspondence classes is denoted by Nc. In the typical datasets
that we have worked on, the numbers of descriptors are in the order of 500K
and the numbers of correspondence classes are in the order of 150K. The corre-
spondences have been generated by sampling from 3D reconstructions of scenes.
See Section 5.1 for details. Other ways of generating correspondences could be
through geometric matching in image pairs, tracking of points in image sequences
or by hand annotated data.

We will concentrate on the problem of recognizing specific scenes and the data
that we have used is chosen so that points are in correspondence if they denote
the same physical point in the scene. That descriptors are in different correspon-
dence classes does not necessarily mean that they are not in correspondence. On
the contrary, we expect there to be many descriptors in different correspondence
classes that actually correspond quite well. However for points that are in cor-
respondence we would like the corresponding descriptors to end up in the same
word in the final vocabulary.
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Our hierarchical division will be based on k splits in the descriptor space D
at each step. Each such split is represented by k center points c1, . . . , ck and a
scalar m that can be interpreted as a margin. Low values of m represent sharper
cuts and high values represent softer classification.

We study both hard assignment and soft assignment in the following sense.
For hard assignment a descriptor is put in the bin i corresponding to the closest
center ci. For soft assignment we put each point x in the k bins in proportion to
the weight wi according to

wi =
exp( |x−ci|

m )∑k
j=1 exp( |x−cj|

m )
. (1)

Contrary to [10] we use exponential distributions, which give smoothing that
only depends on the differance of distances to the cluster center. Descriptors
for which the distance to the closest centers is similar fall into several bins to a
fair degree, whereas descriptors for distance difference between the two closest
centers is much larger than m fall essentially only into one part of the tree.

4.1 Entropy Model

To optimize the division parameters z = (c1, . . . , ck) for hard assignment and
z = (c1, . . . , ck, m) for soft assignment, we use entropy as a criterion. Entropy
takes into account both that the split is balanced, i.e. that approximately equal
number of descriptors fall into each bin, and that the correspondence classes are
split as cleanly as possible. The entropy for a random variable X with N possible
states is defined as E = −∑N

i=1 p(i) log2(p(i)) , where p is the probability density
function of X . Here we use the 2-log as it is more intuitive and easier to interpret.

Entropy is fairly easy to use in the sense that it is straightforward to define
for both hard and soft assignment. The probability density function is calculated
in the following manner. In each split we calculate the (weighted) histogram of
descriptors in each correspondence class htot = (h(1), . . . , h(Nc)) before the split.
Each descriptor falls partly in the k different parts of the tree, thus contributing
in part to both the k-weighted histogram h1, . . . hk.

By normalizing the histograms with the sum, we obtain correspondence class
probabilities, i.e. ptot(i) = htot(i)∑Nc

i=1 htot(i)
, for the distribution of descriptors among

the correspondence classes before the split and similarly for p1, . . . , pk. The en-
tropy before the split is defined as Etot =

∑Nc

i=1 −ptot(i) log2(ptot(i)) , and simi-
larly for the k branches, Ej =

∑Nc

i=1 −pj(i) log2(pj(i)) . For the split as a whole
we define the entropy as Esplit =

∑k
j=1

nj

ntot
Ej . Here nj =

∑Nc

i=1 hj(i). Ideally
each split, which uses log2(k) extra bits of information, should lower the entropy
with log2(k) bits, i.e. we expect Esplit to be approximately log2(k) less than Etot.
In practice it is difficult to split all examples in the descriptor space as cleanly
as this.
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4.2 Optimizing Entropy

For training data (x1, . . . , xN ), (c1, . . . , cN ) with possible weights (y1, . . . , yN),
it is thus possible to define the split entropy Esplit as a function of the divi-
sion parameters z. For hard assignment, using z = (c1, . . . , ck), this function is
not smooth. The entropy is typically constant as the decision boundaries are
perturbed as long as they do not pass through any of the points xi. For soft
assignment, however, entropy is a smooth function of the division parameters
z = (c1, . . . , ck, m).

In our experiments we have tried a few different approaches for optimizing E
with respect to z.We did not optimize E with respect to the margin m in this
paper.

In the main approach we initialize using k-means iterations with a couple
of different starting points. The best initial estimate is then used as an initial
estimate to a non-linear optimization of z. Here we have calculated the analytical
derivatives dE

dz , which are then used in a non linear optimization.
The entropy for the split can be written as Esplit =

∑k
j=1

nj

ntot
Ej . which

since njpj(i) = hj(i) gives Esplit =
∑k

j=1
1

ntot

∑Nc

i=1(−hj(i) log2(pj(i))) . The
derivative of Esplit is thus

dEsplit

dz
=

−1
ntot

k∑
j=1

Nc∑
i=1

(
dhj(i)

dz
log2(pj(i)) +

nj

ln(2)
dpj(i)

dz
) (2)

Here the sum of the second term over all i is zero, since the sum of the proba-
bilities is constant. Thus

dEsplit

dz
=

1
ntot

k∑
j=1

Nc∑
i=1

(−dhj(i)
dz

log2(pj(i))) . (3)

Here
dpj(i)

dz
=

1
nj

dhj(i)
dz

− hj(i)
n2

j

Nc∑
m=1

dhj(m)
dz

. (4)

The derivatives of the histogram bins are dhj(i)
dz =

∑
j,cj=i

dωj(j)
dz . Finally the

derivatives of the weights are

dωj(i)
dz

=
dej(i)

dz∑k
m=1 em(i)

− ej(i)
∑k

m=1
dem(i)

dz

(
∑k

m=1 em(i))2
, (5)

where
dej(i)

dz
= ej(i)(

(xi − cj)
m|xi − cj |

dcj

dz
− |xi − cj |

m2

dm

dz
. (6)

The value E and the gradient dE
dz are utilized in a non-linear optimization update

with the limited-memory Broyden-Fletcher-Goldfarb-Shanno method, [3, 12]. In
the implementation we have limited the maximum number of iterations of the
optimization to 20 iterations for the first levels, but increased to 30 iterations for
the subsequent levels to avoid over-fitting. This scheme is general for different
values of k.
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5 Experimental Validation

We have tested our method on vocabulary construction with real image data.
The dataset is described in details in Section 5.1. The resulting vocabularies are
evaluated in Section 5.2.

5.1 Dataset and Evaluation

We use three sets of data with partial ground truth on correspondences, from the
UBC Patch Data [25]. These datasets contain scale and orientation normalized
patches (from either difference of Gaussians (DOG) or Harris corners detectors)
sampled from 3D reconstructions of three landmarks (Statue of Liberty, Notre
Dame and Yosemite). In Figure 3 we show two sets of patches in the same corre-
spondence class from the Statue of Liberty and Notredame dataset respectively.
Each dataset (Notre Dame, Liberty and Yosemite) contain approximately 500K
descriptors in 150K correspondence classes.

Fig. 3. Correspondence patches from the Statue of Liberty (Top) and Notredame
(Bottom) dataset

For our experiments, we extracted SIFT descriptors on DOG patches. To
provide correspondence ground truth for training and evaluation, we generated
the whole set of matched pairs for each correspondence class, and a random
non-matched for each patch to form non-matched pairs (with the same reference
image as suggested by [25]).

We then used the methods in Section 4 to construct vocabularies based on
the SIFT descriptors and partial ground truth for these datasets. We have here
used a subset of the data for the training and another non-overlapping subset
for the testing.

5.2 Vocabularies with Hard Assignment

In the first experiment we trained vocabularies with hierarchical k = 3 splits
with 9 levels by optimizing entropy based on soft assignment. When testing,
we used hard assignment with respect to the optimized k cluster centers. We
compare the results with those of hierarchical k-means with 3 splits in each
node. The vocabularies are trained both for hierarchical k-means and for entropy
optimization on a subset (50 percent) of the Statue of Liberty dataset.
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Fig. 4. Evaluation on Liberty data. (50% for training and 20% for testing with k = 3.
Left: Estimated probability of two corresponding (TPR) and two random descriptors
(FPR) ending up in the same word as a function of tree depth. Middle : Entropy as a
function of tree depth. Notice that with each depth entropy is lowered close to 1.5 bit.

The resulting vocabularies were then tested on a subset of the Statue of
Liberty dataset (20 percent) which does not contain the same correspondence
classes as were used in the training. We measured how the entropy decreases
with increasing vocabulary size. Also a subset of matching points were used to
test how often two matching points (True Positive rate, TPR) end up in the
same word. Finally a subset of pair of random unmatched points in the dataset
were used to see how often two unmatched points end up in the same word
(False Positive rate, FPR). This result is shown in figure 4. Notice also that the
probability of two matching features ending up in the same word is higher for
the entropy minimized vocabulary for unseen data points, which suggests the
generality of the learned vocabulary. Moreover, we obtained slightly lower FPR
across different levels of the tree. We also observed that the entropy is lowered by
approximately 1.5 bits (log2(3) ≈ 1.585) with each level in the hierarchical split,
but slightly more so when using an entropy minimized vocabulary, suggesting
that entropy is a fair measure on the quality of the resulting clusters. In this
experiment we used a fixed setting for the margin m = 1.

To further investigate the generality of the method, we have trained vocab-
ularies on 50% of the features from the Statue of Liberty, the Notre Dame and
the Yosemite datasets and tested it on the remaining 50% features. The op-
timized vocabulary compared to hierarchical k-means results in lower entropy
and higher TPR. The resulting plot is very similar to Figure 4 suggesting the
optimized vocabulary generalized well to new data.

5.3 Vocabularies with Soft Assignment

In the next experiment, we used the same vocabulary as in Section 5.2, but
switched to soft assignment when passing unseen feature points down the
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hierarchical tree. Features can then fall in several children nodes where their
weights to the corresponding centers are larger than a preset threshold ε = 10−6.
This results in multiple word ID’s for a single feature. If we regard two features
as matched if they share the same words as before, we will expect higher TPR
as matched features will have greater possibility of overlapping. On the other
hand, two random non-matched features will also tend to have one of the word
ID’s in common. Consequently, the FPR will also increase. Here, we also fixed
the margin to m = 1 during training.

We expect our optimization framework to improve the TPR while controlling
the FPR by training on ground truth data. In Figure 4, we can see that, the
proposed method is marginally better than the hierarchical k-means with respect
to the TPR and FPR curve. Only achieving marginal optimality might be due
to the fact that we have not used enough data for training. On the other hand,
we noted that both soft assignment vocabularies have better matching property
than hard assignment vocabularies. For instance if we aim for 5% false positive
rate, soft assignment achieves approximately 60% true positive rate while hard
assignment obtains only 45%.

5.4 Effects of Margin

In this section, we studied the effect of different margins on soft assignment
tests. Here we fixed the value of m during the training stage and evaluate how
margins affect the match performance for test data. Note that as m becomes
smaller, the soft assignment behaves in a similar way as hard assignment. On
the other hand, larger m implies more ambiguities for each features ending up
in different words; therefore, possibly higher false positive rate for matching.

We have experimented with m = 0.25, 0.5, 1 (Figure 5). As expected, when
increasing the margin we can achieve better TPR with the trade-off of worse
FPR at the same level of the tree. The optimized vocabularies are better than
hierarchical k-means across different margins indicating the usefulness of uti-
lizing ground truth. More importantly, the overall statistics shed lights on how
we should choose the size of the vocabularies (level of hierarchical trees). The
converging trend of all curves with different m’s suggests that at certain number
of words, we can always obtain better TPR with soft assignment but approx-
imately the same FPR. However, such better performance comes at the price
of heavier computation when assigning features to multiple leaf nodes. If m is
too large, features will end up in many words at the leaf node. Therefore, the
efficiency of vocabulary representation of features is overwhelmed by computing
the intersections in the space of word ID’s.

5.5 Image Retrieval

In this section, we verify the usefulness of optimized vocabulary in the recogni-
tion pipeline on the Oxford 5K dataset [20, 21]. The task is to retrieve similar
images to the 55 query images (5 for each of the 11 landmarks in Oxford) in the
dataset of 5062 images. The performance is then evaluate with mean Average



266 Y. Kuang et al.

10
−4

10
−3

10
−2

10
−1

10
0

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

FPR

T
P

R

Ours Hard Assignment

HKM Hard Assignment

Ours m = 0.25

HKM m = 0.25

Ours m = 0.5

HKM m = 0.5

Ours m = 1

HKM m = 1

Fig. 5. The effects of different margins on soft assignment with respect to TPR and
FPR. m = 0.25, 0.5, 1 and hard assignment, where k = 3.

Table 1. mAPs with different levels of hierarchical k-means and our method with k
= 3 on the Oxford 5K dataset

Level HIK k = 3 Our Method k = 3
9 0.1744 0.1955
10 0.1849 0.1979
11 0.1805 0.1837

Precision (mAP) score. Higher mAP indicates that the underlying system on
average retrieves the similar corresponding images at the top of the ranked list.

We follow the BOW baseline system, and use a hierarchical k-means vo-
cabulary and our optimized vocabulary respectively for vocabulary training.
We trained the vocabulary with 50% of a mixture of Liberty, Notredame and
Yosemite patch data which contains approximately 800K features and 250K cor-
respondence classes in total. After that, we use hard assignment to quantize the
SIFT features from the Oxford 5K images. We observe that our optimized vocab-
ulary is always superior to the unsupervised hierarchical k-means by capturing
the local characteristics of the feature space. When increasing the number of
levels to 11 we can see that the performance drops both for hierarchical k-means
and our method. This can be an indication that the vocabulary is over-trained
on the patch data. Note that these results are not directly comparable with [20]
in which vocabularies are trained on features in the images where the actual
retrieval is performed.

6 Conclusions

In this paper, we have developed a general method for optimizing hierarchical
visual vocabularies using correspondence ground truth between features. The
ground truth prior knowledge on the feature space is utilized to refine the local
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structures of the trained vocabulary such that matched features will tend to fall
in the same word. We propose the use of a soft margin hierarchical k-splits tree
where the optimization of the tree is based on minimizing an entropy criterion
defined on ground truth data. Unlike the traditional clustering methods such as
hierarchical k-means, optimization with respect to entropy enables the cluster
centers to adjust locally to capture the implicit connections between features.
We demonstrate the method on real dataset with promising results. Compared
to the unsupervised hierarchical k-means with hard assignment, the optimized
vocabulary obtained higher true positive rate and lower false positive rates.
We also show that soft assignment boosts the overall performance regarding
matching features.

We have in this paper focused on the optimization aspects of vocabulary
training using existing ground truth data. Due to the high dimensionality of
the parameter space, the learning requires huge amounts of data in order to
avoid over-fitting. Therefore, as future work, we aim to generate and utilize
large scale ground truth data to facilitate robust training with geometry or
deformable models. We need also to cope with the inherent quantization errors
introduced by hierarchical quantization. We would like to investigate how the
soft-assignment process might mitigate the such quantization errors. To enable
large scale training, we are also pursuing efficient optimization techniques for
our approach.
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Abstract. We proffer totally-corrective multi-class boosting algorithms
in this work. First, we discuss the methods that extend two-class boost-
ing to multi-class case by studying two existing boosting algorithms:
AdaBoost.MO and SAMME, and formulate convex optimization prob-
lems that minimize their regularized cost functions. Then we propose
a column-generation based totally-corrective framework for multi-class
boosting learning by looking at the Lagrange dual problems. Experi-
mental results on UCI datasets show that the new algorithms have com-
parable generalization capability but converge much faster than their
counterparts. Experiments on MNIST handwriting digit classification
also demonstrate the effectiveness of the proposed algorithms.

1 Introduction

Boosting is a learning method to train a strong classifier by combining many
weak hypotheses. The most popular boosting algorithm is AdaBoost, proposed
by Freund and Schapire [1]. As the fist practical boosting algorithm, AdaBoost
has been applied in many tasks, such as face detection [2] and image retrieval [3].
Most well studied boosting algorithms are designed for two-class classification
problems, to separate positive instances from negative instances.

Typically, weak hypotheses in boosting learning are required to generate a
training error lower than 1/2, in order to receive a nonnegative coefficient. In
binary case, this is equivalent to say that any classifier better than random
guessing is acceptable to be a weak learner. However, this requirement becomes
harder in multi-class case, where random guessing only has an accuracy of 1/K,
if K classes in all are included. For this reason, boosting algorithms often fail at
directly applying to multi-class problems.

A natural idea to overcome the difficulty is to reduce them into multiple binary
ones, since the great success of two-class boosting algorithms. AdaBoost.MO
[4] achieves this purpose by introducing a coding matrix. The final classifier is
multi-dimensional, with each entry boosted on a relabeled set of training data.
Algorithms that use this strategy include -MO, -OC [5], -ECC [6], etc..

Recently, Zhu et al. [7] proposed a new extension called SAMME, which di-
rectly solves the multi-class problem without decomposing. One single multi-
class hypothesis is trained at each iteration. Compared with -MO, SAMME

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 269–280, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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is conceptually simpler and easier to implement. As reported in [7], SAMME
performs similarly to those previous multi-class boosting.

From the perspective of optimization, what AdaBoost.MO and SAMME try
to solve are both convex optimization problems. In [8], Shen and Li indicated
that with the help of the column generation technique, any convex loss func-
tion problem might be optimized through optimizing its corresponding dual in
a boosting fashion. They explored two-class boosting algorithms including Ad-
aBoost, LogitBoost [9] and LPBoost [10]. Inspired by their work, we derive the
Lagrange duals of multi-class boosting algorithms including AdaBoost.MO and
SAMME. Then we design a totally corrective boosting framework for multi-class
classification problems.

The paper is organized as follows. First we briefly describe AdaBoost.MO and
SAMME in Section 2, then we derive the Lagrange duals and present our boost-
ing learning in Section 3. Finally we compare all these multi-class algorithms
and show the experimental results in Section 4.

2 Multi-class Boosting

Let us introduce some notation before we proceed. The multi-class classification
training data are given by (xi, yi), i = 1 . . .N . Here xi is a pattern and yi is
the label, which takes a value from the space Y = {1, . . . , K} if we have K
classes. The goal of multi-class boosting is then to find a classifier f : X → Y
which assigns one and only one label to a new instance (x, y) with a minimum
probability of f(x) �= y.

For the sake of being self-contained, we briefly review the multi-class boosting
algorithms AdaBoost.MO and SAMME in this section.

2.1 AdaBoost.MO

Before boosting, AdaBoost.MO encodes each label into a vector by introducing
a coding matrix. The matrix M could be constructed by ECOC [11] or ran-
dom codes [6]. In this paper, our conclusions will not be affected by the coding

Algorithm 1. AdaBoost.MO (Schapire & Singer, 1999)
Given training data (xi, yi), i = 1 . . . N .
(1) Initialize the weights D1(i, k) = 1/(NK), i = 1 . . . N , k = 1 . . . K;
for t = 1 to T do

(2) Normalize Dt;
(3) Train K weak classifiers h

(t)
k , k = 1 . . . K using distribution Dt;

(4) Compute w(t);
(5) Update weights Dt+1(i, k) = Dt(i, k) exp

(
−w(t)λk(yi)h

(t)
k (xi)

)
;

end for
Output f (x) = [f1(x), · · · , fK(x)]�.
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strategy, therefore, for ease of exposition, we can consider the simplest case.
Given a one-to-one mapping

λk(y) =

{
1 k = y,

−1 k �= y;

the vector of label y will be yK×1 = [−1, · · · , 1, · · · ,−1]
, that is, only one ele-
ment in the vector is +1 which represents the true label, and the others are all −1.
This is usually called a one-per-class approach. In this case, the coding matrix
M is similar to a K-by-K identity matrix. Then the training labels turn to be a
label matrix, and each column of it defines a binary partition over training sam-
ples, on which a binary classifier is feasible to be trained. Apparently, the output
of AdaBoost.MO is a K-dimensional classifier f(x) = [f1(x), · · · , fK(x)]
, with
each sub-classifier boosted from a set of weak hypotheses fk(x) =

∑T
j=1 w(j)h

(j)
k ,

k = 1 . . .K. The algorithm is briefly summarized in Algorithm 1.
For a newly observed instance x∗, the label y∗ is predicted by decoding the

output with some strategy, such as minimizing the loss:

y∗ = argmin
y∈Y

K∑
k=1

exp (λk(y)fk(x)) .

AdaBoost.MO has been proved to perform a stage-wise gradient descent proce-
dure and minimize an exponential function [12]:

loss =
∑
i,k

exp (−λk(yi)fk(xi)) . (1)

2.2 SAMME

SAMME adopts a multi-class exponential loss function and solves a multi-class
problem without reducing it into binary ones. The output coding strategy in
SAMME is different to the one used in AdaBoost.MO. Here for a label y, the
corresponding vector is y = [y1, · · · , yK ]
, where its k-th element is

yk =

{
1 if k = y,

− 1
K−1 otherwise.

Under such a coding strategy, the multi-class loss function can be expressed as

loss (y, f(x)) = exp
(− 1

K (y1f1(x) + · · · + yKfK(x))
)

(2)

= exp
(− 1

K y
f(x)
)
.

The process of SAMME is very similar to AdaBoost. The major difference is that
SAMME adds a new term of log(K − 1) to computing w(t) at each iteration,
and thus the underlying weak learner is only required to be slightly better than
random guessing, that is, more than 1/K accuracy.
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The algorithm of SAMME eventually produces a linear combination of multi-
class weak hypotheses:

f(x) =
T∑

j=1

w(j)h(j)(x),

with h(j)(·) = [h(j)
1 (·), · · · , h

(j)
K (·)]
. It is easy to observe that for assembled

classifier f(x) = [f1(x), · · · , fK(x)]
 with each entry fk =
∑

j w(j)h
(j)
k , we have

f1(x) + f2(x) + · · · + fK(x) = 0. (3)

3 Totally Corrective Multi-class Boosting

The cost functions of AdaBoost.MO and SAMME are both convex. Thus we are
able to derive the corresponding Lagrange duals and look at multi-class problems
from a different view. Based on the duals, we design new algorithms for boosting
learning. We call the two totally corrective methods that are based on the cost
functions of AdaBoost.MO and SAMME as MultiBoostTC1 and MultiBoostTC2,
respectively.

3.1 MultiBoostTC1

We formally rewrite the problem (1) that AdaBoost.MO optimizes:

min
w

∑
i,k

exp

⎛
⎝−

T∑
j=1

w(j)λk(yi)h
(j)
k (xi)

⎞
⎠ (4)

s.t. w � 0, ‖w‖1 ≤ θ.

This is a convex program in w. Note that the constraint ‖w‖1 ≤ θ is not ex-
plicitly enforced in the AdaBoost.MO algorithm. However, without this regu-
larization constraint, one can always make the cost function approach zero via
enlarging the solution w by an arbitrarily large factor. Moreover, it is easy to
check that for a convex and monotonically increasing loss function, ‖w‖1 ≤ θ is
equivalent to ‖w‖1 = θ. In other words, w always locates at the boundary of
the feasibility set.

Theorem 1. The Lagrange dual problem of (4) is

max
r,u

−rθ −
∑
i,k

ui,k log ui,k +
∑
i,k

ui,k (5)

s.t.
∑
i,k

ui,kλk(yi)[h
(1)
k (xi) · · ·h(T )

k (xi)] < r1
, u � 0

Proof. The proof is provided in the Appendix.
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The number of underlying weak classifiers may be infinitely large. In order to
solve the dual problem, we use the column generation technique [10] to add
one constraint at a time until an optimal solution is identified. That is, at each
iteration, we find the weak classifier that most violates the constraint in the
dual problem. So at time t, such an optimal multi-dimensional classifier h(t)(·) =
[h(t)

1 (·), · · · , h
(t)
K (·)]
 can be found by

h(t)(·) = argmax
h(·)

∑
i,k

ui,kλk(yi)hk(xi), (6)

which is equivalent to solving

h
(t)
k (·) = argmax

hk(·)

N∑
i=1

ui,kλk(yi)hk(xi), ∀k = 1 . . .K. (7)

This is exactly the same as the strategy that AdaBoost.MO adopts for generating
the weak classifier at each iteration, that is, to find the weak classifier that
produces the minimum weighted training error.

3.2 MultiBoostTC2

In this section, we present another boosting algorithm based on the multi-class
exponential loss function, which has been used in SAMME:

loss =
N∑

i=1

exp
(− 1

K y
i f(xi)
)

=
N∑

i=1

exp
(
− 1

K y
i
∑T

j=1 w(j)h(j)(xi)
)

Thus the problem that we want to solve is

min
w

N∑
i=1

exp
(
− 1

K

∑
j w(j)y
i h(j)(xi)

)
(8)

s.t. w � 0, ‖w‖1 ≤ θ.

It is easy to verify that the above is also a convex problem, and ‖w‖1 ≤ θ is
equivalent to ‖w‖1 = θ.

Theorem 2. The Lagrange dual problem of (8) is

max
r,u

− θr −
N∑

i=1

ui log ui +
N∑

i=1

ui

s.t.
1
K

N∑
i=1

uiy


i [h(1)(xi) · · ·h(T )(xi)] ≤ r1
. (9)
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For a detailed derivation, we refer the reader to the proof of Theorem 1.
Using the idea of column generation, we find the weak classifier that most

violates the constraint in the dual problem. So at each iteration such an optimal
weak classifier can be found by

h∗(·) = argmax
h(·)

N∑
i=1

uiy


i h(xi). (10)

Recall that h(x) = [h1(x), · · · , hK(x)]
 corresponds to a multi-class classifier
g(x) such that

hk(x) = 1, if g(x) = k. (11)

In other words, h(x) = [h1(x), · · · , hK(x)]
 is obtained by hg(x)(x) = 1 and for
any other k, hk(x) = − 1

K−1 .

Theorem 3. Problem (10) is equivalent to finding the weak classifier g(x) such
that the weighted classification error of g(x) is minimal; i.e., same as in SAMME.

Proof. Here we provide a simpler explanation that differs to the one given in [7].
Mathematically, the above theorem says that (10) is equivalent to solving

g∗(x) = argmin
g(x)

∑
i:g(xi) �=yi

ui. (12)

We know that yi ∈ RK is a vector with its yi-th entry equal to 1 and all the
others are − 1

K−1 , and h(xi) is a vector of the same format. Therefore the inner
product y
i h(xi) can only take values from a binary set:

y
i h(xi) =

{
K

K−1 if g(xi) = yi (correctly classified)

− K
(K−1)2 otherwise (wrongly classified).

Hence,

N∑
i=1

uiy


i h(xi) =

K

K − 1

⎛
⎝ ∑

i:g(xi)=yi

ui − 1
K − 1

∑
i:g(xi) �=yi

ui

⎞
⎠

=
K

K − 1

⎛
⎝ N∑

i=1

ui − K

K − 1

∑
i:g(xi) �=yi

ui

⎞
⎠ . (13)

Because
∑

i ui does not depend on the weak classifier to be chosen, (10) is
equivalent to (12).

Next we need to find the connection between the primal variables w and dual
variables u and r. Take MultiBoostTC2 for example, strong duality holds between
the primal (8) and dual (9) [13]. According to the KKT conditions [13], we have

u∗
i = exp γ∗

i = exp
(
− 1

K

∑
j w∗(j)y
i h(j)(xi)

)
. (14)
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Algorithm 2. Totally Corrective Multi-class Boosting
Given training data (xi, yi), i = 1 . . . N ; termination threshold ε > 0; regularization
coefficient θ; maximum training steps T .
(1) Initialize w = 0; t = 0;

(MultiBoostTC1) ui,k = 1/(NK), ∀i = 1 . . . N , ∀k = 1 . . . K.
(MultiBoostTC2) ui = 1/N , ∀i = 1 . . . N .

while true do
(2) Find a new weak classifier h∗(·) with minimum weighted training error, that
is, solve the problem (7) or (10);
(3) Check for optimal solution: if

(MultiBoostTC1)
∑

i,k ui,kλk(yi)h∗
k(xi) < r + ε.

(MultiBoostTC2) 1
K

∑N
i=1 uiy

�
i h∗(xi) < r + ε

then break;
(4) Add new constraint to the corresponding dual problem;
(5) Solve the dual (5) or (9);
(6) t = t + 1; if t > T , then break;

end while
(7) Calculate the primal w according to the solutions of dual and KKT condition.
(8) Output f (·) =

∑t
j=1 w(j)h(j)(·).

r∗ can be recovered from u∗ by

r∗ = max
j=1,...T

{
1
K

N∑
i=1

uiy


i h(j)(xi)

}
. (15)

This is because at optimality, at least one of dual problem’s constraints is strictly
equal. In our experiments, we have used MOSEK [14], which is a primal-dual
interior-point solver. Both the primal and dual solutions are given at convergence
by MOSEK.

In both MultiBoostTC1 and MultiBoostTC2, all the weak classifiers are up-
dated at each iteration. In this sense, both of them are totally corrective [15].
Looking at the dual programs of these two algorithms, they are quite similar,
thus we can summarize them in Algorithm 2 as a totally-corrective multi-class
boosting framework.

4 Experiments

In this section, we describe two sets of experiments that we ran to verify our
algorithms. The first set of experiments compares the algorithms on a collec-
tion of datasets from the UCI Irvine machine learning repository. The second
experiment makes a comparison on a real image dataset. The algorithms we com-
pare include AdaBoost.MO, MultiBoostTC1, SAMME and MultiBoostTC2. The
dual optimization problems within are solved by using the off-the-shelf MOSEK
package [14].
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4.1 UCI Datasets

We have collected 15 datasets from UCI repository to run the first experiment.
For each time, we randomly select 70% samples for training and 30% for test.
Samples from the same class are partitioned in proportion to maintain the bal-
ance of multi-class problems. This procedure is repeated ten times and the results
are finally averaged.

MultiBoostTC1. The only parameter to be tuned in MultiBoostTC1 is the regu-
larization coefficient θ. We choose it by a two-step cross-validation scheme. First
we run a five-fold cross-validation on a set of sparse and uniformly distributed
values {10, 20, 30, . . . , 100, 200, . . . , 1000}. According to the results, one-fifth of
the candidates are retained. Then we expand them into a new pool to fine tune
the parameter. This scheme seems to find a better parameter value.

Due to the simplicity, we use decision stumps as weak classifiers of
AdaBoost.MO and MultiBoostTC1. The experimental results are shown in Table
1. The maximum numbers of training steps are set to be 100, 500 and 1000. The
table reports the test error and the number of iterations when the training error
converges to zero. For the cases where the value is very close to the maximum, for
example AdaBoost.MO’s convergence steps on dataset Vehicle, the training actu-
ally did not converge within the given number of iterations. Looking at the results
of AdaBoost.MO and MultiBoostTC1, we have the following conclusions.

1. The convergence speed of MultiBoostTC1 is faster than AdaBoost.MO in
most cases. This is because AdaBoost.MO performs a slow gradient descent
process while MultiBoostTC1 is totally corrective. This means a classifier with
less weak hypotheses can be obtained. A simpler model, for example, a cascaded
face detector of smaller size can speed up the detection process, which is critical
to many applications, especially those with the real-time requirements.

2. Note that from the test error results in Table 1, it seems that the stage-wise
boosting algorithms are slightly better than the proposed totally-corrective algo-
rithms on most of the nine tested datasets. However, the difference is negligible.
Indeed, statistical testing does not show a significant performance difference be-
tween the proposed algorithm and its stage-wise counterpart. We conjecture that
if we carefully tune the regularization parameter, our algorithm’s performance
could be improved.

The conclusions are consistent with [8], where they compared AdaBoost and
its totally-corrective version AdaBoost-CG. This meets our expectation since
MultiBoostTC1 can be regarded as a simple extension of AdaBoost-CG to multi-
class case.

MultiBoostTC2. To use column generation technique in dual problems, we
have to find a weak classifier that minimizes the weighted training error for every
iteration. To design a multi-class classifier we may consider using decision trees,
such as classification and regression tree (CART), however, a decision tree that
minimizes the training error is necessarily a fully grown tree which eliminates
any training error via iterative splitting. This perfect tree stops the boosting
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Table 1. Test errors and iterations when training errors converge. All tests are
run 10 times and the results are averaged. AdaBoost.MO(abbreviated to MO)
and MultiBoostTC1(TC1) use decision stumps as weak learners. SAMME and
MultiBoostTC2(TC2) use terminal node bounded CARTs as weak learners.

dataset algorithm test error 100 test error 500 test error 1000 #conv. 100 #conv. 500 #conv. 1000
Segmen- MO 0.081±0.011 0.081±0.009 0.078±0.010 40.4±5.2 40.4±5.2 45.3±7.4
tation TC1 0.108±0.013 0.119±0.017 0.114±0.013 16.8±1.5 15.4±2.7 15.7±2.3

SAMME 0.060±0.014 0.055±0.012 0.056±0.010 4.8±1.4 3.0±0.0 3.6±1.8
TC2 0.064±0.012 0.065±0.009 0.062±0.010 4.1±0.8 3.4±0.5 3.4±0.5

Thyroid MO 0.006±0.001 0.006±0.001 0.006±0.001 98.8±1.5 292.4±60.2 270.2±52.1
TC1 0.006±0.001 0.007±0.001 0.007±0.002 71.7±19.8 35.4±7.1 31.4±5.3
SAMME 0.004±0.001 0.004±0.001 0.004±0.002 2.6±0.8 3.0±0.8 2.5±1.0
TC2 0.004±0.001 0.004±0.001 0.004±0.002 2.6±0.8 2.8±0.6 2.4±0.9

DNA MO 0.061±0.004 0.061±0.004 0.059±0.005 97.6±4.7 492.1±12.5 990.2±19.7
TC1 0.061±0.005 0.061±0.005 0.059±0.005 97.7±4.7 461.8±29.4 570.5±27.0
SAMME 0.049±0.005 0.042±0.005 0.041±0.004 17.9±2.5 17.9±2.3 18.6±1.7
TC2 0.054±0.005 0.052±0.009 0.052±0.009 20.4±4.0 36.2±3.5 48.9±11.6

Svm- MO 0.195±0.021 0.190±0.016 0.210±0.012 98.0±2.7 108.0±10.8 96.6±10.9
guide4 TC1 0.205±0.016 0.252±0.018 0.272±0.015 52.2±14.3 32.0±3.3 32.0±2.8

SAMME 0.160±0.018 0.174±0.016 0.158±0.015 3.0±0.0 3.0±0.0 3.0±0.0
TC2 0.172±0.023 0.184±0.019 0.172±0.018 3.0±0.0 3.0±0.0 3.0±0.0

Svm- MO 0.209±0.032 0.214±0.032 0.221±0.035 91.9±7.6 97.9±12.1 95.5±13.0
guide2 TC1 0.209±0.031 0.250±0.030 0.240±0.021 55.2±16.9 39.6±2.0 39.0±1.5

SAMME 0.211±0.028 0.185±0.031 0.187±0.024 23.6±6.8 16.9±2.5 15.9±2.3
TC2 0.215±0.019 0.203±0.024 0.189±0.024 23.5±4.2 18.9±3.7 17.3±3.5

Wine MO 0.043±0.012 0.053±0.018 0.034±0.014 7.5±1.0 7.5±1.0 7.7±1.1
TC1 0.057±0.036 0.057±0.029 0.043±0.019 5.3±0.8 5.3±0.8 5.9±0.5
SAMME 0.049±0.044 0.045±0.023 0.045±0.040 3.1±0.9 3.4±0.7 2.8±0.6
TC2 0.051±0.039 0.047±0.024 0.049±0.041 2.8±0.6 3.1±0.3 2.8±0.6

Iris MO 0.058±0.027 0.067±0.030 0.058±0.027 34.0±14.0 34.0±14.0 44.9±13.8
TC1 0.078±0.039 0.071±0.040 0.053±0.032 9.6±2.3 9.3±2.1 11.4±2.6
SAMME 0.069±0.021 0.053±0.023 0.082±0.030 4.2±1.4 4.0±1.1 2.8±1.7
TC2 0.053±0.023 0.047±0.027 0.076±0.033 3.3±0.5 3.5±0.5 2.4±0.9

Vehicle MO 0.238±0.014 0.217±0.017 0.220±0.023 98.0±2.0 499.7±0.5 986.6±11.4
TC1 0.236±0.014 0.223±0.021 0.220±0.026 98.0±4.1 351.3±130.5 280.7±102.6
SAMME 0.226±0.019 0.220±0.024 0.226±0.016 24.4±2.7 17.8±1.8 29.9±5.7
TC2 0.220±0.010 0.219±0.024 0.223±0.020 20.8±1.4 18.9±4.3 47.1±5.9

Glass MO 0.325±0.052 0.327±0.060 0.317±0.045 94.1±5.0 102.5±10.3 102.3±14.0
TC1 0.339±0.073 0.355±0.064 0.369±0.066 37.7±6.2 26.6±3.2 28.1±2.6
SAMME 0.248±0.044 0.239±0.045 0.225±0.033 52.5±23.1 14.5±2.1 15.6±3.2
TC2 0.245±0.056 0.253±0.033 0.239±0.037 24.7±6.2 9.2±3.5 10.8±3.9

process at the end of the very first step, and the strong classifier degenerates
into a single decision tree. Therefore, we should add some restrictions to avoid
the over-growing problem.

One of the effective methods is limiting the number of terminal nodes, which
can be achieved by pruning off surplus branches after fully growing the tree. Zhu
et al. used this kind of tree to test their algorithm SAMME. Here we make a
small modification. Instead of eliminating the leaf nodes that result in slower de-
scent of impurity, we eliminate those with smaller summation of sample weights.
This method ensures the decision tree we eventually get is the one with the
minimum weighted error among all the trees having the same number of nodes,
in other words, the optimal weak classifier for boosting. Notice that this is not
incompatible with SAMME, where the weak classifier is only required to be bet-
ter than random guessing. We run SAMME and MultiBoostTC2 using this kind
of tree in the experiment. The number of terminal nodes are chosen through a
five-fold cross-validation.
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Fig. 1. Examples of MNIST handwritten digit dataset
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Fig. 2. Test errors on MNIST. The proposed algorithms are almost identical to their
stage-wise counterparts.

The experimental results are listed in Table 1 as well. Again, the totally cor-
rective algorithm MultiBoostTC2 has a faster convergence speed and comparable
generalization ability with SAMME.

4.2 MNIST Handwritten Digit Dataset

In this experiment, we test the four algorithms on the MNIST dataset . MNIST
contains 60,000 hand-written digit images for training and 10,000 images for
testing. Some examples are shown in Figure 1. Instead of raw pixels, we run the
experiment with pyramid HOG features. The filter we used to do convolution
is Gaussian derivative filter with σ = 2. The number of orientation bins and
dimension of features are set to be 12 and 2172, respectively.

We run each boosting learning ten times and then average the results. Each
time we randomly select 10% of the data from every digit of the samples. The
maximum number of training iterations is set to be 1000. The test error curves
are shown in Figure 2. We can see that the results verify our earlier conclusions.
The numeric results are reported in Table 2.

Table 2. Test errors and convergence steps of the four algorithms

AdaBoost.MO MultiBoostTC1 SAMME MultiBoostTC2

test error 0.0195±0.001 0.0287±0.001 0.0340±0.001 0.0300±0.002

converg. step 52.3±2.4 45.8±2.0 7.42±0.8 6.63±0.8
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5 Conclusion

In this paper, we have studied two different multi-class boosting algorithms.
AdaBoost.MO decomposes a multi-class problem into multiple two-class sub-
problems and then AdaBoost could be applied. SAMME directly produces an
assembled classifier by using a multi-class exponential cost function. The prob-
lems they optimize are both convex, therefore, we can derive the corresponding
Lagrange dual problems, and propose a column generation based framework for
multi-class boosting learning. The algorithms we proposed are totally corrective
and thus have faster convergence rates. Experimental results also show that our
algorithms have comparable generalization capability with AdaBoost.MO and
SAMME.
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Appendix: Proof of Theorem

To derive this Lagrange dual, one needs to introduce a set of auxiliary variables
γi,k = −∑

j w(j)λk(yi)h
(j)
k (xi), ∀i = 1 . . .N , k = 1 . . .K. Then we can rewrite

the primal program (4) into

min
w

∑
i,k

exp γi,k (16)

s.t. γi,k = −
T∑

j=1

w(j)λk(yi)h
(j)
k (xi), w � 0, ‖w‖1 = θ.

By taking the constraints into the object function, we get the Lagrangian:

L(w, γ, u, q, r) =
∑
i,k

expγi,k −
∑
i,k

ui,k

⎛
⎝γi,k +

T∑
j=1

w(j)λk(yi)h
(j)
k (xi)

⎞
⎠

−q
w + r(1
w − θ) (17)

with q � 0. The Lagrange dual function is defined as the minimum value of the
Lagrangian over variables w and γ.

inf
w,γ

L = inf
w,γ

∑
i,k

exp γi,k −
∑
i,k

ui,kγi,k − rθ

−

must be 0︷ ︸︸ ︷⎛
⎝∑

i,k

ui,kλk(yi)[h
(1)
k (xi) · · ·h(T )

k (xi)] + q
 − r1


⎞
⎠w

= −
∑
i,k

conjugate of exponential︷ ︸︸ ︷
sup

γ
(ui,kγi,k − exp γi,k)−rθ

= −
∑
i,k

(ui,k log ui,k − ui,k) − rθ (18)

After eliminating q we obtain the first constraint. As arguments of logarithmic
functions, u � 0. The Lagrange dual problem is maximizing the dual function,
and this completes the proof.
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Abstract. Detecting pedestrians in images and videos plays a critically
important role in many computer vision applications. Extraction of ef-
fective features is the key to this task. Promising features should be
discriminative, robust to various variations and easy to compute. In this
work, we presents a novel feature, termed pyramid center-symmetric local
binary/ternary patterns (pyramid CS-LBP/LTP), for pedestrian detec-
tion. The standard LBP proposed by Ojala et al. [1] mainly captures the
texture information. The proposed CS-LBP feature, in contrast, captures
the gradient information. Moreover, the pyramid CS-LBP/LTP is easy
to implement and computationally efficient, which is desirable for real-
time applications. Experiments on the INRIA pedestrian dataset show
that the proposed feature outperforms the histograms of oriented gra-
dients (HOG) feature and comparable with the start-of-the-art pyramid
HOG (PHOG) feature when using the intersection kernel support vec-
tor machines (HIKSVMs). We also demonstrate that the combination of
our pyramid CS-LBP feature and the PHOG feature could significantly
improve the detection performance—producing state-of-the-art accuracy
on the INRIA pedestrian dataset.

1 Introduction

The ability to detect pedestrians in images has a major impact to applications
such as video surveillance [2], smart vehicles [3, 4], robotics [5]. Changing varia-
tions in human body poses and clothing, combined with varying cluttered back-
grounds and environmental conditions, make this problem far from being solved.
Recently, there has been a surge of interest in pedestrian detection [6–15]. One
of the leading approaches for this problem is based on sequentially applying
a classifier at all the possible subwindows, which are obtained by exhaustively
scanning the input image in different scales and positions. For each sliding win-
dow, certain feature sets are extracted and fed to the classifier, which is trained
beforehand using a set of labeled training data of the same type of features. The
classifier then determines whether the sliding window contains a pedestrian or
not.

Driven by the development of object detection and classification, promising
performance on pedestrian detection have been achieved by:

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 281–292, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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1. using discriminative and robust image features, such as Haar wavelets [6],
region covariance [10, 12], HOG [8, 9] and PHOG [16];

2. using a combination of multiple complementary features [14];
3. including spatial information [16];
4. the choices of classifiers, such as SVMs [8, 16], AdaBoost [17].

Feature extraction is of the center importance here. Features must be robust,
discriminative, compact and efficient. HOG is still considered as one of the state-
of-the-art and most popular features used for pedestrian detection [8]. One of
its drawbacks is the heavy computation. Maji et al. [16] introduced the PHOG
feature into pedestrian detection, and their experiments showed that PHOG
can yield better classification accuracy than the conventional HOG and is much
computationally simpler and have smaller dimensions. However, these HOG-like
features, which capture the edge or the local shape information, could perform
poorly when the background is cluttered with noisy edges [14].

Our goal here is to develop a feature extraction method for pedestrian detec-
tion that, in comparison to the state-of-the-art, is comparable in performance
but faster to compute. A conjecture is that, if both the shape and texture infor-
mation are used as the features for pedestrian detection, the detection accuracy
is likely to increase. The center-symmetric local binary patterns (CS-LBP) fea-
ture [18], which is a modified version of the LBP texture feature descriptor,
inherits the desirable properties of both texture features and gradient based fea-
tures. In addition, they are computationally cheaper and easier to implement.
Furthermore, CS-LBP can be extended to center-symmetric Local Trinary Pat-
terns (CS-LTP), which is more descriptive and less sensitive to noise in uniform
image regions. In this work, we propose the pyramid CS-LBP/LTP features for
pedestrian detection. Experiments on the INRIA dataset show that our new fea-
tures outperform HOG and comparable with the state-of-the-art PHOG with the
histogram intersection kernel SVMs (HIKSVMs) [16]. As the second contribution
of this work, we show that the detection performance can be further improved
significantly by combining our proposed feature with the PHOG feature.

2 Preliminaries

2.1 The LBP and LTP Features

LBP is a texture descriptor that codifies local primitives (such as curved
edges, spots, flat areas) into a feature histogram. LBP and its extensions out-
perform existing texture descriptors both with respect to performance and to
computational efficiency [1].

The standard version of the LBP feature of a pixel is formed by thresholding
the 3×3-neighborhood of each pixel with the center pixel’s value . Let gc be the
center pixel graylevel and gi (i = 0, 1, · · · , 7) be the graylevel of each surrounding
pixel. If gi is smaller than gc, the binary result of the pixel is set to 0, otherwise
to 1. All the results are combined to a 8-bit binary value. The decimal value of
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(a) Illustration of the standard LBP
operator.
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(b) The LBP operator of a pixel’s circular
neighborhoods with r = 1, p = 8.

Fig. 1. The LBP operator

the binary is the LBP feature. See Fig. 1 for an illustration of computing the
basic LBP feature.

In order to be able to cope with textures at different scales, the original
LBP has been extended to arbitrary circular neighborhoods [19] by defining the
neighborhood as a set of sampling points evenly spaced on a circle centered at a
pixel to be labeled. It allows any radius and number of sampling points. Bilinear
interpolation is used when a sampling point does not fall in the center of a pixel.
Let LBPp,r denote the LBP feature of a pixel’s circular neighborhoods, where r
is the radius of the circle and p is the number of sampling points on the circle.
The LBPp,r can be computed as follows:

LBPp,r =
p−1∑
i=0

S(gi − gc)2i, S(x) =

{
1 if x ≥ 0,
0 otherwise.

(1)

Here gc is the center pixel’s graylevel and gi (i = 0, 1, · · · , 7) is the graylevel of
each sampling pixel on the circle. See Fig. 1 for an illustration of computing the
LBP feature of a pixel’s circular neighborhoods with r = 1 and p = 8.

Ojala et al. [19] proposed the concept of “uniform patterns” to reduce the
number of possible LBP patterns while keeping its discrimination power. A LBP
pattern is called uniform if the binary pattern contains at most two bitwise
transitions from 0 to 1 or vice versa when the bit pattern is considered circular.
For example, the bit pattern 11111111 (no transition), 00001100 (two transitions)
are uniform whereas the pattern 01010000 (four transitions) is not. The uniform
pattern constraint reduces the number of LBP patterns from 256 to 58 and is
successfully applied to face detection in [20].

In order to make LBP less sensitive to noise, particularly in near-uniform
image regions, Tan and Triggs [21] extended LBP to 3-valued codes, called local
trinary patterns(LTP). If each surrounding graylevel gi is in a zone of width ±t
around the center graylevel gc, the result value is quantized to 0. The value is
quantized to +1 if gi is above this and is quantized to −1 if gi is below this. The
LTPp,r can be computed as:

LTPp,r =
p−1∑
i=0

S(gi − gc)3i, S(x) =

⎧⎪⎨
⎪⎩

1 if x ≥ t,
0 if |x| < t,
−1 if x ≤ t,

(2)
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Fig. 2. The LTP operator

Here t is a user-specified threshold. Fig. 2a shows the encoding procedure of LTP.
For simplicity, Tan and Triggs [21] used a coding scheme that splits each ternary
pattern into its positive and negative halves as illustrated in Fig. 2b, treating
these as two separate channels of LBP codings for which separate histograms
are computed, combining the results only at the end of the computation.

2.2 The CS-LBP/LTP Patterns

The CS-LBP is another modified version of LBP. It is originally proposed to
alleviate some drawbacks of the standard LBP. For example, the original LBP
histogram could be very long and the original LBP feature is not robust on flat
images. As demonstrated in Fig. 3, instead of comparing the graylevel of each
pixel with the center pixel, the center-symmetric pairs of pixels are compared.
The CS-LBP features can be computed by:

CS-LBPp,r,t =
N/2−1∑

i=0

S(gi − gi+(N/2))2i, S(x) =

{
1 if x ≥ t,
0 otherwise.

(3)

Here gi and gi+N/2 correspond to the graylevel of center-symmetric pairs of pix-
els (N in total) equally spaced on a circle of radius r. Moreover, t is a small
value used to threshold the graylevel difference so as to increase the robust-
ness of the CS-LBP feature on flat image regions. From the computation of
CS-LBP, we can see that the CS-LBP is closely related to the gradient operator,
because like some gradient operators, it considers graylevel differences between
pairs of opposite pixels in a neighborhood. In this way the CS-LBP feature
takes advantage of the properties of both the LBP and gradient based features.
In [18], the authors used the CS-LBP descriptor to describe the region around
an interest point and their experiments show that the performance is almost
equally promising as the popular SIFT descriptor. The authors also compared
the computational complexity of the CS-LBP descriptor with the SIFT descrip-
tor and it has been shown that the CS-LBP descriptor is on average 2 to 3 times
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Fig. 3. The CS-LBP features for a neighborhood of 8 pixels

faster than the SIFT. That is because the CS-LBP feature needs only simple
arithmetic operations while the SIFT requires time consuming inverse tangent
computation when computing the gradient orientation.

Similarly as “uniform LBP patterns”, we propose “uniform CS-LBP patterns”
to reduce the original CS-LBP pattern numbers. A CS-LBP pattern is called uni-
form if the binary pattern contains at most one bitwise transition from 0 to 1 or
vice versa. For example, patterns 0000 (no transition) and 0111 (one transition)
are uniform whereas patterns 0010 (two transitions ) and 1010 (three transi-
tions) are not. We computed the CS-LBP patterns of 741 images in the INRIA
dataset (288 images containing pedestrians and 453 images without pedestrians)
and found that 87.82% of the patterns are uniform, shown in Table 1.

The CS-LTP patterns and the uniform CS-LTP patterns can be developed
similarity as the CS-LBP and the uniform CS-LBP.

Table 1. The distribution of the CS-LBP patterns (uniform and non-uniform) on the
INRIA pedestrian dataset

Uniform pattern 0000 0001 0011 0111 1000 1100 1110 1111 Total
Percent. (%) 8.93 11.80 8.72 10.22 8.31 9.27 10.99 19.57 87.82

Non-uniform pattern 0010 0100 0101 0110 1001 1010 1011 1101 Total
Percent. (%) 1.24 1.14 1.52 1.28 1.86 1.31 1.73 2.11 12.18

2.3 The Pyramid CS-LBP/LTP Features and Pyramid Uniform
CS-LBP/LTP Features

Motivated by the image pyramid representation in [22] and the HOG feature [8],
Bosch et al. [23] proposed the PHOG descriptor, which consists of a pyramid
of histograms of orientation gradients, to represent an image by its local shape
and the spatial layout of the shape. Experiments showed that PHOG feature to-
gether with the histogram intersection kernel can bring significant performance
to object classification and recognition. Maji et al. [16] introduced the PHOG
feature into pedestrian detection and achieved the current state-of-the-art on
pedestrian detection.In this study, we propose the pyramid CS-LBP/LTP fea-
tures. Because the LTP patterns can be divided into two LBP patterns, we only
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Fig. 4. The first three steps of computing the pyramid CS-LBP feature. (1)Edge energy
responses corresponding to each CS-LBP pattern of the input 128 × 64 image are
computed. (2)The responses are L1 normalized over all layers in each non overlapping
16 × 16 cells independently so that the normalized gradient values in each cell sum
to unity. (3)The features at each level is extracted by concatenating the histograms,
which are constructed by summing up the normalized response within each cell at the
level. The cell size at level 1,2,3 and 4 are 64×64,32×32,16×16 and 6×6 respectively.

illustrate the computation of the pyramid CS-LBP features. Our features of a
64× 128 detection window are computed as follows ( Fig. 4 shows the first three
steps of computing the features):

1) We compute the CS-LBP value and the norm of each pixel of the input
grayscale image(detection window). The LBP value is computed as Eq. 3 with
t = 0.015 and the norm of the pixel located at (x, y) is computed as: norm(x, y) =√

G2
x(x, y) + G2

y(x, y), where Gx(x, y) and Gy(x, y) are the horizontal gradient
and vertical gradient of the pixel. Then we obtain 16 layers of norm images
corresponding to each CS-LBP pattern. We call them edge energy responses of
the input image. Fig. 5 shows the 8 layers of edge energy responses of the example
image corresponding to each uniform CS-LBP pattern respectively. The 8 layers
of edge energy responses corresponding to non-uniform CS-LBP patterns are not
plotted due to space limit.

2) Each layer of the response image is L1 normalized in non overlapping cells
of fixed size yn × xn (yn = 16, xn = 16) so that the normalized gradient values
in each cell sum to unity.

3) At each level l ∈ {1, 2, ...L}, the response image is divided into non overlap-
ping cells of size yl×xl, and a histogram with 16 bins is constructed by summing
up normalized response within the cell. In our case, L = 4, y1 = x1 = 64, y2 =
x2 = 32, y3 = x3 = 16, y4 = x4 = 6. So we obtain 2, 8, 32, and 210 histograms
at level l = 1, 2, 3 and 4 respectively.

4) The histograms of each level is normalized to sum to unity. This normaliza-
tion ensures that the edge or texture rich images are not weighted more strongly
than others.

5)The features at a level l are weighted by a factor wl(w1 = 1, w2 = 2, w3 =
4, w4 = 9), and the features at all the levels are concatenated to form a vector
of dimension 4, 032, which is called pyramid CS-LBP features.
The precess of computing pyramid uniform CS-LBP features is almost same as
pyramid CS-LBP. The only difference lies in the first step. In the first step,
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Fig. 5. Edge energy responses of an example image. The first image is the input image
and the rests are its 8 layers of edge energy responses corresponding to the 8 uniform
CS-LBP pattern. The 8 layers of edge energy responses corresponding to the 8 non-
uniform patterns are not shown due to space limit.

the edge energy responses corresponding to the 8 different uniform patterns are
count into 8 different layers and the edge energy response corresponding to all
the 8 non-uniform patterns are count into one layer. So we obtain 9 layers of
edge energy responses of the input image.

3 Pedestrian Detection Based on Pyramid CS-LBP/LTP
Features

We use the sliding window approach. The first major component of our approach
is feature extraction. We perform the graylevel normalization of the input image
to deduce the illumination variance. After the normalization is performed, all the
input image have the graylevel ranged from 0 to 1. Then the detection window
slides on the input images in all positions and scales, with a fixed step size 8× 8
and a fixed scale factor 1.0905. We follow the steps in Sec. 2.3 to compute the
pyramid CS-LBP/LTP features of each 64 × 128 detection window.

The second major component of our approach is the classifier. We use his-
togram intersection kernel SVMs (HIKSVMs) [16] as the classifier. The his-
togram intersection kernel, kHI(ha, hb) =

∑n
i=1 min(ha(i), hb(i)) is often used as

a measurement of similarity between histogram ha and hb and it can be used
as a kernel for classification using SVMs. Compared to linear SVMs, histogram
intersection kernel involves great computational expense. Maji et al. [16] approx-
imated the histogram intersection kernel for faster execution. Their experiments
showed that the approximate HIKSVMs consistently outperforms linear SVMs
at a modest increase in running time.

The third major component of our approach is the merging of the multiple
overlapping detections using non maximal suppression(NMS). After merging,
detections with bounding boxes and confidence scores are obtained.
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4 Experiments

4.1 Experiment Setup

Datasets. We perform the experiments on INRIA pedestrian dataset [8], which
is one of the most popular publicly available datasets. The dataset consists of a
training set and a test set. The training set contains 1, 208 images of size 96×160
pixels (a margin of 16 pixels around each side) of human samples (2, 416 mirrored
samples) and 1, 218 pedestrian-free images. The test set contains 288 images with
human samples and 453 human free images. The human samples are cropped
from a varied set of personal photos and vary in pose, clothing, illumination,
background and partial occlusions, what make the dataset is very challenge.

Methodology. Per-window performance is accepted as the methodology for
evaluating pedestrian detectors by most researchers. But this evaluating method-
ology is flawed. As pointed out in [13], per-window performance can fail to
predicate per-image performance. There may be at least two reasons: first, per-
window evaluation does not measure errors caused by detections at incorrect
scales or positions or arising from false detections on body parts, nor does
it take into account the effect of non maximal suppression. Second, the per-
window scheme uses cropped positives and uncropped negatives for training
and testing: classifiers may exploit window boundary effects as discriminative
features leading to good per-window but poor per-image performance. In this pa-
per, we use per-image performance, plotting detection rate versus false positives
per-image(FPPI).

We select the 2, 416 mirrored human samples from the training set as pos-
itive training examples. A fixed set of 12, 180 patches sampled randomly from
1, 218 pedestrian-free training images as initial negative set. As in [8], a pre-
liminary HIKSVMs detector is trained and the 1, 218 negative training im-
ages are searched exhaustively for false positives(‘hard examples’). The final
classifier is then trained using the augmented set(initial 12, 180 + hard exam-
ples). The SVMs tool we used is the fast intersection kernel SVMs proposed by
Maji et al. [16].

We detect pedestrians on each test images (both positive and negative) in all
positions and scale with a step size 8×8 and a scale factor 1.0905. Multiscale and
nearby detections are merged using NMS and a list of detected bounding boxes
are given out. Evaluation on the list of detected bounding box is done using the
PASCAL criterion which counts a detection to be correct if the overlap of the
detected bounding box and ground truth bounding box is greater than 0.5.

4.2 Performance of the Pyramid CS-LBP/LTP Feature Based
Detector

In this section, we study the performance of our approach by comparing with
the state of art PHOG feature based approach. We obtain the PHOG based
detector from its author, and all the parameters of the PHOG( such as the L1
normalization cell size, the level number and cell size in each level) are same
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Fig. 6. Detection rate versus false positive per-image (FPPI) curves for detectors based
on the pyramid CS-LBP/LTP features using HIKSVMs classifier, the pyramid uniform
CS-LBP/LTP features using HIKSVMs classifier, the PHOG feature using HIKSVMs
classifier and the HOG feature using linear SVMs classifier. 8× 8 is the step size and
1.0905 is the scale factor of the sliding detection window.

as our features. The results are shown in Fig. 6. The performance of pyramid
CS-LTP based detector performs best, with detection rate over 80% at 0.5 FPPI.
Then followed by the pyramid uniform CS-LTP based detector, which is slightly
better than the PHOG based detector. The pyramid CS-LBP based detector
performs almost as good as the PHOG. Though the pyramid uniform CS-LBP
based detector performs slightly worse than PHOG basd detector, it outper-
forms the HOG features with linear SVMs based detector proposed by Dalal
and Triggs [8].

4.3 Detection Results with Features Combined with Pyramid
CS-LBP and PHOG

In this experiment, our main aim is to find out whether the combination of our
feature with PHOG feature can achieve better detection result or not. We use
the following simplest method to combine the pyramid uniform CS-LBP feature
with the PHOG feature [24]:

Kc(v1, v2) = 0.5K1(v1) + 0.5K2(v2) (4)

where K1 and K2 are the HIKSVMs classifiers pretrained using the pyramid
uniform CS-LBP feature and the PHOG feature respectively, v1 and v2 are the
pyramid uniform CS-LBP feature and the PHOG feature of a detection window
respectively.

Detection performance are shown In Fig. 7. The detection rate versus FPPI
curves show that the feature combination can significantly improve the detection
performance. Compared to the PHOG, the detection rate raises about 6% at 0.25
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Fig. 7. Detection rate versus false positive per-image(FPPI) curves for detectors(using
HIKSVMs classifier) based on the PHOG features, the uniform CS-LBP feature and
the augmented features combined by the HOG and the pyramid uniform CS-LBP. The
augmented feature can improve the detection accuracy significantly. 8 × 8 is the step
size and 1.0905 is the scale factor of the sliding detection window.

Fig. 8. Some examples of detections on test images for the detectors using PHOG,
pyramid uniform CS-LBP and augmented features (combined with HOG and pyramid
uniform CS-LBP). First row: detected by the PHOG based detector. Second row: de-
tected by the pyramid uniform CS-LBP based detector. Third row: detected by the
PHOG+pyramid uniform CS-LBP based detector.

FPPI and raises about 1.5% at 0.5 to 1 FPPI. Fig. 8 shows pedestrian detection
on some example test images. The three rows show the bounding boxes detected
by PHOG based detector, the pyramid uniform CS-LBP based detector and the
PHOG + pyramid uniform CS-LBP based detector, respectively.
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5 Conclusions

Experimental results on the INRIA dataset show that the pyramid CS-LTP
features using the HIKSVMs classifier outperform the PHOG, and the pyramid
CS-LBP features perform as well as the HOG feature. We have also show that
combining the pyramid CS-LBP with PHOG produces a significantly better
detection performance on the INRIA dataset.

There are many directions for further research. To make the conclusion more
convincing, the performance of the pyramid CS-LBP/LTP features based pedes-
trian detector needs to be further evaluated on other dataset, e.g., the Caltech
Pedestrian Dataset [13]. Another further study is to compare the computational
complexity of the pyramid CS-LBP/LTP features with PHOG both theoreti-
cally and experimentally. Thirdly, it is worthy studying how to combine our
features with PHOG or other features more efficiently. We are also interested in
implement the new feature in a boosting framework.
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Abstract. Local feature-based object recognition methods recognize
learned objects by unordered local feature matching followed by verifi-
cation. However, the matching between unordered feature sets might be
ambiguous as the number of objects increases, because multiple similar
features can be observed in different objects. In this context, we present a
new method for textured object recognition based on relational informa-
tion between local features. To efficiently reduce ambiguity, we represent
objects using the Attributed Relational Graph. Robust object recogni-
tion is achieved by the inexact graph matching. Here, we propose a new
method for building graphs and define robust attributes for nodes and
edges of the graph, which are the most important factors in the graph-
based object representation, and also propose a cost function for graph
matching. Dependent on the proposed attributes, the proposed frame-
work can be applied to both single-image-based and stereo-image-based
object recognition.

1 Introduction

One main issue in object recognition is how to cope with appearance varia-
tions caused by photometric and geometric changes. In this point of view, a
local invariant feature-based approach is one faithful solution for robust object
recognition. In this approach, each object is represented by the set of unordered
local features which are invariant to photometric and geometric variations. This
approach is generally composed of several steps.

The first step is visual part detection. Lindeberg [1] proposed a method on
blob-like image structure detection in scale space. Shokoufandeh et al. [2] ex-
tended this feature to wavelet domain. Schmid et al. [3] compared various interest
point detectors and concluded that the scale-reflected Harris corner detector is
the most robust to image variations. Mikolajczyk and Schmid [4] also compared
visual part extractors and found that the Harris-Laplacian-based part detector
is suitable for most applications. The next step is to generate proper descrip-
tors of extracted features for matching. Recently several visual descriptors have
been proposed [5–9]. Most approaches try to encode local visual information
such as spatial orientation or edgeness. Based on these local visual features and
their descriptors, several object recognition methods, such as the probabilistic

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 293–306, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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voting method [10] and constellation model-based approach [11, 12] have been
introduced as well.

Here, it is noteworthy that most approaches are highly dependent on simple
descriptor matching. Learned objects are generally represented by using un-
ordered local feature sets and recognition is achieved by the matching local
features in unordered feature sets. However, the matching between unordered
feature sets might be ambiguous and erroneous as the number of objects in-
creases, because multiple similar features can be observed in different objects.
Therefore, it is very important to reduce the inherent ambiguity owing to am-
biguous local features in local feature-based object recognition.

To reduce the inherent ambiguity, it is very helpful to use not only individual
features but also groups of multiple features and/or their relational information
together. This is motivated by the observation that, although similar local fea-
tures can be extracted from multiple objects, it is quite rare that a set of local
features with specific relation is extracted from multiple objects.

In early works such as generalized Hough transform [13] and geometric hashing
[14], the object was represented as a point cloud because locations of features
(such as corner and edge) were known. [13] used distance and orientation between
a reference point and edge points in order to represent arbitrary object shape,
and in [14], arbitrary small points are selected as a basis and coordinates of
transformed points according to basis are used. However these method require
huge memory and computation and are sensitive to noise.

An object can be represented as the bag of features [7, 15, 16]. Each ob-
ject is recognized based on the feature descriptor matching. However, the result
can be ambiguous due to ambiguous local features. Kim et al. [6] presented
a new recognition method based on the Gestalt’s grouping law to utilize high-
level context information between individual local features. Similarly, part-based
models [17, 18] also have been proposed to represent an object with the spa-
tial information (mainly defined in the image domain). A similar configuration
of parts is found by solving an optimization problem related to the matching
model. However, since these works use image coordinates to encode the relational
information, they are weak to heavy appearance variations.

On the other hand, there are some works trying to use graph for feature
matching and/or object recognition [19–24], since graph is also an appropriate
data structure to impose relational information between features. However, most
works focus on graph matching strategy. [20] and [21] find feature correspondence
via graph matching. In [22], authors recognized and tracked limited object in
video sequence under limited environments. Recently, [25] adopts a hash table
to find potential corresponding points between objects.

In this context, we present a new method for textured object recognition
based on a graph. To efficiently reduce the ambiguity owing to the similar lo-
cal features, we represent objects using the Attributed Relational Graph(ARG).
Accurate and robust object recognition is achieved by using graph-based ob-
ject representation, which contains both local features and the relative relation-
ship between local features, and by using the inexact graph matching. Here, we
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propose a new method for building graphs and define robust attributes for nodes
and edges of the graph, which are the most important factors in the graph-based
object representation, and also propose a cost function for graph matching. De-
pendent on the proposed attributes, the proposed framework can be applied
to both single-image-based and stereo-image-based object recognition. The pro-
posed method works for general 3D objects and can deal with partially occluded
objects in the cluttered scene. In addition, it shows robust performance against
scale and view-point changes.

2 Overall Structure of the Proposed Method

There are two key issues in local feature-based object recognition methods: (1)
local feature selection and (2) recognition strategy. The first issue is related
to extraction of proper local features and the second issue is related to the
recognition scheme using extracted local features. While both issues are equally
important, we focus on the second issue, especially on the object representation
and their matching for candidate selection. Here, although we adopt SIFT [7] for
our experiments, it is possible to adopt any other local features in our framework.

The overall structure of the proposed framework is shown in Fig. 1. The
proposed object recognition method consists of three stages. The first stage is
the extraction of local features from an input image. In this stage, local features
and their descriptors are obtained and then fed into the object representation
stage. As mentioned, we represent objects with graphs to reduce the ambiguity
in recognition. The object ARG is generated based on a local feature descriptor
and relation between any two neighbor local features. The third stage is the
recognition stage using extracted local features and the object representation.
In this stage, good candidates (i.e., recognition hypothesis) are selected first by
using inexact graph matching and then the selected candidates are examined by
the verification method (hypothesis testing).

Fig. 1. Overall structure of the proposed framework
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3 Object Recognition with ARG

3.1 ARG-Based Object Representation

The proper object representation is the key to reducing the ambiguity in local
feature-based object recognition, which is owing to ambiguous appearance of lo-
cal features from different objects. In previous works as the bag of words method
[26], an object is commonly represented by the set of unordered individual fea-
tures as

O ← F = {f(i)|1 ≤ i ≤ n}, (1)

where n is the number of local features belonging to the object O. However,
we cannot avoid the inherent ambiguity when using this naive representation.
Therefore, we need more contextual object representation.

A slightly more complex but very efficient approach is to represent each object
by using pair-wise local features as well as individual local features as

O ← F ∪ P, (2)

where
P = {(f(i), f(j), ν(i, j))|f(i) ∈ F, f(j) ∈ F, i < j}. (3)

Here, ν(i, j) is the relational information between two features f(i) and f(j).
By combining two local features and their relational information together, we
can greatly reduce the ambiguity of individual local features. This is motivated
by the observation that, although similar local features can be extracted from
multiple objects, it is quite rare that a pair of local features (f(i), f(j)) with
ν(i, j) is extracted from multiple objects.

More generally, it is also possible to build a graph to represent each object,
which is very well-suited and powerful data structure and widely used in struc-
tural and semantic pattern recognition as in [24]. In particular, an ARG is a
graph in which attribute vectors are assigned to vertices and to edges. Such vec-
tors are responsible for adding relevant problem information to the graph data
structure, since they hold symbolic properties and features related to the nodes
and edges they are assigned to. When adopting an undirected ARG for object
representation, it can be expressed as

O ← G := (V, E, μ, ν). (4)

Here, V is a set of vertices and E is a set of edges that represent the relation
between vertices. In addition, μ is the attribute of vertex and ν is the attribute of
edge (or weight of edge). μ and ν can be vectors or scalar values depending on the
definition. In fact, edges and their attributes play an important role in graph
matching, and therefore, the criterion of defining E and ν is very significant.
The issue in defining E is determining the number of edges per a vertex. If a
vertex has edges with all other vertices, graph matching takes huge time and
the method becomes impractical. For that reason, in the proposed method, a
vertex has a small number of edges with K-nearest-neighbor vertices. On the
other hand, the issue in defining ν is finding invariant property between any two
vertices robust against photometric and geometric changes.
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3.2 Inexact Graph Matching

In the learning stage, we construct G := (V, E) for all object to be recognized. In
this paper, we assume that we have M objects to recognize, and we denote Gm :=
(Vm, Em) for object Om, 1 ≤ m ≤ M . The local feature from Om is denoted
as fm

1. Once we get an input image, we extract local features and construct
Gs := (Vs, Es) using extracted local features. Then, recognition hypothesis is
generated by comparing Gs := (Vs, Es) with those in the database.

Since objects and in input image are represented by graph, the problem of
selecting good candidates is changed into the problem of graph matching. Here,
the matching between two graphs Gs and Gm can be represented by a matching
matrix Q(s, m). For two graphs Gs and Gm, we find Q(s, m) that minimizes the
objective function defined as in [19] like

Ω(Q) = −1
2

n′
s∑

a=1

n′
m∑

i=1

n′
s∑

b=1

n′
m∑

j=1

QaiQbjcaibj + α

n′
s∑

a=1

n′
m∑

i=1

Qaicai (5)

subject to

∀a,

n′
m∑

i=1

Qai ≤ 1, ∀i,

n′
s∑

a=1

Qai ≤ 1, and ∀a, ∀iQai ∈ {0, 1}. (6)

Here, ns and nm are the number of vertices of Gs and Gm, respectively. The
matching matrix Q is the ns × nm matrix indicating which vertices in the two
graphs match as

Qai =

{
1 if vertex a ∈ Gs corresponds to vertex i ∈ Gm

0 otherwise.
(7)

caibj represents the similarity of two edges {a, b} and {i, j}. We define it as

caibj = 1 − |νab − νij |
νab + νij

(8)

if νab �= 0 and νij �= 0. Otherwise, caibj = 0. On the other hand, cai represents
the dissimilarity of two vertices a and i. We also define it as

cai = 1 − μa · μi (9)

where μa and μi are the attributes of vertex a and i, respectively. α in Eq. (8)
controls the weight of the vertex matching cost. Here, the range of caibj and cai

is from 0 to 1. Because each vertex has edges with K-nearest-neighbor vertices,
the range of sum of cai of each vertex is from 0 to 1 and the range of sum of caibj

of each vertex is from 0 to K2. Therefore, the number of edges per each vertex

1 Subscript m denotes the object index while subscript s denotes the input.
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seriously affects the value of objective function 5. Therefore, α is dependent on
the number of edges per each vertex.

Since this is the inexact graph matching problem, we can deal with occlusion
or any other variation in graphs. We compute the matching matrix between
graphs by using a graduated assignment algorithm in [19]. Once we compute the
all matching matrices between Gs and all Gms, we choose objects that have the
matching matrices satisfying

∑n′
s

a=1
∑n′

m

i=1 Qai > Tg as recognition candidates.
The proposed method can be applied to both single-image-based and stereo-

image-based object recognition depending on the definition of ν.

4 Graph-Based Approach in a Single Image

In a single image, we have to make graph based on information offered by a
local feature extraction method. After generating object graphs and input graph,
we conduct inexact matching to get good candidates. Since we have 2D image
coordinates of extracted local features, verification can be performed by using
2D homography or fundamental matrix.

As shown in Fig. 1, the first phase is to extract proper local features and the
second phase is to generate ARG, G = (V, E, μ, ν). In our ARG, each vertex
v ∈ V corresponds to an extracted individual local SIFT feature [7] and μ is the
local feature’s descriptor vector of which the norm is 1. We define ν by using
the difference between two vertices’ orientations, which is invariant to geometric
variations.2 Here, it is also possible to define ν in a different way when adapting
different local features.

Each vertex is connected with only K-nearest-neighbor vertices to reduce com-
putation time in graph matching3. Here, K-nearest-neighbor vertices are com-
puted by comparing the orientation difference, because features having similar
orientations are more likely to have similar orientations under geometric changes
too. However, when an edge is created just by the order of orientation difference,
an edge can be created between uncorrelated vertices (for instance, one from the
object of interest and one from the background). In order to solve this problem,
we select K-nearest-neighbor vertices within a specified radius (in an image).
Therefore, for two nodes u and v in V , if v is the K-nearest-neighbor of u in
a specified radius, then ν of the edge {u, v}, νuv is defined as the orientation
difference between two vertices. Otherwise νuv = 0.

The next stage is performing inexact graph matching to get good candidates.
It is accomplished by the method described in Sec. 3.2. The selected candidates
are then verified in the last phase. Because we have 2D image coordinates of
matched local features in a single image, we conduct verification using 2D ho-
mography or fundamental matrix, which can be computed with the RANSAC
technique.
2 The orientation of each local feature in an image can vary under geometric varia-

tions. However, the relative difference between two features’ orientations is relatively
invariant under geometric variations.

3 We set K = 10 for experiments.
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Fig. 2. ARG generation in a stereo image

5 Graph-Based Approach in a Stereo Image

In a stereo image, an object can be more robustly recognized than a single
image. We can secure wider field of view (FOV) thanks to the two cameras.
In addition, we can achieve more robust object recognition under the viewpoint
change and occlusion, because we have two input images of the same object from
two different viewpoints. Lastly, we can obtain 3D coordinates of local features
that make it possible to easily handle 3D objects.

In this case, although we are able to make graph as in a single image case, we
use additional information such as 3D coordinates of local features. The overall
process of object recognition is similar to that in a single image case. However,
additional stages such as stereo matching and computation of local features’ 3D
coordinates are required as in Fig. 2.

Local features are extracted first using [7] and the extracted features from a
left image and a right image are then matched across images. Since the stereo
images are rectified and there are little changes in scale, orientation, and illumi-
nation between stereo images, we can achieve very reliable stereo matching in real
time. Here, we apply the unique-minimum check and the left-right consistency
check to remove ambiguous matches, which are commonly used for stereo match-
ing. After finding correspondences, we compute the 3D coordinates of matched
local features with respect to the stereo camera.

The next phase is to generate ARG, G = (V, E, μ, ν). In this case, each vertex
v ∈ V corresponds to a stereo matched local feature (having computed 3D
coordinates) and μ is the local feature’s descriptor vector of which the norm is
1. Here, we define ν by using the 3D Euclidean distance between stereo matched
local features, which is invariant to any geometric variations (when assuming
rigid objects). Therefore, for two nodes u and v in V , if v is the K-nearest-
neighbor of u that satisfies D(u, v) ≥ T , then ν of the edge {u, v}, νuv is defined
as νuv = wuvD(u, v). Otherwise νuv = 0. Here, D(u, v) is the 3D Euclidean
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Fig. 3. Some stereo training images

distance between node u and node v, and T is pre-defined threshold. wuv is
weight of D(u, v) and defined as

wuv =
1

su + sv
+ ε, (10)

where su and sv are the scales of nodes u and v inferred from stereo matched
local features. We assign small weights to nodes having large scales, because the
accuracy of their 3D coordinates can be poor. 0.5 is used for ε in our experiments.

The next stage is the inexact graph matching to get good candidates. It is
solved by the method in Sec. 3.2.

The verification is performed similarly in the single image case. The difference
is that we use 3D rigid transformation instead of the 2D homography or funda-
mental matrix, because we already have 3D coordinates of stereo matched local
features. The 3D rigid transformation can be described with one rotation ma-
trix, R, and one translation vector, t, and they are computed with the RANSAC
technique as well.

6 Experiments and Performance Evaluation

6.1 Image Database

We built the image database of 3D objects in order to evaluate the proposed
method and to compare the performance. It contains 4,500 rectified stereo im-
ages of 100 different 3D textured objects (45 stereo images for each object), which
were captured under controlled darkroom environments and the cluttered office
environments4. For each object, 36 images were captured under the controlled
darkroom environments and 9 images were captured under office environments.
More specifically, for each object, images were captured while changing the illu-
mination intensity from 110 lux to 270 lux in nine steps. In the same manner, we
captured images under scale (about 2 times ∼ 0.5 times) and yaw (−30◦ ∼ 30◦)

4 The database and its detailed description can be found at http://cvl.gist.ac.kr

http://cvl.gist.ac.kr
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Fig. 4. Test images captured under different conditions

changes in nine steps, respectively. In addition, we captured images for each ob-
ject while controlling the total amount of occlusion (5% ∼ 45%). Some training
and test images are shown in Fig. 3 and Fig. 4, respectively.

6.2 Experiments and Analysis

We first applied the proposed method to a single image. Although we have the
object database with stereo images, we used single images (i.e., left images)
instead of stereo images in this experiment. For learning objects, although it
is feasible to use multiple images of the same object obtained from different
conditions for learning, we used just one frontal single image of each object
for learning in our experiments, to clearly see the performance enhancement by
proposed method. In addition, as mentioned earlier, we adopt the SIFT [7] for
our experiments.

In the single descriptor matching method, candidate objects are selected by
using a simple voting technique based on the feature descriptor matching. We
find correspondences of local features of an input image through the criterion
defined as

d(f(i), d(f(NN1st))
d(f(i), d(f(NN2nd))

< 0.49, (11)
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where f(i) is a local feature of an input image, f(NN1st) is the first nearest
neighbor feature of f(i), f(NN2nd) is the second nearest neighbor feature of
f(i), and d(f(i), f(j)) is the descriptor difference between two local features.
The candidates are rejected if they fail to pass the verification stage.

In the single graph-based method (graph-based method for a single image),
we constructed graphs, matched graphs, and verified the results as in Sec. 4.
Verification criterion is the same as in the descriptor matching method.

We also applied the proposed method to stereo images. In this case, we used
one frontal stereo image of each object for learning. In this case, we made graphs,
matched graphs, and verified the results as in Sec. 5. Verification criterion is the
same as in other methods except the inlier criterion — we used 3D Euclidean
distance to decide the inliers.

The performance for a single descriptor matching method, a single graph-
based method, and a stereo graph-based method is given in Table 1, Table 2,
Fig. 5, and Fig. 6. For each case, we adjusted parameters to obtain the best
correct ratio. Correct, error, false positive, and false negative ratios are defined
as

correct ratio(%) =
# of correct object detection

# of attempt
× 100, (12)

false positive ratio(%) =
# of incorrect object detection

# of attempt × # of objects in DB
× 100, (13)

false negative ratio(%) =
# of correct object detection fail

# of attempt
× 100. (14)

Here, the more objects the database contains, the more false positive recognition
occurs. Therefore, we normalize the false positive ratio by the number of objects
of in the database.

55.000%
60.000%
65.000%
70.000%
75.000%
80.000%
85.000%
90.000%
95.000%

100.000%

Correct  ratio

Single descriptor

Single graph

Stereo graph

Fig. 5. Overall correct ratio comparison under the condition variations

Although the overall correct ratio of the proposed methods under the dark-
room environments is similar with that of using descriptor matching, the false
positive ratio of graph-based methods decreases compared to the descriptor
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Table 1. Performance of three methods for 2880 images of 80 objects in two environ-
ments - correct, false positive, and false negative ratio

Single descriptor Single graph Stereo graph
variation correct false + false - correct false + false - correct false + false -

darkroom 95.347 0.377 4.653 95.000 0.238 5.00 96.389 0.257 3.611
general 58.056 0.304 41.944 58.611 0.204 41.389 67.778 0.165 32.222

Table 2. Performance for 2880 images of 80 objects in controlled darkroom envi-
ronment and general office environment - correct and false positive ratio. Without
verification, we selected the best object from the graph matching results.

Single descriptor matching Single graph matching Single stereo matching
variation correct false + correct false + correct false +

darkroom 98.160 1.840 98.750 1.250 98.264 1.736
general 63.056 36.944 66.944 33.056 70.556 29.444

matching method. In general office environments, the performance of graph-
based methods is much more improved. In a single image case, although the
correct ratio of a graph-based method is similar with that of a descriptor match-
ing method, the false positive ratio of a graph-based method decreases compared
to descriptor matching method. In a stereo image case, both the correct ratio and
the false positive ratio are improved. The correct ratio of a graph-based method
increases relatively 16.7% compared to the descriptor matching method, and the
false positive ratio of a graph-based method decreases relatively 45.7 % compared
to the descriptor matching method.

The performance under the special condition variations is shown in Fig. 6.
We can see that the false positive ratio of graph-based methods is generally

less than that of the descriptor matching method. Especially, the correct ratio
of the stereo graph-based method is better than the others under the occlusion
and yaw condition variations.

In fact, absolute evaluation may be meaningless because the performance can
vary with the database used, the types of selected local features, and the defini-
tion of correct ratio and false positive ratio. However, it is worthy of note that
the performance when using graph-based representation and matching methods
(both single and stereo cases) is better than when using a simple descriptor
matching method. Especially, the performance for general situations is greatly
improved. This shows that the recognition using graph-based object represen-
tation and matching is more robust under photometric and geometric changes
while greatly reducing inherent ambiguity.

The result in Table 2 is obtained just by selecting one best candidate based
on the descriptor or graph matching without verification. In this case, we do not
compute the false negative ratio. These results also show that the graph-based
methods are better than the descriptor matching method.
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(d) False positive under occlusion variation
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(f) False positive under yaw variation
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Fig. 6. Performance under the condition variations. Refer to the percentage on the
left.

Through the experiments, it is clearly shown that the recognition using rela-
tional information is more robust and less ambiguous than the recognition based
on the simple local feature matching under photometric and geometric varia-
tions. However, at the same time, it needs more computation time. While the
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computation time is proportional to the number of local features in the individ-
ual feature-matching based approach, it is proportional to both the number of
local features and the number of graphs (i.e., number of objects in the database)
in the proposed method. In our experiments, when the database contains 100 ob-
jects, the graph-based method takes 77.21 seconds for a single image and 78.24
seconds and for a stereo image pair while the simple feature-matching based
method takes 2.62 seconds on average.

7 Conclusion

In this paper, we have presented a new method for texture object recognition,
aiming at reducing inherent ambiguity due to ambiguous local features. To this
end, unlike simple descriptor matching methods, we use an attributed relational
graph (ARG) represent an object with local features and their relational infor-
mation together.

We generate proper object ARGs and an input ARG in accordance with a
single image and a stereo image. Next, we select appropriate candidate objects
via inexact graph matching. Finally, we perform verification with homography,
fundamental matrix, or 3D rigid transformation. The proposed framework shows
promising performance for a single image and a stereo image. In addition, it
shows robust recognition performance under cluttered scene. However, it needs
more computation time. Therefore, we will try to develop faster algorithms as
well.
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Posing to the Camera: Automatic Viewpoint
Selection for Human Actions

Dmitry Rudoy and Lihi Zelnik-Manor

Technion, Haifa, Israel

Abstract. In many scenarios a scene is filmed by multiple video cameras
located at different viewing positions. The difficulty in watching multi-
ple views simultaneously raises an immediate question - which cameras
capture better views of the dynamic scene? When one can only display a
single view (e.g. in TV broadcasts) a human producer manually selects
the best view. In this paper we propose a method for evaluating the
quality of a view, captured by a single camera. This can be used to auto-
mate viewpoint selection. We regard human actions as three-dimensional
shapes induced by their silhouettes in the space-time volume. The quality
of a view is evaluated by incorporating three measures that capture the
visibility of the action provided by these space-time shapes. We evaluate
the proposed approach both qualitatively and quantitatively.

1 Introduction

With the advances of recent years video cameras can now be found in abundance.
Scenes and events are frequently being recorded not only by a single camera, but
rather by multiple ones, e.g., school children sports events are recorded by many
eager parents. To visualize such data on a single screen one needs to select the
single ”best” camera for each moment in the event. In movie and TV production
the ”best” camera view is selected manually by the producer. In non-professional
scenarios, however, such a producer is typically not available. We are therefore
interested in automating the process of camera selection.

Automatic viewpoint selection has been addressed before for 3D computer
gaming and graphics applications [6]. Several methods, e.g., [17,19,5] have been
proposed for optimal view selection for static 3D objects. Assa et al. in [1, 2]
proposed methods for camera control when viewing human actions. These solu-
tions, however, rely on knowing the 3D structure of the scene and, hence, are not
applicable to real-world setups filmed by video cameras. Camera selection has
also been previously explored for surveillance applications, however, there the
camera setup and the goal are typically different from ours. Gorshorn et al. [10]
propose a camera selection method for detecting and tracking people using cam-
era clusters. Most of the cameras in the cluster do not overlap and hence the
main goal is tracking the person as he moves from one camera view to the other.
In [15,7] methods were proposed for selecting the camera that provides the best
view for recognizing the identity of a viewed person. This requires mostly face
visibility.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 307–320, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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In this paper we propose a technique for video-based viewpoint quality eval-
uation for actions. We show that ranking camera views according to the action
visibility they provide is useful for selecting the best view to display. We first
discuss what makes one view better than the other. Our guiding principle is that
the better views are those where the action is easier to recognize, since the limbs
and their motion are clearly visible. To detect views with good limb visibility
we propose three measures (spatial, temporal, and spatio-temporal), which cap-
ture the properties of the preferable views. Finally, we incorporate the spatial,
temporal and spatio-temporal measures into a single global score.

The usefulness of the proposed approach is evaluated qualitatively on real
video data of sports events, dance and basic human actions. Additionally we test
our approach on 3D gaming scenarios. To provide some quantitative evaluation
we further test the usefulness of the proposed approach for action recognition.
Our experiments show that selecting a single view to process does not degrade
recognition, but rather the opposite occurs and recognition rates are improved.
This could speed-up recognition in multi-camera setups.

The contribution of the paper is hence threefold. First, it presents several
video-based properties of preferable views of human actions (Section 2). Second,
a method is proposed for capturing these properties and hence estimating the
relative quality of the views (Section 3). Last, we demonstrate the benefits of
the suggested approach in scene visualization and establish the selection of the
better views by action recognition (Section 4).

2 Why Some Views Are Better than Others?

Many human actions are easier to recognize from some viewpoints, compared to
others, as illustrated in Fig. 1. This is why the ”WALK” road-sign always shows
the stride from the side. Searching YouTube for ”golf swing” retrieves almost
only front views and no back or diagonal views. Searching for ”hugging people”
yields almost only side views showing both people approaching each other. The
mutual to these examples is that generally the better views are those showing
the limbs and their motion clearly. For the time being we limit our analysis to
scenes showing a single person performing free actions. Later on, in Section 4.1
we discuss how multi-player scenes are handled.

Our goal is to evaluate limb visibility without tracking the limbs, since limb
detection is time consuming and error prone. We achieve this by observing that
good visibility of the limbs and their motion has generic temporal, spatial and
spatio-temporal implications on the space-time shape induced by the silhouettes
(as illustrated in Fig. 2):

1. Temporal: High motion of the limbs implies that the silhouettes vary signif-
icantly over time.

2. Spatial: Good visibility of the limbs implies that the outlines of the silhou-
ettes are highly concave. For example, the spread out legs in a side view of
walk generate a large concavity between them.
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Walk

Hugging

Swing

Fig. 1. Many actions are better captured from a specific view point. Walking and
hugging are best captured from the side, while a golf swing is best viewed from the front.
Top row: examples of road signs. Bottom rows: YouTube search results for ”hugging
people” and ”golf swing”.

Temporal Spatial Spatio-temporal

Desirable

Undesirable

Fig. 2. Properties of good views. Good views are those where the limbs and their
motion are clearly visible. Temporally this implies large variations (left). Spatially, the
silhouettes in a good view are highly concave (middle). In space-time visibility of the
limbs and their motion implies shapes with significant saliency (right).

3. Spatio-temporal: When the limbs and their motion are clearly visible the
resulting space-time shape is not smooth, but rather has protruding salient
parts (corresponding to the moving limbs). Conversely, self occlusions and
lack of motion lead to smooth space-time shapes.

Interestingly, each of these three properties matches known properties of human
perception. First, it is known that human vision is attracted to high motion [12].
This corresponds to the temporal property. Second, in 1954 Attneave [3] pro-
posed that the most informative regions along a visual contour are those with
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high curvature. Extending this idea to three dimensions matches the spatio-
temporal property, that looks for protruding regions with high curvature in
space-time. Finally, Feldman and Singh showed in [8] that for closed planar
contours concave segments carry greater information, than corresponding con-
vex ones. Correspondingly, the presented spatial property captures the concavity
of the silhouettes.

3 Evaluating Viewpoint Quality

In this section we propose a method for viewpoint quality evaluation, which is
based on the principles presented above. We intentionally seek simple measures
of viewpoint quality to enable fast processing.

3.1 Measures of Action Visibility

Following [9] we regard human actions as three-dimensional shapes induced by
their silhouettes in the space-time volume. Since cameras at different positions
view different aspects of the scene, the silhouette extraction can vary between
cameras. Our measures do not require perfect silhouettes, however, we do assume
the silhouettes are acceptable, i.e., when there are no self occlusions the limbs
should be visible in the silhouette. This assumption is reasonable in many sce-
narios, e.g., computer games, day-time sports events and security setups where
the background can be modeled accurately and does not change. We compensate
for the global translation of the body in order to emphasize motion of parts rel-
ative to the torso. This is done by aligning the centers of mass of the silhouettes.
Note, that cameras at different positions view different silhouettes, hence, the
induced space-time shapes are different. We assume that all the cameras view
the person fully without external occlusions. Self occlusions (e.g., as in a top
view) are allowed.

Spatio-temporal measure: Shape saliency. In accordance with property (3), when
the limbs are visible the induced space-time shape is not smooth. To build a spatio-
temporal measure of action visibility we need to quantify the unsmoothness of
the space-time shapes. We base our approach on the method proposed by Lee et
al. [16] for evaluation of saliency and viewpoint selection for 3D meshes. Their
work proposes a method for measuring saliency at every vertex of a static 3D mesh.
Saliency is defined as the deviation of the mesh from a perfectly smooth shape, i.e.,
sphere. Furthermore, they propose to evaluate a viewpoint quality by summing
up all the saliency values of all the visible parts from a given viewpoint. In our
work instead of the same shape viewed from different directions we have a different
shape for each view. Thus measuring the overall saliency of the space-time shape
allows us to estimate the quality of a view, that produced that shape.

Following [16] we first calculate the local space-time saliency at each point on
the shape’s surface. This is captured by the difference between the point’s local
curvature at different scales. Then we evaluate global saliency by summing all
the local saliency values, since every point on the surface of the space-time shape
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is visible. The method in [16] was limited to 3D meshes. In our case, however,
the shapes are represented in voxels and not meshes. We next follow the ideas
of [16] and extend them to voxel-base representations of space-time shapes.

To compute the local saliency of points on the surface of the space-time shape
we first calculate the mean curvature κm(p) of each surface point p using the
method proposed by Kindlmann et al. [14]. Next, following [16] we define the
weighted mean curvature, G(κm(p), σ), at each space-time shape surface point,
as:

G(κm(p), σ) =

∑
q κm(q)W (p, q, σ)∑

q W (p, q, σ)
(1)

where the sum is over all the points q in a 2σ radius neighborhood around point
p and W (p, q, σ) is a weight function. Note, that as opposed to the 3D models
used in computer graphics, our shapes can have different scales in space and in
time. Hence, we define W (p, q, σ) as:

W (p, q, σ) = exp

⎛
⎝−1

2

⎛
⎝ ∑

j∈{x,y,t}

(pj − qj)2

σ2
j

⎞
⎠
⎞
⎠ (2)

where p = (px, py, pt) and q = (qx, qy, qt) are two points on the space-time shape
surface, and σ = (σx, σy, σt). Local space-time saliency is then defined as the
absolute difference between two weighted curvatures:

L(p) = |G(κm(p), σ) − G(κm(p), 2σ)| (3)

Lee et al. [16] propose to incorporate multiple scales, but in our space-time
shapes this does not bring the desired effect. This is because 3D models usually
have many small details, that need to be taken into account. In contrast, our
space-time shapes have little detail, thus, it would suffice to find a single optimal
value of σ corresponding to a single scale. We have experimentally selected σ =
(5, 5, 3). This value emphasizes the unsmoothness of the shapes in the best way
while giving low saliency values to the flat regions. It was kept fixed for all the
results presented here.

Figure 3 shows the local space-time saliency values of Eq. (3) for all the
surface points of the space-time shape of a real punch action obtained from
different views. It can be seen that the moving parts, e.g., the arm, generate high
curvature surfaces and hence receive high local saliency values, while stationary
parts, e.g., the legs, which imply flat areas in the space-time shape, receive low
local values.

Finally, we define the spatio-temporal visibility score of a view as the sum of
the local saliency values of all the points on the surface of the space-time shape:

SST =
∑

p

L(p) (4)

The values of the spatio-temporal saliency score SST for a punch action are also
marked in Fig. 3. We note here that SST is not bound from above, however it is
always non-negative.
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View side top front

SST = 98.3 91.9 48.9

Fig. 3. Spatio-temporal visibility
measure. Local saliency values for
space-time shapes obtained from dif-
ferent views of the same punch action
nicely emphasize the more important
regions, in this case, the punching arm.
The side and top views show the pro-
truding punching arm and hence their
total visibility score SST is high. The
front view produces a smooth shape
and correspondingly a low SST .

View side top front

SS = 0.51 0.39 0.33

Fig. 4. Spatial visibility measure.
An illustration of a space-time shape
(cyan) and its convex hull (red) for a
”punch” action captured from different
angles. The side view receives the high-
est SS score since it shows more con-
cave regions under the arm. The top
and front views, where the limbs are
less visible, obtain lower scores, since
their outlines are more convex.

Spatial measure: Visibility of limbs. According to property (2), when the limbs
are fully visible the outlines of the induced silhouettes are highly concave. To
quantify how concave a shape is we seek for a simple and fast measure. One such
measure is computing the volume difference between the 3D convex hull of the
space-time shape and the shape itself. We define the spatial measure as:

SS = 1 − Vsh

Vch
(5)

where Vsh is the volume of the space-time shape and Vch is the volume of its
convex hull. The SS score is non-negative and bounded by 1 from above. Figure 4
illustrates some space-time shapes together with the corresponding 3D convex
hulls.

Temporal measure: Detecting large variations. Following property (1), we wish
to discover views which exhibit a significant pattern of change along time. We
measure this by computing the portion of pixels where motion was observed
somewhere along the sequence. Note, that we do not care what was the type of
motion or when it occurred. Our only interest is the amount of motion. Since
we would like our measures to be as simple and fast to compute as possible,
we evaluate the amount of motion as follows. Let g(x, y, t) be the silhouette
indicator function and τ be the temporal length of the sequence. Following [4]
we build the motion-energy image describing the sequence as:

E(x, y) =
τ−1⋃
t=0

g(x, y, t) (6)
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We denote by gm(x, y) the biggest single-frame silhouette (in sense of number
of pixels) in the sequence. The temporal measure is then defined as:

ST = 1 −
∑

x,y gm(x, y)∑
x,y E(x, y)

(7)

Note, that this score is always non-negative and bounded by 1 from above.
To illustrate the temporal motion-based score we present in Fig. 5 E(x, y),

gm(x, y) and ST for different views of a kick action. As can be seen, the side
view, where the action is better viewed, presents a higher percentage of moving
pixels (gray), and thus receives a higher score.

View side top front

ST = 0.55 0.41 0.37

Fig. 5. Temporal visibility measure. The motion-energy image E (gray) superim-
posed on the biggest silhouette gm (white) for a ”kick” action seen from different views.
The side view captures the leg motion in full and hence receives the highest score, while
the front view shows very little of the leg motion and hence receives a low score.

3.2 Combining Visibility Measures

In the previous section we presented three different visibility measures, which
capture somewhat different notions. To combine them into a single unified mea-
sure without parameter tuning we take the product of the three. Our final view
quality measure is hence:

S = SST · SS · ST (8)

4 Applications and Experiments

In this section we demonstrate the usefulness of the proposed approach for sim-
plified visualization of multi-camera scenes (Section 4.1). We cannot compare
our view selection method to previous works, like [1,2], since they use 3D scene
data, which is not available in our case, hence the evaluation is mostly qualita-
tive. To provide some quantitative evaluation, we further show that selection of a
single camera does not harm action recognition and in some cases even improves
the performance rate (Section 4.2).

4.1 Automatic Camera Selection

As discussed earlier, a relevant application of the proposed viewpoint quality
estimation method is automatic selection of the best camera. Given multiple
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video streams of the same scene pictured from different points of view, our goal
is to produce a single video showing each action from its preferred viewpoint.

The quality of the view provided by a certain camera can change with time,
depending on the performed actions and the person’s orientation in space. To
take those changes into account we experimented with two methods. The first
splits the input videos into short non-overlapping sub-sequences (of 36 frames),
computes the view quality S for each of them and then selects the best view for
each set of corresponding sub-sequences. This method is fast, however, changes
in the selected viewpoint do not always occur at the optimal moments due to
the a-priori selection of temporal cuts.

The second approach is somewhat slower, however its results are more accu-
rate. Rather than splitting the videos we adopt a sliding-window approach where
view selection is applied to all sets of corresponding sub-sequences of length 36
frames. This yields 36 independent “best-view” decisions for each set of corre-
sponding frames. For each frame the view which received the majority of votes is
selected. To avoid redundant view switches we accept a view change only when
it lasts longer than 25 frames, i.e., we do not switch to a new camera if it does
not provide good visibility for more than approximately one second.

We begin by testing the proposed framework on a golf scene. We have in-
tentionally selected golf since googling for ”golf swing” videos retrieves many
tutorials, most of them show the swing from the same frontal viewpoint, thus
making it somewhat clear what is the desired result. In our setup eight cameras
viewed a golfer hitting the ball four times, each time rotating to face a different

Best
View quality

Worst

(a)

Score 117 100 87 68 64 60 43 35

(b)

Score 50 40 39 32 22 20 17 10

Fig. 6. View selection for golf swing and dance. Views showing clearly all
the limbs together with their motion are ranked higher while views with severe self-
occlusion are detected as low quality.
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Best
View quality

Worst

(a)

Score 11.2 10.9 8.8 8.5 7.8

(b)

Score 9.8 8.6 2.8 2.2 1.5

(c)

Score 8.3 5.4 5.2 2.9 0.7

Fig. 7. View selection on IXMAS. Examples of view selection applied to IXMAS
sequences of a single person. Top row (a) shows a ”get-up” action, which is visible
clearly from any angle, thus the view qualities do not vary too much. Rows (b) and
(c) show actions where some views are preferred. In this case the different views are
nicely rated according to the visibility they provide. Views showing clearly all limbs
are ranked best while views with severe self-occlusion are ranked worst.

camera. As shown in Fig. 6 (a) and in the supplemental video1 our view selection
approach successfully selects the frontal view for the swing, in line with what is
used for golf tutorials.

Next we test the framework on a simple dance move. This move is best viewed
from front, but the actress repeats it several times, each time facing a different
direction. As in the golf scene, our view selection approach clearly prefers the
front view. Other views are ranked according to the visibility of the limbs motion,
as shown in Fig. 6 (b).

We further applied the proposed view selection to the IXMAS database [11],
which includes 12 actors performing 13 everyday actions continuously. Each ac-
tor performs the set of actions three times, and the whole scene is captured by
5 synchronized video cameras (4 side cameras, that cover almost half a circle
around the subject and one top camera). The actors selected freely their ori-
entation, hence, although the cameras were fixed, each viewed the actors from
varying angles. In other words, we cannot label a certain camera as front view

1 The supplemental video is available at http://webee.technion.ac.il/labs/cgm/

http://webee.technion.ac.il/labs/cgm/
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(a)

(b)

cam3 cam2 cam1

(A)

Score 342 328 237

(B)

Score 250 182 93

Fig. 8. (a) A sketch of the filming setup of a basketball drill. The blue, green and red
curves illustrate the paths of the players. The labels A and B mark the location in the
field of each player at moments A and B. (b) Example frames from the three cameras
at moments A and B depicted in the sketch. Camera 1 received the lowest rates since
the arm motion in throwing the ball is occluded in (A) and the players occlude each
other in (B). Camera 2 received higher rates since there are less self occlusions. Camera
3 got the highest view quality rates since there are no occlusions and the arm motion
is clearly visible both in (A) and in (B). Please view the supplemental video.

since it captured both front and side views. In this experiment we do not use the
ground-truth provided with the database. As can be seen in Fig. 7 and in the
supplemental video, our system consistently selects views where the action per-
formed by the person is clearly visible. For example, for walking the algorithm
selects the side view with the maximum visibility of the moving legs, and for
waving the front view is selected, such that the hand motion is clearly visible.

To show the applicability of the proposed view selection method to more chal-
lenging videos we filmed our local basketball team during training using three fixed
cameras. The cameras were set along the court, as shown on Fig. 8 (a). In this
scene, three players performed a drill that included running and free throws. We
extracted the players’ silhouettes for each camera using simple background sub-
traction. This led to very noisy silhouettes. Furthermore, in significant parts of
the scene the players were either very close to each other or occluded each other.
Thus it was not practical to treat each player independently. Instead, we applied
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Score 87 72 65

Fig. 9. A single player throwing a ball viewed from 3 viewpoints. As expected, the side
view gets the highest rate.

our view quality estimation to the joint shape of all three players, as if they were a
single subject. As can be seen in Fig. 8 (b), camera 1 suffers from severe occlusions,
camera 2 suffers from partial occlusions, while camera 3 captures most of the drill
without occlusions. Despite the fact that the spacial measure is less informative
in this case, our view quality rating reflects that nicely.

Figure 9 shows results of a single-player scene, throwing a ball. Here our
approach nicely detects the side view, where the throwing of the ball is best
captured. These results demonstrate that the proposed view quality rating can
be applied to single and multi-player scenes as one.

Additionally to the videos taken by real video cameras, our viewpoint quality
estimation is also relevant in 3D graphics, or specifically in 3D games. To show
the applicability of the proposed method in this field we choose a scene of two
hugging people from Sims 3 game, filmed from eight different angles. Note, that
in this case perfect silhouettes are available. Since the figures touch each other
most of the action, we treated them as a single subject and applied the viewpoint
quality of Eq. (8). As shown in Fig. 10, the side views get a higher ranking while
the front and back views, with severe self occlusions, are least preferred. This
matches what one typically expects to see in ”hugging people” videos.

4.2 Action Recognition

As far as we know, there are no databases with ground-truth view selection,
hence quantitative evaluation is somewhat difficult. To demonstrate that our
technique selects good views we test its performance as a pre-processing step
for action recognition. Given an action filmed from multiple angles we select a
single view using the quality measure of Eq. (8). We then classify this view only.
Our experiments show that selecting a single view does not harm the recognition
rates, implying that the views we select are good for recognition.

We test this framework on the IXMAS database [11]. We split the long videos
according to the provided ground-truth, into shorter action clips, so that each
shows a single action. Following previous work we test on a leave-one-actor-out
scenario, i.e., we take all the performances of one actor as the testing set and
all other actors as the training set. In our experiments we used only 10 actors
(excluding Srikumar and Pao) and 11 actions (excluding ”throw” and ”point”)
for fair comparison with previous work, which excluded these as well. For each
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Score 43.3 43.1 37.6 33.3

Score 31.5 15.7 13.1 7.3

Fig. 10. View quality estimation for hug action in Sims 3 game. The different views
are nicely rated according to the visibility they provide. Views where the interaction
is clearly visible are ranked better than views in which one of the figures is occluded.

clip in the test set we evaluate the viewpoint quality provided by each camera
using the proposed measure of Eq. (8). Then we classify the action in the view
with the highest score using one of three monocular recognition methods: (i) the
silhouette based approach of Gorelick et al. [9],2 (ii) the view invariant approach
of Junejo et al. [13],3 and (iii) the silhouette and optical flow based approach of
Tran and Sorokin [18].4

For every method we compare the results of the recognition after view selection
with three other options: (i) average recognition rate, which reflects random se-
lection of views, (ii) the rate of the ”best” camera and (iii) the rate of the ”worst”
single camera. In ”best” / ”worst” camera we refer to the single camera with the
highest / lowest recognition rate. In practice, selecting the ”best” camera is not
feasible, since it requires an oracle that a-priori tells us which of the fixed views
will be better. However, this is the best rate that can be achieved from a single
fixed camera. On contrary, a wrong selection of the camera could lead to ”worst”
camera rates. Table 1 shows that the proposed view selection either compara-
ble, or improves the results of the ”best” camera. This implies that the selected
views are those where the action is recognizable, which satisfies the goal of this
work. It is further interesting to note that the ”best” fixed camera is different for
each recognition method. This implies that on average different methods have
preference for different viewpoints. Nevertheless, our view selection succeeds in
detecting those views which are recognizable by all methods.

2 For [9] we obtained code from the authors.
3 For [13] we used our own implementation which obtains results similar to those

reported in the original paper.
4 For [18] we used authors’ code available at their website with 1NN classifier. However,

we used a slightly different experimental setup, thus yielding slightly different results.
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Table 1. Comparison of recognition rates for different recognition methods shows that
the proposed view selection performed before recognition often improves the best fixed
camera rate. Note that an a-priori selection of the ”best” camera is not possible. We mark
in parentheses the label of the fixed camera that turned out to provide the best/worst
recognition rates. Note that for each recognition method the best performance was
obtained with a different camera.

Proposed Average Best fixed camera Worst fixed camera
view selection (selected a-posteriori) (selected a-posteriori)

[9] 81 73 77 (cam4) 63 (cam5)
[18] 89 85 88 (cam3) 82 (cam5)
[13] 65 64 67 (cam1) 57 (cam5)

5 Conclusion

This paper presented a method for viewpoint quality estimation of human ac-
tions. To determine better views we compute a visibility score based on proper-
ties of the space-time shape induced by the actor’s silhouettes. Our experiments
show that the proposed approach can successfully estimate the action visibility
provided by each camera. Such estimation can be used for automatic selection
of a single best view of one or more actors. Furthermore, selecting the best view
of the action prior to the recognition improves the rates of the monocular action
recognition method, together with speeding them up (since we need to recognize
only one view).
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Abstract. Deconvolution techniques are widely used for image enhance-
ment from microscopy to astronomy. The most effective methods are
based on some iteration techniques, including Bayesian blind methods
or Greedy algorithms. The stopping condition is a main issue for all
the non-regularized methods, since practically the original image is not
known, and the estimation of quality is based on some distance between
the measured image and its estimated counter-part. This distance is usu-
ally the mean square error (MSE), driving to an optimization on the
Least-Squares measure. Based on the independence of signal and noise,
we have established a new type of error measure, checking the orthogo-
nality criterion of the measurement driven gradient and the estimation
at a given iteration. We give an automatic procedure for estimating the
stopping condition. We show here its superiority against conventional
ad-hoc non-regularized methods at a wide range of noise models.

1 Introduction

In almost all image acquisition processes blurring is a common issue. Due to
various reasons (like defocusing, atmospheric perturbations, optical aberrations,
motion), the acquired images are distorted, and sometimes without restoration,
useless. The distortion is often modeled as convolution: the original unknown
image is convolved with a so called Point Spread Function (PSF) that describes
the distortion, that a theoretical point source of light takes through the image
acquisition process.

Y = H ∗ U + N (1)

where Y is the measured blurry image, U is the unknown original image, H is
the PSF and N is additional noise. Y , U and N are (n, m) sized 2D images and
H is a (k, l) sized kernel (k ≤ n, l ≤ m).

In the last decades a lot of methods were developed in order to restore the
original image from the blurred, noisy measurement. The methods aiming to
eliminate the effect of the convolution are called deconvolution methods. They
can be classified based on different aspects, like linear/non-linear, iterative/
non-iterative, the assumed noise model, etc. (see [1] for details).

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 321–332, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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In some cases we can assume that the PSF is known a priori [2, 3, 4, 5, 6, 7, 8, 9]
(can be measured experimentally using known probes or can be calculated based
on the parameters of the image recording device), and with the exact PSF better
results can be provided using less computational power. However, in less fortunate
cases, e.g. in astronomy and remote sensing, we might not know the PSF a priori,
hence both the original image and the PSF has to be estimated ”blindly” during
the deconvolution process [10, 11, 12, 13, 14].

Deconvolution methods can also be classified to iterative [2,3,4,5,6,12,13] or
non-iterative [7,8,9] algorithms. Iterative methods provide an estimation of the
original image and - in case of blind deconvolution - the PSF in each iteration,
while non-iterative methods work as filters on the measured image. Non-iterative
methods are usually simple and fast, but they amplify noise and suppress high
frequency components in the restored image, while iterative methods offer a
solution for these problems at the cost of more computational power and ill-
posedness of the estimated results [1]. Detailed information about classification
of deconvolution methods can be found in [1].

In this article we will focus on a common issue of iterative methods, the
stopping condition. In the following experiments we use an iterative, non-blind
deconvolution algorithm, described in [5, 6], and we will describe the proposed
method for the non-blind case.

1.1 The Necessity of Stopping Condition for Iterative Methods

Since we do not know the original image (U), only the blurry measured one (Y )
can be used to guide us toward U . If X(t) is the output of the method after t
iteration, then a goal function of the method is usually based on minimizing the
following expression:

min
t

(|H ∗ X(t) − Y |) (2)

Obviously the goal is to minimize |U −X(t)|, by stopping the iterations at that
point where the Mean Square Error (MSE) is minimal. However, we can only
access |Y − H ∗ X(t)|. Let X(t) be an iterated estimation, while another one is
X ′(t) = X(t) + N(t), where they differ in an additional N(t) noise and residual
error with zero mean. In this case H ∗ N(t) ≈ 0, and Y ′(t) = H ∗ X ′(t) =
H ∗X(t)+H ∗N(t) ≈ H ∗X(t). Since the iterations are controlled by H ∗X(t),
this allows possible cases for tn �= tm where |X ′(tn) − U | >> |X(tm) − U | is
true, while |H ∗ X ′(tn) − Y | ≤ |H ∗ X(tm) − Y | (see Fig. 3), and this is why
the problem is ill-posed. As stated in [15], this problem affects the quality of
solution of the iterative algorithms highly.

1.2 Existing Stopping Conditions

One way to try to stop this corruption is making additional assumptions about
the target image (like a non negativity constraint, or smoothness constraint).
This is called regularization of the deconvolution methods [16, 17]. Regulariza-
tion can enhance the image quality but the output highly depends on the chosen
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Fig. 1. As the number of iterations t passes the ideal stopping point, the MSE(U−X(t))
starts to increase

Fig. 2. Examples for the restored image quality versus iteration number in case of
different images at the same blurring/deblurring kernel and noise level: no optimal
number of iterations can be tuned

regularization parameters. In the following we will show that optimal result can
be achieved without regularization, based on the noise independence criterion
only.

Another way is to estimate the number of iterations needed to reach the
best image quality and stop the process before the image gets corrupted. A
straightforward idea is to stop the process after a constant number of iterations.
Based on our experiments, this constant is around 7-10 iterations for a Lucy-
Richardson based method [2, 3] like the one we used [5, 6]. For other methods
this constant is different (see [15]).

Another way is to stop the iteration after the change between two consecutive
estimations of the image becomes lower than a certain threshold [18]. In the
following we will call this Differential Based Stopping Condition (DBSC):

DBSC :
|X(t) − X(t − 1)|

|X(t)| < th (3)
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where th is a heuristic choice for threshold, usually between 10−3 and 10−6.
We have also tested a modified version of the above condition (in the following:
MDBSC), where the re-blurred estimated images (H ∗ X(t)) were considered:

MDBSC :
|H ∗ X(t) − H ∗ X(t − 1)|

|H ∗ X(t)| < th (4)

Other similar solutions are summarized in [15]. The problem with these methods
is that the number of iterations needed to reach the optimal restored image
depends on many things: the picture itself, the PSF and the additional noise.
See Fig. 2.

2 Orthogonality Based Stopping Condition

Rephrasing the problem, we can say that we are searching for the minimum of
the MSE of U − X(t):

min
t

(MSE (U − X(t))) (5)

The problem is that we do not know U, hence the above function cannot be
calculated. We need another function that expresses a similar thing but uses
only known images.

In recent years a new estimation error has been introduced for similar pur-
poses. Its efficiency has been proved for focus measurement in blind deconvo-
lution problems, see [19]. This error definition, called Angle Deviation Error
(ADE), is based on the orthogonality principle [20], considering the indepen-
dence of noise and the estimated signal:

ADE(Q, P ) =
∣∣∣∣arcsin

(
< Q, P >

|Q| · |P |
)∣∣∣∣ (6)

We will show that conventional measures, like MSE, cannot help us to find
optimal stopping criteria; while ADE has an optimum, close to the minimum of
|X−U |. In our case the problem with MSE is that it measures similarity between
two images. Since U is unknown, we cannot calculate MSE(U −X(t)), the only
remaining logical possibility is to use Y and H ∗X(t). These two values are the
base of the goal function of the iterative deblurring algorithms, which leads us
back to the original ill-posedness problem, meaning that the MSE(Y −H ∗X(t))
will decrease monotonously, although after a while high frequency noise will
appear in X(t). See Fig. 3.

In general we cannot measure the noise, and we only have data about the
measurement Y . However, when estimating the X(t) image, we can say that
when further iterations would not enhance the image, then the error between two
consecutive estimated images (Xe(t)) is independent of the real error(Xre(t)):

Xe(t) = X(t) − X(t − 1) (7)

Xre(t) = X(t) − U (8)
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Fig. 3. The measurable function MSE(Y − H ∗ X(t)) (on the left) or the difference
functions in DBSC, MDBSC (in the middle) do not follow the unknown function
MSE(U −X(t)) (on the right)

Fig. 4. The relationship between the minimum of MSE and ADE(Xe, Xre) for various
pictures with different SNR and blur radii

Otherwise we should continue the iteration to decrease the error. Once the
independence has been reached, the process must be stopped, since any steps
after this point may fall into the doubtful region of ill-posedness. The best opti-
mization could be given by the independence of X(t) − X(t− 1) and X(t)− U ,
in other words we have to stop the iterative process when the following ADE
function reaches its minimum:

ADE(Xe, Xre) =
∣∣∣∣arcsin

(
< Xe, Xre >

|Xe| · |Xre|
)∣∣∣∣ (9)

It is clearly shown, as Fig. 4 plots, that the minimum location of ADE(Xe, Xre)
correlates well with the minimum of MSE(U − X(t)); however, ADE(Xe, Xre)
still contains the unknown image U . Another option is to use the Y −Y (t) instead
of the unknown Xre, but it is disturbed by the blurring function H in Y (t). The
clearest way for capturing the independence of the signal and the noise is using
the error between two consecutive estimated images Xe(t) and the unblurred
estimation X(t):

ADE(Xe, X(t)) =
∣∣∣∣arcsin

(
< Xe, X(t) >

|Xe| · |X(t)|
)∣∣∣∣ (10)
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Fig. 5. The relationship between the minimum of MSE(U−X(t)) and ADE(Xe, X(t))
for various pictures with different SNR and blur radii

Fig. 6. The figure illustrates the calculation of a best common stopping point (bcsp)

The above expression contains only measurable images and provides a rea-
sonable solution for the stopping problem. At the minimum of ADE(Xe, X(t))
the change between two consecutive iterations (Xe) has the highest possible
independence of the actual reconstructed image, hence we can assume that at
this point Xe contains mostly independent noise and not structural information
of the image, and further iteration will not enhance the image quality. In the
following we will show how close this approximation brings us to the optimal
stopping point.

In an ideal case, when the remaining Xe(tn) contains only random noise and
for a given tn the scalar product of Xe(tn) and X(tn)−U of Eq.(9) is zero (which
means that the iterated change is independent of the structural differences of
the restored image):

< Xe(tn), X(tn) − U > = 0 (11)

Then, using the distributive property of scalar product:

< Xe(tn), X(tn) − U > = < Xe(tn), X(tn) > − < Xe(tn), U > (12)
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Fig. 7. The figure shows the calculated bcsp locations versus the proposed stopping
points, α = arg mint(ADE(Xe, X(t)))

Fig. 8. The quality of the deconvolved image using a fixed iteration number and the
proposed method as stopping condition. The quality of the blurred image is also shown
for unchanged (t = 0) images as reference.

Since U may contain high frequency components correlating with Xe, the
possible zeros of components in Eq.(12), < Xe(tn), X(tn) − U > = 0 and
< Xe(tm), X(tm) > = 0, are not necessarily coincident, since < Xe(t), U > �= 0
biases Eq.(12): tm �= tn. We may say that, even for the most ideal case, the
ill-posed property of the problem results in the biasing of the possible mini-
mum, tn �= tm. Fig. 5 shows the relationship between the minimum locations
of ADE(Xe, X(t)) and MSE(U − X(t)) functions. Although, due to the above
reasons the correlation is not as perfect as it was between ADE(Xe, Xre) and
MSE(U − X(t)), it is clearly visible.

However, what really matters is not the difference in the number of executed
iterations, but the difference between the MSE values at the two functions’
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Fig. 9. The quality of the deconvolved image using DBSC (Eq. (3)) with different
thresholds and the proposed method, and the runtime of the methods in number of
iterations. The quality of the blurred image is also shown for unchanged (t = 0) images
as reference.

minimum location. It is possible that the MSE function has a long quasi con-
stant part around the minimum, see the mid image of Fig. 6. In this situation
the difference between the executed iterations is high, while the value of the
MSE function practically does not change. Our main priority is to provide an
estimation X(α) that is as close to the best possible iteration X(β) as possible,
where β = argmint(MSE(U − X(t))) and α = argmint(ADE(Xe, X(t))). The
shape of MSE(U − X(t)) function changes from image to image, and the blur
radius or the SNR of Y may also affect it, therefore the distance between β and
α is not the best measure for us. Fig. 5 shows the relation between β and α for
different measurements (each corresponds to a point on the figure).

There are points whose α = argmint(ADE(Xe, X(t))) are the same (they are
in the same ”line” on Fig. 5). These measurements were stopped at the same α
point by our stopping condition, but the corresponding β locations can be
different.
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Fig. 10. The quality of the deconvolved image using MDBSC (Eq. (4)) with differ-
ent thresholds (0.01, 0.005, 0.001) and the proposed method, and the runtime of the
methods in number of iterations

This means that α might not be the best stopping point for each measurement
individually, but we will show that considering all the measurements with the
same α, it is close to the best common stopping point (bcsp). To find this bcsp for
these cases, an average of their MSE(U − X(t)) functions has been calculated:
E{MSE(U − X(t))}. The bcsp will be the minimum location of E{MSE(U −
X(t))}:

bcsp = argmin
t

(E{MSE(U − X(t))}) (13)

The calculated bcsp locations can be seen versus the proposed stopping points,
α = argmint(ADE(Xe, X(t))) in Fig. 7. We can conclude that, although our
estimation is not always correct, for the measurements with the same α the
expected value of β is close to α. An illustration of the calculation of a bcsp
point is shown in Fig. 6.
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3 Results

In this section we will present the test conditions and the results achieved with
the proposed algorithm and other competing methods. We used 25 images as
database, which contain landscapes, images of buildings, animals, textures, black
and white drawings. The PSF is a Gaussian kernel defined by different blur
radii between 1 and 5. To the blurred images Additional White Gaussian Noise
(AWGN) was added with SNR=20, 25, 30, 35, 40dB.

3.1 Comparative Results

To compare the proposed method to other existing stopping conditions, we cal-
culated the ratio between the MSE value at the real minimum location (see
Fig. 1) and at the point where the stopping condition would stop the iteration.
We compared the proposed method to fixed iteration count (using the best pos-
sible fixed number in the test), the DBSC (Eq. (3)), the MDBSC (Eq. (4))and
as a baseline we also calculated the above mentioned ratio for the blurred image,
Y . The results can be seen on Figs. 8, 9 and 10.

Fig. 8 compares the proposed method with a commonly used solution, where
the deconvolution process is stopped after a constant number of iterations. In
our experiments the best results were obtained when this constant was 7. The
experiments were taken using all the 25 images with different blur radii and noise
levels.

Fig. 11. The estimation results by using measurable ADE(Xe, X) and non-measurable
MSE(U, X) functions at different iterations
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Our tests demonstrate that the commonly used Xe based (DBSC) stopping
condition is outperformed by the one using the blurred comparison (MDBSC).
At any ad-hoc threshold settings, both of them are highly outperformed by the
proposed ADE based function (see Fig. 9 and 10).

Fig. 11 shows estimation of the original image, U at different t points of the
iteration process.

The results show that our ADE stopping criterion gives the best SNR esti-
mation of U along with a well balanced run-time effort.

4 Conclusion

In the paper a novel method has been introduced for calculating the ideal stop-
ping point for iterative non-regularized deconvolution processes. The proposed
method is capable of estimating the optimal stopping point of iterations based on
the independence of an actual estimated signal and its measurement controlled
gradient, indicating when an aimless section of the iterations is just starting. It
is stable in terms of quality and runtime, and it clearly outperforms the gener-
ally used ad-hoc methods. Although the results were obtained with a non-blind
method, we did not apply any constraints about dimensionality or regularization
issues. The same method might be well applied on double (blind [14]) deconvo-
lution as well: Eqs. (2) - (10) will be kept unchanged even in these cases. This
is a possible direction for future work.
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Abstract. We present a probabilistic 3D object recognition approach
using multiple interpretations generation in cluttered domestic environ-
ment. How to handle pose ambiguity and uncertainty is the main chal-
lenge in most recognition systems. In our approach, invariant 3D lines
are employed to generate the pose hypotheses as multiple interpretations,
especially ambiguity from partial occlusion and fragment of 3D lines are
taken into account. And the estimated pose is represented as a region
instead of a point in pose space by considering the measurement uncer-
tainties. Then, probability of each interpretation is computed reliably
using Bayesian principle in terms of both likelihood and unlikelihood.
Finally, fusion strategy is applied to a set of top ranked interpretations,
which are further verified and refined to make more accurate pose esti-
mation in real time. The experimental results support the potential of
the proposed approach in the real cluttered domestic environment.

1 Introduction

3D object recognition and pose estimation is a difficult problem in computer
vision and intensively investigated for many years with widespread applications.
How to deal with ambiguity and uncertainty of 3D object recognition in domestic
environment with change of illumination, perspective viewpoint, distance, partial
occlusion and background, etc is still an open problem.

Many researchers proposed various 3D object recognition approaches since
Robert’s pioneer work [1]. Among them, model-based recognition method is most
general one, which computing the hypothesized model pose by finding correspon-
dences between the model features and image features, and final pose is verified
with additional image features. Fischler and Bolles’ RANSAC approach [2], Beis
and Lowe’s invariants indexing approach [3], and Costa’s relational indexing
approach [4]. These approaches, which hypothesize poses from initial feature
matching correspondences and verify those hypotheses based on additional pres-
ence of supporting correspondences, cannot be in real time when the number
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of model and image features becomes large. David et al. [5] proposed the ap-
proach that the recognition and pose estimation are solved simultaneously by
minimizing energy function. But it may not be converged to minimum value in
functional minimization method due to high non-linearity of the cost function.

Recently, there have been a number of appearance based approaches to 3D
object recognition in which multiple 2D views are sampled as the representation
of 3D objects [6, 7]. Cyr and Kimia [8] employed an aspect-graph view-based
method, where the viewing sphere is sampled at regular (five-degrees) intervals
and the similarity metric is used in an iterative procedure to combine views into
aspects, with a prototype representing each aspect. Sun [9] proposed a multi-
view probabilistic model, which considerate not only similar features in multi-
view images, but also 3D relationship among the multi-views or multiple parts
of one view. However, these methods cannot provide accurate pose estimation
since they do not use 3D models, and are sensitive to illumination change, clutter
and partial occlusion.

More recently, the use of range images has been popular as a way of overcom-
ing the limitation of 2D images. In range images, 3D shape are represented by
local feature, such as spin images [10], 3D shape context [11] [12] are examples
where surface points are described by shape distribution of a local neighborhood.
However, these methods mostly deal with dense and accurate depth data, which
is suitable for stereo vision based images.

Shimshoni and Ponce [13] proposed a probabilistic approach for 3D object
recognition, which used 2D line features and 2D models sampled from viewing
sphere using probabilistic peaking effect, but they assume that the lines in 3D
object can be covered well in image by edge/line detector, and the computation
is so expensive. David’s [14] also proposed a 2D line feature based approach for
3D object recognition, which only can recognize object within 30o away from
the modeled viewpoints, which means a large number of models should be made
for each object.

In domestic environment, most of the objects are rigid with straight line fea-
tures, such as table, refrigerator, book, TV, milk box, etc. Most of the informa-
tion available for object recognition is 3D lines because 3D data can be obtained
robustly with stereo camera on the boundaries of objects even in texture-less
objects. Approaches to object recognition that rely on 2D features only are
likely to perform poorly because 2D models are normally viewpoint-dependent.
Therefore, in order to recognize the 3D object from any viewpoint and distance
for service robot. To deal with this challenge, invariant 3D features should be
adopted. This paper presents an effective probabilistic method for recognizing
3D object in domestic environment for home service robot, where both the ob-
ject models and their images are represented by invariant geometric features, 3D
line segments.

There are three challenges in constructing such a 3D object recognition system.
The first is how to generate multiple interpretations to cover all the possible lo-
cations of the target object in 3D space. In our approach, we group the 3D lines
into two types of feature sets, pairs of parallel lines and pairs of perpendicular
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lines, which usually appear in man-made objects. Every pairing of image feature
set to a model feature set contributes a pose hypothesis as an interpretation, typ-
ically, each image feature set corresponding to several model feature sets, which
results in multiple interpretations. Thanks to the adopted invariant 3D line fea-
ture, compare to conventional 2D feature based approaches, the total number of
interpretations is much fewer, and each interpretation is less likely to be corrupted
by spurious features.

The second challenge is how to verify each interpretation with additional
evidences, most of the initial hypothesized interpretations are inaccurate be-
cause correspondences between the model feature sets and image feature sets
are incorrect. Thus, our approach ranks interpretations in a probabilistic manner
using Bayesian rule. To ensure the estimated probability is reliable, the proposed
method estimates the probability not only through likelihood measurement be-
tween the model feature sets and image feature sets, but also through unlikeli-
hood measurement by analyzing the spatial distribution of the support evidences.
The new probability estimation is largely robust to environment change. In order
to take into account the uncertainty in the values measured in the image, we
represent each interpretation as a region in the pose space rather than a point
in that space. Consequently, each interpretation is represented as a Gaussian pdf
with a certain probability weight.

The final challenge is how to refine top ranked interpretations to provide
more accurate pose, we make use of the information inherent in interpretations,
which means interpretations should yield compatible poses if they correspond
to the same object. We fuse sets of interpretations which support each other
and output a small number of fused interpretations with higher probabilities
and smaller uncertainties. Compare to modified Gold’s graduated assignment
algorithm [14], which needs a number of iterations using deterministic annealing
to get optimal pose. By fusing the compatible set of interpretations, we are able
to find a correct precise pose in real time.

The remainder of the paper is structured as follows: Detail of multiple inter-
pretations generation is described in section 2. In section 3 we derive probability
computation in terms of likelihood and unlikelihood. In section 4 we present
fusion based pose refinement. Section 5 demonstrates experimental results, and
the conclusions are given in Section 6.

2 Multiple Interpretations Generation

The motivation of probabilistic multiple interpretations specifically focus on 3D
object recognition in domestic environment, the feature selected as weak evidence
for the initial object recognition is incomplete and ambiguous, meaning that the
feature may generate a number of matching that are not the target object we are
searching for or, even though the feature represents the target object, the feature
is not able to localize the target object uniquely as Fig.1 shows. Furthermore, we
need to consider the case where maybe multiple of similar objects present in the
scene. How to incorporate the above two factors into object recognition is a matter
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(a) (b) (c)

H ...1 H H ... Hn 1 n

Fig. 1. Multiple interpretations. (a) target object, (b) parallel line pairs based interpre-
tations, (c) perpendicular line pairs based interpretations. Where H1, · · · , Hn represent
hypotheses from different feature sets of model.

of interest. As stated above, the initial matching generated by the initial feature
are rather ambiguous and incomplete in terms of uniquely identifying where the
target object is. In order to generate the true interpretations, each matching is in-
terpreted in terms of possible object poses. There newly identified interpretations
are now subject to further evaluation with additional evidences so as to determine
the probability and that the candidate represents the target object.

Parallel line pairs and perpendicular line pairs are typical combination of line
features of human made object in domestic environment as Fig.1 shows. We
would like to compute P (x, Hm, O|F ), which is obtained basically from placing
the model of target object O at location x given feature F , where Hm denotes
hypothesis that matching mth model feature of model O against the measured
image feature set F . More specifically, P (x, Hm, O|F ) can be represented, from
Bayesian principle, as

P (x, Hm, O|F ) = P (Hm, O|F )P (x|F, Hm, O) (1)

where P (Hm, O|F ) is the probability (i.e., a positive real value ≤ 1) that F
represents hypothesis Hm of target object O. On the other hand, P (x|F, Hm, O)
represents the probability that hypothesis Hm of the object O, given F , is located
at x. Since x represents a variable due to the uncertainty of image features, thus,
P (x|F, Hm, O) defines a probability density function(pdf ) along x. Therefore,
the pose of an interpretation is represented as a region instead of a point in
the pose space. Due to the partial occlusion and fragmentation of 3D lines, the
image feature set F may not uniquely match with the hypothesis Hm of target
object O. We could use the midpoint to make the correspondence between each
image line and model line, but this is not always true in the case of a short
line superposed on a longer line (think of the short line is a fragment of the
longer line). A solution to this challenge is to generate multiple representations
for each image feature set, which means F can be represented by a series of
extended Fk(as Fig.2 shows) that uniformly sample the dynamic range with an
interval s, where the dynamic range is computed based on the length difference
between F and Hm, and interval s depends on the size of model and dynamic
range. Incorporating Fk into (1) yields:
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Fig. 2. Illustration of sub-interpretations, where F1, F2, ...Fm are extended features
(represented as dashed blue line)

P (x, Hm, O|F ) =
K∑

k=1

P (x, Hm, O|Fk)P (Fk|F ) (2)

where P (Fk|F ) is the probability that Fk represents F is correct, which is
uniformly distributed as mentioned above. And P (x, Hm, O|Fk) can be repre-
sented as P (Hm, O|Fk)P (x|Fk, Hm, O) similar to the derivation in (1), where
P (x, Hm, O|Fk) is noted as sub-interpretation by matching the extended image
feature set Fk against mth model feature set of hypothesis Hm. We approxi-
mate P (x|Fk, Hm, O) as a Gaussian pdf based on the range resolution of the
stereo camera [15]. Therefore, P (x, Hm, O|F ) is computed by summing over the
sub-interpretations, which is a mixture of Gaussians as Fig.2 illustrates. Al-
though the complexity increases linearly to the number of sub-interpretations,
the recognition performance is greatly enhanced. Finally, the pose hypothesis
of a sub-interpretation is generated as follows, in order to compute the pose,
endpoints of each 3D line in Hm and Fk are corresponded one by one, totally we
have four pairs of corresponding endpoints. Thus, the transformation mapping
a model feature set Hm to the extended image feature set Fk is

Fk = T k
mHm (3)

where T k
m is a 4x4 homogeneous transformation matrix with twist representation

[16], and the corresponding twist parameters are represented as a vector as θk
m =

(ωx ωy ωz tx ty tz), where (ωx ωy ωz) represent rotation, and (tx ty tz) represent
translation. For sake of explanation clearly in following sections, the general form
of sub-interpretation is characterized as

Ik
m = {πk

m, N(θk
m, Σk

m)} (4)

where πk
m denotes the probability weight P (Hm, O|Fk), and N(θk

m, Σk
m) denotes

a Gaussian pdf of pose distribution P (x|Fk, Hm, O).

3 Probability Computation

The second challenge of the proposed approach is that how to rank the gen-
erated multiple interpretations probabilistically. For this purpose, a matching
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probability between the model (transformed by an estimated pose) and im-
age is computed. Since each interpretation is represented by a number of sub-
interpretations, so instead of computing the probability of each interpretation,
we compute the probability of each individual sub-interpretation separately.
In other words, rather than compute P (Hm, O|F ), we would like to compute
P (Hm, O|Fk), using Bayesian law

P (Hm, O|Fk) =
P (Fk|Hm, O)P (Hm, O)

P (Fk)
=

1
1 + α

(5)

where α = P (Fk|Hm,O)
P (Fk|Hm,O) , and we assume P (Hm, O) and P (Hm, O)are equal, be-

cause no prior knowledge is available.
More specifically, P (Fk|Hm, O) is the likelihood probability that feature Fk

appears given hypothesis Hm of the object O is present in the scene, whereas
P (Fk|Hm, O) is the unlikelihood probability that feature Fk appears when the
object O is absent in the scene. To ensure the estimated probability is reliable, all
the neighboring 3D lines around the estimated pose should be involved as support
evidences in probability computation. Let N (θk

m) denotes all the neighboring
3D lines around estimated pose θk

m as shown in Fig.3(a). So during the real
computation of P (Hm, O|Fk) in (5), Fk is alternatively represented as N (θk

m).
Actually, the probability of each sub-interpretation is the function of the pose.

More details about the definition of support evidence are shown in Fig. 3(b).
Let Lj be jth line segment of the sub-interpretation where j ∈ [1, Nr], Nr is
the number of the all visible line segments (solid black 3D lines in Fig. 3(a))
of the sub-interpretation. A line feature lji belongs to Lj , determined by the
distance from the mid-point of the line feature to Lj . The angle θj

i between the
line feature lji and Lj is also utilized. Two threshold values those are specified
a priori are utilized to remove non-relevant line features such as d̄ and θ̄ for
distance threshold and angle threshold, respectively. Due to line fragment, Lj

might own several line features lji , i ∈ [1, Nj] where Nj is the number of line
features that belong to Lj .

3.1 Likelihood Computation

In order to compute likelihood probability P (Fk|Hm, O), we are opted to use
not only error distance but also coverage of the feature line over the sub-
interpretation. The error distance of the ith line feature with respect to the
jth reference line segment is denoted by dj

i and defined by the distance between
from mid-point of the line feature to the reference line.

As mentioned above, each reference line might possess several line features
within its threshold. In order to compute the coverage of each reference line, we
projected each line feature onto the corresponding reference line. As shown in
Fig. 3(c), the green portion of the reference line Lj represents the coverage of
the line features with respect to the reference line. Subsequently, the error ej

and the coverage cj associated with each jth reference line are computed as
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ej = min

⎧⎨
⎩Emax,

1
Nj

Nj∑
i=1

(
μ

dj
i

2

d̄2
+ (1− μ)

tan2 θj
i

tan2 θ̄

)⎫⎬
⎭ , cj = max

⎧⎨
⎩Cmin,

Nj∑
i=1

lji
Lj

⎫⎬
⎭
(6)

where the parameter Emax and Cmin ensure that “good” poses are not penalized
too severely when a model line is fully occluded in the image. This parameter
is easily set by observing the values of ej and cj that are generated for poor
poses. It should be noted that when calculating each error ej, distance and the
angle error are normalized by the threshold values d̄ and θ̄. In particular, the
coefficients μ is utilized to impose relative weight between the distance error and
the angle error. Therefore, given a set of the reference lines, the total error is
computed by taking the averages of each error and coverage as e = 1

Nr

∑Nr

j=1 ej

and c = 1
Nr

∑Nr

j=1 cj . Finally, the likelihood probability is computed by (7).

P (Fk|Hm, O) = c(1 − e2) (7)

Note that the likelihood is proportional to the coverage, while being parabolic
to the error.
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Fig. 3. Generated interpretation and support 3D line evidences, where (a) shows neigh-
boring 3D measured lines which are belong to the estimated pose, blue 3D lines are
neighboring but red lines are not, (b) shows the geometric constraints requirement of
the support 3D line evidences, and (c) illustrates the coverage of support line features

3.2 Unlikelihood Computation

We define the unlikelihood as the probability of detecting a particular feature set
under the absence of the target object. Most of the previous approaches compute
the unlikelihood probability based on either learning or empirical data, where
learning-based approach requires a large number of manually labeled training
data, typically hundreds or thousands of images are required, and empirical
data is obtained from some typical scenes, which suffers the problem of accu-
racy and robustness. Whereas we propose a novel approach for unlikelihood
evaluation in a computational way in terms of diversity, which is defined by an-
alyzing the spatial distribution of the support evidences. For instance, as shown
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(a) (b)

1

2

Fig. 4. (a) illustrates diversity and coverage of support line evidences, and (b) shows
statistics distribution of diversity value for target object and non-object

in Fig.4(a), where 1� and 2� have the same overall coverage (covered by thick
red lines), but actually 1� is more robust than 2� because lines are equal dis-
tributed in 1�, which provides stronger geometric constraints. Therefore, if the
support evidences are distributed more equally around the estimated pose, then
this estimated pose is more likely to be the true object, otherwise, the estimated
pose might be generated from background or other non-objects with similar ini-
tial feature set. For this purpose, we compute the unlikelihood probability to
evaluate whether the estimated pose is reasonable.

If the overall coverage is fixed, then diversity is maximized when cj (defined in
(6)) are totally equal. Under this criterion, the problem of diversity computation
is equal to entropy computation, which is well defined in standard information
theory. It follows that diversity maximization is equivalent to maximize entropy,
which is also equivalent to infomax. The equivalence between diversity maxi-
mization and infomax can make sense, because if the support evidences around
the estimated pose can provide most information of the target object, then the
estimated pose is more likely to be correct. Remembering that the unlikelihood
probability is defined under the assumption that object is absent in the scene.
So if the object is absent or invisible in the scene, then the support evidences
might not provide much related information about the target object.

The unlikelihood probability is computed as follows. Let c̃j denote the nor-
malized cj as c̃j = cj∑Nr

s=1 cs
, so that

∑Nr

j=1 c̃j = 1. Then, the diversity of the

support evidences N (θk
m) around the estimated pose θk

m is computed as

D
(N (θk

m)
)

=
Nr∑
j=1

(−c̃j · log(c̃j)) (8)

In order to represent the unlikelihood probability in terms of diversity D(N (θk
m)),

we need to normalize the value of D(N (θk
m)) in the range of [0, 1]. Since the max

value of D(N (θk
m)) is max{D(N (θk

m))} =
∑Nr

j=1

(
− 1

Nr
· log( 1

Nr
)
)
≡ log(Nr).
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Hence, the normalized diversity D̃(N (θk
m)) is represented as

D̃
(N (θk

m)
)

=
D
(N (θk

m)
)

log(Nr)
(9)

Finally, the unlikelihood probability is computed as

P (Fk|Hm, O) = 1 − D̃
(N (θk

m)
)

(10)

The smaller the value of P (Fk|Hm, O), the more likely the estimated pose θk
m is

correct. In order to justify the effectiveness of diversity computation, we captured
a number of images for testing, half of them contain target object, and another
half contain non-object, followed by multiple interpretations generation. Statistic
distribution of diversity value is shown in Fig.4(b). From this we can see that,
the diversity value of non-object and target object can be discriminated well.

4 Pose Verification and Refinement

The final challenge of the proposed approach is to apply a pose refinement to a
few top ranked interpretations according to the estimated probabilities. Remem-
bering that we represent an interpretation as a number of sub-interpretations
during the stage of multiple interpretations generation. The main purpose of the
sub-interpretations is that decrease the ambiguity due to the partial occlusion
or fragment of the 3D line features. Since after probability computation stage,
we know the relative importance among sub-interpretations, and these sub-
interpretations have OR relationship which means only one sub-interpretation
is correct in an interpretation. Therefore, in the refinement stage, we only choose
one sub-interpretation with highest probability to represent an interpretation.
In other words, an interpretation is represented as a weighted Gaussian pdf in
this stage.

For the sake of simplicity, let’s assume that two independent image feature
sets f1 and f2 and two respective hypotheses h1 and h2 are given, which re-
sult in two interpretations as P (x, h1, O|f1) and P (x, h2, O|f2), and their cor-
responding general form representations are given as I1 = {π1, N(θ1, Σ1)} and
I2 = {π2, N(θ2, Σ2)} respectively as defined in (4). Therefore, The fusion of two
interpretations is performed by fusing two weighted Gaussian pdf s. Now, we are
interested in the possibility of fusing the two interpretations and, if possible, how
to fuse them into P (x, h1, h2, O|f1, f2), or how to get its corresponding general
form I = {π, N(θ, Σ)}.

For f1 and f2 to be features of the same instance of object, the pose of
the object x must be in the intersection of the pose uncertainty regions of two
interpretations. But if f1 and f2 do not belong to the same instance object, then
they do not support each other. Therefore, before fusion two interpretations,
we need to check the support relationship between them. For this purpose, the
support is determined by Mahalanobis distance between two pose distributions,
N(θ1, Σ1) and N(θ2, Σ2), which is computed as
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d(I1, I2) =

√
(θ1 − θ2)T

(
Σ1 + Σ2

2

)−1

(θ1 − θ2) (11)

if d(I1, I2) ≤ δth,then they are deemed to support each other. We have found that
when δth = 3 can achieve good performance. And then how to fuse two interpre-
tations in terms of probabilities and pose distributions becomes a matter of in-
terest. Note that P (x, h1, h2, O|f1, f2) = P (h1, h2, O|f1, f2)P (x|f1, f2, h1, h2, O).
Similar to (5), fused probability P (h1, h2, O|f1, f2) is computed as

P (h1, h2, O|f1, f2) =
P (f1, f2|h1, h2, O)

P (f1, f2)
=

1
1 + α12

(12)

where α12 = P (f1|h1,O)
P (f1|h1,O) · P (f2|h2,O)

P (f2|h2,O) . In addition to probability fusion, pose distri-
bution fusion is computed as

P (x|f1, f2, h1, h2, O) = P (x|f1, h1, O)P (x|f2, h2, O) (13)

Since both P (x|f1, h1, O) and P (x|f2, h2, O) have their corresponding weights,
To adapt to reliability of each interpretation, so (13) is slightly changed as

P (x|f1, f2, h1, h2, O) = P (x|f1, h1, O)ω1P (x|f2, h2, O)ω2 (14)

where ω1 = π1
π1+π2

and ω2 = 1 − ω1 are normalized weights. Finally, the general
form of fused pose N(θ, Σ) is computed [17] as

Σ−1 = ω1Σ
−1
1 + ω2Σ

−1
2

θ = Σ(ω1Σ
−1
1 θ1 + ω2Σ

−1
2 θ2)

(15)

5 Experimental Results

In order to validate our approach, we recognized 3D objects in cluttered do-
mestic environment. About 20 daily used domestic objects are employed for
experiments, such as refrigerator, milk box, biscuit box, cup, book, etc. All im-
ages were captured with a stereo camera at a resolution of 640×480 pixels. 100
to 200 3D lines can be detected generally in an image. First of all, we test the
proposed algorithm for both texture and textureless objects. Fig.5 illustrates
recognition results to different kinds of selected objects. Poses are illustrated
in both 3D space and their projection on 2D images. All of the objects are
recognized correctly within seven top ranked interpretations.

In the interest of analyzing the reasonableness and effectiveness of probability
computation, we choose two cluttered domestic scenes as shown in Fig. 6. In
the first row of Fig. 6, several ambiguous interpretations are generated because
the parallel line pair comes from two different objects (one line from cup and
another line from box). In the second row of Fig. 6, multiple interpretations
are generated from both target object and non-objects, because the non-objects
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Fig. 5. Recognition results of four objects, results in both 2D image and 3D point
clouds are illustrated. Textured objects (1st row): book and biscuit box, textureless
objects(2nd row): refrigerator and kitchen refuse bin.

(a) (b) (c) (d)

Fig. 6. Multiple interpretations generation and probability assignment. (a) is origi-
nal 2D images, and two target objects are marked with rectangles. (b)-(d) are se-
lected interpretations of each object, and only (d) is the correct recognition. First row
demonstrates ambiguity from spurious features, the estimated probabilities of (b)-(d)
are 0.392, 0.330 and 0.614 respectively. Second row shows ambiguity of other objects
which have similar initial feature set as target object, the estimated probabilities of
(b)-(d) are 0.469, 0.509 and 0.834 respectively, where the highest probability indicates
the true object correctly. The figure is best viewed in color and PDF magnification.

have similar initial feature set with the target object. But our approach can dis-
criminate these ambiguities by estimated probabilities. This demonstrates that
initial interpretations are generated as a week classifier without losing any possi-
ble candidates, and then can be verified probabilistically by additional evidences
as a strong classifier to eliminate the spurious interpretations. Finally a small
number of reasonable interpretations with high probability are selected.

In order to evaluate the performance of the proposed algorithm, three param-
eters are measured:
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– Detection probability β: The probability that the complete set of gener-
ated interpretations contain at least one correct matching between the model
and image.

– Ranking index n: Among all the interpretations ranked probabilistically,
the ranking of the first correct interpretation leads to a true location of the
target object.

– Computation time t: The average computation time for each model at
each image.

Selected images shown in Fig. 7 are used to perform the experiment. For each
specific object, there are three typical cases of scenarios from easy to difficult in
domestic environment. In case 1, single object appears in the scene without any
partial occlusion, which is the easiest case, as shown in first row of Fig. 7. In case
2, object with partial occlusion but no similar objects coexist, as shown in second
row of Fig. 7. In case 3, also is the most difficult case, not only partial occlusion,
but also similar objects are coexist with the target object, as shown in third
row of Fig. 7. Actually, for each scenario of each object, 25 images are captured
with different viewpoint, distance and illumination. The estimated value of pa-
rameter detection probability β ≡ 1 in all of three cases, thanks to the adopted
weak initial feature that any possible candidates of target object will not lose.
And the estimated values of ranking index n are shown in Fig. 8(a). Horizontal
axis represents index of object model, where 20 objects are employed for this
evaluation. From this we see that, for the simple scene which only include single
object, the correct interpretation can be found only in top three interpretations.
By examining just the top five interpretations for case 2 can get correct matching
result. Even for the most difficult scene as case 3, where many similar objects are
coexist with target object, the correct recognition can be achieved in just only
top eight interpretations means that the probability computation is working as
expected. Therefore, only a few interpretations with high probabilistic ranking

Fig. 7. Selected images for performance evaluation. 1st row shows case 1 with only
single object in the foreground, but the background is still cluttered; 2nd row shows
case 2, where the object is occluded with partial occlusion; 3nd row shows case 3, which
is the most difficult case, not only partial occlusion, but also several similar objects
are coexist with the target object. Both 2D and 3D recognition results are shown in
images. The figure is best viewed in color and PDF magnification.



Probabilistic 3D Object Recognition Based on Multiple Interpretations 345

(a) (b)

Fig. 8. Performance evaluation. (a) is the ranking index n, and (b) is computation
time t.

need to be used in fusion stage. Finally, in this experiment, the proposed meth-
ods required averagely the computation time less than 500ms even for the very
clutter scene, as is seen in Fig. 8(b).

6 Conclusion

3D object recognition and pose estimation are basic prerequisites for home ser-
vice robotics. In this paper, a novel approach for probabilistic recognition based
on multiple interpretations has been proposed, our approach represents the rec-
ognized object pose with probabilistic multiple interpretations, which are gen-
erated from invariant 3D features as parallel line pairs and perpendicular line
pairs. An interpretation is represented as a weighted Gaussian pdf which is a
region instead of a point in pose space. The probability of each interpretation is
computed efficiently in terms of both likelihood and unlikelihood that is robust
to occlusion and clutter. The top ranked interpretations are further verified and
refined with a fusion strategy in a closed form. The fused interpretations are
more confident with high probabilities, which can lead to more accurate pose
estimation. Experiments show that the proposed approach can recognize object
robustly in cluttered domestic environment in real time.
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Planar Affine Rectification from Change of Scale
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Abstract. A method for affine rectification of a plane exploiting knowl-
edge of relative scale changes is presented. The rectifying transformation
is fully specified by the relative scale change at three non-collinear points
or by two pairs of points where the relative scale change is known; the
relative scale change between the pairs is not required. The method also
allows homography estimation between two views of a planar scene from
three point-with-scale correspondences.

The proposed method is simple to implement and without parame-
ters; linear and thus supporting (algebraic) least squares solutions; and
general, without restrictions on either the shape of the corresponding
features or their mutual position.

The wide applicability of the method is demonstrated on text rectifi-
cation, detection of repetitive patterns, texture normalization and esti-
mation of homography from three point-with-scale correspondences.

1 Introduction

The problem of affine rectification of a plane, i.e. the problem of transforming an
image by a homography so that the vanishing line of the plane becomes the line
at infinity, arises in many applications, e.g. in document processing [1,2], detec-
tion of repetitive structures [3] and texture analysis [4, 5]. The plane of interest
appears in the rectified images as if viewed by an affine camera, i.e. projected
by a set of parallel rays and scaled. The restoration of affine properties like par-
allelism and global scale simplifies subsequent application-dependent processing
steps like geometric normalization, detection and recognition.

In the paper, a general yet simple method for affine rectification of a plane
is introduced. The algorithm exploits knowledge of relative scale changes in the
local neighbourhood of image points lying in the plane. The rectifying trans-
formation is fully specified by the relative scale change at three non-collinear
points. Another minimal case covered by the method applies in the situation
were for two pairs of points the relative scale change is known; the relative scale
change between the pairs is not required.

A situation in which the relative scale change is known at different points
arises often in practice. Consider, e.g. the problem of affine rectification of a
repeated pattern on a planar surface, say a facade, Fig. 1. In a perspective
image of the facade, the features detected on the windows in general vary in size
(area). In reality, it is common that (at least some of) the windows are of the
same size. The task addressed in the paper is to find a planar homography H
that transforms the image of the facade so that all the window features cover the

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 347–360, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Affine rectification. Original image (a) - the area of the triangular patches
differs from 1991 to 4307 pixels due to the perspective projection. Rectified image (b)
- the areas are approximately the same, as in reality. Parallel lines on the facade are
not parallel in the original image (c), and are parallel after the normalization (d). The
cut-outs (c) and (d) are parallelograms defined by two red line segments in (a).

same area. We show in the experimental section that the method is applicable
in many situations.

The proposed method has the following advantages: (generality) no assump-
tions are made about either the shape of the features or their mutual position;
features need not lie on a regular grid nor on lines and may be arbitrarily rotated;
(stability) the rectification is computed from ratios of areas, a very stable prop-
erty insensitive to many image degradations such as discretization; (simplicity)
the rectification algorithm is simple, easy to implement and without parameters;
(linearity) the constraints on the scale change are expressed as linear constraints
on the entries of the homography matrix H that represents the transformation.
Linear constraints are very convenient as they can be used with minimal sets
(in RANSAC-like [6] robust estimators) as well as in (algebraic) least squares
solutions from all available data.

The derivation of the algorithm assumes that the features are sufficiently
small so that their scale change reasonably approximates the scale change (of
an infinitesimal patch) at corresponding points. Such an assumption is made by
wide-baseline matching approaches using affine covariant feature points and/or
affine invariant feature descriptors. We show experimentally in Sec. 3 that the
assumption holds in practice.
Previous work. Affine rectification algorithms proposed in the literature differ
by the assumptions about the structures present in the image that are exploited
in the process. The most straightforward approaches detect two distinct vanish-
ing points [7].
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The problem of vanishing line detection has been addressed for elements re-
peated by translation on a plane. The geometric relation of the elements after
projective transformation is called elation [7]. A comprehensive study of vanishing
line (and points) detection based on the elation assumption is given in [3]. Another
approach exploiting elations for detection of vanishing line in a projective image
of a texture was proposed in [8]. Other approaches, specially in the text analy-
sis, assume, that parallel lines with equal spacing can be detected in the image.
The normalization (vanishing line) is then estimated from the intersection of the
parallel lines and a cross-ratio of collinear set of points on those lines [1].

Publications on affine rectification have appeared in the field of shape-from-
texture [9]. In general, assuming homogeneity of the texture, more complex struc-
ture than orientation of a plane can be estimated [10]. However, a fairly complex
optimization approach is necessary in this case. There are many approaches to
vanishing point and/or line detection from the texture. Voting schemes based on
dominant direction of the texture can be used to determine a vanishing point [11].
In [12], another voting scheme based on distortion of the power spectrum under
projective transformation is used detect the vanishing line.

Similar idea to ours has appeared in Ohta’s 1981 paper [13] on shape from tex-
ture. Despite the different derivations the results are closely related. In fact the
formulation in [13] is a special case of ours. Our formulation allows to extend the
applicability of the idea beyond a planar rectification, for example to multi-view
geometry. Our derivation yields a single linear constraint per feature while Ohta’s
approach produces one linear constraint per a pair of textured regions. Finally, we
show significantly higher applicability than [13] or its extension [14], for example
the features of interest (or texture) does not have to cover the whole image.

The rest of the paper is organized as follows. First, the method is derived in
sections 2 and 2.1. Extension to multiple independent feature sets is introduced
in section 2.2. Experiments and applications of the proposed method to various
tasks are presented in section 3: simple examples of the minimal cases 3.1, text
rectification 3.2, non-linear repeated structures 3.3, segmentation of multiple
planes with repeated pattern 3.4, texture rectification 3.5, and experiments on
synthetic data 3.6 and 3.7. The applicability of the approach to image to image
homography estimation from point-with-scale correspondences is discussed in
section 3.8. Conclusions are drawn in section 4. A proof of degenerate case of
collinear points can be found in an appendix.

2 The Method

First, the concept of local scale change under planar homography is introduced
and its properties are discussed. Next, a decomposition of a homography sim-
plifying the algebra is presented. Finally, it is shown that constraints on the
local scale change under planar homography (i.e. perspective transformation of
a plane) lead to linear constraints on the entries of the homography matrix.

Homography is a mapping from a projective plane P 2 to P 2 and it is
commonly represented by a (homogeneous) matrix H, or equivalently, by
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inhomogeneous pair of functions (hx, hy) [7]. In this section, we restrict the
homographies to be in the following form

H =

⎛
⎝h1 h2 h3

h4 h5 h6
h7 h8 1

⎞
⎠ or

hx(x, y) =
h1x + h2y + h3

h7x + h8y + 1
,

hy(x, y) =
h4x + h5y + h6

h7x + h8y + 1
.

(1)

The sufficiency of the H3,3 = 1 parametrization is discussed and justified in
section 2.1. The first order Taylor expansion at point (x, y) and the Jacobian JH
locally approximating the homography

h(x + δx, y + δy) ≈
(

hx(x, y)
hy(x, y)

)
+ JH(x, y)dxy (2)

is an affine transformation for which the concept of scale change is well defined.
The local scale change at point (x, y) under the perspective transformation is
thus defined as the scale change of the first order, i.e. affine, approximation at
point (x, y)

s(H, x, y) = det(JH(x, y)). (3)

Any homography H in the form of (1) can be decomposed into a product AĤ of
an affine transformation A and a homography Ĥ as follows⎛

⎝h1 h2 h3
h4 h5 h6
h7 h8 1

⎞
⎠ =

⎛
⎝h1 − h3h7 h2 − h3h8 h3

h4 − h6h7 h5 − h6h8 h6
0 0 1

⎞
⎠
⎛
⎝ 1 0 0

0 1 0
h7 h8 1

⎞
⎠ (4)

It can be shown that the scale change of homography H expressed in terms of A
and Ĥ is

s(AĤ, x, y) = det(A)s(Ĥ, x, y).

The advantage of the decomposition (4) is that the influence of parameters
h1 . . . h6 on the local scale change is reduced to a single global (i.e. position-
independent) parameter det A in the expression

s(H, x, y) = det(A)s(Ĥ, x, y) = det(A) det(JĤ(x, y)). (5)

The determinant of the Jacobian of the matrix Ĥ at (x, y) is

det(JĤ(x, y)) = det
(

(h7x + h8y + 1)−2

(
h8y + 1 −xh8

−yh7 h7x + 1

))
= (h7x + h8y + 1)−3.

Setting det(A) = α3 and substituting into equation (5), we get

s(H, x, y) = α3(h7x + h8y + 1)−3. (6)

After re-arranging the equation, a constraint linear in h7, h8, and α is obtained:

(
x y −s(H, x, y)−1/3

) (
h7 h8 α

)

= −1. (7)
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(a) (b) (c)

Fig. 2. Star Wars credits: (a) original image, (b) estimated (up to an affine transfor-
mation) normalized image, (c) original image with the estimated vanishing line (red)
and manually drawn the parallel margin lines (yellow)

Three point locations (xi, yi) and the corresponding local scale changes
s(H, xi, yi) are required to estimate the homography Ĥ. Any composition of affine
transformation A, det(A) = α3 and the homography Ĥ, i.e. H = AĤ will satisfy the
constraints on the local scale change. The vanishing line l in the source image is
the pre-image of the line at infinity (0 0 1)


l = H
(0 0 1)
 = Ĥ
A
(0 0 1)
 = Ĥ
(0 0 1)
 = (h7 h8 1)
. (8)

If p, p > 3, points with the local scale change are available, the least squares
method is applicable. The data matrix Z ∈ Rp×3 is composed of rows

Z =

(
xi yi −s(H, xi, yi)−1/3)
...

...
...

)
, (9)

one per each point (xi, yi). The solution is then obtained as

(h7 h8 α)
 = −Z†11×p, (10)

where Z† is pseudo-inverse of Z and 11×p is a column vector of p ones.
In many applications, the scale change is not interesting or not known and

only relative scale changes at different points are known. Here, the estimated
parameter α can be simply ignored. This is e.g. the case for the facade example
Fig. 1, where the windows are assumed to have the same, but unknown, real
size. In such cases, the s(H, x, y) is multiplied by an unknown scalar.

2.1 The Choice of Parametrization

The chosen parametrization of matrix H in section 2 does not cover all possible
homographies. Namely, it does not include the set of homographies H0 with
H(3, 3) = 0, i.e. homographies that map the origin of the image coordinate
system (0 0 1)
 to a point at infinity. Hence, if it is possible to choose the origin
so that it is guaranteed that the required solution does not map the origin to
infinity, the H(3, 3) = 1 parametrization is correct.

A frequent choice of the origin of the image coordinate system – the (top left)
corner of the image – does not always guarantee the above described property.
In particular, in Fig. 2, the top left corner lies on the vanishing line mapped to
a line at infinity by the affine rectifying homography.
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Fig. 3. An example of multiple features on an element of repeated pattern

The origin must not lie on the vanishing line, as the estimated transformation
sends the vanishing line to infinity. Since the algorithm is used for affine rectifica-
tion which is equivalent to detection of the vanishing line, based on scale change
of measured features, good candidates for the origin are the measured points.
This stems from the fact, that the point and its relative finite scale change could
not have been measured at the line at infinity.

More generally, since the traditional (directional) camera sees only points in
front of the camera [15], the vanishing line cannot ‘cut through’ the observed
points. Therefore, any point inside the convex hull of the observed points will
serve well as the origin of the coordinate system. The centre of gravity of the
observed points was used in our implementation.
Note on the data normalization. In the least squares problem, some algebraic
error (with no direct geometric meaning) is minimized. It has been shown that
in such problems, it is advantageous to normalize the data points so that the
elements of the measurement matrix Z have similar magnitudes [16]. Choosing
the origin at the centroid of the data, re-scaling the data and suitable selection
of the relative scale change prior to evaluation eqn. (10) can be used to stabilize
the least squares solution.

2.2 Extension to Multiple Independent Sets

As mentioned above, often only the relative scale change between a set of points
is known. This section addresses the situation where multiple such sets are avail-
able. The relative scale change is known within each set, the relations between
different sets is unknown.

As an example, let us have a look at the repetitive structures again. In general,
the features detected in the image do not correspond one to one to the repeated
elements. Typically, each element is covered by a number of features, as in Fig. 3.
This number is also varying, as the repeatability of the features (as well as the
stability of the descriptors) is not perfect. For each individual set of matching
features, one can hypothesize that these are of the same size in reality, since
else it is unlikely for the appearance of two patches to match. However, the area
ratio of different features is not known in general.

For the sake of clarity, the derivation is demonstrated for two sets only. The
extension to a general number of such sets is straightforward. There are two un-
knowns h7 and h8 shared between all the sets. Each set introduces an additional
variable αk. The variable represents the relative scale change of the whole set
with respect to other sets. The equations are then arranged in the same way as
in equation (7):
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(a) (b) (c) (d)

Fig. 4. Toy examples for the minimal cases of three points (a-b) and two plus two
points (c-d)(

xi yi −s(H, xi, yi)−1/3 0
xj yj 0 −s(H, xj , yj)−1/3

)(
h7 h8 α1 α2

)
 =
(−1
−1

)
. (11)

Each feature in a set adds one constraint, at least two features have to be avail-
able for each set to add more constraints than unknowns. In general, if there
are p points in q sets, there are 2 + q unknowns and p constraints. For two sets,
two points per set are sufficient to estimate the rectifying transformation. For
an example, see section 3.1.

3 Experiments

In this section a variety of experiments with different settings are presented.

3.1 Toy Example

Two images of coplanar patches – Fig. 4(a) and (c) – are used to demonstrate the
minimal cases described in sections 2 and 2.2. Very simple colour segmentation
was used to locate the pink and green patches. The patches were represented by
their location (the centre of gravity) and the scale (the number of pixels occupied
by the patches). To simulate the two cases of minimal sets, the experiments was
designed as follows: 1. the pink patches are of the same size, 2. the green patches
are of the same size, and 3. the relative sizes of the pink and green patches are
unknown.

The rectified images – Fig. 4(b) and (d) – show that the part of the scene that
has been reduced by the projective transformation (further away from the cam-
era) is expanded by the normalization. Also note that after the normalization,
the parallel lines on the sheet of paper are again (very close to) parallel.

3.2 Text Rectification

In text localization and recognition in photographs taken in unconstrained con-
ditions, geometric rectification is performed before classification of characters.
The algorithm proposed in the paper is significantly simpler and more general
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(a)

(c)

(b)

(d)

Fig. 5. Text rectification. (a) original image, (b) manual rectification using an affine
transformation, (c) automatic affine rectification (d) manual rectification using an affine
transformation after removing the perspectivity.

than the approaches commonly used in document processing for affine rectifica-
tion, e.g. [2] who requires a reliable procedure for fitting a baseline and topline
of the text.

Applicability of the proposed procedure to the text rectification problem is
demonstrated in Fig. 5. The top-left image (b) shows that affine normalization, is
insufficient, non-parallel lines in the original image (a) say non-parallel. Fig. 5(c)
shows the results of the proposed algorithm. The correspondences necessary for
estimation of the relative scale are obtained fully automatically on identical
characters by the MSER+LAF method [17]. Outliers and out-of-plane pairs are
removed by ransac. The rectification based on tens of scale ratios is quite
precise, see Fig. 5(d) which is an affine transformation of the rectified of image
(c). The final affine rectification was done manually as it is not the topic of the
paper - the proposed algorithm has no concept of a line of text or left margin;
an example of an automatic method is in [2].

3.3 Darts

The ”Darts” image, Fig. 6, is an example where direct detection of vanishing
points and hence the vanishing line is difficult. The dominant linear features on
the board that intersect in the bull’s eye have different orientations and intersect
the vanishing line in different ideal points.

The proposed method estimates the rectifying transformation from multiple
sets of corresponding features, Fig. 6(e). Notice that the correspondences are
between features with different orientations and not lying on straight lines. After
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(a)

(c)

(b)

(d)

(e)

Fig. 6. Darts: (a) the original image; (b) automatic rectification; (c) manual rectifi-
cation to a circle (dashed, centre labelled with ’+’) by an affine transformation from
the original image, (d) the rectified image; (e) some of the matching feature groups
superimposed

(manually) mapping the the ellipse corresponding to the inner rim of the double
scoring area, a fronto-parallel view of the board is obtained. The centre of the
dotted yellow circle is very close to the centre of the bulls eye.

A direct affine mapping of ellipse corresponding to the inner rim in (a) to a
circle results in image (c), but this view does not correspond to a fronto-parallel
view of the board.

3.4 Segmentation of Multiple Planes with Repeated Pattern

The proposed method is not restricted to a single planar rectification. With
ransac, a robust estimator, it is possible to separate features on a single plane
from outliers. In the presence of multiple models (in our case multiple planes),
consecutive execution of ransac with removal of features consistent with de-
tected model [18] provides an efficient strategy.

In the simplest case, the two (or multiple) planes would not share features
(different buildings, etc.). The example in Fig. 7 is more challenging, it shows
that even if the planes share a common repetitive pattern and therefore the
MSER+LAF method establishes correspondences between the two planes, the
geometric constraints on the relative scale change are sufficiently discriminative
to segment the planes.

3.5 Textures

The proposed method is also applicable to irregular statistical textures. In Fig. 8,
an example of affine texture rectification is shown. For statistical textures, the
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Fig. 7. Two planar surfaces with a repetitive pattern segmented by ransac. Left: one
group of matching features, inliers to one model in red, the other in green, outliers to
both models in yellow. Right: the convex hull of consistent features.

Fig. 8. Texture rectification: the original image (left), affine rectification (middle), and
the rectified texture (right)

MSER and LAF method is not suitable since it requires that corresponding
regions are geometrically close to identical. In the example, an affine covariant
elliptical region detector [19] together with the SIFT descriptor [20] was used.

3.6 Scale Change from Local Patches

One of the inputs of the proposed method is a scale change of an infinitesimal
patch. However, it is typically only possible to measure the scale (change) at
image patches that are of area of tens of pixels. In the first experiment, we
measure how the estimate of the scale change affects the results.

First, A pattern of 5 × 5 local affine patches is generated. It is transformed
by a homography with varying values of h7 and h8. The pattern is then resized
and translated to fit a 800 × 600 image. Examples of four patterns are shown
in Fig. 9. All situations in the experiment from the ‘convex hull’ of these four
examples.

Each synthetic image was processed as follows. Each local affine patch was
represented by the centre of gravity of the triangle and by the scale (area) of
the triangle. A normalizing homography that transforms all patches to equal
scale was estimated using the proposed method. In an ideal case, when the
infinitesimal scale change is estimated exactly, all transformed patches would
have exactly the same scale. The ratio of maximal resulting scale to the minimal
resulting scale was recorded for each parameter setting. The results are visualized
in Fig. 10.
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Fig. 9. Four examples of different levels of perspective deformations used in the
synthetic experiments. All images are 800 × 600 pixels.
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Fig. 10. Scale error after affine rectification. Ratio of the largest and the smallest
feature after rectification to equal size.

It can be seen that even for extreme perspective deformations, the local scale
is estimates sufficiently precisely and the ratio of areas of the largest and the
smallest normalized patches is close to one. If necessary, the procedure can be
iterated to eliminate the effect of the inaccurate estimation of the scale change.
In the above experiment, after first iteration, the scale ratio of the areas of the
largest to the smallest normalized patches was one up to numerical precision.

3.7 Sensitivity to Noise

This experiment also uses the settings from Fig. 9. Here, the transformed patches
(the coordinates of the triangle corner points) were corrupted by additive Gaus-
sian noise with σ = 1.5 pixels. Robust rectifying homography estimation via
ransac was applied and three quantities were measured. First, how well the esti-
mated homography rectifies the noise-less patches. The number of correctly rec-
tified noise-less patches (the scale change error below 1.1) is shown in Fig. 11 (a).
Second, the number of ransac inliers is shown in Fig. 11 (b). The number of
inliers is well correlated with the number of correctly rectified noiseless patches.
Third, the average scale error on all noiseless patches (not only inliers) is depicted
in Fig. 11 (c). All plots are averages over 50 executions of ransac.

3.8 Image to Image Homography

Another straightforward application of the proposed method is the estimation
of image to image planar homography form scale-covariant features, such as the
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Fig. 11. Affine rectification estimated from regions corrupted by noise. Each plot shows
225 different settings of the parameters projective deformation h7 and h8: (a) noiseless
features with scale error below 1.1, (b) number of ransac inliers, (c) average scale
error on noiseless features; results averaged over 50 executions.

(1) (2) (3) (4)

Fig. 12. Graffiti images

Table 1. Comparison of the image to image homography estimation from samples of
four point correspondences and three point-with-scale correspondences. The number of
tentative correspondences (‘tentative’), percentage of inliers detected by the methods
(‘% 4-inliers’ and ‘% 3-inliers’), the number of samples required in ransac (‘4-samples’
and ‘3-samples’), and the number of scale consistent samples in the point-with-scale
method (‘3-valid’). Results averaged over 50 executions.

image pair tentative % 4-inliers % 3-inliers 4-samples 3-samples 3-valid

1–2 877 61.09 61.13 31.4 18.3 6.3
1–3 694 33.81 32.55 356.7 151.3 19.8
1–4 493 12.48 10.99 20861.0 4207.8 148.9
2–3 988 52.98 52.42 57.0 30.5 8.8
2–4 732 30.17 28.57 565.0 209.9 22.2
3–4 1043 61.74 61.27 30.1 18.2 5.2

DoG [20]. Only three correspondences are required to estimate the full projective
homography. First, the projective part Ĥ is estimated from the scale change
between the tree corresponding features. The affine part A is then given by the
coordinates of the corresponding features in the two images. Sampling three
instead of four points in ransac speeds up the robust estimation process, if
scale information is available which is the case for scale and affine covariant
features.

Furthermore, one non-linear constraint is available. It is not used in the esti-
mation and can be used to verify that a homography matching the three point-
with-scale correspondences induces the correct scale change. This constraint is
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the scale of the affine transformation A. The scale of the affine part, given by
det(A), is obtained during the estimation of the projective part as α3 in eqn. (7).
Using the constraint in ransac, a number of contaminated samples can be re-
jected without the necessity of calculating consensus set size.

Images used in the experiment are a subset of a standard dataset [19], see
Fig. 12. A combination of DoG features with the SIFT descriptor [20] was used,
followed by a ransac with a local optimization step [21]. The comparison of the
number of ransac samples in the homography estimation is shown in Table 1;
results were averaged over 50 executions. The results show that using three point-
with-scale correspondences allows to estimate the homography in significantly
lower number of samples. If the scale consistency check is applied (the threshold
was set to 1.1 in the experiments), the consensus is computed for only a small
fraction of the samples – the last column of Table 1. On the other hand, the
three point-with-scale samples provide a little less stable performance (slightly
lower average of estimated inlier ratios) than four point correspondences.

4 Conclusions

A simple yet generally applicable method for affine rectification of a plane ex-
ploiting knowledge of relative scale changes was presented. The method also al-
lows estimating the homography between two views of a planar scene from three
point-with-scale correspondences. A significant speed-up was achieved w.r.t. the
standard four point procedure.

The utility of the method was demonstrated on text rectification, detection of
repetitive patterns, texture normalization and estimation of homography from
three points-with-scale correspondences.
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Appendix: Degenerate Case
Assume three collinear points (x, y), (x + αdx, x + αdy), and (x + βdx, y + βdy).
Let the h7 and h8 be the parameters of the decomposition of the normalizing
homography by eqn. 1. Then, the 3 × 3 data matrix Z from eqn. (9) has the
following form

Z =

⎛
⎝ x y h7x + h8y + 1

x + αdx y + αdy h7(x + αdx) + h8(y + αdy) + 1
x + βdx y + βdy h7(x + βdx) + h8(y + βdy) + 1

⎞
⎠

The matrix Z is singular with vector n

n = (−h7xdy + h7dxy − dy, h8ydx − xh8dy + dx, xdy − dxy)


spanning the null space of Z. The vector h = (h7, h8, 1)
 solves the equation
Zh = −1. Hence, there is a one-dimensional family of solutions h + λn. It
corresponds to a pencil of lines h + λn0, where

n0 = (−h7xdy + h7dxy − dy, h8ydx − xh8dy + dx, 0)
.

All lines in the pencil pass through a point h×n0, which is the vanishing point
lying on a line given by the collinear points.
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Abstract. Observation satellites use pushbroom sensors to capture im-
ages of the earth. These linear cameras acquire 1-D images over time and
use the straight motion of the satellite to sweep out a region of space
and build 2-D images. The stability of the imaging platform is crucial
during the acquisition process to guaranty distortion free images. Posi-
tioning sensors are used to control and rectify the attitude variations of
the satellite, but their sampling rate is too low to provide an accurate
estimate of the motion. In this paper, we describe a way to fuse star
tracker measurements with image registration in order to retrieve the
attitude variations of the satellite. We introduce first a simplified motion
model where the pushbroom camera is rotating during the acquisition
of an image. Then we present the fusion model which combines low and
high frequency informations of respectively the star tracker and the im-
ages; this is embedded in a Bayesian setting. Lastly, we illustrate the
performance of our algorithm on three satellite datasets.

1 Introduction

Currently, most of the remote sensing applications for observing the earth use
pushbroom cameras. Such sensors became popular in the late 1970s with linear
CCD as a way to get high resolution images [1]. Nowadays, they are still highly
in use for their robustness against space turbulence, at a lower cost and higher
resolution than classical 2-D CCD sensors.

In its principle, this linear sensor is mounted on a moving platform and cap-
tures 1-D image over time. When the platform is moving straight perpendicular
to the axis of the camera, the pushbroom sensor sweeps out a region of space
and build a complete 2-D image, this acquisition process is resumed in figure 1.
This camera has already been described several times [2, 3, 4].

Such linear arrays are manufactured in very large quantities for use as imagers
in document scanners, fax machines, bar code readers or hand-held scanners. In
those cases, the stability of the platform is either not critical, or controlled by
motors and stabilizers. In the space context, the satellite is moving on its orbit
and may be subject to space turbulence and other physical effects which make

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 361–372, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Pushbroom acquisition principle: cameras 1 and 2 are moving straight along the
X axis and recording 1-D images over time; Y is the camera axis and Z the orthogonal
axis to the focal plane. We define the orientation of the camera with the yaw (rotation
around Z), the roll (rotation around X) and the pitch (rotation around Y ).

it deviating from its trajectory. Constancy on the attitude1 is crucial during the
acquisition of an image strip. Small rotations of the pushbroom camera over time
warp each 1-D image and consequently the whole 2-D image; figure 2a presents
a synthetic example of such warps. Attitude variations of the satellite need to
be recorded to ensure the satellite control and to rectify the images if needed.

In order to build color images, several pushbroom cameras of different modal-
ities are set in parallel onto the focal plane; figure 2b shows a typical focal plane
of an observation satellite. As the images do contain all the information on the
satellite’s line of sight, registration of this multi modal set of images is a way
to retrieve the satellite’s orientation. This has been suggested in [5, 4], but usu-
ally this image registration problem is ill-posed as all images are warped and as
it contains a deconvolution step. In this case low frequency content is hard to
retrieve using fast deterministic methods.

The satellite usually takes several positioning sensors on board such as star
trackers or gyros to rectify its attitude. As such sensors need to be very robust
to endure space environment, they are costly and not as accurate as common
positioning sensors we could use on earth. Whereas the sampling rate of 1-D
images is over 700 Hz, inertial sensors sampling rate is usually lower than 16 Hz.
Thus they can only provide a low frequency information on the attitude varia-
tions. High dynamic perturbation linked to the engines of the satellite cannot
be recorded, and may not be rectified on images. This is a major drawback of
methods which solely rely on positioning sensors to estimate attitude [6].

In this paper, we propose to fuse image and star tracker informations to
provide a fine estimate of the attitude variation; the star tracker provides the low

1 Usual name for the orientation of the air and space vehicle in flight dynamics science
defined by the yaw, the roll, and the pitch.
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(a) (b)

Fig. 2. (a) Example of warps in a regular checkerboard when the pushbroom camera
is tilting around its 3 rotation axes. (b) Standard focal plane geometry of observation
satellite with 4 pushbroom cameras: panchromatic, blue, green and red (respectively
enumerated as 1,2,3 and 4). Let s being the speed motion, what is seen by the camera
2 at time n will be seen by the camera 1 at time n + d12

s
.

frequency information whereas the image content provides the high frequency
information. We start by building a motion model which describes how the
images are warped when the attitude is varying. The image and sensor fusion is
presented in a Bayesian setting; we use a polynomial model to extract attitude
variations from the noisy measurements of the star tracker, and a direct method
to match the images and retrieve the attitude variations. We finally show the
performance of our algorithm on three satellite datasets.

2 Motion Model

Two pushbroom models were already proposed; one for 3d reconstruction [2] and
the other one for calibration [3]. Both assume that the pushbroom camera orien-
tation is fixed over time, consequently none of them can easily describe the warps
on the acquired image when the attitude is varying. In this section, we build a
warp model depending on the attitude. This model is adapted to the focal plane
geometry, and will be further used in the fusion procedure. We assume that the
satellite is moving straight along the X axis at a constant speed s, and that the
observed scene is very far from the camera. Let [Xi(n), Yi, Zi]T be the position at
discrete time n of a pushbroom sensor i; according to the figure 1, we have the
following relationship between camera 1 and camera 2 positions:⎡

⎣X1(n)
Y1
Z1

⎤
⎦ =

⎡
⎣X2(n) − d12

Y2
Z2

⎤
⎦ (1)

All the cameras share the same known absolute position over time. If the attitude
is varying in this case, image 1 and image 2 are the same up to an homography
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transformation on each line given by rotation angles. This is similar to the ro-
tational panoramas as described in [7], except that we are in a 1-D case. This
is allowed by the specific geometry of the focal plane were the pushbroom cam-
eras are set in parallel. Thereafter, we will denote by θ(n) = [γ(n), λ(n), φ(n)]T

the attitude vector at time n of the focal plane, where its components are re-
spectively the yaw, the roll and the pitch at time n. Let [0, yi, 1]T be the pixel
coordinates in the image plane for camera i (notice that xi = 0 as we are in
a 1-D case). If we take the case of two pushbroom cameras being at the same
position and taking a 1-D image up to rotations angles, the mapping equation
between images of camera 1 and 2 will be given by:

K−1R(θ(n))

⎡
⎣ 0

y1
1

⎤
⎦ ∼ K−1R(θ(n − τ12))

⎡
⎣ 0

y2
1

⎤
⎦ (2)

where K = diags(f, f, 1) is the calibration matrix, R the rotation matrix depend-
ing on the attitude θ(n) and τ12 = d12

s with s being the speed of the satellite.
We now need to express R; let assume that rotations are small enough to be lin-
earised to the first order. This is reasonable as the attitude variations we could
expect are lower than 1 milli-radian. This gives us the following relation using
Euler angles (we temporally drop off n for clarity):

R �
⎡
⎣ 1 −γ 0

γ 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
Yaw

⎡
⎣ 1 0 0

0 1 −λ
0 λ 1

⎤
⎦

︸ ︷︷ ︸
Roll

⎡
⎣ 1 0 φ

0 1 0
−φ 0 1

⎤
⎦

︸ ︷︷ ︸
Pitch

=

⎡
⎣ 1 + γλφ −γ −φ + γλ

γ − λφ 1 −γφ− λ
φ λ 1

⎤
⎦ �

⎡
⎣ 1 −γ −φ

γ 1 −λ
φ λ 1

⎤
⎦

(3)

If we notice that registering two rotated images is equivalent to retrieving the
difference between the rotation angles, we can express equation (2) as:

K−1

⎡
⎣ 0

y1
1

⎤
⎦ ∼ K−1R(θ(n) − θ(n − τ12))

⎡
⎣ 0

y2
1

⎤
⎦ (4)

Considering now the 2-D image mapping, we can notice from equation (1) that
without any rotations of the cameras: x1 = x2 − d12. Expanding relation (4)
gives us the final motion model for the specific case where pushbroom sensors
are aligned in a same focal plane:

x1 =x2−d12− f−1

(λ(n)−λ(n− τ12))y2+1

((
γ(n)− γ(n− τ12)

)
y2 −

(
φ(n)− φ(n− τ12)

))

y1 =
1

(λ(n)− λ(n− τ12))y2 + 1

(
y2 −

(
λ(n)− λ(n− τ12)

))
(5)

Thereafter, we will call yi = [xi, yi]T the vector of pixel coordinates in image i,
and W : S, Θ → S the warp function given by equation (5) which maps pixel
from one image to another in the pixel set S and attitude set Θ.
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3 Data Fusion

The space context is particularly suited to the data fusion context as the satellite
is carrying several imaging and positioning sensors. Many articles have already
proposed image fusion of panchromatic image with other spectral channels to
increase resolution and SNR of acquired images [8]. For attitude control and
retrieval, works were also done on the fusion of positioning sensors [6], but to
our knowledge, no work was proposed for the fusion of image and sensor to
retrieve a fine estimate of the satellite’s attitude.

So as to set the problem, we use the following notations: I = {Ip, Ir, Ig, Ib} is
the set of four multi-modal images of size (Ni, M), respectively the panchromatic,
the red, the green and blue channel. Ni is the number of time samples in the
acquisition process, and M the size of each pushbroom sensor. s is the (3Ns ×1)
vector of star tracker measurements, Ns being the number of sample acquired
by the sensor. We call θ the (3Ni × 1) vector that gathers all attitudes for
all time instants in an image acquisition. We denote by a the vector of model
parameters for the high frequencies, and b the vector of model parameters for
the low frequency part.

3.1 Bayesian Formulation

The Bayesian formulation allows us to aggregate exogenous informations on
a phenomenon to compute its likelihood. In the context of sensors fusion, [9]
clearly describes advantages of such an approach where given its noise model,
each sensor can be added to the posterior probability, as well as some prior
knowledge on the unknown.

Given acquired images and star tracker measurements, we want to infer the
attitude θ such that it follows a model parameterised by a and b. We have the
following relation:

(θ̂, â, b̂) = argmax
θ,a,b

p(θ, a,b, I, s) (6)

= argmax
θ,a,b

p(θ, a,b|I, s) (7)

To expand the previous expression, we will make the following hypothesis: know-
ing the attitude is enough to describe the likelihood of images (p(I|θ, s, a,b) =
p(I|θ)), only the star tracker can provide information on b and we assume a uni-
form prior on model parameters a and b. This yields the following expression:

(θ̂, â, b̂) = argmax
θ,a,b

p(I|θ) p(θ|a,b) p(b|s) (8)

3.2 Prior Model p(θ|a, b)

As previously explained, attitude variation of the satellite is due to space tur-
bulences in its low frequency part, and dynamic disturbances of the satellite’s
engines in its high frequency part. Nonetheless, it is a smooth process which
cannot undergo fast motion with discontinuities even in high frequencies. The
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engines correspond to a vibratory process which is well described by autoregres-
sive models [10]. Such prior was already successfully adopted in [4]. To complete
the model, we choose to approximate low frequencies with a simple polynomial
model. So as to avoid redundancy in the equations, we will use α as a subscript
on variables to denote either the yaw, the pitch and the roll. This yields the
following prior:

θα(n) =
pα∑
i=1

θα(t − i)ai,α

︸ ︷︷ ︸
high freq: AR model

+
dα∑
j=1

bj,αtj−1

︸ ︷︷ ︸
low freq: polynomial model

+ε(n) (9)

where pα is the order of the autoregressive model, dα the degree of the polynomial
and ε(n) a i.i.d. zero mean Gaussian noise. This equation is linear and the log
likelihood of the prior can be written in a matrix form:

log(p(θ|a,b)) ∝ ‖Maθ‖2 + ‖θ − Mtb‖2 + cst (10)

where ‖.‖2 stands for the l-2 norm. Let P = pyaw + ppitch + proll and D =
dyaw + dpitch + droll, then a is a (P × 1) vector, b a (D × 1) vector. Mt is a
(3Ni, D) matrix which combines linearly with the polynomial coefficients and
Ma a (3Ni − P + 1 × 3Ni) matrix which combines linearly the attitude vector.
The constant term accounts for the normalizing factor of the Gaussian p.d.f..

3.3 Star Tracker Term p(b|s)
The star tracker is a positioning sensor which gives an absolute value of the
satellite’s attitude. This optical device is looking at stars and tries to register its
images with known maps of stars. Its design is strong enough to endure space
environment. As a consequence, it can only provide low frequency measurements
(below 16Hz) contaminated with a specific colored noise. It is sensitive to very
low frequency drift, but to the scale of an image acquisition of a few seconds, a
zero mean Gaussian noise is a quite good assumption.

We choose to infer the low frequency parameters of the prior model from the
star tracker measurements. In this case, the log likelihood yields:

log(p(b|s)) ∝ ‖s− Mtsb‖2 + cst (11)

where Mts is a (3Ns × D) matrix which combines linearly with the polynomial
coefficients b.

3.4 Image Data Term p(I|θ)

The panchromatic camera is capturing all wavelengths of visible light, as opposed
to the others cameras which record only specific wavelengths ranges (red, blue,
and green). To overcome the multi-modal matching problem, we will assume that
the panchromatic camera is a linear combination of the other spectral channels.
This is expressed by coefficients cr, cb and cg in the following equation:
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Ip(yp) −
[
crIr

(
W (yr; θ(t) − θ(t − τrp))

)
+ cbIb

(
W (yb; θ(t) − θ(t − τbp))

)
+ cgIg

(
W (yg; θ(t) − θ(t − τgp))

)] ∼ N (0, σ2
i ) (12)

where σ2
i is the variance of a zero mean Gaussian noise i.i.d. over all pixels of

images. The likelihood of the images given the attitude is:
log(p(I|θ)) ∝ ‖Ip(yp)− (crIr

(
W (yr; Mk,prθ)

)
+ cgIg

(
W (yg; Mk,pgθ)

)
+

cbIr

(
W (yb; Mk,pbθ)

)
)‖2 + cst (13)

where the Mks are matrices which differentiate θ depending on the time shift τ .
Equation 13 is the expression of a pixel-based registration method [7,11,12,13].
In the context of sub pixel displacement, this method is well suited to estimate
the parameters of the warp. This equation can be minimized with any gradient
descent method.

3.5 Algorithm

In order to maximize the likelihood of (θ̂, â, b̂) on equation (8), one could use a
fully Bayesian procedure as described in [9]. Unfortunately, MCMC based meth-
ods are not suited to the amount of data we need to process, as the convergence
rate is too slow as compared to our time constraints (almost real-time) to get
an acceptable result. We choose to rely on a multi step algorithm which is sub
optimal compared to an MCMC method but yet yields good results:

– compute b using equation (11):

b̂ = argmin
b

‖s −Mtb‖2

– infer θ from equations (13) and (10) where a is set to 0:

θ̂ = argmin
θ
‖Ip(yp)− (crIr

(
W (yr; Mk,prθ)

)
+ cgIg

(
W (yg; Mk,pgθ)

)
+

cbIr

(
W (yb; Mk,pbθ)

)
)‖2 + λ‖θ −Mtb‖2

where λ is a trade off scalar parameter between the likelihood and the
prior term.

– compute a from θ using Yuke-Walker equations [14,4]
– minimize the following equation until convergence:

θ̂ = argmin
θ
‖Ip(yp)− (crIr

(
W (yr; Mk,prθ)

)
+ cgIg

(
W (yg; Mk,pgθ)

)
+

cbIr

(
W (yb; Mk,pbθ)

)
)‖2 + λ(‖Maθ‖2 + ‖θ −Mtb‖2)

We use a cross validation procedure to select both the regularization parameter
λ and the polynomial order for the prior model on low frequencies. Radiometric
coefficients cr, cb and cg are estimated on images before registration with a
standard least square procedure.



368 R. Perrier et al.

4 Experimental Results

This section presents results of our algorithm on 3 satellite datasets; they were
simulated by EADS Astrium so that the ground truth is available.

The simulation process aims at reproducing real life acquisition conditions
by taking into account measurement noise for each sensor, ground elevation,
radiometric distortions and mechanical disturbance of the satellite.

Each dataset is composed of 4 images (panchromatic, blue, green and red)
of size (2564 × 900) pixels, where 900 is the size of the pushbroom sensor. The
sampling rate of 1-D images is 770Hz, whereas the sampling rate of the star
tracker is 16Hz. For all experiments we use a Matlab implementation on a Core2
duo at 3GHz with 3.8GiB. Our algorithm converges in less than 200 seconds.
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Fig. 3. Dataset 1 results: the top figure is a (300×2000) image patch of the red camera.
Below, the following two figures show intensity differences between the real image
and the acquired image before and after registration. Following graphs draw attitude
variation estimate in radian for the roll and the pitch in blue and the error compared
to ground truth in red. The last two figures show the star tracker measurements for the
roll in red dots as well as the estimated polynomial model in blue, and the spectrum
of the roll ground truth compared to the spectrum of the autoregressive prior.
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Fig. 4. Dataset 2 results: as for the dataset 1, figures are respectively the ground truth
image, the error before and after registration, the pitch and the roll estimates with
the error, the startracker measurements and the estimated polynomial model, and the
pitch ground truth spectrum compared to the autoregressive model spectrum

All the figures present a (300× 2000) patch of the observed scene on the top.
Below, two pictures show the error images before and after the registration. We
define them as the difference between the ground truth image and the warped
image during the acquisition process. The following graphs are respectively the
roll and the pitch estimates in blue curves with their errors in red compared to
the real attitude, the estimated polynomial model in blue and the star tracker
measurements in red dots (plotted for one of the rotation angles), and finally
the spectrum of the real attitude in green compared to the autoregressive prior
spectrum in dashed blue line (also plotted for one of the rotation angles).

In all the experiments one should notice how the autoregressive prior is trying
to fit the high frequencies of the attitude while the polynomial model is providing
low frequency information on the estimate.

The first dataset (figure 3) is a challenging case where the attitude variations
contain very low frequencies and a displacement of several pixels. The accuracy
we obtained either for the roll and the pitch estimate is below 8

100 in pixel, which
is a good score in such ill-posed problem.
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Fig. 5. Dataset 3 results: as for previous dataset, figures are respectively the ground
truth image, the error before and after registration, the pitch and the roll estimates
with the error, the startracker measurements and the estimated polynomial model, and
the pitch ground truth spectrum compared to the autoregressive model spectrum

The second datatset (figure 4) is the only one to be mono-modal in all the
acquired images; all the cameras capture the same light spectrum. It has lower
performances in the pitch estimate (around 1

4 in pixel accuracy), and we may link
this to our radiometric model with is not suited anymore. We did not conduct
enough experiments yet to evaluate the advantages of our radiometric model,
but we noticed that the image registration was converging faster. This linear
relationship between panchromatic and RGB modalities has seemingly not been
exploited yet in satellite image processing and may leads to interesting solutions
in image fusion, resampling and demosaicing.

The third dataset (figure 5) is a tricky case where the real attitude has no
low frequency component. As we can see, the polynomial model is not misled
by the star tracker measurements as the degree of the polynomial is zero. The
autoregressive prior is fitting most of the high frequencies and we achieved an
accuracy of 1

10 in pixel unit.
The motion model we described in section 2 is accurate enough in our exper-

iments, though it assumes that the observed scene is planar. Such assumption is
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weakened if the scene has a strong relief. In such a case we need to use Digital
Elevation Model of the earth to compute numerical derivatives of the warp [4]
but this is computationally expensive.

5 Conclusion

In this paper, we have presented a data fusion algorithm to get a fine estimate
of the attitude variations of a satellite. Up to our knowledge, our method is the
only one that proposes a fusion of pushbroom image content and positioning
sensor data. The results we got are promising and we believe that the model we
selected is well suited to the attitude estimation for observation satellite. The
simulated we used is a first step to see how our method performs as the ground
truth is available; we are looking forward to process a large set of real satellite
data to validate our algorithm.

There are still room for improvement on the warp model which could take
into account non planar scene. The radiometric model we choose also need to be
finely evaluated, but it may open nice perspective on satellite image processing.
Finally the global algorithm may be improved to yield a better estimate using
hybrid MCMC methods with gradient descent.

Acknowledgement. This work was funded by EADS Astrium (European
aerospace company and satellite manufacturer).
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Abstract. A new framework for adapting common ensemble clustering
methods to solve the image segmentation combination problem is pre-
sented. The framework is applied to the parameter selection problem in
image segmentation and compared with supervised parameter learning.
We quantitatively evaluate 9 ensemble clustering methods requiring a
known number of clusters and 4 with adaptive estimation of the number
of clusters. Experimental results explore the capabilities of the proposed
framework. It is shown that the ensemble clustering approach yields re-
sults close to the supervised learning, but without any ground truth
information.

1 Introduction

Image segmentation is the first step and also one of the most critical tasks in
image analysis. In order to deal with the great variability of features encoun-
tered in different images specific segmentation methods have been designed for
different types of images, including medical [1], range [2], and outdoor images [3]
among many other examples. Many of these image segmentation methods also
do require that appropriate parameters have to be selected in order to achieve a
good segmentation result. There exists no general unsupervised method for ef-
fectively selecting the best parameters. Thus, usually researchers use supervised
parameter learning to estimate a fixed parameter setting [3].

Recently, a new direction in image segmentation has been taken in order to deal
with this general problem. Instead of selecting one optimal parameter setting it
was proposed to combine several different segmentations received by different pa-
rameter settings or different segmentation algorithms into a final consensus seg-
mentation. This approach is known as image segmentation combination1. Some
combination methods can be found in the literature specifically designed to deal
with the image segmentation combination problem [4,5,6]. They take into account
details such the size of the datasets and well structured pattern’s lattice.
1 In some papers, the terms image fusion and image merging are used. We prefer to

use the term image segmentation combination since the other terms can also appear
in different contexts.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 373–384, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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This work addresses the parameter selection problem by applying general en-
semble clustering methods in order to produce a consensus segmentation. This
approach is motivated by an inherent relation of both tasks: Ensemble clus-
tering and segmentation combination aim to combine a set of solutions into a
final consensus solution. Recently, there has been some work done applying gen-
eral ensemble clustering methods to the image segmentation combination prob-
lem [7,8,9]. The authors of these works claim to improve resulting segmentations
by this kind of combination. However, in these works ensemble clustering meth-
ods mostly are used in combination with other heuristics and quantitative exper-
imental results are not provided or limited. Our work builds on the previously
cited works and provides a broad experimental study. The main contribution of
our work consists of applying and comparing a broad variety of representative
and widely used ensemble clustering methods to the segmentation combination
problem. Furthermore we compare this approach to the supervised parameter
learning approach. It will be examined if comparable or even superior results
are received without knowing ground truth. By this way we aim to justify the
usefulness of ensemble clustering methods in the context of segmentation com-
bination.

In order to make image datasets processable by such general ensemble cluster-
ing combination methods, some pre- and post-processing steps are required. A
framework is proposed allowing virtually any general ensemble clustering method
to be used in such context.

This paper is organized as follows. Section 2 reviews the ensemble clustering
methods used in our study. The pre- and post-processing steps which are used
in the proposed framework are detailed. Section 3 describes the performed ex-
periments and discriminates the used datasets. In Section 4 experimental results
are reported, followed by some conclusions and our final remarks in Section 5.

2 Framework for Segmentation Combination by General
Ensemble Clustering Methods

Given a set of segmentations I = {S1, . . . , SM}, the problem of segmentation
combination is to combine the segmentations into a consensus segmentation S∗

which in some sense optimally represents the ensemble I. The goal of ensemble
clustering methods is quite related, as will be explained in the following. For
this reason let X = {x1, x2, . . . , xN} denote a dataset of N objects xi. A set
of clustering results is a set P = {P1, P2, . . . , PM}, where Pi is a partition of X
produced by clustering X and M is the number of partitions. We denote the set
of all possible partitions of X by PX (P ⊂ PX). The goal of ensemble clustering
methods is to find a consensus clustering P ∗ ∈ PX , which optimally represents
the ensemble P.

In order to be able to use any existing ensemble clustering method for the task
of image segmentation combination the following processing pipeline (Fig. 1) is
proposed:
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Fig. 1. Processing pipeline: cluster ensemble P is computed by using super pixels.
General clustering combination methods are used to generate a consensus clustering
P ∗, which is transformed into the final consensus segmentation S∗.

1. Produce M segmentations I = {S1, . . . , SM} of an image by varying
parameters or using different segmentation algorithms.

2. Generate super pixels and eliminate small super pixels to further
reduce the number of objects.

3. Compute the set of clusterings P by using super pixels.
4. Apply a general ensemble clustering method to P and receive a con-

sensus clustering P ∗.
5. Post-processing step: P ∗ is transformed into a consensus segmenta-

tion S∗.

The remainder of this section reviews in detail each one of the used combination
methods, the pre-processing step in order to ensure the diminishment of the
number of objects as well the necessary post-processing.

2.1 Pre-processing of the Image Segmentation Ensemble

Image based datasets are known to contain a large number of pixels. In dealing
with image segmentation combination, this number is further enlarged by the
number of the segmentation samples in the ensemble, leading to a considerable
workload. Thus, any useful combination method requires some sort of diminish-
ment in the number of objects to be processed.

The proposed pre-processing step in our framework is motivated by the fact
that neighboring pixels, which are equally labeled in each segmentation, do not
have to be clustered individually by the ensemble clustering algorithm. Thus
Singh et al. [8] proposed to compute a representative object called super pixel
for each such group of pixels. The pixels of the image are divided into non-
overlapping subsets of pixels (super pixels) such that for each segmentation of
I, pixels in each super pixel are equally labeled. By using super pixels I is now
transformed to the set P, which may be used as input for the ensemble clustering
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method. The size of objects in P is at least the maximum number of segments
in the original segmentations Si ∈ I and at most the number of pixels in the
image, which is very unlikely. However, because some segmentation algorithms
are known to be inaccurate at boundaries in some regions there may be a large
number of very small super pixels. We decided to eliminate these super pixels.
Therefore, they have to be handled in the post-processing step.

2.2 Ensemble Clustering Methods

This section reviews the ensemble clustering methods used in our evaluation.

BOK (Best of K): The idea behind Best of K is to select the best or most
representative partition among all partitions in P. This is achieved by selecting
iteratively each partition in P and computing the sum of distances (SoD) between
the selected partition and the remaining ones in P.

SoD(P ) =
M∑
i=1

d(Pi, P ) (1)

The partition P ∈ P with smallest SoD value is selected as consensus partition.

BOEM: The Best One Element Moves [10] starts with an initial consensus
clustering partition. We can select any method such as BOK or EAC-SL/AL
(which is explained in the following) as initial result. The algorithm follows by
interactively testing each possible label for each object, retaining the label that
decreases the SoD.

EAC SL/AL: The method proposed in [11] explores the idea of evidence ac-
cumulation by combining M partitions generated over the same dataset into a
co-association matrix. Each cell in this matrix has the value C(i, j) = mi,j

M ,
where mi,j refers to how many times the pair (i, j) of objects occurs in the same
cluster among the M clusterings. This matrix can be viewed as a new similarity
measure between the set of objects X . The more frequent objects xi and xj

appear in the same clusters, the more similar they are. Using the co-association
matrix C as the similarity measure between objects, the consensus partition is
obtained by applying a hierarchical agglomerative clustering algorithm. In the
experiments we used the single-link and average-link algorithms.

RW: The general idea that motivates the random walker method [5] is to create
a graph representation of the dataset and then apply a random walker based
heuristic to infer the consensual partition. It can be divided in 3 parts: a) graph
generation; b) seed region generation; and c) ensemble combination. In the graph
generation the data is pre-processed in order to create a graph representation
G(V, E, W ). For the vertex set V a vertex corresponding to each object is de-
fined. To generate E the algorithm iterates over all vertices and edge weights
are computed. A weight wi,j indicates how probably the two objects xi and xj

belong to the same cluster. Clearly, this can be guided by counting the num-
ber mi,j of initial partitions in the same manner as described in EAC SL/AL.
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Seed regions are computed from the resulting graph (for details please refer
to [5]). The method allows both automatic selection of the optimal number of
seed regions and the definition of a fixed number of target clusters. The ensemble
combination uses the graph G constructed from the initial partitions and K seed
regions, over which the random walker algorithm [12] is applied to compute the
consensus segmentation.

Hypergraph based methods: Strehl and Ghosh [13] proposed three heuris-
tics based on hypergraph partitioning: CSPA, HGPA and MCLA. The three
heuristics represent P as a hypergraph, whereas each partition is represented by
a hyperedge.

Cluster-based Similarity Partitioning Algorithm (CSPA). In this method, an N×
N similarity matrix is defined from the hypergraph. This can be viewed as the
adjacency matrix of a fully connected graph, where the nodes are the elements
of the set X and an edge between two objects has an associated weight equal
to the number of times the objects are in the same cluster. Then, the graph
partitioning algorithm METIS [14] is used to obtain the consensus partition.

HyperGraphs Partitioning Algorithm (HGPA). This method partitions the hy-
pergraph directly by eliminating the minimal number of hyperedges. It is con-
sidered that all hyperedges have the same weight, and it is searched by cutting
the minimum possible number of hyperedges that partitions the hypergraph in
k connected components of approximately the same dimension. For the imple-
mentation the hypergraph partitioning package HMETIS [15] is used.

Meta-CLustering Algorithm (MCLA). In this method the similarity between two
clusters is defined in terms of the amount of objects grouped in both, using the
Jaccard index. Then, a similarity matrix between clusters is formed which repre-
sents the adjacency matrix of the graph. It is built by considering the clusters as
nodes and assigning a weight to the edge between two nodes, whereas the weight
represents the similarity between the clusters. This graph is partitioned using
the METIS [14] algorithm and the obtained clusters are called meta-clusters.
Finally, to find the consensus partition each object is assigned to its most asso-
ciated meta-cluster.

Information theory based methods: Topchy et al. [16] introduced the
Quadratic Mutual Information (QMI) based algorithm. In this method, the cat-
egory utility function U [17] is used as a similarity measure between two par-
titions. In this case, the category utility function U(Pi, Pj) can be interpreted
as the difference between the prediction of the clusters of a partition Pi both
with the knowledge of the partition Pj and without it. This way, the better
agreement between the two partitions, the higher values of the category utility
function we shall have. Hence, the consensus partition could be defined by using
U as a similarity measure between partitions:

P ∗ = arg max
P∈PX

M∑
i=1

U(P, Pi) (2)
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This problem is equivalent to the minimization of the square-error clustering
criterion if the number of clusters k is known for the consensus partition. This
way the solution of the problem (2) is approached in the following way. First,
for each object the values of new features are computed using the information
in the cluster ensemble. After that, the final partition is obtained by applying
the k-Means algorithm on the new data.

Kernel based methods: Vega-Pons et al. [18] proposed the Weighted Parti-
tion Consensus via Kernels (WPCK) algorithm. In this method, the consensus
partition is defined as:

P ∗ = arg max
P∈PX

M∑
i=1

ωi · k̂(P, Pi)

where ωi is a weight associated to partition Pi and k̂ is a similarity measure
between partitions, which is a kernel function. The weight values ωi are usually
computed in a step before the combination, where the relevance of each partitions
is estimated. However, in this paper, we do not consider the weights because
their computation needs the use of the original data. Then, for us ωi = 1, ∀i =
1, . . . , M . The kernel property of k̂ allows mapping this problem into a Hilbert
Space H, where an exact solution can be easily obtained. Given the solution in
H the pre-image problem could be solved, i.e., finding the partition in PX which
corresponds with the solution in H. This is usually a hard optimization problem
that could not have an exact solution. The simulated annealing meta-heuristic
was used to obtain an approximated solution avoiding the convergence to local
minima. In this algorithm, the specification of the number of clusters in the
final partition is not necessary. However, it can be modified to work with a fixed
number of clusters k in the final partition. This can be done by applying the
simulated annealing but only considering as new states in the process, partitions
with k clusters.

Clustering based on semidefinite programming: SDP [8] is motivated by
the observation that pairwise similarity values between objects as used in [13] do
not provide sufficient information for ensemble clustering algorithms. Therefore,
the authors propose to the solutions obtained by individual clustering results by
a multidimensional string. In the first step a so-called A-string is computed for
every data element, which encodes the information from the individual clustering
results. The ensemble clustering problem reduces to a form of string clustering
problem where the objective is to cluster similar strings to the same cluster.
For this reason the authors first formulate a non-linear objective function which
is transformed into a 0-1 semidefinite program (SDP) using a convexification
technique. This program is then relaxed to a polynomial time solvabable SDP.

2.3 Post-processing

After applying a general clustering combination method to P a consensus clus-
tering P ∗ is received. By using super pixels P ∗ is transformed into a consensus
segmentation S∗. Because of eliminating small super pixels before computing
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P there will be some unlabeled pixels. These pixels are simply merged to the
neighboring region with the smallest color difference.

3 Experiments

In this section we describe the generated datasets used to evaluate our frame-
work. The experiments and evaluation measures are detailed.

3.1 Datasets

We used the color images from the Berkeley dataset [19] to make the experimen-
tal comparison of the algorithms described in Section 2.2. The Berkeley dataset is
widely used for image segmentation evaluation and it is composed of 300 natural
images of size 481×321. For each image in the dataset, we used 3 state-of-art seg-
menters to generate 3 ensembles: TBES ensembles , UCM ensembles and TBES
& UCM ensembles . Each ensemble is composed of 10 segmentations obtained by
varying the parameter values of the segmentation algorithms used to generate
the ensemble. TBES ensembles were generated with the TBES algorithm [20],
which is based on the MDL-principle and has as parameter the quantization level
(ε). We varied ε = 40, 70, 100, 130, . . . , 310 to obtain the 10 segmentations in the
ensemble. Furthermore, UCM ensembles were generated with a segmenter based
on ultrametric contour map (UCM) [21]. Its only parameter is the threshold l,
we choose l = 0.03, 0.11, 0.19, 0.27, 0.35, 0.43, 0.50, 0.58, 0.66, 0.74. Finally, TBES
& UCM ensembles were generated by using two different segmenters: TBES and
UCM. Five segmentations were obtained with TBES (ε = 40, 100, 160, 220, 280)
and the others with UCM (l = 0.03, 0.19, 0.35, 0.50, 0.66).

3.2 Combination by Ensemble Clustering vs. Supervised Learning

Considering the parameter selection problem in image segmentation we want
to provide a general insight into the capability of general ensemble clustering
methods. We want to explore how powerful such methods are in the context of
segmentation combination. For this reason we proceed as follows:

Combination by ensemble clustering: First for each segmentation ensem-
ble the pre-processing step described in Section 2.1 is applied. Some ensemble
clustering algorithms have a parameter k, which specifies the number of regions
in the consensus result. This is the case for CSPA, HGPA, MCLA, EAC-SL,
EAC-AL and SDP. Thus, for these algorithms for each ensemble k is set equal
to the average number of regions of the images of the ensemble. The other algo-
rithms BOK, BOEM, RW and WPCK do not need any parameter specification.
In the experiments, we also used RW and WPCK with a fixed k value (denoted
by RWfixed and WPCKfixed).

Supervised parameter learning: In order to gain further insight into the
power of the framework we decided to apply supervised parameter learning to the
same datasets. Therefore, for each dataset we compute the average performance
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Table 1. Ensemble clustering results for free parameter k. Ensemble clustering algo-
rithms are applied to each dataset and performance of the consensus segmentation is
evaluated. Lower values are better.

1 - NMI VI 1 -RI 1 - F-meas.

Dataset Method bestGT allGT bestGT allGT bestGT allGT bestGT allGT
TBES BOK 0.41 0.48 1.34 1.73 0.21 0.28 0.56 0.63

ensembles BOEM 0.35 0.42 1.52 1.82 0.16 0.22 0.45 0.52
RW 0.49 0.55 1.57 1.97 0.28 0.34 0.58 0.64

WPCK 0.32 0.39 1.58 1.85 0.15 0.22 0.42 0.49
UCM BOK 0.34 0.40 1.90 2.17 0.15 0.21 0.43 0.51

ensembles BOEM 0.41 0.46 2.20 2.44 0.19 0.25 0.49 0.56
RW 0.43 0.48 1.87 2.15 0.22 0.27 0.50 0.57

WPCK 0.34 0.40 2.06 2.32 0.15 0.21 0.43 0.51
TBES BOK 0.51 0.56 1.34 1.77 0.29 0.37 0.56 0.63

& UCM BOEM 0.38 0.45 1.58 1.86 0.20 0.25 0.45 0.52
ensembles RW 0.42 0.48 1.32 1.68 0.21 0.28 0.50 0.57

WPCK 0.31 0.37 1.66 1.92 0.14 0.20 0.40 0.47

measure over all 300 images of Berkeley dataset for each parameter setting.
The parameter setting with the largest value is selected as the optimal fixed
parameter setting for the corresponding dataset. By this means we may provide
a quantitative comparison with the proposed approach.

3.3 Evaluation of Segmentations

In the experiments, we compared the obtained results with the human segmenta-
tions (ground truth) of each image. We used four well-known measures to evaluate
the algorithm results: Normalized Mutual Information (NMI) [13], Variation of
Information (VI) [22], Rand Index (RI) [23] and F-measure [19].

NMI, RI and F-measure are similarity measures that take values in the range
[0, 1], where 1 means a perfect correspondence between the segmentation and the
ground truth. On the other hand, VI is a dissimilarity measure that takes values
in [0, +∞], where 0 means a perfect correspondence between segmentations. In
order to show experimental results in a homogeneous way we present a dissimi-
larity version of the measures NMI, RI and F-measure. Therefore, we compute
the values 1−SM, where SM represents NMI, RI and F-measure respectively,
whereas lower measure values mean better correspondence.

4 Results

The Berkeley database provides for every image several ground truth segmen-
tations. Because pairwise ground truth segmentations for the same image can
differ for our experiment we decided to handle this problem by evaluating our
results using two different strategies in order to get objective results. First, we
take for each segmentation the ground truth image which yields the maximum
performance value (denoted as “best GT”). Secondly, we take the mean over all
performance values received from different ground truths (“all GT”).
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Table 2. Ensemble clustering results for fixed parameter k. Ensemble clustering algo-
rithms are applied to each dataset and performance of the consensus segmentation is
evaluated. Lower values are better.

1 -NMI VI 1 -RI 1 - F-meas.

Dataset Method bestGT allGT bestGT allGT bestGT allGT bestGT allGT
TBES CSPA 0.33 0.39 1.75 1.99 0.14 0.21 0.42 0.49

ensembles EAC SL 0.33 0.39 1.43 1.71 0.16 0.21 0.42 0.49
EAC AL 0.32 0.39 1.51 1.78 0.15 0.21 0.41 0.48

HGPA 0.32 0.38 1.75 1.98 0.14 0.21 0.42 0.49
MCLA 0.34 0.41 1.47 1.77 0.16 0.22 0.44 0.51

QMI 0.33 0.39 1.68 1.93 0.15 0.21 0.44 0.50
RWfixed 0.41 0.47 1.82 2.08 0.22 0.28 0.49 0.55

SDP 0.32 0.38 1.91 2.16 0.14 0.21 0.41 0.48
WPCKfixed 0.32 0.39 1.53 1.80 0.15 0.20 0.41 0.48

UCM CSPA 0.34 0.40 1.90 2.17 0.15 0.21 0.43 0.51
ensembles EAC SL 0.35 0.41 1.89 2.16 0.15 0.23 0.43 0.51

EAC AL 0.35 0.41 1.90 2.17 0.15 0.21 0.43 0.51
HGPA 0.42 0.49 3.67 4.00 0.18 0.27 0.53 0.62
MCLA 0.36 0.42 1.91 2.18 0.16 0.22 0.44 0.52

QMI 0.37 0.43 2.26 2.52 0.16 0.24 0.48 0.55
RW fix k 0.35 0.41 2.06 2.33 0.15 0.21 0.44 0.52

SDP 0.34 0.40 2.20 2.47 0.14 0.21 0.44 0.52
WPCKfixed 0.34 0.40 1.90 2.17 0.15 0.21 0.43 0.51

TBES CSPA 0.32 0.38 2.14 2.42 0.14 0.22 0.41 0.48
& UCM EAC SL 0.29 0.36 1.46 1.74 0.13 0.19 0.35 0.43

ensembles EAC AL 0.28 0.35 1.59 1.86 0.12 0.19 0.35 0.43
HGPA 0.34 0.40 2.27 2.56 0.15 0.22 0.43 0.51
MCLA 0.34 0.40 1.41 1.71 0.17 0.22 0.41 0.49

QMI 0.31 0.37 1.82 2.08 0.13 0.20 0.39 0.46
RWfixed 0.30 0.36 1.69 1.97 0.13 0.20 0.37 0.45

SDP 0.29 0.36 1.72 2.00 0.13 0.19 0.37 0.45
WPCKfixed 0.30 0.36 1.66 1.93 0.13 0.20 0.38 0.45

Table 1 shows the results for algorithms with free parameter k. For NMI
WPCK outperforms the other ensemble clustering algorithms on all datasets
and for V I RW is the best for two datasets. For RI and F-measure WPCK is
best, whereas the less complex algorithm BOK only for V I yields very good
results. Considering the results for fixed k in Table 2 we observe that there
is no considerable variability among NMI, RI and F-measure. If NMI, RI
and F-measure are considered three algorithms outperform the others slightly:
EAC AL, SDP and WPCK. In contrast, for V I EAC SL and MCLA yield slightly
better results. It is hard to judge why V I prefers these algorithms. Apart from
its desirable properties the relevance of V I for image segmentation is unclear
and has to be further explored. For two methods (RW and WPCK) the results
for fixed and free parameter k can be directly compared. In both cases the results
for fixed k are better than the results for free k. However, it must be emphasized
that in some situations heuristics for fixing k are insufficient and methods which
adaptively select k are preferred.
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Table 3. Performance evaluation of supervised learning and average performance of
ensembles. Lower values are better.

1 - NMI VI 1 - RI 1 - F-meas.

Ensembles bestGT allGT bestGT allGT bestGT allGT bestGT allGT
Supervised TBES 0.31 0.37 1.34 1.69 0.14 0.20 0.40 0.47
learning UCM 0.28 0.35 1.29 1.61 0.11 0.18 0.32 0.41

TBES& UCM 0.29 0.36 1.29 1.62 0.13 0.19 0.33 0.42
Average TBES 0.34 0.41 1.53 1.83 0.16 0.22 0.44 0.51
ensemble UCM 0.36 0.42 1.88 2.25 0.17 0.24 0.42 0.51

performance TBES& UCM 0.35 0.42 1.53 1.87 0.17 0.24 0.43 0.51

The results for supervised parameter learning are shown in Table 3. Consid-
ering the results for fixed k, for the TBES and TBES&UCM dataset many
ensemble clustering methods yield results close to those received by parameter
learning. This is especially the case for EAC AL, SDP and WPCKfixed. For
NMI even better results are received for EAC AL (TBES&UCM dataset).

Our results give raise to the assumption that good segmentation results may
be received by using general ensemble clustering methods like EAC AL, SDP
or WPCK without knowing ground truth. In this context it must be emphasized
that in many application scenarios supervised learning is not applicable because
ground truth is not available. Thus, ensemble clustering methods are preferred
in scenarios where parameters of segmentation algorithms are unknown.

a) Some input segmentations from TBES & UCM ensemble.

b) Original Image c) BOEM d) RW e) WPCK

f) Some input segmentations from TBES ensemble.

g) Original Image h) EAC AL i) SDP j) WPCK

Fig. 2. Consensus segmentation results for free k (c-e), and for fixed k (h-j)
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To further illustrate the capability of the methods for each dataset the average
ensemble performance AEP is determined which reflects the averagequality of the
image segmentation ensembles. The AEP is determined by computing the average
performance value for each ensemble in a dataset and then averaging over all these
values (Table 3). Here we only note that e.g. for the TBES&UCMensembles
nearby all ensemble clustering algorithms yield better performance values than
the average ensemble performance.

Fig. 2 shows some ensemble clustering results for free and fixed k. If k is fixed
the ensemble clustering algorithms EAC AL, SDP and WPCK perform similar
(Fig. 2 h)-j)) as was also seen by analyzing the performance values in Table 2.
However, for free k the results may be very different (Fig. 2 c) - e)) which is not
surprising. In both cases the input segmentations are nicely combined.

From our experiments we conclude that satisfying segmentation results may
be received by using ensemble clustering methods (e.g. EAC AL). The parameter
selection problem can be solved to a certain degree. In this sense our benchmark
pointed out some landmarks concerning the combination of segmentations and
may be the base for future research. Future work is on how to improve methods
like EAC AL, SDP and WPCK for the task of segmentation combination.

5 Conclusion

In this work we have proposed a methodology that allows the usage of virtually
any ensemble clustering method to address the problem of image segmentation
combination. For our knowledge this is the first work that addresses the prob-
lem of image segmentation combination from this perspective. The proposed
framework deals nicely with the dimensionality problem. A pre-processing step
transforms similar neighboring pixels from the segmented images into a single
object (super pixel approach). A broad class of general clustering algorithms
were applied and compared in the experimental results. The resulting consen-
sus segmentations seem to indicate that indeed smoother results are obtained.
By this way results performing as well as the supervised parameter learning are
achieved. In this sense the parameter selection problem can be solved to a certain
degree. The performed experiments corroborate such observation.
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Abstract. We develop a real time element-space non-rigid registra-
tion technique for cardiac motion tracking, enabling fast and automatic
analysis of myocardial strain in tagged magnetic resonance (MR) cines.
Non-rigid registration is achieved by minimizing the sum of squared dif-
ferences for all pixels within a high order finite-element (FE) model cus-
tomized to the specific geometry of the heart. The objective function
and its derivatives are calculated in element space, and converted to
image space using the Jacobian of the transformation. This enables an
anisotropic distribution of user-defined model parameters, which can be
customized to the application, thereby achieving fast estimations which
require fewer degrees of freedom for a given level of accuracy than stan-
dard isotropic methods. A graphics processing unit (GPU) accelerated
Levenberg-Marquardt procedure was implemented in Compute Unified
Device Architecture (CUDA) environment to provide a fast, robust op-
timization procedure. The method was validated in 30 patients with
wall motion abnormalities by comparison with ground truth provided by
an independent expert observer using a manually-guided analysis proce-
dure. A heart model comprising 32 parameters was capable of process-
ing 36.5 frames per second, with an error in circumferential strain of
−1.97± 1.18%. For comparison, a standard isotropic free-form deforma-
tion method requiring 324 parameters had greater error (−3.70±1.15%)
and slower frame-rate (4.5 frames/sec). In conclusion, GPU accelerated
custom element-space non-rigid image registration enables real time au-
tomatic tracking of cardiac motion, and accurate estimation of myocar-
dial strain in tagged MR cines.

1 Introduction

Myocardial strain is an important clinical indicator of regional heart perfor-
mance. Its main advantage, in comparison with other functional parameters
such as ejection fraction, is that it describes the local contraction undergone by
the muscle at each point in the heart. Strain and strain rate can be calculated
from tissue tagging techniques with magnetic resonance (MR) imaging, such as
SPAMM (Spatial Modulation of Magnetization) [1], which allows the noninvasive
creation of large number of material tags in soft tissue (Fig. 1).
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However, quantitative reconstruction of myocardial deformation and strain
from tagged MR data is complex and time-consuming. Filtering methods such as
Harmonic Phase (HARP) offers fast processing [12], and Gabor filter banks [11]
improved dynamic range using but model-based methods offer the advantages of
robust strain estimation [16] and physiologically appropriate regularization [10].
Several model-based analysis techniques have been investigated, which can be
classified into active shape methods and non-rigid registration methods. In active
shape methods [5,15], features are detected and image forces derived to deform a
model to track the features through the temporal sequence [15]. In model-based
non-rigid image registration methods [4, 14], images are typically deformed to
optimize a similarity measure penalizing the difference between a current image
and a reference image in order to give an estimate of the underlying deformation
[8], which can then be used as an analytical description for strain calculation. A
common drawback of these techniques is the intensive computation required to
register all images in the sequence, due to the large number of model parameters
needed to accurately describe myocardial motion. Li et al. [9] took advantage
of commodity graphics processing units (GPUs) to perform the computationally
intensive Levenberg-Marquardt optimization procedure in non-rigid registration.
However, the main bottleneck is the linear equation solver which is burdened by
the large number of parameters in the deformation model (e.g. 324 global control
parameters in [9]).

In this paper, we develop a real time non-rigid image registration technique for
myocardial strain analysis, based on a user-specified FE model customized to the
patient anatomy. A sum of squared pixel intensity differences (SSD) similarity
measure is minimized using a GPU-accelerated Levenberg-Marquardt non-linear
least squares algorithm. Because the user-specified model can have anisotropic
or non-uniform complexity, the parameter distribution can be customised and
optimized to the application. Fewer model elements (and model parameters) are
therefore required to obtain similar accuracy compared with typical rectangu-
lar grid-based isotropic models. Also, robustness is improved as physiologically
appropriate regularization constraints can be imposed to achieve physically real-
istic deformations. Furthermore, the FE model can be used to discard the motion
of adjacent structures, or flow artefacts outside the myocardium, thus improving
the tracking accuracy.

Significant computational advantages can be achieved if the objective func-
tion can be calculated in element space, rather than image space. These include
pre-calculation of the FE basis functions, fast determination of the local sup-
port domain of each parameter, and efficient scaling with model complexity.
The current and reference images are transformed into element space using tex-
ture mapping, and the SSD objective function efficiently calculated using GPU
algorithms, using the Jacobian of the transformation to map back to standard
image space.

This work has similarities to Jordan et al. [6], who also used a FE model com-
bined with non-rigid registration; however, their goal was to provide a modular
method for material parameter estimation, whereas ours was to provide a real
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time physiologically robust strain estimation method. Chandrashekara et al. [3]
describe an efficient subdivision lattice based non-rigid registration procedure
which enables a smaller number of control points; however, the objective func-
tion was calculated in image space using a time-consuming procedure for locating
points within the model, and no attempt was made to provide physiologically
meaningful deformation constraints.

Validation of the technique was performed using mid-ventricular short axis im-
ages from 30 patients randomly selected from clinical research studies in chronic
renal disease and congenital heart disease. Ground truth was provided by an
independent expert analyst using a manually guided active shape approach [15].
Errors and frame rates were also compared with a previously validated free-form
deformation GPU non-rigid registration method [9].

Fig. 1. SPAMM tagged images showing reference (left) and current (right) images in
the top panel, and resampled pixels in element coordinate space of the model below.
Each model contains four elements: M0, M1, M2, andM3. Reference image coordinates:
(X, Y); current image coordinates: (x, y); element coordinates:(ξ1, ξ2).

2 Methods

2.1 Finite Element Model

For short-axis myocardial motion tracking, a FE model was constructed com-
prising four circumferential elements (Fig. 1), each of which is formed along two
local coordinates: a radial axis ξ1 and a circumferential axis ξ2. The initial ref-
erence position of the model, MR, was defined interactively on the first image
(frame 0) using guide-point modeling [17]. Briefly, a scale and pose for the model
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was defined using the left ventricle (LV) centroid and fiducial markers placed at
the insertion of the right ventricle. A small number of epicardial and endocar-
dial boundary points was then fitted by the model, in order to achieve a fast
segmentation of the myocardium. The FE description of the displacement field,
u, controlled by a global parameter vector P, was defined as:

x(X) = X + u(X)
where

u(X) =
∑

ε

ψε(ξ(X)) ·G ·P =
∑

ε

ψε(ξ) · P ε
(1)

where X ∈ MR are reference coordinates, x are the corresponding current co-
ordinates, and ξ(X) maps the reference coordinates X into the corresponding
element coordinates (ξ = [ξ1, ξ2]). The element basis functions ψε(ξ) govern the
interpolation of the element parameters over the domain of the element. A linear
global-to-local parameter map, G, was used to link the global parameters P to
the local parameters, P ε, of each element. Bi-cubic Bézier basis functions with
C1 continuity between the elements were used. Advantages of using C1 Bézier
basis functions [9] include: (1) each global control point has very local support
in that only the the four elements around the node are affected, and (2) a multi
complexity optimization can be performed using de Casteljau’s algorithm for
model subdivision.

2.2 Optimization

Given reference and current images I0 and It respectively, the equation for warp-
ing of the current image according to u takes place in reference space with respect
to X is:

Mt(X) = It(x(X)) (2)

Thus the warped current image, Mt, is generated by mapping the current image
to the reference coordinates.

Different from the work of Li et a.l [9] whose similarity measure (or objective
function of the registration) was calculated over a rectangular subregion within
images, the similarity measure of this work was defined as the SSD of pixel
intensities (scaled to [0, 1]) over the region of the user-defined model, between
the warped current image Mt and reference image I0 in reference coordinates:

EI =
∫

MR

(I0(X) − Mt(X))2 · dX (3)

Complex computations are required in ξ(X) in Equ. (1) to accurately segment
pixels in reference coordinates inside or outside the user-defined model. To over-
come this problem for computational efficiency, both current and reference im-
ages were mapped into element coordinate space of the model according to:
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x(ξ) = X0(ξ) + u(ξ)
where

X0(ξ) =
∑

ε

ψε(ξ) · P ε
0

u(ξ) =
∑

ε

ψε(ξ) · P ε
t

(4)

where P0 is the global control parameters of the model at the initial reference
position (frame 0), and Pt is the global control parameters of the displacement
field from the reference to the current image.

The similarity measure in Equ. (3) can equally derived by the SSD integration
over the local element space and multiplied by the Jacobian of the transformation
between X and ξ according to the Change of Variables theorem:

EI =
∫

ξ∈MR

(I0(X0(ξ)) − It(x(ξ)))2 · J(X0(ξ)) · dξ

where

J(ξ) = det

⎛
⎜⎝

∂X0(ξ1)
∂ξ1

∂X0(ξ2)
∂ξ1

∂X0(ξ1)
∂ξ2

∂X0(ξ2)
∂ξ2

⎞
⎟⎠

(5)

Thus, all data points corresponding to ξ are implicitly ensured to be within
the model domain. Also, this enabled faster calculation of objective function,
gradient and Hessian terms since each model parameter has a fixed local control
region, determined by pre-calculated FE basis functions ψε(ξ), giving rise to a
fixed computational cost for these terms independent of the model complexity.

The element coordinates ξ are sampled in the range [0, 1] at a user-specified
resolution. In practice the image data and FE model may not be sufficient to
regularize the problem, which is ill-posed in the sense of Hadamard. A Sobolev
smoothing term [2, 7] was included in the error function to provide a physiolog-
ically meaningful mechanical constraint on the derived deformation:

Es =
∫

MR

(α1

∥∥∥∥ ∂u
∂ξ1

∥∥∥∥
2

+α2

∥∥∥∥ ∂u
∂ξ2

∥∥∥∥
2

+β1

∥∥∥∥∂2u
∂ξ2

1

∥∥∥∥
2

+β2

∥∥∥∥∂2u
∂ξ2

2

∥∥∥∥
2

+β3

∥∥∥∥ ∂2u
∂ξ1∂ξ2

∥∥∥∥
2

) (6)

where α1, α2, β1, β2, β3 are smoothing weights with values 0.1,1,1,1,10 respec-
tively. These weights were derived according to the expected deformation of the
heart. The smallest constraint (α1) was applied to the stretch along the radial
direction since this is typically large and non-homogeneous, followed by stretch
and bending in the circumferential direction, with the highest constraint in trans-
verse shear which is typically small. The integration was performed over MR,
the domain of the model.

The objective function E = EI+ES was finally optimized using the Levenberg-
Marquardt algorithm, as described in [13]. The gradient and Hessian of the
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Sobolev smoothing terms were described in [7], whereas the gradient and Hes-
sian of the image term are:

Gi =
∫

ξ∈MR

−2 · I0(X0(ξ)) − It(x(ξ)) · It(x(ξ))
∂Pi

· J(X0(ξ)) · dξ

Hij =
∫

ξ∈MR

2 · It(x(ξ))
∂Pi

· It(x(ξ))
∂Pj

· J(X0(ξ)) · dξ

(7)

where Gi represents the gradient value for parameters i, while Hij represents
the Hessian value for parameters i and j. At each iteration,G and H are used
to form a system of linear equations, which was then solved using the LU linear
equation solver. Note, the Jacobian map, J(X0(ξ)), can be pre-aclculated before
registration due to the fixed parameter values for X0.

2.3 Pattern Detection

In addition, if the underlying pattern of the tracking subject is known in ad-
vanced, element-space registration can be modified to automatically locate the
reserved pattern/shape within the image. In this case, the similarity measure for
pattern detection based on element-space registration becomes:

EI =
∫

ξ∈MR

(Pat(ξ) − I(x(ξ)))2 · J(x(ξ)) · dξ (8)

where Pat(ξ) is pre-defined tracking pattern along the local coordinates ξ and
I is the image containing the pattern. Therefore, the gradient and Hessian of
Equ. (8) are:

Gi =
∫

ξ∈MR

−2 · (Pat(ξ) − I(x(ξ))) · I(x(ξ))
∂Pi

· J(x(ξ)) · dξ

Hij =
∫

ξ∈MR

2 · It(x(ξ))
∂Pi

· It(x(ξ))
∂Pj

· J(x(ξ)) · dξ

(9)

Since the transformation between local coordinates ξ and image coordinates x
is updated at each iteration during registration, the Jacobian map, J(x(ξ)), in
Equ. (8) needs to be re-calculated at each step of Levenberg-Marquardt opti-
mization.

This pattern detection technique has been validated in a chessboard corners
detection application, which is widely used for calibrating the intrinsic and ex-
trinsic parameters of video cameras [18].

As shown in (Fig. 2), a flashing infrared light source was synchronized with
image acquisition, (a) and (b), thus pixels on the chessboard were successfully
isolated from the whole image. Then, a 2 × 2 FE model was initially positioned
over the region of chessboard pixels, which was determined by simply looking for
the most left, right, bottom and top pixels over the entire image, (c). Further,
element-space registration minimize the SSD between pixels values along model’s
local coordinates, (f), and the desired chessboard pattern, (e), and finally fitted
the FE model to the region of chessboard. (g) in Fig. 2 represents the pixel
intensity along the local coordinates of the fitted model.
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Fig. 2. Chessboard corners detection using element-space registration. (a) frame with
light on; (b) frame with light off; (c) background removed image with initial position of
a 2×2 FE model (red); (d) model fitted to the image with detected corners (green); (e)
reference chessboard pattern in the local coordinates; (f) pixels at the local coordinates
of the initial FE model; (g) pixels at the local coordinates of the fitted FE model.

2.4 Cardiac Motion Tracking

For tagged MRI images, since the pattern over the myocardial region of the
heart is not as fixed as the chessboard pattern, our technique for cardiac motion
tracking still require user’s input at the first frame of the cine to segment the
myocardial region, then we can use the pattern within the segmented region
to calculated the displacement of myocardium from the first frame to the next
frame, and so forth.

In comparison to the incremental motion tracking technique in [9], since
element-space registration can begin from any shape of the user-specified model,
its initial model geometry, X0 during registration at each consecutive frames, is
progressively updated by the geometry from the registration in previous frames.
Therefore, it provides a better estimation of myocardium region for images at
current frames than a fixed initial model geometry. For example, starting from
the user-defined model in frame 0 (M0), after registering the image at frame
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1 to 0 (M1 = M0 + dM0), we use the resultant geometry M1 as the starting
solution to register from frame 2 to 1 (dM1). Since the region of model in the
registration of the next consecutive frames is set to the previous solution, the
model maintains its correspondence with the object. Continuously applying this
registration process to all frames directly lead to the warped positions at each
frame, so there is no need for an additional process to accumulate displace-
ment fields. Also, all material points at the first frame, X ∈ M0, are guaran-
teed to find a one-to-one mapping in the rest of frames due to the same local
coordinates ξ.

The problem of accumulating tracking errors in [9] also persisted in the
element-space motion tracking: assume X0 has local coordinates (ξ1, ξ2) at frame
0, and its actual corresponding point is x1 at frame 1. If an error occurs that
derives x′

1 = x1 + error at frame 1, the motion tracking process will register
(ξ1, ξ2) to X ′

1, and this error remains in the following registration throughout
the entire cine. Although the bi-directional motion tracking ( [9]) was reported as
a robust method to ameliorate accumulated tracking errors from each direction
of the cine, we still insist on forward registration due to the significant feature
changes between first and last frames of tagged MR image sequence caused by
T1 tag fading.

2.5 CUDA Implementation

The GPU version of the proposed method was implemented in the Compute
Unified Device Architecture (CUDA) environment using an Nvidia Geforce 8800
GTS graphics card, with 16 multiprocessors, each containing 8 stream processors,
for a total of 128 processors to perform data-level parallelism. The schema of
the CUDA implementation was similar to the Cg implementation described in
[9]. All tasks in the registration procedures were divided into CPU and GPU
components, in which the CPU components mainly involved: (1) off-line and once
only pre-calculations; (2) linear equation solution using conjugate gradients; and
(3) check of convergence based on the similarity measure. The GPU components
included three CUDA subprograms, which performed the similarity measure,
gradient calculation, and Hessian calculation respectively. Both CPU and GPU
components formed a loop in the schema to facilitate the iterative optimization
procedure.

In contrast to the GPU implementation in [9], our registration requires the
similarity measure to be calculated in the element space of the model, rather
than the image space. Therefore, the global coordinates at each thread in the
CUDA subprogram were firstly converted into element coordinate values (scaled
to [0, 1] in each direction) at a user-specified resolution, secondly passed to the
FE model to derive its position in the image coordinates, and finally mapped to
pixel values in current image coordinates by a CUDA texture lookup function.
Furthermore, our registration required pre-calculation of the Jacobian map from
the reference model, and inclusion of Jacobian factors in the similarity measure,
gradient, and Hessian calculations.
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2.6 Experiments

The method was applied to mid-ventricular short axis images in 30 patients
randomly selected from clinical research studies in chronic renal disease and
congenital heart disease. Ground truth was provided by an independent expert
analyst using a manually guided active contour approach [15]. Briefly, a 2D FE
model with four circumferential elements was manually customized to the inner
and outer boundaries of the left ventricle at the end-diastolic (ED) frame and
using guide-point modeling [17]. The model was then deformed to track each
stripe from frame 0 to the rest of frames using active contours with manual cor-
rection [15]. In order to validate the automated tracking algorithm, the manually
defined FE model at ED was used as the starting model for the FE non-rigid
registration throughout the rest of cardiac cycle. The average circumferential
strain error at the end-systolic frame (the frame with maximal error over all
frames) was then calculated between manual and automatic results.

3 Results

The mean circumferential strain by the expert analyst at end-systole was −19.1±
3.0%. Fig. 3 presents the agreement between the results from the automated
method and ground truth over 30 patients with a Bland-Altman plot, in which
the x-axis is the average circumferential strain between the two measurements
and the y-axis is the difference between them. One case had a large error (−6.0%)
error due to incorrect placement of the initial contours at frame 0. The average
error over the entire dataset is (−1.97±1.18%). For comparison, a standard free-
form deformation image registration method [17] with 64 elements (324 model
parameters) resulted in larger inconsistency (−3.70±1.15%) from ground truth.

The speed of the CUDA implementation was compared against a fully CPU
implementation and the GPU accelerated standard isotropic model described
in [9]. The CPU element-space registration (32 parameters) ran at 4.6 frames/sec,

Fig. 3. Automatic and manual tag tracking result at the end-systole (time of smallest
blood volume) frame using element coordinates registration based on the user-specified
model at the end-diastolic frame (frame 0), in a patient with a systemic right ventricle
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Fig. 4. The Bland-Altman plot of the calculated circumferential strain at end-systolic
frame using finite element non-rigid registration against ground truth. Lines show the
range of average ± two standard divisions of the data.

whereas the GPU accelerated isotropic model with 324 parameters ran at 4.5
frames/sec. The CUDA element-space registration procedure (32 parameters)
was about 8 times faster at 36.5 frames/sec.

4 Discussion and Future Work

In this paper, a element-space non-rigid registration method was developed for
real time automated tag tracking and strain analysis. It gave similar values for
the circumferential strain at the end-systolic frame as a previously validated
expert analysis. In comparison to other non-rigid image registration techniques
[14,4,9], the approach uses an anatomically customized model for image warping,
which has better distribution of model parameters (anisotropic) enabling better
solutions with fewer parameters. Since our approach significantly reduces the
complexity of the transformation model, it provides a faster solution both in
theory and practice. Furthermore, the calculations of the similarity measure,
gradient and Hessian in element coordinates enabled better use of advanced
graphics hardware to perform non-rigid registration calculations. The limitations
of our method, as with many other similar methods, are that its performance
depends mainly on the quality and the signal to noise ratio of the images. Also,
in motion tracking, the tracking error existing between two consecutive frames
is passed to the following frames and this can be hard to correct. The bias
of −2% may be due to over-smoothing, since the weights were not extensively
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optimized in this work. However, the variability of 1.2% is excellent compared
with published inter-observer errors [16].

In future work, we are planning to extend the FE non-rigid image registration
to three dimensions and to the time domain, by integrating time domain param-
eters into the deformable model. Also, more effort will be spent on investigating
an uniform pattern at the myocardium for pattern detection using element-space
registration.
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(eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 880–887. Springer, Heidelberg
(2008)

10. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis.
In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image
Analysis, pp. 171–180 (1996)

11. Montillo, A., Metaxas, D., Axel, L.: Extracting tissue deformation using gabor
filter banks. In: Proc. of SPIE, vol. 5369, p. 2 (1996)



396 B. Li, B.R. Cowan, and A.A. Young

12. Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking
using CINE harmonic phase (HARP) magnetic resonance imaging. In: Proceedings
of the Workshop on Mathematical Methods in Biomedical Image Analysis, vol. 42,
pp. 1048–1060 (1999)

13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes:
the art of scientific computing. Cambridge University Press, Cambridge (2007)

14. Wierzbicki, M., Drangova, M., Guiraudon, G., Peters, T.: Validation of dynamic
heart models obtained using non-linear registration for virtual reality training,
planning, and guidance of minimally invasive cardiac surgeries. Medical Image
Analysis 8, 387–401 (2004)

15. Young, A.A.: Model tags: Direct 3D tracking of heart wall motion from tagged
MR images. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998.
LNCS, vol. 1496, pp. 92–106. Springer, Heidelberg (1998)

16. Young, A.A., Axel, L., Dougherty, L., Bogen, D.K., Parenteau, C.S.: Validation
of tagging with MR imaging to estimate material deformation. Radiology 188,
101–108 (1993)

17. Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., DellItalia, L.J.: Left Ven-
tricular Mass and Volume: Fast Calculation with Guide-Point Modeling on MR
Images. Radiology 216, 597–602 (2000)

18. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence 22, 1330–1334 (2000)



Extending AMCW Lidar Depth-of-Field
Using a Coded Aperture

John P. Godbaz, Michael J. Cree, and Adrian A. Dorrington

School of Engineering, University of Waikato, Hamilton, New Zealand
jpg7@waikato.ac.nz

Abstract. By augmenting a high resolution full-field Amplitude Mod-
ulated Continuous Wave lidar system with a coded aperture, we show
that depth-of-field can be extended using explicit, albeit blurred, range
data to determine PSF scale. Because complex domain range-images con-
tain explicit range information, the aperture design is unconstrained by
the necessity for range determination by depth-from-defocus. The coded
aperture design is shown to improve restoration quality over a circular
aperture. A proof-of-concept algorithm using dynamic PSF determina-
tion and spatially variant Landweber iterations is developed and using
an empirically sampled point spread function is shown to work in cases
without serious multipath interference or high phase complexity.

1 Introduction

Full-field amplitude modulated continuous wave (AMCW) lidar systems utilise
the time-of-flight (TOF) principle to generate two dimensional matrices of inten-
sity and radial range values using active scene illumination. Whereas point and
line scanner based systems require expensive mechanical systems to sequentially
capture a point cloud, full-field systems capture an entire image simultaneously
and near-instantly opening up a variety of applications including games, medical
imaging, security and engineering quality control.

However, despite their advantages, full-field AMCW systems introduce new
challenges such as systematic errors due to multipath interference and limited
depth-of-field (DOF). In full-field AMCW lidar systems limited DOF results
in both erroneous range and intensity values around the edges of objects as
well as a loss of detail. While most previous computational photography work
has addressed the DOF problem for intensity images using techniques such as
coded apertures [1] and plenoptic cameras [2], previous systems have relied on
implicit range information. Since AMCW lidar systems produce explicit range
information, albeit limited by the DOF, there is inherently more information
available to assist in restoration.

Prior depth-from-defocus (DFD) techniques [3,4] utilise the known range vari-
ant properties of the PSF to determine distance, however typically require more
than one image of a scene. More modern methods have used coded apertures to
make the blurring less of a low-pass filter and enable high quality restoration
while requiring only a single image [1]. Related work has changed the nature
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� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Our full-field lidar system. While it may initially appear bulky and inelegant,
it provides capabilities that existing commercial systems do not. In the configuration
shown three of the four illumination sources are occluded. For this paper, all four
illumination sources were utilised to provide coaxial illumination of the scenes.

of motion blur using coded fluttered shutter patterns [5]. Traditional plenoptic
cameras allow refocussing without any explicit range information [2] however
sacrifice spatial resolution. Alternative methods like Lumsdaine and Georgiev’s
‘Plenoptic 2.0’ [6], which offer a substantial increase in resolution, require the
determination of a range dependent magnification parameter in order to produce
an artefact free image. Other techniques for defocus invariance include wavefront
coding [7] and merging multiple images at different focal settings. Deconvolution
techniques have been previously applied to full-field lidar images for the purposes
of light scattering reduction [8,9]. Another work [10] blindly determined the focal
parameters of a full-field lidar system and utilised them to improve DOF.

In this paper we briefly demonstrate the advantages of our coded-aperture de-
sign over a circular aperture for extending DOF and then show the deconvolution
of real defocussed range-images captured using a coded-aperture variation of the
full-field heterodyne AMCW lidar system from [11]. A picture of the system is
given in fig. 1.

2 Background Theory and System Design

2.1 AMCW Lidar

AMCW lidar systems work by illuminating a target scene with modulated light
and then sampling the correlation of the reflected light with a reference signal
at the same or a slightly different frequency. The TOF results in a range variant
phase shift in the returned illumination – this phase shift is typically measured
by mixing the returned light with a reference signal using either a modulated
CCD or CMOS sensor [12] or modulated image intensifier [11].

An image intensifier is typically used in devices like night vision goggles to am-
plify light intensity across a 2D field of view. By modulating the image intensifier
gain at high frequency, it is possible to optically correlate the reference signal
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with the backscattered illumination modulation signal. A technique known as
heterodyning allows the difficult, high frequency phase measurement problem to
be reduced to an easier low frequency phase measurement problem. If the illumi-
nation modulation signal is at xHz and the reference modulation is at yHz, then
a downconverted correlation waveform is formed at (x − y)Hz. Since the phase
offset of the downconverted correlation waveform is proportional to that of the
backscattered illumination signal, if (x− y)Hz is sufficiently low then phase can
be calculated from data captured using an off-the-shelf CCD camera.

2.2 The Range-Imager

Fig. 2 shows the optical configuration of the ranger system. The scene is illu-
minated by modulated laser light and imaged by a Nikkor 50mm f/1.8D lens
where the aperture diaphragm blades are replaced with a coded aperture. The
primary optics image the scene onto the mirror-like surface of the image inten-
sifier photocathode. A phosphor screen displays the correlation of the returned
scene illumination with the image intensifier modulation signal. This results in
a temporally varying correlation waveform, where phase corresponds to object
range. The phosphor screen is focussed onto a CCD image sensor using additional
coupling optics, thus allowing the measurement of range and active intensity.

Raw range information is typically encoded as complex domain values and is
generated by calculating the bin of the temporal discrete Fourier transform corre-
sponding to the correlation waveform fundamental frequency for each pixel. This
value corresponds to a sample of a particular bin of the spatial Fourier transform
of component signal returns over range. For a single pixel composed of a single
component return an ideal AMCW lidar measurement can be written as

η = ae4πjd/λ (1)

where η ∈ C is a complex domain range measurement, a is the active intensity, d
is the distance from the camera and λ is the illumination modulation wavelength.

In practice, AMCW lidar measurements are subject to systematic errors, par-
ticularly due to the impact of multipath interference. Multipath interference, of
which mixed pixels are a type, is caused when a single pixel integrates light from
sources at more than one range causing an erroneous range measurement – the
erroneous value being the sum of the complex domain range measurements of
each component return. This can result in range-intensity coupling, where the
measured range is a function of intensity. When a range image is subject to
limited DOF, blurring of the edges of objects results in the formation of large
bands of mixed pixels containing erroneous values. One of the aims of this paper
is to demonstrate that these erroneous values can be restored. Methods have
been developed to mitigate [13] or find the component returns within mixed pix-
els [14, 15], however the output from these algorithms is difficult to incorporate
into a simple deconvolution model. Since each component within a mixed pixel
is at a different range from the camera, each has a different PSF. For this paper
we model each pixel as being at a single discrete range, which while non-ideal,
retains the simplicity of a single two dimensional image array.
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CCD &
Coupling Optics

Image
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Primary Optics &
Coded Aperture

Illumination Scene

Fig. 2. The optical configuration of the range-imager. Key: modulated lasers (magenta),
narrowband filter (red), coded aperture (yellow), image intensifier photocathode (blue),
phosphor screen (cyan), CCD image sensor (green). Black arrows represent sources of
multipath.

At the moment full-field lidar image processing research is limited by the
unavailability of off-the-shelf high resolution systems and the black-box nature
of many commercial devices. The custom range-imager utilised for this paper
has an effective resolution of around 200,000 pixels – many times that of any
commercially available device. However, this comes at the cost of an increase in
complexity due to the additional optics required to couple the image intensifier
to the CCD and an increase in scattered light.

2.3 Image Formation

From geometric optics, the defocus PSF for an optical system is a scaled image
of the aperture shape given by

rp = α

(
1 − β

d

)
(2)

where rp is the radius of the PSF, d is the distance from the first principal plane
to the object, β is the distance from the first principal plane to the point on
the optical axis at which objects are most in-focus and α is a scaling constant
[10]. In the Fourier domain, convolution by a PSF corresponds to elementwise
multiplication of the spatial frequencies of the image with the spatial frequencies
of the PSF

g = f 	 h ⇔ G[u, v] = F [u, v]H [u, v] (3)

where f is the original image, g is the blurred image and h is the PSF. Any spatial
frequencies missing from the PSF are lost, making high quality image restoration
difficult. A standard pillbox PSF is non-ideal because it has zeros in its MTF.
A coded aperture works by inserting a device into the light path that changes
the effective aperture, generally with the aim of improving the properties of the
MTF. By whitening the MTF it is possible to improve the quality of restored
images. Because there is explicit range information, it is possible to aim for as
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broadband a PSF as possible without the constraints imposed by extraction of
implicit range information.

3 Methodology

3.1 The Coded Aperture

The coded aperture utilised for this paper is a 7×7 random noise pattern that was
printed onto an overhead projector transparency (OHT) as shown in fig. 3. Due
to the limited contrast provided by the printing process, the aperture pattern
was augmented using marker pen – this resulted in slight unevenness, but had no
other impact due to empirical sampling. Advantages of this method of aperture
construction include low cost and that any pattern can be produced without
physical constraints such as the connectivity required for a physical cut-out
pattern. The biggest disadvantage is that depending on the type and quality of
the OHT material, the aperture may contribute to light scattering and reflection
within the ranger. Some previous approaches include cut out patterns [1] and
LCD screens [16].

(a) Pattern (b) Example OHT Aperture

Fig. 3. The binary pattern utilised for this paper and an example OHT based coded
aperture

In order to compare our coded aperture design to a similarly sized circular
aperture we simulated blurred and noisy intensity and phase images. Fig. 4
shows how the coded aperture improves the performance of deconvolution for an
intensity image. For the Lena image at a SNR of 1000 : 1 there is a 24% decrease
in RMS error in the restored image. Fig. 5 shows how the coded aperture affects
the restoration of phase content in a pure phase image – that is a simulated
range image where every pixel has a modulus of one, thus isolating the impact
on phase information. The blurred phase information for the textured object
counterintuitively appears to peak where there are troughs in the unblurred
image due to the black regions in the centre of the aperture pattern. Despite
designing the aperture for a white spectral response, limited Gibbs’ phenomenon
still occurs at hard discontinuities.
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(a)Blurred Lena Image
(Circular)

(b) Restoration (Coded) (c) Restoration (Circular)

(d)Blurred Subregion
(Circular)

(e)Restored Subregion
(Coded)

(f) Restored Subregion
(Circular)

Fig. 4. The impact of aperture choice on deconvolution restoration quality of an in-
tensity image in the known, isoplanatic PSF case. Simulated at a SNR of 1000 : 1,
λ = 0.015 with 50 Landweber iterations.
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Fig. 5. Slices through a simulated pure phase image pre- and post-deconvolution using
a SNR of 1000 : 1. For a given regularisation constant the coded aperture generally
results in better restoration quality than a circular aperture – the behaviour for the
phase of a complex number is similar to that in the case of an intensity image, but
with a slightly greater sensitivity to ringing.
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3.2 The Point Spread Function

The empirical point spread function of our system is formed as the convolution of
the fixed point spread function of the image intensifier and CCD coupling optics
with the range-variant point spread function of the primary optics. The image
formation process for an AMCW range-imager is the same as for a standard
camera with the exception that any reflections before the image intensifier result
in an increased TOF and thus a phase shift in the range measurements; fully
modelling this requires the utilisation of a complex domain PSF.

Previous papers have sampled the PSF of a full-field AMCW lidar system –
both for the purpose of extending DOF [10] and for the purpose of mitigating
multipath due to scattering in the range-imager optics [8, 9]. While [9] utilised
retroreflective dots, we utilise a fibre-optic based point source because it offers
better performance while remaining subpixel in size. Attempting to measure
both the defocus PSF and scattering effects at the same time is very difficult
due to the extreme dynamic range required. In particular, temperature stability
is extraordinarily important because even a slight change in bias can result in
a massive redistribution of intensity from the defocus component of the PSF to
the scattering component.

Fig. 6a shows how the PSF changes over range. Allowing for the image intensi-
fier and coupling optics, the PSF scales in the manner predicted by eqn. 2. How-
ever the PSF samples close to the ranger are much more blurred than the PSFs
of similar radius at a large distance – possible causes include optical abberations
and scattering from the coded aperture. There is a slight pincushion effect on the
PSF shape due to radial distortion from the component lenses.

The PSF also changes spatially; fig. 6b shows the log intensity of the PSF in
order to highlight subtle scattering effects. Most notably, there is an inverted
image of the coded aperture present in the left-most image, which distorts and
disappears as the point source is moved to the right side of the image – there
is also a soft halo and some specular ‘dots’ (right-most image). Because of the
spatial complexity of the PSF, we only utilise centred PSF samples, otherwise
the large number of PSF samples would greatly increase the computational com-
plexity of the restoration.

Calculating the phase of extremely dark scattered light is very difficult, so
barring inordinately long exposure times or image intensifier burn-in due to
oversaturation it is only possible to image the complex domain PSF with extreme
defocus. High levels of defocus allow the intensity of the scattered light to be
increased while keeping the maximum image intensity to a safe region for the
image intensifier. Thus while we still model scattering, we cannot plausibly model
the slight phase shifts inherent in the scattering PSF across the entire PSF
gamut. Fig. 6c shows the complex domain PSF for an extremely defocussed
point source – note the low SNR for the darkest regions. Since the point source
is within a few centimetres of the optics, the path length difference for light
travelling through different sections of the aperture is visible – the path length
varies by almost a centimetre within the primary/defocus PSF (blue/cyan). The
reflections in the background have a much greater path length; the inverted
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(a) PSF Range Variance (Intensity)

(b) PSF Spatial Variance (Log Intensity)

(c) Complex PSF – Log Intensity (left), Phase (right)

Image
Intensifier

(d) PSF Formation Model

Fig. 6. Spatial and range variation in the coded-aperture range-imager PSF. In addi-
tion, the complex domain PSF is shown for the highly defocussed case – showing subtle
phase shifts in the scattered light. In log-intensity images, red represents high intensity
and blue low. In phase images, red represents greater distance and blue less distance.
From these data we can determine the formation process for the most prominent scat-
tering. In fig. 6d, the initial aperture image (red) is reflected off the image intensifier
and back to the final lens in the primary optics (cyan). Despite the low reflectivity of
the lens, a significant amount of light is reflected back towards the image intensifier
(green). The focal plane (orange) moves as the range to the point source changes, thus
changing whether the primary PSF is inverted and the size of both the primary and
reflected PSFs. The reflected PSF always has the same orientation.

aperture shape (yellow) has a path length at least 6cm longer than the primary
PSF and the reflection at the top (red) has a path length at least 7.5cm longer.
From this information, we can determine the formation process for the inverted
image – this is given in fig. 6d. We are unaware of any previous measurements
of the complex domain PSF of a full-field AMCW lidar system.
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(a) Initial Modulus (b) Initial Phase (c) Deconvolved Modulus

Fig. 7. Scene One, pre- and post-deconvolution. For the phase image, red represents ob-
jects closer to the camera (smaller phase offset) and yellow objects farther away (greater
phase offset). The restoration of the hard phase discontinuity is shown in fig. 9a.

3.3 Restoration Method

We use a spatially variant Landweber [17] deconvolution method using a Gaus-
sian spatial derivative prior and a weighting mask to remove boundary effects
due to the image intensifier. By writing the spatially variant convolution as a
matrix transformation, f 	sv h = Tf , each iteration becomes

f̂n+1 = f̂n + γ(T ∗W (g − T f̂n) − λLf̂n) (4)

where f̂n is the estimate of the unblurred image at the nth iteration, ∗ is the
Hermitian transpose of a matrix, γ is a gain term, W is a diagonal matrix of
data weights, λ is the regularisation parameter and L is a Laplacian kernel. This
is equivalent to iteratively minimising the function

ε(f̂) = ‖W (g − T f̂)‖2
2 + λ‖Dhf̂‖2

2 + λ‖Dvf̂‖2
2 (5)

using gradient descent, where Dh is a horizontal derivative filter and Dv is a
vertical derivative filter. The initial estimate is the captured blurred range-image.
Additional blank, zero weighted boundaries are added to each image, increasing
the image size from 512×512 to 768×768 to mitigate wraparound effects from
the use of circular convolutions.

Before each iteration the PSF is dynamically determined for each pixel using
radial distance calculated from the phase angle of value in f̂n. In general, distance
along the optical axis can be approximated without calibration by the radial
distance. A threshold is set for each restoration, usually 10 iterations, at which
point the PSF stops being dynamically updated to prevent noise amplification.
This method typically works quite well in regions with edge induced mixed pixels
as the values tend to converge to a sharper edge, but in regions subject to severe
range-intensity coupling due to scattered light the algorithm can fail.

4 Results and Discussion

Three different scenes were imaged of increasing spatial complexity: two boxes at
varying distance from the ranger (fig. 7), a garden gnome and several patterned
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(a) Initial Modulus (b) Initial Phase (c) Initial PSF Number

(d)Deconvolved Image
Modulus (200 Iter.)

(e)Deconvolved Image
Phase (10 Iter.)

(f) Final PSF Number
(10 Iter.)

Fig. 8. Scene two, pre- and post-deconvolution. For the phase images, hue represents
phase and is cyclic – in order of increasing phase: cyan, blue, magenta, red, yellow,
green, cyan. Due to the high modulation frequency, the depth of the scene exceeds the
ambiguity interval. While a large number of iterations increases modulus resolution
substantially, it tends to introduce unnecessary ringing into phase information.

boards (fig. 8) and a chess set (fig. 10). Due to the optical configuration, ground
truth was unavailable. Slices through the first two scenes are shown in fig. 9.

Scene one is an extremely simple scene containing two boxes printed with a
test pattern. Fig. 7a shows the initial blurred modulus, which using the blurred
range information from fig. 7b is restored to the point where most of the text
can be read – a substantial improvement in DOF. Fig. 9a shows how the phase
is recovered during the deconvolution process – this graph shows a horizontal
slice through the scene in the middle. The deconvolution process results in a
substantial sharpening of the boundary between the two boxes as well as a
significant shift in the range of the right hand box due to the partial removal
of some scattered light. However there remains range-intensity coupling post-
deconvolution most probably due to incomplete modelling of the spatial variance
of scattering. It is extremely common in real images for range measurements to
be shifted by 2-3cm due to scattered light.

Scene two is a more complicated scene. Due to the larger dynamic range,
the modulus images of both scenes two and three use gamma compression of
γ = 0.5. In this scene there is much more significant blurring and light scattering.
Fig. 8c shows the initial PSF used for each pixel, by the 10th iteration the PSF
has changed in regions such as between the garden gnome and front-most board
(fig. 8f). In the final deconvolved range-image the modulus (fig. 8d) and phase
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Fig. 9. The phase of slices through scenes 1 and 2, before and after deconvolution. From
a phase perspective, 200 iterations provides few benefits over 10 iterations. Fig. 9a shows
range-intensity coupling before and after restoration.

(fig. 8e) components have substantially improved sharpness, although there are
some notable artefacts. Most noticeable is the erroneous range value given for
the black tape holding the test pattern onto the front board – the red range value
is roughly equivalent to phase shifting the correct range value by π radians and
this may indicate excessive compensation for scattering. There are ringing effects
around the edges of objects such as the head of the gnome and the pattern.
Like many real-life range-images, scene two contains a small region at the top
left which is outside the range ambiguity interval – ie. due to the modulo 2π
nature of phase, this region has been deconvolved by an incorrect PSF. This is
unavoidable for real-world scenes unless range precision is sacrificed by using a
particularly low modulation frequency or a phase unwrapping method utilised.

Unlike normal intensity images, complex domain range-images have some
complicated behaviour around edges. In typical scenes the edges of objects are
mixed pixels, however these tend to be heavily attenuated by the deconvolution
process, resulting in dark bands at the boundaries of objects. A different type of
dark band is seen in defocussed images where the objects have sufficiently differ-
ent phases as to result in partial cancellation – these bands can be seen around
the edges of the chess pieces in fig. 10a. While a smoothness constraint may limit
the impact of noise on the restoration, it also has a tendency to intensify dark
bands between objects at significantly different ranges. If the aim of a restoration
is to produce an in-focus pure intensity type image, then it may be more appro-
priate to deconvolve the total integrated intensity, which is essentially the total
amount of light detected by the ranger. Albeit, most commercial ranger-imagers
use a differential measurement process that removes this information from the
raw measurements.

Scene three demonstrates the current limitations of the restoration algorithm.
The extreme range-intensity coupling is demonstrated by the black chess pieces.
Regions such as the knight’s head, which is near black, are perturbed by light
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(a) Initial Modulus (b) Initial Phase (c) Failed Deconvolution (10
Iter.)

Fig. 10. Scene three, pre- and post-deconvolution. For the phase images, cyan rep-
resents objects closer to the camera and red objects farther away. This scene suffers
from severe multipath contamination, as shown by the range-intensity coupling for the
black chess pieces and squares. A combination of multipath and high phase complexity
results in an unsuccessful deconvolution.

scattered from the board in the background resulting in PSF misestimation in
addition to having very complicated range content. Since none of the image is
saturated, the regions with specular reflections have the most accurate range
measurements, which are visibly different from adjacent areas. This is com-
pounded by the fact that each component at a different range within a pixel
has a different PSF. Successful restoration of this type of scene awaits a more
advanced restoration algorithm that takes into account the range of possible
components within each pixel rather than making a näıve assumption that each
sample is of an unperturbed single component return.

5 Conclusion

In this paper we have designed a broadband coded-aperture for coding defocus so
as to allow depth-of-field to be extended through deconvolution. We have demon-
strated that the coded aperture design results in an improvement in restoration
performance over a circular aperture and incorporated the coded aperture design
into a real full-field AMCW lidar system. The range variation of the defocus and
scattering PSFs was sampled and reflection off the image intensifier was isolated
as a significant contributor to scattered light. A näıve, proof-of-concept restora-
tion algorithm was demonstrated to substantially improve the quality of some,
but not all range-images captured using this new system – difficulties including
misestimation of the restoration PSF due to multipath and the näıve assumption
of a single component return.

Acknowledgement. This research was supported by a Tertiary Education
Commission Top Achiever Doctoral Scholarship and the University of Waikato
Strategic Investment Fund.
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Abstract. This paper examines the relationship between iso-disparity
contours in stereo disparity space and planar surfaces in the scene. We
specify constraints that may be exploited to group iso-disparity con-
tours belonging to the same planar surface, and identify discontinuities
between planar surfaces. We demonstrate the use of such constraints
for planar surface extraction, particularly where the boundaries between
surfaces are orientation discontinuities rather than depth discontinuities
(e.g., segmenting obstacles and walls from a ground plane). We demon-
strate the advantages of our approach over a range of indoor and outdoor
stereo images, and show that iso-disparity analysis can provide a robust
and efficient means of segmenting smooth surfaces, and obtaining planar
surface models.

1 Introduction

The extraction of rigid surfaces from stereo images or camera motion has been
a topic of interest in computer vision for many years. In structured and semi-
structured environments, extracting planes or locally planar continuous surfaces
provides a basis for a range of tasks including 3D reconstruction [1] and obstacle
detection/avoidance [2].

Particular focus has been given to surface/plane segmentation in 2D disparity
space. Oh et al. [3] use plane fitting over initial point matches within colour seg-
mented regions to refine disparity estimates. Hong and Chen [4] combine a similar
framework with graph cuts to refine stereo matching and extract planar surface
segments. Other graph-cut based disparity labelling examples include [5, 6]. Se
and Brady [7] apply random sample consensus (RANSAC [8]) to identify the
assumed dominant ground plane. Thakoor [9] segment planar surfaces by al-
ternating between disparity segmentation using local surface smoothness mod-
els until convergence. Other techniques such as [10, 2] acquire planar surface
models via Hough-based voting over disparities back projected into Euclidean
space. While applying RANSAC or Hough-based voting over disparities provides
robustness to outliers, both are reliant on a reasonable inlier set.

The central determinant of surface appearance in disparity space is how it
interacts with iso-disparity surfaces of the stereo configuration. For any given
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disparity, there exists an iso-disparity surface in R3 that projects into both im-
age planes with uniform displacement along epipolar lines (i.e., the associated
disparity). Physical surfaces intersect iso-disparity surfaces, forming iso-disparity
contours. These contours are determined by both the geometry of the surface,
and the stereo configuration used to image it. While significant attention has
been given to the properties of iso-disparity curves [11] (and related iso-motion
curves [12]) with respect to relative camera poses, less consideration has been
given to their possible use for inferring surface geometry. In stereo segmentation,
less attention has been paid to segmenting surfaces around orientation disconti-
nuities rather than depth discontinuities.

In this paper we examine constraints on iso-disparity contours across pro-
jected planar surfaces in the scene. We demonstrate the application of these
constraints to planar surface segmentation in disparity space. We consider these
constraints for general stereo configurations, however, we focus predominantly
on the rectified parallel stereo case.

The remainder of the paper is structured as follows. Section 2 reviews stereo
disparity and iso-disparity surfaces. Section 3 presents a formulation of iso-
disparity contours for parallel rectified stereo, and specifies constraints on con-
tours across planar surfaces, and planar surface boundaries. Section 4 provides an
implementation overview of the proposed iso-disparity segmentation technique.
Section 5 presents experimental results for surface segmentation and modelling
tasks over indoor and outdoor disparity images. Section 6 concludes the paper.

2 Background

2.1 Stereo Disparity

Stereo disparity is the measure of the distance between the projected location
of a single point in two views. Let P and P′ denote two camera matrices, and
X , a point in space projecting into both views such that:

x = PX, x′ = P′X,

where x and x′ are the projected location of X in the left and right image planes
respectively.

Under a general stereo configuration, the fundamental matrix, F, defines a
mapping of points in one image to corresponding epipolar lines in the other such
that:

l′ = Fx, (1)

where l′ denotes the epipolar line [13]. The relative change of position between
x and x′ will occur along l′.

Pollefeys and Sinha [11] propose measuring disparity as a scalar distance along
epipolar lines such that:

d = λ′(x′) − ηλ(x), (2)

where λ(x) = |x − e| − lo , and lo is the distance between the epipole, e, and
its closest point in the image. η ∈ −1, 1 represents the change of sign required
when epipolar line orientations differ.
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(b) divergent stereo (c) parallel  (regular) stereo(a) fixated stereo

Fig. 1. Iso-disparity curves for different stereo configurations

2.2 Iso-disparity Surfaces

Within each epipolar plane there exists a family of iso-disparity conics passing
through both camera centres [11]. Points on any given conic project with uniform
disparity along corresponding epipolar lines. Each conic is distinguished by the
level of disparity it represents, increasing monotonically with proximity to the
cameras. The set of iso-disparity conics for a given disparity level represent a
series of intersections of the associated iso-disparity surface in R3, with each
epipolar plane.

The form of conic sections in the epipolar plane is dependent on the relative
camera configuration. Figure 1 shows example curves of each case. A well known
degenerate case is when camera optical axes are parallel (and non co-linear). Iso-
disparity surfaces become a series of positively signed iso-disparity planes with
the zero iso-disparity plane moving to the infinite plane. The physical depth, Z,
of each plane is given by the well known equation:

Z = −fb

d
, (3)

where d is the disparity, f is the focal length, b is the stereo baseline.
Surfaces in the scene become apparent in disparity space through their inter-

section with iso-disparity surfaces. We refer to these intersections as iso-disparity
contours.

3 Extracting Planes from Iso-disparity Contours

Iso-disparity contours define a relationship between the stereo configuration and
surfaces in the scene. We specify constraints on this relationship that may be
exploited to detect and segment planar surfaces, and identify discontinuities
between connected planar surfaces in disparity space. We consider these in the
context of rectified parallel stereo cameras, however these properties may be
extended to any stereo configuration where iso-disparity surfaces are continuous.

3.1 Formulation of Iso-disparity Contours

Let πd be a single iso-disparity plane, where d ∈ [0,∞] is the associated disparity
of the plane. Consider a continuous surface, Q ∈ R3, occupying some portion
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of the overlapping visual field of both cameras. The appearance of Q in stereo
disparity can be described as an ordered set of curves, S representing the in-
tersections of Q with each iso-disparity plane occupying the same depth. Let
Cd(t) ∈ R2 represent the curve of intersection of Q with πd, where t ∈ R is a
parameterised distance along the curve. Thus:

S =
{

Ci(t) : i ∈ [dmin, dmax]
}
, (4)

where dmin and dmax are the disparity extrema of the surface, and i is continuous
between dmin and dmax. We discuss the special case of a surface not varying in
depth (i.e., fronto-parallel) at the end of this section.

Let D(x′) ∈ R be a disparity value at location x′ ∈ R2 in the disparity image
D. Assuming D is aligned with a reference image frame, we apply the appropriate
camera matrix to points along Cd(t) such that:

c′d(t) = PCd(t), (5)

where c′d(t) ∈ D. Under pinhole projection, all gradients of Cd(t) (which lie
within a fronto-parallel plane to D) will be preserved up to scale, and thus c′d(t)
will retain the same form as Cd(t). We define the projection of S into D as:

S′ =
{
c′i(t) : i ∈ [dmin, dmax]

}
. (6)

Note that all labels defined in D are marked with an apostrophe.
Let Q be a planar surface with surface normal n̂. In this case, all Cd(t) ∈ S

will be linear and parallel, forming an ordered set of monotonically increas-
ing/decreasing iso-disparity surface intersections. Thus, any point of interest
x′

o ∈ Q in the field of view will form part of a linear iso-disparity contour in
disparity space such that:

c′d(t) = P(t(n̂ × ẑ) + x′
o), (7)

where ẑ ∈ R3 is the normal to the intersecting iso-disparity plane (i.e., the
direction of parallel optical axes) and t is a parameterised distance along the
line. Figure 2 shows an example scene depicting an environment of predominantly
connected surfaces and the iso-disparity contours across these surfaces.

3.2 Determining Planes along Iso-disparity Contours

We now consider the task of inferring unknown planar surfaces from iso-disparity
contours. In continuous disparity space, any interest point x′

o projecting from a
depth varying surface will form part of an iso-disparity contour. We may describe
this contour as a level set of adjoining points such that:

C′(x′
o) =

{
x′ : D(x′) = D(x′

o)
}

. (8)

Note that C′ is not limited to a single surface as it may traverse a series of
connected surfaces in the scene.
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(b)(a) (c)

Fig. 2. ‘wood’ from the 2006 Middlebury data set depicting adjoining planar surfaces
with (a) the original image, (b) the resulting ground truth disparity map, and (c) the
disparity map with iso-disparity contours showing the piece-wise linear segments that
form the total contour for each level set

If x′
o lies on a plane (or piece-wise planar surface), then neighbouring points

in C′ must locally fall along a line passing through x′
o. Let f(t) be a parametised

vector function defining a line of points in C′ such that: f(0) = x′
o. Thus we

have:
D(f(0)) = D(x′

o) = d, (9)

where d is a scalar disparity value. Differentiating (9) at x′
o via the chain rule

we obtain:
∇D(x′

o) � ∇f(0) = 0, (10)

where ∇(.) defines the gradient vector.
Given f(t) defines a straight line in C′, it follows that:

∀t,∇f(t) = ∇f(0), (11)

and thus:

∇D(f(t)) � ∇f(t) = 0. (12)

That is, ∇D(f(t)) and ∇f(t) must be perpendicular. The above also implies
that:

∀t,∇D(f(0)) = ∇D(f(t)), (13)

Thus, within a planar surface region in disparity space, both ∇D(f(t)) and
∇f(t) are also constant. By testing for conformity with Constraints 12 and 13,
co-planar groupings of points may be defined along iso-disparity contours.

3.3 Determining Planes along Disparity Gradients

To uniquely determine the plane, co-planar points not in f(t) must also be deter-
mined (i.e., on other iso-disparity contours). For this we consider the orthogonal
direction as given by ∇̂D, the unit vector in the direction of ∇D. As in the iso-
disparity case, co-planar points will lie along a straight line. Following a similar
derivation as in the iso-disparity case, we define a straight line, g(s), of points
in the direction of ∇D, such that:

g(0) = x′
o, (14)
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where x′
o is a point of interest, and by definition:

∇̂g(0) = ∇̂D(g(0)). (15)

Thus:
∀s,∇g(0) = ∇g(s), (16)

and,
∇̂D(g(s)) � ∇̂g(s) = 1, (17)

That is, all co-planar points with x′
o in the direction ∇D(x′

o) will lie along a
straight line (16), and will always be in the direction of ∇D(g(s)) (17).

Unlike iso-disparity contours, disparity values will vary along g(s). We note
that across a plane, disparity varies linearly. Thus, for a point x′

n ∈ g(s) to be
co-planar with x′

o, it must satisfy:

∇D(x′
n) = ∇D(x′

o). (18)

To enforce the linear constraint on the disparities themselves, we define:

D(x′
n) = D(x′

o)) + ∇D(x′
o)||x′

n − x′
o||. (19)

To summarise, co-planar points must exhibit a constant direction and magni-
tude of maximum disparity change (18), and measured disparities at each point
must adhere to a linear model. Given an initial grouping of points along iso-
disparity contours is performed, the grouping of co-planar points in G′ (via Con-
straints (18) and (19)) is equivalent to grouping co-planar iso-disparity contours.

3.4 Determining Surface Orientation Boundaries

For segmentation, it may be preferable to extract points of orientation dis-
continuity, allowing for more explicit representations of surface boundaries. In
the absence of noise, points of non-conformity with planar constraints along
iso-disparity contours (and disparity gradients) will only occur where a sur-
face boundary exists in the scene. Thus, we may discover surface boundaries by
locating points of discontinuity along these curves.

Consider an iso-disparity contour C′(x′
o). Following directly from Constraint

(12), an orientation discontinuity with respect to a point of interest, x′
o, may be

defined as any point, xd ∈ C′(x′
o) that satisfies:

|∇̂D(x′
d) � ∇̂f(0)| > e, (20)

where ∇̂f(0) gives the direction of the line of points f(t) ∈ C′(x′
o) passing

through x′
o (f(0) = x′

o), and e is a discontinuity threshold. We use only the
directions of both gradient vectors as we are concerned only with their relative
orientations.

Let G′(x′
o) define an orthogonal set of points to C′(x′

o) at x′
o. A point x′

n ∈
G′(x′

o) represents a surface orientation discontinuity with respect to x′
o if one or

both of the following are satsified:∣∣∣1 − (∇̂D(x′
n) � ∇̂D(x′

o))
∣∣∣ > e, (21)

or,
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∣∣∣D(x′
n) − D(x′

o)
||x′

n − x′
o||

− ∇D(x′
o)
∣∣∣ > e, (22)

That is, where the disparity gradient vectors are not parallel, or where conformity
with a linear model of disparity is broken (i.e.the converse of . Both constraints
represent the converse of Constraints 18 and 19).

We have described the above properties in continuous disparity space. How-
ever, in practise, disparities are typically sampled from a finite set of values. The
analysis of disparities along gradients must account for this. Specifically, ∇D(x′)
and ||∇D(x)|| will be locally measurable only at points along iso-disparity con-
tours (where a transition between disparity levels exists). Thus, a search through
a separating iso-disparity region is required to connect co-planar contours.

3.5 Special Cases and Exceptions

Two special cases exist: 1. Q is a plane fronto-parallel to the image plane, thus
generating no iso-disparity contours; and 2. Q is entirely within an epipolar
plane, whereby all intersections with πd project to the same epipolar line in
D. The former case is easily detected as a large uninterrupted area of constant
disparity. The latter case is uncommon given sufficient image resolution. Further,
most objects have finite volume.

4 Implementation Overview

We now application of the iso-disparity constraints for planar surface extraction
in disparity space. We now describe how the iso-disparity constraints outlined
above may be used to determine the number and location of planar surfaces in
the scene.

4.1 Extracting and Segmenting Iso-disparity Contours

We apply a standard level sets framework (see [14] for a review). For each discrete
disparity level, d, an initial signed distance function, φ(x′) : x′ ∈ D, is defined for
all image points (distance is defined as the Euclidean distance to the closest set
boundary). Points with disparity equal to d are assigned negative values, while
all others positive. We then fit a level set with a curvature constraint included
to provide robustness to non-genuine discontinuities.

Each contour set is broken into linear segments (determined by a maximum
allowable distance of points from the line), thereby enforcing Constraints 12
and 13 within each segment. Adjacent line segments sufficiently close in angle
(i.e., Constraint 20 is not satisfied) are grouped as one linear iso-disparity con-
tour segment. Otherwise, the point is marked as an orientation discontinuity.

4.2 Iso-disparity Contour Grouping

Surface groups are formed by searching along maxmimum disparity gradients
(i.e., ∇D(x′)) of each linear iso-disparity segment. A flood fill style search is
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Fig. 3. Planar surface extraction results for ‘wood’ from the Middlebury 2006 data set,
showing (a) a hand segmented image showing the number of planar surfaces in the scene
(ground truth = 13), and (b) results from the segmentation of iso-disparity contours
into planar surface regions. All 13 surfaces are successfully detected and separated
along orientation and depth boundaries. Some over segmentation within planar regions
caused 5

13
false positive surface separations to be recorded.

applied to find connections between iso-disparity linear segments from an initial
seed selected from the set of all linear segments, L. The search for connecting
line segments is performed above and below the seed line. Valid connections are
determined through their conformity with Constraints 18 and 19, and are added
to a surface set, S. Where a linear segment represents a non-smooth transition
between disparity levels it is labelled as a depth discontinuity and the search is
terminated along that branch. The procedure is recursively applied to all newly
found connecting linear segments until all possible connections are exhausted.
The set of assigned lines S′ for the surface are then removed from L, and a new
surface group seed is selected from those remaining in L, until L is empty.

5 Experimental Results

Experiments were conducted to examine the iso-disparity contour constraints for
surface segmentation and modelling tasks. The experiments presented are moti-
vated by the primary application area of this work in delivering visual navigation
assistance to the vision impaired.

5.1 Planar Surface Extraction

The iso-disparity algorithm was tested over high quality disparities from the
Middlebury ‘wood’ test image pairs [15]. The images Figure 2(a)) depict sur-
face boundaries defined by an orientation rather than depth discontinuities.
Figure 3(a) shows a ground truth (hand) segmentation of the scene. There are
13 planar surfaces in the scene, each distinguished from each other. Figure 3(b)
shows the result of the iso-disparity segmentation algorithm, using colour coding
to distinguish different surface groupings. All surfaces are successfully separated
along orientation and depth boundaries. Over segmentation is apparent within
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near fronto-parallel planar regions, resulting in 5
13 false positive separations. No

false positives are recorded within regions with significant depth variation.

Fig. 4. Results for planar surface segmentation. Left column shows original (left) im-
ages from the stereo camera, middle column the histogram equalised disparity images,
and right column, the disparity images with segmented iso-disparity contours overlaid.
Different colours represent separate segmented regions.

Fig. 5. Ground plane segmentation results. Left column shows images from the stereo
camera, middle column the disparity images, and right column, the disparity images
with segmented ground plane iso-disparity contours overlaid. Different colours represent
separate segmented regions closely matching the dominant plane (in yellow).
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16712 inliers:
(a)RANSAC dominant plane fit (10,000 iterations)

(b) Least squares over dominant iso−disaprity set
10893 inliers: 19812 inliers: 14731 inliers

13052 inliers:11464 inliers:

Fig. 6. Inlier sets for plane fitting using (a) standard RANSAC (10,000 iterations),
and (b) Least squares over iso-disparity segmentation

5.2 Surface Segmentation during Navigation

Experiments were conducted to assess performance in determining traversable
space in indoor and outdoor environments, and with disparity maps of less qual-
ity. Figure 4 shows results of the iso-disparity contour surface segmentation for
two sample images taken from our own test environment. This environment
consists of a heavily textured floor and a series of planar curtain walls. Dispar-
ity images were obtained from a stereo rig1 at points within the environment.
Different colours indicate disjoint planar sections. Results show the segmenta-
tion of all iso-disparity contours for all dominant locally planar surfaces. Some
over-segmentation is apparent in the top row results (the right planar surface).
However, all major surfaces are successfully detected and segmented.

5.3 Ground Surface Extraction

A stereo rig was walked through a typical urban outdoor environment and raw
disparities recorded. Figure 5 shows sample frames, and corresponding disparity
images from the sequence. The ground surface was assumed to be the dominant
surface in the image (i.e., the surface generating the most iso-disparity contours),
and is shown as yellow contours in the results. Results show the dominant ground
plane region is successfully identified in each image.

Least squares plane fitting was also applied over disparities along segmented
ground plane contours. A standard dominant plane RANSAC implementation
was also tested for comparison. Figure 6 shows the resulting inlier sets (in red)
for the extracted best fit planar models for each sample. The top row shows
results for traditional RANSAC (after 10,000 iterations), and below for least

1 Point Grey Research IEEE 1394 Bumblebee2 stereo camera.
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squares over segmented iso-disparity contours. Results show accurate ground
plane models are obtained from a least squares fit over segmented disparity
contours. Inliers from the iso-disparity model appear more accurate, and more
abundant within correct regions. Surface discontinuities also appear to be better
preserved using the iso-disparity inlier sets. This is most evident in the left
image, where a clear distinction between the upper and lower surface is evident.
In contrast, RANSAC attempts to fit a plane across both surfaces, yielding
greater inlier support, but a less accurate model in the context of identifying
obstacles such as the step.

6 Conclusion

We have examined the relationship between iso-disparity surfaces and the geom-
etry of planar surfaces in the scene. We have exposed properties of iso-disaprity
contours across planar surfaces, and at surface boundaries marked by a change of
orientation. From this, we have demonstrated the application of these properties
for a range of surface segmentation and modelling tasks.

Acknowledgements. NICTA is funded by the Australian Government as
represented by the Department of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council through the ICT Centre of
Excellence program.
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Abstract. We introduce a novel image defencing method suitable for
consumer photography, where plausible results must be achieved under
common camera settings. First, detection of lattices with see-through
texels is performed in an iterative process using online learning and clas-
sification from intermediate results to aid subsequent detection. Then,
segmentation of the foreground is performed using accumulated statistics
from all lattice points. Next, multi-view inpainting is performed to fill in
occluded areas with information from shifted views where parts of the
occluded regions may be visible. For regions occluded in all views, we
use novel symmetry-augmented inpainting, which combines traditional
texture synthesis with an increased pool of candidate patches found
by simulating bilateral symmetry patterns from the source image. The
results show the effectiveness of our proposed method.

1 Introduction

We address a real-life problem in photo editing where one would like to remove
or change fence-like, near-regular foreground patterns that are often unavoid-
able, as illustrated in Figure 1. This task was first addressed by Liu et al. [1]
by a 3-step procedure 1) lattice detection [2], 2) foreground / background seg-
mentation and 3) inpainting [3,4]. Lattice detection and foreground/background
segmentation in [1] proceeded sequentially, hence an abundant amount of infor-
mation arising from the repeating pattern was not fully utilized. Furthermore,
the performance of previous lattice detection algorithms [2] is far from practical
for this application due to inaccuracy and slowness.

In this paper, we make the following novel contributions to this challenging goal;
• online learning and classification is used to aid lattice detection and seg-
mentation, resulting in a substantial improvement in detection rate over current
state-of-the-art lattice detection algorithms [5, 2]. Our online classification and
segmentation method is not confined to this specific application; it can be applied
to other near-regular texture detection and analysis tasks. •multiview inpaint-
ing is introduced to improve the region filling process by using multiple, shifted
camera views, since the best way to infer an unknown pixel is to see the occluded
region in another view. The approach does not assume any rigidity of the fence nor
objects, but requires some offset between views: either by camera or object move-
ment. These are practical requirements for every-day photography, since one can

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 422–434, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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(a) Input (b) Automatic Segmentation

(c) Liu et al. [1] (d) Our Result

Fig. 1. (a) Input image (b) Automatic segmentation using online learning (c) Result
of Liu et al. [1] (d) Result of our proposed method

take multiple photos of a scene simply by shifting the camera, revealing objects
behind the fence due to parallax. • symmetry-augmented inpainting is intro-
duced to tackle the problem of scarcity of candidate samples after large amounts
of foreground have been removed leaving fragmented background pixels. We in-
crease the candidate pool by simulating bilaterally symmetric patches from the
source image. For instance, if half of someone’s mouth is covered, we can recover
the occluded region reliably from the opposite side of the mouth by reflecting that
patch. The experimental results show the effectiveness of our proposed method,
especially for objects that are extremely unforgiving to flawed inpainting such as
a human face and structured backgrounds (see Figures 1 and 8 for examples).

2 Related Work

Liu et al. [1] introduce a novel application in computational photography by
taking advantage of see-through NRTs to remove a near regular foreground. As
the authors of [1] point out, each of the components in the application is very
challenging on its own and poses many research questions.

2.1 Lattice Detection

There is a rich body of work on lattice detection in the literature [6, 2, 5, 7, 8,
9, 10, 11]. However, it was Hays et al. [2] who first developed an automatic de-
formed lattice detection algorithm for real images without pre-segmentation. The
method of [2] is based on looking for the neighbors of a randomly selected interest



424 M. Park et al.

point in the image. If a sufficient number of points look like their respective t1, t2
neighbors (lower order similarity) and also share their t1, t2 neighbors’ direc-
tions/orientations (higher order correspondences) towards other interest points
in the image, those points and their neighborhood relationships are confirmed to
be part of the lattice. Based on this partial result, the slightly deformed lattice
is straightened out and a new round of lattice discovery starts, so the extracted
lattice grows bigger and bigger. Formulating the lattice detection problem as
a higher order correspondence problem adds computational robustness against
geometric distortions and photometric artifacts in real images, and the publicly
available code produces impressive results.

Later, Park et al. [5] developed a deformed lattice detector within a Markov
Random Field using an efficient inference engine called Mean-Shift Belief Prop-
agation. They showed 72% improvement in lattice detection rate over the Hays’
algorithm [2], with a factor of 10 speed up.

However, all algorithms discussed so far ignore the foreground/background
characteristics of the repeating pattern we want to find. In particular, images
which contain fence-like structures are inevitably highly irregular despite the reg-
ularity of the foreground. For such cases, the irregular background interferes with
the detection of the see-through foreground lattice. Our method learns the type
of the repeating pattern, removes the irregularities, and uses the learned regular-
ity in evaluating the foreground appearance likelihood during lattice growth, a
crucial improvement since robust and complete lattice detection plays the most
significant role in our application.

2.2 Image Completion

Traditional texture filling tools such as Criminisi et al. [3, 4] require users to
manually mask out unwanted image regions. Based on our own experience, for
images such as those in Figures 1, 7, and 8, this process is very tedious and
error-prone. Simple color-based segmentations are not sufficient. Painting a mask
manually, as in previous inpainting work, requires copious time and attention
because of the complex topology of the foreground regions.

Favaro et al. [12] introduce a method for the restoration of images in which
certain areas have been blurred. Their method develops a map of the relative
amount of blur at each position in the image, then learns correspondences be-
tween recurring objects or image patches. This allows them to copy the least
blurred occurrence of an object and paste patches from it to inpaint over blurred
occurrences of the same or similar objects. This is a powerful method of relating
undesirable blur utilizing the power of understanding multiple instances of the
same object in a scene. Their work differs from ours in that they do not attempt
to use or understand any underlying structure, such as a lattice, that may exist
among the instances of the recurring object. Also, their method of inpainting re-
moves blurring, such as that from varying depth, but does not remove occlusion,
such as a fence-like foreground region.

As an extension to photo inpainting, Wexler et al. [13] and Patwardhan et
al. [14] each propose a video inpainting method. This is desirable, since temporal
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information can give additional information that can aid the inpainting process.
Although the balance of spatial and temporal continuity is far from trivial, both
methods produced spatially and temporally coherent results, albeit at the cost
of needing to mask out unwanted regions manually. With these filling tools, a
user has the capability to reveal content in a photo behind occlusions. However,
if the missing region is part of a complex object with high resolution, such as a
human subject, the quality of inpainting is often insufficient, as can be seen in
Figure 1 and 8.

Hays and Efros [15] proposed a scene completion method using millions of
photographs. The algorithm fills in the hole regions in images with seamless
and semantically valid patches from the database. However neither the database
images nor the regions to be filled are fragmented by any foreground structures.

Vaish et al. [16] proposed a method to reconstruct densely occluded scenes
using synthetic aperture photography. However, they require a large, synchro-
nized camera array (30 ∼ 100 cameras) to achieve this goal, which is obviously
impractical for consumer-grade use.

Our approach represents a middle ground between traditional image com-
pletion and video completion/synthetic aperture reconstruction, since we use
only a small number of auxiliary images that are easily achievable in everyday
photography.

3 Near Regular Texture Segmentation

Our basic lattice detection algorithm is similar to [5]. The procedure is divided
into two phases, where the first phase proposes one (t1 , t2)-vector pair and
one texture element, or texel. 2D lattice theory tells us that every 2D repeating
pattern can then be reconstructed by translating this texel along the t1 and t2
directions. During phase one, we detect KLT corner features, extract texture
around the detected corners, and select the largest group of similar features in
terms of normalized correlation similarity. Then we propose the most consistent
(t1 , t2)-vector pair through an iterative process of randomly selecting 3 points to
form a (t1 , t2) pivot for RANSAC and searching for the pivot with the maximum
number of inliers.

At phase two, tracking of each lattice point takes place under a 2D Markov
Random Field formulation with compatibility functions built from the proposed
(t1 , t2)-vector pair and texel. The lattice grows outwards from the initial texel
locations using the (t1 , t2)-vector pair to detect additional lattice points. The
tracking is initiated by predicting lattice points using the proposed (t1 , t2)-vector
pair under the MRF formulation. The inferred locations are further examined;
if the image likelihood at a location is high, then that location becomes part of
the lattice. However, for robustness, the method avoids setting a hard threshold
and uses the region of dominance idea introduced in [6]. This is particularly
important since there is no prior information about how many points to expect
in any given image. If the threshold of detecting lattice points is too high, then
recall rate suffers.
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Fig. 2. Procedure of lattice detection using online clustering, learning and classification

(a) (b) (c) (d)

Fig. 3. Sample FG/BG classification for a layer mask. (a) sample texels from the lattice
are shown. (b)-(c) results of two methods proposed in [1]. (d) results of our proposed
method.

Since the performance of lattice detection plays an essential role in this appli-
cation, we introduce a better decision system that uses online classification and
combines the lattice detection procedure with foreground / background segmen-
tation. In addition, we segment out the foreground layer during the detection
procedure and build a mask to remove noisy regions of each texel to represent
background irregularities from distracting and misguiding the inference proce-
dure. Since evaluation of a noisy image likelihood could misdirect the inference
of new texel locations, resulting in inaccurate lattice detection, we evaluate the
image likelihood of the each texel by normalized cross correlation using only the
foreground mask.

3.1 Clustering for the Foreground Segmentation

Liu et al. [1] simultaneously align multiple texels by calculating a homography
for each texel that brings its corners into alignment with the average texel shape
(Figure 2 B). After aligning all the texels, they compute the standard deviation of
each pixel in each texel with respect to the values at the same location in all other
texels. They propose two methods of pixel classification. The first was the classi-
fication of background versus foreground by thresholding of the variance among
corresponding pixels. The second was to consider the color of each texel along with
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(a) (b) (c)

Fig. 4. (a) An uniform background can make the relative mean RGB variance of the
foreground larger. (b) Results of taking the cluster with lower variance as foreground:
red is foreground. (This picture is best viewed in color.) (c) Results of our proposed
foreground segmentation.

the variance and performing K-means clustering on 6D vectors composed of the
value and standard deviation of red, green, and blue channels for each pixel. They
identified the pixels belonging to the lower variance cluster as the lattice region.
Sample results from these two methods are shown in Figures 3b and 3c.

Differing from Liu et al. [1], we use the mean of all pixels at each location within
the average texel shape. Now the input to the K-means (K=2) clustering is a set
of 6D vectors composed of the mean value (for all pixels at that location) and the
standard deviation (for each pixel) of red, green, and blue channels. We achieve
better results with the use of the mean value, as can be seen in Figure 3d. This is
because the means cancel out the irregularities in the backgrounds and make the
boundary between the foreground and the background clear.

However, taking the cluster with a smaller RGB variance does not always work
since severe lighting conditions on the foreground or a uniform background can
result in equivalent RGB variance for each cluster, as can be seen in Figure 4.

3.2 Online Learning-Based Lattice Detection

In our lattice detection algorithm, online learning using a support vector machine
is performed to improve the classification of lattice points and for foreground seg-
mentation. The base lattice detection algorithm provides both samples, xi ∈ Rn

and the label of the samples yi = {−1, 1}, which enables us to do supervised
learning. Positive samples, xi, yi = 1 are collected from patches centered at
lattice points (Figure 2, red arrows). Negative samples xi, yi = −1 are col-
lected from patch locations between positive samples (Figure 2, yellow arrows).
Next, we segment the lattice region to determine the lattice mask using K-means
(Section 3.1 and Figure 2 B). At this stage we have two candidates for the
foreground mask. Then, at each sample location, RGB color histograms are
computed from the two masks and used as features.

We use a support vector machine (SVM) with linear kernel and 10-fold cross
validation. We train the SVM to minimize the objective function given by



428 M. Park et al.

equation (1) with respect to w, b (support vector) and ξ (slack variable for
non-separable data). For this purpose, we used the OpenCV Machine Learning
toolbox.

minw,b,ξ
1
2w

T w + C
∑N

i=1 ξi

yi(wT xi + b) ≥ 1 − ξi

ξi ≥ 0
(1)

The parameter C (the penalty parameter of the error term in equation (1) and
the only optional parameter set by the user for the linear kernel SVM) is iterated
on a logarithmic grid and selected based on a 10-fold cross validation estimate
of error rate given by the ratio of the number of misclassified samples over the
number of test samples. Since we have two possible foreground masks from clus-
tering, we train an optimal classifier for each mask. To decide the best foreground
mask for representing the positive samples, xi, yi = 1 we further examine the
collected positive and negative samples using the trained classifiers. The idea
behind our approach is that if a mask A is representing xi, yi = 1 faithfully,
then the training error of the classifier with features collected from A should be
smaller than that of the classifier with features collected from the other mask, B.
We measure the training error of each classifier and select the foreground mask
that results in lower training error. The optimal classifier with the selected mask
is used to aid further lattice detection, an advancement from [1]. Finally, we con-
sider the foreground mask when determining image likelihood during the lattice
point inference procedure, increasing accuracy in localization of lattice points.
The procedure repeats until no more texels are found. Our proposed method has
a 30% improved detection rate1 over the state-of-the-art algorithm [5] on the 32
images from the PSU NRT database.

4 Multi-view and Symmetry Augmented Inpainting

One of the most challenging problems in inpainting is the scarcity of source
samples [1]. We seek to overcome this in two ways. The first approach is to try
to see the occluded object in another view. It is reported by Liu et al. [1] that
overall occupation of the foreground fence layer in their data set is from 18% to
53%. However, even a small offset of the camera can reveal pixel values behind
the foreground layer since objects behind the layer will experience less parallax
than the foreground. Also, moving objects will reveal parts of themselves, even
to a stationary camera, through multiple frames. Since in video these offsets are
small, object alignment can be approximated as a 2D translation. We utilize the
information from multiple views to aid the inpainting process by minimizing the
number of pixel values that need to be inferred.

A second approach deals with the situation after multi-view inpainting or
where no additional views are available. For gaps that still remain, we adopt
an exemplar based inpainting algorithm [3] [4] as our base tool. In addition ,we

1 The detection rate is measured by the ratio of the number of correctly detected
texels over the total number of ground truth texels.
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seek to overcome scarcity of candidate patches by simulating bilateral symmetry
patterns from the source image. As reflection symmetry often exists in man-made
environments and nature, simulating these patterns from the source image often
recovers occluded regions reliably and efficiently.

4.1 Multi-view Inpainting

To begin fence removal, we first remove the foreground layer (section 3) and then
start extracting patches for inpainting. Since the order of synthesis is critical, the
method for determining order that appears in [14] is used. That is, any objects
that are closer or have moved more between views should be dealt with first
because of their depth or motion boundary. Although optical flow estimation is
often not robust due to hole regions, errors are generally not noticeable in the
resulting image.

For a given image, I, we compute magnitude of optical flow, F , using the
Lucas Kanade algorithm [17] for every pixel. The priority of the matching follows
a descending order with respect to F . From the location p with the maximum
F , we extract patch Φp to do block matching with the other view, I ′. Formally,
we seek to solve,

Φq̂ = arg min
Φq∈I′

SSD(Φp, Φq) (2)

where SSD is sum of squared difference.
We use a larger patch width (15∼30) than the original inpainting algorithm

(≤ 9) to disambiguate similar patches. This would have posed problems in earlier
works [4, 13] because only complete source regions (containing no pixels to be
inpainted) were considered as candidates. We allow for an area that matches
better to be selected even if some of the pixels of the patch will need to be
synthesized later.

Another possible problem of using a larger patch occurs at boundaries be-
tween objects at different depths. We attempt to minimize the effect of these
depth boundaries by filling in the pixel values in descending order of optical flow
magnitude as in [14]. Having found Φq̂, the value of each pixel p ∈ Φp ∩ H is

(a) Patch 1 (b) Patch 2 (c) Inpainting
region

(d) Inpainting
result

Fig. 5. Process of multiview inpainting and result: The green region shows the region
that is made visible by patch 2 and the yellow region shows the region to inpaint using
augmented symmetries
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(a) Normal inpainting (b) Our symmetry-augmented
inpainting

Fig. 6. Result of normal inpainting compared with symmetry-augmented inpainting.
Both inpainting algorithms are applied after multi-view inpainting. (a) Results of
normal inpainting [3,4] (b) Inpainting with simulated bilateral symmetry patches.

copied from its corresponding pixel q ∈ Φq̂ \ H . If q(∈ Φq̂ \ H) is the null set,
the value of p is not observable from any other views, hence we use the single
view inpainting algorithm in Section 4.2. As can be seen in Figure 5 we do not
replace the entire original patch (Figure 5b), but only replace the region that is
occluded in the original patch (Figure 5d).

4.2 Symmetry-Augmented Inpainting

After multi-view inpainting or when only one view is available, we adopt an
exemplar-based single view inpainting algorithm [3,4] for hole regions that still
remain. As symmetry is common in nature and man-made environments, sim-
ulating these patterns from the source image increases the pool of candidate
matches, which could improve the inpainting quality. First, size of the template
window Φ is given as 9 by 9 for a given image, I, and the patch priority is com-
puted according to [3, 4]. We select the patch with the highest priority, Φp and
we rotate Φp by 90, 180 and 270 degrees as well as flip Φp around the x, y, y = x
and y = −x axes. We next search in the source region, S = I \ H for the patch
most similar to Φp or its simulated symmetry patches, Φ

(i)
p , where i = 1 ∼ 7.

Formally we seek to solve,

Φq̂ = arg min
Φq∈S,i=1∼7

SSD(Φ(i)
p , Φq) (3)

Having found the source exemplar Φq̂, we apply the appropriate inverse rotation
or reflection on Φq̂ depending on the index, i, then the value of each pixel p ∈
Φp ∩ H is copied from its corresponding location in Φq̂.

As can be seen in Figure 6, although there are still artifacts, our proposed
method offers improvements in keeping the image structure (inner corner of
sunglasses in Figure 6).
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5 Experimental Results

We first compare our method of lattice detection to [5]. We then compare our
overall system with [1] on the same images that appeared in [1]. Last, we demon-
strate results of multiview and symmetry-augmented inpainting on multiview
images.

Table 1. Quantitative evaluation of true positive rate and false positive rate, the true
positive rate is computed by the ratio of the number of correctly identified texels over
the number of ground truth texels and the false positive rate is computed by the ratio
of the number of incorrectly identified texels over the number of the ground truth texels

Lattice Detection Rate True Positive False Positive
Park et al. 59.34% ± 25.58 0.62% ± 2.4

Ours 77.11% ± 16.24 0.74% ± 2.5

(a) Liu et al. [1] (b) Ours

Fig. 7. Sample results of Liu et al. [1] and our approach. The middle column shows
the results of our proposed segmentation method and the last column shows the
results of inpainting. The results show that inpainting using a single view is still
very challenging even with a good segmentation. More results can be found in
“http://vision.cse.psu.edu/research/Defencing-Revisited/index.shtml”.

5.1 Lattice Detection

We have tested on 32 images from the PSU NRT database2 [18, 19] and have
found a 30% improvement in detection rate over [5]. Quantitative evaluation of
true positive rate and false positive rate are shown in Table 1. The true positive
rate is computed by the ratio of the number of correctly identified texels over
the number of ground truth texels, and the false positive rate is computed by
the ratio of the number of incorrectly identified texels over the number of ground
truth texels. The ground truth data and automatic evaluation code is obtained
from the PSU Near Regular Texture Database2.
2 http://vision.cse.psu.edu/data/data.shtml

http://vision.cse.psu.edu/data/data.shtml
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(a) Input (b) Liu et al. [1] (c) Multi-view Inpainting

Fig. 8. (a) Input images (b) Results of [1] using a single view. (c) Results of our
proposed multiview and symmetry-augmented inpainting method. The 1st row, 2nd

row, and 3rd row in (c) uses 4, 3, and 2 views respectively. More results can be found
in “http://vision.cse.psu.edu/research/Defencing-Revisited/index.shtml”.

5.2 Comparison with Liu et al. [1]

Our proposed method is successful at finding lattices and corresponding masks
for both of the images that appeared in [1]. Sample results of [1] and our results3

are shown in Figure 7.

5.3 Multi-view Inpainting Result

We apply our multi-view inpainting and symmetry augmented inpainting to
images that have multiple views and a few frames extracted from the show
“Prison Break”. The results are illustrated in Figure 8. In Figure 8, the first row
uses 4 views, the second row uses 3 views, and the last row uses 2 views.

6 Conclusion

We introduce a novel technique for “image de-fencing”, the automatic removal of
foreground fence layer in real photos, by detecting, segmenting and inpainting re-
peating foreground structures. We treat detection and segmentation of the lattice

3 More results can be found in http://vision.cse.psu.edu/research/Defencing-

Revisited/index.shtml

http://vision.cse.psu.edu/research/Defencing-
Revisited/index.shtml
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as a coupled learning process since the results of each one can be fed to the other to
improve the overall performance. Our lattice detection method produces improved
results over the state-of-the-algorithm [5] by 30%. We also propose multi-view in-
painting and symmetry-augmented inpainting methods to overcome the problem
of candidate sample patch impoverishment for inpainting. Even for human faces,
these new alternatives lead to acceptable results (Figure 8). Our future goal is to
deal with large view angle changes between multiple views.
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Abstract. In this paper, a dynamic surface is represented by a triangle
mesh with dense vertices whose 3D positions change over time. These
time-varying positions are reconstructed by finding their corresponding
projections in the images captured by two calibrated and synchronized
video cameras. To achieve accurate dense correspondences across views
and frames, we first match sparse feature points and rely on them to
provide good initialization and strong constraints in optimizing dense
correspondence. Spatio-temporal consistency is utilized in matching both
features and image points. Three synergistic constraints, image similar-
ity, epipolar geometry and motion clue, are jointly used to optimize stereo
and temporal correspondences simultaneously. Tracking failure due to
self-occlusion or large appearance change are automatically handled. Ex-
perimental results show that complex shape and motion of dynamic sur-
faces like fabrics and skin can be successfully reconstructed with the
proposed method.

1 Introduction

Dynamic surfaces undergoing complex motion prevalently exist in nature. Typi-
cal examples include fluttering fabrics and deforming skin. A deforming surface
can be represented by a spatio-temporal model, i.e. a polyhedral mesh whose
vertex positions vary over time. At a given time step, the mesh represents the
instantaneous 3D shape of the surface, and the time-varying 3D positions of each
vertex represent its motion trajectory in the entire time span. Acquiring accu-
rate dense spatio-temporal model of a deforming surface is highly useful in many
applications such as realistic computer animation [18], study of emotional facial
expressions [15], and investigation of mechanical properties of materials [5].

The most popular approach to dense spatio-temporal reconstruction is to use
multiple synchronized video cameras due to its non-contact characteristic and
sufficient spatial and temporal resolution. Most existing approaches [1,2,8,13,14]
start from reconstructing initial 3D shape by multiview silhouettes or multiview
stereo, and then estimate the corresponding positions of the reconstructed points
in subsequent frames. This strategy has several drawbacks. First, although mul-
tiview silhouettes can be used to recover approximate structure of objects like
human head and body [1,2,13], it is not applicable to obtaining fine structure of
surfaces such as fabric and facial skin. Second, multiview stereo algorithms [8,14]

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 435–448, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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could suffer severe stereo matching ambiguities in binocular setup, leading to
very noisy reconstructed 3D shapes. Third, dense motion trajectories are usu-
ally computed based on previously estimated 3D shapes [1, 2, 8, 14]. Therefore
3D reconstruction error is inherited in motion estimation and the synergistic
relationship between shape and motion is neglected.

In this paper, we represent a dynamic surface as a triangle mesh with dense
vertices whose positions change with time. The 3D motion trajectories of the
vertices are reconstructed by finding their corresponding projections in the im-
ages recorded by a pair of calibrated and synchronized video cameras. Spatial
correspondences (across viewpoints) are triangulated to compute their instan-
taneous 3D positions, and temporal correspondences (across frames) construct
their motion trajectories. In order to achieve accurate dense correspondences in
images of different views and frames, we rely on matched image feature points to
guide dense correspondence computation. The main advantages of this feature-
assisted framework are that (1) feature points can be robustly matched despite
large variation of image appearance due to change of viewpoint and complex
surface deformation, (2) matched feature points can give strong constraint for
correspondences of image points in the vicinity, and (3) they provide fairly good
initialization for the optimization of dense correspondences, making it much
less susceptible to local minima. In addition, in order to utilize the synergis-
tic relationship between shape and motion constraints, we use spatio-temporal
consistency to jointly optimize spatial and temporal correspondences. Three con-
straints, image similarity, epipolar geometry and motion clue, are incorporated
into a single cost function which is minimized to obtain optimal correspondences
of both sparse feature points and dense image points. Tracking lost due to self-
occlusion or large variation in image appearance and reoccurrence of lost points
are automatically detected.

The main contributions of our work include:

– A feature-assisted framework is developed for reconstructing dynamic
surfaces, in which sparse matched features efficiently guide dense spatio-
temporal reconstruction.

– When matching both sparse features and dense image points, the synergis-
tic relationship between shape and motion constraints is utilized to disam-
biguate stereo matching and temporal tracking simultaneously.

2 Related Work

Apart from the aforementioned methods, several methods are related to the
proposed approach as well. In [9, 11, 17], stereo disparity and optical flow are
coupled to compute dense stereo and temporal correspondences in binocular
image sequences. In [16], optical flows individually measured in numerous views
are matched to compute 3D scene flow between adjacent frames. Unfortunately,
only instantaneous 3D motion field between two frames is addressed, instead
of spatio-temporal reconstruction which involves recovering the vertex motion
trajectories across the entire time span.
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In [4], the dynamic scene is represented by a collection of surfels, each of which
encodes 25 parameters modeling its shape, reflectance and motion. However, in
order to recover these parameters, the surfel must correspond to a large set of
image pixels, and therefore only a sparse reconstruction of the scene is obtained.
In [6], corner points detected in binocular sequences are matched by jointly using
epipolar geometry and motion constraint, and their corresponding 3D motion
trajectories are reconstructed. Similar to [4], the resulting point set is too sparse
to represent the complex structure and deformation of the dynamic surface.

Similar to our approach, several methods [1,2] use known correspondences to
initiate dense motion field between adjacent frames. However, instead of being
accurately estimated, dense motion field is interpolated from sparse 3D corre-
spondences. In contrast, our approach use matched feature points as constraints
for dense correspondences instead of direct interpolation. While matching both
sparse feature points and dense image points, three synergistic constraints, im-
age similarity, epipolar constraint and motion clue, are jointly used, so that
consistent spatial and temporal correspondence are simultaneously optimized.
Experimental results show that the proposed method can successfully recover
both complex 3D shape and highly non-rigid motion of deformable surfaces such
as fabric and skin.

3 Method

3.1 The Spatio-temporal Reconstruction Problem

Consider a surface undergoing complex non-rigid motion. We represent its defor-
mation during time span [1, T ] by time-varying 3D coordinates of a dense set of
N surface sample points {X i

t}, i = 1, 2, ..., N, t = 1, 2, ..., T . The dynamic surface
is recorded by a pair of calibrated and synchronized video cameras, producing
two image sequences {I l

t} and {Ir
t }, where the superscripts denote left and right

view respectively. In this case, the 3D motion trajectories of the surface points
are reconstructed by finding their corresponding image projections. Since the
3D surface shape is unknown at first, we specify a region in image I l

1 of the
first frame to indicate the surface part to be reconstructed, and a dense set of
image points {xl

1} are uniformly sampled in this region. Our goal is to find their
corresponding image locations in all the other captured images.

3.2 Feature-Assisted Framework

We develop a feature-assisted framework to establish dense correspondence in
a pair of adjacent frames. The feature points in the underlying four images are
first matched and then they are used to guide dense correspondences. More
concretely, sparse matched features give fairly good initial estimates of dense
correspondences, and introduce strong constraints for the optimization of them.
In both matching feature points and dense image points, spatio-temporal consis-
tency, which incorporates image similarity, epipolar geometry and motion clue,
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Fig. 1. Feature assisted dense spatio-temporal reconstruction. Blue connected points
represent sparse matched feature points which provide strong evidence of matching dense
image points (in red) in their vicinity. The dotted square denote that the spatial and
temporal correspondences in adjacent frames are jointly optimized using spatio-temporal
consistency. The full motion trajectories (from brown to blue) are reconstructed frame
by frame.

is exploited to simultaneously optimize stereo matching and temporal correspon-
dences (which will be described in the following section). The resulting stereo
correspondences are used for 3D reconstruction and the whole set of 3D motion
trajectories are obtained by performing the feature-assisted algorithm frame by
frame (see Fig. 1).

3.3 Spatio-temporal Consistency

We use spatio-temporal consistency to represent a set of constraints for corre-
sponding points both spatially matched (across views) and temporally matched
(across frames). These constraints include image similarity, epipolar geometry,
and motion clue. Concretely, in two consecutive frames, if (xl

t, x
r
t , x

l
t+1, x

r
t+1) are

image locations corresponding to a same surface point, they must satisfy the
following conditions (see Fig. 2):

– Image similarity: Assuming the surface is Lambertian, the image patches
must be highly correlated around each spatial pair (xl

t, x
r
t ) and (xl

t+1, x
r
t+1)

as well as each temporal pair (xl
t, x

l
t+1) and (xr

t , x
r
t+1).

– Epipolar geometry: Each spatial pair (xl
t, x

r
t ) and (xl

t+1, x
r
t+1) must satisfy

the epipolar constraint.
– Motion clue: We assume that surface points in a small neighborhood undergo

similar (not necessarily same) motion. This constraint is satisfied for a variety
of deformable surfaces like fabric and skin. It is more generalized than the
piecewise rigidity model [8], and the entire surface can still deform in a highly
non-rigid manner.

Although the above constraints seem disparate, jointly using them can use the
synergistic relationship between them to largely mitigate the ambiguities in find-
ing spatio-temporal consistent correspondences. Thus, we design a cost function
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Fig. 2. Spatio-temporal consistency. Red squares indicate image similarity constraint.
Green lines represent the epipolar lines. Blue points in the vicinity undergo similar
motion as the underlying red points.

for a 4-tuple of four image positions q = (xl
t, x

r
t , x

l
t+1, x

r
t+1)

E(q) = αEimg(q) + βEepi(q) + γEmot(q) (1)

where the three components are associated with the above constraints respec-
tively. The optimal 4-tuple can be derived by minimizing the cost function. The
details will be given in the following sections.

3.4 Matching Feature Points Using Spatio-temporal Consistency

In the four images of two consecutive frames, we first extract SIFT features [12] as
their descriptors provide robust matching despite variation in image appearance
due to view changing and surface deformation. For each feature point xl

t in image
I l
t, we wish to find its correspondences in the other three feature sets, such that

the 4-tuple q = (xl
t, x

r
t , x

l
t+1, x

r
t+1) minimizes the cost function (1). The detailed

formulation is presented as follows.

Image Similarity. To define the term Eimg(q), we utilize the discriminative
SIFT descriptors. Smaller descriptor distance suggests higher similarity of the
image patches around the features. We therefore formulate the term Eimg(q) as

Eimg(q) =
1
4

[
ρd(xl

t, x
r
t ) + ρd(xl

t+1, x
r
t+1) + ρd(xl

t, x
l
t+1) + ρd(xr

t , x
r
t+1)

]
(2)

where ρd(.) represents the Euclidean distance between two feature descriptors.

Epipolar Geometry. As each spatial pair must satisfy epipolar constraint, the
term Eepi(q) is formulated as

Eepi(q) =
1
2

[
ψe(ρe(xl

t, x
r
t )) + ψe(ρe(xl

t+1, x
r
t+1))

]
(3)
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where ρe(.) represents the average distance of the two points to their respective
epipolar lines, and ψe(.) is a sigmoid-like function for thresholding

ψe(x) = 1 − 2
1 + eλ(x−σe) (4)

where λ is a positive value (λ = 3 in our implementation) and σe is the threshold.

Motion Clue. Although we constrain in Section 3.3 that nearby points undergo
similar motion, this clue can not be fully utilized so far, since no motion has
been recovered yet in the vicinity of a feature point. Instead, we assume that the
temporal correspondence of xl

t (or xr
t ) is within a distance σm. The motion clue

term is therefore written as

Emot(q) =
1
2

[
ψm

(‖xl
t+1 − xl

t‖
)

+ ψm

(‖xr
t+1 − xr

t‖
)]

(5)

where ψm(.) is a function similar to Eq.(4) with threshold σm.

Filtering. As the correspondences are individually found for each feature xl,i
t ,

we filter out outliers using an additional smoothness constraint. Ideally, the four
features in a 4-tuple qi correspond to a same surface point with different 3D
positions at t and t + 1. Thus, the acquired set of 4-tuples {qi

t} correspond
to two 3D point sets, which are sparse representation of the instantaneous 3D
surface shapes at t and t + 1 respectively. We compute the two 3D point sets
{X i

t} and {X i
t+1} using triangulation and discard outliers by enforcing piecewise

smoothness on each instantaneous shape. We discard any point X i
t if

|di
t − d̃|

med
j∈Ωp(Xi

t)
|dj

t − d̃| > εp (6)

where di
t is the depth value of X i

t , Ωp(X i
t) is the set of kp points closest to X i

t ,
and d̃ is the median depth of these points.

So far, we have acquired a set of matched features {(al,i
t , ar,i

t , al,i
t+1, a

r,i
t+1)} with

known correspondences in frame t and t + 1, as well as their corresponding 3D
positions {(Ai

t, A
i
t+1)}. They act as anchor points in the next stage where the cor-

respondence for an arbitrary image location is to be computed. The benefits of
using anchoring feature points include: (1) they provide good initials for the op-
timization, making it much less susceptible to local minima, and (2) they provide
strong constraint for defining the cost function of image points in the vicinity.

3.5 Feature-Assisted Dense Correspondences

After acquiring the anchor points, we can exploit them to guide the optimization
of dense correspondences. For an arbitrary image point xl

t, we compute the
optimal 4-tuple q = (xl

t, x
r
t , x

l
t+1, x

r
t+1) again by minimizing the cost function 1.

However, we modify the formulation of Eimg(q) and Emot(q) used in Section 3.4
in order to make use of the matched feature points.
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Image Similarity. While feature descriptor distance is used in the previous
section, computing descriptor for each image location is impractical and unnec-
essary. Instead, we use windowed normalized cross correlation as a measure of
the similarity of two image patches. The term Eimg(q) is formulated as

Eimg(q) =
1
4

[
Δ(xl

t, x
r
t ) + Δ(xl

t+1, x
r
t+1) + Δ(xl

t, x
l
t+1) + Δ(xr

t , x
r
t+1)

]
(7)

Δ(x1, x2) =
−∑

dx

[
I1(x1 + dx) − Ī1

][
I2(x2 + H(dx)) − Ī2

]
√∑

dx

[
I1(x1 + dx) − Ī1

]2√∑
dx

[
I2(x2 + H(dx)) − Ī2

]2 (8)

where dx is the image location in a squared window of size R × R centered
at (0, 0), and H(.) is an affine transform estimated by neighboring 2D anchor
points. The minus sign in the numerator is used because higher image similarity
should give lower cost.

Motion Clue. Given a sparse set of anchor points, the motion clue in Section
3.3 can be used. The set of 3D anchors {(Ai

t, A
i
t+1)} can be regarded as a sparse

representation of the dynamic surface in frame t and t + 1. For a 3D point Xt

inside the triangle (Ai
t, A

j
t , A

k
t ) with barycentric coordinates b = [b1 b2 b3]T ,

X̂t+1 = b1A
i
t+1 + b2A

j
t+1 + b3A

k
t+1 is a good estimate for its correspondence

at frame t + 1. Similarly in 2D domain, for an image point xl
t in the triangle

(al,i
t , al,j

t , al,k
t ), the 2D positions x̂r

t , x̂
l
t+1, x̂

r
t+1, having barycentric coordinates

b w.r.t. their respective enclosing anchors, are fairly good estimates for the
correspondences of xl

t. As such, we constrain the distance between optimal cor-
respondence to its initial estimate is smaller than a threshold σb. The motion
clue term is therefore written as

Emot(q) =
1
3

[
ψb

(‖xr
t − x̂r

t‖
)

+ ψb

(‖xl
t+1 − x̂l

t+1‖
)

+ ψb

(‖xr
t+1 − x̂r

t+1‖
)]

(9)

where ψb(.) is sigmoid-like function with threshold σb.

3.6 Handling Tracking Failure and Reoccurrence of Lost Points

Although anchor points greatly facilitate dense matching, falsely matched fea-
tures or insufficient anchors in the vicinity can produce inferior results for an
image point. We therefore examine the resulting image correlation Eimg for each
image point xl

t. If Eimg > εE , we recompute the affine transform and initial cor-
respondences x̂r

t , x̂
l
t+1, x̂

r
t+1 by using successfully matched image points in the

neighborhood, instead of the potentially incorrect anchoring features.
Nonetheless, tracking failure may still be caused by self-occlusion, depth dis-

continuity, or large appearance change. To solve this problem, we select a ref-
erence frame tr (the first frame in our experiments) in which the surface region
to be tracked are assumed to be visible in both views. At frame t, we label any
surface point as tracking failure if its image correlation Eimg > εE. In case this
lost point reoccurs in the next frame t + 1, we attempt to find in frame t + 1
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the location corresponding to its position in the reference frame tr. To this end,
the same optimization is performed except that the neighboring image points
labeled as tracking success are used as anchors (note that in general, no matched
features are available for frame tr and t + 1). If the resulting Eimg ≤ εE , the
surface point is labeled as tracking success in frame t + 1.

4 Implementation Details

In section 3.4, a cost function is minimized to find optimal correspondences for a
feature point. However, exhaustive search in all possible 4-tuple is computation-
ally expensive due to the large number of features (typically 2000-7000). Instead,
we use a greedy strategy, utilizing the discriminative feature descriptors. When
searching for the spatial or temporal correspondence for a feature point, we only
regard the kf (3-5 in our experiments) features nearest to the best matched fea-
ture as matching candidates. The best spatial match (across views) is the one
with minimal descriptor distance out of all the features whose deviation from the
epipolar line is less than εe. The best temporal match (across frames) is the one
with minimal descriptor distance out of all the features within distance σm (see
Fig. 3). After the correspondences are computed for each feature point xl

t, false
matches are filtered out (Section 3.4). The remaining unmatched feature points
are plugged into the next iteration. In our experiment, the whole procedures are
iterated for five times.

Fig. 3. Strategy for matching feature points. (a) Candidates for spatial correspondence
of xl. (b) Candidates for temporal correspondence of xt.

When searching for correspondences of image points, we first process the
interior points inside the 2D anchor mesh constructed by delaunay triangulation
of {al

t}. Simplex search method [10] is used for optimization described in Section
3.5. The points with resulting Eimg < σE are deemed as tracking success. For the
remaining untracked points, neighboring successfully matched points are used as
anchors instead of feature points. Same optimization is performed and those with
Eimg < σE are labeled as tracking success. Finally, the reference frame tr is used
to detect whether any lost point reoccurs in frame t + 1.

5 Experimental Results

We test the proposed method using several challenging datasets and compare
with existing methods. Both synthetic and real-world cases are used for evalua-
tion. The parameters used in the experiments are given in Table 1.
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Table 1. The parameters used in the experiments

Dataset α β γ kf σe σm kp εp R σb εE

cloth 0.3 0.3 0.3 5 3 50 10 3 15 5 0.7
flag 0.3 0.3 0.3 5 3 50 5 10 21 5 0.7
skin 0.3 0.3 0.3 5 3 50 5 3 21 5 0.7

Fig. 4. Reconstruction results in three frames where severe self-occlusion or large
deformation occur. From left to right: input images, sparse matched feature points,
dense reconstructed points, and instantaneous 3D motion fields (from brown to blue).

5.1 Simulated Cloth Fluttering in the Wind

In order to give quantitive evaluation of our method, we use 3DS MAX to
simulate a textured piece of cloth of size 100cm×100cm waving in the wind.
Two virtual cameras are placed to capture image sequences of 200 frames at
800×600 pixel resolution. The speed of the wind is set to be varying so that both
instantaneous shapes and motion are highly complex. In addition, self-occlusion
occurs frequently, which makes the spatio-temporal reconstruction even more
challenging. The results of several frames are shown in Fig.4. Although some
surface parts are lost due to self-occlusion, large image variation or shadows, the
time-varying positions of a very dense set of sample points are recovered.

In order to show the advantage of the proposed method, we compare the
correspondences (1) calculated by state-of-the-art dense optical flows [3], (2)
initially estimated by matched feature points, and (3) optimized by feature-
assisted spatio-temporal consistency. The positions of the 19× 19 = 361 control
points on the surface are used as ground truth. For optical flows, the ground
truth of image projections in the first frame are given, and their correspondences
in any subsequent frame are obtained using 2D flows individually estimated
in each view. Correspondences in the same frame are triangulated to derive
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Fig. 5. Reconstruction accuracy and completeness. (a) Average pixel distance between
image projections and ground truth. (b) Average distance between 3D vertices and
ground truth. (c) Percentage of successfully tracked points.

instantaneous 3D positions. To measure the reconstruction accuracy, the average
distance of successfully tracked points to the ground truth is used. Fig.5 shows
that the reconstruction error of dense flows is significantly higher than the other
two methods. We also notice that in most frames, the correspondences initialized
by anchor points are comparable to the optimized ones, which demonstrates
that matched feature points can provide fairly good initial estimates of dense
correspondences. However, in frames where severe self-occlusion occurs, initial
estimates give noisy results. The feature-assisted spatio-temporal reconstruction
yields best accuracy. The average projection distance is below 1 pixel, and the 3D
reconstruction error remains at a significantly low level (<0.5cm, 0.35% of the
cloth diagonal). In addition, no significant error drift is shown and the percentage
of successfully tracked points drops as expected due to large deformation and
self-occlusion (see Fig.4).

5.2 Flag Sequence

The first real-world scene used to assess the quality of our method is the flag
dataset from [4]. Sequences of view 1 and 2 are chosen as the input and each
stream consists of 37 images of resolution 722 × 482. Dense spatio-temporal
reconstruction from this binocular sequences is highly challenging due to (1)
frequent self-occlusion, (2) uniform or slowly-varying colors in many regions, (3)
fast and highly complex motion, and (4) very few viewpoints available.

The results are shown in Fig.6. Both instantaneous 3D shapes and full 3D
motion trajectories are successfully recovered although only two views are used.
Note that one of the best multi-view stereo algorithm [7] produces fairly noisy
3D shapes in this binocular setting. Consequently, motion recovery based on
this initial shape [8] is expected to be inaccurate. In contrast, our method reg-
ularize dense correspondences by utilizing feature points which can be robustly
matched despite large image variation due to view changes and surface defor-
mation. Spatio-temporal consistency is also used to disambiguate both stereo
matching and temporal tracking.
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Fig. 6. Result of the flag sequences. (a) Results of frame 5,10 and 15. From left to right:
input images, sparse matched feature points, dense reconstructed points, instantaneous
3D motion fields, and 3D reconstruction by PMVS [7]. (b) Image projections of three
sample points denoted by red squares in the input images. (c) 3D motion trajectories
(only a portion of them are plotted for better visualization).

In [4], the reconstructed surface consists of only about 200 dynamic surfels,
because each surfel must correspond to a large set of pixels so that the 25 param-
eters encoded in each surfel can be reliably recovered. In contrast, our method
generates the 3D motion trajectories of a very dense of surface points.

Since no ground truth data is available, we select three sample points and
visualize their image projections in both views to illustrate the reconstruct ac-
curacy. These sample points lie in three representative regions: (1) sufficiently
textured, (2) poorly textured, and (3) lost in several frames. We see that accurate
correspondences are obtained in all these surface parts.

5.3 Facial Skin Deformation

We also test our method on a more challenging real-world case: facial skin defor-
mation around a human mouth. Unlike fabrics, facial skin is frequently stretched
during its deformation, leading to large variation in image appearance. Due
to lack of sufficient texture, black letters are randomly painted on the skin.
The capture system is composed of two synchronized SONY HVR-V1C video



446 Y. Zhou and Y.Q. Chen

cameras delivering 25 fps at 1440×1080 pixel resolution. We choose 26 frames
during which the mouth is stretched toward both sides and then moves forward.
The images are resized to 720×540 pixel resolution and we use gray-level images
for all computations. The two cameras are geometrically calibrated using the
method proposed in [19]. The surface area to be tracked is manually specified
and the regions corresponding to noise, lips and mouth are discarded. Fig.7
shows that the 3D motion trajectories of dense surface points are successfully
recovered. The projections of three sample points are visualized. One of them is
lost in several frames since it moves outside the field of view. The other two lie
in regions whose appearance change significantly during deformation.

(a)

(b) (c)

Fig. 7. Result of skin deformation. (a) Results of frame 1,5,10 and 15. From left to
right: input images, sparse matched feature points, dense reconstructed points, and
instantaneous 3D motion fields. (b) Image projections of three sample points denoted
by red squares in the input images. (c) 3D motion trajectories (only a portion of them
are plotted for better visualization).
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6 Conclusion

In this paper, we recover dense spatio-temporal model by finding dense cor-
respondences in the images captured by a binocular stereo system. A feature-
assisted framework is developed, in which matched feature points efficiently guide
dense correspondence. The advantages are remarkable in several aspects: (1) fea-
ture points are robustly matched in spite of large variation in image appearance
due to different viewpoints and complex surface deformation, and (2) matched
feature points provide fairly good initialization as well as strong constraints for
computation of dense correspondences in their vicinity. Spatio-temporal consis-
tency incorporates synergistic constraints including image similarity, epipolar
geometry and motion clue, and it can be used to largely disambiguate stereo
and temporal correspondences. Experimental results show that feature-assisted
spatio-temporal reconstruction exhibits significant advantage over existing meth-
ods, and it is capable of recovering both complex structure and motion of
dynamic surfaces like fabrics and skin.
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Abstract. Spatial analysis of salient feature points has been shown to
be promising in image analysis and classification. In the past, spatial
pyramid matching makes use of both of salient feature points and spatial
multiresolution blocks to match between images. However, it is shown
that different images or blocks can still have similar features using spa-
tial pyramid matching. The analysis and matching will be more accurate
in scale space. In this paper, we propose to do spatial pyramid match-
ing in scale space. Specifically, pyramid match histograms are computed
in multiple scales to refine the kernel for support vector machine clas-
sification. We show that the combination of salient point features, scale
space and spatial pyramid matching improves the original spatial pyra-
mid matching significantly.

1 Introduction

Image classification has attracted large amount of research interest in the past
few decades due to the ever increasing digital image data generated around the
world. Traditionally, images are represented and retrieved using low level fea-
tures. Recently, machine learning tools have been widely used to classify images
into semantic categories. Now low level features can be used more efficiently than
ever. Image classification is an important application in computer vision. Our
research goal is to improve methods for Image classification, more specifically
natural scene images or images with some spatial configurations. We want to
classify an image based on its semantic category of a scene like forest, road or
building etc. Our approach to whole image categorization employs to renowned
techniques namely Spatial Pyramid Matching (SPM) [1] and scale space theory.
Our objective is to combine the power of these two methods.

In this paper, scene categorization is attempted by global image representation
developed from low level image properties. There is another approach for this task
that is to get idea of high level semantic attributes by segmentation of objects on
the scene (like bed or car) and classify the scene accordingly. We believe scene
classification can be done without extracting this high level object cues. This is
inspired by the publications of [2] where they proved that people can recognize nat-
ural scenes while overlooking most of the details in it (i.e. the constituent objects).
In another publication [3] it is also shown that global information is as important
as local information for scene classification by human subjects.

Scale is an important aspect of local feature finding in prominent cue detection
in images. The most prominent example of using scale space and characteristics
scale is the local invariant feature detector SIFT [4]. In SIFT the authors used
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c© Springer-Verlag Berlin Heidelberg 2011
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maxima/minima of neighboring scale space to find the interest points or key
points of an image. Scene features like sands in a beach or certain textures in the
curtain of a room would be more evident in bigger scales. Scale-space theory is a
framework for multi-scale signal representation. It is a formal theory for handling
image structures at different scales, by representing an image as a one-parameter
family of smoothed images, the scale-space representation, parameterized by the
size of the smoothing kernel used for suppressing fine-scale structures [5].

In recent years the bag-of-features (BoF) model has been extremely popular in
image categorization. The method treats an image as a collection of unordered ap-
pearance descriptors extracted from local patches. Then the patches or descriptors
are quantized into discrete visual words of a codebook dictionary, and then the im-
age histograms are compared and classified according to the dictionary. The BoF
approach discards the spatial order of local descriptors, which severely limits the
descriptive power of the image representation. By overcoming this problem, one
particular extension of the BoF model, called spatial pyramid matching (SPM)
[1], has made a remarkable success on a range of image classification benchmarks
and was the major component of the state-of-the-art systems, e.g., [6].

Our method is based on SPM. Similarly like SPM we have used the subdivide
and disorder principle. The essence of this principle is to partition the image
into smaller blocks and calculate orderless statistics of low level image features.
Existing methods differs by the use of features (like pixel value, gradient orien-
tation, and filter bank outputs) and the subdivision method (regular grid, quad
trees, and flexible image windows). SPM and as well as our method is indepen-
dent in choice of features, anyone can plug any other type of features to get a
classification result. Authors of [7] offered an early insight into subdivide and
principle by suggesting that locally orderless image play an important role in vi-
sual perception. While SPM authors did not consider their Gaussian scale space
of apertures, we integrated that idea into SPM. Importance of locally orderless
statistics is also evident from few recent publications.

To summarize, our method provides a unified framework to combine the gains
from subdivide and disorder principle and scale space aperture with a choice
of low level features. It will enable to combine the locally orderless statistics
results from multiple scales and different fixed hierarchy or rectangular windows
to achieve the scene classification task.

2 Related Methods

In this work we combine the power of multiresolution histogram with spatial
pyramid matching. So our method consists of two concepts - multiresolution
or scale space analysis of image and spatial pyramid matching. In kernel based
learning methods like support vector machine (SVM), we need to provide a
kernel for learning and testing. There are many kernels, which varies in formula-
tion. For example, histogram intersection kernel is a kernel matrix which is
built by histogram intersection. Essentially it provides a pair wise similarity mea-
sure of the training and testing images. A pyramid match kernel (PMK) [1]
works with an unordered image representation/features. The idea of the method
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Fig. 1. Schematic illustration of Pyramid match kernel with two levels

is to compute multiresolution histograms and finding the histogram intersection
at each resolution. In figure 1, for two different images X and Y, histograms
and the corresponding histogram intersections are computed at three resolution
levels (0,1,2). The bin size is doubled in successive higher resolutions while the
bin numbers are down sampled by 2. After that, all new histogram matching
in each resolution is weighted and summed up to form the histogram intersec-
tion kernel. It has the limitation of discarding all spatial information. Let us
construct a sequence of grids at resolutions 0,1,. . . ,L such that the grid at level
l has 2l cells along each dimension. Number of matches (I l) at level l is given
by the histogram intersection function. Therefore, the number of new matches
found at level l is given by I l − I l+1 for l = 0,1,. . . ,L-1. The weight associated
with level l is set to 1

(2L−l) .
Spatial pyramid matching (SPM) takes a different approach of performing

pyramid matching in the two-dimensional image space, and using traditional
clustering techniques in feature space. So in SPM the histogram computation
is done at a single resolution and in multiple pyramid levels within the same
resolution, whereas in PMK it is done in multiresolution. PMK dont employ any
feature clustering, directly map features in multiresolution histogram bins. On
the other hand, SPM uses feature clustering during histogram computation to
find the representative feature sets. In SPM, all feature vectors are first quantized
into M discrete types (i.e. the total number of histogram indices is M).

In figure 2, we are showing an example of constructing a three-level spatial
pyramid. The image has three types of features, indicated by triangles, circles
and stars. At the top row, the image is subdivided at three different levels of
resolution. At the bottom row, the number of features that fall in each sub-
region is counted. The spatial histograms are weighted according to pyramid
match kernel. During kernel computation, each type calculation comprised of
two sets of two- dimensional vectors, Xm and Ym, representing the coordinates
of features of type m found in the respective images. The final kernel is then the
sum of the separate channel kernels:

KL(X, Y ) =
M∑

m=1

KL(Xm, Ym) (1)
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Fig. 2. Three-level spatial pyramid example

This method reduces to a standard bag of features when it is a single level.
Considering the fact that pyramid match kernel is simply a weighted sum of
histogram intersections, and c × min(a, b) = min(ca, cb) for positive numbers,
KL can be implemented as a single histogram intersection of long vectors formed
by concatenating the appropriately weighted histograms of all channels at all
resolutions. So essentially we are weighting the histograms before computing the
histogram intersection for convenience as the reverse would yield the same result.
For L levels and M channels and S scales, the resulting vector has dimensionality:

(M
L∑

l=1

4l) × S = M
1
3
(4L+1 − 1) × S (2)

Several experiments reported in results section use the settings of M = 200, L = 3
and S = 3 resulting in (3×17000) -dimensional histogram intersections. However
these operations are efficient because the histogram vectors are extremely sparse,
the computational complexity of the kernel is linear in the number of features.

One important aspect of the training and test images that we run the exper-
iment only on gray level images; even if color images are available we converted
in to gray level images. We decide this from the finding of [9] that removing
color information from images doesnt make the scene categorization tasks more
attention demanding.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) and (c) are different images with almost similar image histograms (b) and
(d). (e) and (g) are corresponding Gaussian blurred images and the previous small
difference in histograms is now more prominent in higher scales(f and g).

3 Proposed Method: Multi-scale SPM

SPM uses a mechanism to combine local salient features and their spatial rela-
tionship so as to provide a robust feature matching. However, in many cases, dif-
ferent image and block can have similar histograms, this degrade the performance
of SPM. This drawback can be overcome by analyzing images in scale space, as
confusions in previous case can be clarified at different scales. For example, in
figure 3, images (a) and (b) are artificially generated images with almost simi-
lar histograms, later they are Gaussian blurred and hence their histograms are
also more discriminative than the original histograms. For a given image f(x,y), its
linear (Gaussian) scale-space representation is a family of derived signals L(x,y;t)
defined by the convolution of f(x,y) with the Gaussian kernel:

gtgtgt(x, y) =
1

2πt
eee

−(x2+y2)
2t Such that LLL(x, y; t) = (gtgtgt × fff)(x, y) (3)

Inspired by scale space theory we want to propose a multi-scale spatial pyramid
matching method. Key idea behind our method is the use of scale space to gain
more discriminative power in classification. The major steps of our algorithm
are (figure 4)

3.1 Feature Generation in Different Scales

First SIFT features are generated from all the images in different scales in a regular
grid. Here a dense feature representation is used to avoid the problems superfluous
data like clutter, occlusion etc. 128bitSIFTdescriptors are calculated for all images
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Fig. 4. Block diagram of the proposed method

in all scales in 8*8 regular grid settings and using a 16*16 patch in the grid centers.
These features are saved into files for use in later steps.

3.2 Calculate Dictionary

The features are clustered according to the parameter M which is the total num-
ber of bins in of the computed histograms. It is often believed that increasing the
number of M will increase the classification accuracy. But, in our experiments
we are getting comparable accuracy from M=200 setup compared to M=400 and
M=600. Again the dictionary is built for all images in all scales. Dictionary is
calculated using K-means based clustering using all the extracted SIFT features
in a specific scale. In figure 5 (left image), we are showing the corresponding
histogram of the values of a 200 sized dictionary. Separate dictionaries are cal-
culated for separate scales. The dictionaries are calculated for using in histogram
generation in later stages.

3.3 Compile Pyramid Histogram

For all scales, the image is divided ranging from coarse to finer resolution and
compute histogram in each area and assign weight according to PMK. Match in
finer resolution will be given more weight than match in coarse resolution. After
these steps now we have all the data required to build the pyramid histogram.
With the different scale level histograms, we can just concatenate those forming
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Fig. 5. Histogram plot of the calculated dictionary (left) and combined pyramid his-
togram plot of all individual histograms in different levels (right)

Fig. 6. Histogram intersection kernel as image for Training images (left) and testing
images (right)

a long histogram or compute inter-scale intersection/selection before forming
the concatenation. We are taking the first approach in our method. Though this
will essentially increase the size of the long histogram by the scale factor, but
that wouldnt be a problem performance-wise. In this research our focus is on
increasing classification accuracy and leveraging performance on the currently
available powerful hardware. In figure 5 (right image), one such combined pyra-
mid histogram is shown. According to equation 2, size of the histogram is 34000
for dictionary size 200, 3 pyramid levels and scale level 1.

3.4 Kernel Computation and SVM Classification

For SVM, we just need to build the histogram intersection kernel from the com-
piled pyramid histograms. As we explained before, for the histogram intersection
kernel computation we just need to find the intersections of the long histogram
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Table 1. Statistical information of the image datasets used

Dataset No. of Total No. of Avg. image Max. no. of train/test
categories images size images used

Scene category 15 4485 300*250 100/rest
Caltech-101 102 9144 300*200 30/300
Caltech-256 257 30607 351*300 60/300

concatenation formed in the previous step. For training kernel intersection is
computed between the same concatenated histograms and for training kernel it
is between training histogram and testing histogram. A grey scale image map of
the testing and training kernel is shown in figure 6. For training kernel, a white
line is visible along the diagonal, as there will be a perfect match for correspond-
ing training pairs. In testing kernel the matches are scattered as training and
testing sets are different. For SVM, we are using a modified version of libSVM
library [10] which implements the one vs. all classification. scales and different
fixed hierarchy or rectangular windows to achieve the scene classification task.

4 Experimental Results

4.1 Test Dataset

We tested our method on scene category dataset [1], Caltech-101 [11] and Caltech-
256 [12]. A brief statistical comparison of these three datasets is given in table 1.

4.2 Performance Metric

Two separate performance metric is used to measure the results combined ac-
curacy and average of per class accuracy. Per class accuracy (P) is defined as
the ratio of correctly classified images in a class with respect total number of
images in that particular class. If total number of image categories is N, then
combined accuracy and average of per class accuracy is defined as:

Average of per class accuracy =
∑N

i=1 Pi

N
(4)

Combined accuracy =
Total number of correctly classified images × 100

Total number of images in the dataset
(5)

Table 2 is the extensive experiment done with codebook size, pyramid level,
scale level. Results are first grouped by codebook size and pyramid levels. The
notable thing here is that, scale level greater than one always produce better
results than single level. Using the combined accuracy metric, we get our best
result from codebook size 400, pyramid level 3 and scale level 2. Scale level 1 is
basically the original SPM. So for scale level 1, we use the results from [1]. But
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Table 2. Accuracy results on different combination of parameters. Bold font means
its the best for a certain codebook size and pyramid level.

Codebook Pyramid Scale Combined Avg. of per class
Size level level accuracy (%) accuracy (%)

200 3 1 81.47 ± 0.59 81.11 ± 0.68
200 3 2 83.69± 0.50 83.31± 0.59
200 3 3 83.45 ± 0.57 83.21 ± 0.61
200 2 1 79.88 ± 0.52 81.1 ± 0.30
200 2 2 82.69 ± 0.67 82.25± 0.52
200 2 3 82.78± 0.70 82.21 ± 0.75
400 3 1 81.95 ± 0.57 81.1 ± 0.60
400 3 2 83.78± 0.64 83.48± 0.58
400 3 3 83.71 ± 0.54 83.29 ± 0.70
400 2 1 80.28 ± 0.53 81.4 ± 0.50
400 2 2 83.22± 0.44 82.75± 0.40
400 2 3 83.10 ± 0.63 82.67 ± 0.78

Table 3. Our result compared to the original SPM for codebook size = 400, pyramid
level = 3 and scale level = 2

SPM [1] Proposed method

Average of per class accuracy(%) 81.1 ± 0.60 83.48 ± 0.58
Combined accuracy(%) 81.95 ± 0.57 83.78 ± 0.64

Table 4. Caltech-101 result for codebook size = 400, pyramid level = 3 and scale
level = 3

SPM [1] Proposed method

Average of per class accuracy(%) 64.6 ± 0.7 67.36 ± 0.17
Combined accuracy(%) 70.59 ± 0.16 76.65 ± 0.46

Table 5. Caltech-256 result for codebook size = 400, pyramid level = 3 and scale
level = 3

SPM [12] Proposed method

Average of per class accuracy(%) 32.62 ± 0.41 37.54 ± 0.31
Combined accuracy(%) 34.98 ± 0.60 40.19 ± 0.12

as the authors of [1] didnt report the result of combined accuracy, we calculated
it using our own implementation of SPM. All results are obtained using a 2*64
bit Quad core processor with 48 GB of RAM. All experiments are run for ten
times with randomly selected training and testing images. The average of all the
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Fig. 7. Per class accuracy for the result (average of per class accuracy) reported in
Table 2

runs and standard deviation is reported here. Table 3 summarizes our best result
compared to the original SPM. In figure 7, we showed the per class accuracy
for the best result reported in Table 4. Our method outperforms SPM in eleven
categories and provides comparable performance in the four categories. We tested
whether the difference between two methods reported in table 2 is statistically
significant by the Matlab function ttest. In this case, ttest result indicated that
the improvement obtained the by the proposed method is indeed statistically
significant. The results on Caltech-101 and Caltech-256 are presented in table
4, 5 and it is in line with the results obtained from scene category dataset. On
both of these databases, according to overall average accuracy metric, proposed
method is better than SPM by around 3% margin and using the average of per
class accuracy metric, the margin is around 6%.

5 Conclusion and Future Scope

This paper presents an improvement to the spatial pyramid matching scheme.
We provided a simple, intuitive and effective way to improve the SPM method.
To the best of our knowledge, this has not been done by previous researchers.
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The proposed extension is quite general and not limited to any specific feature
descriptors or classifiers and can be used as a surrogate module or new baseline
for SPM in image categorization systems.

The weight mechanism of the spatial pyramid matching (SPM) method is not
sophisticated enough. It defines uniform and better weight level to the finer reso-
lution blocks and punishes the coarse resolution blocks by assigning less weight.
As a basic method this is okay, but consider a finer resolution block containing
only background or clutter, then assigning it more weight is only misleading cal-
culation. So in the future, there is room for redesigning this weight mechanism
to only assigning more weight to the corresponding blocks irrespective of scale
or spatial resolution.
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Abstract. In this paper we describe a variational approach to com-
puting dense optic flow in the case of non-rigid motion. We optimise a
global energy to compute the optic flow between each image in a se-
quence and a reference frame simultaneously. Our approach is based on
subspace constraints which allow to express the optic flow at each pixel
in a compact way as a linear combination of a 2D motion basis that can
be pre-estimated from a set of reliable 2D tracks. We reformulate the
multi-frame optic flow problem as the estimation of the coefficients that
multiplied with the known basis will give the displacement vectors for
each pixel. We adopt a variational framework in which we optimise a non-
linearised global brightness constancy to cope with large displacements
and impose homogeneous regularization on the multi-frame motion basis
coefficients. Our approach has two strengths. First, the dramatic reduc-
tion in the number of variables to be computed (typically one order of
magnitude) which has obvious computational advantages and second,
the ability to deal with large displacements due to strong deformations.
We conduct experiments on various sequences of non-rigid objects which
show that our approach provides results comparable to state of the art
variational multi-frame optic flow methods.

1 Introduction

Dense registration of deforming surfaces from a monocular image sequence con-
tinues to be one of the unsolved fundamental problems in computer vision,
despite the attention it has received from the community for decades. Its ap-
plications are numerous from video augmentation to non-rigid structure from
motion or medical imaging.

For instance, non-rigid structure from motion [1,2,3] and scene-flow techniques
for deformable surfaces [4] rely on the efficient estimation of image correspon-
dences. However, most state of the art algorithms only use sparse features ob-
tained with local feature matching techniques such as Lucas and Kanade’s popular
tracker [5]. While this algorithm provides good matches in areas with rich texture,
it fails to provide reliable solutions in texture-less areas with vanishing gradients
due to the well known aperture problem. Therefore, most current non-rigid struc-
ture from motion algorithms are limited to sparse 3D reconstructions.

Irani’s was the first work to exploit rank constraints in the case of rigid objects
to obtain optic flow in areas with one dimensional or no texture [6]. She proved

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 460–473, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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that the optic flow vectors lie on a lower dimensional subspace and therefore
the flow at each point can be expressed as a linear combination of a low-rank
motion basis. This constraint was then used for estimating dense correspon-
dences, by requiring that all corresponding points across all video frames reside
in the appropriate low-dimensional linear subspace. However, although this algo-
rithm indeed allows to solve the aperture problem, it performs poorly in areas of
uniform intensity. Moreover, this approach cannot cope with large displacements
since they rely on the linearised brightness constancy assumption which assumes
small displacements. Besides, since they do not impose smoothness constraints,
the resulting optic flow is not regular.

The rank constraint was later extended to the non-rigid case by Torresani
et al. [7] and Brand [8]. These methods also minimise the linearised brightness
constancy and therefore they suffer when there are image displacements larger
than a few pixels or local appearance changes due to large deformations. Besides,
although in theory these non-rigid approaches are dense, in practice they have
only been used to extend the tracking to features which display the aperture
problem (such as edges or degenerate features) instead of computing optic flow
values for every pixel in the image.

In contrast, variational methods allow to formulate the optic flow problem in
its continuous form. Pioneered by Horn and Schunck [9], the optic flow prob-
lem is formulated as the optimization of an energy functional with a regulariser
that allows to fill in textural information into non-textured regions from their
neighbourhoods, making dense flow field estimation possible. Moreover, recent
developments in variational optical flow [10,11] have proposed numerical strate-
gies to solve the non-linearised brightness constancy constraint in order to cope
with large displacements.

Although geometric constraints have been incorporated before in the com-
putation of optic flow, this has been in the case of rigid scenes. For instance,
fundamental matrix priors have been proposed within vatriational approaches
[12, 13, 14] to improve the accuracy of optic flow. To the best of our knowledge
this is the first approach to apply subspace constraints to the case of non-rigid
motion in a variational framework.

In this paper we propose to marry the ideas of using subspace constraints to
constrain the optic flow and solving the non-linearised brightness constancy con-
straint within a variational approach. This allows us on the one hand to reduce
the dimensionality of the multi-frame optic flow problem drastically and on the
other to be able to cope with large displacements while imposing smoothness on
the optic flow taking advantage of the variational formulation. We focus on the
more challenging problem of non-rigid motion and adopt a multi-frame optical
flow approach by optimising a global energy.

2 Low-Rank Non-rigid Subspace Constraints

Our approach is based on the assumption that the motion of a non-rigid object can
be represented as a linear combination of K basis shapes which encode the mean
shape and its main modes of deformation. This low-rank constraint, first proposed
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by Bregler et al. [15], has allowed the simultaneous estimation of 3D non-rigid
shape and motion. More importantly for the scope of this paper, it also induces
a subspace rank constraint on the 2D motion of image points. In the next two
sections we describe the linear basis shape model that underpins our formulation
and the linear subspace constraint satisfied by the multi-frame correspondences.

2.1 Linear Basis Shape Model

The 3D reconstruction of a rigid body from a monocular sequence under the
affine projection assumption was pioneered by Tomasi and Kanade in [16] using
a factorization approach. This assumption was then relaxed to extend struc-
ture from motion algorithms to the case of deformable objects. Most non-rigid
structure from motion algorithms are based on the low rank basis shape model
defined by Bregler et al. [15] in which the deformable 3D shape is represented
as a linear combination of a set of basis shapes with time varying coefficients.

In the case of deformable objects the observed 3D points change as a function
of time. In this paper we use the low-rank shape model defined by Bregler et
al. [15] in which the P observed 3D points deform as a linear combination of
a fixed set of K rigid shape bases according to time varying coefficients. In

this way, Sf =
K∑

k=1
lfkBk where the matrix Sf = [Sf1, · · ·SfP ] is the 3D shape

of the object at frame f , the 3 × P matrices Bk are the shape bases and lfk

are the coefficient weights. If we assume an orthographic projection model, the
coordinates (xfj , yfj) of the 2D image points j observed at frame f are then
related to the coordinates of the 3D points according to the following equation:

Ŵf =
[

xf1 xf2 · · · xfP

yf1 yf2 · · · yfP

]
= Rf

(
K∑

k=1

lfkBk

)
+ Tf (1)

where Rf is a 2 × 3 truncated rotation matrix and the 2 × p matrix Tf aligns
the image coordinates to the image centroid. When the image coordinates are
registered to the centroid of the object and we consider all the frames in the
sequence, we may write the measurement matrix as:

Ŵf =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1P

y11 y12 · · · y1P

...
...

...
...

xF1 xF2 · · · xFP

yF1 yF2 · · · yFP

⎤
⎥⎥⎥⎥⎥⎦

2F×P

=

⎡
⎢⎣

l11R1 . . . l1KR1
...

. . .
...

lF1RF . . . lFKRF

⎤
⎥⎦
⎡
⎢⎣
B1
...
BK

⎤
⎥⎦ = M2F×3KB3K×P

(2)
Since M is a 2F ×3K matrix and B is a 3K×P matrix, in the case of deformable
structure the rank of Ŵf is constrained to be at most 3K. This rank constraint
forms the basis of the factorization method for the estimation of 3D deformable
structure and motion [15]. Interestingly, the motion and shape matrices can
exchange their roles as basis and coefficients and we can either interpret the 2D
tracks as the projection of a linear combination of 3D basis shapes(Bk) or as the
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linear combination of a 2D motion basis encoded in matrix M. This concept of
2D trajectory basis was introduced by Torresani et al. [17] as an extension to
the non-rigid case of the subspace constraints proposed Irani [6].

2.2 2D Low-Rank Trajectory Basis

Let us denote the 2D motion of point j with respect to its position in the reference
image x0j = (x0j , y0j) by the vector

wj = [u1j u2j · · ·uFj|v1j v2j · · · vFj ]T (3)

where uij = xij − x0j and vij = yij − y0j. We now consider P pixels or image
features observed in the image and stack their corresponding multi-frame 2D
motion vectors horizontally to form a 2F × P measurement matrix W

W = [w1 w2 · · ·wP ] (4)

It is easy to observe that W is also rank constrained, therefore the multi-frame
motion vector wj of any point j can be expressed as linear combination of R
basis motion vectors Qr

wj =
R∑

r=1

Lr
jQr (5)

where Qr = [Qu
1r Qu

2r · · ·Qu
Fr|Qv

1r Qv
2r · · ·Qv

Fr]
T and Lr

j with r = 1 · · ·R are the
coefficients that multiply basis vectors Qr to obtain wj . We may now rewrite
this equation for every point in matrix form as

W2F×P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qu
11 · · · Qu

1r · · · Qu
1R

...
...

...
Qu

F1 · · · Qu
1r · · · Qu

FR

Qv
11 · · · Qu

1r · · · Qv
1R

...
...

...
Qv

F1 · · · Qu
1r · · · Qv

FR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Q2F×R

⎡
⎢⎢⎢⎣

L1
1 · · · L1

j · · · L1
P

L2
1 · · · L2

j · · · L2
P

...
...

...
LR

1 · · · LR
j · · · LR

P

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
LR×P

=
[
Qu

Qv

]
L (6)

It is easy to see that the motion basis matrix Q is independent of the number
of points. Therefore it is possible to pre-compute Q from a small subset of “reli-
able” point tracks by truncating the SV D decomposition of the corresponding
measurement matrix Wrelto rank R.

svd (Wrel) = U︸︷︷︸
Q

ΛVT︸︷︷︸
Lrel

(7)

The “reliable” tracks are those where the texture of the image is strong in both
spatial directions which can be selected using Shi et al. [18]. Now the motion of
any other point, or set of points, in the image can be encoded in terms of the
known basis Q and only the new coefficients L need to be computed. This will
form the basis of our re - parametrisation of the multi-frame optic flow problem.

In the next section we will introduce our variational approach to solve the
multi-frame dense optic flow problem for non-rigid motion using rank constraints.
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3 Dense Optic Flow with Subspace Constraints

As we mentioned above, current non-rigid structure from motion approaches are
limited to sparse 3D reconstructions as they rely on sparse feature tracking tech-
niques such as the method of Lucas and Kanade [5]. This local method copes
with the well known aperture problem in areas rich of texture, but fails to es-
timate motion in (flat) regions with vanishing image gradients. This limitation
was overcome by the pioneered work of Horn and Schunck [9] who formulated
a global energy functional with a regulariser that allows to fill in textural in-
formation into flat regions from their neighbourhoods, making dense flow field
estimation possible. More advanced methods for dense motion recovery have
been proposed in the literature. Amongst them, the combined local and global
(CLG) approach of Bruhn et al. [19] casts the methods of Lucas-Kanade and
Horn-Schunck into a unifying variational formulation; and the large displace-
ment optical flow (LDOF) method of Brox and Malik [20] integrates rich feature
descriptors into a variational optic flow approach.

In this section we aim at combining dense motion estimation with the subspace
rank constraints described in the previous section following variational principles.
As this is the first attempt of that kind -to the best of our knowledge-, we
embed the rank constraints in the original approach of Horn and Schunck as a
proof of concept that subspace constraints can be used to determine multi frame
optic flow. Let I0, If : Ω ∈ R2 → R be the reference and the target images
to be registered (or matched). To compute the optic flow (u(x), v(x))
 for all
x := (x, y)
 ∈ Ω, the Horn-Schunck [9] method minimises an energy functional
of the form E = Edata + α Ereg:

E(u, v) =
∫

Ω

((
If (x + u, y + v) − I0(x, y)

)2 + α
(|∇u|2 + |∇v|2))dx , (8)

where Edata and Ereg penalise deviations from the model assumptions and α > 0
acts as a regularisation parameter. The assumption in Edata is that the grey value
of a “moving” pixel remains constant in both images, while Ereg assumes that
the optic flow varies smoothly in space. It is important mentioning that since we
are dealing with a sequence, we adopt a non-linearised data constraint in order
to cope with large displacements following [10,11]. This choice has the disadvan-
tage that the energy functional may be non-convex, and hence with multiple local
minima. We discuss how to alleviate this problem later in this section.

3.1 Horn-Schunk Approach with Subspace Constraints

We now extend the variational model (8) for tracking a non-rigid object along an
image sequence I1, . . . , IF using subspace constraints. Following the derivations
from Section 2.2, we can express the optic flow between a reference image I0 and
a target image If as a linear combination of 2D motion basis

uf (x) = Qu
fL(x) , (9)

vf (x) = Qv
fL(x) , (10)
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which holds for all frames f = 1, . . . , F . The (1 × R)-vectors Qu
f and Qv

f cor-
respond to the f -th row of the motion matrix basis Qu and Qv respectively.
Assuming that the motion basis can be pre-estimated using a set of reliable
2D tracks, we reformulate the optic flow computation as the estimation of the
(R× 1)-vector of flow coefficients L(x), for all x ∈ Ω. The advantage of this pa-
rameterisation is that the functions L(x) are shared by both components of the
flow along the whole image sequence, which drastically reduces the number of
unknowns. Therefore, using the above parameterisation we proposed the follow-
ing extension of the Horn-Schunck approach for the dense multi-frame estimation
of the functions L:

E(L) =
∫

Ω

F∑
f=1

(
If (x + Qu

fL(x), y + Qv
fL(x)) − I0(x, y)

)2
dx

+α

∫
Ω

F∑
f=1

(|∇(Qu
fL(x))|2 + |∇(Qv

fL(x))|2)dx . (11)

By noticing that the motion basis matrix Q does not vary spatially (cf. (6)) and
that its column-vectors are orthonormal (cf. (7)), the smoothness constraint in
(11) can be simplified to

∑
r,f (Qu

f,r
2 + Qv

f,r
2)|∇Lr(x)|2 =

∑
r |∇Lr(x)|2, where

Lr(x) is the r-th element of L(x). This means that we are actually imposing
homogeneous regularisation on the multi-frame motion basis coefficients. With
that simplification, the proposed energy functional reads

E(L) =
∫

Ω

⎛
⎝ F∑

f=1

(
If (x + Qu

fL(x), y + Qu
fL(x)− I0(x, y)

)2 + α
R∑

r=1

|∇Lr(x)|2
⎞
⎠ dx .

(12)
Before discussing the minimisation strategy for this energy, it is important to
state that once the functions L have been estimated we can densely compute
the optic flow between all target images I1, . . . , IF and the reference image I0
via the equations (9)-(10). Thanks to the non-linearised grey value constancy
assumption we can cope with large displacements, which we will demonstrate in
the experimental section. This is one of the characteristics that distinguishes our
approach from other methods such as [6, 7] that assume small deformations as
they rely on linearised data constraints. Moreover, by exploiting a global varia-
tional formulation we can truly compute dense and smooth flow fields without
worrying about the aperture problem in areas of partial (one-dimensional) or
null textural information.

One could argue that in (12) a pre-computed motion basis needs to be available
before estimating L. This is though a common and very useful practice in numer-
ous applications where the tracked objects undergo particular motions that could
be represented by suitable bases. Such bases are frequently computed from sparse
data points, so the need for estimating the motion coefficients and then the op-
tic flow densely is compelling. Our approach is going in that direction, and in the
future we expect to jointly estimate the motion basis and the motion coefficients
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for specific applications. In terms of dimensionality reduction, the number of un-
knowns in the functional (12) is R×P , where R is the number of 2D motion bases
and P the number of pixels, compared to the 2×F ×P unknowns in a multi-frame
optical flow estimation. This way we reduce the number of variables by a factor
of 2 F/R with F � R. In a typical experiment we would consider sequences with
around F = 50 frames and use an average of R = 5 basis.

3.2 Minimisation

The proposed energy functional E(L) from (12) can be minimised by solving the
Euler-Lagrange equations [21] for all r = 1, . . . , R

0 =
F∑

f=1

(
Ifz(Qu

f,rIfx + Qv
f,rIfy) − α Δ(Lr)

)
, (13)

with reflecting boundary conditions, where (Ifx, Ify)
 := ∇If , Ifz := If − I0
and Δ := ∂xx + ∂yy is the Laplacian operator.

As we mentioned above the energy (12) may be non convex due to the non-
linearised data constraint. For the same reason, we obtain a highly non linear
system of equations (13). Following [11] we solve the system of equations by
the following multiresolution strategy with warping to avoid local minima and
handle large displacements, discretising semi-implicitly the data term and fully
implicit the regularisation term

0 =
F∑

f=1

(
Ik+1
fz (Qu

f,rI
k
fx + Qv

f,rI
k
fy) − α Δ(Lrk+1

)
)

, (14)

with k the warping index for a pyramid level k iteration. We remove the nonlin-
earities cause by Ifz via the Taylor expansion

Ik+1
fz = Ik

fz +
R∑

η=1

{
Ik
fxQu

f,η + Ik
fyQv

f,η

}
dLηk

, (15)

where dL = (dL1, . . . , dLR)
. We discretise the partial derivatives with standard
finite differences and solve the resulting linear system of equations with the SOR
solver [22].

4 Experimental Results

We have evaluated our approach on three different video sequences which display
different types of deformations. In all three sequences we used the technique of
Lucas and Kanade [5] to track a set of highly textured reliable points. The motion
basis was in each case estimated by computing the singular value decomposition
of the measurement matrix containing the reliable tracks and truncating to the
chosen rank. Since these R basis tracks must encode the motion of any other pixel
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in the image, we are implicitly assuming that the reliable tracks cover the object
and they represent a good sample of the deformations present in the sequence.
Despite having significant texture, our sequences are challenging mainly because
of the presence of complex deformations and large displacements.

It is important to stress that we were not able to test our algorithm on the Mid-
dlebury database simply because there were no deformable motion sequences.
Therefore we have not been able to test our algorithm on ground truth data.
However, we provide various qualitative tests and a comparison with a state of
the art variational method for large displacements [20].

Paper sequence: The first sequence shows a sheet of paper being bent back-
wards and has been used in non-rigid structure from motion methods [23] for
3D reconstruction. We used a 40 frame long subsequence and tracked corner
features to estimate the basis. In this sequence we chose the rank to be 2 and
considered only the first 2 basis tracks. Since the sequence had 40 frames, the
number of variables to be estimated per pixel in the variational framework was
reduced from 80 to just 2.

We show results in Figure(1). The reference frame and two other frames of the
sequence are shown on the top row. These show the extent of the deformation
and the large displacements (a maximum of 58 pixels). The left column shows the
reference image on top and the results of reverse warping (W−1(If )) the other
two frames to the reference frame. These results show that the algorithm can cope
with the challenging displacements present in this sequence. The two rightmost
plots in the middle row of Figure(1) show Middlebury colour coded optic flow
results for every pixel. The colour indicates direction and the intensity indicates
magnitude of the flow. These results prove the smoothness of our results. Finally,
we have sampled the dense optic flow values and show the arrow values on those
sampled locations. These plots also confirm the smoothness and the accuracy of
the resulting optical flow.

Face Paint sequence: We use a face paint sequence provided by an artist1

which has strong and fast deformations. Besides there is significant appearance
change in most of the local features, further challenging our system. This is
obvious by looking at the top row of Figure(2) which shows three images of the
sequence (including the first/reference and last). In this case we chose a 40 frame
long subsequence and needed as few as 4 basis tracks to encode the non-rigid
motion. Figure(2) shows the results. Despite being a challenging sequence with
self-occlusions (for instance in the eye area), large displacements of up to 27
pixels and large appearance changes, the reverse warped images appear to be
accurate and the colour coded optic flow results show smoothness in the flow.

T-shirt sequence: This particular sequence has no motion blur, self or external
occlusions but still has highly non-rigid and large deformations. We only found
90 reliable features with Lucas and Kanade’s tracking algorithm on the 60 frames
of the sequence where a T-shirt is coming back to its rest state from a deformed
one. The maximum displacement in this sequence was 50 pixels. In this case, we
1 This sequence is courtesy of James Kuhn.
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I0 I10 I40

W−1(I10) Dense flow I10 Dense flow I40

W−1(I40) Flow arrows I10 Flow arrows I40

Fig. 1. Results for the Paper sequence. Top row shows the reference image and two
more images in the sequence (rightmost is the last frame). The left-most column shows
the reference image on top and the result of reverse warping images I10 and I40 to the
reference frame. Colour coded images represent the dense optical flow between each
image and the reference frame. Arrows represent sampled flow vectors between each
image and the reference frame.

only needed 3 motion basis to run our variational multi-frame optic flow. Our
results are shown in Figure(3). The bottom left image shows the result of reverse
warping the last image of the sequence back to the first/reference frame. There
are some obvious errors in the corner of bottom corner of the t-shirt. However,
this was expected since there was is no texture there and therefore no features
were found in that area to encode in the basis. The rest of the results show
smooth flow with good accuracy, except in the corners where no features were
tracked. The results follow the same layout as Figure(1).

4.1 Comparison with State of Art Variational Optic Flow Method

Comparing our approach with other multi-frame optic flow algorithms is not
straightforward. Our problem definition is different from other approaches since
we compute the optic flow between a reference frame and every other frame
in the sequence with subpixel accuracy. Note that the flow between the first
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I0 I10 I40

W−1(I10) Dense flow I10 Dense flow I40

W−1(I40) Flow arrows I10 Flow arrows I40

Fig. 2. Results for the frame 10 and frame 40 of Face-paint sequence with same layout
as figure 1

and last image will be very large. Other approaches tend to compute frame-to-
frame flow with subpixel accuracy but in their case it is not possible to register
the last frame to the reference without the use of interpolation. Therefore it is
difficult to carry out a fair comparison. It is also worth mentioning that, unlike
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I0 I30 I60

W−1(I30) Dense flow I30 Dense flow I60

W−1(I60) Flow arrows I30 Flow arrows I60

Fig. 3. Results for the frame 10 and frame 40 of T-shirt sequence with same layout as
figure 1

other authors [24], despite using image sequences in our experiments we do not
assume temporal smoothness in optic flow. We only enforce spatial smoothness
of the flow, which leads to smoothing of the motion basis coefficients.

We have chosen to compare the performance of our algorithm with Brox and
Malik’s large displacement optical flow (LDOF) [20] which integrates rich feature
descriptors into a variational optic flow approach to compute dense flow. This
approach can be considered the state of the art in the case of very large displace-
ments, since it outperforms previous methods. Although both the data term and
the regulariser are more advanced than the ones we have used in our variational
formulation we thought it fair to compare our approach with the best perform-
ing method for large displacements, particularly since it integrates the use of
features.

We compute the flow between the reference frame and frame 10 of the face
sequence using LDOF [20] and compare the results with our multi-frame ap-
proach. Figure (4) shows the detailed comparison. Note that we only used 60
Lucas-Kanade features in this case. The left-most images show the target image
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I10 I0 W−1 LDOF Our W−1 Flow LDOF Our Flow

Fig. 4. Left-most two: Target and reference images. Middle two: results of reverse
warping target image into reference frame with LDOF (left) and our approach (right).
Right two: colour coded optical flow.

I10 and the reference frame I0. The two middle images show the results of reverse
warping the target frame I10 back to the reference frame with the LDOF algo-
rithm and our own algorithm. Notice that the LDOF algorithm produces some
artifacts in the warped images around the left collar of the shirt, the corner of the
lip and the eye. These images show very similar performance for both algorithms
which is encouraging since the LDOF approach uses much more sophisticated
data and regularization terms in their variational approach.

5 Conclusions and Future Work

We have presented a variational approach to computing dense multi-frame optic
flow for non-rigid motion based on a re-parametrisation of the optic flow in terms
of a linear combination of a 2D motion basis. The proposed energy formulation
reduce number of variables to be computed one order of magnitude to increase
computational speed and accuracy of optimisation by applying most generic rank
constraint. It is conclusively proven with experiments that we can reduce the
problem size and work on global optimization of brightness constancy without
actual loss of useful information.

The comparison of our new approach with a state of art optic flow method
supports the feasibility of applying statistical rank constraints to the non-rigid
registration problem and encourages us to investigate several possible extensions.
Future work will include the use of a robust data term which could deal with
occlusion and appearance changes by replacing the squared data fidelity term
with a more robust one such as the L1 norm. More sophisticated regularisation
terms could also be considered such as an anisotropic regulariser.
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Abstract. We present a method for vision-based recovery of three-
dimensional structures through simultaneous model reconstruction and
camera position tracking from monocular images. Our approach does
not rely on robust feature detecting schemes (such as SIFT, KLT etc.),
but works directly on intensity values in the captured images. Thus, it
is well-suited for reconstruction of surfaces that exhibit only minimal
texture due to partial homogeneity of the surfaces. Our method is based
on a well-known optimization technique, which has been implemented in
an efficient yet flexible way, in order to achieve high performance while
ensuring extensibility.

1 Introduction

Dense recovery of 3D structures from video data is a problem that has been sub-
ject to extensive research work, and a number of methods have been developed
for dealing with this problem. Some approaches are, e.g., the methods developed
by Newcombe et al. [1], Pan et al. [2] and Palaanen et al. [3]. All of those methods
rely on presence of salient image features, such as Good Features to Track [4],
SIFT [5] features, FAST edges [6] and so on. In some settings, however, the
objects do not exhibit much structure, which makes it very hard to find robust,
dense feature sets using traditional methods. In such situations, it pays off to
use intensity-based methods, which is what we have investigated.

Our method belongs to the family of intensity-based bundle adjustment tech-
niques. An in-depth survey of the original bundle adjustment method is given in
the book by Hartley and Zisserman [7]. The paper by Triggs et al. [8] provides
a good overview of more recent developments in bundle adjustment and also
briefly explains intensity-based approaches. There is also a more recent paper
evaluating the status of real-time bundle adjustment methods [9] using sliding
window approaches. The main contribution of our work in this context is the
combination of sliding-window and intensity-based bundle adjustment.

Basically, the traditional bundle adjustment algorithm facilitates computation
of the 3D position of some salient points in a scene from a number of images
taken from different viewpoints. The basic idea is as follows: Coordinates of
3D points are associated with features that are recovered from a set of images
using feature detection and matching schemes. This approach will obviously work

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 474–485, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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(a) Face reconstruction result. (b) One of the used camera images.

Fig. 1. Example reconstruction result

only if a feature detection scheme is applicable at all. In intensity-based bundle
adjustment, we do not assume that robust feature extraction is feasible, and thus
we do not work with 2D feature positions, but directly with image intensities.

A number of offline methods for model-based bundle adjustment have been de-
scribed with applications to face modeling [10,11]. In contrast to these methods,
our method can be used on-line, since the time needed for computing a complete
bundle update is comparatively small. For the example image in Figure 1a, the
time required to process one frame of the sequence was under 1 second.

In Section 2, we give a detailed explanation of the mathematics involved.
This will lead to the formulation of an optimization problem, which we are
implementing as described in Section 3. Results have been obtained from real
world data sets as well as synthetic data sets, and are presented in Section 4.

2 Mathematical Formulation

There are many possibilities for representing a model of a scene, with the most
straightforward one being a point cloud. This is a very general representation
that is actually used in the traditional bundle adjustment algorithm, where it
works well under the assumption that those points can be reliably identified. As
we have mentioned above, we do not assume that this is possible, since we are
planning to work exclusively on intensity measurements. Locating a single point
in an image simply because of the point’s intensity is obviously infeasible, even if
several frames are considered simultaneously. This observation disqualifies point
clouds as scene representation for intensity based model-recovery algorithms.

2.1 Surface Model

Usually, some additional assumptions need to be made, usually in the form of a
specific surface model that ultimately imposes a smoothness constraint on the
observed points. Such a model would be a function of type S : Rk × R2 → R3

that maps a set of k surface parameters together with surface coordinates u, v to
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(a) Schematic 2D view of a depth
map

(b) Depth map for reconstructed face
from Fig. 1a

Fig. 2. The depth map concept

three-dimensional spatial coordinates. A model of this type is especially suitable
for representation of scenarios that can be described with a small number of
parameters k. This loss of generality is a compromise that seems to be necessary
in the difficult situation of 3D reconstruction in scenes with low structure.

In this work, we are using surface models that describe the three-dimensional
surface indirectly by specifying a per-pixel depth map D : Rk × R2 → R for a
given reference camera image. As illustrated in Figure 2a, the value D(d, u, v)
is supposed to describe the depth for the pixel with coordinates (u, v). Here, d
is the k-dimensional vector of surface parameters for the depth map.

To put this in a formal mathematical framework, we first need to define some
basic characteristics of our camera. As is common, we assume a pinhole model
with projection function

π(p) =
(

p1fx

p3
+ cx,

p2fy

p3
+ cy

)T

(1)

where fx, fy are focal lengths in terms of pixel dimensions, cx, cy describe the
location of the camera center, and (p1, p2, p3)T is a vector of Cartesian point
coordinates. In case of significant radial distortions, the images will be rectified
before usage.

Each pixel in the image now corresponds to a ray originating from the camera
position that intersects the object surface at a certain depth. Assuming that the
camera is located at the origin of the coordinate system, the ray corresponding
to pixel coordinates (u, v) can then be parameterized by depth λ, yielding a
function r(u, v, λ):

r(u, v, λ) = λ ·
(

u − cx

fx
,
v − cy

fy
, 1
)T

. (2)

We can see now that the composite function S(d, u, v) := r(u, v, D(d, u, v))
describes a three-dimensional surface. Compared to our general definition of
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Fig. 3. Left, middle: Surface under two different camera positions. Right: Warping of
surface coordinates from left to right image.

a 3D surface as stated earlier, this constitutes a slight restriction. Still, this
representation is very well suited to the problem we want to address.

2.2 Optimization Formulation

Observing a static, three-dimensional smooth surface S under two different cam-
era positions will essentially yield two images that are related to each other via
a “warping” function. If, for two snapshots of a scene, we exactly know the
corresponding extrinsic camera parameters and we have a perfect mathemati-
cal description of the surface that we are observing, we can, for each surface
pixel in one image, determine the position of that pixel in the other image. In
other words, we can formulate a coordinate warping function of type R2 → R2

that transforms pixel coordinates from one image to another. Figure 3 shows an
example for the coordinate warping function.

Consequently, we would then expect corresponding image intensities to be
equal, thus the coordinate warping also defines an image warping, assuming
that all pixels are visible. This is the case if there are no occlusions, and the
surface does not move out of the camera image. To assure the latter, the depth
map we are talking about is not applied to the whole reference frame, but only
to a user-chosen rectangular region of interest within the image. As an example,
the region of interest is marked with a green rectangle in Figure 1b.

The idea of our approach is now basically the same as in traditional bundle
adjustment: Using a nonlinear optimization technique, we are able to compute
parameters for the warping function that best explain the observations. Thus,
we are able to determine a good approximation of the warping function itself.

To formulate the optimization problem, we need to define a cost function. Be-
fore we proceed with the description of that function, we will give a short sum-
mary of definitions and notations used. In the following, images are numbered
consecutively, and the numbering starts with n = 0. Letters set in italic represent
scalar-valued values, while bold-faced letters denote vector-valued quantities.

– d denotes the k-dimensional vector of parameters describing the depth map.
– D(d, u, v) denotes the depth map function itself.
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– cn = (tn,qn) denotes the extrinsic camera parameters corresponding to
image n, consisting of translation vector tn ∈ R3 and rotation quaternion
qn ∈ R4.

– T (tn,qn,p) : R3 × R4 × R3 → R3 is a transformation mapping 3D spatial
coordinates p to 3D coordinates in the camera frame described by cn.

– π(p) is the projection of a 3D point p to 2D image coordinates.
– In(x, y) is the image function of image n. I0 is the reference image function.

Using this notation, we can define the image coordinate warping function for a
certain frame n as follows:

w(d, cn, u, v) := π(T (cn, r(u, v, D(d, u, v)))). (3)

If we knew the perfect model parameters d and exact camera parameters cn for
image n, we would expect the relationship In(w(d, cn, u, v)) = I0(u, v) to hold
for all model surface coordinates (u, v).

This leads to the assumption that the correct camera position and the cor-
rect model parameters together minimize some difference measure c (e.g., least
squares) on intensity values. The optimization process that determines camera
and model parameters is computationally quite expensive. Thus, we will not
include all possible pixel coordinates in the optimization process, but only the
coordinates of m chosen reference points (u1, v1), . . . , (um, vm). The correspond-
ing objective function o(d, cn) can then be defined as

o(d, cn) =
m∑

i=1

c(In(w(d, cn, ui, vi))) − I0(ui, vi)) (4)

Our problem of finding a warping function from the template image I0 to the
current image In is now formulated as the problem of minimizing the error
function with respect to camera and depth map parameters.

We can easily generalize above objective function to a set of views V =
{V1,V2, . . .} ⊆ {1, 2, . . . , n} (when n images have been acquired) by defining
a new objective function

o′(d, cV1 , cV2 , . . .) =
∑
j∈V

o(d, cj) (5)

This variant is used in our implementation, where we optimize simultaneously
over the so-called sliding window of |V | images. In our application, the size |V |
of the sliding window is fixed.

Note that above objective functions can easily be modified to formulate a
traditional coordinate-based bundle adjustment problem. All we have to do is
remove the functions Ij and I0 from the formula. This is important to know
since coordinate-based bundle adjustment will be used to initialize the system.

There are two minor issues that we should also address: Because quaternions
are used to represent the rotation of the camera frame, we need to constrain
the corresponding parameters qn to represent a unit quaternion, and thus, a
unit vector. This can trivially be formulated as a constraint h1(qn) = 0 with
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h1(qn) = |qn|2 − 1. Furthermore, it is well-known that reconstruction from
monocular images can only be done up to scale. However, it is 0 then at least to
enforce a constant scale during the reconstruction process. This can be achieved
with the formulation of a constraint h2(d) = 0 with h2(d) = D(d, u1, v1)− l for
some constant l.

Since through optimizing above function, we implicitly try to track point
positions by intensity values, our approach could have difficulties tracking points
in areas with completely homogeneous intensity. Thus, to improve the tracking
results, the reference points are chosen from the ROI in such a way that they lie
at pixel positions where the image derivative is non-zero.

Furthermore, reference points should be distributed in the region of interest
such that the parameters determining the depth map are well constrained. This
depends on the specific model used. For a B-Spline depth map model, one will,
e.g., need at least a number of reference points that is equal to the number of
control points used.

3 Optimization

It is clear that, to actually recover the model parameters from the scene, we need
some method to minimize the cost function described above. Since we are dealing
with a constrained problem, an adequate method for optimization is Sequential
Quadratic Programming (abbreviated as SQP) [12].

The basic idea is as follows: Let f : Rk → R be a scalar function to be
minimized, and let h : Rk → Rl be a function that describes a constraint of
the form h(x) = 0 on solutions. It is well-known that for such problems, the so-
called Karush-Kuhn-Tucker (KKT) conditions must hold for any value x∗ that
is a minimum. These conditions can be formulated in equation form as:(∇L(x, λ)

h(x)

)
=
(

0
0

)
with L(x, λ) = f(x) + λT h(x). (6)

The term λ ∈ Rl is the Lagrange multiplier associated with the minimum. This
is, in general, a nonlinear system of equations. The Lagrange-Newton Method
can be applied to these equations, and we can compute an update Δx to x and
a new Lagrange multiplier λ+ by solving the equation system(∇2

xxL(x, λ) ∇xh(x)
∇xh(x)T 0

)(
Δx
λ+

)
= −

(∇xf(x)
h(x)

)
. (7)

When implementing this algorithm, we obviously need to compute the Hessian
∇2

xxL as well as the transposed Jacobian ∇xh of h. Since f is, in our case, a
quite complex composition of multi-dimensional functions, it is not feasible to
compute the exact Hessian. Instead, it is common practice to use the Gauss-
Newton approximation of the Hessian, as detailed below.

Note that the Hessian of λT h(x) is, on the other hand, easy to determine:
Since our constraints are all linear or quadratic, all second-order derivatives are
reasonably easy to compute, so the exact Hessian can be established.
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3.1 Implementation Details

In our case, the objective function f is the composition c◦g of a scalar cost func-
tion c with some multi-dimensional comparison function g. The typical choice for
a cost function would be the least-squares cost g(x) = xT x, but it is well-known
that this cost function is very susceptible to outliers. Thus, we are instead using
the pseudo-Huber cost function [7, p. 619], which is known to be very robust.
Independent of the actual cost function used, the Hessian of the total cost is
approximated as:

∇2
xx(c ◦ g)(x) ≈ (∇xg)(x) · (∇2

xxc)(f(x)) · (∇xg)T (x)

We see that in order to estimate the Hessian, we need to compute the Jacobian
of the comparison function g. That Jacobian is sparse, which means that the
Hessian will also be sparse. As in the traditional bundle adjustment algorithm,
exploiting the sparsity structure is extremely important.

The sparse Jacobians of f and h are computed using our own variant of Auto-
matic Differentiation (AD) [13]. Our method can be described as a hybrid between
traditional AD and symbolic differentiation. Traditional AD basically treats all
functions as function compositions. AD is able to compute derivatives of elemen-
tary functions, such as basic arithmetic, cos, sin, exp and so on, directly, while the
derivatives of composite functions are computed according to the chain rule.

The accuracy of AD is very good, especially when compared to finite differ-
ence approximation. Derivatives computed by AD are usually accurate up to
machine precision. Additionally, the performance of AD is known to be good as
well, since the time required to evaluate derivatives of a function is proportional
to the time needed to evaluate the original function. However, when evaluating
sparse Jacobians, plain AD is usually not optimal, and finding the most effi-
cient way to compute sparse Jacobians within the framework of AD is actually
an NP-complete problem [14]. That problem is solved in state-of-the-art AD
implementations by means of heuristics.

Our approach for computing sparse Jacobians also relies on the chain rule,
but it is applied at a different level: For a composition of vector-valued functions
f1 ◦ f2 ◦ . . . ◦ fn, the Jacobian can be computed as a sparse chained matrix
product Jf1 · Jf2 · . . . · Jfn . We choose to implement computation routines for
the Jacobians Jfi directly instead of starting with differentiating the most basic
functions. The overall Jacobian is then evaluated as sparse matrix product with
optimized bracketing. It is well-known that the bracketing of a matrix chain
product is essential to evaluation performance [15, p. 331]. This observation also
applies to sparse chain matrices, and is also the basis of a highly-efficient heuristic
for traditional AD [16]. In our case, the sparsity structure of the Jacobians never
changes, so the optimal bracketing that has been determined once for a certain
objective function remains the same.

Implementing Jacobian evaluation code for vector-valued functions directly
obviously involves additional work and is error prone, but our method also has
two advantages over traditional AD:
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Fig. 4. Samples from artificial image sequence

– Speed: When used properly, our method can be substantially faster than
traditional AD. For the coordinate transformation function T , as described
in Section 2, we have compared the performance of our own implementation
and that of an ADOL-C [17] based variant, and found that our method is
about three times as fast.

– Flexibility: Some functions resist treatment by AD, especially in cases where
the function to be differentiated is defined in a piecewise fashion. This is the
case for our image functions, which are made continuous and differentiable
using bicubic interpolation. However, it is reasonably simple for a human to
implement efficient evaluation algorithms for the interpolated image function
as well as its derivatives.

After computation of the Jacobian is finished, the approximate Hessian can be
evaluated and the QP system is solved repeatedly. For increased robustness of
this process, we add a damping term λI to the Hessian of L. This method is well-
known in the context of Levenberg-Marquardt optimization [18, 19] and can be
applied to the SQP method as well. The equation system itself is then solved by
employing a sparse Cholesky transformation on the whole system. The efficient
Eigen library for Linear Algebra1 is used to handle this. Finally, when a solution
to the system has been found, a simple step size search according to the Armijo
rule is performed.

3.2 Bundle Adjustment

Now that we have established the tools to solve the original optimization prob-
lems stated in Section 2, we can describe how the methods are actually applied
to achieve model reconstruction.

First of all, we need to initialize the system. We assume that the user has
chosen the template image and an ROI for the surface to be reconstructed. For
a given window size |V |, we acquire images {1, . . . , |V |} and compute the optical
flow [20] on these, which yields initial correspondences between the template im-
age and the images to be used for initialization. One run of full coordinate-based
bundle adjustment on those correspondences yields a starting point for further

1 http://eigen.tuxfamily.org/

http://eigen.tuxfamily.org/
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intensity-based optimization, which is carried out after the initialization through
optical flow. While the coordinate-based optimization serves to provide a rough
estimate of the surface and camera positions, the intensity based optimization
is used to refine the initially found parameters.

After the initialization, the algorithm alternates between coordinate based
optimization steps (optimizing towards optical flow results) and intensity based
optimization. No full bundle adjustment on optical flow information is performed
any more. Instead, the coordinate based optimization is used only to determine
the camera position. With camera parameters initialized, a full intensity-based
bundle optimization is carried out to refine the parameters.

To achieve usable results and assure that the algorithm is stable, one must also
be careful which images to select for the optimization window V . Simply choosing
consecutive images might be a bad idea, because if the camera stops moving for
some time, a number of images from the sameposition will be taken. If those images
are placed inside the window, the optimization process will become very unstable,
since depth reconstruction is impossible without a certain minimal baseline.

In our implementation, new images in the window are only accepted if their dif-
ference of baseline to the previous image in the window is big enough. Whenever
a new image is accepted, the oldest image in the window is discarded. This is ob-
viously a rather crude algorithm, but it helps to avoid the most obvious problems.
We are planning to implement more sophisticated methods in the future.

4 Results

We have tested our algorithm on a set of artificial rendered image sequences, as
well as on sequences of real scenes. The artificial data set was useful for gener-
ating images with known ground truth, while the sequences of real images have
been used to show that the approach also works in the “real world.” As depth
map model, we have used B-Spline surfaces of varying order and complexity.

Our first tests were on artificial images generated by a renderer. Here, we
show results for one of the used sequences. Figure 4 shows an example image
from the sequence, showing a surface with a texture that exhibits only intensity
gradients, and almost no structure. Because we wanted to get a rough idea of
how well traditional approaches would work on that sequence, we ran a SIFT
feature detector on some of the images. The feature detection process resulted in
about 20 features, depending on the actual image. Even when assuming that all
features can be reliably identified through the whole sequence, and that no false
feature matchings occur, this is by far not enough to fully describe the complexity
of the actual surface. The surface is a quadratic spline surface determined by 25
control points (5 in each direction).

To compare the reconstructed surface to the ground truth, we have determined
the normalized cross-correlation (NCC) between the ground truth surface of the
sequence and the reconstruction result. The result of this comparison was that
the reconstruction is extremely accurate, yielding surface models that achieved
a NCC ratio of over 0.96, where 1 is the best possible value.
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Fig. 5. Samples from real-world image sequence

Fig. 6. Template image, depth map, and 3D rendering

The artificial sequences have been used because it is really difficult in a real-
world scenario to determine the ground truth. Still, it is important to show that
our approach also works on actual data generated from a camera. Hence, we
have tested our method an scene that was showing a piece of white cloth draped
over a cup. You can see some images of the recorded sequence in Figure 5.
Figure 6 shows the template image, the associated depth map, and the resulting
3D model.

As can be seen, the reconstruction quality is still good, despite the lack of
texture in the scene. It is clearly possible to recognize the shape of the cup
underneath the cloth.

As for running times: Our algorithm has been tried on a system with an Intel
Core i7-820QM 1.73 GHz quad core CPU, using only one of the CPU cores.
Running time generally depends on the resolution of the surface model, but
generally, one frame was processed in under one second. The major time spent
during reconstruction was due to intensity-based optimization. The convergence
of the intensity-based optimization was rather slow, which is probably due to
the non-convex nature of the cost function in case of large displacements of the
tracked pixels to the optimal position. Still, the performance is promising, and
we expect it to be possible to further improve performance by pursuing more
elaborate optimization schemes.

5 Conclusion

The basis for further research has been established with our monocular model
recovery and tracking algorithm. There are many possible extensions and im-
provements to this technique.
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First of all, while the reference-point based reconstruction works well, it would
probably constitute a major improvement if we were able to capture, in addition
to point intensity values, a comparison of texture gradients in the area surround-
ing the reference points. We would expect this to further improve the stability
and convergence speed of the optimization method.

While the algorithm is already quite fast, there is still a lot of potential for
speed improvement. There exist more specialized algorithms that could be used
for solving the QP equations [21]. GPU algorithms could be used for performing
image subsampling, which constitutes the major part of the current computation
time consumption. Finally, it should also be possible to speed up the involved
geometry computations using the GPU.

Furthermore, we did not address the issue of changing illumination conditions.
We would like to be able to deal with changes in brightness, but also with specu-
larities, which would, in the current approach, both cause severe problems. How-
ever, some techniques for dealing with problems of that kind have already been
developed, e.g., normalized cross-correlation matching for brightness-invariant
matching. It should be possible to integrate them into our method.

We would also like to extend the approach such that deformable surfaces can
be reconstructed and tracked. For tackling this problem, we intend to use a setup
of two independently moving cameras. Based on such an idea, we would like to
introduce a method for determining deformation parameters, allowing us also
to predict and simulate deformations. We see applications for such a technique
mainly in medical imaging.
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tre Munich.
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Abstract. Most high dynamic range image (HDRI) algorithms assume
stationary scene for registering multiple images which are taken under
different exposure settings. In practice, however, there can be some global
or local movements between images caused by either camera or object
motions. This situation usually causes ghost artifacts which make the
same object appear multiple times in the resultant HDRI. To solve this
problem, most conventional algorithms conduct ghost detection proce-
dures followed by ghost region filling with the estimated radiance values.
However, usually these methods largely depend on the accuracy of the
ghost detection results, and thus often suffer from color artifacts around
the ghost regions. In this paper, we propose a new robust ghost-free
HDRI generation algorithm that does not require accurate ghost detec-
tion and not suffer from the color artifact problem. To deal with the
ghost problem, our algorithm utilizes the global intensity transfer func-
tions obtained from joint probability density functions (pdfs) between
different exposure images. Then, to estimate reliable radiance values, we
employ a generalized weighted filtering technique using the global in-
tensity transfer functions. Experimental results show that our method
produces the state-of-the-art performance in generating ghost-free HDR
images.

1 Introduction

Typical cameras represent a pixel using only 256 values for each of the red, green,
and blue channel. On the contrary, the range of radiance of a real scene has a far
wider range than 256 values [1]. Hence, a photograph taken by a conventional
camera can not capture the whole dynamic range of scene radiance. So, the
cameras usually compress the scene radiance value using a proper function which
is often called the camera response function (CRF). This process, however, can
cause unpleasant under- or over-exposed regions.

Many approaches have been proposed to recover a high dynamic range im-
age (HDRI) by estimating the CRF using multiple low dynamic range images
(LDRIs) which are taken under different exposure settings for the scene [2–5].
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The pioneering work of Mann and Picard [2] used a gamma function to esti-
mate a CRF. Debevec and Malik [3] estimated a CRF using error function with
smoothness constraint in a least squared-error sense, and then the radiance value
of each pixel is determined by a weighted sum of the radiance values of multiple
exposure images. Mitsunaga and Nayar [4] approximated a CRF using a poly-
nomial with a fixed degree. They only assumed that the ratios of the exposures
between images are roughly known, instead of the exposure time. Grossberg and
Nayar [5] suggested a robust method to recover a CRF using intensity histograms
instead of a pixel value itself without image registration.

In practice, however, while fusing multiple images into a single radiance image,
all these methods severely suffer from artifacts caused by moving camera and/or
objects, because they assume a stationary scene. A camera motion causes global
image transformation such as an affine or perspective transformations between
different exposure images. If one takes photographs using a tripod, this problem
might be reduced. A more critical problem, however, is caused by an object mo-
tion which invokes inevitable ghost artifacts that make the same object appears
multiple times in a generated HDRI. Due to these reasons, practically it is a very
important and critical issue to produce a ghost-free HDRI from multiple images.

In this paper, we propose a new HDRI generation method that is very effective
for handling global and local movements from multiple exposures. Fig. 1 shows
an example of our HDRI generated from multiple LDRIs with object motions.
Compared with the standard method [3], our proposed method produces much
clear and ghost-free HDRI.

(a) (b) (c) (d)

(e) (f)

Fig. 1. (a)-(d) are input LDRIs. (e) Result of the standard HDRI method [3]. (f) Result
of the proposed method.
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2 Previous Works

There are several works for handling ghost artifacts for HDRI generation.
Jacobs et. al. [6] compared two measures to detect ghost regions such as vari-
ance image (VI) [1] and uncertainty image (UI) [6]. They argued that VI was
effective for detecting high contrast movement such as moving people, cars, and
etc., while UI was effective for low contrast movement such as moving leaves
and water rippling [6]. Grosch [7] detected ghost regions using predicted pixel
colors which were estimated from the CRF. They defined an error map that
had invalid pixel set by thresholding the absolute difference value between the
predicted pixel color and the original color. However, These methods have a
common drawback that the ghost detection results tend to be sensitive to the
threshold values of those measures. Also, they can decrease the dynamic range of
ghost regions, since they fill the detected ghost regions with the radiance values
from only a single image.

Some other approaches utilize as many multiple exposures as possible for
ghost regions. Gallo et. al. [8] detected ghost pixels using a linear property of
log radiance values in block-wise comparison. For each pixel, they combined
multiple exposures except for the images that had ghost regions. Then, they
blended the block boundaries to reduce the color difference between neighboring
blocks. Raman et. al. [9] suggested a similar approach. They also detected ghost
regions using block-based comparison between different exposures followed by
thresholding. Then, they performed the Poisson blending between neighboring
blocks. However, these methods still suffer from color artifacts around block
boundaries due to inaccurate CRF estimation [8].

Alternatively, there are other approaches that solve this problem by adjusting
weighting function in the Debevec and Malik’s weighted average framework [3].
Khan et. al. [10] suggested a ghost removal method by adjusting weights when
combining multiple exposures. They assumed that all pixels were belonging to
either foreground (moving part) or background (static part), and those back-
ground pixels were significantly prevailed than the pixels of foreground moving
objects. Their weight function is composed of two terms regarding the probability
of being correctly exposed and the probability of belonging to the background.
Then, they iteratively updated the probability of belonging to the background.
Pedone and Heikkilä [11] suggested a similar approach to [10]. They estimated
bandwidth matrices for computing the accurate probability of belonging to the
background, and propagated the influence of the low probabilities to the sur-
rounding regions using an energy minimization technique. A main drawback of
these methods is that if the object of interest is moving, that object can be
recognized as ghost and disappeared in the resultant HDRI.

On the other hand, Bogoni [12] estimated motion vectors using optical flow
for different exposure images, and then used those information to warp other
exposure images. Kang et. al. [13] also used a gradient-based optical flow method
to find corresponding pixels between neighboring images that had alternating
different exposures for producing HDR video sequences. However, it is not trivial
to find the accurate correspondence between different exposure images.



Ghost-Free High Dynamic Range Imaging 489

Fig. 2. An overview of our approach

Most approaches described above determine whether a pixel in each image
is a ghost or not in deterministic or statistical manners. Then, to compute the
radiance values, they utilize the un-ghost pixels of multiple exposures only in
the same position. In this case, when ghost detection is not so accurate enough,
many artifacts arise in the resultant HDRI. Also, even when the ghost detec-
tion is acceptable, it is still problematic to fill those regions with proper ra-
diance values. Filling those regions using only a single exposure image can re-
duce the dynamic range, and also filling them using only un-ghost pixels can
produce color artifacts around the ghost regions due to the inaccurate CRF
estimation.

3 Proposed Algorithm

Fig. 2 shows an overview of our algorithm. First, we select a reference image
to generate a HDRI among multiple exposure images. Then, we globally align
other images to this reference image to handle camera motions caused by hand-
shakes. Next, we estimate the joint probability density functions (pdfs) between
the reference image and other images to estimate the global intensity transfer
functions. Based on these joint pdfs, we roughly detect ghost regions in other
images w.r.t. the reference image. Then, a refinement procedure is followed based
on a global energy minimization framework using Graph-cuts [14]. The joint pdf
and ghost detection processes are performed recursively for two or three steps.
After that, we compute a CRF by sampling some un-ghost pixels. Based on this
CRF, we refine the radiance values of other images w.r.t. that of the reference
image to reduce the CRF estimation error. Finally, using the refined radiance
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values and the global intensity transfer functions of all exposure images, we
perform a generalized weighted filtering to compute the final radiance values.
After tone-mapping process, we produce a ghost-free HDRI for the reference
image. Detailed explanation is as follows.

3.1 Reference Image Selection and Global Image Alignment

First, we have to select a reference image among multiple exposure images. We
choose the image that has least saturated regions such as under- or over-exposed
regions as the reference image. Then, we globally align other images to this
reference image. In this global alignment, we use SIFT feature-based alignment
method [15], since SIFT descriptor is robust to exposure changes [15] and it
can handle affine or perspective image transformations in some degree. After
finding SIFT features, we compute homographies based on these features using
RANSAC [16], and then warp other images to the reference image. However,
even after this global alignment, there still remain some local misalignments due
to moving objects that usually cause ghost artifacts. Let us describe how to deal
with this problem in detail in the following sections.

3.2 Joint Pdf Estimation

To deal with ghost artifacts, we need a measure to judge the correspondence
between different exposure images. For this measure, we use a global intensity
relationship [17]. To estimate the global relationship between different expo-
sures, we construct a joint histogram P k

n0,n for each color channel k ∈ {R, G, B}
between the reference nth

0 image and other nth image. P k
n0,n is defined by

P k
n0,n(i, j) =

1
M

∑
p

Gn(p) · T [(i, j) = (Ik
n0

(p), Ik
n(p))], (1)

where p is a pixel position index. T [·] is one if the argument is true, zero oth-
erwise. M is the total number of corresponding pixels in an image. Ik

n(·) is an
intensity value of k channel of nth image. Gn(·) is a ghost weight function which
is defined in the following section. At first iteration, we set Gn(·) = 1 for all
pixels of all exposures. Next, Parzen windowing is performed by convolving 2D
Gaussian function to have smooth joint pdfs. In this work, we used a 5×5 Gaus-
sian function. Then, we normalize the joint histograms such that the sum of all
the elements equals to one. Examples of joint pdfs are shown in Fig. 3 (d)-(f)
for the images in Fig. 3 (a)-(c), where (a) is the reference image.

3.3 Ghost Region Estimation

For each nth image except for the reference image, we detect ghost pixels by
defining ghost weight Gn(·) which is defined by
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(a) Image 1 (b) Image 2 (c) Image 3

(d) P G
1,1 (e) P G

1,2 (f) P G
1,3

Fig. 3. (a)-(c) are input image sequence, where (a) is the reference image. (d)-(f) are
joint pdfs of the green channel corresponding to (a)-(c), respectively.

Gn(p) =

⎧⎪⎪⎨
⎪⎪⎩

0, if PR
n0,n(IR

n0
(p), IR

n (p)) < c or
PG

n0,n(IG
n0

(p), IG
n (p)) < c or

PB
n0,n(IB

n0
(p), IB

n (p)) < c
1, otherwise

. (2)

Gn(p) = 0 represents that a pixel p in the nth image is a ghost, while Gn(p) = 1
represents that the pixel p is a non-ghost pixel. For the reference image, all the
pixels are assumed to be non-ghost pixels. In this work, we set the threshold
c as 10−5. These ghost regions initially determined by thresholding joint pdfs
could be very noisy and inaccurate. Hence, we refine the ghost detection result
by using an energy minimization approach. For each image, we define the total
energy to minimize as follows:

E(fn) =
∑

p

Dp(fn(p)) +
∑

p

∑
q∈N(p)

Vpq(fn(p), fn(q)), (3)

where the Boolean label fn ∈ {0, 1} represents whether a pixel is a ghost or
not. When fn(p) = 0, a pixel p in the nth image is a ghost, while fn(p) = 1
represents that a pixel p in the nth image is not a ghost pixel. N(p) represents
a neighboring pixels of p. In this work, we use a four-neighborhood system. Our
data cost Dp(·) is defined by

Dp(fn(p)) =

⎧⎨
⎩

0, if (fn(p) = 0 ∧ Gn(p) = 0) or
(fn(p) = 1 ∧ Gn(p) = 1)

β, otherwise
, (4)
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(a) (b) (c) (d)

Fig. 4. Ghost detection result. Image 1 (in Fig. 3 (a)) is the reference image. (a) and
(b) are the ghost regions corresponding to image 2 and image 3, respectively, using
thresholding joint pdf. (c) and (d) are the refined ghost regions corresponding to image
2 and image 3, respectively, using global energy minimization.

where β is a constant, which we set as β = 2.5. We define a smoothness cost
Vpq(·, ·) as a truncated linear function defined by

Vpq(fn(p), fn(q)) = λpq · min(|fn(p) − fn(q)| , Vmax),

λpq =

⎧⎨
⎩λL,

if {(|In0(p) − In0(q)| < η)∨
(|In(p) − In(q)| < η)}

λS , otherwise
,

(5)

where λL > λS , and In(p) represents a gray value of a pixel p in the nth im-
age. Note that the strength of Vpq(·, ·) depends on the intensity difference. If
the intensity change between neighboring pixels is smaller than the threshold
η, we emphasize more smoothness by choosing a larger λL value than a smaller
one, λS . In this work, we set variables in Eq. (5) as follows: Vmax = 1, η = 5,
λL = 3.0, λS = 1.0. The total energy E(fn) is optimized using the Graph-cuts
(alpha-expansion) algorithm [14]. Using optimized fn(·), Gn(·) is also updated.
Estimating joint pdf and ghost detection processes are iteratively updated. Em-
pirically, two or three iterations are sufficient for convergence.

A ghost estimation example for Fig. 3 (a)-(c) is shown in Fig. 4, where white
pixels represent the ghost pixels. We can clearly see that, after global energy min-
imization, ghost detection results become less noisy and more accurate than those
of naive thresholding. Also, it is worth noting that our method does not directly
use these ghost detection results, since these results can be still errorneous. In-
stead, we apply more robust filtering method, which is described in section 3.5.

3.4 Camera Response Function Estimation and Radiance Value
Refinement

If we assume that exposure time Δtn is known, the radiance value of a pixel p
in the nth image can be obtained [3] by

ln Ek
n(p) = g(Ik

n(p)) − ln Δtn, (6)

where E represents a radiance value and g(·) is an inverse camera response
function. Note that our actual goal is to compute the radiance values for all the
pixels in the reference image. Hence, to estimate the radiance value, we should
estimate the inverse CRF function g(·).
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To compute g(·), we randomly sample a number of points (55 in this work),
avoiding ghost regions and edge regions. Then, we computed g(·) using the
method [3]. Also, as [3] suggested, combined radiance value is computed as a
weighted average as follows:

ln Ek(p) =

∑
n

w(Ik
n(p))(g(Ik

n(p) − ln Δtn))∑
n

w(Ik
n(p))

, (7)

where w(·) is a triangle-shaped function defined by

w(z) =
{

z − zmin for z ≤ 0.5(zmin + zmax)
zmax − z for z > 0.5(zmin + zmax)

, (8)

where zmin and zmax are the minimum and maximum intensity values, respec-
tively.

To eliminate ghost artifacts, we should combine a set of exposure images
which does not include ghost pixels in calculating Eq. (7). However, even if we
accurately detect ghost pixels, there can be still significant color artifacts due
to inaccurate CRF estimation [8]. In other words, averaging from different sets
of exposure images which do not include ghost pixels often induces significant
color differences, because each E value of the same position for different exposure
images could have different values owing to inaccurate g(·).

The estimated CRF can be inaccurate by various factors such as inaccurate
ghost detection, image alignment error, noise and blurring. To solve this problem,
we refine the radiance values of other images such that all the pixels of different
exposure images have consistent radiance values to the reference image. First,
for non-ghost pixels, we compute the radiance values using Eq. (7). Then, we
obtain refined radiance value Ēk

n(·) by averaging the radiance values for each
exposure images as follows:

ln Ēk
n(z) =

1
C

∑
p, Ik

n(p)=z

Gn(p) · ln Ek(p), (9)

where C is a normalization constant. To acquire more smooth curve, we can
adopt a more sophisticated curve-fitting algorithm [4].

3.5 Generalized Weighted Filtering Method

In this section, we propose a robust weighted filtering approach for HDRI gen-
eration. Fig. 5 depicts our generalized weighted filtering scheme. First, using the
estimated joint pdf, the global intensity transfer function between the reference
nth

0 image and the nth image can be computed in the minimum mean squared
error (MMSE) sense. To consider the saturated cases, we define the global in-
tensity transfer functions according to the exposure time of images as follows:
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Fig. 5. Generalized weighted filtering scheme. The number of input images is N . Input
images are aligned according to exposure time. The final radiance value Ê of the
reference nth

0 image is computed using weighted sum of refined radiance values Ēn

of images. For each pixel q of nth image in the window L(p) centered at pixel p, the
total weight is determined by combining three weights; properly exposed weight w(·),
geometric distance weight d(p, q), and color difference weight cn0,n (p, q).

Bk
n0→n(i) =

255∑
j=0

P k
n0,n(i,j)·j

255∑
j=0

P k
n0,n(i,j)

(for Δtn0 < Δtn) ,

Bk
n→n0

(j) =

255∑
i=0

P k
n0,n(i,j)·i

255∑
i=0

P k
n0,n(i,j)

(for Δtn0 ≥ Δtn) .

(10)

For a pixel p in the reference image, we define a window region L(p) that includes
all the pixels around the center pixel p in all the exposure images. Then, to
compute the final radiance value Êk(·), we compute a weighted sum based on
the bilateral filtering weight [18] and the intensity weight as follows:

ln Êk(p) =

∑
n

∑
q∈L(p)

w(Ik
n(q))cn0,n(p,q)d(p,q) ln Ēk

n(Ik
n(q))∑

n

∑
q∈L(p)

w(Ik
n(q))cn0,n(p,q)d(p,q) ,

cn0,n (p, q) = exp

(
−∑

k

ψk
n0,n(p,q)

σ2
c

)
,

ψk
n0,n(p, q) =

{∣∣Bk
n0→n(Ik

n0
(p)) − Ik

n(q)
∣∣2 (for Δtn0 < Δtn)∣∣Ik

n0
(p) − Bk

n→n0
(Ik

n(q))
∣∣2 (for Δtn0 ≥ Δtn)

,

d(p, q) = exp
(

−‖p−q‖2

σ2
d

)
,

(11)
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(a) (b) (c)

(d) Standard [3] (e) Photomatix [21] (f) Proposed method

(g) (h) (i)

Fig. 6. Playground sequence. (a)-(c) are input LDR images, where (b) is the reference
image. (d) Result of the standard method [3]. (e) Result of the Photomatix [21]. (f)
Result of the proposed method. (g)-(i) are the magnified views of (d)-(f), respectively.

where w(·) is defined in Eq. (8) that emphasizes properly exposed intensity.
cn0,n(·, ·) is a weighting function for color difference between two pixels, d(·, ·) is a
weighting function for geometric distance between two pixels, and ‖·‖ represents
the Euclidean distance. Note that, in Eq. (11), we use the refined radiance values
Ēk

n(·) in Eq. (9) instead of the radiance values from the estimated CRF function,
because the refined radiance values produce less color artifacts when combining
radiance values of multiple exposures. Also, in order to compute cn0,n(·, ·), using
the global intensity transfer functions in Eq. (10) the intensity of the reference
nth

0 image is transformed to nth image that has longer exposure time than that
of the nth

0 image. Conversely, for nth image that has shorter exposure time than
that of nth

0 image, the intensity of nth image is transformed to the nth
0 image.

This weighted filtering approach can be considered as a generalized Debevec &
Malik approach [3] in that it considers a wider range of pixels, and is robust to
ghost artifacts, image misalignments and CRF estimation error. In this work, we
set variables in Eq. (11) as σc = 7, σd = 10. The size of L(p) was set as 21 × 21
for each exposure image.
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4 Experimental Results

To evaluate the performance of our method, we tested our algorithm for various
scenes that include camera and object movements. To visualize computed radi-
ance values, we averaged the results of both gradient-based [19] and photographic
[20] tone-mapping methods.

First, we compared our method with the commercial Photomatix software
[21]. For Photomatix software, we tried to reduce ghost artifacts with ‘moving
objects/people’ and ‘high’ detection modes. Fig. 6 and 7 (a)-(c) are the input
images taken by a Pentax K-7 camera with exposure bracketing mode of three
exposures (-2EV, 0EV, 2EV). In Fig. 6 and 7, (d)-(f) are the results of the

(a) (b) (c)

(d) Standard [3] (e) Photomatix [21] (f) Proposed method

(g) (h) (i)

Fig. 7. Amusement park sequence. (a)-(c) are input LDR images, where (b) is the
reference image. (d) Result of the standard method [3]. (e) Result of the Photomatix
[21]. (f) Result of the proposed method. (g)-(i) are the magnified views of (d)-(f),
respectively.
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(a) (b) (c) (d) (e)

(f) Standard [3] (g) Gallo et. al. [8] (h) Proposed method

(i) (j)

(k) (l)

Fig. 8. Sculpture garden sequence. (a)-(e) are input LDR images, where (c) is the
reference image. (f) Result of the standard method [3]. (g) Result of [8]. (h) Result of
the proposed method. (i)-(j) are the magnified views of the blue rectangle regions in
(g). (k)-(l) are the magnified views of the blue rectangle regions in (h).

standard method [3], the Photomatix [21], and the proposed method, respec-
tively. For local movement regions, magnified views of (d)-(f) are shown in (g)-(i),
respectively. As expected, we can observe that there are severe ghost artifacts in
the standard method. Although the Photomatix reduces ghost artifacts a little
bit, it can not completely eliminate them. Our method produces the most clean
and ghost-free HDRIs even for severe local movement regions.

To further evaluate our method, we compared the results of our method with
those of Gallo et. al. [8]. Fig. 8 and 9 show the comparison of ours with [8].
Two input sequences in Fig. 8 and 9 are from [8]. The standard method [3]
severely suffers from ghost artifacts. Although [8] produces good results, it suffers
from blending artifacts around block boundaries. On the contrary, our method
produces more natural and clean HDRI with less color artifacts.
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(a) (b) (c) (d) (e)

(f) Standard [3] (g) Gallo et. al. [8] (h) Proposed method

(i) (j) (k)

(l) (m) (n)

Fig. 9. Arch sequence. (a)-(e) are input LDR images, where (c) is the reference image.
(f) Result of the standard method [3]. (g) Result of [8]. (h) Result of the proposed
method. (i)-(k) are the magnified views of the white rectangle regions in (g). (l)-(n)
are the magnified views of the white rectangle regions in (h).
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5 Conclusion

In this paper, we have proposed an effective ghost elimination method for high
dynamic range imaging using multiple exposure images of a dynamic scene. The
proposed method is based on generalized weighted filtering using global intensity
transfer functions between different exposures and refined radiance values. Our
method does not need accurate ghost detection results which often include false
positives or negatives, and also does not suffer from color artifacts such as visible
seams between neighboring regions.

References

1. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High dynamic range imaging:
Acquisition, display and image-based lighting. Morgan Kaufmann, San Francisco
(2005)

2. Mann, S., Picard, R.W.: Being ‘undigital’ with digital cameras: Extending dynmaic
range by combining differently exposed pictures. Technical Report 323, M.I.T.
Media Lab Perceptual Computing Section (1994)

3. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from pho-
tographs. In: Proc. of SIGGRAPH (1997)

4. Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: Proc. of IEEE CVPR
(1999)

5. Grossberg, M.D., Nayar, S.K.: What can be known about the radiometric response
from images? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV
2002. LNCS, vol. 2353, pp. 189–205. Springer, Heidelberg (2002)

6. Jacobs, K., Loscos, C., Ward, G.: Automatic high-dynamic range image generation
for dynamic scenes. IEEE Computer Graphics and Applications 28, 84–93 (2008)

7. Grosch, T.: Fast and robust high dynamic range image generation with camera and
object movement. In: Proc. of Vision, Modeling and Visualization, VMV (2006)

8. Gallo, O., Gelfandz, N., Chenz, W.C., Tico, M., Pulli, K.: Artifact-free high dy-
namic range imaging. In: Proc. of IEEE ICCP (2009)

9. Raman, S., Kumar, V., Chaudhuri, S.: Blind de-ghosting for automatic multi-
exposure compositing. In: Proc. of SIGGRAPH Asia Sketches (2009)

10. Khan, E., Akyuz, A., Reinhard, E.: Ghost removal in high dynamic range images.
In: Proc. of IEEE ICIP (2006)
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Abstract. This paper presents a new method for viewpoint invariant
pedestrian recognition problem. We use a metric learning framework to
obtain a robust metric for large margin nearest neighbor classification
with rejection (i.e., classifier will return no matches if all neighbors are
beyond a certain distance). The rejection condition necessitates the use
of a uniform threshold for a maximum allowed distance for deeming a
pair of images a match. In order to handle the rejection case, we propose
a novel cost similar to the Large Margin Nearest Neighbor (LMNN)
method and call our approach Large Margin Nearest Neighbor with
Rejection (LMNN-R). Our method is able to achieve significant improve-
ment over previously reported results on the standard Viewpoint Invari-
ant Pedestrian Recognition (VIPeR [1]) dataset.

1 Introduction

Viewpoint invariant recognition of pedestrians is a problem that appears in nu-
merous contexts in computer vision scenarios such as multi-camera tracking,
person identification with an exemplar image or re-identification of an individ-
ual upon re-entering the scene after some time. This is a key problem and has
been drawing attention in recent years with the advance of visual tracking and
widespread deployment of surveillance cameras, which necessitated the need for
continuous tracking and recognition across different cameras even with signifi-
cant time and location differences. Our approach handles the long time delay
case: recognition of the same individual without the temporal and spatial infor-
mation associated with the images of the pedestrians. By learning an appropri-
ate distance metric we achieve high recognition with high accuracy. Although
we demonstrate it in the context of this problem, the learned metric is general
and can be applied to aid data association in other tracking scenarios.

This paper assumes that the pedestrians in the scene has been successfully
detected and consequently cropped. Pedestrian detection is an active research
topic, but fortunately this problem is easier than the problem of general ob-
ject detection and has been met with reasonable success with the emergence
of several advanced methods in recent years. The relative success of pedestrian
detection can be attributed to several limiting factors on the complexity of the

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 501–512, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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problem. Pedestrians are by definition upright people figures with limited config-
urations. Therefore template based approaches with a sliding window classifier
produce favorable results [2,3]. In addition, there exists a number of strong and
relatively easy to detect contextual cues, such as the presence of ground and
other rigid objects (e.g., cars), which can be integrated into the decision process
to significantly improve the detection performance [4].

Several attempts have been made for tackling the recognition problem in the
context of matching pedestrians by their appearance only. Park et al. [5] per-
form recognition by matching color histograms extracted from three horizontal
partitions of the person image. Hu et al. [6] have modeled the color appearance
over the silhouette’s principal axis. However, finding the principal axis requires
robust background subtraction and is error prone in crowded situations. Match-
ing spatio-temporal appearance of segments have been considered by Gheissari
et al. [7]. Yu et al. [8] introduced a greedy optimization method for learning a
distance function. Gray and Tao [1] defined the pedestrian recognition problem
separate from multi-camera tracking context and provided a benchmark dataset
(VIPeR, see Fig. 1) for standardized evaluation. Their method transforms the
matching problem into a classification problem, in which a pair of images is
assigned a positive label if they match (i.e., belong to the same individual) or
negative label otherwise. This classifier is learned in a greedy fashion using Ad-
aBoost. The weak classifiers are decision stumps on individual dimensions of
histograms of various features within a local rectangle in the person image. The
rectangles span the entire horizontal dimension, while they are densely sampled
vertically over all positions and sizes. Note that in the context of nearest neigh-
bor classification, the {+1,−1} labeling scheme of the matches vs non-matches

Fig. 1. Representative image pairs from the VIPeR dataset (images on each column
are the same person). The dataset contains many of the challenges observed in realistic
conditions, such as viewpoint and articulation changes as well as significant lighting
variations.
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creates a naturally unbalanced learning problem with N vs N2 samples in two
classes respectively (N = number of training points). Also worth noting is that
the two methods [8, 1], which learn the pairwise comparison function, achieve
this through greedy optimization, which is not globally optimal and further-
more makes indirect use of covariances in the feature space. Our method is both
globally optimal and also has an explicit covariance modeling of features.

The contributions of this paper are the following: (1) We apply a large mar-
gin nearest neighbor approach to the pedestrian recognition problem to achieve
significantly improved results, (2) we define a novel cost function for learning
a distance metric specifically for nearest neighbor problems with rejection. In
addition we show that despite using only color as the appearance feature, our
method is robust under significant illumination changes.

2 Metric Learning

In this section, we briefly introduce the metric learning framework of Weinberger
and Saul [9] for large margin nearest neighbor (LMNN) classifier. The goal is to
learn a Mahalanobis metric where the squared distances are denoted by:

DM(xi, xj) = (xi − xj)TM(xi − xj), (1)

D1/2
M is a valid distance iff M is a symmetric positive-semidefinite matrix. In

this case M can be factored into real-valued matrices as M = LTL. Then, an
equivalent form for (1) is

DL(xi, xj) = ||L(xi − xj)||2. (2)

LMNN learns a real-valued matrix L that minimizes the distance between each
training point and its K nearest similarly labeled neighbors (Eq. 3), while max-
imizing the distance between all differently labeled points, which are closer than
the aforementioned neighbors’ distances plus a constant margin (Eq. 4).

εpull(M) =
N∑

i,j�i

DM(xi, xj), (3)

εpush(M) =
∑

i,j�i

N∑
k=1

(1 − yik) [1 + DM(xi, xj) −DM(xi, xk)]+ (4)

Here, yik is an indicator variable which is 1 if and only if xi and xj belong to the
same class, and yik = 0 otherwise. The j � i notation means that xj is one of the
K similarly labeled nearest neighbors of xi (i.e., xj is a target neighbor of xx).
Note that for εpull to be a continuous and convex function, it is necessary that
the K target neighbors of each training sample be fixed at the initialization. In
practice they are determined by choosing the K nearest neighbors by Euclidean
distance.
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The xk in Eq.4 for which yik = 0 are called the impostors for xi. The expres-
sion [z]+ = max(z, 0) denotes the standard hinge loss. Although this hinge loss
is not differentiable at z = 0, we did not observe any convergence issues. Nev-
ertheless it is always possible to replace the standard hinge loss with a smooth
approximation [10].

The affine combination of εpull and εpush through the tuning parameter μ1

(Eq. 5) defines the overall cost, which essentially maximizes the margin for K
nearest neighbor classifier by pulling together same-labeled points and repelling
differently-labeled ones (impostors).

εLMNN(M) =(1 − μ)
∑

i,j�i

DM(xi, xj)

+ μ
∑

i,j�i

N∑
k=1

(1 − yik) [1 + DM(xi, xj) −DM(xi, xk)]+ .

(5)

2.1 Nearest Neighbor with Rejection

In this section we introduce our LMNN-R framework for doing K nearest neigh-
bor classification with the option of rejection. As a practical example for this
problem, consider the person re-identification task, where given an image of a
pedestrian, one would like to determine whether the same person is in the cur-
rent scene or not. The target set of the people in the scene may not contain the
query person. One way to adapt the nearest neighbor classifier to the problem
of re-identification is to adopt a universal threshold (τ) for maximum allowed
distance for matching image pairs. If the distance of the nearest neighbor of the
query in the target set is greater than τ , one would deem that the query has
no match in the target set (rejection). Conversely, if there is a nearest neighbor
closer than τ , then it is called a match. What we have just described is the 1
nearest neighbor with rejection problem. This problem can be extended to K
nearest neighbor case, in which a label is assigned through majority voting of P
nearest neighbors within τ , where P ≤ K. If P = 0 the classifier will refuses to
assign a label.

The introduction of the option to refuse label assignment necessitates a dis-
tance metric that allows the use of a global threshold in all localities of the
feature space. One method would be to assume unimodal class distributions as
proposed by Xing et al. [11]. Their objective function maximizes the distance
between all sample pairings with different labels, while a constraint is imposed
on the pairs of similarly labeled points to keep them closer than a universal
distance. This model was proposed for learning a distance metric for k-means
clustering. It does not directly apply to our problem formulation. One drawback
is the situation when similarly labeled samples do not adhere to a unimodal
distribution (e.g., two islands of samples with same labels). Another problem is
the lack of margin in their formulation, which is essential for good generalization

1 All reported experiments in this paper use μ = 0.5 for both LMNN and LMNN-R.
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(a) LMNN

(b) LMNN-R

Fig. 2. Illustration contrasting our proposed approach with [9] Note that the point
configurations for a) and b) are the same. For a given training point (yellow), the
target neighbor (red) is pulled closer, while the impostors (blue) are pushed away. a)
To determine the impostors, the LMNN cost function uses a variable distance from the
training point depending on the proximity of the target neighbors; b) LMNN-R on the
other hand, forces the impostors out of a universal distance from the training point,
while simultaneously attracting target neighbors.

performance in classification. A cost function, which emphasizes local structure
is more suitable in our case.

We adopt the LMNN cost function (Eq. 5), which minimizes the distance be-
tween each training point and its K nearest similarly labeled neighbors
(Eq. 3), while maximizing the distance between all differently labeled points,
which are closer than the aforementioned neighbors’ distances plus a constant
margin (Eq. 4). The margin imposes a buffer zone to ensure good generalization.
It is this local property that makes the LMNN metric learning very suitable to
nearest neighbor classification. Note that the distance to determine the impos-
tors is varying for each training point xi (Eq. 4). We replace this with a universal
distance: the average distance of all K nearest neighbor pairs in the training set
(Eq. 6). LMNN-R cost function forces the closest impostors of a training point
to be at least a certain distance away, determined by this average which is only
weakly affected by where its own K nearest neighbors are (Fig. 2). The net effect
of this modification is that now we can use a universal threshold on pairwise dis-
tances for determining rejection, while still approximately preserving the local
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structure of the large margin metric learning. The only requirement for the loss
function to be convex is that the K nearest neighbor structure of the training
points need to be pre-defined. However, extensions such as multi-pass optimiza-
tion [9] proposed to alleviate this problem for LMNN apply to LMNN-R also.

R =
1

NK

∑
m,l�m

DM(xm, xl) (6)

εLMNN-R(M) = (1 − μ)εpull(M) + με∗push(M) (7)

ε∗push(M) =
N∑

i=1

N∑
k=1

(1−yik)

⎡
⎣1 +

1
NK

⎛
⎝ ∑

m,l�m

DM(xm, xl)

⎞
⎠−DM(xi, xk)

⎤
⎦

+

,

(8)
The LMNN-R cost (Eq. 7) can be minimized as a semidefinite program, which
is formulated by writing ε∗push as a constraint through the introduction of slack
variables, or it can be minimized by following the gradient directly and project-
ing M back to the semidefinite cone at each iteration (iterative sub-gradient
projection as in [9]).

3 Experiments

We demonstrate the performance of our method on the VIPeR dataset [12] which
is a specifically constructed dataset for the viewpoint invariant pedestrian recog-
nition problem. This dataset contains images of 632 unique pedestrians and a
total of 1264 images composed of two views per pedestrian seen from differ-
ent viewpoints. The images are captured outdoors under uncontrolled lighting.
Therefore there is a great deal of illumination variance in the dataset, including
between the images belonging to the same pedestrian (e.g., the first and last
columns in Figure 1). Compared to the previously available datasets (see [1]),
the VIPeR dataset has many more unique subjects and contains a higher de-
gree of viewpoint and illumination variation, which makes it realistic and more
challenging (Figure 1).

3.1 Methodology

As done in [1], we randomly split the set of pedestrians into two halves: training
and testing. The LMNN and LMNN-R frameworks learn their respective distance
metric using the training set. For testing, each image pair of each pedestrian in
the test set is randomly split to query and target sets. The results are generated
using the pairwise distance matrix between these query and target subsets of the
images in the test set. For thoroughness, we report our results as an average over
10 train-test splits. When reporting an average is not appropriate, we report our
best result out of the 10 splits.
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We follow the same evaluation methodology of [1] in order to compare our
results to theirs and other benchmark methods. We report results in the form
of cumulative matching characteristics curve (CMC), re-identification rate curve
and expected search time by a human operator. In addition, we also provide an
average receiver operator characteristic curve to demonstrate the improvement
of the LMNN-R method over LMNN for automated recognition.

3.2 Image Representation

The images in the dataset are 128 pixels tall and 48 pixels wide. We use color
histograms extracted from 8x24 rectangular regions to represent the images.
The rectangular regions are densely collected from a regular grid with 4 pixel
spacing in vertical and 12 pixel spacing in horizontal direction. This step size is
equal to half the width and length of the rectangles, providing an overlapping
representation.

For the color histograms, we use RGB and HSV color spaces and extract
8-bin histograms of each channel separately. We tried several combinations for
all of the mentioned parameters found that these numbers worked reasonably
well through our preliminary experiments. We concatenate the histograms ex-
tracted from an image and obtain a feature vector of size 2232 for RGB and
HSV representations each. The combined representation is simply the concate-
nation of these two. Dimension reduction through PCA is applied to these high-
dimensional vectors to obtain subspaces of specific dimensionality. This step is
necessary to reduce redundancy in the color based representation and to filter out
some of the noise. The reported results are obtained with 20, 40 and 60 dimen-
sional representations. We have observed that we get diminished returns above 60
dimensions.

To account for the illumination changes we experiment with a simple color cor-
rection technique where each RGB channel of the image is histogram-equalized
independently to match a uniform distribution as close as possible in �1 norm.
Since in the cropped images, a significant number of the pixels belong to the
pedestrian, this is a reasonable way of performing color correction. We also
experimented with brightness and contrast correction methods, as well as his-
togram equalizing the V channel of the HSV images. However, they were not
able to perform as good as the described RGB histogram equalization method.

3.3 Results

Recognition. We present the recognition performances as CMC curves in
Figure 3. This curve, at rank score k, gives us the percentage of the test queries
whose target (i.e. correct match) is within the top k closest match. As it is not
appropriate to take the average of CMC curves over different random splits of the
dataset, we report the CMC of a single split where the normalized area under the
curve is maximum. This corresponds to using “RGB+HSV” features reduced to 60
dimensions via PCA and using our proposed approach LMNN-R. We outperform
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Fig. 3. Cumulative matching characteristics (CMC) curve for our method and oth-
ers’. This result is obtained using a combined HSV and RGB representation in a 60
dimensional subspace learned with PCA.

all previously reported results2. An explanation of the methods used to obtain
these previous results is as follows. “Chance” refers to random matching, “Tem-
plate” refers to pixelwise sum-of-squared distances matching. “Histogram” and
“Hand Localized Histogram” refer to the method by Park et al. [5], and “Prin-
cipal Axis Histogram” refers to the method of Hu et al. [6]. “ELF 200” (or just
“ELF” in the remaining of the text) refers to the work of Gray et al. [1].

CMC curves can be summarized using the “expected search time” measure de-
fined in [1]. Assuming a human operator reviews a query image’s closest matches
sequentially according to their distance from the query. Assuming an average re-
view time of 1s per image, the total expected search time for finding the correct
match would be the average rank of the target. Our method’s expected target
rank is 23.7 which is an improvement of over 15% with respect to the state-of-
the-art 28.9 (see Table 1).

To evaluate the performance of LMNN and LMNN-R over all different com-
binations of parameter and feature choices, we use the normalized area under
the CMC curves. Table 2 shows the mean and standard deviation of these val-
ues over 10 random splits of the dataset. Best results are obtained using RGB
and HSV together on original (non-color corrected) images. RGB alone performs
the worse than HSV alone, which is expected because HSV is more robust to
variations in intensity of the lighting.

2 Results of other methods are from [1] as a courtesy of D. Gray.
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Table 1. Expected search times for LMNN-R and other methods

Method Expected Search Time (in seconds)

Chance 158.0
Template 109.0
Histogram 82.9

Hand Localized Histogram 69.2
Principal Axis Histogram 59.8

ELF 28.9
LMNN-R 23.7

Since the dataset has a significant degree of illumination variation, one ex-
pects that color correction should help increase the matching accuracy. While
this is true for the plain �2 norm (i.e. no learning), it is not the case for learned
metrics of LMNN and LMNN-R. A possible explanation for this can be made
by realizing that the histogram equalization process is a non linear transforma-
tion of the data. While improving the performance of the marginal cases for
simple matching by Euclidean distances, this procedure may affect the average
transformation that image pairs undergo in realistic scenarios, such that this
transformation cannot be reliably modeled by LMNN and LMNN-R methods
anymore. Therefore we suggest letting the learning algorithm handle the color
correction issues.

For the number of reduced dimensions, 60 is slightly better than 40. And
LMMN-R gives slightly better results than LMNN in general.

In the previous re-identification experiments, we assume that the target set
will have a match for the query image. This is not the case in many practical
scenarios as often it is not known whether the query person is in view. Therefore

Table 2. Table of results averaged over 10 random splits of the dataset. 20, 40 and 60
denote the number of dimensions (of the reduced subspace found by PCA) used, L2

refers to the regular 	2 norm which, in our case, corresponds to “no learning”. “corr’d”
means “color corrected” and “orig” indicates that no modification was done to the
original image. We obtain our best average results using RGB and HSV together on
original images with the proposed learning approach LMNN-R. The overall best result,
i.e. the one given in Figure 3, has a normalized area of 95.88 under its CMC curve,
which is comparable to the average results.

RGB+HSV HSV RGB
corr’d orig corr’d orig corr’d orig

L2 76.61± 0.88 72.54± 0.77 80.09± 0.59 77.97± 0.81 67.85± 1.13 60.63± 0.79
20 LMNN 91.81± 0.39 93.46± 0.36 92.11± 0.47 92.90± 0.34 82.06± 0.69 86.39± 0.72

LMNN-R 92.14± 0.37 93.59± 0.37 92.35± 0.47 92.87± 0.51 82.47± 0.83 86.63± 0.68
L2 77.48± 0.87 73.73± 0.81 80.79± 0.66 78.89± 0.80 68.73± 1.11 60.90± 0.92

40 LMNN 92.68± 0.44 94.54± 0.42 92.82± 0.33 94.40± 0.32 83.81± 1.27 87.14± 0.86
LMNN-R 93.13± 0.48 94.76± 0.47 93.04± 0.45 94.64± 0.43 84.71± 1.24 87.49± 0.92

L2 77.85± 0.86 74.14± 0.79 80.97± 0.67 79.17± 0.80 68.83± 0.91 61.20± 0.91
60 LMNN 92.27± 0.50 94.67± 0.55 92.52± 0.28 94.54± 0.29 84.23± 0.63 87.56± 1.01

LMNN-R 92.56± 0.53 94.95± 0.46 92.62± 0.43 94.69± 0.37 84.94± 0.57 87.79± 1.04
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Fig. 4. Re-identification rate vs. the number of targets for our method and others

we also show the receiver operator characteristic curve (ROC) for such kind
of cases where one would like to detect the query pedestrian in a target set
of pedestrians. The detection performance is measured by comparing the true
positive rate vs. the false positive rate, which shows for a given recall rate (true
positive), what fraction of non matching images in the target set will be returned
as false positives. Due to the universal threshold, the LMNN-R method was able
to outperform LMNN by about 1% at a false positive rate of 10% (Fig. 5).

Re-identification. This is another measure for evaluating the performance of
pedestrian matching methods. It is the probability of finding a correct match as
a function of the number of possible targets. A formal definition could be found
in [12]. Figure 4 shows the re-identification rates of our method and the previous
methods.

Execution times. We implemented LMNN and LMNN-R in MATLAB3 and
although we have not employed the active set method which was designed to
make LMNN more efficient (described in [9]), our code runs reasonably fast in
practice. For the VIPeR dataset, a typical training session takes 160 seconds and
finding the target of a query pedestrian takes only 1.2 milliseconds on a 2GHz
Intel Core2-Duo PC.

3 The MATLAB code for LMNN and LMMN-R optimization as well as replicating the
experiments in the paper is available in the supplementary material of the paper.
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Fig. 5. The receiver operator characteristic curve showing the true positive vs the false
positive rate of our system

4 Conclusions

We have applied a large margin nearest neighbor (LMNN) approach to view-
point invariant pedestrian recognition problem. Also, we proposed a new vari-
ant of LMNN called large margin nearest neighbors classification with rejection
(LMNN-R) to obtain a classifier with the option of rejecting unfamiliar matches.
Using only color histograms as features, these methods achieved significant im-
provement over previously reported results on a benchmark dataset. Experimen-
tal results suggest that our LMNN-R formulation to metric learning is able to
achieve improved results over LMNN. Color correction improved the matching
accuracy when Euclidean distance is used to compare images (i.e. no learning).
However, this was not the case for LMNN and LMNN-R which suggests that
these supervised learning approaches are more robust in handling illumination
changes than color correction alone.
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Abstract. For the conversion of a color image to a perceptually plausi-
ble grayscale one, the global and local contrast are simultaneously con-
sidered in this paper. The contrast is measured in terms of gradient field,
and the energy function is designed to have less value when the gradi-
ent field of the grayscale image is closer to that of original color image
(called target gradient field). For encoding both of local and global con-
trast into the energy function, the target gradient field is constructed
from two kinds of edges : one that connects each pixel to neighboring
pixels and the other that connects each pixel to predetermined landmark
pixels. Although we can have exact solution to the energy minimization
in the least squares sense, we also present a fast implementation for the
conversion of large image, by approximating the energy function. The
problem is then reduced to reconstructing a grayscale image from the
modified gradient field over the standard 4-neighborhood system, and
this can be easily solved by the fast 2D Poisson solver. In the experi-
ments, the proposed method is tested on various images and shown to
give perceptually more plausible results than the existing methods.

1 Introduction

Most of photos nowadays are taken in color and many of printed matters are also
produced in colors. Of course, the colorful material has many advantages over the
black-and-white (BW) ones. However, color printing requires more cost, time,
and energy, and thus it is desirable to print in BW mode or with BW printers. For
printing a colorful material in the BW printers, the conversion from N3

c colors
to Ng grayscale values should be performed where Nc = Ng = 256 in most cases.
This process entails the loss of information, specifically the chromatic contrast
can be lost in the converted grayscale image. For example, the edges perceived
in a color image cannot be seen in the converted grayscale image.

For perceptually plausible conversion, i.e., for keeping the chromatic difference
as much as possible in the converted grayscale image, many algorithms have been
introduced. The most straightforward method is to find a fixed linear or non-
linear mapping from N3

c colors to Ng grayscale values [6–8]. However, since too

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 513–524, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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many colors are mapped to a single grayscale value, these methods often fail to
convey the chromatic contrast to the grayscale image. The other approaches are
to consider the spatial relationship to keep the chromatic difference [4, 12]. This
can be considered as a locally varying mapping, enabled by formulating a cost
function to be minimized. By the locally varying mapping, the pixels with the
same color, but located apart from each other, can be given different grayscale
values and thus there is less chance of losing the chromatic information than
the fixed mapping method. However, these methods suffer from unwanted con-
tours because they place too much emphasis on reproducing perceived chromatic
difference. That is, almost the same color can be given too much grayscale dif-
ference, and thus the object with smoothly changing color can experience the
contour effect.

In this paper, we propose a new color to grayscale conversion algorithm which
well reproduces the chromatic contrast while avoiding unwanted contours. For
this, we note that the global contrast (contrast between the pixels apart from
each other) as well as the local contrast is important. For encoding these global
and local chromatic distance simultaneously, we prepare a metric that measures
the signed distance between the colors, and construct a target gradient field over
a graph where two kinds of edges are defined : one connects a pixel to neighboring
pixels and the other that connects a pixel to predetermined landmark pixels with
dominant colors found by color quantization [5]. The energy is then designed so
that gradient field of grayscale image is as close as to target gradient field when
it achieves minimum. In the least squares sense, the energy minimization is
reduced to a sparse linear system, which can be solved directly [3] or iteratively
[14]. Although these solvers are quite fast and alleviate the memory requirement
problem, it is still problematic when dealing with over 1 mega pixels. Hence, we
also present a fast implementation for the large images, by approximating the
energy. The approximated energy does not have any dependencies on landmark
pixels and the problem is reduced to the reconstruction of the grayscale image
from the gradient field over standard 4-neighborhood system. This is efficiently
solved by fast 2D Poisson solver and we can deal with over 1 mega pixels in a
few seconds.

The rest of paper is organized as follows. In section 2 we briefly review the previ-
ous algorithms, and the details of the proposed method is explained in
section 3. In subsection 3.1, we formulate the energy, and then present a fast ap-
proximate solution in subsection 3.2. In section 4 we verify the proposed method
by testing on various images, and finally we conclude this paper in section 5.

2 Review of Previous Methods

The existing methods can be categorized into two approaches : finding a fixed
mapping from the color space to the grayscale and an energy function
minimization for finding a locally varying mapping.
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2.1 Fixed Mapping

First of all, a linear fixed mapping was proposed in [8]. This method converts
RGB to YPQ and then linearly combines luminance component Y and chromatic
information. The chromatic information is obtained by projecting chrominance
components P and Q to the predominant chromatic axis. This scheme adds
more chromatic information to the color which was to lose the contrast other-
wise. Note that this method estimates contrast loss between two pixels, where a
location of the pixel to the other is randomly selected so that the global contrast
is implicitly considered. There has also been a method that finds the parame-
terized fixed mapping function for the non-linear mapping [7]. The parameters
are estimated by minimizing the cost function which is designed to reproduce
chromatic differences between the neighboring pixels. The method is also ex-
tended to temporally coherent conversion of streaming videos. Also, there is
an image-independent global mapping method [6]. This method explores sev-
eral chromatic lightness metrics which consider the Helmholtz-Kohlrausch effect
and applies variable-achromatic-colour approach in [9] among them. Since this
fixed mapping is image-independent, the result is locally enhanced to restore lost
discontinuities.

Although the methods in this approach show good performance, the chromatic
differences in color image are sometimes lost, since many colors are mapped to
a single value.

2.2 Variable Mapping by Energy Minimization

For finding the area dependent mapping, the method in [4] measures signed
distances between all the pixel pairs in color image and formulates an energy
function to reproduce them in grayscale image. Since the energy in this method is
defined for all the pixel pairs, the original version of this method needs very high
complexity, O(N4). There is also a fast version of this method as a Photoshop
plugin ( http://www.e56.de/c2g.php), but it sometimes causes artifacts. Instead
of considering contrasts between all the pixel pairs, the method in [12] is focused
on preserving contrasts among the selected 256 landmark colors. Specifically, this
method first makes a mapping from 256 landmark colors to the 256 grayscale
values by minimizing the energy in a similar form to [4] and the remnant colors
in the image are then interpolated based on the given mapping.

These methods are technically well accepted, but unwanted contours are some-
times produced because they place much emphasis on reproducing global con-
trast. Our algorithm also lies in this category (variable mapping) and we design
an algorithm to avoid these unwanted contours by encoding both of local and
global contrast into the energy function in a controlled manner.

3 Details of the Proposed Method

In this section, we presents the proposed method in detail. We first formulate
the energy function for the variable mapping in subsection 3.1. Then, we present
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(a) (b)

Fig. 1. The result of popularity method [5] when M=30 and b=3. (a) Original image.
(b) Reconstructed image from 30 colors.

the fast implementation for the conversion of large images, by approximating
the energy function in subsection 3.2. For the intuitive understanding, we also
give a graphical interpretation of the energy approximation in subsection 3.2.

3.1 Energy Formulation

In order to design an energy function that encodes both of local and global
contrast, we begin with defining a metric that measures a scalar distance between
two colors and finding the landmark pixels that are used as references for finding
global contrast.

There have been numerous color metrics based on coloroid system [10], Lab
space [4, 7, 10, 12] and YPQ space [8]. Among them, we choose a simple metric
explored in [10], which is defined over the Lab space as

δij = 3

√
(Li − Lj)3 + wa(ai − aj)3 + wb(bi − bj)3 (1)

where δij denotes the distance between two colors (Li, ai, bi) and (Lj , aj , bj),
and wa and wb are free parameters for adjusting the contributions of a and
b channels to the distance respectively. Selecting landmark pixels in a given
color image is based on the popularity method [5], which is one of the color
quantization methods. This method clips each color sample to 3Nb bits (Nb

bits for each channel), generates a histogram with 23Nb+1 bins and chooses M
the most populated bins. Averaging the colors in each of the chosen bins and
searching the pixel position with the closest color to the mean, we have M
dominant colors and their pixel positions Q. Throughout this paper, we set b=3
and M=30. As shown in an example of Fig.1 (b), selected colors by the popularity
method with this parameter setting represent the original color image very well.

With the above metric and landmark colors, the proposed energy is formulated
as

f(g) = (1 − λ)
∑

(i,j)∈E

(gi − gj − δij)2 + λ
∑
i∈V

∑
k∈Q

(gi − gk − δik)2 (2)
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where g is a vector representation of grayscale image (gi is the ith element of g),
E is a set of edges over standard 4-neighborhood system, V is a set of whole pixels
and λ is a control parameter. In (2), the first term is responsible for preserving the
local contrast between neighboring pixels, and the second for the preservation of
global contrast between a pixel and landmark pixels.

Note that one of the previous methods [4] finds the grayscale image by con-
sidering the distance between all the pixel pairs. This method is to minimize the
function which can be written in the form of (2) as

f̃(g) =
∑
i∈V

∑
j∈Q

(gi − gj − δij)2 (3)

with Q = V . However, considering all the available pixel pairs to preserve global
contrast as in (3) sometimes produces unwanted contours, whereas our method
can avoid the contours owing to the small size of Q. Also, since our energy
function is separated into local term (first term of (2)) and global term (second
term), we can balance the local contrast with the global contrast, whereas such
an energy formulation in (3) cannot. The balance is adjusted by the control
parameter λ and the effect of λ will be discussed in the experiment.

To find the solution that minimizes the energy function f(g), we differentiate
it with respect to gi and set it zero as

(1 − λ)
∑
j∈Ni

(gi − gj − δij) + λ
∑
k∈Q

(gi − gk − δik) = 0, i ∈ V (4)

where Ni is a set of neighbors of the ith pixel. Aggregating all the linear equations
to make them in a vector form, we finally have the following linear system :

((1 − λ)S + λMI + λP)g = b, (5)

where S represents a symmetric matrix responsible for the first term in (4), I is
an identity matrix, b is a vector whose element bi is (1−λ)

∑
j∈Ni

δij+λ
∑

k∈Q δik

and P is the matrix which satisfies that P(; , i) = −1, if i ∈ Q and P(; , i) =
0, otherwise. This linear system is sparse and it can be solved directly [3] or
iteratively [14]. Note that the solution of (5) is not unique because shifting g by
any constant c has the same energy. Hence, we find the constant such that the
solution is close to the lightness image L.

As expected, the proposed method well preserves contrasts as shown
in Fig. 2 (c), while previous fixed mapping based method fails to as shown
in Fig. 2 (b). In this result, the proposed method is compared with a decolorize
method in [8] as it earned the top overall score in the review of color to gray
conversion by Čad́ık [2]. Also the proposed method does not produce unwanted
contours as shown in Fig. 3 (h) whereas the previous energy minimization based
methods produce the contours as shown in Fig.3 (f) and Fig.3 (g).
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(a) (b) (c)

Fig. 2. (a) Color image. (b) The result of [8]. Edge between first and second column is
missing because two colors in contact are mapped to the same gray value. (c) The result
of the proposed method. Perceived chromatic contrast is well reproduced in grayscale
image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Color image. (b) The result of [4]. (c) The result of [12]. (d) The result of
proposed method. (e-h) The enlarged images of selected area in (a-d). The methods in
[4] and [12] produce unwanted contours.

3.2 Fast Approximate Solution

Solving the large sparse linear system requires much computations when dealing
with over 1 mega pixels. Hence in this subsection, we present a fast implemen-
tation by approximating the energy function.

The main computational cost in the proposed algorithm is due to the fact
that the linear system of (5) is not symmetric, i.e., the asymmetry of the matrix
P. P is related to the second term of the energy in (2) and we modify this term
to make the linear system symmetric. Applying several algebraic steps to the
second term of the energy in (2) gives
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∑
i∈V

∑
k∈Q

(gi − gk − δik)2 =
∑
i∈V

∑
k∈Q

(gi − gn + gn − gk − δik)2 (6)

=
∑
i∈V

∑
k∈Q

1
|Ni|

∑
j∈Ni

(gi − gj + gj − gk − δik)2 (7)

where an auxiliary variable gn is introduced without loss of generality. gn can
be arbitrarily chosen as a neighbor of the ith pixel as in (7). In (7), we make
an assumption that the grayscale difference between a pixel and the landmark
pixel can be approximated to the color distance, i.e, gj − gk ≈ δjk, and then (7)
is approximated as

∑
i∈V

∑
k∈Q

1
|Ni|

∑
j∈Ni

(gi − gj − (δk
ij))

2 (8)

where δk
ij = δik + δkj .

With (8), the modified energy function f̂(g) is finally written as

f̂(g) = (1 − λ)
∑

(i,j)∈E

(gi − gj − δij)2 + λ
∑
i∈V

∑
k∈Q

1
|Ni|

∑
j∈Ni

(gi − gj − δk
ij)

2 (9)

and corresponding linear equations are

(1 − λ)
∑
j∈Ni

(gi − gj − δij)+
λ

|Ni|
∑
j∈Ni

∑
k∈Q

(gi − gj − δk
ij)

+
∑
j∈Ni

λ

|Nj |
∑
k∈Q

(gi − gj − δk
ij) = 0, i ∈ V.

(10)

Letting |Ni| = 4 for all i, (10) is reduced to∑
j∈Ni

(gi − gj − δ′ij) = 0, i ∈ V (11)

where δ′ij = ((1 − λ)δij + λ
2

∑
k∈Q δk

ij)/((1 − λ) + λ|Q|
2 ). The main difference

of the approximated energy in (9) from the original energy in (2) is that the
contribution of landmark pixels to the energy (that measures the global contrast)
is incorporated into δ′ implicitly and the energy does not rely on landmark pixels
any more. Therefore, the linear system induced by (11) becomes symmetric as
follows:

Sg = b′ (12)

where ith element of b′ is
∑

j∈Ni
δ′ij . Fortunately, S is the same as 5-point

Laplacian matrix A except for the elements corresponding to boundary pixels.
Hence, we can substitute S with A without much change in the solution. In other
words, (12) becomes a discrete version of Poisson equation by this substitution,
and it is efficiently solved by using fast DCT [11].
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(a) (b)

Fig. 4. (a) Graph representation when there is one landmark point. The landmark pixel
and Type-G edges are colored red. (b) A loop example. The edge ekj is represented by
dashed line, because it is temporarily created when applying zero curl constraint.

Graphical Interpretation of the Energy Approximation. The above en-
ergy approximation can easily be understood by the graphical interpretation.
The minimization of the proposed energy is actually an analogy of the recon-
struction of the grayscale image from the target gradient field δ. However unlike
other reconstruction problem such as surface reconstruction [1], the proposed
method depends on not only the edges connecting neighboring two pixels (Type-
N edge) but also the edges connecting two pixels apart from each other (Type-G
edge). Since the existence of Type-G edges makes it impossible to use fast re-
construction method such as 2D Poisson solver, we modify the energy so as to
remove Type-G edges from a graph and then modify the target gradient field as
a price to pay for removing the Type-G edges.

To graphically illustrate the energy approximation, we define a graph
G(V, EN , EG) where V is a set of nodes, EN is a set of all the Type-N edges and
EG is a set of all the Type-G edges. In this example, we select only one pixel as a
landmark pixel to simplify the problem. The corresponding graph is illustrated
in Fig. 4 (a) where landmark node and Type-G edges are colored red and other
nodes and Type-N edges are colored black.

Let us denote the grayscale difference gi−gj by gij . Then, gik(k ∈ Q), gkj(j ∈
Ni) and gji have to satisfy zero curl constraint [13] as follows :

gik + gkj + gji = 0. (13)

Zero curl constraint states that any closed loop integral is zero on the integrable
gradient field and zero curl of each elementary loop guarantees the integrability
of gradient field. For example of the elementary loop, we illustrate the loop
(i → j → k → i) in Fig. 4 (b). From the zero curl constraint, (7) is easily
derived by substituting gik with −gkj−gji or gij+gjk. Note that the substitution
occurs for all the neighbors and thus the weight 1

|Ni| is introduced in (7). Now
with an assumption that gik ≈ δik, we have (8). Letting the edge connecting
ith pixel and jth pixel be eij , Type-G edge eik is, after all, removed in (8) and
the energy on eik is distributed to the neighbor edges eij , j ∈ Ni to modify the
target gradient field. Continuing this for every node, we have three distances at
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(a) (b) (c) (d)

Fig. 5. The experiment for investigating the effect of λ. The contrast is getting strong
as λ increases. (a) Original image (b) λ=0. (c) λ=0.2 (d) λ=0.9.

every edge, for example on an edge eij , δij and two δk
ijs (one is from gik and the

other is from gjk, j ∈ Ni). Combining three distances in the least squares sense
with corresponding weights as

δ̃ij = argmin(1 − λ)(δ̃ij − δij)2 + λ
2
4
(δ̃ij − δk

ij)
2, (14)

we have δ̃ij = ((1 − λ)δij + λ
2 δk

ij)/((1 − λ) + λ
2 ). Without loss of generality, this

is generalized to the M landmark pixels case and δ̃ij is reduced to δ′ij in (11).
As a result, by the energy approximation, the problem is reduced to the

reconstruction of the grayscale image from the target gradient field δ′ constructed
on a new graph G(V, EN ) without dependency on EG and, in the least squares
sense, this is efficiently solved by a fast 2D Poisson solver.

4 Experimental Results

The proposed method is implemented on a PC equipped with Intel Core2Quad
2.4GHz CPU and Agarawal’s implementation in [1] is used to solve the 2D Pois-
son equation with Neumann boundary condition. The current implementation
runs on a single core and it takes around 5 seconds in dealing with 1000×800
color image.

We first explore the effect of the control parameter λ in (2). This parameter
is for balancing the local contrast with the global contrast, and high value is
expected to enhance global contrast. Fig. 5 shows the result of this experiment.
The input color image in Fig. 5 (a) is composed of three colors green, blue and
white, and white-blue and white-green are in contact, but blue-green is not.
As shown in Fig. 5 (b) when λ = 0, i.e., the global contrast is not considered,
the contrast between two colors in contact (white-blue and white-green) are well
perceived as experienced in color image, but the contrast between blue and green
is very low. On the other hand, contrast gets higher as λ increases as can be
seen in Fig. 5 (c) when λ = 0.2 and Fig. 5 (d) when λ = 0.9. By this experiment,
we can see that the proposed energy formulation is able to balance the local
contrast with the global contrast.
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Color image proposed [4] [7]

[8] [6] [10] [12]

Fig. 6. The experimental results. (Input and result images courtesy of Čad́ık [2]).
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Second, we compare the proposed method to the previous ones on a variety of
color images. However in the literature of color conversion, an objective measure
has not yet been developed and there is only one trial that compares the existing
methods subjectively by Čad́ık [2]. Hence in this paper, we select several images
used in [2] and subjectively compare the proposed method to the existing ones as
shown in Fig. 6. The results on the other images are provided as a supplementary
file. Throughout all the images, λ is set to 0.3. From the results in Fig. 6, we
believe that our method shows better performance than the previous methods.
It should be emphasized that the results on the first image (ramp image) shows
large variance in performance, that is, the proposed method and the method in
[8] give perceptually plausible grayscale image, while the other methods fail . It is
because local contrast and global contrast should be simultaneously considered
in the case of ramp image and the methods that do so without artifacts are only
the proposed method and the method in [8]. Although the methods in [4] and
[12] also consider the global contrast, unwanted contours are produced as shown
in Fig. 6.

5 Conclusions

We have proposed an energy minimization based method for the perceptually
plausible conversion of a color image to a grayscale one. The energy is de-
signed in the way that the contrasts experienced in the color image are pre-
served in the grayscale image as well and thus perceptually accurate grayscale
image is obtained. We have also presented a fast implementation by approximat-
ing the energy function. The minimizing the approximated energy is the same
as reconstructing the grayscale image from given gradient field over standard
4-neighborhood system and this is efficiently solved by using the fast 2D Poisson
solver.
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Abstract. This work employs data mining algorithms to discover visual
entities that are strongly associated to autonomously discovered modes
of action, in an embodied agent. Mappings are learnt from these percep-
tual entities, onto the agents action space. In general, low dimensional
action spaces are better suited to unsupervised learning than high di-
mensional percept spaces, allowing for structure to be discovered in the
action space, and used to organise the perceptual space. Local feature
configurations that are strongly associated to a particular ‘type’ of ac-
tion (and not all other action types) are considered likely to be relevant
in eliciting that action type. By learning mappings from these relevant
features onto the action space, the system is able to respond in real
time to novel visual stimuli. The proposed approach is demonstrated on
an autonomous navigation task, and the system is shown to identify the
relevant visual entities to the task and to generate appropriate responses.

1 Introduction

This paper proposes a method for discovering the visual features that are im-
portant to a vision system given a specific problem (e.g. a robotics tasks). This
is achieved by first applying unsupervised learning in the problem output space
(e.g. the agent’s actions). The structure discovered in the output space is then
used to organise the input space (e.g. the agent’s perceptual representation),
in order to form meaningful input representations. This organisation process is
achieved by finding strong associations between modes of the output space and
configurations of the input space. Association rule data mining algorithms are
employed to efficiently find these associations.

This work is motivated by a desire for adaptive cognitive vision systems, that
build their own visual representations based on experience and learn how to react
to their environment, without the need for explicit definitions of representations
or strategies by an engineer. Such emergent systems should be less ‘brittle’ than
conventional hard-coded systems, and demonstrate increased robustness when
faced with changes in the environment not envisaged by the engineer.

In natural cognitive systems, increased sensory complexity, along with the
machinery used to interpret such complexity, is generally associated with an in-
creasing ability to interact with and manipulate the environment, facilitated by
increasing motor capabilities. It is straightforward to see that the complexity of

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 525–538, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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interaction a system can demonstrate - its motor capabilities - is to a certain
extent determined by the complexity of its perceptual system. It is, perhaps,
less straightforward to see that the complexity of a systems perceptual system,
is determined by the complexity of the systems motor capabilities. However,
this apparent cyclical causality, linking perceptual and motor capabilities is sup-
ported by a significant body of work in modern cognitive sciences, and has firm
philosophical [1] and neurophysiological [2] foundations. In particular the theory
of embodiment, a term used within psychology, philosophy, robotics and artificial
intelligence, is based on the premise that the nature of the mind is determined
by the embodiment of the cognitive agent [1] [3]. Related to this is affordance
theory, that states that the world is perceived not only in terms of object shapes
and spatial relationships but also in terms of object possibilities for action [4].
The work presented here demonstrates an embodied approach to constructing
an affordance based representation of the world.

Data mining algorithms are useful for efficiently identifying correlations in
large symbolic datasets. These methods have begun to be applied to vision tasks
such as: identifying features which have high probability of lying on previously
unseen instances of an object class [5], mining dense spatio-temporal features for
multi-action recognition [6], and finding near duplicate images within a database
of photographs [7]. These methods benefit from both the scalability and the
efficiency of data mining methods. This work employs data mining algorithms to
the novel domain of percept-action association mining. The mechanism of mining
frequent and distinctive feature configurations employed here is most similar to
that of Quack et al. [5], however, here the discovered configurations are used
directly in an action generation process, rather than as a pre-processing step for
identifying useful features for other classification techniques. Furthermore, whilst
in [5] supervision is required to label the classes of objects that are learnt, in
this work, classes of actions are obtained by an unsupervised learning approach.

The rest of this paper is organised as follows: In section 1.1 background to
association rule mining is presented. In section 1.2 the robotic platform, training
method and intended task are briefly detailed. Section 2 describes the central
mechanism of action space clustering and how this identifies classes of actions
and percept groupings. Section 3 presents a complete overview of the proposed
system, identifying the key processing stages involved, which are presented in
detail in sections 4 and 5. Section 4.1 details the approach used to encode visual
information as feature configurations and section 4.2 presents the method for
finding associations between classes of actions and these feature configurations.
Section 5 details how mappings are learnt between associated percept and ac-
tion data and how these mappings are exploited to generate responses to novel
image data. Section 6 presents the experimental evaluation of the system and
section 7 contains a discussion and conclusions.

1.1 Association Rule Mining

Association rule mining is the process of finding association rules in a database
D = {t1, t2, ..., tm} of transactions, where each transaction is a set of items, and
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I is the set of all items1. An association rule is an implication of the form X ⇒ Y
where X, Y ⊆ I and X ∩ Y = ∅.

Association rules are selected from the set of all possible rules based on con-
straints on measures of significance and interest. These constraints are thresholds
on itemset support and rule confidence. The support, supp(X), of an itemset X
is defined as the proportion of transactions in the database which contain X .
The confidence, conf(X ⇒ Y ) of a rule is defined:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
(1)

The Apriori algorithm [8] employed in this work, exploits the anti-monotonicity
of the support threshold constraint - that a subset of a frequent itemset must
also be a frequent itemset - to efficiently mine association rules. This work uses
an efficient existing implementation of the Apriori algorithm [9].

1.2 Robotic Platform and Training Data Collection

The robotic platform developed is a relatively inexpensive platform for the in-
vestigation of embodied artificial cognitive agents. Based on a standard Remote
Control (RC) model car fitted with a wireless camera, the system allows a teacher
to demonstrate the desired driving behaviour by viewing the images from the
camera on a PC monitor and using a standard computer game steering wheel
and foot pedal controller to navigate the car.2

The training process involves the teacher driving the agent in order to follow
a lead vehicle. This collects a sequence of pairs of images and control parameters
that implicitly capture the desired behaviour.

2 Action Space Clustering

Unsupervised learning techniques are often applied to percept spaces (e.g. image
or feature space), but are prone to yielding ambiguous or erroneous results. This
is often due to assumptions about suitable distance metrics used to cluster the
data. In general, action data (e.g. control signals) are of lower dimensionality
than percept data, and related points in the action domain are generally more
similar than related points in the percept domain [10]. This implies that the ac-
tion space is more suited to unsupervised learning techniques. These observations
lead to the proposition that the action space should drive the organisation of the
percept space. This idea is strongly related to embodiment, and the Embodied
Mind theory [1] [3].

For an embodied agent (e.g. all natural cognitive systems and the system pro-
posed in this work), percept data is never obtained in isolation - it is always
1 The terminology transactions and items comes from the data mining literature,

reflecting the subjects origins in market basket analysis applications.
2 Details of robotic platform and collected data sets and code available here

www.cvl.isy.liu.se/research/embodied-vehicle-navigation
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Fig. 1. Action clustering : Action clusters are formed along with sets of associated
images

coupled to action data. This coupling is exploited in this work by clustering cou-
pled percept-action exemplars, in the action space. This results in the formation
of meaningful classes of action or ‘action-types’, as well as meaningful perceptual
groups. The action data, {a1...aN}, with an = [an

turn, an
speed] ∈ $2, is clustered -

using k-means clustering - into kact = 6 clusters. Figure 1 illustrates the result
of performing this action space clustering and examples of the associated images
are shown. In order to obtain invariance to displacement, scale and rotation,
the action data is whitened prior to clustering. The data is translated (by the
mean sample value), scaled (each dimension by the associated eigen values of the
sample covariance matrix) and rotated such that the features have zero mean,
unit variance and the data axis coincide with the eigenvectors of the sample
covariance matrix.

3 System Overview

An overview of the proposed approach is illustrated in figure 2. First an exemplar
set, E, of training data of the form E = {(p1, a1), ..., (pN , aN )}, where {p1...pN}
is the set of images, and {a1...aN} is the set of action vectors, is collected (details
of this training process are given below). Symbolic representations of both the
actions, and percepts, are then formed. For the action data, k-means is applied
directly to action vectors, resulting in kact action-types, as detailed above. For
image data, a visual codebook of SIFT features is built using k-means clustering,
where the cluster centers make up the codewords. Spatial relationships between
features are represented by encoding local feature configurations, as described
in section 4.1. The visual information in each image is thus represented as a set
of codeword configurations.
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Fig. 2. System overview : Coupled percept and action data are represented as Percept-
Action (P-A) transaction vectors by concatenating visual codeword configuration vec-
tors and action-type labels. Data mining is then used to discover P-A associations that
identify feature configurations that are associated to a particular action-type. Matching
these association rules in training images then provides data for learning P-A mappings
for each association rule, that map from feature configurations to actions. Matching
the association rules in novel images then activates the associated P-A mappings, thus
providing a mechanism for generating appropriate responses to novel image data.

Links between the symbolic percept and action spaces are then obtained by
performing data mining on a combined Percept-Action (P-A) representation,
named P-A transactions. Each transaction represents an action-type coupled to
a codeword configuration, where one item in each transaction represents the
action-type, and the remaining items represent a visual codeword feature con-
figuration, as detailed in section 4.2. The data mining algorithm then processes
these transactions to produce P-A association rules.

The training data, and the mined association rules are then used to learn
action-type specific P-A mappings, as in section 5.1. These mappings map from
the continuous (un-quantised) pose of the image features associated to an action-
type, onto the continuous action vectors belonging to that action-type. These
mappings constitute affordances for the mined perceptual entities.

Still referring to figure 2, when presented with novel image data, the system
constructs the visual codeword configurations as before. These configurations
are matched to the mined association rules and the P-A mappings associated
to the rules are applied to the features that form the matching configurations,
in order to generate a response. This process of generating responses to novel
image data is detailed in section 5.2.

4 Mining Percept-Action Associations

The proposed vision system is based on local feature descriptors. A Difference of
Gaussian (DoG) detector is used to extract regions and the SIFT descriptor [11]
is used to describe the regions. A prior is placed on the scale and location of the
SIFT features used in the later stages of the process. This results in a filtering
of the set of SIFT descriptors extracted from each image. Figures 3b and 3c
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(a) Input image. (b) Sift descrip-
tors.

(c) Sift filtering. (d) Feature con-
figurations.

(e) Mined config-
uration.

Fig. 3. P-A mining process: Five stages of the feature mining process are illustrated.
Sift descriptors are extracted from the input images. These are then filtered to remove
features near the top of the image or that have overly large scales. Feature configu-
rations are then assembled and those configurations that are associated to particular
action-type are then discovered through data mining.

illustrate this filtering stage. As the lead vehicle will always remain on the ground
plain, and as features on the lead vehicle will have a limited scale in the images,
features are rejected that appear too near the top of an image or have overly
large scales.

The 128-dimensional SIFT feature descriptors are clustered to form a visual
word vocabulary, using k-means clustering. Additionally, the scale and orienta-
tion of the features are clustered to form ‘scale words’ and ‘orientation words’.
Meaning that each SIFT feature can be described using three discrete labels -
descriptor, scale and orientation words - and the continuous horizontal and ver-
tical position. For clustering the descriptor, kdesc = 50, for scale and orientation,
kscale = 5, korient = 5.

4.1 Feature Configurations

Figure 4 illustrates the method used to encode the spatial configuration of the
extracted SIFT features. A similar scheme was introduced in [5]. For every fea-
ture in an image (after filtering) a 3-by-3 grid is placed on the image, centered
on the feature, and scaled proportionally to the feature scale. Any neighbour-
ing features that fall into a tile of the grid are encoded as part of that feature
configuration, the encoding reflects which tile the feature is in i.e. it’s spatial
relation, and the visual, scale and orientation words representing the feature.
A sparse vector representation is employed for which the non-zero indices en-
code the configuration and the values store the feature index in the image, so
that the continuous feature pose may be recalled for the P-A mappings. The
feature configuration vector contains the indices of the non-zero elements of the
sparse vector, and is used to represent the visual information in the data mining
process.

Examples of feature configurations for two of the training images are shown
in figure 5. As can be seen, some of the feature configurations lie on or partially
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Fig. 4. Encoding configurations: This figure illustrates how a configuration of features
is encoded in a sparse vector representation, and how this sparse vector representation
is used to build the feature configuration vectors used by the mining algorithm. The
top left of the figure shows a configuration of features found around the central (green)
feature. The top right of the figure illustrates how the feature configuration is repre-
sented as a configuration of visual codewords at quantised relative locations, scales and
orientations. The bottom left part of the figure details how a particular feature (marked
in red in the top left) is encoded in the sparse vector representation. The bottom right
of the figure shows the sparse vector representation of the configuration. Also shown is
the feature configuration vector that forms the percept part of the transaction vectors
used in the data mining. The values of the non-zero indices of the sparse vectors are
the feature indices that identify the feature in the image, these are used when mapping
from feature pose to action parameters. Note that the center feature (green) is not
represented.

on the target vehicle, whilst many lie on the background. The full set of configu-
rations for an image (as illustrated in figure 3d) will contain considerable redun-
dancy, where each local pairwise spacial relationship will be encoded a number of
times within multiple feature configurations.

4.2 Percept-Action Transaction Database

A Percept-Action (P-A) transaction represents a feature configuration coupled
to the associated action-type. The action-type being the cluster label assigned
to the action parameters that are associated to the image from which the feature
configuration is extracted.

The set of items is I = {α1, ..., αk, R1, ...Rl}, where {α1, ..., αk} are the k = 6
action-type items and {R1, ...Rl} are the l = 540 (9 tiles, 50 visual, 5 orientation
and 5 scale words) unique spatial relationships that form the feature config-
urations. Each transaction vector is the concatenation of the action-type item
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Fig. 5. Feature configurations: Five examples of feature configurations for two frames
are shown. Some of the configurations contain features on the target, some contain
features only from the background.

with the items from the feature configuration vector, as illustrated in figure 6.
Therefore each transaction contains a subset of I with one item always drawn
from {α1, ..., αk}.

The transaction database D = {t1, t2, ..., tm} is assembled, as in figure 6,
by collecting together all P-A transactions drawn from all training data, E =
{(p1,a1), ..., (pN ,aN )}. In the experiments carried out in section 6, the total
number of transactions in the database, m = 88810. This database is then pro-
cessed using the Apriori [9] data mining algorithm, in order to find frequent and
discriminative feature configurations for each action-type.

4.3 Mining P-A Association Rules

Association rule mining is employed to mine the P-A transaction database, in
order to discover feature configurations that frequently co-occur with a particular
action-type, and not all other action-types. The algorithm finds subsets of items
from the transaction vectors that are frequent and discriminative to a given
action-type. The Apriori algorithm is run once for each action-type, where it
searches for rules including that action-type, and treats all other action-types as
negative examples.

For the experiments carried out here, the support threshold TSupp = 0.02 and
confidence threshold TConf = 99 are used for all action-types and are selected
by experimentation. These values are chosen as they provide an appropriate size
set of rules to allow for real time rule matching in novel images (as detailed
below in section 5.2). Between 400 and 500 rules are found for each action-type.
The rules contain between 3 and 10 items (including the action-type item). An
example of such a rule would be {slow-left → 114, 188, 295}, meaning that a
particular configuration of three features has been associated with actions of the
type ‘slow-left’.

For the mining, the feature configurations are represented using the indices
of the non-negative elements of the sparse vector representation, as illustrated
in figures 4 and 6. However, when matching configurations found in an image
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Fig. 6. Transaction database: Each transaction is the concatenation of an action-type
label (obtained by k-means clustering the action parameters) with a feature configu-
ration (the indices of the non-zero elements of the sparse vector representation). The
transaction database is the collection of all transactions from all training images.

to association rules, the sparse vector representation is used. The dot product is
used to efficiently match rules to configurations found in an image. Examples of
the mined association rules for each action-type are illustrated in figure 7.

5 Affordance Based Representation

This section details how the proposed system builds an affordance based repre-
sentation of the world, and how this representation is used to generate responses
to novel percept data. This is achieved by attaching learnt mappings to each
mined association rule. These map from the pose (horizontal and vertical posi-
tion, scale and orientation) of the features in rules onto actions. Linear regression
is used to learn linear mappings from pose space to action space.

5.1 Learning Action-Type Specific P-A Mappings

A linear percept-to-action (P-A) mapping, HP−A, is learnt for each association
rule (mined configuration). HP−A maps from (C ∗ 4)-dimensional feature pose
space, to 2-dimensional action space, $C∗4 → $2, where C is the number of
features that make up the rule. A bias term is included in the linear model.
An action, a, is computed from a (C ∗ 4)-dimensional pose vector, p̂, as in
equation 2.

a = HP−Ap̂ + b (2)

In order to learn each HP−A, N training examples of {ai, p̂i} pairs, (i ∈ [1, N ])
are required. The training set for each HP−A is obtained by matching rules to
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Fig. 7. Association rules: Training vectors for six action-types (from left to right on
top row: ‘slow-left’, ‘fast-left’, ‘slow-straight’, ‘fast-straight’, ‘fast-right’, ‘slow-right’)
are shown along with examples of associated configuration rules mined for each type.
In general, if the lead vehicle is to the left/center/right, then the associated action
is left/center/right. However sometimes the pose of the lead vehicle, rather than the
position is used to associate to the action-type (e.g. far right on middle row, and second
from right bottom row).

configurations found in the training images. Whenever a configuration found
in a training image is matched to a rule, the pose parameters of the features
that make up that configuration form a new pose vector p̂. The value of the
non-negative elements of the sparse vector provide the index to the matched
configurations constituent features.

For each rule, all the matched configuration pose vectors, p̂, and the associated
action vectors, a, are stacked into the training matrices, P and A respectively.
To learn the bias for the linear model an additional column of 1s is added to the
end of P, giving: P′ = (P, [1]), where [1] denotes a column vector of N rows.
Using least squares, HP−A can now be obtained as follows:

HP−A = AP′+ = AP′T (P′P′T )−1 (3)

Where P′+ is the pseudo inverse of P′.

5.2 Responding to Novel Data

A new input image is processed to generate a set of visual codeword feature
configurations as detailed above. Configurations are then compared to all the
mined action-type specific configurations (rules). Matching a configuration to a
mined rule is achieved by computing the dot product of the two sparse vector
representations. If the number of non-zero elements in the dot product is equal
to the number of non-zero elements in the sparse vector representation of the
association rule, then the rule is matched. If a match is found then an action
prediction is made as in equation 2 using the HP−A associated to the matched
rule. Once all found configurations have been compared to all rules, the output
action is computed as the median of all action predictions.
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To speed up the generation of actions, only configurations within a search
range of the previous target location are compared to the rules. The search
range is proportional to median grid size of the configurations matched in the
previous frame, and is centered at the median position of the previously matched
configurations.

6 Evaluation

The two objectives of this paper - to discover the visual entities important to the
task and to generate appropriate responses to novel data - are evaluated. This
is achieved by using ground truth data for the target vehicle position. This data
is obtained by learning (in a supervised manner) a detector for the lead vehicle.
The detector is a Waldboost detector [12] trained on hand labeled examples
- sufficient examples are used in training to provide a detector that achieves
very high accuracy on the test dataset. The position of the lead vehicle is then
used to evaluate how well the mined configurations relate to the lead vehicle.
Additionally, the ground truth data is used as input to a supervised method for
action generation, to compare to the proposed unsupervised approach.

Table 1. Hit/miss ratio for mined configurations lying on the lead vehicle

Action class slow-left fast-left slow-straight fast-straight fast-right slow-right
Hit/Miss ratio 0.95 0.78 0.83 0.74 0.92 0.87

Figure 7 shows examples of mined configurations that lie on the object of in-
terest, the lead vehicle. Indeed the majority of mined configurations do lie on the
lead vehicle, implying that the proposed method has discovered the important
visual entities. To quantitatively evaluate this, the hit/miss ratio is measured
across a test set of unseen data. A hit is defined as when at least 50% of the
features that make up a configuration lie within the bounding box obtained from
the detector. Table 1 shows the hit/miss ratio for each action-type.

The action generation mechanism is evaluated by comparing the actions gen-
erated by the system on unseen test data with actions generated by a supervised
approach. The supervised approach maps from the ground truth target pose to
the action parameters using a single linear regression model, the same as in the
proposed approach. In figure 8 it can be seen that the signals generated by both
the approaches approximately follow the expected signals.

Comparing the action signals generated by the supervised and proposed (un-
supervised) approaches (figure 8), it can be seen that both methods approxi-
mately reproduce the control signal provided by the teacher. Note that the high
accuracy of the supervised approach in parts of the signal, reflects the strongly
linear relationship between target pose and action signals.

The large peaks in the signal generated by the supervised approach correspond
to false detections. Although there are false detections (incorrect configuration
matches) in the proposed system, these generally have a minimal effect on the
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(a) Supervised method (b) Proposed method

Fig. 8. Generated action signals: The generated ‘turn-control’ action signals (red) are
shown for the proposed method and a supervised method, along with the expected
action signal (blue)

output as the output is the median of a number of predictions, therefore these
irregularities in the action signals are generally avoided.

Certain parts of the signal generated by the proposed approach do not exactly
follow the expected signal (for example from frame 100 to 150). This is in some
cases be due to the fact that the expected signal, provided by the teacher, in-
cludes instances of oversteer and compensation, and is therefore not necessarily
superior to the generated signal.

Figures 9 and 10 demonstrate the approach at imitating the desired behaviour.
In figure 9 the target is placed at three stationary positions and the agent is
shown to generate actions that drive toward the target. In figure 10 the lead
vehicle is driven around and the agent is shown demonstrating the desired be-
haviour - following the lead vehicle.

7 Discussion

This work presents a method for discovering the visual entities that are im-
portant to a given autonomous navigation task and utilising these perceptual
representations to imitate the behaviour that is demonstrated by the teacher.
The system requires no explicit definition of behaviour, uses no prior model of
the objects of interest to the task and no supervision, other than the provi-
sion of input-output exemplars in the form of images and actions i.e. recorded
experiences that exhibit the desired behaviour.

Partitioning the training exemplars using similarity of actions provides a
means of organising the perceptual space of the agent in a way that is relevant to
the problem domain. This allows for the discovery of perceptual representations
that are specific to a particular class of actions. These representations are dis-
covered using efficient association rule mining techniques. The representations
are built on a spatially encoded visual word representation. The results shown in
figure 7 and table 1 confirm that the visual entities discovered do in fact relate
to the object in the scene that is important to the task.
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Fig. 9. Action generation results: The agent is shown to demonstrate the appropriate
actions, by driving (to left - top, straight - middle, to right - bottom) toward the target
and then coming to stop

Fig. 10. Behaviour imitation: The behaviour demonstrated by example is replicated
by the agent, as it follows the lead vehicle

By attaching action generation models (linear percept-to-action mappings) to
each discovered visual entity, the system builds an affordance based representa-
tion of the world. This novel representation directly couples percepts to actions,
resulting in a system that is able to respond to novel percepts in real time. The
results presented in figures 8, 9 and 10 demonstrate that this novel affordance
based representation generates the type of actions expected and allows the sys-
tem to imitate the behaviour demonstrated by the teacher, when presented with
new situations. This is achieved with no explicit definition of the behaviour.

Choosing kact = 6 ensures that there is sufficient inter and intra class variance
of visual information whilst also ensuring sufficient exemplars for learning the
visual representations and mappings for each action-type. Larger kact reduces
the number of training examples for both the configuration mining and mapping
learning. Smaller kact increases within class variation and reduces the discrimi-
native power of the mined configurations. Clearly the selection of kact will impact
on the quality of both the mined configurations and the generated actions. Future
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work will investigate the effect of this parameter on system performance, and
investigate the use of mode seeking and other clustering algorithms for action
space clustering.
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Spatiotemporal Contour Grouping
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Abstract. In recent work [1], we introduced a framework for model-
based perceptual grouping and shape abstraction using a vocabulary of
simple part shapes. Given a user-defined vocabulary of simple abstract
parts, the framework grouped image contours whose abstract shape was
consistent with one of the part models. While the results showed promise,
the representational gap between the actual image contours that make
up an exemplar shape and the contours that make up an abstract part
model is significant, and an abstraction of a group of image contours
may be consistent with more than one part model; therefore, while recall
of ground-truth parts was good, precision was poor. In this paper, we
address the precision problem by moving the camera and exploiting spa-
tiotemporal constraints in the grouping process. We introduce a novel
probabilistic, graph-theoretic formulation of the problem, in which the
spatiotemporal consistency of a perceptual group under camera motion
is learned from a set of training sequences. In a set of comprehensive
experiments, we demonstrate (not surprisingly) how a spatiotemporal
framework for part-based perceptual grouping significantly outperforms
a static image version.

1 Introduction

Interest in the perceptual grouping of image contours peaked in the late 1990’s,
when the mainstream object recognition community was primarily shape-based
and the bottom-up recovery of distinctive indexing structures was critical in
identifying a small number of candidate objects (from a large database) present
in the scene. However, the advent of appearance-based recognition (and a corre-
sponding movement away from shape), combined with the reformulation of the
recognition problem as a detection problem (in which the image is searched for
a single target object), diminished the role of perceptual grouping. Even with
the re-emergence of image contours as the basis for categorical models (e.g., [2]),
the continuing focus on object detection means that the stronger shape prior of-
fered by a detector subsumes the domain-independent shape priors that make up
the non-accidental properties that define perceptual grouping. In other words,
the process of domain-independent, bottom-up perceptual grouping to extract
a meaningful indexing structure in order to select promising candidates is un-
necessary, since in a detection task we know what, i.e., which candidate, we’re
looking for.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 539–552, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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There are clear signs that the community is moving back toward unexpected
object recognition, i.e., identifying an image of an unknown object from a large
database. Since a linear search through a space of object detectors clearly does
not scale to large databases, we must drastically prune the space of candidate
detectors to apply to the image. This, in turn, means recovering distinctive
image structures that can effect such pruning – a return to perceptual grouping.
Yet a simple return to classical grouping techniques is insufficient, for while
non-accidentally related contours in an image may be grouped, there is still a
semantic gap between the resulting contour groups and the shape structures
that comprise a categorical shape model. Only when the contour groups are
abstracted can they be matched to categorical models.

In recent work [1], we developed a framework in which a small vocabulary of
abstract part shape models were used to both group and abstract image contours,
yielding a covering of the image with a set of 2-D abstract parts which model
the projections of the surfaces of a set of abstract volumetric parts that describe
the coarse shape of the object. Thus, rather than invoking an object-level shape
prior (detector), which we don’t have since we don’t know what we’re looking at,
we instead invoke a small, finite set of intermediate-level, domain-independent
shape priors to drive the grouping and abstraction processes (we assume only
that the parts can be assembled to describe a significant portion of any object
in the database). While the method shows clear promise, there is a fundamental
trade-off between abstraction and ambiguity; as a greater degree of abstraction
of a set of image contours is allowed, the more ambiguous the abstraction, i.e.,
the abstraction is consistent with an increasing number of shape models.

In this paper, we exploit the dimension of temporal coherence to help cope
with the ambiguity of a shape abstraction inherent in a single static image. Like
in [1], we rely on a small, user-defined, abstract shape vocabulary to drive the
process of perceptual grouping in a single frame. However, unlike [1], which re-
stricts its analysis to a single image, we assume access to a video sequence in
which there is relative motion between the camera and the object, and exploit
the spatiotemporal coherence of a perceptual group to reduce false positives that
are abundant in a single image. If a perceptual group of contours is consistent
with an abstract part model, and is stable over time in terms of its shape (con-
tinues to match the same part model) and pose, then we consider the perceptual
group to be non-accidental. We introduce a novel probabilistic, graph-theoretic
formulation of the problem, in which the spatiotemporal consistency of a per-
ceptual group under camera motion is learned from a set of training sequences.
In a set of comprehensive experiments, we demonstrate (not surprisingly) how
a spatiotemporal framework for part-based perceptual grouping significantly
outperforms a static image version.

2 Related Work

The problem of using simple shape models to group and regularize 2-D contour
data has been extensively studied in the past. Many have approached this prob-
lem assuming figure-ground segmentation, i.e., they take as input a silhouette,
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while others have assumed knowledge of the object present in the scene, i.e.,
object-level shape priors. In our approach, we assume neither; rather, we adopt
the classical perceptual grouping position and assume only mid-level shape pri-
ors. In the relevant work on this topic, such priors can range from simple smooth-
ness to compactness to convexity to symmetry to more elaborate part models,
but stop short of object models.

The non-accidental regularity of convexity to group contours into convex parts
has been explored by Jacobs [3] and by Estrada and Jepson [4], to name just two
examples. Stahl and Wang [5] explored the non-accidental regularity of symme-
try to group contours into symmetric parts, while Lindeberg [6] has explored
symmetry to extract symmetric blobs and ridges directly from image data.
Although a particular non-accidental shape regularity is exploited by each of
these models, they also restrict the image domain. Furthermore, there is little
to unify the approaches, since each mid-level shape prior comes with its own
computational model.

The early recognition-by-parts paradigm yielded more powerful part models.
Pentland [7] partitioned a binary image into 2-D parts corresponding to the
projections of a vocabulary of 3-D deformable superquadrics. His method was
never applied to contours, since its main focus was more on the problem of part
selection (from a large set of part hypotheses) than the grouping of features
into parts. Dickinson et al. [8] used part-based aspects (representing the possible
views of a vocabulary of volumetric parts) to cover the contours in an image.
Pilu and Fisher [9], sought to recover 2-D deformable part models from image
contours. Nonetheless, all these approaches were restricted to scenes containing
very simple objects, since they assumed a one-to-one correspondence between
image and model contours. These systems achieved little, if any, true abstraction
and were rarely, if ever, applied to textured objects.

Fitting part models to regions is the dual problem of fitting part models to con-
tours. A method to find instances of a 2-D shape (possibly a part model) in an
image was proposed by Liu and Sclaroff [10]. Taking as input a bottom-up image
region segmentation, they explore the space of region merges and splits, search-
ing for region groups whose shapes are similar to a 2-D statistical template model.
Also starting with a bottom-up region segmentation, Wang et al.’s approach [11]
searches for region groups having a particular shape via a stochastic framework
that explores the space of region merges and splits. These approaches, however,
not only admit a single model shape, but their grouping process is heavily driven
by appearance homogeneity. Furthermore, Wang et al.’s method does not attempt
shape abstraction, employing a very detailed model of the shape.

Although we know of no approaches dealing with the problem of finding spa-
tiotemporally coherent perceptual groups, this can be considered, in a sense, to
be similar to the tracking problem. Tracking approaches often require some type
of initialization to indicate the location, in an initial frame, of the region or ob-
ject of interest that is to be tracked. Moreover, if during the tracking process the
tracker’s focus of attention drifts away from the objects of interest, some recovery
mechanism needs to be in place to recover from such errors. Our method, however,
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requires neither an initialization nor a drift-recovery step, since the hypothesis de-
tection process applied at each frame acts as an interest operator, yielding the set
of image regions of interest in each frame.

The solution proposed in this paper to the problem of determining multiple
sequences (i.e., trajectories) of closed contours, each corresponding to the bound-
ary of a particular object surface across frames, is formulated in graph-theoretical
and probabilistic terms, and solved efficiently using the Viterbi algorithm. Quach
and Farooq [12] have applied Viterbi to solve the data association problem for
single-target tracking in a maximum likelihood fashion, assuming that object
motion is a Markov process. More recently, Yan et al. [13] have used Viterbi
for single-target tracking of a tennis ball in video. These approaches only admit
a single-target, and require both an initialization step and a step to identify
the object of interest at the end of the sequence. Our method, however, is not
only multi-target, modeling both shape and appearance to disambiguate surface
correspondences across frames, but also does not require any type of initial-
ization or recovery mechanism. Moreover, our formulation models second-order
relationships between the position, orientation and scale of the surface contours
across frames rather than simply modeling first-order smoothness of the tracked
feature’s location across frames.

3 Overview of the Approach

The input to our perceptual grouping framework is a video sequence and a vo-
cabulary of shape primitives. First, hypotheses are independently recovered from
each frame using the method proposed in [1]. Specifically, we begin by computing
a region oversegmentation (Figure 1(b)) of the frame (Figure 1(a)). The resulting
region boundaries yield a region boundary graph (Figure 1(c)), in which nodes
represent region boundary junctions where three or more regions meet, and edges
represent the region boundaries between nodes; the region boundary graph is a
multigraph, since there may be multiple edges between two nodes. We cast the
problem of grouping regions into perceptually coherent shapes as finding simple
cycles in the region boundary graph whose shape is “consistent” with one of the
model shapes in the input vocabulary (Figure 1(d)); these are called consistent
cycles. Since the number of simple cycles in a planar graph [14] is exponen-
tial, simply enumerating all cycles (e.g., [15]) and comparing their shapes to the
model shapes is intractable. Instead, we start from an initial set of single-edge
paths and extend these paths (see Section 4.1), called consistent paths, as long
as their shapes are consistent with a part of some model. To determine whether
a certain path is consistent (and therefore extendable), the path is approximated
at multiple scales with a set of polylines (piecewise linear approximations), and
each polyline is classified using a one-class classifier trained on the set of training
shapes (Figure 1(e)). When a consistent path is also a simple cycle, it is added
to the set of output consistent cycles (Figure 1(f)).

Figure 1(d) shows the input vocabulary used in our experiments: four part
classes (superellipses plus sheared, tapered, and bent rectangles, representing
the rows) along with a few examples of their many within-class deformations
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Problem Formulation: (a) input image; (b) region oversegmentation; (c) region
boundary graph; (d) example vocabulary of shape models (used in our experiments);
(e) example paths through the region boundary graph that are consistent (green) and
inconsistent (red); (f) example detected cycles that are consistent with some model
in the vocabulary; (g) abstractions of cycles consistent with some model; (h) example
cycles inconsistent with all models

(representing the columns). Each shape model is allowed to anisotropically scale
in the x- and y-directions, rotate in the image plane, and vary its deformation
parameters (e.g., shearing, tapering, bending).

The algorithm outputs cycles of contours that are consistent with one of the
model (training) shapes. However, as mentioned in Section 1, the consistent cy-
cle classifier may yield many false positives at reasonable recall rates. Some of
the recovered consistent cycles may yield shapes that are qualitatively different
from those in the vocabulary, while in other cases the shapes may be consistent
but accidental, e.g., a number of the detected consistent cycles might not corre-
spond to actual scene surfaces. By exploiting spatiotemporal consistency of these
consistent cycles across a video sequence, we can filter out many of these false
positives. That is, we assume that the only cycles that are likely to be caused
by the projection of an actual scene surface are those whose shape and internal
appearance remain stable or vary smoothly across consecutive frames.

We formulate the problem of finding sequences of consistent cycles with tem-
porally coherent shapes across frames of a video sequence in graph-theoretical
and probabilistic terms. We refer to such sequences as trajectories. The po-
tential correspondences between consistent cycles detected at different frames
are modeled by constructing a graph in which a maximum-weight path cor-
responds to a trajectory with maximum joint probability of including all and
only those consistent cycles in the sequence that correspond to the same scene’s
surface boundary. Specifically, nodes in the graph encode pairs of potential
matches between consistent cycles in nearby frames, edges connect pairs of
nodes that share a common consistent cycle, and edge weights encode the prob-
ability of correctness of the cycle matches connected by the edge conditioned
on geometric and photometric properties of the cycles involved. We learn this
probability distribution from a few hand-labeled training sequences. The top
trajectories of temporally coherent consistent cycles are obtained by iteratively
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applying the Viterbi algorithm on the graph to find paths with maximum joint
probability, and removing from the graph the nodes involved in such paths.

4 Detecting Consistent Cycles

In the following subsections, we review the steps of our algorithm, described
in [1], for finding consistent cycles in a single frame, i.e., cycles whose shape is
consistent with one of the model shapes. The two main steps of the algorithm are
path initialization and path extension. In Section 5, we introduce the temporal
coherence constraint to our grouping framework.

4.1 Path Initialization

The first step in the algorithm generates an initial set of single-edge paths that
will be iteratively extended into cycles by repeated executions of the path ex-
tension step. This set of edges should be as least redundant as possible, to avoid
generating the same cycle more than once (from different edges in the same cy-
cle). Moreover, all possible graph cycles should be realizable by path extensions
starting from edges in this set. Such an optimal set corresponds to the feedback
edge set, which is the smallest set of edges whose deletion results in an acyclic
graph. This initial set of single-edge paths are added to the queue of paths to
be extended.

4.2 Path Extension

At each algorithm iteration, one of the paths is taken off the queue. If the path
is a cycle and it is consistent with at least one of the shapes in the vocabulary of
model shapes, the cycle is added to the output list of consistent cycles. If, however,
the path is not a cycle, its consistency is also checked. If the path is consistent
with a portion of the boundary of at least one shape in the vocabulary, then the
path’s possible extensions by a single edge are added to the queue. The algorithm
continues until the queue is empty, and then outputs the consistent cycles.

Consistency of a cycle or path is checked by first approximating the shape of
the cycle or path with a polyline computed at different scales using the Ramer-
Douglas-Peucker algorithm [16]. For each resulting polyline, a feature vector is
computed, encoding the angles and normalized lengths of the linear segments
making up the polyline. As illustrated in Figure 2 (a), a feature vector’s length
is a function of the number of linear segments comprising the polyline. A con-
sistency decision for a feature vector is made by a one-class classifier that deter-
mines if the feature vector is geometrically close to one of the training feature
vectors. (Notice that since the feature vectors can have different sizes depending
on the lengths of their corresponding polylines1, there is a classifier for each pos-
sible feature vector length.) The scales at which their corresponding polylines
1 The number K of linear segments comprising the longest polyline approximating a

model’s contour is determined by the shapes in the vocabulary and the “level of ab-
straction” (i.e., tolerance, proportional to model size), used to compute the polyline
approximations of training model fragments. In our implementation, K = 13.
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Fig. 2. (a) Feature vector computation for a polyline approximation of a contour; (b)
Model-based abstraction (red) of a consistent cycle hypothesis (blue): the black line
segments illustrate the distance between equidistantly sampled model points to their
closest points along the hypothesis’ contour

are consistent are associated with the path. If a path at a particular scale is
not consistent, then no extension of that path can be consistent at that scale.
Thus, when a path is initialized, it is associated with all scales, and when it is
extended, its associated scales can only remain constant or decrease. If there is
no scale at which the path is consistent, the path is discarded.

4.3 Training the Classifiers

We trained the classifiers using feature vectors generated from approximately
4 million contour fragments of noisy instances of within-class deformations of
each model. Feature vectors are generated from the polyline approximations
(computed using a tolerance proportional to model size) of each sampled con-
tour fragment and their dimensionality is reduced via PCA. Classification is
performed on the reduced dimensionality vectors. For the model vocabulary em-
ployed in our experiments, 99% of the feature vector variance is, in general,
captured by the top N PCA components for the case of feature vectors of di-
mension 2N−1, corresponding to polylines with N linear segments. We obtained
very fast classification and good accuracy using as classifiers a Nearest Neighbor
Data Description approach [17].

5 Temporal Coherence of Consistent Cycles

We formulate the problem of finding temporally coherent consistent cycles in
a video sequence in graph-theoretical terms as the search for maximum-weight
paths between the source and sink nodes of a particular directed graph G =
(V, E). In order to obtain a more robust model of consistent cycle correspon-
dence across frames, we not only model the first derivative of a cycle’s pose
function (i.e., the cycle’s frame-to-frame change in position, scale and orien-
tation), but we also model its second derivative, i.e., the change in the pose
transformation function between corresponding consistent cycles. For this rea-
son, instead of modeling the problem via a trellis graph, in which nodes represent
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consistent cycles and edges model potential cycle correspondences across frames,
we actually define G as the dual of such a graph. Namely, nodes represent po-
tential matches between consistent cycles detected in close spatial and temporal
proximity, and there is an edge between each pair of nodes that share a common
consistent cycle. Two special nodes, a source and a sink, also exist, which are
connected to every other node in G. Edge weights correspond to a log-probability
conditional to various attributes of the cycles involved in the edge, such that a
maximum-weight path from source to sink corresponds to the trajectory with the
highest joint probability of containing the densest sequence of correct consistent
cycle matches.

5.1 Retrieving Consistent Cycle Trajectories

The construction of graph G is as follows. The set V contains two special nodes,
s and t, called source and sink, respectively. All other nodes in V correspond
to potential matches between consistent cycles detected at different frames and
are referred to as internal. Formally, if Ci is the set of all consistent cycles de-
tected at frame i, the set of nodes V is defined as V = V internal ∪ {s, t}, where
V internal ⊂ ⋃

i<j Ci × Cj. An internal node involving consistent cycles x and y is
noted by < x, y >. There is an edge connecting every pair of nodes that share
a common consistent cycle. The direction of these edges, referred to as internal
edges, is determined by the frame numbers at which the non-common consistent
cycles in the pair were detected. Namely, edges leave from the nodes whose non-
common consistent cycles are detected at earlier frames. There is also a directed
edge from s to every internal node, as well as directed edges from all internal
nodes to t. The former edges called initial, while the latter are called final. For-
mally, E = E initial ∪ E internal ∪ Efinal, where E initial = {(s, < x, y >) :< x, y >∈ V },
E internal = {(< x, y >, < y, z >) :< x, y >, < y, z >∈ V and n(x) < n(z)}, and
Efinal = {(< x, y >, t) :< x, y >∈ V }, where n(x) denotes the frame at which
cycle x was detected.

A match < x, y > is said to be correct iff consistent cycles x and y correspond
to projected boundaries of the same image surface. The cardinality of V (and
thus the total running time of the algorithm) can be kept low by not including
in V internal cycle correspondences that are highly unlikely to be correct. This
can be done by assuming that a cycle undergoes smooth changes in location,
scale, shape, and appearance across frames. Therefore, potential matches can
be considered only between cycles whose distance along these dimensions falls
within given threshold values proportional to the distance between the frames
in which they were detected. Also, consideration can be restricted to matches of
cycles detected at frames that are within a specified maximum frame distance
W . This maximum frame distance should be chosen such that the likelihood of
a consistent cycle being undetected (e.g., due to undersegmentation) for that
many consecutive frames is low.

We model the change in appearance between two potentially corresponding
cycles by first approximating the shape of one of the cycles by a polygon whose
vertices are points sampled at equidistant positions along the cycle. The cycle’s
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internal appearance is then modeled by computing a homogeneous triangulation
of the polygon (e.g., a Delaunay triangulation constraining triangle angles and ar-
eas to ensure an approximately uniform sampling of the image region inside the
cycle at a fine enough resolution). The triangulation is then mapped onto the other
cycle by means of the estimated geometrical transformation between the cycles,
and their appearance distance is measured in terms of the absolute difference be-
tween sampled image color values at the centroids of corresponding triangles.

From all trajectories of consistent cycles corresponding to some particular
scene surface, we are interested in finding the trajectory that is the densest, i.e.,
the one that does not miss any frame where a consistent cycle accounting for
the specific surface exists. A correct match < x, y > is said to be consecutive
iff no consistent cycle corresponding to the same surface boundary as x and y
was detected in a frame k : n(x) < k < n(y). Let x∼ y represent the relation
“< x, y > is a correct and consecutive match”, and let ¬b(x) (¬a(x)) symbolize
the predicate “no consistent cycle that correctly matches x was detected before
(after) frame n(x).” If < xi, xj > is a potential match, then Tij represents the
geometric transformation between cycles xi and xj . The weight w(·) of an edge
is a log conditional probability defined depending on the type of edge:

w((s, < x1, x2 >)) = log (p(¬b(x1))p(x1∼x2|θ12)) (1)
w((< x1, x2 >, < x2, x3 >)) = log (p(x2∼x3|x1∼x2, φ123) (2)

w((< x1, x2 >, t)) = log (p(¬a(x2))) , (3)

where θij = 〈tij , δnij , δshij〉 and φijk = 〈tjk, δnjk, δshjk, δTijk〉 are attributes
of the consistent cycles involved in the edge. Namely, tij ∈ R2 is the change
in contour position between xi and xj , δnij = |n(xj) − n(xi)|, δshij is the
shape distance between cycles xi and xj , and δTijk is the difference between the
transforms Tij and Tjk computed at each consistent cycle correspondence.

With this edge weight specification, a path (s, < x1, x2 >, . . . , < xr−1, xr >, t)
from source to sink achieving maximum weight corresponds to the trajectory of
consistent cycles x1, . . . , xr maximizing the probability

p(¬b(x1))p(¬a(xr))p(x1∼x2|θ12)
r−1∏
i=2

p(xi∼xi+1|xi−1∼xi, φi−1,i,i+1). (4)

Now, under the following natural assumptions:

1. f ∼g, ¬b(f), and ¬a(g) are mutually independent,
2. xi∼xj and φk,l,m are independent if i �= l or j �= m, and
3. xi∼xj and θl,m are independent if i �= l or j �= m,

equation 4 is equivalent to the joint probability

p
(
¬b(x1), x1∼x2∼ . . .∼xr,¬a(xr)|θ12, {φi−1,i,i+1}r−1

i=2

)
, (5)

thus yielding x1, . . . , xr as the trajectory of consistent cycles most likely to be
the longest and densest trajectory of correct consistent cycle correspondences
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in the video sequence. Trajectories of consistent cycles can thus be efficiently
generated in decreasing order of probability by iteratively applying the Viterbi
algorithm [18] on G to find the maximum-weight path from s to t, and then
removing from V all internal nodes belonging to such a path.

Due to undersegmentation errors in the low-level region segmentation of a
frame n, which is the input to the consistent cycle detector, it is possible that no
consistent cycle is detected in frame n that corresponds to a surface boundary
for which consistent cycles have been indeed detected in nearby frames. In these
cases, the retrieved trajectories will be missing the frames in which the underseg-
mentation occurred. A surface’s position and shape can however be interpolated
in a missing frame from its known position and shape in nearby trajectory frames.
In our approach, we compute an initial guess for the position and shape of the
surface boundary in frame n by linearly interpolating the transformation be-
tween the corresponding detected consistent cycles in the closest frames around
n. This guess is refined by optimizing the normalized cross-correlation between
the image data internal to the consistent cycle in a nearby frame where it was
detected, and the image data inside a 2-D window around the initial position
estimate in frame n. The surface boundary is thus interpolated into frame n, un-
less the image appearance inside the contour in the estimated position of frame
n and the contour appearance in the closest frames differs significantly. In that
case, the surface is assumed to be occluded in frame n.

5.2 Probability Density Estimation

In order to compute the edge weights, we need to model the probability distribu-
tions involved in Equations 1, 2 and 3. By applying Bayes’ rule, the probability
function from Equation 1, p(x1∼x2|θ12), can be rewritten as

p(θ12|x1∼x2)p(x1∼x2)
p(θ12|x1∼x2)p(x1∼x2) + p(θ12|x1 �x2)p(x1 �x2)

, (6)

and the probability function p(x2∼x3|x1∼x2, φ123) from Equation 2 as:

p(φ123|x2∼x3, x1∼x2)p(x2∼x3, x1∼x2)
p(φ123|x2∼x3, x1∼x2)p(x2∼x3, x1∼x2) + p(φ123|x2 �x3, x1∼x2)p(x2 �x3, x1∼x2)

.

(7)
We can thus estimate these probability distributions from training sequences.

Notice that we can factor p(θ12|x1 �� x2) as

p(t12|δn12, δsh12, x1 �� x2)p(δn12, δsh12|x1 �� x2), (8)

where ��∈ {∼,�}. In our experiments, we quantized the space of 〈δn12, δsh12〉
values, discretely modeling p(δn12, δsh12|x1 �� x2) via a probability table. And
p(t12|δn12, δsh12, x1 �� x2) (for each quantized value of (δn12, δsh12)) was mod-
eled by a multivariate Gaussian, which appeared to be a good approximation to
this distribution. Analogously, p(φ123|x2 �� x3, x1∼x2) can be factored as

p(t23, δT123|δn23, δsh23, x2 �� x3, x1∼x2)p(δn23, δsh23|x2 �� x3, x1∼x2), (9)



Spatiotemporal Contour Grouping Using Abstract Part Models 549

and so we modeled p(δn23, δsh23|x2 �� x3, x1 ∼ x2) by a probability table, and
p(t23, δT123|δn23, δsh23, x2 �� x3, x1∼x2) by a multivariate Gaussian distribution
for each quantized value of (δn23, δsh23). The value of p(x2 �� x3, x1∼x2) is com-
puted directly from the training sequences. Finally, we approximated p(¬b(x))
by qn(x)−1 and p(¬a(x)) by qF−n(x), where F is the total number of frames in
the sequence and q is a tight lower bound of p(x∼y|n(y) = n(x) + 1) computed
from the training sequences.

6 Results

We are not aware of any benchmark dataset for evaluating spatiotemporal con-
tour grouping using abstract part models. Therefore, to evaluate our proposed
approach, we generated an annotated dataset consisting of 12 video sequences2

(a total of 484 frames), containing object exemplars whose 3-D shape can be
qualitatively described by cylinders, bent or tapered cubic prisms, and ellip-
soids. The visible surface contours of each object’s 3-D shape that are consistent
with 2-D models from our vocabulary were hand-labeled.

Figures 3 and 4 illustrate the output of our approach on two selected frames
(closer to the beginning and end) of six sequences in the dataset: row (a) shows
the input frames; row (b) shows the consistent cycles closest to the ground-truth
detected at each static frame (obtained by [1]); row (c) shows the temporally co-
herent detected consistent cycles closest to the ground-truth; and row (d) shows
the ground-truth surface contours. Notice that images in rows (c) and (d) also
show the boundaries of the region oversegmentation used as input to [1] (com-
puted using the “statistical region merging” approach of Nock and Nielsen [19]
with its parameters fixed for all frames from all sequences). The numbers in
the top-right corner of each image in rows (b) and (c) correspond to the total
number of consistent cycles in each case. The numbers appearing in the centroid
of the recovered hypotheses in these rows indicate the rank of the hypothesis
among all recovered hypotheses in the frame. In the case of static consistent
cycle detection, such ranking is a function of the fitting error between the con-
sistent cycle and the model abstracting the cycle3. In the spatiotemporal case,
hypotheses are ranked by the length of the consistent cycle’s temporal flow (i.e.,
the number of frames in which the cycle is found to be temporally consistent).

These ranking values were obtained after a non-maximum suppression step
was applied to eliminate redundant cycle hypotheses in the static and dynamic
cases, by discarding all but one of the similar consistent cycles competing for

2 Available at http://www.cs.toronto.edu/~psala/datasets.html
3 Abstraction of a cycle’s contour by a model in the vocabulary is accomplished via

a robust active shape model fitting framework. (See [1] for details.) A hypothesis
is ranked based on the average distance from equidistantly sampled points along
the abstracting model’s contour to their closest points on the hypothesis’ contour,
normalized by the mean distance from the hypothesis’ centroid to its contour. (See
Figure 2 (b).) (As in [1], a significant portion of the hypothesis’ contour has to be
explained by the model for an abstraction to be considered correct.)

http://www.cs.toronto.edu/~psala/datasets.html
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Fig. 3. Part Recovery (see text for discussion)

the same image evidence. (The cycle achieving the smallest shape distance to all
other competing cycles was kept.) In the static case, as in [1], detected hypotheses
with a high fitting error to their abstraction shapes were also discarded. By
comparing the rankings of the recovered hypotheses corresponding to ground-
truth parts in the static (row (b)) and dynamic (row (c)) cases, we can see that
employing temporal coherence outperforms the static version, as the rankings in
row (c) are consistently higher than those in row (b). In some cases, even the
rankings of ground-truth parts in row (c) correspond to the top ones. Moreover,
the total number of candidate hypotheses in the static case is generally higher
than in the dynamic version, demonstrating the superior performance of the
dynamic approach to prune false positive hypotheses.
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Fig. 4. Part Recovery (cont’d - see text for discussion)
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A quantitative evaluation of our spatiotemporal grouping framework is shown
in the precision-recall curves of Figure 5, where it is compared to [1] as a base-
line. There, it can be seen that both precision and recall increase substantially
when temporal coherence is taken into account. The increase in precision can be
explained as the result of the pruning ability of our temporal coherence frame-
work on false positive consistent cycles. Since such hypotheses are produced by
accidental arrangements of texture or image structure in a single frame, they
are unlikely to be temporally stable. Moreover, in the spatiotemporal case, hy-
potheses are ranked by their persistence, which proves to be a better measure
of hypothesis relevance than ranking by the fitting error between a consistent
cycle’s contour and its model abstraction contour, as employed in the static case.
The improved recall is the result of interpolating hypotheses when gaps of false
negatives (mostly due to undersegmentation) have a length not greater than
the maximum frame distance W used in the construction of graph G. (In our
experiments, W = 6.) In terms of running time, the entire process of searching
for consistent cycle trajectories in a video sequence takes an average time of less
than 5 seconds per frame, in our MATLAB implementation running on a laptop.
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Fig. 5. Quantitative Evaluation: Precision-recall curve (see text for discussion)

7 Conclusions

The semantic gap between real scene contours and the abstract parts that make
up categorical shape models can be bridged with the help of a small vocabu-
lary of part models. Yet as the degree of abstraction between image contours
and abstract parts increases, so too does the ambiguity of a perceptual group
of image contours – if abstraction is viewed as a process of “controlled hallu-
cination”, the more you hallucinate, the greater the possible mappings to dif-
ferent parts. By imposing spatiotemporal constraints on the grouping process,
we can significantly reduce such ambiguity, ensuring greater precision of the re-
covered abstract parts which, in turn, facilitates the indexing and recognition of
categorical shape models.

References

1. Sala, P., Dickinson, S.: Contour grouping and abstraction using simple part models.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315,
pp. 603–616. Springer, Heidelberg (2010)



552 P. Sala, D. Macrini, and S. Dickinson

2. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments
for object detection. PAMI 30, 36–51 (2008)

3. Jacobs, D.W.: Robust and efficient detection of salient convex groups. PAMI 18,
23–37 (1996)

4. Estrada, F., Jepson, A.: Perceptual grouping for contour extraction. In: ICPR
(2004)

5. Stahl, J., Wang, S.: Globally optimal grouping for symmetric boundaries. In: CVPR
(2006)

6. Lindeberg, T.: Detecting salient blob-like image structures and their scales with
a scale-space primal sketch: A method for focus-of-attention. IJCV 11, 283–318
(1993)

7. Pentland, A.P.: Automatic extraction of deformable part models. IJCV 4, 107–126
(1990)

8. Dickinson, S.J., Pentland, A.P., Rosenfeld, A.: 3-d shape recovery using distributed
aspect matching. PAMI 14, 174–198 (1992)

9. Pilu, M., Fisher, R.: Model-driven grouping and recognition of generic object parts
from single images. In: ISIRS, Lisbon, Portugal (1996)

10. Liu, L., Sclaroff, S.: Deformable model-guided region split and merge of image
regions. IVC 22, 343–354 (2004)

11. Wang, J., Gu, E., Betke, M.: Mosaicshape: Stochastic region grouping with shape
prior. In: CVPR (2005)

12. Quach, T., Farooq, M.: Maximum likelihood track formation with the viterbi al-
gorithm. In: CDC, Lake Buena Vista, FL, pp. 271–276 (1994)

13. Yan, F., Christmas, W., Kittler, J.: A maximum a posteriori probability viterbi
data association algorithm for ball tracking in sports video. In: ICPR, Hong Kong,
pp. 279–282 (2006)

14. Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles
in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107.
Springer, Heidelberg (2007)

15. Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a
graph. Commun. ACM 13, 722–726 (1970)

16. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. CC 10, 112–122 (1973)

17. Tax, D., Duin, R.: Data description in subspaces. In: ICPR, vol. 2, pp. 672–675
(2000)

18. Forney, G.D.: The viterbi algorithm. Proceedings of the IEEE 61, 268–278 (1973)
19. Nock, R., Nielsen, F.: Statistical region merging. PAMI 26, 1452–1458 (2004)



Efficient Multi-structure Robust Fitting
with Incremental Top-k Lists Comparison

Hoi Sim Wong, Tat-Jun Chin, Jin Yu, and David Suter

School of Computer Science,
The University of Adelaide, South Australia

{hoi.wong,tjchin,jin.yu,david.suter}@adelaide.edu.au

Abstract. Random hypothesis sampling lies at the core of many popu-
lar robust fitting techniques such as RANSAC. In this paper, we propose
a novel hypothesis sampling scheme based on incremental computation
of distances between partial rankings (top-k lists) derived from residual
sorting information. Our method simultaneously (1) guides the sampling
such that hypotheses corresponding to all true structures can be quickly
retrieved and (2) filters the hypotheses such that only a small but very
promising subset remain. This permits the usage of simple agglomerative
clustering on the surviving hypotheses for accurate model selection. The
outcome is a highly efficient multi-structure robust estimation technique.
Experiments on synthetic and real data show the superior performance
of our approach over previous methods.

1 Introduction

Robust model fitting techniques play an integral role in computer vision since
the observations or measurements are frequently contaminated with outliers.
Major applications include the estimation of various projective entities from
multi-view data [1] which often contain false correspondences. At the core of
many robust techniques is random hypothesis generation, i.e., iteratively gener-
ate many hypotheses of the geometric model from randomly sampled minimal
subsets of the data. The hypotheses are then scored according to a robust cri-
terion (e.g., RANSAC [2]) or clustered (e.g., Mean Shift [3]) to find the most
promising model(s). Success rests upon retrieving an adequate number of all-
inlier minimal subsets which may require a large enough number of sampling
steps.

This paper addresses two major issues affecting the current paradigm of robust
estimation. The first is that hypothesis generation tends to be time consuming for
heavily contaminated data. Previous methods attempted to improve sampling
efficiency by guiding the sampling such that the probability of selecting all-
inlier minimal subsets is increased. These methods often depend on assumptions
or domain knowledge of the data, e.g., inliers have higher keypoint matching
scores [4, 5] or are correspondences that respect local geometry patterns [6].
Most methods, however, are not optimized for data with multiple instances (or
structures [7]) of the geometric model. This is because they sample based on

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 553–564, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. (a) Input data with 5 structures (lines) with 100 points per structure and
250 gross outliers. The inlier scale is 0.01. (b) 500 hypotheses are generated with the
proposed multi-structure guided sampling scheme and simultaneous hypothesis filter-
ing, producing 146 good hypotheses as shown in the figure. (c) Simple agglomerative
clustering of the remaining 146 hypotheses gives the final fitting result.

estimated inlier probabilities alone while ignoring the fact that only inliers from
the same structure should be included in the same minimal subset. Such methods
may inefficiently generate a large number of samples before obtaining an all-inlier
minimal subset for each genuine structure in the data.

The second crucial issue is the lack of a principled approach to fit the multiple
structures in the data. Many previous works [8, 9] simply apply RANSAC se-
quentially, i.e., fit one structure, remove corresponding inliers, then repeat. This
is risky because inaccuracies in the initial fits will be amplified in the subsequent
fits [10]. Moreover, finding a stopping criterion for sequential fitting that accu-
rately reflects the true number of structures is non-trivial. Methods based on
clustering [11] or mode detection [3, 12] given the generated hypotheses are not
affected by the dangers of sequential fitting. However, if there are insufficient
hypotheses corresponding to the true structures, the genuine clusters will easily
be overwhelmed by the irrelevant hypotheses. Consequently, these methods often
miss the true structures or find spurious structures.

The inability to retrieve “good” hypotheses at sufficiently large quantities
represents the fundamental obstacle to the satisfactory performance of previous
methods. To address this limitation, we propose a novel hypothesis sampling
scheme based on incremental computation of distances between partial rankings
or top-k lists [13] derived from residual sorting information. Our approach en-
hances hypothesis generation in two ways: (1) The computed distances guide
the sampling such that inliers from a single coherent structure are more likely
to be simultaneously selected. This dramatically improves the chances of hitting
all-inlier minimal subsets for each structure in the data. (2) The qualities of the
generated hypotheses are evaluated based on the computed distances. This per-
mits an on-the-fly filtering scheme to reject “bad” hypotheses. The outcome is a
set of only the most promising hypotheses which facilitate a simple agglomera-
tive clustering step to fit all the genuine structures in the data. Fig. 1 summarizes
the proposed approach.

The rest of the paper is organized as follows: Sec. 2 describes how to de-
rive data similarities from residual sorting information by comparing top-k lists.
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Sec. 3 describes our guided sampling scheme with simultaneous hypothesis
filtering and incremental computations of distances between top-k lists. Sec. 4
describes how multi-structure fitting can be done by a simple agglomerative
clustering on the promising hypotheses returned by our method. Sec. 5 presents
results on synthetic and real data which validate our approach. Finally, we draw
conclusions in Sec. 6.

2 Data Similarity by Comparing Top-k Lists

A key ingredient of our guided sampling scheme is a data similarity measure. This
section describes how to derive such a measure from residual sorting information.

2.1 Top-k Lists from Residual Sorting Information

We measure the similarity between two input data based on the idea that if they
are inliers from the same structure, then their preferences to the hypotheses
as measured by residuals will be similar. Such preferences can be effectively
captured by lists of ranked residuals.

Let X = {xi}N
i=1 be a set of N input data and θ = {θj}M

j=1 a set of M
hypotheses, where each hypothesis θj is fitted from a minimal subset of p points
(e.g., p=2 for line fitting). For each datum xi, we compute its absolute residual
ri = {r(i)

1 , r
(i)
2 , · · · , r

(i)
M } as measured to M hypotheses. We sort the elements in

ri to obtain the list of sorted residual r̃i = {r(i)

λ
(i)
1

, · · · , r
(i)

λ
(i)
M

} such that r
(i)

λ
(i)
1

≤
· · · ≤ r

(i)

λ
(i)
M

. The top-k list of data xi is defined as the first k elements in the

permutation {λ(i)
1 , · · · , λ

(i)
M }, i.e.,

τi = {λ(i)
1 , · · · , λ

(i)
k }. (1)

The top-k list τi essentially gives the top-k hypotheses preferred by xi, i.e., xi

is more likely to be an inlier to the hypotheses which have higher rank.

2.2 The Spearman Footrule Distance

Given the top-k lists, we measure their similarity using the Spearman Footrule
(SF) distance [13]. Let τ be a top-k list and Dτ a set of elements contained in
τ . Denote the position of the element m ∈ Dτ in τ by τ(m). The SF distance
between two top-k lists τi and τj is defined as

F (�)(τi, τj) =
∑

m∈Dτi
∪Dτj

∣∣τ ′
i(m) − τ ′

j(m)
∣∣ , (2)

where � > 0 is the so-called location parameter (often set to k+1), τ ′
i(m) = τi(m)

if m ∈ Dτi ; otherwise τ ′
i(m) = �, and τ ′

j is similarly obtained from τj .
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Fig. 2. (a) Similarity matrix K for data shown in Fig. 1a (data is arranged according
to structure membership for representation only) (b) The average of similarity values
between two data from the same structure and two data from different structures under
various k

2.3 Measuring Similarity between Data

To measure the similarity between two data, we use the SF distance (Eq. 2)
between their corresponding top-k lists. The similarity value between two data
xi and xj is defined as

d(τi, τj) = 1 − 1
k × �

F (�)(τi, τj). (3)

Note that we normalize F (�)(τi, τj) such that d(τi, τj) is between 0 (dissimilar)
and 1(identical). By comparing the top-k lists between all data, we obtain a
N × N similarity matrix K with

K(i, j) = d(τi, τj), (4)

where K(i, j) denotes the element at its i-th row and j-th column. Fig. 2a shows
an example of K, which is generated from the input data shown in Fig. 1a. The
evident block structures in K correspond to the 5 lines in Fig. 1a. As shown in
Fig. 2b, across a wide range of k, the similarity value between two data from the
same structure (solid) is higher than that from different structures (dotted).

3 Guided Sampling with Hypothesis Filtering

This section describes our guided sampling scheme which involves a simultaneous
hypothesis filtering scheme. We also provide an efficient incremental update for
computing the sampling weights.

3.1 Guided Sampling

We use the similarity matrix K (Eq. 4) to sample data in a guided fashion. Let
Q = {su}p

u=1 be the indices of data in a minimal subset of size p, where su are
indexed by the order in which they are sampled. The first element s1 in Q is
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randomly selected from X . To sample the next element s2, we use K(s1, :) as
the weight to guide the sampling, i.e., the similarity values of all input data with
respect to s1. We set K(s1, s1) to 0 to avoid sampling the same data again.

Suppose data s1, · · · , su have been selected, then the next datum su+1 is
chosen conditionally on the selected data. Its sampling weight is defined as

K ′(s1, :) · K ′(s2, :) · . . . · K ′(su, :), (5)

where · is the element-wise multiplication and K ′(su, :) is just K(su, :) with
K(su, su) = 0. Eq. 5 means that in order to have higher probabilities of being
sampled, a datum need to be similar (measured by Eq. 3) to all the data that
have been selected into the minimal subset.

3.2 Incremental Top-k Lists Comparison

Our sampling method computes an update to the similarity matrix K (Eq. 4)
once a block (of size b) of new hypotheses are generated. This involves com-
paring top-k lists of ranked residuals. The computation of top-k lists can be
done efficiently via merge sort. However, comparing top-k lists between all data,
i.e., constructing K, can be computationally expensive. Here we provide efficient
incremental updates for K that can substantially accelerate the computation.

As proved in [13], the SF distance (Eq. 2) can be equivalently computed as

F (�)(τi, τj) = 2(k − |Z|)� +
∑
m∈Z

|τi(m) − τj(m)| −
∑
m∈S

τi(m) −
∑
m∈T

τj(m), (6)

where Z = Dτi ∩ Dτj , S = Dτi\Dτj and T = Dτj\Dτi. In fact, S is simply the
elements in Dτi but not in Z, i.e., S = Dτi\Z, similarly for T . Hence, we have

∑
m∈S

τi(m) =
k∑

m=1

m −
∑
m∈Z

τi(m) =
1
2
k(k + 1) −

∑
m∈Z

τi(m), (7)

similarly for
∑

m∈T τj(m). By setting � = k + 1 and using Eq. 7, we can rewrite
Eq. 6 to be in terms of Z only,

F (k+1)(τi, τj) = (k + 1)(k − 2 |Z|)+
∑
m∈Z

(|τi(m) − τj(m)| + τi(m) + τj(m)) . (8)

Let A and B be two N × N symmetric matrices with zero on diagonal, and set
the elements at the i-th row and the j-th column of A and B to

A(i, j) = |Z| and B(i, j) =
∑
m∈Z

(|τi(m) − τj(m)| + τi(m) + τj(m)) . (9)

From Equations 3, 4, and 8, the similarity matrix K can be constructed by

K = 1 − 1
k

(kIN − 2A) − 1
k(k + 1)

B, (10)
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Fig. 3. (a) Feature space where x axis is f
(1)
m and y axis is f

(2)
m (Best view in color).

(b) An example of “good” (denoted “g”) and “bad” (denoted “b”) hypotheses.

where IN is an N × N identity matrix. Observe from Eq. 9 that the matrices
A and B can be efficiently updated by keeping track of the elements that move
into or out of Z. This information is readily available from the merge sort. Once
A and B are updated, K can be updated via Eq. 10.

3.3 Simultaneous Hypothesis Filtering

During sampling, we want to simultaneously filter hypotheses such that only
a small but very promising subset remains. Let Rm = {R(1)

m , · · · , R
(N)
m } be

the absolute residual of N input data as measured to a hypothesis m. For this
hypothesis, we construct a feature vector

fm =
[
f (1)

m , f (2)
m

]
=

[∑
(i,j)∈E K(i, j)

|E| ,
|Ωm|∑

{i|xi∈Ωm} R
(i)
m

]
, (11)

where E = {(i, j)|i �= j and xi, xj ∈ Ωm} with Ωm = {xi ∈ X | m ∈ Dτi},
and K is the similarity matrix computed by Eq. 10. The set Ωm contains all
data that include the hypothesis m in their top-k lists. If the hypothesis m is
“good”, then Ωm should contain many inliers from a structure. Hence, f

(1)
m , the

average of similarity values between all data in Ωm should be high. Moreover,
the average residual of data in Ωm should be low, i.e., high f

(2)
m . Therefore, we

want to find a set of hypotheses which have high value in both f
(1)
m and f

(2)
m . To

this end, we apply k-means on the feature vectors (Eq. 11) to separate “good”
and “bad” hypotheses. As illustrated in Fig. 3(a), the cluster whose center has
larger norm (dots) contains good hypotheses. We incrementally maintain a set
of “good” hypotheses as the guided sampling proceeds.

4 Multi-structure Fitting

By leveraging the simultaneous hypothesis filtering, a set of “good” hypotheses
is immediately available once the sampling is done. The minimal subsets of
these “good” hypotheses should mainly contain inliers from different structures.
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Hence, we can perform the final fitting by first, clustering the minimal subsets
of “good” hypotheses, and then fitting geometric models to each cluster of data.

We use the agglomerative clustering (See [14] for a detailed description) to
cluster the minimal subsets. First, we need to define a distance measure between
two minimal subsets. From Fig. 2a, we can see that if two data xi and xj are
from the same structure, the rows K(i, :) and K(j, :) of the similarity matrix K
must have higher values on the same dimension, implying that the sum of the
element-wise multiplication of these two rows must have higher value. Based on
this observation, we assign to each minimal subset Qu a 1 × N feature vector

αu = K(su
1 , :) · K(su

2 , :) · . . . · K(su
p , :), (12)

where · is the element-wise multiplication and su
1 , · · · , su

p are indices of data in
Qu. The distance between two minimal subsets Qu and Qv is given by

d(Qu, Qv) =
1

‖αu · αv‖1
, (13)

where ‖·‖1 denotes the L1 norm. Using this distance measure, the clustering is
then performed through the standard agglomerative clustering mechanism.

5 Experiments

We test the proposed method (ITKSF) on several synthetic and real datasets.
To evaluate the efficiency of the proposed guided sampling scheme, we com-
pare our method against 6 sampling techniques: Uniform random sampling in
RANSAC (Random) [2], proximity sampling (Proximity) [9, 11], LO-RANSAC
[15], Guided-MLESAC [4] and PROSAC [5].

In all experiments, the scale parameter of Proximity (σ2 as in Equation
1 in [11]) is set to twice the squared average nearest neighbor distance. For
LO-RANSAC, the inlier threshold is set to the average residual of inliers as
measured to their corresponding structures. For PROSAC, TN is set to 5× 104.
For our method, we fix b = 10 and k = %0.1 × t& throughout, b being the block
size (cf Sec. 3.2) and t the number of hypotheses generated so far. All experi-
ments are run on a machine with 2.53GHz Intel Core 2 Duo processor and 4GB
RAM.

5.1 Multiple 2D Line and Circle Fitting

We test the performance of various sampling methods on multiple 2D line and
circle fitting under various numbers of gross outliers. Fig. 4 (Left) shows the test
data. The inliers scale is set to 0.01, and the number of inliers per structure is 50
for lines and 80 for circles. We simulate the quality score required by PROSAC
and Guided-MLESAC by probabilistically assigning higher scores to inliers than
gross outliers. Each method is given 50 random runs, each for 2 CPU seconds.

As can be seen in Fig. 4 (Second column), in all cases the average percentage
of all-inlier samples found by ITKSF within the given time budget is significantly



560 H.S. Wong et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 250 300 350 400
0

10

20

30

40

50

60

70

Number of Outliers

A
v
e

ra
g

e
 o

f 
In

lie
r 

S
a

m
p

le
s
 F

o
u

n
d

 (
%

)

Random

Proximity

LO−RANSAC

Guided−MLESAC

PROSAC

ITKSF

100 200 250 300 350 400
0

50

100

150

200

250

Number of Outliers

A
v
e
ra

g
e
 o

f 
S

a
m

p
lin

g
 S

te
p
s

Random

Proximity

LO−RANSAC

Guided−MLESAC

PROSAC

ITKSF

100 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Outliers

A
v
e

ra
g

e
 o

f 
C

P
U

 T
im

e
 (

s
e

c
o

n
d

s
)

Random

Proximity

LO−RANSAC
Guided−MLESAC

PROSAC

ITKSF

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

100 200 300 400
0

2

4

6

8

10

12

14

16

18

20

22

Number of Outliers

A
v
e

ra
g

e
 o

f 
In

lie
r 

S
a

m
p

le
s
 F

o
u

n
d

 (
%

)

Random

Proximity

LO−RANSAC
Guided−MLESAC

PROSAC

ITKSF

100 200 300 400
0

200

400

600

800

1000

1200

Number of Outliers

A
v
e
ra

g
e
 o

f 
S

a
m

p
lin

g
 S

te
p
s

Random

Proximity

LO−RANSAC

Guided−MLESAC

PROSAC

ITKSF

100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Outliers

A
v
e

ra
g

e
 o

f 
C

P
U

 T
im

e
 (

s
e

c
o

n
d

s
)

Random

Proximity

LO−RANSAC
Guided−MLESAC

PROSAC

ITKSF

Fig. 4. Performance of various sampling methods on 2D lines and circles data under
various numbers of gross outliers. First column: input data. Second column: the average
percentage of all-inlier samples found within 2 CPU seconds. Third column: the average
sampling steps (respectively CPU time, last column) needed to hit at least one all-inlier
minimal subset for each structure.
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Fig. 5. Left: “good” hypotheses returned by ITKSF after sampling. Center: clusters
found by clustering the minimal subsets of “good” hypotheses. Right: final fitting result.

higher than its competing methods. It also consistently requires less sampling
steps than other methods to hit at least one all-inlier minimal subset for each
structure (Third column). In terms of CPU time, ITKSF exhibits comparable
performance to other methods (Fig. 4, Last column). Note that ITKSF simul-
taneously picks “good” hypotheses during sampling (Sec. 3.3). The CPU time
spent on this operation is counted toward the reported CPU time for ITKSF.

Fig. 5 (Left) shows the “good” hypotheses returned by ITKSF after sampling.
It is evident that they are concentrated on the genuine structures present in data.
Fig. 5 (Center) shows that the minimal subsets of these promising hypotheses
are correctly clustered by the agglomerative clustering (Sec. 4). Model fitting on
each individual cluster of data then leads to the final fitting results shown in
Fig. 5 (Right).
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5.2 Homography Estimation

Our second set of experiments involves estimating multiple planar homographies
on real images data.1 For each image pair, keypoint correspondences (including
false correspondences) and their matching scores are generated by SIFT match-
ing2 [16]. The image data with marked keypoint correspondences can be found
in Table 1, the false correspondences are marked as yellow crosses. We use 4 cor-
respondences to estimate a homography using Direct Linear Transformation [1].
Each method is given 50 random runs, each for 15 CPU seconds.

Table 1 summarizes our experimental results. We can see that ITKSF out-
performs other methods across all performance measures in almost all cases;
only on the College II data, it is slightly slower than PROSAC in terms of CPU
time. Noticeably, our method finds much more all-inlier samples within the given
time budget (Structures) than its competing methods. The average percentage
of all-inlier samples (IS) found by ITKSF is up to an order of magnitude higher
than other methods. Moreover, it is one of the only two methods that succeed
in finding at least an all-inlier sample for each structure in all 50 runs.

Fig. 6 shows that the minimal subsets of the hypotheses provided by our
guided sampling procedure are indeed inliers, and they are correctly clustered
according to their membership to a planar structure. Given these clusters, we
can obtain multiple homographies by model fitting on each cluster of data.

(a) CollegeII (b) CollegeIII (c) CollegeI

Fig. 6. Clusters found by clustering the minimal subsets of the “good” hypotheses
returned by our method (Best view in color)

5.3 Fundamental Matrix Estimation

We now evaluate the performance of various sampling methods for the task
of fundamental matrix estimation on the Hopkins data.3 The image data with
marked keypoint correspondences (obtained from SIFT matching) are shown in
Table 2. We use the standard 7-point algorithm [1] to estimate the fundamental
matrix.4 Each method is given 50 random runs, each for 30 CPU seconds.

In Table 2, we can see that in the case of single fundamental matrix estimation
(on the Truck data) PROSAC is the most effective sampling method in terms of

1 http://www.robots.ox.ac.uk/~vgg/data
2 Code from http://www.vlfeat.org/~vedaldi/code/sift.html
3 http://www.vision.jhu.edu/downloads/data/hopkins155/
4 http://www.robots.ox.ac.uk/~vgg/hzbook/code/

http://www.robots.ox.ac.uk/~vgg/data
http://www.vlfeat.org/~vedaldi/code/sift.html
http://www.vision.jhu.edu/downloads/data/hopkins155/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/
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Table 1. Performance of various sampling methods in multiple homographies estima-
tion. We record the average CPU time (Time) (respectively sampling steps (Steps))
required and the number of random runs a method fails (Fail) to hit at least one
all-inlier minimal subset for each structure. We also report the average percentage of
all-inlier samples found within the given time budget (IS). The average number of
all-inlier samples found for each structure (Structures) is separately listed in square
bracket. The reported result is taken over successful runs only with the best result
boldfaced.

Data Sampling
Method

Time
(seconds)

Steps Fail Structures IS (%)

(a) CollegeII

Random 1.03 298 0 [109,25] 1.84
Proximity 0.58 163 0 [137,33] 2.48
LO-RANSAC 0.46 146 0 [162,37] 2.56
Guided-MLESAC 0.5 179 0 [131,31] 2.6
PROSAC 0.23 86 0 [354,86] 7.46
ITKSF 0.25 45 0 [337,162] 33.74

(b) CollegeIII

Random 2.27 945 0 [6,20,125] 2.24
Proximity 0.69 253 0 [18,21,151] 2.99
LO-RANSAC 1.66 641 0 [6,22,148] 2.66
Guided-MLESAC 1.74 685 0 [7,20,247] 4.21
PROSAC 1.71 677 0 [6,12,189] 3.19
ITKSF 0.31 75 0 [228,98,305] 28.81

(c) CollegeI

Random 2.82 2080 15 [5,12,3,2] 0.37
Proximity 8.72 953 0 [20,57,13,6] 1.69
LO-RANSAC 2.82 1750 3 [7,21,5,3] 0.61
Guided-MLESAC 4.91 1855 3 [4,17,8,7] 0.60
PROSAC 5.17 1819 2 [6,18,6,4] 0.57
ITKSF 1.36 198 0 [74,93,30,8] 14.4

CPU time required to find an all-inlier minimal subset for the single structure,
while ITKSF performs best in terms of the average number of all-inlier samples
found within the given time budget. Overall, all sampling enhancement methods
are effective on this simple single structure recovery task.

We now move to the more challenging case where more than one structure
is present. Table 2 shows that previous methods fail disastrously on the Cars5

and the Toy Cars data, which contain 2 and 3 structures, respectively. All pre-
vious methods fail to hit an all-inlier sample for each structure in 24%-100% of
the given 50 runs, while ITKSF succeeds in every run. The average CPU time
required by ITKSF to find at least one all-inlier sample for each structure is
about 80% less than the best-performing competing method. Within the given
time budget, the overall number of all-inlier samples found by ITKSF is again
substantially larger than other methods. For instance, on the Toy Cars data, the
average percentage of all-inlier samples found by ITKSF is at least an order of
magnitude higher than others.

Fig. 7 shows the clusters found by clustering the minimal subsets of the “good”
hypotheses returned by ITKSF. It can be seen that each cluster is formed of in-
liers to one structure present in data. The fundamental matrix for each structure
can therefore be effectively obtained by model fitting on each cluster of data.

5 The Cars data originally contains 3 structures. We use two in our experiment in order
to create different levels of difficulties in the three datasets used in our experiments.
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Table 2. Performance of various sampling methods in fundamental matrix estimation.
The same notations as used in Table 1 are used here.

Data Sampling
Method

Time
(seconds)

Steps Fail Structures IS (%)

(a) Truck

Random 5.94 1156 0 [5] 0.08
Proximity 1.73 318 0 [16] 0.26
LO-RANSAC 0.35 78 0 [10] 0.15
Guided-MLESAC 0.23 62 0 [165] 3.23
PROSAC 0.008 1 0 [58] 0.93
ITKSF 0.2 27 0 [471] 16.24

(b) Cars

Random × × 50 [0,0] 0
Proximity 13.2 3997 41 [67,1] 0.69
LO-RANSAC 13.63 4227 49 [25,1] 0.25
Guided-MLESAC 6.94 3796 47 [334,1] 3.08
PROSAC × × 50 [0,0] 0
ITKSF 2.19 450 0 [813,14] 16.77

(c) Toy Cars

Random 9.92 3015 49 [1,1,1] 0.02
Proximity 15.09 4448 12 [5,2,3] 0.07
LO-RANSAC 20.63 6092 48 [2,2,3] 0.04
Guided-MLESAC 17.85 6662 36 [3,2,1] 0.04
PROSAC 6.16 2436 36 [2,2,1] 0.03
ITKSF 1.93 305 0 [244,28,11] 8.11

(a) Truck (b) Cars (c) Toy Cars

Fig. 7. Clusters found by clustering the minimal subsets of the “good” hypotheses
returned by our method (Best view in color)

6 Conclusions

We propose a novel guided sampling scheme based on the distances between
top-k lists that are derived from residual sorting information. In contrast to
many existing sampling enhancement techniques, our method does not rely on
any domain-specific knowledge, and is capable of handling multiple structures.
Moreover, while performing sampling, our method simultaneously filters the
hypotheses such that only a small but very promising subset remains. This
permits the use of simple agglomerative clustering on the surviving hypothe-
ses for accurate model selection. Experiments on synthetic and real data show
the superior performance of our approach over previous methods.
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Flexible Online Calibration
for a Mobile Projector-Camera System

Daisuke Abe, Takayuki Okatani, and Koichiro Deguchi

Graduate School of Information Sciences, Tohoku University

Abstract. This paper presents a method for calibrating a projector
camera system consisting of a mobile projector, a stationary camera,
and a planar screen. The method assumes the projector to be partially
calibrated and the camera to be uncalibrated, and does not require any
fiducials or natural markers on the screen. For the system of geomet-
rically compensating images projected on the screen from a hand-held
projector so that the images will always be displayed at a fixed position
of the screen in a fixed shape, the method makes the projected images
geometrically rectified; that is, it makes them have the correct rectangu-
lar shape of the correct aspect ratio. The method automatically performs
this calibration online without requiring any effort on the user’s part; all
the user has to do is project a video from the hand-held projector. Fur-
thermore, when the system makes discontinuous temporal changes such
as the case where the camera and/or the screen is suddenly relocated, it
automatically recovers the calibrated state that was once lost. To realize
these properties, we adopt the sequential LS method and extend it to
be able to deal with temporal changes of the system. We show several
experimental results obtained by a real system.

1 Introduction

The systems combining projectors with cameras, called projector-camera sys-
tems, have been widely studied [1–12]. In these systems, images projected by
projectors are captured by cameras and then some information extracted from
the images is returned to the projectors; such feedback paths between cameras
and projectors are used to realize desired properties. There are many applica-
tions; examples include geometric as well as photometric correction of projected
images and displaying high-resolution images using multiple projectors.

Recently, along with the downsizing of image projecting devices, small size
projectors, or mobile projectors, have become available in the market; there are
also PDAs, mobile phones, and digital cameras having an embedded projec-
tion device. Such small projectors can make full use of unique characteristics of
projectors that are not shared by other image display devices, and using these
projectors for a projector camera system, further new applications are expected
to be realized.

One of the central issues in many such applications is the calibration of
projector-camera systems. In this paper we deal with a problem of calibrat-
ing a type of systems in which images are projected onto a planar screen and a

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 565–579, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. From left to right: Overview of the projector-camera system. Example of un-
rectified images. Results obtained by our method; correctly rectified video images are
being projected independently of the projector pose. The calibration is automatically
performed while a video is projected from the hand-held projector.

stationary camera captures their images. Its main application is real-time com-
pensation of the position and shape of the images on a screen that are projected
from a hand-held projector; see Fig.1. The calibration we consider here is to
make the images being compensated on the screen have a geometrically rectified
shape; that is, it makes them have a correct rectangular shape of the correct
image aspect ratio.

Our goal is to make it possible to perform such calibration without requiring
any effort on the user’s part. Specifically, i) we assume no fiducials or no natural
markers on the screen, and assume the projector to be partially calibrated and
the camera to be fully uncalibrated. ii) The calibration should automatically
be performed online; all the user has to do is hold the projector by his/her
hand and project a video. (The projector needs to be more or less moved for
the calibration.) No offline procedure is necessary. iii) Discontinuous temporal
changes of the system can be dealt with. When the camera or the screen is
relocated, the system should automatically recover the calibrated state in which
the projected images are rectified.

We propose a method that satisfies the above requirements (i)-(iii). To sat-
isfy (i), we apply to a mobile video projector the results of the studies on the
system that uses multiple stationary projectors to generate a seamless single
image [5, 6]. However, the solution is obtained only through nonlinear optimiza-
tion, where a large number of unknowns need to be determined simultaneously.
Therefore, it is not easy to achieve an accurate calibration in a stable manner.
To resolve this difficulty and satisfy requirement (ii) of automatic/online calibra-
tion, we propose to use the sequential least squares (LS) minimization. Online
calibration necessitates using natural images for the calibration, which results
in low-quality observations such as limited precision in feature point extraction.
Although this can possibly be overcome by using the large number of images,
it means increase in computational cost. The use of sequential LS method helps
resolve this dilemma, owing to its nature that it improves the accuracy of esti-
mates by processing time-series observations one by one. To satisfy requirement
(iii), we extend the sequential LS method to be able to deal with discontinuous
system changes by providing it with an adaptive nature.

We have developed a real system and examined the performance of the pro-
posed method. It can perform the sequential LS computation at 5fps or faster,
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while a video is being projected from a hand-held projector at about 15fps.
We show several experimental results that demonstrate the effectiveness of our
approach.

2 Related Work

There exist several studies on the online calibration/recalibration of projector-
camera systems. Cotting et al. [7], Zhou et al. [8], and Johnson et al. [9] developed
different calibration methods mainly for multi-projector displays. In their stud-
ies, they assumed that a projector and a few cameras, which form a functional
unit, are mostly stationary and move occasionally. Yang and Welch [10] showed
how the shape of a display surface can be estimated online from projector-camera
image correspondences, where projector and camera are assumed to be station-
ary and fully calibrated. Zollman et al. [11] developed a method for correcting
the distortion of images projected onto an arbitrary-shaped surface by a system
consisting of a stationary projector and a continuously moving camera. Their
method performs view-dependent distortion correction.

All the earlier works (except [5, 6, 12]), including the above, either assume
projectors/cameras to be internally calibrated or adopt the basic self-calibration
technique of cameras for a general (non-planar) 3D scene. However, this ap-
proach cannot be applied to our setting wherein the projector and the camera
are both uncalibrated and the display surface is planar, since this setting induces
degeneracy of self-calibration.

To cope with this difficulty with planar scenes, a specialized calibration
method needs to be used. This method was first presented for camera calibra-
tion in [13], and it is applied to projector-camera systems in [5, 6, 12]. Our
contribution is as follows: 1) the application of this approach to an image-
display/human-interface system of a mobile projector, 2) the adoption of se-
quential LS optimization and its extension to enable the online calibration/
recalibration, and 3) the experimental confirmation of the feasibility of the
approach.

3 Problem Formulation

3.1 Geometry of the Projector-Camera System

We start with revisiting [12] to formulate the problem to be solved to realize the
above calibration method.

As mentioned above, we consider a system in which there are a planar screen,
a stationary camera, and a moving projector. We denote each pose of the moving
projector by p = 1, . . . We use a 3D coordinate system for each of the projector,
the camera, and the screen, as shown in Fig.2. For the projector and the cam-
era, their 3D coordinates are defined in the usual manner. For the screen, its
coordinates are defined such that the xy-plane lies in the screen. Additionally,
two image coordinates are defined for the image planes of the projector and the
camera.
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Screen coord. 

Camera(-image) coord.

Projector(-image) coord.

x

y
z

s

Hps

c

p

Hpc

Hsc

Fig. 2. Left: Three two-dimensional projective transformations between pairs of the
screen, the image planes of the camera and of the projector. Right: The three coordinate
systems used here.

There are planar projective transformations between a pair of the three planes:
the screen and the image plane of the projector and that of the camera. Consider
a point u in the projector image and let w be its projection on the screen and
also v be its corresponding point on the camera image. These three points are
mutually transformed by the following three two-dimensional projective trans-
formations, as shown in Fig.2:

w ∝ Hpsu, (1a)
v ∝ Hscw, (1b)
u ∝ Hpcv, (1c)

where ∝ represents equality up to scale. The following relation holds for the
three projective transformations:

Hps ∝ H−1
sc Hpc. (2)

The projective transformation Hps is factored into a product of three 3 × 3 ma-
trices as follows:

Hps ∝ TpRpK
−1
p , (3)

where Tp encodes the screen coordinates [xp, yp, zp]
 of the position of projector
p as follows:

Tp =

⎡
⎣zp 0 xp

0 zp yp

0 0 1

⎤
⎦ . (4)

Here, Rp represents the orientation of the projector and Kp is the internal matrix
of the projector.

3.2 Fiducial-Less Calibration

Calibrating our projector-camera system reduces to determining Hsc. Our objec-
tive of rectifying projected images can be achieved if Hps is known for each p.
The observations that we can use for the calibration are the pairs of a projector
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input image and the image (projected on the screen and) captured by the cam-
era. We call the former a projector image and the latter a camera image. Among
the above three projective transformations, Hpc can be computed from a pair of
the projector image at pose p and the corresponding camera image if four or
more point correspondences (u ↔ v) are established. Since we are assuming the
camera and the screen to be both stationary, Hsc is constant. Considering the
relation Hps ∝ H−1

sc Hpc, it is found that once Hsc is determined, the desired Hps

can always be computed from Hpc obtained as above.
If there are fiducials on the screen, then Hsc can be directly estimated from

them, for example, by using four or more point correspondences between the
screen and the camera image. However, requiring these fiducials narrows areas
of applications. We can calculate Hsc without such fiducials on the screen [12],
which is summarized as follows.

If Kp is known, Hsc can be calculated in a closed form manner up to inherent
ambiguity; Hsc has originally eight degrees of freedom, and only four of them
can be determined. The indeterminate four degrees of freedom correspond to
a similarity transformation (i.e, the translation, rotation, and scaling) of the
projected images.

If all the elements of Kp are unknown, Hsc cannot be determined. If the pro-
jector is partially calibrated, more specifically, when only a single element of Kp is
unknown and others are all known, Hsc can be determined. A practically impor-
tant case is that the focal length of the projector is unknown and varies for each
pose. In [5], this is dealt with for the system of multiple stationary projectors.
In this partially calibrated case, a closed-form algorithm has not been found for
calculating Hsc, and thus the only solution is to perform nonlinear optimization,
or the method of bundle adjustment, as is described in the next section. (It is
noteworthy that if we further assume the camera to be partially calibrated (i.e.,
only its focal length are unknown), this reduces the degrees of freedom of Hsc by
one).

3.3 Nonlinear Least Squares Optimization

Let upi be the i-th feature point of the input image to projector p. Also let vpi

be its corresponding point in the camera image. Since we know the projector
images and thus the true value of each upi is known, we minimize the sum of
reprojection errors of vpi over all points i = 1, . . . , np and all projector poses
p = 1, . . . , m:

E1:m(x) =
m∑

p=1

Ep(x), (5)

where x is the vector containing the unknown parameters to be estimated; Ep

is the sum over all the feature points of projector p:

Ep(x) =
np∑
i=1

(
ṽpi − ˜̂vpi

)2
, (6)
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where the operator ˜ represents making a inhomogeneous vector; v̂pi is the
estimate of a measured point vpi and is written by

v̂pi ∝ HscHpsupi = HscTpRpK
−1
p upi. (7)

In x, we store appropriate representations of Hsc, Tp, Rp, and Kp. The value of x
minimizing E1:m(x) is the solution.

To constrain the above ambiguity in Hsc, we parametrize it as follows. The
ambiguity reflects the freedom of defining a 2D coordinate system on the screen,
and thus we define it indirectly through a camera image. Choosing two points
in the camera image, we denote their coordinates by [α1, β1] and [α2, β2]. Then,
we assume that their corresponding points on the screen have the coordinates
[0, 0] and [1, 0], respectively. The two chosen point correspondences constrain Hsc

as Hsc[0, 0, 1]
 ∝ [α1, β1, 1]
 and Hsc[1, 0, 1]
 ∝ [α2, β2, 1]
; Hsc satisfying these
two constraints can be parametrized with four parameters x1, x2, x3, and x4 as

Hsc =

⎡
⎣α2(x1 + 1) − α1 x2 α1

β2(x1 + 1) − β1 x3 β1
x1 x4 1

⎤
⎦ . (8)

We perform the above minimization using the Levenberg-Marquardt algorithm.
For the sake of later discussions, we summarize the algorithm here. Starting
with an initial value x, the optimal solution is sought for by updating x in an
iterative manner as x′ = x + δx, where δx is the solution to a linear equation
(A + λI)δx = a, where A and a are the approximate Hessian and the negative
gradient of E1:m, respectively; they are given by A = (1/2)f ′(x)
f ′(x) and a =
−f ′(x)
f , where f is defined such that E1:m = (1/2)f
f , and f ′ is its derivative
wrt. x.

4 Sequential Least Squares Optimization

As described earlier, our goal is to automatically calibrate the system in an
online manner while an arbitrary video is being projected on the screen. To do
this, we adopt the sequential least squares (LS) method here.

In the situation where new observations arrive one by one as time elapses, the
sequential LS method updates the estimates of objective parameters whenever a
new observation arrives, and iterates this data-acquisition/parameter-updating
process to improve the parameter estimates. Since it can maintain the number
of parameters constant at the expense of some loss of accuracy, and the compu-
tational cost is kept small at each updating, the method is suitable to be used
in an online manner.

The basic idea of the method is to approximate a part of the cost function by
a quadratic function. Assuming we currently have m observations, the sum of
the cost given by E1:m(x) =

∑
p Ep(x) is split into two parts as E1:m = E1:a +

Ea+1:m, and the first part is approximated up to the second order. Assuming
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that the first part is a function not of the entire parameter x but of its part x1
as E1:a = E1:a(x1), we represent its second order approximation Ê1:a as

Ê1:a(x1) =
1
2
(x1 − x∗

1)A
∗
11(x1 − x∗

1) + const., (9)

where x∗
1 and A∗ is the minimum and the Hessian of the cost, respectively.

Evaluating the remaining part Ea+1:m(x) of the cost as it is (i.e. a nonlinear
function), Ê1:a + Ea+1:m(≈ E1:m) is minimized. When the second nonlinear
part is small in size, the minimization can be carried out much faster than the
minimization of the original cost.

After the minimization, a part of the second cost Ea+1:m is cut out and
adjoined to the first cost; it is then approximated up to the second order. Assume,
for example, a single term Ea+1 is chosen for the approximation. Defining other
parts of x than x1 as x
 = [x


1 ,x

2 ,x


3 ], we assume Ea+1 = Ea+1(x1,x2) and
Ea+2:m = Ea+2:m(x1,x3). Once Ea+1 = Ea+1(x1,x2) is approximated by a
quadratic function, x2 is no longer necessary to explicitly compute and can be
eliminated forever from the system. This is realized by updating x∗

1 and A∗11 as
follows: the minimizer x1 to Ê1:a(x1) + Ea+1(x1,x2) gives the new x∗

1 and A∗11
is updated as

A∗11 ← A∗11 + A11 − A12A
−1
22 A21, (10)

where Ajk (j, k = 1, 2) is a block matrix of the Hessian of Ea+1 with respect
to x1 and x2. The updated x∗

1 and A∗11 are propagated to the future. When
another new observation (Em+1) arrives, the above process is repeated from the
beginning.

We apply the sequential LS method to our problem as follows. For the param-
eters x1 to be maintained forever, we select Hsc, the focal length of the projector,
and the radial lens distortions of the projector and the camera. The lens dis-
tortions are modeled by polynomial functions having two coefficients. Thus, the
size of x1 is 4 + 1 + 2 + 2 = 9. The rest of the parameters in the system, the
poses of the projector, are encoded in a usual manner.

In the above summary, we divide the observations into [1 : a] and [a + 1 : m].
When the length of the nonlinear part [a + 1 : m] is kept constant, say w, a is
chosen as a = m−w and is to increase as m goes. We will refer to the nonlinear
part of size w as a window. Note that in this case, the projector pose parameters
for the latest w poses are maintained in the system and those for earlier poses
are eliminated. If w = 1, the latest pose is eliminated as soon as the solution is
updated; updating x∗ is easy in that case, since the minimizer to the total cost
gives x∗. We will discuss how to choose the size w of the window later.

We compared the sequential method thus obtained with the batch method in
terms of computational time and estimation accuracy. The results are omited
here due to lack of space, and are instead presented in a supplemental material
with this paper submitted.
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5 Adaptation to Discontinuous System Change

We have assumed so far that the screen is fixed and the camera is stationary.
Relaxing this assumption to some extent, we consider here the case where their
relation makes discontinuous changes while the images are being projected. Ex-
amples are the case where the user relocate the camera or the case where the
user uses a hand-held cardboard for the screen.

The sequential LS method, which can reduce the computational cost of the
batch LS method as described above, is not supposed to be able to deal with
such cases. To deal with temporal changes in the system, a special mechanism is
necessary. The bottom line for such a mechanism is that even if the calibration
is insufficient (i.e., the rectification is inaccurate), the projector needs to be
able to keep projecting images in a stable manner although they may have a
small distortion. Then, as the user moves the projector, the projected images
are gradually rectified.

5.1 Imposing an Upper Bound on the Information Matrix

Based on the theory of maximum likelihood estimation, the matrix A∗ (we will
write A∗11 as A∗ from now on) updated according to Eq.(10) is regarded as an
(approximated) estimate of the inverse of the variance-covariance of the estimate
x̂1 of x1, i.e., Var(x̂1)−1. As a series of observations are processed, the accuracy
of x̂1 increases, which corresponds to that the eigenvalues of A∗(= Var(x̂1)−1)
tend to have large numbers.

This mechanism that the accuracy of estimates increases monotonically as
time elapses is favorable if the system is time-invariant and highly accurate esti-
mation is necessary. However, it is not fit for our purpose. After a long sequence
of observations has been processed, A∗ should become large, meaning that new
observations will have a relatively small effect on the estimation. Then, if the
system makes a sudden change, the latest observations having information about
the new system will not be effectively used. Therefore, it is necessary to make
it possible to put more weight on latest observations as compared with earlier
ones, or in other words, to forget information from earlier observations.

For this purpose, we propose to impose an upper bound on A∗. Specifically,
when propagating the updated A∗ to the next time step, we modify

A∗ ( Ã∗, (11)

where M � 0 indicates M is positive semi-definite and Ã∗ is a constant matrix.
The procedure for modifying A∗ so that the above constraint will be met is as
follows. We first diagonalize the given A∗ as A∗ = UDU
, where U is an orthogonal
matrix storing eigenvectors as its column vectors and D is a diagonal matrix
storing eigenvalues. Letting D̃ be the diagonal matrix obtained by replacing every
negative element of D with 0, we reset A∗ as A∗ ← Ã∗ − UD̃U
.

It is reasonable to incorporate some criterion on desired calibration accuracy
to calculate the upper bound Ã∗. We use an inequality regarding rectification
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Table 1. Relation between the window size and averaged processing time per each
frame. Measured values for our real system.

Window size w = 1 2 3 4 5
Time (sec.) 0.087 0.19 0.26 0.32 0.40

errors for this purpose; the measure of the errors is defined by combining two
terms of rectification errors, averaged angle errors and an error of image aspect
ratio, which will be explained later. The resulting Ã∗ has to depend on the
unknown parameter x1 as Ã∗ = Ã∗(x1), and we plug-in the current estimate x̂1
to it.

Using this method, a new observation always has a certain weight on the final
estimation no matter how long the sequence of earlier observations is. Note that
a naive method of multiplying a constant α (0 < α < 1) to A∗ as A∗ ← αA∗

when propagating it to the future will not work. In order for this method to
work effectively, it is required that the projector continuously moves and its
poses distribute in a somewhat uniform manner. Otherwise, the cost function
will degenerate and the solution obtained by the minimization will be unstable;
the worst case is that the resulting images are severely distorted.

5.2 Adaptive Control of Window Size

We have confirmed through experiments that the sequential method is by no
means inferior to the batch method in terms of accuracy even if the minimum
window size w = 1 is chosen: see one of the supplemental materials. However,
this is not considered to be the case with time-variant systems, because of the
following reasons. At the time instant when the system makes discontinuous
changes, the cost given by the new observations from then on will have the new
minimum at a different point from the old minimum given by the observations
before then. At first, the total cost combining the new and old observations
will have the minimum at a point more or less near by the old minimum. Since
the second-order approximation of the cost is guaranteed to be accurate only
in a small neighborhood of the minimum, it is clearly not good to immediately
approximate the cost of the new observations; the valuable new observations will
be spoiled due to the large approximation errors.

To avoid this, it is necessary to delay making the approximation; this is made
possible by enlarging the window size (w > 1). As long as estimation accuracy
is concerned, it will always be good to use as large a window size as possible,
but we need also to consider computational time. Table 1 shows the relation
between the window size and processing time that is measured for our real system
described in Sec. 6. Since shorter processing time means being able to acquire
more observations per unit time, this table reconfirms that it is desirable to set
w = 1, as long as computational time is concerned.

To resolve this dilemma, we propose to change the window size w adaptively
to the observations. When the camera or the screen is relocated in a short length
of time, it can be detected online by examining the strength of the reprojection
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Time

Fig. 3. Flowchart of the projector image compensation

errors for the latest observation, specifically, by thresholding its averaged re-
projection error per point. We use this thresholding of reprojection errors as a
trigger to control the window size. Let e be the reprojection error per point for
the latest image. The algorithm is as follows:

Algorithm 1. Window size control
if e > Te and w < wmax then

w← w + 1. (No pose is eliminated.)
else if e ≤ Te and w > wmin(= 1) then

The oldest two poses are eliminated and w← w − 1.
else

The oldest one pose is eliminated and w is unchanged.
end if

One might think that it is easier to reset the estimation whenever a system
change is detected; the estimation can indeed be reset by discarding A∗ before the
change and generating A∗ only from new observations after the change. However,
we cannot adopt this approach due to the same reason as above; the solution
will be unstable until a sufficient number and variety of projector poses are
accumulated. On the other hand, the above approach is expected to balance
stability and response speed to system changes.

6 Implementation Details

We implemented a real system to examine the feasibility and usability of the
proposed method. Algorithmically, the system consists of a) the compensation
of projector images to cancel out projector motion and b) the online calibration
based on the point correspondence obtained in the process of (a).

Fig.3 shows the flowchart of the projector image compensation. The projector
image at the next time step is generated from the next frame of the objective
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video by warping it with H−1
p′s. H

−1
p′s is calculated from the latest projector-camera

relation Hpc and the current estimate of the screen-camera relation, Hsc, as H−1
ps ∝

H−1
pc Hsc. Since directly obtaining Hpc in a limited time is difficult due to large

geometric difference between the two images, we employed the method of [4];
we predict the camera image (’Ideal’ in Fig.3) of the projected image and track
a small motion δH from it to the real camera image (’Captured’). We then use
the other path from the projector image to the camera image to compute Hpc as
Hpc ∝ δHHscHps.

The prediction of the camera image is performed geometrically as well as
photometrically. For this, we estimate the combined response curve from the
projector to the camera when starting the image compensation. For the image
tracking, we use a GPU implementation [14] of an improved variant of the KLT
tracker. To start the image tracking in the beginning, the projector image needs
to be identified in the camera image, for which we use a GPU implementation
[15] of a SIFT-based image matcher. The GPU is also used for image warping.

The sequential LS method for the calibration is invoked at every three frames
of the projector image compensation. The updated Hsc is reflected in the image
compensation at the next nearest time step. The calibration requires not the ho-
mography but raw point correspondences between the projector and the camera.
Therefore, for the point correspondences obtained in the above image tracking
of δH, we transfer the point coordinates in the predicted camera image to the
projector image by H−1

ps H
−1
sc .

The hardware we use are an Intel Xeon(3MHz) PC with a NVidia Quadro FX
5600 graphics board, a Toshiba TDP-FF1 LED/DLP projector, and a Grasshop-
per camera of Point Grey Research Inc. The projector is connected to the graph-
ics board via an analog VGA cable and projects images of 800 × 600 pixels at
refresh rate 85Hz. The camera captures images of 640 × 480 pixels at frame
rate 120Hz. We do not synchronize the projector and the camera, and have to
put a wait of about 35ms in between the input of an image to the projector
and the capture of the associated image by the camera. As a result, the image
compensation is carried out about 15fps.

7 Experimental Results

We carried out several experiments using the real system. In the experiments,
starting from a situation where images are correctly rectified, the camera is
relocated to another pose while a video is being projected on the screen. We
observe how image rectification is recovered with time.

We evaluate the accuracy of image rectification using two quantities. One
is a measure of angle errors of four corners of a projected image; the RMS
value of their deviations from 90 degrees is used. The other is the aspect ratio
of a projected image;the ratio of the distances between the midpoints of two
opposed sides of the image quadrangle, is used. To calculate these quantities, it is
necessary to have the shape of a projected image on the screen. For this purpose,
using a planar board having lattice pattern for the screen, we use the image
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Fig. 4. Angle errors (upper row) and aspect ratios (lower row) of the image recti-
fication. The camera is relocated at the 10th frame in the sequence. The quantities
evaluated by using the camera before the relocation are plotted on the left and those
by using the camera after the relocation are shown on the right. The horizontal line
(y = 1.333) on the lower plots indicate the correct aspect ratio.

of the pattern taken by the same camera used for the calibration. Specifically,
calculating Hsc directly from the image and assuming it to be correct, we transfer
the prediction of a projected image on the camera image to the screen and
measure its shape.

Fig.4 shows how image rectification is recovered after a certain relocation of
the camera. A video is used for projection for which 100 - 300 points are extracted
in each frame. In the sequence, the camera is relocated at about the 10th frame.
The upper row shows angle errors and the lower row shows aspect ratios. The
left and right columns show the results evaluated using the camera before and
after the relocation, respectively. Fig.5 shows the images of the lattice on the
screen taken by the cameras before and after the relocation.

In Fig.4, three different results are simultaneously plotted for different upper
bounds Ã∗ of A∗; the details are explained later. For all three, it is observed
in the left column plots that the angular error is small and the aspect ratio is
close to its correct value before the 10th frame, whereas they tend to have large
errors after the 10th frame. The reversal is true in the right column plots, where
starting from large errors, they gradually become accurate after the 10th frame.
Thus, it is seen that image rectification, once lost due to the camera relocation,
is recovered by our method. The correctness of the rectification is also confirmed
on Fig.5, where the image shapes of projected images on the screen are drawn.

The three plots in Fig.4 indicates the results obtained by varying the upper
bound of A∗ as Ã∗ = γÃ∗0 with γ = 0.01, 0.1, and 1.0, where Ã∗0 is a constant
and determined by the aforementioned method. It is seen from these plots that
when γ is small and the upper bound Ã∗ is small, the corner angles as well as
the aspect ratio tend to jitter, whereas image rectification is quickly recovered;
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Fig. 5. Overlay of the shapes of projected images (specifically, their predicted camera
images) on two camera images before (left) and after (right) the camera relocation. The
screen surface has a lattice pattern for validation purpose, using which the accuracy of
image rectification can be visually confirmed.
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Fig. 6. Angle errors evaluated by the camera before (left) and after (left) its relocation.
’var5’ indicates the errors when the window size w is adaptively controlled with wmax =
5. ’fix1’ indicates the errors when w = 1.

the reversal is true in the case when γ is small. Thus, considering the balance
between stability and response speed to system changes, the user can choose γ.

Fig.6-8 shows the result for a case where the camera undergoes a larger relo-
cation. The camera is relocated at the 20th frame; the camera images before and
after the relocation are shown in Fig.8. The left and right plots in Fig.6 show an-
gle errors evaluated by the camera before and after the relocation, respectively.
Two results are plotted; one is obtained when the window size is controlled be-
tween w = 1 and wmax = 5 as described in Sec. 5.2 (marked as ’var5’) and
the other is obtained with a fixed window size w = 1 (marked as ’fix1’). It is
observed that the errors become small about 40 frames later than the camera
relocation when the window size is controlled; when it is fixed as w = 1, the er-
rors decrease only gradually and have very large values even at the 100th frame.
Fig.7 shows time-series variation of the window size and averaged reprojection
error per point. We set the threshold to 1.0 (indicated by a horizontal line in the
plot), which determines the trigger level for controlling the window size. These
demonstrate the effectiveness of the control of the window size. Fig.8 shows how
the shapes of projected images appear in the camera images before (left) and
after (right) of the camera relocation. In the post-relocation camera image on
the right, the shape obtained when the window size is controlled is shown in a
solid line and the shape obtained for the fixed window size (at the 100th frame)
is shown in a dotted line.
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Fig. 7. Left: Time-series variation of the window size w for the sequence of Fig.6.
Right: That of the reprojection error per point. The trigger level used for the window
size control is set to 1.0.
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Fig. 8. Shapes of projected images before (left) and after (right) the camera relocation
for the sequence of Fig.6. The dotted line in the right image represents the shape of a
projected image generated using Hsc obtained for the fixed size window w = 1.

8 Summary

We have shown a method for calibrating a projector-camera system consisting
of a mobile projector, a stationary camera and a planar screen. When it is used
for the system of compensating the position and shape of images projected on
the screen from a hand-held projector, the proposed method can make projected
images on the screen have the rectangular shape of the correct aspect ratio. It
assumes the focal length of the projector and all the internal parameters of the
camera to be unknown and does not need fiducials on the screen. The method
automatically performs the calibration online without requiring any effort on
the user’s side. To simultaneously realize high calibration accuracy and small
computational cost, we adopt the sequential LS method, and further extend it
to be able to deal with discontinuous changes of the system. We have confirmed
the effectiveness of our approach through several experiments.
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Abstract. We propose a method to measure similarity of shape for 3D
objects using 3-dimensional shape subspaces produced by the factoriza-
tion method. We establish an index of shape similarity by measuring the
geometrical relation between two shape subspaces using canonical angles.
The proposed similarity measure is invariant to camera rotation and ob-
ject motion, since the shape subspace is invariant to these changes under
affine projection. However, to obtain a meaningful similarity measure,
we must solve the difficult problem that the shape subspace changes de-
pending on the ordering of the feature points used for the factorization.
To avoid this ambiguity, and to ensure that feature points are matched
between two objects, we introduce a method for sorting the order of fea-
ture points by comparing the orthogonal projection matrices of two shape
subspaces. The validity of the proposed method has been demonstrated
through evaluation experiments with synthetic feature points and actual
face images.

1 Introduction

In this paper, we propose a method to measure the similarity of 3D object shapes
based on the geometrical relation between shape subspaces produced by the fac-
torization method [1]. Using the proposed shape similarity measure, we realize 3D
object recognition that is invariant to camera rotation and object motion.

The factorization method [1] is one of the most successful geometry-based
methods for recovering the 3D shape of an object. The factorization method
tracks the positions of multiple feature points through an image sequence and
constructs a measurement matrix W, which contains the 2D positions of the
tracked feature points. The measurement matrix W is then factored into the
product of a motion matrix U and a shape matrix V. The motion matrix rep-
resents the camera rotation and the shape matrix represents the 3D positions of
the object in a coordinate system attached to the object center.

The columns of the shape matrix span a 3-dimensional subspace, which is
called the shape subspace. Shape subspace is invariant, under affine projection,
to changes of coordinates caused by camera rotation and object motions [2, 3].
Therefore, the concept of shape subspace has been used in various tasks, such as
motion segmentation [4, 5, 6] and sequential factorization [7]. This useful char-
acteristic of shape subspaces leads us the idea that a shape similarity that is

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 580–591, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Proposed framework of 3D object recognition based on canonical angles between
shape subspaces

invariant to camera rotation and object motion can be established by measur-
ing the geometrical relation between two shape subspaces. The shape subspace
includes information about geometrical relations among multiple feature points.
Therefore, we can obtain an index of the structural similarity between two sets
of multiple feature points by measuring the canonical angles [8] between the two
shape subspaces.

The usefulness of canonical angles (also called principal angles) has recently
been established in applications in the field of computer vision, such as face
recognition [9], where the relation between two subspaces representing distribu-
tions of face patterns is determined. Canonical angles have also been used for
the motion segmentation of a non-ridge object [10], such as the human body. In
this application, canonical angles are used to find the dimension of the intersec-
tion of two motion spaces that are produced by the factorization method. The
dimension of the intersection indicates whether two parts are linked by a point
or an axis.

Figure 1 shows the proposed framework for 3D object recognition. First, the
feature points are tracked through image sequence for each object, and then the
shape subspaces of the two objects are derived from the sets of the tracked feature
points by the factorization method. Finally, the canonical angles between the
shape subspaces are found and used to construct a measure of shape similarity.
To obtain a robust measure of the similarity between shape subspaces, we have
to overcome the problem that shape subspaces change depending on the order
of the feature points used to construct a measurement matrix.

To do this, we use the concept of an orthogonal projection matrix, which
is uniquely determined from the orthogonal basis vectors of a shape subspace.
The core of our idea is to minimize the difference between the two orthogonal
projection matrices, which are generated from the feature points of two objects,
by rearranging the rows and the columns of one of them. The feature points are
taken to have been matched between two objects when the difference between
the two matrices is the smallest.

Several methods have been proposed for matching feature points based on
shape subspaces. Wang and Xiao [11] applied QR factorization to the orthogonal
projection matrices, and then permuted the rows in matrix Q to produce a
correspondence between shape subspaces. Marques and Costeira [12] used linear
programming to compute a transformation matrix for minimizing the difference
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between the orthogonal projection matrices. In this paper, we will compare the
performance of the QR-based method with that of the proposed method, since
both methods involve permuting a matrix.

The rest of the paper is organized as follows. Section 2 briefly describes the
characteristics of shape subspaces. In Section 3, we propose the method for
matching two sets of feature points and measuring shape similarity. In Section
4, we demonstrate the validity of the proposed method through experiments with
a synthetic 3D object and images of real faces. Section 5 contains our conclusions.

2 Calculation Procedure of Shape Subspace

In this section, we outline how a shape subspace is generated. There are two
calculation procedures: one is based on the factorization [1] of an image sequence,
and the other is based on the positions of multiple feature points on an object.

2.1 Factorization of an Image Sequence

The factorization method [1] can robustly recover the shape and motion of an
object from an image sequence without assuming a model of motion, such as
constant translation or rotation. An image sequence can be represented as a
2F × P measurement matrix W, with P points tracked through F frames as
follows:

W =

⎛
⎜⎜⎜⎜⎜⎝

x11 . . . x1P

y11 . . . y1P

...
. . .

...
xF1 . . . xFP

yF1 . . . yFP

⎞
⎟⎟⎟⎟⎟⎠ , (1)

where xfp and yfp are the 2D coordinates of the pth point in frame f .
If image coordinates are given with respect to their centroids, the measure-

ment matrix W is factored into the product of three matrices:

W = UΣVT � U′Σ′V′T , (2)

where U is a 2F × 2F orthogonal matrix and V is a P × P orthogonal matrix.
Σ is a 2F × P diagonal matrix with the singular values σi of W in descending
order. Here, the rank of matrix W is 3 due to the geometrical constraint, so
σ4, ..., σD = 0 (or are very small). Hence, W can be represented as the product
of a 2F × 3 matrix U′, a 3 × 3 diagonal matrix Σ′ and a 3 × P matrix V′T as
shown in Eq. (2).

The column vectors of the shape matrix V′ span the shape subspace. The
shape subspace is invariant under an affine transformation of the set of feature
points [4], such as that caused by camera rotation or object motion.

2.2 Generation Based on the Coordinates of Multiple Points

If the 3D coordinates of all the multiple feature points of an object are known,
the shape subspace can be obtained directly without using the factorization
method.
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The shape subspace corresponding to an object is spanned by the column
vectors of the P × 3 matrix S defined by

S = (r1 r2 . . . rP )T =

⎛
⎜⎝

x1 y1 z1
...

...
...

xP yP zP

⎞
⎟⎠ , (3)

where rp = (xp yp zp)T for 1 ≤ p ≤ P denotes the positional vector of the
pth point on an object. These vectors satisfy the relation

∑P
p=1 rp = 0. In this

definition, the shape subspace is invariant to the selection of coordinates.

3 The Proposed Method

In this section, we first propose a method for matching feature points using an
orthogonal projection matrix. Then, we explain how to measure the geometrical
similarity between two shape subspaces using the canonical angles [8].

3.1 Matching Feature Points Using Orthogonal Projection Matrices

The shape subspace is the column space of V′ in Eq. (2) or of S in Eq. (3). If the
orders of feature points change, the shape subspace corresponding to them also
changes. Therefore, we need to match the feature points between two objects to
obtain shape similarity based on the geometric relation between shape subspaces.

The key property of the orthogonal projection matrix. The proposed
method is based on the fact that an orthogonal projection matrix is uniquely
determined by its corresponding object.

Let Φ = (φ1 φ2 . . . φM ) be an orthonormal basis for the M -dimensional
subspace P . The orthogonal projection matrix P is then defined by

P =
M∑
i=1

φiφi
T = ΦΦT . (4)

Two shape matrices VA and VB obtained from the same object are not always
equal, even if their feature points correspond to each other, because each shape
matrix is just one set of basis vectors of the shape subspaces. Therefore, we
cannot use the shape matrices to match the feature points. However, the two
orthogonal projection matrices calculated from VA and VB using Eq. (4) always
coincide:

Q = VAVT
A = VBVT

B. (5)

Based on this property, we match of feature points by rearranging the rows and
columns of the orthogonal projection matrices corresponding to both objects,
instead of handling the shape matrices.



584 Y. Igarashi and K. Fukui

a b c

b e f

d

g

e b f

b a c

g

d

(b) Orthogonal 

projection matrix

(c) Swap feature

point 1 and 2.

⎟
⎟

⎟

⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎜

⎜

⎝

⎛

444

333

222

111

zyx

zyx

zyx

zyx

(a) Shape matrix 

Swap row 1

and row 2.

Swap column 1

and column 2.

V

T

VVQ =

Fig. 2. Example of swapping rows and columns of the orthogonal projection matrix
by swapping feature points (P = 4)

Exchanging feature points. Exchanging the order of two feature points on
an object is equivalent to permuting the rows and columns of the orthogonal
projection matrix. We will illustrate how to exchange the order of feature points
by considering the following simple case.

Suppose that four feature points are extracted from an object. Figures 2
(a) and (b) show the shape matrix V and the orthogonal projection matrix Q
calculated from V. If feature point 1 and feature point 2 are exchanged, then
the 1st row and the 2nd row are swapped in Q, and the 1st column and the 2nd
column are also exchanged at the same time, as shown in Fig. 2 (c). Note that
the sets of the elements of the 1st row of (b) and the 2nd row of (c) are the
same, although the orders of the elements are different. This rule is obeyed even
if the number of the feature points to be exchanged increases.

Based on this rule, we can compare the rows of the orthogonal projection
matrices by sorting the elements of the rows of each projection matrix in advance.
The problem of matching feature points then reduces to finding the pairs of row
vectors closest each other.

The Matching Algorithm. The procedure is as follows:
INPUT: N×N Orthogonal projection matrices XA and XB generated from N
feature points of two objects A and B
OUTPUT: N × 2 Correspondence matrix C

1. Initialization: QA(0) = XA, QB(0) = XB

2. for t = 0 to N do
(a) Sort the unmasked elements of QA(t) and QB(t) within each row to

produce temporary matrices Q′
A(t) and Q′

B(t).
(b) Find a pair of rows of Q′

A(t) and Q′
B(t) with the minimum L1-norm

distance. The distance function between the row vectors, ui of Q′
A(t)

and vj of Q′
B(t), is defined as follows:

d(ui, vj) =
∑N

k=1 |uik − vjk| (t = 0) ,
d(ui, vj) =

∑N−t
k=1 |uik − vjk| +

∑t
k=1 |x∗

ki − y∗
kj | (t ≥ 1) .

The row numbers found in the searcing, rA and rB , are set to the tth
row vector ct of C, as ct = (rA, rB).
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(c) Mask the rAth row and the rAth column x∗
(t+1) of QA(t), and the rBth

row and the rBth column y∗
(t+1) of QB(t), respectively. These masked

matrices are set to QA(t+1) and QB(t+1).
3. end for

Figure 3 shows a simple example of this matching procedure.
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Fig. 3. Example of the proposed matching process. In this example, these matrices are
not orthogonal projection matrices, although they are symmetric matrices. (a) shows
the input matrices QA(0) and QB(0). In (b), the matrices are sorted within each row to
produce temporary matrices Q′

A(0) and Q′
B(0). The 4th row of Q′

A(0) and the 1st row of
Q′

B(0) are matched, as their L1-norm is the smallest. In (c), the 4th row of QA(0) and
the 1st row of QB(0) are masked from the lists to be matched. Then, the 4th column
and the 1st column are paired. These matrices are defined as QA(1) and QB(1). In
(d), the non-corresponding elements of the rows of QA(1) and QB(1) are sorted. These
matrices are Q′

A(1) and Q′
B(1). Then, the 2nd row of Q′

A(1) and the 2nd row of Q′
B(1)

are matched.

3.2 Similarity between Shape Subspaces

First, we introduce canonical angles; then, we define the similarity between shape
subspaces using them.

Consider an M -dimensional subspace SA and an N -dimensional subspace SB ,
where M ≤ N . Given ui ∈ SA and vi ∈ SB, the canonical angles θi (θ1 ≤ θ2 ≤
. . . ≤ θM ) are uniquely defined by [8]

cos2 θi = sup
ui⊥uj, vi⊥vj

1≤i,j≤M, i�=j

(ui · vi)2

||ui||2||vi||2 , (6)

where (·) denotes the inner product and || · || denotes the norm of a vector.
Let QA and QB denote the orthogonal projection matrices of the subspaces

SA and SB. Then, cos2θ for the canonical angle θ between SA and SB is equal to
the eigenvalue of QAQB or QBQA [8]. The largest eigenvalue corresponds to the
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Fig. 4. Flow of the object recognition process based on the proposed similarity measure

smallest canonical angle θ1, whereas the second largest eigenvalue corresponds
to the smallest angle θ2 in a direction perpendicular to that of θ1. The values of
cos2θi (i = 3, . . . , M , and M ≤ N) are calculated similarly.

From these canonical angles, we define the shape similarity ϕ by

ϕ =
1
M

M∑
i=1

cos2θi. (7)

If two shape subspaces coincide completely with each other, ϕ is 1.0, since all
canonical angles are zero. The similarity ϕ gets smaller as the two spaces sepa-
rate. Finally, the similarity ϕ is zero when the two subspaces are orthogonal to
each other.

3.3 3D Object Recognition Based on the Proposed Similarity
Measure

Figure 4 shows the proposed procedure, from inputting the image sequences of
two objects A and B to the output of the shape similarity index.

First, multiple feature points are tracked through an image sequence of object
A by a tracker, such as the Kanade-Lucas-Tomasi (KLT) feature tracker [13].
Then, the measurement matrix WA is calculated from the positions of the
tracked feature points. Next, the measurement matrix WA is factored into the
product of the shape matrix VA and the motion matrix UA. A shape matrix VB
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and a motion matrix UB are also obtained from the image sequence for object
B. The orthogonal projection matrices QA and QB are calculated from VA and
VB. Their rows and columns are rearranged to match feature points. Then, the
shape similarity ϕ can be calculated from the shape subspaces using Eq. (7).

4 Experimental Results

In this section, we first use synthetic data to evaluate the accuracy of the pro-
posed algorithm for matching feature points, and then use images of real faces
to demonstrate the effectiveness of the proposed method for object recognition.

4.1 Experiment I: Matching Feature Points Using Synthetic Data

We evaluate the robustness of the proposed matching method using a synthetic
3-dimensional data set. We prepared two sets of feature points for the evaluation
experiment. The first set is a set of P randomly generated points on an unit
sphere. The second set is the first set with added Gaussian noise of standard
deviation σ. Two shape matrices were generated from both the sets of feature
points using Eq. (3) in Sec. 2.2. We compared the proposed matching method
with the matching method based on QR factorization [11] described in Sec. 1.

Figure 5 shows an example of feature-point matching for P = 30 and σ = 0.1.
Figure 6 shows a comparison of the error rates of the two methods of matching
for various values of the parameters P and σ. For each of the parameters, 200
independent experiments were run. The proposed method consistently shows a
lower error rate than the QR based method [11]. When σ = 0.1 and P = 30,
the error rate is about 20% (see Fig. 6 (a)). If P = 100 and σ = 0.0316, the
error rate with our method is about 5% (see Fig. 6 (b)). We conclude that the
proposed matching method has high accuracy and is robust even under high
noise conditions.
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Fig. 5. Example of matched feature points on spheres (P = 30, σ = 0.1)
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Fig. 7. Pre-processing for generating the shape subspace: (a) input image, (b) detected
face, pupils and nostrils, (c) separability map

4.2 Experiment II: Face Recognition

We now consider the application of the proposed method to face recognition.
The surface of a human face has many feature points, such as moles and freckles,
which are distinct characteristics that can be used to identify individuals. The
effectiveness of using these feature points for face recognition has been shown
by Pierrard and Vetter [14]. We detected moles and freckles from facial images
using a circular separability filter [15], and used them as feature points.

The number of participants was 22. A participant sat on a chair about 1
meter away from a camera. We captured 300 frames for each participant, while
the head was moving. The image size was 1024× 768 pixels.

Figure 7 shows examples of the input image, detected face region and separa-
bility map. First, we detected the facial region [16] and the regions of pupils and
nostrils [15]; we then remove the latter regions from the facial region, because
they are common features of all subjects. Next, we applied a circular separability
filter to obtain a separability map. Finally, we detected and tracked 26 feature
points from the 300 separability maps by applying the KLT feature tracker [13].
Figure 8 shows examples of the tracked feature points.
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Fig. 8. Examples of detected and tracked feature points (P = 26)

Fig. 9. An example of feature points matched between two image sequences

The 300 frames were divided into sets of 30 frames for each of the 22 subjects so
that we obtained 220 datasets. A shape subspace was generated from each dataset
by the factorization method. We compared the proposed matching method and
the conventional matching method using QR factorization in terms of classifica-
tion performance. The input subspace generated from a set of input image se-
quences was classified using the Nearest Neighbor algorithm. The classification
rate was estimated by the Leave-One-Out method.

Figure 9 shows an example of the feature points matched. Figure 10 shows the
similarity maps among the sets of sequential images by the proposed method.
Figure 10 (a) shows the result by the proposed matching method and (b) shows
that by the conventional method. Table 1 lists the recognition rates and Equal
Error Rate (EER), which is defined as the crossing point of the False Acceptance
Rate and False Rejection Rate curves. The value of ERR should be as low as
possible to achieve high performance face recognition.

From Table 1 we can see that the proposed matching method is superior
to the conventional, QR-based method. The recognition rate of the proposed
method was 99.5% with 22 subjects whereas the recognition rate using the
QR-based method was 94.1%. The large difference between the performances
of the two methods seems to derive from the degree of robustness of feature
extraction against ambiguity resulting from added noise and occlusions. More-
over, the EER of the proposed method is very low: it is only 2.60%, compared
to 17.3% for the QR-based method. These results clearly support the validity of
our framework for 3D object recognition based on the canonical angles between
shape subspaces.



590 Y. Igarashi and K. Fukui

Input data

In
pu

t d
at

a

50 100 150 200

50

100

150

200 0.4

0.5

0.6

0.7

0.8

0.9

1

Input data

In
pu

t d
at

a

50 100 150 200

50

100

150

200
0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Fig. 10. Similarity maps based on the canonical angles for face recognition with 22
subjects: (a) using the proposed matching method and (b) using the conventional
method based on QR factorization [11]

Table 1. Comparison between the proposed method and the conventional method for
face recognition

Matching method Recognition rate EER
Proposed 99.5%(219/220) 2.60%

QR-based [11] 94.1%(207/220) 17.30%

5 Conclusions

In this paper, we have proposed a method for measuring the similarity between
3D object shapes, which is invariant to camera rotation and object motion. The
proposed measure of shape similarity is based on the shape subspaces produced
by the factorization method. The shape subspace produced depends on the order
of the feature points considered. To avoid this ambiguity, we have proposed a
method of matching the feature points of two objects by rearranging the rows
and columns of their orthogonal projection matrices.

We have confirmed through an evaluation experiment using synthetic data
that the proposed matching method can match the feature points of two ob-
jects. Our method is more robust to noise than the conventional method based
on QR factorization. We have also demonstrated that a framework based on
the combination of shape similarity and our matching method is effective for
classifying facial images.
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Abstract. In speech recognition, phonemes have demonstrated their ef-
ficacy to model the words of a language. While they are well defined for
languages, their extension to human actions is not straightforward. In
this paper, we study such an extension and propose an unsupervised
framework to find phoneme-like units for actions, which we call actemes,
using 3D data and without any prior assumptions. To this purpose, build
on an earlier proposed framework in speech literature to automatically
find actemes in the training data. We experimentally show that actions
defined in terms of actemes and actions defined by whole units give simi-
lar recognition results. We define actions out of the training set in terms
of these actemes to see whether the actemes generalize to unseen actions.
The results show that although the acteme definitions of the actions are
not always semantically meaningful, they yield optimal recognition accu-
racy and constitute a promising direction of research for action modeling.

1 Introduction

Recognition of human actions is an important part of research in dynamic scene
understanding. The applications of classifying human actions in a video extend
from video indexing and retrieval, video surveillance, human-robot and human-
computer interactions. There are several challenges which arise while tackling
the problem of human action recognition. One such fundamental problem is the
temporal representation of actions. Phonemes in spoken language are the small-
est or distinct segmental unit of sound which can be combined or concatenated
to form words. This fact is exploited in speech recognition where Hidden Markov
Models (HMMs) are learned on these phonemes. These models are combined to
define the words of a vocabulary. Motivated from speech recognition, we inves-
tigate whether such a hierarchical definition is possible for human actions using
sub-action units which we call actemes.

Intuitively, there must exist a restricted set of generic motions of a human
body which can define all actions. This set, if it exists, can be likened to a set of
phonemes which can define every word in the dictionary from a given language.
There are certain advantages if such actemes can be learned. Firstly, the actemes
would allow us to define a large number of actions in a compact representation.
Secondly, the advantage of having a hierarchy i.e. where an action is described
as sequence of actemes is that when a new action is added to the list of actions

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 592–605, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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to be recognized, this new action can be described in terms of actemes thus
obviating the need for learning a new model every time an action is added.

The concept of phoneme definition for words exist from linguists. No such
widely accepted definitions of actemes exist for human actions. Several
researchers have tried to come up with such definitions. Green et. al. [1] pro-
poses the use of 35 Dynemes which form the basic units of human actions or
skills. The dynemes are defined in terms joint angles. An HMM model is used
for action recognition. Another work by [2] defines kinetemes on the joint angle
space of human motion. These kinetemes form the basic unit of a human activity
language. Using these kinetemes and language grammar like rules the authors
propose to construct any complex human action. Bregler [3] defines Movemes as
linear dynamical systems over which an HMM model is learned for recognition.
Since the space of all possible human motions is very large and since no widely
acceptable definition exist it is better to automatically come up with these def-
initions for actemes as opposed to [1]. Also, we assume no rules while labelling
the actions in terms of the learned actemes, as done in [2] instead we use the
recognition algorithm it self to provide the labelling. In [3], the author proposes
a method to automatically learn the Movemes from the training set. The results
shown in this paper are evaluated on actions consisting on repeated segments
such as walking, running and skipping. In such a scenario the basic blocks con-
structing the actions are obvious and eliminate the need for labelling the actions
in terms of Movemes. In this paper, for the experiments we evaluate the efficacy
of our proposed method exclusively on actions which do not consist of repeated
segments.

In this paper, we build on a speech recognition formalism [4,5], which proposes
to design a recognizer terms of acoustic subword units (ASWU).This method
assumes no prior information while learning the ASWUs from words. It learns
these definitions in an unsupervised data-driven manner. We apply this method
from speech recognition for obtaining actemes because it is completely data-
driven and makes no prior assumptions on the definitions of actemes. This is a
completely different way to approach the problem of human action representation
and recognition than the earlier proposed methods. Secondly, the number of
actemes per action is also known so a data-driven approach is best suited to come
up with acteme units. To summarize, the main contributions of the paper are the
following: (1) We use a speech recognition formalism to learn the actemes and the
representation of actions in terms of the actemes in an unsupervised framework.
(2) We show that actions from outside the training set can be represented in
terms of these learned actemes and recognized without explicitly learning a new
model for the actions.

2 Related Work

Automatic annotation of actions in videos is a challenging task and various
action recognition methods can be grouped together depending on the types
of features used and the method employed to model the temporal and spatial
representations of actions. A brief survey of temporal representations similar to
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ours has been discussed in Sec. 1. We restrict our survey to 2D silhouettes, 3D
visual hulls and key frames as features. The recognition methods discussed are
HMMs and dynamic time warping (DTW) based methods. For a detailed survey
of action recognition methods see [6].

The earliest features used were silhouettes extracted from each frame over
time and an HMM was learned from them [7]. These were used to recognize
tennis strokes from single views. A later paper [8] describes temporal templates
for human action recognition. [9] extends the 2D temporal templates to 3D vol-
umes. [10] also describes a view invariant recognition method where they learn
parametric HMMs from 3D data and use the HMMs as a generative model to
synthesize 2D action sequences closest to an unknown 2D test action sequence.
Another way of classifying actions is by using dynamic time warping (DTW). [11]
learns the warping bounds for the actions from the training data. [12] proposes to
use distance between linear dynamical systems for action classification. [13], [14]
perform action recognition by defining actions as trajectories on the Grasmann
Steifel manifold. [15] extends the DTW framework using average templates with
multiple features to model intra-class variances and perform simultaneous recog-
nition and localization of actions in a video sequence. All these methods learn
the model on entire actions.

Another popular method is to define actions as a set of poses or key frames or
exemplars [16]. They use single key frames to recognize backhand and forehand
in tennis. There also has been work which uses short snippets of frames [17] to
recognize actions instead of a single frame. In [18], the authors use the forward
selection algorithm to find the most discriminative set of exemplars to describe
an action vocabulary. [19] model actions as a sequence of atomic body poses
where the authors consider the order in which the poses appeared. In this paper,
we express action interms of sequence of short segments or actemes instead of
sequence of key poses.

3 The Method

To learn the actemes we employ a method proposed in speech recognition
[4, 5]. Actemes are equivalent to phonemes or ASWUs and the whole actions
are equivalent to a word. In this method, the authors propose to 1) optimal cut
the words into piecewise stationary segments, 2) get a reduced set of ASWUs
by applying K-means on the means of each optimal segment, 3) learn HMMs
on these ASWU, 4) apply the connected word Viterbi algorithm to label the
training data in terms these ASWU to generate a lexicon or a phonetic defini-
tion for each word in terms of the ASWUs, and 5) then use this definition in
the Viterbi framework to perform recognition. Instead of using HMMs to model
the actemes we use the earlier proposed average template models [15] and the
one-pass dynamic programming algorithm [20] for labeling and the modified one-
pass dynamic programming algorithm [21] for recognition. The average template
model is shown to outperform the HMMs in [15]. Figure 1 and Figure 2, explains
the building blocks of the algorithm. These building blocks are explained in the
following sub-sections from 3 to 3.
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Fig. 1. In this figure, we have the block diagram of the acteme training steps

Fig. 2. In this figure, we have the block diagram of the steps for recognition

Feature Computation. The features needed to interface with a time syn-
chronous onepass-DP algorithm should be a set of feature vectors over time
given by E = {e1, e2, . . . , eb, . . . , eT } where eb is a vector of dimension c at
a given time instant b. In this paper, we use 3D visual hulls as our features.
We then compute motion history volumes (MHVs) [9] to recognize action using
DTW. The MHVs store the motion history on a 3D occupancy grid in a given
window. In this paper, we use a short window of size 5. The occupancy grid of
the MHVs is of the size 64× 64× 64 for each frame. Since the actors are allowed
to change their view point freely we convert the Cartesian coordinates to cylin-
drical coordinates followed by Fourier transform on this occupancy grid. This
Fourier magnitudes ,of size 16×16×16, are invariant to the rotation around the
z-axis. We perform further dimensionality reduction using principal component
analysis to reduce the feature vector to a size of 100. Therefore, in this paper we
have c = 100.

Temporal Segmentation. Several approaches using HMMs have been used for
action, gesture and sign language recognition. The implicit assumption of using
a left to right HMMs for recognition is that the action is composed of piecewise
stationary regions. These regions are modelled by the states of the HMM. Hence
the number of states is an important parameter to correctly estimate for action
recognition. The piecewise stationary regions in a word are the phonemes and if
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we fit a left to right HMM model with the number of states equal to the number
of phonemes we get a good recognition accuracy [5]. Also the steady state regions
are most likely to lie between abrupt motion changes or discontinuities which
can be used for temporal segmentation [22] using MHVs. We do not take the
approach of using velocity discontinuities because actions like ”‘stand”’ or ”‘sit
down”’ do not have abrupt changes in the direction of velocity. We motivate our
strategy to cut actions into relevant regions by assuming that the actions can be
decomposed into piecewise stationary regions. The method cuts the actions into
segments such that the global distortion of these segments w.r.t their means is
minimized. This can be formulated as a dynamic programming problem [23].

Consider an action template defined as set of features over time by E where
eb is a feature vector corresponding to the bth frame of size c = 100 and the
action is performed over T time instances. The task here is to segment E into f
homogeneous segments by minimizing the sum of the distances between frames
of the segments to their respective means. Let the segment boundaries for a
given action template be G = {g1, g2, gi, . . . , gf} where gi are integers indicating
the frame numbers of the boundaries. The ith segment starts at gi−1 + 1 and
ends at gi; g1 = 0 and gf = T . The optimal boundaries G∗ can be found by
minimizing the following function over all possible segmentations:

D1(f, T ) =
i=f∑
i=1

gi∑
b=gi−1+1

d1(eb, ēi) (1)

where D1(f, T ) is the total accumulated distance for segmenting E into f seg-
ments. The mean of the ith segment is given by ēi which is the average of the
frames of the ith segment given by H =

{
egi−1+1, . . . , egi

}
. The distance metric

used is euclidean; d1(eb, μi) = ‖eb − ēi‖.
The problem of solving for optimal boundaries can be efficiently solved using

a treillis realization. This can be achieved by solving the following dynamic
programming recursions as given in [23], [24]:

D1(i, gi) = min
gi−1

[D1(i − 1, gi−1) + d1(eb, ēi)] where b = gi−1 + 1 to gi (2)

where D1(i, gi) is the cost of dividing the template E into i segments till the
frame gi where i < f . This cost is given by the minimum over cost accumulated
by dividing E into i − 1 segments till frame gi−1 plus the distance of the ith
segment with its mean. The optimal segmentation can be found by backtracking
through the trellis starting from min D(f, T ).

If the number of segments f for a given word is equal to the number of
phonemes in that particular word then ASWUs are equivalent to phonemes of
that language otherwise the ASWUs are not semantically meaningful. The num-
ber of phonemes in a given word is not always known because of the pronuncia-
tion. In [4, 5], it is shown that even if ASWUs are not semantically meaningful
the algorithm still provides a good recognition accuracy. Since the number of
actemes in an actions are unknown the method given in [4, 5] is more suited
to be applied to the problem of action recognition using actemes as opposed to
other approaches [1, 2, 3] motivated from speech recognition systems.
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Clustering and Computing average-template Model. This procedure to
segment each action template into f segments is repeated for all actions in the
training set. Therefore, if there are N training instances of all actions then we
will have a set of f × N variable length temporal segments. To get a compact
representation we apply K-means on this set of temporal segments to get the
K actemes. Since, we assumed that each segments is piecewise stationary we
represent each segment in this set by its mean and apply the K-means on the
these segment means.

To represent the cluster corresponding to each of the acteme we compute a
temporal average or nominal template [25] over all the instances of a a given
acteme. In this section, we describe a method to represent each acteme as an av-
erage of the templates in that cluster of actemes. The average pattern or average-
template Rk is computed by mapping the segments, H = {H1, H2, . . . , Hl, . . .},
in the cluster corresponding to the acteme k using DTW. We use Euclidean
distance as the local distance d2(i, j) between the frame i of Rk and frame j
of H . If I is the length of Rk and J is the length of H , the path is forced to
begin at the point D2(1, 1) and end at D2(I, J) on the trellis to compute the
accumulated distance D2(i, j) . This accumulated distance is defined as:

D2(i, j) =min[D2(i − 2, j − 1) + 3d2(i, j),
D2(i − 1, j − 1) + 2d2(i, j),
D2(i − 1, j − 2) + 3d2(i, j)] (3)

where i is the frame index of the average reference pattern Rk and j is the frame
index of the train pattern H .

Backtracking from the point D2(I, J) on the treillis yields the optimal path
p = [im, jm] and the corresponding mapped set of feature vectors [Rk(im),
H(jm)]. Here m, is the index of a point on the optimal path p. The average
reference pattern Rk

l for an activity is computed by the successive weighted
averaging of l instances as follows:

Rk
l (m) =

(
1 − 1

l

)
Rk

l−1(im) +
1
l
Hl(jm), m = 1 . . .M (4)

where M is the number of points on the optimal path p and Rk
l−1(im) is the

average of the previous l − 1 templates. The new time axis for the instance Rk
l

is computed as:

p1(m) =
(

1 − 1
l

)
im +

1
l
jm, m = 1 . . .M (5)

We linearly transform this new time axis to a constant length P where P is the
average length of all segments in the cluster of acteme k. The transformation is
done as follows:

p2(m) =
P

M
p1(m) (6)

as p2(m) would have non-integer values we define a time axis p3(m′) where m′ =
1, 2, 3 . . . P . The feature values of the average pattern Rk

l (m) are interpolated to
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get the new average pattern representing the cluster corresponding to acteme k
Rk

l (m′).
Labelling. In this section, we discuss the method to label each of the train-
ing sequences in terms of the learned K learned actemes. We use a ’connected
word recognition’ algorithm based on the one-pass DP, well known in speech
recognition [20]. Continuous labelling of action templates in terms of actemes
is a difficult task to do on line, primarily because this involves the problem of
jointly determining the optimal number of actemes M∗ in the train sequence
O, their boundaries S∗ = {s∗0, s∗1, s∗m−1, s

∗
m, . . . , s∗M∗} and associated optimal

acteme indices I∗ = {i∗1, i∗2, . . . , i∗m, . . . , i∗M∗} (where vi∗m ∈ V ), by minimizing
a measure of distance D(O,R) between the train sequence O and a typical
reference acteme template sequence R = {Rvi1

, Rvi2
, . . . , Rvim

, . . . , RviM
} each

drawn from V . The decoding problem of determining (M∗, S∗, I∗) is solved by
minimizing D(O,R) over the variables (M, B, I) using the time-synchronous
one-pass DP decoding algorithm.

To compute the optimal cumulative distance, we use two types of transition
rules (a) for acteme interior i.e. Within Acteme Recursion (b) for acteme bound-
ary i.e Cross-Acteme Recursion. These recursions are computed for all frames
of the train action template w.r.t the all frames of all average template acteme
models in a left to right time synchronous manner. These recursions would then
result in many possible paths. The optimal action sequence or path will be the
one which corresponds to the minimum cumulative distance (Termination and
Backtracking).

We now provide the mathematical details pertaining to the above intuitive
explanation of the algorithm. The acteme vocabulary of size K is given by V =
{v1, v2, . . . , vK}. Each acteme corresponds to a reference pattern Rvk

(k′), where
k′ = 1, 2, 3 . . . Pvk

; Pvk
is the number of frames of the average template vth

k

acteme where k = 1, 2, 3 . . .K. The train action template frame index is given
by q and Q is the length of the train action template O. During the labelling pass
the sequence of warping is given by the average-templates. The local distance
between one frame of the average template of a given acteme and a frame of the
training action sequence is computed in the following way:

d(q, k′, v) = ‖Rv(k′) − O(q)‖ (7)
Let D denote the global accumulated distance between the train action frame and
the reference pattern frame. The one-pass DP decoding would look to minimize
the global accumulated distance over all the frames of the train action pattern.
The following steps give a method to accumulate the global distance between a
given train action frame and a frame of the reference pattern to find a globally
optimal path:
1. Within acteme recursion: This recursion is computed for all frames Q of

the train action pattern and all frames k′ of all reference patterns except for
k′ = 1 i.e. the recursions are applied to to all frames except at the acteme
beginning. This recursion can be denoted as:

D(q, k′, v) = d(q, k′, v) + min
k′−2≤r≤k′

(D(q − 1, r, v)) (8)
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2. Cross-acteme Recursions: This recursion is computed for all Q test frames
and for k′ = 1 frames of all reference patterns. This recursion allows a transi-
tion into the first frame of a given reference pattern from the last frame of all
other reference pattern including the given reference pattern or it allows the
path to be in the last frame of that given reference pattern i.e. the algorithm
either stays in the particular acteme or transits into the first frame on any
other acteme depending on which of the two paths yields a minimum score.
It can be denoted as:

D(q, 1, v) = d(q, 1, v) + min[ min
1≤v≤K

[D(q − 1, Pv, v)], D(q − 1, 1, v)] (9)

3. Termination and Backtracking: To find the best acteme sequence the
algorithm uses the following termination condition at the train action frame
Q:

D∗ = min
1≤v≤K

[D(Q, Pv, v)] (10)

The algorithm checks for the minimum accumulated distance for the best
path at the last frame of every reference pattern at the train action frame Q.
The best path is backtracked from that point through back-pointers stored
during the Within Acteme and Cross Acteme recursions.

The output of running the onepass-DP algorithm will be a sequence of optimal
acteme indices I* for every training action template. For eg. the a given sequence
O could be labelled as {v3, v2, v7} . This is a completely unsupervised labelling by
an onepass DP algorithm which is also the same algorithm we use for recognition.
We choose the acteme representation or lexicon which repeats itself the most
number of times as the model for a given action while recognition. Since, there is
intra class variance in the manner in which different actors perform the action we
find that upto 4 lexicons have to be used to get results close to our baseline. This
is true in the case of speech recognition where a given word can be pronounced
by different by different speakers one phonetic representation is not enough to
obtain good recognition results. The lexicons chosen are in descending order of
their occurrence while labelling the training data.
Recognition. While recognizing the actions we assume that the action bound-
aries in the video sequence are known. Therefore, we only recognize the action
and do not localize it in the video sequence. This assumption is necessary as
isolated action recognition is the true test of the efficacy of this approach as it
gives only substitution errors i.e. the an action can be recognized as itself or
confused as some other action. Simultaneous recognition and localization causes
insertion and deletion errors.

We use the method proposed in [21] to perform action recognition when each
action is defined in terms of actemes. The proposed algorithm can be used for si-
multaneous recognition and localization of action in a video sequence. We switch
off the Cross-Word transitions [21] since we are only recognizing the actions and
assume that the boundaries in the video sequence are known.

Let the number of action to be recognized be W = {w1, w2, . . . , wm, . . . , wM}
where m = 1 . . .M is the total number of actions in the recognition vocabulary.
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The number of lexicons per actions is defined as l which is the constant and same
for every action to be recognized in the vocabulary. The lth representation of
each action wm in terms of the actemes given by {al

1m, al
2m, . . . , al

jm, . . . , al
Nam

}
where j = 1 . . .Nam is the number of actemes representing the action wm and l =
1 . . . L. The local distance between the test sequence and the average templates
be d(m, al

jm, l, k′, q) where k′ = 1, 2, 3 . . . Pal
jm

; Pal
jm

is the number of frames
of the average template al

jm acteme. The test action sequence consist of q =
1 . . . q . . .Q frames. The local distance is given by euclidean distance between the
k′th frame of the average template representing each acteme and the qth frame
of the test data. The dynamic time warping time synchronously calculates the
minimum global accumalted distance D(m, al

jm, l, k′, q) to reach the k′th frame
of the word wm represented by lexicon l till the qth of the test action sequence.
Since, the cross action recursions are switched off there are only with action
recursions which can be divided into two types:

1. Within Acteme recursions: These recursions are applied for all frames of
the average template of each of the acteme except for the template beginning
i.e. k′ = 1

D(m, al
jm, l, k′, q) = d(m, al

jm, l, k′, q)+ min
k′−2≤r≤k′

[D(m, al
jm, l, r, q−1)] (11)

2. Cross Acteme recursions: The actions are represented by variable num-
ber of actemes in a given order. This order is given in the labelling step.
Therefore, in this recursion the transition occurs into the first frame of the
average template of each acteme from the last frame of the average template
of the previous acteme. This is known as forced alignment of the concate-
nated action model to the test sequence. This recursion are applied at the
first frame k′ = 1 of every acteme except the first. This step can be mathe-
matically denoted as:

D(m, al
jm, l, k′ = 1, q) =min[D(m, al

jm, l, k′ = 1, q − 1), (12)

D(m, al
(j−1)m, l, Pal

(j−1)m
, q − 1)]

where j = 2 to Nam

3. Termination and Backtracking: The action is assumed to begin at the
first frame of the average template of the first acteme of the given action
and end at the last frame of the last acteme of the same action. Therefore,
the optimal accumulated distance D∗ can be obtained by checking the last
frames of the last actemes of all actions with all representative lexicons at
the last frame Q of the test sequence:

D∗ = min
m=1...M

min
l=1...L

D(m, al
Nam

, l, Pal
Nam

, Q) (13)

The test sequence is classified as the action index m for which the D is minimum.
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4 Experimental Results

In this section, we show that the actions described as actemes give equivalent
performance to the actions when modelled as whole units themselves. We add
actions which are not included in the training set to check whether the learned
actemes generalize to unseen data. We evaluate our method on the INRIA XMAS
dataset. In our experiments, we assume that the boundaries of the actions in the
video sequences are known.

For the first set of experiments,we use a reduced vocabulary of check watch, sit
down, get up, punch and kick. The recognition experiments are performed on the
set of 10 actors and are validated by the standard leave-one-out testing proce-
dure.In these experiments, we show that the actions described by actemes give
equivalent recognition performance to actions described as whole units them-
selves. We first obtain the 100 dimensional feature vectors in time from the 3D
visual hulls using the procedure described in Sec. 3. We apply the temporal seg-
mentation procedure on all available training instances of each actions to get 2
and 3 segments respectively. If the method tries to cut the actions into more
than three segments we observe that the actions start breaking into segments
which are only 1-2 frames long. These segments cannot be averaged with longer
segments to learn an average template model because the warping of very short
with long segments is meaningless [5].

We apply K-means on these cut segments and plot the recognition results
with K varying from 10 to 50 in the steps of 10. Due to the intra class variance
observed in the performance of the actions we increase the number of lexicons
per actions from 1 to 4 in the descending order of their occurrence. We find that
both help in increasing the recognition accuracy. The recognition results of the
first set of experiments are given in Fig. 3. We observe two facts from this result:

1. For the case where training actions are cut into 2 segments the recognition
accuracy increases till two lexicons and then it starts to decrease. This is
because there is trade off between the number of lexicons per actions and
the recognition accuracy as increasing the number of lexicons per actions
also increases the possibility of confusions.

2. Recognition accuracy is better when the actions are segmented into 3 parts
than 2 parts because if we observe the reduced vocabulary of actions apart
for stand up and sit down in the XMAS dataset they consist of three parts

Table 1. Comparison of actemes representation with other Recognition Methods

Added LDA PCA Mahala- Average Actemes Average
Action [9] [9] nobis [9] Template [15] This Paper Trajectory [11]
None 94.67 86.67 95.33 95.33 94.00 92.00

CrossArms 97.78 81.67 97.79 97.79 87.29 86.74
ScratchHead 92.22 77.22 93.33 97.78 81.67 91.11

PickUp 96.67 83.89 94.44 97.24 91.71 92.82
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Fig. 3. Recognition accuracy plots for 2 and 3 segments cuts. We can see that the
recognition accuracy of acteme based representation is close to the baseline of actions
when modelled as whole units themselves.

hen modelled as whole units themselves.

Fig. 4. Recognition accuracy plots for 2 and 3 segments cuts with Cross Arms as
the added action. We can see that for the 3 cut case this 6 word vocabulary gives
satisfactory results.

an initial movement, the main action and the relaxation part. In sit down,
there is an initial movement of bending the back, crossing the legs sitting
down and coming to a relaxed pose after sitting down. Stand up is exact
opposite of sitting down.

In the second set of experiments in the paper, we add the following set of actions
one at a time to the cross arms, scratch head, pick up to the list of actions to
be recognized. Thus, forming a vocabulary of 6 actions every time one of the 3
actions is added. The training instances of these actions are not used to train
the actemes. We only use the training instances from these actions to get the
lexical representation of the added action in terms of the actemes learned from
the earlier 5 actions.

We observe that the recognition accuracy is the best for pick up because the
initial part of pick up is very similar to the sit down and the latter part of pick
is similar to the stand up action. Therefore, the actemes for pick up are present
in the reduced vocabulary of 5 actions. The next best performance is achieved
by cross arms again because the action check watch is similar to it. The actions
scratch head action when added to the vocabulary of 5 action gives the worst
recognition result because there are no actions in the reduced vocabulary of 5
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Fig. 5. Recognition accuracy plots for 2 and 3 segments cuts with Scratch Head as
the added action. We observe that the recognition results are poor because the scratch
head does not have a similar action in reduced vocabulary of 5 actions used to learn
the actemes.

Fig. 6. Recognition accuracy plots for 2 and 3 segments cuts with Pick Up as the
added action. We observe that the recognition results are good because the actemes
for pick up are present in the Stand Up and Sit Down action.

actions similar to the scratch head action. The recognition results for the second
set of experiments are given in Fig. 4 to Fig. 6.

We compare our results with other methods which were applied to the INRIA
XMAS database. We model these whole units of actions using an average tem-
plate model as discussed in 3 and perform isolated action recognition [15] to get
the recognition baseline. This baseline is shown as the blue baseline in Fig. 3 to
Fig. 6. We also compare our results with the recognition method proposed in [9].
The size of the FFT features used to obtain recognition results 16× 16× 16. We
compare our method with the approach in [11] which proposes another method
to learn average or nominal trajectories.The average trajectories are computed
using the 100 dimensional features described in Sec. 3 . We find that the pro-
posed acteme based representation performs slightly better than the method
proposed in [11] and comes close to the recognition performance of [15, 9] for
the first set of experiments using 5 actions. For the second set of experiments
we find the for added actions, cross arms, pick up, which have a similar action
in the 5 action training set the results are comparable to all the baselines. The
recognition accuracy in the actemes column is the recognition accuracy achieved
for 3 cuts and K = 50. All the methods use leave-one-out testing strategy. [9]
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uses a best segment representative of the action. While actemes, [15] and [11]
use the boundaries extracted from the ground truth.

In the experimental section, we have discussed the efficacy of the actemes
w.r.t. the recognition accuracy. The representation of check watch and sit down
actions in terms of the actemes is shown in the video uploaded with the paper.

5 Conclusion and Future Work

To conclude, we have demonstrated an unsupervised framework to learn a set of
actemes from a given training database to represent actions. We experimentally
show that actions defined in terms of these actemes can give the similar recog-
nition accuracy as compared to the whole unit themselves. We also showed that
satisfactory recognition results can be achieved even with action which are not in-
cluded in the training set for learning the actemes. For future work we would like
to explore techniques which can be semi-supervised to learn semantically mean-
ingful actemes. We would also like to extend this framework to bag-of-words like
approaches. The next obvious step would be to do simultaneous recognition and
localization of actions in a video sequence.
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Abstract. A method is presented to segment brain tumors in multi-
parametric MR images via robustly propagating reliable statistical tu-
mor information which is extracted from training tumor images using a
support vector machine (SVM) classification method. The propagation
of reliable statistical tumor information is implemented using a graph
theoretic approach to achieve tumor segmentation with local and global
consistency. To limit information propagation between image voxels of
different properties, image boundary information is used in conjunction
with image intensity similarity and anatomical spatial proximity to de-
fine weights of graph edges. The proposed method has been applied to
3D multi-parametric MR images with tumors of different sizes and lo-
cations. Quantitative comparison results with state-of-the-art methods
indicate that our method can achieve competitive tumor segmentation
performance.

1 Introduction

Reliable segmentation of brain tumors from MR images is of great importance
for surgical planning and therapy assessing. Diligent efforts have been made to
achieve time-efficient, accurate, and reproducible tumor segmentation. It how-
ever remains a challenging task to achieve robust segmentation as brain tumors
differ much in appearance, location, size, and shape.

Many methods have been proposed for tumor image segmentation in the liter-
ature, including supervised classification methods, unsupervised clustering meth-
ods, and active contour methods. Supervised classification methods [8,10,14,16]
perform image segmentation using classifiers built on training data with assump-
tion that the statistical information extracted by the classifiers from the training
data can cover testing data. Their performance therefore relies on the consistency
between the training and the testing data. Due to imaging noise and patient
anatomy difference, discrepancy inevitably exists between the training and test-
ing data, which often leads to degraded segmentation performance. Rather than
relying on the training data, unsupervised methods [1,6,9,13,15,17,18,26] per-
form segmentation by partitioning the image to be segmented using its specific
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intensity information. These methods may alleviate the problem of image inten-
sity variability; however they often require an appropriate number of clusters
to be assigned to achieve a good performance. Unlike aforementioned methods,
the active contour methods perform image segmentation utilizing both image
intensity and geometrical information of objects to be segmented [2,7,12,24,28].

Rather than performing tumor segmentation within the existing frameworks,
we propose a fully automatic method by utilizing reliable statistical tumor in-
formation obtained from a support vector machine (SVM) classifier to guide
a graph theory based tumor segmentation. The key elements of the proposed
approach are: 1) a statistical model is built upon training images with labeled
tumors using SVM to provide reliable statistical tumor information for images
to be segmented [4]; 2) a graph theoretic semi-supervised learning approach is
utilized to propagate the reliable statistical tumor information to all the im-
age space with local and global consistency [27]; 3) a robust “edge stopping”
function is adopted to embed image boundary information in the graph edge
weight measurement for limiting information propagation between image voxels
of different properties [3]. The proposed method has been applied to brain tumor
segmentation of 3D multi-parametric MR images. Quantitative experiment re-
sults indicate that our method can achieve promising segmentation performance.
Extensive validation experiments also demonstrate our method’s robustness to
its parameters.

2 Methods

The tumor segmentation is implemented as a semi-supervised learning problem
with guidance of reliable statistical tumor information obtained from a SVM
classifier built on available training data.

2.1 Graph Theoretic Approach for Semi-supervised Segmentation

Graph theory based segmentation approaches model the image to be segmented
as a graph G(V, E) where each node of V corresponds to a voxel of the image
and each edge of E connects a pair of voxels and is associated with a weight of
pair-wise voxel similarity. With the graph theory based image representation, the
image segmentation problem is solved by assigning different labels to graph nodes
and can be performed by methods like graph cut and random walks [11,22,25]. To
best utilize statistical tumor information of training data and alleviate problems
of inter-image intensity variability, we adopt a semi-supervised graph theoretic
approach that is able to propagate labeling information of a small number of
graph nodes to unlabeled nodes with local and global consistency [27].

Given labeling information of a small number of graph nodes, labels of the
graph’s nodes can be predicted by exploiting the consistency between nodes
based on the cluster assumption that nearby nodes or nodes on the same struc-
ture are likely to have the same label [5,27]. The labeling problem can be solved
by minimizing a cost function within a regularization framework [27]:

Q(F ) = FT (I − S)F + μ(F − Lini)T (F − Lini) (1)
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where I is an identity matrix and S is the normalized edge weight matrix, F
is the segmentation label vector and Lini is the initial label vector. The first
term of Eq. (1) is a local consistency constraint to encourage nearby nodes to
have similar labels, and the second term measures the consistency between the
labeling result and the initial labeling information. These two terms are balanced
by the parameter μ to achieve a labeling with local and global consistency. The
minimization of Q(F ) can be achieved using an iterative procedure which has
been demonstrated to converge to the optimal solution [27]:

Fm+1 = (1 − α)SFm + αLini (2)

where F k is the updated label information at the k-th iteration, F 0 is equivalent
to the Lini, 0 < α < 1 is a parameter related to μ, trading off the information
from the initial labeling and the prediction results. This iterative procedure can
be regarded as label information propagation. At each iteration, every node ab-
sorbs the label information from other nodes and retains partial label information
of its initial state. The label information is updated until convergence and each
node is assigned to the class from which it receives the most information.

It is worth noting that label information of nodes is updated by the spread of
label information of other nodes according to their corresponding edge weights.
For a successful segmentation it is critical to get properly defined edge weights
and a few reliably labeled nodes.

2.2 Robust Edge Weight Measurement

As the propagation based learning strategy achieves the labeling via spreading
the available labeling information according to pair-wise edge weights, the edge
weight measurement plays an important role in the segmentation. Typically, only
the image intensity similarity and spatial proximity are taken into account in
the edge weight measurement [22]. However, in tumor MR images, the overlap
between the intensity range of healthy tissues and that of tumors always exists
and the locations of tumors vary much. The image intensity information and
spatial proximity might not be able to distinguish tumor from healthy tissues
very well. To mitigate this problem, we incorporate image boundary information
into the edge weight computation:

wij = eI
ij × eL

ij × eg
ij (3)

where eI
ij and eL

ij are measures of image intensity similarity and spatial proximity,
eg

ij is an image boundary information term, i and j are different nodes in the
graph.

The image similarity and spatial proximity terms eI
ij and eL

ij are defined as
[22]:

eI
ij = e−‖Fi−Fj‖2/σ2

F (4)

eL
ij =

{
e−‖Li−Lj‖2/σ2

L if ‖ Li − Lj‖ < r
0 otherwise

(5)
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where Fk refers to the image intensity vector of the voxel (node) k, Lk is the
spatial location of the voxel (node) k, σF and σL are free parameters controlling
scales of the kernels. The neighborhood size of each node is controlled by the
parameter r, edge weight is set to 0 for any pair of nodes that are more than r
apart.

The image boundary information is embedded in an “edge stopping” function
which could be any monotonically decreasing function to make it robust to image
noises [3]. In particular, we use a function based on Turkey’s biweight robust
estimator for embedding image gradient information between nodes and the
image boundary information term is defined as:

eg
ij =

{ 1
2 [1 − (Gij/σg)2]2 if Gij ≤ σg

0 otherwise (6)

where Gij is the maximum image gradient magnitude along the i-j direction
between voxels i and j, and σg is a free parameter controlling the spatial scale of
the function. The gradient magnitude of images with a vector value at each voxel
is calculated as the difference between the maximal and minimal eigenvalues in a
principle component analysis of the partial derivatives as described in [21]. The
value of σg can be estimated using robust statistics [3]. This term works as an
indicator to the presence of an image boundary between voxels i and j. A small
value of eg

ij means the probability that voxels i and j are located in the same
region is low and the information propagation between them should be limited.
The eg

ij term makes the parameter selection in the edge weight calculation more
stable as it tries to constrain the information propagation between nodes from
different objects. The “edge stopping” function involves the computation of im-
age gradient and searching for the maximum gradient along the line inbetween
voxels i and j within the neighborhood.

2.3 Label Initialization Using Reliable Statistical Information

To get guidance information, i.e., a number of labeled voxels, we adopt a super-
vised classification method that has been shown capable of achieving promising
tumor segmentation performance [14]. However, due to the discrepancy between
training and testing data, the supervised classification segmentation method
does not work well for testing data not well covered by the training informa-
tion. Therefore, we select voxels with the most reliable classification results to
initialize our graph theory based segmentation.

To build a classifier for tumor segmentation, a SVM based strategy is adopted
[14]. In particular, a support vector machine (SVM) classifier with probabilistic
outputs is built on intensity information of multi-parametric images and the
training data are obtained from labeled tumor images [4, 14]. Each voxel of a
multi-parametric image contains vector valued intensity information. Elements
of the vector valued intensity information are scaled to be distributed in [0, 1]
separately after multi-parametric images are spatially aligned and their bias
fields are corrected [14]. The intensity normalization is implemented globally and
does not change the relative contrast of tumors in the image. For each voxel, the
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feature vector used in classification consists of image intensity information of all
voxels in its spatial neighborhood [14]. Gaussian radial basis function kernel is
used in the SVM classification and the classification parameters are tuned using
cross-validation.

When applied to testing images, the SVM classifier provides each voxel a label
indicating tumor or healthy tissue and a probability measure indicating the re-
liability of the classification. Based on the probability measure, we select voxels
(nodes) with tumor or healthy tissue probability measure higher than a thresh-
old as the candidates for the label initialization. In particular, small connected
regions containing only a small number of voxels are abandoned. In order to en-
hance the reliability of the initial labeling, outliers are further excluded from the
candidate set. The outliers are voxels whose intensities are far from the robust
means estimated from the candidate samples using the Minimum Covariance
Determinant estimator [20] for tumor and normal tissues respectively. All the
remaining candidates are selected as the initial labels.

According to this label initialization, the tumor segmentation is obtained
by propagating the reliable statistical tumor information to all other unlabeled
nodes in the graph based on the edge weight defined in Section 2.2. The main
procedure of our method is summarized as:

1. A SVM classifier is built on the training data of multi-parametric MR
images with both tumor and healthy tissues.

2. Testing multi-parametric MR image is segmented using the SVM classi-
fier, and initial label information is determined using the selection procedure
described above.

3. Construct a weighted graph based on the image to be segmented.
4. Iterate Fm+1 = (1 − α)SFm + αLini until convergence.

3 Experimental Results

The method is validated on both UCNIA simulated brain tumor MR images [19]
and real MR images with tumors of different sizes and locations.

3.1 Evaluation on UCNIA Simulated MR Images

Five subjects are available in the dataset with tumor segmentation ground
truth, each of them having T1-weighted, T2-weighted and contrast enhanced
T1-weighted MR images. Non-brain parts of these images are removed prior to
the segmentation using the mask generated based on the probability map of brain
tissues available in the dataset. However, the non-brain parts of head images can
also be removed using publicly available software packages in conjunction with
manual editing.

The image data of one subject is selected as the training data for building
a SVM classifier, and other subjects are used as the testing data. The image
intensities of the testing images are globally scaled to have a similar distribution
to the training data using a histogram-match method, which is accomplished by
mapping intensities through intensity cumulative distribution function (CDF)
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of the source image and the CDF of the training image. Spatial neighborhood
with a size of 3 × 3 × 3 is used to get features for the SVM classification and the
parameters of the SVM classifier are optimized by a 5 fold cross-validation. The
constructed SVM classifier is then applied to the testing images and classifica-
tion results are used for label initialization. In particular, voxels with healthy
tissue probability higher than 0.999 are treated as label initialization candidates.
As the tumor probability from the SVM classification varies much due to the
inter-subject image intensity variability, instead of setting a hard threshold for
the tumor label initialization we choose a number of voxels with the highest
tumor probability as the candidates. The label initialization is achieved through
the robust selection process on these candidates, and the reliable label informa-
tion is then propagated to all other voxels to obtain the final segmentation. All
parameters of the algorithm remain unchanged for all the testing subjects. The
size of the spatial neighborhood for graph construction is 5 × 5 × 5.

(a) (b) (c) (d) (e)

Fig. 1. One slice of the contrast enhanced T1-weighted image for each subject (a to e).
Subject (a) is used as the training data, and the SVM based segmentation for subject
(e) fails.

The SVM based segmentation method fails to segment one testing subject due
to the fact that the tumor region in this subject’s contrast enhanced
T1-weighted image has similar intensities to cerebrospinal fluid (CSF), differ-
ent from the training data as shown in Fig.1. The SVM classifier using only
image intensity as features does not work in this case in that training-testing
image intensities are not matched. The classifier is sensitive to the enhanced part
of tumor indicated by the red arrow and insensitive to the non-enhanced part
indicated by the green arrow in Fig.1a. Therefore, the tumor region in Fig.1e
(indicated by the green arrow) cannot be detected. However, our graph based
algorithm can successfully segment the tumor with several manually selected
tumor and normal tissue voxels. To make a fair comparison among different au-
tomatic segmentation algorithms, we focus on the other subjects for validating
our tumor segmentation method.

Besides the SVM classification method for tumor segmentation [14], we
compare our method with a hidden Markov random field based segmentation
method, implemented by FAST [17,26]. To test if it is helpful to add the image
boundary information term in the graph edge weight measurement, we also per-
form the graph based segmentation with edge weight computed with only image
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 2. One slice of a testing simulate image, ground truth, and segmentation results
by different methods. (a) the original contrast enhanced T1-weighted image, (b) the
ground truth, (c) segmentation obtained by the SVM classification, (d) segmentation
using FAST, (e) the initial labeled image for information propagation, (f) segmenta-
tion using information propagation method without gradient information used in edge
weight measurement, and (g) segmentation of our method.

Table 1. Mean and standard deviation of Jaccard similarity on simulate MR images

Method Mean Standard deviation

SVM based segmentation 0.604 0.136
FAST 0.086 0.026

Traditional information propagation 0.777 0.044
Our method 0.937 0.008

intensity similarity and spatial proximity and refer to this method as traditional
information propagation.

Fig.2 shows a representative slice of one testing subject’s contrast enhanced
T1-weighted image, tumor segmentation ground truth, and its associated tu-
mor segmentation results obtained by methods to be compared (top row, a∼d;
bottom row, f), as well as tumor segmentation results at different stages of our
method (bottom row, e and g). As shown in Fig.2c, the SVM classifier cannot
successfully detect the boundary and the necrotic region of the tumor, which
might be due to the fact that the insufficient training on only one training sub-
ject cannot well cover the tumor intensity distribution with high variability.
Fig.2d shows the segmentation result of FAST with the class number set to be
4 [26]. As FAST is a model driven technique which requires a good estimation
of number of classes to be segmented even for normal brain tissue segmenta-
tion (grey matter, white matter and CSF), we try different numbers of tissue
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classes including 2, 4, 5 respectively with the purpose of achieving segmentation
with different meanings (2 for tumor and non-tumor; 4 for grey matter, white
matter, CSF, and tumor; 5 for grey matter, white matter, CSF, tumor, and
other); however, the tumor region cannot be separated well from other brain
tissues in any settings. It is worth noting that the best performance is shown in
Fig.2d, which shows that the tumor and CSF could not be distinguished due to
the high similarity in their intensity information. However, with the guidance of
reliably labeled voxels obtained from the SVM classification, the graph theory
based information propagation achieves better performance, as shown in Fig.2f
and Fig.2g. By comparing results shown in Fig.2f and Fig.2g, it can be found
that the segmentation with boundary information is more robust to the tumor
boundary. In Fig.2f the segmentation of traditional information propagation may
be confused at the boundary by wrongly label information interchange due to
that the edge similarity computed using only multi-parametric intensities and
spatial positions cannot robustly distinguish tumor voxels from normal ones.

Besides visual inspection, we also use Jaccard similarity to quantitatively
compare the segmentation results. The Jaccard similarity is the normalized
intersection in voxel space of two segmentations, i.e., (X ∩ Y )/(X ∪ Y ) (auto-
matic segmentation result X and ground truth Y ). The Jaccard similarity is
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Fig. 3. The sensitivity of the segmentation results to the parameters, x-axis and
y-axis represents different values of σF and σL, the colored lines show isolines of
Jaccard similarity, and the value of α is set to 0.005 (a), 0.01 (b), 0.03 (c), and
0.05 (d)
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computed separately for the testing subjects, the means and standard deviations
of the similarity with different methods are shown in Table 1. Both the visual
inspection and the quantitative measure indicate that our method can achieve
better tumor segmentation.

Finally, we study how the parameters affect the performance of our method. As
shown in Fig.3, the segmentation performance is robust to the trade-off parame-
ter α. The algorithm with α set on a scale of 0.01 is stable and the segmentation
performance varies little with the values of σL and σF within a wide range.

3.2 Evaluation on Real MR Images

The real MR image dataset contains 5 subjects with tumors of different sizes and
locations, each subject has three images including T1-weighted, T2-weighted,
and fluid attenuation inversion recovery (FLAIR) image. Tumor region for each
subject is manually delineated by 2 raters for training and result validation.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. One slice of a testing real image, manual segmentation, and segmentation results
by different methods. (a) the original FLAIR image, (b) one manual segmentation, (c)
segmentation obtained by the SVM classification, (d) segmentation using FAST, (e) the
initial labeled image for information propagation, (f) segmentation using information
propagation method without gradient information used in edge weight measurement,
and (g) segmentation of our method.

The whole segmentation process is similar to that applied on the simulate
dataset, and the only modification is: the non-brain parts are removed by the
BET [23] with manual editing. Due to the large slice thickness of the FLAIR
image, 5 × 5 × 3 neighborhood is used for the graph construction.

Fig.4 shows a representative slice of the real MR images, and its corresponding
segmentation results using different methods. The quantitative segmentation
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performances estimated by comparing the segmentation results with manual
segmentations (rater 1 and 2), including mean Jaccard similarities and standard
deviations, are shown in Table 2. The mean Jaccard similarity and standard
deviation between the segmentation results of 2 raters is 0.77 and 0.034. From
the table, it can be observed that our segmentation method achieved relatively
stable and accurate performance.

Table 2. Mean and standard deviation of Jaccard similarity compared with the
segmentation of rater 1 and rater 2 on real MR images

Method Mean (1) Mean (2) Std (1) Std (2)

SVM based segmentation 0.35 0.32 0.151 0.13
FAST 0.17 0.16 0.113 0.114

Traditional information propagation 0.71 0.668 0.004 0.097
Our method 0.76 0.717 0.07 0.029

4 Conclusion

We have presented an information propagation based tumor segmentation
method which employs the reliable statistical information from the training
data and specific information from the image to be segmented. This method
can exploit the local and global consistency of the image specific information,
facilitating accurate and reliable tumor segmentation. While the statistical in-
formation can provide reasonable initialization for the label information propa-
gation and make it automatic, the image specific information makes up for the
insufficient statistical information from the training process and improves the
final segmentation performance. The algorithm has been applied to MR image
data with tumors of different sizes and locations. The experimental results have
demonstrated our method can achieve better tumor segmentation performance,
compared with state-of-the-art tumor segmentation methods.

Situations affecting the performance of this method have been encountered
in the experiments. For example, the SVM based segmentation will fail when
statistical intensity distributions of training and testing data do not match very
well. In this case, the proposed method can be adopted as an interactive method
whose label initialization is provided by the user input. Furthermore, tumor of
different types or grades may affect the performance of the SVM based segmen-
tation method, and subsequently the label propagation process. However, these
problems can be alleviated by properly defined image features other than the
image intensity only. In this study image intensity information is used as im-
age feature and multi-parametric images are used equivalently. Future work will
be devoted to optimally combining multi-parametric MR images and different
image modalities.
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Abstract. Many state-of-the-art face recognition algorithms use image
descriptors based on features known as Local Binary Patterns (LBPs).
While many variations of LBP exist, so far none of them can automati-
cally adapt to the training data. We introduce and analyze a novel gen-
eralization of LBP that learns the most discriminative LBP-like features
for each facial region in a supervised manner. Since the proposed method
is based on Decision Trees, we call it Decision Tree Local Binary Pat-
terns or DT-LBPs. Tests on standard face recognition datasets show the
superiority of DT-LBP with respect of several state-of-the-art feature
descriptors regularly used in face recognition applications.

1 Introduction

While face recognition algorithms commonly assume that face images are well
aligned and have a similar pose, in many practical applications it is impossible to
meet these conditions. Therefore extending face recognition to less constrained
face images has become an active area of research.

To this end, face recognition algorithms based on properties of small regions
of face images – often known as local appearance descriptors or simply local
descriptors – have shown excellent performance on standard face recognition
datasets. Examples include the use Gabor features [30], SURF [4,8], SIFT [14,5],
HOG [7,3], and histograms of Local Binary Patterns (LBPs) [17,2]. A comparison
of various local descriptor-based face recognition algorithms may be found in
Ruiz del Solar et al [20].

Among the different local descriptors in the literature, histograms of LBPs
have become popular for face recognition tasks due to their simplicity, computa-
tional efficiency, and robustness to changes in illumination. The success of LBPs
has inspired several variations. These include local ternary patterns [23], elon-
gated local binary patterns [12], multi scale LBPs [13], patch based LBPs [24],
center symmetric LBPs [10] and LBPs on Gabor magnitude images [29, 26], to
cite a few. However, these are specified a priori without any input from the data
itself, except in the form of cross-validation to set parameters.

In this paper, our main contribution is to propose a new method that explicitly
learns discriminative descriptors from the training data. This method is based on
a connection between LBPs and decision trees. As a testing scenario, we consider
the traditional task of closed set face identification. Under this task, we are given
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a gallery of identified face images, such that, for any unidentified probe image,
the goal is to return one of the identities from the gallery.

This paper is organized as follows. Section 2 presents general background in-
formation about the operation of traditional LBPs and also about the pipeline
used by our approach to achieve face recognition. Section 3 presents the main
details of our approach. Section 4 discusses relevant previous work. Section 5
shows the main experiments and results of applying our approach to two stan-
dard benchmark datasets. Finally, Section 6 presents the main conclusions of
this work.

2 Background Information

2.1 Local Binary Patterns

Local binary patterns were introduced by Ojala et al [17] as a fine scale texture
descriptor. In its simplest form, an LBP description of a pixel is created by
thresholding the values of a 3 × 3 neighborhood with respect its central pixel
and interpreting the result as a binary number.

In a more general setting, a LBP operator assigns a decimal number to a pair
(c,n),

b =
S∑

i=1

2i−1I(c, ni)

where c represents a center pixels, n = (n1, . . . nS) corresponds to a set of pixels
sampled from the neighborhood of c according to a given pattern, and

I(c, ni) =

{
1 if c < ni

0 otherwise

This can be seen as assigning a 0 to each neighbor pixel in n that is larger than
the center pixel c, a 1 to each neighbor smaller than c, and interpreting the result
as a number in base 2. In this way, for the case of a neighborhood of S pixels,
there are 2S possible LBP values.

2.2 Face Recognition Pipeline

Our face recognition pipeline is similar to the one proposed in [2], but we in-
corporate a more sophisticated illumination normalization step [23]. Figure (1)
summarizes its operation, given by the following main steps:

1. Crop the face region and align the face by mapping the eyes to a canonical
location with a similarity transform.

2. Normalize illumination with Tan and Triggs’ [23] Difference of Gaussians
filter.

3. Partition the face image in a grid with equally sized cells, the size of which
is a parameter.
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Fig. 1. Our face recognition pipeline

4. For each grid cell, apply a feature extraction operator (such as LBPs) to each
pixel in the grid cell. Afterward, create a histogram of the feature values and
concatenate these histograms into a single vector, usually known as “spatial
histogram”.

5. Classify a probe face with the identity of the nearest neighbor in the gallery,
where the nearest neighbor distance is calculated with the(possibly weighted)
L1 distance between the histograms of the corresponding face images.

3 Our Approach: Decision Tree Local Binary Patterns

The simple observation behind DT-LBP is that the operation of a LBP over a
given neighborhood is equivalent to the application of a fixed binary decision tree.
In effect, the aforementioned histograms of LBPs may be seen as quantizing each
pair (c,n) with a specially constructed binary decision tree, where each possible
branch of the tree encodes a particular LBP. The tree has S levels, where all
the nodes at a generic level l compare the center pixel c with a given neighbor
nl ∈ n. In this way, at each level l − 1, the decision is such that, if c < nl the
vector is assigned to the left node; otherwise, it is assigned to the right node.
Since the tree is complete, at level 0 we have 2S leaf nodes. Each of these nodes
corresponds to one of the 2S possible LBPs. In fact, seen as a binary number,
each LBP encodes the path taken by (c,n) through the tree; for example, in a
LBP with S = 8, 11111101 corresponds to a (c,n) pair which has taken the left
path at level l = 1 and taken the right path at all other levels.

The previous equivalence suggests the possibility of using standard decision
tree induction algorithms in place of a fixed tree to learn discriminative LBP-
like descriptors from training data. We call this approach Decision Tree Local
Binary Patterns or DT-LBP. As a major advantage, by using training data to
learn the structure of the tree, DT-LBP can effectively build an adaptive tree,
whose main branches are specially tuned to encode discriminative patterns for
the relevant target classes. Furthermore, the existence of efficient algorithms to
train a decision tree allows DT-LBP to explore larger neighborhoods, such that,
at the end of the process the resulting structure of the tree and corresponding
pixel comparisons at each node provide more discriminative spatial histograms.
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Fig. 2. The LBP operator versus the DT-LBP operator

Figure 2 compares the operation of regular LBPs with respect to DT-LBPs.
After a decision tree is trained, DT-LBP assigns to each leaf node a code given
by the path or branch that leads to that node in the tree. In this way, for any
input pixel c and the corresponding neighborhood n used to build the tree, the
pair (c,n) moves down the tree according to the c < nl comparisons. Once it
reaches a leaf node, the respective code is assigned to the center pixel c (code
number 1 in Figure 2). As with ordinary LBPs, the DT-LBPs obtained for a
given image can be used for classification by building histograms. In summary
the proposed approach has the following advantages:

– We can obtain adaptive and discriminative LBPs by leveraging well known
decision tree construction algorithms (e.g. [19]), as well as more recent ran-
domized tree construction algorithms that have been shown to be very ef-
fective in computer vision applications (e.g. [16]).

– Since we expect different patterns to be discriminative in different face image
regions, we can learn a different tree for each region.

– Instead of neighborhood of eight or sixteen pixels as in regular LPBs, we
can use a much larger neighborhood and let the tree construction algorithm
decide which neighbors are more relevant.

– Apart from the feature extraction step, DT-LBP can be used with no mod-
ification in any of the many applications where LBP is currently applied.

3.1 Tree Learning Details

To maximize the adaptivity of our algorithm we learn a tree for each grid
cell. The trees are recursively built top-down with a simple algorithm based
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on Quinlan’s classic ID3 method [19]. The algorithm takes as input a “dataset”
X = {(ci,ni, yi)}N

i=1, a set of tuples where ci is the value of the center pixel,
ni = (ni1, . . . , nis) is the vector of values of ci’s neighbors, and yi is the label
of the image from which ci is taken. These values are taken from the pixels
in each grid cell of the images in the training data. The following pseudocode
summarizes the algorithm:

build tree(X ) ≡
{Recursively build DT-LBP tree}
if terminate then

return LeafNode
else

m ← choose split(X )
left ← build tree({(ci,ni, yi) ∈ X | ci ≥ nim})
right ← build tree({(ci,ni, yi) ∈ X | ci < nim})
return SplitNode(m, left, right)

end if

choose split(X ) ≡
{Choose most informative pixel comparison}
for d = 1 to S do
XL ← {(ci,ni, yi) ∈ X | ci ≥ nid}
XR ← {(ci,ni, yi) ∈ X | ci < nid}
ΔHd ← H(X ) − |XL|

|X | H(XL) − |XR|
|X | H(XR)

end for
return argmaxd ΔHd

where H(X ) is the class entropy impurity of X , i.e. H(X ) = −∑
ω p(ω) lg p(ω),

p(ω) being the fraction of tuples in X with class label yi = ω. terminate yields
true if a maximum depth is reached, |X | is smaller than a size threshold, or
there are no informative pixel comparisons available1. The size threshold for |X |
is fixed as 10, and the maximum depth is a parameter.

We define the neighborhood n used by DT-LBP somewhat differently than
LBPs. We use a square neighborhood centered around c, and instead of samples
taken along a circle, as in regular LBPs, we consider all pixels inside the square
as part of the neighborhood (fig. (3)). All the pixels within this square are
considered as potential split candidates. The idea is to let the tree construction
algorithm find the most discriminative pixel comparisons.

The main parameters of this algorithm are the size of the neighborhood n
to explore, and the maximum depth of the trees. As shown in Figure 3, the
first parameter is determined by a radius r. The second parameter, tree depth,
determines the size of the resulting histograms. Smaller histograms are desirable
for space and time efficiency, but as we will show in our experiments, there is a
trade-off in accuracy with respect to larger histograms.

1 Once a pixel comparison is chosen for a tree node, it provides no information for the
descendants of the node.
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Fig. 3. Pixel neighborhood used in DT-LBP. The inner square is the center pixel c,
and the neighborhood corresponds to all the pixels enclosed in the larger square. The
size of the neighborhood is determined by the radius r.

Using trees opens up various possibilities. We have explored some extensions
to the basic idea, such as using a forest of randomized trees (as in [22] and [16]),
trees splitting based on a linear combinations of the values of the neighborhood
(i.e. nodes split on nT w < c, similarly to [6]), or using ternary trees where a
middle branch corresponds to pairs for which |c − ni| < ε for a small ε. This
last approach can be considered as the tree-based version of the local ternary
patterns described in [23]. So far, we have found that a single tree built with an
ID3-style algorithm is the best performing solution.

4 Related Work

Our algorithm can be seen as a way to quantize (c,n) pairs using a codebook
where each code corresponds to a leaf node. This links our algorithm to various
other works in vision that use codebooks of image features to describe the images.

Forests of randomized trees have become a popular option to construct code-
books for computer vision tasks. Moosmann et al [16] use Extremely Random-
ized Clustering forests to create codebooks of SIFT descriptors [14]). Shotton
et al. [22] use random forests to create codebooks for use as features in image
segmentation. While the use of trees in these works is similar to ours, they use
the results of the quantization in a very different way; the features are given to
classifiers such as SVMs, which are not suitable for use in our problem. Further-
more, we have found that for our problem single trees are more effective than
random forests.

Wright and Hua [25] use unsupervised random forests to quantize SIFT-like
descriptors for face recognition. The main difference with our algorithm, besides
the use of forests versus single trees, is that we do not quantize complex descrip-
tors extracted from the image but work directly on the image itself. In addition,
their trees use decision planes as opposed to simple pixel comparisons, which are
faster.

There are various recent works using K-Means to construct codebooks to
be used for face recognition in a framework similar to ours. Ahonen et al [1]
proposed to view the difference c − ni of each neighbor pixel ni with the center
as the approximate response of a derivative filter centered on c. Under this view,
the LBP operator is a coarse way to quantize the joint responses of various filters
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(one for each neighbor ni). Likewise, DT-LBP is also a quantizer of these joint
responses, but it is built adaptively. Ahonen tested the K-Means algorithm as an
adaptive quantizer, but did not find it to be clearly superior to LBPs for a face
recognition task. Meng et al [15] use K-Means to directly quantize patches from
the grayscale image. Xie et al [26, 27], as well as [11] use it to quantize patches
from images convolved with Gabor wavelets at various scales and orientations.
These algorithms are the closest in spirit to our work, since they are partly
inspired by LBPs. These algorithms differ from ours in the algorithm used to
construct the codebook. They use K-Means, which has the drawback of not
being supervised and thus unable to take advantage of labeled data. In addition,
trees are more efficient; the time required to quantize a patch with K-Means
increases linearly with the size of the codebook, whereas with trees it increases
logarithmically. Finally, unlike ours, various of the above algorithms use a bank
of Gabor wavelet filters. The convolution of each image with the filter bank adds
substantial processing time.

5 Experiments

We perform experiments on the FERET [18] and the CAS-PEAL-R1 [9] bench-
mark databases. First, we examine the effects of the two main parameters of
DT-LBP: the radius r and the maximum tree depth d. In this case, we mea-
sure the accuracy of the algorithm on a subset of FERET. Afterward, we re-
port the accuracy of our algorithm on various standard subsets of FERET and
CAS-PEAL-R1 with a selected set of parameters.

In all images we partition the image into an 7×7 grid. We tested this partition
after evaluating partitions of 6×6, 7×7, 8×8 and 9×9 in the AT&T/ORL face
dataset [21] with an exhaustive grid search over various maximum tree depth
and radii combinations. The mean accuracy over all these combinations, with 5
training images and 5 testing images, was .954, .972, .933 and .931 respectively.
While in general we have found this partition to provide good results, it is likely
that adjusting the grid size to each database may yield better results.

For each experiment we show our results along with results from similar works
in the recent literature: the original LBP algorithm from Ahonen [2]; the Local
Gabor Binary Pattern (LGBP) algorithm, which applies LBP to Gabor-filtered
images; the Local Visual Primitive (LVP) algorithm of Meng et al [15], which
uses K-Means to quantize grayscale patches; the Local Gabor Textons (LGT)
algorithm and the Learned Local Gabor Pattern (LLGP) algorithms, which use
K-Means to quantize Gabor filtered-images; and the Histogram of Gabor Phase
Patterns (HGPP) algorithms, which quantizes Gabor filtered images into his-
tograms that encode not only the magnitude, but also the phase information
from the image.

The results are not strictly comparable, since there may be differences in
preprocessing and other details, but they provide a meaningful reference. It is
worth noting that for each of the algorithm we only show non-weighted variants,
since our algorithm does not currently incorporate weights for different facial
regions.
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Fig. 4. Effect on accuracy of radius and maximum tree depth in FERET fb

5.1 Effect of Tree Depth and Neighborhood Size

Figure 4 shows the accuracy obtained on FERET fb with various combinations
of neighborhood sizes and depths. While neighborhood sizes of r = 1 and r = 2
were also tested, as expected these perform poorly with large trees and are not
shown.

We see that larger trees tend to boost performance, however, for some radii
there is a point where larger trees decrease accuracy. This suggests that overfit-
ting may be occurring for these radii sizes. We also see that while larger radii
tend to perform better, all radii larger than 6 perform similarly. Therefore we
set the radius to 7 pixels in the following two experiments.

5.2 Results on FERET

For FERET, we use fa as gallery and fb, fc, dup1 and dup2 as probe sets. For
training, we use the FERET standard training set of 762 images from the training
CD provided by the CSU Face Identification Evaluation System package.

We can see that our algorithm relies on the Tan-Triggs normalization step to
obtain competitive results on the probe sets with heavy illumination variation.
Note that the results we show without normalization use no normalization at
all. When combined with the normalization step, our algorithm obtains the best
results on all the probe sets. We argue that the Difference-of-Gaussian filter in
the Tan-Triggs normalization plays a similar role to the Gabor filters in the
Gabor-based algorithms, but is much more efficient computationally.

5.3 Results on CAS-PEAL-R1

Again, our algorithm is affected by intense illumination variation when used
without normalization. With normalization our algorithm performs better in
the Expression probe set and comparably with HGPP in the Accessory probe
set. On the lighting dataset, the overall performance of all the algorithms is
rather poor. In this case, the best results are given by LGBP, HGPP and LLGP.
All these algorithms use features based on Gabor wavelets, which suggests that
Gabor features provide more robustness against the extreme lighting variations
in this dataset than the DoG filter.
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Table 1. Accuracy on FERET probe sets. DT-LBPr
d corresponds to a tree of maximum

depth d and radius r. TT indicates Tan-Triggs DoG normalization. Accuracies for
algorithms other than DT-LBP come from the cited papers.

Method fb fc dup1 dup2

LBP [2] 0.93 0.51 0.61 0.50
LGBP [29] 0.94 0.97 0.68 0.53
LVP [27] 0.97 0.70 0.66 0.50
LGT [11] 0.97 0.90 0.71 0.67
HGPP [28] 0.98 0.99 0.78 0.76
LLGP [27] 0.97 0.97 0.75 0.71
DT-LBP7

8, no TT 0.98 0.44 0.63 0.42
DT-LBP7

10, no TT 0.98 0.55 0.65 0.47
DT-LBP7

12, no TT 0.99 0.63 0.67 0.48
DT-LBP7

8 0.98 0.99 0.79 0.78
DT-LBP7

10 0.99 0.99 0.83 0.78
DT-LBP7

12 0.99 1.00 0.84 0.79
DT-LBP7

13 0.99 1.00 0.84 0.80

Table 2. Accuracy on CAS-PEAL-R1 probe sets. DT-LBPr
d corresponds to a tree of

maximum depth d and radius r. Accuracies for algorithms other than DT-LBP come
from the cited papers. TT indicates Tan-Triggs DoG normalization.

Method Expression Accessory Lighting

LGBP [29] 0.95 0.87 0.51
LVP [15] 0.96 0.86 0.29
HGPP [28] 0.96 0.92 0.62
LLGP [27] 0.96 0.90 0.52
DT-LBP7

8, no TT 0.96 0.80 0.20
DT-LBP7

10, no TT 0.99 0.87 0.23
DT-LBP7

12, no TT 0.99 0.88 0.25
DT-LBP7

8 0.95 0.89 0.36
DT-LBP7

10 0.98 0.91 0.39
DT-LBP7

12 0.98 0.92 0.40
DT-LBP7

13 0.98 0.92 0.41

5.4 Discussion

The results show that DT-LBPs are highly discriminative features. Their dis-
criminativity increases as the trees grow, but this has an exponential impact in
the computational time and storage cost of using these features . For example,
a tree of maximum depth 8 corresponds to a maximum of 256 histogram bins,
while a tree with maximum depth 14 corresponds to a maximum of 16384 bins.
Since we use 7 × 7 = 49 grid cells, the total number of histogram bins in each
spatial histogram is around 802,816 bins. In practice, we find that our C++
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implementation is fast enough for many applications – converting an image to
a DT-LBP spatial histogram and finding its nearest neighbor in a gallery with
more than a thousand images takes a couple of seconds. However, the cost in
terms of memory and storage becomes an obstacle to the use of larger trees.
For example, a gallery of 1196 subjects with 49 grid cells and trees of maximum
depth 14 takes about 3.5 GB of storage when stored naively. However, the re-
sulting dataset is very sparse, which can be taken advantage of to compress it.
A straightforward solution is not to use in our coding all the branches of the
resulting trees but only the most popular ones. This is a similar simplification
to the one used by traditional LBPs through the so-called uniform patterns.

6 Conclusions and Future Work

We have proposed a novel method that uses training data to create discriminative
LBP-like descriptors by using decision trees. The algorithm obtains encouraging
results on standard databases, and presents better results that several state-of-
the-art alternative solutions.

As future work, our current implementation does not assign different weights
to different face regions. Incorporating weights has been shown to be an effective
strategy in various similar works, such as [1] and [27], so we plan to explore the
addition of weights. Furthermore, we are currently working on reducing the size
of the resulting histograms while maintaining or improving accuracy. To achieve
this we are exploring different methods to learn the decision trees and other
data structures to represent adaptable LBP-like descriptors. Finally, seeing the
good performance of algorithms that use features based on Gabor wavelets (such
as [27] and [28]) we are incorporating these type of features into our algorithm.
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17. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition 29, 51–59
(1996)

18. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation method-
ology for Face-Recognition algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22, 1090–1104 (2000)

19. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
20. Ruiz-del-Solar, J., Verschae, R., Correa, M.: Recognition of faces in unconstrained

environments: A comparative study. EURASIP Journal on Advances in Signal
Processing 2009, 1–20 (2009)

21. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face
identification. In: Proc. Second IEEE Workshop on Applications of Computer Vi-
sion, pp. 138–142 (1994)

22. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-
rization and segmentation. In: CVPR (2008)

23. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under
difficult lighting conditions. IEEE Transactions on Image Processing 19, 1635–1650
(2010)



Face Recognition with Decision Tree-Based Local Binary Patterns 629

24. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In:
Real-Life Images Workshop at ECCV (2008)

25. Wright, J., Hua, G.: Implicit elastic matching with random projections for pose-
variant face recognition. In: CVPR, pp. 1502–1509 (2009)

26. Xie, S., Shan, S., Chen, X., Gao, W.: V-LGBP: Volume based Local Gabor Binary
Patterns for face representation and recognition. In: ICPR (2008)

27. Xie, S., Shan, S., Chen, X., Meng, X., Gao, W.: Learned local Gabor patterns for
face representation and recognition. Signal Processing 89, 2333–2344 (2009)

28. Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of Gabor phase patterns
(HGPP): A novel object representation approach for face recognition. IEEE Trans-
actions on Image Processing 16, 57–68 (2007)

29. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor Binary Pattern
Histogram Sequence (LGBPHS): A novel non-statistical model for face represen-
tation and recognition. In: ICCV (2005)

30. Zou, J., Ji, Q., Nagy, G.: A comparative study of local matching approach for face
recognition. IEEE Transactions on Image Processing 16, 2617–2628 (2007)



Occlusion Handling
with 
1-Regularized Sparse Reconstruction

Wei Li1, Bing Li1, Xiaoqin Zhang2, Weiming Hu1,
Hanzi Wang3, and Guan Luo1

1 National Lab of Pattern Recognition, Institute of Automation, CAS, Beijing, China
{weili,wmhu,gluo}@nlpr.ia.ac.cn

2 College of Mathematics & Information Science, Wenzhou University,
Zhejiang, China

xqzhang@wzu.edu.cn
3 Cognitive Science Department, School of Information Science and Technology,

Xiamen University
3 Fujian Key Lab of the Brain-Like Intellegient Systems, Xiamen, China

Hanzi.Wang@ieee.org

Abstract. Tracking multi-object under occlusion is a challenging task.
When occlusion happens, only the visible part of occluded object can pro-
vide reliable information for the matching. In conventional algorithms,
the deducing of the occlusion relationship is needed to derive the visible
part. However deducing the occlusion relationship is difficult. The inter-
determined effect between the occlusion relationship and the tracking
results will degenerate the tracking performance, and even lead to the
tracking failure. In this paper, we propose a novel framework to track
multi-object with occlusion handling according to sparse reconstruction.
The matching with 	1-regularized sparse reconstruction can automati-
cally focus on the visible part of the occluded object, and thus exclude
the need of deducing the occlusion relationship. The tracking is simpli-
fied into a joint Bayesian inference problem. We compare our algorithm
with the state-of-the-art algorithms. The experimental results show the
superiority of our algorithm over other competing algorithms.

1 Introduction

Object tracking is a challenging task in vision systems. It has received significant
attention due to its crucial values in many applications such as surveillance,
vision-based control, human-computer interfaces, intelligent transportation, and
augmented reality.

In recent years, many algorithms have been proposed: for example, template
matching [1], mean shift [2], condensation [3], appearance models [4]and so on.
These algorithms have achieved great success in tracking field from different
perspective. However, it is still a challenging task to design a robust tracking
algorithm to track multiple objects under occlusion. This is because during oc-
clusion, only portions of each occluded object are visible and the correspondences
between objects and their features become ambiguous.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 630–640, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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The usual way to tackle occlusion problem is to model the occlusion relation-
ship between different objects explicitly. Different techniques have been proposed
to deduce the occlusion relationship. In [5], each object is modeled as a layer to
utilize depth information, and a variable is employed to describe the affiliation
of each pixel to the different layers. Elgammal and Davis [6] segment people un-
der occlusion by incorporating the occlusion relationship of different layers into
a finely defined likelihood. Wu et al. [7] apply the Bayesian network to track two
faces through occlusion in which an extra hidden process for the occlusion repre-
sentation is introduced. Sudderth et al. [8] propose a looselimbed model consisting
of a set of connected geometric primitives, and the inference is conducted by using
nonparametric belief propagation. In the methods mentioned above, a complex oc-
clusion reasoning framework is required for state inference during occlusion. How-
ever it is very difficult to deduce the occlusion relationship. And moreover, if the
occlusion reasoning is wrong, it will lead to the failure in tracking.

In order to overcome the drawbacks induced by modeling the occlusion rela-
tionship explicitly, many researchers begin to adopt certain rules inspired from
other areas to implicitly handle occlusion. MacCormick and Blake [9] develop a
probabilistic exclusion principle based data association filter to solve the occlu-
sion problem in multiple object tracking, but it is only applied for two objects.
In [10], the spatio-temporal context of each object is used to maintain the correct
identity of the object during the occlusion process. Yang et al. [11] propose a
game-theoretic multiple target tracking algorithm. Tracking is analogue to find
the Nash Equilibrium of a game. The algorithm proposed in this paper falls into
this category but does not need to subtly design certain rules.

In this paper, we propose an effective mechanism for multi-object tracking
with occlusion handling using sparse reconstruction. The location and the size
of the occluded part are robustly explored with �1-regularized sparse reconstruc-
tion. In essence, the sparse reconstruction can automatically focus on the visible
part of the objet in matching the warped image with the templates. As a result,
there is no need to deduce the occlusion relationship for the matching. Thus,
the occlusion state can be eliminated from the tracking inference process. The
multi-object tracking with occlusion is reduced to a simple joint state Bayesian
inference problem. During the occlusion process, a cross iteration technique is
proposed to greatly improve the efficiency. Also different tracking strategies are
employed for both mild and severe occlusion. After the objects are localized, the
templates of the objects are updated accordingly.

The rest of this paper is organized as follows. In section 2, the introduction
of sparse reconstruction is firstly presented. Then the tracking algorithm with
occlusion handling is detailed. The experimental results to validate our method
are will be presented in Section 3 which follows the conclusion in Section 4.

2 Proposed Algorithm

In this section, we first give a brief review of the sparse representation. Then an
observation model based on the sparse reconstruction is introduced. Finally, a
multi-object tracking algorithm with occlusion handling is presented.
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2.1 Sparse Reconstruction Based Appearance Model

In this paper, we assume the manifold of the same object in different frames lies
in a linear subspace. This is reasonable because the variations of the appearance
mode are usually reflected on a special low-dimensional subspace. It means that
any new sample of the same object with some variations can be approximately
spanned by a set of templates. Let T n

i=1 represent n object templates selected
before tracking, a new image m can be approximated by a linear combination
of these templates:

m = ω1T1 + ω1T2 + . . . + ωnTn + ε (1)

where ω = (ω1, ω1, . . . , ωn)T is the coefficient vector, and ε is a noise term.
If the object is occluded by another one, the value of ε is considered to be the

discrepancy between the occluded part and the according templates. In the oc-
cluded part, the discrepancy is much larger than the un-occluded part. Thus the
distribution of ε represents the locations of the occluded pixels. Since the loca-
tion and the size of the occluded part can differ for different tracking images and
are unknown to the computer, a set of trivial templates [12] I = (I1, I2, ..., Id)
are defined to explicitly code the occluded pixels, where d is number of the triv-
ial templates and it equals to the dimension of the template after spanning into
a 1D vector. Each trivial template Ii is a vector with only one nonzero entity
in the position i. The detailed composition of the trivial templates is shown in
Fig.1 . The whole trivial template is represented with a blank template except
for the nonzero entity. Then the discrepancy ε can be sparely coded with the
combination of these trivial templates:

ε = [I1, I2, ..., Id][e1, e2, ..., ed]T (2)

where ei is the coefficient of the ith trivial template. In order to unify the scale
between the trivial templates I and the object templates T , we normalize each
template Ti by subtracting the mean and dividing the covariance of the templates.

From the above definition, the nonzero entity of e model which pixels in m
are occluded by the other object. The combination of e and I results in the
restoration of ε which represents the value of the discrepancy. So the image m

KS

Fig. 1. The object with occlusion is a combination of object templates T n
i=1 and trivial

templates I = (I1, I2, ..., Id)
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is rewritten using the following new form with the occlusion information being
included:

m = [T I]
[
ω
e

]
.= Bρ (3)

During the tracking, we intend to choose the most similar template for the
matching. So the coefficient ω should be as sparse as possible. Also for the
occlusion coefficient e, we intend to constrain it only accounting for the occlusion
part. These two requirements can be satisfied by minimizing the �1-norm of ρ.
At the same time, the tracking result is obtained by minimizing the distance
between the candidate region and the templates. This can be achieved through
minimizing the �2-norm of the residual error m − Bρ. According to the above
discussion, the minimization problem to obtain the coefficient ρ is defined as
follows:

ρ̂ = arg min||ρ||1 + ||m − Bρ||2 (4)

The above �1-norm minimizing problem can be efficiently solved via the linear
programming algorithm based on [13].

The distribution of the recovered parameter e in coefficient ρ̂ represents the
position and the size of the object’s occluded part. In the experiment, we define
a new term e which represents the visible part of the objet. The e is derived by
setting the element in e to 1 if its value is obviously smaller than others, while
the rest element is set to 0. Based on the this term, the observation model using
the visible part can be obtained. Given a image state xt and its observation mt,
the similarity between mt and the templates is measured by the �2-norm of the
reconstruction error:

s(mt, T ) = ||(mt − T ω̂)e||2 (5)

where e is the complementary set of e, which represents the visible part of the
objet.

In Equation 5, only the visible part of the object instead of the whole one is
adopted for matching. That means this new observation model can automatically
focus on the visible part and solve the matching ambiguous problem induced by
occlusion. It is shown in [14] that the negative exponential of the reconstruction
error is proportional to a Gaussian distribution: N(mte : μ, T ω̂e + ξ) as ξ → 0,
where ξ is the Gaussian noise during the observation and μ is the mean. The
probability of a state xt generated from the template is determined as follows:

p(mt|xt) = N(mte : μ, T ω̂e + ξ) (6)

2.2 Particle Filter Tracking with Occlusion Reasoning

In this paper, the object is localized with a rectangular window and its state
xt is represented using a six dimension affine parameter (tx, ty, θ, s, α, β) where
(tx, ty) denote the 2-D translation parameters and (θ, s, α, β) are the deforming
parameters. For the simplicity, we only analyze the occlusion handling between
two objects which can be easily extended to more objects. When severe occlu-
sion happen, there is not enough visible part of the object to provide a reliable
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matching. Thus we tackle the mild and severe occlusion separately using differ-
ent strategies. The occlusion degree is determined by the size of the overlapped
region against the whole object.

Deal with Mild Occlusion. Assume Xt = {xA
t , xB

t } is the state of objects
A and B. Given the observation mt, the goal of tracking is to infer Xt under
occlusion. This inference can be cast as a Bayesian posterior inference process:

p(Xt, πt|mt) ∝ p(mt|Xt, πt)
∫

p(Xt|Xt−1)p(Xt−1|πt−1, mt−1)p(πt|πt−1)dXt−1 (7)

where πt is the occlusion relationship between A and B.
In the conventional tracking algorithms with occlusion handling, it is imper-

ative to deduce the occlusion relationship between objects. This is because that
without the information of πt, the term p(mt|Xt, πt) is impossible to derive. How-
ever the derivation of the πt must be based on the object states of previous frame.
The inter-determination between the state inference and the occlusion relation-
ship will degenerate the tracking performance and increase the complexity of the
algorithm. Also if the deduced occlusion relationship is wrong, the failure in track-
ing is inevitable. By using the observation model in Equation(6), the occluded part
of an object is obtained using the sparse reconstruction under the �1-norm con-
straint. The visible part is automatically explored using the term e. The similarity
between the image mt and the templates is measured by using the residual error
||(mte−T ω̂e||2. As a result, the occlusion relationship takes no effect on matching
the image warped by the object state Xt with the templates. Thus, the Bayesian
posterior inference process can be simplified into the following expression:

p(Xt|mt) ∝ p(mt|Xt)
∫

p(Xt|Xt−1)p(Xt−1|mt−1)dXt−1 (8)

With this simplified inference expression, the posterior probability p(Xt|mt) can
be approximated with a set of weighted particles [3]. Given a set of samples
{xA,i

t , xB,i
t }n

i=1 generated from the transition model p(xA
t |xA

t−1) and p(xB
t |xB

t−1),
the weight of each particle wi

t is evaluated by the observation likelihood p(mt|Xt)
which is defined as follows:

p(mt|Xt) = p(mA
t |xA,k

t )p(mB
t |xB,l

t ) (9)

where k and l are respectively the kth and lth particle of A, B. The state Xt is
obtained by maximizing the weights of the particles.

However if we calculate the weight of each particle in the joints state space, the
time complexity is o(np), where n and p are respectively the number of particles
and objects. If the object number is more than two, the step to calculate the
weights of the whole particles will be time consuming. In this paper, a cross
iteration procedure instead of directly maximizing the weights of the particles is
adopted to increase the efficiency. Assuming x̂A

t,s, x̂B
t,s are the optimal states for

the objects A and B at the sth iteration. The tracking problem of object A and
B can thus be formulated as follows:
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x̂A
t,s+1 = arg maxxA

t
p(mA

t |xA
t,s)p(mB

t |xB
t,s) (10)

x̂B
t,s+1 = arg maxxB

t
p(mA

t |x̂A
t,s+1)p(mB

t |xB
t,s) (11)

The iteration of Equation (10) and (11) continues until convergence. The time
complexity of the algorithm decreases from o(np) to o(np).

Deal with Severe Occlusion. When more than 70% percent of the object
is occluded, there is not enough visible part of the object providing a reliable
matching. Also if complete occlusion happens, it becomes impossible to eval-
uate the observation of the occluded object. To deal with these situations, a
new observation model which takes the velocity constraint into consideration is
introduced.

Let −→v i
t−1 = xi

t−1 − xi
t−2 and −→v i

t = xi
t − xi

t−1 be the motion vectors between
two consecutive frames. During the tracking process, the motion between two
consecutive frames is usually very small. The changes of the object state at time
t and t − 1 will be small accordingly. It is equal to say that the particle moves
in constant velocity is favored and set to a larger observation likelihood. Based
on the above analysis, the likelihood function is defined as follows:

p(mt|xt) ∝ exp{−Θv
t,t−1}exp{−‖−→v i

t −−→v i
t−1‖} (12)

where Θv
t,t−1 is the angle between−→v i

t−1 and −→v i
t; ‖ • ‖ is the Euclidean norms.

2.3 Update the Template

In order to capture the object appearance changes, an effective mechanism to
update the templates is needed. When occlusion happens, we consider the object
as a occluded one if the nonzero value in e exceed a certain threshold. The
template of the occluded object is not updated to avoid the wrong updating.

Also to overcome the template drifting problem, we introduce an adaptive
updating mechanism. The updating process is conducted through the following
steps. (1) The template selected by hand in the first frame is kept during the
whole tracking process as the stable component. (2) The new tracking result
is employed as a new candidate template to be added in the template pool.
If the difference between the new template and the template pool is above a
threshold, the new obtained template is added into the template pool to reflect
the appearance changes. (3) Each template is assigned with a weight which varies
over time t. The weight of each template is set as θT−t, where θ ∈ [0, 1], t ∈ [1, T ]
is the time of the template being added into the template pool; T is the current
time. This strategy is designed to capture the most recently changes. In the
experiment, we set the value of θ to be 0.95.

3 Experiments

In order to show the effectiveness of our algorithm in handling occlusion in track-
ing multi-object, we test it with numerous videos. Comparisons with the state-
of-art algorithms are also presented to show the superiority of our approach.
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The number of the templates in our experiment is 10. The templates of each
object are given at the beginning of the tracking. The first template is initialized
by hand and the rest templates are obtained by one pixel displacement of the
first one in different direction. During the tracking process, the templates are
updated adaptively according to the tracking results.

3.1 Track Multi-object

In order to validate the effectiveness of our algorithm, we test our algorithm
on four different videos: two are to track faces and the other two are to track
pedestrians. Also the comparisons with several other state-of-art algorithms are
presented.

In the first example, two faces occlude each other and the face of one per-
son gradually disappears during the occlusion process. We compare our sparse
reconstruction with the incremental subspace algorithm [15]. In [15], an object
is represented by a low dimensional eigenspace. The matching process is im-
plemented based on the similarity between the warped image and the subspace
spanned by the eigenspace. From the results in Fig.2(b), the influential subspace
based matching is not suitable for occlusion handling. Because the occluded part
is also used for matching, when the part of the one person disappears, the in-
visible part can not be reconstructed by the subspace based matching which
leads to the failure in tracking. On the contrary, as shown in Fig.2(a), the sparse
reconstruction can tackle occlusion and disappearance well. This is because our
observation model adopts the visible part for matching, while ignores the oc-
cluded part, which is the key of the success in tracking.

In the second example, two faces occlude each other and endure appearance
changes. In order to further illustrate the strength of our algorithm, we conduct
comparison with two state-of-the-art multi-object tracking algorithms [11, 16]
which are most similar to our work. In [11], the game-theoretic analysis is intro-
duced to implicitly handle occlusion, while in [16] species competition is used
to decompose multi-object tracking with occlusion into single object tracking.

(a) Our approach

(b) The results using subspace reconstruction [15]

Fig. 2. The results of tracking two occluded faces
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(a) Our approach

(b) Zhang’s work [16]

(c) Yang’s work [11]

Fig. 3. Two faces occlude each other and endure appearance changes

Both of these two algorithms exclude the step to deduce occlusion relationship
via different strategies. The results in Fig.3(b) show that Zhang’s algorithm
[16] fails to track the occluded object (in the window with red color). The main
reason is that the visible part is the most reliable information for the occluded
object, while the procedure of species competition can not always output satisfy-
ing competition results. From the results in Fig.3(c), Yang’s algorithm [11] also
can not provide satisfying results. However, the good tracking results in Fig.3(a)
illustrate the effectiveness of our algorithm. Also the appearance changes of the
faces are effectively handled using our template updating mechanism.

In the third example, we test our algorithm on a video from PETS2004
which is an open database for visual surveillance, available on http://homepages.
inf.ed.ac.uk /rbf/ CAVIAR. In this video, two men turn around from the side to
the front and their appearances change. The woman turns around from the front
to the side. Fig.4 illustrates some key frames of the tracking results. As illustrated
in Fig.4(a), our method successfully tracks all the pedestrians and effectively
handles occlusion. At the same time, the appearance changes of the pedestrians
are successfully tackled through our template update strategies. However both
in [11,16] the man tracked in green window is distracted by the women tracked
with the red. From the results in Fig.4(c), Yang’s algorithm [11] quickly loses
the object with blue window.

In the last experiment, we test our algorithm on another video from the PETS
data set in 2006, which is available on http://pets2006.net/. Fig.5 illustrates
some key frames of the tracking results (Person A is tracked using a blue window,
Person B is tracked using a green window, Person C is tracked using a red
window). The results in Fig.5(a) show that our algorithm can successfully handle
occlusion between different persons, while [11, 16] can not deal with occlusion
effectively between the persons B and C which leads to the failure in tracking.
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(a) Our approach

(b) Zhang’s work [16]

(c) Yang’s work [11]

Fig. 4. The tracking results of third sequence

(a) Our approach

(b) Zhang’s work [16]

(c) Yang’s work [11]

Fig. 5. The tracking results of last sequence

This is because that the certain rules adopted in these two algorithms cannot
always obtain the accurate occlusion information, which makes the accurate
tracking results cannot always be guaranteed. However in our algorithm, the
visible part is obtained from �1-regularized sparse reconstruction. As a result,
the accurate matching is always available.
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Table 1. Quantitative results of our approach, Zhang’s and Yang’s work

Approaches Our algorithm Zhang’s work Yang’s work

Person A 89/89 89/89 89/89
Successfully tracked frames Person B 89/89 76/89 57/89

Person C 89/89 58/89 89/89

Person A 3.1545 3.2985 5.6851
RMSE of Position Person B 4.4128 6.9392 17.8217

Person C 4.2104 14.4789 8.8054

A quantitative evaluation is also given in Table 1 to further demonstrate
the superiority of our algorithm. The evaluation is comprised of the following
two aspects: the number of successfully tracked frames (the tracking is defined as
failure if the center of the window is not in the object), RMSE (root mean square
error) between the estimated position and the groundtruth which is obtained by
hand. The failure of [11, 16] for the persons B and C mainly concentrates on
the frames when occlusion happens. Additionally, the localization accuracy of
our algorithm is apparent superior to those by the other two algorithms.

4 Conclusions

In this paper, we propose an effective framework to track multi-object under oc-
clusion through sparse reconstruction. The matching between the states and the
templates is based on the visible part of the occluded objects. In our approach,
the deducing of occlusion relationship between the objects or certain rules are
not necessary. The tracking of multi-object with occlusion handling becomes a
simple joint probability inference problem. Various experiments validate that
our approach can successfully handle with occlusion in multi-object tracking.
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60825204, 0935002, 60705003 and 61005030) and the National 863 High-Tech
R&D Program of China (Grant No. 2009AA01Z318).
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Abstract. Length measurements in 3D images have raised interest in
image geometry for a long time. This paper discusses the Euclidean short-
est path (ESP) to be calculated in a loop of face-connected grid cubes in
the 3D orthogonal grid, which are defined by minimum-length polygonal
(MLP) curves. We propose a new approximation algorithm for comput-
ing such an MLP. It is much simpler and easier to understand and to
implement than previously published algorithms by Li and Klette. It also
has a straightforward application for finding an approximate minimum-
length polygonal arc (MLA), a generalization of the MLP problem. We
also propose two heuristic algorithms for computing a simple cube-arc
within a 3D image component, with a minimum number of cubes be-
tween two cubes in this component. This may be interpreted as being an
approximate solution to the general ESP problem in 3D (which is known
as being NP-hard) assuming a regular subdivision of the 3D space into
cubes of uniform size.

1 Introduction

A simple cube-curve g is a loop of face-connected grid cubes in the 3D orthog-
onal grid; the union g of those cubes defines the tube of g. A critical edge of a
cube-curve g is such a grid edge which is incident with exactly three different
cubes contained in g. This paper discusses Euclidean shortest paths (ESPs) in
such tubes, which are defined by minimum-length polygonal (MLP) curves (see
Figure 1, where the red polygon is the MLP while the blue segments are critical
edges.).

The general ESP problem is as follows: Given it is a Euclidean space which
contains (closed) polyhedral obstacles; compute a path which (i) connects two
given points in the space, (ii) does not intersect the interior of any obstacle, and
(iii) is of minimum Euclidean length. This problem (starting with dimension 3)
is known to be NP-hard [5].

3D MLP calculations generalize 2D MLP computations. For example, see
[7, 27] for 2D robotics scenarios and [12, 23] for theoretical results. In image
analysis shortest curve calculations not only use the Euclidean metric but also
use graph metrics; for example, see [26].

3D MLPs calculations are related to the problem of multigrid-convergent
length estimation for digitized curves. The length of a simple cube-curve in

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 641–652, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. A simple cube-curve and its MLP

3D Euclidean space can be defined by that of the MLP (see [14, 24, 25]) which
is there characterized to be a global approach towards length measurement. A
local approach for 3D length estimation, allowing only weighted steps within a
restricted neighborhood, was considered in [10] and [11]. Alternatively to the
MLP, the length of 3D digital curves can also be measured (within time linear in
the number of grid points on the curve) based on DSS-approximations [6] (DSS
= digital straight segment).

3D MLP calculations were first studied by Bülow and Klette [2,3,4,13], they
proposed a iterative algorithm called rubberband algorithm (RBA) which was
experimentally tested and showed “linear run-time behavior” with respect to a
pre-selected accuracy constant ε > 0. It proved to be correct for tested inputs,
where correctness was possible to be tested manually. However, in those publi-
cations, no mathematical proof was given for either linear run time or general
convergence (in the sense of approximate algorithms as defined in computational
geometry) to the exact solution.

This original RBA is also published in the the book [14]. Applications of it
are in 3D medical imaging; see, for example, [8,28]. The correctness and linearity
problem of the original RBA was approached by Li and Klette along the following
steps:

[15] focused on a very special class of simple cube-curves and proposed a
provable correct MLP algorithm which decomposes a cube-curve of that class
into arcs at “end angles” (see Definition 3 in [15]). That means the algorithm
only applied to the cube-curves which have end-angles.

[16] constructed an example of a simple cube-curve and proved that the
MLP of this simple cube-curve does not have any of its vertices at a corner of
a grid cube. It follows that any cube-curve with this property does not have
any end angle, and the MLP algorithm of [15] cannot be used for all possible
inputs. This result showed the existence of cube-curves which require further
algorithmic studies.

[20] showed that the original RBA requires a modification (in its Option 3)
to guarantee that calculated curves are always contained in the tube g. This cor-
rected RBA achieves (as the original RBA) a minimization of length by moving
vertices along critical edges.
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[18] (finally) extended the corrected RBA into an edge-based RBA and proved
that it is correct for any simple cube-curve. [18] also presented a totally new
algorithm, the face-based RBA, and showed that it is also correct for any simple
cube-curve. It was proved that both, the edge-based and the face-based RBA,
have time complexity in κ(ε) · O(m) time, where m is the number of critical
edges in the given simple cube-curve, and

κ(ε) = n + (L0 − Ln)/ε (1)

where L0 is the length of the initial path, Ln is the length of n-th updated path.
This paper presents a new approximation algorithm which is much simpler

and easier to understand and to implement than previously published algorithms
by Li and Klette. This paper is organized as follows: Section 2 defines some nota-
tions for later usage. Section 3 proposes and discusses the algorithms. Section 4
briefly discusses the correctness and time complexity of the algorithms. Sec-
tion 5 presents the experimental results of the proposed algorithms. Section 6
concludes.

2 Basics

We use definitions and results from [19]: An arithmetic algorithm is eventually
exact if it provides also final (not necessarily arithmetic) steps for converting its
approximate solution into the true solution (Definition 3, page 5).

Theorem 1. (Corollary 4, page 97) There does not exist an exact algorithm for
calculating the MLP of any simple cube-curve.

Let cp and cq be two cubes in the same connected component, A(cp, cq) (see on
the right of Figure 2) an arc between two cubes cp and cq, and |A(cp, cq)| the
number of cubes contained in the arc A(cp, cq).

Let MLPP denote the class of any minimum-length polygonal curve problem.
We may generalize the problems in MLPP to minimum-length polygonal arc
problems as follows: Let p ∈ cp and q ∈ cq, compute the shortest path between p
and q inside of A(cp, cq). We denote this generalized class of problems by MLAP.
For example, given it is a simple cube-arc as shown on the right of Figure 2 and
two points p and q. Section 7.4 in [19] proves that there does not exist an exact
algorithm for calculating the minimum-length polygonal arc from p to q inside
of the arc.

In this paper we propose a new simple face-based rubberband algorithm for
computing approximately the MLP. Our algorithm has also a straightforward
application for finding approximation solutions to problems in MLAP. We also
present two heuristic algorithms for computing simple cube-arcs, each with a
minimum number of cubes, between two cubes in the same connected component.
Combined with the MLAP algorithm, this provides an approximate solution to
the general ESP problem in 3D (which is NP-hard as mentioned above [5]) when
subdividing the 3D space into uniformly sized cubes.
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Fig. 2. A simple cube-arc (right) as a part of a simple cube-curve (left)

We also use some definitions from [18]. If f is a face of a cube in g and one of
f ’s edges is a critical edge e in g then f is called a critical face of e in g, or (for
short) a critical face. Let e be a critical edge of a simple cube-curve g and f1,
f2 be two critical faces of e in g. Let c1, c2 be the centers of f1, f2 respectively.
Then a polygonal curve can go in the direction from c1 to c2, or from c2 to c1, to
visit all cubes in g such that each cube is visited exactly once. If e is on the left of
line segment c1c2, then the orientation from c1 to c2 is called counter-clockwise
orientation of g. f1 is called the first critical face of e in g. If e is on the right of
line segment c1c2, then the direction from c1 to c2 is called clockwise orientation
of g. de(p, q) denotes the Euclidean distance between two points p and q.

Figure 1 shows all critical edges (e0, e1, e2, . . ., e7) and their first critical
faces (f0, f1, f2, . . ., f7) of a simple cube-curve, denoted by g8. Let si and s′i be
i-th side of faces f and f ′ respectively (i = 1, 2, 3, 4). If f contains f ′ and the
Euclidean distance between si and s′i is ε (i = 1, 2, 3, 4), then we say that f ′

is obtained from f by ε-dilation, or, in short, a (first critical) dilation face (see
Figure 3).

Fig. 3. Illustration of ε-dilation. Left: a first critical face. Right: a first critical ε-dilation
face.

Recall the following definition; see, for example, [9]: An algorithm is an
δ-approximation algorithm for a minimization problem P iff, for each input of P ,
the algorithm delivers a solution that is at most δ times the optimum solution.
Corresponding to the definition of δ-approximation algorithms, we introduce the
following definition: A MLP is a δ-approximation (Euclidean) closed path for an
MLP problem iff its length is at most δ times the optimum solution. Let f0, f1,
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. . ., and fk−1 be k (all) continuous first critical faces or first critical dilation face
(k ≥ 2) in g, p ∈ f0, and q ∈ fk−1. Let Lg(p, q) be the length of the shortest
path, starting at p ∈ f0, then visiting faces or dilation faces f1, . . ., fk−2 and
q ∈ fk−1 in order, and finally ending at p ∈ f0. Let S0, S1, . . ., and Sk−1 be k

non-empty sets; let
∏k−1

i=0 Si be the cross product of those sets.
Suppose that the side of each cube has length of 1, then each cube can be

defined by a corner of it. Let fc be the front face of a cube c and vc = (xc, yc, zc)
the left bottom vertex of fc. Then c can be defined by vc. vc is called the defining
vertex of c (see Figure 4).

Fig. 4. The defining vertex of a cube

Let cs and ct be two cubes in the same component C. cs = (xs, ys, zs), ct =
(xt, yt, zt). Denote

d(cs, ct) = |xt − xs| + |yt − ys| + |zt − zs| + 1 (2)

Let N(cs) be the set of 6-neighbors of cs which consists of at most six cubes
such that each of them is in C. We partition N(cs) into three subsets Ni(cs)
(i = 1, 2, and 3), where N1(cs) = {c : (c = cs + (xt − xs)/|xt − xs|, 0, 0)) ∨
(c = cs+(0, yt−ys)/|yt−ys|, 0))∨(c = cs+(0, 0, zt−zs)/|zt−zs|))∧(c ∈ N(cs))};
N2(cs) = {c = (xc, yc, zc) : (xc = xt) ∨ (yc = yt) ∨ (zc = zt) ∧ (c ∈ N(cs))}; and
N3(cs) = {c : (c = cs−(xt−xs)/|xt−xs|, 0, 0))∨(c = cs−(0, yt−ys)/|yt−ys|, 0))∨
(c = cs − (0, 0, zt − zs)/|zt − zs|))∧ (c ∈ N(cs))}. In other words, N1(cs) consists
of cubes which are located closer to ct than cs; N2(cs) consists of cubes which
have at least one coordinate equal to that of ct; N3(cs) consists of cubes which
are located further to ct than cs.

3 Algorithms

In this section we start presenting the main algorithm for efficiently comput-
ing approximate MLP. Then we describe two heuristic algorithms for finding a
shortest cubic arc between two cubes in a connected component.

3.1 The Algorithm for Computing an Approximate MLP

The first difficult task for applying a rubberband algorithm (RBA), for example,
as shown in Option 2 in [4], is to find the so-called “step set”. Another issue when
applying a RBA is to deal with the degenerative case of the RBA. The following
algorithm overcomes the first difficulty by simply taking all the initial critical
faces as the step set. It handles the second task by ε2-dilation.
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Approximation MLP Algorithm1

Input: k first critical faces f0, f1, . . ., fk−1, and two chosen accuracy constants2

ε1 and ε2.
Output: An updated closed {1 + 4k × [r(ε1) +

√
2× ε2]/L}-approximation path3

(MLP) ρ(s, p0, . . . , p1, . . . , pk−1, s), which may also contain vertices of Π , where
L is the length of an optimal path, r(ε1) the upper error bound1 for distances
between pi and the corresponding optimal vertex p′

i: de(pi, p
′
i) ≤ r(ε1), for

i = 0, 1, . . . , k − 1.

1: For each i ∈ {0, 1, . . . , k − 1}, update face fi by ε2-dilation; let pi be the
center of fi; let L0 be

∑k−1
i=0 de(pi, pi+1) (all subscripts take mod k); and L1

be ∞.
2: while L1 − L0 > ε1 do
3: for each i ∈ {0, 1, . . . , k − 1} do
4: Compute qk ∈ fk such that (see Figure 5)

de(pk−1, qk) + de(qk, pk+1) = min{de(pk−1, qk) + de(qk, pk+1) : q ∈ fk};
update ρ by replacing pk by qk.

5: end for
6: Let L0 be L1; calculate the perimeter L1 of ρ.
7: end while
8: Output ρ and the desired length equals to L1.

Fig. 5. Illustration for Step 4 in this MLP algorithm

3.2 Algorithms for Finding Arcs with Minimal Number of Cubes

The first algorithm is inspired by the flow of rivers which always go along the
shortest path among the obstacles. The second one is a refined version of the
first one. The third one is inspired by isometric search.

Flow Algorithm1

Input: Let cp and cq be two cubes in the same component C.2

Output: An arc A(cp, cq) inside of the same connected component C.3
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1: Put cp into a stack.
2: while The stack is not empty do
3: Pop c out of the stack.
4: if c = cq then
5: Stop.
6: else
7: Partition N(c) into three subsets:

N(c) = N1(c) ∪ N2(c) ∪ N3(c).
8: Put the cubes in N3(c), N2(c) and N1(c) into the stack.
9: end if

10: end while

Refined Flow Algorithm1

Input: Let cp and cq be two cubes in the same component C.2

Output: A shortest arc A(cp, cq).3

Each cube is combined with a non-negative integer size(cp) which is the number
of cubes from the starting cube cp to the current one, and also combined with
its parent cube cm(cp) (m is short for mother.)

The main idea of this algorithm is straightforward: Apply Flow Algorithm
(Algorithm 3) to obtain an initial arc A(cp, cq). If |A(cp, cq)| = d(cp, cq), then
output A(cp, cq) and stop. Otherwise, update A(cp, cq) such that |A(cp, cq)| is
decreased. Repeat this procedure until |A(cp, cq)| can not be decreased.

1: To initialize, let the size(cp) be 0, the size(c) of each cube c in Ni(cp) be
1 (i = 1, 2, and 3), cm(c) = cp. For each cube c′ ∈ C\ (Ni(cp) ∪{cp}), let
size(c′) be -1.

2: Put the cubes in N3(cp), N2(cp) and N1(cp) into a stack.
3: while The stack is not empty do
4: Pop c out of the stack.
5: if c = cq then
6: if |A(cp, cq)| = d(cp, cq) then
7: Stop.
8: else
9: Let len(c) = |A(cp, cq)|.

10: end if
11: end if
12: for each c′ ∈ N(c) do
13: if size(c′) = -1 then
14: size(c′) = size(c) + 1.
15: else
16: if len(c′) > size(c′) then
17: size(c′) = size(c) + 1; cm(c′) = c.
18: end if
19: end if
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20: Partition N(c) into three subsets:
N(c) = N1(c) ∪ N2(c) ∪ N3(c).

21: Put the cubes in N3(c), N2(c) and N1(c) into the stack.
22: end for
23: end while

Isometric Extension Algorithm1

Input: Let cp and cq be two cubes in the same component C.2

Output: A shortest arc A(cp, cq).3

1: To initialize, let the size(cp) be 0, the size(c) of each cube c in N(cp) be 1,
cm(c) = cp. For each cube c′ ∈ C\ (N(cp) ∪ {cp}), let size(c′) be -1.

2: while true do
3: Pop c out of the queue.
4: if c = cq then
5: Return A(cp, cq) and its length size(c) + 1.
6: else
7: for each c′ ∈ N(c) do
8: if size(c′) = -1 then
9: cm(c′) = c; size(c′) = size(c) + 1; Put c′ in the queue.

10: end if
11: end for
12: end if
13: end while

A correctness proof of Algorithms 3–3 is straightforward. Their time complexity
equals O(n), where n is the number of cubes in the connected component C.

4 Correctness and Time Complexity

We apply basic results of convex analysis; see, for example, [1, 21, 22]:

Theorem 2. ( [22], Theorem 3.5) Let S1 and S2 be convex sets in Rm and Rn,
respectively. Then S1 × S2 is a convex set in Rm+n, where m, n ∈ N.

Proposition 1. Each norm on Rn is a convex function ( [1], page 72); a non-
negative weighted sum of convex functions is a convex function ( [1], page 72).

Proposition 2. ( [22], page 264) Let f be a convex function. If x is a point
where f has a finite local minimum, then x is a point where f has its global
minimum.

Our results are as follows:

Proposition 3. Each face or dilated face is a convex set.

By Theorem 2 and Propositions 1 and 3, we have the following
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Fig. 6. Illustration of the results of Algorithm 3

Table 1. Resulting data obtained from Algorithms 3: i and i′ are the indices of ex-
periment; m and m′ the numbers of critical edges; I and I ′ the numbers of iterations
taken; L0 and L′

0 the lengths of initial paths; L and L′ the lengths of resulting paths;
δ = L0 - L; and δ′ = L′

0 - L′

i m I L0 L δ i′ m′ I ′ L′
0 L′ δ′

1 13 37 19.35 15.85 3.49 1 12 1559 19.73 15.59 4.14
2 19 30 29.40 24.72 4.69 2 19 1505 33.35 26.99 6.36
3 26 27 45.02 38.97 6.04 3 25 3832 42.94 35.04 7.90
4 33 25 54.49 46.58 7.91 4 36 1674 43.99 35.57 8.42
5 40 34 46.25 36.53 9.72 5 40 3610 58.00 46.84 11.16
6 48 38 69.34 57.02 12.32 6 48 5877 75.52 64.13 11.39
7 54 92 79.30 67.67 11.63 7 59 1831 78.29 62.95 15.34
8 58 22 103.61 87.29 16.32 8 64 2127 106.23 88.28 17.95
9 74 48 103.57 88.49 15.08 9 69 1777 88.33 68.27 20.06

10 78 81 95.75 78.38 17.37 10 81 2281 116.83 94.37 22.46

Corollary 1. Lg(p, q): f0 × f1 × · · · × fk−1 × f0 → R is a convex function.

Theorem 3. If the chosen accuracy constant ε is sufficiently small, then Algo-
rithm 3 outputs an {1 + 4k × [r(ε1) +

√
2 × ε2]/L}-approximation global MLP.

Proof. By Propositions 2, Algorithm 3 outputs an approximation global MLP.
For each i ∈ {1, 2, . . . , k−1}, the error of the difference between de(pi, pi+1) and
de(vi, vi+1)) is at most 4× r(ε1)+

√
2× ε2 because of de(pi, vi) ≤ r(ε)+

√
2× ε2.

We obtain that

L ≤
k−1∑
i=0

de(pi, pi+1) ≤
k−1∑
i=0

[de(vi, vi+1) + 4 × r(ε1) +
√

2 × ε2]

= L + 4k × [r(ε1) +
√

2 × ε2]

Thus, the output path is an {1+4k× [r(ε1)+
√

2× ε2]/L}-approximation path.
This proves the theorem. )*
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Regarding the time complexity of our solution to the approximation MLP, we
state that the main computation is in the two stacked loops. The while-loop takes
κ(ε1) iterations; the for-loop can be computed in time O(k). Thus, Algorithm 3
can be computed in time

κ(ε1) · O(k) (3)

We may conclude that this paper provided an {1 + 4k × [r(ε1) +
√

2 × ε2]/L}-
approximation solution to the approximation MLP, having time complexity
κ(ε1) · O(k), where k is the number of the first critical faces, and L is the length
of an optimal MLP.

Fig. 7. Illustration of the results of Algorithm 3: Top left shows both cubes in a volume
image and in the background; bottom left cubes in the volume image (8× 8× 8); bottom
right cubes in the background; top right the shortest arc in a connected component

Fig. 8. Illustration of analogous results of Algorithm 3 in the volume image (15 × 15
× 15)

5 Experimental Results

Figure 6 shows the resulting MLP (in red) obtained by Algorithm 3 when both
chosen accuracy constants ε1 and ε2 are set to be 10−6 and 10−3, respectively.
The initial path is in green. Table 1 shows the difference in the numbers of
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iterations taken in Algorithm 3 when the first accuracy constant ε1 was set to
be 10−6 while the second accuracy constant ε2 was set to be 10−3 or 10−1.

Both Figures 7 and 8 show the results of Algorithm 3.

6 Concluding Remarks

We propose a new simple approximation algorithm for computing MLPs in 3D
space. Experimental results show that the iteration number of the algorithm is
very sensible to the second chosen accuracy constant ε2 when the first chosen
accuracy constant ε1 is fixed. The algorithm has applications for finding ap-
proximate solutions to MLAPs, which generalize the MLP problem. Arc length
problems are today of relevance in 3D medical imaging (e.g., brain cell or lung
tissue analysis) or in 3D crystal imaging, just to mention two examples.

We also proposed and implemented two heuristic algorithms for computing
simple cube-arcs with minimum numbers of cubes between two cubes. Our al-
gorithm may find an approximate solution to the general ESP in 3D which is
known to be NP-hard.

Acknowledgement. The authors thank Reinhard Klette for advice on this
research.
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Abstract. This paper presents a framework named “Classifier Mold-
ing” that imitates arbitrary classifiers by linear regression trees so as
to accelerate classification speed. This framework requires an accurate
(but slow) classifier and large amount of training data. As an example
of accurate classifier, we used the Compound Similarity Method (CSM)
for Industrial Ink Jet Printer (IIJP) character recognition problem. The
input-output relationship of trained CSM is imitated by a linear regres-
sion tree by providing a large amount of training data. For generating
the training data, we developed a character pattern fluctuation method
simulating the IIJP printing process. The learnt linear regression tree
can be used as an accelerated classifier. Based on this classifier, we also
developed Classification based Character Segmentation (CCS) method,
which extracts character patterns from an image so as to maximize the
total classification scores. Through extensive experiments, we confirmed
that imitated classifiers are 1500 times faster than the original classifier
without dropping the recognition rate and CCS method greatly corrects
the segmentation errors of bottom-up segmentation method.

1 Introduction

Industrial Ink Jet Printers (IIJPs) are widely used in production lines for product
marking. IIJPs can work in dusty, dry, and/or high-temperature product lines.
These conditions may cause nozzle clogging. Also, IIJP operators may input
incorrect information. Both of them cause deteriorated or unwanted printing,
which should be immediately detected and fixed. For detecting them, a high-
speed and accurate optical character recognition (OCR) system is required.

There are varieties of OCR algorithms; some are fast but inaccurate and the
others are accurate but slow. This situation is common, because those classifiers
having strong discriminant power waste computational resources and computa-
tionally efficient classifiers tend to be inaccurate. For these reasons, it is difficult
to construct a classifier which is fast and accurate. Our framework to solving
this problem is simple: “imitate the behavior of an accurate but slow classifier by
a simple and fast computational mechanism”. We call this framework “Classifier
Molding”. This consists of the following stages: 1) a classifier is learnt by using
labeled training data, 2) a flexible learner imitates the behavior of the learnt
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classifier by copying the input-output relationship, 3) the original classifier is
replaced by trained learner, and the classification speed improved.

This imitation can be regarded as a nonlinear regression. Among lots of non-
linear regression methods, we employ the Linear Regression Tree [1] in this paper.
This is because it has two advantages: it is both fast and flexible.

As a computational model, linear regression tree is faster than standard clas-
sifiers, because it performs two simple computations: 1) a binary tree search
based on input vector value and 2) the computes product between input vector
and matrix stored in the reached leaf node.

In the learning stage, the linear regression tree performs linear regression and
domain (input space) decomposition recursively until the regression error becomes
smaller than given threshold. Through this recursive decomposition and linear
regression, the binary search tree and the regression matrices are obtained. This
property guarantees the flexibility that any functions can be well approximated.

This flexibility, however, requires dense training data in the learning stage, be-
cause the flexibility implies a poor generalization property as a learning mecha-
nism. This property can be compensated only by providing dense training data
spreading in the domain. Usually, the training data size of a linear regression tree
should be bigger than that of original classifier. This implies that the training data
of a linear regression tree should be generated from that of original classifier.

According to the framework “Classifier Molding” described above, this paper
shows an example realization for IIJP-OCR.

1. As an example of an accurate but slow classifier, we selected CSM (Compound
Similarity Method) [2] based on our benchmark experiment.

2. As an example of training data multiplication, we present a pattern fluctuation
method of training data by simulating the IIJP printing process.

Based on these components, an accurate and fast classifier is realized.
We also developed Classification based Character Segmentation (CCS) method

that extracts character image segments from an image so as to maximize the to-
tal classification score. The bottom-up segmentation and classification approach
cannot deal with the character segmentation errors caused by touching charac-
ters; in contrast, CCS corrects the segmentation errors by examining multiple
sequences of image segments and finds the sequence having the maximum classi-
fication score. Since CCS classifies multiple image segment sequences, it requires
a fast classifier. This paper shows that a segmentation-robust character recogni-
tion system realized by combining “Classifier Molding” and CCS.

In the following sections, related works in Section 2, the classifier molding
framework for IIJP is proposed in Section 3, a CCS method is proposed in
Section 4, and Section 5 presents experimental results.

2 Related Works

In many classification tasks, the accuracy and speed of a classifier are incom-
patible. For example, kernel SVM (Support Vector Machine) [3] can create a
non-linear classification boundary, which is supported by many support vectors.
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In the classification stage, we have to compute the inner products of an input
vector with the support vectors. As the number of inner products increases, the
classification accuracy increases, however, the speed slows down.

Our idea breaking the incompatibility is to imitate the behavior of an accurate
classifier by a regression tree. The original regression tree is proposed by Breiman
[4] et al. as a function approximation technique, which consists of binary search
tree and output values stored in the leaf nodes. In this method, the domain is
divided into sub-domains so that the output values can be well approximated
by constant values. Because of this mechanism, the height of the tree becomes
big when performing complex function regression and a smooth output function
is approximated by stepwise values. Quinlan [1] extended the regression tree so
as to perform the linear regression using regression coefficients stored in the leaf
nodes. This extension solves these problems.

In linear regression tree, regression errors become smaller in the earlier divi-
sion stage. This makes the tree height shorter. Therefore, the time consumption
in binary search is also shorter than the original regression tree. The output
computation time in the linear regression tree is longer than the original regres-
sion tree, because linear regression requires a weighted sum of the input vector
with the regression coefficients. This approach is widely accepted by many re-
searchers, and they tried to improve the linear regression tree, because Quinlan’s
method employs a space splitting criterion by thresholding the variance of the
data in a sub-domain corresponding to a node, which is not suitable for some
applications.

Karalic [5] proposed a method for finding the best splitting position of an axis
so that the sum of the errors of two regressions is minimized. This is done by a
brute force manner: errors are computed while sliding the splitting position and
find the optimal position. The drawback of this method is long computational
time, because this method applies the linear regression expressions for all possible
splitting positions. Alexander [6] et al. proposed an efficient algorithm for one
dimensional domain. Chaudhari [7] proposed a method to select a regression
model for each sub-domain. The regression models are constant value, linear, and
higher-order polynomials. Also, he proposed a method to determine the splitting
position by using the sign of the regression errors. Dora [8] et al. proposed a
method to determine the splitting position by using EM algorithm.

These space splitting methods can be classified into two types, fast splitting
but poor accuracy and slow splitting but high accuracy. For solving the problem,
Nakamura et al. [9] proposed a PaLM-tree (Partially Linear Mapping tree) em-
ploying the Split-and-Merge strategy for domain decomposition similar with the
method used in image segmentation [10]. The PaLM-tree also has two advantages:
high-dimensional input and output vectors can be handled, and dimensionality re-
duction mechanism is embedded for avoiding multi-colinearity problem.

3 Classifier Molding by Linear Regression Tree

Most classifiers produce similarity measures or a posteriori probabilities for the
combination of an input and a class. Suppose that x = (x1, · · · , xp) represents
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an input vector, and Ω = (ω1, · · · , ωq) represents classes, then the function of a
classifier can be modeled by a mapping f from x to y = (P (ω1|x), · · · , P (ωq|x)).
By selecting the maximum element in the output vector y, we can classify x.

The idea of Classifier Molding is to learn the mapping from x to y and utilize
the learnt model as a classifier for acceleration. As a mapping learner, we employ
linear regression tree in this paper.

Linear Regression Tree. In this section, we describe the construction algo-
rithm using the following notations.

Input dataset: X ={x1, · · · , xp}, Classifier output dataset: Y ={y1, · · · , yp},
Mapping: f : X +→ Y , Training dataset: Z = {(x1, f(x1)), · · · , (xp, f(xp))}
Domain dependent input dataset: XD = {x|x ∈ D ∩ X}
Domain dependent training dataset: ZD = {(x, f(x))|x ∈ D ∩ X}

Tree construction. A linear regression tree is constructed by Algorithm 1.

procedure Regression(Z)
begin
Perform linier regression on Z
If the linear regression error on Z
is greater than given threshold then
Z is decomposed into ZD and ZD(Z=ZD+ZD);

otherwise
store the regression matrix to the node;
return;

Node(Z).up:=ZD; Node(Z).down:=ZD;
Regression(ZD); Regression(ZD);

end
Algorithm 1. Initial tree construction

This algorithm recursively performs linear regression and disjoint decomposition
of domains until the regression error becomes smaller than given threshold. The
domain decomposition rule employed here is to split the domain at the point on
the most widely data-spreading axis into sub-domains having the same numbers.

As we discussed in Section 2, determining the splitting position is a difficult
problem: if we insist on the optimality of the position, the tree construction time
becomes considerably long, and if the input space is roughly split, the resulting
regression becomes inaccurate and unreliable. For solving this problem, PaLM-
tree [9] employs the following merge process so as to maximize the domain while
keeping the error threshold. The merge procedure is described in Algorithm 2.

procedure Merge (Tree)
procedure test (domain1,domain2)
begin
Perform regression on data in domain1 and domain2;
If the error is smaller than given threshold then
merge domain1 and domain2



Classifier Acceleration by Imitation 657

otherwise return;
end
begin
foreach adjacent domain(1), domain(2)∈LeafNodes
test(domain1, domain2);

end

Algorithm 2. Pseudo code for merging procedure of leaf nodes

By calling Regression followed by Merge, we can construct a liner regression
tree.

Dimensionality reduction for regression. Through the tree construction,
Algorithm 1 and 2 perform linear regressions using the training data in domains.
If the data in a domain is insufficient compared with the dimensionality of the
input vector, the regression result will be inaccurate and unreliable, because of
the multi-colinearity problem. This problem can be solved by dimensionality
reduction. PCR, PLS, CCA are the representative methods for dimensionality
reduction. In this paper, we employ PLS (partial least squares), which reduces
the input and output vectors so as to maximize the data covariation.

Error metric. Linear regression tree requires an error metric and threshold for
terminating the domain decomposition. Suppose that fj(xi) is the j-th compo-
nent of the classifier output for input xi and gj(xi) is that of regression result.
Then, an error metric e in a domain D is defined as below.

e(D) =
∑

j

∑
xi∈D

∣∣∣gj(xi) − fj(xi)
∣∣∣ (1)

One may think that the error metric should be normalized by the size of D
or the number of data in D. However, this metric is suitable for our task. If
we normalize the error metric as e/|D| or e/|XD|, spiky error may be attenu-
ated by other small errors and the decomposition may be terminated at shallow
nodes.

For the classification, the absolute values of fj(xi) and gj(xi) are not essential
but the ordering of values are important. For instance, the relation between jth
element and kth element is fj(xi) ≥ fk(xi) and gj(xi) ≥ gk(xi), and fj(xi) <
fk(xi) and gj(xi) < gk(xi) are consistent. Otherwise, the domain should be
decomposed or two domains should not be merged, no matter how small e(D) is.

Classification. Node n in a linear regression tree consists of 1) splitting com-
ponent index i(n), 2) splitting value v(n), 3) pointers to offsprings (up(n),
down(n)), 4) regression coefficient matrix Bl(n). The p × q matrix Bl(n) is
stored only in a leaf node. For an input vector x = (x1, · · · , xp)T , the out-
put y = (y1, · · · , yq)T is computed by Traverse(root, x) in Algorithm 3, where
root represents the root node of the linear regression tree.
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procedure Traverse(n,x)
begin
if LeafNode(n) then return y=Bl(n)x;
else
begin
if xi(n)<v(n) then
return Traverse(down(n),x);

else
return Traverse(up(n),x);

end
end

Algorithm 3. Traverse and output

From the output y = (y1, · · · , yq)T of Traverse(), the classification result ωk is
obtained as,

k = argmax
i=1,··· ,q

yi. (2)

3.1 Data Generation for Classifier Molding

As we described above, linear regression tree is too flexible, and hence, it has
poor generalization power. However, the original classifier has some generaliza-
tion power, which guides the linear regression learning so as to avoid over fitting
to the training data. For bringing out the true generalization power of the original
classifier, we have to provide large amount of data to the original classifier. While
providing the data, the behavior of the classifier is learnt by linear regression tree.

Basically, the data generation is done as training-data multiplication with
fluctuations. This data multiplication is simple and does not add new informa-
tion. However, the trained classifier by generated data performs better than the
classifier trained by original data [11]. In general, the fluctuation is done by
adding Gaussian noise to the original data. The only thing we have to consider
is in which space the fluctuation should be added.

In our case, IIJP-OCR, we already know the font pattern of each character.
This enables us to generate instances by adding fluctuations to the dot positions
and sizes.

Our intention of training data multiplication is for training linear regression
tree, but this is also effective for the original classifier. So, we use the generated
data for both. For training the classifier, class labels have to be associated but
no labels have to be associated for regression tree learning.

4 Classification Based Character Segmentation

After molding the classifier, we can get an accelerated imitation of a classifier.
In our case, a fast character classifier is obtained. When the characters are well
separated and correctly-segmented characters are provided for classification, no
additional processing is required.
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However, in the case of IIJP-OCR, there are many chances that bottom-
up character segmentation fails, e.g., dot-position fluctuation, background noise
(ex. cardboard spots), and so on. Binarization and labeling are the standard
method of bottom-up character segmentation. Since IIJP character patterns
consist of dots, dilation may be required to bridge unwanted gaps. However,
this process can connect adjacent characters.

For solving this, we propose a top-down segmentation method named Clas-
sification based Character Segmentation (CCS), which finds the image segment
sequence having maximum classification score. Since CCS classifies multiple im-
age segment sequences, it requires a fast classifier. Fortunately, since we already
have “the molded classifier”, we can realize a segmentation-robust character
recognition system based on CCS.

CCS algorithm is based on the A* algorithm [12] that aggressively prunes off
non-optimal image segment sequences. A* is an extension of Dijkstra’s algorithm
[13], which is a graph search algorithm that solves the single-source shortest path
problem.

4.1 CCS Problem

We assume that the vertical position of a character is already known. This
assumption is valid for IIJP, because the height of IIJP head is fixed and known.
Under this assumption, character center can be denoted by x position. Let S(a)
be the classification score at position a. CCS searches the character position
sequence u1, · · · , un between as to ae in the input image that maximizes the total
score f(u1, · · · , un) = S(u1)+· · ·+S(un). The maximum number of characters is
n, and the positions have to be in the interval [as, ae]. If one of these conditions
is not satisfied, the search stops.

4.2 CCS Solution

Linear search of this problem has to compute S(a) at all points within [as,
ae]. Since S(a) computation requires character classification, the linear search
requires too many character classifications, which slows down the speed. For
solving this problem, we employ the framework of A* algorithm.

We assume that if a character presents at a, then S(a) > θ. Also, the horizontal
character interval is Δ. After the search, it will be able to get a maximum score
positions L = {L1, · · · , Ln}. Let’s suppose that K is distance-plus-cost heuristic
value. It determines the order in which the search positions in the image. The
path-cost function denoted t*(a), which is the cost from the as to the current
position a, and r*(a) is an admissible “heuristic estimate” of the distance to the
ae. Under these assumptions, the algorithm can be described as below.

procedure CCS()
begin
i:=1; u0=as; r*(u0):=nθ; t*(u0):=0; K=0;
Find the starting point u1 within the interval
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[as, as+Δ] that maximizes S(a);
Push (1, u1) into Stack;
while (!Empty(Stack))
begin
Pop (i, ui) from Stack;
t*(ui):=t*(ui-1)+S(ui); r*(ui):=(n-i)θ;
if (r*(ui)+t*(ui)>K) then {Pruning}

K:=r*(ui)+t*(ui); Li=ui;
else if ((i<n) or (ui<=ae)) then {Termination test}
for (a=ui, j=0; a<=ui+Δ; a++)
if S(a)> θ then cj=a; j++;

Sort S(a) in descending order;
Push (i+1, cj) into Stack in this order;

end
return L;

end
Algorithm 4. CCS algorithm

This algorithm performs the best first search and after reaching the maximum
number of characters or ae, it will start the backtracking to find better character
positions.

We can issue an interrupt to terminate this algorithm, because IIJP-OCR has
to output the read characters within a limited time. Even in this case, our algo-
rithm may find better result compared with the binarization and labeling result.
This is because our algorithm is basically the best first search. The behavior of
this algorithm is illustrated in Fig. 1.

Fig. 1. Procedure of Classification based Character Segmentation. Step 1 shows proce-
dure of A* as usual. The procedure of Backtracking shown in Step 2, and Step 3 shows
process of time-out that stops the search process and detects the optimal positions at
this time.
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5 Experiments

In the experiments, we first compare the performance of classifiers to select origi-
nal classifiers. Then, by using selected classifier, we performed classifier molding
for generating an accelerated classifier, whose accuracy and speed are exam-
ined. Finally, we compare the bottom-up and top-down character segmentation
results.

We conducted all experiments on Windows-XP desktop PC with Intel
Core2Duo 2.4GHz CPU, 2 GB memory. Test images are 10000 real images. An
example image is shown in Fig. 2. The training data are the mixture of real and
generated images (16 × 16). The number of data for training original classifier
is 512 for each character. Some examples are shown in Fig. 3. The character
classes are 36 consisting of ‘0’–‘9’ and alphabet ‘A’–‘Z’. Further, we prepared
three kinds of generated data sets with different standard deviations. We call
each training data sets 1σ, 2σ, and 3σ, where σ represents a unit deviation.

Fig. 2. An example of input image Fig. 3. Example of training pattern

5.1 Classifier Comparison

We first compared the accuracy among four classifiers: NNM (Nearest Neighbor
Method with single representative pattern per class), SVM, MSM (Multiple Sim-
ilarity Method) [2], CSM. Table 1 shows the comparison of the recognition rate
by each method using the real and generated images. NNM is the conventional
method in commercially available IIJP-OCR. Note that, the SVM employed here
is a linear SVM.

Table 1. Recognition rate by real image and generated image

Method NNM SVM MSM CSM
Real image (%) 97.5 94.23 95.47 99.98
1σ (%) 99.0 99.95 98.6 100.0
2σ (%) 91.68 99.95 99.22 100.0
3σ (%) 87.43 99.96 99.47 100.0

Table 1 shows that CSM is the most accurate method among them. Moreover,
the accuracy of every classifier is improved by fluctuation of training pattern
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becomes larger. This verifies that the effectiveness of using the generated images
for training. For these reasons, we selected a CSM which trained with data set
3σ for classifier molding.

5.2 Classifier Molding

We performed classifier molding of the CSM, using input-output relationship of
CSM for data set 3σ. Since this data set is generated by adding fluctuations
to the font patterns, we can generate infinite number of data. The input is
256-dimensional vector, and output is 36-dimensional vector representing the
similarities of the input to 36 classes. That regard R256 +→ R36 nonlinear mapping
problem.

First we examined the relationship between the number of data for classifier
molding and the recognition rate of linear regression. Fig. 4 shows the resulted
graph. From this graph, we confirmed that after providing 200 data per class, we
get 100% recognition rate for all classes. This means the performance of CSM
in Table 1 is completely imitated.
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Fig. 4. The relation between the number of training data and recognition rate

Next, we measured the elapsed time for recognition per character. Table 2
shows the resulted mean time. We confirmed that the imitated classifier denoted
by MLD is 1500 times faster than the original classifier CSM. It can be said
achieve that accelerate the original classifier without dropping the recognition
rate.

Table 2. Mean recognition time per character

Method NNM SVM CSM MLD
Time (msec) 9.8 15.2 15.0 0.01

5.3 Classification Based Character Segmentation

The above-mentioned experiments are the evaluations of classifier itself without
segmentation errors. In this section, we show the result of character recognition
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(a) (b)

Fig. 5. (a) Segmentation error: ‘2’ is merged with ‘0’ by background noise. (b) Im-
provement by Classification based Character Segmentation.

ratio including character segmentation based on CCS. The test image is 512
gray images that cannot be correctly segmented by the binarization and labeling
approach because of the touching characters as shown in Fig. 5 (a).

Based on our experience we set the number of extraction characters n = 10,
similarity threshold θ = 0.4, and width of character Δ = 40. In this case, All
test images are correctly segmented, and all characters are classified correctly.
Fig. 5 (b) shows an example of successful segmentation. The mean processing
time including segmentation and classification for an image is 20ms (10ms for
segmentation and 10ms for character classification). Compared with the ordi-
nary IIJP-OCR, character extraction consumes 10ms, classification by NNM
consumes 98ms, and the total elapsed time is 108ms. This means our OCR
system is 5 times faster, more accurate, and robust against segmentation errors
than commercially available IIJP-OCRs.

6 Conclusion

This paper presents a method imitating arbitrary classifier by a linear regres-
sion tree that can be used as an accelerated classifier of the original classifier
for improving the accuracy and speed of IIJP-OCR. Based on the accelerated
classifier, we also present Classification based Character Segmentation (CCS)
for avoiding character segmentation errors. In the experiments, we examined the
accuracy of four classifiers and confirmed that CSM performs the best. By using
the selected CSM, we examined the relationship between the recognition ratio
and the number of training data for classifier molding, and confirmed that 200
training data per class are enough for imitating IIJP-OCR. The imitated clas-
sifier is 1500 times faster while keeping the accuracy. Also, we tested CCS and
confirmed that 100% of the images are correctly segmented and classified, where
all test images cannot be segmented by binarization and labeling approach.

This framework, classifier molding, can have wide application domains, how-
ever, it requires training data generation method. In our case, IIJP-OCR, we
can get the original font patterns that can be used for data generation. If an
application can have a data generation method or training data multiplication
method, our framework, classifier molding can be applied, which accelerates the
original classifier.
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Future works involve training data multiplication method suitable for classi-
fier molding, and further investigation of error metrics of linear regression tree
suitable for classifier molding.
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Abstract. In American Sign Language (ASL) the structure of signed
sentences is conveyed by grammatical markers which are represented by
facial feature movements and head motions. Without recovering gram-
matical markers, a sign language recognition system cannot fully re-
construct a signed sentence. However, this problem has been largely
neglected in the literature. In this paper, we propose to use a 2-layer
Conditional Random Field model for recognizing continuously signed
grammatical markers in ASL. This recognition requires identifying both
facial feature movements and head motions while dealing with uncer-
tainty introduced by movement epenthesis and other effects. We used
videos of the signers’ faces, recorded while they signed simple sentences
containing multiple grammatical markers. In our experiments, the pro-
posed classifier yielded a precision rate of 93.76% and a recall rate of
85.54%.

1 Introduction

Interpreting sign language not only requires recognition of hand gestures/signs,
but also other non-manual signs. As pointed out in [1], non-manual signs convey
important grammatical information. Without these grammatical markers, the
same sequence of hand gestures can be interpreted differently. For example, with
the hand signs for BOOK and WHERE, a couple of sentences can be framed as

– [BOOK]TP [WHERE]WH → Where is the book?
– [BOOK]TP [WHERE]RH → I know where the book is!

In the notation of the above example, the left hand side of the arrows represent
signs in American Sign Language (ASL). The subscripts TP, WH and RH on
the words BOOK and WHERE indicate grammatical markers conveyed by facial
feature movements and head motions. The facial gesture for Topic (TP) is used to
convey that BOOK is the topic of the sentence. The word WHERE accompanied
by a WH facial gesture, signals a “where?”. The hand sign for WHERE made
concurrently with the facial gesture for RH indicates the rhetorical nature of the
second sentence.

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 665–676, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Thus, recognition of non-manual signs is required for building a complete sign
language understanding system. However, review [2] of sign language recognition
indicates that the dominant interest in sign language recognition has been in
hand gesture recognition. Non-manual sign recognition has only recently started
to receive attention [3] [4].

Previous works on recognizing facial expressions were reviewed in [5] and [6].
These surveys showed that many works focused on recognizing the six isolated
universal expressions (Anger, Disgust, Fear, Happiness, Sadness, and Surprise)
with minimal head motion. The latter simplification of the problem makes these
methods inapplicable for recognizing facial gestures in sign language, where facial
expressions are defined concurrently with head motion to define grammatical
markers. There are also many works on analyzing head pose and head motion [7].
However, there are few works in the literature that address recognizing facial
expressions coupled with concurrent head motion.

Black and Yacoob’s work [8] is a pioneering work in recognizing continuous
facial expressions with head motion based on features from dense optical flow
and rule-based discriminative models. They obtained an average recognition rate
of 88% and 73% on laboratory data and data from TV programs, respectively.
De la Torre et al. [9] proposed to detect rare facial gestures made during an
interview based on Personalized Active Appearance Model [10]. However, quan-
titative assessment of the detection was not reported. Cohen et al. [11] used a
piecewise 3D wire frame model-based approach for tracking 16 facial features
and estimated their 3D motions. These were used in a multi-level HMM scheme
for classifying the six universal expressions and the neutral expression in video
sequences containing multiple expressions. They reported 82.46% and 58.63%
accuracy for person dependent and person independent tests, respectively, on
their database of 5 persons.

As generative models, HMMs suffer from two weaknesses: the statistical inde-
pendence assumption of observations and the difficulty in modeling their compli-
cated underlying distributions. On the other hand, Conditional Random Fields
(CRF) proposed by Lafferty et al. [12] is a discriminative model which avoids
these weaknesses. Kanaujia and Metaxas [13] used the CRF to recognize the six
universal expressions and obtained promising results. Quattoni et al. [14] pro-
posed Hidden-state CRF (HCRF) models and obtained an accuracy of 85.25%
for recognizing head shakes and head nods. Chang et al. [15] proposed a modified
HCRF called Partially-Observed HCRF (PO-HCRF). The PO-HCRF achieved
an accuracy of 80.1% with 9.18% false alarm rate for recognizing the six “con-
tinuous” universal facial expressions in simulated sequences created by concate-
nating sequences of isolated expressions. Neidle et al. [4] proposed to detect the
presence of WH and NEG grammatical markers in ASL signed sentences. An
ASM-based tracking scheme proposed was used to track face and facial feature
movements, and provide head pose (pitch, yaw, and tilt) in each frame. Each
video frame was classified as either WH or not-WH, and a video sequence was
labeled based on majority voting of frames. A multiple-SVM classifier was used
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to label each frame. The recognition accuracies were 100% and 95% for WH and
NEG, respectively.

In this paper, we consider recognizing continuous facial gestures in sign lan-
guage, particularly grammatical markers in ASL. The six grammatical markers
considered in this paper are summarized in Table 1 in terms of eye, eyebrow, and
head movements. We propose to use a layered Conditional Random Field (CRF)
model [12] for this purpose. The classifier includes two CRF layers, the first layer
to model head motions and the second to model grammatical markers. The sepa-
rate head motion layer helps to reduce the ambiguity in recognizing grammatical
markers in the second layer. For each video sequence, probabilities of different
head motions are evaluated by the first layer, and these are input to the sec-
ond layer together with other features for labeling the grammatical marker for
each frame. Manually annotated labels of head motions and grammatical mark-
ers were used for training the classifier and assessing performance. The classifier
yielded precision and recall rates of 95.24% and 85.54%, respectively.

2 Recognizing Continuous Facial Gestures in Sign
Language

2.1 Challenges

Facial gestures in ASL are identified from head motion and facial feature move-
ment. In this paper we consider recognition of six grammatical markers listed
and described in Table 1, through their head gestures comprising, eye, eyebrow
and head movements. In previous work [16], we have considered recognition of
isolated facial gestures. Here, we extend our work to recognition of continuous
facial gestures as would occur in sign language discourse, and consider four types
of facial gesture sequences (Table 2) composed of these grammatical markers.
Examples of these facial gesture chains are shown in Table 3.

There are several aspects to the continuous facial gesture recognition problem
which make it challenging, more so than isolated recognition. Movement epenthe-
sis is the extra motion required by the head (and facial features), due to physical
constraints, to transit from the end of the previous gesture to the beginning of

Table 1. Simplified description of the six ASL grammatical markers (Exp.) considered:
Assertion(AS), Negation(NEG), Rhetorical(RH ), Topic(TP), Wh question(WH ), and
Yes/No question(YN ). Nil denotes unspecified facial feature movements.

Exp. Brow Eye Head

AS Raise Nil Nod
NEG Knit Nil Shake
RH Raise Widen Tilt(left/right)
TP Raise Widen Move upward
WH Knit Squint Move Forward
YN Raise Widen Move Forward
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Table 2. Types of grammatical marker sequences considered

Sequence English sentence ASL signs
TP AS I really want the book! [BOOK]TP [WANT]AS

TP NEG I don’t want the book. [BOOK]TP [WANT]NEG

TP RH AS I know where the game is! It’s in
Singapore.

[GAME]TP [WHERE]RH

[SINGAPORE]AS

TP WH YN Where is the game? Is it in New
York?

[GAME]TP [WHERE]WH

[NEW YORK]Y N

Unidentified (Neutral) Topic Undefined Rhetorical

Fig. 1. When the Rhetorical gesture is performed after a Topic gesture, the head will
move from backward position to neutral position before tilting forward (movement
epenthesis) while the brow still held raised

the next; this is difficult to model due to its variability. Coarticulation refers to
the appearance of a head gesture being influenced by adjacent gestures. There
can also be asynchronization between head motion and facial feature movement.
Movement epenthesis between grammatical markers is shown in Fig. 1. Table 3
shows examples of grammatical marker chains; any facial gesture video frame
that does not contain one of the six grammatical marker classes is labeled as
Unidentified. This is a generic class which includes gestures between two gram-
matical markers, and also the neutral expression, which is usually present at the
beginning of a sequence.

Visually, the beginning and ending of an expression can be considered to co-
incide with the beginning and ending of the head motion corresponding to that
expression. However, while signing, movements of facial features like brows and
eyes are independent and may evolve asynchronously with the head motion.
This asynchronization adds to the uncertainty in identifying a facial gesture
by using a combination of features from head motions and facial feature move-
ments. An effective strategy to deal with this problem is to use multi-channel
frameworks [17], where the classifier learns the correlations between the channels
through supervised training.

Movement epenthesis between grammatical markers also introduces additional
variability. This is manifested through the head tending to move back to the
neutral position before comfortably starting the next motion. Besides, if expre-
sions have similar eye/brow movements, some subjects tend to hold the state
established at one expression into the next expression, while others do not. This
phenomenon will alter the temporal patterns of eye/brow movements and affect
algorithm performance. The movements of the eyes and brows can be further
affected by factors that are not related to facial gestures of interest: natural eye
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Table 3. Examples of four types of grammatical marker chains. The neutral expression
shown in the first frame is considered to be an unidentified expression. An unidentified
facial gesture can also be present between any two grammatical markers and can vary
greatly depending on nearby grammatical markers.

Unidentified Topic Unidentified Assertion

Unidentified Topic Unidentified Negation

Unidentified Topic Rhetorical Assertion

Unidentified Topic Wh question Unidentified Yes/No question

blinks, hand signs for adjectives such as HUNGRY or FAST involving added
facial expressions.

Moreover, unidentified gestures between facial gestures of interest are highly
varied due to combinations of movement epenthesis and other effects. Thus, it
will be ineffective to model the sequences using generative models like HMMs.
A discriminative model may be more suited for this scenario, and we propose to
use a 2-layer CRF model to handle head motion and facial expression towards
recognizing continuous grammatical markers. The use of a 2-layer model is also
motivated by the experimental data that we gathered, which showed that in spite
of movement epentheses, head motions are more consistent than corresponding
facial feature movements.

2.2 Layered Conditional Random Field Model

The CRF is a discriminative probabilistic model proposed by Lafferty et al. [12]
which can be trained to assign a sequence of predefined labels to a sequence of
observations. Its evaluation function is composed of weighted potential functions
which can utilize not only features extracted from the observations but also
their interactions and temporal dependencies. In the linear-chain model, the
probability of a label sequence y given an observation sequence x is computed
as:

p(y|x) =
1

Z(x)
exp

T∑
t=1

⎛
⎝ N∑

i=1

λifi(yt,x) +
M∑

j=1

μjgj(yt, yt−1,x)

⎞
⎠ (1)
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Table 4. Head labels used to train the CRF at the first layer

No. Label Meaning
1 Neutral (Neu) Head at normal position
2 Forward (Fw) Head moves forward
3 Back from Forward (BfF ) Head moves from forward position to neutral position
4 Backward (Bw) Head moves backward
5 Back from Backward

(BfB)
Head moves from backward position to neutral posi-
tion

6 Turn left (TL) Head turns left, usually a part of head shake
7 Back from Turn left

(BfTL)
Head pose changes from leftward to frontal

8 Turn right (TR) Head turns right, usually a part of head shake
9 Back from Turn right

(BfTR)
Head pose changes from rightward to frontal

10 Move down (MD) Head moves down, usually a part of head nod
11 Back from Move down

(BfMD)
Head pose changes from downward to frontal, usually
a part of head nod

12 Still Head is kept still
13 Forward left (FL) Head moves forward and slightly turns left
14 Back from Forward left

(BfFL)
Head pose changes from leftward to frontal and head
moves from forward to neutral position

15 Forward right (FR) Head moves forward and slightly turns right
16 Back from Forward right

(BfFR)
Head pose changes from rightward to frontal and
head moves from forward to neutral position

where fi and gj are potential functions that evaluate the interaction and tempo-
ral dependencies among features, respectively. λi and μj are weights estimated
from training data, and Z(x) is a normalization factor.

It was shown [12] that the right hand side of Eq. 1 is a convex function
parameterized by λi and μj , whose global optimum can be obtained by using
iterative scaling algorithms or gradient-based methods.

CRFs, which avoid the assumption of statistical independence of observations,
have shown better performance than HMMs in many applications [12] [14]. We
use a layered model of the chain CRF (Fig. 2) to recognize continuous facial
gestures in ASL. The probabilities of head motion labels are evaluated by a
CRF in the first layer. These probabilities are passed to the second layer where
other facial feature channels are also integrated. The second layer CRF is trained
on these integrated features, to provide grammatical marker labels for frames in
the test video sequences.

Our observations show that the transition from one type of head motion to
another mainly include movement epenthesis. Thus we choose to model move-
ment epentheses explicitly, together with meaningful head motions. Currently,
we have used 16 labels of head motions (both meaningful head motion and their
movement epentheses) as described in Table 4 for all combinations of head mo-
tions which occur in conjunction with the six grammatical markers of interest.
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Fig. 2. Layered CRF for recognizing continuously signed gram-
matical markers in sign language

Fig. 3. Feature
points of interest

Fig. 4. Distance
features used

In manually annotating the frames, besides the head motion label, each video
frame in the data set is also labeled with one of seven facial gestures: AS, NEG,
RH, TP, RH, WH, YN, and Und. The label Und is assigned to frames with
unidentified expressions.

As shown in Table 4, head motions with labels such as “Back from X” are
defined to explicitly model movement epentheses. Exceptional cases are labels 7,
9, and 11 which are constituents of multi-part head motions: head shake and head
nod. The N eutral label appears mostly at the beginning of the video sequences.
During facial gestures, the head does move past the neutral position but does
not stop. The frames in which the head is temporarily at the neutral position is
also annotated with the N eutral label. The label S till plays an important role
in segmenting meaningful head motions and their movement epentheses (Back
from X) because there is usually a short pause (or even long pause) between the
meaningful head motion and its “Back from” movement.

Motion of the head and facial features are obtained from the tracked feature
points (shown in Fig. 3) using an enhanced version of the robust tracking al-
gorithm developed by the authors [16]. The feature points are placed at both
rigid and non-rigid facial locations, and distances between them are extracted
and used for recognition. These distances (shown in Fig. 4) are, (a) five eyebrow
parameters: Left inner brow height (BIL), Right inner brow height (BIR), Left
middle brow height (BML), Right middle brow height (BMR), Distance between
brows (BB); and (b) two eye parameters: Left eye height (summation of EBL

and ETL), Right eye height (summation of EBR and ETR). A reference line is
defined as the line passing through the two inner eye corners, and the height pa-
rameters are the perpendicular distances of the feature points from this line. All
distance parameters are normalized with respect to their corresponding values
in the first frame to remove scaling effects across video sequences.
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1 10 20 30 40 50 60 70 80 90 100

Fig. 5. Frames in a test sequence containing the facial gesture chain TP RH AS. The
frame index is shown below each image. Blue dots at facial features of interest are our
tracking results.

To recognize head motions, tracks of non-deformable facial feature locations,
namely, the two inner eye corners (EL3, ER3) and the middle of the nose (N2),
are used to define three features; SM (the area of the triangle formed by the
above three locations in each frame), and CM x, CM y (components of the 2D
motion vector1 CM of the center of gravity of the triangle). SM and CM are
normalized by the distance EM 0 between the two inner eye corners in the first
frame: Cn

M t = CM t

EM 0
and Sn

M t = SM t

EM0
2 . These three features form the feature vec-

tor (at each frame) for the first CRF layer to evaluate probabilities of different
head motions. The feature vector (at each frame) of the second CRF layer for
recognizing continuous grammatical markers thus has 23 elements: 16 probabil-
ities of head motions and 7 distance ratios computed from the eyes and brows’
tracked features.

3 Experiments and Results

Videos of natural sign language facial gestures of interest were recorded by pro-
viding deaf signers (from the Deaf and Hard-of-Hearing Foundation of Singa-
pore) with appropriate signing scripts for sentences. Each English sentence in
the script was signed in ASL with hand signs and corresponding facial gestures.
These sentences were created or adapted from ASL resources (e.g. [1]). A sub-
ject signed each sentence ten times. As mentioned in Section 2, the data includes
four types of grammatical marker chains described in Table 2.

All six grammatical markers listed in Table 1 are present in the data set
together with the 16 types of head motion described in Table 4. For evaluating
the feasibility of our proposed recognition method, data from three subjects
was used for experiments. The data set included a total of 129 video sequences
divided into 93 video sequences for training (an average of seven sequences per
subject for each of the four grammatical marker chains) and 36 for testing (about
3 sequences per subject per chain). Each video frame was manually transcribed
to have two labels, one for head motion, and the other for grammatical marker,
both identified based on visual observation and the signing script. The training
set was used to train both CRF layers of the model: head motion layer and
grammatical marker layer.

Recognition accuracy for grammatical markers was measured by two methods:
frame based and label-aligned. In the frame-based method, the label assigned

1 Motion vector vt+1 = (xt+1, yt+1)− (xt, yt).
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for each frame is compared with the corresponding human annotated label. In
the label-aligned method, the frame labels of each sequence are reduced such
that consecutive frames with the same label are replaced by a single label. The
two reduced sequences of labels are aligned using the Needleman-Wunsch al-
gorithm [18]. The number of matches, insertions, deletions, and changed labels
are then obtained. Insertions are labels output by the classifier, which do not
appear in the corresponding annotated data. Deletions are labels which are not
recognized by the classifier while they appear in the annotated data.

An experiment was conducted to evaluate the performance of the proposed
model. The first CRF layer for head motion was trained first. The head motion
probabilities output by this trained CRF was used as a part of the training
vector for the CRF at the second layer. The two CRF layers were trained using
the scaled conjugate gradient algorithm with the CRF Toolbox [19].

Frames from a video sequence in the test set are shown in Fig. 5, where
the sequence of facial gestures corresponds to TP RH AS. Fig. 6 shows the
probability output of the first layer for the 16 head motion labels described in
Table 4. As mentioned in Section 2, the head tends to move past the neutral
position before starting a new motion. In the last 10 frames in Fig. 6, there is
confusion due to ambiguous head motions at the end of the signed sentence.
Fig. 7 shows the probability for the grammatical markers output by the 2-layer
CRF classifier. Seven probabilities including six for grammatical markers and
one for unidentified expression are obtained at each frame. Fig. 7 shows that the
second CRF layer, which is trained with output from the first layer, can tolerate
the ambiguity of head motions in recognizing continuous grammatical markers.

The average frame-based grammatical marker recognition rate using the com-
plete 2-layer CRF model was 80.82%. The corresponding confusion matrix is
shown in Table 5 which shows that most of the confusions are between any
grammatical marker and the unidentified expression. Particularly, frame-based
label confusions occur at the boundary between facial gestures where ambigu-
ous head motions and asynchronous movements of facial features are present.
This makes even manual annotation of consecutive frames into different facial
gestures difficult.

The label-aligned method of computing accuracy reveals more about the ca-
pability of the layered CRF for recognizing continuous grammatical markers by
discounting unavoidable confusions during transitions between facial gestures.
Table 5 can be augmented with insertion and deletion entries to obtain the ex-
tended confusion matrix C from which precision and recall rates are computed
as: Precision = Match

Match+Change+Insert and Recall = Match
Match+Change+Delete , where

for marker i, Match rate = C(i, i), Change rate =
∑

j /∈{i,Insert,Delete}
C(i, j), In-

sertion rate = C(i, Insert), Deletion rate = C(i, Delete), and C(i, j) is the value
at row i and column j of the extended confusion matrix.

Label-aligned results were 93.76% for precision and 84.54% for recall. The
extended confusion matrix for this evaluation is shown in Table. 6. The precision
rate appears quite reasonable given the complexity of the problem. However,
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TLF
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Fig. 6. The probability outputs of the first
layer CRF trained to recognize 16 types of
head motion. The color bar at the top is the
human annotated head motion label for this
video sequence. The curve and bar with the
same color are associated with the same head
motion. Labels for last 10 frames are ambigu-
ous due to ambiguous head motions at the
end of the signed sentence.
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Fig. 7. The probabilities of the gram-
matical markers, output by the second
CRF layer trained using head motion
probability output (shown in Fig. 6)
from the first layer

the lower recall rate hints that the layered CRF is less sensitive to change of
facial gestures in video sequences. This may be improved with more descriptive
features for head motion and facial feature movements. As a comparison, the
results obtained in this experiment were quite close to the results we obtained
in another experiment where the head motion labels were assumed known (the
human annotated labels) and were input to the second layer CRF (rather than
using the first layer outputs). In this experiment, precision rate of 94.54% and
recall rate of 90.78% were obtained for recognizing grammatical markers. Our
recent results show that the layered-CRF model outperforms the linear chain
CRF and the layered HMM models.

Table 5. Confusion matrix for labeling grammatical markers with the proposed model.
The average frame-based recognition rate is 80.82%.

Und AS NEG RH TP WH YN

59.62 7.60 3.09 6.65 9.26 12.11 1.66
9.62 87.46 0 2.92 0 0 0
0.98 0 97.07 0 1.95 0 0
10.78 0 0 89.22 0 0 0
3.06 1.31 1.17 3.35 91.1079 0 0
5.61 9.35 0 0 0 84.58 0.46
27.84 10.31 0 0 0 5.16 56.70
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Table 6. Extended confusion matrix for label-based facial gesture recognition result
(%) using 2-layer CRF

UN AS NEG RH TP WH YN Insert Delete Precision Recall
UN 68.97 0.00 0.00 0.00 0.00 0.00 0.00 3.45 27.59 95.24 71.43
AS 5.26 84.21 0.00 5.26 0.00 0.00 0.00 0.00 5.26 88.89 84.21

NEG 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 0.00 100 100
RH 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 100 100
TP 0.00 0.00 0.00 0.00 91.67 0.00 0.00 0.00 8.33 100 91.67
WH 0.00 11.11 0.00 0.00 0.00 88.89 0.00 0.00 0.00 88.89 88.89
YN 0.00 11.11 0.00 0.00 0.00 0.00 55.56 0.00 33.33 83.33 55.56

Average 93.76 84.54

4 Conclusion

In this paper, we addressed the problem of recognizing continuous facial ges-
tures in sign language video. A 2-layer CRF was proposed for recognizing six
common grammatical markers in ASL sentences. The first layer was trained for
evaluating head motions and the second layer was trained for segmenting and
recognizing facial gestures using the output from the first layer and measure-
ments of facial feature movements. Data was collected using an experimental set
up for capturing natural facial gestures without a forced “neutral” state between
gestures. The performance of the complete 2-layer CRF model yielded precision
rate of 93.76%, and recall rate of 85.54% for recognizing the six types of con-
tinuously signed grammatical markers. These encouraging results show that the
proposed 2-layer model is a viable scheme for recognizing facial gestures in sign
language. In the near future, we propose to enhance the robustness of the model
by incorporating more descriptive features for identifying head motions. We will
also conduct more evaluations and comparisons with other methods. Other non-
manual signals will be considered for further development of the system.
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Abstract. One of the most important challenges faced by computer
vision is the almost unlimited possibilities of variation associated with
the objects. It has been hypothesized that the brain represents image
manifolds as manifolds of stable neural-activity patterns. In this paper,
we explore the possibility of manifold representation with a set of to-
pographically organized neurons with each representing a local linear
manifold and capturing some local linear feature invariance. In particu-
lar, we propose to consider the local subspace learning at each neuron of
the network from a Gaussian likelihood point of view. Robustness of the
algorithm with respect to the learning rate issue is obtained by consid-
ering statistical efficiency. Compared to its predecessors, the proposed
network is more adaptive and robust in learning globally nonlinear data
manifolds, which is verified by experiments on handwritten digit image
modeling.

1 Introduction

In computer vision as well as in many other artificial perception problems, one
of the most challenging issues is variation of the observations. A given object
can be projected on the retina as very different images due to distance, loca-
tion, orientation, lighting, etc., not to mention that the object itself may undergo
complex distortion. Images of objects under continuous variability are often con-
sidered to lie on some intrinsic low-dimensional manifolds [14]. Manifold learning
approaches such as the locally linear embedding (LLE) [13] and the isometric fea-
ture mapping (ISOMAP) [15] have been proposed in the literature and attracted
wide interest. In this paper, however, we are interested in models that provide
some kind of abtraction of data classes, which are more practical in visual per-
ception problems for their capacity of invariant representation, generalization to
future data, and robustness to noise or over-fitting.

Previous research has demonstrated that distributions of many images, e.g.
handwritten characters and faces, can be effectively modeled by low-dimensional
linear subspaces [3,7], which are special manifolds in the input data space. A typ-
ical strategy is to train a subspace model from images of all classes. A subspace
learned in this way is a representation of the common object, e.g. an average
face. Any dimensions orthogonal to the subspace are regarded as noise and will

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 677–689, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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be ignored. Projections on this subspace will then reveal the essential informa-
tion that characterizes the various classes. Another strategy is to model classes
directly as subspaces. Indeed, important transformation groups can be automat-
ically taken into account if the classes are modeled as linear subspaces [11]. In
general, distributions of class data are nonlinear. It is therefore necessary for
the model to be adaptive to nonlinear distributions, which can be defined as
low-dimensional nonlinear manifolds embeded in the data space. It has been
hypothesized that the brain represents image manifolds as manifolds of stable
neural-activity patterns [14]. Recalling the elegant and amazing performance of
the brain, it is interesting to realize manifold learning and feature invariance by
following a biologically plausible strategy.

The self-organizing map (SOM) has been extensively implemented in tasks
related to computer vision [5]. A SOM consists of a grid of processing units each
containinng a weight vector. The map learns a topographically organized low-
dimensional representation of the input space, where nearby weight vectors are
similar while dissimilar weight vectors are far from each other. Certain assump-
tions of the SOM theory seem to have biological counterparts, and the same
principle might underlie the emergence of feature maps in the living brain [5].
To achieve Gabor-like feature invariance, subspace learning has been introduced
into neurons of the SOM [6]. In the new model, named the adaptive-subspace
self-organizing map (ASSOM), the single weight vectors at map units in the
SOM are replaced by sets of basis vectors that span some linear subspaces. By
setting filters to correspond to pattern subspaces, some transformation groups,
such as translation, rotation, and scaling can be automatically incorporated [6].

However, the ASSOM may not be adequate in learning nonlinear manifolds
embedded in the data space, since subspaces in the ASSOM must pass through
the origin. To overcome this limit, a number of variants have been proposed,
such as the adaptive-manifold self-organizing map (AMSOM) [9] and the princi-
pal components analysis self-organizing map (PCASOM) [10]. A common diffi-
culty of these ASSOM-type networks is the confusion between local sub-models
due to infinite extensions of local subspaces. Therefore, some variants with more
localized subspace representation are proposed [1, 18], which suggest to include
distances to local mean vectors into the objective function. However, the weight
of this component can only be determined beforehand and empirically [1,18]. In
this paper, we propose to consider the objective function from a likelihood point
of view, which leads to a model more adaptive to complex nonlinear manifolds
embedded in the data space, such that shapes of local distributions can be au-
tomatically captured by variances in the principal directions. Robustness of the
proposed algorithm with respect to the learning rate is obtained by considering
statistical efficiency. To guarantee a local principal subspace solution, we further
incorporate constraints related to the mean squared error.

The rest of this paper is organized as follows. Section 2 presents local linear
manifold modeling at each neuron for invariant feature generation. The overall
model for generating a topologically ordered invariant feature set is presented in
Section 3. The capacity of the proposed method to learn nonlinear manifolds for
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visual object representation is demonstrated in Section 4 through experiments
on handwritten digit image modeling. Finally, Section 5 concludes this paper.

2 Local Linear Manifold Learning for Invariant Feature
Representation at Each Neuron

A pattern that undergoes certain transformations can be thought to occupy a
low-dimensional nonlinear manifold in the vector space, which is an invariant
representation of that pattern class. When the transformations are restricted or
only considered locally, we may equate local linear manifolds at neurons with
pattern classes subject to certain linear transformations.

A common practice in recent study [1,18] for learning nonlinear manifolds with
local linear models is to take into account the distances of training vectors to
centers of the local models to avoid infinite extension along local linear manifolds.
The reconstruction error at each neuron takes the following form:

e(x,L) = ‖x̃‖2 + α‖x̂‖2 (1)

where x̂ and x̃ are the projection and the error of the input vector x on the local
linear manifold L, respectively, 0 ≤ α ≤ 1 is a weight parameter that controls
the localization of the linear manifold [18]. However, traditional methods, which
aim to minimize the expectation E[e(x,L)], are ill-defined with respect to α and
will converge to α = 0, as shown in [1].

2.1 The Gaussian Likelihood Function

In this paper, we formulate the optimazation problem from a maximum likeli-
hood point of view. Let D be the dimension of the input vector, L be a linear
manifold represented by the local model, H be the dimension of L, m be the
mean vector associated with L, bh and σ2

h be, respectively, the h-th basis vector
and the variance in the direction of bh for h ∈ {1, 2, . . . , H}, and σ2

0 be the
variance in the directions of noise (orthogonal to L). The basis vectors bh are
assumed to be orthonormal. If bh have been chosen as principal eigenvectors of
the underlying distribution, then for an input vector x, the Gaussian likelihood
function can be defined as

p(x|m,bh, σh) =
exp

(
− 1

2

(∑H
h=1

(
(x − m)Tbh

)2
/σ2

h + x̃Tx̃/σ2
0

))
(2π)D/2σD−H

0
∏H

h=1 σh

(2)

where x̃ is the projection error vector defined by

x̃ = x − x̂ = x −
H∑

h=1

(
(x − m)Tbh

)
bh (3)

We may also consider the log-likelihood function

Lo(x) = ln p(x|m,bh, σh) (4)
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The objective function can be defined as the expectation of the log-likelihood

Ex[Lo] = −D

2
ln 2π − (D − H) ln σ0 −

H∑
h=1

ln σh −

1
2
Ex

[
H∑

h=1

(
(x − m)Tbh

)2
/σ2

h + x̃Tx̃/σ2
0

]
(5)

2.2 Stochastic Optimization

An online-learning algorithm can be derived through stochastic gradient ascent
on a sample function of (5), i.e. on Lo(x). We have the partial derivatives

∂Lo

∂m
=

1
σ2

0
x̃ +

H∑
h=1

(x − m)Tbh

σ2
h

bh (6)

∂Lo

∂bh
= (x − m)Tbh

(
1
σ2

0
x̃ − 1

σ2
h

(x − m)
)

(7)

∂Lo

∂σh
=

1
σh

((
(x − m)Tbh

σh

)2

− 1

)
(8)

∂Lo

∂σ0
=

D − H

σ0

(
x̃Tx̃

(D − H)σ2
0
− 1

)
(9)

In general, to obtain a learning algorithm, one then updates each parameter
along the gradient for one step at a time. The stride at the n-th step is controlled
by a positive learning rate λ(n), which should satisfy

∑∞
n=0 λ(n) = ∞ and∑∞

n=0 λ2(n) < ∞ for convergence of the algorithm [12].
However, there are several issues to be considered carefully here. First, (8)

and (9) can result in negative values of large magnitude, especially when σh or
σ0 is small, which would move σh or σ0 to an invalid negative zone and lead to
failure of the learning procedure. Second, direct maximization of the Gaussian
likelihood function does not guarantee that bh, h = 1, . . . , H be the principal
eigenvectors, or L be the principal subspace of the underlying distribution. In
the following section, we will analyze these issues and obtain a robust solution.

2.3 The Local Linear Manifold Learning Rules

Let us investigate σh first. Ideally, σ2
h = Ex[((x − m)Tbh)2]. In practice, it can

be estimated from n samples,

σ2
h(n) =

1
n

n∑
t=1

(
(x(t) − m(t))T bh(t)

)2
(10)

where m(t) and bh(t) are the mean vector and the h-th basis vector at the t-th
learning step. This equation is motivated by statistical efficiency [16]. An efficient
estimator tends to converge most quickly and has the smallest error variance,
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as demonstrated in [16]. For a Gaussian distribution with a known variance, the
sample mean is an efficient estimator of the population mean. As pointed out
in [16], the actual error variance is not very sensitive to the distribution. In (10)
we may consider σ2

h(n) to be the sample mean of w(t) =
(
(x(t) − m(t))T bh(t)

)2.
From (10) we can derive the following incremental relationship

σ2
h(n) =

n − 1
n

σ2
h(n − 1) +

1
n

(
(x(n) − m(n))T bh(n)

)2
(11)

Rearranging (11), we obtain

σh(n) − σh(n − 1) =
1
n

Δσh(n) (12)

where

Δσh(n) =
1

σh(n) + σh(n − 1)

((
(x(n) − m(n))T bh(n)

)2
− σ2

h(n − 1)
)

≈ σh(n − 1)
2

⎛
⎝( (x(n) − m(n))T bh(n)

σh(n − 1)

)2

− 1

⎞
⎠ (13)

In (12), 1
n can be considered to play a role of the learning rate as in the usual

stochastic gradient approaches. The expression (13) can be regarded as a discrete
version of (8). Since it is expected that σ2

h = Ex[((x−m)Tbh)2], in the long run,
the average updating based on both expressions tend to be zero. Their difference
is basically a matter of step length. In (8) the step length is inversely proportional
to σh, while in (13), it is proportional to σh, which is more reasonable and has
a “multi-resolution” behavior. Furthermore, (13) avoids the problem of driving
σh to negative since (13) is safely bounded below by − 1

2σh.
The variance σ2

0 can be considered as the average of variances in the rest D−H
directions other than the H principal directions, i.e. σ2

0 = Ex
[
x̃Tx̃

]
/(D − H).

Similar to σ2
h, we replace the expectation with a sample mean estimator

σ2
0 =

1
n
· 1
D − H

n∑
t=1

x̃T(t)x̃(t) (14)

Following arguments similar to those of σ2
h, we can obtain the following discrete

updating formula

σ0(n) − σ0(n − 1) =
1
n

Δσ0(n) (15)

where

Δσ0(n) ≈ σ0(n − 1)
2

(
x̃T(n)x̃(n)

(D − H)σ2
0(n − 1)

− 1
)

(16)

Again, the right side of (16) has a form similar to that of (9). In the long run,
both expressions tend to zero in average. The former has a more reasonable step
length than the latter in the sense that the former is proportional to σ0. Also,
(16) has a safe lower bound − 1

2σ0, which guarantees that the updating will not
drive σ0 to a negative zone.
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To enforce a solution where bh span a principal subspace, the idea is to
incorporate into (5) a regularization term proportional to E[x̃Tx̃], since global
minimization of this extra term leads to a principal subspace solution, which
also coincides with the optimal solution of (5). We take partial derivatives of the
sample function x̃Tx̃ with respect to m and bh,

∂x̃Tx̃
∂m

= −2x̃ (17)

∂x̃Tx̃
∂bh

= −2(x− m)Tbh · x̃ (18)

Then we only need to combine (17), (18) with (6), (7) appropriately. In our
practice we observed that (6) and (7) do not lead to a robust learning procedure.
The reason is most likely related to the variances appearing in the denominators.
Multiplying the derivatives with σ2

0 , we obtain a form commonly used in the
literature [1, 18]. Combining with − 1

2 of the derivatives in (17) and (18), we
obtain the following updating formulae

Δm(n) = 2x̃(n) +
H∑

h=1

σ2
0(n−1)

σ2
h(n−1)

(x(n) − m(n−1))Tbh(n−1)bh(n−1) (19)

Δbh(n) = (x(n)−m(n−1))Tbh(n−1)
(
2x̃(n)− σ2

0(n−1)
σ2

h(n−1)
(x(n)−m(n−1))

)
(20)

The final updating rules are obtained by introducing increments proportional to
the gradients at each n-th step, more details will be given in the next section.

3 Topographically Ordered Invariant Feature Set
Generation under a Self-organizing Framework

The procedure for learning the local linear manifold in the previous section de-
fines the behavior of a single neuron. Such a linear manifold can be considered
as a linearly invariant representation of the pattern class. A number of such neu-
rons are then combined together under a self-organizing framework to account
for nonlinear variation. The whole network then represents a set of topologically
ordered invariant feature filters. This idea has been inspired by Kohonen’s pio-
neering work on the ASSOM [6]. Different from previous methods, in our model,
we consider the local objective function from a likelihood point of view. Then at
the network level, for the input vector x(n) at the n-th time instant, the winning
neuron c is determined via competition

c = arg max
q∈Q

Lq (x(n)) (21)

where Lq (x(n)) is the sample likelihood function at neuron q, and Q is the set
of neurons in the network.
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The winner c and its neighbors q ∈ Q then update their local linear manifolds
following the stochastic optimization procedure developed in Section 2 to reflect
new information received from the input x(n). The updating “force” of the
neighbors of c are attenuated by a neighborhood function νc,q(n), which is a
decreasing function of the distance between q and c. νc,q(n) = 1 for q = c and
0 ≤ νc,q(n) < 1 otherwise. This defines a cooperative learning process which
leads to topological ordering and well structuring of the neurons in the data
space. For q �= c, νc,q(n) should also be a decreasing function of the time variable
n and νc,q(n) → 0 when n → ∞, so that at the final stage of learning, each neuron
only responds to inputs falling into its local “receptive field”. Each neuron q ∈ Q
updates its local linear manifolds according to the following formulae

mq(n) = mq(n − 1) + λ(n)νc,q(n)Δmq(n) (22)

bh,q(n) = bh,q(n − 1) +
λ(n)νc,q(n)

‖x̂q(n)‖‖x(n)‖Δbh,q(n) (23)

σh,q(n) = σh,q(n − 1) + λ(n)νc,q(n)Δσh,q(n) (24)
σ0,q(n) = σ0,q(n − 1) + λ(n)νc,q(n)Δσ0,q(n) (25)

where h = 1, 2, . . . , H, x̂q(n) is the projection of x(n) on the local linear manifold
of the neuron q, Δmq(n), Δbh,q(n), Δσh,q(n), and Δσ0,q(n) are defined for the
neuron q according to (19), (20), (13), and (16), respectively. The learning rate
parameter λ(n) is often a 1

n -type function in stochastic optimization. In (23),
‖x̂q(n)‖‖x(n)‖ in the denominator is used to normalize the updating step and
improve the learning behavior [6]. At the beginning of learning, the angle between
x(n) and the local linear manifold is large, and this term defines a large updating
step. At the final stage of learning, x(n) tends to coincide with the local linear
manifold, and this term defines a small updating step. The overall algorithm can
be summarized as follows:

1. Initialize the list of parameters (mq,bh,q, σh,q, σ0,q), e.g. randomly. The ini-
tial value σh,q(0) can be set larger than σ0,q(0). bh,q, h = 1, 2, . . . , H should
be orthonormal for each neuron q in the network;

2. For the current input vector x(n), determine the winner c according to (21);
3. Update the winner c and those neurons q in its neighborhood according to

(22)–(25). Orthonormalize the basis vectors bh,q afterwards;
4. Repeat steps 2 and 3 until certain predetermined condition is satisfied, e.g.

when the number of iterations reaches a predetermined maximum value.

This network is a self-organizing map which learns a set of topologically ordered
local linear manifolds from input examples in an online fashion. The mean vector
of each local linear manifold can be regarded as a prototype of the pattern class.
The local linear manifold captures the most important directions of variation
in the local partition. In this sense, each local linear manifold can be regarded
as a feature filter invariant to some local linear transformations. The whole
set of neurons then establish a globally nonlinear manifold, which is a global
representation of the pattern class that is invariant to nonlinear transformations.
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Furthermore, the whole set of neurons can be mapped to a low-dimensional
topological display for convenient visualization and analysis, which is beyond
the conventional manifold learning approaches, such as the ISOMAP or the
LLE.

4 Experiments

In the following, we will demonstrate the capacity of the proposed network in
generating invariant feature sets from visual patterns subject to substantial
transformations through online learning. We will use handwritten digit image
modeling and recognition as a specific example. It will be shown that recogni-
tion based on these representations are quite accurate.

4.1 Data and Related Work

A major difficulty in handwritten digit image modeling is the wide variety of
writing styles affected by people and many other factors. The data set used in
this paper is the MNIST database, which has been made publicly available by
LeCun et al. [8] for evaluation of learning techniques and pattern recognition
approaches on real-world data. This database is also used by Zheng et al. [18] in
their experiments. Images in the MNIST database have been size normalized and
centered in a 28 × 28 pixel field. Pixels of the resulting images are represented
by gray levels due to the interpolation techniques used by the normalization
procedure. Foreground pixels take high gray levels while background pixels take
low gray levels. There are 60, 000 training digit images and 10, 000 test digit
images. Figure 1 shows some representative digit images in this database. It is
obvious that a wide variety of writing styles have been covered. Some of these
digits are subject to substantial distortions, which poses considerable difficulty
in accurate recognition. It is hard for hand-crafted feature extractors to deal
with such extensive variation.

4.2 Invariant Feature Set Generation

The strategy that we have taken is to train a network for each digit. The images
of each digit can be thought to be distributed along a nonlinear manifold with
a dimensionality relatively lower than the dimensionality (28 × 28 = 784-D) of
the original data space. Therefore, we build a self-organizing network for the
underlying nonlinear manifold of each digit. Altogether, there are 10 of such

Fig. 1. Some examples from the MNIST database
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networks, denoted by Qk, k = 0, 1, . . . , 9 for the ten digits. Each network is
composed of r × r neurons organized according to a rectangular topology. The
H-dimensional local linear manifold Lq at each neuron q ∈ Qk has a mean vector
mq and H basis vectors bh,q, h = 1, 2, . . . , H. For each network, the number of
learning steps is fixed to N = 30, 000. The neighborhood function commonly
takes the Gaussian form

νc,q(n) = exp
(
−‖uc − uq‖2

2σ2
v(n)

)
(26)

where uc and uq are, respectively, the coordinates of the winning neuron c and
an arbitrary neuron q in the network lattice. σv(n) = σv(0)N/(N + 99n) is a
variable that defines the scale of neighborhood, which shrinks with n to enforce
ordering of neurons at the beginning of learning and more local learning at
the final learning stage. σv(0) should be appropriately set so that the whole
network is covered by the full width at half maximum (FWHM) of the Gaussian
neighborhood function at the beginning of learning. The learning-rate parameter

λ(n) = λ(0)
N

N + 99n
(27)

for all the networks. The initial learning rate λ(0) = 1. Other settings did not
show better results in our experiments.

Before a digit image is input into the networks, the mean value of its pixels
is subtracted from each pixel of the image. The resulting image is then normal-
ized to form a pattern vector x to be input to the networks. As an example,
the networks trained at r = 4 and H = 3 are shown in Fig. 2. Each network
Qk is composed of 4 × 4 = 16 neurons with each representing a 3-D local lin-
ear manifold defined by a mean vector m and three orthonormal basis vectors
bh, h = 1, 2, 3, whose components have been scaled to [0, 255] for visulization.
Therefore, the orginal 28 × 28 = 784-D distribution of images of each digit is
represented by 4 × 4 = 16 3-D local linear manifolds, which globally construct
a low-dimensional nonlinear manifold that is itself an invariant representation
of the corresponding digit. Such a compact representation of the digit image
distribution provides robustness to noise or over-fitting and generalization to
future data. The local linear manifold learned by each neuron can be regarded
as an invariant feature filter that captures linear transformations of up to three
dimensions. Linear manifolds of the same digit are further organized according
to a rectangular topology on a 2-D display for convenient visualization. Note
that different “styles” of the handwritten digit images have been automatically
generated. In our experiments, the generated visual patterns have appeared in
less than 10 learning steps and become quite clear in about 100 learning steps.

4.3 Recognition Results

To evaluate the performance of the proposed approach in visual perception, we
performed further experiments and compared the results to some previously
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Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

m

b1

b2

b3

Fig. 2. Linear manifold self-organizing maps trained for the MNIST database

published similar models, including Kohonen et al.’s ASSOM [6] and Zheng
et al.’s locally linear online mapping model (LLOM) [18]. Since each digit has
been represented by a nonlinear manifold, or more specifically, a set of local
linear manifolds in our case, we need to develop a measure of matching degree
between input patterns and the nonlinear manifolds. If we consider each network
as memory of the corresponding digit, the idea is to reconstruct a memorized
pattern with information from the input pattern, and determine the difference
between the reconstructed pattern and the input pattern. More specifically, for
each input pattern vector x of an unknown class from the test set, each of the 10
networks Qk, k ∈ {0, 1, . . . , 9} tries to reconstruct a memorized closest pattern
x̂Qk

of its own. The network with the minimum reconstruction error determines
the label of x. The corresponding classification function can be defined as

l(x) = arg min
k∈{0,1,...,9}

‖x− x̂Qk
‖ (28)

where ‖ · ‖ corresponds to the usual Euclidean distance function.
Now it comes to the question of how to build the reconstruction x̂Qk

. Recalling
that the nonlinear manifold of the network Qk is represented by a set of r × r
local linear manifolds, we can combine the local linear reconstructions mq + x̂q

(q ∈ Qk) in a weighted way,

x̂Qk
=

∑
q∈Qk

aq (mq + x̂q)∑
q∈Qk

aq
(29)

where aq is a weight parameter that should be relatively large for “good” local
reconstructions. Such a strategy has also been adopted in [17] and [18]. There
is no evidence that the functional form of aq would be crucial to the perfor-
mance [2]. A Gaussian function, which extends infinitely in the domain, has
been chosen in the experiments, aq = exp

(−‖x− mq − x̂q‖2/
(
2σ2

∗
))

, where σ∗
is a parameter which controls the response field of the neurons. We have set
σ∗ = 0.1 in our experiments. It has been observed that this parameter can be
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Fig. 3. Recognition results of different methods on the training set (left) and on the test
set (right). In each subfigure, the vertical axis denotes the error rate (in percentage),
the horizontal axis denotes the dimension r of each network.

chosen from a reasonably wide range of values without introducing significant
difference to the results [17, 18].

The recognition results are plotted in Fig. 3, which shows that the proposed
method has consistently lower error rates than the ASSOM and the LLOM under
various configurations. In general, the performance of these methods improves
with the local dimensionality H and the network size r× r. On the training set,
the proposed method reached a minimum error rate of 0 .23%, which is lower
than 1.47% of the ASSOM and 1.19% of the LLOM. On the test set, the proposed
method reached a minimum error rate of 1 .7%, which is also lower than 2.51% of
the ASSOM and 2.27% of the LLOM. As a baseline comparison, the K-nearest
neighbor classifier with a Euclidean distance measure shows an error rate of 5%
on the test set [8]. However, memory access of the K-nearest neighbor classifier
is much less efficient than the proposed method for large data sets. The proposed
algorithm is quite stable in repeated running. For example, for 10 runs of 6× 6-
sized networks with manifold dimension H = 6, the mean error rate (± standard
deviation) is 1 .26 (±0 .03 )% on the training set and 2 .10 (±0 .14 )% on the test
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set, respectively. For a comparison, under the same settings, the ASSOM and the
LLOM have the error rates of 2.23(±0.04)% and 2.12(±0.05)% on the training
set, 2.89(±0.09)% and 2.61(±0.06)% on the test set, respectively.

Different from usual manifold learning methods, the proposed algorithm pro-
vides abstraction and generalization of data. So it can tolerate reduction of the
training set to some extent. For example, when trained on 1

10 of the original
training set, the error rate on the test set is 3.24% for 6× 6-sized networks with
manifold dimension H = 6, which is still significantly better than that (5%) of
the K-nearest neighbor classifier trained on the full-size training set.

5 Conclusions and Perspectives

This paper proposes a neural model which is able to learn a set of topologically
ordered linear manifolds under a self-organizing framework. Each local linear
manifold is an invariant feature filter that captures certain linear transforma-
tions. The whole network represents a globally nonlinear manifold embedded in
the data space, which is an invariant representation of the target pattern sub-
ject to nonlinear transformations. Compared to other similar models, such as
the ASSOM or those models in [1] and [18], the proposed model has some extra
parameters, i.e. standard deviations, which are only one-dimensional and do not
increase the complexity much. On the other hand, the proposed model is more
adaptive to the data under study, as verified by the performance in handwritten
digit image modeling and recognition. Compared to conventional manifold learn-
ing approaches, the proposed model provides abstraction and generalization of
data, which is important to tasks related to visual perception.

It has been observed in our experiments of handwritten digit recognition that
although the proposed model shows very remarkable performance on the training
set (error rate of as small as 0.23%), it can not approach such a level on the test
set. Some kind of overfitting to the training set seems to have occurred. An
interesting direction of further study is to develop new methods to explore this
“gap” and balance learning on the training set and generalization on the test set
appropriately.
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Abstract. Face recognition has always been a challenging task in real-
life surveillance videos, with partial occlusion being one of the key factors
affecting the robustness of face recognition systems. Previous researches
had approached the problem of face recognition with partial occlusions
by dividing a face image into local patches, and training an independent
classifier for each local patch. The final recognition result was then de-
cided by integrating the results of all local patch classifiers. Such a local
approach, however, ignored all the crucial distinguishing information pre-
sented in the global holistic faces. Instead of using only local patch clas-
sifiers, this paper presents a novel multi-level supporting scheme which
incorporates patch classifiers at multiple levels, including both the global
holistic face and local face patches at different levels. This supporting
scheme employs a novel criteria-based class candidates selection process.
This selection process preserves more class candidates for consideration
as the final recognition results when there are conflicts between patch
classifiers, while enables a fast decision making when most of the classi-
fiers conclude to the same set of class candidates. All the patch classifiers
will contribute their supports to each selected class candidate. The sup-
port of each classifier is defined as a simple distance-based likelihood
ratio, which effectively enhances the effect of a “more-confident” clas-
sifier. The proposed supporting scheme is evaluated using the AR face
database which contains faces with different facial expressions and face
occlusions in real scenarios. Experimental results show that the proposed
supporting scheme gives a high recognition rate, and outperforms other
existing methods.

1 Introduction

Over the last decade, many mature algorithms have been developed for face
recognition [1, 2, 3, 4, 5]. These algorithms often demonstrate promising results
with high recognition rates on face image captured under ideal conditions such as
frontal faces in passport photos. On the other hand, face recognition has always
been a challenging problem in real-life surveillance videos where faces are always
non-frontal, occluded, and in low resolutions. In particular, recognizing partially
occluded or disguised faces is one of the key issues in enhancing the robustness
of face recognition in real-life videos.
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Currently, there are not many effective and efficient methods to handle face
recognition with occlusions. Some common approaches to tackle the problem
include face occlusion detection [6, 7, 8, 9] and face division into local patches
[9, 10, 11, 12, 13].

In [6], the occluded parts of a face were first detected according to the residual
values, and a new face classifier was trained using the training samples with all
the occluded parts being masked-out. Although this approach can effectively ig-
nore the effect of the occluded parts, the recognition is extremely time-consuming
since a new classifier has to be trained in run-time for every recognition. Fidler
et al. [8] proposed a subspace recovering method for recovery the faces from oc-
clusions. Their method reconstructed occluded parts of a face from the trained
subspace before performing the recognition. The recognition correctness, how-
ever, is lowered due to the recovery errors, especially when the individual is not
included in the training set. Jia and Martinez [14] suggested to use faces with
occlusions as training samples to train a SVM classifier. This approach, however,
is risky when the occlusion scenarios are not included in the training samples.
Oh et al. [9] proposed a selective-LNMF classifier. Their method first divides and
locates the occluded face patches, and re-projects the training samples to the
selective-LNMF space, in which the LNMF bases belonging to the occluded face
patches are excluded. The recognition stage of this method, however, can be very
time-consuming when the face database grows large. Moreover, this method re-
quires occlusion detection which was trained by partially occluded face samples,
therefore, the method cannot solve the unseen occlusion case.

Instead of using occlusion detection and face recovery, Martinez [11] suggested
to divide a face into 6 local patches, and weight each local patch according to a
new training face set. This method then votes for the final recognition results ac-
cording to the weightings of the local patches. Such a local face patches approach
enhances the face recognition rate since it reduces the effect of the occluded parts
in the recognition. However, the distinguishing information in the holistic face
is also crucial in face recognition. If only local face patches are considered, the
distinguishing information of the holistic face may be ignored. Kim et al. [13]
suggested to combine local features and global holistic face information in the
recognition. In their method, local-feature patches, including eyes, nose, month,
are first located by local feature detectors. The final recognition is then decided
by combining the local and global holistic face recognition results. They showed
that their combination method outperforms both the global holistic approach
as well as the local-patch approach. However, Kim et al. did not elaborate their
method on occluded faces where the local face features might be occluded, and
might not be easy to locate.

This paper proposes a novel multi-level supporting scheme which integrates
the recognitions of global holistic face and multi-level local face patches. The
main contributions of this paper include: 1) a novel multi-level supporting scheme
which incorporates the decisions multi-level patch classifiers, 2) a simple and
effective distance-based likelihood ratio to enhance the weightings of “more-
confident” patch classifiers, and 3) a criteria-based class candidates selection
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process which preserves more class candidates for consideration as the final
recognition result when there are conflicts between patch classifiers. In sum-
mary, our method first divides a face image into local patches at different levels
(figure 1). For each patch, including the global face image, a fisherface subspace
classifier [15] is trained. In the testing stage, a testing face image is also divided
into local patches as in the training stage. A multi-level supporting scheme is
then applied to integrate the recognition results of the local patches. The scheme
first selects potential class candidates according to the matching likelihood ra-
tio between the testing and training faces. Each local patch classifier is then
invited to give its support to these selected candidates. The final recognition
result is decided according to the supports from all patch classifiers. The pro-
posed scheme is efficient since it requires neither re-training nor re-projection
of the training faces. The supporting scores contributed by the patch classifiers
depend on a simple likelihood ratio which will be discussed in detail in Section
2. The proposed likelihood ratio measures how likely a testing patch belongs to
the same class of a particular training face patch, and effectively decreases the
effects of those patches with low confidence. Furthermore, the discriminant infor-
mation on multi-level patches, including the global holistic face and local smaller
patches, are all being considered and integrated. The proposed recognition is,
therefore, more robust to partial face occlusions and facial expression changes.
The proposed scheme is evaluated using the AR face database [16] which con-
tains faces with different facial expressions and real occlusions. Experimental
results shown in Section 3 shows the proposed scheme gives a high recognition
rate, and generally outperforms existing state-of-the-art methods.

The paper is organized as follows. Section 2 describes in detail the proposed
multi-level supporting face recognition scheme. Experimental results are then
presented in Section 3, followed by the conclusions in Section 4.

2 Multi-level Supporting Scheme

Face images are first divided into patches at different levels with slight overlap-
ping (about one-eighth of the width/height) as shown in figure 1. In the exper-
iments presented in this paper, each face image is divided into 2x2, 4x1, 1x4,
4x2 and 2x4 patches. Together with the original holistic 1x1 face image, there
are in total 29 image patches. For each image patch, an independent classifier is
trained as described in following sections.

2.1 Fisherface Subspace Classifiers

This section describes the subspace classifier for a single image patch. The clas-
sifiers for all the other image patches, including the global holistic face patch,
are trained in the same way. For each face image patch, an independent fish-
erface classifier [15] is trained. Suppose there are N training face sample. An
image patch of the i-th training sample is represented as a 1-D vector xi in
single grey channel. The vector xi is projected to an eigenface subspace using
principle component analysis (PCA) [15]:
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(a) (b) (c) (d)

(e) (f)

Fig. 1. Faces are divided into slightly overlapped patches at different levels: (a) man-
ually cropped 1x1 holistic face, (b) 2x2 face patches, (c)(d) horizontal 4x1 and vertical
1x4 face patches, and (e)(f) horizontal 4x2 and vertical 2x4 face patches

x̂i = UT
K(xi − m) (1)

where m is the mean vector of all training patch vectors x, UK = [u1, ...uK ] is
a matrix whose columns are the K eigenvectors with the largest eigenvalues of
the scatter matrix ST :

ST =
N∑

i=1

(xi − m)(xi − m)T (2)

The set containing N faces in the fisherface subspace Ŷ = {ŷ1, ..., ŷN} is then
constructed by projecting the corresponding x̂i to the fisherface subspace using
linear discriminant analysis (LDA):

ŷi = W T (x̂i − m̂) (3)

where m̂ is the mean vector of all training patch vectors x̂ in PCA subspace. W
contains the bases of the LDA subspace which is calculated by maximizing the
between-class scatter matrix Sb and minimizing the within-class scatter matrix
Sw. The optimal Wopt is defined as:

Wopt = arg max

∣∣∣∣ W T SbW

W T SwW

∣∣∣∣ (4)

Sb =
C∑

i=1

ni(m̂i − m̂)(m̂i − m̂)T (5)
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Sw =
C∑

i=1

∑
x̂k∈X̂i

(x̂k − m̂i)(x̂k − m̂i)T (6)

where C is the total number of training classes. ni is the number of samples of
the i-th class. m̂i and m̂ are the mean of the i-th class and the mean of all PCA
samples respectively, and X̂i = {x̂k} contains all PCA samples in the i-th class.
As suggested in [1], this paper directly calculates the optimal Wopt = [w1, ...wK̂ ]
as the first K̂ eigenvectors of S−1

w Sb with the largest eigenvalues.

2.2 Matching Likelihood Ratio

During the training stage, the mean μintra and variance νintra of the intra-class
distances are calculated as:

μintra =
1

N intra

C∑
ck=1

∑
ŷi∈Ŷck

i<j∑
ŷj∈Ŷck

di,j (7)

νintra =
1

N intra

C∑
ck=1

∑
ŷi∈Ŷck

i<j∑
ŷj∈Ŷck

(di,j − μintra)2 (8)

where C is the total number of classes, di,j = [(ŷi − ŷj)T Σ−1(ŷi − ŷj)]1/2 is the
Mahalanobis distance between ŷi and ŷj , Ŷc = {ŷi : ŷi ∈ class c} contains all
the faces of class c in fisherface subspace, and N intra is the total number of the
intra-class combinations.

Similarly, the mean μinter and variance νinter of inter-class distances are de-
fined as:

μinter =
1

N inter

C∑
ck=1

∑
ŷi∈Ŷck

ck<ct≤cN∑
ŷj∈Ŷct

di,j (9)

νinter =
1

N inter

C∑
ck=1

∑
ŷi∈Ŷck

ck<ct≤cN∑
ŷj∈Ŷct

(di,j − μinter)2 (10)

where N inter is the number of inter-class combinations.
With the means and variances of intra- and inter-class distances, the matching

likelihood ratio Li,j is defined based on the distance di,j between ŷi and ŷj :

Li,j =
pintra(di,j)
pinter(di,j)

(11)
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where pintra(d) and pinter(d) are the probability density functions (pdf) of intra-
and inter-class distances respectively. pintra(d) and pinter(d) are implemented as
a slightly modified Gaussian functions:

pintra(d) =
1√

2πνintra
e

−(tintra−μintra)2

2ν (12)

pinter(d) =
1√

2πνinter
e

−(tinter−μinter)2

2ν (13)

where μintra and νintra are intra-class distance mean and variance specified
in (7) and (8) respectively, and μinter and νinter are inter-class distance mean
and variance specified in (9) and (10) respectively. tintra = max(d, μintra) and
tinter = min(d, μinter) are the modified distance terms for pintra and pinter

respectively. As illustrated in figure 2, these two terms ensure the likelihood
ratio L obeys the similarity rule. The distance d is assumed to give equal intra-
class probability pintra(d) when d < μintra, and give equal inter-class probability
pinter(d) when d > μinter .

Fig. 2. An illustration of the likelihood functions. The likelihood L is large when the
distance belongs to intra-class distance (dintra), and L decreases dramatically when the
distance approaches the inter-class distance (dinter) or the outlier distance (doutlier).

Given the distance di,j , pintra(di,j) measures how likely ŷi and ŷj belong to
the same class, whereas pinter(di,j) measures how likely these two faces belong
to different classes. Therefore, the larger the likelihood ratio defined in (11), the
more likely the faces belong to the same class. Furthermore, an ω term is also
added in the denominator of (11) to fix the likelihood ratio L:

Li,j =
pintra(di,j)

pinter(di,j) + ω
(14)
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This ω term is used to prevent the likelihood ratio Li,j of a particular patch clas-
sifier becoming too large when the corresponding distance di,j is too small, and
therefore, preventing such patch classifier dominating the final recognition result.
As illustrated in figure 2, this formulation effectively enhances the likelihood ratio
when a face patch is matching with an intra-class patch, and the ratio decreases
dramatically when the face patch is matching with an inter-class patch or an out-
lier/occluded patch with reasonable assumption that dintra < dinter < doutlier .

2.3 Class Candidates Selection

In the recognition stage, a testing face image is divided into patches in the
same way as the training images shown in figure 1. Each patch then undergoes
classification matchings with the corresponding patches of the training samples.
For a patch classifier p, the matching likelihood ratio Lp,c,k of the k-th training
sample in class c is calculated as in (14). After that, a set of class candidates
is selected based on a criteria-based majority voting. The class candidate set is
constructed in two stages: 1) First, a set of class votes V = {vc} is constructed
by a criteria-voting, where vc is the number of votes for class c. Each patch
classifier p votes for c whenever there exists a training sample k belonging to c
with a matching likelihood ratio Lp,c,k larger than a pre-defined threshold τ . 2)
The class candidate set Ĉ is then constructed as:

Ĉ = {c : vc > λ} (15)

where λ is a loose-to-fine variable threshold. In the experiment, τ is set to 0.9,
and λ is set to M/2 at first where M is the total number of patch classifiers. λ
is then iteratively decreased by halving its value at each step until Ĉ �= ∅. This
variable λ preserves more class candidates when there is more conflicts between
classifiers. On the other hand, a faster decision can be made when majority of
the classifiers are supporting to certain classes.

2.4 Multi-level Supporting

For each potential class candidate selected, the supporting is initiated by ask-
ing the support sp,c for the corresponding class c from each patch classifier p.
The support from the p-th patch classifier is simply defined as the maximum
likelihood ratio of the samples belonging to class c:

sp,c = max.Lp,c,k for all sample k ∈ class c (16)

The final support Sc for a class c is then defined as the weighted sum of sp,c:

Sc =
∑

αpsp,c (17)

where αp is the corresponding weighting of the patch classifier p. In the experi-
ment, the weightings αp of all patch classifiers are set to equal-value, and so the
supports from all classifiers are equally weighted.
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3 Experimental Results

The proposed method is evaluated using the AR database [16] with real occlusion
scenarios and different facial expressions. The database contains 134 individuals
including 76 males and 58 females. For each individual, there are several face
categories in which faces are in different facial expressions and occlusions (figures
3). In the experiments, the face categories normal (figure 3(a)(g)), smile (figure
3(b)(h)) and angry (figure 3(c)(i)) are used for training. The face categories
scream (figure 3(d)(j)), sun-glasses (figure 3(e)(k)) and scarf (figure 3(f)(l)) are
used for testing the proposed scheme with real occlusions and in different facial
expressions. In addition, the normal face category is made synthetically occluded
by random masks (figure 4). This set is used for evaluating the proposed scheme
under synthetic occlusions. All the faces for training and testing are manually
cropped, aligned by eyes, and resized to 48x64.

3.1 Synthetic Occlusions

The faces in the normal category were occluded by synthetic black masks at
random positions as shown in figure 4. The dimensions of these black boxes were
also randomly selected with approximate size of 16%, 25%, 36%, 49% and 64%
of the whole face image respectively. The occluded face images were then used
to evaluate the proposed method.

Table 1. Face recognition results with synthetic occlusion masks

Recognition Rate (%)
16% Occl. 25% Occl. 36% Occl. 49% Occl. 64% Occl.

Prop. ML-Support 100.0 100.00 98.51 90.30 72.39

Local-Vote(4x2) 100.0 98.51 84.33 67.91 53.73
ML-Vote 100.0 97.01 76.12 56.72 38.06
Fisher [15] 88.06 56.72 26.87 14.93 7.46

Table 1 shows the recognition results of the proposed multi-level supporting
scheme (Prop. ML-Support). The recognition results of fisherface (Fisher) [15],
majority voting of local patches (Local-Vote) and majority voting of patches at
all levels (ML-Vote) are also listed in the table. Note that the testing samples are
selected from one of the face categories used for training with synthetic occlusions
added. The Local-Vote approach takes the advantages under heavy occlusions
since the non-occluded patches should match exactly with the corresponding
training patches, and thus outperforms the ML-Vote approach whose results are
affected by the patches in the higher levels under heavy occlusions. The proposed
supporting scheme, on the other hand, is able to enhance the leverage of the
non-occluded patch classifiers, and incorporate those “more-confident” patches
at different levels. The results show that the proposed scheme outperforms the
fisherface and other majority voting approaches, and is able to enhance the
recognition rate up to nearly 90% and 72% under extremely heavy occlusions of
about 49% and 64%, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Face samples in the AR database which contains faces with different facial
expressions and occlusion scenarios. The first two rows show the faces of a particular
individual in different face categories. The next two rows show other individuals’ faces
which belong to the corresponding categories as the first two rows. The face categories
include: (a)(g) normal, (b)(h) smile, (c)(i) angry, (d)(j) scream, (e)(k) sun-glasses and
(f)(l) scarf.

3.2 Facial Expression Changes and Real Occlusions

Table 2 lists the recognition rates of the proposed Multi-Level supporting scheme
(Prop. ML-Support) with real occlusion scenarios (figure 3 (e)(k) sun-glasses and
(g)(l) scarf) and different facial expressions (figure 3 (d)(j) scream). Similar to
the synthetic occlusion experiments, the recognition results of fisherface (Fisher)
[15], majority voting of local patches (Local-Vote) and majority voting of patches
at all levels (ML-Vote) are also listed in the table. Furthermore, the recognition
rates presented in [8] (Sub-Recovery), [14] (Occl-SVM) and [9] (sLNMF) are also
included for comparisons. The results show that the proposed supporting scheme
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Cropped faces in category normal with synthetic occlusions of about: (a)(f)
16%, (b)(g) 25%, (c)(h) 36%, (d)(i)49% and (e)(j)64%

Table 2. Face recognition results with real occlusion

Recognition Rate (%)
Scream Sun-glasses Scarf

Prop. ML-Support 92.54 92.54 93.28

Local-Vote(4x2) 88.81 82.09 92.54
ML-Vote 90.03 85.07 89.55
Fisher [15] 67.16 59.70 32.84
Sub-Recovery [8] 87.00 84.00 93.00
Occl-SVM [14] – 57.0 57.0
sLNMF [9] 44 90 92

outperforms the traditional holistic and majority voting approaches under real
occlusions and facial expression changes.

The performance of the proposed scheme is also generally better than the
previous methods [8, 14, 9]. Unlike sLNMF [9], the proposed scheme not only
tackles recognition under partial occlusions, but also tolerates facial expression
changes. The recognition rate of the proposed scheme is much better than Jia
and Martinez’s method (Occl-SVM) [14]. Note that Jia and Martinez used the
occluded faces (sun-glasses and scarf categories) as training samples, and another
set of sun-glasses and scarf face categories, which were taken separately, is used
as testing samples. It is expected that the results of the proposed supporting
scheme will be even better if such occluded face sets are also used for the training.
The proposed scheme demonstrates slightly better results than Fidler et al.’s
recovery approach [8] for the scarf samples, and outperforms their method for the
scream and sun-glasses samples. Note that the proposed scheme does not require
complicated iterative face recovery process, and therefore, is more efficient.
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4 Conclusions

This paper introduces a novel multi-level supporting scheme for face recognition
under partial occlusions and disguise. This scheme effectively incorporates the
face discriminant information at multiple face levels with the proposed match-
ing likelihood ratio for each face patch. This likelihood ratio is designed to en-
hance the effect of well-matched patches while making the effect of bad-matched
patches negligible. This approach allows the best-matched patch classifiers to
give more contributions since they are the “most-confident” classifiers. In addi-
tion, the candidate selection scheme also allows more individual candidates to be
considered at the initial recognition stage when there exist conflicting classifiers,
and thus enhancing the final supporting results. Experimental results show the
proposed method provides a more robust and effective face recognition system,
especially when the faces are under occlusions, and it can tolerate different facial
expressions. The results also demonstrate the proposed method outperforms the
previous methods under such scenarios.
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Based on a Homography-Correspondence Pair
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Abstract. A static binocular camera system is widely used in many
computer vision applications; and being able to segment foreground,
shadow, and background is an important problem for them. In this pa-
per, we propose a homography-correspondence pair-based segmentation
framework. Existing segmentation approaches, based on homography
constraints, often suffer from occlusion problems. In our approach, we
treat a homography-correspondence pair symmetrically, to explicitly take
the occlusion relationship into account, and we regard the segmentation
problem as a multi-labeling problem for the homography-correspondence
pair. We then formulate an energy function for this problem and get the
pair-wise segmentation results by minimizing them via an α-β swap algo-
rithm. Experimental results show that accurate segmentation is obtained
in the presence of the occlusion region in each side image.

1 Introduction

In many computer vision applications, foreground segmentation is important
preprocessing for subsequent processing such as object detection, localization,
identification and tracking. For this purpose, background subtraction has been
widely used for scenes with a static camera [1]. The methods, however, often
extract not only the objects but also their shadows, which can be problematic.
Consequently, many shadow segmentation, detection, or removal techniques have
been proposed [2] [3] [4] [5] [6] [7] [8] [9], based mainly on the following two
properties of shadow color: (a) The shadow region is darker than the original
background region, (b) The color vector direction of the shadow region is similar
to that of the original background region. The property (b) is not reliable in the
case of a strong shadow because the color vector direction becomes unstable, and
furthermore, it is not true under multiple-color illumination conditions, such as
an outdoor scene with daylight. Eventually, any state of the art method using
a color based approach fails if the foreground regions contain exactly the same
color as the shadows, such as a black-haired human head. This is the essential
limitation of color-based segmentation.

On the other hand, a static binocular camera system is widely used in many
computer vision applications, such as surveillance systems, traffic monitoring sys-
tems, and total coverage camera systems in soccer stadiums. Taking advantage of
the multi-view framework, several geometric approaches have been applied to the

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part IV, LNCS 6495, pp. 702–715, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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foreground/shadow segmentation. One well known approach is foreground sepa-
ration from shadow based on disparities [10] [11]. However, it often suffers from
mis-correspondence problems and cannot be applied to scenes with no texture.

Alternatively, a homography constraint is also popular as a geometric con-
straint between multiple viewpoints [12] [13] [14] [15]. Approaches based on ho-
mography aim mainly to distinguish standing objects from ground plane objects
including shadow. Their mechanism is described as follows. Suppose that one
side image is a base image to be processed. If the color of a pixel in the base side
image is similar to that of the homography-correspondence pixel in the other side
image, the pixel in the base side image is regarded as part of the ground plane
objects, and vice versa. Although the homography approach is quite effective
despite the low computational cost, most of the existing methods, however, have
a serious disadvantage. Let us consider the following case: A pixel belongs to the
ground plane objects in the base side image and the homography-correspondence
pixel is occluded by a foreground object in the other side image. In such a case,
because the colors of the pair of pixels are different, the pixel in the base image
is incorrectly regarded as a foreground object.

In the field of stereo correspondence problems, symmetric correspondence
based approaches have been proposed to handle such occlusions appropriately
[16] [17]. These approaches explicitly take the occlusion relationship into account
by treating a stereo correspondence pair in a symmetric way.

Inspired by the symmetric approaches, we propose a symmetric segmentation
framework based on a homography constraint with occlusion handling. Our goal
is “how to segment foreground, shadow, and background”, and we regard this
segmentation problem as a homography-correspondence pair labeling problem.
Then, we solve this in an energy minimization framework together with a graph-
cut algorithm [18]. Considering the homography-correspondence symmetrically,
we cannot only segment the occluded region correctly, but also acquire additional
information about the occluded region, such as, what label is assigned to the
occluded region, shadow or background. This kind of information is valuable for
many multi-view applications.

The remainder of this paper is organized as follows. Section 2 introduces
our segmentation framework. Section 3 describes the detailed implementation of
the proposed method. Section 4 demonstrates the effectiveness of the proposed
method using experiments. Finally, Section 5 concludes our work.

2 Segmentation Based on Homography-Correspondence
Pairs

2.1 Problem Setting

In this paper, the following conditions are assumed in our segmentation problem.

– A scene is captured by a static calibrated binocular camera system.
– The background of the scene is modeled as a pixel-wise Gaussian distribu-

tion.
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Fig. 1. Homography-correspondence pair

– An object in the foreground stands on the ground plane and its shadow
appears on the ground plane.

Our goal is to segment the target region as foreground (“F”) or shadow (“S”)
or background (“B”), that is to say, to assign one of the three labels “F”, “S”,
or “B” to each pixel in both side images in a conformal manner. Note that “S”
and “B” lie on the ground plane while “F” stands on the ground plane.

2.2 Asymmetric Treatment of Homography Constraint

Let us consider the homography-correspondence pair on the ground plane in the
binocular camera. According to the homography constraint, if a pixel belongs to
the ground plane on one side image, the color of the pixel is strictly consistent
with that of the homography-correspondence pixel in the other side image under
the condition that ideally any standing object does not exist on the ground
plane. This is a very useful property to distinguish the standing objects on the
ground plane from the ground plane objects. Many object detection techniques,
for example, obstacle detection [12], shadow detection [13] [14] [15], have been
proposed based on this property.

In segmentation problems, this property is also useful when assigning a label
to each pixel. Some examples of the homography-correspondence pairs are shown
in Fig. 1. First, suppose that the left side image is a base image to be segmented.
Because v1 and v4 have similar colors between each correspondence pixel, pl

v1

and pl
v4

are labeled as “S” or “B” in the left side image. On the other hand,
because the pixel pairs v2 and v3 have different colors between each pair of
correspondence pixels, pl

v2
and pl

v3
are labeled as “F” in the left side image.

Next, supposed that the right side image is a base image to be segmented in
turn, pixel pairs pr

v1
and pr

v4
are labeled as “S” or “B”, and the pixel pairs pr

v2

and pr
v3

are labeled as “F” in the right side image in the same way. The true
labels of pr

v2
and pr

v3
are, however, not “F” but “B” and “S”.

This mislabeling often arises in cases where a pixel belongs to the ground plane
in one side image and where the corresponding pixel’s ground plane point in the
other side image is occluded by a foreground object as shown in this example.
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Table 1. The pair-wise label sets for a homography-correspondence pair

Right-side label
Left-side label F S B

F FF FS FB

S SF SS –(prohibited)
B BF –(prohibited) BB

Composite image of left side image and 

homography transformed right side image 

BB

SS

FS
FF

BF

SF

FB

( )rl

vv
ppv ,= label

v
x

Fig. 2. Labeling examples
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Fig. 3. Homography-correspondence detail

Therefore, the existing asymmetric homography-based approaches suffer from
the mislabeling due to occlusion.

2.3 Symmetric Approach Based Homography-Correspondence Pair

In our framework, the homography-correspondence is treated symmetrically to
cope with the occluded regions and to segment them correctly.

Taking the occlusion relationship into consideration, the labeling strategy is as
follows. If the pixels are labeled “S” or “B” in one side image, their homography-
correspondence pixels in the other side image are given either the same label
(not the occluded case) or “F” (the occluded case). If the pixels in one side
image are labeled “F”, their homography-correspondence pixels in the other
side image are possibly labeled “F”, “S”, or “B”, because the standing object
is not constrained by homography. From this observation, the possible pair-wise
label for the homography-correspondence pair are defined in Table 1. Note that
the pair-wise label “SB” and “BS” are prohibited because it is not possible
for a ground plane object to occlude another ground plane object. Thus our
segmentation problem is regarded as a multi-labeling problem for homography-
correspondence pair pixels, and the labeling results provide all the relationships
between homography-correspondence pair of pixels. For example, the label “FS”
means the foreground occludes the shadow in the left side image, and also means
the shadow in the right side image is occluded by the foreground in the left side
image. Example of pair-wise labeling are shown in Fig. 2.
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2.4 Problem Formulation

We formulate the pair-wise multi-labeling problem in a framework that mini-
mizes energy. Let us define the site v =

(
pl

v,pr
v

)
which represents a homography-

correspondence pair as described in the previous subsection. Then, the label set
is defined as,

L = {FF, FS, FB, SF, SS, BF, BB}, (1)

and the label assigned to a site v as xv ∈ L. Then our goal is to assign each site
v a label xv from the set L. Generally, this problem is formulated in an energy
minimization framework as follows,

E(x) = wg

∑
v∈V

g(xv) + wh

∑
(u,v)∈E

h(xu,xv) (2)

where the first and the second terms are data and smoothness terms, wg and
wh are the weights of each term, x is a configuration (label combination), V is
a set of all sites, and E is all the combinations of the neighborhood sites. This
energy function is minimized via graph-cut algorithms such as the α-expansion
or α-β swap algorithms [18].

Note that, the homography-correspondence positions are calculated using sub-
pixel order and the color of the sub-pixel position is spatially interpolated by
their 4-neighborhood pixels as shown in Fig. 3. In addition, as shown in Fig. 4,
we consider 10-neighborhood sites in a spatio-temporal 3D domain composed of
spatial 8-neighborhood, and temporal 2-neighborhood sites.

3 Implementation

3.1 Seed Generation

Given background subtraction regions as potential regions of shadow and fore-
ground, the foreground seed is provided as the union of the following two regions;
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one is the intersection of the potential region and background region projected
by homography from the other image, and the other is the region which has a
largely different color direction from the background one. Then, the shadow seed
is decided based on homography consistency and color-based shadow likelihood
(see Chapter 3.2 for detail).

3.2 Data Term

The data term is defined by the log of the likelihood as,

g (xv)=− log
(
P
(
xv|c (v)

))
=− log

(
P
(
c (v) |xv

)
P
(
xv
)

∑
li∈L P

(
c (v) |xv = li

)
P
(
xv = li

)), (3)

where P () is probability and c (v) is a six dimensional color vector at site v
composed of a pair of RGB vectors in each image as where P () is probability
and c (v) is a six dimensional color vector at site v composed of a pair of RGB
vectors in each image as c (v) = [c

(
pl

v

)
, c (pr

v)]T , and c (p) is color vector at
pixel p. Then the pair-wise color observation model P

(
c (v) |xv

)
is decomposed

into
∏

i P
(
c
(
pi

v

) |xi
v

)
, where xi

v is the one side label and i (i = l, r) is the
camera identifier.

Foreground model. The foreground color is approximated by a pixel-wise
GMM which is trained by k-means clustering from foreground seed pixels, and
the foreground observation model is expressed as,

P
(
c
(
pi

v

) |xi
v = F

)
= N (

ck∗
f ,

∑k∗

f

)
(4)

k∗ = arg min
k

((
c(pi

v) − ck
f

)T ∑k
f

−1 (
c(pi

v) − ck
f

))
, (5)

where ck
f and

∑k
f are a mean vector and a covariance matrix of the kth cluster,

and N is the Gaussian distribution.

Shadow-Background model. First, a linear color transformation matrix from
the background color to the shadow color is estimated from the shadow seed
colors and their modeled background colors. This matrix is modeled as following
a finite-dimensional linear model [19],

cs (p) = Ac̃bg (p) , (6)

where cs is a color vector of a shadow seed, c̃bg is an extended color vector of a
modeled background, c̃bg = [cbg

T , 1], and A is a 3 by 4 shadow transformation
matrix. Then, the color transformation matrix A is obtained by minimizing the
following objective function S,

e (p) = Ac̃bg (p) − cs (p) (7)

S =
∑
p∈Ps

e (p)T
(∑

bg (p)
)−1

e (p) , (8)
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where e and
∑

bg are the color transformation error vector and covariance matrix
of the modeled background color, and Ps is a set of shadow seed pixels.

Next we define the vector cr which is the nearest color to an input color c on
the line segment between the modeled background color cbg and the estimated
shadow color ĉs = Ac̃bg in RGB color space as shown in Fig. 5. Then, the vector
cr is expressed as

cr(pi
v) = t̂ĉs

(
pi

v

)
+
(
1 − t̂

)
cbg

(
pi

v

)
(9)

t=

(̂
cs(pi

v)−cbg(pi
v)
)
T
(
c(pi

v) − cbg(pi
v)
)

‖ ĉs(pi
v) − cbg(pi

v) ‖ (10)

t̂=min{1, max{t, 0}}, (11)

Finally the background and shadow observation models are introduced based on
the interpolation on the line segment as,

P

(
c
(
pi

v

)|xi
v =S

)
= t̂N (

cr(pi
v), Σr

′)
(12)

P

(
c
(
pi

v

)|xi
v =B

)
=
(
1 − t̂

)N (
cr(pi

v), Σr

′)
(13)

Σ
′
r(p

i
v) = Σr(pi

v) + Σe(pi
v), (14)

where
∑

r and
∑

e are covariance matrices of the reference color cr and color
transformation error e.

3.3 Smoothness Term

The smoothness term considering intensity value normalization is defined as,

h(xv,xu)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
−κdl

e (xv,xu)
)

Left side label is different

exp
(
−κdr

e (xv,xu)
)

Right side label is different

exp
(
−κ
√

dl
e(xv,xu)dr

e(xv,xu)
)

Both side labels are different

0 Otherwise

,

(15)
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where di
e is an edge intensity criteria given by,

di
e (xv,xu)=

‖c(pi
v) − c(pi

u)‖2

‖c(pi
v) + c(pi

u)‖2 + ε
, (16)

where κ and ε are coefficients for this term.

4 Experiments
4.1 Data Set and Parameters

We carried out experiments using sequences of people walking outdoors.
Table 2 shows the details of the data set. Every sequence contains some men
or women with strong shadows. A total of 3 images were provided for graph-cut
segmentation in a block. Note that in some figures in this section, the results
of the experimental images are trimmed around the segmentation target region
because page space is limited.

In these experiments, the data terms were spatially smoothed in response to
the magnitude of the edge pixels. Because the pixel color is quite variable, and
it is unstable near the edge, the reliability of the data terms is very low for
such pixels. The segmentation process was done iteratively, and there were 2
iterations. The parameters of the proposed method were experimentally set at
wg = 3.0, wh = 0.3, κ = 4.0, and ε = 10−7. Initially the prior of each label is
set as follows: P (FB) = P (BF ) = P (SS) = 0.16, P (FS) = P (SF ) = P (FF ) =
0.14, P (BB) = 0.1. In addition, the distribution number of GMM was set at 6
for SeqA and at 10 for SeqB and SeqC. We adopted the α-β swap algorithm [18]
to minimize our energy function Eq. (2).

Table 2. Data set for experiments

Sequence set Image size Image number Frame rate
SeqA 640×480 32 30 fps
SeqB 620×280 12 9 fps
SeqC 620×280 24 9 fps

4.2 Benchmark

We compared the segmentation performance of the following three approaches,

– Color: the color-based method and its implementation is as follows. First we
generate the foreground seed and shadow seed based on the shadow color prop-
erties [5] [7]. Then we label each pixel in one side image as “F”, “S”, or “B”.

– Color + Homography (asymmetric): the method integrating color and ho-
mography, and its implementation, follows. The seed generation process is the
same as the proposed method, and the energy of the color similarities between
the homography-correspondence pixels are integrated into a data term as ho-
mography data term. Then we label each pixel in the same way as the color-
based method.

– Color + Homography (symmetric): the proposed method.
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Note that while the Color + Homography (symmetric) is a binocular-based sym-
metric framework, Color and Color + Homography (asymmetric) are not, so they
are implemented as a “multi-labeling problem for a pixel” in each side of the image.

4.3 Results

First, the multi-labeling results of the proposed method for each data set are
shown in Fig. 6, Fig. 7 and Fig. 8. In each result, the labeling results are good
even for the occlusions.

Second, the performance comparison results for the ground truth which is
created manually are shown in Fig. 9. In this figure, we can see that Color
tends to fail at the pixels whose colors are quite similar to the shadow color. In
situations where there is a black school bag(Fig. 9(a)) or a black-haired human
head(Fig. 9(b)), this region is initially mislabeled shadow seed. Furthermore, it
is a problem of the color-based approach that the pixels whose colors are similar
to the shadow cannot be identified in the foreground GMM model, because such
pixels are poorly labeled as a foreground seed, so the foreground data terms of
such pixels are very low, and as a result, these are mislabeled as shadows. This
is inevitable for the color-based approach.

On the other hand, for the results of the Color + Homography (asymmet-
ric) and Color + Homography (symmetric) approaches, such pixels are correctly
labeled as foreground. This is because such pixels are initially labeled as fore-
ground seeds by the homography constraints, and the foreground GMM model
includes such color information, and foreground data terms are high. As for the
results of Color + Homography (asymmetric), however, we can see the occlusion
problem as described in Section 2. In contrast, Color + Homography (symmetric)
segments them correctly.

The quantitative performance comparisons are shown in Table 3. The perfor-
mance of each method is evaluated by F-measure, which is defined as,

F =
2PR

P + R
, (17)

where F is F-measure, and P and R are precision and recall.
In the tables, we see that the Color + Homography (symmetric) approach

totally outperforms the other methods. For the SeqA, there is little difference
between the Color + Homography (asymmetric) and the Color + Homography
(symmetric) approaches. This is because the color data and homography data
terms are well balanced in this sequence.

Table 3. Quantitative evaluation results

SeqA SeqB SeqC
Method f s f s f s

Color 0.890 0.863 0.825 0.747 0.817 0.776
Color + Homography (asymmetric) 0.938 0.923 0.904 0.824 0.874 0.824
Color + Homography (symmetric) 0.940 0.900 0.919 0.858 0.899 0.864

f: foreground, s: shadow
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Fig. 10. Extracted foreground and a whole shadow including occluded shadow for SeqA

4.4 Discussions

Effective use of extracted shadow. By making effective use of extracted
shadow, our approach can obtain consistent labeling as well as information as to
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whether the occluded region belongs to the shadow or background. This means that
we can get additional scene information. For example, because a whole shadow
silhouette including the occluded shadow, can be seen as another projection from
the viewpoint of a light source, we can say that one more different-view of the
whole silhouette of the target foreground objects is extracted as shown in Fig. 10.
This is quite valuable for many computer vision applications, especially silhouette
based applications, like gait recognition, gesture recognition, 3D reconstruction by
shape from silhouettes and so on. As for gait recognition, it is reported in [20] that
the different views of silhouettes improve recognition, and more, shadow-based
gait recognition scheme is proposed in [21].

In addition, homography-based object localization techniques have been pro-
posed [15], where the position of the object is localized by estimating the inter-
section point of the object region and the shadow region. Hence, if the occluded
shadow region is also extracted by the proposed method, the object localization
accuracy is improved.

Extension to more complex scene or moving platform. Although the
assumption that the shadow appears on the ground plane may seem to be a heavy
constraint, our method can be extended to more complex scenes by modeling
scenes as piecewise facets and by calibrating the homography for each facet.

Furthermore, our method can be applied to a mobile platform such as a vehicle
binocular video system, and an intelligent robot with a combination of state of
the art dynamic background modeling, ego-motion, and image stabilizing tech-
niques. For example, we can acquire a background model for each frame of the
image sequence by using dynamic background modeling, and we can calibrate
the geometric relationship between the binocular camera system and the target
plane by using ego-motion and image stabilizing techniques.

5 Conclusions

In this paper, we propose a homography-correspondence pair based segmentation
framework. We treat homography-correspondence pairs symmetrically, and for-
mulate the segmentation problem as a multi-labeling problem for a homography-
correspondence pair to explicitly take the occlusion relationship into account.
Then we obtain the segmentation result by minimizing the energy function via
the α-β swap algorithm. In our experiments, it turns out that the segmenta-
tion results of the proposed method outperform the existing color-based and
asymmetric homography-based methods.

Acknowledgement. This work was supported by Grant-in-Aid for Scientific
Research(S) 21220003.
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