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Preface

The 2011 edition of the Passive and Active Measurement Conference was the
12th of a series of successful events. Since 2000, the Passive and Active Measure-
ment (PAM) conference has provided a forum for presenting innovative, early
work in Internet measurement. The event focuses on new research, measurement
tools, large network data sets and analysis techniques. The conference’s goal is
to provide a forum for current work in its early stages. This year’s conference
was held at the Georgia Institute of Technology in Atlanta, Georgia.

PAM 2011 attracted 56 submissions. Each paper was reviewed by at least
four members of the Technical Program Committee. After review, competitive
papers were discussed online to reach consensus. The reviewing process led to
the acceptance of 24 papers. The papers were arranged into seven sessions cov-
ering passive measurement, wireless models, bandwidth, automated bots, route
avoidance, interdomain protocols, timing, and diagnosis.

We would like to thank the members of the Technical Program Committee
for their thorough and timely reviews and for shepherding accepted papers as
needed.

March 2010 Neil Spring
George Riley
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Table of Contents XI

Non-cooperative Diagnosis of Submarine Cable Faults . . . . . . . . . . . . . . . . 224
Edmond W.W. Chan, Xiapu Luo, Waiting W.T. Fok,
Weichao Li, and Rocky K.C. Chang

Measuring and Characterizing End-to-End Route Dynamics in the
Presence of Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
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Operating a Network Link at 100%

Changhyun Lee1, DK Lee1, Yung Yi2, and Sue Moon1

1 Department of Computer Science, KAIST, South Korea
2 Department of Electrical Engineering, KAIST, South Korea

Abstract. Internet speed at the edge is increasing fast with the spread of fiber-
based broadband technology. The appearance of bandwidth-consuming applica-
tions, such as peer-to-peer file sharing and video streaming, has made traffic
growth a serious concern like never before. Network operators fear congestion
at their links and try to keep them underutilized while no concrete report exists
about performance degradation at highly utilized links until today. In this paper,
we reveal the degree of performance degradation at a 100% utilized link using
the packet-level traces collected at our campus network link. The link has been
fully utilized during the peak hours for more than three years. We have found
that per-flow loss rate at our border router is surprisingly low, but 30 ∼ 50 msec
delay is added. The increase in delay results in overall RTT increase and degrades
user satisfaction for domestic web flows. Comparison of two busy traces shows
that the same 100% utilization can result in different amount of performance loss
according to the traffic conditions. This paper stands as a good reference to the
network administrators facing future congestion in their networks.

1 Introduction

Video-driven emerging services, such as YouTube, IPTV, and other streaming media,
are driving traffic growth in the Internet today. Explosive market expansion of smart
phones is also adding much strain not only on the cellular network infrastructure but
increasingly on the IP backbone networks. Such growth represents insatiable demand
for bandwidth and some forecast IP traffic to grow four-fold from 2009 to 2014 [1].
Network service providers provision their networks and plan for future capacity based
on such forecasts, but they cannot always succeed in avoiding occasional hot spots in
their networks. However, traffic patterns in a network are usually confidential and few
reports on hot spots are available to general public. Beheshti et al. report that one of
the links in Level 3 Communications’ operational backbone network was once utilized
up to 96% [5]. A trans-Pacific link in Japan was fully utilized until 20061. Choi et al.
have reported on a link on the Sprint backbone operating above 80% and likely causing
a few moments of congestion [8].

Korea Advanced Institute of Science and Technology connects its internal network
to the Internet via multiple 1 Gbps links. One of them is to SK Broadband, one of the
top three ISPs in Korea, and its link is the most utilized of all. The link to SK Broad-
band has experienced persistent congestion in the past few years. The measurement on

1 The packet traces at Samplepoint-B from 2003/04 to 2004/10 and from 2005/09 to 2006/06 in
the MAWI working group traffic archive at http://mawi.wide.ad.jp/mawi show full utilization.

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 1–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 C. Lee et al.

our campus network tells us that the link has experienced 100% utilization during the
peak hours for more than three years! To the best of our knowledge, our work is the
first to investigate a 100% utilized link. Even at 100% utilization the link has no rate
limiting or filtering turned on. However, the operational cost of a 1 Gbps dedicated link
is typically in the order of thousands of US dollars a month and a capacity upgrade is
not always easy. Also the empirical evidence demonstrates that persistent congestion,
although itself pathological, does not always incur pathological performance–we still
get by daily web chores over the congested link!

In this paper we report on the persistent congestion in our network and analyze its
impact on end-to-end performance. The questions we raise are: (i) how much perfor-
mance degradation does the fully-utilized link bring?; (ii) how badly does it affect the
end-to-end performance?; and (iii) how tolerable is the degraded performance? Based
on the passive measurements on our campus network link we present quantitative an-
swers to the above three questions. Per-flow loss rate at our border router is surprisingly
low, mostly under 0.1% even at 100% utilization, but 30 ∼ 50 ms delay is added. The
increase in delay results in overall RTT increase and degrades user satisfaction for do-
mestic web flows. Flows destined to countries outside China, Japan, and Korea suffer
less for both web surfing and bulk file transfer, but they account for less than 5% of total
traffic. Comparison of two busy traces shows that the same 100% utilization can result
in different performance degradation according to the traffic conditions.

The remainder of this paper is structured as follows. Section 2 describes the mea-
surement setup and Section 3 the traffic mix. In Section 4 we quantify the performance
degradation in terms of loss and delay. In Section 5 we study the impact of increased
delay and loss on the throughtput of web flows and bulk transfers. We present related
work in Section 6 and conclude with future work in Section 7.

2 When and Where Do We See 100% Utilization?

Our campus network is connected to SK Broadband ISP with a 1 Gbps link, over which
most daily traffic passes through to reach hosts outside KAIST. Figure 1 illustrates
the campus network topology and the two packet capturing points, Core and Border.
We have installed four Endace GIGEMONs equipped with DAG 4.3GE network mon-
itoring cards [2] to capture packet-level traces to and from our campus network; each
GIGEMON’s clock is synchronized to the GPS signal.

Fig. 1. Network topology on campus
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The main observation, key to this work, is that the outgoing 1 Gbps link between the
campus and the commercial ISP has been fully utilized during the peak hours for more
than three years. The link utilization plotted by Multi Router Traffic Grapher (MRTG)
on one day of July from 2007 to 2010 are in Figure 2. The solid lines and the colored
region represent the utilizations of the uplink and the downlink, respectively. We see
that the uplink lines stay at 100% most of the time. To the best of our knowledge, such
long-lasting persistent congestion has never been reported in the literature.

(a) 2007 (b) 2008

(c) 2009 (d) 2010

Fig. 2. Link utilization of one day in July from 2007 to 2010; solid line is for uplink and colored
region is for downlink. The time on x-axis is local time.

We have collected packet headers for one hour during the 100% utilized period from
2pm on March 24th (trace-full1) and September 8th in 2010 (trace-full2). We have also
collected a one-hour long packet trace from 6am on August 31st in 2010 (trace-dawn)
for comparison. As we see in Figure 2 the link utilization drops from 100% to around
60% during the few hours in the early morning. Trace-dawn has 65.6% of utilization
and the number of flows is only half of those from full utilization. We summarize the
trace-related details in Table 1.

Table 1. Details of packet traces

Trace name Time of collection Duration Utilization # of flows

trace-full1 2010/03/24 14:00 1 hour 100.0% 9,387,474
trace-full2 2010/09/08 14:00 1 hour 100.0% 9,687,043
trace-dawn 2010/08/31 06:00 1 hour 65.6% 4,391,860

The capturing point Core has generated two traces for each direction, and the point
Border does the same; we have four packet traces in total for each collection period.
In the following sections, we use different pairs of the four traces to analyze different
performance metrics. For example, we exploit uplink traces from Core and Border to
calculate the single-hop queueing delay and the single-hop packet loss rate. The uplink
and downlink traces from Core are used to calculate flows’ round trip times (RTTs).
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We monitored only one out of three core routers on campus, and thus only a part of the
packets collected at Border are from Core. We note that, although incomplete, about
30% of traffic at Border comes from Core, and this is a significantly high sampling rate
sufficient to represent the overall performance at Border.

3 Traffic Mix

We first examine the traffic composition by the protocol in the collected traces. As
shown in Figures 3(a) and (b), TCP traffic dominates when the 1 Gbps link is busy. The
average percentages of TCP and UDP in trace-full1 are 83.9% and 15.7%, respectively.
The portion of UDP increases to 27.7% in trace-full2 and 33.7% in trace-dawn. Al-
though TCP is still larger in volume than UDP, the percentage of UDP is much larger
than 2.0 ∼ 8.5% reported by previous work [7] [11]. We leave the detailed breakdown
of UDP traffic as our future work. The dominance of TCP traffic indicates that most
flows are responsive to congestion occurring in their paths.

(a) trace-full1 (b) trace-full2 (c) trace-dawn

Fig. 3. Protocol breakdown of the collected traces

In order to examine user-level performance later, we now group TCP packets into
flows. Figure 4(a) shows the cumulative volume of flows. Flows larger than 100 KBytes
take up 95.3% of the total volume in trace-full1, 95.8% in trace-full2 and 97.2% in
trace-dawn. We call those flows elephant flows and those smaller than 100 KBytes mice
flows. In Figure 4(b) we plot the total volume in trace-full1 contributed by elephant and
mice flows in one second intervals and confirm that mice flows are evenly distributed
over time. The other two traces exhibit the same pattern and we omit the graphs from
them.

(a) Volume CDF versus flow size (b) Timeseries of elephant and mice flows

Fig. 4. Traffic volume by the flow size
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4 Impact of Congestion on Packet Loss and Delay

In this section we explore the degree of degradation in single-hop and end-to-end perfor-
mance brought on during the full utilization hours in comparison to the low utilization
period. We begin with the analysis on loss and delay. In Section 3 we have observed
that TCP flows, more specifically those larger than 100 KBytes, consume most of band-
width. We thus focus on the delay and loss of elephant TCP flows in the remainder of
this paper.

4.1 Packet Loss

We examine the single-hop loss rate of the elephant TCP flows at our congested link.
From the flows appearing both at Core and Border, we pick elephant TCP flows with
SYN and FIN packets within the collection period. Existence of SYN packets improves
the accuracy of RTT estimation, as we use the three-way handshake for our RTT es-
timation. For those flows we use IP and TCP headers of each packet collected at the
capturing points Core and Border and detect loss, if any, through the border router as
in [13].

(a) Single-hop loss rate (b) Estimated global loss rate

Fig. 5. Single-hop loss rate and estimated global loss rate (volume-weighted CDF)

Figure 5(a) shows the cumulative distribution of loss rates weighted by the flow’s
size: the cumulative distribution function on the y-axis represents the proportion in the
total traffic volume as in Figure 4. Throughout this paper, we use this weighted CDF
for most of the analysis so that we can capture the performance of elephant flows.

Because no loss is observed in trace-dawn, we do not show the loss rates in
Figure 5(a). The maximum loss rate of flows reaches 5.77% for trace-full1 and 5.71%
for trace-full2. Flows taking up 53.1% of the total TCP traffic have experienced no
loss during the collection period in trace-full1, whereas a much lower ratio of 13.8%
in trace-full2. The performance degradation even at the same 100% utilization varies.
Trace-full1 and trace-full2 differ mostly in the region between no loss and 1% loss.
In the former 3.6% of traffic has loss rate greater than 0.1%, while in the latter the
percentage rises to 39.5%. Apparently flows in trace-full2 suffer higher loss. Here the
utilization level alone is the sole indicator of performance degradation. In the future, we
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plan to identify the main cause for such performance difference between the two fully
utilized traces. Yet still 99.3% of trace-full1 and 95.4% of trace-full2 experience a loss
rate less than 0.2%.

The full loss rate a flow experiences end-to-end is equal to or higher than what we
measure at the border router. The loss rate in Figure 5(a) is the lower bound. It is not
straightforward to measure the end-to-end loss rate for a TCP flow without direct access
to both the source and the destination. Consider the following example. Let us consider
a bundle of packets in flight en route to the destination. The first packet in the bundle
is dropped at a hop and the second packet at a later hop. The sender may retransmit the
entire bundle based on the detection of the first packet loss without the knowledge about
the second packet loss. By monitoring the entire bundle being retransmitted at the hop
of the first loss, one may not be able to tell if the second packet was dropped or not.

For us to examine the end-to-end loss performance we analyze the retransmission
rate seen at the capturing point Core. A retransmission rate is calculated based on the
number of duplicate TCP sequence numbers. There could be loss between the source
and the border router, and the retransmission rate we observe is equal to or lower than
what the source sees. However we expect the loss in the campus local area network to be
extremely small and refer to the retransmission rate at the border router as end-to-end.
We plot the retransmission rates for the three traces in Figure 5(b). We use logscale in
the x-axis and cannot plot the case of 0% retransmitted packets. In case of trace-dawn
28.9% of traffic has no retransmission. In case of trace-full1 and trace-full2, 18.3% and
3.8% of traffic has no retransmission, respectively. As in the case of single-hop loss,
trace-full2 has worse retransmission rates than trace-full1.

We count those flows that experience no loss at our border router, but have retrans-
mitted packets. They account for 34.9% in trace-full1 and 9.4% in trace-full2 of total
TCP traffic. For them the bottleneck exists at some other points in the network and our
link is not their bottleneck. That is, even at 100% utilization our link is not always the
bottleneck for all the flows.

Here we have shown the loss rates of only TCP flows, and we note that UDP flows in
our traces can have higher loss rates than elephant TCP flows since the TCP congestion
control algorithm reduces loss rates by throttling packet sending rates.

4.2 Delay

We now study delay, where we aim at examining the impact of the local delay added
by our fully utilized link on the RTT of the whole path. To calculate the single-hop
delay, we subtract the timestamp of each packet at the capturing point Core from the
timestamp of the same packet captured at Border. We calculate the single-hop delay
for each packet in the flows from each of the three traces and plot the distributions in
Figure 6(a). Trace-dawn has almost no queueing delay at our border router. Note that
the median queueing delay of trace-full1 and trace-full2 is 38.3 msec and 44.6 msec,
respectively, and the delay variation is strong as most delays oscillate from 20 msec to
60 msec. Such high queueing delay badly affects user experience, which we will show
in the next section.

To infer RTT of each flow from bi-directional packet traces collected in the middle
of path, we adopt techniques by Jaiswal et al. [10]. Their tool keeps track of the TCP
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(a) Single-hop delay for each packet (b) Round trip time (volume-weighted CDF)

Fig. 6. Single-hop delay and round trip time

congestion window and gives RTT samples for each ack and data packet pair.
Figure 6(b) shows the average per-flow RTT distribution weighted by the flow size.
We note that the large queueing delay at the router adds significant delay to RTT for
both trace-full1 and trace-full2.

5 Impact of Congestion on Application Performance

We have so far investigated the impact of the network congestion measured on our
campus on the performance degradation in terms of per-flow end-to-end delays and
packet losses. We now turn our attention to an application-specific view and examine
the impact of the fully-utilized link on the user-perceived performance.

5.1 Web Flows

In this subsection, we consider web flows and examine the variation in their RTTs
caused by the 100% utilized link. As port-based classification of web traffic is known
to be fairly accurate [12], we pick the flows whose TCP source port number is 80 and
assume all the resulting flows are web flows. We then divide those flows into three
geographic regional cases, domestic, China and Japan, and other countries. Each case
includes the flows that have destination addresses located in the region. Our mapping
of an IP address to a country is based on MaxMind’s GeoIP [3].

In Figure 7, we plot RTT distributions of web flows for different network conditions.
For all three regional cases, we observe that trace-full1 and trace-full2 have larger RTTs
than trace-dawn. In section 4, we have observed that the median of the border router’s
single-hop delay at the border router is 38.3 msec in trace-full1 (44.6 msec in trace-
full2) when its link is fully utilized, and our observations in Figure 7 conform to such
queuing delay increase.

In the domestic case, 92.2% of web flows experience RTTs less than 50 msec in the
dawn, while only 36.2% (9.8% in trace-full2) have delays less than 50 msec during
the fully utilized period. We observe similar trend in the case of China and Japan, but
the delay increase becomes less severe for the case of other countries. Most flows have
RTTs larger than 100 msec regardless of the network condition.
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(a) Domestic (b) China and Japan (c) Others

Fig. 7. RTT of domestic and foreign web flows for each trace (volume-weighted CDF)

Khirman et al., have studied the effect of HTTP response time on users’ cancelation
decision of HTTP requests. They have reported that any additional improvement of
response time in the 50 ∼ 500 msec range does not make much difference in user
experience as the cancelation rate remains almost the same in that range; they have also
found that additional delay improvement below 50 msec brings better user experience.
According to these findings, our measurement shows that users in trace-dawn are more
satisfied than those in the fully utilized traces when they connect to domestic Internet
hosts. On the other hand, user experience for foreign flows stays similar for all the three
traces because most RTTs fall between 50 msec and 500 msec regardless of the link
utilization level.

5.2 Bulk Transfer Flows

We now examine the performance change of bulk transfer flows under full utilization.
Bulk transfer flows may deliver high-definition pictures, videos, executables, etc. Dif-
ferent from the case of web flows for where we analyze the degradation in RTTs, we
examine per-flow throughput that is a primary performance metric for the download
completion time. We first identify bulk transfer flows as the flows larger than 1 MB
from each trace and classify them into three geographic regional cases used in the web
flow analysis. We summarize the results in Figure 8.

In the domestic case, 85.0% of bulk transfer flows have throughputs larger than
1 MByte/sec in trace-dawn. When the network is fully utilized, the performance de-
grades greatly, and only 36.6% (9.6% in trace-full2) of total volume have throughput
larger than 1 MByte/sec in Figure 8(a). In Figure 8(c), the previous observation that

(a) Domestic (b) China and Japan (c) Others

Fig. 8. Throughput of domestic and foreign bulk transfers for each trace (volume-weighted CDF)
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trace-dawn has better throughput than the others disappears. We conjecture that our
fully-loaded link has minor effect on the throughput of the overseas bulk transfers.
There are other possible causes that limit a TCP flow’s throughput (e.g, sender/receiver
window, network congestion on other side) [16], and we plan to have the flows
categorized according to each throughput-limiting factor in the future.

We are aware that comparing RTTs and throughputs from different traces may not be
fair since source and destination hosts of flows can differ in each trace. We expect that
the effect of the variation of hosts on campus should not be too serious because most
hosts on campus are Windows-based and have the same 100 Mbps wired connection to
the Internet.

6 Related Work

A few references exist that report on heavily utilized links in operational networks
[5,6,8]. Link performance of varying utilization up to 100% has been studied in context
of finding proper buffer size at routers. Most studies, however, have relied on simula-
tion and testbed experiment results [4] [9] [14] [15]. Such experiments have limitations
that the network scale and the generated traffic condition cannot be as same as the op-
erational network. In our work, we report measurement results of 100% utilization at a
real world network link with collected packet-level traces, so more detailed and accurate
analysis are possible.

7 Conclusions

In this paper, we have revealed the degree of performance degradation at a 100% uti-
lized link using the packet-level traces; Our link has been fully utilized during the peak
hours for more than three years, and this paper is the first report on such persistent con-
gestion. We have observed that 100% utilization at 1 Gbps link can make more than half
of TCP volume in the link suffer from packet loss, but the loss rate is not as high as ex-
pected; 95% of total TCP volume have single-hop loss rate less than 0.2%. The median
single-hop queueing delay has also increased to about 40 msec when the link is busy.
Comparing trace-full1 and trace-full2, we confirm that even the same 100% utilization
can have quite different amount of performance degradation according to traffic condi-
tions. We plan to explore the main cause of this difference in the future. On the other
hand, fully utilized link significantly worsens user satisfaction with increased RTT for
domestic web flows while foreign flows suffer less. Bulk file transfers also experience
severe throughput degradation. This paper stands as a good reference to the network
administrators facing future congestion in their networks.

We have two future research directions from the measurement results in this paper.
First, we plan to apply the small buffer schemes [4] [9] [14] to our network link to see
whether it still works on a 100% utilized link in the real world. Second, we plan to
develop a method to estimate bandwidth demand in a congested link. When network
operators want to upgrade the capacity of their links, predicting the exact potential
bandwidth of the current traffic is important to make an informed decision.
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Abstract. We investigate prefix activity on peering links between a
regional Internet aggregation point and two tier-1 ISPs by analyzing a
24 hour packet trace from our regional ISP. Our data shows that a small
number of prefixes carry the bulk of the packets, which corroborates
previous work. However, unlike previous work, which focused on traffic
from backbone routers, we look at edge traffic. In addition, we look at
prefix activity at fine timescales, in the order of minutes, instead of just
the aggregate view, which allows us to better understand the dynamics of
prefix behavior. We define two metrics to capture the dynamic behavior
of prefixes: the duty cycle captures a prefix’s activity, while the mean
rank difference captures how busy a prefix is. This allows us to estimate
not only how much traffic a prefix carries, but also how that traffic is
distributed throughout the day. We expect that our work will inform new
route caching strategies (to alleviate the strain from an ever expanding
global routing table) and evaluation of the performance of new routing
architectures such as virtual aggregation and map-n-encap.

1 Introduction

According to a recent IAB report [1], Internet routing, specifically the Forward-
ing Information Base (FIB), faces scalability issues due to the ever expanding
size of the global routing table. This size increase is fueled, among others, by the
injection of prefixes into the routing table due to multihoming, as well as the
need for traffic engineering. Large FIBs affect lookup speed as well as the price of
routers, which now become more expensive due to the need for increased mem-
ory. Moreover, this increase threatens to push existing routers over their current
limits, pushing ISPs into forced upgrades.

Several approaches have been suggested to overcome the routing scalability
problem [2, 3]. Many of these approaches call for routers to route packets while
storing less than the full FIB. This impacts the way the packets are routed to
their destination in the following way: the packets that are destined to prefixes
stored in the reduced FIB on the router can be delivered to the next hop di-
rectly as before. However, packets that are destined for prefixes not stored in
the reduced FIB are routed via a default route. Such packets incur a perfor-
mance penalty, which can be in the form of path stretch, loss etc. There is thus
a tradeoff between the number of prefixes stored on the router and the number
of packets that can be delivered directly to their destinations.

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 11–20, 2011.
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With a reduced FIB size, it is important to carefully choose the prefixes that
are stored in the FIB. Currently, most proposals call for the most popular prefixes
(prefixes that receive the most packets) during the course of a day to be stored
in the FIB [2]. However, this is a tradeoff that favors ease of selection, as there
is no consideration for the dynamic behavior of the prefixes. Prefixes that are
popular over the entire day may not always be popular during the entire day; it
is conceivable that prefixes receive a large number of packets in only a few hours,
resulting in a high daily rank, but receive very few packets during other time
periods in the day. This opens the possibility to employ some sort of a dynamic
cache.

Optimum prefix selection for a reduced FIB cache is a hard problem, because
there are many dimensions that must be taken into account: traffic load, percent-
age of the time the prefix is active and activity patterns, and most importantly,
the interplay of prefix dynamics at any given time. We note that traditional
caching approaches such as LRU do not work due to the cache hiding problem
(described in section 3.2).

We believe that this complex problem must be addressed by first understand-
ing the data. In this paper, we use two metrics, the duty cycle and what we call
the mean rank difference to capture the prefix dynamics. The duty cycle is a
standard metric that captures a prefix’s activity. The mean rank difference is a
new metric that captures how busy a prefix is. We study packet traces captured
at a regional ISP to investigate, among others, the current assumption that dom-
inant prefixes (those with the most number of packets) are always active and
busy.

Our primary contributions in this paper are twofold. First, we study traffic at
finer timescales, in the order of minutes, rather than assume an aggregate view
of traffic as in previous work. Second, since we study traffic between a regional
ISP and its tier-1 providers, our measurement is closer to the network edge than
previous work that looked at core routers. The growing FIB size at routers near
the edge is arguably a more pressing problem than the core since the former
tend to be less powerful than routers in the core, tend to stay in service longer
and infrastructure cost is more critical to smaller operators.

2 Related Work

In [4], the authors studied traffic patterns between autonomous systems, based
on traces collected at research institutions as well as commercial networks. The
paper looks at flows with different end-point granularities (applications, end
hosts, networks, ASes etc.) and found that traffic is not distributed uniformly
on the flows; at any end point granularity, a small number of flows carry a
disproportionately high volume of traffic.

This result is corroborated by [5]. The authors study the volume of load
originating from an ingress link on a backbone router, and destined to a set of
egress links. They find that a small number of heavy hitters account for nearly
80% of all bytes.
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In [6], the authors study packet data collected at a point of presence (POP) in
a commercial Tier 1 IP backbone network. They find that a few POPs account
for a large portion of the traffic entering the backbone at all times. They also
find the existence of a few very high-volume traffic streams (elephants) and many
low-volume traffic streams (mice). This is further corroborated by [7, 8], in which
the authors report that a majority of the traffic travels to a small fraction of
destination prefixes; the rest of the prefixes received little or no traffic. A recent
study [9] shows that 150 autonomous systems are responsible for more than 50%
of all inter-domain traffic, while the remainder of the traffic is originated across
a heavy-tailed distribution of the other 30, 000 autonomous systems.

Unlike our work, the papers cited above capture incoming traffic in the Inter-
net backbone. We measure outgoing traffic at an edge ISP and at a finer gran-
ularity than other work. Moreover, our results are based on packet (not flow)
data, which enables us to capture prefix hit ratios better for small measurement
intervals. Our results are more useful to research looking into new route caching
strategies and evaluation of new routing architectures.

3 Data Description

In this section we describe our data collection and provide descriptive statistics
from our datasets.

3.1 Data Sources and Trace Statistics

Our data was collected at two 1 Gbps links between our regional ISP and two of
its tier-1 providers. We captured a 24 hour packet trace on each of these links.
For each trace we isolated the out-bound packets, and determined their prefixes
from the routing table using a trie-based longest-prefix match algorithm. We
used a routing table obtained from our regional ISP. At the time of this study,
the routing table had 292851 entries. Table 1 shows some trace statistics. The

Table 1. Trace Statistics

Tier-1 ISP 1 Tier-1 ISP 2

Date 8/3/2010 8/3/2010
Number of outgoing
packets

2,084,398,007 2,050,990,835

Number of prefixes
hit (% of global rout-
ing table)

80,654 (28%) 66,639 (23%)

numbers in parentheses indicate the number of prefixes hit in terms of the to-
tal routing table size. At most 51% of the global routing table was hit on both
links combined during those daily traces. The trace was captured on a weekday
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(Monday), and we believe that the trace is representative of the traffic through
our regional ISP. Although we present results for only one 24 hour trace for the
sake of brevity, we note that the results are similar to another trace we captured
a few months earlier at the same regional ISP.

3.2 Traffic Distribution

Figure 1 shows the distribution of the outgoing traffic for both tier-1 ISPs mon-
itored. In this figure the X-axis plots prefixes after they have been ranked based
on total daily traffic. In other words, prefix one is the prefix that sent the most
traffic during the day, prefix two the second prefix in terms of total daily traffic,
etc. The figure shows that a large majority of traffic is destined to a very small

Fig. 1. Distribution of outgoing traffic Fig. 2. Distribution of outgoing traffic,
counting children

fraction of prefixes. This is in line with past studies [4, 5, 6, 7]. For example,
looking at the graph, we see that approximately 1850 prefixes carry 80% of all
packets at ISP 1. For ISP 2, the phenomenon is even more dramatic: approxi-
mately 250 prefixes carry 80% of all packets.

A naive design for a reduced FIB would be to store these popular prefixes,
in order to route 80% of the packets. However, this approach does not take into
account the hierarchical relationships between prefixes and therefore ignores the
cache hiding problem. This problem arises when routes are cached rather than
loading the full routing table in memory. If a less specific prefix already exists
in the cache and a packet arrives for a more specific prefix that has a different
outgoing interface than the less specific prefix, then the packet will be forwarded
on the wrong interface. This happens because the packet destined for the more
specific prefix will not result in a cache miss due to the existence of the less
specific prefix in the cache.

A simple solution to the cache hiding problem is to bring all children of a
given prefix in the cache. Figure 2 shows the same graph as before, except that
now all children of a prefix are included in the count. The number of prefixes
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and their children required to cover 80% of the traffic is approximately 8500
for ISP 1 and 5100 for ISP 2. This shows that this solution to the cache hiding
problem substantially increases the required cache without covering significantly
more traffic. While using the number of cached prefixes assumes a linear cost
for the cache and is probably an oversimplification, it does provide an intuitive
metric to estimating the cost of caching prefixes. We also note that these costs
may vary with different routers.

Another solution to the cache hiding problem is presented in [8], in which the
authors eliminate the cache hiding problem by storing only /24 prefixes in the
cache. Another scheme of prefix caching is to pull only those prefixes that have
a different interface than their parent. While this evaluation is part of our future
work, other work [10] has evaluated similar schemes for FIB aggregation. They
did not evaluate a caching strategy that employs this scheme.

4 Results

In this section we show results according to two metrics, the prefix duty cycle
and its mean rank difference. We define these metrics below. For the results
in this section we move beyond global ranking based on total daily traffic. To
capture prefix dynamics better we divide the trace into intervals of duration i,
and perform our analysis on packets within that interval. We measured prefix
dynamics at 5min and 1min intervals. We found that prefixes have similar duty
cycles and mean rank differences irrespective of the interval duration. Since the
results for both intervals are similar, for brevity we present results for the 5min
interval only.

4.1 Duty Cycle

The duty cycle metric captures a prefix’s level of activity. This metric is designed
to determine whether a prefix receives packets continuously or in bursts. Prefixes
that continuously receive packets will have a high duty cycle, while those that
receive packets in bursts will have a low duty cycle.

To calculate the duty cycle of a prefix we first subdivide the trace as described
above and then determine the number of intervals in which the prefix receives
at least one packet. If the prefix has at least one packet in a given interval then
we consider the prefix active for that interval.

Given the total number of intervals T and the number of intervals in which
the prefix was active (i.e. had at least one packet destined to it) N, the duty
cycle D is calculated as follows: D =

(
N
T

) ∗ 100.
Figures 3 and 4 show the duty cycles of all prefixes observed on the links

to ISP 1 and ISP 2. We again plot prefixes according to their global rank on
the x-axis and their duty cycle on the Y-axis. We can see from the figures that
popular prefixes tend to have very high duty cycles. This shows that the popular
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Fig. 3. Duty cycles of prefixes, ISP 1 Fig. 4. Duty cycles of prefixes, ISP 2

Fig. 5. Histogram of duty cycles of pre-
fixes, ISP 1

Fig. 6. Histogram of duty cycles of pre-
fixes, ISP 2

prefixes are always active i.e. receive packets. Unpopular prefixes have low duty
cycles.

Figure 5 and Fig. 6 show histograms of the duty cycles of all prefixes. From
the figures it is clear that the vast majority of prefixes have a duty cycle in the
range 0-10%. On the other end of the histogram, we see a significant bump in
the 90-100% range, with 9070 prefixes on ISP 1 and 2485 prefixes on the ISP 2
link have a duty cycle of exactly 100%.

Since we do not consider the number of packets a prefix receives in the duty
cycle calculation, it is possible that a prefix is busy (high duty cycle) but does
not send a significant amount of traffic overall. The pathological case is a prefix
that sends one packet per interval, which would give that prefix a duty cycle of
100% but with only a few hundred packets. We therefore counted the number of
prefixes that had duty cycles greater than 50% and also were a part of the list of
prefixes that contributed to 50% of the traffic (which we know from Figure 1).
The results for ISP 1 and 2 are shown in Tab. 2 and Tab. 3, respectively. The
numbers in parentheses indicate what percentage of the total number of prefixes
hit on the link is in each category.

As the results show, the majority of the prefixes have a duty cycle of less than
50% and are not of the top 50% based on traffic. The next big group are pre-
fixes that have a duty cycle greater than 50%, yet they are not part of the prefix
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Table 2. Prefix categorization, ISP 1

Duty cycle
>= 50%

Duty cycle
< 50%

Contributes
to 50% of
traffic

210 (0.2%) 7 (0.009%)

Does not
contribute to
50% of traffic

24188 (30%) 56249 (70%)

Table 3. Prefix categorization, ISP 2

Duty cycle
>= 50%

Duty cycle
< 50%

Contributes
to 50% of
traffic

20 (0.03%) 1 (0.002%)

Does not
contribute to
50% of traffic

10671 (16%) 55947 (84%)

group that contributes 50% of traffic. Only 7 prefixes in ISP 1 and one prefix in
ISP 2 had a duty cycle of less than 50%, yet were part of the high-traffic group.

Since most of the low ranked prefixes have low duty cycles, they show up in
the 0-10% bin in the histogram. For clarity, Figure 7 shows the duty cycles for
the top 10,000 prefixes, where we see that these prefixes tend to have high duty
cycles.

Fig. 7. Duty cycles of top 10000 prefixes,
ISP 1

Fig. 8. Histogram of duty cycles of top
10000 prefixes, ISP 1

For further clarity, Figure 8 shows the histogram of the top 10,000 prefixes. It
can be seen that approximately 4000 out of the top 10,000 prefixes have a duty
cycle in the 90-100% range, with 2264 prefixes having a duty cycle of exactly
100%. Note that Figures 7 and 8 show data for only ISP 1; data for ISP 2 is
similar, which we could not include due to space constraints.

The duty cycle will affect the performance of any reduced FIB design that
employs a caching strategy. While a complete discussion of the effect of the duty
cycle on caching is outside the scope of this paper, it is clear that the 4000
prefixes with duty cycle between 90-100% will almost never be ejected from the
cache. This is advantageous, since these prefixes also account for a significant
fraction of the daily traffic load (88%). We expect that this will allow reduced
FIB designs that employ a relatively small cache, yet still achieve high hit rates.
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4.2 Mean Rank Difference

In the figures in the previous section, each prefix observed in the trace was
ranked according to daily load. To calculate duty cycles, we split the traces into
intervals. Next, we take our traces that have been split into intervals and rank
the prefixes according to packet load in that interval, thus creating a new rank
called the interval rank. In contrast, the rank based on daily load is called the
global rank.

Our new metric, mean rank difference, is calculated as follows. First, for a
given prefix we create a time series by calculating the difference between its
global rank and each interval rank, but only for the intervals in which the prefix
receives at least one packet. The mean rank difference is the mean of the values
in the timeseries.

More formally, given the global rank G, the interval rank Ri for the ith interval
and the number of intervals during which the prefix receives at least one packet

N, the mean rank difference M of the prefix is given by M =

N∑
i=1

(G−Ri)

N .

Fig. 9. Mean Rank Differences, ISP 1 Fig. 10. Mean Rank Differences, ISP 2

Figures 9 and 10 show the calculated mean rank differences for all prefixes
observed on the links to ISP 1 and 2, respectively. By visual inspection, we define
the following classes of prefixes. We note that the boundaries we define for each
class may not hold for other studies.

Stable: Stable prefixes are prefixes having a mean rank difference between
+10, 000 and −10, 000. These prefixes maintain their rank throughout the day.
The most popular prefixes over the day fall into this category. These prefixes
therefore are not only popular over the 24 hour trace period, but also in each
interval. Also, the prefix ranked 1 stays at rank 1 in all intervals, prefix rank 2
stays at rank 2 and so on. Approximately 0.12% prefixes in ISP 1 and 0.15%
prefixes in ISP 2 fall into this category and account for 40% and 70% of the
traffic respectively.

Generally Popular: Generally popular prefixes have a negative mean rank dif-
ference, between −10, 000 and −20, 000. These prefixes, on average were ranked
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lower in many intervals compared to their global ranks. This could be because
they received very few packets during those intervals or because other prefixes
overtook them in the number of packets received. The mean rank difference can
also become negative if the prefix becomes less busy often. Approximately 5%
of the prefixes in ISP 1 and 1% in ISP 2 fall into this category and account for
approximately 55% and 29% of the traffic respectively.

Generally Unpopular: Generally unpopular prefixes have positive mean rank
differences greater than +10, 000. This implies that although these prefixes gen-
erally do not account for much traffic, there were intervals in which these prefixes
were busy enough to overtake the generally popular prefixes. Approximately 60%
of the prefixes in ISP 1 and 72% of the prefixes in ISP 2 were generally unpopular
and account for 5% and 1% of the traffic respectively.

Note that the more positive the mean rank difference becomes the more bursty
the prefix is. Lower globally ranked prefixes achieve more positive values simply
because the difference is much higher from their daily rank. The magnitude of
the difference also shows how many other prefixes they were able to “beat” when
they became active. A negative rank means the prefix tends to “fall behind” in
general, compared to its global rank.

Fig. 11. Mean Rank Difference of top
10000 prefixes, ISP 1

Fig. 12. Mean Rank Difference of top
10000 prefixes, ISP 2

Figures 11 and 12 show zoomed in versions of Figures 9 and 10. It can be seen
that the rank differences of the top 10000 prefixes are a lot more stable than the
lower ranked prefixes.

5 Conclusion and Future Work

In this paper, we investigated the dynamic behavior of prefixes at two near-edge
routers at a regional ISP. We defined two metrics, the duty cycle and the mean
rank difference to capture the prefix’s activity and their “busy-ness”.

Our results show that there are very few dominant prefixes, which carry the
bulk of the traffic during a 24 hour period. This corroborates previous work
[4, 5, 6, 7]. Going further, our results show that these prefixes are almost always
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active, with almost all the prefixes maintaining 100% activity during our obser-
vation intervals, as well as being busy. The majority of the prefixes are either not
used, or have a very low activity. We believe that these results are encouraging
in terms of developing feasible strategies employing reduced FIBs at routers. In
future work, we plan to extend the work in the following directions. Instead of
looking at just one regional ISP, we plan to look at other near-edge ISPs. We also
plan to investigate the dynamics of the prefixes at other measurement intervals,
both shorter and longer than 5min and 1min. Finally, we want to leverage our
study of prefix dynamics to design and evaluate reduced FIB designs.

We realize that our study has some limitations: we focus on one regional ISP
serving mostly academic networks; other user populations may behave differ-
ently. We look at traffic for only one day, although this is sufficient to capture
diurnal patterns. We use just two metrics to capture traffic dynamics; and we
only look at a few measurement intervals (5 and 1mins). However, while more
analysis should be done, we believe that our work captures many prevalent pat-
terns of prefix dynamics when examined at a fine scale.
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Abstract. Several important network applications cannot easily scale
to higher data rates without requiring focusing just on the large traffic
flows. Recent works have discussed algorithmic solutions that trade-off
accuracy to gain efficiency for filtering and tracking the so-called “heavy-
hitters”. However, a major limit is that flows must initially go through a
filtering process, making it impossible to track state associated with the
first few packets of the flow.

In this paper, we propose a different paradigm in tracking the large
flows which overcomes this limit. We view the problem as that of manag-
ing a small flow cache with a finely tuned replacement policy that strives
to avoid evicting the heavy-hitters. Our scheme starts from recorded traf-
fic traces and uses Genetic Algorithms to evolve a replacement policy tai-
lored for supporting seamless, stateful traffic-processing. We evaluate our
scheme in terms of missed heavy-hitters: it performs close to the optimal,
oracle-based policy, and when compared to other standard policies, it con-
sistently outperforms them, even by a factor of two in most cases.

Keywords: Network traffic measurement, scalability, tracking heavy-
hitter flows, replacement policy, genetic algorithms.

1 Introduction

Flow-based network traffic processing, that is, processing packets based on some
state information associated to the flows to which the packets belong, is a key
enabler for a variety of network services and applications. For example, this form
of stateful traffic processing is used in modern switches and routers that contain
flow tables to implement firewalls, NAT, QoS, and collect statistics.

Flow-based traffic processing faces scaling challenges in that it potentially
requires tracking and managing the state of millions of concurrent flows while
keeping up with ever increasing data rates. In a number of cases, it is not nec-
essary to track the state of each individual flow. Based on the generally known
observation that a small number of flows account for a large amount of network
traffic (e.g., see [1]), it has been suggested that scalable traffic measurement
and accounting can be done by accurately measuring only the few large flows [2].
This can be generalized to other applications where the application goals can be
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met well enough by just focusing on the so called “heavy-hitters”. For example,
a traffic shaping system may focus on rate-limiting the large flows while the
low-rate flows can utilize a small share of bandwidth at their will.

In [2], a memory-efficient structure called the Multistage filter has been intro-
duced to define a scalable and efficient algorithm for identifying heavy-hitters.
The limit of this approach is that a flow will only be accounted for once its
traffic volume has passed the filter and until this time no state can be assigned
to that flow. As this limit is intrinsic to the filtering approach, the works that
have extended the method above (e.g., [3,4]) have inherited this limit.

However, associating flow state since a flow’s first packet is critical for certain
applications. For example, classifying traffic based on application identification
(e.g., [5]) require statistics or payload data collected from the first few packets of
a flow. In addition, network security schemes implement stateful processing for
the initial packets of each flow. Further, OpenFlow switches [6] are managed by
a controller that acts upon the first packet of each flow and installs flow-specific
rules into the switch flow table. Therefore, filtering approaches are not always
applicable and other approaches must be utilized despite their higher costs.

In this paper, we treat the problem of identifying and tracking heavy-hitters
as that of finding a cache replacement policy that strives to avoid evicting the
heavy-hitters from the flow table (from now flow cache). The intuition is that,
if in the presence of a full cache and a new flow starting (causing a cache miss)
the policy only chooses to evict flows that are not heavy-hitters (or unlikely),
then the state of heavy-hitters is definitely preserved in the cache since their
first packet. Effectively, compared to filtering, we trade-off the absence of false
negatives and, partially, memory efficiency to support tracking with state the
heavy-hitters from their initial packets.

In order to find such a replacement policy we utilize Genetic Algorithms (GA).
GA explore the space of possible solutions in a search for a solution that exploits
characteristics learned from recorded traffic traces and tailor the replacement
policy to traffic patterns which could hardly be considered when manually de-
signing a policy. We compare the evolved policies with other standard replace-
ment policies. In our trace-driven evaluation, our scheme performs the best, even
by a factor of two in most cases. The results demonstrate that our approach is
promising in supporting stateful traffic processing focused on the heavy-hitters.

2 Background

Genetic Algorithms. GA are widely used in various areas of science and engi-
neering to find solutions to optimization and search problems [7]. The main idea
is to evolve a set (a population) of candidate solutions to find better replace-
ment policy. A candidate solution is encoded as a genome which is an abstract
representation (e.g., a binary string) that can be modified with standard ge-
netic operators such as mutation and crossover. Starting from a population of
randomly generated candidate solutions the evolution happens in generations. In
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each generation, some highly-scored solutions are selected to produce offspring.
The offspring are evaluated in terms of their fitness to the problem and form
a new generation. The evolution stops once a maximum number of generations
has been produced or a satisfactory fitness level has been reached.

In their recent work [8], Kaufmann et al. described the usage of GA to min-
imize data collisions in a CPU cache line by tuning the address mapping in an
application-specific way. We regard this work as orthogonal to ours in that they
optimize the selection of a cache line to avoid collisions, but maintain the original
replacement policy while we are concerned with the optimization of the cache
replacement policy within a single cache line.

Cache Replacement Policies. Least Recently Used (LRU) is a widely used
replacement policy for managing caches. However, LRU caches are susceptible
to the eviction of frequently used items during burst of new items. Many efforts
have been made to address the inability to cope with access patterns with weak
locality. For example, Segmented LRU (SLRU) [9] seeks to combine both locality
and frequency to achieve better hit ratios. An SLRU cache is divided into two
segments: a probationary segment and a protected segment. When the cache is
full and a miss occurs, the new item is added to the probationary segment and the
least recently used item of this segment is removed. If a cache hit corresponds to
an item in the probationary segment, the item is moved to the protected segment
taking the place of the least recently used item in that segment.

We proposed a minor variation of SLRU for tracking large flows called Single-
Step SLRU (S3-LRU) [10]. Compared to SLRU, S3-LRU does not order the items
within each segment by their last access, but on each cache hit it advances the
hit item of a single step toward the front of the cache (protected segment) by
swapping its position with that of the adjacent item. However, S3-LRU is only
marginally better than SLRU in certain cases as our evaluation demonstrates.

Molina [11] proposed an algorithm for evicting small flows from the flow table
using forecasts of the future flow volume based on the current volume and recent
flow growth rate. Statically partitioning the flow cache in several subsets makes
the approach efficient for identifying heavy-hitters. However, in this approach
heavy-hitters can be evicted before having a chance to significantly increase
their growth rate. For example, in our datasets we found that with this strategy
80% of the heavy-hitters witness a cache miss.

Filtering. Estan and Varghese [2] suggested a scalable traffic accounting scheme
which focuses upon the identification and monitoring of heavy-hitter flows. In
this scheme, only the packets which belong to flows identified as heavy-hitters
are recorded by the flow table. The identification algorithm takes advantage of
a memory-efficient data structure called Multistage filter. However, the limit
of this approach is that a flow will only be accounted for once its volume has
passed the identification stage, and no state in the flow table can be assigned to
this flow until that time. We consider their approach as complementary to our
scheme (also it would not be straight-forward to compare fairly).



24 M. Zadnik and M. Canini

Table 1. Mawi dataset. (1 hour, 155 Mbps link, avg/min/max active flows: 67.3K/
56.5K/250.1K) Equinix dataset. (15 min, 10 Gbps link, avg/min/max active flows:
1.7M/179K/1.8M, only 160 instances of very large flows)

Mawi Equinix
v.large large medium Total v.large large medium Total

Flows 0.23% 0.93% 9.43% 4.0M 0.00% 0.02% 0.35% 21.8M
Packets 31.97% 18.92% 20.71% 53.0M 0.36% 10.15% 17.07% 344.1M
Bytes 68.35% 17.13% 9.22% 33.5G 0.85% 24.01% 36.48% 207.7G

3 Datasets

The definition of a flow changes based on the application. One that is commonly
used identifies a flow based on the 5-tuple composed of its IP addresses, port
numbers and protocol. In our work, a flow is a unidirectional stream of packets
sharing the same 5-tuple, but our approach can be easily generalized to allow
the flow identifier to be a function of the header field values. A flow ends based
on an inactivity timeout of 60 s or based on the TCP connection tear down.

We define a heavy-hitter to be a flow that utilizes more than a certain per-
centage of a link bandwidth during its lifetime. Also, we only consider a flow
as heavy-hitter if it exceeds the threshold utilization for at least 5 s. Therefore,
we compute a flow’s link utilization as bytes

max(5,lifetime) . This excludes short-lived
flows with intensive bursts of packets that do not carry a significant amount
of traffic overall. Lowering the 5 s interval significantly increases the number
of heavy-hitters which potentially causes the GA to focus on short-lived flows
at the expenses of long-lived heavy-hitters, although the traffic volume due to
these short-lived flows is just a small fraction (e.g., with 1 s interval the number
of heavy-hitters increases by 50% while the number of additional bytes due to
heavy-hitters increases by less than 1%).

We group flows into three reference categories based on their link utilization:
very large flows (> 0.1% of the link capacity), large flows (between 0.1% and
0.01%), medium flows (between 0.01% and 0.001%). We then report how well
our approach performs for each category.

We use two traces of Internet backbone traffic: a 1-hour trace from the Mawi
archive collected at the 155 Mbps WIDE backbone link (samplepoint-F on March
20th 2008 at 14:00)1, and an anonymized, unidirectional 15-min trace from the
Caida archive collected at the 10 Gbps Equinix San Jose link (dirA on July 17th
2008 at 13:00 UTC) [12]. Table 1 summarizes the working dimensions of our
traces and shows a breakdown of the composition of the three flow categories.

4 Approach

Definitions. We regard the flow cache of size N as a list of up to N flow states
(or simply flows) F . This allows us to treat the cache management problem as
1 http://mawi.wide.ad.jp/mawi

http://mawi.wide.ad.jp/mawi
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keeping the list of flows ordered by their probability of being evicted (highest
goes last). Then, the role of a replacement policy (RP) is to reorder flow states
based on their access pattern. Each packet causes one cache access and one
execution of the RP. If the current packet causes a cache miss (i.e., a new flow
arrives) and the cache is full, the flow at the end of the list is evicted.

Formally, we can express a RP that is based solely on the access pattern as a
pair 〈s, U〉 where s is a scalar representing the zero-based position for inserting
new flow states and U is a vector (u1, u2, . . . , uN) which defines how the flows are
reordered. Specifically, when a flow F stored at position post(F ) is accessed at
time t, its new position is chosen as post+1(F ) = upost(F ), while all flows stored in
between post+1(F ) and post(F ) see their position increased by one. For example,
the LRU policy for a cache of size 4 is expressed with LRU = 〈0, (0, 0, 0, 0)〉.
Evolution of Replacement Policies. Our goal is to find a RP that has the
least number of evicted heavy-hitters or, using caching terminology, minimizes
the miss rate for heavy-hitters. We use the number of heavy-hitters that witness
a cache miss as a metric to capture the effectiveness of a RP—the objective is
to reduce this number. Finding such a RP is difficult due to a large number
of factors including flow size distribution, flow rate, and other traffic dynamics.
We propose using GA to explore the space of possible RPs to identify the most
effective. We chose GA for its ability to infer useful discriminators from traffic
characteristics and to be easily customized to accommodate changes in the prob-
lem specification, e.g., different flow definitions, different traffic subpopulations
of interest [4], etc.

The vector-based definition of a RP is a good fit to encode the candidate
solution. It supports the standard genetic operators for mutation and crossover.
Mutation modifies a particular value in the vector with given probability pmut

while crossover swaps parts of the vector between two solutions with probability
pcross. The RP evolution is performed offline using network traces. The following
pseudo-code illustrates the evolution process:

population = GenerateRandomPopulation();

Evaluate(population); best = SelectBestIndividual(population)

while (not endcondition):

newpopulation = SelectNewPopulation(population + best, fitness);

CrossoverIndividuals(newpopulation, p_cross);

MutateIndividuals(newpopulation, p_mut);

FixInviableIndividuals(newpopulation);

Evaluate(newpopulation);

best = SelectBestIndividual(newpopulation + best);

population = newpopulation;

result = best;

We start with a population of C = 5 candidates generated at random. The
population size is a trade-off between evolution progress and population di-
versity. A large population means having a long time between replacements of
generations due to lengthy evaluation of all candidate solutions. On the other
hand, a small population cannot afford preserving currently low-scored solutions
which could become good solutions. We use a relatively small population so the
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Fig. 1. An example of a RP produced by GA using the Mawi dataset. The
arrows represent where to move a flow state when it is accessed. RP = 〈18,

(0, 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 18, 18, 18, 20, 22, 22, 22)〉.

evolution process can progress faster allowing the RP to be adapted to ongoing
traffic. We will study adaptation mechanisms in future work. During each step
of evolution, 5 candidates are selected using tournament selection from a parent
population and the best individual so far. Then, crossover and, subsequently,
mutation operators are applied and the resulting offspring are evaluated with
a fitness function. The fitness function is the sum of cache misses for the flows
in the three reference groups weighted by the link utilization thresholds: 0.1%
for the first group, 0.01% for the second and 0.001% for the third2. Effectively,
the fitness function simulates the cache behavior with a candidate RP. To lower
the evolution time, we evaluate the fitness using only a small part of a traffic
trace, namely 5 min for Mawi and 1 min for Equinix. This has negligible impact
on the results because we use a small cache size which becomes full within few
seconds of simulation time. In each generation, the candidates are replaced by
the offspring and the best candidate so far is preserved (so called elitism).

Search Optimizations. Without imposing any constraint on the vector-based
definition of RP, we allow undesired candidate solutions: those that (i) do not
utilize the entire list due to unreachable positions in the update vector U , or (ii)
worsen the position of a flow despite it being accessed. Excluding these solutions
reduces the search space, which helps GA to perform better and faster. Using
simple heuristics we ensure the reachability of all positions and that any access
improves the position of a flow. In our experiments, we observe that the GA
converges to a promising solution faster if we split the run of GA into two con-
secutive phases, each with a different setup. The first phase is intended to search
through the space to quickly find various viable solutions. Therefore, mutation
changes the values in the vector to new, randomly-generated values. While ex-
perimenting with GA, we found that pmut = 0.3 works well during this phase
but close values work well too. The probability of one-point crossover is set to
pcross = 0.3 which allows to exchange information (parts of vector) between the
selected parents. If there is no significant fitness improvement in the population,
we enter the second phase which focuses on optimization. The crossover operator
is no longer utilized as the possible solutions either differ significantly (crossover
would produce a hybrid that would quickly be discarded) or are very similar. We
modify the mutation operator to increase/decrease each vector value by one with
probability pmut = 0.5. In total, we produce 50 generations and we make 10 in-
dependent runs of GA, from which we select the best solution. Figure 1 presents

2 This assigns higher importance to track true heavy-hitters.
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Fig. 2. A typical run of GA. “Min” repre-
sents the best solution.
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Fig. 3. Missed very large heavy-hitters
vs. cache size (Mawi trace).

an example of a GA-produced RP while Figure 2 shows the fitness evolution in
a typical run of GA.

Discussion. So far we have considered a flow cache as an ordered list of flow
states. In such a simplistic model, the complexity of our scheme is O(n) in
the case of a hit and O(2 · n) in the case of a miss where n is the cache size.
However, the applications we target typically already have a certain hardware
support for stateful traffic processing at wire speed. Our scheme is meant to be
implemented in hardware and integrated with the existing support for stateful
processing. A practical hardware implementation usually divides the cache into a
number of equally-sized lines which are managed independently. Each line is able
to accommodate multiple flow states and the lookup of a flow state is performed
in parallel by a set of comparators. Thus, the scheme runs with complexity O(1).
An hash value of the flow identifier is used to address a line in the cache. In such a
basic scheme called Näıve Hash Table (NHT), each line in the cache executes the
same RP. We evaluate our approach with these realistic settings. Our previous
work in [10] shows that a line size with up to 64 items can be implemented in an
FPGA (Field Programmable Gate Array). We choose to evolve RPs for a line
size of 32 items as we consider it a good trade-off between what can be easily
implemented in hardware and accuracy performance.

Finally, as our scheme operates online, the question arises how to maintain
low false negatives (cache misses for heavy-hitters) despite changing traffic con-
ditions. A plausible solution is to run our scheme in parallel with a Multistage
filter to estimate the number of flows evicted from the cache which are identified
as heavy-hitters by the filter. If this count exceeds a given threshold, we could
trigger the creation of a new RP based on recently recorded traffic traces. Due
to space limitations, we do not further discuss a complete solution and leave a
thorough study for future work.

5 Evaluation

In this section, we present the results of our evaluation with a software imple-
mentation of the flow cache which allows us to easily report on the cache misses.

We compare the performance of a genetically evolved RP (referred to as
GARP) with that of LRU, SLRU [9], S3-LRU [10] and the best possible pol-
icy, which is based on an oracle (ORC). ORC uses the knowledge about active
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Table 2. Comparison of cache misses for heavy-hitters between GARP and other RPs.
Cross-evaluation of GARP trained on different datasets. (Mawi – cache size: 8K, line
size: 32; Equinix – cache size: 128K, line size: 32)

RP Mawi Equinix
v.large large medium v.large large medium

LRU 19% 30% 10% 5% 25% 28%
SLRU 9% 19% 7% 3% 19% 18%
S3-LRU 7% 21% 11% 2% 16% 22%
GARP 3% 8% 6% 2% 9% 10%
ORC 0.3% 1% 9% 0% 0% 0%
GARP-Eq. 5% 9% 8%
GARP-Ma. 2% 11% 12%

heavy-hitters and their remaining duration to evict a flow that is not a heavy-
hitter if possible, otherwise the heavy-hitter that will end soonest. For SLRU and
S3-LRU, we select the insert position that performs the best across our datasets.
The values are 21 and 7 for SLRU and S3-LRU, respectively.

We experiment with cache size of 64K, 96K, 128K, 160K flow states for
Equinix, and 4K, 8K, 12K and 16K flow states for Mawi. We use line size of
32 states. In our experiments, the flow cache is approximately one order of mag-
nitude smaller than the number of concurrently active flows.

Table 2 presents the number of heavy-hitters that experience a cache miss,
normalized by the total number of heavy-hitters in each category obtained on
the Mawi and Equinix datasets. In the case of Equinix dataset, the cache size
is large enough to accommodate all heavy-hitters and so ORC does not cause
any cache miss. However, using smaller cache sizes quickly deteriorates the cache
misses for any real RP because of the large number of non heavy-hitters (99%)
present in the Equinix dataset.

The results show that GARP consistently outperforms LRU and in most in-
stances performs at least two times better than the other RPs which already
have an ability to cope with access patterns with weak locality. Most of the
heavy-hitters witness just one cache miss. We note that when experimenting
with larger caches (see Figure 3) the difference in performance between policies
decreases as the cache itself can store a significant share of all concurrent flows.
However, it is often prohibitively expensive to have a large cache.

We perform a cross-evaluation to assess whether a GARP produced for one
network link is applicable to another or whether the performance are unsatisfac-
tory due to GA over-fitting for a particular training dataset. Second part of Ta-
ble 2 demonstrates that the difference between two GARPs evolved on different
datasets is quite modest. The suffixes -Equinix and -Mawi indicate the dataset
the GARP was evolved on. These results indicate that our approach is promising
and might find more general applicability, e.g., with different definitions of flows
of interest [4]. Finally, to gain insight on the temporal stability of GARP, we test
the performance of RPs evolved on our datasets and applied to traffic traces col-
lected one year later than the training datasets (at the same links). We find that



Evolution of Cache Replacement Policies to Track Heavy-Hitter Flows 29

the performance does not significantly decay (on average less than 1.5% for Mawi
and 2% for Equinix). Moreover, we evolve RPs on these newer traces and we find
that, for both Mawi and Equinix, the newly obtained GARP is very similar to the
GARP produced from the corresponding older dataset: quantitatively, the differ-
ences between the RPs’ update vectors expressed as mean squared error are 0.42
for Mawi and 0.57 for Equinix.

6 Replacement Policy Extension

We now extend the RP with the ability to exploit information from the header
fields of the packet that causes a cache hit. We consider two fields: packet size
and TCP flags – chosen based on the analysis (omitted for a lack of space) of
the statistical characteristics across the flow groups of the field values in our
datasets. One intriguing approach would be to replace the update vector U with
a matrix in which each row corresponds to a particular update vector for a given
set of input field values. For example, the first row could be the update vector
corresponding to the packet size 0 and the FIN TCP flag while the second row
could be for packet size 1, etc. However, this quickly brings to the well-known
problem of search space explosion.

We avoid this problem by maintaining a single update vector, but we com-
plement the selection of the new position with a decision tree that uses the field
values to increase by one, decrease by one, or maintain the position selected by
the update vector. Based on our experiments, increases/decreases of two or more
give worse results.

We only consider TCP flags (FIN, RST to decrease) and packet sizes of these
ranges: [0 - 359] to decrease, [360 - 1000] to maintain and [1001 - max. size] to
increase the update position. We determined these values from the analysis of
the difference in the distribution of packet sizes between heavy-hitters and other
flows in our datasets.

We tried using the current flow size (packets or bytes) as another parameter
of the decision tree, and found that it does not bring further improvements. This
is not entirely unexpected because the flow state’s current position is determined
by the history of all cache accesses, therefore the information from the current
number of packets is implicitly already used.

As this extension is agnostic of the specific way in which the update vector
is determined, we can apply it to all the considered RPs. Table 3 presents the
number of cache misses normalized as before obtained on the Mawi and Equinix
datasets with a cache size of 8K and 128K flow states, respectively. Each cache
line stores 32 flow states. The extension works well only for the policies that do
not progress the flow state right to the first position in the line. The GARP still
achieves the best performance but it sees a smaller improvement than S3-LRU.
This is because the GARP itself has already been optimized to the observed
traffic patterns (e.g., network scans), and applying a decision tree provides only a
little additional information. We leave it as future work to evolve the replacement
policy together with the decision tree.
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Table 3. Comparison of cache misses for heavy-hitters between extended GARP and
other extended RPs. (Mawi – cache: 8K, line size: 32; Equi. – cache: 128K, line: 32)

Extended RP Mawi Equinix
v.large large medium v.large large medium

LRU 19% 29% 10% 5% 24% 28%
SLRU 9% 18% 7% 3% 18% 17%
S3-LRU 4% 16% 17% 0% 11% 14%
GARP 3% 7% 7% 0% 8% 9%
ORC 0.3% 1% 9% 0% 0% 0%

7 Conclusions

We proposed a paradigm shift for scalable traffic processing focused on the large
flows, regarded as the problem of managing a small flow cache. By design, our
scheme allows to identify and track the heavy-hitters since their first packets.
We demonstrated that Genetic Algorithms can evolve cache replacement policies
that obtain results close to optimal while consistently outperforming standard
policies. Finally, we believe that our approach can find more general applicability
in other network-based applications where performance critically depends upon
cache performance such as route caching.
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Abstract. Many Internet customers use network address translation (NAT) when
connecting to the Internet. To understand the extend of NAT usage and its impli-
cations, we explore NAT usage in residential broadband networks based on ob-
servations from more than 20,000 DSL lines. We present a unique approach for
detecting the presence of NAT and for estimating the number of hosts connected
behind a NAT gateway using IP TTLs and HTTP user-agent strings. Furthermore,
we study when each of the multiple hosts behind a single NAT gateway is active.
This enables us to detect simultaneous use. In addition, we evaluate the accuracy
of NAT analysis techniques when fewer information is available.

We find that more than 90 % of DSL lines use NAT gateways to connect to the
Internet and that 10 % of DSL lines have multiple hosts that are active at the same
time. Overall, up to 52 % of lines have multiple hosts. Our findings point out that
using IPs as host identifiers may introduce substantial errors and therefore should
be used with caution.

1 Introduction

Today, network address translation (NAT) is commonly used when residential users
connect their computers and laptops to the Internet. Indeed, most ISPs typically offer
WiFi-enabled NAT home gateways to their broadband customers. These NAT gateways
enable customers to easily and swiftly connect several devices to the Internet while
needing only one public IP address. The prevalence of NAT devices and the number
of terminals connected through a NAT gateway thus has implications on whether a
public IP address can be used as a unique host identifier and if it is possible to estimate
population sizes, e.g., malware infections, using IP addresses.

We, in this paper, analyze residential NAT usage based on anonymized packet-level
traces covering more than 20,000 DSL lines from a major European ISP. We exam-
ine the number of DSL lines using NAT and how many distinct devices or hosts are
connected via such NAT gateways. Furthermore, for DSL lines showing evidence of
activity by more than one host we also study if these hosts are used concurrently.

While common wisdom holds that NAT is widely used in residential networks and
that IP addresses are problematic end-host identifiers, no recent study reported num-
bers on NAT penetration or quantified the error potential in IP–to–end-host mappings.
Most previous studies on identifying NAT gateways and inferring the number of hosts
behind such gateways rely on information available in the packet headers, e. g., IPIDs,
IP TTLs, or ports. Our approach takes advantage of HTTP user-agent information in
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addition to IP TTLs. In 2002, Bellovin [2] proposed and discussed the possibility to
identify end-hosts by leveraging the fact that IPIDs are usually implemented as a sim-
ple counter. He found that this approach is limited in its applicability. Nowadays some
IP-stacks even implement random IPIDs, further reducing the applicability of this ap-
proach. Beverly [3] evaluated several techniques to perform TCP/IP fingerprinting and
found a host count inflation due to NAT by 9 % based on a one hour trace from 2004.
Phaal [10] also takes advantage of the IP TTL. Furthermore, there is work in the area
of OS fingerprinting, e. g., Miller [7].

Armitage [1] performed a measurement study in 2002 by offering Quake III servers
at well connected Internet sites and monitoring the incoming connections. He identified
NATed players by checking for non-default Quake client ports and found that 17–25 %
of the players where located behind a NAT. Xie et al. [11] track IP-to-host bindings
over time for counting hosts. However, they consider all hosts behind a NAT gateway
as a single host. Casado et al. [4] use active web content to analyze NAT usage and IP
address churn. By comparing local to public IP addresses they find that 5–10 % of IPs
contacting the monitored web services have multiple hosts over a 7 month period.

In previous work [5] we showed that many distinct IP addresses are assigned to the
same DSL line and that IP addresses cannot be used to reliably identify end hosts.
While Casado et al. [4] found relatively low IP address churn, Xie et al. [12] came to a
similar conclusion as we. In this paper we show that the situation is even worse because
multiple hosts share one of these fluctuating IP addresses using NAT.

Our analysis of NAT usage shows that roughly 90 % of the studied lines connect to
the Internet via a NAT gateway, presenting a high potential for IP ambiguity. Indeed, in
our 24 h data sets 30–52 % of the DSL lines host multiple end-hosts. When considering
shorter observation periods, 20 % of the DSL lines show activity from two or more
hosts at least once within 1 hour. Even with time-frames as short as 1 sec, 10 % of the
DSL lines show activity from multiple hosts. These results emphasize the large error
potential of techniques that rely on an IP address to uniquely identify an end-host.

The remainder of this paper is structured as follows: We describe our data sets in
Section 2 and explain our methodology in Section 3. Next, we present our results on
NAT usage and the number of hosts in Section 4 and the impact of shorter time-scales in
Section 5. We then critically discuss our findings in Section 6 and conclude in Section 7.

2 Data Sets

We base our study on multiple sets of anonymized packet-level observations of resi-
dential DSL connections collected at a large European ISP. Data anonymization and
classification is performed immediately on the secured measurement infrastructure.
Overall, the ISP has roughly 11.5 million (4%) of the 283 million worldwide broad-
band subscribers [8]. They predominantly use DSL. The monitor, using Endace moni-
toring cards, operates at the broadband access router connecting customers to the ISP’s
backbone. Our vantage point allows us to observe more than 20,000 DSL lines. The
anonymized packet-level traces are annotated with anonymized DSL line card port-
IDs. This enables us to uniquely distinguish DSL lines since IP addresses are subject to
churn and as such cannot be used to identify DSL lines [5]. While we typically do not
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Table 1. Overview of anonymized packet traces

Name Start date Duration Size

SEP08 Thu, 18 Sep 2008 24 h ≈ 4 TB
APR09 Wed, 01 Apr 2009 24 h ≈ 4 TB
AUG09a Fri, 21 Aug 2009 24 h ≈ 6 TB
AUG09b Sat, 22 Aug 2009 24 h ≈ 5 TB
MAR10 Thu, 04 Mar 2010 24 h ≈ 6 TB

experience any packet loss, there are several multi-second periods with no packets (less
than 5 minutes overall per trace) due to OS/file-system interactions. Table 1 summarizes
characteristics of the traces we used for our analysis, including the trace start, duration,
and size.

3 Methodology

To analyze NAT usage among residential customers we have to (i) identify lines that
use a NAT gateway (e. g., a home router) to connect to the Internet and (ii) differentiate
between the hosts behind the NAT gateway.

3.1 Detecting the Presence of NAT

To detect whether NAT is used on a DSL line, we utilize the fact that OSes networking
stacks use well-defined initial IP TTL values (ttlinit) in outgoing packets (e. g., Windows
uses 128, MacOS uses 64). Furthermore, we know that our monitoring point is at a well
defined hop distance (one IP-level hop) from the customers’ equipment. Since NAT
devices do routing they decrement the TTLs for each packet that passes through them.
We note that some NAT implementations might not decrement the TTL, however, per
Section 6, we do not find evidence that such gateways are used by our user population
in significant numbers.

These observations enable us to infer the presence of NAT based on the TTL values
of packets sent by customers. If the TTL is ttlinit − 1 the sending host is directly con-
nected to the Internet (as the monitoring point is one hop away from the customer). If the
TTL is ttlinit −2 then there is a routing device (i. e., a NAT gateway) in the customers’
premises.

We note that users could reconfigure their systems to use a different TTL. However,
we do not expect this to happen often. Indeed, we do find that almost all observed
TTLs are between ttlinit − 1 and ttlinit − 3. While there are some packets with TTL
values outside these ranges, they contribute less than 1.9 % of packets (1.7 % of bytes).
Moreover, approximately half of those are due to IPSEC which uses a TTL of 255 and
no other TTL has more than 0.44 % of packets. Given the low number of such packets,
we discard them for our NAT detection.

A NAT gateway can come in one of two ways. It can be a dedicated gateway (e. g.,
a home-router) or it can be a regular desktop or notebook, that has Internet connection
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Table 2. First network activity example

From Pkt Hdr From HTTP User-Agent

TTL Proto OS Family Version

63 53/DNS – – –
126 80/HTTP Win2k Firefox 2.0.1
126 80/HTTP WinXP Firefox 3.0.2
126 80/HTTP WinXP MSIE 6
126 80/HTTP WinXP Firefox 2.5.1

Table 3. Second network activity example

From Pkt Hdr From HTTP User-Agent

TTL Proto OS Family Version

63 53/DNS – – –
63 80/HTTP Linux Firefox 3.0.1
62 80/HTTP Linux Firefox 3.0.1

126 80/HTTP WinVista MSIE 8
126 80/HTTP WinVista Firefox 3.0.2

sharing activated. A dedicated NAT gateway will often directly interact with Internet
services, e. g., by serving as DNS resolver for the local network or for synchronizing its
time with NTP servers. Moreover, they generally do not surf the Web or use HTTP.

3.2 Number of Hosts Per DSL Line

We also want to count how many hosts are connected to each DSL line behind a NAT
gateway to enable us to estimate the ambiguity when using IP addresses as host iden-
tifiers. A first step towards identifying a lower bound for the number of hosts per line
is to count the number of distinct TTLs observed per line. Recall that Windows uses a
ttlinit of 128 and that MacOS X and Linux use 64 and that most of the observed TTL
values are within the ranges of 61–63, and 125–127. These ranges are far enough apart
to clearly distinguish between them at our monitoring point. Therefore, we can use ob-
served TTLs to distinguish between Windows and non-Windows OSes, yet we cannot
distinguish between distinct Windows systems. This is unfortunate, as analyzing HTTP
user-agents shows that Windows is the dominant OS in our user population.

However, we can use additional information to distinguish hosts. HTTP user-agent
strings of regular browsers (as opposed to user-agent strings used e. g., by software
update tools or media players) include information about the OS, browser versions, etc.
This can help us differentiate between hosts within the same OS family. We find that
up to 90 % of all active DSL lines have user-agent strings that contain such OS and
browser version information. In addition, we often observe several different OS and
browser combinations on a single line. We theorize, that home-users tend to keep pre-
installed (OS and browser) software, rather than installing the same software on each
of their machines.

For example, consider the summary of all network activity of one DSL line in
Table 2. We see a directly connected device (TTL 63 == ttlinit − 1) that is only using
DNS. According to our definition in Section 3.1 this device is classified as a dedicated
NAT gateway. We also observe TTLs of 126, which is consistent with a Windows OS
behind a NAT gateway. Examining the HTTP user-agent strings we see that both Win2k
and WinXP are present. Thus, we can assume that there are at least two distinct hosts
behind the NAT gateway. However, we also see that the WinXP OS uses several dif-
ferent browser families and versions. While it can happen that users use two different
browser families on a single host (e. g., MSIE and Firefox), it seems rather unlikely
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that they use different versions of the same browser family on the same host. Using
this rationale, the two different Firefox versions on WinXP indicate two distinct hosts,
yielding a total of 3 end-hosts.

Or consider the example in Table 3. Here we also see a directly connected device
(TTL 63), however there is also HTTP activity with the same TTL. We therefore clas-
sify this device as a host. We also see TTLs that are consistent with NATed Windows
and Linux systems, so we conclude that the directly connected device serves a dual
function: as NAT gateway and as regular computer. Moreover, we see one OS/browser
combination with TTL 62—another host. For TTL 126 we see only WinVista as OS but
two different browser families, which likely indicates just one host with both Firefox
and MSIE installed. Overall, we infer for this example that there are 3 active hosts.

3.3 A NAT Analysis Tool

We develop a small C program, ttlstats1, to implement our NAT analysis. For each
DSL line, the tool records whether a particular protocol was used by that line, which
TTL was used in packets of this protocol, and for HTTP which user-agents were used.
To identify protocols we use their well-known ports, which works well for the protocols
we consider [5].

For HTTP we parse the user-agent strings and extract the operating system (OS)
version and the browser version. We limit our analysis to user-agent strings from typ-
ical browsers (Firefox, Internet Explorer, Safari, and Opera), user-agents from mobile
hand-held devices (see [6]), and gaming consoles (Wii, Xbox, PlayStation). We do not
consider other user-agents (e. g., from software update clients) since those often do not
include OS information or host identifiers. To estimate a lower bound for the number of
hosts behind a NAT gateway we use two approaches:

OS only: We only count different 〈TTL,OS〉 combinations as distinct hosts.
OS + browser version: For each 〈TTL,OS〉 combination we also count the number of

different browser versions from the same browser family as distinct hosts. Fire-
fox and Internet Explorer are examples of browser families. We do not consider
different browser families as additional hosts.

In our first example above, OS only yields a host count of 2 while OS + browser version
yields a host count of 3. In our second example both counting methods yield a host
count of 3: one Linux system that is used as gateway and regular computer, one NATed
Linux system, and one computer with Windows Vista.

3.4 NAT Analysis for Different Data Set Types

Often the kind of data (anonymized packet-level information with HTTP) we use for
this NAT analysis is not available. However (anonymized) HTTP logs might be more
readily available. Yet, IP/TCP header only traces are common in the measurement com-
munity as well. Thus, we compare how well NAT analysis schemes perform when less
information is available. For this we use several reduced information data sets, and
repeat the analysis.

1 Our analysis scripts available online.
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Table 4. Overview of results. Top three rows are relative to total number of active lines, remaining
rows are relative to “Lines with active hosts” (B.2), i. e., for C.1–E.2 100 % is equivalent to B.2

Ref. Description SEP08 APR09 AUG09a AUG09b MAR10

A.1 Lines using NAT 89 % 91 % 92 % 92 % 93 %
B.1 Lines on which only dedicated NAT is active 9 % 10 % 14 % 18 % 10 %
B.2 Lines with active hosts (NATed and unNATed) 91 % 90 % 86 % 82 % 90 %
C.1 Lines with unNATed Windows 9 % 8 % 7 % 7 % 6 %
C.2 Lines with unNATed Linux/Mac 1 % 1 % 1 % 1 % 1 %
D.1 Total systems (OS only) 141 % 142 % 143 % 140 % 145 %
D.2 Total systems (OS + browser version) 155 % 162 % 179 % 172 % 185 %
E.1 Lines with > 1 host (OS only) 30 % 31 % 31 % 30 % 32 %
E.2 Lines with > 1 host (OS + browser version) 36 % 39 % 49 % 46 % 52 %

4 NAT Usage/Hosts Per DSL Line

In this section we present the results from our NAT analysis. We first discuss the preva-
lence of NAT devices at DSL lines before continuing with the number of hosts per line.
Finally, we investigate NAT detection with different data set types.

4.1 NAT Usage

Overall, we find that NAT is prevalent and that the vast majority of DSL lines use NAT
to connect hosts to the Internet. We also find that a significant number of lines connects
more than one host. Table 4 summarizes our key findings. Note that we term a device
or host active if it sent IP packets during the trace. More than 90 % of lines utilize NAT
(Table 4, row A.1). This result differs from the findings of Armitage [1] from 2002
who only found 25 % of the IPs were behind a NAT. On 9–18 % of lines (B.1) we only
observe traffic that we attribute to the NAT gateway and no traffic from regular hosts2.
We note that this traffic could also be caused by a directly connected, unused host.
However, unused hosts might still check for software or anti-virus updates using HTTP,
and would thus be counted as a host. The remaining lines (82–91 %, B.2) have active
hosts (those lines may or may not be NATed).

We next take a closer look at DSL lines with active hosts and determine how many of
these lines are using NAT. We find that only 7–10 % (C.1 and C.2) of lines with active
hosts are not NATed, i. e., there is only one host which is directly connected.

Finally, we investigate how many more hosts than lines are present: the ratio of
detected hosts to the number of lines. In rows D.1 and D.2 we show the number of
observed hosts relative to the number of lines with active hosts. For D.1 we use the
heuristic which counts every unique TTL and OS combination as a separate host (OS
only). For row D.2 we also increment the per line host count if we observe TTL-OS com-
binations with multiple versions of the same browser family (OS + browser version).
According to our definition, we will always see more hosts than lines with active hosts.

2 i. e., we observe only traffic with TTL 63 and no HTTP activity.
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Fig. 1. Fraction of DSL lines vs. number of hosts per line for SEP08 and AUG09a

However, the differences are strikingly large—up to 1.85 times as many hosts than lines
in MAR10 using the OS + browser version counting method. Independent of the esti-
mation method the number of hosts behind NAT devices, our host counts, are far larger
than the estimations by Beverly [3] from 2004, who estimated 1.09 times more hosts
than IPs. This difference might be due to 6 additional years of NAT gateway deploy-
ment, different vantage points (Internet peering/exchange point vs. broadband access),
different observation periods (1 h vs. 24 h), and/or information base (SYN trace vs. TTL
plus HTTP logs).

4.2 Number of Hosts Per Line

Given that we see so many more hosts than lines with active hosts, we next investigate
lower bounds for the number of lines with more than one host. A large fraction of such
lines implies many public IP addresses with more than one host, thus limiting the utility
of IPs as host identifiers. We see that 30–52 % of lines have more than one active host
(Table 4, rows E.1 and E.2). We note that between APR09 and AUG09a the number of
lines with more than one host increases significantly (OS+ browser version, row E.2). We
attribute this to an increase in browser heterogeneity: Following the release of MSIE 8
in late March 2009, we observe a significant share of MSIE 6, 7, and 8 in AUG09, while
only MSIE 6 and 7 have a significant share in SEP08 and APR09. Consider the example
that two hosts use a DSL-line and both have WinXP and MSIE 7. In this case we cannot
distinguish between them. However, if one is upgraded to MSIE 8 while the other is not,
then we can distinguish them.

In Figure 1 we present a more detailed look by plotting the fraction of lines with n
hosts. We only present plots for SEP08 and AUG09a, the other traces exhibit similar
behavior. We focus on the bars labeled “all” first. Note that we observe up to 7 % of
lines with more than 3 hosts. We also investigate whether this high number of lines
with multiple hosts is due to several computers (PCs or Macs) that are used via the
same line or whether mobile hand-held devices (e. g., iPhones), or game consoles (e. g.,
Wii) are responsible for this. We identify these devices by examining the HTTP user-
agent string. If we exclude mobile hand-held devices and game consoles, still 25–28 %
(OS only; 34–45 % with OS + browser version) of lines have more than one host (not
shown). Therefore, we conclude that the number of DSL lines with multiple end-hosts
is only slightly influenced by mobile devices. In [6], we investigated mobile device
usage in detail.
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4.3 NAT Analysis with Different Data Set Types

As discussed in Section 3.4, we also use reduced data sets (“http”, “no TTL”, and “no
useragent”) and compare the NAT usage estimates to those based on the full data
set available to us (“all”). Figure 1 compares the number of hosts per line for the dif-
ferent data sets. Note, without HTTP user-agent data there is no difference between
the scheme for OS only and OS + browser version. Most accuracy is lost when rely-
ing on IP TTL only (“no useragent”). Removing the IP TTL (“no TTL”) information
shows slightly better results. Compared to “all” information using HTTP logs annotated
with TTL information (but discarding all non-HTTP activity, “http”) gives a very good
estimate of NAT prevalence.

5 Impact of Shorter Time-Scales

So far we have limited our discussion to a static view of NAT behavior, i. e., we analyzed
whether a DSL line is NATed and how many hosts are connected via this line. If a line
has more than one host, IP addresses cannot be reliably used as host identifiers when
considering time-scales of one day (our trace duration). However, it is possible that
even though a line has two hosts, the first host is only active in the morning while the
second host is only active in the evening. Thus, although the line has two hosts, they are
not used at the same time. This can reduce the ambiguity of using IP addresses as host
identifiers over smaller time intervals (e. g., by utilizing timeouts).

5.1 Analysis Approach

To answer if multiple devices are used at the same time, we compute the minimal inter
activity time (mIAT) between any two HTTP requests issued by two different host on
the same DSL line. If we observe an mIAT of T seconds then we know that two or more
distinct hosts were active at this line within T seconds. As we need timestamps for this
analysis we cannot use the output of the ttlstats tool (Section 3.3) as it aggregates
all activity of a line for scalability reasons. Therefore, we revert to using HTTP request
logs, which corresponds to the “http” data type and use the OS only counting method.
These logs include timestamps for every request. We rely on Bro [9] for HTTP parsing.

5.2 Results

In Figure 2 we plot the fraction of lines with two or more hosts for increasing mIATs.
This plot enables us to study how close in time two (or more) hosts are active via the
same line. This allows us to estimate by how much ambiguity can be reduced by using
a timeout, i. e., by using the IP-to-host mapping only for a limited time.

Even with intervals as low as 1 sec we observe more than 10 % of DSL lines with
multiple hosts (12 % for MAR10). When considering mIATs of 1 h, around 20 % of
lines have activity from multiple hosts (18 % for SEP08 up to 22 % for MAR10). We
thus conclude that if a line has multiple hosts they are likely active at the same time
or within a short time period. We see the lines starting to level off at around 10 h. This
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Fig. 2. Fraction of DSL lines with more than one active host within a particular time interval
using OS only

is likely due to the time interval that users actively use their computers, as opposed to
using them around the clock. We confirm these results by applying the static analysis
(see Section 3.2 and Section 4.2) for slices of the traces, i. e., we subdivide each trace
into time bins of 1, 5, 10, 30, and 60 minutes and repeat the analysis for each bin.

6 Discussion

This study aims at estimating the number of active end-host per DSL line. Our method-
ology will likely underestimate the number of end hosts per lines, since we cannot dis-
tinguish between hosts with identical OS and browser software. This actually renders
our approach problematic for networks with homogeneous OS/software installations
(e. g., businesses). However, our approach already reveals a significant number of hosts
per DSL line. Furthermore, the DSL lines in our data sets are for residential customers.
The ISP also offers different but comparable DSL plans for small businesses. Pars-
ing additional application protocol headers might reveal additional hosts that were not
counted, e. g., P2P peer IDs, however only a small fraction of DSL lines use P2P [5].

On the other hand there are factors that can bias our results towards overestimating
the number of hosts per DSL line: Our method counts a computer that has two OSes
installed (e. g., in a dual-boot or virtualized setup) as two different hosts. Yet, it is ques-
tionable if it is wrong to count them as separate hosts. Likewise, if a user updates his
browser during our observation period we also count the same machine twice. How-
ever, these artifacts decrease as we consider shorter time-frames since it requires time
to reboot another OS and/or update a browser. Therefore, the results for small mIATs
are reasonable lower bounds for the number of hosts per line.

We further note that some NAT gateway might not decrement the TTL. If such a NAT
gateway is used, we would classify the DSL as unNATed. However, if multiple hosts
are connected through such a gateway, we are able to detect them. We have not found
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any evidence that a significant number of such non-decrementing gateways is used by
our user population.

7 Conclusion

We presented a novel approach for detecting DSL lines that use network address trans-
lation (NAT) to connect to the Internet. Our approach is able to infer the presence of
a NAT device and to provide lower bounds for the number of hosts connected behind
the NAT gateway. For lines with multiple hosts connected we also studied the temporal
behavior to see whether multiple hosts are active at the same time. Our approach re-
lies on IP TTL information and HTTP user-agent strings and we analyze the accuracy
when using less information (e. g., TTLs only, or user-agent strings only) for the NAT
analysis. We find that most accuracy is lost when user-agent strings are omitted.

We find that 10 % of DSL lines have more than one host active at the same time and
that 20 % of lines have multiple hosts that are active within one hour of each other. Over-
all 30–52 % of lines have multiple hosts. These results underscore the perils involved
when using IPs as host identifiers.

In future work we plan to investigate NAT behavior over a number of consecutive
days and to augment our analysis with IPIDs and ephemeral ports. Combining IP ad-
dress churn [5] and NAT behavior, we further plan to assess the effect and potential
error of utilizing IPs as host identifiers.
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Abstract. In this paper we make use of a large set of measurements
from a production wireless network in rural New Zealand to analyze the
performance of 28 path loss prediction models, published over the course
of 60 years. We propose five metrics to determine the performance of
each model. We show that the state of the art, even for the “simple”
case of rural environments, is surprisingly ill-equipped to make accurate
predictions. After combining the best elements of the best models and
hand-tuning their parameters, we are unable to achieve an accuracy of
better than 12 dB root mean squared error (RMSE)—four orders of
magnitude away from ground truth.

1 Introduction

Modeling the propagation of a wireless transmitter in a complex environment
has entertained scientists for at least sixty years. The result is a staggering num-
ber of proposals of just about every shape, size, and approach imaginable. The
basis for this level of interest is solid—predicting the attenuation of transmit-
ted signals with high precision has very important applications in the design,
trouble-shooting, and simulation of wireless systems.

Despite the large quantity of work done, we recognize an important shortcom-
ing: there have been relatively few comparative evaluations of path loss predic-
tion models using a sufficiently representative dataset as a basis for evaluation.
Those studies that do exist make comparisons between a small number of similar
models. And, where there has been substantial work of serious rigor done, for in-
stance in the VHF bands where solid work in the 1960’s produced well validated
results for analog television (TV) propagation, it is not clear how well these
models work for making predictions outside their intended coverage (i.e., fre-
quency, distance, environment type, etc.). The result is that wireless researchers
are left without proper guidance in picking among dozens of propagation models
from which it is not clear which is best or what the penalty is of using a model
outside of its intended coverage. This work provides a first step towards solving
that problem.

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 42–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we describe, implement, and analyze 28 propagation models
spanning 60 years of publications using five metrics to gauge performance. Al-
though many of these models are massively different from one another, they all
make use of the same basic variables on which to base their predictions: posi-
tion (including height and orientation) of the transmitter and receiver, carrier
frequency, and digital elevation model and land cover classification along the
main line-of-sight (LOS) transmit path. These models are a mix of approaches:
empirical, (purely) analytical, stochastic or some combination thereof. In the
present study, we are not including ray-tracing models (e.g., [11]) or partition
based models (e.g., [5]) which require substantial knowledge of the environment
which is seldom available at all, and rarely at the precision required to make
useful predictions. We are also not considering active-measurement models (e.g.,
[8]) which make use of in-situ measurements to correct their predictions. We
expect to analyze these more complex models in later work.

To perform our evaluation we use a large set of active measurements collected
from a production wireless network on the northern isle of New Zealand. This
network spans approximately 8300 square kilometers, containing more than 368
transceivers (with 1328 possible links, 1246 of which are under measurement),
and provides Internet connectivity to more than 740 clients. The network is built
using commercial off-the-shelf equipment (COTSE) and operates in the popular
bands of unlicensed spectrum at 2.4 and 5.8 GHz. All of the measurements we
use will be released to the community to enable comparative evaluations.

2 Related Work

The vast majority of existing work analyzing the efficacy of path loss models
has been carried out by those authors who are proposing their own improved
algorithm. In such cases, the authors collect data in an environment of inter-
est and show that their model is better able to describe this data than one
or two competing models. Unfortunately, this data is rarely published to the
community, which makes comparative evaluations impossible. One noteworthy
exception is the work of the COST-231 group in the early 1990’s, which pub-
lished a benchmark dataset (900 MHz measurements taken in European cities)
[3]. This effort produced a number of well-validated models which are tuned for
900 MHz transmitters in urban environments. We consider all of the proposed
COST-231 models in our analysis here. The COST-231 data, being collected in
an urban environment, is inappropriate for our present work, but we expect to
use it in future work.

There are several studies similar to our own that compare a number of models
with respect to some data. In [4], the authors compare five models with respect to
data collected in rural and suburban environments with a mobile receiver at 910
MHz. They discuss the abilities of each model, but abstain from picking a winner.
In [1], the authors compare three popular models to measurements collected at
3.5 GHz. The authors highlight the best of the three, which turns out to be the
ECC-33 model proposed in [6]. In [9], Sharma et al. do a very similar analysis,
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but instead focus on measurements made in India at 900 and 1800 MHz. In
contrast to [1], they find that the SUI and COST-231 models perform best. We
believe our work here is the first to do an in-depth and rigorous analysis of a
large number of diverse propagation models using a large and realistic dataset
from a production network. And, it is the first such comparative study looking
at results for the widely used 2.4 and 5.8 GHz bands.

3 Measurement

Fig. 1. The largest of three disconnected sections
of the network (80x100km). Link width indicates
strength. Back-haul nodes (mainly 5.8 GHz) are
dark/black and CPEs are light/white.

The network used in our
study is a large commercial
network that provides Inter-
net access to primarily ru-
ral segments of the Waikato
region in New Zealand. Ev-
ery two minutes, each device
on the network transmits a
measurement frame at each
supported bit-rate. For this
study we only use measure-
ments from the lowest bit-
rate for each protocol (1 Mbps
for 802.11b/g and 6 Mbps
for 802.11a). Meanwhile, each
device uses a monitor mode
interface to log these mea-
surement frames.

The back-haul network is
composed of long distance
802.11a links operating at
5.8 GHz1. These are com-
monly point-to-point links
that use carefully steered
highly directional antennas.
The local access network is
composed of predominantly
802.11b/g links which provide
connectivity to client premise
equipment (CPEs). Often, an
802.11g access point with an
omnidirectional or sector an-
tenna will provide access to a dozen or more CPE devices which have directional
(patch panel) antennas pointing back to the access point. With few exceptions,
each node in the network is an embedded computer running the Linux operating
system which allows the use if standard open-source tools to perform measure-
ment and monitoring. All nodes under measurement use an Atheros-brand radio
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and the MadWifi driver is used to collect frames in monitor mode and record
received signal strengths. In [2], we showed that this hardware is able to measure
signal strength at a sufficient accuracy for path loss modeling.

After collection, the data requires fairly substantial scrubbing. We discard
any frame that arrives with its checksum in error or those from a source that
produces less than 100 packets. The remaining packets are used as an oracle to
analyze the performance of the propagation models. For this particular analysis
we use one week of data collected between July 25th, 2010 and August 2nd,
2010. Because detailed documentation about each node simply did not exist
prior to our study, some assumptions were made for analysis. The locations of
nodes for which there is no specific GPS reading are either hand-coded, or in
the case of some CPEs, geo-coded using a street address. Antenna orientations
for directional antennas are assumed to be ideal—pointing in the exact bearing
of their mate. All nodes are assumed to be positioned 3m off the ground, which
is roughly correct for the vast majority of nodes. While these assumptions are
not perfect, and are clearly a source of error, we feel that they are as accurate
as is feasible for a network of this size and complexity. Certainly, any errors in
antenna heights, locations, or orientations are on the same scale as those errors
would be for anyone using one of the propagation models we analyze to make
predictions about their own network.

In the end, our scrubbed data for a single week constitutes 19,235,611 measure-
ments taken on 1328 links (1262 802.11b/g links at 2.4 GHz and 464 802.11a links
at 5.8 GHz) from 368 participating nodes. Of these nodes, the vast majority are
clients and hence many of the antennas are of the patch panel variety (70%). Of
the remaining 30%, 21% are highly-directional point-to-point parabolic dishes,
4.5% are omnidirectional, and 4.5% are sector antennas. We believe this dataset
is of sufficient scope and diversity to justify the claim that it is representative of a
large class of wireless networks which have similar characteristics and operating
frequency.

4 Models

Table 1 provides details of the models evaluated in this study. We subdivide
models into five categories: Foundational models, which are purely theoretical
and (often) form the core of more advanced models, Basic models, which are
the majority and typically include empirical corrections from measurements and
often require special tuning parameters for the environment type, Terrain mod-
els, which expand on the basic models by including terrain features into their
calculations, and Supplementary models, which are not able to stand on their
own but instead are used to make corrections to existing models.

At a high level, a model’s task is to predict the value of Lt + Ls in this
log-domain equation:

1 Atypically liberal power regulations in New Zealand and Australia around 5.8 GHz
allow for much longer links than can be seen in most other places in the world.
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Table 1. Models Studied along with their categorization, citation, and year of (initial)
publication

Name Short-Name Category Year
Friis’ Freespace friis Foundational 1946

Egli egli Basic 1957
Hata-Okumura hata Basic 1968
Edwards-Durkin edwards Basic/Terrain 1969

Alsebrook-Parsons alsebrook Basic/Terrain 1977
Blomquist-Ladell blomquist Basic/Terrain 1977

Longley-Rice Irregular Terrain Model (ITM) itm Terrain 1982
Walfish-Bertoni bertoni Basic 1988

Flat-Edge flatedge Basic 1991
COST-Hata/Cost-231 cost231 Basic 1993

Walfish-Ikegami walfish Basic 1993
Two-Ray (Ground Reflection) two.ray Foundational 1994

Hata-Davidson davidson Basic 1997
Erceg-Greenstein erceg Basic 1998

Directional Gain Reduction Factor (GRF) grf Supplementary 1999
Rural Hata rural.hata Basic 2000
ITU Terrain itu Terrain 2001

Stanford University Interium (SUI) sui Basic 2001
Green-Obaidat green Basic 2002
ITU-R/CCIR itur Basic 2002

ECC-33 ecc33 Basic 2003
Riback-Medbo fc Supplementary 2006

ITU-R 452 itur452 Terrain 2007
IMT-2000 imt2000 Basic 2007
deSouza desouza Basic 2008

Effective Directivity Antenna Model (EDAM) edam Supplementary 2009
Herring Air-to-Ground herring.atg Basic 2010

Herring Ground-to-Ground herring.gtg Basic 2010

Pr = Pt − (Lt + Ls + Lf (t)) (1)

Where Pr and Pt are the received and transmitted power and the total path loss
is the sum of Lt, the trivial free-space path loss, Ls, the loss due to shadowing/
slow-fading from large unmoving obstacles like mountains and buildings, and
Lf(t), the small-scale/fast fading due to destructive interference from multipath
effects and small scatterers (which varies with time t). Models cannot, without
perfect knowledge of the environment, be expected to predict the quantity Lf(t).
In most applications, this additional error is computed “stochastically” using
a probability distribution. For the protocols used in our study, however, this
quantity tends to be small due to the averaging effect of wide-band modulation
schemes [10].

It is worth noting that among the models we study, only very few were de-
signed with the exactly sort of network we are studying in mind. Indeed, some
are very specific about the type of environment in which they are to be used.
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Overall Performance of Models
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Fig. 2. Overall model performance as described by (residual) root mean squared error
(RMSE) and spread-corrected RMSE (SC-RMSE). Spread corrected error is adjusted
(reduced) by the expected measurement spread on a given link.

In this work, we pay little attention to these coverage requirements because we
observe that they are not largely followed in the literature (the Longley-Rice
Irregular Terrain model, in particular, is frequently used well outside of its in-
tended coverage). In this study both appropriate and “inappropriate” models
are given an equal chance at making predictions for our network. We have no
starting bias about which should perform best.

5 Results

To obtain results, we ask each model to offer a prediction of median path loss for
each link in our network. The model produces an estimate of the loss L̂ which we
combine with known values to calculate the predicted received signal strength
Pr:

Pr = Pt + Gt(θ) + Gr(φ) − L̂ (2)

Where Gt is the antenna gain of the transmitter in the azimuthal direction
(θ) of the receiver and Gr is the antenna gain of the receiver in the azimuthal
direction (φ) of the transmitter. These gains are drawn from measured antenna
patterns (one for each type of antenna)[2]. The transmit power (Pt) is set to
18 dBm for all nodes, which is the maximum transmit power of the Atheros
radios our nodes use. For a given link, we calculate the median received signal
strength value across all measurements (P̄r). Then, the prediction error, ε, is the
difference between the prediction and the median measured value: ε = P̄r − Pr.

Some models come with tunable parameters of varying esotericism. For these
models, we try a range of reasonable parameter values without bias towards
which we expect to be best. To conserve space, in the following discussion and
figures we show results from only the 27 best performing models/configurations.

Figure 2 provides the overall performance of each algorithm in terms of
its RMSE. To account for underlying variance in the measurements, we use
a “spread corrected” RMSE (ε̂) where the link’s measured standard deviation
(σ̄) is subtracted from the prediction error: ε̂ = |ε| − σ̄. This corrected RMSE
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Model Performance for All Links
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Fig. 3. Competitive and Individual Performance. Competetive performance is the per-
centage of links a given model is the best predictor for. Individual performance is the
percentage of links a model makes a prediction within one (or two) standard deviations
of the correct value.

gives an idea of error in excess of expected variance due to temporal variation
(i.e., fast-fading and intrinsic/diurnal periodicity)2. As we can see, the best per-
forming models achieve an RMSE on the order of 15 dB. The best models are
the Alsebrook model (with its terrain roughness parameter set to 200m) at just
under 18 dB RMSE (16.7 dB when corrected), and the Flat-Edge model (with
10 “buildings” presumed) at 16.5 dB RMSE (15.3 dB when corrected)3.

Figure 3 provides two domain-oriented metrics that describe models’ com-
petitive and individual “goodness”. The competitive metric is the percentage of
links that a given model produces the best prediction for (and hence sums to
100). We can see that no given model dominates the competition—the honor
of best prediction is spread fairly evenly among half a dozen models that each
achieve the best prediction between 10 and 15 percent of the time. The other
metric is an individualistic definition of success—the percentage of links a given
model’s prediction is within the expected spread (measurement standard devi-
ation). The best performing models are “correct” 10% of the time using this
metric. If we lower the bar to making a prediction within two standard devi-
ations of the measured median value, the best performing models (Egli, Friis
(with α = 2), Flat-Edge, ITM, ITU Terrain, and Two-Ray) achieve between 10
and 15% correct.

Figure 4 plots our next metric: ability to order links. In some applications
it may be sufficient for a propagation model to order two or more links by
strength. In this scenario, we imagine that the predicted path loss isn’t itself
expected to be absolutely correct, but instead simply a relational performance
compared to other links in the same network. In this figure, we plot Spearman’s
non-parametric rank order coefficient ρ for each model. For this metric, a value of
2 Although we are careful to correct for this measurement variation, it is on the whole

rather small: 1.31 dB median standard deviation and 1.67 dB at the third quantile.
3 Some models perform substantially better when we consider only the fraction of

cases that are in their intended coverage. The ITM, for instance, has a competitive
spread-corrected RMSE of 17.3 dB when only error-free predictions are considered.
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Rank Correlation for All Links and All Models
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Fig. 4. Ability to order links, computed using Spearman’s ρ. A value of 0 indicates
a random ordering (relative to the oracle order) and a value of 1 would be a perfect
ordering.

Mean Error/Skewness for Each Model
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Fig. 5. Prediction Error Skewness, computed as the sum of error divided by the number
of total links. Models that make an equal amount of over and under predictions acheive
a value near zero. Models that make a majority of under or over predictions have a
large negative or positive value respectively.

zero indicates no correlation (random order) and a value of 1.0 or -1.0 indicates
perfect positive or negative correlation. We can see that with few exceptions,
all models score in the neighborhood of 0.25 to 0.30 indicating a small positive
correlation. The best model (hatam.egli) performs around 0.45 and the worst
model (itu.terrain) acheives less than 0.20 correlation.

Our final metric is skewness, which is shown in figure 5. For many applica-
tions an over or under estimate of path loss can come with a high price. This
metric plots the sum of all residual error for each model. A model that makes
an equal amount of over and under estimations should produce a skewness of
0. A model that systematically over-predicts path loss (i.e., under-predicts the
received signal strength at sites) will have a large positive value and a model
that systematically under-predicts path loss will have a large negative value.

We see that even in the mean case, the best models, with their best parameter
settings cannot achieve an error of less than 15 dB—five orders of magnitude
from the correct value! Even our more permissive performance metrics show the
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models are unable to widely succeed at seemingly simple tasks of rank-ordering
links, or making predictions within two standard deviations of the measured
value. This raises the question: is there some common source of error that is
affecting all models?

To answer this question, we analyzed the covariance (correlation) between
“best prediction error” (the error of the best prediction from all models) and
various possible factors. We found no significant correlation between carrier fre-
quency (and therefore neither modulation scheme nor protocol) or antenna ge-
ometry. We did however find that link distance is significantly correlated with
error for a large number of models. This makes sense: many models were de-
signed with particular lengths of links in mind and we are using them outside
of their coverage in this study. It also raises the question: can a hybrid model
which uses one of two or more other models at different link lengths produce a
model which is better performing than any single model alone?

To answer this question, we implemented two hybrid models. The first uses
the Hata model (for medium cities) for links under 500m (where it is well
performing) and the Flat-edge model (with 10 “buildings”) for longer links
(hatam.flatedge10). This model performs marginally better than all other mod-
els, producing a corrected RMSE of 14.3 dB. Very slightly better performance
is achieved by combining the Hata model with the Egli Model (14.2 dB RMSE).

It is interesting to note that in our analysis the best performing models would
not typically be chosen for this environment. The two best performing individual
models are Flat-Edge and Alsebrook. The Flat-Edge model attempts to calculate
the path loss after the signal diffracts over some number of interfering “screens”.
Here, we pick 10 as the number of screens and obtain decent results, better in
fact than the models which take the true terrain profile into account when they
make predictions. The Alsebrook model is a simple plane-earth (two-ray) model
with some corrections from measurements and an optional static correction for
terrain “roughness”. In the version that performs best for our measurements,
we arbitrarily set the terrain “roughness” to 200m and the “street width” and
average “building height” to the suggested default values of 5 and 20m. Perhaps
comporting with Occam’s Razor, the simplest models (Friis, Egli, Two-Ray) are
often as well performing and in many cases better performing than the more
complex models with respect to our metrics.

6 Conclusion

Overall our results show that even with the best models, hand-tuned for our
environment, we can expect an RMSE in excess of 12 dB (4 orders of magnitude
from correct and a far cry from the 3 dB repeated-measures variation which
we treat as the gold standard [7])—a result that precludes use in all but the
least demanding applications. More forgiving performance metrics show similarly
bleak results: no model is able to obtain better than 25% of predictions within
two standard deviations of the true value and the best models are typically 20%
wrong when it comes to placing links in an order relative to all other links.
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We have also shown that picking a “good looking” model at random from the
literature and applying it to a new (or even seemingly congruent) domain is a
precarious task which can produce substantially wrong predictions. Given this,
we believe attempts to model path loss in even more complex environments, such
as indoors, are premature. Instead, we advocate a renewed focus on rigorous
cross validation using publicly available data sets. We also caution users of these
models to be wary of their predictions and to do in-situ validation whenever
possible. In future work we expect to explore more complex models for path loss
prediction such as those that make use of active correction from measurements
(e.g., [8]).
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Abstract. Users expect mobile Internet access via 3G technologies to
be comparable to wired access in terms of throughput and latency. HSPA
achieves this for throughput, whereas delay is significantly higher.

In this paper we measure the overall latency introduced by HSUPA
and accurately dissect it into contributions of USB-modem (UE), base
station (NodeB) and network controller (RNC). We achieve this by com-
bining traces recorded at each interface along the data-path of a public
operational UMTS network. The actively generated sample traffic covers
real-time applications.

Results show the delay to be strongly dependent on the packet size,
with random components depending on synchronization issues. We pro-
vide models for latency of single network entities as well as accumulated
delay. These findings allow to identify optimum settings in terms of low
latency, both for application and network parameters.

1 Introduction

In the past few years the number of mobile devices accessing Internet via 3rd

Generation (3G) technologies experienced a significant grow. Novel gadgets such
as smartphones and netbooks captured a new market, providing Internet access
paired with high mobility. Their users expect a connection quality comparable to
wired Internet access in terms of throughput and delay. In contrast to their wired
counterpart mobile broadband connections have to deal with varying channel
conditions depending on a manifold of parameters such as user position, mobility
and total number of users in a cell. This causes challenges in hiding limitations
of the access technology from the end-application and user.

The state of the art (2010) radio access technologies are High Speed Down-
link Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA),
specified in the 3rd Generation Partnership Project (3GPP). These technologies
allow for throughput comparable to wired access, whereas the access delay is still
significantly higher. Although improved compared to former releases [1], HSUPA
introduces high latency. The reason being the wireless channel as communication
resource shared among unsynchronized users and the master-slave hierarchy in
3G networks, meaning the Base Station (NodeB) has to grant access to the User
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Equipment (UE) before data can be send. Hence, realtime applications claiming
very low latency encounter difficulties when connected via 3G networks. Such
realtime applications may be online games or machine-to-machine communica-
tion [2]. Application designers can exploit knowledge about delay characteristics
of mobile wireless connections to improve user experience. On the other hand,
networks can be optimized in terms of latency, given precise information about
its origin. Having reached wired data rates, reduction of delay is one of the main
goals for next generation wireless networks.

This work investigates the overall uplink One-Way Delay (OWD), Δ, intro-
duced by an operational HSUPA network and analyses the exact delay con-
tribution of every single network component. We confine ourselves to measure
OWD because the up and downlink are strongly asymmetric, hence, Round-Trip
Time (RTT) measurements have weak significance. Furthermore, we assess la-
tency of the 3G network only, since it constitutes the first hop in terms of packet
communication. Data packets have been traced and accurately timestamped on
each communication link, from the destination PC throughout the UMTS Ter-
restrial Radio Access Network (UTRAN) up to the Internet gateway. Since each
packet is subject to changes in protocols and size, we particularly monitor Inter-
net Protocol (IP) packets, for which the mobile network is transparent. We pay
special attention to the packet size, which has strong influence on the OWD.

To the best of our knowledge this is the first work reporting accurate OWD
measurements from a HSUPA network, providing latency statistics of each net-
work component. In [3] the authors performed end-to-end measurements of OWD
with high timestamping accuracy, however, without intermediate measurement
points. They give results for three different network operators. Their traffic gen-
eration method differs significantly from ours. The authors of [4] and [5] provide
OWD measurements with low timestamping accuracy from multiple network
operators. They use ICMPping messages as measured data traffic, in order to
highlight the importance of the right data generation method, which has to be
RCF 2330 [6] compliant in their opinion. RTT measurements from a HSUPA
testbed are presented in [7], where data was generated by the ping program.
In [8] large-scale RTT measurements from a Wide-band Code Division Multiple
Access (WCDMA) network are presented, resulting from captured Transmission
Control Protocol (TCP) acknowledgement packets. Parts of the presented mea-
surement setup have been reused for this work. Furthermore, possible reasons for
variability in delay in wireless networks are highlighted, which do mostly apply
for HSUPA as well, e.g. radio channel conditions or scheduling and channel as-
signment. Finally, the authors of [9] investigate OWD introduced by the Serving
GPRS Support Node (SGSN), a 3G network component. Although reusing parts
of their measurement setup, results cannot be compared because 3GPP specifies
that from Rel. 7 on data traffic bypasses the SGSN.

This paper is structured as follows. Section 2 explains the measurement setup
in detail. The results are presented in Section 3 and analyzed in detail.
We conclude with Section 4, giving an outlook on future networks.
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Fig. 1. The UMTS network and its components, 3GPP Release 7

2 Measurement Setup

The measurements were carried out in the operational Universal Mobile Telecom-
munication System (UMTS) network, of one of the biggest operators in Austria,
EU. An overview of the data path of this network is given in Fig. 1. The dashed
lines indicate the names of the different interfaces between network components.
Δ1 to Δ3 indicate the delay contributions of the single elements, Δ the accu-
mulated delay. In the following the components are explained briefly.

– PC. The computer on which the end-application is running and application
interface traces are captured.

– USB-modem. The USB-modem used for measurements is manufactured by
Option [10] and equipped with Rel. 7 HSUPA functionality.

– NodeB. The Base Station (NodeB) receives and decodes the packets. For
controllable measurement conditions an indoor NodeB was chosen.

– RNC. The Radio Network Controller (RNC) is the controlling entity in the
UTRAN. It coordinates multiple NodeBs. It handles tasks such as ciphering,
soft-handover and radio connection manipulations.

– SGSN. The Serving GPRS Support Node (SGSN) controls the radio connec-
tion and handles mobility issues. Since Rel. 7 it is not part of the data path
any more.

– GGSN. The Gateway GPRS Support Node (GGSN) is the gateway to the
Internet. It sends plain IP-packets towards their destination.

All interfaces shown in Fig. 1, except IuPS, were traced in order to carry out delay
measurements of each separate network component. The exact methodology is
explained in Section 2.2 for each interface separately. The reason for not tracing
the IuPS interface is the direct tunneling feature taking effect in Rel. 7. This
feature allows the SGSN to remove itself from the data path. Consequently, the
expected delay between IuPS and Gn interface is negligible and not considered
further.
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2.1 Traffic Generation

The traffic patterns sent over the network in order to measure latency were gen-
erated actively. According to the proposals in IP Performance Metrics (IPPM)
RFC2330 [6], they consist of packets with random size and random-inter arrival
time. The importance of the right choice in traffic patterns is highlighted in [5],
where the authors reason that invariant traffic generation models such as used by
the ping command are not adequate for latency measurements in 3G networks.
We chose User Datagram Protocol (UDP)-packets for transmission, whereas we
allow for large packets up to 10 kByte. This approach is unusual for network
measurements, because big packets are segmented into smaller packets of max-
imum Packet Data Unit (PDU) size. However, the 3G network is transparent
for IP packets and interprets segments just as extra payload. Furthermore, such
packet sizes are demanded by latency sensitive applications [11], and therefore
considered in this work. In order to guarantee the USB-modem is operating in
HSUPA mode, we kept the mean data rate above 1 kbit/s. Otherwise the net-
work scheduler would release the HSUPA connection and force the modem to
WCDMA Forward Access Channel (FACH) operation, in order to save radio
resources. Consequences of such a fallback are observed in [4] and [3], resulting
in very high delay values for small packet sizes. In the context of this study these
effects are undesired and hence avoided.

2.2 Measurement Devices

OWD measurements require careful consideration of (i) time synchronization of
the measurement entities and (ii) accurate packet recognition. In our measure-
ment setup we use Global Positioning System (GPS) receivers for time synchro-
nization, which allow for a precision better than 1μs. This precision is satisfactory
for our purposes, since we plan to achieve a maximum resolution of 100μs. We use
full IP and UDP headers to distinguish between packets at different interfaces.
Since the whole 3G network, from UE to GGSN corresponds to one hop in terms
of IP-networking, both packet headers are not altered during the propagation. In
the following sections measurement methods and devices are described.

Gn Interface. As depicted in Fig. 1, the Gn interface connects the GGSN to
the rest of the 3G network. We passively monitor this link by means of wiretaps
and dedicated tracing hardware, i.e. Endace DAG cards [12] with GPS synchro-
nization. The system has been developed in an earlier project in collaboration

GPS

DAG

Card

Wiretap Measurement Probe

Proc
Ring
Buffer

Pre− Protocol
Parser

Eval.

Fig. 2. Measurement setup at the Gn and Iub interfaces



56 M. Laner et al.

PC, Linux

Pulse
Audio
Server

Tracing
Soft−
ware

Audio

Card

GPS Recv.
PPS out

1950MHz
Bandpass Power

Detector

Fig. 3. Transmit power measure-
ment setup (air interface)

30 40

HARQ

end of packet

50 60 70

−0,1

0

0,1

time (ms)

m
ea

su
re

d 
di

gi
ta

l s
ig

na
l

Fig. 4. Measured transmit power of
UE (digital domain)

with Telecommunications Research Center Vienna (ftw), see [13] and [14]. An
outline of the measurement setup is given in Fig. 2. The timestamping accuracy
is specified by the manufacturer with less than 200ns.

Iub Interface. For data acquisition at the Iub interface the same measure-
ment setup as for Gn has been deployed, see Fig. 2. Tracing at this interface
appears particularly challenging because of the complex protocol hierarchy, ci-
phered payload and soft handover [15]. IP packets do not appear in one piece at
this interface but split into single Radio Link Control (RLC) frames which are
timestamped separately.

Air Interface. Packet sniffing (fully decoding) at the air interface we consider
too challenging for our purposes. Instead, we can identify start and end time of
single packets by monitoring the transmission power of the UE. This is HSUPA
specific, since the NodeB assigns extra transmission power to the UE via Relative
Grant Channel (RGCH), in order to transmit data in uplink [1]. This method
allows to identify packet transmissions, as long as the inter-arrival time of packets
is big enough to guarantee a change in allocated transmission power between
packets. Depending on the payload size we varied this time from 10ms to 100ms.
The measurement setup is depicted in Fig. 3. An antenna with bandpass filter
(1920 - 1980 Mhz) and attached power detector [16] is placed nearby the UE.
The measured signal is fed into a standard audio device of a PC, with a sampling
rate of 44.1 kHz and 16bit resolution. Figure 4 shows the resulting digital signal.
Here we observe the end of a packet transmission (44ms) with Hybrid Automatic
Repeat Request (HARQ) retransmission (46ms, 50ms). The small steps result
from the Inner Loop Power Control (ILPC) power adjustments. Synchronization
is achieved by applying the Pulse Per Second (PPS) output of a GPS receiver [17]
at the second audio channel. The timestamping accuracy is limited by the inter-
sample time of the audio card (22.7μs).

Application Interface. We chose the traffic generating application and the
application-interface traffic monitoring tool to reside on the same PC. Therefore
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we verify the CPU load to not exceed 20% during measurements and hence as-
sume the mutual influence of applications to be negligible. Packet capturing was
performed by the use of libpcap [18] and the Wireshark tool, see Fig. 5. In order
to achieve correct timestamping of the traffic, we synchronize the software-clock
of the PC to Coordinated Universal Time (UTC). We deploy a GPS receiver [17]
attached at the serial port and the LinuxPPS toolkit [19] to adjust the PC clock,
see Fig. 5. The synchronization accuracy was verified with a rubidium oscillator,
results yield roughly 10μs, see Fig. 6.

3 Results

The measurement results presented in the following are obtained from a pro-
tected environment. Although, the NodeB to which we established connections
is operational and publicly available, it is deployed in an indoor scenario (office)
with low cell load and a relatively small number of users. Furthermore, it com-
municates with the RNC via Asynchronous Transfer Mode (ATM) connection
and the Transmission Time Intervals (TTIs) have 10ms duration. HSUPA also
provides 2 ms TTIs for improved latency, hence, the presented results constitute
a worst case scenario. The channel conditions were stationary and the data rate
was constant in the long run. As pointed out in [8], the deployment scenario
strongly influences OWD. We publicly advertise a sample data set [20], enabling
reproduction of the following results.

3.1 Single Components

In the following we provide delay measurement results focusing on the single net-
work components, named Δ1 to Δ3 in Fig. 1. This information allows to identify
main sources of latency and to detect network settings which are improvable in
terms of delay.
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UE. The latency contribution of the USB-modem, Δ1 (see Fig. 1), is shown in
Fig. 7. The delay PDF results from timestamps obtained by tracing at the appli-
cation interface and the rising edge of the transmission power at the air interface.
Thereby the packet size varies from 1 to 1500Bytes. The delay distribution is
concentrated between 5 to 15ms, where it exhibits uniform character. This can
be explained as a contribution of 5 ms caused by the USB-modem due to data
processing and a random contribution of up to 10ms while waiting for a trans-
mission window. The start of a transmission can only take place at the beginning
of a TTI, whereas data appears randomly in the transmission queue and hence,
is kept for a random time until the outset of the next TTI. This delay contri-
bution can be removed by designing HSUPA aware software applications. The
small amount of packets yielding a delay below 5ms are measurement artifacts.
They result from retransmitted packets or control information, misinterpreted
as part of the user data. Increasing the packet inter-arrival time would improve
the situation but, as explained in Section 2.1, this would increase the probability
of switching to normal Dedicated Channel (DCH) operation. Figure 11(a) shows
a histogram of delay and size for Δ1. In contrast to Fig. 7, the falling edge of the
transmission power is used to obtain the timestamps, thus, transmission delay
is included as well. We model the delay contributed by the UE, the queuing and
the transmission as

Δ1 = 5ms + X · 10ms + �l/α	 · 10ms , (1)

whereas X is a uniformly distributed random variable between 0 and 1, l is the
payload length of the transmitted packet, α denotes the length-factor, equivalent
to the step hight in Fig. 11(b) (e.g. 800Bytes) and �·	 is the ceiling operation.

NodeB. In Fig. 8 the reader finds a logarithmic histogram of delay Δ2 and
packet size, thus, corresponding to the delay introduced by the NodeB. Thereby
the value assigned to different colors of the grid corresponds to the natural
logarithm of the number of packets corresponding to one parcel of the grid. The
delays are calculated by subtracting the timestamp of the falling edge of the
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transmission power at the air interface from the last RLC frame transmitted
over the Iub interface. The minimum is 5ms, whereas up to 7 ms of latency are
experienced depending on the packet size. The contribution of the NodeB can
thus be modeled as

Δ2 = 5ms + (l%α) · 1ms/kByte , (2)

whereas % denotes the modulo operator and the expression (l%α) introduces
extra delay growing linearly with packet size.

RNC. Figure 9 shows the delay characteristics of the RNC, Δ3 (see Fig. 1).
The delay is the difference in time of the last RLC packet fragment at the Iub
interface and the last IP packet fragment at the Gn interface.

The minimum latency introduced by the RNC is 1.5ms. Additionally the
packets experience an extra delay up to 4ms, depending on the packet size. This
can be modeled in the same way as for the NodeB by

Δ3 = 1.5ms + (l%α) · 2ms/kByte . (3)

3.2 Accumulated Delay

Accumulated delay is the delay experienced by the user application. Figure 10
displays this accumulated delay for a large variation of packet sizes. The dashed
lines correspond to the model illustrated below. Furthermore, Fig. 11 shows the
accumulation of the latency throughout the 3G network. In other words those
figures show the delay contributed by the first hop of the communication link.

By combining the Eqn. (1), (2) and (3), we obtain an expression for the accu-
mulated latency,

Δ = 11.5ms + X · 10ms + �l/α	 · 10ms + (l%α) · 3ms/kByte . (4)

This expression accurately models the regions of high density in Fig. 10 and 11(c).
The parameter α is strongly dependent on a manifold of parameters, such as data
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Fig. 11. Accumulated delay

rate and channel quality, and is defined by the HSUPA scheduler. Comparing
Fig. 10 and 11(c) we estimate α as 1800Byte and 800Byte respectively, which is
a considerable variation, although in the measurement setup only the mean data
rate changed. All possible values for α are listed in [21], Annex B. Nevertheless,
we expect α not to drop below 200Bytes for reasonable channel conditions.

The accuracy of the model can be visually evaluated from Fig. 10 and 11(c).
The dashed lines show the lower and upper bounds, within which the model
assumes a uniform distribution. In Fig. 11(d) a numerical evaluation of the ac-
curacy is depicted. Thereby a data set of packet sizes up to 3 kByte is compared
to the model. The result shows that 90 - 95% of all packets are consistent with
the model.

4 Conclusion and Outlook

In this paper we present measurements, analysis and models of latency compo-
nents of 3G HSUPA communication. We inspected the network elements - user
equipment (UE), base station (NodeB) and network controller (RNC) - in live op-
eration. The average delay value for a 1kByte packet is 30ms (UE: 66%, NodeB:
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20%, RNC: 14%). Therefore the 3GPP Long Term Evolution (LTE) delay per-
formance target of 5ms makes improvements in the core network mandatory.
Based on the analysis of the results we designed a model for each of the delay
components. It provides an average performance of 95%.
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Abstract. The small form-factor and significantly high bandwidth of 60
GHz wireless network interfaces make them an attractive technology for
future bandwidth-hungry mobile devices. To overcome several challenges
in making such 60 GHz communication practical, beamforming is widely
accepted as an integral part of 60 GHz devices. In this paper, we perform
a first-of-its-kind user study to answer a rather unconventional question:
can users explicitly assist in aligning fixed-beam directional antennas on
the transmit/receive side? Our measurements involving 30 users show
significant promise, and lean us towards answering the question in the
affirmative. The implication of these observations is in substantially sim-
plifying the design of 60 GHz interfaces for mobile devices.

1 Introduction

Recent years have seen a surge of interest in using mm-wave or 60 GHz radios for
short range (<10 meters), multi-Gbps communication [1,2,3,9,17]. The WiGig
alliance [17] envisions that 60 GHz communication will be common place in mul-
tiple deployment scenarios (Figure 1). These can be categorized into static-to-
static, handheld-to-static and handheld-to-handheld communications, of which
we focus on the latter two scenarios in this paper. Examples of the handheld-
to-static scenarios include sync-and-go applications such as movie and music
downloads from public kiosks, content prefetching for future disconnected op-
erations, “google-in-the-pocket” by saving large amounts of user-relevant data
locally, aggregation and upload of non-real-time sensor data from mobile devices,
etc. Examples of handheld-to-handheld scenarios include file sharing applications
between users.

For any deployment involving 60 GHz radios, directional transmission is cru-
cial to leverage their high bandwidth potential. Directional transmission can be
achieved with (a) fixed directional antennas, (b) switched-beam antennas, or (c)
adaptive beamforming. These approaches ((a) to (c)) are in the order of increas-
ing complexity, cost and power consumption, and at the same time increasing
flexibility or adaptability to changing conditions; selecting the appropriate ap-
proach hence engenders a tradeoff during system design [12].

To assist in striking the tradeoff effectively, in this paper, we ask the following
question: can users assist in aligning fixed-beam antennas on the transmit/receive

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 62–71, 2011.
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Fig. 1. Deployment Scenarios for 60 GHz wireless interfaces

side for 60 GHz communications? If the answer is yes, it could simplify the design
of mobile devices by making the antenna a passive element, thereby reducing the
initial cost and continuous power consumption. We ask this question based on
the intuition that 60 GHz communication is predominantly line-of-sight. And
for enabling short distance line-of-sight communications, our hypothesis is that
human intuition (along with minimal feedback from the system) is good enough
to align the transmitter receiver pairs. A challenge, however, is that at these
frequencies, the wavelength is ∼5mm, and hence even a small movement can
cause significant signal fluctuation.

Our measurement study includes using 60 GHz radios as transmitter and re-
ceiver, with 30 users who perform repeated data transfer sessions, spanning over
multiple days. The study with handheld-to-static scenario shows several inter-
esting observations: (1) Users with little prior practice can align the antennas
very well 80% of the time getting close to 1 Gbps throughput, when the distance
between the transmit and receive antennas is within 1 meter. (2) Human-assisted
alignment is bimodal; i.e. users either align very well or go completely out-of-
alignment. Once mis-aligned, users correct it within a short period of time (92%
of the time users re-align within 2 seconds) to achieve high throughput again,
owing to the feedback provided by the system. (3) With time, users learn how
to align the antennas, and hence get high throughput continuously. We make
similar observations with the handheld-to-handheld scenario.

The rest of the paper is organized as follows. Section 2 provides a brief back-
ground on 60 GHz radios and directional transmission. Section 3 describes our
measurement methodology. Section 4 discusses the results and their implications
in detail. Section 5 discusses the limitations of this study, and Section 6 concludes
with future directions.

2 Background on 60 GHz Radios

Recent years have seen a surge of interest in using 60 GHz radios due to several
reasons: (1) the rapid emergence of sophisticated mobile devices and personal
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area applications that demand high network bandwidth, (2) the lack of scope
for such high bandwidth in other short-range technologies [5,12], and (3) the
availability of 7 GHz of license-free spectrum in the 60 GHz range, coupled with
the recent breakthroughs in high-speed CMOS design [7]. Draft standards have
been published by multiple industry forums [2,17] and standards bodies [1,9],
and initial products are already available for niche applications [3].

The small wavelengths at these frequency ranges, however, imply reduced an-
tenna aperture areas that lead to much higher path loss [7] and increased sus-
ceptibility to blockage by obstacles [15,18]. These additional losses along with
the high noise figure of 60 GHz CMOS transceiver implementations, and the
low-power requirements make the feasibility of delivering Gbps speeds challeng-
ing even at distances of 10 meters. Consequently, focused transmission through
beamforming is considered an integral part of 60 GHz communication [2,17] (un-
like cellular and WLAN standards where beamforming is included as an optional
feature), and also receives significant research focus [11,13,14,16].

In this paper, we explore the potential of user assistance in aligning fixed-
beam antennas for focused transmission. Fixed-beam antennas are significantly
simpler than adaptive beamforming antennas and consume lower power, thus
making them more attractive for handheld devices.

3 Measurement Setup and Methodology

Our measurement testbed mainly consists of 60 GHz radios with fixed-beam di-
rectional antennas. Specifically, our experiments focus on the following questions:

1. What is the throughput achieved by users in such settings? How does it
fluctuate due to users holding such a device in their hands?

2. How long does it take for users to re-align once alignment is broken?
3. Does user-assisted alignment improve over time, i.e. can users ”learn” align-

ment over a period of time?

We consider two different application contexts: (a) when a user is interacting
with static infrastructure (i.e. handheld-to-static), e.g. smartphone-to-display,
and (b) when a user is interacting with another user (i.e. handheld-to-handheld),
e.g. smartphone-to-smartphone.

User population: Our population mix consists of users with and with-
out a technical background: out of our thirty users, twenty four have at
least some engineering background, and the remaining are from the le-
gal/administration/janitorial departments. All users are male or female adults
between 25-50 years of age.

Setup: Our setup is shown in Figure 2. The 60 GHz transceivers in our study
are described in detail in [10]. Briefly, these transceivers operate at a carrier fre-
quency of 60.3 GHz with a channel bandwidth of 1.6GHz. Taken together with
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Fig. 2. Measurement setup, with tripod-mounted transmitter and handheld receiver

amplitude shift-keying (ASK) modulation, a 36o-Horizontal beamwidth (mea-
sured) antenna, and an output power of 10.4dBm, these transceivers can support
a data rate of 1.25Gbps within a 7-10m range. All our experiments are however
carried out within a 2m range such that packet losses are mostly due to user-
induced mis-alignment. We use two Dell desktop SMP machines running Linux.
We use nuttcp v6.1.2 [4] to generate traffic at the transmitter, and gulp [8] for
packet capture on the receiver. We also tune the kernel buffers to ensure that the
bottleneck is indeed the wireless link. Packets are marked with monotonically
increasing sequence numbers to enable computing different metrics.

Metrics: To quantify performance, we measure packet delivery rate (PDR) and
throughput, which are relevant to the target network-intensive applications. The
per-second throughput is also made visible to the users on the Kiosk terminal,
which helps them detect misalignment and realign better. We also measure the
re-alignment time using the packet sequence numbers, i.e. how long it takes for
users to re-align their transceivers once alignment is broken.

4 Results

Effectiveness of User-assisted Alignment: We first conduct experiments
to study the performance of user-assisted alignment in the handheld-to-static
scenario. In this set of experiments, thirty users try to align the handheld receiver
with the tripod-mounted transmitter, while receiving 1 GB of data (731000 UDP
packets with 1470-byte payload at 1Gbps). At the receiver, we determine the
start and end time of each experiment using nuttcp’s control packets. These
control packets utilize the wired interface between the transmitting and receiving
machines. For every user, we repeat the experiment five times (i.e. have five
different data transfer sessions).

Figure 3(a) shows the sorted average throughput in each session at different
distances from the static transceiver for all users. We observe that users are able



66 K. Ramachandran et al.

 0

 250

 500

 750

 1000

 0  25  50  75  100  125  150

T
hr

ou
gh

pu
t (

M
bp

s)

Session #

5inches

 0

 250

 500

 750

 1000

 0  25  50  75  100  125  150

T
hr

ou
gh

pu
t (

M
bp

s)

Session #

0.5m

 0

 250

 500

 750

 1000

 0  25  50  75  100  125  150

T
hr

ou
gh

pu
t (

M
bp

s)

Session #

1m

 0

 250

 500

 750

 1000

 0  25  50  75  100  125  150

T
hr

ou
gh

pu
t (

M
bp

s)

Session #

1.5m
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Fig. 3. Average throughput for all users in the handheld-to-static scenario

to achieve much higher throughput on average at the 0.5m and 1m distances than
at the 5 inches and 1.5m distances. For comparison, we also repeat the experi-
ment multiple times with a static-to-static scenario with both the transceivers
mounted on tripods and carefully aligned. Figures 3(b) and 3(c) show the average
throughput distribution in the handheld-to-static setting (across all users) and
the static-to-static setting respectively. At 0.5m and 1m, the graphs show that
users are able to achieve high throughput (700Mbps 80% of the time), much like
the static-to-static scenario. At 5 inches and 1.5m, users are unable to achieve
such high throughput continuously, although the properly-aligned static-to-static
scenario can achieve full throughput.

To understand the underlying packet loss behavior due to mis-alignment by
users, we plot the probability density function (PDF) of the PDR (discretized
into 5% buckets) at different distances in Figure 4. The hardware we use drops
packets locally if the link is not aligned, as determined by PHY-layer pilot signals.
The PDR is computed in 100ms intervals. Surprisingly, we observe a bimodal
packet loss distribution—packet loss is either negligible and PDR is close to one,
or all packets in the interval are lost. Further, the low average throughput at 5
inches and 1.5m is explained by the high frequency with which PDR is zero in
both these cases (60% of the time at 5 inches and 80% of the time at 1.5m).
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Fig. 4. PDF of PDR in the handheld-to-static scenario
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Fig. 5. CDF of connectivity disruption durations due to mis-alignment

At 1.5m, we observe that users find it hard to align the transceivers with
the visual input we provided. Many users requested for additional input either
in the form of a laser-pointer or in the form of device vibration (common in
today’s smartphones). We believe that the high packet loss at 5 inches is due
to the well-known receiver saturation problem [6]. This hypothesis is confirmed
by holding the transceiver slightly higher or lower than the intuitive alignment
height that reduces the received signal; we observe increased throughput by
doing so. Independently, some users observed this behavior over time and used
it to improve their throughput at 5 inches. We made similar height adjustment
for the static-to-static scenario in Figure 3(c).

The bi-modal loss behavior has the advantage that it simplifies the feedback
given to applications and users. In practice, users are more likely to be able to
understand (and adopt) systems with simpler feedback.

Figures 5(a) and 5(b) show the distribution of connectivity disruption (in-
tervals greater than 10ms in which no packets were received) across all users.
The graph shows that 80% of the time, disruption is only about 100ms. Such
fine-timescale disruptions can be handled by backoffs and retransmissions at the
MAC layer, thereby avoiding their exposure to higher layer protocols like TCP.



68 K. Ramachandran et al.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
ro

b.
 (

P
D

R
 =

 x
)

x = PDR, 0.5 meters

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
ro

b.
 (

P
D

R
 =

 x
)

x = PDR, 1 meter

(a) PDF of PDR in the handheld-to-handheld scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

P
ro

b.
 (

av
g.

 th
ro

ug
hp

ut
 >

 x
)

x = avg. throughput (Mbps)

Handheld-to-Static
Handheld-to-Handheld

(b) 0.5m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  250  500  750  1000

P
ro

b.
 (

av
g.

 th
ro

ug
hp

ut
 >

 x
)

x = avg. throughput (Mbps)

Handheld-to-Static
Handheld-to-Handheld

(c) 1m

Fig. 6. PDR and average throughput comparison

These results show that there is a region in which users can comfortably align
fixed-beam 60 GHz transceivers, which should be taken into consideration when
designing systems using such transceivers.

Handheld-to-handheld scenario: Figure 6 shows the result of the same ex-
periments with both transceivers being handheld. We run this experiment with
12 different pairs of users. We observe that the PDR and throughput behav-
ior is similar to the handheld-to-static scenario—the PDR is bimodal and the
throughput distribution is similar.

Re-alignment time: Once connectivity breaks due to mis-alignment, we mea-
sure how long it takes for users to align back. We ran experiments in which ten
users were asked to re-align their receiver after explicit (and sudden) alignment
changes to the transmitter. To carry out these alignment changes, we rotate the
transmitter at random instances of time when data transfer is taking place. After
each rotation, we wait for the user to re-align the handheld receiver (and sta-
bilize the throughput), and then initiate the next re-alignment sequence. Such
a methodology ensures that the drop in PDR or throughput was specifically
due to the explicitly induced re-alignment. Figure 7(a) shows the CDF of the
realignment delay from these experiments. At 0.5m, we see that users are able
to re-align their transceivers within 2 seconds 92% of time and take atmost 4
seconds to re-align. At 1m, we see that the re-alignment delay is slightly higher.
This experiment also gives us an idea of the initial alignment time for users.

Improvement in alignment over time: We repeat our first experiment of 1
GB data transfer with 10 users with lowest throughput. We compare the total
data transferred in their two iterations in Figure 7(b). At 0.5m, users are able to
transfer 5-764% more data in Iteration 2. Even at 1m, seven out of the ten users
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Fig. 7. (a) Re-alignment delay in seconds, and (b) two iterations of data transfer (in
MB) showing learning behavior at 0.5m

could improve the average amount of data transferred from 7-140% (results not
shown here). We attribute this improvement to users “learning” to improve their
alignment over time by figuring out the sensitivity of the device to mis-alignment.

In summary, at close enough distances, we observe that users are able to align
fixed-beam antennas well, thereby motivating their consideration for adoption
in power- and complexity-constrained mobile handheld devices.

5 Discussion and Limitations

Fixed-beam antennas are also useful in static-to-static scenarios in a managed de-
ployment, as long as line-of-sight is ensured. Alternately, handheld-to-static and
handheld-to-handheld can be converted to a static-to-static scenario by aligning
the devices on a stable platform. Nevertheless, the particular scenario instanti-
ated with a given pair of devices is mainly a matter of users’ convenience.

Like most user studies, this study is also done on a small set of users. To
understand the sensitivity, we use the data obtained for Figure 3, and plot the
throughput distribution with different numbers of users. In Figure 8(a) and
Figure 8(b), we see that the throughput distribution does not change much
beyond 10 users, thereby indicating that small number of users can provide
sufficiently representative results.
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Unfortunately, we did not have access to the internals of the current hardware
to tune the channel bandwidth, transmit power, antenna beamwidth, and the
modulation and coding schemes. While this limitation does not affect the general
observations in our study, we believe that future work should explore the sen-
sitivity of user alignment to the above parameters. Further, the paper relies on
conventional wisdom that fixed-beam antennas are more cost- and power-efficient
than adaptive beamforming antenna systems; as hardware becomes more acces-
sible, future work should explore quantifying the cost and power benefits.

6 Conclusion and Future Directions

This paper focuses on answering the following question: Can users explicitly
assist in aligning fixed-beam directional antennas on the transmit/receive side
of a 60 GHz communication link? Our study reveals three useful conclusions: (1)
Users can align the antennas very well 80% of the time getting full throughput at
reasonable distances. (2) When mis-aligned, users correct it within a short period
of time to achieve full throughput again. and (3) With time, users learn how to
align the antennas, and hence get near full-throughput continuously. Using fixed-
beam antennas can significantly simplify 60 GHz interfaces on mobile devices,
thereby making them cheaper and energy-efficient—both of which are attractive
benefits to mobile equipment manufacturers.

The work raises several interesting questions: What are the design consider-
ations for a MAC to mask off the effects of mis-alignment? Can such a MAC
ensure that traditional higher-layer protocols are completely unaffected? While
the user attempts to align the antennas, can another omni-directional antenna
or a wider beamwidth antenna allow for low rate communication, to ensure that
the user sees more graceful throughput degradation? We plan to explore these
directions in our future work.
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Abstract. Lately researchers are looking at ways to reduce the delay on 
video playback through mechanisms like prefetching and caching for Video-
on-Demand (VoD) services. The usage of prefetching and caching also has 
the potential to reduce the amount of network bandwidth usage, as most 
popular requests are served from a local cache rather than the server 
containing the original content. In this paper, we investigate the advantages 
of having such a prefetching and caching scheme for a free hosting service of 
professionally created video (movies and TV shows) named “hulu”. We look 
into the advantages of using a prefetching scheme where the most popular 
videos of the week, as provided by the hulu website, are prefetched and 
compare this approach with a conventional LRU caching scheme with 
limited storage space and a combined scheme of prefetching and caching. 
Results from our measurement and analysis shows that employing a basic 
caching scheme at the proxy yields a hit ratio of up to 77.69%, but requires 
storage of about 236GB. Further analysis shows that a prefetching scheme 
where the top-100 popular videos of the week are downloaded to the proxy 
yields a hit ratio of 44% with a storage requirement of 10GB. A LRU 
caching scheme with a storage limitation of 20GB can achieve a hit ratio of 
55% but downloads 4713 videos to achieve such high hit ratio compared to 
100 videos in prefetching scheme, whereas a scheme with both prefetching 
and caching with the same storage yields a hit ratio of 59% with download 
requirement of 4439 videos. We find that employing a scheme of prefetching 
along with caching with trade-off on the storage will yield a better hit ratio 
and bandwidth saving than individual caching or prefetching schemes. 

Keywords: Video-on-Demand services, Hulu, Cache, and Prefetching. 

1   Introduction 

The Internet has emerged as a prime medium for TV shows, radio programs, movies, 
and the exchange of videos for personal as well as commercial use. The advent of 
websites such as Hulu [1] and Netflix [2], which offer streaming of TV shows and 
movies, has made the Internet a major source for digital entertainment in the US. The 
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growing use and popularity of content streaming among users is closely tied to the 
increasing popularity of broadband Internet connection in homes. The greater 
adoption of broadband in the US has motivated television channels such as NBC and 
ABC to offer their prime-time programming to online viewers via the media content 
provider hulu. In parallel, Netflix, a DVD rental company began to take advantage of 
the click-and-view streaming of full-length films and television episodes with a 
subscription service.  

In the measurement study described in this paper, we focus on hulu as it is free and 
offers ad-supported streaming video of TV shows and movies from NBC, Fox, ABC, 
and many other networks and studios [3]. The advantage of hulu is that it is owned by 
these corporations, and the shows that air on their traditional TV channels are 
available for Internet users the next day for free (but not free of ads). This is popular 
in university campuses as many students would not have a TV in their dorm rooms 
and rely on Internet content for entertainment. Apart from TV shows, movies and 
video clips from other commercial sources are also hosted for free on hulu.  

Due to the high popularity of TV shows and movies hosted on hulu, many people 
watch the same content in a certain time period. Our analysis of how hulu requests are 
distributed reveals that the requested videos are streamed from original servers 
hosting the content even when multiple clients request the same video, which shows 
that there is no proxy employed. This redundancy in streaming the same video from a 
server which is far away leads to an unnecessary increase in the network traffic.  

In this paper, we investigate, through trace-based simulations, how prefetching and 
caching of videos requested from a campus network could reduce the consumption of 
network bandwidth by reducing multiple downloads of the same video from the origin 
server(s). We evaluate three different schemes: conventional caching scheme, 
popularity based prefetching scheme [5] and a combined scheme. The popular videos 
list is obtained from the hulu website, which is updated on a weekly basis. In our 
popularity-based prefetching simulation, we download the top-100 videos from that 
list to our local cache. Next to reducing bandwidth consumption, prefetching and 
caching can also reduce the potential of delayed playout, and pauses during video 
playback since videos streamed from the proxy are not prone to congestion or outages 
in the backbone network. 

We evaluate the proposed caching and prefetching schemes with user browsing 
pattern data collected from a university network. Results from our trace-driven 
simulation show that a conventional caching scheme at the proxy with no limit on 
storage yields a hit ratio of up to 77.69%. A prefetching scheme where the top-100 
popular videos of the week are downloaded to the proxy yields a hit ratio of 44% with 
a storage requirement of 10GB and download requirement of 100 videos. A LRU 
caching scheme with a storage limitation of 20GB can achieve a maximum hit ratio 
55% % but downloads 4713 videos to achieve such high hit ratio compared to 100 
videos in prefetching scheme, whereas a scheme with both prefetching and caching 
with the same storage yields a hit ratio of 59% with download requirement of 4439 
videos. We find that employing a prefetching scheme along with caching with limited 
storage will yield a better hit ratio than individual caching or prefetching schemes. 

Although caching and prefetching are not new mechanisms [6, 7], we believe that, 
to the best of our knowledge, our work is the first that systematically investigates their 
effectiveness on the hulu VoD service based on trace-driven simulations. 
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2   Methodology 

In this section, we describe our methodology to monitor the traffic between clients in our 
campus network and hulu servers. The methodology allows us to understand how a client 
receives a video stream from hulu and to obtain the hulu usage statistics in our campus 
network. Also, we explain the extraction of hulu requests from the captured trace. 

The measurement equipment used to monitor the traffic between clients in our 
campus network and hulu servers is a commodity PC installed with a DAG card [4] to 
capture packet headers. It is placed at the gateway router of UMass Amherst, 
connected via optical splitters to the Giga-bit access link connecting the campus 
network to a commercial ISP. The TCP and IP headers of all the packets that traverse 
these links are captured by the DAG card along with the current timestamp. In 
addition, we capture the HTTP headers of all the HTTP packets going out to 
www.hulu.com. Note that all the recorded IP addresses are anonymized. (A more 
detailed description of the measurement setup can be found in [8].) 

For each outgoing packet through the gateway router, its timestamp, source IP 
address, destination IP address and the HTTP request header are extracted from the 
captured trace files. Out of these packets, the ones containing only hulu requests are 
filtered using the filtering pattern “/watch/” and the destination IP address of hulu 
servers. The video requests that are unique in the trace were filtered using sort and 
eliminate duplicates algorithm to obtain information about the number of duplicate 
requests present in the trace. 

3   Dataset 

In this section, we present the dataset obtained by the measurement process described 
in the previous section.  

Table 1. Day-to-Day statistics of the trace 

Trace Total Video Requests Unique Videos Percentage (%)  
Day1     3511      1109  31.58 
Day2     3461      1101  31.81 
Day3     3616      1113  30.77 
Total    10588      2363  22.31 

3.1   Trace Details 

For our analysis we captured a three day network trace using the measurement setup 
described in Section 2. The trace was captured during fall 2010 semester when 
students were back in full numbers. The trace captured was filtered for hulu data as 
explained in Section 2. There were 10,588 hulu video requests in a three day period 
where only 2,363 distinct videos were requested in total. Table 1 provides the day-to-
day and total statistics of the hulu trace used in our analysis. It should be noted that 
the total unique videos value of 2,363 is not the sum of the unique videos of each day 
as seen from the table. This is an artifact of subdividing the trace into single day data 
and shows that videos are repeatedly requested not only in a 24-hour time span but 
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also over several days. The table also shows that there are only 22.31% distinct video 
requests, which leaves us with 77.69% of the video requests being two or more 
requests for the same video. This is an important result since this indicates the 
feasibility of prefetching and caching. 

To give an overview of the usage of hulu on campus, we use the trace details to show 
the number of requests for each unique video during the period of the trace. Figure 1 
shows the CCDF plot of the popularity graph describing the requests per video similar to 
[8]. We can see that the number of unique videos requested only once are about 48.92% 
(1,156 videos), which leaves us with a majority 51.08% (1,207 videos) requested 
multiple times, demonstrating the popularity of the content provided in hulu. 

3.2   Popular Video List Details 

In addition to the network trace, to validate our proposed prefetching approach, we 
obtain the list of most popular videos watched by viewers for a particular week 
preceding the capture of the traces. The hulu website provides a list of videos which 
are ranked in the order of their popularity for a particular day, week or month. We 
chose the weekly popularity list since many TV shows are updated on a weekly basis 
rather than daily or monthly basis. Our experiment shows that change in popularity of 
videos over a week is minimal. Thus, popularity list on a weekly basis serves best for 
prefetching. We use ‘wget’ to obtain the HTML page that contains popular videos list 
from the hulu website. We then parse the obtained HTML page to extract the URLs of 
the popular videos. These data are later used to simulate the prefetching of the videos 
from the hulu server to our local storage. 

4   Simulation and Results 

In this section, we present a simulation methodology for the evaluation of our proposed 
approaches. Through trace-driven simulations, we compare the performance of the 
cache-only and prefetch-only schemes. We also evaluate the performance of an 
approach that combines both caching and prefetching. Also, the impact of storage size 
on the performance of our proposed schemes and the overall bandwidth consumption is 
evaluated. 

 

Fig. 1. CCDF popularity plot of the hulu trace 
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4.1   Evaluation Metrics 

We simulate the proposed prefetching and caching schemes from real user request 
patterns by issuing video requests based on the network trace presented in Section 3.1. 
Prefetching is simulated by maintaining a prefetching storage which keeps track of 
the list of popular videos list obtained from the hulu website. Similarly, the caching 
scheme is simulated by providing storage on the proxy which holds the videos 
requested by viewers, if not already present in the storage. 

We perform our simulation of the caching scheme for cases where the storage 
space is unlimited and also the case where there is limited storage space. For 
simplicity, the storage space size is defined by the number of slots where each slot 
can hold one hulu video. Based on our measurement on the size occupied by HD hulu 
video, it is approximated as each hulu video requires about 100MB of space, which 
corresponds to the size of each slot in our storage. 

In this study, we use hit ratio as the metric to evaluate the proposed prefetching and 
caching schemes. Hit ratio is defined as a fraction of the number of requests for a 
video that can be served from the prefetching/caching storage (called hit requests) 
over the total number video requests. 

hit ratio = hit requests/all requests  

A higher hit ratio means we can serve more requests from the prefetching/caching 
storage, resulting in a reduction of bandwidth usage.  

4.2   Performance of Caching without Storage Limit  

We first present the performance of the caching scheme without any limit on the 
storage required to cache the videos. The caching scheme is simulated as follows: 
Each video requested by the user is downloaded to the local proxy placed on the edge 
of the campus network1. Video requests from clients are directed to the proxy. If the 
video is already cached at the proxy, it will be streamed from here; if not, the request 
is forwarded to the hosting server, and the video is streamed from the server through 
the proxy to the requesting client. Using this scheme a hit ratio of 77.69% is obtained. 
Although this scheme provides a very high hit ratio, the amount of storage required 
increases significantly as the number of video requests from clients increase. To 
implement this scheme, 236GB storage would be required, which corresponds to the 
2,363 unique videos present in our trace. Also, the amount of bandwidth required to 
download all the videos into the local storage increases with the number of unique 
videos. Though 236GB storage seems reasonable, when this approach is applied to a 
bigger access network or a week-long trace, the amount of storage required increases 
considerably. Thus, this scheme is not necessarily feasible for implementation on a 
larger network. 

                                                           
1 For all caching schemes mentioned in this paper we assume so called “write-through” caching 

[9]. In this case, a video that’s not already cached is streamed from the origin server through 
the proxy to the requesting client.  
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4.3   Performance of Caching With Storage Limit 

Next, we present the evaluation results for a caching scheme that is slightly modified 
from the one presented in Section 4.2. In comparison to the previous approach, 
storage on the proxy is now limited. Let N represent the number of videos that can be 
cached in the storage. We evaluate this scheme by varying N from 100 to 2000 which 
corresponds to varying the storage limit from 10GB to 200GB. Figure 2(a) shows the 
resulting hit ratio of such a scheme. Once the storage limit is reached, LRU caching 
scheme is employed to remove the least accessed video. 

The figure shows that the hit ratio increases gradually for small storage spaces till 
N=1000 after which the increase in hit ratio is minimal as we increase the number of 
videos that are cached and reaches the maximum hit ratio of 77.69% as in case of 
caching without storage limit. As seen from Figure 2(a), a storage limit of 50GB will 
yield a hit ratio of 67%, while doubling the storage space yields a hit ratio of 73.86%. 
Though the improvement in hit ratio is minimal, the amount of bandwidth savings is 
increased as we increase the storage space.  

For example, the number of videos that need to be streamed2 from the origin server 
to obtain a hit ratio of 67% which corresponds to the storage size of 50GB is 3494, 
whereas this number decreases to 2767 (resulting in a hit ratio of  73.86%) when the 
storage size on the proxy increases to 100GB. Thus, increase in storage space yields 
higher hit ratio and bandwidth savings. Also, there exists a trade-off between the hit 
ratio desired and storage space provided. 

4.4   Performance of Prefetching Popular Videos List 

After analyzing the limited and unlimited caching scheme, we now evaluate the 
performance of prefetching the popular videos list obtained as explained in  
Section 3.2. Let P represent the number of popular videos prefetched. We evaluate 
this scheme by varying P from 20 to 100 which corresponds to varying the 
prefetching storage from 2GB to 10GB. Figure 2(b) shows the hit ratio of such a 
scheme.  

The figure depicts the variation of hit ratio with the increase in prefetching of most 
popular videos of the week from 20 to 100. It can be observed from the figure that the 
hit ratio increases gradually till P = 60, and then the increase in hit ratio is relatively 
minimal. The maximum hit ratio of 44.2% is obtained when P=100 which 
corresponds to storage space of 10GB. Though the LRU caching scheme as 
mentioned in section 4.3 yields a hit ratio of 45.53% for the same storage space, the 
important point to be noted in this evaluation is the fact that the number of videos 
downloaded to the prefetch cache is just 100 compared to 5767 videos in case of LRU 
cache. Thus the amount of bandwidth savings is very high in prefetching scheme 
compared to the caching scheme. 

 
                                                           
2 The amount of videos downloaded is not proportional to the numbers mentioned in Table 1. 

Videos are downloaded only when LRU scheme decides to remove a video due to space 
constraint. 
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(a)   Caching Scheme (b)   Prefetching Scheme 

Fig. 2. Hit Ratio with varying storage limits 

In addition, our simulation shows that 100% of the popular videos from P = 20 to  
P = 60 list were requested by the clients, whereas it is 95% for P = 80 and P = 100. 
This shows that almost all videos in the top-100 popular videos list are watched at 
least once by the clients in a three day period of our trace. Also the change in the 
popular videos list is minimal over a week period as we consider the popular videos 
of a week in our analysis. Thus, it is feasible and advantageous to implement the 
prefetching of popular videos scheme.  

4.5   Combining Caching and Prefetching 

In the previous section, we have shown that the bandwidth savings that can be 
obtained with the prefetching scheme is high. On the other hand, the videos served by 
the top-100 videos prefetched at the proxy are only 44.2% of the total requests, which 
leaves us with more than half of the videos in the trace left unattended by the 
prefetching scheme. Some of these unattended videos from the prefetching scheme 
can be taken care of by employing a caching scheme. Thus, the combinination of  
prefetching and caching schemes called prefetch-and-cache scheme serves more 
videos and uses less bandwidth than individual schemes.  

The simulation of the combination of caching and prefetching scheme is carried 
out as follows: (i) a storage is maintained on the proxy with a fixed part and a variable 
cache part. The fixed part of the storage holds the prefetched popular videos. (ii) all 
user requests are directed to the proxy. The video requested is searched for both in the 
prefetch or cache part of the storage (iii) if the video requested by the user is not 
present in the storage, then the request is sent to the hulu server hosting the video. The 
resulting stream from the hulu server is cached in the variable part of the storage. (iv) 
if the variable part of the storage is filled, videos are removed from the variable part 
of the storage using LRU scheme. 

Figure 3 shows the hit ratio resulting from the prefetch-and-cache scheme. The 
combination of two schemes increases the hit ratio by 3-5% for the same amount of 
storage as in the caching-only scheme. For example, a storage limit of 20GB in 
caching-only scheme will hold about 200 videos and yields a hit ratio of 55.5% as  
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seen in Figure 2(a). The same storage limitation in prefetch-and-cache scheme with 
100 videos prefetched and 100 videos cached would yield a hit ratio of 59%, which is 
a slight improvement over the caching only scheme. 

The combination is also an improvement over the prefetch-only scheme. As seen, 
the prefetch scheme offers a maximum hit ratio of 44.2% and the other videos cannot 
be served by employing prefetching scheme. By combining both prefetching and 
caching, all the requests by the clients can be served from the cache with increase in 
hit ratio compared to prefetching only or caching only scheme. Again it is a trade-off 
between the storage available and the hit ratio desired, but the advantage of this 
combination scheme is that the storage required to obtain the desired hit ratio is less 
than the cache-only scheme.  

 

Fig. 3. Hit Ratio for combination of prefetching and caching 

The combination of prefetching and caching scheme also improves the bandwidth 
usage as compared to prefetching-only and caching-only schemes. Prefetching-only 
scheme provides a maximum hit ratio of 44.2% but bandwidth consumption is very 
less as only 100 videos are downloaded to the cache, whereas a caching-only scheme 
uses more bandwidth by downloading 5767 videos to provide a higher hit ratio of 
45.5% with storage space of 10GB. The combination scheme with 100 prefetchied 
videos and 100 cached videos will yield a hit ratio of 59% and requires 4439 videos to 
be downloaded where as the caching scheme of 20GB storage which offers a hit ratio 
55.5% requires 4713 videos to be downloaded. The hit ratio and bandwidth savings 
increase in the combination scheme with increase in storage space. Thus, 
implementing a combined scheme of prefetching and caching works well for serving 
more requests from the local storage and reducing the amount of bandwidth usage in 
the backbone network. 

5   Conclusion 

In this paper, we present a measurement study of hulu traffic in a large university 
campus network. The analysis of the measurement data reveals that 77.69% of the 
video requests for hulu content are multiple requests for the same content. This is 
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significantly higher than earlier findings on the analysis of YouTube traffic [9] where 
only 25% of the requested videos are requested more than once.  

We analyze three different schemes, prefetching-only, caching-only and a 
combination of prefetching and caching, respectively. The advantage of such proxy-
based distribution schemes is the fact that a viewer can access the video content faster 
and, since popular videos are prone to be requested multiple times, the amount of 
streams originating from the hulu server is reduced, resulting in a reduction of 
backbone bandwidth consumption. Results from our trace-based simulations show 
that, in the case of hulu, prefetching popular videos to the proxy is more efficient in 
bandwidth savings than simple caching. Prefetching the 100 most popular videos 
yields a hit ratio of 44.2% while a caching scheme that requires the same storage 
space results in a hit ratio of 45.5% with download requirement of 5767 videos. A 
scheme that combines prefetching and caching enhances the hit ratio by an additional 
3 to 5% with less bandwidth consumption. 

To the best of our knowledge, this is the first measurement-based study of hulu 
traffic in a large university campus network. Hulu is different than most other 
Internet-based services like YouTube and Netflix since it offers a variety of TV shows 
immediately after their broadcast on the traditional TV network. Our measurement 
and simulation results show that prefetching and a combined prefetching and caching 
approach are well suited for such a VoD service.  

In future work, we plan to execute a long term measurement study to evaluate the 
influence of the weekly popularity of videos by the release schedule of new content 
and if that information can be used to further optimize the prefetching mechanism. 
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Abstract. Internet applications that route data over default Internet
paths can often increase performance by sending their traffic over alter-
native “detour” paths. Previous work has shown that applications can
use detour routing to improve end-to-end metrics such as latency and
path availability. However, the potential of detour routing has yet to be
applied where it may be most important: improving TCP throughput.

In this paper, we study the feasibility of bandwidth detouring on
the Internet. We find that bandwidth detours are prevalent: between
152 Planetlab nodes, 74.8% of the paths can benefit from detours with
at least 1Mbps and 20% improvement. To understand how to exploit
bandwidth detours in practice, we explore the trade-offs between network-
and transport-level mechanisms for detouring. We show, both analyti-
cally and experimentally, that direct, TCP-based detour routing
improves TCP throughput more than encapsulated, IP-based tunneling,
although the latter provides a more natural interface.

1 Introduction

The Internet was designed for best-effort data communication. It is limited to a
basic role—to provide connectivity—and does not guarantee good path perfor-
mance between hosts in terms of latency, bandwidth or loss. Not surprisingly,
direct end-to-end routing paths may be more congested, longer, or have lower
bandwidth than necessary. To overcome these inefficiencies and improve net-
work performance, distributed applications can use detour routing [17]. Detour
routing constructs custom paths by concatenating multiple network-level routes
using an overlay network.

Existing proposals use detour routing to improve latency [13] and availabil-
ity [1,3]. However, an important potential benefit of detour routing—improving
end-to-end bandwidth—is still unrealised. Bandwidth is critical for many In-
ternet applications. For example, emerging data-intensive applications, such as
HD video streaming and content-on-demand systems, require consistently high
bandwidth in order to operate effectively. Further, as enterprises begin to store
their data in “cloud” data centres, access to high throughput paths is critical.

Discovering and exploiting bandwidth detours is challenging. Unlike latency or
path availability, bandwidth is more expensive to measure. Bandwidth measure-
ment tools generally require many probes of differing sizes sent over long periods
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of time [5,18]. Available bandwidth also varies with the volume of cross-traffic
on the path: measurements must be done not just once, but continuously.

In this paper, we study the feasibility of bandwidth detouring and lay the
groundwork for a general Internet detouring platform for bandwidth. We explore
the variability of bandwidth measurements and the properties of detour paths.
Our measurements on the PlanetLab testbed show that 74.8% of the paths can
benefit from at least 20% and 1 Mbps bandwidth increase. Bandwidth detours
are often symmetric, benefiting both forward and reverse paths at the same time,
and last for more than 90 minutes.

To understand how to build a bandwidth detouring platform, we investigate
the trade-off between network- and transport-level mechanisms for detour rout-
ing and the relationship between detours for different path metrics. We pro-
vide evidence, both analytically and experimentally, that TCP-based detouring,
rather than IP detouring, achieves better performance. In addition, we show that
employing cheaper latency probes to find bandwidth detours is not effective.

The rest of the paper is organised as follows. In §2 we review related work. We
consider Internet bandwidth measurement and analyse properties of bandwidth
detour paths in §3. In §4 we propose how detour paths can be exploited. We
conclude in §5.

2 Related Work

Routing overlay networks exploit detours to improve the performance and ro-
bustness of packet delivery [1,13,3,15]. They delegate the task of selecting paths
to applications, which can choose paths that are more reliable, less loaded,
shorter, or have higher bandwidth than those selected by the network.
Gummadi et al. [3] found that path failures occur frequently, but can be circum-
vented through random detours. iPlane [15] uses measurements from PlanetLab
nodes to build a structural map of the Internet that predicts path performance
properties, such as latency, bandwidth and loss. While this previous work focused
on path availability and end-to-end latency, our focus is on bandwidth.

Prior research has studied bandwidth-aware overlay routing. Lee et al. [11] de-
scribe BARON, a method for switching to an overlay path with higher available
bandwidth. It relies on periodic all-to-all network capacity measurements, which
are less transient than available bandwidth measurements. When searching for
possible alternative paths, BARON uses high capacity to infer potential for high
available bandwidth on a path. Since evaluation results are simulated, it is un-
clear how a deployment would perform. In contrast, we evaluate the discrepancy
between predicted and measured bandwidth on a live system.

Zhu et al. [19] propose an overlay-based approach for selecting a path with
high available bandwidth; because their focus is on fairly small networks, they
re-measure bandwidth to a large fraction of the network with each path adjust-
ment, which is not scalable. Jain et al. [6] are able to implicitly learn available
bandwidth through a video streaming application; they disseminate this infor-
mation through a link-state protocol with limited scalability.
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Split-TCP [7] improves end-to-end throughput by establishing a relay between
the two endpoints of a TCP connection. Its benefits have been thoroughly stud-
ied in many domains, especially for mobile devices [8]. While our approach for
TCP bandwidth detouring benefits from splitting TCP connections, the bulk of
improvements result from carefully choosing the right detour nodes (cf. §4).

3 Detour Properties

In this section, we use measurements to demonstrate the existence of bandwidth
detours. We show that most measured paths could benefit from detours with
higher bandwidth. We also investigate how bandwidth detours change over time
and how they compare with latency detours.

PlanetLab. We use PlanetLab to demonstrate the feasibility of bandwidth de-
touring. Nodes are selected from independent sites to maximise path diversity
and avoid known bandwidth restrictions. We created a list of 256 nodes with a
bandwidth cap higher than 10 Mbps on May 3rd, 2010. Some experiments used
fewer nodes due to node failures or bandwidth limits on PlanetLab. In these
cases, we state the actual number of used nodes in the text.

UkairoLab. To circumvent the above limitations and validate measurement re-
sults, we also use our own UkairoLab testbed hosted on corporate and university
machines. It consists of 10 geographically-dispersed nodes located in the US, In-
dia, Kenya, UK and France. Their network connectivity is provided by commer-
cial hosting companies, which results in a lower median bandwidth: 4.87 MBps
on UkairoLab versus 6.54 MBps on PlanetLab. Machines are virtualised but are
dedicated with full kernel access.

3.1 Bandwidth Measurement

To discover detour paths, we must measure a particular bandwidth metric. Since
our focus is on the TCP protocol, we consider bulk transfer capacity (BTC),
which is the steady-state throughput (in terms of successfully transmitted data
bits) of a TCP connection1. We measure BTC using the standard Iperf tool2,
which observes the throughput of an elastic TCP transfer. We deploy Iperf on
256 PlanetLab nodes and collect all-pairs measurements with a 5 second timeout.
We ensure that each node makes only one inbound and one outbound measure-
ment at any point in time. On average, each Iperf measurement takes 8 seconds
and consumes 10.8 MBytes.

To understand the variability of bandwidth measurements, we perform re-
peated measurements at 30 sec, 5 min, 30 min, and 1.5 hour intervals. To stay

1 We use the terms BTC, throughput and bandwidth interchangeably in this paper.
2 We explored the use of available bandwidth predictions tools such as Pathload [5] for

estimating BTC with lower measurement overhead. However, on average, Pathload
took 50 seconds to measure a path, which is too slow for a large deployment.
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Fig. 1. Bandwidth measurements vary sig-
nificantly over time.
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Fig. 2. Detouring via a node increases
bandwidth but more hops have little effect.

within Planetlab’s 10 GB daily limit, 48 Planetlab nodes measure to 20 randomly-
chosen nodes within those 48 nodes. This is repeated three times at different
times, measuring 920 paths. As Figure 1 shows, bandwidth can vary signifi-
cantly, even when measured in quick succession, as confirmed by others [12].
Approximately half of the paths have a 20% variation in bandwidth, regard-
less of when remeasured. This means that good bandwidth detours have to be
significantly better to compensate for this variation.

3.2 Bandwidth Detouring

We want to understand how often traffic between two Internet hosts can ben-
efit from a detour path with higher bandwidth than the direct path. Of the
20 323 successful BTC measurements between 152 PlanetLab nodes, we exam-
ined whether detour paths via another node have higher bandwidth. We consider
the bandwidth of a detour path as the minimum bandwidth of the paths between
the source and the detour node and the detour node and the destination.

Figure 2 shows the cumulative distribution of path bandwidth. We find that
96.6% of all pairs of nodes have a detour path with higher bandwidth. The
median increase in path performance is 18.6 Mbps (i.e. a factor of 2.24). We also
noted 74.8% of the paths can improve by at least 20% and 1 Mbps. Because
detouring via one node can significantly increase bandwidth, we also investigate
if additional detour nodes yield similar gains. As the figure shows and confirmed
by Lee et al. [11], this is not the case and it provides only minimal additional
benefits. We also observe that 40% of paths cannot benefit from detours with
more than 10 Mbps bandwidth. This is likely because many PlanetLab paths
have 10 Mbps network capacity.

In Figure 3, we compare the relative improvement from bandwidth detouring
to latency and loss detouring, discovered by brute-force search. Bandwidth de-
touring has a significantly larger gain: half the paths can double in bandwidth,
while only 13.5% of paths are half the average path latency. We measure loss by
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bandwidth between nodes significantly
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sending 1200 UDP probes with a payload of 1472 bytes and an interval of 100 ms,
which is similar to the rate of VoIP connections [15]. Only 27.2% of paths benefit
from detouring for loss because most paths suffer no loss at this low rate.

Why are there such a large number of good detour paths with higher band-
width? Previous studies show that latency detours are due to ISP routing poli-
cies [14], which we believe also cause bandwidth detours. We have preliminary
evidence that good detours can be found by avoiding one or more autonomous
systems (AS) in the default path: for 32% of the pairs of PlanetLab nodes, for
which we have complete AS paths, at least one AS in the direct path is avoided
more than half the time by the detour. For 29% of the pairs of nodes, the detour
paths traverse all the ASes on the direct path. These detours may be due to
Internet congestion or differences in intra-domain routing policies.

We expect that “similar” paths in terms of their AS-links would benefit from
the same detour nodes. This idea has been exploited in latency detouring [4]—we
aim at exploring analogous mechanisms for bandwidth detouring. We leave
further investigation of this to future work.

3.3 Bandwidth Detour Properties

Symmetry. We define a detour to be symmetric if the same detour node benefits
both the forward and reverse direction of the direct path. Since congestion in the
forward path rarely affects the reverse path, we expect bandwidth to be different
for each direction. However, our results show that 89% of the 18 036 paths for
which we have measurements in both directions, have at least one symmetric de-
tour. We believe this happens because the quality of a detour path is dominated
by the properties of the detour node (such as download and upload speed), which
are the same in both directions, rather than by congestion on the path. Symmet-
ric detours are better than average: they improve the median path performance
by 39% compared to 16% for the asymmetric detours.
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Skewness. Detour nodes that have lower latency to the source or destination
are more likely to provide higher throughput for TCP transfers. We define the
skewness of a detour path as the ratio of the absolute difference between the
latencies from the detour node to the source and destination to the maximum of
the two latencies. As their skewness decreases towards 0, detours are more likely
to improve the bandwidth of the direct path: the median skewness value for good
detours is 0.43 compared to the median (0.54) of all detours. The reverse case
is also true: as skewness increases towards 1, detours are less beneficial for the
direct path. In our measurements, the detours that do not benefit the direct path
at all have a median skewness of 0.58. These results suggest that low skewness
values may be associated with detours that have high-capacity links, and which
in turn have a higher probability of being good detours.

Persistence in Time. Given the variability of bandwidth measurements, we
investigate the longevity of detour paths: for a detouring platform, short-lived
detours would be less useful. Our measurements show that approximately two-
thirds of all bandwidth detours persist for more than 90 minutes. This suggests
that a platform can make long-term decisions about detour paths.

4 Exploiting Detours

Applications must be able to discover and exploit good bandwidth detours. Here
we examine the challenges in implementing a detour routing platform when it
consists of cooperative edge or near-edge nodes. In particular, we find that low-
level kernel access is not required for good detouring performance.

4.1 Detouring Mechanisms

Two options exist for routing between a pair of Internet hosts via a tertiary de-
tour node: (a) network-level IP detouring or (b) transport-level TCP detouring.

IP detouring works by encapsulating every IP packet on egress from the source
node and sending it to the appropriate detour node, which in turn forwards it to
the destination node. From an application standpoint, IP detouring is the more
natural approach: (1) it can be deployed transparently because it only operates
at the IP layer; (2) it supports both TCP and UDP traffic; and (3) the same
detouring mechanism can be used for other metrics such as latency. However, it
also has a major disadvantage: the detour path is composed of two complete end-
to-end Internet paths. This increases the network-level hop count compared to
the direct path. The associated increase in loss probability and latency adversely
affects TCP throughput [10].

The alternative to IP detouring is to break the TCP connection at the detour
node and use TCP detouring, which is analogous to split-TCP [7]. By splitting
a long TCP connection into two separate connections terminated mid-path, the
feedback-based control loop of TCP becomes more responsive due to reduced
path latency. Although this comes at the cost of increased state within the
network, this may be acceptable when TCP connections are split by end hosts,
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instead of network routers [9]. For TCP detouring, we deploy SOCKS proxies
at potential detour nodes and use application-level “socksifying” software to
redirect connections via the appropriate detour proxy. This retains the benefit
of being transparent to destination nodes and preserves path symmetry.

To compare IP and TCP detouring, we deploy both detouring mechanisms
on UkairoLab3. We then perform an all-to-all-via-all measurement: for each pair
of nodes, we predict and measure the throughput achievable via each of the
potential detour nodes using both IP and TCP detouring. For TCP detouring,
we predict the throughput of the detoured connection to be the minimum of the
throughput of the two paths, i.e. the narrow link [2]. For IP detouring, we also
predict the throughput analytically as described in §4.2.

Figure 4 shows the predicted and measured detouring improvement for each
method. The results match the intuition that the long TCP paths created by IP
detouring adversely affect performance. In contrast, splitting the TCP connec-
tion significantly boosted most pairs; for example, 40% of paths improved by at
least 5 Mbps. However, the discrepancy between measured and predicted TCP
detouring performance is larger for paths which are predicted to benefit more
from detouring, suggesting there can exist a bottleneck in forwarding throughput
at the detour node.

Although TCP detouring benefits from the effect of a split TCP connection,
most improvement comes from choosing a good detour node with respect to
the throughput it offers, rather than its latency to the endpoints. For example,
77% of all detours provide at least 10% and 1 Mbps bandwidth improvement;
of the detours where the intermediate leg latencies are lower than the direct
path latency (which stand to benefit most from a split TCP connection), only
28% provide similar improvements. While the features of IP detouring, such as
transparency and UDP support, outweigh those of TCP detouring, we conclude
that the performance gains of TCP detouring make it the better choice.

4.2 Analysis of IP and TCP Detouring

Using a stylised stochastic model of TCP’s congestion control mechanism [16],
the following square-root formula relates the steady-state throughput of a path’s
BTC to its packet loss probability p and its average round trip delay RTT:

BTC =
Φ

RTT
√

p
. (1)

This formula is valid for both the case where loss is independent of the rate, in
which case Φ = 2, and the rate dependent case where the loss depends (linearly)
on the rate, in which case Φ ≈ 1.31. We use this formula to perform a back-of-
the-envelope calculation to derive the IP detouring bandwidth.

IP Detouring. Let us denote by BTC1, p1, RTT1, and BTC2, p2, RTT2 the
average throughput, the loss and the round trip delay of the constituent paths
3 We found that, on PlanetLab, the long delay between timeslices due to heavy load

severely damaged performance of userspace IP processing.
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Fig. 5. Detour paths substantially increase
throughput. However, bandwidth varia-
tions over time can lead to overestimating
a given detour’s potential improvement.
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that we will refer to as the first and second leg, respectively. The following
approximates the resulting throughput:

BTCIP ≈ RTT1

RTT1 + RTT2

√
(RTT2BTC2)2

(RTT1BTC1)2 + (RTT2BTC2)2
BTC1 (2)

where we drop the p1p2 term in the corresponding square-root expression since
the loss probabilities p1 and p2 are in general small; in the second equality, we
replace p1 and p2 using Eq. (1). It is easy to see that the predicted throughput is
always strictly smaller than the minimum of BTC1 and BTC2, i.e. the respective
throughputs of the two legs taken in isolation.

TCP Detouring. Baccelli et al. [2] describe two coupled stochastic differential
equations that govern the dynamics of the throughput of the two legs of a detour
path. The coupling is dictated by the buffer at the detour node. The key feature
of this model is that the TCP throughput of the composed path is, in general,
the minimum bandwidth of the two constituent paths given that the buffer at
the detour node is sufficiently large. In our system, we ensure this holds.

The above analysis confirms what we observed in practice in Figure 4: IP
detouring provides worse performance compared to TCP detouring as predicted
by the minimum of the throughputs of the two legs.

4.3 Detouring Overlay Performance

We describe our experience in deploying a TCP detouring platform on 50 Planet-
Lab nodes. The experiment is divided in two phases: prediction and validation.
First, we measure BTC between all pairs of nodes to predict good detours, con-
suming on average 571 MBytes per node. We stop after 90 minutes and find that
1845 out of 2019 paths are detourable. We estimate detour bandwidth by taking
the minimum bandwidth of the two intermediate legs. In the second validation
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phase, we use TCP detouring to validate the best detour for each path. Since
we avoid concurrent measurements, the second phase takes substantially longer:
after 11 hours, we obtain 689 detourable paths. In Figure 5, we plot the distri-
butions of (a) measured direct path bandwidth; (b) estimated detour bandwidth
in the prediction phase and (c) in the validation phase; and (d) achieved detour
throughput measured in the validation phase.

We make several observations. First, the median bandwidth improves signif-
icantly, from 12 Mbps to 21 Mbps, using TCP detouring. Detours improve the
bandwidth on direct paths in 69% of the cases (not shown in the plot). The large
increase in bandwidth of detours can justify the fixed measurement overhead per
node, assuming at least a modest usage of detoured paths after their discovery
to amortise measurement costs. Second, we observe the 10 Mbps egress band-
width limit present on some PlanetLab nodes. Finally, the benefits of detouring
are largely lost at around 50 Mbps, suggesting a throughput bottleneck due to
limitations on node performance.

The substantial difference between the detour bandwidths at the time of pre-
diction and the estimated bandwidth at the time of validation may be caused
by the variability of bandwidth measurements (cf. Figure 1). Since detour band-
width is constrained by the minimum bandwidth of the two legs, we see a con-
sistent decrease of around 25% upon validating detour bandwidth a few hours
later. Although the best detours for any given path may be constantly changing,
we can still see temporal consistency in detour path performance.

4.4 Detour Transferability

To discover if good latency detours can also be effective for finding good band-
width detours, we compare the estimated bandwidth via the best latency detour
for each direct path. We measure latency and BTC on 10 265 paths between
136 PlanetLab nodes and compute the best bandwidth and latency detours be-
tween each pair of nodes for which we have measurements.

Figure 6 shows the distribution of estimated bandwidth for the best band-
width and latency detours found through brute-force search, and the estimated
bandwidth through detours chosen randomly. As discussed earlier, the best pos-
sible detour results in significant improvements over the direct path, although
these are likely unachievable due to bandwidth flux. Employing the best latency
detour for bandwidth detouring results in performance equal to a random de-
tour. This implies that discovery methods for finding good bandwidth detour
based on latency detours are not effective.

5 Conclusions

To understand how to exploit bandwidth detouring on the Internet, we ad-
dressed several key questions in this paper. We illustrated the preponderance
and longevity of potential bandwidth detour routes: 74.8% of paths had a detour
that improved bandwidth by at least 20% and 1 Mbps; and most detours lasted
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for more than 90 minutes. Contrary to our initial goals of providing transparent
IP-level detouring, we gave evidence that significantly better performance can be
achieved through the use of TCP-level detouring. Interestingly, this also means
that kernel access is not required for overlay participation, perhaps broadening
adoption of a general detouring platform. More research is needed to explore
practical and scalable methods for detour discovery and how wide-spread band-
width detouring would interact with traffic engineering policies by ISPs.
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Can Network Characteristics Detect Spam Effectively in
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Abstract. Previous work has shown that the network dynamics experienced by
both the initial packet and an entire connection carrying an email can be leveraged
to classify the email as spam or ham. In the case of packet properties, the prior
work has investigated their efficacy based on models of traffic collected from
around the world. In this paper, we first revisit the techniques when only using
information from a single enterprise’s vantage point and find packet properties to
be less useful. We also show that adding flow characteristics to a model of packet
features adds modest discriminating power, and some flow features’ information
is captured by packet features.

1 Introduction

Spam email is an ever-present irritant in the modern Internet: it uses scarce server and
network resources, costs users’ productivity, spreads malware, scams users and recruits
bots for all manner of malicious purposes. Hence, judging whether a particular email is
spam or ham—i.e., legitimate—is a crucial for operators and users. Many different ap-
proaches have been investigated and a handful now enjoy regular use. The most useful
techniques to-date have been those that leverage (i) properties of the host sending the
email (e.g., IP address black- or grey-lists, domain keys [3], etc.) or (ii) properties of
the email messages themselves in the form of filtering in mail servers (e.g., SpamAs-
sassin [2]) or users’ mail applications (e.g., Apple Mail).

A new class of techniques has emerged, which attempt to use properties of the net-
work traffic to determine whether a message is spam. Beverly and Sollins [4] used
transport-level features (e.g., round-trip time, TCP advertised window sizes) as the ba-
sis for predicting whether a particular TCP connection is carrying spam. Hao et al. [10]
used mostly lower-than-transport traffic features and in particular found that properties
of a single SYN packet from an incoming SMTP connection can effectively identify
spam. These “content-blind” techniques are attractive because they leverage properties
that are hard to manipulate and can help discard spam quickly and at less computational
cost. This previous work raises two sets of pertinent questions:

First, Hao et al. [10] show that single-packet features are effectively detect spam us-
ing models developed via a global email reputation service with about 2,500 subscribing
institutions which provides for a diverse vantage point. However, do these findings hold
for a stand-alone organization that does not subscribe to a global service and hence has
a relatively narrow vantage point? Further, while Hao et al. studied their classifiers as a
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replacement for blacklists, most enterprises will likely use such classifiers in addition
to blacklists. Will packet features still be effective in this case?

Second, Beverly and Sollins [4] find that transport-level features are effective in spam
detection while Hao et al. [10] arrive at a similar conclusion regarding single-packet fea-
tures. Further, in our prior work [13], we observed that though flow features are useful
in discriminating ham from spam, examination of the resulting classifiers indicates that
in many cases they potentially serve as “proxies” for features that could be computed
from a single packet. Given that packet-level features allow one to discard spam more
quickly, a key question is whether the more expensive “flow features”—requiring mul-
tiple packets—add discriminating power to the packet features. Hao et al. [10] consider
a similar question with regard to their packet and message feature sets but do not focus
on flow features.

In this paper, we evaluate these questions with a seven month dataset of emails to
users at the International Computer Science Institute (ICSI). We develop three key find-
ings. First, neither single-packet features nor flow features by themselves are effective
classifiers at the enterprise level. In particular, packet features are much less effective
than suggested in [10]. We identify underlying causes, one of which points to funda-
mental limitations of single packet features for spam detection. Second, while we find
that neither single-packet nor flow features are operationally useful by themselves, we
find their effectiveness increases when combined, indicating that flow features capture
relevant discriminating information beyond packet features. However, even the com-
bination is not as accurate in our setting as reported in prior work. Finally, the above
results hold for two methods we used to analyze the data, giving a preliminary indica-
tion that these results are independent of the choice of the analysis method and reflect
the underlying discriminating power of the features in question.

2 Data and Features

Our dataset includes all incoming email to ICSI from the 11th–18th of each month
over 7 months. We work from packet traces with full packet contents. Some of these
connections are blocked by the DNS blacklists, for which the SMTP transaction is ter-
minated before email content is transmitted to the monitored servers. We exclude these
connections from our analysis, except where noted. We use Bro [14] to re-construct
the messages and derive some of the features. We additionally use SpamFlow [4] and
custom tools to derive certain traffic features. The overall characteristics of our data are
given in Table 1. A more in-depth description of our methodology is given in [13].

Ground Truth. We cannot manually classify messages in our dataset due to both the
scale and the sensitivity of dealing with real users’ email. Therefore, we developed an
automated procedure to label the messages (as fully developed in [13]). Each message
is processed by four content-based spam filters—SpamAssassin [2], SpamProbe [5],
SpamBayes [12] and CRM-114 [1]. With the exception of SpamAssassin—which is
used in non-learning mode—these tools are trained using the 2007 TREC email corpus
[6]. A message is considered spam if any one of the tools flags it as such. Checking
all the ham messages in the corpus involving the fourth author as well a 2% sample of
email marked as spam by at least one of tools reveals this process yields the correct
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Table 1. Data overview: The first row shows the total number of email messages, rows 2–6 show
messages removed from the analysis and the last two rows give the number of hams and spams

May Jun Jul Aug Sep Oct Nov

Msgs. 279K 302K 317K 292K 300K 223K 249K
Outbound 41K 38K 49K 54K 46K 37K 43K
DNSBL 165K 185K 174K 165K 172K 116K 105K

Unknown 11K 21K 31K 20K 24K 12K 10K
No Msg. 9K 7K 8K 6K 7K 7K 7K

Other 5K 8K 8K 5K 7K 9K 8K
Spam 30K 26K 30K 26K 27K 25K 55K
Ham 18K 18K 18K 15K 17K 17K 21K

classification in 98% of the cases with a false positive rate of 1.23% (standard deviation
0.11%), and a false negative rate of 0.55% (standard deviation 0.07%). We evaluated a
majority voting scheme as well, but that procedure was found to be less effective [13].

Packet Features. The upper part of Table 2 lists the single packet features we use. The
geoDistance, senderHour, AS-Spamminess, and NeighborDist features are used in [10]
although we derive the last three differently, as follows. We do not translate sender’s
hour into the ratio of ham to spam that were sent during that hour, because sender’s
hour itself is a numeric feature directly suitable for inclusion in our models. Hao et al.
use the AS number directly as a numeric feature in their work. However, AS numbers
are individual labels which do not lend themselves to meaningful aggregation in models
(e.g., just because ASes 3 and 12 show some common behavior does not mean that
ASes 4–11 share that behavior). Further, if treated as discrete values, the number of
distinct AS values is problematic for classification methods. So we translate sender’s
AS number into a numerical value that reflects the prevalence of spam originating in
the AS. The value for this feature is derived by using all messages in a training sample
to develop a database of the “spamminess” of an AS. If a test message came from an
AS that did not occur in the training set, we assign the average spamminess over all
ASes as the value of this feature for that message.

To calculate the neighbor distance, NeighborDist, Hao, et al. first split their dataset
into 24-hour bins. The NeighborDist is then the average distance to the 20 nearest IPs
among preceding senders in the same bin, or among all the neighbors if there are fewer
than 20 preceding senders [10,9]. This procedure is not suitable for our enterprise en-
vironment because a one-day bin does not provide enough email to accumulate enough
history. Further, since the database is smaller, boundary effects due to insufficient num-
ber of neighbors in the beginning of each bin influence the results greatly. This is illus-
trative of our first contribution (discussed in more detail below): a single edge network’s
myopic view thwarts development of accurate models. To mitigate this effect, we build
IP databases using an entire training sample—consisting of 9/10 of the data for each
month, given we use 10-fold cross validation. We then use this database to produce
NeighborDist values for the training and test data. Note that because of our proce-
dure, each fold of our experiments uses different databases for the AS-Spamminess and
NeighborDist features. We refer to these two features as “database features” below.
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Table 2. Message features. Features marked with H and B are from [10] and [4], respectively.

Feature Description

geoDistanceH The geographical distance between the sender and ICSI, based
on the MaxMind GeoIP database [11].

senderHourH The hour of packet arrival in sender’s timezone.
AS-SpamminessH Num. of spams from AS divided by total msgs. from AS in the training set.
NeighborDistH Avg. numerical dist. from sender’s IP to the nearest 20 IPs of other senders.
OS OS of remote host as determined by p0f tool from SYN packet.
ttl IP TTL field from SYN received from remote host.
ws Advertised window size from SYN received from remote host.
3whsB Time between the arrival of the SYN from the remote host and arrival

of ACK of the SYN/ACK sent by the local host.
fins localB Number of TCP segments with “FIN” bit set sent by the local mail server.
fins remoteB Number of TCP segments with “FIN” bit set received from the remote host.
idleB Maximum time between two successive packet arrivals from remote host.
jvarB The variance of the inter-packet arrival times from the remote host.
pkts sent / Ratio of the number of packets sent by the local host to the
pkts recvd number of packets received from the remote host

rsts localB Number of segments with “RST” bit set sent by the local mail server.
rsts remoteB Number of segments with “RST” bit set received from remote host.
rttv Variance of RTT from local mail server to remote host.
rxmt localB Number of retransmissions sent by the local mail server.
rxmt remoteB Approximate number of retransmissions sent by the remote host.
bytecount Number of non-retransmitted) bytes received from the remote host.
throughput bytecount divided by the connection duration.

Hao et al. also use a feature that requires port scanning the sending IP. This is opera-
tionally problematic as it is time consuming and may trigger security alarms on remote
hosts. Further, while we have historical packet trace data, we do not have historical port
scanning data and mixing current port scans with historical packet traces would be a
dubious experimental procedure. While we deleted or modified several single packet
features we also added several features: senders’ OS, IP’s residual TTL, and TCP’s
advertised window (from prior work [4,13]).

Flow Features. The lower part of Table 2 shows the set of flow features we use to
describe messages. This list is not identical to that used in prior work [4] (with common
features tagged with a B)). We added several features we believe may help discriminate
ham from spam. In addition, we removed three features: packets (in each direction),
cwnd0 and cwndmin. The number of packets is closely related to the bytecount and
pkts sent/pkts recvd features in our list. A more detailed description of these features
can be found in [13].

3 Empirical Evaluation

We use two algorithms in our experiments: decision trees [16] (from Weka [18]) and
Rulefit [7]. Decision trees use the idea of recursive partitioning: at each step, they
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Table 3. Results for packet features with AS-spamminess. The TPR is reported at 1% FPR.

Rulefit Decision Trees
Month Acc TPR AROC Acc TPR AROC

May 0.674 0.483 0.944 0.663 0.464 0.783
Jun 0.573 0.280 0.926 0.564 0.266 0.785
Jul 0.555 0.299 0.940 0.563 0.312 0.805
Aug 0.580 0.338 0.940 0.543 0.280 0.773
Sep 0.560 0.279 0.933 0.586 0.322 0.783
Oct 0.609 0.353 0.938 0.640 0.406 0.779
Nov 0.504 0.315 0.904 0.507 0.319 0.660

choose a feature and use it to split the data until a partition only has examples from a
single class. Rulefit—used in [10]— constructs a linear classifier that uses the primitive
features as well as Boolean tests on feature values as predictors. We perform 10-fold
stratified cross validation on each month’s data by randomly dividing the trace at the
granularity of SMTP sessions into ten folds such that all folds have the same spam/ham
ratios as the entire dataset. We train our models using every set of nine folds and test it
on the remaining folds. Throughout the paper, we consider spam as the target class; thus
our true positive rate (TPR) is the fraction of spam classified as spam and false positive
rate (FPR) is the fraction of ham misclassified as spam. We report (averaged over ten
folds) accuracy, the area under ROC (AROC) [15], an alternative quality measure, and
TPR at a given FPR (0.2% unless stated otherwise), obtained from the ROC graph for
the classifier. The ROC, or receiver operating characteristic, graph relates the TPR and
FPR as a threshold is varied over the confidence of the predictions.

3.1 Packet-Level Features at the Enterprise

Prior work [10] reports that properties of the first SYN packet from an incoming SMTP
connection could be sufficient to filter out 70% of spam with 0.44% false positives
(0.2% when adding features beyond single-packet). However, this result was obtained
using models derived from 2,500 organizations, in a pre-blacklist setting. Our first ques-
tion is whether single-packet features could be similarly effective in a stand-alone en-
terprise mail service using only its own vantage point. To study this, we run decision
trees and Rulefit on each month’s data, using only the single packet features (in the
upper part of Table 2) to describe each message.

We first observed that the unmodified algorithms we used had an average FPR of
almost 20% across the months (18.74% for decision trees and 19.83% for Rulefit), and
our attempts to reduce FPR by thresholding the confidence degraded the TPR to single-
digit percentages. This is clearly not operationally usable. To remedy this, we produce
cost sensitive classifiers, trained to penalize FP errors more than FN errors. We use a
cost ratio of 175:1 in our experiments for decision trees and 20:1 for Rulefit. The results
are shown in Table 3. While the FPR drops significantly compared to the unweighted
case, it does not reach 0.2% for decision trees—even when increasing the cost ratio
significantly. Analysis of the classifiers reveals that the AS-spamminess feature—from
the training data—is chosen as highly predictive in each case. However, it appears to
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be less predictive on the test data, possibly because even using 90% of our data from
a month does not result in a comprehensive database. Thus, even though our results
confirm previous findings (e.g., [17]) that AS origin differs for spam and ham, we find
the utility of this feature in an enterprise environment limited.

Next, we remove AS-spamminess from the analysis, forcing our classifiers to use
other features. The results are shown in the “Rulefit” and “Decision Trees” columns of
Table 4. In this case, we are able to obtain an FPR of 0.2%. We further observe that
though the classifiers produced achieve a low FPR, their TPR is low as well—as low
as 10% and never reaching beyond 36%. This is significantly different from the result
in prior work [10], where a TPR of 70% was achieved at FPR=0.44%, as we discussed
above (while we omit our full results for 0.44% FPR due to space, Rulefit produced
29% TPR in May and at best 16% in other months; without AS-spamminess, the re-
sults improved to 47% in May and 18-31% in other months). Further, the result in [10]
was achieved with unweighted Rulefit by purely thresholding confidence [9], while as
mentioned earlier, this did not produce usable results in our setting. Thus it generally
appears that packet features are significantly less useful in our setting. Further we ob-
serve that both decision trees and Rulefit exhibit quite similar results in our experiments.
Thus the lack of utility of the single packet features is (at least to some extent) not a
function of the learning algorithm they are used with, but purely a consequence of the
limited information they convey about the message in this setting.

One might wonder if it is possible to increase the TPR or decrease the FPR further.
However, this is difficult with just packet features to describe each message. It is intu-
itively plausible that looking at a single packet reveals limited information about the mes-
sage, and one can only construct few features from this information (we use seven). This
set of features generally describes the characteristics of a group of hosts sending email.
But unless the granularity is extremely fine, such a group will sometimes send ham and
sometimes spam. We therefore found many instances where messages were described
by identical packet features but had opposing labels, i.e., some were labeled as spam and
some as ham. For example, in the May data, 4K messages out of 48K total had a counter-
part with the identical feature values but opposite label. This clearly is problematic for any
classifier and may increase the FPR and lower the TPR. On the other hand, if granularity
is decreased (e.g., imagine using the IP address—with a range of 4 billion values—as a
feature), then significantly more data will need to be collected to train a useful classifier.
This appears to be a fundamental limit of single packet features for spam detection.

Hao et al.’s work evaluated the utility of packet features in a pre-DNS blacklist set-
ting. Although using such a blacklist is natural and common in an enterprise setting,
we perform a similar analysis on our data to establish a direct comparison. This ex-
periment follows Hao et. al.’s methodology–using the same classifier (Rulefit) and re-
ports TPR at the same FPR (0.44%)—except it employs the cost-sensitive classifier
with cost ratio of 100:1, as lower cost ratios degraded FPR to non-usable levels. In
this case, we include messages that were blocked by ICSI’s operational DNS blacklist
setup (“DNSBL”+“Ham”+“Spam” in Table 1) since their first SYN packet is still avail-
able for analysis. We label all messages blocked by the DNS blacklist as spam. In this
pre-blacklist experiment we train and evaluate on all messages including those blocked
by the DNS blacklist (the results are shown in the “Pre-blacklist” column in Table 4),
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Table 4. Results for packet features without AS-spamminess. The TPR is reported at 0.2% FPR
for the post-blacklist and at 0.44% for the pre-blacklist experiments.

Post-Blacklist(Rulefit) Post-Blacklist(Decision Trees) Pre-Blacklist (Rulefit)
Month Acc TPR AROC Acc TPR AROC Acc TPR AROC

May 0.600 0.359 0.909 0.594 0.348 0.768 0.824 0.808 0.967
Jun 0.492 0.139 0.882 0.454 0.072 0.652 0.346 0.290 0.964
Jul 0.478 0.171 0.906 0.438 0.108 0.666 0.467 0.421 0.962
Aug 0.506 0.216 0.905 0.479 0.172 0.660 0.714 0.691 0.969
Sep 0.509 0.189 0.892 0.497 0.169 0.663 0.644 0.612 0.967
Oct 0.515 0.191 0.901 0.488 0.145 0.683 0.520 0.462 0.957
Nov 0.421 0.197 0.884 0.436 0.218 0.826 0.709 0.670 0.943

while in all other experiments, we train and evaluate on messages that passed through
and have not been filtered out by the DNS blacklist. We observe that the “Pre-blacklist”
results vary significantly across months. For some months, our results are comparable
to, even exceed, the 70% TPR reported by Hao et al. However, for other months, we find
the TPR is far lower (e.g., 29% in June). Such variability reduces the operational utility
of packet features for spam detection. While the reason for the variability is unclear,
one possibility is that it is due to the enterprise’s vantage point. Another possibility is
that it is a fundamental property of packet features, and was not observed by Hao et al.
since their data was collected over a period of only 14 days.

3.2 Effect of Flow-Level Features

Given the limited accuracy of packet features, we next consider whether adding flow-
level features to the message description adds value by making the classifier more accu-
rate. To check this, we compare two settings. First, we use only the flow features in the
lower half of Table 2 to classify messages. Then we add the flow features to the packet
features (without AS-spamminess) and use the full set in the same way. For these exper-
iments, we use decision trees as the learning algorithm. This is because our prior results
show that any patterns we see generalize to Rulefit as well, yet Rulefit is significantly
more expensive to run (a cross validation runtime of hours, compared to a few seconds
for trees). Further, trees are easier to interpret. The results are shown in Table 5.

Comparing these results to the results in Table 4, we observe that using the flow fea-
tures by themselves improves TPR at a given FPR as against using the packet features
by themselves. (In other experiments, not shown here, we also found that including
AS-spamminess in the packet features reversed this trend, so that packet features had a
higher TPR at a given FPR; however, as stated above, in that case the comparison was
made at 1% FPR since the packet features with AS-spamminess do not achieve 0.2%
FPR.) Further, we observe that using all of the features generally achieves a higher TPR
at a given FPR as compared to either feature set on their own. This indicates that these
two feature sets capture different kinds of information about packet traces.

Even though our results show that flow features can improve spam detection rates
in conjunction with packet features in our post-blacklist, enterprise setting, the absolute
TPRs do not reach the 70% found in the setting of prior work [10]. A question is whether
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Table 5. Results for decision trees using flow features (left), all features (without AS-
spamminess) (right). TPR is reported at 0.2% FPR.

Flow Features All Features
Month Acc TPR AROC Acc TPR AROC

May 0.583 0.330 0.709 0.632 0.410 0.759
Jun 0.555 0.244 0.689 0.546 0.230 0.686
Jul 0.547 0.281 0.701 0.564 0.308 0.748
Aug 0.538 0.266 0.691 0.576 0.327 0.754
Sep 0.558 0.270 0.681 0.582 0.309 0.711
Oct 0.488 0.145 0.633 0.529 0.215 0.675
Nov 0.417 0.191 0.823 0.449 0.236 0.788

Table 6. Left: Average accuracy, TPR at 0.2% FPR and AROC when only one single-packet
feature is used. Right: Average accuracy, TPR and FPR when one single-packet feature is left
out.

Use one feature Use all but one feature
Feature Accuracy TPR AROC Accuracy TPR AROC

All single-packet 0.594 0.348 0.768 0.594 0.348 0.768
geoDistance 0.473 0.153 0.667 0.546 0.271 0.746
senderHour 0.378 0(FPR=0) 0.500 0.595 0.35 0.769
NeighborDist 0.378 0(FPR=0) 0.519 0.522 0.233 0.704
OS 0.378 0(FPR=0) 0.500 0.597 0.353 0.770
ws 0.38 0.004 0.622 0.596 0.352 0.768
ttl 0.378 0(FPR=0) 0.500 0.564 0.30 0.721

an effective pre-filter can be constructed using such a classifier, so that only messages
that cannot be classified with high probability are sent to computationally expensive
content filters. We are currently investigating this question.

3.3 Utility of Individual Features

Next, we examine which packet and flow features are most useful in discriminating
between ham and spam. We consider three situations. First, we look at the accuracy of
our classifiers when only a single packet feature is used, and when we leave a single
packet feature out from all the packet features (results in Table 6). Next, we start with
the full set of packet features and add flow features one at a time to determine the value
added by each flow feature. Finally, we look at what happens if we start with the full
feature set and leave one flow feature out (results in Table 7).

Table 6 shows geoDistance to be the most useful packet feature. The other packet
features, when used in isolation, result in zero or near zero TPR. This is because they
produce an empty (or nearly empty in the case of ws) tree that always predicts “ham” in
order to minimize the cost with a high FP cost. Further, only geoDistance and Neighbor-
Dist result in large drops in TPR when they are left out of the feature set. This indicates
that though NeighborDist is not useful by itself, it has some discriminating power when
used in conjunction with other packet features. For the other packet features, the TPR
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Table 7. Left: Average accuracy, TPR at 0.2% FPR and AROC when all single-packet features
and only one flow feature are used. Right: Results when one flow feature is left out, and all other
flow and single-packet features are used.

Use one feature Use All but one features
Feature Accuracy TPR AROC Accuracy TPR AROC

All packet and flow features 0.632 0.410 0.759 0.632 0.410 0.759
All single-packet features 0.594 0.348 0.768 0.594 0.348 0.768
3whs 0.586 0.336 0.720 0.643 0.427 0.784
fins local 0.611 0.376 0.772 0.615 0.382 0.729
fins remote 0.598 0.354 0.770 0.628 0.403 0.759
idle 0.597 0.353 0.770 0.633 0.411 0.759
jvar 0.594 0.348 0.771 0.632 0.410 0.759
pkts sent/pkts received 0.599 0.356 0.770 0.618 0.386 0.759
rsts local 0.595 0.349 0.768 0.632 0.410 0.759
rsts remote 0.595 0.349 0.770 0.623 0.395 0.788
rttv 0.606 0.367 0.770 0.618 0.386 0.751
rxmt local 0.596 0.351 0.768 0.629 0.404 0.759
rxmt remote 0.595 0.350 0.769 0.624 0.396 0.751
bytecount 0.598 0.354 0.768 0.632 0.409 0.759
throughput 0.607 0.369 0.793 0.625 0.398 0.729

stays the same or increases slightly when they are dropped, indicating that they do not
provide much added value beyond the remaining features. In particular, our results do
not show senderHour to be useful for spam detection despite previous findings that
spammers and non-spammers display different timing properties [8].

From the results in Table 7, we observe that adding any one flow feature to the
set of single packet features improves the performance of the classifier, though by a
small margin. In particular, fins local, rttv and throughput provide the greatest addi-
tional discriminating power beyond the single packet features. Further, fins local, rttv
and pkts local/pkts remote result in the largest drops in performance when they are
dropped, indicating that they are also useful in conjunction with the other features (i.e.
no other feature captures their information). Some flow features such as rsts local and
3whs either do not change the TPR or increase it when they are dropped, indicating that
they do not provide much added value beyond the remaining features. This contradicts
prior results [4,13] that found that 3whs was the most useful in discriminating ham from
spam, if only flow features were used. However, it appears that the information in 3whs
is subsumed by the other features, perhaps by packet features such as geoDistance.

4 Summary

This paper addresses two questions: whether an organizational mail server can detect a
sizable amount of spam based on the first packet of an incoming connection, and the rel-
ative effectiveness of single-packet and flow features in detection. Our primary finding
indicates that from an organizational perspective, single-packet features are much less
effective than was observed in prior work. “Database” features such as AS-spamminess
and sender’s neighborhood density are less effective in this situation, and the limited
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information conveyed by packet features leads ambiguity and hence non-useful mod-
els. Also, adding flow features to packet features improves accuracy, but the net effect
is still modest.

Some questions still remain. While we find that network features may not be useful in
the enterprise setting, it would be useful to study other such organizations to strengthen
our findings. Finally, though network features only filter 20-40% of post-blacklist spam,
avoiding content-based processing of these messages may still be a net win for mail
servers, which we are quantifying in ongoing work.
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Abstract. We present a method for determining whether a Twitter account ex-
hibits automated behavior in publishing status updates known as tweets. The ap-
proach uses only the publicly available timestamp information associated with
each tweet. After evaluating its effectiveness, we use it to analyze the Twitter
landscape, finding that 16% of active accounts exhibit a high degree of automa-
tion. We also find that 11% of accounts that appear to publish exclusively through
the browser are in fact automated accounts that spoof the source of the updates.

1 Introduction

Twitter is a microblogging service that allows its members to publish short status up-
dates known as tweets. Over 180 M visitors interact with Twitter each month, generating
55 M tweets/day [13]. User accounts and their status updates are public by default, ac-
cessible by the general public via Twitter’s two application program interfaces (APIs).
The large number of users, low privacy expectations, and easy-to-use API have made
Twitter a target of abuse, whether relatively benign in the form of spam and disruptive
marketing tactics [5], or malicious in the form of links to malware [17] and phishing
schemes [8]. Often abuse on Twitter employs automation for actions such as publishing
tweets, following another user, and sending links through private messages.

Prior research on Twitter has studied the properties of the social network [10], char-
acteristics of users and their behavior [11], and social interactions between users [9], but
not specifically regarding the issue of automation on Twitter (other than our own use
of the technique we develop here to assist with finding Twitter “career” spammers [7]).
In this work we present a technique for determining whether a Twitter account ap-
pears to employ automation to publish tweets, as manifest in fine-grained periodicities
in tweet timestamps. Our approaach has the benefit of being able to find legitimate
accounts compromised by spammers who employ automation. We evaluate the test’s
effectiveness and describe its weaknesses, including the ability for determined adver-
saries to evade it by directly mimicing human posting patterns. Finally, we examine
various facets of Twitter as a service and discuss the prevalence of automation in each.

2 Background and Measurement Data

Tweets are short messages (limited to 140 characters) posted to a Twitter account using
a browser, a stand-alone application, an API, or SMS messages. Information associated
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with each tweet includes the time at which the update was created and the source by
which the status appears to have been posted. Users on Twitter can subscribe to the
tweets of another account by choosing to follow that account. The user will then receive
that account’s tweets through the main “timeline” prominently displayed on the Twitter
website and via separate applications, or via SMS messages. Accounts have two main
privacy settings: Public accounts have their content visible to the general public regard-
less of whether the visitor is logged in or not, while protected accounts can only be
viewed by users who have had follow requests accepted by the account owner.

Twitter’s “Verified Account” program allows people and companies to show that
their account in fact belongs to them. Twitter only makes this program available to a
modest number of accounts that deal with mistaken identity or impersonation problems;
at the time of this writing there are 1,738 verified accounts.

Twitter is a real time communication service, and at any given time there may be cer-
tain topics that are widely discussed among members in the community. These trending
topics are featured prominently to provide users with an up-to-date glimpse at what
the community is talking about. Twitter uses algorithms to constantly determine these
popular topics, publishes them to the website, and makes them available through APIs.

Twitter provides two APIs through which developers can interact with the service.
The “REST API” provides methods for reading and writing data to the main service,
while the “Search API” handles queries for searching tweets and obtaining trending
topics. The API can be accessed through basic authentication using an account’s user-
name and password, or can be accessed through OAuth [2], allowing users to provide
third-party applications with access to their data stored on Twitter.

For our purposes we term any account that publishes a significant portion of its
tweets automatically using a computer program as a bot. We refer to tweets published in
real-time by a human as manual, or organic, tweets.

Data Used in the Study. We draw upon public data associated with accounts and status
updates. We evaluated 106,573 distinct accounts using data from 3 weeks in April 2010.
Since we rely on public information, we only examine accounts with “public” privacy.
For each account, the REST API can return the latest 3,200 tweets, with 200 updates
returned per call (we examined a maximum of 300 tweets per account, to avoid skew
due to API timeouts). Tweets returned by the API include a timestamp indicating when
Twitter received the tweet (1 sec precision), the account’s followers and privacy settings,
the client program from which the tweet apparently originated, and whether the account
has been “verified.”

3 Detecting Tweet Automation

We base our detector on the premise that highly automated accounts will exhibit timing
patterns that do not manifest in the tweet times of non-automated users. In particular,
a human user posting updates to Twitter organically is most likely indifferent towards
what second-of-the-minute or what minute-of-the-hour they post updates.1 Therefore,
an organic sequence of update times should appear to be randomly drawn from a uni-
form distribution across seconds-of-the-minute and minutes-of-the-hour. The upper left

1 This will certainly be the case if their posting is well-modeled as a Poisson process.
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Fig. 1. Timing plots for different Twitter accounts. Each point represents a single tweet. The
x-axis gives the tweet’s minutes-in-the-hour and the y-axis the seconds-in-the-minute. The upper
left plot passes our χ2 test for expected uniformity, presumably reflecting organic behavior. The
others all fail, exhibiting different patterns of non-uniformity, except for the lower right, which
exhibits hyper-uniformity, too good to be produced by a random-uniform process.

plot in Figure 1 shows a typical timing graph for human-generated tweet times. While
not completely uniform, they lack noticeable groupings or patterns.

Automated accounts, on the other hand, may exhibit timing distributions that lead to
detectable non-uniformity (or excessive uniformity) due to a number of reasons. First,
automation is often invoked by job schedulers that execute tasks at specified times or
intervals, and these are usually specified in round quantities such as minute-granularity.
Furthermore, Twitter imposes a limit of 1,000 tweets/day (as well as finer-grained limits
for smaller units of time), so there is no apparent benefit in scheduling automated tweets
more often than say one a per-minute basis. Given scheduling at minute-granularity,
the seconds-within-the-minute when such tweets appear are unlikely to be uniformly
distributed across the minute. The upper middle plot in Figure 1 shows a timing graph
of a user who exhibits this type of automated behavior. While the times are distributed
somewhat uniformly for minutes-of-the-hour, the user clearly tends to publish updates
towards the beginning of the minute.

If scripts publish tweets at scheduled times in each hour, then we will find tweet
times clustering at those scheduled minutes. On the other hand, if a script publishes
updates on a per-minute basis, it may exhibit a timing pattern that is too uniform, which
also distinguishes it from organic activity. The upper right plot in Figure 1 shows the
timing graph of a user that publishes tweets every 5 minutes in the hour; the lower left
plot shows an account that automatically posts updates at the beginning of the hour; and
the lower middle plot shows an account that publishes nearly all of its updates during
two particular times of the hour.
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Non-uniform timing can also arise from delay-based automated behavior: scripts
programmed to pause for a certain amount of time after each tweet. Delays that always
run the script at the same minutes-of-the-hour will manifest as either extremely non-
uniform across minutes-of-the-hour, or, in rare cases, too uniform across minutes-of-
the-hour. This latter arises when run times creep into delay-based automation, meaning
that small delays that should lead to non-uniformity instead appear to exhibit excessive
uniformity. The lower right plot in Figure 1 shows the timing graph of an account that
is perfectly uniform across seconds-of-the-minute and minutes-of-the-hour due to what
appears to be slowly drifting times. Thus, we can conclude the presence of automation
if we find tweet times either not uniform enough, or too uniform.

Testing for Automated Behavior. We use Pearson’s χ2 test to assess whether a set of
update times is consistent with the uniform second-of-the-minute and minute-of-the-
hour distributions expected from human users. The p-value returned by the χ2 test is
the probability of the observed distribution of times arising if the account is indeed
publishing updates uniformly across seconds-of-the-minute or minutes-of-the-hour. If
the probability is too low, it indicates that the account exhibits non-uniform behavior in
choosing which second-of-the-minute or minute-of-the-hour to publish a post; likewise,
if the probability is too high, it suggests that the account is using a mechanism that
causes it to publish tweets with a level of uniformity that is unlikely to be observed
from natural human use.

For our test we use a two-sided significance level of 0.001, or 0.1%, as the threshold
for failing the test. We chose this level after preliminary examination of a small subset
of the accounts. We selected a quite low level to avoid incurring many statistical false
positives due to the large volume of accounts that we examine. Thus, we expect only
2 in 1,000 human accounts with uniform distributions to fail each test.

A common rule of thumb for Pearson’s χ2 test is that 80% of bins should have an
expected count of at least 5 [6]. Therefore if we have 300 timestamps for an account we
use 60 bins for assessing seconds-of-the-minute and minutes-of-the-hour. If we have
fewer, then we use only 6 bins, unless the account has fewer than 30 tweets, in which
case we exclude it due to insufficient data. Eliminating such accounts does not signif-
icantly impair our study as we presume that the interesting uses of automation occur
when accounts regularly tweet.

Automated accounts can exhibit non-uniform timing patterns for both seconds-of-
the-minute and minutes-of-the-hour, both indicative of automation. Therefore, we per-
form a separate χ2 test for each, with a failure of either indicating automation.

4 Evaluating the Test

An important issue is that we lack ground truth regarding whether accounts are truly
automated or organic, and also whether automation reflects unwanted activity. However,
we form a partial assessment as follows. From an initial evaluation of 18,147 accounts
we found that 975 accounts had seconds-of-the-minute p-values less than 0.001, and 15
accounts had p-values greater than 0.999. The same figures for minutes-of-the-hour are
2,599 p-values less than 0.001 and 76 greater than .999.



106 C.M. Zhang and V. Paxson

We manually examined hundreds of timing graphs to confirm they exhibited clear
non-uniform or hyper-uniform behavior, and randomly selected dozens of accounts for
manual verification. (Accounts that did not visibly manifest non-uniform behavior, but
were flagged by the test, generally turned out to indeed use third party applications that
automate tweets.) This latter included an examination of the user’s profile and their first
page of recent status updates. In nearly all cases we could determine that the account
exhibited strong evidence of likely automation not reflecting social human use, based
on status updates (i.e., number of updates, sources, frequency, and contents) and other
features of the account’s Twitter page (i.e., user icon, background image, screenname,
number of followers and friends, and website URL). See below for further discussion
of our evaluation of false positives and false negatives.

This assessment gives us confidence that a significance level of 0.001 can effectively
capture accounts that exhibit anomalous timing behavior. However, we also note that
such a stringent significance level can cost us the opportunity of observing hybrid ac-
counts that publish with a mix of manual and automatic updates. Some hybrid users
may utilize different applications for these two kinds of updates, allowing us to sepa-
rate these sources in order to evaluate our test. For example, one hybrid we identified
used the third-party applications TweetDeck [3] and HootSuite [12], both applications
that provide an interface for reading and creating tweets. However, TweetDeck does not
offer functionality for automating tweet creation, while HootSuite provides a schedul-
ing feature. This account’s timing graph exhibits distinct periodicity. Testing only the
tweets posted from TweetDeck, however, does not exhibit such patterns (and passes
the χ2 test), while tweets originating from “HootSuite” exhibit updates at five minute
intervals, failing the χ2 test.

False Positives. A false positive occurs an account fails our test but is in fact organic.
Along with statistical fluctuations (which will contribute about 2 false positives per
1,000 accounts we assess), these can arise due to legitimate organic use that deviates
from uniform timing. For example, a student who only publishes Twitter updates in
between class periods may fail our test because their tweets will tend towards certain
minutes-of-the-hour.

An example of an account that fails our test but otherwise appears to be organic
is the account of television personality Phil McGraw, also known as Dr. Phil [1]. Af-
ter inspecting the account, we found that it consistently publishes one update per day
shortly before the show begins to remind followers to watch. Although these updates
are manually generated, they are skewed towards the first half of the hour.

While we discovered a few false positives along these lines, we note that all of them
concerned accounts that failed on minutes-of-the-hour for the type of reason described
above. We have not discovered any apparently legitimate human account that exhibits
anomalous timings for seconds-of-the-minute.

False Negatives. On the other hand, our false negative rate is likely considerably higher
for a number of reasons. First, as discussed above, hybrid behavior can mask automated
posting due to blending it with organic posting. We could potentially detect more such
instances by using a less stringent significance level, but at the cost of more statistical
false positives. Second, automated accounts that exhibit uniformity in some fashion
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will of course be missed by our test. In particular, one form of this can arise from
copycat automation, i.e., an automated account that posts in reflection of non-automated
timings. For example, an automated accounts triggered by an RSS feed will reflect the
timings of the source rather than a specific schedule.

Evasion. One can easily design an automated account to evade the χ2 test by uni-
formly spreading its tweets across seconds-of-the-minute and minutes-of-the-hour. For
example, the account could post whenever a known-organic account posts; or simply
generate exponentially distributed interarrivals. There does not seem to currently ex-
ist any incentive for automated accounts to be intentional about exhibiting uniformity.
However, if Twitter adopts a test like ours as a countermeasure to detect possible abuse,
then accounts may begin evading the test in this way.

5 Analyzing Twitter’s Landscape

Using the χ2 test, we analyzed public tweets and accounts to determine the prevalence
of automated accounts on the service and how the use of automation varies with respect
to different factors. We sampled the public timeline of global tweets via the REST API,
which makes available the 20 most recent tweets, refreshed every minute. We were
therefore able to obtain a sample of 1,200 tweets per hour. In addition, we used the
Search API to query for samples based on keywords and to obtain trending topics. For
a range of keywords, we performed a search every minute and recorded the accounts
behind the 10 most recent results, for which we then analyzed the posting account. We
sampled search results for between two and four days for each keyword. In addition to
the constantly changing public timeline and sampled search results, we also obtained
accounts from various static lists, including verified users, most-followed users, and
followers of the most-popular account, collecting up to 300 tweets for each account.

For each account we have six possible dispositions. Passed accounts pass the χ2 test
while Failed accounts do not. Insufficient accounts do not have the 30 status updates
necessary to perform the test. Protected accounts have their privacy settings set to pro-
tected, so we could not test them. Suspended accounts have been suspended by Twitter
for reasons such as spamming and abusing the API. These accounts are rendered com-
pletely inaccessible through the API. However, their user IDs may persist for a time
in various places on Twitter, and therefore may be included in our analysis. Not Found
accounts no longer exist on Twitter. When an individual or business deactivates their
Twitter account, the API returns an error when requesting data from that account. How-
ever, the user ID may persist on various pages of Twitter for up to 30 days, and may be
detected by our analysis.

Table 1 summarizes our results. We note that accounts might exhibit varying degrees
of automation depending on temporal factors such as time of the day or day of the
week. For example, an account may syndicate news from a news source that publishes
more heavily during the waking hours of the day, or may publish from a source that is
inactive on weekends. Therefore, a more accurate assessment of automated activity on
Twitter may monitor activity over the course of weeks or months in order to determine
average levels of automation. Our present analysis does not take these considerations
into account, which we leave for future work. Finally, we emphasize that our estimates
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Table 1. Automation testing results for different facets of the Twitter landscape (lower bounds)

Facet Total Passed Failed Insufficient Protected Suspended Not Found
Public timeline accounts 19,436 15,330 2,817 1,176 66 47 0

Public timeline tweets 18,331 14,790 2,475 983 59 24 0
Verified users 1,738 1,531 113 66 17 6 5

Most followed (all) 1,000 862 121 15 1 0 1
(verified) 400 373 25 2 0 0 0

(not verified) 600 489 96 13 1 0 1
Trending topics 14,230 13,260 617 286 58 8 1

likely reflect lower bounds, as we will overlook both low-rate automation (too few
samples to apply the χ2 test) and automation that already employs randomization to
avoid appearing regular.

Public Timeline. The Twitter public timeline provides a sample of the thousands of
tweets being sent via the service each minute. Thus, we can use it to estimate the preva-
lence of automation for public statuses on Twitter overall. The Public timeline accounts
line of Table 1 reflects a sample from two days in April 2010. Of the 19,436 accounts
examined during this period, we could test 18,147 using our χ2 method. We find that
16% of the accounts publishing tweets exhibit discernible automation.

A study conducted in August 2009 analyzed 11.5 million accounts, classifying those
publishing >150 updates per day as bots [15]. The report concluded that at least 24%
of all tweets were generated by automated bots. Around this time, Twitter began to
focus on reducing spam in the service, and in March 2010 published the claim that the
tweet spam rate had fallen below 1% [5]. To test these claims, we also ran a separate
analysis (on different, somewhat smaller data) of the public timeline weighted by tweet
rather than by account (Public timeline tweets row). We find that 14% of public tweets
come from automated sources, suggesting that Twitter has indeed reduced the amount of
unwanted automation on the service (if the methodology used by [15] has an accuracy
comparable to ours). However, unless the vast majority of these automated tweets are
not spam, our results also indicate that the problem of spam is still far from being solved.

Verified Users. That verified accounts are often owned by celebrities and popular com-
panies (and Twitter manually approves accounts in the program) argues against these
accounts exhibiting strong automation in their tweets. A heavily automated account
may reflect badly on fans and customers, and would likely be harder to have approved
by Twitter. The Verified users row in Table 1 shows the results of our analysis of these
accounts. We find that 6.9% failed our test—the amount of automation seen in verified
accounts is indeed less than the proportion in the general Twitter population. Among
the verified accounts that failed were: (1) popular bands reminding fans of concerts
and TV appearances, (2) TV shows reminding their fans of episodes each day, (3) po-
litical figures and parties publishing links to news articles, (4) journalists publishing
links to their organizations, (5) non-profit organizations sharing links to issues around
the world, and (6) government organizations publishing news and alerts to the public.
Thus, common reasons for verified accounts failing our test were that they syndicated
news, shared links, or sent reminders to followers in an automated way.
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Table 2. Profiles of different sources used to publish tweets

Overall Automation Bot Bot Organic Organic
Source Use Rate Rate Exclusivity Rate Exclusivity

Web 31% 6.4% 11.8% 85% 37% 82%
Ubertwitter 9.4% 2.3% 11.9% 87%
Twitterfeed 7.5% 62.0% 27.8% 94% 3.7% 95%
Tweetdeck 6.6% 3.9% 1.5% 76% 8.2% 77%
REST API 5.9% 60.0% 21.0% 96% 3% 92%
Echofon 4% 2.1% 5% 77%
Mobile 2% 1.9% 2.5% 73%
Tweetie 1.6% 3.0% 2% 73%
Txt 1.6% 2.6% 2% 75%
Hootsuite 1.4% 51.0% 4.1% 84%

Most Followed Users. Although Twitter does not publish a list of most-followed users,
certain 3rd-party websites do. Using the list provided by TwitterCounter [16], we an-
alyzed the 1,000 most-followed accounts on Twitter. We find that 12% of the testable
accounts failed our χ2 test (Most followed (all) row). Only 6.3% of the verified accounts
(next row) failed, slightly lower than the 6.9% found when analyzing all verified Twitter
accounts. Of the remaining 600 not-verified accounts, significantly more (16%) were
likely to be automated. Manually examining the 96 non-verified accounts that failed,
many of them were news websites, blogs, and TV shows that use Twitter to broadcast
new content to followers.

Trending Topics. Twitter publishes a constantly updated list of the 10 most popular
words or phrases at any given time, providing users with a realtime glimpse at the
topics being discussed by the Twitter community. Since many users follow trending
topics by reading the latest tweets that contain those particular terms, it would seem
profitable for automated accounts to target currently trending topic keywords. To test
the trending topics for automation, we performed a search for the first trending topic
once per minute, and tested the accounts behind the resulting tweets. As the results
Table 1 show, we found that only 4.7% of accounts participating in the trending topic
discussions on Twitter exhibited strongly automated behavior—significantly less than
the 16% automation found in the public timeline.

This lower rate of automation may indicate that Twitter is careful in preventing au-
tomated tweets from polluting the trending topic discussions, since the tweets posted
in response to trending topics are frequently viewed by both members and visitors.
Alternatively, perhaps the number of human users is simply proportionally higher in
searches for trending topics compared to the public timeline, or spammers have not
widely adopted this tactic yet.

Keyword Search Results. Using the Twitter Search API, we evaluated the accounts be-
hind the search results for 24 keywords that we believed might result in varying levels
of automation. (Our aim here is to obtain a qualitative sense of automated-vs.-non-
automated topics, rather than a representative assessment.) Sorted in descending order
by the proportion of testable accounts that appear automated, the words were: mortgage
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(48%), jobs, insurance, news, discount, free, money (31%), click, sex, poker, photogra-
phy (24%), video, download, bot, video, viagra (17.5%), porn, school, tv, bieber, jesus
(8.3%), happy, bored, god (5.0%).

Most keywords tested had automation rates higher than the global 16% automation
rate, particularly keywords commonly associated with spam (“discount”, “free”, “sex”,
”poker”, and “download”). Likewise, keywords with lower automation rates often re-
flect terms not commonly associated with spam (“jesus”, “happy”, “bored”, ”god”). It is
surprising though to find that “photography” had a higher rate of automation than “via-
gra”. However, manually searching these keywords indeed reveals a significant amount
of automated linking to photography-related articles and websites, while “viagra” often
appears in lighthearted messages or jokes posted organically.

A more comprehensive study might directly analyze the frequencies of words that
appear in the updates of automated/organic accounts. We leave this for future work.

Tweet Sources. For each account tested, we also analyzed the source appearing most of-
ten in that account’s tweets. Table 2 summarizes the usage of the most popular sources.
Overall Use is the percentage of tweets we examined that used the given source. Au-
tomation Rate is the proportion of those tweets belonging to accounts that we identified
as automated. The next two columns reflect what proportion of automated accounts
used the given source, and of those, how many used only that source (“Exclusivity”).
The final two columns summarize the same information for non-automated accounts.
Empty table entries reflect that the given entry corresponded to marginal activity (not
in the top ten sources for either bots or organic activity, respectively).

We see sharp differences in usage patterns depending on the sources employed. Ac-
tivity from Twitterfeed, REST API, and Hootsuite is very often automated, while other
sources exhibited automation rates far below the overall average rate of 16%. Indeed,
many of the services favored by organic users (e.g., UberTwitter [4], TweetDeck [3],
and Echofon [14]) do not offer any scheduling features. This suggests that consider-
ation of publishing source might prove beneficial for identifying unwanted/malicious
Twitter activity. However, just about all of the top sources are also used organically, so
we cannot simply filter by source without considering other factors.

Based on these findings, a possible way to improve our testing would be to examine
the publishing times of each of an account’s sources separately. Doing so might readily
identify both hybrid accounts and hijacked accounts for which an attacker usurps use
of what is otherwise a legitimate, organic account.

6 Summary

We have presented a method for detecting instances of automated Twitter accounts us-
ing only the publicly available timestamp associated with each of an account’s tweets.
We find that automated accounts exhibit distinct timing patterns that we can not only
observe visually, but also detect in a mechanized fashion using Pearson’s χ2 test.

Testing 19,436 accounts from the public timeline, we find 16% exhibit highly auto-
mated behavior, and that 12% of automated accounts spoof their tweet source as ”web,”
apparently to appear organic. (Note that these at best reflect evasive postings, because
legitimate automation would presumably use the API rather than a web browser.) We
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also find that verified accounts, most-followed accounts, and followers of the most-
followed account all have lower automation rates than the public timeline (6.9%, 12%,
and 4.2%, respectively). Trending topic search results were found to have a lower rate
as well, with 4.7% automation. We also find that keywords more associated with spam
generally have higher automation rates than other keywords. We also examined the
apparent source of tweets, finding that automated sources utilize services that provide
automation and scheduling, while organic users often use Twitter’s web interface or
other non-automated services.

A practical application of our methodology could be to use it in conjunction with
existing spam prevention measures such as community flagging of inappropriate or
abusive accounts. The ability to quickly assess that an account operates in an automated
fashion would allow operators to expedite paying attention to such complaints, allowing
them to more quickly and effectively combat cases of serious spam and other abuse.
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Abstract. Port scans are continuously used by both worms and human
attackers to probe for vulnerabilities in Internet facing systems. In this
paper, we present a new method to efficiently detect TCP port scans in
very high-speed links. The main idea behind our approach is to early dis-
card those handshake packets that are not strictly needed to reliably de-
tect port scans. We show that with just a couple of Bloom filters to track
active servers and TCP handshakes we can easily discard about 85% of
all handshake packets with negligible loss in accuracy. This significantly
reduces both the memory requirements and CPU cost per packet. We
evaluated our algorithm using packet traces and live traffic from 1 and
10 GigE academic networks. Our results show that our method requires
less than 1 MB to accurately monitor a 10 Gb/s link, which perfectly
fits in the cache memory of nowadays’ general-purpose processors.

1 Introduction and Related Work

Every day both individuals and companies depend more on the reliability and
safety of Internet connections. However, even today, entire industry branches or
countries can be a target of an attack (e.g., Stuxnet [3]). Most attacks start with
a recognition phase, where an attacker looks for attack vectors in one or several
victim systems. Port scanning is arguably the most widely used technique by
both worms and human attackers to probe for vulnerabilities in Internet systems.

Given the large implications in network security, several previous works have
addressed the problem of how to efficiently and reliably detect port scans.
Most proposed solutions require tracking individual network connections (e.g.,
[6,15,14]). This approach however does not scale to very high-speed links, where
the number of concurrent flows can be extremely large. For example, a naive
solution based on a hash table would require large amounts of DRAM (e.g., to
store flow identifiers) and several memory accesses per packet (e.g., to handle
collisions). Nevertheless, access times of current DRAM technology cannot keep
up with worst-case packet interarrival times of very high-speed links (e.g., 32 ns
in OC-192 or 8 ns in OC-768 links).

Traffic sampling is considered as the standard solution to this problem. Un-
fortunately, recent studies [7,5] have shown that the impact of sampling on
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portscan detection algorithms is extremely large. Another alternative is the use of
probabilistic, space-efficient data structures, such as Bloom filters [16,11], which
significantly reduce the memory requirements of detection algorithms. This way,
the required data structures can fit in fast SRAM, which has access times below
10 ns. Although we are not aware of any survey paper covering the use of Bloom
Filters for portscan detection, [11,15] provide a good overview on the work in
this area.

In this paper, we present a practical method to detect TCP port scans in very
high-speed links that follows this second approach. A key assumption behind our
method is that, apart from data traffic, we can even discard most TCP handshake
packets and still be able to successfully detect port scans.

First, we ignore legitimate handshakes using a whitelist of active server IP-
port pairs. Second, we discard those failed connections that do not correspond
to scans, such as TCP retransmissions, packets from other network attacks (e.g.,
SYN floods) or configuration errors (e.g., P2P nodes down or misconfigured
domain servers). In order to discard handshake packets, we use two Bloom fil-
ters. Surprisingly, we show that this simple solution can drop about 85% of all
handshake packets with negligible loss in accuracy. This significantly reduces the
number of memory accesses, CPU and memory requirements of our algorithm.

After filtering most part of the traffic, we still need to track the number of
failed connections for the remaining sources. Although there is a potentially very
large number of active sources, most of them will fail very few handshakes, while
scanners will fail many. Thus, the detection problem can be seen as the well-
known problem of finding the top-k elements from a data stream [8]. In order
to efficiently detect port scans, we use an efficient top-k data structure based on
the Stream-Summary proposed in [9], which has a constant memory usage.

We evaluated our algorithm in 1 and 10 GigE academic networks [1]. Our
results show that our method requires less than 1 MB to accurately monitor a
10 Gb/s link. Therefore, it can be implemented in fast SRAM and integrated in
router line cards, or reside in cache memory of general-purpose processors.

The rest of this paper is organized as follows. Sec. 2 describes our portscan
detection algorithm in detail. Sec. 3 evaluates the performance of the algorithm
with both packet traces and live network traffic. Finally, Sec. 4 concludes the
paper and outlines our future work.

2 Detection Algorithm

Port scans are characterized by a simple feature: they attempt to connect to
many targets but only get few responses. This imbalance in the number of at-
tempts and successes is the basis of several portscan detection algorithms. A
portscan detection algorithm can then be divided into two different problems:
(1) detecting failed connections, and (2) tracking the sources responsible for
them. Both (1) and (2) are challenging in high-speed networks, since they re-
quire a significant amount of memory and computing power to process packets
at line speed. As already discussed in Sec. 1, a naive solution based on a hash
table is impractical in this case, although it can be used in small networks.
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Fig. 1. Algorithm description

In this section, we present a practical solution that copes with these two
problems by reducing both the volume of processed traffic and the memory re-
quirements of the detection algorithm. In Sec. 2.1, we describe a simple method
to discard unnecessary traffic using Bloom filters, which significantly simpli-
fies problem (1), while Sec. 2.2 concentrates on identifying scanners using a
lightweight counting structure that addresses problem (2).

For the sake of clarity, throughout this section, we will refer to the client host
that initiates the handshake as A, with IP address Aip, and to the server that
receives the connection as B, with address Bip and port Bport.

2.1 Detecting Failed Connections

We can define a failed connection as one for which a client does not get a SynAck
response from the server after having sent the corresponding Syn packet. There-
fore, to detect failed connections, we can ignore data traffic and focus only on
Syn/SynAck packets. According to our traces (described later in Sec. 3), these
control packets represent only 1.5% of all TCP traffic.

In addition, we can ignore legitimate handshakes to detect port scans, given
that a scanner will always fail a large number of connections compared to a nor-
mal host. In order to efficiently discard connections directed towards a working
service, we can use a Bloom filter that maintains a whitelist of active server IP-
port pairs (bf whitelist). In particular, for every new SynAck response, we add
the tuple [Bip, Bport] into this Bloom filter.

Since we are especially interested in those clients that connect to many unique
destination addresses and ports, we can also discard those repeated connection
attempts to the same destination. Besides standard TCP retransmissions, many
applications try to reconnect several times (even hundreds) to the same desti-
nation after a failed connection (e.g., P2P nodes, misconfigured proxies, mail
servers or VPN applications). Surprisingly, repeated Syn packets are extremely
common according to our traces (see Sec. 3). In order to efficiently drop dupli-
cated Syn packets to the same destination IP-port pair, we use a second Bloom
filter (bf syn). For every Syn packet observed, we store the tuple [Aip, Bip, Bport]
in the Bloom filter. As we will see later, using this second filter has the additional
advantage of protecting the bf whitelist from being saturated by many SynAck
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packets sent by a malicious user (i.e., SynAck packets are ignored if they are not
an answer from a previous Syn).

Although Bloom filters can have false positives, they have a negligible impact
on our method as we show in Sec. 3. In addition, in case that one or both
filters get saturated (e.g., if they are not properly dimensioned), the algorithm
will produce False Negatives instead of False Positives, which is an important
feature for systems automatically blocking port scanners [16].

Fig. 1 presents our algorithm in detail. After a packet arrival, we check if it is
a Syn or a SynAck packet. Otherwise, the packet is dropped. In case it is a Syn
packet, we check if the [Bip, Bport] tuple corresponds to a known destination in
the bf whitelist. In this case, the packet is directly dropped. If not, we check if
it is a repeated connection attempt in the bf syn filter. In this case, the packet
is also dropped. Otherwise, the [Aip, Bip, Bport] tuple is stored in the bf syn
filter and the Aip source is incremented in the counting structure (described
later in Sec. 2.2). For a SynAck packet, we first check if it is a response from
a previous Syn packet in the bf syn filter. Otherwise, the packet is dropped.
Next, we check if the [Bip, Bport] tuple is already in the bf whitelist. If not,
the destination [Bip, Bport] is stored in the whitelist and the [Aip] source is
decremented. Therefore, we use the bf whitelist for two different purposes: (i)
to keep track of active destinations, and (ii) to check if a source needs to be
decremented after the connection has been established.1

2.2 Identifying Scanners

The algorithm described in Sec. 2.1 produces a series of increments and decre-
ments for new connections and completed handshakes respectively. From this
sequence, we want to identify the most active producers of failed connections,
which will very likely correspond to port scanners. This can be seen as the well-
known problem of identifying the top-k most frequent elements in a data stream.

For this purpose, we need a data structure that has limited memory usage
and supports both incrementing and decrementing. Fortunately, the recent lit-
erature provides us with several efficient top-k algorithms [8]. From those, we
selected the Stream-Summary data structure [9], since it uses a constant (and
small) amount of memory. However, our algorithm is not bound to a particular
top-k data structure. Although the original Stream-Summary does not support
decrementing, we made a straightforward extension to support a limited number
of decrements. We called this extension Span-Dec. As we will see in Sec. 3, in the
particular context of portscan detection, the data structure behaves almost like
an ideal hash table, but using much less memory. Although the particular im-
plementation details of the top-k data structure are not essential to understand

1 Note that using bf whitelist to check which decrements are needed can introduce
errors of 1 unit in the counting structure if several Syn packets from different sources
are sent to an active destination before it enters the whitelist. Although this unusual
situation cannot be exploited by an attacker, it could be easily solved by adding a
filter similar to bf syn for SynAck packets.
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our algorithm, for the sake of completeness, we include below a short description
of both mentioned structures.

Stream-Summary. This structure is part of the Space-Saving algorithm [9]
that finds the most frequent elements in a data stream. It is able to observe up
to elemmax distinct elements at once. Every element ei has an assigned counter
cnti. All counters with the same value are linked into the same bucket. The
buckets are linked together and they can be dynamically created and destroyed.
When an element ei is incremented, it is detached from its bucket and attached
to a neighbor bucket with the new value. When the maximum number of ob-
served elements (elemmax) is reached, a new incoming element evicts the element
with the smallest counter. Each element has a maximum overestimation εi that
depends on the value of the evicted element. The element frequency is estimated
as freq(ei) = cnti − εi. The algorithm is lightweight and it requires only 1

ε
counters for a specified error rate ε. See [9] for a more detailed description.

Span-Dec. The original Stream-Summary does not support decrementing. How-
ever, we need to discount those established connections for which the correspond-
ing Syn has passed both Bloom filters. Therefore, we made a simple modification
to the original Stream-Summary to support a limited number of decrements. In
particular, instead of having a single counter per element, we use two counters:
cntL(ei) and cntH(ei). We also specify a maximum allowed difference between
both counters spanmax, which controls the tradeoff between the number of al-
lowed decrements and the error εi of the estimate. When an element is incre-
mented, cntH(ei) is moved as in the original Stream-Summary. In case that the
difference between both counters is greater than spanmax, the cntL(ei) is also
incremented. In order to decrement an element ei, the cntH(ei) is decremented,
but never below the value of cntL(ei). This solution can be understood as an
“undo” operation, where spanmax is the “undo” depth. The frequency of an
element ei is estimated as freq(ei) = cntH(ei) − εi. The technical report [10]
provides a detailed description of this extension.

As shown in Fig. 1, our detection algorithm uses Span-Dec to maintain the
count of failed connections per source [Aip]. This solution is useful to detect
both horizontal and vertical port scans. However, if we are interested only in a
particular type of scan, we can use instead [Aip, Bport] to detect horizontal port
scans and [Aip, Bip] to detect vertical ones.

3 Results

In the evaluation we used four traces. trace A was captured from the 1GigE
access link of UPC, which connects about 50,000 users. trace A0 is a modified
version of trace A that we describe later. trace B was taken from the MAWI
Working Group Traffic Archive [2]. trace C was captured from the 10GigE link
that connects the Catalan Research and Education Network to the Internet.
This link connects more than seventy universities and research centers. Due to
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Table 1. Statistics of the traces. trace C only accounts for Syn/SynAck packets.

trace A trace B trace C trace A0

30min @ 1GigE 2h @ OC-3 30min @ 10GigE 30min @ 1GigE
date 2010-05-18 2010-04-16 2010-07-29 2010-05-18
TCP packets 228,848,927 144,885,865 13,978,845 97,380,742
TCP sources 188,136 263,055 467,264 89,086
TCP flows 2,892,334 5,199,928 11,526,323 1,133,392
average usage 879.1 Mb/s 185 Mb/s 3.5 Gb/s n/a

the link speed, for trace C we only collected Syn/SynAck packets. Statistics of
the traces are presented in Tab. 1. We published all the packet traces used in
this work, with anonymized IP addresses, at [1].

For the evaluation, we needed a ground truth trace to check if a detected scan-
ner was a real scanner or a (misclassified) legitimate source. For this purpose,
we modified trace A by removing all real scanners. We scanned the trace using
Bro [12] with both its standard algorithm and the TRW algorithm. Although
Bro is an online tool that does not guarantee an accurate ground truth, we used
a low alarm threshold (25) and removed all the flows from the reported IP ad-
dresses to make sure that no scanning traffic is left, even if some legitimate traffic
was also removed. Later, following the methodology proposed in [11], we injected
artificial scans to build a ground truth: 1000 scanners with success ratio 0.2 and
1000 benign sources with success ratio 0.8. The interval between Syn-SynAck
packets was taken uniformly from the range (0, 450ms), while the backoff time
between Syns was modeled using an exponential distribution [11]. All modifica-
tions resulted in trace A0 that serves as the ground truth for Sec. 3.1. Traces
B and C were not modified.

3.1 Evaluation

This section covers the evaluation of our algorithm. First, we present an exam-
ple of how it is dimensioned. Next, we check the performance and validate its
accuracy with packet traces. Finally, we deploy it in an operational 10 GigE link.

Dimensioning. We followed a conservative approach to handle an unexpected
growth of traffic or peaks. For bf whitelist, we checked the mean number of
distinct [Bip, Bport] tuples in the trace, multiplied this value by 3 and we assumed
a maximum collision probability of pcoll = 0.01. We used an arbitrary length
of the measurement window of 2 minutes. Although in this paper we do not
evaluate this parameter, its value is important. As the filters are reset at the end
of every period, the window size represents a tradeoff between the memory usage
of the algorithm and its ability to detect slow scanners. With those values, we
calculated the optimal size of the Bloom filter. We repeated the procedure for
bf syn using the unique number of [Aip, Bip, Bport] tuples. The value of spanmax

depends on the number of Syn packets concurrently sent by a source to distinct
active destinations, which are not yet in the whitelist. We set this value according
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Table 2. Configuration parameters for the evaluated traces

trace A trace B trace C trace A0

bf syn size 256KB 256KB 1MB 64KB
bf whitelist size 128KB 128KB 512KB 32KB
spanmax 6 4 10 5

to 95th percentile of the traffic. For topk we arbitrarily set elemmax to 10000
elements, unless otherwise noted. Resulting parameters are presented in Tab. 2.
More details about the dimensioning procedure can be found in [10].

Detection Threshold. To present the results for traces A, B and C, we follow the
methodology used in [13]. Fig. 2 depicts the results when running the algorithm
on our traces with the parameters described in Tab. 2. We plot the total number
of sources reported as scanners as a function of the detection threshold. The
threshold is the number of failed connections over which we classify a source
as a scanner. The embedded plots show the whole range of data in a log-log
scale, while the main plot presents only the part where the number of reported
sources grows rapidly, in a linear scale. The “hash table” line presents the results
obtained using hash tables to count distinct Syn and SynAck packets. In this
scenario, all packets are counted with perfect accuracy. Results placed above this
line indicate the presence of False Positives (FP), while those placed below the
line imply False Negatives (FN). “Span-dec” line plots the results obtained when
our counting structure was used. Both lines almost overlap indicating that our
algorithm is close to an ideal tracking scheme using a hash table, but without
its memory constraints. In particular, for high threshold values our algorithm
features almost perfect performance. “Original top-k” shows the results obtained
with the original Stream-Summary structure [9]. The large number of FP shows
the necessity of supporting decrements in the counting structure.

Accuracy. The results in Fig. 2 were not enough to validate the actual accuracy
of our algorithm. For this purpose, we used the ground truth trace A0, for
which we knew the actual scanners and legitimate hosts. Our results show that,
for thresholds higher than 20, the algorithm obtained perfect accuracy (i.e., 0
FP, 0 FN, and 100% detected scanners). More details about the accuracy of our
algorithm and the impact of each configuration parameter are given in [10].

Filter Performance. Tab. 3 presents the performance of the filters. The Space
usage row shows the maximum space usage of each Bloom filter and (in brackets)
the empirical collision probability. The probabilities are very small, even negli-
gible. The evictions row shows the rate of traffic dropped by each filter (relative
to the input packets of that filter). Total packets evicted gives the total ratio
of handshake packets discarded by any of the two filters. Both filters together
drop about 85% of all handshake packets. Thus, only 15% of all Syn/SynAck
packets result in increments or decrements in the counting structure. Given that
the counting error depends directly on the number of introduced elements, with
a smaller number of entries we achieve better accuracy with less space.
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Fig. 2. Evaluation results on the traces - number of sources reported as scanners vs.
detection threshold. Main graphs show a part of the data in a linear scale, embedded
graphs show the whole range of data in a logarithmic scale.

Table 3. Usage of the filters during the evaluation (evictions: Syn / SynAck)

trace A trace B trace C

space usage: bf whitelist 6.78% (6.59e-09) 1.90% (8.94e-13) 4.66% (4.77e-10)
space usage: bf syn 13.27% (7.25e-07) 29.07% (1.75e-4) 11.02% (1.97e-07)
evictions: bf whitelist 52.7% / 67.1% 24.7% / 76.2% 54.3% / 77.9%
evictions: bf syn 61.2% / 65.0% 54.3% / 72.0% 55.4% / 64.2%
total packets evicted 84.3% 73.5% 84.4%

Memory Size. Finally, we evaluated the impact of the memory size on the ac-
curacy of the detection algorithm using trace C. First, we examined the impact
of the size of the Bloom filters using 10000 entries in the topk structure. Results
are presented in Fig. 3a. Filters below 96KB present FN due to collisions, as dis-
cussed in Sec. 2.1. With filters of 192KB (128KB+64KB) and a threshold above
100, the algorithm performs very close to the optimal. Using these filters, we
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Fig. 3. Impact of the memory size compared to an ideal scheme (trace C)

examined the influence of the maximum number of elements (elemmax) in the
topk. The results are presented in Fig. 3b. We can see that, for thresholds above
100, even with 2500 elements in the topk we still obtain very good accuracy. In
our implementation, this configuration occupies only 417KB for a 10 GigE link.

Online Deployment. In order to evaluate the real-time performance of the
algorithm, we implemented it in the CoMo system [4] and deployed it on the
10GigE link from where trace C was collected. The hardware platform consisted
of a PC with an Intel Xeon at 2.40GHz with two DAG 5.2SXA cards. A filter
to discard non-Syn/SynAck packets was set in both cards. The filtering also
can be done easily in software, since it requires only checking Syn and Ack
flags in a TCP header. We ran the program for 100 min. (13-12-2010 at 10:50).
The average traffic in the link was 5.4 Gb/s. The CPU load was about 5%
during the whole experiment. For both filters, the maximum usage was 18.5%
with a maximum collision probability of 7.31e-06. The threshold-alarm graph is
presented in Fig. 2d.

4 Conclusions and Future Work

In this paper, we presented a practical approach to detect port scans in very high-
speed links. The key idea behind our approach was to discard as much traffic as
possible at early processing stages in order to reduce both the CPU and memory
requirements of our algorithm. We used two simple Bloom filters that maintain
a whitelist of active destinations and efficiently track TCP handshakes, and
combined them with an efficient top-k data structure to track failed connections.
Both Bloom filters together can early discard about 85% of all handshake packets
in our traces.

Our evaluation with four traces from different scenarios showed that our al-
gorithm can achieve almost perfect accuracy with very little memory. We also
deployed our algorithm in an operational 10GigE link and showed that it can
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work online. Also, we made a new dataset available to the research community,
so that our results can be validated and compared with other solutions.

Although in the paper we focused only on TCP port scans, we are currently
investigating how to extend the algorithm to detect UDP scans. A possible so-
lution is to define which address blocks are behind the network to be protected.
Another limitation of the algorithm is that it focuses on detecting top sources of
port scans, and therefore it is not designed to reliably detect slow scans or more
sophisticated attacks, like distributed scans.
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Abstract. 1 The arms race between copyright agencies and P2P users is an on-
going and evolving struggle. On the one hand, content providers are using sev-
eral techniques to stealthily find unauthorized distribution of copyrighted work
in order to deal with the problem of Internet piracy. On the other hand, P2P
users are relying increasingly on blacklists and anonymization methods in or-
der to avoid detection. In this work, we propose a number of techniques to reveal
copyright monitors’ current approaches and evaluate their effectiveness. We ap-
ply these techniques on data we collected from more than 2.75 million BitTorrent
swarms containing 71 million IP addresses. We provide strong evidence that cer-
tain nodes are indeed copyright monitors, show that monitoring is a world-wide
phenomenon, and devise a methodology for generating blacklists for paranoid
and conservative P2P users.

1 Introduction

Peer-to-peer (P2P) applications possess fundamental advantages over the traditional
client-server model and fixed-infrastructure content distribution networks like Akamai.
Specifically, P2P systems offer increased performance, availability, and scalability by
leveraging resources (e.g., bandwidth, storage, and computing power) contributed by
each peer. As a result, P2P systems enable a wide range of services such as data sharing,
voice-over-IP (VoIP), and video streaming. Popular applications that use P2P systems
include file sharing systems such as BitTorrent [1] and Gnutella [2], VoIP systems such
as Skype [3], and video streaming systems such as PPLive [4]. Several studies have
indicated that P2P systems contribute towards more than 60% of the overall network
traffic [5].

Users exchange content via P2P file sharing networks for many reasons, ranging
from the legal exchange of open source software to the illegal exchange of copyrighted
material. The latter activities, however, are perceived as a threat to the business models
of the copyright holders. To protect their content, copyright holders monitor P2P net-
works and the sharing behavior, collecting evidence of infringement, and then issue any
infringing user a notice. In the United States, this notice is called a Digital Millennium
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1 Entry for PAM Award: This paper contributes a novel Reverse Infohash database containing

more than 1.75 million infohash → title mappings. The dataset and more information can be
obtained at: http://omnify.info/
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Copyright Act (DMCA) [6] takedown notice. The notices are formal requests to stop
sharing particular data, and are typically sent to the authorities responsible for the IP
addresses of the infringing users. These authorities then forward these notices to the re-
spective users inside their network. Unfortunately, this simple approach of monitoring
is prone to a wide variety of errors. Piatek et al. [7] describe techniques for implicating
arbitrary network endpoints in illegal content sharing, and demonstrate their effective-
ness by experimentally attracting real DMCA complaints for devices such as IP printers
and wireless access points.

Our work was motivated by our recent experience of being mistakenly implicated
for copyright infringement, when in fact we were performing performance measure-
ment experiments on the PlanetLab testbed [8], an overlay network for developing and
accessing a broad range of network services. This problem can be partly solved by
using existing blacklists [9], consisting of IP subnet ranges of clients suspected of mon-
itoring activities. However, blacklists such as those constructed by iBlocklist [9] use
help from various user communities and no empirical research exists to prove their
integrity or effectiveness. In this paper, we derive a methodology for constructing dif-
ferent types of blacklists. It is important to note that we are not encouraging unlawful
sharing of copyrighted material, but rather showing that the patterns we reveal can be
useful in designing conservative research experiments, as such experiments are critical
for improving the BitTorrent ecosystem. Our results can also be leveraged by copyright
monitors to improve their detection accuracy, thus enabling them to reduce the rate of
false positives.

Contributions. Our work reveals a number of findings, confirming known types of un-
desirable behavior in the BitTorrent network, and uncovering new patterns that provide
strong evidence of monitoring. Our contributions include:

– We develop a systematic methodology for obtaining the file name for a given in-
fohash (a SHA-1 identifier for a BitTorrent file that is globally unique), thereby
constructing the first Reverse Infohash database containing mappings for 1.18 mil-
lion infohashes. This dataset has several applications such as understanding the
extent of swarm redundancy (how many swarms share the same file), and current
trends in file sharing. We are making this data publicly available for the benefit of
other researchers.

– We introduce the Ω-factor that utilizes the BitTorrent crawls we collected from
more than 2.75 million BitTorrent swarms and the Reverse Infohash database to
distinguish normal peers from suspicious ones in a P2P system. We then leverage
the Ω-factor to identify copyright monitors.

– We reveal a number of patterns in the activity of different hosts (identified by IP
addresses), which we use to establish strong evidence supporting the existence of
copyright monitors. For instance, we show instances when certain IP addresses par-
ticipate in hundreds of swarms serving the same file. Leveraging these observations
and the Ω-factor, we design and present the methodology for creating two blacklists
of suspicious IP addresses: paranoid, useful for users who are privacy-conscious
and conservative, useful for users who are more lenient.

The rest of this paper is organized as follows: Section 2 provides relevant background
on our data collection process and the methodology for constructing the Reverse Infohash
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database. We then use this database to calculate the participation extent of each IP address
using the novel metric we introduce called the Ω-factor. We use two threshold schemes to
derive two blacklists. In Section 3, we examine the blacklists in detail and give insights on
the effectiveness of copyright monitors. Finally, we summarize related work in Section 4
and conclude in Section 5.

2 Methodology

We seek to study peer activity patterns to identify possibly atypical behavior, with the
ultimate goal being to derive blacklists consisting of IP addresses belonging to suspi-
cious clients. To achieve this, we rely on measuring the extent of participation of each
IP address in swarms so that we can filter out normal user clients from the list of active
IP addresses. We make the key observation that a normal client typically participates
in at most one swarm to download a certain file, whereas a copyright monitor would
want to participate in as many swarms (that serve the same file) as possible to increase
its effectiveness. In order to determine whether multiple swarms are serving the same
file, we utilize our Reverse Infohash database to groups similar swarms together. We
then, to distinguish normal clients from those exhibiting abnormal behavior, introduce
the Ω-factor that captures these groupings and the activity pattern of a client.

We first present the background on our data collection methodology. Next, we ex-
plain how we construct the Reverse Infohash database and use this database to calculate
the Ω-factor for each IP address in our dataset. Finally, we use two threshold schemes
on the Ω-factor to derive two blacklists.

2.1 Data Collection

The methodology oftentimes used for crawling BitTorrent swarms is to find torrent
metafiles by first crawling a BitTorrent aggregator website that hosts them, and then
querying the associated tracker for clients [7, 10]. However, as aggregator websites
usually only attract users associated with a particular language, this technique would
result in only revealing copyright monitoring in certain parts of the world. Therefore,
we do the reverse: we first crawl a tracker that is not associated with an aggregator
website and is highly popular all over the world, called “OpenBitTorrent” [11], and
afterwards we discover the content that the swarms we find are serving. We note that
while we use a particular tracker, our methodology is extensible to multiple trackers.

When crawling the tracker, we extract a list containing the infohash and number of
seeders and leechers for every swarm it is tracking. In BitTorrent lexicon, the infohash
is a 20-byte SHA-1 hash of information contained in a .torrent metafile. In May
2010, for every hour over 8 days, we obtained this list and crawled each swarm that had
at least one leecher. Typically, a single crawl consists of over 5 million IP addresses
in one million swarms. We discovered 71 million unique IP addresses in 2.75 million
swarms over the 8-day period.

2.2 Building the Reverse Infohash Database

We now focus on finding the file name associated with an infohash and then group
similar file names together. We apply a number of heuristics to construct the Reverse
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Fig. 1. Schematic overview of the proposed methodology: Starting from our BitTorrent crawls, we
use a number of techniques to derive the Reverse Infohash database which is used for computing
Ω, a metric for distinguishing a normal peer from undesirable peers

Infohash database. Figure 1 gives an overview of how we accurately determine the file
name associated with an infohash. Our initial step is to query a search engine for the
infohash, giving a rough approximation of the file name. As Google rate-limits search
queries, we use the Yahoo! Search BOSS API [12], which imposes less stringent con-
straints on their API usage. We consider the top five results returned by each search
query, and use the Longest Common Subsequence(LCS) algorithm [13] for constructing
a single title using the five search results. Our heuristic performs an exhaustive compar-
ison to find the best possible match. For instance, the algorithm outputs “Iron Man 2 D”
for an input of {“Iron Man 2 DivX”, “Iron Man 2 DVD”, “Iron Man 2 DirectSubs”}.

At this stage, we leverage the Shingling technique [14] to determine the syntactic
similarity of the strings in our database. Intuitively, this method helps us determine
if two strings are “roughly the same” i.e., for determining when they have the same
content except for modifications such as lost characters etc. We view each string in
our database as a set of subsequences of tokens T (S, w). A contiguous subsequence
contained in S is called a shingle. Given a string S, we define its w-shingling T (S, w)
as the set of all unique shingles of size w in S. For instance, the 2-shingling or the
character bigram shingles of the string “iron man” is the following set: {“ir”, “ro”,
“on”, “n ”, “ m”, “ma”, “an”}.

Given two strings, we build a shingling set for each, and then use a distance metric
to measure the similarity. As a distance metric, we use the Jaccard Index [15] which is
a measure used for comparing the similarity and the diversity of sample sets. It is the
ratio of the size of the intersection of the sets to the size of the union of the sets. For
instance, if J(A, B) is the Jaccard Index between sets A and B, then:

J(A,B) =
|A ∩ B|
|A ∪ B| (1)

We build a similarity index represented by an adjacency matrix for the list of strings
in our database, and use a threshold of 0.8 (determined through manual inspection and
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represents only those strings which are nearly similar to each other) to prepare the final
list. At this stage, we have reduced the string grouping problem to an instance of finding
connected subgraphs [16]. From the result, we can determine if two different infohashes
served the same entity. We define entity as all torrents sharing the same file. For instance,
all torrents sharing Iron Man 2 constitute a single entity. To verify the accuracy of
our methodology, we manually checked 1330 infohashes which were suspected to be
serving the same file, “Iron Man 2.” We searched Google for information related to an
infohash and matched it with ours. We were able to manually match 1265 out of the
1330 (9̃5.1% accuracy). The false positives were for entries such as “Irina,” a fictional
vampire character in the Twilight Saga.

2.3 Identifying Activity Patterns

Our ultimate goal is to distinguish normal P2P users from copyright monitors. Due to
the vast number of IP addresses we collected, we do not attempt active measurements or
probing of clients, but rely solely on analyzing the data collected. Since oftentimes the
IP address, port number, and AS number are not revealing, we must identify patterns
that would be indicative of an organization monitoring copyrighted material. We now
outline a list of identifiable patterns and why we consider them.

An IP address participates in a large number of swarms. The vast majority of IP
addresses seen in our crawls participate in very few swarms. To demonstrate this, we
plot in Figure 2.3 a CDF of the number of swarms every IP address participates in (over
our eight-day crawl). For example, 84% of IP addresses participate in 10 swarms or
fewer. However, some IP addresses appear in hundreds, and even thousands, of swarms.
We suspect that since monitors aim to observe the transfer of copyrighted material in
the BitTorrent community, they would participate in every relevant swarm.
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Fig. 2. (a) CDF of the number of swarms every IP address participates in over our eight-day
crawl. Observe that 84% of the IP addresses participate in 10 swarms or fewer. (b) CDF of the
Ω-factor for IP addresses and subnets. Most IP addresses have Ω = 1, meaning they only
participate in a single swarm corresponding to a particular entity.

An IP address participates in multiple swarms that correspond to the same entity.
As mentioned earlier, we discovered over a thousand swarms that corresponded to the
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same “Iron Man 2” movie. We would expect a normal user, if desiring to download such
a movie, to simply participate in one of these swarms. In contrast, a copyright moni-
tor would participate in many swarms, attempting to observe as many downloaders as
possible by utilizing all its available resources. Thus, we introduce the Ω-factor, which
intuitively measures how effective a host (with a certain IP address) is at monitoring en-
tities, carefully adjusting for entities with a fewer/larger number of swarms. We define
the Ω-factor as follows:

ΩIPAddress =
∑n

i=0 tisi∑n
i=0 ti

(2)

where ti is the total number of torrents corresponding to entity i, and si is the total num-
ber of torrents corresponding to entity i where the IP address is actually seen. Let us
consider an example of a user downloading “Iron Man 2” and “Valentine’s Day” from
two swarms. In our dataset, the number of distinct torrents we observed for the former
swarm was 1526 and for the latter, 431. Thus, Ω = 1526(1)+431(1)

1526+431 = 1. A copy-
right monitor, in contrast, typically aims to monitor multiple torrents corresponding to
an entity. For the same entities, assuming that the monitor participates in 120 swarms
related to “Iron Man 2” and 100 swarms related to “Valentine’s Day”, we would get
Ω = 1526(120)+431(100)

1526+431 = 115.59. Thus, by using the number of swarms an IP ad-
dress is participating in as the weight for the total number of torrents corresponding to
an entity, we are able to detect the outliers.

We evaluate the Ω-factor for every IP address that appears in our database and
present the results in Figure 2.3. Unsurprisingly, most IP addresses have a factor of
1, meaning they only participate in a single swarm corresponding to a particular entity.
However, there are several outliers that have values greater than 40, implying suspicious
behavior.

2.4 Generating Blacklists

We now leverage the values of the Ω-factor to derive two blacklists. The first blacklist,
called the paranoid dataset, is useful for users who are privacy-conscious and do not
want to be bothered by any kind of a monitor including a copyright monitor, spambot, or
researchers conducting measurements. The second blacklist we constructed, called the
conservative, is a restrictive subset of the paranoid dataset that comprises IP addresses
that are all highly likely copyright monitors.

The paranoid dataset is obtained by applying a threshold scheme on the Ω factor, and
then filtering out all the IP addresses that participate in fewer than 100 distinct swarms.
We choose this threshold as most IP addresses participate in fewer than 100 swarms;
otherwise, they would seem ineffective as copyright monitors. From Figure 2.3, we
chose Ω to be 5.0, therefore including many suspicious IP addresses. The total number
of IP addresses in this blacklist is 53,752. The conservative dataset is obtained in a
similar manner by setting Ω to 20.0 to only select highly suspicious clients participating
in more than 100 distinct torrents. The total number of IP addresses in this blacklist is
5,719 – much smaller than paranoid. We have verified that these IP addresses do not
belong to a known botnet and are not in a spam database.



128 R. Potharaju et al.

3 Evaluation

In this section, we show that using our methodology, we can automatically generate
blacklists that are able to effectively identify copyright monitors. We also identify in-
teresting characteristics of these monitors and discuss how they can avoid detection in
the future.

Identifying Monitors. To evaluate if the conservative dataset accurately reflects be-
havior consistent with a copyright monitor, we manually verified the 100 IP addresses
with the largest values of Ω. We provide a snapshot of the details of the entities they are
monitoring in Table 1. In this table, we provide the AS number and country where the IP
address is located, and also the entities that they are heavily monitoring. We determine
their effectiveness at monitoring copyright infringement by calculating the percentage
of swarms that they participate in that correspond to a particular entity.

For example, in the first entry in the table, we find that a particular IP address in AS-
9167 is heavily monitoring swarms related to the “Percy Jackson and the Olympians:
The Lightning Thief” entity, which is a popular movie distributed by 20th Century Fox.
Using our reverse infohash database, we map 310 different torrents to this entity. We
observed that this IP address in particular monitors 174 different torrents, giving it an
effectiveness of 55.10%. While we do not dig into the details of the other ASes, we
show a few more in Table 1.

Table 1. Using the Ω factor to pinpoint a copyright monitor: The AS numbers shown in this
table had IP addresses that exhibited high Ω factors. Upon further inspection, they were found to
participate in a large number of torrents serving the same entity.

AS Number Effectiveness % Country Entity
9167 55.10 Denmark Percy Jackson & the Olympians
9167 53.54 Denmark Percy Jackson & the Olympians
9167 36.5 Denmark Alvin & the Chipmunks 2 The Squeakquel

33650 84.94 United States Alex Jones Show
1213 5.4 Ireland Iron Man 2

30023 17.45 United States Iron Man 2
30023 15.65 United States Iron Man 2, Princess and The Frog
30023 6.26 United States Iron Man 2, Valentine’s Day
558 5.81 United States Iron Man 2, Valentine’s Day
9167 49.27 Denmark Jennifer’s Body

Pervasiveness of Monitoring. For every swarm we find how many monitors are partic-
ipating and also the fraction of monitors in that swarm and plot CDFs of these values in
Figure 3 and Figure 3, respectively. We find that 11% (20%) of the 2.75 million swarms
are being monitored in the conservative (paranoid) dataset. We also find that some-
times hundreds of monitors are used and that in 0.6% (3%) of swarms the majority of
participants are monitors.

Geolocating Monitors. We geolocate the IP addresses in our conservative dataset using
the MaxMind database [17], and plot the results in Figure 4. As can be seen, most
countries in Europe are densely populated with monitors. In addition, several Asian
countries, such as Japan, South Korea, and the Philippines are densely populated. While
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Fig. 3. CDF of the number and fraction of IP addresses classified as monitors participating in
each swarm in our eight-day crawl

Fig. 4. Map showing the geolocated positions of all IP addresses from our conservative dataset

we are not legal experts, we suspect that copyright and privacy laws in each country
highly influence the number of monitors there.

Monitors Exhibit Temporal Patterns. From the paranoid dataset, we find that copy-
right monitors do indeed own subnets and use them in interesting ways. To illustrate
this, we choose two suspected monitors that have multiple subnets, and give each IP
address an identifier in the order of the first time it is observed in the crawls. We plot
a point for every crawl where we observe the IP address. The results are depicted in
Figure 5. As there is large overlap in the swarms each IP address is monitoring, we
suspect that this type of pattern can be attributed to an automated monitor that, when
crawling, uses a different subset of IP addresses every time. For example, the monitor
in Figure 3 seems to use several different IP addresses every hour, while the monitor in
Figure 3 has a more diurnal pattern, using approximately 100 different IP addresses to
crawl once a day.

Spammers Utilize BitTorrent. We note that the paranoid dataset captures behavior
beyond that of a copyright monitor. We found several consecutive subnets in AS-5384
which contained IP addresses that were participating in over 60,000 swarms, which
were some of the most often seen. We checked Project Honey Pot [18], which is a
database of known email spammers, and found that many of them were contained in



130 R. Potharaju et al.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 24  48  72  96  120  144  168  192

IP

Hour

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 24  48  72  96  120  144  168  192

IP

Hour

(b)

Fig. 5. An instance when multiple IP addresses belonging to the same subnet exhibit similar
activity patterns

that list. We suspect that these clients are harvesting information about BitTorrent users.
Thus, while they are not necessarily copyright monitors, we believe most that privacy-
conscious users would prefer to avoid contact with such clients.

Comparison with Real-World Blacklists. We investigate several blacklists of IP ad-
dresses that are suspected to be owned by copyright monitors. These are collected
from an aggregator of blacklists [9] and include IP addresses of organizations that are
involved with trying to stop file sharing (e.g., MediaDefender, MediaSentry). These
blacklists are P2P community-driven and accepted; however, they are usually only ex-
tended after users have received a DMCA takedown or similar notice. We find that
our conservative and paranoid datasets overlap with 2,051 and 2,507 IP addresses in
these blacklists, respectively. This indicates that algorithmic techniques for determining
copyright monitors can be effectively used to supplement existing blacklists.

Improving Stealth and Effectiveness of Monitors. We now present a few sugges-
tions for copyright monitors that can improve their stealth and effectiveness. First, they
can use our methodology for finding torrents and not rely on crawling aggregator web-
sites. This increases their effectiveness, because they will be able to find more entities.
Second, to improve their stealth, they must utilize more hosts (IP addresses) and in-
telligently use them by distributing among them the swarms that belong to the same
entity. This will obscure them from most pattern-mining algorithms. Third, using better
measurement techniques by leaving a swarm immediately after getting the list of peers,
their IP addresses can remain below a detection threshold that relies on hours of activity
or the number of times an IP is seen.

4 Related Work

Copyright monitors and the techniques they use to infer copyright infringement in Bit-
Torrent have been studied by Piatek et al. [7]. They discover that copyright monitors
use indirect and thus inconclusive evidence to serve DMCA takedown notices, and show
that it is possible to frame arbitrary IP addresses of infringement. The authors also crawl
popular torrent aggregation sites and crawl tens of thousands of swarms. They evaluate
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the potential of blacklists to identify copyright monitors, and find that there are suspi-
cious IPs participating in many swarms. Our work takes this a step further by crawling
millions of swarms, identifying suspicious activity patterns, and narrowing down the
list to the most suspicious clients.

Deviant client behavior in BitTorrent swarms was studied by Siganos et al. [10].
They implement a client that exchanges control messages with other BitTorrent clients
to discover if they exhibit suspicious behavior. They crawl 600 popular torrents over 45
days, and find behavior indicative of copyright monitors and peers involved in botnets.
In contrast, our work introduces metrics that can be used to infer copyright monitor
behavior.

5 Conclusions

In this paper, we have reported our findings on the effectiveness of monitoring agencies
in the wild. We constructed a novel reverse infohash database which we used in com-
puting what we refer to as the Ω-factor, a measure that differentiates entities in a P2P
system, to shortlist potential copyright monitors. We applied our techniques on data
we collected from more than 2.75 million BitTorrent swarms containing 71 million IP
addresses, and discussed our methodology for arriving at a list of potential copyright
monitors. In particular, we prepared two datasets: a paranoid dataset that contains a list
of copyright monitors along with hosts that could be potential spambots, and a conser-
vative dataset that contains hosts that are suspected to be copyright monitors with a high
probability.
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Abstract. China filters Internet traffic in and out of the country. In
order to circumvent the firewall, it is helpful to know where the filtering
occurs. In this work, we explore the AS-level topology of China’s network,
and probe the firewall to find the locations of filtering devices. We find
that even though most filtering occurs in border ASes, choke points also
exist in many provincial networks. The result suggests that two major
ISPs in China have different approaches placing filtering devices.

Keywords: Censorship, topology, network measurement.

1 Introduction

In this work, we explore where Intrusion Detection System (IDS) devices of
the Great Firewall of China (GFC) are placed for keyword filtering at AS and
router level. Knowing where IDSes are attached helps us better understand the
infrastructure of the firewall, gain more knowledge about its behavior and find
vantage point for future circumvention techniques.

China has the world’s most complex Internet censorship system, featuring
IP blocking, keyword filtering, DNS hijacking and so on [1]. IP blocking is the
earliest filtering mechanism. It is easy to circumvent, because webmasters can
always change their IP and DNS record. Besides, censors are very prudent to
do DNS hijacking nowadays due to the risk of affecting the network in other
countries [2]. In this paper, we focus on the most effective filtering mechanism
of GFC, keyword filtering.

According to [4], the filtering occurs more at AS-level rather than strictly
along the border routers. This paper answers the question whether all censorship
occurs at border AS, and how filtering occurs inside those ASes. We first explore
the AS-level topology of China’s network. In this part, we explore which Chinese
ASes are directly peered with foreign ones and which are internal ones. We call
those peered with foreign network border AS, and the others internal AS. The
resulting AS-level topology shows that the best vantage point to place filtering
device is in the border ASes.

To find where IDS devices are attached at router level, we select a set of
web servers in China and probe with HTTP GET packets that contain known
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keywords. In order to find more filtering devices, we manually select web servers
to ensure their geographical diversity, as opposed to previous work that uses top
websites in search result. This diversity is desirable, because it helps us to find
more routing paths across China, and with more paths, we can discover more
filtering devices.

The result shows that most filtering devices are in the border ASes, but a
small portion is not. It is possible that there is a trend of placing filtering de-
vices outside of border ASes. The number of router interfaces that have filtering
devices attached for CHINANET is stable since 2007, while the second largest
filtering force CNCGROUP has increasing number of filtering interfaces. More-
over, CHINANET’s filtering is decentralized, while CNCGROUP has their IDS
devices mostly in the backbone. A decentralized placement of filtering devices
can facilitate censor to monitor domestic traffic.

The rest of the paper is organized as follows. Section 2 introduces the related
work on measurement of the China’s network censorship. Section 3 presents our
result on AS topology of China’s network. We locate filtering devices at router
level in Section 4 to find how they are related to AS-level topology and the device
placement strategies of different ISPs. Section 5 concludes the paper.

2 Related Work

An early work in the censorship measurement field is [3]. This paper analyzes
the keyword filtering mechanism of GFC, and is a good source of background
knowledge. They claim that the mechanism is based on an out-of-band intru-
sion detection system at border routers. The system emits forged reset packet
to both destination and source, but packets themselves go through the router
unhindered. Therefore, both source and destination ignoring forged reset packet
makes the system entirely ineffective. They also claim that the firewall does not
maintain a state.

An influential paper in this field is [4]. In the measurement study part, the
most significant discovery is that unlike commonly believed, the censorship sys-
tem in China is like a panopticon, where filtering does not occur strictly at border
routers, but rather more centralized at AS level. They find that some filtering
occurs 13 hops past border. In our work, we provide a more fine-grained analysis
of where those filtering devices are located, answering whether all filtering oc-
curs at border AS, and where IDS devices are attached at router level. They also
discover that the firewall is stateful, namely a GET packet with keyword itself
will not trigger the firewall. Rather, a complete TCP handshake is required. This
contradicts with [3]. The paper also demonstrates that the RST packets sent by
IDS devices are more complicated than before. The TTL of RST is now crafted,
so we cannot identify the location of IDS devices by simply looking at the TTL
values. Therefore, we identify the location of filtering devices by sending probe
packets with increasing TTL values, and see when we receive RST packets from
censors, as proposed in this work.

The most recent work in this field is [5]. This paper reports the discontinuation
of keyword filtering in HTTP response on most routes, while that in HTTP GET
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request is still prevalent. They investigate whether the firewall has a state and
yield a result that the firewall is stateful only in part of the country. All 3 works
have conflicting views of whether the firewall is stateful. Their latest tests have
done in August 2009.

3 China’s AS-Level Topology

Crandall et al. [4] claims that the firewall is better described as a panopticon,
where filtering does not strictly occur at the border and suggests that the fil-
tering is more at AS-level. Inspired by their work, we want to explore whether
only border ASes are involved in the filtering and how filtering occurs inside
those ASes. This knowledge is important, because if internal routers also have
filtering devices attached, censors would have the capabilities to monitor and
filter domestic traffic, which is considered not true before. It is believed that
Chinese censors do not filter domestic websites technically, presumably because
of the heavy domestic traffic flow; rather, the domestic Internet censorship is
about social control, human surveillance, peer pressure, and self-censorship. [15]

In this section, we provide a more comprehensive view of China’s AS-level
topology that lays the foundation for Section 4.

3.1 Methodology

The first step is to find the mapping between AS numbers that belongs to China
and their corresponding IP prefixes. Finding the mapping between IP prefix
and AS number is known to be hard. We propose a methodology that yields a
coarse-grained result. We first get the list of ASes that headquarter in China from
APNIC [6]. An estimated mapping between IP prefix and AS number is extracted
from the archival file obtained from Routeview [7] and RIPE [8] collectors. For
each prefix entry in the archival files, we claim that its corresponding AS is the
last AS in AS PATH.

We acknowledge that the methodology is an estimation, because 1) we do not
address the inaccuracies introduced by router interfaces that have addresses be-
longing to neighboring AS, and 2) the list of ASes is incomplete as the assignment
record from APNIC does not capture all traffic originated from China.

We take the archival data collected between May and June 2010 from all
collectors of Routeview and RIPE. We parse more than 300 MRT files, and this
effort yields 408,688 AS-prefix mappings. Among them, 11,824 are in China’s
address space. In 136 AS numbers assigned to China, we find 76 corresponding
prefixes of them.

In order to get as many peerings between China and other countries as pos-
sible, we traceroute from PlanetLab [14] nodes all over the world. A script is
written to traceroute from each PlanetLab node outside of China to each of 76
Chinese ASes that we have their corresponding IP prefixes. We take the first IP
in a prefix as the sample IP to which we traceroute.
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For each hop in the traceroute result, we attempt to map them back into AS
number using our estimated mappings. For those that we fail to map back, the
whois server of Team Cymru [9] that returns IP to ASN mapping is consulted.

From the traceroute result, we construct an estimated AS-level topology of
China’s network. Once the first hop inside China’s address space is noted, we
add its corresponding AS number to a graph and denote it as a border AS. The
corresponding AS numbers of all following hops are also added and are denoted
as internal ASes. In addition, we also include the immediate AS that precedes
each border AS, annotated as external AS.

CIDR report [16] analyzes the BGP table within AS2.0 and generates an
aggregation report for each individual AS. For each AS, the report contains a
list of its adjacent ASes and its announced prefix. To include the result of CIDR
report into our topology, we crawl its website. For the report of each AS, we
download the list of its adjacent ASes. We use the largest AS in China (AS4134)
to bootstrap, and do a breadth-first search over its adjacent AS list. The search
terminates whenever we encounter an AS not belonging to China.

In the resulting topology graph, the names of ASes are obtained from [9]. We
use the name to imply the ISP that an AS belongs to.

3.2 Results

We find 138 internal, 24 border and 92 external ASes. Our result shows 133
unique peerings with external ASes. Among them, 62 belong to CHINANET
and 23 belong to CNCGROUP. These two ISPs possess 63.9% of China’s total
peerings with other countries. Table 1 shows the breakdown of ISPs in China
that have the most number of unique peerings with foreign ASes according to
our experiment. The resulting topology serves as the foundation of the experi-
ment in the second part of the paper, while the following are some interesting
observations that are worth further investigation.

Table 1. Chinese ISP with most number of unique peerings to foreign AS

ISP AS Numbers Peerings

CHINANET 4134, 4809, 4812, 23724, 17638 62 (46.6%)
CNCGROUP 4837, 9929, 17621, 4808 23 (17.3%)
TEIN 24489, 24490 8 (6.0%)
CNNIC 37958, 24151, 45096 8 (6.0%)
CERNET 4538, 4789 9 (6.8%)
Other 9808, 9394, 4847, 7497, 9298, 23911 23 (17.3%)

It is observed that some border ASes do not peer with any internal AS at
all. These include 37958, 24151, 45096, 24489 and 24490. The first three belong
to CNNIC, the national Internet registry of China. Even though it is possible
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that the lack of internal peering is due to our experimental error, we speculate
that the CNNIC ASes are used for special purposes. A future work could be
exploring whether these ASes have different filtering rules. Another owner of
this kind of AS is Trans-Eurasia Information Network, the traffic through which
should be transit traffic, which means that both the source and destination are
not in China’s address space. We do not expect to see filters being installed in
Trans-Eurasia ASes.

Our result indicates that border ASes in this country are peered with at least
20 foreign countries. Among them, U.S. is the largest one that has a peering
count of 52. Hong Kong and Japan follows U.S., and have 21 and 11 peerings
respectively. This information is useful in future work to find whether GFC
defines different policies for different countries.

3.3 Discussion

We then organize the resulting topology hierarchically. In order to do that, we
select border ASes as roots and grow trees under them with internal ASes as
children. The depth of the tree is only 2, meaning that to get to any AS we
discovered in China, we only need to traverse at most 2 other ASes. In fact, only
18 out of 138 internal nodes are at level 2.

Most of the internal ASes (87.0%) are within direct reach of border ASes.
The names of border ASes suggest that most of them belong to backbone, and
there are just 24 of them. This implies that the best vantage points for efficient
content filtering are in the border/backbone ASes since they can easily serve as
choke points, given that IDS devices have enough power and the censors do not
intend to monitor domestic traffic.

4 Locating Filtering Devices

As the key step of this study, we make efforts to find as many filtering devices as
we can to see their relationship with AS topology. Before we get started, here we
provide some brief background of the firewall. As suggested by [3], IDS devices
are attached externally to routers and thus out-of-band. The IDS terminates
TCP connection by sending multiple spoofed RST packets to both ends of the
communication. Within a period after that, all traffic between these two parties
is blocked by RST packets, no matter whether a keyword is included in the
packets.

For detailed description of the behavior of GFC, please refer to [3]. In this
section, we discover to router interfaces at which locations IDS devices are
attached.

4.1 Statefulness of the Firewall

A firewall being stateful means that we need to establish a TCP connection with
a legal handshake to trigger the firewall [3]. If we directly send a TCP packet
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that contains an HTTP GET with a known keyword but without a handshake,
a stateful firewall would not send any RST packet. On the other hand, if the
firewall is not stateful, any TCP packet with keyword, regardless of the existence
of TCP connection, would trigger it.

Previous works [3] and [4] have contradicting result of whether the firewall is
stateful, and [5] claims that part of the firewall is stateful. After sending a single
packet with known keyword to the first IP of 11,824 Chinese prefixes, we observe
no firewall activity at all. Assuming that the firewall behaves the same for all
IPs in a prefix, the result indicates that the firewall is now totally stateful.

The firewall being stateful is meaningful. It can at least make probing in
this kind of studies difficult. With a stateful firewall, we need to find servers in
China that accept TCP connection to determine the position of filtering devices,
rather than just probe the first IP of all prefixes with a packet that contains a
keyword. With a stateless firewall, we can easily get a comprehensive set of
filtering devices by probing all prefixes. On the other hand, in a stateful firewall,
it is time-consuming to find an active server in each prefix, because it requires
port scanning. Therefore, a stateful firewall makes probing more difficult and
reduces the completeness of this kind of measurement.

4.2 Websites Probed

Since we are unable to probe each prefix to get a complete list of filtering devices,
it is necessary to select a set of websites that are in different part of the country
to achieve better completeness. Most previous work selects websites from the
top result from search engine. This is biased, because top websites are likely
to be clustered in some big cities in China. A CNNIC report [13] states that
51.2% websites are in 5 provinces, and there are 32 provinces in China. The
least represented 17 provinces only have 10.8% of total number of websites in
China. Furthermore, 13 provinces have less than 1% representation. Therefore,
we cannot achieve our goal of getting as many filtering device as possible by
employing their methodology.

Consequently, we carefully select web servers geographically across the entire
country to probe. Our list of website covers all provinces and three major ISPs in
this country, CHINANET, CNCGROUP and CERNET. To cover all provinces,
we gather a list that contains the websites of all provincial governments. This list
is obtained from the website of the central government [10]. The list of websites
of provincial branches of CHINANET and CNCGROUP is also collected from
Google search. Moreover, from a Chinese web resource guide [11], we collect
a number of popular local websites. Taking CERNET, which is not a public
network but mainly serves academic institutes, into account, we include websites
of many universities in different parts of the country into our list.

Our final list contains 1594 websites. To show that they are geographically
diverse, we query the most popular IP geolocation database in China [17]. The
result is shown in the Appendix.
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4.3 Algorithm

We probe our list of Chinese websites described in 4.1.2 to find the location of
filtering devices at router level. Our methodology is similar to the one used by
[4] and [5]. In short, the algorithm sends probing packets that contain known
keywords with increasing TTLs.

For each IP of websites in our list, we first determine if it is online and whether
it accepts TCP connection by establishing a TCP connection and sending an
innocuous HTTP GET request. If we receive RST packets or the connection
timed out, we skip it and proceed to the next website. Otherwise, we establish
another connection with it, but this time, we send an HTTP GET with a known
keyword falun that triggers the firewall.

At this moment, we wait for 5 seconds for the connection to completely die
down. This allows the real and spoofed RST exchanges among source, destination
and the firewall to complete.

Since the firewall is already triggered and now all further traffic between two
endpoints, no matter considered harmful or not, is blocked by the firewall for a
period, a simple ACK packet would trigger the firewall. Therefore, we send ACK
packets with increasing TTL, and stop whenever we receive RST from a filtering
device and record the IP address revealed by the ICMP packet that the router
interface to which the filtering device is attached sends. We skip and record the
website if the keyword does not trigger the reset in case of whitelisted websites.

4.4 Results

We found 495 router interfaces that have filtering devices attached to in our
experiment, 106 more than in [4]. The proportions of filtering interfaces that
each ISP has are as follows: CHINANET has 79.4%; CNCGROUP possess 17.4%,
and the rest 3.2% belong to other ISPs. We get largely identical proportion for
CHINANET as in [4], but for CNCGROUP, our percentage is three times of their
result. Our result suggests that the placement of IDS device of CHINANET is
stable since 2007, and the filtering power of CNCGROUP is growing and now
counts for almost one fifth of all filtering interfaces in the country. We can derive
that the filtering capability of CHINANET is mature, as the increase in traffic
has not made it too overloaded to force them adding more filtering interfaces for
several years.

Table 2 shows what ASes the filtering devices belong to. We consult the whois
server of Team Cymru [9] for IP to ASN mapping.

Not surprisingly, most of the filtering devices belong to the border ASes.
However, we find that some of them are in internal ASes. The proportion is
small (2.9%), so it is prone to errors introduced by inaccurate IP to AS number
mapping. However, it is still worth noting. We will continue to monitor this
number, to see if there exists a trend that censors deploy more and more filtering
devices to internal ASes.

All except for two internal filtering interfaces belong to CHINANET, and none
belongs to CNCGROUP. Since this is particularly questionable, we examine our
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Table 2. ASes that contain filtering devices

AS Number AS Name Number of Filtering Interfaces

Border ASes 481
4134 CHINANET-BACKBONE 374
4812 CHINANET-SH-AP 9
4837 CHINA169-BACKBONE CNCGROUP 82
9929 CNCNET-CN 4
4538 ERX-CERNET-BKB 4
9808 CMNET-GD 5
9394 CRNET 3
Non-border ASes 14
23650 CHINANET-JS-AS-AP 4
17785 CHINATELECOM-HA-AS-AP 4
37943 CNNIC-GIANT 3
38356 TIMENET 1
17633 CHINATELECOM-SD-AS-AP 1
4813 BACKBONE-GUANGDONG-AP 1

traceroute log more carefully. As a result, we find that if the first router interface
in China’s address space belongs to CHINANET, it rarely conducts any filtering.
Pursuing this further, we find that many filtering router interfaces do not seem
to belong to the same prefix as that of the first few router interfaces into the
country, so we whois CHINANET’s filtering interfaces to find more.

The result is interesting. Despite the name of AS4134 suggests, only 49 of
374 filtering interfaces actually belong to the backbone of CHINANET, and the
rest of them are actually belong to provincial branch companies of CHINANET.
In AS4134, we find that 16 provinces have their own filtering devices. Counting
Shanghai that is not represented in AS4134 but has its own AS number, 80% of
21 provinces that CHINANET serves [12] do their own filtering. The provinces
that are observed not having their own filtering are Shaanxi, Gansu, Qinghai and
Ningxia. According to a CNNIC report [13], the number of IP addresses in these
4 provinces only counts 2.5% of the nation’s total number of IPs. Table 3 shows
where the filtering devices are located in AS4134. We only list the provinces that
are in the service area of CHINANET.

This implies that CHINANET, instead of filtering strictly along the border,
offloads the burden to its provincial network. On the other hand, CNCGROUP
has most of its filtering devices in the backbone rather than provincial network,
and all its filtering is done within very few hops into China’s address space. We
also whois the IP address of those filtering devices, and find that 74 out of 82, or
90% of filtering devices belongs to the backbone of CNCGROUP. This indicates
that two major ISPs in China have different approaches placing their filtering
devices.

The total bandwidth of CHINANET’s international connection is
616703Mbps, and that of CNCGROUP is 330599Mbps [13]. Moreover, the num-
ber of peerings with foreign AS of CHINANET is 3 times of that of CNCGROUP.
CHINANET, as a larger operator that has international bandwidth 2 times of
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Table 3. Locations of filtering devices in AS4134

Province # Devices Percentage

Backbone 49 13.10%
Guangdong 84 22.46%
Fujian 29 7.75%
Hunan 28 7.49%
Hubei 24 6.42%
Sichuan 22 5.88%
Yunnan 21 5.61%
Guangxi 19 5.08%
Jiangsu 19 5.08%
Zhejiang 15 4.01%
Guizhou 14 3.74%
Jiangxi 14 3.74%
Hainan 11 2.94%
Chongqing 10 2.67%
Anhui 6 1.60%
Unidentified 6 1.60%
Xinjiang 2 0.53%
Tibet 1 0.27%

CNCGROUP, needs to filter more network traffic. Placing all filtering devices in
backbone might have created a bottleneck for CHINANET, and allowed some
unwanted traffic to go through. This might partly explain why they have different
IDS placement strategies.

Another implication is that the filtering devices being in the provincial net-
work allows censor to inspect inter-province traffic. Even though there is no
evidence that they are doing this right now, this arrangement makes the future
deployment of stricter firewall that censors domestic traffic easier.

5 Conclusion

Chinese censors impose strict restrictions on international Internet traffic. In
order to understand the national-scale intrusion detection system better, this
is the first study dedicated to explore both AS and router-level structures of
China’s censored network.

As a preparation, the first part of the paper presents our approximate result
of China’s AS-level Internet topology. We manage to collect the peering among
265 China-related ASes. In the second part of our work, we probe the firewall
in an attempt to gather as many filtering interfaces as we can and to relate AS
topology to the location of those filtering devices. We find that most filtering
occurs in border ASes, but two major filtering ISP’s have different approaches
placing their filtering devices. CHINANET does not place most of its filtering
devices in its backbone, but rather distribute the work to provincial networks.
This makes censoring domestic traffic easier.
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Abstract. The Border Gateway Protocol (BGP), the de facto inter-domain rout-
ing protocol of the Internet, is known to be noisy. The protocol has two main
mechanisms to ameliorate this, MinRouteAdvertisementInterval (MRAI), and
Route Flap Damping (RFD). MRAI deals with very short bursts on the order of a
few to 30 seconds. RFD deals with longer bursts, minutes to hours. Unfortunately,
RFD was found to severely penalize sites for being well-connected because topo-
logical richness amplifies the number of update messages exchanged. So most
operators have disabled it. Through measurement, this paper explores the avenue
of absolutely minimal change to code, and shows that a few RFD algorithmic
constants and limits can be trivially modified, with the result being damping a
non-trivial amount of long term churn without penalizing well-behaved prefixes’
normal convergence process.

1 Introduction

Despite the huge success of the Internet, the dynamics of the critically important inter-
domain routing protocol, the Border Gateway Protocol (BGP), remain a subject of re-
search. In particular, despite a large number of research efforts, the convergence of
BGP[6, 11], and lately, the chattiness of BGP, also called BGP churn [3], are still not
well understood. Further observations have been made of duplicated and/or ‘unneces-
sary’ updates [15]. These all ultimately lead to slow protocol convergence.

Understanding the BGP mystery is critical. In the case of convergence, vendors may
improve code based on insights into propagation patterns, which in turn could lead to
less churn, and thus lower load, a more robust network, and faster response to failure
events. Researchers suggesting replacement protocols could design them with an in-
depth understanding of what works today, what does not work well, and why.

This paper aims at one facet in this spectrum: how, with absolutely minimal code
change, to better differentiate the normal path-vector protocol convergence process
from abnormal activity, such as heavily flapping prefixes. It has been shown that a
single triggering event can cause multiple BGP updates elsewhere in the Internet [5, 6].
We say a BGP route is flapping or unstable if a router originates multiple BGP update
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messages (reachable or unreachable) for the prefix in a ‘short’ time interval and prop-
agates those changes to its neighbors. However, BGP, being a path-vector protocol is
also subject to topological amplification, sometimes called path exploration. One trig-
gering event can cause multiple BGP updates at a topologically distant router. Studies
using BGP beacons [12] have illustrated this effect. It is important to understand that
this is a property (or artifact) of the BGP protocol itself and does not correspond to con-
stantly changing topology. In fact, studies of BGP update behavior and traffic flow have
found little correlation [20]. The traffic may continue to reach its destination despite the
constant noise of BGP update messages.

While this is conceptually very simple, it is not easy to distinguish real topological
changes from path exploration in the BGP signal. Ideally, we would like to maximize
the speed topological information is propagated, while minimizing exchanged messages
required to converge to a stable path. However, the root cause of a BGP update typically
cannot be known. Therefore mechanisms to reduce BGP’s chattiness face the dilemma
of finding appropriate algorithms and parameters.

Huston [8] has observed that a small portion of the prefixes generate a high number
of BGP update messages. In Figure 1 we show a similar observation. Most prefixes
receive very few updates. Only 3% of the prefixes are responsible for 36% percent of
the BGP messages. The plot shows the number of update messages that are received at
a router in our measurement setup (Fig. 3) for each prefix during the week from Sept.
29th to Oct. 6th, 2010.
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Fig. 2. Update count per prefix from a single
BGP session in one hour bins

Figure 2 illustrates the churn, i.e. update messages per hour that are received on
a session with a tier-1 ISP. The y-axis depicts the number of updates received for a
particular prefix per one hour bin, while the x-axis shows the prefixes sorted by the
number of update messages received. The majority of prefixes account for few updates,
while a small number of prefixes account for a very high number of updates within
a short time period. The figure shows three curves, the minimum (vertical line), the
average (lower curve) and maximum (top curve) number of updates in one hour bins.

Router r0 receives a full routing table, 326,575 routes, from NTT. One might expect
that most of those routes would be stable and not receive any updates at all. However,
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we observe updates for 153,773 prefixes during one week of observation. And the router
receives up to 1,647 updates in one hour for the prefix with the highest churn (see right
most point on the top curve in Figure 2), there are less than ten updates for more than
100,000 of the prefixes for which there were any updates. Most prefixes for which we
observe BGP update messages are quiet most of the time. Only 0.01% of the prefixes
are always present in the trace, with one prefix having a minimum of 913 BGP updates
per hour over the whole trace (which explains the vertical line in Figure 2). These
observations confirm that most prefixes are very quiet, and only a very small number of
the prefixes are responsible for the majority of the BGP churn.

For some prefixes the router received hundreds and thousands of update messages,
over arbitrarily long time-periods. We hypothesize those updates are being caused by
some periodic events and/or flapping. This cannot be ‘normal’ protocol convergence.
This is causing an unnecessary load on the global routing system.

2 Background

There are many causes for route flapping. One common cause is a router or a link going
up and down due to a faulty circuit or hardware. Another cause is a BGP session being
reset. BGP policy changes can also lead to the readvertisement of routes and can thus be
interpreted as a route flap, this also includes policy changes for traffic engineering. Fur-
thermore, IGP cost changes may cause BGP updates which then propagate across the
Internet [17]. Duplicate advertisements [15] are probably the best example of ‘unnec-
essary’ updates that do not contain any new topological information. Lastly, the BGP
protocol is known to be inherently unstable [1, 4, 7].

Today, two approaches attempt to make the trade-off between convergence time and
message count [6]. First, the MinRouteAdvertisementInterval timer (MRAI) [16] speci-
fies the minimum time between BGP advertisements to a peer. While it is recommended
to be a per prefix timer, existing implementations typically use a per-peer timer for
all prefixes sent via that peering. By default, it is 30 seconds (jittered) for an eBGP
peer, and five seconds for iBGP. The idea is that the router waits for the ‘path explo-
ration’ downstream to finish, before sending any updates. However, as mentioned ear-
lier, no technique can reliably discriminate between flapping routes and routes that are
‘converging’.

The second technique is Route Flap Damping (RFD) [19]. It is more complex and
fine-grained, as routers maintain a penalty value per prefix and per session. Routes with
a penalty above a given threshold are damped, e.g., newly received announcements are
suppressed and not considered as suitable alternatives to reach a destination. The idea is
that heavily flapping paths are putting a large burden on the routing system as a whole
and to protect the Internet from such routes, it is better to disregard the path and drop
its traffic than to let such prefixes potentially cause cascading failures due to system
overload. Of course, despite observations, stable routes are not supposed to be affected
by this mechanism. Thus, there is still room for research in this area. For instance, the
work of Huston [10] is promising in that it aims to categorize updates and determine
the types that are potential indicators of path hunting. However, live detection of such
updates is much more CPU and memory intensive than the brutally simple approach
explored in this paper.
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Using RFD [19], each prefix accumulates a penalty which is incremented on receipt
of an announce or withdraw message for that prefix. This penalty is a simple counter
and the values added to the penalty are listed in Table 4. When the penalty reaches
a given threshold, the ‘suppress penalty’, the route is damped, i.e. quarantined. It is
not advertised by the router until the penalty gets below another threshold, the ‘reuse
penalty’. The penalty value of a damped route is decremented using a ‘half-life’, i.e.
it is divided by two after ‘half-life’ seconds. Upon the receipt of further updates the
penalty continues to grow. However, there is a ‘max suppress time’, which constitutes
a maximum time the route can be damped. E.g., provided that the route is not receiving
any further updates, a damped prefix is typically released after one hour. This translates
into a ‘maximum suppress penalty’, which is computed using the suppress threshold,
the reuse threshold and the half-life time. For example, with Cisco default parameters a
penalty of 12,000 will result in a suppression of one hour if no further updates for that
prefix arrive. We refer to the work of Mao et al. [13] for a detailed study of the RFD
algorithm.

RFD has been reported to be harmful [2] in that, with current default settings and
recommendations [14], it penalizes routes which are not flapping, but receiving multi-
ple updates due to path exploration. This severely impacts convergence. Reachability
problems for over an hour have been observed where there was no physical outage,
network problem, or congestion that would justify any packet drops. In fact, it has been
shown that perfectly valid and fine paths can be withdrawn due to RFD [2]. As a con-
sequence most operators have disabled RFD. On the other hand, we see serious BGP
noise affecting router load and burdening the whole system [9].

Can research on BGP dynamics lead to an appropriate recommendation of RFD pa-
rameters? What would happen if we adopted a strategy to select only the ‘heavy hitters’,
the heavily flapping routes, or ‘elephants’ as we call them – but leave the converging
routes, or ‘mice’, in peace? BGP churn should decrease significantly compared to the
current situation where RFD is turned off, yet the BGP convergence for prefixes with
‘normal’ BGP activity would not be affected. In this paper, we try to find and propose
such appropriate parameters.

3 Measurement Setup

In this section, we present our experimental design. We describe a change to Cisco’s
IOS XR BGP implementation to enable the collection of damping statistics, the location
of the router in the Internet and the BGP feeds that it receives. Then we explain how we
collected and analyzed the RFD data.

Router r0 in Figure 3 is a Cisco 12406 running a minimally modified version of
Cisco’s IOS XR software to enable us to perform a detailed analysis of what the router
‘thinks’. The router applies the RFD algorithm using the normal penalty values. The
modified code does not actually damp the routes, instead it records the calculated
penalty values of each route and its supposed status, active or damped. The other modi-
fication was that no ‘Maximum Suppress Penalty’ was imposed, e.g., the penalty values
could increase above 12,000.
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Fig. 3. Measurement Topology Setup

Parameter Value

1 Half-life time 15 min
2 Max suppress penalty 12,000
3 Max suppress time 60 min
4 Suppress penalty 2,000
5 Reuse penalty 750
6 Withdrawal penalty 1,000
7 Re-advertisement penalty 0
8 Attribute change penalty 500

Fig. 4. Cisco’s default RFD values

Figure 3 shows our measurement infrastructure. Router r0 is directly connected to
a large public Internet Exchange over which it receives both full and partial feeds. In
addition, the router connects to a global tier-1 provider for another full BGP feed.

We pulled statistics from the router at regular intervals for one week, from Septem-
ber 29 through October 6, 2010, using the clogin command from the rancid tool. Data
included details of all route flap damping counters, although the router code did not
actually damp any route. The time to pull the data from the router depended on how
quickly the router responded to our queries, but was typically in the order of 4–5 min-
utes. Missing counter values due to slow router response time did not significantly af-
fect our observations in subsequent sections, as there were very few of them. The 95%
quantile was under ten minutes. However, in some circumstances it was longer, up to
45 minutes in one instance! We believe this was due to CPU utilization peaks.

4 Results

We investigate the penalty values assigned to the prefixes received by our modified router,
r0 (Figure 3). We then provide recommendations for new RFD parameter settings.

Figure 5 shows the Cumulative Distribution Function (CDF) of the penalties as-
signed to prefixes by the router during the one week experiment. Let us assume there
are n snapshots during the week’s experiment. We define an ‘instance’ ip,t as the RFD
penalty of prefix p in snapshot t. Figure 5 shows the proportion of instances with penal-
ties smaller than or equal to x over the whole set of instances. Intuitively, this is the
proportion of prefixes which would have been damped in the time-prefix-space.

We observe that 14% percent of the instances reached a penalty greater or equal to
2,000 in the measurement period. 2,000 is a critical threshold as this is the default value
for RFD suppression on Cisco routers. This gives a feeling for how ‘bad’ it is, if one
turns on default RFD those instances would have been damped. Further, we observe in
Figure 5 that a suppress threshold of 4,000, 5,000 and 6,000 leads to the damping of
4.2%, 2.8% and 2.1% of the instances respectively. The number of damped instances
decreases very quickly. Finally, we note that very few of the prefixes are assigned a
very high penalty. Only 0.63%, 0.44% and 0.32% have a penalty value above 12,000,
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15,000 and 18,000, respectively. Thus, very few prefixes flap heavily for long in the
time-prefix-space. However, we observed earlier that those few prefixes are responsible
for a disproportionate part of the BGP churn. The maximum penalty value assigned to
a route during the experiment was 48,000. This value is huge compared to the median
penalty of 818 (Fn(818)=0.5).

We recommend conservative operators set the ‘suppress threshold’ to 12,000,
15,000 or 18,000, as these values likely penalize only the very heavy hitters. We show
later that, while values in the range [12,000−18,000] enable a non negligible BGP up-
date rate reduction, a suppress threshold in the range [4,000−6,000] damps far fewer
prefixes compared to current defaults and the BGP update rate is significantly reduced.

How long do prefixes typically stay at high penalty values? Figure 6 shows the CDF
of the durations a prefix is above a certain penalty value, and thus would be damped if
this was the threshold. The red solid curve shows the damping duration for the current
threshold of 2,000. Many prefixes have a penalty above 2,000 for a very short time.
For example, 68% of prefixes stay above 2,000 for up to one hour during the one week
of the experiment. This means the current default suppresses a lot of prefixes that are
unstable for a relatively short time. We suspect that many of those prefixes are inappro-
priately damped following a single event. They are given a penalty value above 2,000
during BGP convergence simply because of path exploration. We should not damp those
prefixes!

The other curves show suppression times for penalty values between 2K and 4K,
between 4K and 6K, 6K–12K, and above 12K relative to those prefixes in the 2K class.
If a prefix is not suppressed at all, then the duration is zero and thus the curve starts at
this point on the y-axis. Not surprisingly, the number of prefixes in each category varies
quite a lot (721 prefixes above 12K, top most curve; 4,429 prefixes between 6K–12K,
2nd from top; and 11,546 prefixes between 4K–6K, 3rd from top; and 44,846 prefixes
between 2K–4K, lowest curve). Furthermore, there are very few prefixes that have a
high penalty for a long time (e.g. rightmost points). There are 57 prefixes in the 2K–4K
band that stay in this band for more than two days, but only 12 prefixes in the above
12K-band that stay for more than two days. We noticed some prefixes change bands,
e.g., stay for a few hours/days in the 2K–4K band and then also stay a few hours/days
in a higher band. Overall, it is possible that high churn prefixes stay for quite some
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time in lower bands; but we have also shown that ‘normal converging’ prefixes stay in
those bands. Therefore, we need to find a trade-off in the parameter space, that does not
penalize prefixes that only experience path exploration.

Figure 7 shows the number of prefixes which would be damped given the different
candidate thresholds. Clearly, (32,089) mice would be spared using a suppress thresh-
old of 4,000 or above. Moreover, we see that the number of prefixes damped with
higher suppress thresholds does not vary much. High thresholds are much more suit-
able to prevent damping of prefixes affected by normal BGP path exploration than the
current default threshold. Our intuition here is that a ‘badly behaving prefix’ will flap
for a long time and thus hit high penalty values; while ‘normal converging prefixes’,
which just receive multiple updates due to path exploration, will not be penalized.
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Increasing the value of the suppress threshold above today’s default will increase
the BGP churn rate, but it will save many mice and still be less churn than a router
with RFD turned off. Figure 8 illustrates this. The x-axis is the candidate value of the
suppress threshold. On the y-axis we show the update rate on a per minute average in
60 minute bins. 100% is the churn when RFD is disabled.

Here, we try to estimate how churn could change if we activate RFD at various
thresholds. Unfortunately, we face two problems: (1) the accuracy of timestamps and
(2) we are looking at only one router and not studying interactions in complex topolo-
gies. With regard to (1) we record incoming updates via tcpdump with sub-second accu-
racy. However, the router provides us with less frequent snapshots of the penalty values.
We therefore have only an estimate of the penalty. Especially, we do not know the exact
time of onset, e.g., when an update would have been damped. Updates often come in
bursts with short inter-arrival times but the arrival process of bursts is rather uniformly
distributed in time, and thus within the snapshots. If a prefix has a penalty above the
considered threshold in the current snapshot, all its updates in the coming interval are
marked as being potentially removed. This provides an estimation of the update rate.
By averaging over the whole trace, the error smooths out. We tag all updates that cross
our 2K, 3K,. . . thresholds within a certain time-window. With respect to (2) we can-
not predict how MRAI and best path selection processes will or will not delay updates.
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While we believe that the overall properties of update behavior are comparable, we
leave it for future work to study the impact in complex topologies.

We observe a 47% reduction of the average update rate with a penalty of 2,000, com-
pared to a situation without RFD, in Figure 8. 4,000, 5,000 and 6,000 correspond to an
average update rate reduction between 26% and 19%. Thus, it is worthwhile changing
the default suppress threshold value. Our proposal is a very simple modification which
is rather effective compared to more complex solutions such as [10].

We further note that the churn reduction is similar for all thresholds above 12K. Damp-
ing thresholds of 12K, 15K and 18K suppress an average of 11.26%, 9.51% and 8.12%
of the updates, which is still non negligible for such a trivial change as we propose.

To compare the really heavy hitters in the intervals 12K-15K, 15K-18K, and above
18K, we concentrate on 64 prefixes which have a damped duration of six hours or
longer. We notice that 53 of those 64 prefixes (83%) at some point pass the high point of
18K. Only nine prefixes (14%) stay in the 12K-15K range, and only two prefixes (3%)
go over 15K, but not up to 18K. This strengthens our confidence that the ‘evil’ guys,
the really heavy hitters which constantly flap, will be caught by almost any threshold
setting, be it 12K, 15K, or 18K.

Thus, for more conservative operators that desire to spare most of the mice and still
see around 10% churn reduction, we recommend values 12K and above. It does not
matter much which of these three values are chosen. If a prefix is flapping so hard that
it reaches 12K, then it is also likely to go higher at some time.

5 Other Feeds

A critical question is whether the observations and recommendations in the previous
section hold for other locations in the Internet topology? Can we make a generic rec-
ommendation for the ‘suppress penalty’ value? To understand this, we replayed addi-
tional varied BGP traces from Route Views into r0 (see ‘RV/RIS Updates’ in Figure 3)
in pseudo real-time. Again, r0 logged the RFD penalties of the received routes.

We performed two additional experiments. Figure 10 describes the additional work-
load traces that were replayed to the router. These were in addition to the in vivo feeds
from the tier-1 ISP and the Exchange Point.

These experiments were designed to determine if different update patterns recorded
at different places in the Internet topology would affect our conclusions.

Figure 9 shows the penalty values for prefixes with the new feeds replayed from
Route Views. It shows that the distributions are exceedingly similar to those from the
live feeds. Similar to Figure 5, this plot shows a CDF of penalties assigned by r0 to the
different instances in the time-prefix-space. The green curve is the workload from the
live feed plus a BGP feed from an African peering point. The blue curve is the 1.5 day
live workload with the 10 additional Route Views feeds. The red curve is the one week
workload (live feed), previously shown (see Figure 5) for comparison. We observe that
all three curves have a similar shape. Adding more feeds just leads to more prefixes that
flap but the number of ‘elephants’ is very similar.

Therefore, our damping suppression threshold recommendation does not change for
BGP feeds from varying points in the Internet topology.
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10 large feeds: Ten Route Views [18] feeds
which received the maximum number of
updates from August 5 to mid-day August
6, 2010 (1.5 days).

1 small feed: A small selected African Ex-
change, route-views.kixp. Data were col-
lected from August 27 to September 1,
2010 (5 days).

Fig. 10. Additional feeds

6 Conclusion

We studied the impact of RFD on the Internet. As previously observed by many other
researchers, a small fraction of prefixes is responsible for a significant portion of the
update churn. RFD was developed to reduce this noise, but the current default parame-
ters do not properly take into account properties of the BGP protocol. Any path-vector
protocol is by it’s very design noisy due to path exploration.

We therefore looked at the effect of an absolutely minimal change, only adjusting
RFD parameters, to get moderate churn reduction without adversely impacting nor-
mally converging prefixes. Our recommendation derived from this study would be to
damp a route when it reaches a penalty above 12,000. The suppress threshold can be
set to any value between 12,000 and 18,000. Such a setting will suppress the BGP
churn of routes that flap heavily while keeping paths for prefixes which only slightly
contribute to BGP churn. For operators extremely concerned about churn, a suppress
threshold of 4,000 to 6,000 is a far better compromise than today’s default parameters.
It may still damp some normally converging prefixes, but will also significantly reduce
the BGP update rate.

We do not recommend changing the maximum suppress time, but we strongly rec-
ommend the limit of the maximum suppress threshold value be raised. A maximum
suppress time of one hour is very reasonable to achieve recovery once the flapping
stops (and heavy hitters will anyway broadcast continuously), but the maximum sup-
press threshold needs to be able to allow higher values than 12,000.
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Abstract. Interdomain route changes are frequent and they can have
negative impact on a network’s operation: during route convergence,
packets get delayed and dropped; after route convergence, changes in
the egress point for reaching a destination can alter the network’s in-
tradomain traffic patterns and trigger new traffic-engineering. In this
paper, we look into reducing the impact of interdomain route changes
on the network’s operation. First, we investigate a route decision pro-
cess which avoids the selection of routes that cause egress point changes.
However, this decision process does not consider the potential benefit of
selecting a more preferred route even if it causes an egress point change.
Then, we propose a system which only avoids route changes causing re-
curring intradomain traffic shifts by processing the route changes history
and by selectively modifying route attributes which affect the route de-
cision process. We evaluate both approaches using data from a major
European ISP. The modified route decision process avoids 89% of the
observed intradomain traffic shifts caused by interdomain route changes,
whereas route attribute modifications reduce the number of traffic shifts
on average by 25%, and as much as 50%.

1 Introduction

Interdomain route changes can be highly disruptive to a network’s operation
[1][2]. During route convergence, traffic can be delayed by routing loops or
dropped by temporary loss of routes [3][4]. This is particularly harmful for low-
latency and high-availability applications. Route changes also add considerable
operational overhead. After route convergence, traffic may traverse the network
through a different path. This can modify the network’s traffic patterns and
trigger new traffic-engineering in order to efficiently use the network resources.
The higher the frequency of such route changes, the more time operators have
to spend ensuring a balanced traffic distribution in the network.

BGP route changes are caused by a variety of external events (e.g., remote
failures, new peerings, policy changes). Although BGP’s pathological behavior
has decreased considerably [5], many legitimate route changes still occur and can
cause disruptions to the affected networks. Operators have no control over these
route changes but they can leverage their network’s path diversity [6] in order to
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reduce the negative impact. Our work focuses on reducing the impact of inter-
domain route changes on networks with sufficient path diversity by avoiding the
route changes which lead to egress point changes. These changes take longer to
converge [7], harming data plane performance. They also affect the network’s in-
tradomain traffic patterns and can interfere with the internal traffic-engineering
(e.g., the configuration of MPLS tunnels).

First, we investigate a modified route selection algorithm called Stick-To-
Egress (STE) which avoids intradomain traffic shifts by preferring alternate
routes through the same egress point with that of the previously selected route.
The problem with STE is that it prioritizes the aversion of the traffic shift and
disregards the potential benefit of the route change (e.g., permanently switching
to a shorter route advertised to another egress point). Then, we present a system
which targets more intelligent route selection and only avoids the traffic shifts
caused by recurring route changes. This system deviates less from the standard
route decision process and allows route changes unless the route history shows
that they are caused by unstable routes. It does so by boosting the route at-
tributes of previously selected stable routes in order to avoid the recurrence of
a route change. Route boosting exploits both the network’s path diversity and
the knowledge provided by already ”seen” route changes.

We perform a measurement study of the interdomain route changes as seen
by a major European ISP in a period of eight months. We find that: 1) A consid-
erable amount of route changes have high impact: on average 46% of the route
changes cause intradomain traffic shifts, and from these, only 3% are intention-
ally caused by the network’s operators through routing policy changes. 2) 89% of
the observed traffic shifts could be avoided by STE. Thus, this network possesses
sufficient path diversity which can be exploited in order to make route choices
with minimum impact on the network’s operation. 3) 52% of the high-impact
route changes are recurring. 4) The route boosting avoids on average one in
four - and as much as one in two - traffic shifts caused by the observed route
changes. Also, it avoids the rerouting of traffic flowing towards the top-ranking
destination networks for this ISP, helping to stabilize large traffic volumes. The
remainder of this paper is structured as follows: In Sections 2 and 3, we present
related works and our dataset, respectively. In Section 4, we analyze the inter-
domain route changes observed by the ISP and emulate the STE route selection
algorithm. In Section 5, we present the route boosting system and investigate
its benefits and cost. Finally, we conclude in Section 6.

2 Related Work

Interdomain routing is known to be unstable: routes change often [8], and a route
change can take hours to converge [9]. Several previous works are reactive; they
reduce the convergence time [10][11], or minimize the negative impact of slow
route convergence [12][13]. These works mitigate the impact of route changes on
data plane performance but do not address the problem of managing the unsta-
ble traffic patterns caused by the route changes. Proactive methods - including
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our work - directly suppress unnecessary route changes. Route Flap Damping
(RFD) [14] deactivates routes that flap frequently. However, RFD may suppress
relatively stable routes that only flap momentarily, and thus, significantly de-
crease the set of available routes [15]. Instead, our work increases the preference
of routes that are shown to be more stable. Also, RFD targets pathological rout-
ing instabilities whereas our work targets legitimate route changes. The latter are
recurring in longer timescales and impact a larger range of prefixes (not only the
unstable and unpopular ones [16]). Overall, RFD is complementary to our work.
Stable Route Selection (SRS) [17] proposes a modified BGP decision process
which prefers routes that have been up the longest. Route boosting also favors
route stability but only for prefixes which suffer from recurring route changes.
The rest of the prefixes do not necessarily benefit from stable route selection.
So, route boosting lets their route selection follow the standard BGP decision
process. Additionally, route boosting also opts for intradomain traffic pattern
stability by favoring the selection of routes that maintain the currently selected
egress point.

3 Dataset

Our dataset includes routing tables from the backbone IP network of a major
ISP in Europe. This network is comprised by 13 BGP-speaking routers with
961 eBGP neighbors. Two routers are route-reflectors and maintain BGP ses-
sions with all other routers. The network has customer-to-provider, provider-
to-customer, and peer-to-peer relationships with its neighboring ASes. It has
customers in four continents, peers with hundreds commodity peers, and buys
transit from multiple upper tier providers. We analyze daily snapshots of rout-
ing tables over eight non-consecutive (due to missing routing tables) months in
2007 and 2008. A routing table snapshot contains approximately 200,000 dis-
tinct prefixes and as many as a million routes. It is important to note that, since
we do not have access to more frequent routing table snapshots, we only see a
sample of the interdomain route changes and the intradomain traffic shifts that
the network experiences. Thus, we are limited to the route change granularity
given by this sampling frequency. Finally, the dataset includes a summary report
of the outgoing traffic volumes per destination AS for a 24-hour period.

4 Stick-To-Egress Route Selection

First, we count the number of interdomain route changes that cause intradomain
traffic shifts: the new next-hop for reaching the destination prefix in the most
recent routing table snapshot resides on a different egress router than the old
next-hop in the previous routing table snapshot. We find that on average 46%
of the route changes cause egress point changes. We characterize these route
changes as high-impact. The rest of the route changes are mostly changes to
secondary routes, or changes to the AS-path of the best route.
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Then, we analyze the high-impact route changes in order to exclude the
changes which are intentionally caused by the network’s operators and not by
external events. Operators change route attributes such as local-preference (LP)
and Multi-Exit-Discriminator (MED) in order to make routes more or less prefer-
able and affect the route selection process. In particular, it is common to assign a
MED value at the import side of every session in order to show session preference
[18]. We illustrate the methodology for counting intentional route changes:

# RS1 : available routes towards prefix P in snapshot t

# RS2 : available routes towards prefix P in snapshot t+1

# RB1 = Best(RS1), RB2 = Best(RS2)

1. if RB1’ in RS2 where RB1.NextHop == RB1’.NextHop and

2. (RB1.LP != RB1’.LP or RB1.MED != RB1’.MED),

3. RB2’ = Best(RS2 where RB1’ is replaced by RB1)

4. if (RB2’ == RB1), intentional route change

5. if RB2’ in RS1 where RB2’.NextHop == RB2.NextHop and

6. (RB2’.LP != RB2.LP or RB2’.MED != RB2.MED),

7. RB2’’ = Best(RS2 where RB2 is replaced by RB2’)

8. if (RB2’’ == RB1), intentional route change

We consider a route change intentional when (i) we observe a change in the LP
or MED value of either the old or the new best route (lines 1-2, 5-6) and (ii) the
route change would not occur if the changed route attribute remained the same
(lines 3-4, 7-8). Condition (ii) is required so that, when a route attribute change
with no impact on route selection coincides with a route change caused by an
external event, the route change is not counted as intentional. In our dataset,
we find only 3% of the high-impact route changes to be intentionally caused by
the network’s operators. For the rest of this paper, we focus on how to reduce
the impact of the unintentional route changes.

One way to reduce the impact of interdomain route changes is to modify the
route decision process and prefer routes that stick to the same egress point. The
Stick-To-Egress (STE) route selection algorithm prefers alternate routes through
the egress point of the previously selected route. Selecting such an alternate route
- if existing - ensures that route convergence is faster [7] and that the traffic
towards the destination prefix traverses the network via the same intradomain
path. We illustrate the STE route selection algorithm:

Prefer routes

1. With a higher local-preference.

2. Advertised to the same egress point with the previously selected route.

3. With a shorter AS-path.

4. Originated from IGP than from EGP.

5. With a lower Multi-Exit-Discriminator.

6. Learned from eBGP than from iBGP.

7. With lower intradomain routing costs.

8. From routers with lower router IDs.

STE adds the second step to the standard BGP decision process. The first step
ensures that business relationships are not violated given that LP mostly rep-
resents business relationships between networks [19]. STE exploits the fact that
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many networks have multiple routes to a single destination [6]. These networks
can use their alternate routes to avoid intradomain traffic shifts.

We emulate STE in order to estimate how many of the observed traffic shifts
the analyzed network could avoid by preferring routes that stick to the same
egress point. We see an - on average - 89% reduction in the number of intrado-
main traffic shifts caused by interdomain route changes. Although the interdo-
main routing activity varies during the analyzed period, STE constantly avoids
a high percentage of traffic shifts. Thus, the analyzed network has sufficient path
diversity which makes STE highly effective in reducing the impact of interdo-
main route changes. We note that the cases where STE cannot prevent the egress
point change are when (i) no alternative route exists, or (ii) the most frequently
selected route has a different egress point from the alternative routes.

5 Route Boosting

Should all interdomain route changes causing intradomain traffic shifts be
avoided? STE also suppresses beneficial route changes (i.e., route changes to-
wards more preferred and stable routes) because it has no means of assessing
whether the benefit of avoiding a traffic shift outweighs the cost of settling
with a less preferred - according to the standard BGP decision process - route.
Route boosting assesses the benefit of a route change by looking into the re-
cent route history and prevents only recurring route changes caused by unstable
routes. Specifically, it does not modify the route selection algorithm but suggests
routing policy changes which make the most stable route more preferable than
the unstable route that causes back-and-forth traffic shifts. The routing policy
changes prevent the future recurrence of the route change. Fig. 1 presents an
overview of the route boosting system.

Fig. 1. High-level design of the route boosting system
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5.1 Route Boosting Algorithm

We perform route boosting for the prefixes that have recently exhibited route
instability, i.e. have experienced an egress point change in the past two routing
table snapshots. For each of these prefixes, we perform the following steps.

Step 1 : We choose the most stable route among the routes that have been
chosen as best in the routing table history. The routing table history consists of
the past n snapshots of the network’s routing tables. The sampling frequency
of the routing state poses a trade-off between accurate stability estimates and
the overhead of monitoring the routing state. We refer to the most stable and
previously selected route as dominant route D. To measure the stability of a
route, we use the product of the route’s persistence and prevalence [20]. Persis-
tence represents the interval during which the route has been available before it
is withdrawn or before its AS-path length changes. Both route withdrawal and
AS-path length change can cause a best route change. Persistence is computed
as the average of the intervals. Prevalence represents the probability of observ-
ing the route. It is computed as k/n where k represents the total number of
snapshots that the route is present in the history.

Step 2 : We examine whether the dominant route D is chosen as best in the
most recent snapshot. If this is the case, the prefix has experienced a route change
to D and we proceed to the next step which boosts D. If D is not currently the
best route, we do not boost D and move on to process the next prefix. In this
way, we let the current best route become dominant since the route history does
not show a recurrent traffic shift and the route change could be a permanent
beneficial route change.

Step 3 : We identify the most preferred route over the routes that have been
selected as best in the routing table history. We refer to this route as best
competitor C. If C differs from D, we boost D such that D is preferred over C
(i.e., D > C ) by modifying the route attributes of D for the analyzed prefix.
This can be implemented at the inbound route filter applied to the eBGP session
where D is advertised. If C does not differ from D, boosting is not necessary
because D is both the most stable and most preferred route among the recently
selected routes. The routing policy reconfiguration follows the rules below:

if D.LP < C.LP, No Boosting

else if D.LP = C.LP and D.ASP-length > C.ASP-length, D.LP <- C.LP + 1

else if D.LP = C.LP and D.ASP-length = C.ASP-length, D.MED <- C.MED - 1

We note that we do not allow the boosting of routes that would result in violating
business relationships. This means we do not boost D when D and C are received
from neighbors of different business type. Also, among the range of different
LP/MED values, we choose the one that is minimally better from that of C. In
this way, a new route (i.e., a route which does not appear in route history) can
be selected as best even after D is boosted.

Step 4 : We identify the most stable secondary route S advertised to the same
router as D in order to use S as a backup in the case where D is withdrawn or
its AS-path is prepended. We boost S - if existing - such that S is preferred over
C and D is preferred over S (i.e., D > S > C ). This boosting follows the STE
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approach but only for routes that have been stable and selected in the recent
history. The fail-over to S does not happen often or for long time periods because
D is the most stable previously selected route in the recent route history.

We re-evaluate the installed route boosters on a regular basis because the sta-
bility of routes can change. If the boosted route is withdrawn or another route
becomes more stable, we update the boosting. The re-evaluation process is per-
formed for each prefix by estimating D and C given the most recent unboosted
route history and by comparing them with the already installed boosters. The
frequency of the re-evaluation process poses a trade-off between up-to-date route
boosting and processing overhead. A short re-evaluation period imposes more
processing load as required for examining all previously installed boosters. But
it quickly adapts to changes in route stability. Since the stability of most routes
does not change as often as a week [16], a period of a few days is a good choice.

Another issue when running the route boosting for long periods is the ever
increasing number of boosted routes and policy reconfigurations. This number
would stabilize if there was a comparatively constant set of unstable prefixes.
However, this is the case for short-term stability [16]. For long-term stability,
there are legitimate reasons for any prefix to experience instability. We maintain
a maximum number of boosted routes by periodically removing boosters. We call
this the cleanup process. The cleanup policy maintaining boosters to important
and/or popular prefixes has the highest impact on the network’s operation.

Finally, it is worth considering possible risks and limitations of route boosting.
Firstly, boosting can cause additional traffic shifts in the rare case where both
the boosted dominant D and the boosted secondary S are withdrawn. Secondly,
boosting suggests configuration changes in interdomain routing policies. To avoid
intradomain routing instability, we assume that the BGP-session topology and
the intradomain routing metrics of the network are chosen according to the suf-
ficient iBGP correctness conditions shown in [21]. If the iBGP configuration is
correct, the route boosting can safely introduce LP and MED changes. Then,
interdomain routing policy changes can interfere with routing policies in neigh-
boring networks, leading to route oscillations and forwarding loops [22][23]. We
avoid causing such routing instabilities by respecting the interdomain business
relationships, as discussed earlier.

5.2 Route Boosting Emulation

We evaluate the route boosting system by emulating its operation over the
longest consecutive period of our dataset (90 days). The emulator keeps track
of the number of traffic shifts caused by interdomain route changes in the case
where route boosting is used and in the case where it is not used. For the boosted
case, we compute best routes by modifying the route attributes that the route
boosting suggests and then by executing the BGP decision process with the mod-
ified routes [24]. For the original case, we extract the best routes from the routing
tables. This process is repeated for each snapshot as the emulator sequentially
takes the snapshots as input. The route boosting implementation includes 4000
lines of Java code and ran on a machine with a 3.8 GHz CPU and 6GB memory.
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In order to deal with the limited granularity of route changes that the daily
sampling of routing tables gives us, we only boost the dominant route when
its stability score is much higher that its competitor’s. In this way, we avoid
boosting routes which are inaccurately estimated as stable. We use a routing
history length of 10 days, a cleanup and re-evaluation period of 5 days, and a
maximum of 2000 boosted prefixes. We omit the parameter sensitivity analysis
due to space limitations. The running times of the boosting, cleanup, and re-
evaluation average at 8, 1 and 13 minutes, respectively. The code can be further
optimized for faster runtime if required. However, these runtimes are acceptable
because the system does not need to run online since the stability of routes does
not change as often [16].

In our dataset, we find that 52% of the high-impact interdomain route changes
are recurring (i.e., the best route changes from route A to route B and back to
route A at least once in the routing table history). In Fig. 2(a), we show the
number of traffic shifts which are experienced by the network, avoided, and caused
by route boosting for each snapshot. We count one traffic shift per each prefix
whose egress point changes. The percentage of avoided traffic shifts over the total
number of traffic shifts averages at 21% and goes up to 50%. This percentage is
particularly low (i) after the days we miss routing table snapshots (e.g., 64th day)
and (ii) after we perform booster cleanup (e.g., 31st day). This highlights the
importance of the information given by the most recent snapshots in predicting
the recurrence of route changes and the effectiveness of the installed boosters in
avoiding high-impact route changes. When we exclude the days immediately after
missing routing snapshots and after performing cleanup, the average percentage
of avoided traffic shifts goes up to 25%. Also, we observe that the additional
traffic shifts caused by the route boosting system are almost zero for most of the
days. This is expected as the withdrawal of both the dominant and the secondary
route is unlikely.

We measure the impact of route boosting by analyzing the popularity of
the boosted prefixes for this network. Since our dataset does not include traffic
volumes per prefix for the analyzed period, we cannot estimate the volumes of
traffic not shifted because of route boosting. However, our dataset includes a
summary report with the average volumes of outgoing traffic per destination
AS for this network. We map each prefix whose traffic is not shifted because
of route boosting to its origin AS through its AS-path. Fig. 2(b) illustrates the
significance of the 1434 unique ASes originating the boosted prefixes. We observe
that some of these destination ASes are very popular: 30 ASes belong to the top
250 destination ASes for this network and more than 100GB of traffic is destined
to each one of these ASes per day. Thus, reducing the impact of route changes
towards these ASes has significant impact on this network’s outgoing traffic.

Finally, we look into the differences in route attributes between the stable
routes and the more preferred competitor routes. For each avoided traffic shift,
we compare the route selected when using route boosting with the route selected
in the original case. Almost half of the routes chosen with route boosting are
on average 1.41 hops longer than the ones chosen in the original case. When
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Fig. 2. (a) Number of intradomain traffic shifts per prefix experienced by the network,
avoided and caused by route boosting. (b) Popularity of the destination ASes whose
traffic is prevented from shifting because of route boosting.

ignoring AS-path prepending, the boosted routes are 0.82 hops longer than the
unboosted routes. The difference in AS hops implies a difference in route latency
but AS-path length is not a reliable indicator of route latency [3]. In almost all
other cases, the boosted routes differ in assigned MED value from the unboosted
routes. We note that although each network assigns MED values using different
criteria, MED values are mostly used as tuning knobs for routes that are more
or less equally preferred since they have the same local-preference and AS-path
length [18]. To summarize, the boosted routes do not deviate significantly from
the routes that would have been selected by the standard BGP decision process.

6 Conclusions

Networks experience a significant number of interdomain route changes which
impact their data plane performance and disturb their traffic pattern stability. In
this paper, we investigate ways of reducing the impact of these changes on net-
works with sufficient path diversity. We look into STE, a modified BGP decision
process where routes that stick to the same egress point with the previously se-
lected route are preferred. Then, we investigate a system which suggests routing
policy reconfigurations that selectively tune the BGP decision process for un-
stable prefixes. The route boosting system exploits the knowledge gained from
the history of route changes in order to predict recurring traffic shifts. We find
that for the analyzed network recurring traffic shifts account for approximately
half of the observed traffic shifts and route boosting reduces the impact of route
changes on average by 25%, and up to 50%.
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Abstract. Previous studies on inferring the origin of routing changes in
the Internet are limited to failure events that generate a large number
of routing changes. In this paper, we present a novel approach to origin
inference of small failure events. Our scheme focuses on routing changes
imposed on preferred paths of prefixes and not on transient paths trig-
gered by path exploration. We first infer the preferred path of each prefix
and measure the stability of each inter-AS link over this preferred path.
The stability is measured based on routing changes of specific prefixes
that regularly use the link and are advertised by the AS adjacent to the
link. We then correlate the stability of other links over this path and
infer the instability boundary as the origin. Our analysis using Oregon
RouteViews data and trouble tickets from operational networks shows
that our inference scheme can identify the origins of small failure events
with very high accuracy.

1 Introduction

An inter-domain link failure in the Internet can cause routing changes of hun-
dreds of thousands of prefixes advertised over the Internet. While some prefixes
may preserve reachability through an alternative path, other prefixes may be-
come unreachable and thus affect the data delivery of users seeking those des-
tinations. From the ISP’s point of view, operators are interested in finding the
origin of these routing changes to identify possible locations of failure events.
The origin information could then be used by operators to distinguish stable
links from unstable links when seeking new transits. However, with the large
number of routing changes observed in the Internet today, identifying the origin
of these changes has been difficult [1,2].

Analyzing the sequence of update messages exchanged in Border Gateway
Protocol (BGP) [3] has helped explaining the routing changes encountered by
each prefix. Earlier work represented in [5,6] analyzed these routing updates
across time, observation points and prefixes to locate origins. However, the use
of the time threshold to group routing updates resulted in correlating unrelated
updates triggered by different network events [2] and transient updates triggered
by path exploration [7,8]. A more recent work in [9,10] took a different approach
to capturing routing changes using the Link-Rank [11]. In [11], for each inter-AS
link, the number of prefixes gained or lost is extracted from routing updates and
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compared at given intervals (3-4 minutes) to find significant variations. While
this approach enables routing changes to be captured efficiently, origin inference
in the Internet is limited to failure events that generate a large number of routing
changes because a small deviation is constantly observed for the majority of links.

In this paper, we present a novel scheme for origin inference of small failure
events. Our main idea is that most prefixes have one preferred path and a routing
change imposed on this path should indicate a failure or policy change at one
of the nodes or links that construct the path. We thus first infer the preferred
path of each prefix and extend the Link-Rank concept to measure the stability of
each inter-AS link over this preferred path. The stability is measured using only
the prefixes that regularly use the link and are advertised by the AS adjacent
to the link to filter the noise caused by path exploration. We then correlate the
stability of other links over this path and infer the instability boundary as the
origin. This paper makes the following contributions. First, we present a novel
approach based on preferred path changes for correlating routing updates and
additionally present a scheme for effectively inferring the origins of small routing
changes. Second, we describe a methodology for inferring the actual time of
failure (not the time of detection) and the time of recovery, both of which provide
operators with very valuable information. Third, we provide evaluation results
using Oregon RouteViews data and trouble tickets from operational networks.

2 Effect of Path Exploration on Origin Inference

The effect of BGP path exploration on origin inference has not been deeply
discussed in the past. In this section, we first describe how path exploration
occurs and illustrate its effect on origin inference.

2.1 Path Exploration of BGP

Path exploration is a state in which a BGP router explores multiple alternative
paths during convergence to a new best path. We illustrate an example using
Figure 1. In the figure, AS20 to AS70 announces prefixes p20 to p70. The link
between AS40 and AS60 fails and AS40 reacts by sending withdraw messages
for p60 and p70 to its neighbors (#1 in Figure 1). When AS20 first receives
this message, it announces to AS10 the path via AS30 as the new best path
to reach p60 and p70, not knowing about the failure (#2). However, shortly
after this announcement, AS20 receives a withdraw message from AS30 (#3)
where it then announces to AS10 the alternative path via AS50 as the new best
path (#4). In some cases, a withdraw message is observed immediately before
the announce message due to possible convergence delay or an implementation
bug [4]. Now suppose that at some point in time, the failed link is repaired and
AS10 eventually receives the same best path observed before the link failure.
Table 1 summarizes the AS paths observed for this event. As the table shows
several transient paths are likely to be triggered during path exploration and
selecting the update with the correct AS path is essential for an accurate origin
inference.
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Fig. 1. Passive monitoring of BGP update messages

Table 1. AS path changes for p70 observed at the monitoring point. The AS path for
p60 is the same as p70, only the origin is AS60.

Time Type AS Path Possible Explanation
T1 Announce 10 20 40 60 70 Best path before link failure
T2 Announce 10 20 30 40 60 70 Transient path after failure
T3 Withdraw None Convergence delay or possible bug
T4 Announce 10 20 50 60 70 New best path after link failure
T5 Announce 10 20 30 40 60 70 Transient path after link repair
T6 Announce 10 20 60 70 Transient path after link repair
T7 Announce 10 20 40 60 70 Best path after link repair

2.2 Effect of Path Exploration on Measurement

Using the above example, we examin the effect of path exploration on origin
inference. Table 2 shows the number of prefixes of each inter-AS link extracted
from the routing table (Routing Information Base) created at the monitoring
point. Each RIB consists of a list of prefixes and their preferred AS paths. We
assume that RIBT1 represents the initial routing table created before the link
failure. As shown in Table 2, this single failure and recovery event causes a
variance of one or more prefix at all nine links. If a simple threshold is used
to detect only those links that lose all prefixes as emphasized in the table, five
links are still left as candidates, where two of the links are detected twice. In
the Internet, failure events occur simultaneously and variance is likely to occur
much more frequently making origin inference complicated and difficult.

3 Detecting Candidate Origins

In this section, we describe a methodology for detecting candidate origins. The
detected candidates are correlated with other links to infer origins in Section 4.
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Table 2. The number of prefixes extracted for each link using all update messages

RIB 10,20 20,30 20,40 20,50 20,60 30,40 40,60 50,60 60,70
RIBT1 7 1 4 1 0 0 2 0 1
RIBT2 7 3 2 1 0 2 2 0 1
RIBT3 5 1 2 1 0 0 0 0 0
RIBT4 7 1 2 3 0 0 0 2 1
RIBT5 7 3 2 1 0 2 2 0 1
RIBT6 7 1 2 1 2 0 0 0 1
RIBT7 7 1 4 1 0 0 2 0 1

Table 3. The number of prefixes extracted for each link using routing updates of
specific prefixes that regularly use each link

RIB 10,20 20,30 20,40 20,50 20,60 30,40 40,60 50,60 60,70
RIBT1 1 1 2 1 0 0 1 0 1
RIBT2 1 1 2 1 0 0 1 0 1
RIBT3 1 1 2 1 0 0 0 0 0
RIBT4 1 1 2 1 0 0 0 0 1
RIBT5 1 1 2 1 0 0 1 0 1
RIBT6 1 1 2 1 0 0 0 0 1
RIBT7 1 1 2 1 0 0 1 0 1

3.1 Selection of Measurement Prefixes for Each Link

The observation from the previous example suggests that we must avoid un-
wanted variations that occur during path exploration after link failure and after
link recovery. To achieve this, for each link we focus on a set of prefixes that
are regularly advertised over the link and from the AS adjacent to the link.
Specifically, for link (X,Y), we use prefixes that are advertised from Y regularly
through X. Using the dashed lines in Figure 1 as the preferred path of each prefix,
Table 3 shows the number of specific prefixes extracted for each inter-AS link.
As the table shows, variations only occur at the origin link (40,60) and the edge
link (60,70) and not at other links. Note that links (20,60), (30,40) and (50,60)
are considered temporary links and variations are no longer measured since none
of the prefixes advertised by AS40 and AS60 prefer these links.

To infer preferred paths of prefixes in the Internet, we use the path preference
inference scheme based on usage time of paths described in [8]. For example, for
n AS paths (except NULL paths = withdrawn) observed for prefix pi, denoted as
{pathi

1, pathi
2, ..., pathi

n}, we measure the cumulative duration of the usage time
of each path, denoted as {Tpathi

1, T pathi
2, ..., T pathi

n}. We then calculate for
each pathi

j the usage ratio Rpathi
j using Equation 1. The path with the highest

ratio Rpathi
pref is inferred as the preferred path for pi.
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Rpathi
j =

Tpathi
j∑n

k=1 Tpathi
k

(1)

We validate this scheme using BGP data collected at two monitoring points pro-
vided by Oregon RouteViews [12] over the month of September 2009. AS22388
(TRANSPAC2) is a high-speed research and education network connecting the
Asia-Pacific region with networks in the U.S. AS3356 (LEVEL3) is one of the
Tier 1 networks located in the U.S. For both monitoring points, we observed that
approximately 55% of the prefixes have one preferred path (Rpathpref = 1).
These prefixes either only had one path to the monitoring point or remained
stable during the entire measurement period. For approximately 97% and 92%
of the prefixes, we observed Rpathpref to be very high (over 0.9) for AS22388
and AS3356, respectively. This indicates that for most prefixes, we can infer the
preferred path with very high probability. We also found that Rpathpref is lower
than 0.5 for less than 1% of the prefixes indicating a low probability for most
prefixes to encounter significant changes in policies during a 1-month period.

3.2 Detecting Links as Candidate Origins

Table 3 showed that variations also occurs when path exploration is triggered
after the link is repaired. In order to avoid detecting the same link multiple times
during path exploration, we limit the detection to only when a routing change
is imposed on preferred paths. In Table 3 for example, the number of prefixes
at link (40,60) recover at T 5 and drop again at T 6, but this second drop is not
detected as the path observed at T 5 is not the preferred path of this prefix. This
leaves two links as candidate origins; T 3:(40,60) and T 3:(60,70).

4 The Origin Inference Scheme

The candidate set of links may include links that are actually not origins. This
can occur when the reachability of prefixes are lost due to a failure at a transit
link. One approach to cope with this problem is to utilize BGP data collected
from multiple monitoring points. For example, if AS60 also served as a monitor-
ing point, stable reachability to p70 may be observed during the event. However,
such an assumption is not effective unless all ASes work as monitoring points.
There is also the question of whether a routing change can be mutually observed
at different monitoring points.

Instead we correlate candidate origins with other origins detected over the
preferred path and use simple heuristics to infer one candidate as the origin.
This is based on our idea that most prefixes have one preferred path and a
routing change imposed on this path should indicate a failure or policy change
at one of the nodes or links that construct the path. The correlation of candidates
is first given window time T to absorb possible delays in the detection of other
candidate links due to the propagation delay among updates and prefixes. We
summarize the algorithm below.
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Fig. 2. Distribution of clusters created at different window times for AS22388 and
AS3356

1. For each preferred path, cluster candidate origins detected within T seconds
from the first detected origin.

2. If the same origin is detected within T seconds, create a new cluster from
that origin. This means the link recovered once within T seconds and we
consider the second detection to be from a different failure event.

3. For each cluster, infer the link closest to the monitor as the origin.

To find the most relevant window time T , we focus on the convergence delay of
the monitoring network. Precisely, we look at the number of clusters created at
different intervals of T and measure the time variance V (T ≥ V ) of the detection
times for each cluster. Specifically, for each cluster, we measure the difference
in the detection times between the first detected link and the last detected link.
If a cluster includes only a single link or includes multiple links with the same
detection time, the time variance for these clusters is 0. The distribution of this
variance should reflect the actual convergence delay of that network.

Figure 2 shows the number of clusters created at different window times T
and the distribution of time variances V for monitoring points at AS22388 and
AS3356, respectively. For the value of T , we used 60 seconds to 600 seconds
at intervals of 60 seconds. As both figures show, the time variance for a large
proportion of the clusters remains at V = 0 for all values of T . This indicates that
for about 90% and 97% of the events at AS22388 and AS3356, respectively, our
scheme can cluster links inferred from the same event with very high accuracy
and only a few events require the window time to absorb the convergence delay.
In Figure 2, the number of clusters is similar to T = 240 for AS22388 and
from T = 300 for AS3356. This indicates that a possible T that reflects the
convergence delay is within these ranges. For the evaluation in the following
section, we use T = 180 for AS22388 and T = 300 for AS3356, where the latter
is the convergence delay often referred to in the Internet [7].

What is interesting about our scheme is that we can further leverage our
information to infer the time of the failure (not the time of detection) and the
time of recovery. The time of failure is defined as the time when the path of a
prefix first changes from its preferred path. Conversely, the time of recovery is
when the path of a prefix recovers using its preferred path. In our measurement,
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we found cases where the failure time is several minutes before the detection
time due to long lasting path exploration.

5 Evaluation

In this section, we discuss the validity of our scheme using Oregon RouteViews
data and trouble tickets from several operational networks.

5.1 Evaluation Using Operational Tickets

We evaluate our scheme using operational tickets provided by TRANSPAC2
(AS22388) [13], APAN-JP (AS7660) [14] and Internet2 (AS11537) [15]. Each
ticket provides information including the location, the start and end time and
the cause of detected failures. For the BGP data, we use Route Views collected
from AS22388. Below we describe two case studies in detail and present how our
inference scheme inferred origins for each event.

Case Study 1. Tickets at TRANSPAC2 and APAN-JP describe a session fail-
ure between the two ASes beginning at 05:10 a.m. to 05:15 a.m. on September
15, 2009 (UTC) due to an exceed in the number prefixes allowed on the link.
Figure 3 (a) show the results of our inference using the preferred path of AS23800
as an example. Two candidate links were detected during this period with 1
second difference in detection time. Our heuristics clustered the two links and
inferred the link (22388,7660) as the origin. The same origin was also inferred for
402 other preferred paths affecting a total of 6,896 prefixes. Since the inferred
origin, the failure and the recovery times all match those reported in the ticket,
we confirmed that the origin was accurately inferred by our scheme. We also
confirmed that no other tickets were issued nor other candidates were detected
for this link during this month. Note that the failure time and the detection time
are identical because path exploration was not observed for this event.

Case Study 2. A ticket at Internet2 (AS11537) describes a core router in Chicago
being unavailable for several peers starting from 05:00 a.m. to 05:03 a.m. on March
12, 2010 (UTC). The reported cause was a router maintenance. Figure 3 (b) show
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Table 4. The number of links inferred as origins with and without our scheme

Monitoring Point AS22388 AS3356
Our Scheme Disabled Enabled Disabled Enabled

Measured Links 2,533 2,092 56,172 42,364
Candidate Links 22,784 9,189 208,391 99,317
Inferred Origins 22,784 6,362 208,391 88,439

the results of our inference. Using the preferred path of AS16473 as an example, we
detected two links as candidates having the same detection time and inferred the
link (11537,14048) as the origin. From routing changes of other preferred paths,
we inferred seven other links connected to AS11537 as origins. Since each link
matched the peers described in the ticket, we confirmed that the origin was ac-
curately inferred by our scheme. Note that the link with APAN-JP was detected
using the single prefix advertised by AS7660 that preferred the path via AS11537.
This demonstrates the capability of our scheme to infer origins for small failures
and for simultaneous link failures. Note also that the recovery time is much longer
than that reported in the ticket. Since recovery times in tickets are sometimes
based on the local downtime between the two routers, we can determine the ac-
tual unreachable duration from the monitoring point.

Using 50 tickets issued over several months in 2009 and 2010, we confirmed
that origins can be accurately identified for 86% of the tickets. For 6% of the
tickets, origins were misinferred due to lack of prefixes (discussed in Section 6).
Additionally, for 8% of the tickets that described a scheduled maintenance, no
routing updates were observed and thus not detected. Note that tickets that do
not generate any routing updates due to a failure event of one of the multiple
links between a pair of ASes were excluded from evaluation. Unfortunately, these
events cannot be detected from passive measurements.

5.2 Comparing the Number of Inferred Origins

Evaluating the effectiveness of our scheme against existing schemes is difficult
since our scheme targets the detection of failures of all sizes. Instead, we compare
the number of links that are inferred as origins with and without our scheme
(i.e. the original Link-Rank). Table 4 shows the number of origins inferred over
the month of September 2009 using AS22388 and AS3356. When our scheme
is disabled at AS22388, all 2,533 links observed from updates are targeted for
measurement and the number of prefixes carried by these links drops to 0 for
22,784 times. In contrast, when our scheme is enabled, we consider 17% of the
links as temporary links and measure routing changes that occur over 83% of
the links. The number of candidate links is 60% less and the number of origins
inferred is 72% less than those detected without our scheme. This implies the
importance of analyzing the routing status of each prefix during path exploration
and link recovery. The results showed a similar trend for AS3356.
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Fig. 4. Number of times a link is inferred as an origin at AS22388 and AS3356

6 Discussion

A routing change can occur not only from link failures, but also from intra-AS
failures and from changes in routing policies. Although ideally we should be
able to distinguish between them, we believe that inferring the adjacent link
can still help operators diagnose the reachability issues. On the other hand, our
scheme may misinfer origins when no prefix is extracted at transit links. In our
evaluation, we identified this percentage to be 6.5% and 2.9% for AS22388 and
AS3356, respectively. For these links, we must use prefixes advertised by other
ASes for measuring stability, which is work to be addressed in the future.

Nonetheless, we believe our scheme can sufficiently identify origins for most
events. Figure 4 shows the frequency of links inferred as origins for AS22388 and
AS3356. As the figure shows, a small number of links is repeatedly inferred. This
indicates the possibility of these links or the adjacent nodes being very unstable.
The figure shows a Zipf-like distribution, where 86% to 95% of all failures are
located in 20% of all links. This result matches many of the previous studies on
stability of prefixes which found that a large number of routing updates were
from routing changes of a very small number of prefixes [16]. On further analysis,
we discovered that 87% to 89% of these links are edge links. While this indicates
that the core transit links are much more stable than the edge links, some of the
links were transit links for hundreds of prefixes.

7 Conclusion and Future Work

In this paper, we presented a methodology for sufficiently inferring the origin
of routing changes observed in the Internet. We studied the negative effect of
path exploration on origin inference of small failure events. We then presented a
measurement scheme that focuses on the stability of some prefixes and preferred
paths to identify origins. This has allowed us to infer the origin of small failure
events and for the first time to further infer the time of failure and the time of
recovery. Evaluation using BGP data showed that the number of origins inferred
using our scheme is 72% less than those detected without our scheme.



172 M. Watari, A. Tachibana, and S. Ano

Our future work includes finding the most relevant duration for measuring
the preferred path of prefixes. We also plan to evaluate our scheme using BGP
data from multiple monitoring points.
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Abstract. Handheld devices such as smartphones have become a major platform
for accessing Internet services. The small, mobile nature of these devices results
in a unique mix of network usage. Other studies have used Wi-Fi and 3G wireless
traces to analyze session, mobility, and performance characteristics for handheld
devices. We complement these studies through our unique study of the differences
in the content and flow characteristics of handheld versus non-handheld traffic.
We analyze packet traces from two separate campus wireless networks, with 3
days of traffic for 32,278 unique devices. Trends for handhelds include low UDP
usage, high volumes of HTTP traffic, and a greater proportion of video traffic.
Our observations can inform network management and mobile system design.

1 Introduction

Handheld devices—smartphones, portable music players, etc.—are quickly augment-
ing, and sometimes even replacing, laptops as the computing and Internet perusal plat-
form of choice for users on the go. A 2009 EDUCAUSE study of technology on college
campuses found 51% of undergraduates own an Internet-capable handheld and 12%
plan to purchase one within the next 12 months [15]. A PEW study comparing 2007 and
2009 wireless Internet usage found a 73% increase in the rate Americans went online
with their handhelds [10]. While the number of non-handheld portables, e.g. laptops, is
also growing, usage of handheld devices is growing at a much faster pace.

In this paper, we seek to understand how Wi-Fi traffic from handheld devices differs
from non-handheld wireless clients, and what happens when handhelds override cam-
pus Wi-Fi networks. Although many handheld users have cellular data plans, 802.11 Wi-
Fi is still a preferred Internet access mechanism, when available, because of its higher
bandwidth, lower latency, and lower energy usage. For our study, we use network traffic
traces gathered from two independently-managed multi-AP campus wireless networks
over a 3 day period. The traces have 32,278 unique clients, with 15% being handhelds.

We conduct an in-depth study of the content and flow properties of Wi-Fi handheld
traffic. We examine transport and application protocols used, flow lengths and dura-
tions, and properties of content perused, e.g. prevalence of multimedia content and its
nature and similarity in the content accessed by different users. We ignore low-level
transmission, connectivity, and mobility issues as these have already been well studied
[3,8,12]. To the best of our knowledge, these aspects of the differences between hand-
helds and non-handhelds have not been considered by prior studies. We believe that our
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examination of these issues is useful in informing future research on optimizing the per-
formance of handheld devices operating in Wi-Fi networks. Specifically, our observa-
tions can help determine whether adopting prior approaches designed for non-handheld
devices, such as those for caching, content distribution and battery life savings, are ap-
plicable or not. Our study can also inform management practices for campus networks,
e.g., network-wide Class-of-Service definitions for Multimedia traffic.

Compared to non-handheld wireless users, handheld users access a different mix of
Internet services and content. Applications like web browsers and email clients are used
on both types of devices, but content providers tailor content differently based on device
type. Furthermore, the interface on handhelds in itself places limitations on the range
of Internet-based and local network-based services users can access. Thus, the network
traffic of handhelds is likely to differ in several crucial respects from non-handheld
devices. The goal of this paper is to quantify the extent of these differences and identify
the sources of the differences, where possible.

We present a broad collection of measurement insights. Our key findings are as fol-
lows. The majority of handheld traffic (97%) is web, with small amounts of email traffic.
In contrast, 82% of non-handheld traffic is web, with miscellaneous UDP traffic (14%)
accounting for most of the remaining share. Handhelds tend to have smaller TCP flows
and a narrower range of flow durations. However, both types of devices have similar
TCP flow rates, with a median rate of 0.8 Mbps. Looking in-depth at HTTP traffic, we
observe that handhelds access content from a narrower range of hosts. However, we see
equivalent amounts of similarity in content accessed by the same user for both device
types. The top content type for handhelds is video, accounting for 40% of handheld traf-
fic verses 17% for non-handhelds. Streaming video flows represent the largest, fastest,
and highest throughput flows of all handheld flows.

2 Methodology

We collect and analyze data from two independently-managed campus wireless net-
works (Net1 and Net2). Full packet traces were captured from about 1,920 APs in Net1
over a period of 3 days during April 2010, yielding 8 TB worth of data. From Net2, full
packet traces were captured from 23 APs for a period of 3 days in June 2010, yielding
50 GB worth of data. As an artifact of our collection method, we do not include traffic
sent between wireless clients. However, we expect inter-client traffic is rare.

The packet traces contain data from all wireless clients connected to the network—
laptops, smartphones, and other devices. Since we focus on the differences between
handheld and non-handheld devices, we need to differentiate traffic based on device
type. We rely on user-agent strings in HTTP packets as the primary method for dif-
ferentiation. We identify handheld user-agents using a keyword list based on common
knowledge and published lists [18].1 Organizationally Unique Identifiers (OUIs) con-
tained within device MAC addresses are used to confirm our device classifications. For

1 Handheld keywords: Android, ARCHOS, BlackBerry, CUPCAKE, FacebookTouch, iPad,
iPhone, iPod, Kindle, LG, Links, Linux armv6l, Linux armv7l, Maemo, Minimo, Mobile Sa-
fari, Nokia, Opera Mini, Opera Mobi, PalmSource, PlayStation, SAMSUNG, Symbian, Sym-
bOS, webOS, Windows CE, Windows Mobile, Zaurus. See [7] for non-handheld keywords.



A Comparative Study of Handheld and Non-handheld Traffic 175

the devices that do not send any HTTP packets, we use the OUIs of already classified
devices to attempt classification based on OUI. Some devices (14%) remain uncatego-
rized because their user-agent strings contain keywords associated with both types of
devices, or they send no HTTP traffic and their OUI is registered to a manufacturer that
makes both types of devices; we exclude these devices from our analysis.

Over the 3 day capture periods, 32,166 unique clients connect to Net1 and 112 clients
connect to Net2. Table 1 lists the number of clients of each type present in the trace data.
Non-handheld devices account for the majority of clients in both networks. However,
network admins provided anecdotal evidence that handhelds are much more prevalent
than in the past, and industry and campus studies show the number of handhelds is
expected to continue increasing [15]. We see handhelds from 7 primary vendors, with
Apple iPods, iPhones, and iPads accounting for over two-thirds of all handhelds.

Table 1. Client counts by device type

Device Type Net1 Net2
Handheld 5060 9
Non-handheld 22485 90
Unknown 4621 13
Total 32166 112

Table 2. Protocol usage (% of packets)

Protocol Net1 Net2
Handheld Non-hand Handheld Non-hand

UDP 5.9% 25.7% 4.5% 18.4%
TCP 92.0% 74.0% 93.0% 81.4%
IPsec 0.3% 0.05% – 0.05%
Other 1.8% 0.35% 2.5% 0.15%

3 Protocols and Services

The protocols and services used by devices impact the performance of both the device
and the enterprise wired and wireless networks. Different protocols and services re-
spond differently to bandwidth limitations and congestion and contribute flows of vary-
ing sizes, durations, and frequencies to the overall traffic mix. Protocol mix also tells
operators the mechanisms they must put in place to secure and monitor their networks.

3.1 Protocols

Network and Transport Protocols: At the highest level, we categorize traffic based
on network and transport layer protocols (Table 2). As expected, the majority of traffic
is TCP or UDP; the remaining traffic is IPSec (encrypted IP traffic) or network control
traffic (ICMP, ARP, etc.). A major difference in protocol usage between the two types of
devices is the amount of UDP traffic. Over 4x as many non-handheld packets are UDP
compared to handhelds. In the presence of congestion, handhelds will use a fairer-share
of bandwidth, versus non-handhelds which use more congestion-unaware UDP.

Application Protocols: We identify application protocols using Bro [13]. Table 3 shows
the percentage of traffic in bytes for each category of application protocols. Web pro-
tocols account for the largest volume of traffic for both handheld (97% on Net1) and
non-handheld (82% on Net1) devices. Almost one-third of Net2 handheld web traffic is
HTTPS (versus 3% for Net1), but this is an artifact of a small sample size and a single
large connection from one handheld. Email protocols are the second most popular appli-
cation but account for less than 2% of traffic for both device types. We believe clients ac-
tually generate more email traffic than this, as shown by Falaki et. al for handhelds [6];
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Table 3. Application protocol usage by percent of bytes (≺ less than 0.01%, – none)

Category Protocols Net1 Net2
Handheld Non-hand Handheld Non-hand

Web HTTP, HTTPS 97.0% 82.5% 91.1% 72.2%
Email IMAP4, POP3, SMTP 1.51% 0.5% – 0.04%
Chat IRC ≺ ≺ – –
Remote SSH, FTP ≺ ≺ – 0.05%
Enterprise Services IPP, LPD, NFS, SMB, LDAP, SQL ≺ 0.05% – 0.3%
Management DNS, NetBIOS, NTP, SNMP 0.2% 0.34% 1.52% 0.12%
Other TCP Unknown 0.2% 2.9% 5.7% 8.7%
Other UDP Unknown 1.0% 13.7% 1.7% 18.1%

we attribute the low usage of email protocols to the common usage of web-based email
and the potential for handhelds to simultaneously use 3G and Wi-Fi. Overall, our pro-
tocol usage observations are consistent with other studies [8].

Bro’s dynamic protocol detection can not identify the majority of UDP traffic for
non-handhelds. More than 90% of the unidentified UDP traffic is large flows, from
1 MB to 20 MB in size. While we don’t know the exact nature of this traffic, we suspect
that a majority of this traffic is likely from streaming media (e.g., Internet Radio).

As handheld usage in Wi-Fi networks continues to grow, HTTP traffic will become
an increasingly dominant share of the traffic mix. Admins should consider deploying
network middleboxes focused on HTTP traffic, e.g. in-network security scanners or web
proxies, to better serve handheld security needs without impacting device efficiency.

3.2 TCP Flow Characteristics

We compare the TCP flow characteristics of handheld and non-handheld traffic to deter-
mine if and how flows differ between the device types. We look at the flow size, dura-
tion, and rate for the downlink half of TCP connections—data flowing from remote host
to the wireless client—since the majority of data flows in this direction. Flows which
do not end with a FIN or RESET are excluded. In all cases, the distributions for both
Net1 and Net2 are equivalent; we omit the Net2 distributions for brevity.
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Fig. 1. CDFs of TCP flow properties (Net1)

We observe that handhelds tend to have smaller flow sizes than non-handhelds.
Figure 1a shows the median handheld flow size is 50 KB, versus 100 KB for non-
handhelds. At the lower tail, there are fewer small flows for non-handhelds than hand-
helds; at the upper tail, the maximum flow size is larger for non-handhelds (2 GB) than
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handhelds (630 MB). The smaller handheld flow sizes are expected, as many content
providers serve simpler or compressed content to mobile devices.

Handhelds and non-handhelds also differ in their distribution of flow duration. Fig-
ure 1b shows the median flow duration is approximately the same for both device types,
but handhelds have a narrower range of flow durations. The middle 80% of handheld
flows are 250ms to 15s long, compared to a range of 100ms to 75s for non-handhelds.
The lack of long handheld flows can be attributed to typically short usage sessions [5].
We also look at flow durations for a few specific applications (full data in [7]). On aver-
age, web flows are 5x shorter for handhelds, which we suspect is caused by handhelds
being served simplified versions of many web pages. For email traffic, receiving pro-
tocols (IMAP, POP) have shorter average flows on non-handhelds, while the sending
protocol (SMTP) has shorter flows on handhelds. We hypothesize the discrepancy in
SMTP is caused by a higher likelihood of non-handheld users including attachments.

Downlink flow rates are shown in Figure 1c. Both device types have the same median
rate of 10 Kbps, but only 10% of handheld flows are slower than 1 Kbps compared to
30% of non-handheld flows. Other factors associated with flow rate are consistent across
both device types: (i) the average round trip time for 90% of TCP flows is less than
100 ms; (ii) only 4% of flows have one or more retransmissions due to retransmission
time out, and 1% of flows have one or more retransmissions due to fast retransmit.
Comparing duration and size of flows (not shown), we observe for both device types that
small flows tend to have long durations, while large flows tend to have short durations.

4 Web Traffic

Web traffic accounts for almost all handheld data (97%) and a large fraction of non-
handheld data (82%). HTTP is used so commonly because of its wide interoperability
and support for many types of content. Web usage differs between device types because
of differences in the way individuals use these devices. We see variation in (i) the range
and type of hosts accessed and (ii) the type and length of content. We also observe that
82% of handheld HTTP traffic is consumed by non-browser applications, compared to
10% of non-handheld. Most notably, we see a higher usage of HTTP-based streaming
media services on handhelds: video accounts for 42% of handheld HTTP content, ver-
sus only 23% for non-handhelds. Our analysis excludes partial HTTP streams (due to
improper reassembly) and all data from the Net2 traces (due to anonymity concerns).

4.1 Hosts

HTTP hostnames, in combination with the type of content they provide, give a rough
understanding of the types of services accessed by clients. Table 4 lists the top HTTP
hosts based on the size (content-length) of the data served to the devices. We observe
that handhelds access more multimedia content (by volume) than non-handhelds. Over
35% of handheld HTTP content originates from googlevideo.com, followed by
18% originating from pandora.com. Multimedia-type content is also the most fre-
quent for eight of the top ten handheld hosts. In total, the top 10 handheld hosts account
for 74% of handheld data, while the top 10 non-handheld hosts account for 42% of

googlevideo.com
pandora.com
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non-handheld data. These percentages indicate a much greater diversity in hosts for non-
handheld devices. In addition, non-handheld devices are more likely to receive content
from hosts providing more than text or multimedia content. For example, a Microsoft
site hosting application downloads, dlservice.microsoft.com, appears in the
top non-handheld hosts with application/octet-stream as the primary content type.

We also look at the top hosts based on number of HTTP requests (listed in [7]). The
top 10 handheld hosts account for 30% of handheld HTTP requests, compared to 32%
for non-handhelds. Also, there is a greater diversity of services in the top hosts by re-
quests: social networking, streaming media, advertising, search, and news. In summary,
both device types have a great diversity in the number of hosts they request data from,
but handhelds receive most of their data (by volume) from a much smaller set of hosts.

4.2 Content Type and Length

The type of HTTP content accessed by devices further identifies the services used and
highlights differences in traffic characteristics. We observe the largest volume of hand-
held content is video (42%), while images are the top type for non-handhelds (29%)
(full data in [7]). Below, we discuss each of the MIME types in detail.

Table 4. Top HTTP hosts by response size (Net1)

(a) Handheld

Bytes Host Top Content Types3

35.48% googlevideo.com v/mp4
18.12% pandora.com p/octet-stream, i/jpg
10.57% phobos.apple.com t/plain, i/jpg, v/mp4
2.45% fbcdn.net i/jpg, t/javascript, i/png
2.43% vo.llnwd.net v/mp4, a/mpeg
1.23% m.nbc.com v/mp4, i/jpg, t/javascript
1.17% espn.go.com t/plain, t/html, i/jpg
1.16% video.ted.com v/mp4
0.82% gdata.youtube.com t/atom+xml
0.64% s3.amazonaws.com a/3gpp, i/jpg, i/png

(b) Non-handheld

Bytes Host Top Content Types3

11.45% c.youtube.com v/flv, v/mp4
7.00% pandora.com p/octet-stream, i/jpg, a/mpeg
6.63% fbcdn.net i/jpg, i/png, t/javascript
4.63% dlservice.microsoft.com p/octet-stream
2.89% vo.llnwd.net v/wmv, a/mp4
2.80% stileproject.com p/octet-stream, i/jpg, v/mp4
2.53% com.edgesuite.net v/wmv, a/wma, p/octet-stream
1.69% phobos.apple.com t/plain, a/mp4, i/png
1.51% www.facebook.com t/html, t/javascript
0.94% cdn.turner.com t/javascript, i/jpg, v/flv

Application content is data associated with specific applications, e.g. documents,
compressed files, or streaming media. For both device types, octet-stream—a simple
binary data stream—is the most common subtype, accounting for 86% of handheld
and 51% of non-handheld application type data. The average octet-stream is 713 KB
for handhelds (σ = 882 KB) and 189 KB for non-handhelds (σ = 658 KB). The second
most common application subtype is RSS feeds for handhelds and Shockwave Flash for
non-handhelds. No handhelds access Shockwave Flash content because these devices
did not support Flash until very recently [1]. Over 185 different application subtypes are
accessed by non-handhelds compared to only 58 subtypes for handhelds. This variety
results from the greater diversity of applications running on non-handheld devices.

The content for regular web browsing falls mostly into the image and text content
types. Three image subtypes—gif, jpg, and png—make up the majority of image con-
tent, with JPG images being the largest (average of 13 KB for handhelds and 11 KB for

3 We abbreviate the MIME content types: v = video, a = audio, i = image, t = text, p = application.

dlservice.microsoft.com
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non-handhelds). HTML, CSS, JavaScript and XML are used for the web page itself. For
both device types these text subtypes average 3-7 KB in length. Over two-thirds of the
text content received by handhelds is plain text. This content is destined for non-browser
applications retrieving data from a web service, e.g. a sports scores application.

The remaining MIME content types are multimedia traffic, namely audio and video.
Multimedia accounts for 46% of handheld content and 29% of non-handheld content.
In particular, video accounts for 93% of multimedia traffic in the handheld case and
80% in the non-handheld case. We examine video traffic in greater detail next.

4.3 Streaming Video

Streaming video is a major source of traffic for handheld devices. Video content ac-
counts for 40% of all handheld traffic, compared to only 17% of all non-handheld traffic.
We compare the flow characteristics of handheld streaming video, non-handheld video,
and all handheld flows to understand the differences in handheld streaming media.

As expected, handheld video flows are large compared to overall handheld traffic:
80% of video flows are > 50 KB in size, whereas 50 KB is the median among all
handheld flows (Figure 2a). Nearly 20% of handheld video flows are > 1 MB in size,
with a 400 KB median. Non-handheld video flows are even larger, with a 3 MB median.
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Fig. 2. CDFs of video flow properties

Interestingly, handheld video flows appear to be of short duration. Figure 2b shows
80% of handheld video flows are less than 1 second in duration, with a median of 0.5
seconds. The median durations for all handheld flows and non-handheld video flows are
significantly higher, at 5 and 50 seconds, respectively. Based on the short duration of
handheld video flows, we expect high throughput rates. Figure 2c shows 80% of video
flows have a rate faster than 0.8 Mbps, with a median of 2 Mbps. In contrast, the median
flow rate for all handheld flows and non-handheld video flows is roughly 0.6 Mbps.

Overall, handheld video flows are long in size (although not as long as non-handheld
video flows), significantly short in duration, and achieve high end-to-end through-
puts which are comparable, if not slightly higher than non-handheld video flows. As
handheld usage continues increasing, administrators should include Quality of Service
mechanisms in their networks to support the video throughputs handhelds expect.

Video streamed to handheld devices differs from video streamed to non-handheld
devices because of differences in decoding capabilities. Most streaming video services
use Flash, but a lack of Flash support on handhelds results in MPEG 4 encoded content
being served to them instead. In our traces, mp4 (MPEG 4) is the top video type for
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handhelds and flv (Flash video) is the top type for non-handhelds. Video streaming sites
like YouTube serve two versions: one encoded as mp4 and the other encoded as flv.

We watch the same 3 minute video [2] from YouTube on both an Android HTC
Dream smartphone and a laptop to measure the differences in video content served
to the two different devices. On the phone we use the standalone YouTube applica-
tion and on the laptop we use Mozilla Firefox. The handheld device receives 7362 KB
video/mp4; the non-handheld device receives 11792 KB video/flv. Both ver-
sions have the same resolution of 320 x 240, but different encoding rates of 200 kbps
and 231 kbps, for mp4 and flv respectively. The audio is encoded at 128 Kbps for the
mp4 and 64 Kbps for the flv. The higher quality video is the flv and the higher quality
audio is the mp4, but both versions are closely comparable. The main difference in the
handheld content is a smaller size—about 62% of the size of the non-handheld version.

The median size of both handheld (316 KB) and non-handheld (1.7 MB) video flows
are relatively small compared to the size of the sample video. In many cases, we ob-
serve videos being streamed over multiple sequential connections—due to connection
resets—resulting in a few small flows for each video. However, by comparing the com-
bined size of these multiple flows to the size of the actual video, we observe that the
size gap also results from handheld users watching only a fraction of most videos.

5 Content Similarity

In this section, we examine the similarity in the content perused by handhelds and com-
pare it against non-handhelds. §4 focused on the type of content present in traffic; here
we focus on the bytes that makeup the conent. We evaluate the potential benefits of
deploying a “chunk-based” content similarity supression system, e.g. SET [14] or En-
dRE [4]. Eliminating duplicate chunks from network tranfsers by serving them from a
local cache can improve the transfer throughput experienced by users and can help save
mobile battery life by reducing network transmissions. Chunk-based schemes are more
effective than object-based schemes, such as Web caches, as they are known to identify
more duplicates, e.g., sub-object duplicates, uncacheable content, etc. Thus, our analy-
sis places an upper bound on the benefits of using caching and similarity suppression.

We identify two types of similarity: that found in content accessed by the same device
(“intra-user”), and that found in content accessed by a different devices (“inter-user”).
We divide packet payloads into chunks (32B to 64B in size) using value sampling [16];
then we determine if the chunks have appeared in an earlier access. Unless specified,
we assume 2GB of chunks are stored across all users, as done previously [4].

In Figure 3a, we show the extent of intra- and inter-user content similarity observed
over every 1 million packets (0.8-2GB) worth of handheld and non-handheld traffic. We
measure average redundancy as the ratio of similar bytes to all bytes in 1 million-packet
trace subsets. First, we observe a greater amount of similarity in handhelds than in non-
handhelds. Second, similarity due to inter-user matches is quite small: less than 2%
for > 95% of both handheld and non-handheld trace subsets. Third, we observe that in
more than 40% of the non-handheld trace subsets, and more than 70% of the handheld
trace subsets, ≥ 8% of the similar bytes are due to intra-user matches. In some cases,
we observed up to 20-25% intra-user similarity for both device types. Finally, the extent
of intra-user similarity is greater for handhelds than non-handhelds.
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Given that the dominant fraction of similar bytes belonged to intra-user traffic, we
further delve intro intra-user similarity. We explore the efficacy of deploying per device
caches and the cache size configuration issues therein. We split the handheld traffic
on a per device basis and study the effect of different dictionary sizes on amount of
similarity identified per device. Figure 3b shows the CDF of similarity across the top
100 devices by traffic volume for different dictionary sizes. Almost 80% of users have
less than 20% similarity with their own traffic. However, for certain users, the similar-
ity proportion was much higher (more than 50%). Second, we observe that most of the
similarities can be identified by using only 50 MB caches—larger caches exhibit dimin-
ishing returns. As handheld usage grows, admins should consider deploying per-device
caching mechanisms to improve throughput and handheld energy savings.

6 Related Work

Multiple measurement studies have analyzed traffic patterns in campus wireless net-
work. Hederson et. al identify session and application trends at Dartmouth College
and observe how usage evolved four years later [8]. Wireless AP workloads at Darth-
mouth are compared to the University of North Carolina by Hernandez-Campos and
Papadopouli [9]. Lastly, McNett and Voelker study the wireless access and mobility
patterns of students using PDAs at UCSD [12]. While all of these studies focus on
campus wireless networks, none explore in detail the applications used by handheld
users and the traffic characteristics thereof. In addition, mobile device usage is a rapidly
changing field and trends observed five years ago are different than today’s usage.
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More recent studies have focused on mobile device usage in public Wi-Fi, home
Wi-Fi and 3G networks. Application, session, and mobility trends in the Google Wi-Fi
network in Mountain View, CA were studied in 2008 [3]. The connections between geo-
location and usage of specific types of web services was studied in an urban 3G network
in 2009 [17]. In 2010, logs from 43 smartphones were analyzed to find commonly used
application ports and properties of TCP transfers over a combination of 3G and Wi-Fi
networks [6]. A second 2010 study analyzes the protocol usage and HTTP content size
and types of handheld traffic extracted from DSL traces [11]. The 2010 studies are most
similar to our work, but one focuses primarily on 3G traffic and neither looks in-depth
at the multimedia content served to handhelds nor the redundancy in handheld traffic.

7 Conclusion

Handhelds have become a significant fraction of the client base in campus wireless net-
works, and their usage is expected to continue growing. Using traces from two separate
multi-AP wireless networks, we identify key differences in the Wi-Fi content access
and flow-level traffic characteristics of handheld and non-handheld devices. Our find-
ings have potential implications for network management and mobile system design:

– 97% of handheld traffic is HTTP, allowing in-network security scanners to examine
a single application protocol and provide significant security benefits for handhelds.

– Over twice as much handheld traffic is video, compared to non-handhelds, making
Quality of Service mechanisms an important inclusion in network design.

– Lower HTTP host diversity and significant intra-user content similarity in handheld
traffic, indicates per-device redundancy elimination systems can be beneficial.

– The smaller range of TCP handheld flow durations and the lower percentage of
handheld flows with rates < 1 Kbps should be taken into account when designing
wireless power save mechanisms for handhelds.

Network admins and mobile designers should take these observations into account
when considering design and performance. The differences between handheld and non-
handheld traffic will increasingly impact Wi-Fi networks as handheld usage grows.
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Abstract. As mobile Internet environments are becoming widespread,
how to revamp peer-to-peer (P2P) operations for mobile hosts is gaining
more attention. In this paper, we carry out empirical measurement of
BitTorrent users in a commercial WiMAX network. We investigate how
handovers in WiMAX networks impact the BitTorrent performance, how
BitTorrent peers perform from the aspects of connectivity, stability and
capability, and how the BitTorrent protocol behaves depending on user
mobility. We observe that the drawbacks of BitTorrent for mobile users
are characterized by poor connectivity among peers, short download ses-
sion times, small download throughput, negligible upload contributions,
and high signaling overhead.

Keywords: Mobile WiMAX, BitTorrent, Measurement.

1 Introduction

Over the past decade, peer-to-peer (P2P) file sharing applications have generated
dominant Internet traffic. Also, more and more users are accessing the Internet
in mobile environments due to the advances of portable devices and the increase
of wireless link capacity. These trends will lead to the increasing usage of P2P
applications in mobile networks; mobile P2P traffic is expected to be about 277
petabytes per month, 10% of the world’s mobile Internet traffic by 2014 [1].

WiMAX and 3GPP LTE networks are gaining momentum as candidates for
the next generation mobile networks, aiming to provide broadband link band-
width and mobility support. However, mobile users in these networks will experi-
ence link quality fluctuations and handovers. Therefore, mobile P2P applications
should address the following drawbacks: substantial link dynamics due to fad-
ing, disruptions during handovers, and the imbalance of link conditions between
mobile and wireline users.

Current P2P applications are however designed by assuming wireline hosts
that avail themselves of high and stable link bandwidth. Therefore measurement
and analysis of how the current P2P protocols behave in mobile environments

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 184–193, 2011.
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can be a foundation for new mobile P2P protocol designs, which motivates our
measurement study of BitTorrent in mobile WiMAX networks.

Even though numerous service-oriented measurement studies, e.g., [2][3][4][5],
have been carried out in real WiMAX, no work has focused on measurement
of the P2P performance in WiMAX. There have been a few studies on how to
design proper protocols for wireless/mobile P2P services without measurements.
Huang et al. [6] proposed a new hierarchical P2P scheme that seeks to cluster
nearby peers considering their network prefixes. They carry out simulations with
WiFi-connected peers, without considering mobility. Wu et al. [7] designed a
network architecture for a mobile P2P network consisting of ships in maritime
environments. They leverage flooding to find a file among ships, which is not
efficient in mobile P2P scenarios; also, they rely only on simulations. Hsieh and
Sivakumar [8] discussed how cellular networks can support P2P communications;
however, there was no empirical study of mobile P2P performance.

Recently Kim et al. [9] carried out preliminary P2P measurements in a com-
mercial WiMAX network in Korea, dealing with traffic metrics, control overhead,
and peers’ performance. This paper is further extended based on the same log
explicitly targeting the handover impact, peers’ connectivity and stability, and
control signaling delay. To the best of our knowledge, we are the first to carry
out comprehensive empirical study of the BitTorrent performance in the mobile
WiMAX networks, with following contributions:

– We empirically measure BitTorrent performance of mobile users in commer-
cial WiMAX networks and the log data is shared in public1.

– We measure how handovers (HOs) degrade the performance of BitTorrent.
We observe that, on average, a HO reduces the throughput, number of
connected peers, and number of actively transmitting peers by 32.4%, 1.4%,
14.9% in the bus case, and by 14.7%, 3.5%, 0.5% in the subway case,
respectively.

– We investigate how BitTorrent behaves with user mobility in terms of con-
nectivity among peers, download/upload duration and throughput. Frequent
disconnections, short download session times, small download traffic, and
negligible upload contributions characterize the BitTorrent performance in
mobile environments.

– We analyze BitTorrent signaling overhead over the WiMAX network. Rela-
tively long RTTs and link instability make the BitTorrent signaling protocol
more inefficient, with longer processing time.

The rest of this paper is organized as follows. Section 2 describes measure-
ment settings and test routes. We measure how handovers impact the BitTorrent
performance in Section 3. Sections 4 and 5 analyze the application level perfor-
mance of BitTorrent users and the BitTorrent signaling efficiency, respectively.
Concluding remarks are given in Section 6.

1 http://crawdad.org/snu/bittorrent
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2 Experiment Description

2.1 Measurement Settings

We carried out the measurements in KT’s mobile WiMAX network in Seoul, Ko-
rea, which has more than 300,000 subscribers as of March 2010. In the WiMAX
network, one base station (BS) offers the aggregated throughput of approxi-
mately 30 to 50 Mbps, and typically covers an area with a radius of 1 to 5
km. Depending on the distance between a BS and a subscriber station (SS), the
channel condition and its bit rate can vary substantially. (In this paper, we use
the terms “SS” and “WiMAX host” interchangeably.) When an SS crosses the
boundary between two BSs, it performs a HO, during which BitTorrent down-
load/upload will be affected. Time-varying link conditions, inter-cell interference,
and HOs adversely affect the BitTorrent performance.

We use three laptop computers, each with a WiMAX modem, for measure-
ments. The three WiMAX modems are one KWM-U1000 and two
KWM-U1800s [10]. Another desktop computer is connected to the 100 Mbps
Ethernet in the campus network of Seoul National University for comparison
purposes. We modify the open-source BitTorrent software, Vuze [11], to record
logs every 0.5 second, e.g. peer list, download and upload rates. WinDump is
used to capture the packet headers; Wireshark and TCPTrace are used to an-
alyze the traces. We also use the XRO7000 toolkit [12] to observe the WiMAX
link layer activities such as the signal strength and HO messages.

2.2 Test Routes

Based on the similar measurement studies [2][4][5][9], we consider three scenarios
of WiMAX hosts: (1) Stationary: An SS is located stationarily inside a building
in the university campus, where a single WiMAX BS and a few repeaters cover
the entire campus area. The distance between the SS and the BS is about 800
meters without line-of-sight path; thus, the received signal strength is stable
but not strong. (2) Subway: We take the subway line #4 in Seoul Metro, from
Sadang station to Myeong-dong Station. The distance is about 12 km and it takes
about 20 minutes; there are 10 subway stations on the route. At every subway
station, a single BS is deployed, and one or more repeaters are installed between
adjacent BSs to enhance the radio signal. Therefore, HOs occur whenever a
subway train moves from one station to another. (3) Bus: We take the bus
#501 from Seoul National University to Seoul Railway Station. The distance of
the bus route is about 11 km and it took about 30 minutes when we carried out
the measurement.

We select a popular 400 MB video file, 25 minute long sitcom; at least 300
seeds are participating in the BitTorrent network. We carry out experiments
four times over four days in March, 2010; in each run, four hosts (Ethernet,
stationary, subway, and bus) start downloading the same file at the same time.
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3 Impacts of Handovers

WiMAX adopts a break-and-make HO approach; thus, the throughput of the
WiMAX host is noticeably disrupted. We trace all HOs by observing the two
IEEE 802.16e MAC frames: MOB MSHO REQ indicating the beginning of a
HO, and HO RNG SUCCESS indicating the end of the HO. Then we average
relevant metrics at one second intervals. The changes of metrics over time (within
5 seconds before and after the HO) are shown in Fig. 1, where the vertical line
in the middle indicates the HO occurrences. We observe that in the bus case,
before the HOs, the carrier-to-interference ratio (CINR) always drops below 0;
hence, 0 dB may be the threshold to trigger a HO in the KT’s WiMAX network.
During a HO, packet transmissions are disrupted; thus, the retransmission time-
out may expire, which in turn reduces the TCP congestion window. Notice that
the download throughput in the bus case is nearly halved after the HO, and still
keeps on decreasing due to the slow recovery of TCP congestion control. What
is worse, the number of the actively transmitting peers is notably decreasing
before and after HOs in the bus case. On the other hand, in the subway case
the effect of HOs is less severe; the RTT around a HO increases and hence the
download throughput decreases.

We calculate the average value of each metric before and after HOs, and show
the changes in Table 1. On average, a HO reduces the RTT, throughput, number
of connected peers, and number of active peers by 7.3%, 32.4%, 1.4%, 14.90% in
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Fig. 1. How HOs impact the BitTorrent performance

Table 1. Calculation of How HOs Impact the BitTorrent Performance

The Bus Case The Subway Case
Averaged Metrics Before After Change Before After Change

CINR (dB) 2.3 5.4 3.1 (N/A) 5.1 7.5 2.4 (N/A)
RTT (ms) 446.2 413.4 -32.8 (7.3%) 440.7 419.9 -20.8 (4.7%)

TCP throughput (Kbps) 174.5 117.8 -56.6 (32.4%) 287.1 244.8 -42.3 (14.7%)
#Connected peers 87.6 86.6 -1 (1.4%) 71.2 68.7 -2.5 (3.5%)

#Active peers 63.8 54.3 -9.5 (14.9%) 54.3 54.0 -0.3 (0.5%)
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the bus case, and by 4.7%, 14.7%, 3.5%, 0.5% in the subway case, respectively.
We observe that TCP transmissions are impacted by HOs the most significantly.

4 BitTorrent Dynamics for Mobility in WiMAX

To evaluate the behaviors of BitTorrent protocols with other peers from a
WiMAX host’s view, we define the following terms, which are also illustrated in
Fig. 2:

– Connection Session (CS): It starts from the establishment of a connection
with a particular peer, and ends when the peer is disconnected. If the host is
disconnected from, but reconnects to the same peer again after 1 second, we
count them as two separate CSs. This term indicates the peers connectivity.

– Download/Upload Session (DS/US): It means a download/upload du-
ration during a single CS. We define that a DS/US ends if there is no
packet transmissions for longer than 1 second. These terms show the down-
load/upload stability.

– Download/Upload Traffic (DT/UT): It refers to the downloaded/
uploaded traffic load in bytes during a single DS/US. These terms indicate
the download/upload capability.

… 
Throughput Connection Session Upload Traffic 

Time … 

Download Traffic Download Session Upload Session 

Fig. 2. An Illustration of A Peer’s Connections and Downloads/Uploads

A WiMAX host may connect to (and be disconnected from) the same peer
multiple times. Thus, we define a peer’s aggregated CS, aggregated DS/US
and aggregated DT/UT by summing CSs, DSs/USs and DTs/UTs with the
same peer. Note that all CSs and DSs/USs are originally in unit of seconds, but
normalized to the total download time of each case, respectively for compari-
son purposes. The total download times are 243.28s, 1208.05s , 1326.44s, and
1964.86s in the Ethernet, stationary, subway, and bus cases, respectively.

We observe that disconnections from other peers are caused by: (a) bad link
conditions due to fading and mobility (passive disconnection), and (b) BitTorrent
operations due to lack of incentives (active disconnection). We analyze CSs and
DSs/USs of the WiMAX hosts caused by passive disconnections in the following
sections to observe how WiMAX network impacts the BitTorrent performance.

4.1 Peer Connectivity

A TCP connection of a WiMAX host with a peer will be kept until it is actively
closed by the peer’s BitTorrent operation, or is passively disconnected due to bad
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Fig. 3. Peer Connectivity

link conditions. Active and passive disconnections can be determined by checking
whether there is a TCP FIN flag at the end of a CS. We observe that the ratio
of the CSs ended by passive disconnections to all the CSs is 0%, 87.2% , 88.7%
and 92.1% in the Ethernet, stationary, subway, and bus cases, respectively.

We show the cumulative distribution functions (CDFs) of CSs and aggregated
CSs in Figs. 3(a) and 3(b), respectively. We observe that more than 50% of the
CSs are extremely short, less than 2% of the total download time. In the bus
scenario, around 80% of the aggregated CSs are shorter than half of the total
download time, but in the subway and stationary scenarios, about 40% of the
aggregated CSs are longer than half of the total download time. We also plot
the CDF of idle durations between the adjacent CSs to the same peer, dubbed
inter-CS times, in Fig. 3(c). In the bus case, half of the inter-CSs are shorter
than 10% of the total download time, which indicates frequent disconnections
and reconnections to the same peers. Frequent disconnections indicate poor con-
nectivity to peers; the bus scenario exhibits the poorest connectivity since its
wireless link is highly fluctuating while the bus moves in outdoor environments.
Table 2 shows the statistical averages of CSs, aggregated CSs and inter-CSs of
each scenario, and we compute that, on average, WiMAX hosts performance
worse than Ethernet one, and the bus host performance the worst.

Table 2. Averages of the metrics are shown where ind., agg., inter- stand for individual,
aggregated, inter-session times, respectively. All session times are normalized to the
total download time in each case, and the unit of the traffic is KB.

CS DS DT US UT
ind. agg. inter- ind. agg. inter- ind. agg. ind. agg. ind. agg.

Ethernet N/A N/A N/A 0.286 0.350 0.049 1818 1972 0.026 0.232 87 791
Stationary 0.253 0.352 0.487 0.052 0.227 0.020 227 2107 0.006 0.056 55 542
Subway 0.201 0.327 0.396 0.043 0.181 0.019 192 2113 0.005 0.081 50 855

Bus 0.155 0.210 0.259 0.021 0.088 0.013 133 1281 0.003 0.031 21 205

4.2 Download Stability

Download sessions (DSs) may be interrupted or terminated by multiple reasons:
(a) bad link conditions incur large RTTs and frequent packet losses, so that
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Fig. 4. Download Stability

TCP connections can be disrupted, (b) a chunk delivery (with chunk size of 512
KB for a 400 MB file [11] [13]) is finished successfully, (c) the host is so slow
that it may be choked, (d) by the end of file download time, transmissions are
withdrawn intentionally by the BitTorrent protocol. We exclude the latter three
cases, which can be classified as active disconnections. We observe that DSs are
passively disconnected (i.e. case (a)) with the ratios of 71.2%, 84.6%, 85.7%,
and 91.6% in the Ethernet, stationary, subway, and bus cases, of all the DSs
respectively.

The CDF of DSs due to passive disconnections is shown in Fig. 4(a), which
reveals the stability of downloading the file. (Note that peers, which do not
transmit data to the host, are not included in the figure.) The Ethernet host
outperforms the WiMAX hosts significantly due to its high uplink capacity.
Hosts in the WiMAX network suffer from short DSs; almost 90% of the DSs are
shorter than 10% of the total download time. Fig. 4(b) shows the CDF of the
aggregated DSs of the peers. Surprisingly the WiMAX hosts have negligible DSs
from almost 60% of the peers, while the Ethernet host has marginal DSs from
around 30% of the peers. The aggregated DSs (of peers) of the WiMAX hosts
are much shorter than that of the Ethernet host. In particular, the WiMAX
host in the bus scenario has the worst performance; 90% of its peers maintain
aggregated DSs less than 40% of the total download time. We also plot the CDF
of the inter-DS times, the inactive download periods, in Fig. 4(c), showing
the inter-DS times are very short in the WiMAX cases, indicating that the
download is terminated and recovered frequently. From Table 2, the average
durations of individual and aggregated DSs (of peers) of the WiMAX hosts are
quite shorter than those of the Ethernet hosts due to frequent interruptions and
disconnections.

4.3 Download Traffic

During the DSs, the amount of the download traffic from remote peers to a host
is time-varying depending on the link dynamics (and hence transmission rate
of a channel). We measure the DT for each DS to observe how much traffic a
remote peer transmits to the host. As shown in Fig. 5 (X axis is in log scale),
the WiMAX host in the bus case receives the smallest DT per DS. Most of the
DT to the Ethernet host are transmitted from a few peers in a short time. In
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Fig. 5. Download Traffic

contrast, the WiMAX hosts can download only a small amount of traffic from a
large number of peers due to its link instability.

The effective download of a host is critical to evaluate the BitTorrent perfor-
mance. We calculate the CDF of the numbers of successfully transmitted chunks
during each DS. From Fig. 5(c), we observe that in the WiMAX cases, about
90% of the DSs cannot continuously download even a single chunk successfully.
The average number of successful chunks per DS is 2.951, 0.218, 0.162, and 0.103
in the Ethernet, stationary, subway and bus cases, respectively. Consequently,
frequent disruptions of chunk will result in retransmissions of some packets of
the interrupted chunk. We suggest that reducing the chunk size may increase
the efficiency of chunk delivery in mobile environments.

4.4 Upload Stability and Traffic

We evaluate upload stability and upload traffic similarly. CDFs of USs and UTs
are shown in Fig. 6. Most of the individual USs of the WiMAX hosts exist for
extremely short periods: 0.1% ∼ 1% of the total download time. By comparison,
the Ethernet host maintains higher USs due to its stable link. Fig. 6(c) shows
that the UT of each of the WiMAX cases (except the bus case) is not so different
from that of the Ethernet case. It is because that there is not so much need to
upload even for the Ethernet host due to the huge amount of seeds, as the content
is quite popular 2. We conclude that the small uplink capacity of the WiMAX
networks along with the small percentage of leechers in the “popular” swarm
relieves the WiMAX hosts of uploading the chunks.
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Fig. 6. Upload Stability and Traffic

2 As we measured, about 90% of peers are seeds.
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5 Protocol Control Behaviors

In this section, we evaluate the message exchange time of each BitTorrent control
message, which means one RTT and the potential processing delay. We classify
BitTorrent control packets [13] and then average their RTTs, as shown in Fig.
7. We observe that all control message exchanges in WiMAX cases take longer
times than the Ethernet case. Thus, BitTorrent in WiMAX environments may
not be able to adapt to the link dynamics timely. We also plot how long it
takes to perform TCP connection setup (3-way handshake), TCP retransmission
(reTX), and TCP close (2 RTTs), all of which are triggered by a host (not from
a remote peer). Especially, TCP retransmissions take much longer time because
they occur mostly when the link quality is not good. Consequently, large RTTs
of WiMAX networks, along with TCP retransmissions, will increase the control
signaling between BitTorrent peers significantly. How to optimize and revamp
control signaling is crucial for BitTorrent performance in mobile environments.

TCP closeTXsetupHS

Fig. 7. The RTT of each BitTorrent control message exchange (Intrs., Not intrs., and
BT HS stand for Interest, Not interest, and BitTorrent handshake, respectively.)

6 Conclusion

We comprehensively measured and analyzed the BitTorrent performance of a
host in the commercial mobile WiMAX network. Based on the empirical mea-
surements, we reach the following conclusions: (1) the wireless links in mobile
WiMAX networks are quite unstable due to the fluctuation of signal strengths
and handovers. Thus connections amongst peers are often in poor conditions
and sometimes broken depending on mobility; (2) the poor link condition de-
grades download performance since TCP reduces its congestion window for
packet losses; (3) handovers often terminate peer connectivity and slow down
the TCP transmissions, which may not be recovered efficiently; (4) due to the
large delay with remote peers, the control message exchanges take noticeable
time; (5) WiMAX hosts suffer from frequent disconnections, short download ses-
sions, small download throughput, and negligible upload contributions. Overall,
the current BitTorrent protocols cannot adapt to the mobile WiMAX environ-
ments well. How to adjust BitTorrent protocols in mobile environments or even
to create new protocols will be our future work.
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Peeling Away Timing Error in NetFlow Data
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Abstract. In this paper, we characterize, quantify, and correct timing
errors introduced into network flow data by collection and export via
Cisco NetFlow version 9. We find that while some of these sources of
error (clock skew, export delay) are generally implementation-dependent
and known in the literature, there is an additional cyclic error of up to
one second that is inherent to the design of the export protocol. We
present a method for correcting this cyclic error in the presence of clock
skew and export delay. In an evaluation using traffic with known timing
collected from a national-scale network, we show that this method can
successfully correct the cyclic error. However, there can also be other
implementation-specific errors for which insufficient information remains
for correction. On the routers we have deployed in our network, this limits
the accuracy to about 70ms, reinforcing the point that implementation
matters when conducting research on network measurement data.

1 Introduction

In the practice of network measurement, packet data is collected at one or more
observation points within a network. Some combination of transformations may
then be applied to the packets, such as sampling, or assembly into flows. This
transformed data then undergoes some combination of export, collection, aggre-
gation, filtering, storage, and analysis, in order to produce successively refined
information from which knowledge about the network is derived, whether for
research or operational purposes. Each of these stages may be seen as a function
applied to the result of the previous stage. Ideally, each of these functions should
lead to further refinement of the information of interest without introduction of
error or loss of fidelity. Some of these stages, especially observation, export, and
collection, should have no impact on the information content at all.

However, this is not the case. Each stage in the measurement process may
introduce error. Some of these sources of error are well-known, such as failing
to properly provision measurement devices leading to packet loss, or failing to
synchronize clocks among distributed observation points. Other errors have more
obscure causes. In this work, we examine a cyclic source of timing error in flow
data exported via Cisco Netflow version 9 (v9) [1] which, instead of having a
deployment- or implementation-time cause, is a consequence of the design of the
protocol itself. Together with load-dependent export delay and long-term drift
of the clocks from which timestamps are generated, we find that the accuracy of

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 194–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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timestamps in flow data exported using v9 is degraded by about three orders of
magnitude, to about two seconds in the worst case, instead of millisecond-level
precision implied by the protocol.

After discovering this error in a flow data set collected from a national-scale
network and stored as a sequence of raw NetFlow v9 export packets in received
order, we set about “peeling” these layers of error away, devising an algorithm
for correcting the cyclic error while compensating for delay and drift. We do this
only with reference to timing information on the NetFlow v9 export packets;
that is, the correction is independent of the individual flows exported. This is
important both for the scalability of the approach, and for its independence
on the actual content of the traffic. We find that our approach can completely
remove the protocol-induced cyclic error, in the general case allowing millisecond
timing resolution with NetFlow v9, even for flows exported in different export
packets. This is sufficient to sequence flows occurring between one millisecond
and one second apart, e.g. to determine the direction of a bidirectional flow as
in [2] when the connection establishment time is more than 1ms, or to enable
flow-based round-trip-time measurement for quality of service applications.

However, in practice we can only peel so far: on the Cisco 6500 and 7600 series
routers that collect the data in the network we measure, additional flow-level
inaccuracy of about 70ms remains, which we do not have sufficient information to
correct. We thereby confirm that deployment, implementation, and design-time
choices made in the systems collecting and processing the traffic data under study
do not have the neutral effect one could assume on the data. We further note
that this work quantitatively supports the common wisdom that router-based
flow measurement is generally insufficient for applications requiring precision
timing.

Section 2 characterizes the sources of timing errors we see in the examined
data set and section 3 quantifies them and presents concrete examples of artifacts
in the data caused by these sources. We then present and evaluate a method for
correcting cyclic error based solely on the export packet headers in section 4. In
section 5, we review related work in data fidelity for network measurement, and
we present our conclusions in section 6.

2 Characterizing Timing Error in NetFlow Version 9

NetFlow v9 [1] exports flow data in records described by templates, allowing the
flexible inline definition of record formats. However, flow start and end times-
tamps are expressed as with older NetFlow versions, in terms of uptime, or the
time that has passed since the device started. This approach has the advantage
of not requiring a real-time clock at the metering process, which generates flows
from an observed traffic stream. We call these per-flow timestamps fstart and
fend.

Flows are exported by an exporting process in protocol data units called export
packets by NetFlow v9. The exporting process stamps each outgoing packet with
an export timestamp pexport expressed in UNIX epoch time (i.e., seconds since
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Fig. 1. Illustrating basetime error

midnight UTC, 1 January 1970). It also exports the time since the metering
process started puptime. This arrangement is illustrated in Figure 1(a)1.

From these two timestamps, the time at which the device started (which we
call the true basetime or tbase) is given by tbase = pexport − puptime. The start
and end time in UNIX epoch seconds for each flow in the packet can then be
determined by adding tbase to each of the per-flow timestamps fstart and fend

for each flow in the packet.
This would be the ideal situation. However, while the uptime is expressed

in milliseconds, the export time is truncated to second-level precision before
export due to the design of the NetFlow v9 packet header, implicitly flooring it.
Therefore, the derived basetime from each packet is in effect given by tdbase =
�pexport� − puptime. The implicit floor operation causes the milliseconds part of
the export timestamp not to be accounted in the basetime derivation, injecting a
cyclic error of up to one second subtracted from the derived basetime, which can
consequently cause errors in the flow timestamps leading to incorrect sequencing
of flows exported in different export packets.

Further complicating this situation are two effects of the architecture and its
use of separate clocks. First, the two clocks are not necessarily synchronized; that
is, one second does not necessarily pass on the real time clock for each second on
the uptime counter. This clock skew can be a result of inaccuracy in either of the
two clocks. The magnitude of the skew observed in our data set is on the order
of seconds per day, and appears to be stable over time. Second, the timestamp
from the uptime counter and the timestamp from the real time clock are not
necessarily applied simultaneously to the export packet. Export packets may
be held at the Exporting Process due either to resource exhaustion or explicit
export rate limiting. This delay can inject a further subtractive error into the
derived basetime. Delays observed in our data set are uncommon, intermittent,
correlated with periods of heavy load, and on the order of less than one second.
These three sources of error are illustrated in Figure 1(b); here, we show the
true basetime, and the dotted lines define the area within which the derived
basetimes fall.
1 Here we use terminology and arrangement from the IPFIX architecture [3], since the

IPFIX architecture was based on that from NetFlow v9.
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To see how this would affect flow measurement, consider the following exam-
ple: a flow f1 starts at 1.000s after router start (i.e., true basetime), and a flow f2
which starts at 1.100s. The export packet containing f1 is exported at 11.000s,
and that containing f2 at 11.950s. Assuming no drift or other delay on this time
scale, we then have:

tdbase1 = �11.000�− 11.000 = 0, tdbase2 = �11.950� − 11.950 = −0.950
f1 = tdbase1 + 1.000 = 1.000, f2 = tdbase2 + 1.100 = 0.150

Even though f1 started before f2, the apparent sequence is reversed.
We observe a further peculiarity of export in the data from our Cisco routers:

that of derived basetime quantization. The derived basetimes in our data set are
all divisible by 4ms. Whether this is a source of error or not is uncertain without
examining the implementation: the 4ms quantization could be caused either by
export driven by a 4ms interrupt, or by timestamps being stored internally in
4ms units.

Due to the magnitude of these errors, applications which perform time-series
aggregation with intervals greater than one second (e.g., most billing applica-
tions) are largely unaffected. However, we show in section 3 that any assump-
tion that devices exporting NetFlow v9 are capable of millisecond-level accuracy
and/or strict ordering of flows does not hold. We set out to see what could be
done to improve this situation.

The most troublesome source of error on a per-flow basis is the cyclic error.
The timestamps of the flows skew at the same rate as that of the basetime, so
skew, while visible in the basetime series, is cancelled out for each flow. Therefore,
in section 4, we will focus on correcting cyclic error, treating skew, delay, and
quantization as complications to correction.

3 Quantifying Timing Errors in NetFlow v9

Our data set includes data collected from SWITCH2, the Swiss research and
education network. This network contains about 2.3 million IPv4 addresses, and
the typical total traffic volume ranges from 500 megabytes to one gigabyte per
second. We receive NetFlow v9 from six Cisco routers (6500 or 7600 series)
deployed around the SWITCH border; we designate these routers A-F. Each
router also exports flows from multiple Source IDs; these correspond to line
cards. Here we examine one week of data, 26 June to 3 July, 2010.

Figure 2 shows the density of exported derived basetimes for a single source.
The upper part of the figure is a density map of exported basetimes by offset
from the maximum observed basetime. The lower part shows the number of
export packets per second for the same time period.

The vast majority of basetimes fall within the skewed one-second cyclic error
band. Note the daily seasonality in the density of basetimes. There is a maximum
number of flows which can be exported in an export packet (ep), so higher

2 http://www.switch.ch
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Fig. 2. Derived basetime density distribution, and basetime correction, for a single
source on a single router (A/513).

traffic load leads to larger flow counts leads to larger export packet counts. This
increases the number of unique derived basetimes seen per second. However, this
density is not uniformly distributed among the possible values within the cyclic
error band, a fact which further complicates correction. Delay also increases with
traffic load, due to resource exhaustion and/or rate limiting in the exporting
process. However, the number of delayed export packets is relatively low even
under load.

We examine the errors on each source on each router in Table 1. Here, errors
are reported in relation to the presumed real basetime as determined by the
correction mechanism detailed in section 4; therefore we report the rate of unique
observed derived basetimes per second and the correction interval parameter
used. These will be explained further below.

Mean drift is a per-source, not a per-router parameter; we hypothesize that
this is related to some physical property of the clocks on each of these line cards.
Drift ranges from about -2s/day to +1s/day.

The minimum and maximum measured error show that the range due to cyclic
error and delays ranges from 1050ms to 2280ms; lower values demonstrating
predominantly cyclic error, with higher values as evidence of more delay. The
width of the band between the 5th and 95th percentile ranges between about
950ms and 1200ms, demonstrating that the vast majority of this error is cyclic.
Note that all error measurements for the routers are values divisible by four
milliseconds; this is an artifact of the 4ms quantization mentioned above.

We also examined the output of the softflowd3 NetFlow v9 metering and
exporting process, which was developed independently from the Cisco code-
base. softflowd was run on a small set of flows generated on an experimental
local-area network, running on a Mac OS X host. We observed the same cyclic er-
ror, but negligible drift, negligible delay, and no quantization of derived
basetimes.
3 http://www.mindrot.org/projects/softflowd/
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Table 1. Overview of timing errors for each source on each router for the examined
week.

Router Source Drift [ms/day] Error [ms] Rate [s−1] Correction
mean std. max 95th 5th min mean std. interval [s]

A 0 -423 14.5 +344 -72 -972 -1052 0.24 0.03 10800
A 513 -228 17.0 +136 -56 -960 -1960 193.9 79.5 400
A 518 -423 7.9 +208 -56 -976 -1876 157.4 39.2 400
B 0 -2039 355.4 +280 -124 -1068 -1465 0.005 0.0008 10800
B 513 +560 41.8 +28 -48 -988 -1020 314.7 64.5 400
B 517 +81 35.4 +244 -52 -992 -1592 201.2 41.7 400
C 0 +1543 49.9 +256 +52 -848 -972 0.09 0.008 10800
C 518 +1577 70 +428 -48 -992 -1824 74.2 29.7 400
D 0 +1053 37.9 +112 +12 -924 -984 0.12 0.02 10800
D 517 +1055 21.5 +316 -52 -946 -1824 302.9 100.7 400
E 0 +239 38.3 +60 -28 -928 -1012 0.11 0.02 10800
E 513 +453 8.9 +500 -48 -952 -1600 204.6 60.8 400
E 515 -17 21.7 +280 -52 -968 -2000 333.5 101.9 400
F 0 +47 14.9 +176 -40 -936 -1044 0.07 0.005 10800
F 513 +46 20.5 +88 -48 -948 -1328 15.6 7.0 10800
softflowd +5.5 12.0 +16 -43 -940 -1001 0.61 0.02 10800

4 Correcting Cyclic Timing Error

Having observed and quantified this error, we set out to devise a method for cor-
recting it. Since the basetime is related to the time at which the router started,
and router restarts in production networks are relatively rare events, correct
basetime information could be determined out-of-band via the router’s manage-
ment interface (e.g., SNMP or the command line). However, this method would
have two disadvantages. First, it requires the management interface of the router
to be accessible to the measurement infrastructure, which is not always desir-
able. Second, static out-of-band basetime determination ignores the drift of the
realtime clock, which is included in each of the flow timestamps; this error would
then need to be corrected in any event.

Therefore, we focused on generating a corrected basetime estimating the true
basetime from the derived basetime information. Our first attempt at this con-
sisted of a simple robust maximum detector. The primary problem with this
method is it requires a rather high packet density; otherwise it has a tendency
to “follow” downward-cycling derived basetimes into the cyclic error band. The
problem also initially appeared to be suited to simple linear regression, but the
widely variable density of derived basetimes within the cyclic error band ruled
this method out.

We therefore settled on a correction mechanism based on sliding density win-
dows. Recalling the density diagram in Figure 2, we first take the set of derived
basetimes for a specified “horizontal” (export time) interval, called the correction
interval. We then slide a one-second “vertical” (derived basetime) interval over
the correction interval, and select the position for this interval which maximizes
the derived basetime density within the rectangular correction window. The top
(maximum derived basetime) of this window is then taken to be the corrected
basetime. For source 513 on router A, the corrected basetime is shown as the
top line in Figure 2.
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Fig. 3. Illustrating density-window basetime correction

The correction interval is selected based upon the density of derived basetimes
for a given source, which is itself dependent on the traffic volume. In principle,
it should be chosen to observe at least several wraparounds of the cyclic error.
Figure 3(a) shows the effect that different correction intervals have on the cor-
rected basetime series, observing the effects of three different windows on correct-
ing the relatively low-density source 0 of router C. In general, longer correction
intervals provide more stable and therefore more accurate corrections, but re-
quire more processing as they must consider more data points, and would lead
to longer delays in reporting corrected times during stream processing. For this
study, we selected a 400 second window for higher density sources, and a 10800
second (three hour) window for lower density sources.

Figure 3(b) illustrates how this correction method works in the presence of
variable density of derived basetimes. Here we show the derived basetime density
as a function of the position of the vertical interval for three different correction
windows. Even though the density distributions differ greatly, the method leads
to the same basetime correction.

4.1 Evaluation

To measure the effective accuracy of the cyclic error correction method, we
compared exported flow timestamps to known flow timing. We placed a traffic-
generating host on the measured network to send single-packet UDP flows to
known hosts outside the network, chosen such that these flows would be routed
across a known source on a known router in our collection infrastructure. We
saved the injection time for each flow key, and compared this to the timestamps
on the flows exported via NetFlow, both with uncorrected derived basetimes as
well as basetimes corrected using the method described above.

The CDF of the deviation from known timing of per-flow timestamps over 30
hours of data over 3-4 September 2010 for source 513 on router A are shown in
Figure 4(a).
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Fig. 4. Corrected and uncorrected flow start times

Here, we see that the flow timestamps calculated from uncorrected basetimes
exhibit a uniform deviation to about 1s, caused mainly by the cyclic error in
the basetime. If the cyclic error were the only remaining error in the data, we
would expect the flow timestamps calculated using the corrected basetimes to
exhibit no more than a few milliseconds of error to account for the one-way delay
between the source and the router at which the flows were measured.

We see this in the softflowd data, as shown in 4(b). This demonstrates that
our cyclic error correction method can completely eliminate the timing error in-
troduced by the design of the NetFlow v9 protocol. However, even after applying
corrected basetimes, there is an additional source of about 70ms of uniformly
distributed error on Cisco routers. Further investigation shows this to be con-
stant across sources and routers, and independent of time, load, or other factors
measured in this work. Therefore, we conclude that this error is implementation-
specific and an unavoidable property of the packet or flow handling of this specific
implementation, either within the metering process or between the metering and
exporting processes.

5 Related Work

The question of the fidelity of data used in Internet measurement studies is
well-addressed in the literature. The effects of sampling of packets (e.g., as in
[4]) as well as flows (e.g., as in [5]) have been widely studied. However, these
works tend to be theoretical, focusing more on the mathematical properties of
the techniques used and the essential tradeoff between overhead and utility than
on the effects of specific implementations or protocols used in the collection of
the data used.

Sommer and Feldmann [6] examined the information loss associated with flow
measurement as opposed to directly operating on packet data, and find that
for one particular application, TCP connection summary generation, flow data
suffices “[using] large enough time intervals”: an acknowledgement of the impact
that flow timeouts and timing in general have on later analysis.
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Paxson [7], in establishing a set of best practices for Internet measurement
studies, classifies sources of error into precision, accuracy, and misconception.
It discusses timing precision and accuracy and discusses the need to consider
and calibrate for measurement infrastructure induced error in source data sets.
It advocates the export of metadata along with source data for measurement
studies, a call we reiterate in our conclusions.

A closer antecedent for the present work is Cunha et. al. [8], which provides a
similar study of largely implementation-related artifacts in flow data produced
by the Juniper routers which generated commonly-used datasets from Abilene
and GEANT. These artifacts were related to timeout and flow cache expiry, and
as such have a destructive impact on the distribution of flow duration.

The IETF addressed various design issues with NetFlow v9 in the specifica-
tion of the IPFIX protocol [9]. Crucially, IPFIX supports flexible timestamps
from second to nanosecond resolution, and allows the association of an absolute
timestamp with every flow. As it does not mandate the export of potentially
inconsistent timestamps in each message, it does not suffer from the cyclic error
we present in this work. However, it does not necessarily address other sources
of inaccuracy within the implementation of the metering or exporting process.

6 Conclusions

In seeking to maximize the timing precision available from data exported via
Cisco NetFlow v9, we discovered and quantified a cyclic source of up to one sec-
ond of error in flow timestamps, inherent in the design of the protocol. Correcting
this cyclic error can improve the accuracy of NetFlow v9 data to millisecond-
level. However, inaccuracy remains within the examined Cisco implementation
which we do not have sufficient information to correct, limiting our effective cor-
rection for our production dataset to one order of magnitude, for about 70ms
accuracy.

The set of routers from which we receive NetFlow v9 data represents an
admittedly small sample of deployed implementations. However, the cyclic error
is a protocol issue. It is therefore implementation-independent, and should affect
NetFlow v9 export from any vendor. We note that an implementation built with
an awareness of the cyclic error could avoid it, by faking the system uptime
and/or export timestamps in order to export real basetimes, but we did not
observe this behavior in any examined NetFlow implementation.

In addition, we presume that similarities in NetFlow v9 metering and export
process implementations could lead to implementation-specific sources of error
similar to those we observed on Cisco devices on implementations from other
vendors. These measurements are an area for future work. The guidance to take
from our work in any case is this: researchers using NetFlow v9 data sets should
not assume better than second-level accuracy unless employing a method for
correcting cyclic basetime error such as the one we present here, and should
measure the residual error specific to their metering and exporting processes.

In this work, we were able to observe and correct timing error from the Net-
flow v9 export packet headers which is not apparent from an examination of
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flow data alone. This leads us to reiterate the call in [7] to export and maintain
implementation-specific metadata alongside flow data used for research. Our ex-
perience in this work additionally indicates the wisdom of keeping measurement
data in as “raw” a form as possible. While all flow data is theoretically the same,
and should be freely convertible among formats, this is not the case in practice:
as we have shown, implementation matters.
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Clockscalpel: Understanding Root Causes of
Internet Clock Synchronization Inaccuracy

Chi-Yao Hong, Chia-Chi Lin, and Matthew Caesar
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Abstract. Synchronizing clocks is an integral part of modern network
and security architectures. However, the ability to synchronize clocks in
modern networks is not well-understood. In this work, we use testbeds
equipped with a high-accuracy GPS receiver to acquire ground truth,
to study the accuracy of probe-based synchronization techniques to over
1861 public time servers. We find that existing synchronization protocols
provide a median error of 2 − 5 ms, but suffer from a long-tail. We
analyze sources of inaccuracy by decoupling and quantifying different
network factors. We found that most inaccuracies stem from asymmetry
of propagation delay and queueing delay. We discuss possible schemes to
compensate these errors to improve synchronization accuracy.

1 Introduction

Probe-based synchronization protocols such as Network Time Protocol (NTP)
and the Simple Network Time Protocol (SNTP) are widely used today. These
protocols comprise one of the largest Internet systems, with hundreds of thou-
sands of NTP servers providing service to tens of millions of clients. Under-
standing the performance of applications that require synchronized time requires
understanding the accuracy achievable by these underlying protocols. However,
despite the high degree of reliance that many networked systems have on probe-
based synchronization protocols, we lack an understanding of how these protocols
behave in modern, wide-area networks.

There exists relatively little attention on the performance of probe-based time
synchronization in the wide area over the past decade – most recent surveys date
back to 1999 [1] and 1990 [2]. Recently, novel frameworks [3,4] are proposed to
further improve the synchronization accuracy. While these studies showed that
some NTP servers are inaccurate, the underlying cause of inaccuracies remain
unclear. However, with the advent of modern network applications that have
stringent end-to-end latency requirements on the order of milliseconds or mi-
croseconds [5], such as VoIP, interactive video conferencing, automated trading,
and high performance computing, understanding network factors that affect time
synchronization performance becomes increasingly important.

In this work, we take some preliminary steps towards understanding the ability
to synchronize time in the wide-area Internet, leading up to potential frameworks
that effectively improve synchronization inaccuracy. In particular, we study the
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precision of existing time protocols and characterize their performance in terms
of the level of synchronization accuracy it provides to hosts. We leverage GPS
hardware (which has greatly reduced in cost over the past decade) to provide
“ground truth” clock information to parts of our measurement infrastructure.
We use this information to directly study the underlying sources of inaccuracies,
assess their impact, and evaluate the potential to compensate for or remove these
sources.

We have three key findings. First, we find that existing synchronization proto-
cols work well in the common case (with median accuracy of 2-5 ms), but suffer
from a long-tail with a few servers/probes incurring high error rates. Second, we
found the main sources of this inaccuracy come from propagation delay asym-
metry and queueing delay asymmetry in the wide area. Third, although the path
delay asymmetry is considered not measurable [3]1, we find that synchroniza-
tion accuracy is well-correlated with some path properties that can be probed
by end-hosts. To address this, we evaluate several heuristics that compensate for
this error (by estimating the error and correcting for it).

We hope our results may enable designers of measurement experiments and
network applications to better understand effects synchronization protocols may
have on their results, and may assist system operators and protocol designers for
tuning their configurations and extending synchronization protocols to improve
performance.

2 Background

Clock synchronization algorithm works by having the local host periodically
probe remote clock sources. The local host acquires (a) the clock value of the
remote host when the probe was received and sent (b) an estimate of the RTT to
the remote clock source. In particular, client i periodically sends a probe to the
server j, and the server replies with a timestamp collected from its local clock.
Let the sending times of client i and server j be ti,TX and tj,TX , and let their
receiving times be ti,RX and tj,RX . The round-trip time RTTi,j can be derived
by

RTTi,j = (ti,RX − ti,TX) − (tj,TX − tj,RX) (1)

NTP assumes symmetric delay, allowing it to measure the one-way delay OWD

OWDi,j = OWDj,i = RTTi,j/2 (2)

The clock offset of the server j relative to client i is then derived as

θi,j = (tj,TX + OWDj,i) − (ti,RX) =
1
2
[(tj,RX − ti,TX) + (tj,TX − ti,RX)] (3)

In reality, the one way delay might not be symmetric, i.e.,

OWD∗
i,j − OWD∗

j,i = Δi,j (4)

1 A recent study [6] also indicated that router-level asymmetry does not necessarily
imply delay asymmetry.
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where the difference Δi,j is bounded by ±RTTi,j. By (4) and (3), the error of
the clock offset θ is equal to |Δ| /2, i.e., delay asymmetry Δ governs the syn-
chronization accuracy. Although protocols such as One-Way Active Measure-
ment Protocol (OWAMP) can be used to estimate delay asymmetry on network
paths [6], OWAMP requires NTP to synchronize the system clock, which can
lead to biased measurements. Since the synchronization inaccuracy is unknown,
it can be hard to accurately infer measured properties.

3 Methodology and Data Sets

Ideally, we would like to compare clock values across hosts against an Internet-
wide global time. However, this is hard due to lack of “ground truth” on every
device. Previous work on studying NTP performance [1,2] focused on computing
the difference between the client’s clock time and its estimation of the NTP
server’s clock. This metric is useful to indicate how well NTP hosts converge
over time, i.e., the value of θ. Unfortunately, this does not give us the actual
synchronization error (|Δ|/2), which arguably impossible to derive without the
“ground truth” at the client end.

To provide ground truth, we instrumented our local machine with custom
hardware to synchronize with GPS time signals. We used a Garmin 18x LVC
GPS receiver, which provides a pulse-per-second (electrical signal that precisely
indicates the start of a second) aligned to within 1 microsecond of UTC time.
We then constructed a simple custom circuit to serve as an interface between
the GPS receiver and the local machine. The power supply of GPS receiver
comes from the PC through a type-B USB connector, while the GPS signals,
including NMEA sentences and pulse-per-second signal, are transmitted to the
local machine over the RS-232 serial port. The GPS receiver is positioned at
proper place such that the received SNR is above a certain threshold.

To measure accuracy of clock synchronization, we ran a Linux machine with
NTP v4.2.6, and varied the remote server peer that NTP would synchronize with.
We modified the NTP source code to print out detailed probe information (e.g.,
NTP Timestamps). We leveraged ntpdate to send 4 probes at a time (ntpdate’s
default behavior). To make the pulse-per-second signal accessible to our measure-
ment tools, we then patched the Linux kernel 2.6.32-rc10 with Linux’s Pulse Per
Second support. In addition, some of our experiments required setting up ntpds
using the pulse-per-second signal. To provide additional vantage points to cross-
check the results collected in our local testbed, we deployed GPS-instrumented
machines in other locations (Table 1). Finally, some of our experiments synchro-
nize our testbed to public NTP servers. To acquire IP addresses of these servers,
we start with public NTP time server lists [7], and exploit a spider program [1]
which uses xntpdc to crawl the NTP hierarchy, resulting in 67, 782 servers.

We collect three synchronization error data sets of various sizes (Table 2). For
the SE-24st1 data set, clients (Table 1) measure the synchronization error to 63
stratum-1 NTP servers with an average interval of 90 seconds between consecu-
tive measurements of the same client/server pair. A more accurate snapshot of
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Table 1. GPS-instrumented testbed set

Location name Location type Connection type Upstream network

Cornell Univ., NY school 1 Gbps LAN Cornell Univ.
UIUC, IL school 1 Gbps LAN Univ. Illinois

Chicago, IL home cable modem Comcast
Green Bay, WI business 1 Gbps LAN Road Runner Holding Co.
Taipei, Taiwan school 100 Mbps LAN Taiwan Academic Network

Table 2. Synchronization error data set

Data set #Clients x #Servers Duration Starting Date Interval

SE-24st1 3 x 63 (only stratum-1 servers) 24h April 18th, 2010 90s
SE-115allsvrs 4 x 1861 (all servers) 115h May 5th, 2010 90m
SE-403allsvrs 5 x 1861 (all servers) 403h August 30th, 2010 90m

synchronization error can be collected using smaller timescale. However, it comes
with a cost that we can only measure a limited number of servers accurately (63
servers in the first data set). We collect two much larger data set (1861 servers)
when the time interval is increased to 90 minutes. For the SE-115allsvrs and
SE-403allsvrs data sets, we randomly choose 361 stratum-1 NTP servers and
500 stratum-i NTP servers, 2 ≤ i ≤ 4. We ensure that all client-server pairs are
measured at least once within a certain interval.

4 Synchronization Accuracy in the Internet

Accuracy across servers: Fig. 1(a) shows the CDF of synchronization error
(i.e., |Δ/2|) from our testbeds to 406 NTP stratum-1 servers. As expected, we
observed a long-tailed distribution because some stratum-1 servers may have
an inaccurate source clock or misconfigured daemon [1,2]. How to choose a right
server to synchronize with is important as only 10%−20% of servers can provide
sub-millisecond accuracy. Fig. 1(b) shows the CDF of “signed” synchronization
error (i.e., Δ/2). We observe that the median error is close to zero (< 1 ms).
Therefore, this motivates our approach of probing multiple servers to reduce
the error as discussed in §6. The distribution in other strata is similar, but the
average error is a few milliseconds higher.

Accuracy across time: Fig. 1(c) shows the CDF of standard deviation error.
In general, synchronization error is stable over time (i.e., median standard devia-
tion ranges from 0.4 to 2.2 ms), while we observed that some servers have undesir-
able variation (i.e., the maximal standard deviation is about 120 ms). Fig. 1(d)
shows synchronization error from Univ. Illinois to four representative public
stratum-1 servers. For server in Univ. Washington (bigben.cac.washington.edu),
we observe an average error 0.5 ms, while the error oscillates with a magnitude
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Fig. 1. The CDF of synchronization error for (a) Average error, (b) Average of “signed”
error, (c) Standard deviation of “signed” error. (d) The time series of errors from Univ.
Illinois to four representative public stratum-1 servers.

of ±0.2 ms. Since a GPS clock is directly attached to this server, the accuracy of
the server should be within sub-microsecond, i.e., most of inaccuracies come from
network factors. We also synchronize with a public server (nist1-sj.WiTime.net)
maintained by National Institute of Standards and Technology (NIST) Inter-
net time services. NIST time servers use dial-up Automated Computer Time
Service [8] to synchronize server clock to global time. Again, we observe that
the error oscillates in a range of ±0.2 ms. However, the overall error of the
NIST server is up to 7 ms, which is significantly more inaccurate than that of
GPS-equipped time servers. Also, we notice that the error abruptly changed
around every 4000 seconds, as these are intervals between ACTS calibrations
(we confirmed this with the NIST Time and Frequency Division). For another
GPS-instrumented time server in Stockholm, Sweden (ntp2.sth.netnod.se), the
average error over time is about 3.7 ms, which is much higher than that in Univ.
Washington. Fig. 1(d) shows the error to a time server (clock.nyc.he.net) in New
York City using CDMA signals from cellular networks as time synchronization
source. Generally, we found the accuracy of CDMA-based time servers is com-
parable to GPS-based servers. For CDMA-based and GPS-based time servers,
the error is mostly stable over time. However, some sharp spikes happened oc-
casionally are observed. This might come from transient instability of Internet
routing (from our testbeds to stratum-1 servers). Other network factors such as
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Internet path asymmetry and bandwidth asymmetry are possible root causes to
the synchronization errors.

5 Understanding Underlying Factors

Although we observe that the typical synchronization error is around 2−5 ms, it
can undergo very large variations (Fig. 1(a)). Although we observe the character-
istics of synchronization error in Fig. 1, the root of inaccuracies is unknown. In
this section, we analyze the impact of underlying networking factors that affect
the synchronization inaccuracies. As shown in §2 the synchronization error |Δ|/2
is determined by delay asymmetry Δ, which comprises four independent factors.
To understand the impacts of these factors, we propose schemes to decouple and
measure these factors separately as follows.

5.1 Software Stack Delay Asymmetry

To measure the software stack delay (interrupts, OS, device drivers, NTP soft-
ware) asymmetry, we conducted an isolated network with only two machines
communicating directly through a 1-Gbps Ethernet switch. In this setting, both
the transmission delay and propagation delay are perfectly symmetric. The
switch is dedicated to this experiment to ensure probes have low queueing delay
asymmetry. Under this scenario, we believe the software stack delay asymmetry
is the predominant factor of synchronization error. To measure the synchroniza-
tion error, GPS receivers are attached to the machines as the ground truth as
described in §3.

We observed that the software stack delay asymmetry is approximately a
uniform distribution with range (0, 165) μs when the CPU utilization is low
(Fig. 2(a)). We use a synthetic load generator to inject predictable loads on a
server. With heavy system load, we observed a long-tail distribution (Fig. 2(a))
where the maximal error (over 30, 000 trials) is 289.2 μs. We also leverage Sys-
temTap to trace the delay in the Linux kernel, and capture the kernel delay in
each directions. The asymmetry of kernel delay is much smaller, with a median
of 3.58 ns. This indirectly shows that the software stack delay asymmetry is
dominated by the factors that SystemTap missed. For example, SystemTap can-
not measure the latency between packets arriving at the system and when the
OS interrupt handler is called, which may be the main source of software stack
delay asymmetry.

5.2 Queueing Delay Asymmetry

As Internet paths are mostly stable over a few hours [9], their propagation delay
and transmission delay are likely to be similar on short time scales. Therefore, if
server’s clock is accurate, the variation of synchronization error (e.g., oscillation
in Fig. 1(d)) should come from asymmetries of software stack delay and queueing
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Fig. 2. (a) Synchronization error induced by software stack delay (§5.1) by varying
CPU utilization. (b) Queueing delay (§5.2) in both directions, and the induced error
for synchronization. Note that the x-axis is log scale. (c) Transmission delay (§5.3) in
both directions, and the induced error for synchronization. (d) Comparison between
the indirect (§5.4) and the direct (§6) measurement of the error induced by propagation
delay asymmetry.

delay. As software stack usually contributes less than 150 μs error, the variation
(e.g., spikes in Fig. 1(d)) should be dominated by queueing delay asymmetry.

To quantify the queueing delay asymmetry, we measure the synchronization
error from our testbed nodes to GPS-equipped stratum-1 time servers over in-
tervals of 15 minutes. For each measured interval, we assume that the synchro-
nization error derived from probes with minimal one-way delay is composed of
asymmetries of the propagation and transmission delay. After subtracting the
minimal one-way delay in both directions, the remaining synchronization error
will be vastly dominated by packet queueing. We observed that the median error
is around 150 μs (Fig. 2(b)). However, the last 25% of the path has ≥ 1 ms error
induced by queueing delay asymmetry. To evaluate this in the larger scale, we
conduct the same experiment over paths between 300 lightly loaded PlanetLab
nodes, and we obtained a very similar error distribution.

5.3 Transmission Delay Asymmetry

To decouple the transmission delay in the two directions, we send packets
with asymmetric size. For example, to measure the transmission delay in the
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forwarding path, we only vary the packet size in the forward direction while the
size in the reverse path is fixed. As the transmission delay is exactly proportional
to the packet size, we sent probes with different packet sizes to measure the trans-
mission delay. Specifically, to measure the transmission delay of a 76-byte NTP
packet (including UDP and IP header size) in the forward direction, we send two
probes with different sizes, p1 and p2 < p1 in bytes in the forward direction, and
received the destination reply as equal-size probes in the reverse path. Then the
transmission delay of NTP packet is measured by 76× (t1− t2)/(p1 − p2), where
ti represents the RTT of i-th probe.

This measurement scheme assumes that the delay contributed by other factors
would remain the same for these two packets, which might hold for propagation
delay because Internet paths are stable within a short period. However, software
stack delay and queueing delay could vary over consecutive packets. To curtail
the variance of queueing delay, we repeat the probes and select the one with
minimal delay. The intuition is that the packet with minimal delay would suffer
from smaller software stack and queueing asymmetry [4]. We measure the trans-
mission delay asymmetry of NTP packets from our testbed nodes to stratum-1
time servers. We observe the median error is 2.2 μs (Fig. 2(c)). We repeated
these experiments on PlanetLab and we got similar results.

5.4 Propagation Delay Asymmetry

Propagation delay asymmetry is hard to acquire accurately without knowing the
length of the cables that carried probes. Hence, we determine this information
indirectly by simply subtracting the errors induced by other factors from the
overall synchronization error. In particular, we use the probes with minimal delay
to exclude the synchronization error induced by queueing delay and software
stack delay asymmetry. Similarly, as we are able to measure the error induced
by transmission delay asymmetry (§5.3), the remaining error after subtraction
should come from propagation delay asymmetry. Fig. 2(d) shows that the median
error induced by propagation delay asymmetry is 2 ms, while the last 5% paths
have error ≥ 10 ms. We are aware that the proposed scheme could be biased
by other possible sources of delay, like interrupt coalescence. We will discussed
another “direct” scheme to measure propagation delay asymmetry in §6.

Table 3. Error sources and quantity in typical case and worst 5% case. Note the
percentage in the worst 5% case column is derived by assuming typical error for the
other sources.

Asymmetry source Typical error (percentage) worst 5% case (percentage)

Software stack delay 85 µs (1.6%) 150 µs (3.5%)
Queueing delay 150 µs (2.9%) 2 ms (49%)
Transmission delay 2 µs (0.03%) 15 µs (0.7%)
Propagation delay 2 ms (95%) 7 ms (97%)
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6 Discussion

For systems and measurements that rely on high degrees of clock accuracy, it may
be desirable to reduce inter-host synchronization error over wide-area networks.
From our results, several techniques may show promise in reducing these errors.

Pinning network paths: Based on our findings (Table 3), propagation delay
asymmetry dominates synchronization error. Because of this, symmetric physical
paths may be preferable for clock synchronization. Unfortunately, Internet paths
are inherently asymmetric [9,10]. As a result, techniques that can “pin” routes
to symmetric paths may provide the largest gains for network synchronization.
For example, configuring routing protocols to prefer symmetric paths, or using
tunneling protocols [11,12] to assign symmetric paths between devices that need
good synchronization (e.g., between NTP servers) may provide benefits. While
these techniques require network changes, our results also indicate that gains
can be realized by preferring existing symmetric paths. To illustrate this, we
build a support vector classification model using LIBSVM [13]. By probing a set
of NTP servers, end-hosts simply collect multiple network factors such as the
maximal and the minimal round-trip time over multiple probes, forwarding and
reverse hop counts2. Given the sampled instances, the classifier is able to choose
the top 5% servers with smallest synchronization error with a cross-validation
accuracy of 91.8%. Our model uses the radial basis function (RBF) kernel where
the samples are non-linearly mapping to a higher dimensional space.

Compensating at endpoints: Our results indicate that some aspects of delay
asymmetry can be estimated. Because of this, it may be possible for end hosts
to subtract this estimate to compensate. While we presented an indirect scheme
to measure propagation delay asymmetry (§5.4), it requires a GPS receiver in
the end host. Instead of using GPS receiver, we could use a geolocation-based
service to approximate propagation delay. One could use traceroute (and reverse
traceroute [14]) to find IP addresses of intermediate routers in both directions.
Then the propagation delay can be estimated based on the geographical distance
between intermediate routers, which is given by the IP geolocation services. We
implement this by using a commercial IP geolocation service [15]. To reduce
inaccuracy, we also inspect DNS names of ISP routers as a hint to infer their
geographic location, as done in [16]. We observe that the round-trip propagation
delay (measured by the geolocation-based service) and actual RTT are correlated
with a coefficient of 0.56 (with a p-value < 10−7) over PlanetLab nodes. We also
compared the error with that measured by indirect measurement (Fig. 2(d)).
They are not perfectly matched because the geolocation service may be inac-
curate in some cases. The accuracy is likely to be improved by implementing a
better IP geolocation optimization model [16].To discard inaccurate results in
the indirect scheme, we performed a sanity check to select only paths satisfying
0.9 ≤ RTT/(Pf +Pr) ≤ 2.5, where Pf and Pr are the forward and reverse prop-
agation delay as estimated by geolocation-based service. With the limit lookups

2 The reverse hop counts can be derived by guessing the initial TTL of the time server.
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of reverse traceroute for security and load reasons, we limit our evaluation to
only 8 public time servers, and the average synchronization error is reduced from
2.87 ms to 1.07 ms.

7 Conclusions

In this work we study the ability to synchronize clocks between network de-
vices over the modern Internet. We find that while traditional synchronization
protocols have only moderate errors (5 - 10 ms) in the common case, they can
suffer from large “bursty” error in some cases. Our work may motivate future
work on improving existing synchronization algorithms such as NTP to per-
form more efficiently in the wide area. Our major next step is to instrument the
NTP protocol with our proposed modifications to determine the improvement
in synchronization accuracy.
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Abstract. More than 20 years after the launch of the public Internet,
operator forums are still full of reports about temporary unreachability
of complete networks. We propose FACT, a system that helps network
operators to track connectivity problems with remote autonomous sys-
tems, networks, and hosts. In contrast to existing solutions, our approach
relies solely on flow-level information about observed traffic, is capable
of online data processing, and is highly efficient in alerting only about
those events that actually affect the studied network or its users.

We evaluate FACT based on flow-level traces from a medium-sized
ISP. Studying a time period of one week in September 2010, we explain
the key principles behind our approach. Ultimately, these can be lever-
aged to detect connectivity problems and to summarize suspicious events
for manual inspection by the network operator. In addition, when replay-
ing archived traces from the past, FACT reliably recognizes reported
connectivity problems that were relevant for the studied network.

Keywords: monitoring, connectivity problems, flow-based.

1 Introduction

“Please try to reach my network 194.9.82.0/24 from your networks ... Kindly
anyone assist”, (NANOG mailing list [1], March 2008). Such e-mails manifest
the need of tools that allow to monitor and troubleshoot connectivity and perfor-
mance problems in the Internet. This particularly holds from the perspective of
an individual network and its operators who want to be alerted about disrupted
peerings or congested paths before customers complain.

Both researchers [2,3,4,5] and industrial vendors [6,7] have made proposals
for detecting and troubleshooting events such as loss of reachability or perfor-
mance degradation for traffic that they exchange with other external networks,
unfortunately with mixed success. Predominantly, such tools rely on active mea-
surements using ping, traceroute, etc. [2,4]. Besides, researchers have suggested

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 214–223, 2011.
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to leverage control plane information such as publicly available BGP feeds [3,8,9],
although Bush et al. [10] point out the dangers of relying on control-plane in-
formation. Other concerns about existing tools include a high “dark” number of
undetected events [8], a narrow evaluation solely in the context of a testbed or
small system [5,9], or the time gap between the occurrence of an event and its
observation and detection [8].

In this paper we propose FACT, a system that implements a Flow-based
Approach for Connectivity Tracking. It helps network operators to monitor
connectivity with remote autonomous systems (ASes), subnets, and hosts. Our
approach relies on flow-level information about observed traffic (and not on
control-plane data), is capable of online data processing, and highly efficient in
alerting only about those events that actually affect the monitored network or
its users.

In contrast to existing commercial solutions [6,7], we do not consider aggregate
traffic volumes per interface or per peering to detect abnormal events, but pin-
point on a per-flow basis those cases where external hosts are unresponsive. On
the one hand, this requires careful data processing to correctly handle asymmet-
ric routing and to eliminate the impact of noise due to scanning, broken servers,
late TCP resets, etc. On the other hand, our flow-based approach allows to com-
pile accurate lists of unresponsive network addresses, which is a requirement for
efficient troubleshooting.

To test our system we rely on a one-week flow-level trace from the border
routers of a medium-sized ISP [11]. We demonstrate that our approach can be
leveraged to detect serious connectivity problems and to summarize suspicious
events for manual inspection by the network operator. Importantly, replaying
flow traces from the past, FACT also reliably recognizes reported connectivity
problems, but only if those are relevant from the perspective of the studied
network and its users. Overall, we believe that our approach can be generally
applied to small- to medium-sized ISPs, and enterprise networks. In particular
networks that (partially) rely on default routes to reach the Internet can strongly
benefit from our techniques, since they allow to identify critical events even if
these are not visible in the control plane information.

2 Methodology

Our goal is to enable network operators to monitor whether remote hosts and
networks are reachable from inside their networks or their customer networks,
and to alert about existing connectivity problems. Such issues include cases
where either we observe a significant number of unsuccessful connection attempts
from inside the studied network(s) to a specific popular remote host, or where
many remote hosts within external networks are unresponsive to connection
attempts originated by potentially different internal hosts.

To obtain a network-centric view of connectivity, we rely on flow-level data ex-
ported by all border routers of a network, see Fig. 1. In this regard, our approach
is generally applicable to all small- and medium-sized ISPs, and enterprise net-
works. Monitoring the complete unsampled traffic that crosses the border of our
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Fig. 1. Measurement infrastructure and flow types

network allows to match outgoing with incoming flows and to check for abnormal
changes in the balance between incoming and outgoing flows for external end-
points at different aggregation levels (hosts or networks). In particular networks
that (partially) rely on default routes to reach the Internet can strongly benefit
from such an approach, since it allows to identify critical events even if these are
not visible in the control plane information.

As shown in Fig. 1, we distinguish between five flow types : Internal connec-
tions never cross the network border, and thus are neither recorded nor studied
further in our approach. Since the scope of this paper is limited to cases where
remote hosts or networks are unresponsive to connection attempts originated
by internal hosts, we ignore flows that traverse our network (Traversing) or
flows for which we cannot find traffic in the outbound direction (OnlyIn), e.g.,
caused by inbound scanning. If we can associate outgoing flows with incoming
flows, we assume that external hosts are reachable (InOut) and also take this as
a hint that there exists connectivity towards the remote network. Note that the
incoming flow can enter the network via the same border router that was used
by the outgoing flow to exit the network. Yet, due to the asymmetric nature of
Internet paths this is not necessary [9]. Finally, we observe flows that exit the
network but we fail to find a corresponding incoming response (OnlyOut).

To detect potential connectivity problems, we focus on the latter category
OnlyOut. Note that we rely on the assumption that our measured flow data is
complete, i.e., for any outgoing flow the associated incoming flow is observed by
our collection infrastructure provided that there has been a response in reality.
Evidently, network operators only want to get informed about critical events
that include loss of connectivity towards complete networks or towards popular
hosts that a significant share of internal hosts tries to reach. Our approach to
achieve this goal is twofold.

First, we heavily rely on data aggregation to investigate connectivity towards
complete networks. More precisely, we aggregate occurrences of OnlyOut flow
types across external hosts, /24 networks, or prefixes as observed in public BGP
routing tables. For example, only if we observe within a certain time period a
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considerable number of OnlyOut flow types towards different hosts of a specific
external network, and no InOut types, we conclude that the complete external
network is currently not reachable for internal hosts. Hence, our decision is not
based on observed connectivity between a single pair of internal and external
hosts.

Second, we take into account the number of internal hosts that are affected by
connectivity problems towards a host, network, or BGP prefix, i.e., the severity
of an observed event. For example, loss of connectivity towards an individual
external host is interesting for a network operator if a large number of different
internal hosts fail to reach such a popular service. Moreover, knowing the number
of affected internal hosts is crucial to extract short summaries of candidate events
which network operators can check manually in reasonable time.

3 Data Sets

We investigate our approach based on data collected in the SWITCH net-
work [11], a medium-sized ISP in Switzerland connecting approximately 30 Swiss
universities, government institutions, and research labs to the Internet. The IP
address range contains about 2.2 million internal IP addresses. For our stud-
ies we have collected a trace in September 2010 (OneWeek) that spans 7 days
and contains unsampled NetFlows summarizing all traffic crossing the 6 border
routers of the SWITCH network. This results in 14 − 40k NetFlow records per
second. In addition to OneWeek we extract some shorter traces to study selected
connectivity problems from the past, see Section 5.

4 Connectivity Analysis

The implementation of FACT includes four major components, see Fig. 2. Af-
ter data collection, a preprocessing step removes some flows from the data
stream, e.g., blacklisted hosts or information that is not needed to achieve our
goals. For a limited time we keep the remaining flows in the 5-tuple cache,
which is continuously updated with the latest flow information. In the follow-
ing we will provide more details about the implementation of the individual
components.

Fig. 2. Architectural components of FACT
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4.1 Data Collection and Preprocessing

In addition to standard flow information including IP addresses, port numbers,
protocol number, packet counts, byte counts, etc., we store identifiers for the
border routers and interfaces over which traffic with external networks is ex-
changed. Next, we exclude a considerable number of unnecessary flows to save
memory and computational resources, but also eliminate flows that have turned
out to be harmful for the detection of connectivity problems. Such flows include
for example traffic from/to PlanetLab hosts or bogon IP addresses, and multi-
cast. For now, we generate an appropriate blacklist manually, but we plan to
automate this process in the future. For reasons already described in the pre-
ceding section, we remove in this step also all flows of the class Traversing and
Internal, see Fig. 1.

4.2 5-Tuple Cache

The subsequent data processing respects the fact that the active timeout of our
flow collection infrastructure is set to 5 minutes.1 Therefore, we partition the
timeline into intervals of 5 minutes and proceed with our data processing when-
ever such a time interval has expired. Our goal is to maintain for each interval
a hash-like data structure (5-tuple cache) that, for observed flows identified by
IP addresses, protocol number, and application ports, stores and updates infor-
mation that is relevant for further analysis. This includes packet counts, byte
counts, information about the used border router and the time when the flows
were active for the in and out flow. Note that at this point we implicitly merge
unidirectional to bidirectional flows (biflows).

After the time interval has expired we extract from the obtained biflows and
remaining unidirectional flows two sets: The set ConnSuccess includes those bi-
flows of type InOut where at least one of the underlying unidirectional flows
starts or ends within the currently studied time interval and are initiated by
internal hosts2. The second set, called ConnFailed, includes only those unidi-
rectional flows of type OnlyOut where the outgoing flow either starts or ends
in the currently studied time interval. To reduce the effect of delayed packets
(e.g., TCP resets), we here ignore unidirectional flows if a corresponding reverse
flow has been observed during any of the preceding time intervals.3 All other
flows of the 5-tuple cache that are not in the set ConnSuccess or ConnFailed
are excluded from further consideration for this time interval.

While ConnSuccess flows indicate that an internal host in our network can
indeed reach the external host, we take occurrences of ConnFailed as a hint
for potential connectivity problems with the remote host. However, the latter
assumption does not necessarily hold when applications (e.g., NTP or multicast)
1 After 5 minutes even still active flows are exported to our central flow repository.
2 We rely on port numbers to determine who initiates a biflow.
3 Our hash-like data structure is not deleted after a time period of 5 minutes but

continuously updated. Only if a biflow is inactive for more than 900 seconds, it is
removed from our hash-like data structure.
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Fig. 3. External hosts, networks, and prefixes

are inherently unidirectional. Hence, we exclusively take into account HTTP
traffic using port 80, which is symmetric by nature and due to its popularity
visible in any type of network.4 More marginal fine-tuning of our data processing
is required. Yet, given space limitations we refrain from providing more details.

4.3 Analyzer

To study observed connectivity with remote hosts and to detect potential prob-
lems, the analyzer component processes the sets ConnSuccess and ConnFailed
every 5 minutes. We aggregate ConnFailed and ConnSuccess flows for the
same pair of internal and external host if we find more than one flow, pos-
sibly with different port numbers. The obtained host-host tuples are classi-
fied as HostHostSuccess if at least one ConnSuccess flow has been identi-
fied, HostHostFailed otherwise. Based on this initial aggregation step, we in-
dependently compute three stronger aggregation levels: we group host-host tu-
ples into one tuple if they affect the same external host (ExtHostSuccess or
ExtHostFailed), the same external /24 network (ExtNetSuccess or ExtNet-
Failed), and BGP prefixes (ExtPrefixSuccess or ExtPrefixFailed). With
respect to the last granularity, we use publicly available BGP routing tables
to determine the corresponding BGP prefix for a given external host. Again,
we classify an aggregate class as Success if at least one tuple is marked as
HostHostSuccess.

Fig. 3 displays the number of visible and unresponsive external destinations
if the three aggregation granularities are applied to OneWeek, see Section 3. Ac-
cording to Fig. 3(a) the absolute number of visible external destinations shows a
strong daily and weekly pattern irrespective of the used aggregation level. Aggre-
gating from host-host into ExtHostFailed and ExtHostSuccess, respectively,
reduces the peaks from 525K to 90K tuples (/24s: 50K, prefixes: 25K). This pro-
vides evidence for the high visibility that our data has on external networks. How-
ever, Fig. 3(b) reveals that generally only a small fraction of external hosts (peaks
of 700) are unresponsive and therefore classified as ExtHostFailed according to

4 Experiments relying on DNS traffic turned out to work as well.
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our methodology. This fraction is significantly smaller for ExtNetFailed (peaks
of 600) and ExtPrefixFailed (peaks of 180), respectively.

However, to cope with daily and weekly fluctuations and to limit the degree to
which a single internal host (e.g., a scanning host) can impact our connectivity
analysis, we need to take into account the severity of an observed event as well.
By this we understand the number of internal users that actually fail to establish
connectivity with a specific external host, /24 network, or BGP prefix during
our 5 minute time intervals. Figure 4(a) displays the number of external /24
networks that are unresponsive to 1, 2, 5, and 10 internal hosts for the time
spanned by OneWeek. The majority of these ExtHostFailed “events”, namely
98%, only affect 1 internal host.

Yet, here it is important to study Fig. 4(b). It is also based on OneWeek and
counts for every external host the number of 5-minute time intervals for which it
has been classified as ExtHostFailed. This number (x-axis) is plotted against the
maximum number of internal hosts (y-axis) that failed to establish connectivity
with this external host (ExtHostFailed) at any 5-minute interval of OneWeek. We
find that the majority of external hosts (96%) are only unresponsive in less than
10 time intervals of our trace. However, some hosts are unresponsive most of the
time, e.g., abandoned ad servers. Data preprocessing as described in Section 4.1
could be refined to automatically blacklist such hosts and possibly their networks.
Finally, we observe few external hosts that are unresponsive only during a small
number of time intervals, but with a high maximum number of affected internal
hosts. Cross-checking with technical forums in the Internet, we find that these
events include for example a Facebook outage on August 31, 2010.

We point out that the data processing in FACT is faster than real time for
SWITCH, a medium-sized ISP covering an estimated 6% of the Internet traffic
in Switzerland and approximately 2.2 million IP addresses: flow data spanning
5 minutes5 can be processed using a single thread in less than three minutes
with a maximum memory consumption of less than 4GB. Aging mechanisms
for our data structures3 ensure that the overall memory consumption does not
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5 We see up to 200 million flows per hour.
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increase during long-term use of our system. Due to hash-like data structures
we can access individual flows in our 5-tuple cache in constant time. The total
time required for data processing mainly depends on the number of active flows.
In principle, it is even possible to parallelize our processing by distributing the
reachability analysis for different external networks to different CPU cores or
physical machines. Yet, we leave it to future work to study FACT’s performance
for large tier-1 ISPs and how to make it robust against potentially higher false
positive rates if sampled flow data is used.

5 Case Studies

In this section we present a short analysis of three connectivity problems that
were either detected by the network operator or publicly documented. To analyze
those cases, we rely on data collected as discussed in Section 3.

Black-holing: On May 18, 2010, all services in an external /24 network were
not accessible from SWITCH between 08:30 and 08:45. According to the oper-
ators of SWITCH, this problem was most likely due to a tier-1 provider that
black-holed parts of the reverse traffic towards SWITCH. Yet, at this time the
operators could only speculate how many hosts and customers, or even other
/24 networks were affected by this problem. Applying FACT we confirm that
the reported /24 network is indeed reported as unreachable at around 08:30.
Surprisingly, FACT reveals that the overall number of unreachable hosts and
/24 networks has doubled compared to the time before 08:30 while the number
of unresponsive BGP prefixes is increased by a factor of even 6, see Fig. 5(a).
Moreover, the reported /24 network is not even in the top ten list of the most
popular unresponsive networks. This suggests that the impact of this event has
been more serious than previously believed.

RIPE/Duke event: On August 27, 2010, some parts of the Internet became
disconnected for some 30 minutes due to an experiment with new BGP attributes
by RIPE and Duke University [12]. FACT reveals that at around 08:45 the
number of popular unresponsive /24 networks indeed doubled. According to
Fig. 5(b), for some BGP prefixes more than 15 internal hosts failed to establish
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connectivity. Yet, overall our analysis reveals that the impact of this incident on
SWITCH and its customers was quite limited compared to the public attention
that this event obtained.

Partitioned IXP: After scheduled maintenance by AMS-IX, SWITCH’s con-
nection to that exchange point came back with only partial connectivity. Some
next-hops learned via the route servers weren’t reachable, creating black holes.
The next morning, several customers complained about external services being
unreachable. Overall, it took more than four hours until the problem was finally
solved by resetting a port. Fig. 5(c) shows that the number of unresponsive BGP
prefixes is almost ten times higher than normal, over a time period of more than
four hours. We believe that FACT would have helped to detect such a serious
problem much faster and provided valuable hints about the origin of the problem.

6 Related Work

Approaches for detecting and troubleshooting reachability problems can be gen-
erally classified into two classes: active probing and control plane based.

With respect to active probing, Paxson et al. [9] are probably the pioneers
to use traceroute for studying end-to-end connectivity between a (limited) set
of Internet sites. Zhang et al. [2] perform collaborative probing launched from
Planetlab hosts to diagnose routing event failures. Commercial solutions such
as NetQoS [7] or Peakflow [6] generally rely on active measurements using ping,
traceroutes, or continuous SNMP queries to network devices. Moreover, they
frequently aggregate traffic volumes per interface, peering links, etc. to detect
abnormal events, and hence do not base their analysis on a flow-level granular-
ity as our work suggests. In contrast to active probing, the passive monitoring
approach of FACT does not impose any traffic overhead and, importantly, only
creates alerts for those unreachable hosts/networks that users actually want to
access. Finally, FACT avoids an intrinsic problem of active probing techniques
such as ping or traceroute, namely the implicit assumption that reachable hosts
actually do respond to such tools.

In addition to active probing, a considerable number of research papers,
e.g., [8,13] rely almost exclusively on control-plane information in the form of
BGP routing feeds. However, Bush et al. [10] have clearly pointed out the dan-
gers of such an approach, e.g., the wide-spread existence of default routes. In
contrast, FACT is able to detect unreachability at multiple and finer granular-
ities (e.g., on a host basis) than any approach that is purely based on routing
data.

Later work including e.g., Hubble [3] and iPlane [4] rely on hybrid approaches
combining active measurements with BGP routing information. Feamster et
al. [14] adopt such an approach to measure the effects of Internet path faults on
reactive routing. Overall, we believe that the passive approach adopted by FACT
is very powerful compared to active probing and control-plane based techniques.
Yet, we plan to integrate active probing into our system to crosscheck detected
reachability problems and to pinpoint the underlying causes.
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7 Conclusion

We have proposed FACT, an online data processing system that helps operators
to acquire facts about connectivity problems with remote autonomous systems,
subnets, and hosts. In contrast to existing solutions, our approach relies solely on
flow-level information extracted from traffic crossing the border of the network.
We showed, with the help of reported real-world events, that FACT can be used
to alert only about those events that actually affect the studied network or its
users. Importantly, data processing of FACT is already faster than real time for
a medium-sized ISP.

In the future we plan to refine and integrate our techniques into existing trac-
ing tools (e.g., nfdump), to generate alerts based on automatically determined
thresholds, and to provide summary reports that allow network operators to
quickly troubleshoot connectivity problems. Ultimately, we plan to make our
implementation of FACT available for public use.
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Abstract. Submarine cable faults are not uncommon events in the In-
ternet today. However, their impacts on end-to-end path quality have
received almost no attention. In this paper, we report path-quality mea-
surement results for a recent SEA-ME-WE 4 cable fault in 2010. Our
measurement methodology captures the path-quality degradation due to
the cable fault, in terms of delay, asymmetric packet losses, and correla-
tion between loss and delay. We further leverage traceroute data to infer
the root causes of the performance degradation.

1 Introduction

Submarine cables are critical elements of the Internet today, because they provide
cross-country routes for transoceanic data and voice transmissions. The demand
for high-capacity submarine cables has been increasing for the last few years. For
instance, the recently deployed Trans-Pacific Unity submarine cable system can
transmit data between Japan and the west coast of the United States up to 4.8
Terabits per second (Tbits/s). Dramatic capacity upgrades to the existing Asia-
Europe cable systems and the emergence of five new submarine cable systems
connecting the Middle East were also reported [11].

Data loss and substantial service interruption as a result of submarine cable
faults conceivably entail huge economic cost. Although submarine cable systems
are protected by various reliability technologies (e.g., [15,16]), they still appear
to be highly vulnerable according to numerous submarine cable faults reported
in recent years (e.g., [1,2,3]). The worst one is the incident of massive cable cuts
due to the Hengchun earthquake in 2006 [1]. Moreover, a submarine cable fault
requires considerable time for tracing the fault location and repairing.

Besides the traffic on the faulty submarine cable, the Internet traffic that
is not carried by the faulty cables can also be affected. A common quick-fix
strategy for restoring the disrupted communication is to reroute the affected
traffic to other submarine/terrestrial/satellite links. However, the side effect of
such ad hoc traffic rerouting mechanism is introducing a high volume of traffic,
and therefore substantial congestion, to the backup paths. However, the impact
of submarine cable faults on the global Internet connectivity has not received
attention from the research community. Therefore, very little is known about
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the Internet’s vulnerability to the faults in terms of path-quality degradation,
congestion on the backup paths, and speed of network recovery.

In this paper, we report the impacts of a recent SEA-ME-WE 4 cable fault
incident [2] measured from our neighbor-cooperative measurement system [14].
In this system, a number of coordinated measurement nodes persistently monitor
the performance of network paths to a set of web servers. The impacts of the cable
fault are observed from the degradation in the path quality. To infer the root
cause of the degradation, we leverage the forward-path Tcptraceroute gleaned
from the measurement nodes to study the IP-level/AS-level route changes. Based
on this dataset, we analyze how submarine cable faults affected the routes used
by the network paths and the performance of these paths. We also evaluate the
effectiveness of network operators’ responses to the incident.

The paper is organized as follows. We first introduce our measurement
methodology in §2. We then present our measurement findings on the impacts
of the SEA-ME-WE 4 cable fault in §3. After discussing the related works in §4,
we conclude the paper with future works in §5.

2 Measurement Methodology

2.1 Measurement Setup

We have been conducting end-to-end Internet path measurement from eight
Hong Kong universities, labeled by UA–UH, since 1 January 2009. A mea-
surement node is installed just behind the border router of each university to
measure network paths to 44 non-cooperative web servers (without requiring
software setup on the servers) in Hong Kong, Australia, China, Finland, France,
Germany, Japan, Korea, New Zealand, Taiwan, the United Kingdom, and the
United States. We use HTTP/OneProbe [17] for data-path quality measurement
and Tcptraceroute for forward-path tracing. Our measurement produces 12-GB
measurement data daily.

2.2 Measurement Scheduling and Traffic

To obtain comparable results, all the eight measurement nodes measure the
same web server around the same time. We employ several measures to avoid
congestion introduced by the measurement traffic. In particular, we divide the set
of web servers into five groups and measure the groups in a round-robin fashion.
The nodes launch HTTP/OneProbe to measure each group for one minute and
then perform Tcptraceroute with the default configuration to the same group
for another minute. For each path, HTTP/OneProbe dispatches a sequence of
Poisson-modulated probe pairs to each web server with a probing frequency of
2 Hz and an IP packet size of 576 bytes, and each probe pair elicits at most
two 576-byte response packets from the server. Therefore, the aggregated probe
traffic sent to each server is less than 200 Kbits/s. Moreover, we use separate
network interfaces for conducting the measurement and receiving the data.
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2.3 Metrics

Routing metrics. To evaluate the routing behavior as a consequence of subma-
rine cable faults, we continuously measure both IP routes and the corresponding
AS routes (by resolving IP hops into AS numbers) from the measurement nodes
to the web servers. To quantify the IP-level route changes, we resort to the IP-
level Jaccard distance defined in Eqn. (1) to measure the difference of a route
measured at times i − 1 and i, which are denoted by Ri−1 and Ri. The Jaccard
distance is computed by the number of dissimilar elements divided by the total
number of distinct elements in Ri−1 and Ri. Therefore, the IP-level Jaccard dis-
tance is zero for two identical IP routes, and one for two completely different IP
routes. We similarly compute an AS-level Jaccard distance for AS routes based
on Eqn. (1) to analyze the AS-level route changes.

Jδ(Ri−1, Ri) = 1 − |Ri−1 ∩ Ri|
|Ri−1 ∪ Ri| . (1)

Using Jaccard distance to characterize route changes is not new. Pathak et
al. [18], for example, studied the AS routing asymmetry by computing the Jac-
card similarity index between forward-path and reverse-path AS routes. Schwartz
et al. [19] used the Levenshtein distance to quantify the difference between the
dominant route and other non-dominant routes for a pair of source and destina-
tion. Since reordering of elements in the IP/AS routes after route changes is rare
in our dataset, we simply use Jaccard distance which does not take into account
the order of elements in each route, whereas the Levenshtein distance does.

Path performance metrics. We employ HTTP/OneProbe to measure TCP
data-path performance for each path between measurement node and web server.
HTTP/OneProbe uses legitimate TCP data probe and response packets to mea-
sure RTTs and detect one-way (i.e., forward-path and reverse-path) packet
losses. To evaluate the paths’ congestion status, we also apply the loss-pair anal-
ysis [13] to correlate the one-way packet losses with the RTTs. Moreover, we
correlate the route change metrics with the path performance metrics to analyze
path-quality degradation due to submarine cable faults.

3 The SEA-ME-WE 4 Cable Fault

The South East Asia-Middle East-Western Europe 4 (SEA-ME-WE 4) subma-
rine cable [8] is a major Internet backbone connecting Southeast Asia, the Indian
subcontinent, the Middle East, and Europe. It involves 17 landing points and car-
ries Internet traffic among 15 countries, including Egypt, France, India, Saudi
Arabia, and Singapore. The SEA-ME-WE 4 cable has a data rate up to 1.28
Tbits/s [4] and is owned by a consortium of 16 companies, including the Tata
Communications (or TATA).

The SEA-ME-WE 4 cable encountered a shunt fault on the segment between
Alexandria and Marseille on 14 April 2010 [2,9], but the exact time was not
reported. The shunt fault was caused by a short circuit when the submarine
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cable, whose insulation was damaged, came into contact with the sea water.
Since the cable was not severed, it was still operable with limited capacity. The
cable fault affected a number of countries whose global connectivity relied on
the SEA-ME-WE 4 cable (e.g., [2,12]). The repair was started on 25 April 2010,
and it took four days to complete [2]. During the repair, the service for the
westbound traffic to Europe was not available.

3.1 Impacts of the Cable Fault

Fig. 1 shows the time series of the average IP-level and AS-level Jaccard distances
for the paths from UA–UH to two web servers (BBC and ENG3) in the United
Kingdom and one web server (NOKIA) in Finland between 1 April 2010 0:00
and 8 May 2010 0:00 GMT, inclusively. As Fig. 1(a) shows, the IP-level Jaccard
distance for the paths overlapped with one another at the beginning and then
gradually declined starting from 14 April that coincides with the date of the cable
fault incident. The BBC’s Jaccard distance dropped to zero with intermittent
surges after 16 April 7:30 GMT, whereas the ENG3’s and NOKIA’s distances
fluctuated between 0.05 and 0.22, and experienced another drop on 5 May noon
GMT. Moreover, Fig. 1(b) shows some significant AS-level route changes.

To probe deeper into how the paths to BBC, ENG3, and NOKIA evolved after
the cable fault, we zoom into an episode e1 which spans between 13 April 0:00
and 17 April 8:00 GMT in Fig. 1(a). Fig. 2(a) shows that their average IP-level
Jaccard distances during e1 exhibit staircase decreasing patterns, meaning that
the paths became more similar after the cable fault. We can also distinguish at
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Fig. 1. Time series of the average IP-level and AS-level Jaccard distances for the paths
to BBC, ENG3, and NOKIA.
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(a) Time series for the average IP-level Jaccard distance during e1.

(b) RTT time series for the path between UB and BBC during e1.

Fig. 2. Time series of the average IP-level Jaccard distance for the paths to NOKIA,
ENG3, and BBC, and time series of RTT for UB�BBC during e1.

most four distinct phases labeled with (a)–(d) for the NOKIA, ENG3, and BBC
paths which have two, three, and four phases, respectively.

A traceroute analysis reveals the subpaths corresponding to the four phases
shown in Fig. 3. To generate the figures, we resolved the IP hops’ locations based
on their DNS names and grouped all the hops with the same location together.
The node labeled with “Unresolved” is located in Hong Kong, and we could not
resolve its DNS name. Phases (a)-(c) apply to all three web servers, and all the
routes went through the London IX (LINX) via the FLAG network (AS15412).
On the other hand, phases (d)-(e) apply only to the BBC paths, and TATA was
the carrier. We will discuss phase (e) in the next section.

Phases (a) and (b). Fig. 3(a) shows three subpaths inside the FLAG network
in phase (a). Upon the onset of phase (b) on 14 April 7:00 GMT (the same day
of the reported cable fault), the IP-level Jaccard distance started declining, a
result of the missing subpath via Mumbai as shown in Fig. 3(b). We also plot
the RTT time series in Fig. 2(b) for the path between UB and BBC (denoted
as UB�BBC). The figure includes the RTTs obtained from P01s and R01s
which are the respective loss pairs on UB → BBC (forward path) and BBC →
UB (reverse path). A P01 (R01) is a packet pair in which only the first probe
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Fig. 3. Five sets of subpaths observed from the NOKIA, ENG3, and BBC paths

(response) packet is received by the destination, and the first packet’s RTT can
be used to infer a congested router’s queueing delay upon packet loss on the
forward (reverse) path [13]. Moreover, P11s (R11s) on the x-axis in Fig. 2(b)
show the RTTs when both packets in a probe (response) pair are lost. We align
the x-axes in Figs. 2(a) and 2(b) to facilitate a clear comparison.

Fig. 2(b) shows that UB�BBC suffered from significant congestion in phase
(b). We also observe similar results for the other BBC paths and the NOKIA
and ENG3 paths which are not shown in this paper. Comparing with phase (a),
phase (b) exhibits both RTT inflation and more loss pairs with the measured
path queueing delay [13] between 34 ms and 228 ms. In many cases, both packets
in a probe pair or a response pair were lost. The figure also shows a prolonged
congestion period in the forward path, indicated by persistent probe packet
losses. However, the path performance improved in the second half of the phase
which corresponds to the non-working hours in the United Kingdom.

Phases (c) and (d). Fig. 2(a) shows a further reduction of the IP-level Jaccard
distance for the ENG3 and BBC paths on 15 April 5:40 GMT (i.e., the onset of
phase (c)), because only the subpath via Alexandria and London was retained in
FLAG (as shown in Fig. 3(c)). Moreover, Fig. 2(b) shows more prolonged RTT
inflation and packet losses during phase (c), which was probably caused by the
reduced alternate routes.

On 16 April 7:30 GMT, the beginning of phase (d), the service provider for
UA–UH changed the upstream from FLAG to TATA (AS6453) only for the BBC
paths. As a result, the IP-level Jaccard distance shown in Fig. 2(a) dropped to
almost zero. We also observe a spike from the AS-level Jaccard distance for the
BBC paths at the similar time in Fig. 1(b). Notice that this change significantly
improved the performance for the BBC paths. In particular, Fig. 2(b) shows that
UB�BBC enjoyed relatively stable RTTs and insignificant packet losses (and
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similarly for the other BBC paths), whereas the NOKIA and ENG3 paths still
suffered from severe congestion in this phase.

Discussion. Fig. 4 shows all the submarine cables available to FLAG and TATA
for connecting the IP hops’ locations in Figs. 3(a)–3(d). We generate the figures
by inspecting the cables and landing points in the cable maps of FLAG [6] and
TATA [5]. Fig. 4(b) shows that TATA uses only the SEA-ME-WE 4 cable to
reach Singapore, Chennai, and Mumbai, but these segments were not affected
by the shunt fault occurred in the Mediterranean segment [9]. Moreover, TATA
uses different cables between Mumbai and London. On the other hand, Fig. 4(a)
shows that FLAG does not use the SEA-ME-WE 4 cable for forwarding traffic
from Hong Kong to the three web servers.

Based on Fig. 4, a plausible explanation for the congestion in the FLAG net-
work in phase (b) is taking on rerouted traffic from the SEA-ME-WE 4 cable after
the cable fault. Both FEA and SEA-ME-WE 4 (and SEA-ME-WE 3) are the
major submarine cables connecting between Europe and Asia. Fig. 4(b) shows
that TATA could use FEA to reach BBC when the SEA-ME-WE 4 segment
in the Mediterranean region was not available. Therefore, the congestion was
introduced as a secondary effect of the cable fault. On the other hand, the path
quality for the BBC paths improved after switching to TATA in phase (d). Unlike
FLAG, TATA has access to three submarine cables between Suez and Alexan-
dria. There are also two cables between Alexandria and London. Moreover, the
reduced path diversity from phase (a) to phase (c) could also be responsible for
the congestion in the FLAG network, although the reason for the reduction is
unknown to us.

FEA FALCON, FEA FEA FEA

Hong Kong Mumbai Suez Alexandria London NOKIA/
ENG3/
BBC

(a) FLAG (in phases (a)–(c)).

APCN,
APCN-2, C2C, 
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SEA-ME-WE 4 SEA-ME-WE 4

Hong Kong Singapore Chennai Mumbai Palermo
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Port Said SEA-ME-WE 4 (shunt fault)SEA-ME-WE 4
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I-ME-WE, 

SEA-ME-WE 3

BBC

(b) TATA (in phase (d)).

Fig. 4. The submarine cables available to FLAG and TATA for connecting the IP hops’
locations in Figs. 3(a)–3(d)

3.2 Impacts of the Cable Repair

In this section, we analyze the impact of the four-day (25–28 April 2010) repair
of the SEA-ME-WE 4 cable on the routing behavior and path performance.
Figs. 5(a) and 5(b) show the respective time series of the average IP-level Jaccard
distance (at the top of each figure) for the ENG3 and BBC paths and the RTTs
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for UB�ENG3 and UB�BBC between 23–30 April which is labeled as the
second episode (e2) in Fig. 1(a). We do not include the time series for the NOKIA
paths, because they are similar to ENG3’s. Moreover, the path performance for
the other measuring nodes to ENG3 (BBC) also resembles the performance given
in Fig. 5(a) (5(b)). To correlate the forward-path routing behavior with the path
performance, each figure only shows the loss pairs and both-packet-loss events
(i.e., P01 and P11) observed from the forward paths. Note that the ENG3 paths
remained in phase (c) during the entire period, whereas the BBC paths switched
from phase (d) to phase (e), which involves a significant route change, and then
back to phase (d).

23−Apr−2010 0:00GMT 24−Apr−2010 25−Apr−2010 26−Apr−2010 27−Apr−2010 28−Apr−2010 29−Apr−2010 30−Apr−2010
0

0.1

0.2

0.3

0.4

0.5

0.6

R
T

T
 (

se
co

nd
s)

 

 
Max
99%
95%
50%
Min
P01
P11

0

0.2

0.4

 

 

Average IP−level Jaccard distance

(c)

Cable repair

(a) ENG3.

23−Apr−2010 0:00GMT 24−Apr−2010 25−Apr−2010 26−Apr−2010 27−Apr−2010 28−Apr−2010 29−Apr−2010 30−Apr−2010
0

0.1

0.2

0.3

0.4

0.5

0.6

R
T

T
 (

se
co

nd
s)

 

 
Max
99%
95%
50%
Min
P01
P11

0

0.2

0.4

 

 

Average IP−level Jaccard distance

(d) (e) (d)

Cable repair

(b) BBC.

Fig. 5. Time series of the average IP-level Jaccard distance for the paths to ENG3 and
BBC, and the time series of RTT for UB�ENG3 and UB�BBC during e2.

Fig. 5(a) shows that the ENG3 (and also NOKIA) paths suffered from diurnal
congestion in e2. Traceroutes show that the NOKIA and ENG3 paths still went
through the FLAG subpaths shown in Fig. 3(b) and 3(c), respectively, for the
entire episode. As a result, both the RTT and Jaccard distance time series exhibit
similar patterns as in phases (b)–(c) of Fig. 2. The paths also encountered more
severe congestion since 25 April when the SEA-ME-WE 4 cable’s repair process
began. It is thus likely that the FLAG subpaths were further utilized by other
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affected parties as alternate routes during the repair process. However, FLAG’s
network operators did not seem to respond to the degraded path performance
until they switched to eastbound routes on 5 May noon GMT (which is shown
in Fig. 1(a)), and the path performance was subsequently improved.

Fig. 5(b), on the other hand, shows that the BBC paths were quite good
during e2 except for sporadic packet losses and routing instability. In particu-
lar, at the beginning of the episode, the paths still went through TATA which
routed the BBC traffic via the subpath given in Fig. 3(d). Probably due to the
interruption caused by the repair work [2], TATA rerouted the traffic to another
set of subpaths with longer RTTs on 25 April 13:30 GMT, and we refer to this
period as phase (e). We can also see a positive correlation between fluctuation in
the IP-level Jaccard distance and significant forward-path packet losses during
phase (e). TATA finally restored the subpath in Fig. 3(d) on 29 April 6:00 GMT
(which is close to the completion time of the repair), and therefore the path
performance returned to the level observed from the beginning of the episode.

4 Related Work

RIPE NCC [10] reported a longitudinal study of cable cuts in the Mediterranean
in 2008 based on its routing information (RIS), test traffic measurements (TTM),
and DNS monitoring (DNSMON) services. The study showed that the affected
networks involved frequent rerouting in BGP, significant network congestion, and
increased latencies. In our study, we mainly use end-to-end path measurement
and IP traceroute to study the impacts on the paths under our monitoring.
Based on a set of measuring points, we are able to infer that the path congestion
was due to the secondary effect of the cable fault, which has not been reported
in previous studies.

Renesys [7] also reported a few studies on the impacts of submarine cable
faults based on BGP routes and RTTs (measured by traceroute) obtained from
its data collection infrastructure. Comparing with their analysis on the same
SEA-ME-WE 4 cable fault [12], our methodology uses TCP data packets to
measure the data-path performance, instead of ICMP packets that can be pro-
cessed by different paths in the routers and thus produce biased measurement.
Therefore, our measurement observed quite stable RTTs for the paths via the
TATA network, whereas Renesys observed significant RTT fluctuation from the
TATA network in the similar time period. Besides, our analysis also obtains
useful packet loss information that was not considered in their analysis.

5 Conclusion and Future Work

In this paper, we employed non-cooperative path measurement to study the
impacts of a recent submarine cable fault on the Internet connectivity and end-
to-end path performance. With only eight measurement nodes, we showed that
the non-cooperative methods (HTTP/OneProbe and traceroute) could facilitate
an in-depth impact analysis of a cable fault occurred thousands miles away. In
particular, our analysis revealed that a cable fault could significantly impact on
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Internet traffic on other non-faulty paths. Moreover, network operators did not
always take immediate action to resolve the performance degradation problem
as a result of the cable fault.

As an ongoing work, we will report our impact analysis of other submarine
cable faults, such as a SEACOM cable fault in Africa in July 2010. We will also
devise new algorithms based on non-cooperative path measurement to promptly
identify and respond to path-quality degradation as a result of cable faults.
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Ítalo Cunha1,2, Renata Teixeira2,3, and Christophe Diot1

1 Technicolor
2 UPMC Sorbonne Universités

3 CNRS

Abstract. Since Paxson’s study over ten years ago, the Internet has changed
considerably. In particular, routers often perform load balancing. Disambiguat-
ing routing changes from load balancing using traceroute-like probing requires a
large number of probes. Our first contribution is FastMapping, a probing method
that exploits load balancing characteristics to reduce the number of probes needed
to measure accurate route dynamics. Our second contribution is to reappraise
Paxson’s results using datasets with high-frequency route measurements and
complete load balancing information. Our analysis shows that, after removing
dynamics due to load balancing, Paxson’s observations on route prevalence and
persistence still hold.

1 Introduction

Our current understanding of end-to-end Internet route dynamics comes mainly from
the seminal work of Paxson [11] more than ten years ago. Paxson used traceroute mea-
surements to study routing anomalies, route persistence, and route prevalence in the
Internet. Since then, there have been only partial updates to his results [4, 15, 12], even
though the Internet has changed significantly and new traffic engineering practices, such
as load balancing, multihoming, and tunneling, are now commonplace.

This paper studies the effect of load balancing on the accuracy of measuring route dy-
namics. While Paxson identified just few examples of routes that oscillated because of
load balancing (which he called route fluttering), Augustin et. al. [1] have recently ob-
served that approximately 40% of the source-destination pairs measured in their study
were subject to route fluttering because of load balancing.

Load balancing increases the complexity of measuring route dynamics. It introduces
route changes that are not due to routing events, but could be misinterpreted as such.
Moreover, detecting load balancing requires additional probes [14], which in turn re-
duces the frequency at which one can measure routes. Current techniques that reduce
probing cost and increase the frequency of traceroute measurements [3, 6] are oblivi-
ous to load balancing. Sec. 3 quantifies the effect of load balancing on route dynamics
using datasets collected with these two extreme approaches: complete load balancing
information (at the cost of high probing overhead) and high frequency probing (at the
cost misinterpreting load balancing). We show that ignoring load balancers leads to one
order of magnitude more observed route changes.

Given the popularity and impact of load balancing, we then analyze the dynamics
of routers that perform load balancing (which we name “load balancers”). Our results

N. Spring and G. Riley (Eds.): PAM 2011, LNCS 6579, pp. 235–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Multiroutes to d1 and d2 at time t1 traversing a load balancer at i1

show that only 4% of load balancers need to be remapped more frequently than once
a day (Sec. 4). We exploit this property to design a new probing strategy that we call
FastMapping. FastMapping combines frequent light-weight route probing with daily
remapping of load balancers. As a result, it increases the route-probing frequency by a
factor of five while maintaining accurate load balancing information.

Last, we confirm Paxson’s observations on route prevalence and persistence (Sec. 5).
When removing the effects of load balancing, we observe that the properties of Internet
routes have not changed in a decade. In summary, many source-destination pairs rarely
change routes; most of them have a prevalent route that stays active at least 60% of the
time, and suffer from short-lived instability periods 4% of the time.

2 Definitions

This section introduces the notation and explains how we compute route changes.

Routes and virtual paths. We borrow Paxson’s terminology [11] and use the term
virtual path to refer to the connectivity between a monitor and a destination, d, (i.e., the
existence of a route between the monitor and d). At any point in time, a virtual path is
realized by a route, which is the sequence of interfaces from the monitor to d discovered
by traceroute. A virtual path changes from one route to another over time as the result
of routing changes.

Classic traceroute assumes a single route between a source and a destination. How-
ever, load balancing is now common practice [1]. In Fig. 1, the router at i1 forwards
packets to d1 and d2 via interfaces i2 or i3 to perform load balancing. A traceroute to
d1 or d2 may infer the route through i2 and a later traceroute may infer the route through
i3, even though there was no routing change between the two measurements. Routers
perform load balancing per packet, per flow or per destination. Per-destination load bal-
ancing sends all packets to a given destination on the same route, so only per-packet or
per-flow load balancing lead to multiple routes between two end-hosts. We define a load
balancer’s divergence interface as the interface immediately before the multi-interface
hops (i1), and the convergence interface as immediately after (i4).

Instead of assuming a virtual path is realized by a single route at a time, we define a
multiroute R(d, t) as the set of all possible routes between the monitor and destination
d at time t. We can measure multiple routes between a source and a destination using
Paris traceroute’s Multipath Detection Algorithm (MDA) [14]. We refer to the set of
interfaces in the hth hop of a multiroute by R(d, t)[h], e.g., R(d1, t1)[2] = {i2, i3}. In



Measuring and Characterizing End-to-End Route Dynamics 237

Fig. 1, the top ruler shows the hop count h. For simplicity, the rest of this paper uses the
term route to refer to all simultaneous routes between the monitor and a destination.

Route changes. Given two consecutive routes between a monitor and a destination
(say R(d, t1) and R(d, t2), respectively at time t1 and t2), a route change represents a
contiguous set of interfaces that differs between these two routes. If there are multiple
sets of contiguous interfaces that differ between two routes, we consider each as one
route change. We say that R(d, t1)[h] = R(d, t2)[h] if the sets of interfaces at hop h
are the same. We match unresponsive routers in our traces (i.e., traceroute “stars”) with
any interface. This conservative approach avoids detecting route changes due to lost
probes or routers that rate-limit traceroutes, but it may miss some route changes. We
remove all routes containing repeated interfaces from our analysis in later sections to
avoid bias due to measurement errors, as in previous studies [11, 15].

3 Route Dynamics: Fast vs. Complete Measurements

Techniques to measure route dynamics have two conflicting goals. First, the study of
fine-grained dynamics requires frequent measurements of a large set of virtual paths.
Second, accurate identification of route changes needs information about load balanc-
ing, which requires a large number of probes [14]. This section explores this tradeoff
using two state-of-the-art route tracing methods: Tracetree [6] and Paris traceroute’s
Multipath Detection Algorithm [14].

3.1 Measurement Method and Datasets

Fast tracing. Tracetree [6] reduces the overhead to probe all hops in a topology. It starts
probing from the set of destinations and decrements the probe TTL. When probes to dif-
ferent destinations discover the same interface, Tracetree keeps probing only one desti-
nation. Such backward probing strategy reduces redundant probes close to the monitor.

Complete tracing. Paris traceroute’s Multipath Detection Algorithm (MDA) [14] dis-
covers all routes between a source and a destination in the presence of load balancing
with high probability. Paris traceroute fixes the flow identifier of probes to ensure all
probes follow the same route under per-flow and per-destination load balancing. In ad-
dition, MDA varies the flow identifier systematically to enumerate all interfaces in load
balancers. However, mapping load balancers requires a large number of probes per hop
(at least six probes per hop, but up to hundreds depending on the number of interfaces).

Dataset. We use Tracetree and MDA to measure virtual paths from 23 PlanetLab hosts
during seven days starting August 9th, 2010. Monitors collect two topology maps dur-
ing each measurement round: one with Tracetree and another with MDA. Each mea-
surement round takes 28 minutes on average: the first 25 minutes are used by MDA and
the last three by Tracetree. We denote the traces collected with Tracetree as DT and
those collected with MDA as D1 and summarize them in Tab. 1.

We also have an earlier dataset collected with MDA and complete load balancer
information, denoted D2. The advantage of D2 is that it was collected from more
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Table 1. Description of datasets

Dataset Start Duration Monitors Frequency
ASes Large ASes Measurement

Covered Covered [10] Method
DT Aug. 9th, 2010 1 week 23 28 min. 5,043 95% Tracetree
D1 Aug. 9th, 2010 1 week 23 28 min. 5,266 95% Paris’ MDA
D2 Nov. 28th, 2009 13 weeks 122 38 min. 8,692 97% Paris’ MDA

monitors and for a longer period of time. We did not collect Tracetree measurements
while collecting D2, hence we compare MDA and Tracetree using D1. We use D2 to
study long-term route dynamics.

Except for the measurement method and the parameters in Tab. 1, we collect all our
datasets with the same configuration: each monitor selects 1,000 destinations at random
from a list of 34,820 randomly chosen reachable destinations, and we use ICMP probes
as routers are more likely to respond to ICMP than to TCP or UDP [8]. We complement
our datasets with IP-to-AS maps built from Team Cymru1 and UCLA’s IRL [10].

3.2 Analysis

We identify route changes between every pair of consecutive route measurements in
DT and D1 as described in Sec. 2. We remove 4.0% of routes from DT and 1.8% of
routes fromD1 that contain repeated interfaces. Fig. 2 shows the cumulative distribution
function of the fraction of virtual paths that change between each pair of consecutive
measurement rounds in DT and D1. The D1 curve shows that the topology is mostly
stable: less than 6% of the virtual paths change between 95% of consecutive measure-
ment rounds. Only rarely more than 20% of virtual paths change between maps, and all
these instances represent events that happened close to the source.

The difference between DT and D1 is striking. For DT , there are approximately 76%
of consecutive measurements for which more than 20% of virtual paths change. We at-
tribute this difference to the measurement technique itself. MDA detects load balancers
explicitly and none of the route changes for D1 in Fig. 2 are due to load balancing.
However, Tracetree is oblivious to load balancing and interprets load balancing as route
changes.

We use the load balancer information collected with MDA to filter out all route
changes in DT due to load balancing (“filtered DT ” line in Fig. 2). We see that load
balancers induce most of the dynamics in DT (82% of route changes). However, even
after filtering, DT still has more route changes than D1. This happens because Trace-
tree’s assumption that the Internet topology is a tree is not always satisfied. For example,
routes to multiple destinations may meet at an Internet exchange point (IXP) and still
traverse different ASes upstream and downstream this IXP. Whenever the assumption
is false, Tracetree infers inexistent links and incorrect routes. Other causes for the dif-
ference include mapping errors, i.e., when the MDA’s probabilistic characterization of
load balancers fails to identify all interfaces in a load-balanced hop [14]. Such errors
impact our ability to filter dynamics induced by load balancers from DT .

1 http://www.team-cymru.org/Services/ip-to-asn.html

http://www.team-cymru.org/Services/ip-to-asn.html
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4 Measuring Route Dynamics under Load Balancing

Our goal is to reduce the time to perform a measurement round and yet maintain ac-
curate information about load balancers, so that we can distinguish routing changes
from load balancer dynamics. We start with an analysis of load balancer dynamics that
motivates our probing method.

4.1 Analysis of Load Balancer Dynamics

To maintain an accurate database of load balancers, we need to detect and map load
balancers when they first appear in a dataset. After we map all interfaces between the
divergence and convergence points of a load balancer, we only need to remap it when it
experiences an internal change. We define an internal change as a change in the set of
interfaces between the divergence and convergence points of a load balancer. Internal
changes may represent failures of one of the load-balanced interfaces, load balancer
reconfigurations, or mapping errors. Mapping errors are infrequent (4% of MDA runs
miss an interface [14]), but show up as internal changes in our analysis. As a result,
the internal changes we report next are an upper bound on the real number of internal
changes experienced by load balancers during the measurement period.

We use our longer D2 dataset to study load balancer dynamics. We remove 1.9% of
route measurements from D2 that contain repeated interfaces. D2 has 535,517 internal
changes, which gives an average of one internal change per load balancer every 20 days.
Given that D2 has 85,553,799 MDA measurements with load balancers, the number of
internal changes we see is within the MDA’s mapping error probability of 4% [14]. In
D2, only 23% of load balancers experience internal changes. Fig. 3 shows the distribu-
tion of the average time between internal changes. Very few load balancers experience
frequent internal changes. Specifically, only 4.6% of load balancers experience internal
changes more frequently than once every day. Among these 4.6% load balancers, 40%
span more than 4 hops and 16% perform non-uniform balancing (i.e., split packets un-
evenly among its next hops). These non-uniform and long load balancers are more likely
to suffer from mapping errors [14]. We get similar results from our D1 dataset: 27% of
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load balancers experience internal changes and 3.8% experience internal changes more
frequently than once every day. If there were no mapping errors, we would see even
less internal changes.

These results show that it is possible to maintain an accurate database of load bal-
ancers without remapping load balancers frequently and that remapping load balancers
once a day is enough to account for internal changes.

4.2 Probing Strategy

We design FastMapping, a probing strategy to measure route dynamics that exploits the
observations in the previous section to maintain an accurate database of load balancers
with low overhead. FastMapping operates in three main steps:

Create load balancer database. When FastMapping starts, it runs MDA on all moni-
tored virtual paths to populate the load balancer database. For each interface identified
with MDA, FastMapping records whether it is the convergence or divergence point of a
load balancer, one interface in a multi-interface hop inside a load balancer, or unrelated
to load balancing. After building the database of load balancers, FastMapping performs
periodic measurement rounds. Each round has two main steps as follows.

Fast route measurements. FastMapping probes all monitored virtual paths periodi-
cally to check for route changes. To minimize probing overhead, we turn off MDA and
modify Paris traceroute to send a single probe per hop until it reaches the destination.
We send one probe per TTL up to TTL 30 spaced by 50ms, and stop as soon as we
receive an answer from the destination. We space probes by 50ms instead of waiting for
the answer at each hop to reduce the probing time and the probability that a failure or
route change will happen while Paris traceroute traces a route. We minimize the number
of unresponsive hops by retransmitting timed-out probes up to three times.

Update load balancer database. FastMapping uses the database of load balancers to
verify for each observed interface whether it was already seen in past measurements
with MDA. If the interface is new (usually few), FastMapping uses MDA to remap the
route and update the load balancer database. FastMapping forces periodic updates to
the database of load balancers by removing entries older than 24 hours.

This probing strategy guarantees that all probes in a virtual path follow the same
route unless there is a route change. The load balancer database allows us to identify
cases of per-packet load balancing and disregard them when computing route changes.
Finally, any new interface seen in the fast route measurements—due to, e.g., routing
changes, new load balancers, or an internal change—triggers an execution of MDA so
FastMapping can differentiate between route changes and load balancing.

We compare the route dynamics seen with FastMapping with that observed by MDA
using trace-driven simulations. We use D2 as basis and compute what FastMapping
would see. We find 10,013,958 route changes using complete load balancer infor-
mation from MDA and 9,822,372 route changes using FastMapping, i.e., only 1.9%
less changes. This small difference is due to either MDA mapping errors or transient
changes. For example, 40% of the missed changes happen in measurement rounds
where a load balancer disappears for only one round. FastMapping misses these changes
because undetected load balancers are still present in FastMapping’s database of load
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balancers, so FastMapping attributes the differences to load balancing instead of route
changes. In this trace-driven comparison, FastMapping can at most detect all route
changes seen in D2. In practice, however, FastMapping probes faster than MDA, so
it should detect more transient route changes (as we confirm in Sec. 5).

4.3 Dataset

We use FastMapping to collect a dataset, denoted D3, from 70 PlanetLab nodes for
five weeks starting September 1st, 2010. We use the same destination list and ICMP
probes as in D1 and D2. Due to FastMapping’s probing strategy, D3 has much higher
probing frequency than D1 and D2, taking only 4.4 minutes on average to perform a
measurement round. We remove 2.1% of route measurements from D3 that contain
repeated interfaces. D3 traverses 7,842 ASes and 97% of the large ASes [10].

5 Route Prevalence and Persistence

We use D2 and D3 to study Internet route dynamics. We reappraise Paxson’s previous
results on route persistence and prevalence [11] with our recent datasets. D2 probes 115
times more virtual paths than Paxson’s original dataset, and D3 probes 66 times more
virtual paths. In addition, D2 and D3 have more frequent route measurements.

Route persistence. Route persistence identifies how long a route remains stable before
it changes. The challenge is to know whether a route A measured at times t1 and t2
remained stable between t1 and t2. If route A changed to B then back to A between t1
and t2, then we missed a route change.

Paxson spaced his route measurements using a Poisson process. Although Paxson
did not have frequent measurements, the Poisson process enabled him to study route
changes at small time scales and compute the probability of missing route changes. In
our datasets, we substitute the Poisson probing process with high-frequency periodic
measurements that allow the study of persistence at finer time scales. Except for this
difference, we follow the same methodology as Paxson: We start by removing very un-
stable routes from our datasets, and then estimate the probability of missing a route
change in the remaining routes. We filter from our dataset virtual paths where we are
more likely to miss route changes: We remove 288 (0.4%) virtual paths that change
more frequently than once every 20 minutes. Causes for frequent route changes include
undetected load balancers, dynamically-allocated IP addresses, and coarse-grained load
balancing in server farms. In the remaining virtual paths, the probability of a route
changing between two consecutive measurements is small (0.5%). We expect the prob-
ability of having two or more route changes between two measurements (and thus miss-
ing route changes) to be even less. Moreover, we only report long route durations when
the same route is measured repeatedly. These factors give us confidence that long-lived
routes are indeed stable.

Fig. 4 shows the cumulative distribution of route durations for every route in D2 and
D3. We cut the x-axis at 10 hours to focus on the body of the distribution, but some
routes last over the entire datasets. We observe that most routes are short-lived, which
indicates that virtual paths are rapidly changing routes. Moreover, it shows that measur-
ing virtual paths every 38 minutes is not enough to accurately capture route dynamics:
D2 misses 36% of route changes that last less than 38 minutes when compared to D3.
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Although the number of short-lived routes is larger than the number of long-lived
routes, the fraction of time virtual paths spend in short-lived routes is small. In D3,
virtual paths spend 96% of the time in routes longer than 6 hours, similar to Paxson’s
findings [11]. In other words, virtual paths are mostly stable but go through “instability
periods” with multiple route changes happening within a short time period. The D3
line in Fig. 4 shows that 40% of consecutive route changes happen within 15 minutes
of each other. Such instability periods with similar characteristics are also reported by
Paxson [11] and Feamster et al. [4].

Fig. 5 shows the distribution of route durations longer than 12 hours from our longer
D2 dataset. Results forD3 (not shown) are similar but skewed towards shorter routes be-
cause the dataset lasts only 5 weeks. Our observations are again similar to Paxson’s [11],
with some differences that we discuss below. Paxson found that long-lived routes could
be split in two broad classes: 50% of routes that persist for 1-7 days and 50% that per-
sist for weeks. These two classes were motivated by a sharp knee in his distribution of
long-lived route durations at seven days. Our distribution does not have such a sharp
knee and it is impossible to identify two classes of stable routes. We believe this dif-
ference comes from our larger dataset and higher probing frequency that allows us to
detect more route changes. It could also be due to the different set of monitored virtual
paths.

Route prevalence. We study the fraction of time a virtual path stays in its prevalent
route, i.e., the route that most frequently realizes the virtual path. Fig. 6 shows the
distribution of the fraction of time a virtual path uses its prevalent route in D3 (“whole
dataset” line). Similar to Paxson [11], we find that 62% of virtual paths have a route
that stays active during at least 60% of the time.

Paxson’s original definition of prevalence only looked at the route that was prevalent
over the whole dataset. We extend Paxson’s results and study whether prevalent routes
change over time, and for how long they stay prevalent. We study prevalent routes in
time windows varying from three days to the whole dataset. Fig. 6 also shows the dis-
tribution of the fraction of time a virtual path uses the prevalent route for different time
windows (dashed lines). The smaller the time window, the more often virtual paths are
in the prevalent route, confirming that prevalent routes change over time. We use D2, to
study the long-term behavior of prevalent routes. We find that for a window of 2 weeks,
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77% of virtual paths have prevalent routes that stay prevalent for more than one month,
and only 14% of paths have a single prevalent route throughout the 13 weeks in D2.

Fig. 7 shows the distribution of route durations for routes prevalent over a window
of two weeks and for non-prevalent routes. It shows that prevalent routes are less likely
to have short durations: while 85% of non-prevalent routes have durations shorter than
four hours, this fraction is only 60% for prevalent routes. This result suggests that in-
formation about whether a route is prevalent is a good indicator of path stability.

6 Related Work

Topology mapping. Techniques such as Tracetree [6] (which we evaluate in Sec. 3),
its predecessor DoubleTree [3], and more recently the dynamic destination selection
technique of Beverly et. al [2] reduce redundant probes and consequently increase the
frequency of topology mapping. None of these techniques explicitly handles load bal-
ancers. As a result, they cannot disambiguate routing changes from load balancing as
we do with FastMapping. Paris traceroute’s MDA explicitly identifies load balancing,
but at the cost of large probing overhead [14]. FastMapping represents a tradeoff be-
tween these approaches: it achieves fast probing with daily updates of load balancers.
FastMapping can be directly applied to large-scale topology mapping projects such as
CAIDA’s Skitter/Ark [5], DIMES [13], or iPlane [9].

Characterization of route dynamics. Since 1997, few studies have reported some
characteristics of the location of route changes [4,15], but there has been no reappraisal
of Paxson’s work on end-to-end route dynamics. Most related to our characterization
of route dynamics is the recent work by Schwartz et. al [12]. This work uses tracer-
outes collected by DIMES to study the persistence and prevalence of end-to-end routes,
among other properties. Their probing method is oblivious to load balancing, so they
cannot differentiate route dynamics from load balancing. For a discussion of BGP dy-
namics, we refer the reader to the work of Li et. al [7] (and references within).

7 Conclusion

The study of end-to-end Internet route dynamics requires high probing frequency. Un-
fortunately, the cost of mapping load balancers to disambiguate routing changes from
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load balancing reduces considerably probing frequency. We address this challenge with
FastMapping. Based on the observation that load balancers are stable, FastMapping
remaps load balancers when a change is detected and updates them once per day. We use
FastMapping to measure route dynamics from PlanetLab for five weeks. The compar-
ison of our observations to Paxson’s [11] shows that despite the growth of the Internet
and the introduction of new traffic engineering practices, route persistence and preva-
lence have not changed significantly. Although we use FastMapping to perform high-
frequency probing and study route dynamics, FastMapping’s probing strategy can also
be used to decrease probing overhead while keeping the probing frequency constant.
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Sanjuàs-Cuxart, Josep 112
Schatzmann, Dominik 194, 214
Schneider, Fabian 32



246 Author Index

Seibert, Jeff 122
Sicker, Douglas 42
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