Chapter 15

Information Extraction and Semantic
Annotation for Multi-Paradigm Information
Management

Hamish Cunningham, Valentin Tablan, Ian Roberts, Mark A. Greenwood,
and Niraj Aswani

Why ‘multiparadigm’? Why ‘information management’, instead of the more familiar
‘information retrieval’ or ‘search’? Is our terminology, as suggested by one of our reviewers,

‘PR drivel’?! At one level, perhaps, our title does indeed reflect the increasing penetration of
short-termist market-oriented motivations into science and engineering (itself a part of the wider
subjection of all areas of public life to corporate profit—see for example [3]). The work reported
here was funded in part by a company with a close eye on its commercial potential, and we were
concerned to describe that potential in our publications. There are also, however, two substantive
points which we wanted to make, which are worth explaining in a little more detail. First, we
believe that Mimir is distinctive in combining three types of indexing under one roof—hence
multiparadigm—full text/boolean; conceptual/semantic; annotation (graph) structure. It is not the
case that this combination is either commonplace or straightforward, and we are hopeful that the
work will be influential as a result. Second, the technology suite into which Mimir fits is not just
about indexing (or information retrieval as commonly defined)—hence information
management—including as it does both GATE Teamware, a workflow-based distributed
collaborative manual annotation and annotation management platform, and OWLIM, a semantic
repository which is increasingly used for curated data sets as well as indices (examples in the UK
include the BBC, the Press Association and the National Archive). We feel, therefore, that Mimir
is an appropriate name for this enterprise.

H. Cunningham (<) - V. Tablan - I. Roberts - M.A. Greenwood - N. Aswani
Department of Computer Science, University of Sheffield, Sheffield, UK
e-mail: H.Cunningham @dcs.shef.ac.uk

V. Tablan
e-mail: V.Tablan@dcs.shef.ac.uk

1. Roberts
e-mail: I.LRoberts @dcs.shef.ac.uk

M.A. Greenwood
e-mail: M.Greenwood @dcs.shef.ac.uk

N. Aswani
e-mail: N.Aswani @dcs.shef.ac.uk

M. Lupu et al. (eds.), Current Challenges in Patent Information Retrieval, 307
The Information Retrieval Series 29,
DOI 10.1007/978-3-642-19231-9_15, © Springer-Verlag Berlin Heidelberg 2011

mailto:H.Cunningham@dcs.shef.ac.uk
mailto:V.Tablan@dcs.shef.ac.uk
mailto:I.Roberts@dcs.shef.ac.uk
mailto:M.Greenwood@dcs.shef.ac.uk
mailto:N.Aswani@dcs.shef.ac.uk
http://dx.doi.org/10.1007/978-3-642-19231-9_15

308 H. Cunningham et al.

Abstract This chapter describes the development of GATE Mimir, a new tool for
indexing documents according to multiple paradigms: full text, conceptual model,
and annotation structures. We also present a usage example for patent searchers cov-
ering measurements and high-level structural information which was automatically
extracted from a large patent corpus.

15.1 Introduction

Dear Reader,

The gentle tinkling noise that you can hear in the background is the sound of
genre expectations shattering. This is not an ‘intellectual property’ paper (indeed 1!
am uncertain that such a thing really exists—how could intellect be property?). As
Glyn Moody? points out, Turing’s results imply the atomicity of the digital revo-
lution, and consequently it seems likely that the electronic genie is now so far out
of the ‘rights’ bottle that all bit stream representations of our human achievements
will follow into the realm of openness and cooperative enterprise sooner or later.
Nor is this an information retrieval paper, at least not in the well-behaved sense of
positing a hypothesis about model performance within a particular set of parameters
and then testing and drawing some familiar variant of an ROC curve to show how
well our hypothesis applies in the context of some particular data set.

We will break the expectations of patent searchers by paying little attention to
the particular needs of that community (although the work we report was initially
applied to patents and is likely to have benefits there), and perform similar violence
to the expectations of IR researchers by making a fairly rudimentary evaluation.
Now that only the curious are still reading, I can appeal to you as a kindred spirit.>
Join me in a short history of some technological developments that my colleagues
and I have had the pleasure of making over the last few years. I promise not to tell
anyone about your paradigm-shifting deviance if you’ll extend the same courtesy to
me.

The paper covers work on two areas. First, the integration of standard information
retrieval techniques with semantic annotation and information extraction work in
order to deliver search capabilities that may be more flexible and interactive than
previously. Second, on scalability via distributed processing and efficient indexing.
It is structured as follows:

e we begin in Sect. 15.2 with some context and terminology relating to both the
characteristics of patent searching and the text mining technology from which
Mimir has developed

e in Sect. 15.3 we present the design and implementation of Mimir

UIn the interests of protecting the innocent the first author lays claim to the introduction.
Zhttp://opendotdotdot.blogspot.com/.

3T used to hope that as time passed I would become older and wiser, but it seems that in fact I just
become odder and wider.

http://opendotdotdot.blogspot.com/

15 IE and SA for Multi-Paradigm Information Management 309

e Sections 15.4 and 15.5 go on to describe the semantic annotation of patent docu-
ments with general categories such as bibliographic references or sectioning and
specific data on measurements that appear in the texts

e Section 15.6 gives an extended example of the type of multi-paradigm search
process that is possible as a result of pushing the annotations described in 15.4
and 15.5 into a Mimir index server

e Section 15.7 wraps up with discussion of the main achievements described within
this chapter

15.2 Background

15.2.1 Semantic Annotation

Semantic annotation is the process of attaching metadata tags and/or ontology
classes to text segments, as an enabler for knowledge access and retrieval tools.
Automatic annotation is carried out by employing Information Extraction (IE) [4]
techniques, which recognise automatically instances of a given set of events, enti-
ties or relationships. From an algorithmic perspective, IE approaches fall in to two
broad categories: manually engineered ones (frequently based on pattern-matching
like rules, see e.g. [13]) and machine learning ones (see e.g. [2, 12]). Rule-based
approaches are more suitable where a carefully engineered, high precision system
is needed and there are not sufficient training data for a machine learning approach
to be successful. From an operational perspective, IE tools can be deployed in both
fully and semi-automatic applications (where users can inspect and, if needed, cor-
rect the automatically created metadata). In general, fully automatic methods are
preferred when the volume of data is too large to make human post-annotation prac-
ticable, as is the case with patents.

15.2.2 Patents

Patents are an important vehicle for the expression of corporate strife, and this im-
portance is increasing in the current intensification of international competition.
When researching new product ideas or filing new patents, inventors and patent
attorneys need to retrieve all relevant pre-existing know-how and/or exploit and en-
force patents in their technological domain. This process may be hindered, however,
by a lack of rich metadata, which if present, would allow powerful concept-based
searches to complement the traditional keyword-based approaches.

Patent searchers require high recall methods, capable of operating robustly on
large volumes of data. Much early IE research was carried out on smaller datasets
from narrower domains, often news articles [2, 9, 14]. A challenge addressed more
recently is in scaling up these methods to deal with the diversity and volume of
patent data.

310 H. Cunningham et al.

Applications of IE to patent annotations are quite scarce, mostly focusing on
optical character recognition (OCR) and text classification, whilst only briefly dis-
cussing the importance and challenges of identifying references to figures and
claims in patents. In this area, [11] carried out a small feasibility study using the
Xerox language processing tools. The PatExpert project [15] has developed some
content extraction components based upon deeper linguistic analysis than the ap-
proach proposed here.

15.2.3 ANNIE and ANNIC

In 2007 we began work on adapting an IE and semantic annotation system to
patent data. This system (ANNIE, A Nearly-New IE pipeline) is part of GATE
(http://gate.ac.uk/ [6, 7]), which also includes a diverse set of development tools
for language processing R&D. One such tool is ANNIC (ANNotations In Context),
which predates the work described here [1]. ANNIC was designed to support the de-
velopment of finite state transduction patterns in GATE’s JAPE language.* ANNIC
is used to search corpora that have been both annotated with GATE and indexed us-
ing Lucene.’ Users make searches based in a query language very similar to JAPE
and are presented with a results summary similar in form to KWIC (Key-Words In
Context) tools: the portions of text that match the query form a column down the
centre of the screen and are preceded and followed by the proximate text on either
side.

ANNIC was designed as a development tool, not as an end-user tool, and is
tightly integrated within GATE Developer (a specialist tool for R&D workers), and
is inefficient beyond the range of a few hundred documents. We had no intention of
proposing the tool as appropriate for patent searchers, but by chance we used it to
demonstrate some of the IE work to a patent search expert group. The feedback from
this group was very positive, and we were commissioned to produce a version of
ANNIC that would scale to a one terabyte plain text database of patent documents—
hence Mimir, to whose design we now turn.

15.3 GATE Mimir—A Multiparadigm Index

Mimir® is a multi-paradigm information management index and repository which
can be used to index and search over text, annotations, semantic schemas (ontolo-
gies), and semantic metadata (instance data). It allows queries that arbitrarily mix
full-text, structural, linguistic and semantic queries, and that can scale to gigabytes
of text.

4JAPE is a regular expression based language for matching annotations—see http://gate.
ac.uk/userguide/chap:jape.

Shttp://lucene.apache.org/java/.

601d Norse “The rememberer; the wise one”.

http://gate.ac.uk/
http://gate.ac.uk/userguide/chap:jape
http://gate.ac.uk/userguide/chap:jape
http://lucene.apache.org/java/

15 IE and SA for Multi-Paradigm Information Management 311

15.3.1 What Is in a Mimir Index?

A typical semantic annotation project deals with large quantities of data of differing
kinds. Mimir provides a framework for implementing indexing and search function-
ality across all these data types. The data types currently supported within a Mimir
index are listed below in the order of increasing information density.

Text All documents have a textual content.” Support for full text search represents
the most basic indexing functionality and it is required in most (if not all) cases.
Even when semantic annotation is used to abstract away from the actual textual
data, the original content still needs to be accessible so that it can be used to provide
textual query fragments in the case of more complex conceptual queries.

Mimir uses inverted indexes® for indexing the document content (including ad-
ditional linguistic information, such as part-of-speech or morphological roots), and
for associating instances of annotations with the positions in the input text where
they occur. The inverted index implementation used by Mimir is based on MG4J.°

Annotations The first step in abstracting away from plain text document con-
tent is the production of annotations. Annotations are metadata associated with text
snippets in the documents. Typically an annotation is described by:

e the document it belongs to;

o the start and end offsets of the referred text snippet;

e the annotation type (a textual label or an URI);

e an arbitrary set of <feature, value> pairs.

An annotation index supports a more generic search paradigm. Depending upon
the type of annotations available, the user can search across different dimensions.
For example, if we suppose that all words in the indexed documents are annotated
according to their part of speech, then one could search for sequences of type {De-
terminer} {Adjective} {Noun}, which would match phrases like The red
car or The new method, etc. When the annotations are semantically richer, this new
search paradigm gains more representational power. If, for example, the documents
are annotated with occurrences of Person, Location, Organization en-
tities, then searches like {Person}, CEO of {Organization}, based
in {Location} become possible.

7 Although the focus is currently on indexing text documents, specifically patents, it would be
perfectly feasible to associate annotations and KB data with multimedia documents, where offsets
may refer to time spans in videos or areas of an image etc.

8 nverted Indexes are data structures traditionally used in Information Retrieval to support indexing
of text.

http://mg4].dsi.unimi.it/.

http://mg4j.dsi.unimi.it/

312 H. Cunningham et al.

Knowledge Base Data Knowledge Base (KB) data consist of an ontology pop-
ulated with instances. The ontology represents the data schema and comprises a
hierarchy of class types, and a hierarchy of properties that are applicable between
instances of classes. The instance data represent facts that are known to the system
and are typically, or at least partially, derived from the semantic annotation of docu-
ments. KB data are used to reach a higher level of abstraction over the information in
the documents and enables conceptual queries such as measurement ranges. A KB
is required for answering such queries as they may often involve converting from
one measurement unit into another, and reasoning about scalar values.

A KB that is pre-populated with appropriate world knowledge can perform other
generalisations that are natural to humans users, such as being able to identify Vi-
enna as a valid answer to queries relating to Austria, Europe or the Northern Hemi-
sphere.

Mimir uses a KB to store some of the information relating to annotations. The
links between annotations, the textual data, and the KB information are created by
the inclusion into the text indexes of a set of specially-created URIs that are asso-
ciated with the annotation data. Furthermore, URIs of entities from the KB can be
stored as annotation features.

KBs are typically represented as a collection of triples that are kept in highly-
specialised and optimised triple stores; using standards such as RDF or one of the
versions of OWL.!® The implementation used by Mimir is based on ORDI and
OWLIM.!!

15.3.2 Searching Mimir Indexes

From a user’s point of view, Mimir is a tool for searching a collection of semantically
annotated documents. It provides facilities for searching over different views of the
document text, for example one can search the document’s words, the part-of-speech
of those words, or their morphological roots. As well as searching the document
text, Mimir also supports searches over the documents’ semantic annotations; where
queries are based on annotation types and restrictions over the values of annotation
features. These different search paradigms can be combined freely into complex
queries, with support for sequences, repetitions, and Boolean operators.

A search session entails the formulation of a query, running the query with the
Mimir query engine, and then consuming the results.

There are two different methods for constructing Mimir queries:

Query Language: A simple language has been defined that allows the formulation
of Mimir queries using plain text.

10See http://www.w3.org/RDF/ and http://www.w3.org/TR/owl-features/.
1See http://www.ontotext.com/ordi/ and http://www.ontotext.com/owlim/.

http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.ontotext.com/ordi/
http://www.ontotext.com/owlim/

15 IE and SA for Multi-Paradigm Information Management 313

Java API: The Mimir Java API defines a set of classes that represent query nodes.
Each class corresponds to a type of query that Mimir supports. Individual nodes,
representing sub-queries, are combined to form a query tree which embodies a
more complex query. The node for the root of the query tree can then be used to
execute the query through the Mimir query engine. This format is always used
internally by Mimir to represent queries; queries sent in textual form (using the
query language) are first converted to a tree of query nodes, and then executed.

There are three different methods for searching with Mimir:

Web Interface: When run as a web application, Mimir exposes a GWT- (Google
Web Toolkit) based web interface that can be used from any browser. This is the
simplest (and most user-friendly) way to access the search functionality of Mimir.

Java API: When Mimir is embedded into another Java application the Mimir search
API can be used to construct queries, execute them, and process the results.

Web Service: When Mimir is run as a web application, a RESTful web service is
published that allows the formulation of queries (using the query language), the
execution of queries, and the retrieval of results.

Whilst this plethora of query building and search facilities makes Mimir ex-
tremely flexible it is unlikely that most patent searchers will need to venture fur-
ther than entering queries into the web interface (or some other user interface built
on top of one of the other search APIs). Given this reasoning, the rest of this sec-
tion will focus on constructing queries using the plain text query language. For the
adventurous, full details of the Java API and Web Service interface can be found
in [10].

15.3.2.1 Constructing a Query

Mimir queries consist of one or more sub-queries linked by operators. The rest of
this sections details the different query types and the operators that can be used to
combine them to form more complex queries.

String Queries: The simplest form of query is a query term. This will match all
occurrences of the query term in the indexed documents.
If the Mimir index being interrogated includes multiple string indexes, then the
particular index to be searched can be specified by prefixing the query term with
the index name and a colon, for example the query ‘root:be’'? will match all mor-
phological forms of the verb o be. If the name of the string index is omitted, then
the first configured index is used. By convention (reflected in the default Mimir
configuration) the first string index is used to store the terms text, so the default
behaviour is to search over the document text, as expected.

12This assumes that an index named root exists, and was used to store the morphological root of
the words.

314 H. Cunningham et al.

Table 15.1 Escaping
reserved constructs in the
Mimir query language

Reserved input Escaped form

{1 NG\
G) NG
[,] AL
\:
+ \+
\
& \&
? \?
\ A\
\.
" \ "
= \=
IN “IN”
OVER “OVER”
OR “OR"”
AND “AND”

Some words are part of the query language definition so they cannot be used di-
rectly as query terms. If that is desired, then these constructs must be escaped as
shown in Table 15.1.

Annotations Queries: If annotations were indexed then Mimir allows searching for
annotation-based patterns. An annotation is a piece of metadata associated with a
text segment. When indexed in Mimir, annotations are defined by:

e fype: a string value

e start and end offsets: two numeric values that link the annotation with the text
segment they refer to

e features: a set of named values. Each indexed feature must have one of the fol-
lowing types:
— nominal: when the permitted values are strings from a limited set
— numeric: floating-point numbers representable in double precision
— text: arbitrary string values
— URI: URIs are used to create links to resources (such as classes or entities) in

semantic knowledge bases

When searching for annotations, the user needs to describe their request by pro-
viding an annotation type and, optionally, one or more feature constraints. An an-
notation query takes the following form: {Type featurel=valuel fea-
ture2=value2 ...}.

While the example above uses equality for the feature constraints, other operators
are also available. Here is the full list:

15 IE and SA for Multi-Paradigm Information Management 315

Equality: Represented by the sign = matches annotations which have the given
value for the specified feature. The equality operator is applicable to features of
any type.

Comparison Operators: Represented by one of the following symbols: <, <=,
>, >=, with the usual meaning. These operators can apply to features of type
nominal, numeric, or text.

Regular Expressions: Can be specified using the syntax REGEX (pattern,
flags), where the pattern represents the regular expression sought, and the
flags are optional, and can be used to change the way matching is performed.
See http://www.w3.org/TR/xpath-functions/#regex-syntax for a full specification
of the regular expression support. The REGEX operator can only be used for nom-
inal, and text features.

Some example annotation queries are:

{PatentDocument date > 20070000 }this searches for all patent docu-
ments published from 2007 onwards.'3

{Reference type = figure}—retrieves all references to figures within
the index.

Sequence Queries and Gaps: As sequence is the default operator in Mimir, there is
no graphical sign for it: simply writing a set of queries one after another will cause
a search for sequences of hits, one from each sub-query. For example, the query
“the energy level” is actually a sequence query where the first sub-query
searches for the word “the”, the second for “energy”, and the last for “/evel”. This
would match occurrences of the exact phrase ‘the energy level’ in the indexed doc-
uments. Note that this is different from the standard behaviour of search engines,
the majority of which would simply match documents in which all three query
terms occur, in whichever order. This type of searching is also supported in Mimir,
through the AND operator which is discussed later in this section.

It is sometimes useful to include gaps in a sequence query, that is, to allow arbitrary
text fragments (of specified length) to occur in-between the hits from some of the
sub-queries. This can be done by using the gap markers “[n]1”, or “[m..n]".
These will match a sequence of length 7, or with a length of between m and n of
arbitrary tokens.

For example the query “the [2] root:time” will match phrases like “the
best of times” or “the worst of times”, whereas the query “the [2..10]
root : time” would also match “the best use of one’s time” (where the gap con-
sists of six tokens—five words and an apostrophe).

AND Operator: The ‘AND’ (also ‘&‘) operator can be used to specify queries that
should match document segments that include at least one hit from each of the
sub-queries. The results returned will always be the shortest document segments
that satisfy the query.

OR Operator: OR queries are used to search hits that match one of a set of alternative
query expressions. This is indicated by using the *OR (also‘|’) operator between

13In general dates are encoded as yyyymmdd. This encoding allows dates to be treated as numbers,
enabling a wide variety of search restrictions.

http://www.w3.org/TR/xpath-functions/#regex-syntax

316 H. Cunningham et al.

the sub-queries. A query of the form Queryl | Query?2 will return hits that
match either sub-query Queryl or sub-query Query?2.

IN and OVER Operators: The operators IN and OVER are used to search for hits of
a query that contain, or are contained in the hits of another query. For example:

Queryl IN Query2 will match all the hits of Query1 that are contained in a hit
of Query?2.

Queryl OVER Query2 will match all hits of Query1 that contain (are overlap-
ping) a hit of Query?2.

Repetition Operator: The + operator can be used to match text segments that com-
prise a sequence of hits from the same sub-query. The length of the sequence is
specified through a number (representing the maximum number of repetitions) or
through two numeric values (representing the minimum and maximum number of
repetitions). For example:

“to+3” will match one, two, or three repeated occurrences of the word ro. The
returned hits will be of the form “t0”, “to to”, or “to to t0”).
“{Measurement}+2..5” will match sequences of two, three, four, or five ad-

jacent Measurement annotations.

Grouping: In the case of complex queries that include multiple sub-queries, paren-
theses “ (7,)’ can be used to group a set of sub-clauses together.

15.4 The Patent Annotation Task

The experiments in this paper are based upon three different kinds of patents taken
from the MAREC collection'*: American (USPTO), Japanese (JP) and European
(EPO). The reason for choosing multiple data sources is because the three patent
types differ in terms of the metadata, formatting, quality, and legal language used.
These differences ensure that the approaches we develop can be applied to a wide
range of documents, and hopefully to unseen document types with little loss in per-
formance.

The semantic annotation process adds new metadata to the patents (in the form
of XML tags). These new metadata fall into two broad categories; wide and deep
annotation types. Wide annotations are intended to cover metadata types that apply
to patents in general, and do not depend on the specific subject area of the patent
(as identified, for example, by its IPC code). Examples of such metadata include
document sections and references to cited literature, examples, figures, claims, and
other patents. Deep annotations are specific to one or more subject areas and are of
interest to specialised patent searchers. The experiments reported here focus upon
automatic annotation of measurements (as they are very important for patent pro-
fessionals) whilst also being very hard to find using keyword search. This is due to
the diverse ways in which they can be expressed via natural language.

4http://ir-facility.net/prototypes/marec/.

http://ir-facility.net/prototypes/marec/

15 IE and SA for Multi-Paradigm Information Management 317

The benefits from the automatic metadata enrichment process are three-fold.
Firstly, information extraction (IE) is capable of dealing with variable language pat-
terns and format irregularities much better than text-based regular expressions. For
example, references to other patents can be very diverse: U.S. Patent 4,524,128, Ko-
rean laid open utility model application No. 1999-007692. Secondly, once the addi-
tional metadata have been added to the patent, IE tools can also carry out data nor-
malisation. Again, taking an example from references to figures or similarly claims,
expressions such as “Figures 1-3” or “Claims 5-10” imply references not just to the
explicitly mentioned figure/claim numbers but also to all those in between. Lastly,
by using text mining techniques we are able to extract a significantly wider range
of useful information, than could be obtained via keyword search, and provide it as
additional XML tags in the patent documents.

The rest of this section details the metadata we currently extract from patents and
highlights some of the problems and how these have been overcome.

15.4.1 Section Annotations

Patent documents are typically quite long, contain multiple required sections, and
use highly formalised legal and technical terminology (with the notable exception of
literature references and measurements). Different aspects of the patent application
are typically presented in a pre-defined set of sections and subsections (e.g. prior
art, patent claims, technical problem addressed and effect). Both USPTO and EPO
documents have at least three main parts, the first page containing bibliographical
data and abstract, the descriptions part, and the claims part.

Automatic section recognition is based upon identifying typical section titles and
using them to automatically partition the text. Pre-existing section markup is used, if
available. For instance, Bibliographic Data, Abstract and Claims sections tend to be
already annotated in patent documents so we use them directly. There are, however,
around 20 different sections within most patents'> and so most sections still need to
be detected automatically.

15.4.2 Reference Annotations

Reference annotations are used for parts of text that refer to either objects in the
current document (e.g. figures, tables, etc.) or to other documents (e.g. scientific
papers).

A reference annotation consists of two parts; a header indicating the type of ref-
erence, and one or more identifiers which typically consist of a mixture of numbers

15The number of sections within a patent can vary widely from one patent office to another and
even, over time, within the same office. Most of the patents we examined during the reported work
do, however, contain around twenty sections.

318 H. Cunningham et al.

and letters. For example, in Figure 1 and 2 the header is Figure and the identifiers
are I and 2. In U.S. Pat. No. 3,765,999 the header is U.S. Pat. and the identifier is
No. 3,765,999.

Conjunctive phrases mentioning references to two or more objects of the same
reference type are tagged initially as one reference annotation, including the con-
junction and all punctuation. For example, Figures I and 2; Claims 1-3; Tables I to
10 are first annotated as one Reference each, of type Figure, Claim and Table respec-
tively. The normalisation step then separates these into their constituent references;
including all implied references (e.g., to Claim 2).

From an IE perspective, some types of references are much simpler to identify
than others. For instance, there is little variability in the way patents refer to fig-
ures, tables, claims, equations, and examples. References to other patents tend to be
slightly more challenging, as they often include the inventors’ names, patent date,
or even title—in addition to a simple header and identifier. The hardest of all are
the references to external sources, such as published papers (see e.g., Hudson &
Hay, Practical Immunology (Blackwell Scientific Publications, Oxford, UK, 1980),
Chap. 8), which tend to be quite long and typically contain many abbreviations
and idiosyncratic formatting. We have also observed significant differences between
American and European patents in this respect and had to adapt our IE tools to deal
with this accordingly.

15.4.3 Measurement Annotations

Most measurements comprise a scalar value followed by a unit, e.g. 2 x 10~/ Torr.
Furthermore, two scalar values with or without a unit can be contained in an inter-
val. Sometimes there are also accompanying words, such as “less than” or “be-
tween” which are important for professional searchers and, therefore, need also
to be marked by the IE tools, e.g., “less than about 0.0015 mm”, “2 x 10° to
2 x 107 cpm/ml”. Lastly, we also deal with relative measurements, such as per-
centages and ratios.

The main challenge involved in recognising measurements in patents comes from
the large number of measurement units in existence (e.g., units used in physics
patents are very different to those used in engineering ones). Another challenge
is that some units have single letter abbreviations. These can introduce ambiguities
and therefore require a wider context to be considered in order to determine whether
a specific sequence of numbers followed by a letter is indeed a measurement. One
frequently encountered example of such ambiguities are temperatures, e.g., “1C”
where we need to distinguish correct temperature mentions from other cases, such
as references to figures, examples, tables, etc. (as in “see Figure 1C”).

15 IE and SA for Multi-Paradigm Information Management 319

Table 15.2 The SAMIE components listed in runtime order (items in bold were developed specif-
ically for SAMIE, other components were customised as needed)

Processing resource Description

Cleanup Remove annotations from previous application runs

Import Relevant Markup Makes relevant markup from the original document available to the
rest of the pipeline

Roman Numerals Annotates Roman numerals which are used for detecting references

Numbers in Words Recognises numbers written as words and converts them to actual
values

Tokeniser Pattern matcher for detection of words and other lexical items

Sentence splitter Regular expression-based detection of sentence boundaries

POS tagger Addition of part of speech (grammatical categories) to tokens

Gazetteer (case sensitive) Lookup of known domain terms

Gazetteer (case insensitive) Lookup of known domain terms, with case insensitive matching

Numbers Find and annotate all remaining numbers
References Transducer Find and annotate all the references within the documents
Measurement Tagger Find and annotate all the measurements within the documents

15.5 Automatic Patent Annotation

Our approach to the large scale semantic annotation of patent documents is embod-
ied in an information extraction system called SAMIE. This section discusses both
SAMIE and the processing infrastructure we have developed to support large scale
IE tasks.

15.5.1 SAMIE Architecture

SAMIE is provided as a GATE Application Pipeline consisting of a number of inde-
pendent modules. The modules which make up the application are shown in runtime
order in Table 15.2. The pipeline works as follows:

NLP Infrastructure: A basic set of NLP components were used to perform a shallow
analysis of the input documents; adding simple linguistic features, such as part-of-
speech, to the document. These features are added as annotations on the document.

JAPE Grammars: Numbers in the documents were mostly identified using the JAPE
pattern matching language [5]. Every number which was recognised was aug-
mented by the addition of a ‘value’ feature holding a double representation of the
number. JAPE grammars were also employed to detect and annotate sections and
references as described in Sects. 15.4.1 and 15.4.2.

Measurement Tagger: The measurement tagger is a complicated mix of JAPE rules
and Java code that can recognise valid combinations of known units and reduce
the units to a form in which they consist only of SI units. This reduction to SI

320 H. Cunningham et al.

units then allows measurements of the same dimension (i.e. length) expressed in
different ways (e.g. metres, inches, feet ...) to be indexed, compared against each
other and retrieved no matter the unit expressed by the user. The measurement
tagger relies on the previous number annotations to remove spurious matches (i.e.
a measurement nearly always starts with a number).

To enable complex measurement-based queries we have extended the Mimir
query language so that Measurement annotations support a special synthetic fea-
ture, named spec which can be used to specify in natural language a measurement
value, or a range of values to search for

The values used by the spec feature can take one of two forms:

number unit: This will match scalar measurements that have the exact specified
value,'® and interval measurements that contain the specified value. For example,
23 cm’ or ‘3 inches’.

number to number unit: This will match scalar measurements that fall within the
specified interval, and interval measurement that overlap with the specified range.
For example, ‘2.5 to 15 amperes’. would match all of the following values: ‘3000
mA’, ‘0to 5 A’, “7 to 100 Amperes’, etc.

In either case unit normalisation is performed, so a query expressed in metres
can match annotations expressed in inches, or millimetres, etc. For example, all the
following represent the same query:

{Measurement spec = “3 to 5 metres”}
{Measurement spec = “300 to 500 cm”}
{Measurement spec = “3000 to 5000 mm”}
{Measurement spec = “118 to 197 inches”}!?

An evaluation of SAMIE [10] has found that the accuracy of the annotations
detailed in this sections is comparable to that of human annotators tasked with pro-
ducing the same metadata. This evaluation gives us the confidence to apply SAMIE
to the task of large scale automatic annotation of patents.

15.5.2 Large Scale Annotation with GATE Cloud

One of the main challenges faced in this project is the sheer scale of the task. Patent
databases typically contain tens of millions of patents, and hundreds of thousands of
new ones are produced each year. Worldwide, millions of new patent applications
are submitted yearly.'® Any application aimed at the IP domain requires a good
scalability profile if it is to maintain any credibility.

16Within the precision allowed by floating-point arithmetic of double precision.

"This query is approximately equal to the others as the two values have been rounded to the
nearest whole numbers.

8Detailed statistics are available from the World Intellectual Property Organization at
http://www.wipo.int/ipstats/.

http://www.wipo.int/ipstats/

15 IE and SA for Multi-Paradigm Information Management 321

Batch Spec
(XML)

Custom
Patent D SRR IEETE
Database D U U U

Input
+ Worker Worker . Worker
GATE XML Output Thread Thread Thread
Documents Manager

M ™M !\’I

C

Batch Report
(XML)

Fig. 15.1 Overall architecture of GATE Cloud platform

To answer our need for scalability, we have developed GATE Cloud'®—a plat-
form for parallel semantic annotation of text documents. GATE Cloud is designed
as a parallel version of the execution engine found in GATE [7]. It takes a language
processing pipeline created using the GATE Developer environment (in this case,
the SAMIE application detailed in the previous section), and executes it using a set
of parallel threads. The job control is effected through document batches, which are
XML files describing outstanding tasks.

A high-level view of the architecture of GATE Cloud is presented in Fig. 15.1.
The main elements in the diagram are detailed below:

Batch Spec: A batch is a unit of work that needs to be performed. It comprises a
list of IDs for the documents that need to be processed, a pointer to the prototype
of the processing pipeline that should be used, and configuration data specifying
input/output options.

Input Output Manager: The I/O manager reads the batch files, parses them, and ex-
tracts the IDs for the documents that need to be processed. Its main role is to han-
dle the import/export operations for the patent documents. Internally, GATE Cloud
uses GATE Document objects as defined by the GATE Java API; the I/O Man-
ager’s job is to create the initial GATE document object for each new document,
and to handle the saving of the results at the end of the process. This is also where
the integration with various document stores (such as on-disk GATE datastores, or
custom patent databases) is handled.

http://gatecloud.net.

http://gatecloud.net

322 H. Cunningham et al.

Jobs Queue: Each document to be processed represents a job. These are represented
as document IDs and are stored in the jobs queue. The queue is accessed in parallel
by all the execution threads whenever they become available for work.

Worker Threads: A worker thread is a copy of the processing pipeline that manages
its own execution thread. Its execution comprises a loop in which it gets the ID
for the next available document, it reads the document through the I/O Manager,
it executes the processing pipeline over the document, and, finally, it exports the
results, again using the facilities provided by he I/O Manager. The number of par-
allel worker threads is a configuration option for each instance of GATE Cloud,
and it depends on the hardware characteristics of the host.

Batch Report: The execution of each batch is reflected in a batch report file in XML
format. This includes, for each document, whether the execution was successful or
some error occurred, and some simple statistics regarding the number of anno-
tations of each type that were produced. Furthermore, once the batch execution
completes, details are included regarding the total number of document processed,
how many encountered errors, and the total execution time for the whole batch.

In order to determine the most suitable hardware configuration for running GATE
Cloud, we have performed a series of experiments. The main parameters we were
trying to estimate were memory requirements, and CPU load, i.e. how many worker
threads should be allocated given the number of available CPU cores. Finding
the optimal memory allocation is important because low values lead to excessive
amounts of CPU time being used for garbage collection, while large values are
wasteful. The number of worker threads for a given CPU configuration also needs to
be optimised to increase CPU utilisation, while avoiding excessive context switch-
ing and locking due to access to shared resources (such as the disk, or network
interfaces).

The optimal values will vary depending on the type of documents being pro-
cessed, and the requirements of the actual processing pipeline used. For each new
deployment of GATE Cloud, these parameters should be estimated experimentally.
In our particular case, the highest throughput was obtained when each worker thread
had 2 GB of RAM allocated, and the number of threads was 1.5 times the number
of CPU cores. In this configuration, the execution speed was over 1000 documents
per hour and per CPU core.

GATE Cloud is designed for parallel execution and it aims at 100% utilisation
of a multi-core and/or multi-CPU computer. When combined with an engine for
distributed execution of jobs,”> GATE Cloud can be deployed on large computer
farms, or commodity compute clouds. This results in a highly scalable solution for
semantic annotation of documents.

GATE Cloud is also intended to run for extended periods of time; conceivably it
could even be deployed as a continuously running process. This places some strin-
gent requirements with regard to the robustness of the process, which have influ-
enced the design and implementation. Any errors and exceptions that may occur

20Such as the Sun Grid Engine (http:/gridengine.sunsource.net/.) or Hadoop (http://hadoop.
apache.org/).

http://gridengine.sunsource.net/
http://hadoop.apache.org/
http://hadoop.apache.org/

15 IE and SA for Multi-Paradigm Information Management 323

during processing are trapped and reported, without crashing the entire process. If
the GATE Cloud process does crash, for whatever reason (e.g. hardware failure,
or power cut), the process can be restarted using exactly the same mechanism as
was used to launch it originally. GATE Cloud will automatically identify the pre-
vious incomplete run, will parse the partial execution report file to find which doc-
uments were already processed successfully, and will resume execution from the
point where the previous run stopped.

15.6 Multi-Paradigm Patent Search

Whilst some may find the technical details of Mimir interesting, most patent
searchers simply wish to know if it will help them to do their job. This section
aims to answer that question by showing an example search session over a corpus
of 100,000 patents.

The scenario for this example search session involves finding inventions, and
their inventors, that make use of transistors.

As with any search engine a good place to start is a keyword-based search.

transistor

This returns 75,208 hits in the example index—that is the word ‘transistor’ ap-
pears 75,208 times within the 100,000 patents. The main problem with this query
is that because it matches words, rather than sequences of characters, it does not
include any mention of the word ‘transistors’. We could rectify this in one of two
ways. In this case, where there are only two variations of the word, we could issue
the query transistor OR transistors. The problem with this query is that
when you have words with more variations, or multiple words where you need to
match different tenses, the queries can quickly become unwieldy. A better approach
is to use one of the other Mimir string indexes to search on the root form of the
word.

root:transistor

This query now returns 99,742 results. This is a lot of results to search through,
and it is likely that most of the results refer to inventions in which transistors only
play a minor role. One way to refine the search would be to concentrate on those
results which occur within an abstract as this is suggestive of transistors playing an
important role in the patent.

root:transistor IN {Abstract}

Our refined query now returns just 3,053 instances of ‘transistor’ or ‘transistors’
from within the index, but this does not equate to 3,053 different patents.

We can invert the previous query so, that instead of returning all mentions of
transitors within abstracts, it instead returns the abstracts which mention transistors.

324 H. Cunningham et al.

{Abstract} OVER root:transistor

The results show that there 1,088 such abstracts within the index. Given the way
patents are written they often include multiple abstracts in different languages.>! We
can restrict our query to only focus on abstracts in a given language using the lang
feature. For example we could focus on just the 369 abstracts written in French.

{Abstract lang=FR} OVER root:transistor

Given that we are using the English spelling of transistor (and the index was
created using an English part-of-speech tagger) it would, however, make more sense
to focus upon just those abstracts written in English.

{Abstract lang=EN} OVER root:transistor

This query returns 713 abstracts from the 100,000 patent index. Whilst this
maybe a small enough number for a team of patent searchers to handle it is likely
that refining the search further could be beneficial. One option would be to restrict
the search based upon the date of a patent. For example, we could limit the search
to only those patents published from 2007 onwards.??

({Abstract lang=EN} OVER root:transistor)

IN {PatentDocument date > 20070000}

This reduces the number of retrieved abstracts to just 321. We can also place
an end date on the search in a similar fashion. Restricting the search to just those
patents published during 2007 gives us the following query.

({Abstract lang=EN} OVER root:transistor)

IN {PatentDocument date > 20070000 date < 20080000}

This query retrieves 251 English language abstracts. Whilst this is a useful query
(and a reasonable number of results to manually read through), it might be more
helpful to start from the title of the inventions rather than the abstracts.”?

{InventionTitle lang=EN}

IN ({PatentDocument date > 20070000 date < 20080000}
OVER ({Abstract lang=EN} OVER root:transistor))

As a final example, maybe the aim of this whole search session was to find in-
ventors that you could invite to join an expert pool focusing on transistor-based
inventions. We can easily modify the query to retrieve the inventor’s instead of the
inventions.

{Inventor}

IN ({PatentDocument date > 20070000 date < 20080000}
OVER ({Abstract lang=EN} OVER root:transistor))

The results from this query shows that there are 2,066 inventors related to the

251 inventions.

2'Whilst this is true for the patents in the MAREC collection, which we used when building this
example index, it may not be true for all patents. In fact the structure of patents varies widely which
is one reason why effectively searching large patent corpora by hand is difficult.

22 As previously mentioned, dates are usually encoded as numbers in the form yyyymmdd. As such
20070000 is not actually a valid day but does fall between the last day of 2006 and the first day of
2007.

23 As with abstracts the titles of the inventions are also listed in multiple languages and so a restric-
tion to English is included in the query.

15 IE and SA for Multi-Paradigm Information Management 325

The proceeding examples are of course just a small glimpse into the types of
knowledge that can be easily discovered using Mimir. The index used for this ex-
ample is publicly accessible** and we encourage interested readers to try Mimir for
themselves.

15.7 Discussion and Conclusions

Quoting [8]:

Information retrieval (IR) technology has proliferated in rough proportion to the expansion
of knowledge and information as a central factor in economic success. How should end-
users choose between them? Three main dimensions condition the choice:

e Volume. The GYM big three web search engines (Google, Yahoo!, Microsoft) deliver
sub-second responses to hundreds of millions of queries daily over hundreds of terabytes
of data. At the other end of the scale desktop search systems can rely on substantial
compute resources relative to a small data set.

e Value. The retrieval of high-value content (typically within corporate intranets or behind
pay-for-use turnstiles) is often mission-critical for the business that owns the content. For
example the BBC allocates a skilled staff member for eight hours per broadcast hour to
index their most important content.

e Cost. Semantic indexing, conceptual search, linked data and so on share with controlled-
vocabulary and metadata systems a higher cost of implementation and maintenance than
systems based on counting keywords and hyperlinks.

To process web-scale volumes GYM use a combination of one of the oldest and simplest
retrieval data structures (an inverted file that relates search terms to documents) and a rank-
ing algorithm whose most important component is derived from the link structure of the
web. These techniques work much better than was initially expected, profiting from the vast
number of human relevance decisions that are encapsulated in hyperlinks. Problems remain
of course: first, there are still many data in which links are not present, and second the fa-
miliar problems of ambiguity (index term synonymy and query term polysemy) can lead to
retrieval of irrelevant information and/or failure to retrieve relevant information.
High-value (or low-volume) content retrieval systems address these problems with a vari-
ety of semantics-based approaches that attempt to perform conceptual indexing and logical
querying. For example, the BBC system cited above indexes using a thesaurus of 100,000
terms that generalise over anticipated search terms. Similarly in the Life Sciences publica-
tion databases increasingly use rich terminological resources to support conceptual naviga-
tion (MeSH, the Gene Ontology, Snomed, the unified UMLS system, etc.).

An important research theme in recent years has been to ask to what degree can we have
our cake and eat it? In other words, how far can the low-volume/high-value methods be
extended?

We believe that Mimir makes a contribution to this theme by demonstrating
the possibility of scaling up annotation structure indices and combining annotation
structure search with full text methods and with conceptual search based on RDF or
OWL.%

2*http://demos.gate.ac.uk/mimir/patents/gus/search.

Zhttp://www.ontotext.com/owlim/.

http://demos.gate.ac.uk/mimir/patents/gus/search
http://www.ontotext.com/owlim/

326 H. Cunningham et al.

When we began developing Mimir we assumed that we would be able to find an
appropriate technology base in a related field such as XML indexing, or database
management systems. To this end we convened a workshop in May 2008 on Persist-
ing, Indexing and Querying Multi-Paradigm Text Models (at the IRF in Vienna).?%
A number of researchers working on IR, XML and DBMS were kind enough to
participate.?” It became clear at that point that there was no off-the-shelf solution
to our problem (to cut a long story short XML-based techniques were too tree-
oriented, and difficult to adapt to the graph structures in which we store annotation
data, whereas DBMS techniques are similarly oriented on relational models). Luck-
ily we identified a viable indexing mechanism in the form of MG4J from Sebastiano
Vigna,?® and this forms the core of annotation index management in Mfmir.

In this paper we presented the results applied to a use case in patent processing.
We also briefly introduced GATE Cloud, our approach to scalability for large anno-
tation tasks. GATE Cloud allows us to take a GATE application and deploy it across
machines in a cloud environment allowing the number of documents we can process
to be limited only by the machine power available to us.

Together Mimir and GATE Cloud allow us to deliver applications that appear
useful in a wide variety of multi-paradigm search contexts.

Acknowledgements This work was funded by the Information Retrieval Facility
(ir-facility.org). Erik Graf helped us get off the blocks with MG4J and Sebastiano Vigna helped us
run the extra mile. Thanks also to all the workshop participants listed above. We are grateful to our
reviewers who made salient and constructive contributions.

References

1. Aswani N, Tablan V, Bontcheva K, Cunningham H (2005) Indexing and querying linguistic
metadata and document content. In: Proceedings of fifth international conference on recent
advances in natural language processing (RANLP2005), Borovets, Bulgaria

2. Bikel D, Schwartz R, Weischedel R (1999) An algorithm that learns what’s in a name. Mach
Learn, Special Issue on Natural Language Learning 34(1-3)

3. Chomsky N (1999) Profit over people: neoliberalism and global order, 1st edn. Seven Stories
Press, New York

4. Cunningham H (2005) Information extraction, automatic. In: Encyclopedia of language and
linguistics, 2nd edn, pp 665-677

5. Cunningham H, Maynard D, Tablan V (2000) JAPE: a Java annotation patterns engine,
2nd edn. Research Memorandum CS-00-10, Department of Computer Science, University of
Sheffield, Nov 2000

6http://gate.ac.uk/sale/talks/sam/repositories- workshop-agenda.html.

2’Gianni Amati (Fondazione Ugo Bordoni/University of Glasgow); Mike Baycroft (Fairview
Research); Norbert Fuhr (University of Essen-Duisburg); Eric Graf (University of Glasgow);
Atanas Kiryakov (Ontotext); Borislav Popov (Ontotext); Ralf Schenkel (MPG); John Tait (IRF);
Arjen de Vries (ACM/CWI); Francisco Webber (Matrixware/IRF); Valentin Tablan (University
of Sheffield); Kalina Bontcheva (University of Sheffield); Hamish Cunningham (University of
Sheffield).

Z8http://mg4;.dsi.unimi.it/.

http://ir-facility.org
http://gate.ac.uk/sale/talks/sam/repositories-workshop-agenda.html
http://mg4j.dsi.unimi.it/

10.

11.

12.

13.

14.

IE and SA for Multi-Paradigm Information Management 327

Cunningham H, Maynard D, Bontcheva K, Tablan V, Dimitrov M, Dowman M, Aswani N,
Roberts I, Li Y, Funk A (2000) Developing language processing components with GATE
Version 6.0 (a user guide). http://gate.ac.uk/

Cunningham H, Maynard D, Bontcheva K, Tablan V (2002) GATE: a framework and graphical
development environment for robust NLP tools and applications. In: Proceedings of the 40th
anniversary meeting of the association for computational linguistics (ACL’02)

Cunningham H, Hanbury A, Riiger S (2010) Scaling up high-value retrieval to medium-
volume data. In: Cunningham H, Hanbury A, Riiger S (eds) Advances in multidisciplinary
retrieval (the 1st information retrieval facility conference). LNCS, vol 6107. Vienna, Austria,
May 2010. Springer, Berlin

Day D, Robinson P, Vilain M, Yeh A (1998) MITRE: description of the Alembic system used
for MUC-7. In: Proceedings of the seventh message understanding conference (MUC-7)
Greenwood MA, Cunningham H, Aswani N, Roberts I, Tablan V (2010) GATE Mimir: phi-
losophy, development, deployment and evaluation. Research Memorandum CS-10-05, Depart-
ment of Computer Science, University of Sheffield

Hull D, Ait-Mokhatar S, Chuat M, Eisele A, Gaussier E, Grefenstette G, Isabelle P, Samuels-
son C, Segond F (2001) Language technologies and patent search and classification. World
Pat Inf 23:265-268

LiY, Bontcheva K, Cunningham H (2005) SVM based learning system for information extrac-
tion. In: Winkler MNJ, Lawerence N (eds) Deterministic and statistical methods in machine
learning. LNAI, vol. 3635. Springer, Berlin, pp 319-339

Maynard D, Tablan V, Ursu C, Cunningham H, Wilks Y (2001) Named entity recognition
from diverse text types. In: Recent advances in natural language processing 2001 conference,
Tzigov Chark, Bulgaria, pp 257-274

Maynard D, Bontcheva K, Cunningham H (2003) Towards a semantic extraction of named
entities. In: Recent advances in natural language processing, Bulgaria

. Wanner L, Baeza-Yates R, Brugmann S, Codina J, Diallo B, Escorsa E, Giereth M, Kom-

patsiaris Y, Papadopoulos S, Pianta E, Piella G, Puhlmann I, Rao G, Rotard M, Schoester P,
Serafini L, Zervaki V (2008) Towards content-oriented patent document processing. World Pat
Inf 30(1):21-33

http://gate.ac.uk/

	Chapter 15: Information Extraction and Semantic Annotation for Multi-Paradigm Information Management
	15.1 Introduction
	15.2 Background
	15.2.1 Semantic Annotation
	15.2.2 Patents
	15.2.3 ANNIE and ANNIC

	15.3 GATE Mímir-A Multiparadigm Index
	15.3.1 What Is in a Mímir Index?
	Text
	Annotations
	Knowledge Base Data

	15.3.2 Searching Mímir Indexes
	15.3.2.1 Constructing a Query

	15.4 The Patent Annotation Task
	15.4.1 Section Annotations
	15.4.2 Reference Annotations
	15.4.3 Measurement Annotations

	15.5 Automatic Patent Annotation
	15.5.1 SAMIE Architecture
	15.5.2 Large Scale Annotation with GATE Cloud

	15.6 Multi-Paradigm Patent Search
	15.7 Discussion and Conclusions
	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

