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Preface

This volume contains the papers presented at IWOCA 2010: The 21st Inter-
national Workshop on Combinatorial Algorithms. The 21st IWOCA was held
in the Great Hall of the Strand Campus, King’s College London (KCL), July
26–28, 2010. The meeting was sponsored and supported financially by KCL
and the London Mathematical Society; it was hosted by the Algorithm Design
Group in the KCL Department of Informatics. The local Organizing Committee,
co-chaired by Tomasz Radzik and German Tischler, did an outstanding job; the
Program Committee was co-chaired by Costas Iliopoulos and Bill Smyth.

The EasyChair system was used to facilitate management of submissions and
refereeing, with three referees selected from the Program Committee assigned to
each paper. Out of 85 contributed papers, a total of 31 were accepted, subject to
revision, for presentation at the workshop and publication in the LNCS proceed-
ings. An additional 13 papers were accepted for poster presentation, of which
eight are included as four-page papers in the proceedings. Authors and titles of
all 44 accepted papers are available at the IWOCA 2010 website. The workshop
also featured a problem session, organized by Joe Ryan, and four invited talks
by Alan Frieze, Gregory Kucherov, Mirka Miller, and Dorothea Wagner.

The number of participants in IWOCA 2010 more than doubled the number
of speakers: altogether 75 researchers attended, affiliated to institutions in 20
different countries on five continents.

Here are brief summaries of the invited talks, in order of their presentation:

(1) Mirka Miller, University of Newcastle, Australia: “Constructions of Large
Graphs and Digraphs of Given Diameter and Maximum Degree” — a survey
of recent progress in a research area with numerous practical applications,
together with a knowledgeable outline and analysis of research directions
likely to be significant in the future.

(2) Dorothea Wagner, University of Karlsruhe, Germany: “Clustering of Static
and Temporal Graph” — a survey of a research area with growing applica-
tions to networks of all kinds (for example, in the social sciences and biology),
with particular focus on algorithmic aspects of quality measures for graph
clustering.

(3) Alan Frieze, Carnegie Mellon University, USA: “The Karp-Sipser Matching
Algorithm and Refinements” — an analysis of a well-known greedy graph
matching algorithm in the context of sparse random graphs, presenting new
performance results and describing its application to finding a maximum
matching.

(4) Gregory Kucherov, J.-V. Poncelet Laboratory, Russia and Laboratoire d’In-
formatique Fondamentale de Lille, France: “Seeding Methods for Biosequence
Search: Algorithmic Ideas and Applications” — a discussion of the use of
spaced seeds as a technique for searching DNA sequences, describing a new
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method for designing seeds adapted to different search situations, together
with applications to protein search and mapping reads from high-throughput
sequencing technology.

It was a warm summer in London, and the weather continued to cooperate
throughout a delightful Thames cruise on the riverboat Viscountess, where the
conference banquet was held.

Finally we would like to thank the members of the Program Committee and
the subreferees for their fine work, their thorough reviews, their constructive and
helpful comments.

December 2010 Costas S. Iliopoulos
William F. Smyth
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Path-Based Supports for Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and
Arnaud Sallaberry

On Improved Exact Algorithms for L(2, 1)-Labeling of Graphs . . . . . . . . . 34
Konstanty Junosza-Szaniawski and Pawe�l Rza̧żewski
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Blocks of Hypergraphs: Applied to Hypergraphs and Outerplanarity . . . . 201
Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and
Arnaud Sallaberry

Testing the Simultaneous Embeddability of Two Graphs Whose
Intersection Is a Biconnected Graph or a Tree . . . . . . . . . . . . . . . . . . . . . . . 212

Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, and Ignaz Rutter

Skip Lift: A Probabilistic Alternative to Red-Black Trees . . . . . . . . . . . . . 226
Prosenjit Bose, Karim Doüıeb, and Pat Morin
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Parameterized Algorithms for the Independent
Set Problem in Some Hereditary Graph Classes

Konrad Dabrowski1, Vadim Lozin1, Haiko Müller2, and Dieter Rautenbach3

1 DIMAP, University of Warwick, Coventry CV4 7AL, UK
2 School of Computing, University of Leeds, Leeds, LS2 9JT, UK

3 Institut für Optimierung und Operations Research,
Universität Ulm, D-89069 Ulm, Germany

Abstract. The maximum independent set problem is NP-complete for
graphs in general, but becomes solvable in polynomial time when re-
stricted to graphs in many special classes. The problem is also intractable
from a parameterized point of view. However, very little is known about
parameterized complexity of the problem in restricted graph classes. In
the present paper, we analyse two techniques that have previously been
used to solve the problem in polynomial time for graphs in particular
classes and apply these techniques to develop fpt-algorithms for graphs
in some classes where the problem remains NP-complete.

Keywords: Independent set; Fixed-parameter tractability; Augmenting
graph; Modular decomposition; Hereditary class of graphs.

AMS subject classification: 05C69.

1 Introduction

We study simple undirected graphs without loops or multiple edges. In a graph,
an independent set is a subset of vertices, no two of which are adjacent and a
clique is a subset of pairwise adjacent vertices. The size of a maximum indepen-
dent set in a graph G is called the independence number of G and is denoted
α(G), while the size of a maximum clique is called the clique number of G and
is denoted ω(G).

The maximum independent set problem is that of finding an independent
set of maximum size in a graph. From a computational point of view, this is a
difficult problem, i.e. it is NP-hard. Moreover, it remains NP-hard under sub-
stantial restrictions, for instance, for triangle-free graphs [27] and for graphs of
vertex degree bounded by d, where d ≥ 3. On the other hand, in many spe-
cial graph classes the problem admits polynomial-time algorithms, which is the
case for perfect graphs [16], claw-free graphs [24], and graphs of bounded clique-
width [7].

In this paper, we study the following parameterization of the maximum inde-
pendent set problem:

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 1–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 K. Dabrowski et al.

k-independent set
Instance: A graph G and a positive integer k.
Parameter: k.
Problem: Decide whether G has an independent set of size k

and find such a set if it exists.

An approach to deal with NP-complete problems in practice is to split a
problem that contains a parameter as part of the input into sub-problems for each
value of this parameter. A parameterized problem is said to be fixed-parameter
tractable (fpt) if it can be solved in time f(k)p(n) on instances of input size n,
where f(k) is an efficiently computable function, depending only on the value of
the parameter k and p(n) is a polynomial independent of k.

Unfortunately, the maximum independent set problem remains difficult
even under this relaxation. More formally, it is W[1]-hard [10]. However, for
graphs in some restricted classes the problem becomes fixed-parameter tractable.
In particular, this is the case for graphs without large cliques, which follows from
a Ramsey argument (see e.g. [29]). This argument alone implies fixed-parameter
tractability of the problem for graphs of bounded degree, of bounded degen-
eracy, of bounded chromatic number, in all proper minor-closed graph classes
(which includes, in particular, classes of graphs excluding single-crossing graphs
as minors [8]), all proper classes closed under taking subgraphs (not necessar-
ily induced). Beyond this argument, very little is known on the parameterized
complexity of the problem in restricted graph families. Other classes where the
problem is known to be fixed-parameter tractable are the complements of t-
multiple-interval graphs [13], segment intersection graphs with a bounded num-
ber of directions [19] and graphs whose vertices can be partitioned into two
subsets of which one induces a graph of bounded clique number and the other
induces a graph of bounded independence number [20].

In search of new fpt results, we analyse algorithmic techniques which are
traditionally used for obtaining polynomial-time solutions for the maximum in-
dependent set problem on graphs in special classes. In particular, we study the
augmenting graph approach and the modular decomposition technique and ap-
ply them to develop fpt-algorithms that solve the problem in several new classes
of graphs, generalising some of the previously known results.

All classes considered in this paper are hereditary, in the sense that for any
graph G in such a class, all induced subgraphs of G are also in the class. It is known
that a class of graphs is hereditary if and only if it can be characterised by a set of
forbidden induced subgraphs. We denote the set of graphs containing no induced
subgraphs from a set M by Free(M) and call graphs in this class M -free.

For a graph G we denote the vertex set and the edge set of G by V (G) and
E(G) respectively. If v is a vertex of G, then N(v) is the neighbourhood of
v (i.e. the set of vertices adjacent to v) and N [v] = N(v) ∪ {v} is the closed
neighbourhood of v. For a subset U ⊆ V (G) we let G[U ] be the subgraph of
G induced by U , and N(U) be the neighbourhood of U , i.e. the set of vertices
outside U that have at least one neighbour in U . By R(r, s) we denote the
Ramsey number, i.e. the minimum number n such that every graph with at
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least n vertices has either an independent set of size r or a clique of size s. As
usual, Kn, Cn and Pn denote the complete graph, the chordless cycle and the
chordless path on n vertices, respectively. We denote the graph obtained from
Kn by deleting an edge by Kn − e.

2 The Augmenting Graph Technique

The idea of augmenting graphs was proposed by Berge [3] and then implemented
by Edmonds [11] to solve the maximum matching problem, which is equivalent to
the maximum independent set problem restricted to the class of line graphs.
With this restriction, the idea reduces to finding augmenting chains. However,
the notion of an augmenting graph lies in the basis of a general approach to
solve the problem, which can be described as follows:

Let G be a graph and S an independent set in G. We shall call the vertices
of S white and the remaining vertices of G black.

Definition 1. An augmenting graph for S in G is an induced bipartite subgraph
H = (W, B, E) of G, where W ∪ B is the bipartition of its vertex set and E its
edge set, such that:

– |B| > |W |,
– W ⊆ S,
– B ⊆ V (G)\S, and
– N(B) ∩ S ⊆W .

Clearly if H = (W, B, E) is an augmenting graph for S, then S is not a maximum
independent set in G, since the set S′ = (S\W )∪B is independent and |S′| > |S|.
Conversely, if S is not a maximum independent set, and S′ is a larger independent
set, then the subgraph of G induced by the set (S \ S′) ∪ (S′ \ S) is augmenting
for S. Thus we have the following theorem:

Theorem of Augmenting Graphs. An independent set S in a graph G is
maximum if and only if there are no augmenting graphs for S in G.

This theorem suggests the following general approach to find a maximum inde-
pendent set in a graph G: Begin with any independent set S in G and, as long
as S admits an augmenting graph H , augment S as above. This approach has
proven to be a useful tool to develop approximate solutions to the problem [18],
to compute bounds on the independence number [9], and to solve the problem
in polynomial time for graphs in special classes such as claw-free graphs [24],
fork-free graphs [1] and some others [2, 4, 22, 26]. In the present paper, we use
the idea of augmenting graphs to derive the following fpt result:

Theorem 1. The k-independent set problem can be solved for (Kr − e)-free
n-vertex graphs in time f(k, r)p(n), where f(k, r) is a function of k and r only
and p(n) is a polynomial independent of k and r.

Proof. Let G be a (Kr−e)-free graph with n vertices and let S be an independent
set in G. We assume that S is maximal with respect to set-inclusion and admits
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no augmenting P3. Obviously such a set can be found in polynomial time. If
|S| ≥ k, we are done. Therefore, we suppose that |S| < k and explain how to
determine whether G admits an augmenting graph in time g(k, r)p(n), which
clearly implies the desired result for f(k, r) = kg(k, r). We split the process of
finding an augmenting graph into the following general steps.

Step 1: Partition the set of black vertices of G into subsets called node classes
putting two vertices in the same node class if and only if they have the same
neighbourhood in S. Note that there are at most 2|S|− 1 < 2k node classes. We
call a node class light if its neighbourhood in S contains exactly 1 vertex and
heavy otherwise. Since S admits no augmenting P3, every light node class is a
clique. Clearly, this step can be implemented in polynomial time.

Step 2: Consider a heavy node class C. Since G is (Kr− e)-free, the subgraph
of G induced by C must be Kr−2-free. Therefore, if |C| ≥ R(k, r − 2), then C
necessarily has an independent set of size k. Thus, in this case we can arbitrarily
choose R(k, r − 2) vertices in the class and then find an independent set of size
k among them in time bounded by a function of k and r. Otherwise, the size of
every heavy node class is less than R(k, r − 2), in which case the total number
of vertices in heavy node classes is bounded by a function of k and r.

Step 3: Generate all independent sets contained in the union of the heavy
node classes. From the previous step it follows that the number of such sets and
the time needed to generate all of them is bounded by a function of k and r. For
each independent set T found in this step, execute Step 3.1.

Step 3.1: If the size of T is strictly larger than the number of its white neigh-
bours, then G[T ∪ (N(T )∩S)] is an augmenting graph. Otherwise, extend T by
adding to it some vertices from the light node classes. To this end, delete from
the light node classes those vertices that have neighbours in T and then split the
thus-modified light classes into two groups: those containing at most kr vertices,
we call them small, and those containing more than kr vertices, called large. Let
s be the number of small classes and l the number of large classes. Obviously,
s + l < k.

Extend T to a larger independent set by adding to it some vertices from small
node classes. Since the number of small node classes is at most k and each of
them contains at most kr vertices, the number of such extensions and the time
needed to find all of them is bounded by a function of k and r. For each such an
extension T ′, execute Step 3.1.1.

Step 3.1.1: If the size of T ′ is strictly larger than the number of its white
neighbours, then G[T ′∪(N(T ′)∩S)] is an augmenting graph. Otherwise, extend
T ′ by adding to it vertices from the large node classes. To this end, delete from
the large node classes those vertices that have neighbours in T ′. Since every light
class (small or large) is a clique,

– T ′ contains at most one vertex in each light class,
– no vertex u from a light node class has more than r−3 neighbours in another

light node class, since otherwise a Kr − e arises using u, r− 2 neighbours of
u in another light node class and their only neighbour in S.
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Therefore, deleting from the large node classes those vertices that have neigh-
bours in T ′ leaves at least lr vertices in each large node class. Consequently, the
set of vertices left in the large node classes necessarily contains an independent
set L of size l. This set can be constructed iteratively by picking an arbitrary
vertex, deleting its neighbours, and so on. Now we add L to T ′ and check if
G[(T ′ ∪L)∪ (N(T ′ ∪L)∩ S)] is an augmenting graph. Observe that it does not
matter how we choose L, since for any choice of this set, its neighbourhood in
S coincides with the neighbourhood of the large node classes in S.

Summarising, we conclude that determining whether S admits an augmenting
graph can be done in time g(k, r)p(n). The number of augmentations to solve
the problem is at most k. Therefore, the result follows. ��

3 Modular Decomposition

The idea of modular decomposition was first introduced in the 1960s by Gal-
lai [15], and also appeared in the literature under various other names, such as
prime tree decomposition [12], X-join decomposition [17], and substitution de-
composition [25]. To describe this idea, let us fix some terminology.

Given a graph G = (V, E), a subset of vertices U ⊆ V and a vertex x ∈ V
outside U , we say that x distinguishes U if x has both a neighbour and a non-
neighbour in U . A subset U ⊆ V is called a module of G if no vertex in V \ U
distinguishes U . A module U is nontrivial if 1 < |U | < |V |, otherwise it is trivial.
A graph is called prime if it has only trivial modules.

An important property of maximal modules is that if G and the complement
of G are both connected, then the maximal modules of G are pairwise disjoint.
Moreover, from the above definition it follows that if U and W are maximal
modules, then either all possible edges between them are present, or none of
them are. This property is useful when we deal with the weighted version of the
maximum independent set problem.

We say that G is a weighted graph if each vertex v of G is assigned a positive
integer w(v), the weight of the vertex. The maximum weight independent
set problem is that of finding an independent set of maximum total weight in
a weighted graph. This maximum total weight is denoted αw(G). By using the
properties of maximal modules we can find a maximum weight independent set
in G by:

(1) recursively solving the problem in the subgraphs of G induced by maximal
modules,

(2) contracting each maximal module M to a single vertex and assigning to it
the weight αw(G[M ]), obtaining in this way a new graph G0,

(3) solving the problem for the graph G0.

The graph G0 constructed in step 2 of the outlined procedure is prime. So the
procedure reduces the maximum weight independent set problem from any
hereditary class X to prime graphs in X . This reduction can be implemented
in polynomial time (see e.g. [23]). In this section we show that this is also an
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fpt-reduction, i.e. it preserves fixed-parameter tractability. In case of weighted
graphs we parameterize the problem by the weight W of a solution. Without loss
of generality we will assume that if the input graph has no independent set of
weight at least W , the problem asks for an independent set of maximum weight.
This generalisation increases the complexity of any algorithm solving the prob-
lem at most W times and therefore preserves fixed-parameter tractability. More
formally, we consider the following parameterization of the maximum weight
independent set problem:

w-independent set
Instance: A weighted graph G with weight function w : V (G)→ {1, 2, 3, . . .}

and a positive integer W .
Parameter: W .
Problem: Decide whether G has an independent set of weight at least W and

find such a set if it exists. If no such set exists, find an independent
set of weight αw(G) instead.

Theorem 2. Let X be a hereditary class of graphs and let X0 denote the class
of prime graphs in X . If the w-independent set problem is fixed-parameter
tractable in X0, then it is fixed-parameter tractable in X .

Proof. Let (G, W ) be an instance of the w-independent set problem with
G ∈ X . Let n denote the number of vertices of G. Recall that the modular
decomposition tree T of G can be determined in linear time [23,6] and that the
set of leaves of T equals the vertex set V of G. To each node v of T we associate
the subgraph Gv of G induced by the leaves of the subtree of T rooted at v.
Processing the vertices of T in an order of non-increasing height, for each node v
of T we will find an independent set Iv of Gv such that w(Iv) ≥ min{W, αw(Gv)}.
If the weight of Iv is at least W , we stop the procedure and output Iv. Otherwise,
to each node v we assign an independent set Iv of weight αw(Gv). The procedure
starts by assigning to each leaf v of T the independent set Iv = {v}. Now let v
be an inner node of T .

If Gv is disconnected, then the children v1, v2, . . . , vl of v correspond to the
connected components of Gv. In this case, we let Iv = Iv1 ∪ Iv2 ∪ . . . Ivl

.
If the complement of Gv is disconnected, then the children v1, v2, . . . , vl of v

correspond to the connected components of the complement of Gv. In this case,
we let Iv = Ivi where w(Ivi ) = max{w(Iv1 ), w(Iv2 ), . . . , w(Ivl

)}.
Finally, if both Gv and its complement are connected, then the children

v1, . . . , vl of v correspond to the subgraphs of Gv induced by the maximal mod-
ules U1, U2, . . . , Ul of Gv, which partition the vertex set of Gv. Let the graph
G0

v arise from Gv by contracting each maximal module Ui of Gv into a single
vertex, denoted i, to which we assign the weight w(i) = w(Ivi ). Since G0

v belongs
to X0, there is an algorithm A that solves w-independent set on the instance
(G0

v, W ) in time f(W )lc ≤ f(W )nc, where c is a constant. If I is the output of
A, then let Iv =

⋃
i∈I Ivi . It is not difficult to see that the set assigned to the

root of T correctly solves w-independent set on the instance (G, W ). Since T
has O(n) vertices, the overall time complexity is at most f(W )nc+1. ��
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Theorem 2 reduces the w-independent set problem from general graphs to
prime graphs. The corresponding result for the non-parameterized problem is
well-known. Our next result shows that the problem can be further reduced to
prime graphs containing a clique Kr for a certain value of r.

Theorem 3. For any r ∈ N, the w-independent set problem is fixed-parameter
tractable in the class of Kr-free graphs.

Proof. Let (G, W ) be an instance of the w-independent set problem with G =
(V, E) being a Kr-free graph on n vertices. Since the weight of each vertex is a
positive integer, the weight of every independent set is at least its size. Therefore,
if G has at least R(r, W ) vertices it necessarily has an independent set of size
(and therefore of weight) at least W . If the number of vertices of G is strictly
more than R(r, W ), we can delete, without loss of generality, any n − R(r, W )
vertices of G, since the remaining vertices of the graph still necessarily have an
independent set of size (of weight at least) W .

When the number of vertices of G is bounded by R(r, W ), the problem can
be solved in time independent of n. This completes the proof. ��
To illustrate Theorems 2 and 3, we apply them to solve the w-independent
set problem in the class of (house, bull)-free graphs. The house and bull graphs
are shown in Fig. 1. Observe that this class contains (C3, C4)-free graphs, where
the maximum independent set problem is NP-hard [27].

Fig. 1. The house and the bull graphs

Theorem 4. The w-independent set problem is fixed-parameter tractable in
the class of (house,bull)-free graphs.

Proof: Our proof is based on a characterisation of (house, bull)-free graphs
from [28]: every prime (house, bull)-free graph is either triangle-free or the com-
plement of a bipartite chain graph. (A bipartite graph is a bipartite chain graph
if the vertices in both parts of the bipartition are linearly ordered by inclusion of
neighbourhoods.) Obviously, for the complements of bipartite graphs, the max-
imum weight independent set problem can be solved in polynomial time,
since the size of any independent set in such a graph is at most 2. Also, by
Theorem 3, the w-independent set problem is fixed-parameter tractable in
the class of triangle-free graphs. Therefore, by Theorem 2, it is fixed-parameter
tractable in the class of (house, bull)-free graphs. �
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4 Concluding Remarks and Open Problems

In this paper, we used the augmenting graph technique and modular decompo-
sition to obtain new results on the parameterized complexity of the maximum
independent set problem in hereditary classes of graphs. The new results to-
gether with some previously known results allow us to conclude, in particular,
that the problem is fixed-parameter tractable in all hereditary classes defined
by a single forbidden induced subgraph G with at most 4 vertices, except for
G = C4. Finding the parameterized complexity of the problem in the class of
C4-free graphs is a challenging open problem. In addition to the two techniques
studied in this paper, some other approaches can be useful for finding an answer
to the above question, such as graph transformations [21], separating cliques [5]
and split decomposition [30].
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{kubica,jrad,rytter,walen}@mimuw.edu.pl

Abstract. A run is an inclusion maximal occurrence in a string (as a
subinterval) of a repetition v with a period p such that 2p ≤ |v|. The
exponent of a run is defined as |v|/p and is ≥ 2. We show new bounds on
the maximal sum of exponents of runs in a string of length n. Our upper
bound of 4.1 n is better than the best previously known proven bound of
5.6 n by Crochemore & Ilie (2008). The lower bound of 2.035 n, obtained
using a family of binary words, contradicts the conjecture of Kolpakov &
Kucherov (1999) that the maximal sum of exponents of runs in a string
of length n is smaller than 2n.

1 Introduction

Repetitions and periodicities in strings are one of the fundamental topics in
combinatorics on words [1,14]. They are also important in other areas: lossless
compression, word representation, computational biology, etc. In this paper we
consider bounds on the sum of exponents of repetitions that a string of a given
length may contain. In general, repetitions are studied also from other points
of view, like: the classification of words (both finite and infinite) not containing
repetitions of a given exponent, efficient identification of factors being repetitions
of different types and computing the bounds on the number of various types of
repetitions occurring in a string. More results and motivation can be found in a
survey by Crochemore et al. [4].

The concept of runs (also called maximal repetitions) has been introduced
to represent all repetitions in a string in a succinct manner. The crucial prop-
erty of runs is that their maximal number in a string of length n (denoted as
ρ(n)) is O(n), see Kolpakov & Kucherov [10]. This fact is the cornerstone of
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any algorithm computing all repetitions in strings of length n in O(n) time. Due
to the work of many people, much better bounds on ρ(n) have been obtained.
The lower bound 0.927 n was first proved by Franek & Yang [7]. Afterwards, it
was improved by Kusano et al. [13] to 0.944565 n employing computer experi-
ments, and very recently by Simpson [18] to 0.944575712 n. On the other hand,
the first explicit upper bound 5 n was settled by Rytter [16], afterwards it was
systematically improved to 3.48 n by Puglisi et al. [15], 3.44 n by Rytter [17],
1.6 n by Crochemore & Ilie [2,3] and 1.52 n by Giraud [8]. The best known result
ρ(n) ≤ 1.029 n is due to Crochemore et al. [5], but it is conjectured [10] that
ρ(n) < n. Some results are known also for repetitions of exponent higher than
2. For instance, the maximal number of cubic runs (maximal repetitions with
exponent at least 3) in a string of length n (denoted ρcubic(n)) is known to be
between 0.406 n and 0.5 n, see Crochemore et al. [6].

A stronger property of runs is that the maximal sum of their exponents in a
string of length n (notation: σ(n)) is linear in terms of n, see final remarks in
Kolpakov & Kucherov [12]. This fact has applications to the analysis of various
algorithms, such as computing branching tandem repeats: the linearity of the
sum of exponents solves a conjecture of [9] concerning the linearity of the number
of maximal tandem repeats and implies that all can be found in linear time. For
other applications, we refer to [12]. The proof that σ(n) < cn in Kolpakov and
Kucherov’s paper [12] is very complex and does not provide any particular value
for the constant c. A bound can be derived from the proof of Rytter [16] but
the paper mentions only that the obtained bound is “unsatisfactory” (it seems
to be 25 n). The first explicit bound 5.6 n for σ(n) was provided by Crochemore
and Ilie [3], who claim that it could be improved to 2.9 n employing computer
experiments. As for the lower bound on σ(n), no exact values were previously
known and it was conjectured [11,12] that σ(n) < 2n.

In this paper we provide an upper bound of 4.1 n on the maximal sum of
exponents of runs in a string of length n and also a stronger upper bound of
2.5 n for the maximal sum of exponents of cubic runs in a string of length n. As
for the lower bound, we bring down the conjecture σ(n) < 2n by providing an
infinite family of binary strings for which the sum of exponents of runs is greater
than 2.035 n.

2 Preliminaries

We consider words (strings) u over a finite alphabet Σ, u ∈ Σ∗; the empty
word is denoted by ε; the positions in u are numbered from 1 to |u|. For u =
u1u2 . . . um, let us denote by u[i . . j] a factor of u equal to ui . . . uj (in particular
u[i] = u[i . . i]). Words u[1 . . i] are called prefixes of u, and words u[i . . |u|] suffixes
of u.

We say that an integer p is the (shortest) period of a word u = u1 . . . um

(notation: p = per(u)) if p is the smallest positive integer such that ui = ui+p

holds for all 1 ≤ i ≤ m− p. We say that words u and v are cyclically equivalent
(or that one of them is a cyclic rotation of the other) if u = xy and v = yx for
some x, y ∈ Σ∗.
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A run (also called a maximal repetition) in a string u is an interval [i . . j]
such that:

– the period p of the associated factor u[i . . j] satisfies 2p ≤ j − i + 1,
– the interval cannot be extended to the right nor to the left, without violating

the above property, that is, u[i− 1] �= u[i+ p− 1] and u[j− p+1] �= u[j +1],
provided that the respective letters exist.

A cubic run is a run [i . . j] for which the shortest period p satisfies 3p ≤ j− i+1.
For simplicity, in the rest of the text we sometimes refer to runs and cubic runs
as to occurrences of the corresponding factors of u. The (fractional) exponent of
a run v, denoted exp(v), is defined as (j − i + 1)/p.

For a given word u ∈ Σ∗, we introduce the following notation:

– ρ(u) and ρcubic(u) are the numbers of runs and cubic runs in u resp.
– σ(u) and σcubic(u) are the sums of exponents of runs and cubic runs in u

resp.

For a non-negative integer n, we use the same notations ρ(n), ρcubic(n), σ(n)
and σcubic(n) to denote the maximal value of the respective function for a word
of length n.

3 Upper Bounds for σ(n) and σcubic(n)

In this section we utilize the concept of handles of runs as defined in [6]. The
original definition refers only to cubic runs, but here we extend it also to ordinary
runs.

Let u ∈ Σ∗ be a word of length n. Let us denote by P = {p1, p2, . . . , pn−1} the
set of inter-positions in u that are located between pairs of consecutive letters
of u. We define a function H assigning to each run v in u a set of some inter-
positions within v (called later on handles) — H is a mapping from the set of
runs occurring in u to the set 2P of subsets of P . Let v be a run with period
p and let w be the prefix of v of length p. Let wmin and wmax be the minimal
and maximal words (in lexicographical order) cyclically equivalent to w. H(v) is
defined as follows:

a) if wmin = wmax then H(v) contains all inter-positions within v,
b) if wmin �= wmax then H(v) contains inter-positions from the middle of any

occurrence of w2
min or w2

max in v.

Note that H(v) can be empty for a non-cubic-run v.

Proofs of the following properties of handles of runs can be found in [6]:

1. Case (a) in the definition of H(v) implies that |wmin| = 1.
2. H(v1) ∩H(v2) = ∅ for any two distinct runs v1 and v2 in u.

To prove the upper bound for σ(n), we need to state an additional property of
handles of runs. Let R(u) be the set of all runs in a word u, and let R1(u) and
R≥2(u) be the sets of runs with period 1 and at least 2 respectively.
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b a b a a b a b a a b a b a a a b a a b a b a a ba

w

a b aba

w

max

min

Fig. 1. An example of a run v = (abaab)6a with exponent exp(v) = 6.2. It contains
�6.2� − 1 = 5 occurrences of each of the words wmin = aabab and wmax = babaa. The
set H(v) contains 2 · (�6.2� − 2) = 8 inter-positions, pointed by arrows in the figure

Lemma 1
If v ∈ R1(u) then exp(v) = |H(v)|+ 1.
If v ∈ R≥2(u) then exp(v)� ≤ |H(v)|

2 + 3.

Proof. For the case of v ∈ R1(u), the proof is straightforward from the definition
of handles. Assume now that v ∈ R≥2(u) and let w be a prefix of v of length
per(v). Then the word wk for k = �exp(v)� is a prefix of v, and therefore both
words wk−1

min and wk−1
max are factors of v. Each of the words provides k− 2 distinct

handles for v. Hence,

|H(v)| ≥ 2 · (�exp(v)� − 2) . ��
Now we are ready to prove the upper bound for σ(n). In the proof we use the
bound ρ(n) ≤ 1.029 n on the number of runs from [5].

Theorem 1. The sum of the exponents of runs in a string of length n is less
than 4.1 n.

Proof. Let u be a word of length n. Using Lemma 1, we obtain:

σ(u) =
∑

v∈R1(u)

exp(v) +
∑

v∈R≥2(u)

exp(v)

≤
∑

v∈R1(u)

(|H(v)|+ 1) +
∑

v∈R≥2(u)

( |H(v)|
2

+ 3
)

=
∑

v∈R1(u)

|H(v)|+ |R1(u)|+
∑

v∈R≥2(u)

|H(v)|
2

+ 3 · |R≥2(u)|

≤ 3 · |R(u)|+ A + B/2, (1)

where A =
∑

v∈R1(u) |H(v)| and B =
∑

v∈R≥2(u) |H(v)|. Due to the disjointness
of handles of runs (the second property of handles), A + B < n, and thus,
A + B/2 < n. Combining this with (1), we obtain:

σ(u) < 3·|R(u)|+n ≤ 3·ρ(n)+n ≤ 3·1.029 n+n < 4.1 n . ��
A similar approach for cubic runs, this time using the bound of 0.5 n for ρcubic(n)
from [6], enables us to immediately provide a stronger upper bound for the
function σcubic(n).
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Theorem 2. The sum of the exponents of cubic runs in a string of length n is
less than 2.5 n.

Proof. Let u be a word of length n. Using same inequalities as in the proof of
Theorem 1, we obtain:

σcubic(u) < 3 · |Rcubic(u)|+ n ≤ 3 · ρcubic(n) + n ≤ 3 · 0.5 n + n = 2.5 n ,

where Rcubic(u) denotes the set of all cubic runs of u. ��

4 Lower Bound for σ(n)

Let us start by investigating the sums of exponents of runs for words of two
known families that contain a large number of runs. We consider first the words
defined by Franek & Yang [7], then the Padovan words defined by Simpson [18].
They give large sums of exponents, however below 2n. Then we construct a new
family of words which breaks the barrier of 2n.

Table 1. Number of runs and sum of exponents of runs in Franek & Yang’s [7] words xi

i |xi| ρ(xi)/|xi| σ(xi) σ(xi)/|xi|
1 6 0.3333 4.00 0.6667
2 27 0.7037 39.18 1.4510
3 116 0.8534 209.70 1.8078
4 493 0.9047 954.27 1.9356
5 2090 0.9206 4130.66 1.9764
6 8855 0.9252 17608.48 1.9885
7 37512 0.9266 74723.85 1.9920
8 158905 0.9269 316690.85 1.9930
9 673134 0.9270 1341701.95 1.9932

Let ◦ be a special concatenation operator defined as:

x[1 . .n] ◦ y[1 . .m] =
{

x[1 . . n]y[2 . .m] = x[1 . . n− 1]y[1 . .m] if x[n] = y[1],
x[1 . . n− 1]y[2 . .m] if x[n] �= y[1].

Also let g be a morphism defined as:

g(x) =

⎧⎨
⎩

010010 if x = 0,
101101 if x = 1,

g(x[1 . .n]) = g(x[1]) ◦ g(x[2]) ◦ . . . ◦ g(x[n]) if |x| > 1.

Then xi = gi(0) is the family of words described by Franek and Yang [7], which
gives the lower bound ρ(n) ≥ 0.927 n, conjectured for some time to be optimal.
The sums of exponents of runs of several first terms of the sequence xi are listed
in Table 1.
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Define a mapping δ(x) = R(f(x)), where R(x) is the reverse of x and f is the
morphism

f(a) = aacab, f(b) = acab, f(c) = ac .

Let y′
i be a sequence of words defined for i > 5 recursively using y′

i+5 = δ(y′
i).

The first 5 elements of the sequence y′
i are:

b, a, ac, ba, aca .

The strings y′
i are called modified Padovan words. If we apply the following

morphism h:
h(a) = 101001011001010010110100,

h(b) = 1010010110100, h(c) = 10100101

to y′
i, we obtain a sequence of run-rich strings yi defined by Simpson [18], which

gives the best known lower bound ρ(n) ≥ 0.944575712 n. Table 2 lists the sums
of exponents of runs of selected words from the sequence yi.

Table 2. Number of runs and sum of exponents of runs in Simpson’s [18] modified
Padovan words yi

i |yi| ρ(yi)/|yi| σ(yi) σ(yi)/|yi|
1 13 0.6154 16.00 1.2308
6 69 0.7971 114.49 1.6593

11 287 0.8990 542.72 1.8910
16 1172 0.9309 2303.21 1.9652
21 4781 0.9406 9504.38 1.9879
26 19504 0.9434 38903.64 1.9946
31 79568 0.9443 158862.94 1.9966
36 324605 0.9445 648270.74 1.9971
41 1324257 0.9446 2644879.01 1.9973

The values in Tables 1 and 2 have been computed experimentally. They sug-
gest that for the families of words xi and yi the maximal sum of exponents could
be less than 2n. We show, however, a lower bound for σ(n) that is greater than
2n.

Theorem 3. There are infinitely many binary strings w such that

σ(w)
|w| > 2.035 .

Proof. Let us define two morphisms φ : {a, b, c} �→ {a, b, c} and ψ : {a, b, c} �→
{0, 1} as follows:

φ(a) = baaba, φ(b) = ca, φ(c) = bca

ψ(a) = 01011, ψ(b) = ψ(c) = 01001011 .
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Table 3. Sums of exponents of runs in words wi

i |wi| σ(wi) σ(wi)/|wi|
1 31 47.10 1.5194
2 119 222.26 1.8677
3 461 911.68 1.9776
4 1751 3533.34 2.0179
5 6647 13498.20 2.0307
6 25205 51264.37 2.0339
7 95567 194470.30 2.0349
8 362327 737393.11 2.0352
9 1373693 2795792.39 2.0352

10 5208071 10599765.15 2.0353

Fig. 2. Comparison of the sum of exponents of runs in selected families of words

We define wi = ψ(φi(a)). Table 3 and Figure 2 show the sums of exponents of
runs in words w1, . . . , w10, computed experimentally.

Clearly, for any word w = (w8)k, k ≥ 1, we have

σ(w)
|w| > 2.035 . ��

5 Relating the Upper Bound for σ(n) to Semicubic Runs

Recall that 1.029 n is the best known upper bound for ρ(n) [5]. On the other
hand, the best known corresponding upper bound for cubic runs, for which the
exponent is at least 3, is much smaller: 0.5 n [6].
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This suggests that the upper bound for the maximal number of runs with
an intermediate exponent, e.g. at least 2.5, in a string of length n could be
smaller than the general bound for exponent at least 2. Let us call such runs
with exponent at least 2.5 semicubic runs.

Observation
The number of semicubic runs in Fibonacci strings is relatively small, it can be
proved that in case of these strings every semicubic run is also cubic (if exponent
is at least 2.5 then it is at least 3).

Let ρsemic(u) be the number of semicubic runs in the string u and let ρsemic(n)
denote the maximum of ρsemic(u) over all strings u of length n.

Using extensive computer experiments, we have found the following family of
binary words zi = ν(μi(a)), where:

μ(a) = ba

μ(b) = aba

ν(a) = 0010100010
ν(b) = 001010

that contain, for sufficiently large i, at least 0.52 n semi-cubic runs, see Table 4.

Table 4. The number of semicubic runs in the words zi = ν(μi(a))

i |zi| ρsemic(zi) ρsemic(zi)/|zi|
1 16 5 0.3125
2 42 17 0.4048
3 100 46 0.4600
4 242 118 0.4876
5 584 296 0.5069
6 1410 724 0.5135
7 3404 1762 0.5176
8 8218 4266 0.5191
9 19840 10316 0.5200

10 47898 24920 0.5203
11 115636 60182 0.5204
12 279170 145310 0.5205
13 673976 350832 0.5205
14 1627122 847004 0.5206

Using the same program we managed to construct stringswithρ(n)≥0.944575 n,
that is, very close to the best known lower bound for this function and also close
to the best known upper bound. This suggests that the data from the program
are good approximation for semicubic runs as well. Therefore we conjecture the
following.

Conjecture 1. [Semicubic-Runs Conjecture]
ρsemic(n) ≤ 0.6 n.

If the above conjecture holds, it lets us instantly improve the upper bound for
σ(n).
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Theorem 4. If Conjecture 1 is true then σ(n) ≤ 3.9 n.

Proof. Let Rsemic(u) denote the set of all semicubic runs in a string u. Conjec-
ture 1 lets us improve the part of the proof of Theorem 1 related to the term∑

v∈R≥2(u) exp(v):

σ(u) =
∑

v∈R1(u)

exp(v) +
∑

v∈R≥2(u)

exp(v)

=
∑

v∈R1(u)

exp(v) +
∑

v∈R≥2(u)\Rsemic(u)

exp(v) +
∑

v∈Rsemic(u)

exp(v)

≤
∑

v∈R1(u)

(|H(v)|+ 1) +
∑

v∈R≥2(u)\Rsemic(u)

2.5 +
∑

v∈Rsemic(u)

( |H(v)|
2

+ 3
)

≤
∑

v∈R(u)

|H(v)|+ |R1(u)|+ 2.5 · |R≥2(u) \ Rsemic(u)|+ 3 · |Rsemic(u)|

≤ n + 2.5 · (1.029 n− 0.6 n) + 3 · 0.6 n < n + 1.1 n + 1.8 n = 3.9 n .

In the above formula, in order to obtain an upper bound we used a greedy
approach to distribute 1.029 n among the sizes of the sets R1(u), R≥2(u) \
Rsemic(u) and Rsemic(u). ��

6 Conclusions

In this paper we have provided an upper bound of 4.1 n on the maximal sum
of exponents of runs in a string of length n and also a stronger upper bound of
2.5 n for the maximal sum of exponents of cubic runs in a string of length n. As
for the lower bound, we bring down the conjecture σ(n) < 2n by providing an
infinite family of binary strings for which the sum of exponents of runs is greater
than 2.035 n.

A natural open problem is to tighten these bounds. One of the possible direc-
tions for this improvement, presented in this paper, consists in finding bounds
for the maximal number of runs with exponent at least f , where f ∈ (2, 3), in a
string of length n.

References

1. Berstel, J., Karhumaki, J.: Combinatorics on words: a tutorial. Bulletin of the
EATCS 79, 178–228 (2003)

2. Crochemore, M., Ilie, L.: Analysis of maximal repetitions in strings. In: Kucera, L.,
Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 465–476. Springer, Heidelberg
(2007)

3. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. 74(5),
796–807 (2008)

4. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-
binatorics. Theor. Comput. Sci. 410(50), 5227–5235 (2009)



On the Maximal Sum of Exponents of Runs in a String 19

5. Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the “runs” conjecture.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 290–302.
Springer, Heidelberg (2008)

6. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Walen,
T.: On the maximal number of cubic runs in a string. In: Dediu, A.H., Fernau,
H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 227–238. Springer,
Heidelberg (2010)

7. Franek, F., Yang, Q.: An asymptotic lower bound for the maximal number of runs
in a string. Int. J. Found. Comput. Sci. 19(1), 195–203 (2008)

8. Giraud, M.: Not so many runs in strings. In: Mart́ın-Vide, C., Otto, F., Fernau, H.
(eds.) LATA 2008. LNCS, vol. 5196, pp. 232–239. Springer, Heidelberg (2008)

9. Gusfield, D., Stoye, J.: Simple and flexible detection of contiguous repeats using
a suffix tree (preliminary version). In: Farach-Colton, M. (ed.) CPM 1998. LNCS,
vol. 1448, pp. 140–152. Springer, Heidelberg (1998)

10. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: Proceedings of the 40th Symposium on Foundations of Computer Science,
pp. 596–604 (1999)

11. Kolpakov, R.M., Kucherov, G.: On maximal repetitions in words. J. of Discr. Alg. 1,
159–186 (1999)

12. Kolpakov, R.M., Kucherov, G.: On the sum of exponents of maximal repetitions
in a word. Tech. Report 99-R-034, LORIA (1999)

13. Kusano, K., Matsubara, W., Ishino, A., Bannai, H., Shinohara, A.: New lower
bounds for the maximum number of runs in a string. CoRR, abs/0804.1214 (2008)

14. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
15. Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain?

Theor. Comput. Sci. 401(1-3), 165–171 (2008)
16. Rytter, W.: The number of runs in a string: Improved analysis of the linear upper

bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

17. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)
18. Simpson, J.: Modified Padovan words and the maximum number of runs in a word.

Australasian J. of Comb. 46, 129–145 (2010)



Path-Based Supports for Hypergraphs

Ulrik Brandes1, Sabine Cornelsen1, Barbara Pampel1, and Arnaud Sallaberry2

1 Fachbereich Informatik & Informationswissenschaft, Universität Konstanz
{Ulrik.Brandes,Sabine.Cornelsen,Barbara.Pampel}@uni-konstanz.de

2 CNRS UMR 5800 LaBRI, INRIA Bordeaux - Sud Ouest, Pikko
arnaud.sallaberry@labri.fr

Abstract. A path-based support of a hypergraph H is a graph with the
same vertex set as H in which each hyperedge induces a Hamiltonian
subgraph. While it is NP-complete to compute a path-based support
with the minimum number of edges or to decide whether there is a planar
path-based support, we show that a path-based tree support can be
computed in polynomial time if it exists.

1 Introduction

A hypergraph is a pair H = (V, A) where V is a finite set and A is a (multi-)set of
non-empty subsets of V . The elements of V are called vertices and the elements of
A are called hyperedges. A support (or host graph) of a hypergraph H = (V, A) is
a graph G = (V, E) such that each hyperedge of H induces a connected subgraph
of G, i.e., such that the graph G[h] := (h, {e ∈ E, e ⊆ h}) is connected for every
h ∈ A. See Fig. 1(b) for an example.

Applications for supports of hypergraphs are, e.g., in hypergraph coloring
[10, 4], databases [1], or hypergraph drawing [7, 8, 3, 12]. E.g., see Fig. 1 for an
application of a support for designing Euler diagrams. An Euler diagram of a
hypergraph H = (V, A) is a drawing of H in the plane in which the vertices
are drawn as points and each hyperedge h ∈ A is drawn as a simple closed
region containing the points representing the vertices in h and not the points
representing the vertices in V \ h. There are various well-formedness conditions
for Euler diagrams, see e.g. [5, 12].

Recently the problem of deciding which classes of hypergraphs admit what
kind of supports became of interest again. It can be tested in linear time whether
a hypergraph has a support that is a tree [13], a path or a cycle [3]. It can
be decided in polynomial time whether a hypergraph has a tree support with
bounded degrees [3] or a cactus support [2]. A minimum weighted tree support
can be computed in polynomial time [9]. It is NP-complete to decide whether a
hypergraph has a planar support [7], a compact support [7,8] or a 2-outerplanar
support [3]. A support with the minimum number of edges can be computed
in polynomial time if the hypergraph is closed under intersections [3]. If the set
of hyperedges is closed under intersections and differences, it can be decided in
polynomial time whether the hypergraph has an outerplanar support [2].

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 20–33, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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h1

{v1} {v2} {v3} {v4} {v5} {v6} {v7}

h

h′

V

h2 h3 h4 h5

(a) Hasse diagram

v1 v2 v3 v4 v5 v6

v7

(b) tree support

v1 v2 v3 v4 v5 v6

v7

(c) Euler diagram

Fig. 1. Three representations of the hypergraph H = (V, A) with hyperedges h1 =
{v1, v2}, h2 = {v2, v3}, h3 = {v3, v4}, h4 = {v4, v5}, h5 = {v5, v6}, h = {v2, v3, v4, v5},
h′ = {v2, v3, v4, v5, v7}, and V = {v1, . . . , v7}

In this paper, we consider a restriction on the subgraphs of a support that are
induced by the hyperedges. A support G of a hypergraph H = (V, A) is called
path-based if the subgraph G[h] contains a Hamiltonian path for each hyperedge
h ∈ A, i.e., G[h] contains a path that contains each vertex of h. This approach
was on one hand motivated by hypergraph drawing and on the other hand by
the aesthetics of metro map layouts. I.e., the hyperedges could be visualized as
lines along the Hamiltonian path in the induced subgraph of the support like the
metro lines in a metro map. See Fig. 2 for examples of metro maps and Fig. 3(c)
for a representation of some hyperedges in such a metro map like drawing. For
metro map layout algorithms see, e.g., [11, 14].

We briefly consider planar path-based supports and minimum path-based sup-
ports. Our main result is a characterization of those hypergraphs that have a
path-based tree support and a polynomial time algorithm for constructing path-
based tree supports if they exist. E.g., Fig. 1 shows an example of a hypergraph
H = (V, A) that has a tree support but no path-based tree support. However,
the tree support in Fig. 1(b) is a path-based tree support for (V, A \ {V }).

The contribution of this paper is as follows. In Section 2, we give the neces-
sary definitions. We then briefly mention in Section 3 that finding a minimum
path-based support or deciding whether there is a planar path-based support,
respectively, is NP-complete. We consider path-based tree supports in Sect. 4.
In Section 4.1, we review a method for computing tree supports using the Hasse
diagram. In Section 4.2, we show how to apply this method to test whether
a hypergraph has a path-based tree support and if so how to compute one in
polynomial time. Finally, in Section 4.3 we discuss the run time of our method.

2 Preliminaries

In this section, we give the necessary definitions that were not already given in
the introduction. Throughout this paper let H = (V, A) be a hypergraph. We
denote by n = |V | the number of vertices, m = |A| the number of hyperedges,
and N =

∑
h∈A |h| the sum of the sizes of all hyperedges of a hypergraph H .

The size of the hypergraph H is then N + n + m. A hypergraph is a graph if
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(a) local trains of Zurich (b) metro of Amsterdam

Fig. 2. Local train map of Zurich (www.zvv.ch) and the metro map of Amsterdam
(www.amsterdam.info). In (b) the union of all lines forms a tree.

all hyperedges contain exactly two vertices. A hypergraph H = (V, A) is closed
under intersections if h1 ∩ h2 ∈ A ∪ {∅} for h1, h2 ∈ A.

The Hasse diagram of a hypergraph H = (V, A) is the directed acyclic graph
with vertex set A ∪ {{v}; v ∈ V } and there is an edge (h1, h2) if and only if
h2 � h1 and there is no set h ∈ A with h2 � h � h1. Fig. 1(a) shows an example
of a Hasse diagram. Let (v, w) be an edge of a directed acyclic graph. Then we
say that w is a child of v and v a parent of w. For a descendant d of v there
is a directed path from v to d while for an ancestor a of v there is a directed
path from a to v. A source does not have any parents, a sink no children and
an inner vertex has at least one parent and one child.

3 Minimum and Planar Path-Based Supports

Assuming that each hyperedge contains at least one vertex, each hypergraph H =
(V, A) has a path-based support G = (V, E) with at most N −m edges: Order
the vertices arbitrarily. For each hyperedge {v1, . . . , vk} ∈ A with v1 < · · · < vk

with respect to that ordering the edge set E contains {vi−1, vi}, i = 1, . . . , k. It
is, however, NP-complete to find an ordering of the vertices that minimizes the
number of edges of the thus constructed path-based support of H [6]. Moreover,
even if we had an ordering of the vertices that had minimized the number of the
thus constructed path-based support, this support still does not have to yield
the minimum number of edges in any path-based support of H . E.g., consider
the hypergraph with hyperedges {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Nevertheless,
we have the following theorem.

Theorem 1. It is NP-complete to minimize the number of edges in a path-based
support of a hypergraph – even if it is closed under intersections.
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Proof. Reduction from Hamiltonian path. Let G = (V, E) be a graph. Let H =
(V, E ∪{V }∪{{v}; v ∈ V }) and K = |E|. Then G contains a Hamiltonian path
if and only if H has a path-based support with at most K edges. ��
For the application of Euler diagram like drawings, planar supports are of spe-
cial interests. However, like for general planar supports, the problem of testing
whether there is a path-based planar support is hard.

Theorem 2. It is NP-complete to decide whether a hypergraph – even if it is
closed under intersections – has a path-based planar support.

Proof. The support that Johnson and Pollak [7] constructed to prove that it
is NP-complete to decide whether there is a planar support was already path-
based. ��

4 Path-Based Tree Supports

In this section we show how to decide in polynomial time whether a given hyper-
graph has a path-based tree support. If such a support exists, it is at the same
time a path-based support of minimum size and a planar path-based support.
So far it is known how to decide in linear time whether there is a path-based
tree support if V ∈ A [3].

4.1 Constructing a Tree Support from the Hasse Diagram

A support with the minimum number of edges and, hence, a tree support if one
exists can easily be constructed from the Hasse diagram if the hypergraph is
closed under intersections [3].

To construct a tree support of an arbitrary hypergraph, it suffices to consider
the augmented Hasse diagram – a representation of “necessary” intersections
of hyperedges. The definition is as follows. First consider the smallest set A of
subsets of V that contains A and that is closed under intersections. Consider
the Hasse diagram D of H = (V, A). Note that any tree support of H is also a
tree support of H . Let h1, . . . , hk be the children of a hyperedge h in D. The
hyperedge h ∈ A is implied if the hypergraph (h1 ∪ · · · ∪ hk, {h1, . . . , hk}) is
connected and non-implied otherwise. Let {h1, . . . , hk} be a maximal subset of
the children of a non-implied hyperedge in A such that (h1∪· · ·∪hk, {h1, . . . , hk})
is connected. Then h1 ∪ · · · ∪ hk is a summary hyperedge. Note that a summary
hyperedge does not have to be in A. Let A′ be the set of subsets of V containing
the summary hyperedges, the hyperedges in A that are not implied, and the
sources of D. E.g., for the hypergraph in Fig. 1 it holds that A′ = A. In this
example, the hyperedge h is a summary hyperedge, h′ is not implied, and V is
a source.

The augmented Hasse diagram of H is the Hasse diagram D′ of H ′ = (V, A′).
If H has a tree support then the augmented Hasse diagram has O(n+m) vertices
and can be constructed in O(n3m) time [3]. Further note that if H has a tree
support and h ∈ A′ is non-implied then all children of h in D′ are disjoint.
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If a tree support G = (V, E) of H exists it can be constructed as follows [3].
Starting with an empty graph G, we proceed from the sinks to the sources of D′.
If h ∈ A′ is not implied, choose an arbitrary ordering h1, . . . , hk of the children of
h in D′. We assume that at this stage, G[hi], i = 1, . . . , k are already connected
subgraphs of G. For j = 2, . . . , k, choose vertices vj ∈

⋃j−1
i=1 hi, wj ∈ hj and add

edges {vj, wj} to E.
If we want to construct a path-based tree support, then G[hj ], j = 1, . . . , k are

paths and as vertices vj+1 and wj for the edges connecting G[hj ] to the other
paths, we choose the end vertices of G[hj ]. The only choices that remain is the
ordering of the children of h and the choice of which end vertex of G[hj ] is wj

and which one is vj+1. The implied hyperedges give restrictions on how these
choices might be done.

4.2 Choosing the Connections: A Characterization

When we want to apply the general method introduced in Sect. 4.1 to construct a
path-based tree support G, we have to make sure that we do not create vertices of
degree greater than 2 in G[h] when processing non-implied hyperedges contained
in an implied hyperedge h.

Let h′, h′′ ∈ A′. We say that h′, h′′ overlap if h′ ∩ h′′ 	= ∅, h′ 	⊆ h′′, and
h′′ 	⊆ h′. Two overlapping hyperedges h′, h′′ ∈ A′ have a conflict if there is some
hyperedge in A′ that contains h′ and h′′. Two overlapping hyperedges h′, h′′ ∈ A′

have a conflict with respect to h ∈ A′ if h′ has a conflict with h′′, h′ ∩ h′′ ⊆ h
and h is a child of h′ or h′′. In that case we say that h′ and h′′ are conflicting
hyperedges of h. Let A′

h be the set of conflicting hyperedges of h. Let Ac
h be the

set of children hi of h such that h ∈ A′
hi

.
Assume now that H has a path-based tree support G and let h, h′, h′′ ∈ A′

be such that h′ and h′′ have a conflict with respect to h. We have three types of
restrictions on the connections of the paths.

1. G[h′ \ h] and G[h′′ \ h] are paths that are attached to different end vertices
of G[h]. Otherwise G[ha] contains a vertex of degree higher than 2 for any
hyperedge ha ⊇ h′ ∪ h′′.

2. Assume further that h1 ∈ Ac
h. For all hyperedges h1 ∈ A′

h that have a conflict
with h with respect to h1 it holds that G[h1 \ h] has to be appended to the
end vertex of G[h] that is also an end vertex of G[h1]. Hence, all these paths
G[h1 \ h] have to be appended to the same end vertex of G[h].

3. Assume further that h2 ∈ Ac
h, h2 	= h1. Let hi ∈ A′

h have a conflict with h
with respect to hi, i = 1, 2, respectively. Then G[hi \ h] has to be appended
to the end vertex of G[h] that is also an end vertex of G[hi]. Hence, G[h1 \h]
and G[h2 \ h] have to be appended to different end vertices of G[h].

E.g., consider the hypergraph H = (V, A) in Fig. 1. Then on one hand, h′ has a
conflict with h1 and h5 with respect to h. Hence, by the first type of restrictions
G[h1 \ h] and G[h5 \ h] have to be appended to the same end vertex of G[h], i.e.
the end vertex of G[h] to which G[h′ \ h] is not appended. On the other hand,
h1 and h have a conflict with respect to h2 while h5 and h have a conflict with
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respect to h4. Hence, by the third type of restrictions it follows that G[h1 \ h]
and G[h5 \h] have to be appended to different end vertices of G[h]. Hence, there
is no path-based tree support for H .

This motivates the following definition of conflict graphs. The conflict graph
Ch, h ∈ A′ is a graph on the vertex set A′

h ∪Ac
h. The conflict graph Ch contains

the following three types of edges.

1. {h′, h′′}, h′, h′′ ∈ A′
h if h′ and h′′ have a conflict with respect to h.

2. {h′, h1}, h′ ∈ A′
h, h1 ∈ Ac

h if h′ ∈ A′
h1

and h′ and h have a conflict with
respect to h1.

3. {h1, h2}, h1, h2 ∈ Ac
h, h1 	= h2.

E.g., consider the hypergraph H = (V, A) in Fig. 1. Then the conflict graph
Ch contains the edges {h′, h5} and {h′, h1} of type one, the edges {h2, h1} and
{h4, h5} of type 2 and the edge {h2, h4} of type 3. Hence, Ch contains a cycle of
odd length, reflecting that there is no suitable assignment of the end vertices of
G[h] to h1, h5 and h′.

Theorem 3. A hypergraph H = (V, A) has a path-based tree support if and only
if

1. H has a tree support,
2. no hyperedge contains three pairwise overlapping hyperedges h1, h2, h3 ∈ A′

with h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3, and
3. all conflict graphs Ch, h ∈ A′, |h| > 1 are bipartite.

From the observations before the definition of the conflict graph it is clear that
the conditions of Theorem 3 are necessary for a path-based tree support. In the
remainder of this section, we prove that the conditions are also sufficient.

In the following assume that the conditions of Theorem 3 are fulfilled. We show
in Algorithm 1 how to construct a path-based tree support G of H . We consider
the vertices of the augmented Hasse diagram D′ from the sinks to the sources in
a reversed topological order, i.e., we consider a hyperedge only if all its children in
D′ have already been considered. During the algorithm, a conflicting hyperedge
h′ of a hyperedge h is labeled with the end vertex v of G[h] if the path G[h′ \ h]
will be appended to v. We will call this label sideh(h′). Concerning Step 2a, the
sets Ac

h, h ∈ A′ contain at most two hyperedges – otherwise the subgraph of Ch

induced by Ac
h contains a triangle and, hence, is not bipartite.

Algorithm 1 constructs a tree support G of H [3]. Before we show that G is
a path-based tree support, we illustrate the algorithm with an example. Con-
sider the hypergraph H in Fig. 3. We show how the algorithm proceeds h5

1
and all its descendants in D′. For the hyperedges h1

3, h
1
4, h

1
6, and h1

8 the conflict
graphs are empty while for the other leaves we have sideh1

5
(h2

2) = sideh1
5
(h2

3) =
sideh1

5
(h3

1) = sideh1
5
(h4

2) = v5, sideh1
7
(h2

4) = sideh1
7
(h3

1) = v7, and sideh1
9
(h2

4) =
sideh1

9
(h4

1) = sideh1
9
(h2

5) = sideh1
9
(h2

6) = sideh1
9
(h2

7) = v9. When operating h2
2 and

h2
3, respectively, we add edges {v4, v5} and {v5, v6}, respectively, to G. While the
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conflict graph of h2
2 does only contain h1

5 with sideh2
2
(h1

5) = v4, in Ch2
3

we set
sideh2

3
(h1

5) = sideh2
3
(h3

1) = v6, and sideh2
3
(h2

2) = v5. h2
4 has a conflict with re-

spect to h1
7 and h1

9. Hence, we add edges {v7, v8} and {v8, v9} to G. Further,
sideh2

4
(h1

7) = sideh2
4
(h2

5) = v9 and sideh2
4
(h1

9) = sideh2
4
(h4

1) = v7. When operating
h3

1 we can choose h1 = h2
3 and h2 = h1

7, since sideh2
3
(h1

3) = v6 and sideh1
7
(h1

3) = v7.
We add the edge {v6, v7} to G. The conflict graph Ch3

1
is shown in Fig. 3(b).

The hyperedge h4
1 is implied and we set sideh4

1
(h2

4) = v4. We can finally connect
v3 to v4 or v9 when operating h5

1.
To prove the correctness of Algorithm 1, it remains to show that all hyperedges

of H induce a path in G. Since we included all inclusion maximal hyperedges of
H in A′, it suffices to show this property for all hyperedges in A′. We start with
a technical lemma.

Lemma 1. Let h′ and h′′ be two overlapping hyperedges and let h′ be not im-
plied. Then there is a hyperedge h ∈ A′ with h′ ∩ h′′ ⊆ h � h′.

Proof. Let hc ∈ A be maximal with h′ ∩ h′′ ⊆ hc � h′. The hyperedge hc is a
child of the non-implied hyperedge h′ in D. Consider the summary hyperedge h
with hc ⊆ h � h′. By definition of A′ it follows that h ∈ A′. ��
For an edge {v, w} of G let hvw be the intersection of all hyperedges of A′ that
contain v and w. Note that then hvw is not implied since v and w cannot both
be contained in a subset of hvw. Hence, hvw ∈ A′.

Algorithm 1. Path-based tree support

Let E = ∅.
For h ∈ A′ in a reversed topological order of D′.
1. If h = {v} for some v ∈ V

(a) set sideh(h′) = v for all vertices h′ of Ch.
2. Else

(a) let h1, . . . , hk be the children of h such that h2, . . . , hk−1 /∈ Ac
h.

(b) If h is non-implied
i. let wi, vi+1, i = 1, . . . , k be the end vertices of G[hi] such that
A. sideh1(h) = v2 if h ∈ A′

h1
and

B. sidehk
(h) = wk if h ∈ A′

hk
.

ii. Add the edges {vi, wi}, i = 2, . . . , k to E.
(c) Else let w1 	= vk+1 be the end vertices of G[h] such that

i. vk+1 /∈ h1 and
ii. w1 /∈ hk.

(d) If h1 ∈ Ac
h set sideh(h1) = vk+1.

(e) If hk ∈ Ac
h set sideh(hk) = w1.

(f) Label the remaining vertices of Ch with vk+1 or w1 such that no
two adjacent vertices have the same label.
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(a) augmented Hasse diagram D′ of a hypergraph H
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(c) metro map like drawing of the sources of D′

Fig. 3. Illustration of Algorithm 1

Lemma 2. Let Conditions 1-3 of Theorem 3 be fulfilled and let G = (V, E) be
the graph computed in Algorithm 1. Let h′, h′′ ∈ A′ have a conflict with respect
to a child h of h′ and let G[h′] and G[h′′] be paths. Then

1. sideg(h′′) = sideh(h′′) for all g ∈ A′ with h′ ∩ h′′ ⊆ g ⊆ h,
2. sideh(h′′) ∈ h′′,
3. sideh(h′′) is an end vertex of G[h′],
4. G[h′ \ h′′] is a path, and
5. sideh(h′′) is adjacent in G to a vertex of h′′ \ h′.

Proof. We prove the lemma by induction on the sum of the steps in which h′

and h′′ were considered in Algorithm 1. If h′ and h′′ had been considered in the
first two steps, then at least one of them is a leaf of D′ and, hence, h′ and h′′

have no conflict. So there is nothing to show. Let now h′ and h′′ be considered
in later steps. Let h′′ ∈ A′ have a conflict with h′ with respect to a child h of h′

and let G[h′] and G[h′′] be paths.

1. + 2. if h′ ∩ h′′ ∈ A′: There is nothing to show if h = h′ ∩ h′′. So let h1 be
the child of h with h1 ⊇ h′ ∩ h′′. Then h, h′′ have a conflict with respect
to h1. Hence, Ch contains the path h′, h′′, h1. By the inductive hypothesis
on Property 3, it follows that sideh1(h′′) is an end vertex of G[h], and, es-
pecially that h1 and h share an end vertex. By construction, it follows that
sideh(h1) is the end vertex of h that is not in h1. Hence, sideh(h′′) ∈ h1
and sideh1(h′′) = sideh(h′′). By the inductive hypothesis it follows that
sideg(h′′) = sideh(h′′) for h ∩ h′′ ⊆ g ⊆ h1. Since the labels in sideh′∩h′′(.)
are the end vertices of G[h′ ∩ h′′], it follows that sideh(h′′) ∈ h′ ∩ h′′ ⊂ h′′.



28 U. Brandes et al.

h′

h

h′1 h′′1

h′′

hvw

h1

h′ ∩ h′′

hc = hvw ∩ h′′
= hvw ∩ h hvx

hvx ∩ h

v xw

(a) augmented Hasse diagram D′

h

h′h′′

hvx

hvw

hc

x

v

w

(b) tree support G

Fig. 4. Illustration of the proof of Lemma 2.3

1. + 2. + 5. if h′ ∩ h′′ /∈ A′: Let h′′
1 ⊆ h′′ be minimal with h′∩h′′ ⊂ h′′

1 . Since
h′ and h′′

1 overlap there is an edge {v, w} ∈ E such that v ∈ h′ ∩ h′′ and
w ∈ h′′

1 \ h′. We show that sideh(h′′) = v.
By Lemma 1 there is a child hc of hvw that contains h ∩ hvw. Since

v ∈ h ∩ hvw it follows that w /∈ hc and, hence, v is an end vertex of hc.
Note that by the minimality of h′′

1 it follows that h′ ∩ h′′ 	⊆ hvw. Since
G[h′′], G[h′] are paths, it follows that hc � h and, hence, hc = h∩hvw. Let hp

be minimal with hc � hp ⊆ h. Then hp, hvw have a conflict with respect to hc

and it follows from the inductive hypothesis on Property 5 that sidehc(hvw) =
v. Let h′

c be maximal with hc ⊆ h′
c � h. By the inductive hypothesis on

Property 1 it follows that sideh′
c
(hvw) = v. Since h, hvw have a conflict with

respect to h′
c it follows by the inductive hypothesis on Property 3 that v is

an end vertex of h. In Ch there is the path h′
c, hvw, h′, h′′. By construction,

sideh(h′
c) is the end vertex of h that is not in h′

c. Hence, sideh(hvw) =
sideh(h′′) = v.

3.: Let v = sideh(h′′). By the construction in Algorithm 1, v is an end vertex of
G[h′] if h′ is non-implied. So assume that h′ is implied and that v is not an
end vertex of G[h′]. Let w ∈ h′ \ h be a neighbor of v in G. By Property 2,
it follows that v ∈ h′′. Let hc be the child of hvw that contains hvw ∩ h′′. By
the inductive hypothesis on Property 4, it follows that G[hvw \ h′′] is a path
that contains w but not v. Hence, hc = hvw ∩ h′′ = hvw ∩ h.

Let h′
1, h

′′
1 ∈ A′, respectively, be minimal with h′ ⊇ h′

1 � h′ ∩ h′′ and
h′′ ⊇ h′′

1 � h′∩h′′. Assume first that h′∩h′′ ∈ A′. Then Ch′∩h′′ contains the
triangle hvw, h′

1, h
′′
1 , hvw and, hence, is not bipartite.

Assume now that h′ ∩ h′′ /∈ A′. By the already proven part of Property 5
it follows that there is an edge {v, x} of G with x ∈ h′′

1 \ h. We have hc =
hvw ∩ h′′ ⊇ hvw ∩ hvx. Further, the child of hvx that contains hvx ∩ h equals
hvx∩h. Since h′′

1 is implied and hvx not, it follows that h′′
1 	= hvx and, hence,
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hvx 	⊇ h′∩h′′. Hence, either hvx∩h ⊆ hvw∩h or hvw∩h � hvx∩h � h′∩h′′.
In the first case let h1 ∈ A′ be minimal with hvw ∩ h � h1 ⊆ h. Then there
is the triangle hvw, hvx, h1, hvw in Ch∩hvw . In the latter case let h1 ∈ A′ be
minimal with hvx ∩ h � h1 ⊆ h. Then there is the triangle hvw, hvx, h1, hvw

in Ch∩hvx .
4.: By the inductive hypothesis G[h \ h′′] is a path. Further, h and h′ share

sideh(h′′) ∈ h′′ as a common end vertex. By the precondition of the lemma,
G[h′] is a path. Hence, G[h′ \ h′′] is a path.

5. if h′ ∩ h′′ ∈ A′: If h 	= h′∩h′′ let h1 be the child of h with h′∩h′′ ⊆ h1. By the
inductive hypothesis sideh1(h′′) is adjacent in G to a vertex of h′′\h = h′′\h′

and by Property 1 sideh1(h
′′) = sideh(h′′).

If h = h′ ∩ h′′, let h′′
1 ∈ A′ be minimal with h � h′′

1 ⊆ h′′. Applying
Property 3 with h′′

1 as “h′” and h′ as “h′′” reveals that sideh(h′) is an end
vertex of G[h′′

1 ]. Since G[h′′
1 ] is a path it follows that some vertex of h′′

1 \ h is
adjacent to sideh(h′′). ��

Lemma 3. If Conditions 1-3 of Theorem 3 are fulfilled then all hyperedges in
A′ induce a path in the graph G constructed in Algorithm 1.

Proof. Again, we prove the lemma by induction on the step in which h was
considered in Algorithm 1. There is nothing to show if h had been considered in
the first step. So assume that h ∈ A′ and that G[h] contains a vertex v of degree
greater than two.

Let u1, u2, u3 be the first three vertices connected to v in G. Let hi = hvui , i =
1, 2, 3. Then h1, h2, h3 are all three contained in h and its intersection contains v.
Hence, any two of them have a conflict if and only if one of them is not contained
in the other. A case distinction reveals that we wouldn’t have appended all three,
u1, u2 and u3, to v.

h2 = h3: Since h3 contains no vertex of degree higher than two, it follows that
u1 /∈ h3, h3 ∩ h1 = {v}. Hence, h1 and h3 have a conflict with respect to the
common child {v}, contradicting that v is added in the middle of h3.

h1 = h2 or h1 = h3: These cases are analogous to the first case.
h1 � h3: Like in the first case it follows that u2 /∈ h3. Let h′

i, i = 2, 3 be the
child of hi that contains v. Then h2 and h3 have a conflict with respect to
h′

i, i = 2, 3. Since we add the edge {v, ui} to G when we process hi it follows
on one hand that sideh′

i
(hi) = v. On the other hand, since h1 is contained in

h3 and v ∈ h1 it follows that h1 ⊆ h′
3. Hence, h′

3 has more than one vertex.
If h′

3 	= h3 ∩ h2 then v is the only end vertex of G[h′
3] that is contained

in h2. By Lemma 2 Property 2 it follows that sideh′
3
(h2) = v and hence,

sideh′
3
(h3) 	= v. If h′

3 = h3 ∩ h2 let v′ 	= v be the other end vertex of h′
2.

Since we know that sideh′
2
(h2) = v it follows that sideh′

2
(h3) = v′. Hence, by

Lemma 2 Property 1, we can conclude that sideh′
3
(h3) = v′. In both cases,

we have a contradiction.
h1 � h2 or h2 � h3: These cases are analogous to the third case.
h1, h2, h3 pairwise overlapping: Then h1 ∩ h2 = h2 ∩ h3 = h1 ∩ h3 = {v}.

Hence, Condition 2 of Theorem 3 is not fulfilled. ��
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Fig. 5. Computation of the potential conflicts for h4
1

This completes the proof of Theorem 3. We conclude this section with the
following corollary.

Corollary 1. Algorithm 1 computes a path-based tree support of a hypergraph H
if H has a path-based tree support, i.e., if and only if the conditions of Theorem 3
are fulfilled.

4.3 Conflict Computation and Run Time

In this section we show how to efficiently compute the conflicts and give an upper
bound for the run time of testing whether a hypergraph has a path-based tree
support and of constructing one, if it exists.

Representing the hyperedges as sorted lists of their elements, all conflicts can
be determined straight-forwardly in O(n3(n + m)) time. In the following, we
show how this time bound can be improved.

We first compute candidates for conflicting pairs of hyperedges, which in the
case of hypergraphs having a path-based tree support turn out to be a superset
of the set of all conflicts. The idea is, that all potential conflicts lie on a path
from an ancestor of h to one of h’s descendants. The method can be found as
pseudocode in Algorithm 2.

We illustrate Algorithm 2 with an example. Figure 5 shows the computation
of potential conflicts for the hyperedge h4

1 of the hypergraph H from Figure 3(a).
The different methods are colored. h2

5 is the only hyperedge that can be in conflict
with h4

1 with respect to a child of h4
1 and if so, with respect to h2

4.

Lemma 4. Let D′ be the augmented Hasse diagram of a hypergraph that has a
path-based tree support and let h′ and h have a conflict with respect to a child hc

of h. Then Algorithm 2 applied to D′ and h labels h′ with conflict(hc).

Proof. Let G be a path-based tree support of a hypergraph and let h′ and h
have a conflict with respect to a child hc of h.

1. Let v be the end vertex of G[h] that is contained in h′. Then v and all its an-
cestors on the path from v to hc are labeled desc(hc) (and not multi-desc).
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Algorithm 2. Conflict Computation.
Input : augmented Hasse diagram D′ of a hypergraph, vertex h

Output : vertices h′ with label(h′) = conflict(hc) for all children hc of h

Data : there are the following vertex labels

label(h′) = anc iff h � h′

label(h′) = not-anc only if h ∪ h′ not contained in any source of D′

label(h′) = desc(hc) iff h′ ⊆ hc for exactly one child hc of h

label(h′) = multi-desc iff h′ is contained in more than one child of h

label(h′) = not-conflict only if h ∩ h′ not contained in any child of h

and h ∪ h′ contained in some source of D′

label(h′) = conflict(hc) only if hc ∩ h′ �= ∅ for a child hc of h

and h ∪ h′ contained in some source of D′

ancestor(vertex h′) begin

foreach parent h′′ of h′ do
label(h′′)← anc;

ancestor(h′′);

end

descendant(vertex h′, vertex hc) begin

if label(h′) = desc(h′
c), hc �= h′

c then
label(h′)← multi-desc;

else
label(h′)← desc(hc);

foreach child h′′ of h′ do

if label(h′′) �= multi-desc then
descendant(h′′, hc);

end

up-search(vertex h′, vertex hc) begin

foreach parent h′′ of h′ do

if label(h′′) ∈ {∅, conflict(h′
c), h

′
c �= hc} then

up-search(h′′, hc);

if label(h′) = conflict(h′
c), hc �= h′

c then
label(h′)← not-conflict;

else if label(h′) �= desc(hc) then

if label(h′′) ∈ {conflict(hc),anc, not-conflict} then
label(h′)← conflict(hc);

if label(h′) �= conflict(hc) then
label(h′)← not-anc;

end

begin
Clear all labels;

label(h)← not-conflict;

ancestor(h);

foreach child hc of h do
descendant(hc, hc);

foreach vertex h′ of D′ with label(h′) ∈ {desc(hc); hc child of h} do
up-search(h′, hc);

end
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2. If there was a descendant of h′ labeled desc(h′
c) for a child h′

c 	= hc of h,
then hc does not contain h ∩ h′ contradicting that h and h′ have a conflict
with respect to hc.

Hence, Algorithm 2 labels h′ with conflict(hc). ��
Theorem 4. It can be tested in O(n3m) time whether a hypergraph has a path-
based tree support and if so such a support can be constructed within the same
time bounds.

Proof. Let H be a hypergraph. First test in linear time whether there is a tree
support for H [13]. Let D′ be the augmented Hasse diagram of H . The method
works in four steps.

1. Start with an empty array conflict indexed with pairs of inner vertices of D′.
Set conflicth,h′ ← hc if and only if h′ is labeled conflict(hc) in Algorithm 2
applied to D′ and h.

2. For each pair h, h′ of inner vertices of D′ test whether conflicth,h′ contains
h ∩ h′. Otherwise set conflicth,h′ ← ∅. Now, if H has a path-based tree
support then h, h′ has a conflict with respect to the child hc of h if and only
if hc = conflicth,h′ .

3. Apply Algorithm 1 to compute a support G. If the algorithm stops without
computing a support then H does not have a path-based tree support.

4. Test whether every hyperedge induces a path in G. If not, H does not have
a path-based tree support.

D′ has O(n + m) vertices, O(n2 + nm) edges and can be computed in O(n3m)
time if H has a tree support [3]. Algorithm 2 visits every edge of D′ at most
twice and, hence, runs in O(n2 + nm) time for each of the O(n) inner vertices
of D′.

We may assume that the hyperedges are given as sorted lists of their elements.
If not given in advance, these lists could straight forwardly be computed from
D′ in O(n3 + mn2) time by doing a graph search from each leaf. Now, for each
of the O(n2) pairs h, h′ of inner vertices it can be tested in O(n) time whether
conflicth,h′ contains h ∩ h′.

The sum of the sizes of all conflict graphs is in O(n2). Hence, Algorithm 1
runs in O(n2 + mn) time. For each of the O(m) hyperedges h it can be tested
in O(n) time, whether G[h] is a path. Hence, the overall run time is dominated
by the computation of the augmented Hasse diagram and is in O(n3m). ��

5 Conclusion

We have introduced path-based supports for hypergraphs. Hence, as a new
model, we considered a restriction on the appearance of those subgraphs of
a support that are induced by the hyperedges. We have shown that it is NP-
complete to find the minimum number of edges of a path-based support or to
decide whether there is a planar path-based support. Further, we characterized
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those hypergraphs that have a path-based tree support and we gave an algorithm
that computes a path-based tree support in O(n3m) run time if it exists. Our
algorithm completed the paths for the hyperedges in the order in which they
appeared in a reversed topological ordering of the augmented Hasse diagram. To
connect the subpaths in the right order, we introduced a conflict graph for each
hyperedge h and colored the vertices of this conflict graph with the end vertices
of the path induced by h.
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Abstract. L(2, 1)-labeling is graph labeling model where adjacent ver-
tices get labels that differ by at least 2 and vertices in distance 2 get
different labels. In this paper we present an algorithm for finding an
optimal L(2, 1)-labeling (i.e. an L(2, 1)-labeling in which largest label is
the least possible) of a graph with time complexity O∗(3.5616n), which
improves a previous best result: O∗(3.8739n).

1 Introduction

L(2, 1)-labeling is inspired by a channel assignment problem in telecommunica-
tion. It asks for such a labeling with non-negative integers, that no vertices in
distance 2 get the same labels and labels of adjacent vertices differ by at least 2.

The k-L(2, 1)-labeling problem is to determine if there exists an L(2, 1)-
labeling of a graph with no label greater than k. L(2, 1)(G) denotes L(2, 1)-
span, which is the smallest value of k for which there exists a k-L(2, 1)-labeling
of G.

For any fixed k ≥ 4, the k-L(2, 1)-labeling problem is NP-complete [1].
Havet et al. [2] presented an algorithm for finding L(2, 1)(G) in time O∗(3.8739n).
In this paper we present and analyze an improved version of this algorithm.

The time complexity bound O∗(3.5616n) of our algorithm is substantially better
than the time complexity of the original one. The difference lies in a better bound
on the number of 2-packings, a smaller number of triples considered in the main
loop of the algorithm and more carefully formulated conditions for this loop.

2 Preliminaries

The number of vertices of a graph is called the order of the graph, denoted in
this paper by n.
Let distG(x, y) be the distance between vertices x and y in a graph G.
Formally a L(2, 1)-labeling is defined as a function f : V (G) → N, such that
∀x, y ∈ V (G) distG(x, y) = 1 ⇒ |f(x) − f(y)| ≥ 2 and
∀x, y ∈ V (G) distG(x, y) = 2 ⇒ |f(x) − f(y)| ≥ 1.

A set X ⊆ V (G) is a 2-packing in G ⇔ ∀x, y ∈ X distG(x, y) > 2.
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Let N(v) = {u: uv ∈ E(G)} denote the neighborhood of a vertex v. The set
N [v] = N(v) ∪ {v} denotes the closed neighborhood of v. Let N2[v] denote the
set of all vertices in distance at most 2 from v.

By the neighborhood of a set X of vertices in G we mean the set N(X) =⋃
v∈X N(v) and by the closed neighborhood of X – the set N [X ] = N(X) ∪X .
We write f(n) = O∗(g(n)) if there exists a polynomial p(n) such that f(n) ≤

p(n) · g(n) for all n greater than some n0.

3 Improved Exact Algorithm for L(2, 1) - Labeling

3.1 Generating 2-Packings

In this section we present an algorithm for generating all 2-packings of a specified
size in a connected graph G.

In the beginning, the algorithm finds T – a spanning tree of G and then P ,
which is the longest path in T . Let v denote the endvertex of P , u denote the
neighbor of v on P and w denote second neighbor of u on P (other than v).

The algorithm constructs 2-packings by branching on a vertex v. The vertex
v is either included or not in a constructed 2-packing and we call the algorithm
recursively for a graph of smaller order. Since P is the longest path in T , we can
delete vertices from its end without a risk of losing connectivity.

We also keep the set of active vertices V̂ , which contains vertices that can
belong to a 2-packing constructed in current recursive call. Since by deleting
some vertex we could lose information about vertices in distance 2, we have to
keep the original graph G and use it to find N2

G[v] in line 14. A set S denotes
currently constructed 2-packing and is initialized by the emptyset ∅.

Algorithm 1. G2P

Arguments: Graph G, Graph Ĝ, Int k, Set V̂ , Set S, Family of sets X
if k = 0 then X ← X ∪ {S} and return1

if |V̂ | < k then return2

if Δ(Ĝ) = |V (Ĝ)| − 1 then3

if k = 1 then X ← X ∪ {S ∪ {v} : v ∈ V̂ }4

return5

P ← longest path in spanning tree of Ĝ6

(v, u, w) ← three consecutive vertices from the end of P7

G2P(G, Ĝ − v, k, V̂ , S, X)8

if v ∈ V̂ then G2P(G, Ĝ− (NT [u]− {w}), k − 1, V̂ \N2
G[v], S ∪ {v}, X)9

To generate all k-element 2-packings in a graph G, we call the algorithm:
G2P(G, G, k, V (G), ∅, ∅).
Lemma 1. The algorithm G2P generates each 2-packing of size k exactly once.
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Proof. (Sketch) All the 2-packings not containing v are generated in the call
in line 8, while all the 2-packing containing v are generated in the call in line
9. Since v ∈ S, the algorithm is to include k − 1 vertices. Notice that none of
vertices in N2

G[v] can belong to any 2-packing containing v, so they have to be
removed from V̂ . ��
Theorem 1. The algorithm G2P works in time O∗(

(
n−k+1

k

)
).

Proof. Let T (n, k) be the number of recursive calls of the algorithm. We observe
that T (n, k) ≤ f(n, k), where f is given by the following recursion:⎧⎪⎨
⎪⎩

f(n, 0) = 1, f(1, 1) = 1, f(n, k) = 0 for k > n
f(n, k) = f(n− 1, k)︸ ︷︷ ︸

vertex v does not belong to S

+ f(n− 2, k − 1)︸ ︷︷ ︸
vertex v belongs to S

for n≥2, k≥1

Solving this recursive equation we obtain T (n, k) ≤ f(n, k) =
(
n−k+1

k

)
. ��

Corollary 1. The number of 2-packings with exactly k vertices in a connected
graph is at most f(n, k) =

(
n−k+1

k

)
.

Corollary 2. The number of all 2-packings in a connected graph can be bounded
by

∑n
k=0 f(n, k) = O∗((1+

√
5

2 )n) = O∗(1.6181n).

3.2 Improved Algorithm

This subsection describes the improved algorithm for finding L(2, 1)-span.
The algorithm iteratively marks all subsets of V (G) that can be labeled with

no label greater than i for i = 0, . . . , 2n. Note here that L(2, 1)(G) ≤ 2n, since
labeling the vertices by distinct even integers is always a valid L(2, 1)-labeling.

We introduce Boolean variables Lab[X, Y, i] for all pairs X, Y , where Y is a
2-packing in G and X ⊆ V (G) \ Y and i = 0, . . . , 2n. The value of Lab[X, Y, i]
is set true if and only if there exists a partial L(2, 1)-labeling with no label
exceeding i for X , such that no vertex in N(Y ) ∩X has label i. The values of
Lab[X, Y, i] are computed by dynamic programming using the implication:

If Lab[A, U, i− 1] is true for a 2-packing U and A ⊆ V (G) \U , then Lab[U ∪
A, Y, i] is true for any Y ⊆ V (G) \ (A ∪ U), disjoint with N(U).

Algorithm 2. IFL(2,1)-Span

foreach Y - 2-packing in G, X ⊆ V (G) \ Y, i = 0, . . . , 2n do1

Lab[X, Y, i] ← false2

foreach X - 2-packing in G, Y - 2-packing in G−N [X ] do3

Lab[X, Y, 0] ← true4

for i ← 1 to 2n do5

foreach U - 2-packing in G, Y - 2-packing in G−N [U ] do6

foreach A ⊆ V (G) \ (U ∪ Y ) do7

if Lab[A, U, i− 1] then Lab[U ∪A, Y, i] ← true8

if U ∪A = V (G) then return ”L(2, 1)(G) = i”9
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Lemma 2. The algorithm IFL(2,1)-Span finds L(2, 1)-span of any graph.

Proof. To prove the correctness of the algorithm, let us prove the statement:
After i iterations of the main loop, all values of Lab[X, Y, i] are set correctly.
Proof by induction on i. For i = 0 values of Lab[X, Y, i] are set in the loop in

lines 3-5. It is easy to prove, that they are set correctly.
Assume that statement is correct for i − 1. Let Y be a 2-packing in G and

X ⊆ V (G) \ Y . Suppose there exists i-L(2, 1)-labeling f of X , such that f(u) ≤
i − 1 for every u ∈ N(Y ) ∩ X . Let U = {v ∈ X : f(v) = i} and A = X \ U .
Then U must be a 2-packing in G and N(Y ) ∩ U = ∅. Since X ∩ Y = ∅, U
forms a 2-packing in graph induced by set of vertices V (G) − N [Y ]. Moreover,
every labeled vertex from N(U) must have label at most i− 2. Thus labeling f
restricted to A satisfies the requirements for setting Lab[A, U, i− 1] ← true. By
the inductive assumption, this value is set correctly, so Lab[X, Y, i] is also set
true in line 9.

Extending f - a partial (i− 1)-L(2, 1)-labeling of A by setting f(u) = i for all
u ∈ U gives a labeling of X satisfying our requirements, if N [Y ] ∩ U = ∅.

This justifies the computation of Lab[X, Y, i] by dynamic programming. ��
Theorem 2. The algorithm IFL(2,1)-Span finds L(2, 1)-span of any connected
graph in time O∗(3.5616n) and space O∗(2.7321n).

Proof. Notice that |N(U)| ≥ |U | since every vertex in U has at least one neighbor
and there is no common neighbor for any two vertices in U .

Let us bound the number of desired triples U, A, Y . By Corollary 1 there
are at most

(
n−k+1

k

)
2-packings of size k. For every such 2-packing U we can

choose Y ⊆ V (G)\N [U ] (notice that we cannot use the bound from Corrolary 1,
because the graph G−N [U ] may be disconected). Let Y have j elements. Each
of the remaining n− k− j vertices is either in A or not. Hence the total number
of desired triples is at most: A(n) =

∑n
k=0

(
n−k+1

k

) ∑n−2k
j=0

(
n−2k

j

)
2n−k−j . From

this formula we obtain our result: A(n) = O∗
((

3+
√

17
2

)n)
= O∗(3.5616n).

Space complexity is determined by the number of pairs X, Y for which we
have to store values of Lab[X, Y, i]. For every fixed k-element 2-packing Y (k ∈
{0, . . . n}), X can be any subset of V (G) \ Y . Hence, by Corollary 1, the total
number of pairs X, Y is bounded by O∗(

∑n
k=0

(
n−k+1

k

)
2n−k)) = O∗((1+

√
3)n) =

O∗(2.7321n). ��
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1 Introduction

The introduction of tree-width by Robertson and Seymour [7] was a break-
through in the design of graph algorithms. A lot of research since then has
focused on obtaining a width measure which would be more general and still
allowed efficient algorithms for a wide range of NP-hard problems on graphs
of bounded width. To this end, Oum and Seymour have proposed rank-width,
which allows the solution of many such hard problems on a less restricted graph
classes (see e.g. [3,4]). But what about problems which are NP-hard even on
graphs of bounded tree-width or even on trees? The parameter used most of-
ten for these exceptionally hard problems is path-width, however it is extremely
restrictive – for example the graphs of path-width 1 are exactly paths.

In the article we study a new width measure called linear rank-width, defined
by an additional requirement on the rank-decomposition of graphs analogous
to the requirement path-width imposes on tree-decompositions. The goal is to
obtain a width measure which on one hand is less restrictive than path-width and
yet on the other hand allows efficient algorithms for problems which are hard on
graphs of bounded rank-width or even tree-width. We first provide a constructive
characterization of graphs having linear rank-width 1 (further referred to as
thread graphs), and then continue by providing positive algorithmic results on
this class of graphs.

The algorithmic section contains three new polynomial algorithms on thread
graphs. Due to space restrictions, we assume that the reader is familiar with
rank-width and also refer to the full version of this paper for all proofs [2].

2 Linear Rank-Width

The most popular width parameters are subject to a certain hierarchy. Rank-
width is the most general of the three parameters, though if some problem is
hard on rank-width one can try solving it on graphs of bounded tree-width, and
if that again fails then there is path-width. This relationship is illustrated in the
following table:
� This research has been supported by the Czech research grants 201/09/J021 and

MUNI/E/0059/2009.
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paths trees cliques
path-width bounded unbounded unbounded
tree-width bounded bounded unbounded
rank-width bounded bounded bounded

The catch here is that many of the problems which are hard on tree-width and
trees tend to be solvable on cliques as well, not just paths. It is a natural question
to ask whether there exists a width parameter which remains capable of solving
problems hard on tree-width, but at the same time relaxes the restrictions of
path-width and achieves low values also on cliques. This is strong motivation for
linear rank-width.

Definition 2.1. A rank-decomposition (T, μ) is linear if T is a caterpillar (i.e.
a path with pendant vertices). The linear rank-width of a graph G is the minimum
of the width of all linear rank-decompositions of G.

Theorem 2.2. The linear rank-width of paths and cliques is 1, and the linear
rank-width of trees is not bounded by any constant.

3 Thread Graphs

The classes of graphs of rank-width 1, tree-width 1 or path-width 1 each pos-
sess interesting structural properties. For rank-width these are called distance
hereditary graphs, while for tree-width and path-width we speak of forests and
disjoint unions of paths respectively. In this section we introduce a new graph
class called thread graphs and prove that this is exactly the class of graphs which
have linear rank-width 1, answering a question asked by Oum at GROW 2009.

Definition 3.1. A thread graph is a graph which can be constructed by sequen-
tially creating vertices. Every new vertex is created with 3 attributes, as follows:

1. Passive (P) or Active (A);
2. Disconnect (D) or Join (J );
3. Normal or Reset (R);

Each new vertex is either P or A , either D or J and may or may not be R.
A D vertex is created without any incident edges. A J vertex on the other hand

is created with incident edges to all vertices which are currently A.
Finally, an R vertex changes all previous A vertices to P. Every vertex is

normal (not R) unless explicitly said otherwise.
Notice that for connected thread graphs it is enough to consider AJ , AD, PJ ,
AJR vertices (any other type of vertices disconnects the graph) and that any
thread graph can be created by disjoint union of connected thread graphs. Also,
given a thread graph it is possible to reconstruct its creation sequence [2].

Theorem 3.2. A graph G has linear rank-width 1 if and only if G is a thread
graph.
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4 Algorithms on Thread Graphs

4.1 Computing Bandwidth

Definition 4.1. Given a graph G and a one-to-one mapping f : V →
{1, . . . |V |}, the bandwidth of f is defined as the maximum difference between
the labels of vertices sharing an edge. The bandwidth of G, denoted by bwd(G)
is then the minimum bandwidth over all such f .

Bandwidth has many applications in theory as well as practice, ranging from
networking to biology (see e.g. [8] or the dedicated survey [1]). Unfortunately,
it turns out that computing the bandwidth of graphs is extremely hard. Even
on trees, approximating bandwidth within some constant factor is NP-hard and
the best known polynomial-time approximation bound is O(log2.5n) [5].

Theorem 4.2. There exists a polynomial time algorithm for 2-approximation
of bandwidth on thread graphs.

PJ i Ri

AD i & AJ i
PJ i+1 Ri+1

Fig. 1. Mapping order of vertices for bandwidth 2-approximation

4.2 Dominating Bandwidth

While bandwidth is a well-known problem, in this subsection we introduce a
related problem called dominating banwidth. This may have practical applica-
tions in communication (i.e. constructing an array of communicating relays with
bandwidth restrictions, each relay covering the surrounding areas), but our main
goal here is to show that there exist interesting problems which are NP-hard on
trees and at the same time polynomially solvable on thread graphs.

Definition 4.3. The dominating bandwidth problem for a given graph G and a
minimum dominating set X ⊆ V (G) of G is the problem of computing a mapping
f : V → {1, . . . |X |} such that:
1. each v ∈ X receives a unique label.
2. each u ∈ V (G)−X receives the same label as some u-neighbour v ∈ X.
3. the bandwidth of f (defined as the maximum difference between the labels of

vertices sharing an edge) is minimized.

Theorem 4.4. The dominating bandwidth problem is NP-hard on trees.

Theorem 4.5. The dominating bandwidth of thread graphs is 1.

4.3 The Path-Width Problem

The final algorithm in this section is a polynomial time algorithm for computing
the path-width of thread graphs.
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Definition 4.6. A path-decomposition of a graph G = (V, E) is a path P =
(T, A) where the nodes T are subsets of V (also called bags) such that the fol-
lowing holds:

1. Each vertex v ∈ V appears in some bag.
2. For every edge {v, w} there exists a bag containing both v and w.
3. For every vertex v ∈ V , the bags containing v induce a subpath in P (the

interpolation property).
The width of the path-decomposition P = (T, A) equals the cardinality of the
largest bag in T minus one. The path-width of G, denoted by pwd(G), is the
minimum width over all path decompositions of G.

Path-width itself is a powerful (albeit extremely restrictive) width parameter.
However, computing path-width is a hard problem – it remains NP-hard even
when restricted to weighted trees and distance hereditary graphs (graphs of
rank-width 1) [6].

Theorem 4.7. There exists a polynomial time algorithm for computing the
path-width of thread graphs.

5 Conclusion

The main contribution of the article may be summarized in two main points.
First, it gives a constructive characterization of graphs of linear rank-width 1 and
provides insight into the structure of such graphs, which we call thread graphs.
This new graph class contains paths and cliques but also many other graphs.
Second, the article uses the obtained results in the design of new polynomial
algorithms for bandwidth, dominating bandwidth and path-width on thread
graphs. Each of these problems remains hard on other well-known classes of
graphs, such as distance hereditary graphs and trees. Further research in this
area should focus on possible parameterized algorithms on linear rank-width –
it is not clear whether or how our polynomial algorithms might be extended to
graphs of bounded linear rank-width.
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Abstract. Partial words are sequences over a finite alphabet that may
contain some undefined positions called holes. In this paper, we con-
sider unavoidable sets of partial words of equal length. We compute the
minimum number of holes in sets of size three over a binary alphabet
(summed over all partial words in the sets). We also construct all sets
that achieve this minimum. This is a step towards the difficult problem
of fully characterizing all unavoidable sets of partial words of size three.

1 Introduction

An unavoidable set of (full) words X over a finite alphabet A is one for which
any two-sided infinite word over A has a factor in X . For example, the set
X = {aa, ba, bb} is unavoidable over the alphabet {a, b}, since avoiding aa and
bb forces a word to be an alternating sequence of a’s and b’s. This fundamental
concept was explicitly introduced in 1983 in connection with an attempt to
characterize the rational languages among the context-free ones [1]. Since then it
has been consistently studied by researchers in both mathematics and theoretical
computer science (see for example [2–9]).

Partial words are sequences that may contain some undefined positions
called holes, denoted by �’s, that match every letter of the alphabet (we also
say that � is compatible with each letter of the alphabet). For instance, a�bca�b
is a partial word with two holes over {a, b, c}. A set of partial words X over A
is unavoidable if any two-sided infinite full word over A has a factor compatible
with an element in X . The problem of deciding the avoidability of finite sets of

� This material is based upon work supported by the National Science Foundation
under Grant No. DMS–0754154. The Department of Defense is gratefully acknowl-
edged. The authors would also like to acknowledge Sean Simmons from the De-
partment of Mathematics of the University of Texas at Austin for pointing out an
approach to proving our characterization of the Dm(i, j) unavoidable sets. We thank
him for his contributions and insightful suggestions.
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partial words turns out to be NP-hard [10, 11], which is in constrast with the
well known feasibility results for finite sets of full words [12, 13].

Unavoidable sets of partial words were introduced in [14], where the problem
of characterizing such sets of cardinality n over a k-letter alphabet was initi-
ated. Note that if X is unavoidable, then every infinite unary word has a factor
compatible with a member of X ; thus X cannot have fewer elements than the
alphabet, and so k ≤ n (note that the cases n = 1 and k = 1 are trivial). The
characterization of all unavoidable sets of cardinality n = 2 was settled recently
in [15] using deep arguments related to Cayley graphs. So our next long-term
goal is to characterize unavoidable sets of cardinality n = 3. Since in [14], all such
sets over a three-letter alphabet were completely characterized (in fact, there are
no nontrivial such sets), we need to focus on sets over a two-letter alphabet.

In [14], a complete characterization of all three-word unavoidable sets over a
binary alphabet where each partial word has at most two defined positions was
given, and some special cases where one partial word has more than two defined
positions were discussed, but general criteria for these sets had not been found.
In this paper, among other things, we answer affirmatively a conjecture that
was left open there. Our main goal however is to make another step towards the
full n = 3 characterization by computing the minimum number of holes in any
unavoidable set of partial words of equal length and of cardinality three over a
binary alphabet. We also construct all sets that achieve this minimum.

2 Preliminaries

Let A be a fixed non-empty finite set called an alphabet whose elements we
refer to as letters. In this paper we restrict our attention to the binary alphabet
{a, b}. Hence, we may refer to a and b as complements of each other, so that
a = b and b = a. A full word w over A is a finite sequence of elements of A.
We write |w| to denote the length of w, and w(i) to denote the ith symbol. By
convention, we begin indexing with 0, so a word w of length m can be represented
as w = w(0)w(1) · · ·w(m − 1). Formally, a finite word of length m is a function
w : {0, . . . , m − 1} → A. The number of occurrences of the letter a (resp. b) in
w is denoted by |w|a (resp. |w|b).

A two-sided infinite full word (hereafter infinite word) w is a function w :
Z → A. We call w p-periodic, or of period p, if for some positive integer p
w(i) = w(i + p) for all i ∈ Z. We say w is periodic if it has a period. On the
other hand, w is p-alternating if w(i) = w(i + p) for all i ∈ Z. Note that if w
is p-alternating, it is also 2p-periodic. If v is a non-empty finite word, then vZ

denotes w = · · · vvvv · · · . A finite word u is a factor of w if some i ∈ Z satisfies
u = w(i) · · ·w(i + |u| − 1). An m-factor is a factor of length m.

A partial word u of length m over A is a function u : {0, . . . , m − 1} → A	,
where A	 = A ∪ {�} with � �∈ A called a hole. For 0 ≤ i < |u|, if u(i) ∈ A,
then i belongs to the domain of u, denoted D(u). Note that full words are sim-
ply partial words whose domain is the entire set {0, . . . , |u| − 1}. Two partial
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words u and v of equal length are compatible, denoted u ↑ v, if u(i) = v(i)
whenever i ∈ D(u) ∩D(v). We denote by h(u) the number of holes in u, thus,
h(u) = |u| − |D(u)|.

Let w be an infinite word and let u be a partial word. We say w meets u if w
has a factor compatible with u, and w avoids u otherwise. Now, w meets a set
of partial words X if it meets some u ∈ X , and w avoids X otherwise. If X is
avoided by some infinite word, then X is avoidable; otherwise, X is unavoidable.
We say X is m-uniform if every partial word in X has length m.

The partial word u is contained in the partial word v, denoted u ⊂ v, if
|u| = |v| and u(i) = v(i), for all i ∈ D(u). We say that v is a strengthening
of u if v has a factor containing u, and write v � u. We also say that u is a
weakening of v. We use strengthening and weakening as operations performed
on partial words: to strengthen a partial word u is to replace an instance of �
with any letter in A, while to weaken a partial word u is to set u(i) = � for some
i ∈ D(u). Note that if an infinite word w meets the partial word u, it also meets
every weakening of u, and if w avoids u then w avoids all strengthenings of u.

Let X, Y be sets of partial words. We extend the notions of strengthening
and weakening as follows. We say that X is a strengthening of Y (written as
X � Y ) if, for each x ∈ X , there exists y ∈ Y such that x � y. We also say that
Y is a weakening of X . It is not hard to see that if the infinite word w meets X ,
then it also meets every weakening of X , and if w avoids X then it avoids any
strengthening of X . Hence if X is unavoidable, so are all weakenings of X , and
if X is avoidable all strengthenings of X are avoidable.

Two partial words u and v are conjugate, denoted u ∼ v, if there exist partial
words x, y such that u ⊂ xy and v ⊂ yx. It is well-known that conjugacy on
full words is an equivalence relation, and we use c(m, k) to denote the number
of conjugacy classes of words of length m over a k-letter alphabet. However, in
the case of partial words, conjugacy is no longer an equivalence relation [16].
Therefore, two partial words u, v are hole-conjugate if there exist partial words
x, y such that u = xy and v = yx; in this case we write u ∼	 v.

We conclude with some number theoretic notation used in this paper. We
write a | b if a divides b. Next, let p be a prime and let e, m ∈ N. We write
pe ‖ m if pe maximally divides m, that is, if pe | m but pe+1 � m. Finally, we
write i ≡m j if i is congruent to j modulo m.

3 Minimum Number of Holes in Unavoidable Sets

We denote by Hm,n the minimum number of holes in any unavoidable m-uniform
set (summed over all partial words in the set) of cardinality n over a binary
alphabet. To have words of “real length” m, we require that D(u) � 0, m− 1 for
each u in any such set.

An unavoidable set of full words of equal length m over a k-letter alphabet
A has to contain at least one word of each conjugacy class of words of length
m over A. Thus the minimum number α(m, k) of elements in an unavoidable
set of full words of length m over A is greater than or equal to the number
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c(m, k) of conjugacy classes of words of length m over A. It has been shown
by Schützenberger that it is asymptotically true that α(m, k) ∼ c(m, k) (both
numbers are asymptotically equivalent to km

m ) [17]. Later on, answering a con-
jecture of Golomb, Mykkeltveit proved that actually, α(m, k) = c(m, k) [18]. A
new proof of this equality, namely that for all integers m ≥ 1 and k ≥ 1, there
exists an unavoidable set of full words of length m over an alphabet of size k
with c(m, k) elements was given in [2]. Thus, Hm,c(m,2) = 0 for m ≥ 1.

We recall that strengthenings of avoidable sets are always avoidable, though
the same is not true in general for unavoidable sets. As we are interested in
unavoidable sets with the minimum number of holes, and strengthenings do not
contain more holes than the original set, it is reasonable to investigate “maximal
strength” unavoidable sets. So let X be an unavoidable set. If, for all Y � X , Y
is avoidable, then we say X is maximal.

Proposition 1. If every m-uniform unavoidable set of cardinality n having a
total of h holes is maximal, then Hm,n ≥ h.

Proof. If h = 0 then the claim is clear, so assume h ≥ 1. Suppose that Hm,n < h,
and let Y be an m-uniform unavoidable set of cardinality n with h′ < h holes
for some h′ ∈ N. Now add holes to words in Y arbitrarily until the new set, Y ′,
has h holes. Since Y ′ ≺ Y , Y ′ is also unavoidable. Hence Y ′ is an m-uniform
unavoidable set that is not maximal. ��
We now state the main result and focus of this paper.

Theorem 1. For m ≥ 4, Hm,3 = 2m − 5 if m is even, and Hm,3 = 2m − 6 if
m is odd.

Remark 1. As long as we are discussing an m-uniform unavoidable set of size
three, say X = {x1, x2, x3}, we may always assume, without loss of generality,
x1(0) = x1(m − 1) = a, x2(0) = x2(m − 1) = b, x3(0) = b and x3(m − 1) = a,
and require that h(x1) ≤ h(x2). Moreover, only a’s and �’s appear in x1, and
only b’s and �’s appear in x2. We call this the standard form of an m-uniform
three-element unavoidable set of partial words. The presence of x1, x2 is justified
since any unavoidable set over {a, b} must contain words compatible with aZ

and bZ, respectively. Now, x3 must have complementary ends, since otherwise
X � {a�m−2a, b�m−2b} and as the latter set is avoidable so is X . Next, if
h(x1) > h(x2), we may consider instead the set {x1, x2, x3}. This “switches” the
identity of x1 and x2 so that h(x1) ≤ h(x2). Finally, we may fix the orientation
of x3 by taking the reverse of each word, if necessary.

In the next two sections, we give constructions of sets that achieve the proposed
minimum of Theorem 1.

4 The C-Sets

In this section, we define and completely characterize the unavoidable C-sets.



Unavoidable Sets of Partial Words of Size Three 47

Definition 1. Let Λ ⊂ {1, . . . , m− 2}. We denote by Cm(Λ) the m-uniform set
{x1, x2, x3} where x1 = am, x2 = b�m−2b, and x3 is defined as follows: x3(i) = b
if i = 0, x3(i) = a if i ∈ Λ ∪ {m− 1}, and x3(i) = � otherwise.

Remark 2. If Λ = {i1, i2, . . . , is}, we often write Cm(i1, i2, . . . , is) instead of
Cm({i1, i2, . . . , is}). By convention, we order the arguments of Cm(i1, i2, . . . , is)
in increasing order, so that i1 < i2 < · · · < is.

Remark 3. We have Cm(Λ) ≺ Cm(Γ ) precisely when Λ ⊂ Γ .

Proposition 2. The set Cm(i) is unavoidable if and only if i | m− 1.

Proof. Suppose i | m − 1 with li = m − 1 for some l ∈ N, and suppose to the
contrary that w is an infinite word that avoids X = Cm(i). The word w must
contain a b in order to avoid x1; say, without loss of generality, that w(0) = b.
To avoid x2, it must be that w(m − 1) = a. This, however, forces w(i) = b, or
else w meets x3. We may repeat the argument to conclude that w(l′i) = b for
all l′ ∈ N. This yields a contradiction, as we claimed that w(li) = w(m− 1) = a.
Conversely, if i � m− 1, then let w = (bai−1)Z. Now, w clearly avoids x1 and x3
as it is i-periodic. Finally, all indices containing b are congruent to each other
modulo i. Thus, w does not meet x2, since any two positions m − 1 apart are
not congruent modulo i, and so cannot both be b. Hence, X is avoidable. ��
Proposition 3. The set Cm(i, j) is unavoidable iff i, j | m− 1 and 2i = j.

Proof. Suppose i, j | m − 1 with li = m − 1 for some l ∈ N and 2i = j, and
suppose to the contrary that w is an infinite word that avoids X = Cm(i, j).
Note that every b in w must be followed by an a after m− 1 positions (to avoid
x2), and be followed by a b after either i or j positions (to avoid x3). It is
impossible that every consecutive pair of b’s be separated by j positions, for if so
w meets x2 (as j | m− 1). Hence, some pair of b’s are separated by i positions;
say w(0) = w(i) = b. This implies that w(m − 1) = w(m − 1 + i) = a. Now,
if w(m − 1 − i) = b, then w meets x3 (since that b has a’s both i and 2i = j
positions later). This argument cascades backwards since we once again have a’s
separated by i positions. Thus w(m − 1 − l′i) = a for all l′ ∈ N, but this is a
contradiction since w(m− 1− li) = w(0) = b. Hence no word w avoids X .

On the other hand, if i � m− 1 then Cm(i, j) � Cm(i), where the latter set is
avoidable by Proposition 2, and so Cm(i, j) is also avoidable (similarly, for the
case when j � m − 1). Finally, if 2i �= j and i, j | m − 1, put lj = m − 1 for
some l ∈ N. Let u = bai−1(baj−1)l−1. Then we claim w = uZ is an infinite word
avoiding X . Clearly w avoids x1 and x3 (for every b is followed by another one
after either i or j positions). Now let v be any m-factor of w with v(0) = b. We
claim that v(m − 1) = a and so w avoids x2. Note that b’s appear in positions
congruent to 0 modulo j until the first factor of bai−1 appears, after which they
appear in positions congruent to i modulo j. The next time a factor of bai−1

appears, b’s start appearing in indices congruent to 2i modulo j, and so on.
Now, recall that i < j, and so m = lj + 1 > lj + i − j = (l − 1)j + i = |u|.

Furthermore, since j < m− 1, we know that l ≥ 2. It follows that

m < m− 1 + 2i ≤ m− 1 + 2i + (l− 2)j = lj + 2i + lj− 2j = 2((l− 1)j + i) = 2|u|
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Therefore, any m-factor v of w contains more than one but less than two full
copies of u. Hence there are either one or two occurrences of bai−1 (which appear
once per u). So b’s appear at the end of v in positions congruent to i or 2i modulo
j. Now, the only way for v(m − 1) = b is if m − 1 ≡j i or m − 1 ≡j 2i. But
j | m− 1, so m− 1 ≡j 0. It is easy to see that i ≡j 0 is impossible since i < j,
and 2i ≡j 0 implies 2i = lj for some l. As i < j, this forces l = 1 and so
2i = j, contrary to hypothesis. Hence if v is an m-factor of w with v(0) = b,
then v(m− 1) = a. So, w avoids x2 and hence the set X . ��
Corollary 1. Let Λ ⊂ {1, . . . , m− 2} with |Λ| ≥ 3. Then Cm(Λ) is avoidable.

Proof. Put Λ = {i1, . . . , is} with s ≥ 3. Now, Cm(Λ) � Cm(i1, i2) and Cm(Λ) �
Cm(i1, i3), and since i2 �= i3 at least one of Cm(i1, i2) and Cm(i1, i3) is avoidable
by Proposition 3. Hence, so is the set Cm(Λ). ��

5 The D-Sets

In this section, we define and completely characterize the unavoidable D-sets.

Definition 2. Let Λ ⊂ {1, . . . , m − 2}. We denote by Dm(Λ) the m-uniform
set {x1, x2, x3} where x1 = a�m−2a, x2 = b�m−2b, and x3 is defined as follows:
x3(i) = b if i = 0, x3(i) = a if i ∈ Λ ∪ {m− 1}, and x3(i) = � otherwise.

As before, if Λ = {i1, i2, . . . , is}, we often write Dm(i1, i2, . . . , is) instead of
Dm({i1, i2, . . . , is}), and we order the arguments of Dm(i1, i2, . . . , is) in increas-
ing order, so that i1 < i2 < · · · < is.

We now characterize the unavoidable D-sets with one position filled in. How-
ever, this process is much more difficult than the corresponding task for C-sets,
owing to the stricter requirements imposed by x1.

Lemma 1 ([14]). Let X = {a�ma, b�nb}. Put 2s ‖ m + 1 and 2t ‖ n + 1. Then
X is unavoidable if and only if s �= t.

Lemma 2. The sets X = {a�m−2a, b�n−2b}, Y = {a�m−2a, b�n−2b, a�n−2a}
have the same avoidability.

Proof. Suppose X is avoidable, say by the infinite word w. Suppose that w meets
a�n−2a, so that w(i) = w(i + n − 1) = a for some i ∈ Z. Then w(i + m− 1) =
w(i+n−1+m−1) = b, since w avoids a�m−2a, but this contradicts the fact that
w avoids b�n−2b. Hence w avoids a�n−2a and so avoids Y . But clearly X � Y ,
and so if X is unavoidable so is Y . ��
Proposition 4. Let 2s ‖ m − 1 and 2t ‖ i. Then the set Dm(i) is unavoidable
if and only if t ≤ s.

Proof. Let X = {b�m−2b, a�m−2−ia}. We first show that X has the same avoid-
ability as Dm(i). For suppose X is avoidable. Then so is Y = X ∪ {a�m−2a},
by Lemma 2. As Y is an avoidable weakening of Dm(i), we conclude that Dm(i)
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is avoidable. On the other hand, suppose X is unavoidable. Let w be any in-
finite word. If w meets b�m−2b, then it also meets Dm(i). If it does not, then
w(j) = w(j −m + 1 + i) = a for some j ∈ Z. Now, if w(j −m + 1) = a, then w
meets x1, and if w(j −m + 1) = b, it meets x3. In either case, w meets Dm(i),
and so Dm(i) is unavoidable. Hence X has the same avoidability as Dm(i).

Next, let 2s ‖ m − 1, 2t ‖ i, 2r ‖ m − 1 − i. We show that r �= s if and only
if t ≤ s. Set 2sp = m − 1, 2tq = i for odd p, q. Now, if t < s, then 2s−tp − q is
odd, and so 2t ‖ 2t(2s−tp− q) = 2sp− 2tq = m− 1 − i and r = t �= s. If t = s,
then, since p− q is even, we have 2s+1 | 2s(p− q) = 2sp− 2tq = m− 1− i. Thus
r ≥ s + 1 and so r cannot be equal to s. Finally, if t > s, then p− 2t−sq is odd.
It follows that 2s ‖ 2s(p− 2t−sq) = 2sp− 2tq = m − 1 − i and so r = s. Hence
r �= s if and only if t ≤ s. Recall that by Lemma 1, X is unavoidable if and only
if r �= s. Therefore, Dm(i) is unavoidable if and only if t ≤ s. ��
We now turn our attention to D-sets with two positions filled in. A previous
result gives necessary conditions for the unavoidability of Dm(i, j), provided
that i, j, m− 1 are relatively prime.

Theorem 2 ([15]). Let l, n1, n2 be nonnegative integers such that n1 ≤ n2 and
gcd(l + 1, n1 + 1, n2 + 1) = 1. If the set {a�la, b�lb, a�n1a�n2a, b�n1b�n2b} is
unavoidable, then at least one of the following conditions hold:

(i) l = 6 and (n1, n2) ∈ {(1, 3), (3, 7), (1, 7)};
(ii) n1 + 1 ≡2l+2 0;
(iii) n2 + 1 ≡2l+2 0;
(iv) n1 + n2 + 2 ≡2l+2 0;
(v) 2n1 + n2 + 3 ≡2l+2 l + 1;
(vi) 2n2 + n1 + 3 ≡2l+2 l + 1;
(vii) n2 − n1 ≡2l+2 l + 1.

Corollary 2. If Dm(i, j) is unavoidable and gcd(m − 1, i, j) = 1, then j = 2i,
or i + j = m− 1, or the three conditions m = 8, i = 1, and j ∈ {3, 5} hold.

Proof. Suppose Dm(i, j) is unavoidable. Put l = m−2, n1 = j−i−1, n2 = m−j−
2 and let Y = {a�la, b�lb, a�n1a�n2a, b�n1b�n2b}. Note that Y is also unavoidable
since Y ≺ Dm(i, j) = {a�la, b�lb, b�i−1a�n1a�n2a}; moreover, gcd(l + 1, n1 +
1, n2+1) = 1. Hence, l, n1, n2 must satisfy one of the conditions given in Theorem
2. However, as i > 0 we have that n1 + n2 + 1 < l; this forces one of (i), (v), or
(vi) to hold. It is easy to verify that these conditions are equivalent to the ones
stated about m, i, j. ��
The following proposition shows that we do not gain any new unavoidable sets
by considering cases where m − 1, i, j are not relatively prime. Thus we may
extend the above result to all i, j, m.

Proposition 5. For any Λ = {i1, . . . , is}, let dΛ = {di | i ∈ Λ}. Then Dm(Λ)
is avoidable if and only if Dd(m−1)+1(dΛ) is.
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Proof. Let Λ = {i1, . . . , is} ⊂ {1, . . . , m − 2}. Let Y = Dm(Λ) = {y1, y2, y3}
and Z = Dd(m−1)+1(dΛ) = {z1, z2, z3}, where y1 = a�m−2a, y2 = b�m−2b, z1 =
a�d(m−1)−1a, z2 = b�d(m−1)−1b. If w is a word avoiding Y , then we claim the
word w′ = · · ·w(−1)dw(0)dw(1)d · · · avoids Z. To see this, note that as w is
(m − 1)-alternating, w′ is d(m − 1)-alternating and so avoids z1, z2. Now, if w′

meets z3, then there exists l such that w′(l) = b, w′(l + di1) = · · · = w(l + dis) =
w(l + d(m − 1)) = a. But if we put h =

⌊
l
d

⌋
, then w(h) = b, w(h + i1) = · · · =

w(h + is) = w(h + m − 1) = a so w meets y3. This is a contradiction, so w′ in
fact avoids z3 and hence Z. The reverse direction is analogous, except that if w
is a word avoiding Z, then the word w′ = · · ·w(−d)w(0)w(d) · · · avoids Y . ��
Corollary 3. If Dm(i, j) is unavoidable, then j = 2i, or i + j = m− 1, or both
m = 7i + 1 and j ∈ {3i, 5i}.
Proof. This is an immediate consequence of Corollary 2 and Proposition 5. ��
We now show that the above conditions are sufficient.

Lemma 3. Let m, n ∈ N, 2s ‖ m and 2t ‖ n. If s ≥ t, gcd(m, n) = gcd(2m, n).

Proof. Since s ≥ t, we know that the power of 2 maximally dividing gcd(m, n) is
just min(s, t) = t. But the power of 2 maximally dividing gcd(2m, n) is min(s +
1, t) = t. It is clear that the other prime factors of gcd(m, n) are unaffected by
doubling m, and the result follows. ��
Proposition 6. Let 2s ‖ m − 1, 2t ‖ i, and 2r ‖ j. Then the set Dm(i, j) is
unavoidable if and only if (iv) holds in addition to one of (i), (ii), or (iii):

(i) j = 2i;
(ii) i + j = m− 1;
(iii) m = 7i + 1 and j ∈ {3i, 5i};
(iv) s ≥ t, r.

Proof. If t > s, then Dm(i) is avoidable by Proposition 4. Hence Dm(i, j) is
avoidable, as Dm(i, j) � Dm(i). A similar argument applies if r > s. Together
with Corollary 3, we have one direction of the proof.

It remains to show that the above conditions are sufficient. We assume for the
remainder of the proof that (iv) holds.

Suppose (i) holds, and that w is a word avoiding Dm(i, j). We show that this
leads to a contradiction. Since w avoids x1, we have |w|b ≥ 1 and we may take
without loss of generality w(0) = b. To avoid x2, w(m − 1) = a, and to avoid
x3, w(i) = b or w(j) = b. Similarly, for every b, there must be a b that occurs
i or j = 2i positions later. Suppose that w(i) = b. Then w(m − 1 + i) = a.
Now, note that w(m − 1 − i) = a, for there are a’s that occur i positions and
j = 2i positions after m − 1 − i. Thus w(−i) = b. Since we have another two
a’s separated by i positions (at m − 1 and m − 1 − i), we may apply the same
argument to conclude that w(−2i) = b. We may repeat this to get w(li) = b
for all l ≤ 0. Now, w is (m− 1)-alternating since it avoids {x1, x2}, and so it is
(2m− 2)-periodic. Hence w(x) = b whenever x ≡2m−2 li for some l ≤ 0.
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Let d = gcd(m− 1, i). Then d | m− 1, say with dq = m− 1, and furthermore
d = gcd(2m − 2, i) by Lemma 3. By Bezout’s theorem, we may write d =
xi + y(2m − 2) for some x, y ∈ Z (x negative). Hence xi ≡2m−2 d. It follows
that w(m − 1) = w(dq) = b, as dq ≡2m−2 xqi. This contradicts our previous
assertion that w(m− 1) = a.

It remains to consider the case where b appears in every position congruent
to lj modulo 2m − 2 for some l ∈ Z (that is, when no two b’s are separated
by i positions), but this leads to a contradiction in the same way, since r ≤ s.
Hence we may represent m− 1 as a multiple of j modulo 2m− 2 and so reach a
contradiction. We conclude that Dm(i, j) is unavoidable when (i) holds.

Now suppose (ii) holds. Again, let w be a word that avoids Dm(i, j), and take
without loss of generality w(0) = b. Suppose that w(i) = b. Then w(m − 1) =
w(m − 1 + i) = a. Now, the b in position i already has an a m − 1 − i = j
positions later, so it must have a b i positions later. Hence w(2i) = b, and now
w(m − 1 + 2i) = a. Repeating this argument gives us that w(li) = b for all
l ≥ 0. Since w is (2m − 2)-periodic, we have w(x) = b whenever x ≡2m−2 li
for some l. A contradiction is obtained in a manner identical to the previous
case, since (iv) holds. Hence Dm(i, j) is unavoidable when (ii) holds. Finally,
note that there are only a finite number of words that are (m− 1)-alternating,
for any fixed m. Thus we may show the unavoidability of D8(1, 3) and D8(1, 5)
(and hence the unavoidability of D7i+1(i, 3i) and D7i+1(i, 5i), by Proposition 5)
via an exhaustive search. It follows that Dm(i, j) is unavoidable if (iii) holds. ��
Finally, we show that, like the C-sets, the D-sets are always avoidable when x3
has at least three positions filled in.

Proposition 7. Let Λ ⊂ {1, . . . , m−2} with |Λ| ≥ 3. Then Dm(Λ) is avoidable.

Proof. It suffices to show that Dm(i, j, l) is avoidable, as if |Λ| > 3 we can choose
a weakening with exactly three positions filled in x3. Moreover, by Proposition
5, we only need to consider the cases when gcd(m− 1, i, j, l) = 1.

If Dm(i, j, l) is unavoidable, then it is necessary that each of the sets Dm(i, j),
Dm(j, l), and Dm(i, l) be unavoidable. Hence each weakening must satisfy Propo-
sition 6. Suppose some of these three weakenings satisfies (iii). If m = 8 it is easy
to see that one of the above weakenings of Dm(i, j, l) is avoidable, as D8(1, 3) and
D8(1, 5) are the only unavoidable D-sets. On the other hand, suppose m = 7d+1
with d > 1. If Dm(i, j) satisfies (iii), then l is also a multiple of d regardless of
which condition Dm(i, l) satisfies. This contradicts our claim of relative prime-
ness. An analogous argument shows that Dm(i, l) cannot satisfy (iii).

Now suppose Dm(j, l) satisfies (iii). Then j = d and l = pd for p ∈ {3, 5}. If
Dm(i, j) satisfies (ii) then again i is a multiple of d and we have a contradiction.
Hence Dm(i, j) satisfies (i) and j = 2i. If i > 1 we again contradict relative
primeness (since gcd(m − 1, i, j, l) = i), and if i = 1, we have d = 2. But both
D15(1, 6), D15(1, 10) are avoidable, so Dm(i, j, l) has the avoidable weakening
Dm(i, l). Hence if any of the three weakenings satisfy (iii), Dm(i, j, l) is avoidable.

Next suppose none of the three weakenings satisfies (iii). Set 2s ‖ m− 1, 2t ‖
i, 2r ‖ l. It is impossible that all three weakenings satisfy (i), just as it is
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impossible for more than one weakening to satisfy (ii). Hence it must be that
two weakenings satisfy (i) and one weakening satisfies (ii). It is easy to see that
we must have j = 2i, l = 2j, and i + l = m− 1. But this implies l = 4i, and so
5i = m− 1. It follows that s = t. Hence we have r > s, which is a contradiction
as we assumed (iv) holds. Therefore, Dm(i, j, l) is avoidable. ��

6 Proof of Our Main Result

With our characterization of unavoidable C-sets and D-sets, we may begin to
prove Theorem 1. We first prove Conjecture 2 from [14] (see Corollary 4).

Lemma 4. Let i1 < · · · < is < j1 < · · · < jr be elements of {1, . . . , m−2}. Let x
be defined as follows: x(i)=b if i ∈ {0, i1, . . . , is}, x(i)=a if i∈{j1, . . . , jr, m−1},
and x(i) = � otherwise. Then the set X = {a�m−2a, b�m−2b, x} has the same
avoidability as some D-set Dm(Λ) with |Λ| = s + r.

Proof. We proceed by induction on s. The base case of s = 0 is trivial as then
X is itself a D-set. Now let s ≥ 1. Note that a word w meets x if and only if it
meets x′ defined as

b�i2−i1−1b · · · b�is−is−1−1b�j1−is−1a�j2−j1−1a · · · a�jr−jr−1−1a�m−1−jr−1a�i1−1a

since w must be (m−1)-alternating. Hence X has the same avoidability as X ′ =
{a�m−2a, b�m−2b, x′} which has one fewer b. Applying the induction hypothesis
to X ′ yields the claim. ��
Corollary 4. If the set X = {a�m−2a, b�m−2b, x} is unavoidable, where x ↑
b�m−2a, then x has at most two interior defined positions.

Proof. If x has any a appearing before a b, then the set X is avoided by
(bm−1am−1)Z. Otherwise, if x has at least three interior defined positions, then
by Lemma 4 it has the same avoidability as some set Dm(Λ) with |Λ| ≥ 3. But
all such D-sets are avoidable, by Proposition 7, and so X is avoidable. ��
Next, we show that the C-sets are the only unavoidable sets with the minimum
number of holes. We divide the sets into multiple cases, conditioning on the
quantity h(x1) + h(x2).

Corollary 5. Let m be odd (resp. even). Let X be an m-uniform set of size
three of the form described in Remark 1. Suppose h(x1) + h(x2) > m− 2 (resp.
m− 1). Then if X has 2m− 6 (resp. 2m− 5) holes in total, X is avoidable.

Proof. There are at most m−5 holes in x3, and so x3 has at least three positions
other than 0 and m−1 defined. Then we may weaken x1, x2 to a�m−2a, b�m−2b.
The resulting set is avoidable by Corollary 4, and therefore so is X . ��
Note that we did not treat the case where h(x1) + h(x2) = m − 1 for even m.
This case is covered by the following proposition.
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Proposition 8. Let m ≥ 4 be even, and let X be an m-uniform set of size three
of the form described in Remark 1 with h(x1) + h(x2) = m − 1. Then if X has
2m− 5 holes in total, X is avoidable.

Proof. First, suppose that h(x1) > 1. Assume that m ≥ 8. We find a two sided-
infinite word w with period m−1 that avoids X . Since w is (m−1)-periodic, any
m-factor of w begins and ends with the same letter, and so w immediately avoids
x3. Moreover, we only have to consider whether w meets x′

1 = x1(0) · · ·x1(m−2)
(and x′

2 = x2(0) · · ·x2(m− 2)), as any m-factor v with v(0) = a necessarily has
v(m−1) = a (analogously, every m-factor that begins with b has to end with b).

Now consider the set B, which contains all conjugacy classes of length m− 1
over {a, b}, with exactly h(x1) b’s and h(x2) a’s. Since m ≥ 8, it follows that
|B| > 2. Choose a representative u of a conjugacy class not covered by x′

1 and
x′

2. By considering the number of a’s and b’s in u, we see that if w = uZ were to
meet x′

1 via the (m − 1)-factor v, the �’s in x′
1 need to align with the b’s in v.

However, for any factor v of w this is impossible, since u � x′
1 and v ∼ u. Thus,

it follows that v cannot be compatible with x′
1. A similar argument shows that

w avoids x′
2. Hence w avoids x1 and x2, and therefore avoids X . We may check

the cases for m ≤ 6 easily via a computer program.
Now, suppose that h(x1) = 1. In this case we know that x1 ∼	 am−1� and

x2 = b�m−2b. Moreover, x3 has precisely two interior positions defined. First, if
both the interior positions have letter b, then the word w1 = (babam−3)Z avoids
X since each m-factor of w1 contains exactly two occurrences of the letter b,
and so cannot be compatible with either x1 or x3. The word w1 avoids x2 as
well since both m-factors that begin with b end with a. Second, if the interior
positions have letters, from left to right, a, b, then the word (bm−1am−1)Z avoids
X . Third, if the interior positions have letters, from left to right, b, a, and the b
occurs in position 1, then (babam−3)Z avoids X . Otherwise, the word (bbam−1)Z

avoids X , since in any m-factor which contains two instances of b, these letters
appear in consecutive positions, and so cannot be compatible with x2 or x3.

Finally, if both the interior positions i, j, i < j, have letter a, then we proceed
as follows. If i, j | m − 1, then, since m − 1 is odd it cannot be that j = 2i.
Therefore the word w2 = (bai−1(baj−1)l−1)Z (where jl = m− 1) avoids the set
Cm(i, j) by Proposition 3, and so avoids x2 and x3. Since w2 has at least two
occurrences of b in each m-factor, w2 avoids x1 as well. Hence w2 avoids X .

If i and j do not simultaneously divide m− 1, let l ∈ {i, j} be an index that
does not divide m−1. Now, (bal−1)Z avoids x2 and x3, but it might meet x1 if the
number of a’s on either side of the � in x1 are both less than l. This can happen
only if l > m

2 , which in turn implies that j > m
2 (either l = j or l = i < j).

Hence j � m− 1 as well. Then the j-periodic word w3 = (bbaj−2)Z avoids x1 and
x3 (consider the number of instances of b in w3 and its period, respectively).
Unless either j + 1 = m − 1 or 2j − 1 = m− 1, the word w3 avoids x2 as well.
However, in both of these last cases the word (babaj−3)Z avoids X . ��
Proposition 9. Let X be an m-uniform set of three partial words of the form
described in Remark 1. If h(x1) + h(x2) = m− 2, then either X is a C-set or X
is avoidable.
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Proof. Suppose h(x1) = 0. Then if |x3|b ≥ 2, the infinite word w = (bam−1)Z

avoids X ; otherwise, X is a C-set. Therefore, for the remainder of this proof we
may assume that h(x1) ≥ 1. For brevity, let h(x1) = i− 2. Then h(x2) = m− i.

First, suppose that x2 �	 bi�m−i. The word w = (bi−1am−i)Z avoids X . Note
that w is (m − 1)-periodic, so w does not meet x3 (any m-factor of w has the
same symbol in its first and last position). Since any m-factor of w has at least
i − 1 b’s, while x1 contains only i − 2 �’s, we can conclude that w avoids x1.
Finally, let v be any m-factor of w with v(0) = b. Then v(m − 1) = b as w is
(m−1)-periodic, and v(0) · · · v(m−2) ∼ bi−1am−i. This implies that there exists
a contiguous block of m− i a’s within v. It is now clear that v � ↑ x2, as x2 has
precisely m − i �’s to match the a’s, but they do not form a contiguous block.
By assumption v is any m-factor of w that begins with a b, we can therefore
conclude that w avoids x2 and hence the set X .

Now, suppose that x2 ∼	 bi�m−i. The word w1 = (bi−2abam−i−1)Z avoids X .
It avoids x1 and x3 for the same reasons w does. Now, if v is any m-factor of
w1 beginning (and ending) with b, then v(0) · · · v(m− 2) ∼ bi−2abam−i−1. This
implies that there are m− i occurrences of a in v, not situated in a contiguous
block. It is now clear that v � ↑ x2, as x2 has only m− i �’s to align with the a’s,
however, all appearing in a single contiguous block. Thus w1 avoids x2. ��
Corollary 6. Let X be an m-uniform set of three partial words of the form
described in Remark 1. If h(x1) + h(x2) < m− 2, then X is avoidable.

Proof. Insert holes into x1, x2 so that 1 ≤ h(x1) ≤ h(x2), h(x1) +h(x2) = m−2.
The new set, X ′, is still in standard form, and is not a C-set since h(x1) ≥ 1.
Hence it is avoidable by Proposition 9, and thus so is X � X ′. ��
Before we apply Proposition 1 to prove Theorem 1, it remains to show that the
unavoidable C-sets are maximal.

Proposition 10. If m is even (resp. odd), then the unavoidable C-sets described
in Proposition 2 (resp. Proposition 3) are maximal.

Proof. Let m be even, and let X = Cm(i) be an unavoidable C-set. We cannot
strengthen x2, for the resulting set would be avoidable by Corollary 6. If we
strengthen x3 with a b, then the resulting set is avoidable by Proposition 9 (as it
is no longer a C-set). Finally, suppose we strengthen x3 with an a in position j.
Let i′ = min(i, j) and j′ = max(i, j). Then Cm(i′, j′) is avoidable by Proposition
3, since either j′ �= 2i′, or j′ = 2i′ � m − 1 (since m − 1 is odd). Hence X is
maximal. Now let m be odd, and let Y = Cm(Λ) an unavoidable C-set where
|Λ| = 2. Again, we cannot strengthen x2 at all, nor can we strengthen x3 with
a b. Now suppose we strenghten x3 with an a. Then the resulting set is of the
form Cm(i, j, l), which is avoidable by Corollary 1. Hence Y is maximal. ��
We now complete the proof of Theorem 1.

Proof (of Theorem 1). Let m be odd (resp. even), and let X be an m-uniform
unavoidable set of three partial words, with 2m − 6 (resp. 2m− 5) total holes.
Now, Corollaries 5 and 6 (resp. along with Proposition 8) together tell us that
h(x1) + h(x2) = m− 2, and moreover Proposition 9 gives that X is necessarily
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a C-set. But we know that unavoidable C-sets with 2m− 6 (resp. 2m− 5) holes
are maximal, by Proposition 10, and hence X is. Therefore, Hm,n ≥ 2m − 6
(resp. 2m − 5) by application of Proposition 1. On the other hand, Cm(1, 2)
(resp. Cm(1)) is always unavoidable, and so we can in fact achieve 2m− 6 (resp.
2m− 5) holes in an unavoidable set. This yields the reverse inequality. ��
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Abstract. We study problems of reconfiguration of shortest paths in
graphs. We prove that the shortest reconfiguration sequence can be ex-
ponential in the size of the graph and that it is NP-hard to compute
the shortest reconfiguration sequence even when we know that the se-
quence has polynomial length. Moreover, we also study reconfiguration
of independent sets in three different models and analyze relationships
between these models, observing that shortest path reconfiguration is a
special case of independent set reconfiguration in perfect graphs, under
any of the three models. Finally, we give polynomial results for restricted
classes of graphs (even-hole-free and P4-free graphs).

1 Introduction

One of the biggest impacts of algorithmic graph theory has been its usefulness
in modeling real-world problems, where the domain of the problem is modeled
as a graph and the constraints on the solution define feasible solutions. For
example, consider the problem of routing a certain commodity between two nodes
in a transportation network, using as few hops as possible. The transportation
network can be modeled as a graph, each route can be modeled as a path, and the
feasible solutions are all the shortest paths between the two nodes. Traditionally,
the real-world user first defines a problem instance and then uses an algorithm to
find a feasible solution which she then “implements” in the real world. However,
some real-world situations do not follow this simple paradigm and are more
dynamic because they allow the solution to “evolve” over time. For example,
consider the situation where the commodity is already being transferred along
a shortest route, but the operator has been instructed to use a different route,
which is also a shortest path. She can physically switch the route only one node
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at a time, but does not wish to interrupt the transfer. Thus, she would like to
switch between the two routes in as few steps as possible, while maintaining a
shortest path route at every intermediate step.

In general, this type of situation gives rise to a reconfiguration framework,
where we consider an algorithmic problem P and a way of transforming one
feasible solution of an instance I of P to another (reconfiguration rule). Given two
feasible solutions s1, sk of I, we want to find a reconfiguration sequence s1, . . . , sk

such that each si (1 ≤ i ≤ k) is a feasible solution of I, and the transition between
si and si+1 is allowed by the reconfiguration rule. An alternate definition is via
the reconfiguration graph, where the vertices are the feasible solutions of I, and
two solutions are adjacent if and only if one can be obtained from the other by the
reconfiguration rule. The reconfiguration sequence is then a path between s1 and
sk in the reconfiguration graph. We can then ask for the shortest reconfiguration
sequence, or, in the reconfigurability problem, to simply check if the two solutions
are reconfigurable (i.e., if such a sequence exists).

The reconfiguration framework has recently been applied in a number of set-
tings, including vertex coloring [3,4,2,1], list-edge coloring [12], clique, set cover,
integer programming, matching, spanning tree, matroid bases [11], block puz-
zles [10], independent set [10,11], and satisfiability [9]. In the well-studied vertex
coloring problem, for example, we are given two k-colorings of a graph, and the
reconfiguration rule allows to change the color of a single vertex. In a different
example, we are given two independent sets, which we imagine to be two sets
of tokens placed on the vertices, and the reconfiguration rule is to slide a single
token along an edge (token sliding).

Though the complexities of each of the many reconfiguration problems may
each be studied independently, a fundamental question is whether there exists
any systematic relationship between the complexity of the original problem and
that of its reconfigurability problem. To this end, current studies have revealed
a pattern where most “natural” problems in P have their reconfigurability prob-
lems in P as well, while problems whose reconfigurability versions are at least
NP-hard are NP-complete. For example, spanning tree, matching, and matroid
problems in general (all in P) lead to polynomially solvable reconfigurability
problems, while the reconfigurability of independent set, set cover, and integer
programming (all NP-complete) are PSPACE-complete [11]. Another example
is satisfiability, where Gopalan et al. [9] showed that reconfigurability instances
arising from tight relations—a class for which it is easy to determine if the
formula is satisfiable—can be solved in linear time; on the other hand, reconfig-
urability is PSPACE-complete for the class of formulas arising from non-tight
relations.

Ito et al. [11] have conjectured that this relationship is not true in general,
and that there exist problems in P which give rise, in a natural way, to NP-
hard reconfigurability problems. Indeed, the problem of deciding whether two
k-colorings are reconfigurable is PSPACE-complete for (i) bipartite graphs and
k ≥ 4, and (ii) planar graphs, for 4 ≤ k ≤ 6 [1]. Clearly, 4-coloring of bipartite or
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planar graphs is in P. However, these are not “natural” problems in the sense that
the colorings are not optimal. It is interesting to ask if there exists a “natural”
problem in P whose reconfiguration version is NP-hard.

Another systematic relationship that has been pursued is between the com-
plexity of a reconfigurability problem and the diameter of the reconfiguration
graph. When the diameter is polynomial, a reconfiguration sequence is a trivial
certificate for the reconfigurability of two instances, guaranteeing that the prob-
lem is in NP. However, current evidence further suggests that for reconfigurability
problems that are solvable in polynomial time, the diameter is also polynomial.
In the study of k-coloring, it was found that for k ≤ 3, the reconfigurability
problem is solvable in polynomial time and the diameter of the reconfiguration
graph is at most quadratic in the number of vertices of the colored graph. For
satisfiability, the formulas built from tight relations (whose reconfigurability is
polynomial) lead to reconfiguration graphs with linear diameter [9]. We are not
aware of any natural problems with the property that the diameter can be ex-
ponential while reconfigurability can be decided in polynomial time1; however,
such an example, if found, would indicate that the diameter cannot serve as a
reliable indicator of the reconfigurability complexity.

In this paper, we introduce the reconfiguration version of the shortest path
problem (Section 2), which arises naturally, such as in the routing example above.
We show that the reconfiguration graph can have exponential diameter, imply-
ing that the shortest path reconfiguration problem probably breaks one of the
two established patterns described above. On the one hand, if reconfigurability
of shortest paths can be decided in polynomial time, then it is the first exam-
ple of a reconfigurability problem in P with exponential diameter. On the other
hand, if it is NP-hard, it is the first example of a “natural” problem in P whose
reconfigurability version is NP-hard. For these reasons, we believe that shortest
path reconfiguration is an important problem to study, not only for its prac-
tical application but also for our understanding of the systematic relationship
between the hardness of a problem, the diameter of its reconfiguration graph,
and the hardness of its reconfigurability problem. Towards this end, we give a
non-trivial reduction from SAT to show that it is NP-hard to find the shortest
reconfiguration sequence between two shortest paths (however, the complexity
status of the reconfigurability problem remains open).

We also study reconfiguration of independent sets, where, unlike many other
problems, there is more than one natural reconfiguration rule. In particular ap-
plications, for example, a threshold is specified that bounds the cardinality of
the intermediate feasible solutions. Based on this idea, Ito et al. [11] considered
an alternative to token sliding called token addition and removal, where one is
allowed to either add or remove a token as long as there are at least k − 1 to-
kens at any given time, for some k. In this paper, we introduce token jumping,
where one is allowed to move a single token to any other vertex. The token

1 For a very artificial one, consider the problem in which instances are n-bit words
and two instances are adjacent if they differ by 1 modulo 2n. The diameter of the
reconfiguration graph is 2n−1 but all pairs of instances are reconfigurable.
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jumping reconfiguration graph is often easier to analyze than the token addition
and removal one, since the cardinalities of two adjacent token sets are always
the same. However, we show that the two models are polynomially equivalent,
allowing for an easier way to analyze token addition and removal reconfiguration
graphs (Section 3).

Finally, we show that reconfiguration of independent sets is a generalization of
the reconfiguration of shortest paths; our hardness result for shortest paths then
implies that it is NP-hard to find the shortest reconfiguration sequence between
two independent sets, even in perfect graphs (Section 4). We also identify two
restricted graph classes where reconfigurability is easy – even-hole-free graphs
under token jumping, for which the reconfiguration graph is always connected,
and P4-free graphs under token sliding (Section 5). Due to the space constraint,
some proofs are omitted but can be found in the full version [13].

2 Shortest Path Reconfiguration

We define the reconfiguration rule for shortest paths in the natural way: two
shortest (s, t)-paths are adjacent in the reconfiguration graph of shortest (s, t)-
paths if and only if they differ, as sequences, in exactly one vertex.

2.1 Instances with Exponential Diameter

We now present a family of graphs Gk whose size is linear in k but the diameter
of the reconfiguration graph is Ω(2k). The graph G1 contains vertices {x1

i | 1 ≤
i ≤ 7} ∪ {y1

i | 1 ≤ i ≤ 6} ∪ {s, t} and edges {(x1
i , y

1
i ), (x1

i+1, y
1
i ), (y1

i , t) | i ≤ 6} ∪
{(s, x1

i ) | 1 ≤ i ≤ 7}. The graph Gk is defined recursively with vertices {xk
i | 1 ≤

i ≤ 7}∪ {yk
i | 1 ≤ i ≤ 6}∪V (Gk−1) and the edges {(xk

i , yk
i ), (xk

i+1, y
k
i ) | i ≤ 6}∪

{(yk
i , xk−1

j ) | i ∈ {1, 3, 5}, j ≤ 7}∪{(yk
2 , xk−1

1 ), (yk
4 , xk−1

7 ), (yk
6 , xk−1

1 )}∪E(Gk−1 \
{s}) ∪ {(s, xk

i ) | 1 ≤ i ≤ 7} (see Figure 1). Let pk
b = s, xk

1 , yk
1 , . . . , x1

1, y
1
1 , t,

and let pk
e = s, xk

7 , yk
6 , xk−1

1 , xk−1
1 , . . . , x1

1, y
1
1 , t. We will consider the problem of

reconfiguring pk
b to pk

e in Gk.

3
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Fig. 1. The graph Gk for k = 4, where the reconfiguration distance between pk
b =

s, xk
1 , yk

1 , . . . , x1
1, y

1
1 , t and pk

e = s, xk
7 , yk

6 , xk−1
1 , xk−1

1 , . . . , x1
1, y

1
1 , t is Θ(2k). An edge with

a circle end means that the vertex is connected to all the vertices in the next layer.
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Lemma 1. Let p be a shortest path in Gk that goes through yk
1 , and let q be a

path that goes through yk
6 . Then the reconfiguration distance between p and q is

at least 9(2k − 1).

Proof. We prove by induction on k, where the base case is clear. Let ρ =
p1, . . . , pn be the shortest reconfiguration sequence between p and q. First, let i′

be the smallest integer such that pi′+1 contains yk
4 , and let i ≤ i′ be the smallest

integer such that every path pi, . . . , pi′ contains yk
3 . By construction, we know

that pi−1, and hence pi, contains yk−1
1 and pi′+1, and hence pi′ , contains yk−1

6 .
Hence, by the induction hypothesis, the length of this first phase, i′ − i + 1, is
at least 9(2k−1 − 1).

Next, let j′ be the smallest integer such that pj′+1 contains yk
6 , and let j ≤ j′

be the smallest integer such that every path pj , . . . , pj′ contains yk
5 . By con-

struction, we know that pj−1, and hence pj, contains yk−1
6 and pj′+1, and hence

pj′ , contains yk−1
1 . Hence, by the induction hypothesis, the length of this second

phase, j′ − j + 1, is at least 9(2k−1 − 1).
Observe from the graph construction that ρ must always visit yk

x−1 before
visiting yk

x, hence i′ < j, and so the length of ρ is at least the sum of the two
phases plus the moves of the first and second vertex necessary to percolate yk

1
down to yk

6 , proving the lemma. ��
On the other hand, there exists a reconfiguration sequence of length 11(2k − 1)
(see the full version [13] for a proof), giving the following theorem:

Theorem 1. The reconfiguration distance in Gk between pk
b and pk

e is Θ(2k).

2.2 NP-Hardness of Min-SPR

Given (G, s, t, pb, pe, k), where pb and pe are shortest (s, t)-paths and k is an
integer, the Min-SPR problem is to determine whether there is a reconfigu-
ration sequence between pb and pe of length at most k. Let φ be a formula
with variables x1, . . . , xn and clauses C1, . . . , Cm. We will create an instance
(Gφ, s, t, pb, pe, 2m(n+2)) and show that φ is satisfiable if and only this instance
is in Min-SPR. For ease of presentation, the graph Gφ will be directed. However,
our result holds for undirected graphs because the directed shortest (s, t)-paths
in Gφ are exactly the shortest paths in the undirected version of Gφ.

For every variable xi and its possible value vs ∈ {0, 1}, we build a gadget
G(i, vs). The vertex set is {v(i, vs, cs, j) | cs ∈ {0, 1}, 1 ≤ j ≤ 2m}. The values i,
vs, cs, and j for a vertex are referred to as its level, v-state, c-state, and depth, and
denoted by l(v), vs(v), cs(v), and d(v), respectively. For every 1 ≤ j ≤ 2m− 1,
and every cs, there is an edge from v(i, vs, cs, j) to v(i, vs, cs, j + 1). For all
1 ≤ j ≤ m− 1, there is an edge from v(i, vs, 0, 2j) to v(i, vs, 1, 2j + 1), and from
v(i, vs, 1, 2j) to v(i, vs, 0, 2j + 1). We also add edges, called formula edges, that
are formula dependent. For all j, if xi = vs satisfies Cj , we add an edge from
v(i, vs, 1, 2j − 1) to v(i, vs, 0, 2j). This gadget is shown in Figure 2A.

We now connect some of these gadgets together. The gadgets we connect are
G(i, vs) to G(i + 1, 0) and to G(i + 1, 1), for all i ≤ n− 1 and all vs. Given two
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Fig. 2. The reduction from a formula φ to a graph Gφ for the case of three clauses and
three variables. Panel A shows the internal connections of a gadget, with the potential
formula edges that depend on φ given in red (dashed). Panel B shows the way we
connect two given gadgets, while C shows the structure of the whole graph. Each of
the rectangles represents a gadget, with the lines showing which parts are connected
together.

gadgets, G(i, vs) and G(i′, vs′), the meaning of connecting G(i, vs) to G(i′, vs′)
is given as follows (shown in Figure 2BC). For all j ≤ 2m − 1 and cs, there is
an edge from v(i′, vs′, cs, j − 1) to v(i, vs, cs, j). Also, for all j ≤ m− 1 and cs,
there is an edge from v(i′, vs′, cs, 2j) to v(i, vs, 1− cs, 2j + 1).

We next add a begin and end gadget to the graph, consisting of vertices begj

and endj, respectively, for 1 ≤ j ≤ 2m. These are connected in a path, with
edges (begj, begj+1) and (endj , endj+1) for j ≤ 2m− 1. The level of the vertices
in the begin (end) gadget is 0 (i + 1), the c-state is 0 (1), and the depth of begj

or endj is j. For all vs, j ≤ 2m− 1, there is an edge from v(1, vs, 0, j) to begj+1,
and from endj to v(n, vs, 1, j + 1).

Finally, we add a s and t vertex to the graph, and make an edge from s
to every depth 1 vertex, and from every depth 2m vertex to t. The depth of
s(t) is defined to be 0 (2m + 1). We call the resulting directed graph Gφ. Let
pb = s, beg1, . . . , beg2m, t and pe = s, end1, . . . , end2m, t be two paths in this
graph. Then, (Gφ, s, t, pb, pe, 2m(n+2)) is the instance of the Min-SPR problem
that we will consider here.

The intuition behind the reduction is that in order for the path to percolate
down from pb to pe in a minimal number of steps, it must pass consecutively
through exactly one of G(i, 0) or G(i, 1) for every variable xi. The choice of
which one corresponds to assigning xi the corresponding value. Furthermore,
each shortest path that goes through a gadget can visit the vertex at depth 2j
with a c-state of 0 or 1. This corresponds to having the jth clause satisfied or not.
Initially, the path goes only through vertices with c-state 0, and the only way
to switch the c-state at a given depth is via a formula edge. By going through
a gadget G(i, vs), there is an opportunity to use the formula edges to switch
the c-state of all clauses that xi = vs would satisfy. In order to reach the final
path pe, the c-state of all the vertices must be 1, hence all the clauses must be
satisfied.
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First, we will show that the reduction is sound. Each edge (a, b) is considered
to be either odd or even, depending on the parity of d(a). We call edges that
connect vertices on the same level (exactly those that belong to the same gadget)
as intra-level, while the edges that connect vertices on different levels are called
inter-level. We say that a reconfiguration sequence visits a vertex if there exists
p ∈ ρ that contains that vertex.

Fact 1. Let e = (a, b) be an edge in Gφ. The following follows directly from
construction:

1. l(b) ≤ l(a) ≤ l(b) + 1.
2. If e is an intra-level odd edge, cs(a) = 0 implies that cs(b) = 0.
3. If e is an inter-level odd edge, then cs(a) = cs(b).
4. If e is a non-formula odd edge, then cs(a) = cs(b).
5. If e is intra-level, then vs(a) = vs(b).

These facts about Gφ capture most of the properties of the reduction that are
needed to prove correctness of the following Lemmas (2, 3, 4, 5, and 6), whose
proofs can be found in the full version [13].

Lemma 2. The length of a reconfiguration sequence is at least 2m(n+2). More-
over, each move in an sequence that has this length must either increase the
c-state or the level of the switched vertex, but not both.

Lemma 3. No path can contain two vertices with the same level but different
v-state.

Lemma 4. Suppose there exists a reconfiguration sequence ρ of length 2m(n+2).
Then ρ visits at least one vertex at every level, and all the vertices that it visits
at a given level have the same v-state.

Suppose there exists a reconfiguration sequence ρ of length 2m(n+ 2). Lemma 4
allows us to build an assignment θ by assigning θi the v-state of the vertices of
level i in ρ.

Lemma 5. The assignment θ is satisfying for φ.

We also show that the reduction is complete.

Lemma 6. If φ is satisfiable, then there exists a reconfiguration sequence of
length at most 2m(n + 2).

Combining Lemma 5 and Lemma 6 together with the fact that the reduction
can be clearly done in polynomial time, we have the following theorem.

Theorem 2. The Min-SPR problem is NP-hard, even if k is polynomial in
|V (G)|.
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3 Independent Set Reconfiguration: The Models

We now turn our attention to reconfiguring independent sets. Consider the re-
configuration rule in which a move from one valid configuration to another is
made by a token jump: moving a token from one vertex to an unoccupied vertex
(not necessarily a neighbor of it), such that the resulting set is independent. The
token sliding, token jumping, and token addition and removal reconfiguration
rules give rise to the following three reconfigurability problems.

Token sliding (TS) / token jumping (TJ): Given a graph G and two inde-
pendent sets A, B in G, determine if A can be reconfigured into B via a sequence
of independent sets, each of which results from the previous one by a single token
slide (for TS) or jump (for TJ).
Token addition and removal (TAR): Given a graph G, an integer k and two
independent sets A, B in G, both of size ≥ k, is there a way to transform A into
B via independent sets, each of which results from the previous one by adding
or removing one vertex of G, without ever going through an independent set of
size less than k − 1?

We say that A and B are TS- (TAR-, TJ-) reconfigurable if they belong to
the same connected component of the TS- (TAR-, TJ-) reconfiguration graph.
We now establish the equivalence between the TJ and TAR problems (the proof
can be found in the full version [13]).

Theorem 3. Two independent sets A and B of size s in a graph G are TJ-
reconfigurable if and only if they are TAR-reconfigurable with parameter k = s.
Moreover, distTAR(A, B) = 2distTJ(A, B), and there exists an algorithm that,
given a reconfiguration sequence between two independent sets in one of these two
models outputs a reconfiguration sequence connecting the two sets in the other
model in time polynomial in the length of the sequence. The algorithm maps
every shortest TAR-sequence to a shortest TJ-sequence, and vice versa.

Theorem 3 immediately implies that results holding for the TAR model can be
transferred to the TJ model. New results can also be derived via this relationship:

Corollary 1. There exists a polynomial-time algorithm for the TJ problem in
line graphs.

Proof. By Theorem 3, the TJ problem in line graphs is polynomially reducible to
the TAR problem in line graphs. Due to the correspondence between matchings
in a graph and independent sets in its line graph, the problem is polynomially
equivalent to the Matching reconfiguration problem. For a polynomial-
time algorithm for this problem, see Ito et al. [11]. ��

4 Hardness of Independent Set Reconfiguration

TS, TAR, and TJ reconfiguration problems are all PSPACE-complete in general
graphs. For the TS problem, this was announced in [10] (see also [1]) without
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an explicit proof. For the TAR problem, this was shown by Ito et al. [11]. In
fact, their proof uses only token slides (which are done by token additions and
removals), also implying that TS is PSPACE-complete. Theorem 3 immediately
implies PSPACE-completeness for the TJ model. The hardness of these reconfig-
urability problems of course implies the hardness of the more difficult problems
of finding the length of the shortest reconfiguration sequence. However, in this
section we show that these related variants remain NP-hard even when the graph
is restricted to be perfect.

We use a reduction from the reconfiguration of shortest paths. Given a graph
G and two vertices s and t of G at a distance k apart, let G1 denote the graph
obtained from G by deleting from it all the vertices and edges not appearing on
any shortest (s, t)-path. For i ∈ {0, 1, . . . , k}, let Di be the set of vertices in G1
at distance i from s and k − i from t. The graph G′ is the graph obtained from
G1 by turning every set Di into a clique, and complementing the edges of G1
between every pair of consecutive layers Di and Di+1. Formally, V (G′) = V (G1)
and E(G′) = {uv : u �= v, ∃i such that u, v ∈ Di} ∪

⋃k−1
i=0 {uv : u ∈ Di, v ∈

Di+1, uv �∈ E(G1)}. The idea of the construction is that there is a bijective
correspondence between shortest (s, t)-paths in G and independent sets of size
k + 1 in G′. This gives the following theorem (the proof is straightforward):

Theorem 4. For every graph G, there is a polynomially computable length-
preserving bijection (length-doubling for TAR) between shortest reconfiguration
sequences in the shortest path reconfiguration graph of G and those in the TS-
(TJ-, TAR-) reconfiguration graph for G′.

The following corollary is a direct consequence of Theorem 2 and the fact that
graph G′ contains no odd holes or their complements and hence is perfect [5].
Recall that a hole in a graph is a chordless cycle with at least four vertices, and
a hole is even (odd) if it has an even (odd) number of vertices.

Corollary 2. Let G be a perfect graph, A, B two independent sets in G, and k
an integer. It is NP-hard to determine if there exists a reconfiguration sequence
of length at most k between A and B in the TS, TJ, and TAR models,even if k
is polynomial in |V (G)|.

5 Positive Results for Independent Set Reconfiguration

In this section we identify two restrictions on the input graphs which make the
reconfigurability of independents sets easy to solve.

5.1 Even-Hole-Free Graphs in the TJ Model

We will show that two token sets of the same size in any even-hole-free graph are
TJ-reconfigurable. Given a graph G and two independent sets A and B in G of
the same size, the Piran graph Π(A, B) of A and B is the subgraph of G induced
by the vertex set (A\B) ∪ (B\A). The following simple lemma gives a sufficient
condition under which it is always possible to jump a token from A to B.
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Lemma 7. Let A and B be two independent sets of the same size in a graph G.
If the Piran graph Π(A, B) is even-hole-free then there exists a token in B \ A
with at most one neighbor in A \B.

Proof. The Piran graph is bipartite, and as such, it does not contain odd cycles.
If in addition, Π(A, B) is even-hole-free, then it must be a forest. Since |A\B| =
|B \A|, the number of edges in Π(A, B) is in fact at most |A\B|+ |B \A|−1 =
2|B \A| − 1. Therefore there exists a vertex in B \A with at most one neighbor
in A \B. ��
A consequence of Lemma 7 is the following result (a proof of which can be found
in the full version [13]).

Theorem 5. Let A and B be two independent sets of the same size in a graph G.
If the Piran graph Π(A, B) is even-hole-free, then A and B are TJ-reconfigurable.
Moreover, there exists an algorithm running in time O(|A|) that (if the Piran
graph is even-hole-free) finds a shortest TJ-path between the two sets.

The class of even-hole-free graphs includes the well known class of chordal graphs
(hence also trees and interval graphs). The structure of even-hole-free graphs is
understood and membership in this class can be decided in polynomial time [6].
Notice that if the input graph is even-hole-free, so is the Piran graph. Due to
Theorem 5 we can easily solve the TJ reconfiguration problem for the class of
even-hole-free graphs. Interestingly, determining the complexity of computing
the maximum size of an independent set in an even-hole-free graph is, to the
best of our knowledge, an open problem.

The example of the claw G = K1,3 with leaves {v1, v2, v3}, and the indepen-
dent sets A = {v1, v2}, B = {v1, v3}, shows that the analogue of Theorem 5 does
not hold for the TS model for the whole class of even-hole-free graphs. We leave
it as an open question to determine whether the analogue holds for the class of
(claw, even-hole)-free graphs.

5.2 P4-Free Graphs in the TS Model

In this subsection we give a polynomial time algorithm to solve the TS problem
in P4-free graphs. P4-free graphs (also known as cographs) are graphs without an
induced subgraph isomorphic to a 4-vertex path. A polynomial-time algorithm
for token sliding in P4-free graphs can be developed based on the following well-
known characterization of P4-free graphs [7]: a graph G is P4-free if and only if
for every induced subgraph F of G with at least two vertices, either F or the
complement to F is disconnected. A co-component of a graph G = (V, E) is
the subgraph of G induced by the vertex set of a connected component of the
complementary graph G = (V, {uv | u, v ∈ V, u �= v, uv �∈ E}).
Theorem 6. The TS problem is solvable in time O(|V |+ |E|) if the input graph
G = (V, E) is P4-free. Moreover, a shortest reconfiguration sequence, if it exists,
can be found in time O(|V |+ |E|).
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Algorithm 1. TS-reconfiguration of independent sets in P4-free graphs
Input: A P4-free graph G = (V, E) and two independent sets A, B.
Output: A shortest (A,B)-path in the TS-graph, if one exists, NO other-
wise.
1: if |V (G)| = 1 then return the trivial TS-path if |A| = |B|, and NO otherwise.
2: if G is disconnected, with connected components C1, . . . , Cm then
3: if there is an i ∈ {1, . . . , m} such that |A ∩ Ci| �= |B ∩ Ci| then return NO.
4: else solve the problem recursively for the connected components C1, . . . , Cm

with respective token sets (A ∩ C1, B ∩ C1), . . . (A ∩ Cm, B ∩ Cm).
5: if one of the outputs is NO then return NO.
6: else merge the corresponding (A ∩ Ci, B ∩ Ci)-paths into an (A,B)

TS-path P , return P .
7: else
8: if |A| = |B| = 1 then return an (A, B) TS-path corresponding to a shortest

(A,B)-path in G.
9: else

10: if A and B are in the same co-component of G then solve the problem
for A and B recursively on that co-component and return the output.

11: else return NO.

Proof. We claim that Algorithm 1 below solves the TS problem on P4-free graphs.
The correctness of the algorithm is straightforward, using the above-

mentioned characterization of P4-free graphs [7]. Using the result of Corneil
et al. [8] showing that the decomposition of a P4-free graph G = (V, E) into
one-vertex graphs by means of taking components or co-components can be
computed in time O(|V |+ |E|) [8], it is also easy to see that the algorithm can
be implemented so that it runs in linear time. ��
Theorem 6 can be used to prove that the TS problem is solvable in polynomial
time if the input graph is (claw, paw)-free (recall that the claw is K1,3 and the
paw is the graph obtained from the claw by adding one edge). This is due to
the observation that the only connected (claw, paw)-free graph containing an
induced P4 are (long enough) paths and cycles.

6 Concluding Remarks

In this paper, we studied the reconfiguration variants of the shortest path and
independent set problems. We believe that the major open problem is to deter-
mine the complexity of deciding whether two shortest paths are reconfigurable. If
the problem is NP-hard, then it will be the first example of an efficiently solvable
reconfigurability problem with reconfiguration graphs of large diameter. If the
problem is polynomially solvable, then it will be the first example of a “natural”
problem in P whose reconfigurability version is NP-hard.
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Abstract. In this paper, we consider the unordered pseudo-tree match-
ing problem, which is a problem of, given two unordered labeled trees P
and T , finding all occurrences of P in T via such many-one embeddings
that preserve node labels and parent-child relationship. This problem is
closely related to tree pattern matching problem for XPath queries with
child axis only. If m > w , we present an efficient algorithm that solves the
problem in O(nm log(w)/w) time using O(hm/w + m log(w)/w) space
and O(m log(w)) preprocessing on a unit-cost arithmetic RAM model
with addition, where m is the number of nodes in P , n is the number
of nodes in T , h is the height of T , and w is the word length. We also
discuss a modification of our algorithm for the unordered tree homeomor-
phism problem, which corresponds to a tree pattern matching problem
for XPath queries with descendant axis only.

1 Introduction

Tree matching is a fundamental problem in computer science, and it has a wide
range of applications in XML/Web database, schema validation, information
extraction, document analysis, image processing, and semi-structured data pro-
cessing. In particular, tree matching and tree inclusion problems have attracted
much attention and have been extensively studied [2,8,9,14]. In this paper, we
study a non-standard version of the unordered tree matching and inclusion prob-
lems, called the unordered pseudo-tree matching problem (UPTM) [16] and the
unordered tree homeomorphism problem (UTH) [4], respectively, where embed-
ding mappings can be many-one (See Fig. 1).

As main results, we present an efficient algorithm that solves UPTM problem
with the following complexities (Theorem 1):

– O(n�m/w�log w) time using O(h�m/w�+�m/w�log w) space and O(m log w)
preprocessing if m > w. (the large pattern case)

– O(n log m) time using O(h + log m) space and O(m log m) preprocessing if
m ≤ w. (the small pattern case)

where m and n are the sizes of pattern tree P and text tree T , h is the height
of T , and w is the word length of RAM. We also show that UTH problem is
solvable in the same time and space complexities as above (Theorem 2).
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Fig. 1. The unordered pseudo-tree matching problem (UPTM) and the unordered tree
homeomorphism problem (UTH)

A key of our algorithm is a data structure for the small pattern case, where
m ≤ w, based on bit-parallel computation of set operations, including tree ag-
gregation that checks the branching of internal nodes. Developing bit-assignment
technique based on separator trees, we improve the complexity of the tree aggre-
gation from O(m) time and space to O(log m) time and space. Combining this
result to dynamic programming tree matching algorithms and a module decom-
position technique of [10], we have claimed results for both UPTM and UTH.

For the UPTM, our O(n�m/w�log w) time and O(h�m/w�log w+�m/w�log w)
space algorithm improves the complexity of the previous O(n·rep(P )l(P )d(P )/w)
= O(nm3/w) time and O(n·l(P )d(P )/w) = O(nm2/w) space algorithm1 by Ya-
mamoto and Takenouchi [16] in the worst case. For the UTH, our algorithm is
one of the first bit-parallel algorithm for the problem and slightly faster than
the previous O(nm ·d(P )) = O(nm2) time and O(d(T )b(T )) = O(n2) space
algorithm1 by Götz, Koch, and Martens [4]. These results for UPTM and UTH
correspond to evaluation of fragments of Core XPath queries consisting with
child axis only and with descendant axis only [4], respectively.

Tree matching problems with many-one embeddings have been studied in
the area of FO and MSO logics over combinatorial structures such as strings,
trees, and graphs as well as in database and Web systems [4]. These problems
have less constraints than the other tree matching problems, but this does not
necessarily mean that many-one matching problems are easiest among them.
Hence, we hope that these results become steps towards development of efficient
query mechanism for such data intensive applications.

Organization of this paper is as follows. Section 2 prepares definitions and
notations. Section 3 shows a fast bit-parallel algorithm for UPTM. Section 4
gives an extension to UTH. In Section 5, we conclude.

2 Preliminaries

In this section, we give basic definitions and notations on our unordered tree
matching problems according to [4,8,16]. For a set S, we denote by |S| the
1 In the results, l(P ), d(P ), and b(P ) = O(m) are the number of leaves, the maxi-

mum depth, and the maximum branching in a tree P , respectively. The parameter
rep(P ) = O(m) is the maximum number of the same label on paths in P .



70 Y. Kaneta and H. Arimura

cardinality of S. Let N+ = {1, 2, . . .}. We define an interval from i to j by [i..j] =
{i, i+ 1, . . . , j} ⊆ N+, where i ≤ j. We define the smallest interval including set
S ⊆ N+ by Int(S) = [min S, max S] ⊆ N+. For an array A = A[1] · · ·A[n] and
i ≤ j, we define A[i..j] = A[i] · · ·A[j]. For a binary relation R ⊆ A2 on a set A,
we denote by R+ ⊆ A2 the transitive closure of R.

2.1 Unordered Trees

Let Σ = {a, b, a1, a2, . . .} be a finite alphabet of labels . In this paper, we will
mainly consider unordered trees , which are the labeled, rooted trees, where the
ordering among their siblings is irrelevant.

Let P be an unordered tree of m nodes whose labels are drawn from Σ. We
denote by V (P ) the node set , by E(P ) the edge set , and by root(P ) the root of
P . For each node x, labelP (x) ∈ Σ denotes the label of x in P , and P (x) denotes
the subtree of P rooted at x.

If (x, y) ∈ E(P ) then we say that x is the parent of y and y is a child of x.
If there exists some downward path from x to y, i.e., (x, y) ∈ E(P )∗, then we
say that x is an ancestor of y and y is a descendant of x and write x � y. If
x � y and x �= y then we say that x is a proper ancestor of y and y is a proper
descendant of x and write x ≺ y. If both of x �� y and y �� x hold then x and y
are incomparable each other and write xy. For nodes x and y in P , if xy and
x precedes y in the preorder traversal of P , then we say that x precedes y in P
(or, x is to the left of y) and write x� y. If xy then either x� y or y �x holds.

For unordered tree P , we denote by |P | and by height(P ) the number of nodes
in P and the height of P . We denote the sets of all leaves and all internal nodes in
P , respectively, by leaves(P ) and internal(P ). Clearly, V (P ) = internal(P ) ∪
leaves(P ). Let x be any node in P . The arity of x, denote by α(x) ≥ 0, is the
number of children of x. For every 1 ≤ i ≤ α(x), we denote the i-th child of node
x by x[i], and the list of the children of x by children(x) = x[1] · · ·x[α(x)].

2.2 Unordered Tree Matching Problem

Let P = P [1..m] be an unordered tree of size m, called a pattern tree, and
T = T [1..n] be an unordered tree of size n, called a text tree. In this sub-
section, we introduce the unordered pseudo-tree matching and unordered tree
homeomorphism problems. For other variations of tree matching problems as
in [2,4,8,9,14,16], please consult the full paper [6].

Definition 1 (conditions for tree matching and inclusion). For any (pos-
sibly many-one) mapping φ : V (P ) → V (T ), we define the following conditions:

(E0) φ preserves node labels. That is, for every node x ∈ V (P ), labelP (x) =
labelT (φ(x)) holds.

(E1) φ preserves the parent-child relationship. That is, for every node x, y ∈
V (P ), (x, y) ∈ E(P ) ⇒ (φ(x), φ(y)) ∈ E(T ) holds.

(E1’) φ preserves the ancestor-descendant relationship. That is, for every node
x, y ∈ V (P ), (x, y) ∈ E(P ) ⇒ φ(x) ≺ φ(y) holds.
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Let F be a class of mappings. Then, a pattern tree P maps to a node v ∈ V (T )
in T w.r.t. class F if φ(root(P )) = v for some φ ∈ F . Then, the node v is called
an occurrence of P in T w.r.t. class F . Then, the tree pattern matching problem
w.r.t. F (F -matching problem) is the problem of, given a pattern tree P and a
text tree T , finding all occurrences of P in T w.r.t. class F .

An embedding from P to T is a possibly many-one mapping φ : V (P ) → V (T )
with (E0). An unordered pseudo-tree matching (UPTM) [16] is a many-one ver-
sion of unordered tree matching, i.e., an embedding φ with (E0) and (E1). A un-
ordered tree homeomorphism (UTH) [4] is a many-one version of unordered tree
inclusion, i.e., an embedding φ with (E0) and (E1’). We denote by UPTM(P, T )
and UTH(P, T ) the sets of all pseudo-tree matching and all tree homeomorphism
from P to T . The unordered pseudo-tree matching problem (UPTM) and the un-
ordered tree homeomorphism problem (UTH) are tree matching problem related
to the above classes of mappings.

3 Faster Bit-Parallel Algorithm for Unordered Pseudo
tree Matching

In this section, we present efficient algorithm BP-MatchUPTM based on bit-
parallel pattern matching method for the pseudo-tree matching problem. Let
P = P [1..m] be a pattern tree of size m and T = T [1..n] be a text tree of size n.

3.1 Decomposition Formula and a Bottom-Up Algorithm

In Fig. 2, we show an algorithm MatchUPTM for Unordered Pseudo Tree Match-
ing. Our matching algorithm computes, for every text node v in T , the set
EmbP,T (v) of integers in V (P ) = [1..m], called the embedding set , defined by:

EmbP,T (v) = { x ∈ [1..m] | (∃φ) φ ∈ UPTM(P (x), T ) ∧ φ(x) = v }, (1)

where P (x) is the subtree of P rooted at the pattern node x ∈ V (P ). Clearly, for
every pattern node x ∈ [1..m], x ∈ EmbP,T (v) if and only if the corresponding
subtree P (x) has an occurrence at the current text node v by some UPTM φ.
By definition, we see that P matches T at node v iff root(P ) ∈ EmbP,T (v). Now,
we have the next lemma, which is crucial to the correctness of our algorithm.

Lemma 1 (decomposition formula for UPTM). For every x ∈ V (P ) and
v ∈ V (T ), x ∈ EmbP,T (v) if and only if

(i) labelP (x) = labelT (v), and
(ii) children(x) ⊆ ⋃

1≤j≤α(v) EmbP,T (v[j]).

From Lemma 1 above, we show in Fig. 2 a bottom-up procedure VisitUPTM
to compute EmbP,T (v) by using the post-order traversal of T . To describe the
procedure VisitUPTM, we need the following operators.
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algorithm MatchUPTM(P [1..m]: a pattern tree, T [1..n]: a text tree):
Global Variables: P and T ;
Output: all occurrences of P in T w.r.t. unordered pseudo-tree matching (UPTM);
1: VisitUPTM(root(T ));

procedure VisitUPTM(v: a text node):
Return Value: R = EmbP,T (v);
2: S ← Constant(∅); {See Definition 2}
3: for i = 1, . . . α(v) do
4: S ← Union(S, VisitUPTM(v[i]));
5: R ← Constant([1..m]);
6: R ← LabelMatchP (R, labelT (v)); {See Definition 2}
7: R ← TreeAggrP (R,S); {See Definition 2}
8: if Member(R, root(P )) then {See Definition 2}
9: output “A match is found at a node v.”;

10: return R;

Fig. 2. An algorithm for the unordered pseudo-tree matching problem

Definition 2 (set manipulation operators). We define operators Constant,
Union, Member, LabelMatch (label matching), and TreeAggr (tree aggregation)
on subsets of [1..m] as follows, where R, S ⊆ [1..m], x ∈ [1..m], and α ∈ Σ:

– Constant(S) ≡ S. This operation returns the set S itself.
– Union(R, S) ≡ R ∪ S. This returns the set-union of R and S ⊆ [1..m].
– Member(R, x) ≡ x ∈ R. Given a set R and an element x, this operation

returns “yes” if x ∈ R and “no” otherwise.
– LabelMatchP (R, α) ≡ { k ∈ R | labelP (k) = α }. Given any set R and label

α, this operation returns the set of elements in R satisfying (i) of Lemma 1.
– TreeAggrP (R, S) ≡ { k ∈ R | childrenP (k) ⊆ S }. Given any sets R, S, this

operation returns the set of elements in R satisfying (ii) of Lemma 1.

In the procedure VisitUPTM, we use the last two operators LabelMatch and
TreeAggr to check (i) and (ii) of Lemma 1. Later, the above set operations will
be implemented in bit-parallel manner in Sec. 3.2.

By representing sets R and S ⊆ [1..m] in lists of integers, it is easy to see that
these operators can be implemented to run in O(m) time and space. Then, we
have the following lemma.

Lemma 2. For the unordered pseudo-tree matching problem, and for every pat-
tern tree P and a text tree T , the algorithm MatchUPTM in Fig. 2 correctly finds
all occurrences of P in T . Moreover, the algorithm can be implemented to run
in O(nm) time and O(hm) additional space, where m is the size of P , n and h
are the size and the height of T , respectively.

The algorithm MatchUPTM can run in streaming setting using a stack of length
O(hm), where T is given as an input stream consisting of a sequence of bal-
anced open and close parentheses on alphabet Σ ∪ { ā | a ∈ Σ } as in XML
databases [4,12,13].
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Fig. 3. An original pattern tree P and its binarization P ′, where white and shadowed
circles indicate original (real) nodes and dummy (virtual) nodes, respectively. The
number in each circle indicates the node id.

3.2 Bit-Parallel Implementation: Overview

In the following subsections, we give the bit-parallel version of the algorithm
MatchUPTM, called BP-MatchUPTM, that runs in O(n�m/w� log w) time and
O(h�m/w�+ �m/w� log w) space, where m is the size of pattern tree P , n and h
are the size and the height of text tree T , and w is the word length of underlying
computer. Let us fix a pattern tree P = P [1..m] of size m on a finite alphabet
Σ. In what follows, we assume that |Σ| = O(1).

In the bit-parallel implementation of MatchUPTM, we introduce a data struc-
ture A for representing a subset S of the universe [1..m] that efficiently supports
the collection of set manipulation operators in Definition 2 in Sec. 3.1. In A, we
represent any subsets of V (P ) by bitmasks X ∈ {0, 1}m with length m as m-bit
integers from 0 to 2m−1. To do this, we need an assignment Bit : V (P ) → [1..m]
of the unique bit-position Bit(x) in the interval [1..m] to each node x in P .
Since Bit is one-one, we define the inverse mapping Node : [1..m] → V (P )
as Node(i) = x if and only if Bit(x) = i for any bit-position i and pattern
node x ∈ V (P ). At this moment, we leave Bit undefined and the appropriate
definition for Bit will be given later in the next subsection.

Basic set operations. Once the assignment Bit is given, for any node set
S ⊆ V (P ), we extend this Bit by BIT (S) = { Bit(x) |x ∈ S } ⊆ [1..m]. For
any subset X ⊆ [1..m], we define NUM(X) ∈ {0, 1}m to be the bitmask for
X . Among the set operators in Definition 2, the following operators are easy to
implement.

Lemma 3. Let S ⊆ V (P ) be any node sets, and X, Y ∈ {0.1}m be the corre-
sponding bitmasks, respectively. Then, the following codes correctly implement
the operators. Moreover, all operations are executed in O(1) time if m ≤ w.

– Preprocess: Constant(S) ≡ NUM(BIT (S));
– Runtime: UnionP (X, Y ) ≡ (X | Y );
– Runtime: MemberP (X, x) ≡ if (X & NUM(BIT ({x}))) > 0 then 1 else 0;
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Fig. 4. Branching components of a pattern tree P and the corresponding tree aggre-
gation operation in bit-parallel computation

Label matching operation. The label matching operation can be implemented
using a set of character masks as in SHIFT-AND method for exact match [1,15,11]
or in Move operation for regular expression match [3]

Lemma 4. The operator LabelMatch can be correctly implemented by the fol-
lowing codes, where { LAB[α] ∈ {0, 1}m |α ∈ Σ } is a set of bitmasks for P .
Moreover the operation can be executed in O(1) time if m ≤ w.

– Preprocess: For each α ∈ Σ, LAB[α] = |x∈V (P ),labelP (x)=αNUM(Bit(x));
– Runtime: LabelMatchP (X, α) ≡ (X & LAB[α]);

Tree aggregation operation. Remaining task is to show how to efficiently
implement TreeAggr operation in bit-parallel computation. For each node x in P ,
we define the branching component for x in P by the connected component
Cx = {x} ∪ children(x) of P consisting of parent x and its children. If no
confusion arises, we identify Cx and the induced depth-one subtree P (Cx) rooted
at x, called a branching tree. We denote by CP = {Cx |x ∈ internal(P )} the set
of all branching components of P . For example, pattern tree P of Fig. 3 has three
branching components C4 = {1, 2, 3, 4}, C8 = {6, 7, 8}, and C9 = {4, 5, 8, 9}. The
upper half of Fig. 4 shows C8 and C9 with their branching trees.

Then, the tree aggregation operation means gathering the values of children
of x and then copying the value of their conjunction to parent x (See Fig. 4). We
want to compute tree aggregations simultaneously for all internal node x in P .

First, to implement the tree aggregation operation in correct and efficient way,
we require the assignment Bit to have the following properties:

Definition 3 (monotone bit-assignment). A bit-assignment mapping Bit :
V (P ) → [1..m] is said to be monotone w.r.t. the ancestor relation � for P if for
any x, y ∈ V (P ), (x � y) ⇒ (Bit(x) < Bit(y)) holds.

Next, we introduce an overlap-free decomposition CP = C[1] + · · ·+ C[K] of CP

as follows, where K ≥ 0. For any component Cx ∈ CP , we assign to Cx the
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interval Ix = Int(BIT (Cx)) in [1..m], which is the smallest interval containing
all bit-positions of Cx. Then, two components Cx and Cy (x �= y) overlap if
Ix ∩ Iy �= ∅. A subset D ⊆ CP is said to be overlap-free if there are no pairs of
components in D that overlap each other.

Definition 4 (overlap-free decomposition). A partition CP = C[1] + · · · +
C[K] for some K ≥ 1 is said to be an overlap-free decomposition of CP w.r.t. Bit
if for every k = 1, . . . , K, the k-th subset C[k] is overlap-free w.r.t. Bit. Then,
K is called the height and C[k] is called the k-th level of the partition.

Suppose that there exists some monotone bit-assignment Bit and some overlap-
free decomposition CP = C[1] + · · ·+ C[K] of CP for some Bit. Then, tree aggre-
gation is implemented in bit-parallel way as follows.

Definition 5 (Preprocess). We first precompute the following bitmasks:

– LEAF = |x∈leaves(P )NUM(BIT ({x})).
– For every level k = 1, . . . , K, and for each Cx in C[k], we define

• DST [k][x] = NUM(BIT ({x}))). The position of parent x.
• SRC[k][x] = NUM(BIT (children(x))). The positions of children(x).
• INT [k][x] = NUM(Int(BIT (Cx))). The interval for Cx.
• SEED[k][x] = NUM(min BIT (Cx)). The “seed” position.

– For every level k=1, . . . , K, and for each Mask∈{DST, SRC, INT, SEED},
• Mask[k] = |Cx∈C[k]Mask[k][x].

Lemma 5 (Runtime). Suppose that CP = C[1]+· · ·+C[K] of CP is an overlap-
free decomposition with height K ≥ 1 for a monotone bit-assignment Bit w.r.t. �.
Then, the following code correctly implements the tree aggregation operator for
the component Cx. Moreover, this procedure runs in O(K) time if m ≤ w.

– procedure TreeAggrP (X, Y ) ≡
• Z ← Constant(∅);
• For every level k = 1, . . . , K do:

BLK ← (Y & SRC[k]) | (INT [k] & (∼ (SRC[k] | DST [k])));
Z ← Z | ((BLK + SEED[k]) & DST [k]);

• Z ← X & (Z | LEAF );
• return Z;

Therefore, the remaining thing is how to find a good overlap-free decomposition
CP with small height as well as a monotone bit-assignment Bit. We discuss this
issue in the next subsection.

3.3 Construction of a Monotone Bit-Assignment and an
Overlap-Free Decomposition Based on Separator Trees

In this subsection, we show how to find both a monotone bit-assignment Bit
and an overlap-free decomposition CP with height O(log m). For this purpose,
we use a data structure called a separator tree.
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Binarization of P . Let P be a pattern tree of m nodes. We note that P is
a multi-ary tree whose internal node x may have arity α(x) > 2. First, before
constructing separator tree composition, we apply a standard transformation,
called binarization to P for obtaining a binary version P ′ of P . The binarization
transforms each branching component Cx = {x}∪{x[1], · · · , x[α]} with the root
x and α(x) children into a new component C′

x a binary subtree with the same
root and the same number of children by inserting α(x) − 2 dummy internal
nodes of out-degree two. In general, the resulting binary tree P ′ has size at most
2m. In what follows, let m′ = O(m) be the size of P ′.

Fig. 3 shows an example of the binarization P ′ of the original pattern P ,
where the component C4 = {1, 2, 3, 4} with root 4 is transformed into C′

4 =
{1, 2, 3, 4, 10} with the same root 4.

Construction of a separator tree for P . Secondly, we build a separator
tree M from a binarization P ′ of pattern tree. A separator tree is a binary
tree obtained from P ′ by iteratively removing edges in E(P ′). The following
well-known lemma is sufficient for our purpose:

Lemma 6 (Jordan [5]). Let S be a binary tree. Then, there exists a node in
S such that |S(v)| ≤ (2/3)|S| and |S(v̄)| ≤ (2/3)|S|, where S(v) is the subtree of
S rooted at v and S(v̄) is the tree obtained by pruning S(v) from S.

Suppose that each node w of M has the fields Uw for a subset of V (P ′), and ew

for a cut-edge. Applying the above theorem recursively, we construct a separator
tree M from P ′ as follows.

– We start with a new node as the root of M. We associate V (P ′) to the
root by setting Uroot(M) = V (P ′). We visit w = root(M), and repeat the
following process at each node w.

– Suppose that |Uw| = 1. Then, the associated node set Uw is a singleton {x},
and the current node w is a leaf. We stop the process.

– Otherwise, |Uw| > 1. Then, we find an edge e = (x, y) ∈ E(P ′) according to
Lemma 6 so that removal of e splits the associated component Uw into two
subcomponents U1

w and U0
w of almost equal sizes no more than (2/3)|Uw|,

where U1
w is the subcomponent containing root(P ′) and U0

w is the other
subcomponent. Record the cut-edge e for w as ew. Create the left and the
right children, wL and wR of w, and associate the component U1

w to wR and
U0

w to wL. Then, recursively visit both of wL and wR as w.

Lemma 6 ensures that the height of M is O(log m) and the construction requires
O(m log m) time. Furthermore, we can observe that (1) there exists a one-one
correspondence between internal(M) and E(P ′), and (2) there exists a one-one
correspondence between leaves(M) and V (P ′).

Now, we compute a bit-assignment Bit : V (P ′) → [1..m] as follows. We order
leaves(M) from left to right. Then, we number all leaves in leaves(M), which
are original (real) nodes in P , from left to right consecutively from 1 to m (not
m′). We just skip and unnumber dummy (virtual) nodes included in binarization.
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Fig. 5. A separator tree M for the binarization P ′ of a pattern tree P . Circles and
squares indicate internal nodes and leaf nodes in M, respectively. At each node w,
the associated set of numbers in a pair of brackets indicates the connected component
associated to w. Each edge (x, y) is denoted as ey indexed by its lower end point y.

Then, we define bit-assignment Bit : V (P ) → [1..m] as follows. For each node x
in P , if x is the i-th leaf in this listing over leaves(M), then we define Bit(x) = i
and Node(i) = x. For the proof of the next lemma, see the full paper [6].

Lemma 7. The bit-assignment Bit constructed above from M is monotone
w.r.t. the ancestor relation � for P .

Proof. Suppose that x ! y and both of them are included in some component
U in M. Then, there exists an upward path π from x to y, and eventually, some
edge in π becomes a cut-edge at some node w in M. This split Uw into U0

w and
U1

w such that x ∈ U0
w and y ∈ U1

w since the latter locates the upper part. We see
that U0

w precedes U1
w in interval [1..m] by Bit, and that Bit(x) < Bit(y). Hence,

we see that x ! y implies Bit(x) < Bit(y). ��
By using Bit based on leaf numbering of M, we associate an interval Iw to each
node w in M by Iw = Int(BIT (Uw)). Then, we give a technical lemma.

Lemma 8. For any nodes u, w in M, the following properties hold:

(1) BIT (Uw) ⊆ Iw.
(2) If u ! w then Iu ⊆ Iw.
(3) If uw then Iu ∩ Iw = ∅.
Proof. (1) The result is obvious since Int is expanding, i.e., S ⊆ Int(S) for any
subset S ⊆ [1..m]. (2) By construction, if u ! w then Uu ⊆ Uw holds, and
thus Iu ⊆ Iw holds from the definition of Iu. (3) Suppose on the contrary that
Iu ∩ Iw �= ∅, that is, Iu and Iw overlap each other. From the tree structure of M
that this implies that either u ! v or v ! u. This shows the claim. ��
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Fig. 6. The monotone bit-assignment Bit and an overlap-free decomposition w.r.t. Bit,
for the pattern tree P in Fig. 3

Finally, we construct an overlap-free decomposition for CP as follows. We
traverse the separator tree M from the root to leaves top-down. Initially, we
visit root and Uroot contains the whole CP . Assume that we are going down
and visiting a node w in M. Let Cx ∈ CP be the unique component in CP

that contains ew in the induced tree P (Cx). Then, there are two cases. If this
happens at the first time with Cx, that is, ew is the first cut-edge for Cx on
the path from the root to w, then we mark the current node w and associate
to w the Cx by Comp(w) = Cx. Otherwise, this is at least second time cut
or so. Then, we skip w and continue the traversal for descendants. After the
traversal, we perform breadth-first search for level k = 1 to K = depth(M) + 1.
Then, we construct a decomposition CP = C[1] + · · · + C[K] such that C[k] =
{ Cx |Cx = Comp(w), w is a marked internal node in M of depth k } for each
k = 1, . . . , K. See Fig. 5 for an example of a separator tree M and a bit-
assignment Bit based on leaf numbering of M.

In Fig. 6, we show the monotone bit-assignment Bit and an overlap-free de-
composition w.r.t. Bit, for the pattern tree P in Fig. 3. In the figure, the node
Node(i) of pattern tree P is assigned the bit-position i for i = 1, . . . , 9. The de-
composition CP contains three branching components C9 = {4, 5, 8, 9} at level 1,
C4 = {1, 2, 3, 4} at level 2, and C8 = {6, 7, 8} at level 3.

For the proof of the next lemma, see the full paper [6].

Lemma 9. An overlap-free decomposition CP = C[1]+· · ·+C[K] of CP w.r.t. Bit
can be computed by the above procedure in O(m log m) time and O(log m) space.

3.4 Complexity Analysis

Combining the algorithm MatchUPTM of Fig. 2 in Sec. 3.1 and the bit-parallel
implementation of the set manipulation operations in Sec. 3.2, and results in
Sec. 3.3, we now have a modified version of the algorithm, called BP-MatchUPTM
for the UPTM problem.

Lemma 10. The operation TreeAggrP can be implemented to run O(log m) time
using O(m log m) preprocessing and O(log m) space if m ≤ w.

Proof. The claim follows from Lemma 5, Lemma 7, and Lemma 9. ��
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By applying the module decomposition technique of Myers [10] and Bille [3], we
have the main theorem of this paper below:

Theorem 1 (complexity of UPTM). The algorithm BP-MatchUPTM solves
the unordered pseudo-tree matching problem with the following complexities:

– In the large pattern case (m > w): O(n�m/w� log w) time using O(h�m/w�+
�m/w� log w) space and O(m log w) preprocessing.

– In the small pattern case (m ≤ w): O(n log m) time using O(h+log m) space
and O(m log m) preprocessing.

where m and n are the sizes of pattern tree P and text tree T , h is the height of
T , and w is the length of computer word.

4 Extension for Unordered Tree Homeomorphism

In this section, we give a modified algorithm for the unordered tree homeomor-
phism problem (UTH). Let v be any node in T . Then, the set Desc-EmbP,T (v),
called the descendant embedding set and the auxiliary set Sub-EmbP,T (v) are
defined by:

Desc-EmbP,T (v) = { x ∈ [1..m] | (∃φ ∈ UTH(P (x), T ) φ(x) = v }. (2)

Sub-EmbP,T (v) = { x ∈ [1..m] | (∃φ ∈ UTH(P (x), T )(∃w ! v) φ(x) = w }.
Lemma 11. For any P and T , we have the following properties:

(1) For every x ∈ V (P ) and v ∈ V (T ), x ∈ Desc-EmbP,T (v) if and only if (i)
labelP (x) = labelT (v), and (ii) children(x) ⊆ ⋃

1≤j≤α(v) Sub-EmbP,T (v[j]).
(2) For any v in T , Sub-EmbP,T(v)=Desc-EmbP,T(v)∪⋃

1≤j≤α(v)Sub-EmbP,T(v).

From the above decomposition lemma, we can develop a bit-parallel algorithm,
called BP-MatchUTH, for the unordered tree homeomorphism problem based on
a dynamic programming algorithm similar to MatchUPTM in Sec. 3 and the bit-
parallel implementation of operators including LabelMatch and TreeAggr. We can
obtain an algorithm MatchUTH for the unordered tree homeomorphism problem
(UTH) from the algorithm MatchUPTM by replacing Line 10 of the recursive
subprocedure VisitUPTM with the following line:

10: return Union(R, S); {R ∪ S = Sub-EmbP,T (v)}
Then, we have the following theorem. For details, please consult the full paper [6].

Theorem 2 (complexity of the unordered tree homeomorphism prob-
lem). A modified version of the algorithm, BP-MatchUTH, solves the unordered
tree homeomorphism problem (UTH) with the following complexities:

– In the large pattern case (m > w): O(n�m/w� log w) time using O(h�m/w�+
�m/w� log w) additional space and O(m log w) preprocessing.

– In the small pattern case (m ≤ w): O(n log m) time using O(h + log m)
additional space and O(m log m) preprocessing.

where m and n are the sizes of pattern tree and text tree, and w is the length of
computer word.
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5 Conclusion

In this paper, we consider the unordered pseudo-tree matching problem and the
unordered tree homeomorphism problem. As results, we present efficient algo-
rithms for both problems that run in O(n�m/w� log w) time using O(h�m/w�+
�m/w� log w) space and O(m log w) preprocessing with m > w on a unit-cost
arithmetic RAM model with integer addition. As future work, applications to
tree pattern matching for practical subclasses of XPath and XQuery queries are
interesting problems. Kaneta et al. [7] presented a bit-parallel pattern match-
ing algorithm on RAM model with integer addtion for the class of network and
regular expressions. Combination of the techiniques in this paper and one in [7]
will be another future problem.
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Abstract. We study a (k + 1)-coloring problem in a class of (k, s)-dart
graphs, k, s ≥ 2, where each vertex of degree at least k + 2 belongs to
a (k, i)-diamond, i ≤ s. We prove that dichotomy holds, that means the
problem is either NP-complete (if k < s), or can be solved in linear time
(if k ≥ s). In particular, in the latter case we generalize the classical
Brooks Theorem, that means we prove that a (k, s)-dart graph, k ≥
max{2, s}, is (k+1)-colorable unless it contains a component isomorphic
to Kk+2.

1 Introduction

An r-coloring of a graph is a mapping from the set of vertices to {1, . . . , r}
such that any two adjacent vertices have different colors. The decision problem
whether a given graph G has an r-coloring is a classical NP-complete problem
for every fixed r ≥ 3 (see [3,4]).

The aim of this paper is to study (k + 1)-coloring problem in a class of (k, s)-
dart graphs, k, s ≥ 2, where each vertex of degree at least k + 2 belongs to a
(k, i)-diamond, i ≤ s (formal definition we introduce in the following section).
The main result of the paper is that dichotomy holds: the (k+1)-coloring problem
for a (k, s)-dart graph is either

(a) NP-complete for k < s, or
(b) can be solved in linear time for k ≥ s.

Subject to the assumption P �= NP both cases exclude each other. For the linear-
time cases we present an algorithm, which not only decides existence, but also
finds a (k + 1)-coloring, if there is one. Moreover we generalize the classical
Brooks theorem [1] (every graph with the maximum vertex degree at most r ≥ 3
and without a component isomorphic to Kr+1 has an r-coloring) and show that
a (k, s)-dart graph, k ≥ max{2, s}, is (k + 1)-colorable unless it contains a
component isomorphic to Kk+2. Notice that for the case k = 2 this statement
follows directly from Kochol, Lozin, and Randerath [6, Theorem 4.3].
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2 Definitions

In this paper we consider simple graphs, i.e., without multiple edges and loops.
If G is a graph, then V (G) and E(G) denote the vertex and the edge sets of G,
respectively.

Let G be a graph and x, y two vertices of G. Then G + xy denotes the graph
constructed from G by adding an edge xy. Since we consider simple graphs,
G + xy = G if x, y are adjacent in G. For a vertex v of G, let dG(v) denote the
degree of v in G. Let H, G be two graphs such that H is not a subgraph of G.
Then we use to say that G is a H-free graph.

A (k, s)-diamond is a join of a clique of size k ≥ 1 and an independent set
of size s ≥ 1. These graphs are also known as split graphs. In a (k, s)-diamond
D, vertices that belong to the independent set are called pick vertices, and the
remaining (i.e. those in the k-clique) are called central vertices. Denote by C(D)
and P (D) the sets of central vertices and pick vertices of D, respectively. A
(4, 2)-diamond D with C(D) = {c1, . . . , c4} and P (D) = {p1, p2} is in Fig. 1.

c1 c2

c3 c4

p1 p2

Fig. 1. A (4, 2)-diamond

Note that a (k, 1)-diamond is isomorphic to Kk+1; in this case the unique pick
vertex does not distinguish from the central vertices but in such a situation this
is irrelevant for us.

Definition 1. A graph G is a (k, s)-dart if each vertex of G of degree ≥ k + 2
is a central vertex of some (k, i)-diamond D as an induced subgraph of G with
i ≤ s, for which

(a) dD(x) ≥ dG(x) − 1 for each x ∈ V (D);
(b) no two vertices of C(D) have a common neighbor in G−D.

Every graph of maximum degree ≤ k +1 is a (k, 1)-dart graph since in the above
definition, we only prescribe the structure on the neighborhood of vertices of
higher degree. Also, every (k, s1)-dart is a (k, s2)-dart if s1 ≤ s2.

Note that the assumption that x is of degree ≥ k + 2 implies that i ≥ 2. In a
(k, s)-dart graph G, every vertex of degree at least k + 2 belongs to an induced
(k, i)-diamond with 2 ≤ i ≤ s. Denote by D(G) the set of all induced maximal
(k, i)-diamonds of G with i ≥ 2. Observe that we do not require that a diamond
of D(G) must contain a vertex of degree k + 2 or more, just to satisfy conditions
(a) and (b) of Definition 1.
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We say that a vertex of a dart G is central if it is a central vertex of a diamond
of D(G). Similarly define a pick vertex of G. Denote the sets of central vertices
and pick vertices by C(G) and P (G), respectively.

Let G be a (k, s)-dart and D ∈ D(G). Then, each central vertex x ∈ C(D) is
adjacent to at most one vertex v′ from G −D. In this case, v′ is called isolated
neighbor of v. The set of all isolated neighbors of the central vertices of D is
denoted by I(D). Possibility I(D) = ∅ is not excluded.

We remark that the following observations for a (k, s)-dart G hold:

(1) A central vertex v of a (k, s)-dart G is not necessarily of degree at least k+2.
This happens only if v is a central vertex of a (k, 2)-diamond D ∈ D(G) and
it has no neighbor in G−D. Then, v is of degree k + 1.

(2) If Kk+2 is a subgraph of a (k, s)-dart G, then it must be a component of G.
Thus a copy of Kk+2 in G is disjoint from diamonds of D(G).

(3) No two pick vertices of the same diamond from D(G) are adjacent.

3 Properties of Dart Graphs

The following lemma is an easy observation.

Lemma 1. Let G be a (k, s)-dart graph and D ∈ D(G). Let λ be a proper
(k + 1)-coloring of G − C(D) such that all pick vertices P (D) are assigned the
same color a. Then, λ can be extended to G unless every central vertex of D has
an isolated neighbor and λ assigns the same color c �= a to all vertices of I(D).

Proof. Let L(v) ⊂ {1, . . . , k+1} be the set of available colors for a central vertex
v ∈ V (G) regarding λ. Notice that k ≥ |L(v)| ≥ k − 1. And, |L(v)| = k − 1 if
and only if v has a pendant neighbor v′ and λ(v′) �= a. Thus, each central vertex
of D has an isolated neighbor and all vertices of I(D) are assigned a same color
c �= a, if and only if the unions of all L(v)’s is of size k−1. Now the proof follows
by Hall’s theorem.

Next lemma assures that diamonds in a dart graph are vertex disjoint:

Lemma 2. Let G be a (k, s)-dart graph with k ≥ 3 and with no Kk+2 as a
subgraph. Then

(a) V (D1) ∩ V (D2) = ∅, for every two distinct diamonds D1, D2 ∈ D(G).
(b) C(G) ∩ P (G) = ∅; in particular each pick vertex is of degree k or k + 1.

Proof. We prove (a). Suppose that v is a vertex of two distinct diamonds D1, D2 ∈
D(G).

Assume that v ∈ C(D1) ∩C(D2). If C(D1) = C(D2), then by Definition 1(b)
we obtain that P (D1) = P (D2), whence D1 = D2. Thus C(D1) �= C(D2).

Suppose first |C(D1) ∩ C(D2)| = 1, i.e., C(D1) ∩ C(D2) = {v}. Then by
Definition 1, either k − 1 or k − 2 vertices of C(D2) (resp. C(D1)) are pick
vertices of D1 (resp. D2). But then for k ≥ 4, we obtain also two adjacent pick
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vertices i.e. we obtain Kk+2. So we may assume that k = 3, C(D1) = {u1, w1, v},
C(D2) = {u2, w2, v}, and u1 (resp. u2) are pick vertices of D2 (resp. D1). As
the graph is K5-free, w1 (resp. w2) is not a pick vertex of D2 (resp. D1). Then
w1 ∈ I(D2) (resp. w2 ∈ I(D1)) is a common neighbor of v, u2 ∈ C(D2) (resp.
v, u1 ∈ C(D1)), a contradiction with Definition 1(b).

Suppose now |C(D1)∩C(D2)| ≥ 2. Then each vertex u ∈ C(D1) \C(D2) is a
neighbor of at least two vertices from C(D2), whence by item (b) of Definition 1,
u ∈ P (D2) and thus C(D1) \ C(D2) ⊆ P (D2). Similarly C(D2) \ C(D1) ⊆
P (D1). Thus the subgraph of G induced by C(D1) ∪ C(D2) is a clique, whence
|C(D1) ∪ C(D2)| = k + 1, and so |C(D1) ∩ C(D2)| = k − 1. By assumptions,
D1 is a (k, s1)-dart, s ≥ s1 ≥ 2. Thus there exists x1 ∈ P (D1) \ C(D2). As G
is Kk+2-free, we insert that x1 ∈ I(D2) but then it is a common neighbor of at
least two vertices from C(D2), a contradiction with Definition 1(b).

By the above two paragraphs, we can assume that C(D1)∩C(D2) = ∅. If v ∈
V (D1) ∩ P (D2), then dD2(v) ≤ dG(v) + 2, a contradiction with Definition 1(a).
Similarly if v ∈ V (D2) ∩ P (D1). This proves claim (a). Claim (b) is an easy
consequence of (a).

Next lemmas assures that removing small vertices or diamnods in dart graphs
we preserve the class of dart graphs.

Lemma 3. Let G be a (k, s)-dart graph with k ≥ 3. Then

(a) if v is a vertex of degree ≤ k, then G′ = G− v is a (k, s)-dart graph,
(b) if D ∈ D(G), then G′ = G−D is a (k, s)-dart graph.

Moreover, in both cases, D(G′) can be determined from D(G) in a constant time.

Proof. We first show that in both cases G′ is a (k, s)-dart graph. Suppose that
u′ is an arbitrary vertex of degree ≥ k+2 in G′. Then, it is also of degree ≥ k+2
in G, and hence it belongs to a (k, i)-diamond D′ ∈ D(G) with 2 ≤ i ≤ s. In case
(b), by Lemma 2, diamonds D and D′ are disjoint, and hence D′ is an induced
(k, s)-diamond in G′. Consider now case (a). If D′ is an induced subgraph of G′,
then we are done. Otherwise, v ∈ V (D′) is a pick vertex of D′. Since u′ is of
degree ≥ k+2 in G′, it follows that i ≥ 3, and hence D′−v is a (k, i−1)-diamond
in G′.

Regarding D(G′) and D(G), in case (b), Lemma 2 assure that D(G) consists
of D and D(G′). In case (a), D(G) may change only if v is a pick vertex of
some (k, 2)-diamond D′ of G. But then we have that D(G) is either D(G′) or
D(G′) ∪ {D}.
In the next few lemmas, we study properties of a graph G′ obtained from G be
applying some local changes.

Lemma 4. Let G be a (k, s)-dart graph with k ≥ 3 and let a1, a2 be two cen-
tral vertices of a diamond D ∈ D(G). Suppose that x1 and x2 are the iso-
lated neighbors of a1 and a2, respectively. Then, each (k + 1)-coloring λ∗ of
G∗ := G− x1a1 − x2a2 + x1x2 can be modified into a (k + 1)-coloring of G in a
constant time.
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Proof. Clearly λ∗(a1) �= λ∗(a2) and λ∗(x1) �= λ∗(x2). By Definition 1, a1 and
x2 are non-adjacent, and similarly a2 and x1 are non-adjacent. Notice that λ∗

is not a coloring of G if and only if λ∗(a1) = λ∗(x1) or λ∗(a2) = λ∗(x2). But in
that case, we can simply interchange the colors between a1 and a2, and obtain
a proper (k + 1)-coloring of G.

Lemma 5. Let G be a Kk+2-free (k, s)-dart graph and D ∈ D(G). Let a1, a2 be
two central vertices of D and let x1, x2 be their isolated neighbors, respectively.
Then the graph G′ = G− x1a1 − x2a2 + x1x2 is a Kk+2-free graph unless x1, x2
are pick vertices of a diamond of D(G).

Proof. Suppose that G′ contains a copy H of Kk+2. Then, x1, x2 are vertices of
H , thus cannot be adjacent in G and there is a set S of k common neighbors of
x1 and x2 in G, which induce a clique. Notice that |S| = k and dG(x1), dG(x2) ≥
k + 1.

Suppose that dG(x1) ≥ k + 2. Then, x1 is a central vertex of some diamond
D′ ∈ D(G), whence by item (b) of definition 1, S ⊆ V (D′) and clearly, |S ∩
C(D′)| ≥ k − 1 ≥ 2. Then X2 has at least 2 neighbors in C(D′), whence x2
belongs to D′ and is adjacent with x1 in G, a contradiction.

Thus d(x1) = k + 1 and analogously d(x2) = k + 1. Then x1, x2 and S belong
to a diamond of D′ ∈ D(G) in which x1, x2 ∈ P (D′) and S = C(D′).

Lemma 6. Let G be a (k, s)-dart graph and D ∈ D(G). Let a1, a2 be two central
vertices of D and let x1, x2 be their isolated neigbors, respectively. Then graph
G′ = G − x1a1 − a2x2 + x1x2 is a (k, s)-dart graph unless one of the following
conditions occurs:

(a) x1, x2 are pick vertices of a diamond of D(G);
(b) there exists a diamond D′ ∈ D(G) and i ∈ {1, 2} such that xi ∈ C(D′) and

x3−i is an isolated neighbor of a central vertex from D′, which is distinct
from xi.

Proof. Suppose that G′ is not a (k, s)-dart graph. First notice that each vertex
preserve its degree from G except a1, a2, which belong to D and it is a diamond
in G′ as well. If there is some D′ ∈ D(G) that is not induced diamond of G′,
then x1 and x2 must be pick vertices of D′, which is the excluded case (a).
Next observe that each diamond of D(G) satisfies condition (a) of Definition 1
in G′. Finally, if condition (b) Definition 1 is not satisfied for some D′ ∈ D(G)
in G′, then there are two central vertices u and v with a common neighbor w
outside D′. Notice that x1x2 is one of the edges uw or vw. Then without loss of
generality, we may assume that x1 is a central vertex in D′ and x2 is an isolated
neighbor of a central vertex of D′ distinct from x1.

4 An Extension of Brooks Theorem

If D ∈ D(G), then a vertex of I(D) could be a central and pick vertex of another
diamond of D(G). Denote by Ic(D) and Ip(D) the subset of all such vertices of
I(D), respectively. By Lemma 2(b), sets Ic(D) and Ip(D) are disjoint. Finally,
let Is(D) be the vertices of I(D) that are neither in Ic(D), nor in Ip(D).
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Lemma 7. Let G be a Kk+2-free (k, s)-dart graph with given D(G) �= ∅ and
s ≤ k. Then, in a constant time we construct a Kk+2-free (k, s)-dart graph G∗

together with D(G∗) such that

(a) |E(G∗)| < |E(G)|;
(b) From any (k + 1)-coloring λ of G∗ one can construct a (k + 1)-coloring of G

in a constant time.

Proof. In the construction of G∗ we use a bounded number of vertex/edge ad-
ditions and deletions. Similarly, we obtain D(G∗) from D(G) in a finite number
of steps. This will preserve that constructions are completed in a constant time.
In the sequel consider the following cases:

Case 1. There exists v ∈ V (G) of degree ≤ k. Then v is not a central vertex.
Thus, by Lemma 3(a), G∗ := G−v is a (k, s)-dart graph with |E(G∗)| < |E(G)|.
By the same lemma, one can construct D(G∗) from D(G) in a constant time.
Obviously, G∗ is a Kk+2-free graph. A coloring of G∗ can be easily extended to
a coloring of G by assigning to v a color that miss in its neighborhood.

Case 2. There exists v ∈ C(D), D ∈ D(G), having no isolated neighbor. By
Lemma 3(b), G∗ := G−D is a (k, s)-dart graph and D(G∗) can be constructed
from D(G) in a constant time. Obviously, G∗ is a Kk+2-free graph and |E(G∗)| <
|E(G)|. Let λ∗ be a (k + 1)-coloring of G∗. Since each pick vertex of D has at
most one neighbor outside D and since |P (D)| < k + 1, it follows that there
exists a color that we can assign to all pick vertices. Since v has no isolated
neighbor, we can apply Lemma 1 to extend λ∗ to the central vertices of D.

Case 3. There exists D ∈ D(G), such that Ic(D) ∪ Is(D) �= ∅, or some two
vertices of Ip(D) do not belong to the same D′ ∈ D(G). We can assume that
Case 2 does not hold, whence |Ic(D)|+ |Ip(D)|+ |Is(D)| = k. Let x1, x2 ∈ I(D)
be two distinct vertices. And, let ai ∈ C(D) be the neighbor of xi for i = 1, 2.

Now, consider the graph G∗ = G − x1a1 − x2a2 + x1x2. If none of the ex-
ceptions of Lemmas 5 or 6 holds, then G∗ is a Kk+2-free (k, s)-dart graph, and
by Lemma 4, we can modify any coloring of G∗ to a proper coloring of G in a
constant time. Moreover, |E(G∗)| < |E(G)| and D(G) can be determined in a
constant time from D(G∗).

Assume that for any pair x1, x2 ∈ I(D), exeptions of Lemmas 5 or 6 is
satisfied. This implies immediately that |Ic(D)| ≤ 1.

Let x1, x2 ∈ Is(D). Then, the exception Lemma 6(b) cannot occur. Thus, x1
and x2 are the pick vertices of a (k, 2)-diamond D′ and D′ �∈ D(G) (because
x1, x2 /∈ Ip(D)). Since D′ /∈ D(G) all vertices of C(D′) are of degree k + 1,
which means no vertex of C(D′) has isolated neighbor. Since k ≥ 3, there exists
x ∈ I(D), x �= x1, x2. Now, using x, x1 instead of x1, x2, we do not obtain any
of the exceptions of Lemmas 5 and 6. Hence |Is(D)| ≤ 1.

Thus |Ip(D)| ≥ 1 (because k ≥ 3). Then x1 ∈ Is(D) ∪ Ic(D) and x2 ∈ Ip(D)
do not satisfy exeptions of Lemmas 5 or 6, whence Is(D) ∪ Ic(D) = ∅. Thus all
vertices of I(D) must be pick vertices of one diamond of D(G). This contradicts
the assumptions of Case 3.
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Case 4. None of Cases 1.–3. occurs. Thus, by Case 3., for each D ∈ D(G),
Ic(D)∪ Is(D) = ∅, and all vertices of Ip(D) belongs to the same (k, k)-diamond
ϕ(D) ∈ D(G). Furthermore, there exists a perfect matching between C(D) and
P (ϕ(D)).

Case 4.1. There exists D ∈ D(G), such that ϕ2(D) = D. Then vertices of D
and ϕ(D) induce a component G′ of G. Let G∗ := G − G′. Obviously, G∗ is a
(k, k)-dart graph, |E(G∗)| < |E(G)| and D(G∗) = D(G) \ {D, ϕ(D)}. Moreover,
we can construct a (k+1)-coloring of G′ in a constant time: just color all vertices
of P (D) and P (ϕ(D)) by the color k+1, and assign colors 1, . . . , k to the vertices
of C(D) and C(ϕ(D)).

Case 4.2. For each D ∈ D(G), ϕ2(D) �= D. By the assumptions of lemma,
there exists D ∈ D(G) �= ∅. Let G∗ be the graph, we obtain by removing the
vertices of ϕ(D) and inserting a perfect matching between C(D) and P (ϕ2(D)).
Obviously G∗ is a (k, k)-dart graph with less edges than G and D(G∗) = D(G)\
{ϕ(D)}. Let λ∗ be a (k + 1)-coloring of G∗. Then λ∗ assigns the same color c to
all vertices of P (ϕ2(D)). Assign c also to all vertices of P (ϕ(D)) and to each of
the vertices of C(ϕ(D)) an unique color from {1, . . . , k + 1} \ {c}. This gives a
required coloring of G, completing the proof.

Now we are ready to prove the main result.

Theorem 1. Let G be a (k, s)-dart graph with k≥3 and k≥s. Then G is (k+1)-
colorable if and only if it has no component isomorphic to Kk+2. Furthermore,
if G is (k + 1)-colorable, then a (k + 1)-coloring of G can be constructed in a
linear time.

Proof. The necessity of the first part of the theorem is trivial. To see the suf-
ficiency, observe that a (k, s)-dart graph is Kk+2-free if and only if it has no
component isomorphic to a Kk+2. The same is true if G is a graph with ver-
tex degree at most k + 1. Therefore, the sufficiency follows from Lemma 7 and
Brooks’ Theorem [1].

We can check whether a dart graph G is Kk+2-free in linear time. Analogously,
we can find the set D(G) in linear time. Consequently, by means of Lemma 7
we can create in linear time a Kk+2-free graph G′ without vertices of degree
more than k + 1 such that any (k + 1)-coloring of G′ can be transformed into a
(k + 1)-coloring of G in linear time. By [7] (see also [9,6]), a (k + 1)-coloring of
G′ can be found in linear time, which proves the statement.

5 NP-Completeness

In this section we show that Theorem 1 cannot be extended for (k, s)-dart graphs
where s > k ≥ 2 unless P = NP.

We need some more notation. Take n vertex disjoint copies of (k, k + 1)-
diamonds D1, . . . , Dn, k, n ≥ 2. For i = 1, . . . , n, denote by vi,1, . . . , vi,k and
ui,1, . . . , ui,k+1 the central and pick vertices of Di, respectively. Add nk new
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edges vi,jui+1,j, i = 1 . . . , n, j = 1, . . . , k (considering the sum i+1 mod n). Then
the resulting graph is called a (n, k + 1)-bracelet and vertices u1,k+1, . . . , un,k+1
are called its connectors.

We study complexity of the following problem.

DART-(k, s)-(k + 1)-COL
Instance: A (k, s)-dart graph G, 2 ≤ k, s.
Question: Is G (k + 1)-colorable?

Theorem 2. The problem DART-(k, s)-(k + 1)-COL, k ≥ 2, is

(a) NP-complete for s > k,
(b) solvable in linear time for s ≤ k.

Proof. Claim (b) holds true by Theorem 1 (for k ≥ 3) and by [6, Theorem 4.3]
(for k = 2). We prove (a). Let G be a graph. Replace each vertex v of G of degree
≥ 2 by a (dG(v), k + 1)-bracelet Hv. Let Hv be an isolated vertex if dG(v) = 1.
Each edge uv of G replace by an edge joining a connector of Hv with a connector
of Hu so that each connector is attached to at most one new edge. Denote the
resulting graph by G′. Clearly, G′ is a (k, k + 1)-dart graph. By any (k + 1)-
coloring of Hv, v ∈ V (G), all connectors of Hv must be colored by the same
color. Hence G′ is (k + 1)-colorable iff G is so. Thus the problem from item (a)
can be polynomially reduced to the problem of (k + 1)-coloring. This problem is
NP-complete for every fixed k ≥ 2 by Garey and Johnson [3, GT4].
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Abstract. In this paper, we explore worst-case solutions for the prob-
lems of pattern and multi-pattern matching on strings in the RAM model
with word length w. In the first problem, we have a pattern p of length
m over an alphabet of size σ, and given any text T of length n, where
each character is encoded using log σ bit, we wish to find all occurrences
of p. For the multi-pattern matching problem we have a set S of d pat-
terns of total length m and a query on a text T consists in finding all the
occurrences in T of the patterns in S (in the following we refer by occ
to the number of reported occurrences). As each character of the text
is encoded using log σ bits and we can read w bits in constant time in
the RAM model, the best query time for the two problems which can
only possibly be achieved by reading Θ(w/ log σ) consecutive characters,
is O(n log σ

w
+ occ). In this paper, we present two results. The first re-

sult is that using O(m) words of space, single pattern matching queries
can be answered in time O(n( log m

m
+ log σ

w
) + occ), and multiple pattern

matching queries answered in time O(n( log d+log y+log log m
y

+ log σ
w

)+occ),
where y is the length of the shortest pattern. Our second result is a vari-
ant of the first result which uses the four Russian technique to remove
the dependence on the shortest pattern length at the expense of using an
additional space t. It answers to multi-pattern matching queries in time
O(n log d+log logσ t+log log m

logσ t
+ occ) using O(m + t) words of space.

1 Introduction

The problems of string pattern matching and multiple string pattern matching
are classical algorithmic problems in the area of pattern matching. In the multiple
string matching problem, we have to preprocess a dictionary of d strings of total
length m characters over an alphabet of size σ so that we can answer to the
following query: given any text of length n, find all occurrences in the text of
any of the d strings. In the case of single string matching, we simply have d = 1.

The textbook solutions for the two problems are the Knuth-Morris-Pratt [15]
(KMP for short) automaton for the single string matching problem and the
Aho-Corasick [1] automaton (AC for short) for the multiple string matching
problem. The AC automaton is actually a generalization of the KMP algorithm.
Both algorithms achieve O(n + occ) query time (where occ denotes the num-
ber of reported occurrences) using O(m log m) bits of space. The query time

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 90–102, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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of both algorithms is in fact optimal if the matching is restricted to read all
the characters of the text one by one. However it was noticed that in many
cases, it is actually possible to avoid reading all the characters of the text and
hence achieve a better performance. This stems from the fact that by reading
some characters at certain positions in the text, one could conclude whether a
match is possible or not. This has led to various algorithms with so-called sub-
linear query time assuming that the characters of the patterns and/or the text
are drawn from some random distribution. The first algorithm which exploited
that fact was the the Boyer-Moore algorithm [5]. Later algorithms with provably
average-optimal performance were devised. Most notably the BDM and BNDM
for single string matching and the multi-BDM [9,8] and multi-BNDM [18] for
multiple string matching. Those algorithms achieve O(n log m

m log σ + occ) time for
single string matching (which is optimal according to the lower bound in [24])
and O(n log d+log y

y log σ +occ) time for multiple string matching, where y is the length
of the shortest string in the set. Still in the worst case those algorithms may
have to read all the text characters and thus have Ω(n + occ) query time (actu-
ally many of those algorithms have an even worse query time in the worst-case,
namely Ω(nm + occ)).

A general trend has appeared in the last two decades when many papers have
appeared trying to exploit the power of the word RAM model to speed-up and/or
reduce the space requirement of classical algorithms and data structures. In this
model, the computer operates on words of length w and usual arithmetic and
logic operations on the words all take one unit of time.

In this paper we focus on the worst-case bounds in the RAM model with word
length w. That is we try to improve on the KMP and AC in the RAM model
assuming that we have to read all the characters of the text which are assumed
to be stored in a contiguous area in memory using log σ bits per characters. That
means that it is possible to read Θ(w/ log σ) consecutive characters of the text in
O(1) time. Thus given a text of length n characters, an optimal algorithm should
spend O(n log σ

w + occ) time to report all the occurrence of matching patterns
in the text. The main result of this paper is a worst case efficient algorithm
whose performance is essentially the addition of a term similar to the average
optimal time presented above plus the time necessary to read all the characters
of the text in the RAM model. Unlike many other papers, we only assume that
w = Ω(log(n + m)), and not necessarily that w = Θ(log(n + m)). That is we
only assume that a pointer to the manipulated data (the text and the patterns),
fit in a memory word but the word length w can be arbitrarily larger than log m
or log n. This assumption makes it possible to state time bounds which are
independent of m and n, implying larger speedups for small values of m and n.

In his paper Fredriksson presents a general approach [13] which can be applied
to speed-up many pattern matching algorithms. This approach which is based
on the notion of super-alphabet relies on the use of tabulation (four russian
technique). If this approach is applied to our problems of single and multiple
string matching queries, given an available precomputed space t, we can get a
logσ(t/m) factor speedup. In his paper [4], Bille presented a more space efficient
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method for single string matching queries which accelerates the KMP algorithm
to answer to queries in time O( n

logσ n + occ) using O(nε + m) words of space for
any constant ε such that 0 < ε < 1. More generally, the algorithm can be tuned
to use an additional amount t of tabulation space in order to provide a logσ t
factor speedup.

At the end of his paper, Bille asked two questions: the first one was whether
it is possible to get an acceleration proportional to the machine word length w
(instead of log n or log t) using O(m) words of space only. The second one was
whether it is possible to obtain similar results for the multiple string match-
ing problem. We give partial answers to both questions. Namely, we prove the
following two results:

1. Our first result implies that for d strings of minimal length y, we can con-
struct an index which occupies O(m) words of space and answers to queries
in time O(n( log d+log y+log log m

y + log σ
w ) + occ). This result implies that we

can get a speedup factor w
(log d+log w) log σ if y ≥ w

log σ and get the optimal
speedup factor w

log σ if y ≥ (log d + log w) w
log σ .

2. Our second result implies that for d patterns of arbitrary lengths and an
additional amount of memory t, we can obtain a factor logσ t

log d+log logσ t+log log m

speedup using O(m + t) words of memory.

Our first result compares favorably to Bille’s and Fredriksson approaches as it
does not use any additional tabulation space. In order to obtain any significant
speedup, the algorithms of Bille and Fredriksson require a substantial amount of
space t which is not guaranteed to be available. Even if such an amount of space
was available, the algorithm could run much slower in case m " t as modern
hardware is made of memory hierarchies, where random access to large tables
which do not fit in the fast levels of the hierarchy might be much slower than
access to small data which fit in faster levels of the hierarchy.

Our second result is useful in case the shortest string is very short and thus, the
first result do not provide any speedup. The result is slightly less efficient than
that of Bille for single string matching, being a factor log logσ t+log log m slower
(compared to the logσ t speedup of Bille’s algorithm). However, our second result
efficiently extends to multiple string matching queries, while Bille’s algorithms
seems not to be easily extensible to multiple string matching queries.

In a recent work [3], we have tried to use the power of the RAM model to
improve the space used by the AC representation to the optimal (up to a constant
factor) O(m log σ) bits instead of O(m log m) bits of the original representation,
while maintaining the same query time. In this paper, we attempt to do the
converse. That is, we try to use the power of the RAM model to improve the
query time of the AC automaton while using the same space as the original
representation.

We emphasize that our results are mostly theoretical in nature. The constants
in space usage and query time of our data structures seem rather large. Moreover,
in practice average efficient algorithms which have been tuned for years are likely
to behave much better than any worst-case efficient algorithm. For example, for
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DNA matching, it was noted that DNA sequences encountered in practice are
rather random and hence average-efficient algorithms tend to perform extremely
well for matching in DNA sequences (see [20] for example).

2 Outline of the Results

2.1 Problem Definition, Notation and Preliminaries

In this paper, we aim at addressing two problems: the single string pattern
matching and the multiple string pattern matching problems. In the single string
pattern matching problem we have to build a data structure on a single pattern
(string) of length m over an alphabet of size σ ≤ m. In the multiple string
pattern matching problem, we have a set S of d patterns of total length m
characters where each character is drawn from an alphabet of size σ ≤ m. In
the first problem, we have to identify all occurrences of the pattern in a text T
of length n. In the second problem, we have to identify all occurrences of any of
the d patterns.

In this paper, we assume a unit-cost RAM model with word length w, and
assume that w = Ω(log m + log n). However w could be arbitrarily larger than
log m or log n. We assume that the patterns and the text are drawn from an
alphabet of size σ ≤ m. We assume that all usual RAM operations (multiplica-
tions, additions, divisions, shifts, etc...) take one unit of time.

For any string x we denote by x[i, j] (or x[i..j]) the substring of x which begins
at position i and ends at position j in the string x. For any integer m we note
by log m the integer number �log2 m�.

In the paper we make use of two kinds of ordering on the strings: the prefix
lexicographic order which is the standard lexicographic ordering (strings are
compared right-to-left) and the suffix-lexicographic order which is defined in the
same way as prefix lexicographic, but in which string are compared left-to-right
instead of right-to-left. The second ordering can be thought as if we write the
strings in reverse before comparing them. Unless otherwise stated, string lengths
are expressed in terms of number of characters. We make use of the fixed integer
bit concatenation operator (·) which operates on fixed length integers, where
z = x · y means that z is the integer whose bit representation consists in the
concatenation of the bits of the integers x as most significant bits followed by the
bits of the integer y as least significant bits. We define the function sucountX(s),
which returns the number of elements of a set X which have a string s as a
suffix. Likewise we define the function prcountX(s), which returns the number
of elements of a set X which have a string s as a prefix. We also define two
other functions surankX(s) and prrankX(s) as the functions which return the
number of elements of a set X which precede the string s in suffix and prefix
lexicographic orders respectively.

2.2 Results

The results of this paper are summarized by the following two theorems:
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Theorem 1. Given a set S of d strings of total length m, where the shortest
string is of length y, we can build a data structure of size O(m log m) bits such
that given any text T of length n, we can find all occurrences of strings of S in
T in time O(n( log d+log y+log log m

y + log σ
w ) + occ).

The theorem give us the following interesting corollaries.

Corollary 1. Given a string p of length m, we can build a data structure of size
O(m log m) bits of space such that given any text T of length n, we can find all
occ occurrences of p in T in time O(n( log m

m + log σ
w ) + occ).

For multiple string matching, we have the following two corollaries:

Corollary 2. Given a set S of d strings of total length m where each string is of
length at least w

log σ characters, we can build a data structure of size O(m log m)
bits of space such that given any text T of length n, we can find all occurrences
of strings of S in T in time O(n (log d+log w) log σ

w + occ).

For the case of even larger minimal length, we can get the following corollary
which improves on corollary 2 by giving an optimal query time in case of suffi-
ciently long strings:

Corollary 3. Given a set S of d strings of total length m where each string is
of length at least (log d + log w) w

log σ characters, we can build a data structure
occupying O(m log m) bits of space such that given any text T of length n, we
can find all occurrences of strings of S in T in the optimal O(n log σ

w + occ) time.

The dependence of the bounds in theorem 1 and its corollaries on minimal pat-
terns lengths is not unusual. This dependence exists also in average-optimal al-
gorithms like BDM, BNDM and their multiple patterns variants [9,8,18]. Those
algorithms achieve a y log σ

log d+log y speedup factor on average requiring that the
strings are of minimal length y. Our query time is the addition of a term which
represents the time necessary to read all the characters of text in the RAM model
and a term which is similar to the query time of the average optimal algorithms.

We also show the following theorem which is mostly useful in case the minimal
length is too short:

Theorem 2. Given a set S of d strings of total length m and a parameter s, we
can build a data structure occupying O(m log m + σs log2 s log m) bits of space
such that given any text T of length n, we can find all occ occurrences of strings
of S in T in time O(n log d+log s+log log m

s + occ).

The theorem could be interpreted in the following way: having some additional
amount t of available memory space, we can achieve a speedup factor s

log d+log s

for s = logσ t using a data structure which occupies O(m log m+ t) bits of space.
The theorem gives us two interesting corollaries which depend on the relation

between m and n. In the case where n ≥ m, by setting t = nε for any 0 < ε < 1,
we get the following corollary:



Worst Case Efficient Single and Multiple String Matching 95

Corollary 4. Given a set S of d strings of total length m, we can build a
data structure occupying O(m log m + nε) bits of space such that given any
text T of length n, we can find all occurrences of strings of S in T in time
O(n log d+log logσ n+log log m

logσ n + occ), where ε is any constant such that 0 < ε < 1.

In the case m ≥ n (which is only possible in the case of multiple string matching,
we can get a better speedup by setting t = m:

Corollary 5. Given a set S of d strings of total length m, we can build a data
structure occupying O(m log m) bits of space such that given any text T of length
n, we can find all occurrences of strings of S in time O(n log d+log log m

logσ m + occ).

We note that in the case d = 1, the result of theorem 2 is worse by a fac-
tor log logσ n + log log m than that of Bille which achieves a query time of
O( n

logσ n + occ). However the result of Bille does not extend naturally to d ≥ 1.
The straightforward way of extending Bille’s algorithm is to build d data struc-
tures and to match the text against all the data structures in parallel. This
however would give a running time of O(n d

logσ n + occ) which is worse than

our running time O(n log d+log logσ n+log log m
logσ n + occ) which is linear in log d rather

than d.
As of the technique of Fredriksson, in order to obtain query time O(n

s + occ),
it needs to use at least space Ω(mσs) which can be too much in case s is too
large.

3 Multiple String Matching without Tabulation

In this section we give a proof of the first theorem. However, before that we
present the results about the components which are used in our construction.

3.1 Components

For our results, we use the following lemmata:

Lemma 1. [23] Given a collection of n intervals over universe U where for any
two intervals s1 and s2 we have either s1 ∩ s2 = s1, s1 ∩ s2 = s2 or s1 ∩ s2 = ∅
(for any two intervals either one is included in the other or the two intervals are
disjoint). We can build a data structure which uses O(n log n) bits of space such
that for any point x, we can determine the interval which most tightly encloses
x in O(n log log n) time (the smallest interval which encloses x).

For implementing the lemma, we store the set of interval endpoints in a pre-
decessor data structure, namely the Willard’s y-fast trie [23] which is a linear
space version of the Van Emde Boas tree [22]. Then those points divide the uni-
verse of size U into 2n + 1 segments and each segment will point to the interval
which most tightly encloses the segment. Then a predecessor query will point to
the segment which in turn points to the relevant interval. This problem can be
thought as a restricted 1D stabbing problem.
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Lemma 2. Given a collection S of n strings of arbitrary lengths and a function
f from S into [0, m−1], we can build a data structure which uses O(n log m) bits
which computes f(x) for any x ∈ S in time O(|x|/w) (where |x| is the length of
x in bits). When queried for any y /∈ S the function returns any value from the
set f(S).

This result can easily be obtained using minimal perfect hashing [12,14]. Though
perfect hashing is usually defined for fixed O(w) bits integers, a standard string
hash function [10] can be used to first reduce the strings to integers before
constructing the minimal perfect hashing on the generated integers.

Lemma 3. [7, Theorem 1] Given a collection S of n strings of variable lengths
occupying a memory area of m characters (the strings can possibly overlap), we
can build an index which uses O(n log m) bits so that given any string x, we can
find the string s ∈ S which is the longest among all the strings of S which are
prefix of x in time O(|x|/w + log n) (where |x| is the length of x in bits). More
precisely, the data structure returns prrankS(s). Moreover the data structure is
able to tell whether x = s.

This result which is obtained using a string B-tree [11] combined with an LCP
array and a compacted trie [16] built on the set of strings, and setting the
block size of the string B-tree to O(1). The following lemma is symmetric of the
previous one.

Lemma 4. Given a collection S of n strings of variable lengths occupying a
memory area of m characters of space (the strings can possibly overlap), we can
build an index which uses O(n log m) bits so that given any string x, we can
find the string s ∈ S which is the longest among all the strings of S which are
suffix of x in time O(|x|/w + log n) (where |x| is the length of x in bits). More
precisely, the data structure returns surankS(s). Moreover the data structure is
able to tell whether x = s.

Lemma 5. [6] Given a set of n rectangles in the plane, we can build a data
structure which uses O(n log n) bits of space so that given any point [v, z], we
can report all the k occurrences of rectangles which enclose that point in time
O(log n + k).

The problem solved by lemma 5 is called the 2D stabbing problem or sometimes
called the point enclosure. The lemma uses the best linear space solution to the
problem which is due to Chazelle [6] (which is optimal according to the lower
bound in [19]).

3.2 Overview

The goal of this paper is to simulate the running of the AC automaton [1],
by processing the characters of the scanned text in blocks of b characters. The
central idea of the main result relies on a reduction of the problem of dictionary
matching to the 1D and 2D stabbing problems, in addition to the use of standard



Worst Case Efficient Single and Multiple String Matching 97

string data structures namely, string B-trees, suffix arrays and minimal perfect
hashing on strings. At each step, we first read b characters of the text, find the
matching patterns which end at one of those characters and finally jump to the
state which would have been reached after reading the b characters by the AC
automaton (thereby simulating all next and fail transitions which would have
been traversed by the standard AC automaton for the b characters). Finding
the matching patterns is reduced to the 2D stabbing problems, while jumping
to the next state is reduced to 1D stabbing problem. The geometric approach
has already been used for dictionary matching problem and for text pattern
matching algorithms in general. For example, it has been recently used in order
to devise compressed indexes for substring matching [17,7]. Even more recently
the authors of [21] have presented a compressed index for dictionary matching
which uses a reduction to 2D stabbing problem.

3.3 The Data Structure

We now describe the data structure in more detail. Given the set S of d patterns,
we note by P the set of the prefixes of the patterns in S (note that |P | ≤ m+1).
It is a well-known fact that there is a bijective relation between the set P and
the set of states of the AC automaton. We use the same state representation
as the one used in [3]. That is we first sort the states of the automaton in the
suffix-lexicographic order of the prefixes to which they correspond, attributing
increasing numbers to the states from the interval [0, m]. Thus the state corre-
sponding to the empty string gets the number 0, while the state corresponding to
the greatest element of P (in suffix-lexicographic order) gets the largest number
which is at most m. We define state(p) as the state corresponding to the prefix
p ∈ P .

Now, the characters of the scanned text, are to be scanned in blocks of b
characters. For finding occurrences of the patterns in a text T , we do �n/b�
steps. At each step i ∈ [0, �n/b� − 1] we do three actions:

– Read b characters of the text, T [ib, (i + 1)b− 1] (or n− ib ≤ b characters of
the text, T [ib, n) in the last step).

– Identify all the occurrence of patterns which end at a position j of the text
such that j ∈ [ib, (i + 1)b) (j ∈ [ib, n) in the last step).

– If not in the last step go to the next state corresponding to the longest
element of P which is a suffix of T [0, (i + 1)b].

The details of the implementation of each of the last two actions is given in the
full version.

Our AC automaton representation has the following components:

1. An array A which contains the concatenation of all of the patterns. This
array clearly uses mb bits of space.

2. Let P0<i≤b be the set of prefixes of S of lengths in [1, b]. We use an instance
of lemma 3, which we denote by B1 and in which we store the set P0<i≤b
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(by means of pointers into the array A). Clearly B1 uses O(db log m) =
O(m log m) bits of space (we have db elements stored in B1 and pointers
into A take log m bits). We additionally store a vector of |P0<i≤b| ≤ db
elements which we denote by T1 and which associates an integer in [0, m)
with each element stored in B1. The table T1 uses O(db log m) = O(m log m).

3. We use an instance of lemma 2, which we denote by B2 and in which we
store all the suffixes of strings in P (or equivalently all factors of the strings
in S) of length b and for each suffix, store a pointer to its ending position
in the array A (if the same factor occurs multiple times in the S we store it
only once). As we have at most m elements in P and each pointer (in the
array A) to each factor can be encoded using O(log m) bits, we conclude
that B2 uses at most O(m log m) bits of space.

4. We use an instance of lemma 4 which we denote by B3 and in which we
store all the suffixes of strings of S of lengths in [1, b] (We note that set by
U0<i≤b). It can easily be seen that B3 also uses O(db log m) = O(m log m)
bits of space.

5. We use a 1D stabbing data structure (lemma 1) in which we store m segments
where each segment corresponds to a state of the automaton. This data
structure which uses O(m log m) bits of space is used in order to simulate
the transitions in the AC automaton. We also store a vector of integers of size
m which we denote by T2 and which associates an integer with each interval
stored in the 1D stabbing data structure. The table T2 uses O(m log m) bits
of space.

6. We use a 2D stabbing data structure (lemma 5) in which we store up to
db rectangles. The space used by this data structure is O(db log(db)) =
O(m log m) bits. We also use a table T3 which stores triplets of integers
associated with each rectangle. The table T3 will also use O(db log m) =
O(m log m) bits.

We deffer the details about the contents of each component to the full version
which uses also to the full version. Central to the working of our data structure
is the following technical lemma:

Lemma 6. Given a set of strings X. We have that for any two strings x ∈ X
and y ∈ X:

– prrankX(y) ∈ [prrankX(x), prrankX (x) + prcountX(x)− 1] iff x is a prefix
of y.

– surankX(y) ∈ [surankX(x), surankX(x) + sucountX(x)− 1] iff x is a suffix
of y.

The proof of the lemma is omitted.

3.4 Simulating Transitions

We will use the representation of states similar to the one used in [3]. That is each
state of the automaton corresponds to a prefix p ∈ P and is represented as an
integer state(p) = surankP (p). The main idea for accelerating transitions is to
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read the text into blocks of size b characters and then find the next destination
state attained after reading those b characters using B1, T1, B2, T2 and the
1D stabbing data structure. More precisely being at a state state(p) and after
reading next b characters of the text which form a string q, we have to find next
state which is the state state(x) such that x ∈ P is the longest element of P
which is suffix of pq. For that purpose the 1D stabbing data structure is used in
combination with B1 (which is queried on string q) in order to find state(x) in
case |x| ≥ b. Otherwise if no such x is found the data structure B2 will be used
to find state(x), where |x| < b. The following lemma summarizes the time and
the space of the data structures needed to simulate a transition.

Lemma 7. We can build a data structure occupying O(m log m) bits of space
such that if the automaton is in a state ti, the state ti+b reached after doing all the
transitions on b characters, can be computed in O(log d+log b+log log m+ b log σ

w )
time.

The proof of the lemma is deferred to the full version.

3.5 Identifying Matching Occurrences

In order to identify matching patterns the 2D stabbing data structure is used in
combination with B1. The details are deferred to the full version.

Lemma 8. Given a parameter b and a set S of variable length strings of total
length m characters over an alphabet of size σ, we can build a data structure
occupying space O(m log m) bits, such that if the automaton is at a state ti after
reading i characters of a text T , all the occi matching occurrences of T which
end at any position in T [i, i + b] (or T [i, |T |− 1] if i + b ≥ |T |) and begin at any
position in T [0, i] can be computed in O(log d + log b + b log σ

w + occi) time.

Theorem 1 is obtained by combining lemma 7 with lemma 8. Namely by setting
b = y, where y is the shortest pattern in S in both lemmata we can simulate
the running of the automaton in �n/y� steps at each step i, spending O(log d +
log b + log log m + y log σ

w ) + occi) to find the occi matching occurrences (through
lemma 8) and O(log d+log b+log log m+ b log σ

w ) time to simulate the transitions
(through lemma 7). Summing up over all the �n/y� steps, we get the query time
stated in the theorem.

4 Tabulation Based Solution

We now prove theorem 2. A shortcoming of theorem 1 is that it gives no speedup
in case the length of the shortest string in S is too short. In this case we resort to
tabulation in order to accelerate matching of short patterns. More specifically,
in case, we have a specified quantity t of available memory space (where t <
2w as obviously we can not address more than 2w words of memory), we can
precompute lookup tables using a standard technique known as the four russian
technique [2] so that we can handle queries in time O(n log d+log logσ t+log log m

logσ t +
occ). In theorem 1 our algorithm reads the text in blocks of size b = y, where y
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is the length of the shortest pattern. In reality we can not afford to read more
than y characters at the each step, because by doing so we may miss a substring
of the block of length y. Thus in order to be able to choose a larger block size b,
we must be able to efficiently identify all substrings of any block of (at most)b
characters which belong to S. The idea is then to use tabulation to answer to
such queries in constant times (or rather in time linear in the number of reported
occurrences). More in detail, for each possible block of u ≤ b characters, we have
a total of (u−1)(u−2)/2 substrings which could begin at all but the first position
of the block. For each possible block of u characters, we could store a list of all
substrings belonging to S and each list takes at most (u − 1)(u− 2)/2 = O(u2)
pointers of length log m bits. As we have a total of σu possible characters, we
can use a precomputed table of total size t = O((σu)u2 log m) bits.

Lemma 9. For a parameter u ≤ εw/ log σ (where ε is any constant such that
0 < ε < 1) and a set S of patterns where each pattern is of length at most u, we
can build a data structure occupying O(σu log2 u log m) bits of space such that
given any string T of length u, we can report all the occ occurrences of patterns
of S in T in O(occ) time.

Theorem 2 is obtained by combining lemmata 7, 8 and 9. Suppose we are given
the parameter s; for implementing transitions, we can just use lemma 7 in which
we set b = s, where the transitions are built on the set containing all the patterns.
Now in order to report all the matching strings, we build an instance of lemma 8
on the set S and in which we set b = s and also build s− 1 instances of lemma 9
for every u such that 1 ≤ u < s. More precisely let S≤u be the subset of strings
in S of length at most u, then the instance number u will be built on the set
S≤u using parameter u and will thus for all possible strings of length u, store all
matching patterns in S of length at most u.

A query on a text of T will work in the following way: we begin at step I = 0 and
the automaton is at state 0 which corresponds to the empty string. Recognizing
the patterns will consist in the following actions done at each step I:

1. Read the substring T [i, j], where i = Ib and j = (I + 1)b − 1 (or j = n− 1
if n > (I + 1)b− 1).

2. Recognize all the pattern occurrences which start at any position i′ ≤ i and
which terminate at any position j′ ∈ [i, j] using lemma 8.

3. Recognize all the matching strings of lengths at most b which are substrings
of T [i + 1, j] using the instance number j − i of lemma 9.

4. Increment step I by setting I = I + 1. Then if Ib > n, stop the algorithm
immediately.

5. Do a transition using lemma 7 and return to action 1.

5 Conclusion

In this paper, we have proposed two solutions to the problems of single and mul-
tiple pattern matching on strings in the RAM model. In this model we assume
that we can read Θ(w/ log σ) consecutive characters of any string in O(1) time.
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The first solution has a query time which depends on the length of the shortest
pattern (or the length of the only pattern in case of single string matching) in a
way similar to that of the previous algorithms which aimed at average-optimal
expected performance (not worst-case performance as in our case). The first so-
lution achieves an optimal query time if the shortest pattern is sufficiently long.
The second solution has no dependence on the length of the shortest pattern but
uses additional precomputed space. The second result is an interesting alterna-
tive to the previous tabulation approaches by Bille [4] and Fredriksson [13].

This paper gives rise to two interesting open problems:

– In order to obtain any speedup we either rely on the length of the shortest
pattern being long enough (theorem 1) or have to use additional precom-
puted space (theorem 2). An important open question is whether it is pos-
sible to obtain any speedup without relying on any of the two assumptions.

– The space usage of both solutions is Ω(m log m) bits, but the patterns them-
selves occupy only O(m log(σ)) bits only. The space used is thus at least a
factor Ω(logσ m) larger than the space occupied by the patterns. An in-
teresting open problem is whether it is possible to obtain an acceleration
compared to the standard AC automaton while using only O(m log σ) bits
of space.
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Abstract. A (2, 1)-total labeling of a graph G is an assignment f from the vertex
set V(G) and the edge set E(G) to the set {0, 1, . . . , k} of nonnegative integers
such that | f (x) − f (y)| ≥ 2 if x is a vertex and y is an edge incident to x, and
| f (x) − f (y)| ≥ 1 if x and y are a pair of adjacent vertices or a pair of adjacent
edges, for all x and y in V(G) ∪ E(G). The (2, 1)-total labeling number λT

2 (G)
of G is defined as the minimum k among all possible assignments. In [D. Chen
and W. Wang. (2,1)-Total labelling of outerplanar graphs. Discr. Appl. Math. 155
(2007)], it was conjectured that all outerplanar graphs G satisfy λT

2 (G) ≤ Δ(G)+2,
where Δ(G) is the maximum degree of G, while they also showed that it is true for
G with Δ(G) ≥ 5. In this paper, we solve their conjecture completely, by proving
that λT

2 (G) ≤ Δ(G) + 2 even in the case of Δ(G) ≤ 4.

1 Introduction

In the channel assignment problems, we need to assign different frequencies to ‘close’
transmitters so that they can avoid interference. The L(p, q)-labelings of a graph have
been extensively studied as one of important graph theoretical models of this problem,
where an L(p, q)-labeling of a graph G is an assignment f from the vertex set V(G) to
the set {0, 1, . . . , k} of nonnegative integers such that | f (x) − f (y)| ≥ p if x and y are
adjacent and | f (x) − f (y)| ≥ q if x and y are at distance 2, for all x and y in V(G). The
L(p, q)-labeling number is defined as the minimum k among all possible assignments
and is denoted by λp,q(G). Notice that we can use k+1 different labels when λp,q(G) = k
since we can use 0 as a label for conventional reasons. We can find related results on
L(p, q)-labelings in comprehensive surveys by Calamoneri [3] and by Yeh [14].

In [13], Whittlesey et al. studied the L(2, 1)-labeling number of incidence graphs,
where the incidence graph of a graph G is the graph obtained from G by replacing
each edge with a path with length two. Observe that an L(p, 1)-labeling of the incidence

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 103–106, 2011.
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graph of a given graph G can be regarded as an assignment f from V(G) ∪ E(G) to the
set {0, 1, . . . , �} of nonnegative integers such that | f (x) − f (y)| ≥ p if x is a vertex and y
is an edge incident to x, and | f (x)− f (y)| ≥ 1 if x and y are a pair of adjacent vertices or
a pair of adjacent edges, for all x and y in V(G) ∪ E(G). Such a labeling of G is called
a (p, 1)-total labeling of G, introduced by Havet and Yu [7,8]. The (p, 1)-total labeling
number is defined as the minimum value � among all possible (p, 1)-total labelings of
G, and denoted by λT

p (G).
We can see that a (1, 1)-total labeling of G is equivalent to a total coloring of G.

Generalizing the Total Coloring Conjecture [2,11], Havet and Yu [7,8] conjectured that

λT
p (G) ≤ Δ(G) + 2p − 1 (1)

holds for any graph G, where Δ(G) denotes the maximum degree of a vertex in G. They
also showed that (i) λT

p (G) ≤ min{2Δ(G) + p − 1, χ(G) + χ′(G) + p − 2} for any graph
G where χ(G) and χ′(G) denote the chromatic number and the chromatic index of G,
respectively, (ii) λT

2 (G) ≤ 2Δ(G) if p = 2 and Δ(G) ≥ 2, (iii) λT
2 (G) ≤ 2Δ(G) − 1 if

p = 2 and Δ(G) is an odd ≥ 5, and (iv) λT
p (G) ≤ n + 2p − 2 if G is the complete

graph where n = |V(G)|; the conjecture (1) is true if (a) p ≥ Δ(G), (b) p = 2 and
Δ(G) ≤ 3, or (c) G is the complete graph. By (i), it follows that λT

p (G) ≤ Δ(G) + p for
any bipartite graph [1,4,7,8] (by χ(G) ≤ 2 and König’s theorem). Also, Bazzaro et al.
[1] investigated that λT

p (G) ≤ Δ(G)+ p+ s for any s-degenerated graph (by χ(G) ≤ s+1
and χ′(G) ≤ Δ(G) + 1), where an s-degenerated graph G is a graph which can be
reduced to a trivial graph by successive removal of vertices with degree at most s, and
that λT

p (G) ≤ Δ(G)+ p+3 for any planar graph (by the Four-Color Theorem). They also
showed sufficient conditions about Δ(G) and girth for which the conjecture (1) holds. In
[10], Montassier and Raspaud proved that λT

p (G) ≤ Δ(G)+ 2p− 2 when p ≥ 2 and Δ(G)
and the maximum average degree of G satisfy some conditions. In [9], Lih et al. showed
that λT

p (G) ≤ �3Δ(G)/2� + 4p − 3 for any graph G. They also investigated λT
p (Km,n) of

the complete bipartite graphs Km,n.

2 The Main Theorem

Let G be an outerplanar graph. In [1], Bazzaro et al. pointed out that λT
p (G) ≤ Δ(G)+p+1

for any outerplanar graph other than an odd cycle. This improves the bound (1) for p > 2
(it is the same for p = 2). Moreover, Chen and Wang [4] conjectured that in the case of
p = 2, λT

2 (G) ≤ Δ(G) + 2. They also proved that this conjecture is true if (i) Δ(G) ≥ 5,
(ii) Δ(G) = 3 and G is 2-connected, or (iii) Δ(G) = 4 and every two faces consisting of
three vertices have no vertex in common. In the case of Δ(G) = 2 (i.e., G is a path or a
cycle), we can easily see that λT

2 (G) ≤ 4, since the incidence graph of a path (resp., a
cycle) is also a path (resp., a cycle), and the L(2, 1)-labeling number λ2,1(Cn) for a cycle
Cn with n vertices is at most 4 [5]. The cases of Δ(G) ∈ {0, 1} are trivial. However, the
general cases of Δ(G) ∈ {3, 4} were left open. In this paper, we solve Chen and Wang’s
conjecture completely, by showing that it holds for the remaining cases of Δ(G) ∈ {3, 4};
namely, we show the following theorem.

Theorem 1. If G = (V, E) is an outerplanar graph with Δ(G) ≤ 4, then λT
2 (G) ≤

Δ(G) + 2.
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On the other hand, the bound Δ(G) + 2 is tight, since there exist infinitely many outer-
planar graphs G such that λT

2 (G) = Δ(G) + 2 if Δ(G) ≥ 2, as investigated in [4].
Here we define some notations. A graph G is an ordered set of its vertex set V(G) and

edge set E(G) and is denoted by G = (V(G), E(G)). Throughout the paper, assume that
G = (V, E) is undirected and simple. An edge with end vertices u and v is denoted by
(u, v). For a vertex set V ′ ⊆ V(G), let G−V ′ be the subgraph of G induced by V(G)−V ′.
The degree of a vertex v in G is denoted by dG(v). A vertex v is called a cut vertex (of
G) if G − v is disconnected. A subgraph G′ of G is called a 2-connected component if
no two vertices u and u′ in G′ are disconnected by any cut vertex v of G with v � {u, u′}
and G′ is maximal to this property. In particular, if G′ = G and |V(G)| ≥ 3, then G is
called 2-connected.

A graph is called planar if it can be drawn in the plane without generating a crossing
by two edges, and a plane graph is a particular drawing of a planar graph. A plane graph
divides the plane into regions, and a face of a plane graph is the maximal region of the
plane that contains no vertex in that region. A face whose vertex set is {u1, u2, . . . , uk}
with (ui, ui+1) ∈ E(G), i = 1, 2, . . . , k (where uk+1 = u1) is denoted by [u1u2 · · · uk]. We
call a face consisting of k vertices a k-face. A planar graph G is called outerplanar if it
can be drawn in the plane so that all vertices lie on the boundary of some face called the
outer face. Such a drawing is referred to as an outerplane graph. An edge not belonging
to the boundary of the outer face is called an inner edge.

3 Proof Sketch of Theorem 1

We give a proof sketch of Theorem 1 (see [6] for its complete proof).
Let G be an outerplane graph. We prove this by induction on k = |V(G)| + |E(G)|.

The theorem clearly holds if k = 1. Consider the case of k ≥ 2 and assume that for each
k′ < k, this theorem holds. If Δ(G) ≤ 2, λT

2 (G) ≤ 4 holds as mentioned in Section 1.
We also assume that G is connected, since otherwise we can treat each component
separately. Thus, 1 ≤ δ(G) ≤ 2, where δ(G) denotes the minimum degree of G.

Consider the case where δ(G) = 1. Let u1 be a vertex with dG(u1) = 1. By the induc-
tion hypothesis, G − u1 has a (2,1)-total labeling f : V(G − u1) ∪ E(G − u1)→ LΔ(G)+2,
where Lk = {0, 1, . . . , k}. Let u2 be the neighbor of u1 in G and e1, . . . , eΔ(G)−1 be edges
incident to u2 in G − u1 where ei = e j may occur. Hence we can extend f to the edge
(u1, u2) and the vertex u1 as follows: assign a label a ∈ LΔ(G)+2− { f (u2)−1, f (u2), f (u2)+
1, f (e1), . . . , f (eΔ(G)−1)} to (u1, u2), and then a label in LΔ(G)+2− { f (u2), a − 1, a, a + 1}
to u1.

Consider the case of δ(G) = 2. There are the following two possible cases: (Case-I)
Δ(G) = 3 and (Case-II) Δ(G) = 4.

(Case-I) In [4], Chen and Wang showed that if G is 2-connected, then λT
2 (G) ≤ 5; they

gave an algorithm (CW algorithm) for finding a feasible labeling g : V(G)∪E(G)→ L5

of a 2-connected graph G. Consider the case where G has a cut vertex. We can observe
that G has a 2-connected component G1 which has exactly one cut vertex vc of G. By
δ(G) = 2, |V(G1)| ≥ 3 and dG1 (vc) ≥ 2. By Δ(G) = 3, it follows that dG1 (vc) = 2
holds and G1 and G − V(G1) are connected by one edge. By the induction hypothesis,
H = G − (V(G1) − {vc}) has a (2,1)-total labeling f : V(H) ∪ E(H) → L5. Then, we
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modify CW algorithm so that it can provide a more flexible labeling, and extend f to a
(2,1)-total labeling f ′ : V(G) ∪ E(G)→ L5 of G by using the modified algorithm.

(Case-II) It is known that any outerplane graph G′ with δ(G′) = 2 contains one
of the following configurations (C1)–(C3): (C1) two adjacent vertices u1 and u2 with
dG′ (u1) = dG′ (u2) = 2, (C2) a 3-face [u1u2u3] with dG′ (u1) = 2 and dG′ (u2) = 3, and
(C3) two 3-faces [u1u2u3] and [u3u4u5] such that dG(u3) = 4 and dG′ (u2) = dG′ (u4) = 2
[12]. In [4], Chen and Wang proved that if G contains (C1) or (C2) as its subgraph
H, then a (2,1)-total labeling of the proper subgraph G − H′ of G for some subgraph
H′ of H can be extended to a (2,1)-total labeling of G. On the other hand, in the case
where G contains neither (C1) nor (C2), such a property does not hold; for example,
for some graph G which contains (C3) as its subgraph H, there exists a labeling of
G − H which we cannot extend to any feasible labeling in G. To overcome this, we
derive the following new structural property, and show that a (2,1)-total labeling of the
proper subgraph G−H of G, where H is a subgraph of G corresponding to (C4), can be
extended to a (2,1)-total labeling of G.

Lemma 1. If G is an outerplane graph with Δ(G) = 4 and δ(G) = 2 which con-
tains neither (C1) nor (C2), then G has the following configuration (C4): (C4) a family
{[u1u2u3], [u3u4u5], . . . , [u2t−1u2tu2t+1]} of 3-faces such that (u1, u2t+1) is an inner edge.
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Abstract. Modern computers have several levels of memory hierarchy.
To obtain good performance on these processors it is necessary to design
algorithms that minimize I/O traffic to slower memories in the hierarchy.
In this paper, we present I/O efficient algorithms to pebble r-pyramids
and derive lower bounds on the number of I/O steps to do so. The r-
pyramid graph models financial applications which are of practical inter-
est and where minimizing memory traffic can have a significant impact
on cost saving.

Keywords: Memory hierarchy, I/O, Lower bounds.

1 Introduction

Modern computers have several levels of memory hierarchy. To obtain good per-
formance on these computers it is necessary to design algorithms that minimize
I/O traffic to slower memories in the hierarchy [1,2]. The cache blocking tech-
nique is used to reduce memory traffic to slower memories in the hierarchy [1].
Cache blocking partitions a given computation such that the data required for a
partition fits in a processor cache. For computations, where data is reused many
times, this technique reduces memory traffic to slower memories in the hierarchy
[1]. The memory traffic reduction that can be obtained using this technique de-
pends on the application, memory hierarchy architecture, and the effectiveness
of the blocking algorithm.

In this paper, we present I/O efficient algorithms to compute the values at
vertices (“pebble” the vertices) of a computation graph that is an r-pyramid
and derive lower bounds on its memory traffic complexity. A formal definition of
memory traffic complexity is given later in the paper. For simplicity, in this paper
we will only consider two levels of memory hierarchy. The results for two-levels
can be extended to multiple-levels of memory hierarchy using the multiple-level
memory hierarchy model outlined in [3]. (See also [4, Chapter 11].) This model is
an extension of the red-blue model introduced by [5], a game played on directed
acyclic graphs with red and blue pebbles.

The paper is motivated by a very practical financial application - that of com-
puting option prices. An option contract is a financial instrument that gives the

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 107–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



108 D. Ranjan, J. Savage, and M. Zubair

right to its holder to buy or sell a financial asset at a specified price referred to as
strike price, on or before the expiration date. The current asset price, volatility
of the asset, strike price, expiration time, and prevailing risk-free interest rate de-
termine the value of an option. Binomial and trinomial option valuation are two
popular approaches that value an option using a discrete time model [6,7]. The
binomial option pricing computation is modelled by the directed acyclic pyramid
graph G

(n)
biop with height n and n+ 1 leaves shown in Figure 1. Here the expiration

time is divided into n intervals (defined by n + 1 endpoints), the root is at the
present time, and the leaves are at expiration times. We use G

(n)
biop to determine

the price of an option at the root vertex iteratively, starting from the leaf vertices.

Fig. 1. A 2-pyramid representing binomial computation, and a 3-pyramid representing
trinomial computation

The trinomial model improves over the binomial model in terms of accuracy
and reliability [6]. The trinomial option pricing computation is represented using
the directed acyclic graph with in-degree 3 denoted G

(n)
triop of height n on 2n + 1

leaves shown in Figure 1. As in the binomial model, we divide the time to
expiration into n intervals and let the root be at the present time and the leaves
be at expiration times. As in the binomial model, we use G

(n)
triop to determine the

price of an option at the root vertex iteratively, starting from the leaf vertices.
The trinomial model assumes that the price of an asset can go three ways: up,
down, and remain unchanged. This is in contrast to the binomial model where
the price can only go two ways: up and down.

In [8] the authors derived lower bounds for memory traffic at different levels of
memory hierarchy for G

(n)
biop and G

(n)
triop. The technique used in the paper is based

on the concept of a S-span of the DAG [3]. The S-span intuitively represents
the maximum amount of computation that can be done after loading data in a
cache at some level without accessing higher levels (those further away from the
CPU) memories.

In this paper we first define a general family of graphs called r-pyramids.
G

(n)
biop and G

(n)
triop are sub families of this family. We then provide an algorithm to

pebble r− pyramids using S pebbles that requires roughly half the I/O needed
by previously described algorithms [8]. We also provide a lower bound that is
twice the previous best known lower bound for the same problem [8]. With these
improvements, one can prove that the pebbling scheme presented here does no
more than twice the I/O required by an optimal pebbling scheme.
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Strengthening the lower bound by a constant factor, besides being of theo-
retical interest, is important for practical reasons. Deriving these strong bounds
gives insight into deriving better algorithms, which are a factor of four to eight
times better than the existing algorithms. These factors may look small but are
significant in terms of cost saving for applications with real time constraints,
such as financial application.

The rest of the paper is organized as follows. The required definitions and
the memory hierarchy model that helps in developing memory complexity is
discussed in Section 2. In Section 3 we present an efficient algorithm, in terms
of memory I/O, for pebbling r-pyramid. Section 4 gives improved lower bounds
for the r-pyramid graph. Finally, in Section 5 we present some open problems.

2 Background

2.1 Computation Graphs, Structures and Memory Traffic
Complexity

We define here formally what we mean by a computation graph, a computation
structure and memory traffic complexity of a computation structure. A com-
putation graph is a directed acyclic graph G = (V, E). The vertices of G with
in-degree zero are called the input vertices and the vertices with out-degree zero
are called the output vertices. The idea here is that we wish to compute the
values at the output vertices given the values at the input vertices. The value at
a vertex can be computed if and only if the value at all its predecessor vertices
have been computed and are available. We say that the computation on G is
complete if the values at all its output vertices have been computed. A compu-
tation structure is a parametric description of computation graphs. Formally, a
computation structure is a function G̃ : Nk → {G |G is a computation graph}.

Given a computation graph G, the computation on G can be carried out in
many different ways. A computation scheme for a computation structure G̃ is an
algorithm that completely specifies how to carry out the computation for each
G̃(t) where t ∈ Nk. An input in a 2-level memory hierarchy refers to a read from
secondary memory, and an output refers to a write to the secondary memory. We
now define the memory traffic complexity for a single processor with 2-levels of
memory hierarchy with σ̂ = 〈σ0, σ1〉 where σ0 is the primary memory size, and σ1
is the secondary memory size. Let G̃ : Nk → {G |G is a computation graph} be
a computation structure. Let T1(σ̂, G̃)(t) be the minimum I/O required by any
computation scheme for G̃ on input G̃(t) where t ∈ Nk. The function T1(σ̂, G̃) :
Nk → N as defined above is called the memory traffic complexity of G̃. A
computation scheme that matches the memory traffic complexity for G̃ is called
a memory traffic optimal scheme for G̃.

2.2 The Reb-Blue Pebble Game

The red-blue pebble game models data movement between adjacent levels of a
two-level memory hierarchy. In the red-blue game, red pebbles identify values
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held in a fast primary memory whereas blue pebbles identify values held in a
secondary memory. Recall, that an input refers to a read from the secondary
memory, and an output refers to a write to a secondary memory. Since the red-
blue pebble game is used to study the number of I/O operations necessary for
a problem, the number of red pebbles is assumed limited and the number of
blue pebbles is assumed unlimited. Before the game starts, blue pebbles reside
on all input vertices. The goal is to place a blue pebble on each output vertex,
that is, to compute the values associated with these vertices and place them in
long-term storage. These assumptions capture the idea that data resides initially
in the most remote memory unit and the results must be deposited there.

Red-Blue Pebble Game Rules

– (Initialization) A blue pebble can be placed on an input vertex at any time.
– (Computation Step) A red pebble can be placed on (or moved to) a vertex

if all its immediate predecessors carry red pebbles.
– (Pebble Deletion) A pebble can be deleted from any vertex at any time.
– (Goal) A blue pebble must reside on each output vertex at the end of the

game.
– (Input from Blue Level) A red pebble can be placed on any vertex carrying

a blue pebble.
– (Output to Blue Level) A blue pebble can be placed on any vertex carrying

a red pebble.

A pebbling strategy P is the execution of the rules of the pebble game on the
vertices of a computation graph. We assign a step to each placement of a pebble,
ignoring steps on which pebbles are removed. The I/O time of P on the graph
G is the number of input and output (I/O) steps used by P .

3 An Efficient Algorithm for Pebbling Pr(n)

3.1 An r-Pyramid

A directed graph G = (V, E) is called a layered graph with n levels if V can be
written as a disjoint union of n non-empty sets V1, V2, . . . , Vn such that ∀ e =
(u, v) ∈ E, ∃ i such that u ∈ Vi and v ∈ Vi+1.

Definition 1. An r-pyramid of height n, Pr(n), is a graph (Vr(n), Er(n)) with
the following properties (see Figure 2):

1. Pr(n) = (Vr(n), Er(n)) is a layered graph with height n. Here Vr(n) = V1 ∪
V2 . . . ∪ Vn+1, Vi is the set of vertices on level i, and Er(n) are the edges.

2. Vi has nr(i) = (r−1)∗(i−1)+1 vertices labeled v(i, 1), v(i, 2), . . . , v(i, nr(i))
3. Vertex v(i, j) has r incoming edges from vertices v(i + 1, j), v(i + 1, j +

1), . . . , v(i + 1, j + r − 1).
4. There are no other edges in Pr(n).
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With this definition it is easy to see that G
(n)
biop is a 2-pyramid of height n (or

P2(n)) and G
(n)
triop is a 3-pyramid of height n (or P3(n)). Also, note that an Pr(n)

has |Vr(n)| = (n+1)((r−1)n+2)/2 vertices. We note the nice recursive structure
of r-pyramid. For any vertex v in the r-pyramid, the subgraph rooted at v is a
smaller r-pyramid itself.

Fig. 2. r-pyramid Pr(n) with r = 4 and n = 3

3.2 Algorithm

Let, S = (r − 1)m + 1. We give an algorithm that we can pebble an r-pyramid
Pr(n) = (Vr(n), Er(n)) of height n with S red pebbles using no more than
2|Vr(n)|(r − 1)/(S − 1) I/O operations. Note that if n ≤ m then Pr(n) can be
pebbled without any intermediate I/O. Recall that we are assuming an unlimited
supply of blue pebbles.

Let Dk
i,j denote the “diagonal” shown in Figure 3 consisting of the k vertices

{(i, j), (i + 1, j + r− 1), . . . , (i + (k− 1), j + (k− 1)(r− 1))} that originate at the
vertex (i, j).

The algorithm starts with the pebbling of the r-pyramid, Pm
n−m,1, of height

m rooted at vertex (n − m, 1). This pyramid shares inputs with the inputs to
the full pyramid. This is done in a such way that it leaves S red pebbles on S
vertices of Pm

n−m,1 one of which is (n − m, 1). The other vertices are those in
Pm

n−m,1 that are required to compute Dm
n−m,2. More precisely, this is a collection

of (r − 1) vertices at each of the lower m− 1 levels. These vertices are

(n−m + 1, 2), (n−m + 1, 3), . . . , (n−m + 1, (r − 1)) + 1)
(n−m + 2, r), (n−m + 2, 2), . . . , (n−m + 2, 2(r − 1) + 1)

...
(n, (m− 1)(r − 1)), (n, (m− 1)(r − 1) + 1), . . . , (n, m(r − 1))
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m
mnP 1,

m
mnD 2,

n-m

n

Fig. 3. Processing of r-pyramid at level k

Procedure PebbleSubPyramid given in Algorithm 1 explains how this is done.

Procedure PebbleSubPyramid(n)
if n ≤ m then

Pebble the whole subpyramid using (r − 1) ∗ n + 1 red pebbles ;
else

t ← S;
for i = 1 to t do

Place a red pebble at vetex (n, i);
end
for j = 0 to m − 1 do

t ← t − (r − 1);
for k = 1 to t do

move pebble at (n − j, k) to (n − j − 1, k);
end

end

end

Algorithm 1. An algorithm for pebbling an r-subpyramid of height m at position
(n−m, 1) using S = (r− 1)m + 1 red pebbles leaving the red pebbles at the vertices
needed for future pebbling.

Next we repeatedly pebble the diagonals Dm
n−m,i starting with i = 2 and

progressing incrementally all the way to Dm
n−m,(n−m−1)(r−1)+1. Observe that

pebbling of Dm
n−m,2 requires the red pebbles on exactly S − 1 vertices from the

pyramid Pm
n−m,1 that was pebbled earlier (using PebbleSubpyramid) and a red

pebble on vertex (n, s + 1). We place a blue pebble at (n −m, 1) move the red
pebble at (n−m, 1) left by PebbleSubpyramid to (n, s + 1).

It is now easy to verify that all the red pebbles are in exactly the needed
locations to compute Dm

n−m,2. Moreover, we can maintain this property while
pebbling consecutive diagonals. That is, after pebbling Dm

n−m,2 we leave S red
pebbles on the vertices that are required for the processing of the next di-
agonal Dm

n−m,3 etc. Observe that in general, processing of diagonal Dm
n−m,j
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requires input from vertices on diagonals Dm
n−m,j−1, D

m
n−m,j−2, . . . , D

m
n−m,j−r+1.

This way we continue processing diagonals until we process the last diagonal
Dn−m,(r−1)(n−m−1)+1.

Also, observe that while processing these diagonals we only need to preserve
vertices at (n−m, 1), (n−m, 2), . . . , (n−m, (r − 1)(n−m− 1) + 1) for future
processing. The basic idea is that with S pebbles we can pebble all vertices at
the lower m levels blue pebbling only the vertices at level m. We then repeat this
process for the r-pyramid of height n − m. The complete algorithm to process
Pr(n) is presented in Algorithm 2 and illustrated in Figure 3.

Procedure PebblePyramid(n)
PebbleSubPyramid(n);
for j = 2 to (r − 1)(n − m − 1) + 1 do

place a blue pebble on (n − m, j − 1);
move the red pebble on (n − m, j − 1) to (n, j + s − 1);
for i = 0 to m − 1 do

move the red pebble on (n − i − 1, (j + s − 1 − (r − 1)i) to
(n − i, (j + s − 1 − (r − 1)i) ;

end

end
PebblePyramid(n − m) ;

Algorithm 2. An algorithm to pebble an r-pyramid of height n

Notice that this pebbling scheme does not “re-pebble” any vertex, that is, a
vertex is never pebbled red using the computation step rule (Section 2.2) more
than once. Additionally, it uses a blue pebbled vertex exactly once for input. It
is obviously an optimal scheme in terms of computation. It is natural to ask the
question if this is also an I/O optimal scheme. We conjecture that this is indeed
the case. To prove this, we need to establish lower bounds on pebbling schemes
for pebbling an r-pyramid. We do so in the following section.

4 Lower Bounds for Pebbling an r-Pyramid

Lower bounds for pebbling an r-pyramid can be obtained by using S-span argu-
ments [8].

4.1 A Lower Bound Based on the S-Span of a Graph

In this approach, to derive lower bounds for a given DAG, we first compute its
S-span. This is a measure that intuitively represents the maximum amount of
computation that can be done after loading data in a cache at some level without
accessing higher level memories (those further away from the CPU).

Definition 2. The S-span of a DAG G, ρ(S, G), is the maximum number of
vertices of G that can be pebbled starting with any initial placement of S red
pebbles and using no blue pebbles.
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The S-span is a measure of how many vertices can be pebbled without doing
any I/O. S pebbles are placed on the most fortuitous vertices of a graph and
the maximum number of vertices that can be pebbled without doing I/O is the
value of the S-span. Clearly, the measure is most useful for graphs that have a
fairly regular structure. It has provided good lower bounds on communication
traffic for matrix multiplication, the Fast Fourier Transform, the binomial graph
and other graphs. This definition applies even if G is not a connected graph.

The following theorem [9] relates the S-span of the graph to its memory traffic
complexity.

Theorem 1. Let G̃ be a computation structure. Consider a pebbling of the DAG
G̃(t) in an 2-level memory hierarchy game. Let ρ(S, G̃(t)) be the S-span of G̃(t)
and |V ∗

t | be the number of vertices in G̃(t) other than the inputs. Assume that
ρ(S, G̃(t))/S is a non-decreasing function of S.

Then the memory traffic complexity for G̃, T1(σ̂, G̃), satisfies the following
lower bound.

T1(σ̂, G̃)(t) ≥ σ0|V ∗
t |

ρ(2σ0, G̃(t))

Lemma 1. For a given path π from a leaf vertex x1 to the output vertex xp+1 in
Pr(p) consisting of vertices x1, x2, x3, . . . , xp+1 there is a total of (r−1)p distinct
paths from leaf vertices to the xi’s for i > 1.

Proof. We use induction on p to prove this result. The lemma holds for the
base case Pr(1). Assume the lemma is true for Pr(p) rooted at xp+1. Then for
a given path π of length p in Pr(p) consisting of vertices x1, x2, . . . , xp+1, we
have (r− 1)p distinct paths from leaf vertices of Pr(p) to xi’s for i > 1. Observe
that the leaf vertices corresponding to these paths along with x1 are the total
number of leaf vertices in Pr(p), which is (r−1)p+1. We now consider Pr(p+1)
rooted at xp+2. Pr(p + 1) has (r− 1)(p + 1) + 1 leaf vertices. Observe that Pr(p)
is a sub-graph of Pr(p + 1) and the vertex x1 has r edges coming from the leaf
vertices of Pr(p + 1), see Figure 4. Let one of these leaf vertices in Pr(p + 1) be
x0. Additionally, for every other leaf vertex of Pr(p), we can identify a distinct
leaf vertex in Pr(p+ 1), which it is connected to, see Figure 4. This demonstrate
that for a path in Pr(p + 1) consisting of vertices x0, x1, x2, . . . , xp+2, there are
a total of (r− 1)(p + 1) distinct paths from leaf vertices to vertices on this path.
This completes the proof.

Lemma 2. Pr(p) requires a minimum of S = (r − 1)p + 1 pebbles to place a
pebble on the root vertex. The graph can be pebbled completely with S pebbles
without repebbling any vertices.

Proof. The proof uses an argument analogous to the last path argument used
in [10]. We say that a path π from a leaf vertex x1 ∈ Pr(p) to the root vertex
xp+1 is blocked (at some time instance t) if at least one vertex on the path has
a pebble (at time t). Consider the time instance when the root vertex, xp+1, of
Pr(p) was pebbled. At this time instance, all paths from all the leaf vertices of
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Fig. 4. A r-pyramid with a path π

Pr(p) to xp+1 are blocked. Now let us consider the first time instance t′ when
all paths from all the leaf vertices to xp+1 were blocked. Then at time instance
t′ − 1, there must have been an open path from one of the bottom level vertices
to xp+1. This implies that all vertices on this path did not have pebbles on them
and that at time t′ by placing a pebble at the leaf vertex all paths were blocked.
Observe that when a pebble is placed on the leaf vertex to block π, the graph
already had pebbles on each of the (r − 1)p distinct paths leading to each of
the p other vertices on π (Lemma 1). Thus, when the input to π is pebbled, the
graph has at least (r − 1)p + 1 pebbles on it.

To show that the graph can be pebbled completely without re-pebbling any
vertices, place all (r − 1)p + 1 pebbles on the inputs. Then one can slide the
leftmost pebble up one level and then proceed to slide (r-1)(p-1) more pebbles
up one level to pebble the leaves of the subgraph Pr(p−1) with (r−1)(p−1)+1
leaves. The rest follows by induction. Procedure PebbleSubpyramid provided
earlier formally describes this process.

Theorem 2. The S-span of an r-pyramid is
1
2 (&S/(r − 1)'+ 1)(2S − (r − 1)&S/(r − 1)').

We present a complete proof for r = 2 in Appendix A. The proof for general r
is analogous and is omitted because of space limitations.
Applying Theorem 1 we have the following result.

Theorem 3. Let σ0 = S. The memory traffic complexity of Pr on a 2-level
memory hierarchy system, T1(σ̂, Pr), satisfies

T1(σ̂, Pr)(n) ≥ Sn((r − 1)(n− 1) + 2)
(&2S/(r − 1)'+ 1)(4S − (r − 1)&2S/(r − 1)') .
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4.2 The Blue Pebble Strategy for Proving Pebbling Lower Bounds

The above results leave a gap of a factor of 4 between the bounds achieved by the
scheme provided and the lower bounds obtained. We improve this by strength-
ening the lower bound. To do so, we develop a new technique for proving lower
bounds on I/O in pebbling schemes. We start by making a simple observation.

Observation: Let P be any I/O optimal scheme for pebbling Pr(n). Suppose P
uses f(n) blue pebbles. Then In(Pr(n))+2f(n) is a lower bound on the number
of I/Os for any I/O-optimal scheme for pebbling Pr(n) where In(Pr(n)) is the
number of input vertices in Vr(n).

This is straightforward because in any I/O optimal pebbling scheme if a blue
pebble is placed on a vertex then later a red pebble must be placed on this vertex
using the rule that a red pebble can be placed on a blue pebble. If this is not
the case, placing the blue pebble is redundant and we have a better pebbling
scheme that simply does not place the blue pebble.

The Blue Pebble strategy for proving lower bounds in pebbling a graph G
simply establishes a lower bound on the number of blue pebbles placed in any
I/O optimal pebbling scheme. The overall lower bound for G is obtained through
lower bounds for smaller subgraphs (not necessarily disjoint) and combining
these lower bounds.

Theorem 4. Let G = (V, E) be any layered graph. Suppose that we have q
subgraphs H1, H2, . . .Hq of V ∗ = G− In(G) with the following properties:

(i) In any complete pebbling of G, each Hi must have at least b blue pebbled
vertices

(ii) No v ∈ V belongs to more than l different Hi’s.

Then, in any complete pebbling of G at least q ∗ b/l vertices of
⋃

i Hi are
pebbled with blue pebbles.

Proof. Let Si denote the set of blue pebbled vertices in the subgraph Hi. Then
the set of blue vertices in

⋃
i Hi is S =

⋃
i Si. By assumption ∀ i |Si| ≥ b. Consider

the set A = {(v, i) | v ∈ Si, 1 ≤ i ≤ q}. Then |A| ≥ q × b. For a vertex u
denote by Au the subset of A of pairs where the first component is u, that is,
Au = {(u, i)|1 ≤ i ≤ q}. Then if u �= u′, Au and Au′ are trivially disjoint. Also,
by assumption (ii) for each u, |Au| ≤ l. Noticing that A =

⋃
u∈S Au, it then

follows that |S| ≥ |A|/l = qb/l.

To make use of the Blue Pebble strategy, one needs to identify an appropriate
family of sub-graphs and establish a lower bound on number of blue pebbles on
each of these sub-graphs. Naturally, the choice of the subgraphs can be driven
by the ability to establish a lower bound on number of blue pebbled vertices in
these subgraphs.

4.3 A Lower Bound for Pebbling Pr(n)

To obtain a lower bound on number of blue pebbles in a complete pebbling of
Pr(n) we first establish the following lemmas:
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Lemma 3. Consider any complete pebbling of Pr(n) with S red pebbles and let
Pr(h) be any r-pyramid of height h in Pr(n). Then Pr(h) has at least (r− 1)h +
1− S blue pebbled vertices.

Proof. Using the argument of Lemma 2, we have at least (r − 1)h + 1 peb-
bles on the graph Pr(n) when the last path from the leaf vertex of Pr(n) to
the root is blocked. Since there are only S red pebbles in total, it follows that
at least (r − 1)h + 1 − S of the vertices in Pr(h) have blue pebbles at this
time.

We now use the Blue Pebble strategy to establish a lower bound for pebbling
Pr(n) with S red pebbles and unlimited number of blue pebbles. We choose
for our subgraphs Hi, all r-pyramids of height h in Pr(n). There is one such
pyramid with root at each of the vertices at level n− h and above. Hence there
are q = (r−1)(n−h+1)(n−h)/2+(n−h+1) such r-pyramids. From Lemma 1
it follows that in any complete pebbling of Pr(n), each such r-pyramid of height
h must have at least b = (r − 1)h + 1 − S blue pebbles. Notice that no vertex
in Pr(n) is shared by more than l = |Hi| = (r− 1)(h + 1)h/2 + (h + 1) different
subgraphs. It then follows that the number of blue pebbles in complete pebbling
of Pr(n) is at least qb/l = q ∗ [(r − 1)h− (S − 1)]/[(r − 1)(h + 1)h/2 + (h + 1)].
Choosing, (r − 1)h = 2(S − 1), this gives us qb/l = q ∗ (S − 1)/S ∗ (h + 1) =
q ∗ (S − 1)/[S ∗ (2(S − 1)/(r − 1) + 1)]. This is roughly q(r − 1)/2S which is
roughly |V |(r − 1)/2S if n >> S. Hence the total number of I/O operations is
bounded below by roughly |V |(r − 1)/S.

5 Remarks and Conclusion

We presented an I/O efficient and computation optimal scheme for pebbling
an r-pyramid. We also presented a new technique for proving lower bounds in
pebbling and used it to prove improved lower bounds on I/O for pebbling r-
pyramids. There is a gap of a factor of (roughly) 2 between the upper bound
and lower bound presented for pebbling the r-pyramids. It will be nice to close
this gap one way or the other. The pebbling scheme presented here does not
use any “re-pebbling”. We conjecture, that this is an I/O and (obviously si-
multaneously) computation optimal scheme for Pr(n). For pebbling schemes
that do not use re-pebbling, a better lower bound on the number of I/Os
needed to pebble a 2-pyramid of height n has been established by the authors
(manuscript available upon request). However, the technique used there does
not immediately help to improve lower bounds on the number of I/Os for peb-
bling r-pyramids for r > 2 even when re-pebbling is not allowed. Finally, it is
worth noting that for general layered graphs re-pebbling can reduce the num-
ber of I/Os. However, our conjecture also implies that this is not the case for
r-pyramids.
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Appendix

The S-Span of a 2-Pyramid

The basic intuition is that the S-span is obtained by placing the S pebbles on
contiguous nodes at the same level and then pebbling all possible nodes from
this placement. The number of such nodes is S + (S − 1) + . . . 1 or S(S + 1)/2
(this includes S nodes where the pebbles were originally placed). We provide a
proof that this intuition is indeed correct.

Lemma 4. The S-span of a 2-pyramid is at least S(S + 1)/2.

Proof. We can place all S pebbles contiguously on a single level and pebble
S(S + 1)/2 nodes by moving the pebbles up by one level from left to right
(discarding the rightmost pebble) and then repeating this at the next level. This
scheme pebbles S(S +1)/2 nodes. Hence the S-span for the 2-pyramid is at least
S(S + 1)/2.

We will next establish that for any placement X of S pebbles on the 2-pyramid,
no more than a total of S(S + 1)/2 nodes can be pebbled. We do so by first
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defining a function, pp(X), that upper bounds the maximum number of nodes
that can be possibly pebbled from a placement X of S pebbles. We then show
that pp(X) ≤ S(S + 1)/2 for any placement X with S pebbles. The basic idea
behind the definition is that if the maximum number of nodes that can be
possibly pebbled at a level i is ki then the maximum number of new nodes that
can be possibly pebbled level i + 1 is at most (ki − 1) (except when ki is zero in
which case this is zero).

Definition 3. Let X be any placement of S pebbles. Let l denote the lowest level
on which there is at least one pebble in X. Let h be the highest such level. Let
m = h− l+1 and let si ≥ 0 denote the number of pebbles on the ith level starting
from level l (i.e. s1 is the number of pebbles on level l, s2 on level l + 1 . . . sm on
level l + m− 1 = h). Then, pp(X) = Σi=m

i=1 maxi + (maxm − 1)(maxm)/2 where
maxi is defined recursively as below:

max1 = s1
maxi = si + maxi−1 − 1 if 1 < i ≤ m and maxi−1 > 0
maxi = si if 1 < i ≤ m and maxi−1 = 0

It is easy to observe that pp(X) is an upper bound on the number of nodes that
can be possibly pebbled by any pebbling scheme starting with placement X .

Lemma 5. For any placement X of S pebbles pp(X) ≤ S(S + 1)/2.

Proof. We first consider the case where all the S pebbles are placed on a single
level (say level 1). Then no more than S−1 nodes can be possibly pebbled at level
2, consequently, no more than S−2 nodes at level 3 and in general no more than
S− i at level i+1. It then follows that pp(X) ≤ S +(S−1)+ . . . 1 = S(S +1)/2.

If the maximum value of pp(X) is obtained by placing all the pebbles on one
level we have nothing further to prove. Else, let us consider a placement X of
pebbles that maximizes pp(X). By our assumption, X places at least one pebble
on more than one levels. Among all placements that maximize pp(X), let us
consider the one that has the minimum number of levels between the lowest and
the highest levels with non-zero pebbles.

As in Definition 3 let m denote the number of levels between the lowest and
highest levels (both included) with non-zero pebbles. Let us label the levels as
1, 2 . . .m with 1 being the lowest level. Let si denote the number of pebbles
on the ith level in the placement S. Note that, while s1, sm > 0, some of the
other sis can be zero and also that Σisi = s. Let us now consider the value
pp(X) = Σi=m

i=1 maxi + (maxm − 1)maxm/2. We contend that by choice of X ,
none of the maxis is zero and hence for all 1 < i ≤ m maxi = si + maxi−1 − 1.
If this is not true then consider the lowest j where maxj = 0. Then sj = 0
and sj−1 = 1. Consider a new placement X ′ of S pebbles which is identical
to X except that all the pebbles below level j are moved one level up. Then
pp(X ′) = pp(X) but X ′ has fewer levels contradicting our assumption. We now
show that pp(X) ≤ S(S + 1)/2.
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Expanding out the definition of maxi we get,

max1 = s1
max2 = s2 + s1 − 1
max3 = s3 + s2 + s1 − 2
...
maxm = sm + s2 + . . . s1 − (m− 1) = (s− (m− 1))

Hence

pp(X) = Σi=m
i=1 maxi + (maxm − 1)maxm/2

= ms1 + (m− 1)s2 + . . . 1.sm −m(m− 1)/2 + (S −m)(S − (m− 1))/2
= m(Σi=m

i=1 si)−Σi=m
i=2 (i− 1)si −m(m− 1)/2 + (S −m)(S − (m− 1))/2

≤ mS −m(m− 1)/2 + (S −m)(S − (m− 1))/2
= ms−m(m− 1)/2 + (S2 − (2m− 1)S + m(m− 1))/2 = S(S + 1)/2.

Theorem 5. The S-span of a 2-pyramid is S(S + 1)/2.
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Abstract. We know that k-Uniform Nash is W [2]-Complete when we
consider imitation symmetric win-lose games (with k as the parameter)
even when we have two players. However, this paper provides positive
results regarding Nash equilibria. We show that consideration of sparse
games or limitations of the support result in fixed-parameter algorithms
with respect to one parameter only for the k-Uniform Nash problem.
That is, we show that a sample uniform Nash equilibrium in r-sparse
imitation symmetric win-lose games is not as hard because it can be
found in FPT time (i.e polynomial in the size of the game, but maybe
exponential in r). Moreover, we show that, although NP-Complete, the
problem of Best Nash Equilibrium is also fix-parameter tractable.

Keywords: Algorithmic Game Theory, Computational Complexity.

1 Introduction

Game theory analyzes interactions between self-interested agents, with the recent
interest in artificial intelligence, multi-agents systems, and automatic decision
making it has received much study. The first complexity results for comput-
ing Nash equilibria used classic notions of complexity theory [11]. Later, sev-
eral researchers have introduced different types of equilibria and games. These
NP-hardness results have been extended to the other games and solution con-
cepts [1,2,5,6].

We study the fixed-parameter tractability of NP-Hard problems for the com-
putation of Nash equilibria. One of the most recently studied class of games
are win-lose games [2,5]. In these games, all payoff values are 0 or 1. We study
the parameterized complexity of finding uniform Nash equilibria in imitation
win-lose games because:

- The computation complexity of a Nash equilibrium in win-lose games is as
hard as for general bi-matrix games [1].

- There is a corresponding one-to-one relation between Nash equilibria of two-
player games and Nash strategies for the row player in an imitation game [5].

-- “A uniform mixed strategy is the simplest way of mixing pure strategies”,
but deciding the existence of uniform Nash equilibria in win-lose games is
NP-Complete [2] and it is W [2]-Hard [8] in bi-matrix games.
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- Deciding whether an imitation symmetric win-lose game has a uniform Nash
equilibrium with support of size k is W [2]-Complete [7].

- It has been observed [12] that the lower bounds of Chen et al [3] and the
W [2]-hardness results imply that unless FPT=W [1], there is no no(k) time
algorithm for computing a Nash equilibrium with support size at most k in
a bi-matrix game.

In contrast, if the support is known, the equilibrium can be found in polynomial
time. Thus, there is much interest in studying the complexity of the support size
or if the support is included in a set of strategies. We show that restrictions of
the support result in fixed-parameter algorithms.

2 FPT Results for Win-Lose Games

A win-lose game G=(A,B) is called r-sparse if there are at most r nonzero entries
in each row and each column of the matrices A and B. The first natural step to
parameterize the computation of a sample Nash equilibrium is to consider the
r as a parameter in r-sparse games. But, Chen, Deng and Teng [4] showed that
it is unlikely to find an ε-approximate equilibrium for a 10-sparse game in time
polynomial both in ε and n (the size of game). Therefore, it is unlikely to find an
FPT-time algorithm that just considers r as the parameter. We have proved the
parameterized tractability of Nash equilibria in a subclass of r-sparse games.

Definition 1. Let ISWLG be the class of all Imitation Symmetric Win-Lose
Games (In×n,Mn×n) where the matrix M is a symmetric matrix, and has diag-
onal equal to zero.

If a game (I,M) is in ISWLG, then this game represents a simple undirected
graph G=(V ,E) where the matrix M corresponds with G’s adjacency matrix.
We have shown that any maximal clique in the graph representation of game
G=(I,M) corresponds to a uniform Nash equilibrium, but the reverse is not true.

Lemma 2. Let G be the graph for game G=(I,M) in ISWLG and Gx be a
maximal clique of size k of G. Then the mixed strategy (x,x) is a uniform Nash

equilibrium of G where xi =
{

1/k, if i is vertex of Gx;

0, otherwise.

We study the effect of sparsity. Existence of uniform Nash equilibria is not an is-
sue since every graph has a maximal clique. By Lemma 2, every game in ISWLG
has a uniform Nash equilibrium.

Theorem 3. Finding a uniform Nash equilibrium for a r-sparse game in
ISWLG is polynomial in the size of the game but exponential in r.

We used the link between graph theory and Nash equilibria to show our FPT
results. Now, we can provide many results regarding families of graphs where
finding a maximal clique is in FPT. For example we show that a sample uniform
Nash equilibrium can be found in FPT-time where the treewidth of graph is
considered as the parameter.
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Theorem 4. Let G=(I,M) be an imitation symmetric win-lose game with graph
G. If G has bounded tree-width ω, then a uniform Nash equilibrium of the G can
be found in O(2ω · ω · |I|) time.

3 FPT Results When Searching Nash Equilibrium on a
Set

We can obtain a result for general bi-matrix games. The following problem has
been shown to be NP-Complete.

Nash Equilibrium In A Subset
Instance : A game G=(A,B).
Parameter : A subset of strategies Ei ⊆ {1, . . . , n} for each player i.
Question : Does there exists a Nash equilibrium of G in which all strategies
not included in Ei are played with probability zero?

There is a Feasibility Program [13], which is a linear program, and, if the support
of a Nash equilibrium is known, then the computation of corresponding Nash
equilibrium can be done in polynomial time. We use this Feasibility Program to
proof following theorem.

Theorem 5. Nash Equilibrium In A Subset is in FPT .

4 FPT Results for Congestion Games

In congestion games (also routing games), players choose several links, one link
to route their traffic [10, and references].

Definition 6. A routing game G consists of:

• a set of m parallel links from a source node s to a terminal node t and a
capacity cj for each link j ∈ {1, 2, . . . , m},
• a set N = {1, 2, . . . , n}, of n users,
• traffic weights, w1,w2,. . . , wn, where the i-th user has traffic wi > 0.

A pure strategy for a user i is a link j in {1, 2, . . . , m}. Analogously, a pure strat-
egy profile is an n-tuples (l1, l2, . . . ln), when user i chooses link li in {1, 2, . . . , m}.
The cost for a user i, when users choose a pure strategy profile P = (l1, l2, . . . , ln)
is Ci(P ) =

∑
k:lk=li

wk/cli . Every routing game admits at least one pure Nash
equilibrium [9]. However, the individual (non-cooperative) optimization of util-
ity does not lead to a social optimal outcome. Therefore, the price of stability
is a measure inefficiency of equilibria. It differentiates between games that all
Nash equilibria are inefficient or some of them are inefficient. Formally, the price
of stability of a game is the ratio between the best objective function value
of a Nash equilibrium of the game and the optimal outcome. We consider the
makespan as the social objective function. The makespan of a strategy profile
P = (l1, l2, . . . , ln) is defined as: Cmax(P ) = maxi∈{1,2,...,n} Ci(P ).
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Best Nash Equilibrium
Instance : A routing game G with identical links.
Parameter : k a positive integer.
Question : Is there a pure Nash equilibrium P with Cmax(P ) ≤ k?

Best Nash Equilibrium on identical links is a NP-Hard problem [9], but
we showed it is fix parameter tractable. with a parameterized reduction to
Integer Linear Programming. The Integer Linear Programming prob-
lem (with a bounded number of variables) is FPT.

Theorem 7. Best Nash Equilibrium is in FPT.
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Abstract. Given an undirected graph G = (V, E) with a capacity func-
tion w : E −→ Z+ on the edges, the sparsest cut problem is to find
a vertex subset S ⊂ V minimizing

∑
e∈E(S,V \S) w(e)/(|S||V \ S|). This

problem is NP-hard. The proof can be found in [16]. In the case of unit
capacities (i. e. if w(e) = 1 for every e ∈ E) the problem is to minimize
|E(S, V \ S)|/(|S||V \ S|) over all subsets S ⊂ V . While this variant
of the sparsest cut problem is often assumed to be NP-hard, this note
contains the first proof of this fact. We also prove that the problem is
polynomially solvable for graphs of bounded treewidth.

Keywords: NP-hardness, sparsest cut, densest cut, MSSC, bounded
treewidth.

1 Introduction

Motivation

It is fair to say that the two results of this paper (Theorem 1 and Theorem 2
below) are not very surprising. In fact, the former of the two results – an NP-
completeness result – has been assumed to be true by many authors during
the last two decades, but no proof is known to us. One of the reasons for this
assumption might be that these authors either directly or indirectly refer to
a paper by Matula and Shahrokhi [16] in which NP-completeness of a more
general weighted version of the problem has been established. Here we provide a
solid basis for all the papers that build on the assumption that the unweighted
version is also NP-complete. This assumption might seem reasonable and easy
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RFBR (projects 08-01-00516 and 09-01-00032).
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to justify, but we know of cases where the unweighted version of an NP-hard
optimization problem is polynomially solvable. We therefore think it is useful
for the graph theory and computational complexity community to disseminate
this NP-completeness proof via this contribution.

Our second result shows that both the weighted and the unweighted version of
the considered problem can be solved in polynomial time on graphs of bounded
treewidth. This result, although perhaps unsurprising, is useful, and seems not
to have been previously observed. We use a reasonably straightforward dynamic
programming approach, but it seems the result cannot be deduced by formulating
the problem in monadic second order logic.

Background

Some problems in theoretical computer science have a strange status: many
people assume that they are NP-hard but there is no proof of their NP-hardness.
One instance of this concerns the Minimum Sum of Squares Clustering (MSSC)
problem.

Given a set V = {v1, v2, . . . , vN} of Euclidean vectors, a positive integer k > 1,
and a positive real K, the MSSC problem is to determine whether there exists
a partition of V into nonempty subsets (clusters) C1, C2, . . . , Ck such that

k∑
i=1

∑
v∈Ci

‖v − wi‖2 ≤ K,

where wj =
∑

v∈Cj
v/|Cj | is the center of the cluster Cj for j = 1, 2, . . . , k.

This problem is assumed to be NP-complete by more than 20 authors. Some
authors do not provide any references at all, some authors cite the standard
reference book by Garey and Johnson [13], and some authors cite other papers
in which clustering problems with other criteria are shown to be NP-hard (see [2]
for further details). The first supposed proof of the NP-completeness of the MSSC
problem appeared in [12]; however, it was shown in [2] that this proof contained
an error. Two years later Aloise et al. [1] provided a correct NP-completeness
reduction for the MSSC problem; however, the problem they reduced from – the
unit-capacity densest cut problem – has not been shown to be NP-complete. Let
us define this problem.

For disjoint S, T ⊂ V (G), we write EG(S, T ) for the set of all edges having
one end in S and the other in T . For G = (V, E) a graph and S a nonempty
strict subset of V , we write S̄ = V \ S. Any set of edges of the form EG(S, S̄)
with S �= ∅, S �= V is called a cut of G. Given a positive weighting wG : E → Z+

of the edges, we define the weight of EG(S, T ) to be

wG(S, T ) =
∑

e∈EG(S,T )

wG(e).

Define the density of the cut EG(S, S̄) to be

dG(S, S̄) =
wG(S, S̄)
|S||S̄| .
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We will omit subscripts when the graph is clear from the context. A cut E(S, S̄)
that minimizes (maximizes) dG over all cuts is called a sparsest (densest) cut
of G.

The sparsest (resp. densest) cut problem is the following. Given an undirected
graph G = (V, E), a weighting w : E → Z+ of the edges, and a positive rational
D, determine whether there exists a subset S ⊂ V such that d(S, S̄) ≤ D (resp.≥
D). The same problem, but where w(e) = 1 for all e ∈ E, is referred to as the unit
capacity sparsest (resp. unit capacity densest) cut problem. Note that EG(S, S̄) is
a densest cut of G if and only if EḠ(S, S̄) is a sparsest cut of the complementary
graph Ḡ. (The complement of an edge weighted graph or weighted complement
is obtained by first introducing edges with zero weight between all non-adjacent
vertex pairs, and subsequently changing every edge weight w(e) to M − w(e),
where M is the maximum edge weight.) So, the problems of finding sparsest and
densest cuts are equivalent. We remark that in the literature this problem is also
called the uniform sparsest cut problem (see e.g. [15]), to distinguish it from the
more general problem where, in addition, an edge weighted demand graph H with
V (H) = V (G) is given, and the objective is to minimize wG(S, S̄)/wH(S, S̄). We
will call this more general problem the non-uniform sparsest cut problem. (The
sparsest cut problem corresponds to the case where H is the complete graph with
unit weights.) The sparsest cut problem plays an important role in theoretical
computer science. In particular approximation algorithms have received a lot of
study; see e.g. [4,5,15], which have many other algorithmic applications [15].

In [16], Matula and Shahrokhi proved the NP-completeness of the sparsest cut
problem, and in the process, proved the NP-completeness of the densest cut prob-
lem. The unit capacity versions of these problems, however, were not shown to
be NP-complete in [16]; nonetheless some authors claiming the NP-completeness
of the unit capacity versions [1,8,15] refer to [16]. We remedy this situation by
giving a proof of the NP-completeness of the unweighted problems. While our
reduction follows that of Matula and Shahrokhi [16], it is not a completely trivial
adaptation of their reduction. Here is our first main theorem, which we prove in
the next section.

Theorem 1. The unit capacity densest cut problem is NP-complete.

We remark that recently it has also been shown that the unit capacity sparsest
cut problem admits no polynomial time approximation scheme (PTAS), unless
NP-complete problems can be solved in randomized subexponential time [3].
Since this is a stronger assumption than P �=NP, this does not imply Theorem 1
however.

In the second part of the paper we prove that the sparsest cut problem is
polynomially solvable for graphs of bounded treewidth.

Theorem 2. Let G be a graph on n vertices, for which a tree decomposition of
width k is given. In time O∗(n32k), a sparsest cut of G can be found.1

1 The O∗ notation omits polynomial factors, provided that exponential factors in the
same variable are present.
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For detailed definitions related to tree decompositions, see Section 3. For graphs
of treewidth at most k (fixed), a tree decomposition of width at most k can be
found in linear time [6]. Thus, Theorem 2 shows that the sparsest cut problem
can be solved in polynomial time for such graphs. Examples of graph classes
with bounded treewidth include series-parallel graphs, outerplanar graphs and
Halin graphs, which have treewidth at most 2, 2 and 3 respectively.

Note that many graph problems can be shown to be linear-time solvable on
bounded-treewidth graphs by expressing the problem in monadic second order
logic [11]. However, it seems that the sparsest cut problem cannot be expressed in
this way. Theorem 2 uses a fairly standard dynamic programming approach [7],
but some slightly unusual choices are made, which leads to the cubic complexity
bound.

There have been a few other positive results on the sparsest cut problem
when restricted to certain graph classes. Matula and Shahrokhi [16] show that
the non-uniform sparsest cut problem can be solved in polynomial time on trees.
They also show that the non-uniform sparsest cut problem can be solved in
polynomial time on 3-connected planar graphs G when the demand graph H
only contains edges between vertices that lie on the outer face of G. In [9] it is
shown that sparsest cuts can be computed in polynomial time for unit interval
graphs, and the sparsest cuts of complete bipartite graphs are characterized.
In [8] it is shown that sparsest cuts of cartesian product graphs G ×H can be
obtained from sparsest cuts of G and H , which gives polynomial time algorithms
for various graph classes.

2 NP-Completeness of the Densest Cut Problem

We shall reduce the max cut problem to the unit capacity densest cut problem.
Given a graph G = (V, E) and a positive integer k, the max cut problem is
to determine whether there exists a cut E(S, S̄) such that |E(S, S̄)| ≥ k. It is
known that the max cut problem is NP-complete [14].

For the sake of completeness we present the original proof from [16] of the
NP-completeness of the densest cut problem. Our proof for the case of unit
capacities uses a similar type of reduction, but the proof in our case requires
more calculations.

Theorem 3. [16] The densest cut problem is NP-complete.

Proof. Given an instance of max cut, that is, a graph G = (V, E) and a positive
integer k, construct a weighted graph H in the following way. Take two copies
G1 = (V1, E1) and G2 = (V2, E2) of the graph G and connect each vertex in V1
with its copy in V2 by an edge of capacity M . Set the capacities of all other edges
to be 1. We show that, for M large enough, G has a cut of cardinality at least
k if and only if H has a cut of density at least (nM + 2k)/n2, where n = |V |.
Indeed, let EH(S, S̄) be a densest cut in H . For M large enough, S must contain
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exactly one copy of each vertex from G; otherwise dH(V1, V2) > dH(S, S̄). Let
T1 = S ∩ V1 and T̄1 = S̄ ∩ V1. It is easy to see that

dH(S, S̄) =
nM + 2|EG1(T1, T̄1)|

n2 .

Thus, for EH(S, S̄) a densest cut of H , we have d(S, S̄) ≥ (nM + 2k)/n2 if and
only if |EG1(T1, T̄1)| ≥ k. ��
To prove Theorem 1 we need two easy facts.

Proposition 1. The maximum cut of the complete bipartite graph Kn,n with
parts A and B is E(A, B) with cardinality n2. All other cuts have cardinality at
most n2 − n.

Proof. The first part is trivial. For the second part, let S ⊂ A ∪ B such that
S �= A and S �= B. Let a = |S ∩A| and b = |S ∩B|. Then

|E(S, S̄)| = a(n− b) + b(n− a) = (a + b)n− 2ab.

If |S| < |S̄|, then (a + b) ≤ n − 1 and |E(S, S̄)| ≤ n2 − n. If |S| = |S̄|, then
a + b = n, but a �= n and b �= n, so that ab ≥ n − 1. Then we have |E(S, S̄)| ≤
n2 − 2(n− 1) ≤ n2 − n for n ≥ 2. The case n = 1 is trivial. ��
Proposition 2. If n, m, M are positive integers such that n > 1 and M ≥
2m + 1, then for every t ∈ [1, nM − 1] the inequality t/n > 2m/(nM − t) holds.

Proof. Fix n ≥ 1 and M ≥ 2m + 1. The value of t ∈ [1, nM − 1] that minimizes
f(t) = t(nM − t) must occur at one of the end points of the interval since f is
a concave function. Since f(1) = f(nM − 1) = nM − 1, then for t ∈ [1, nM − 1]
we have

t(nM − t) ≥ nM − 1 ≥ n(2m + 1)− 1 > 2nm.

Dividing by n(nM − t) gives the desired inequality. ��
Now we are ready to prove Theorem 1.

Proof (of Theorem 1). Let the graph G = (V, E) and the positive integer k be
an instance of max cut. Let V = {v1, . . . , vn} and let m be the number of edges
in G. Construct the graph H in the following way.

For each v ∈ V we have two sets Iv and I ′v of vertices in H , each of size
M = 2m+ 1. Thus, H has 2nM vertices. For each v ∈ V , connect each vertex in
Iv to each vertex in I ′v. Pick one distinguished vertex from each Iv to form a set
A of n vertices, and pick one distinguished vertex from each I ′v to form a set A′

of n vertices. Insert edges in A and A′ to create two copies of G. The resulting
graph is H (see Fig. 1). Note that the degree of every vertex in H is equal to M
plus possibly the degree of corresponding vertex in G.

We show that G has a cut of cardinality at least k if and only if H has a cut
of density at least (nM2 + 2k)/(Mn)2.
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A A copy of G
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Fig. 1. Graph H

First of all we show that if EH(S, S̄) is a densest cut of H with |S| ≤ |S′| then
|S| = Mn. Indeed, assume that |S| = Mn− t where t ∈ [1, Mn− 1]. Writing

X =
⋃

v∈V

Iv and X ′ =
⋃

v∈V

I ′v,

note that dH(X, X ′) = nM2/(Mn)2 = 1/n. Since EH(S, S̄) is a densest cut, the
inequality dH(S, S̄) ≥ 1/n must hold. But since the cut has at most 2m edges
within X and X ′ and at most M |S| edges between X and X ′, we have

dH(S, S̄) ≤ M |S|+ 2m

|S||S̄| =
M

Mn + t
+

2m

M2n2 − t2
=

1
n
− t

Mn2 + nt
+

2m

M2n2 − t2
=

1
n
− 1

Mn + t

(
t

n
− 2m

Mn− t

)
<

1
n

by Proposition 2, giving a contradiction. So, t = 0 and |S| = Mn.
Now assume that for some v ∈ V (G) both S ∩ Iv and S ∩ I ′v are nonempty.

Then the cut has at most 2m edges within X and X ′, at most M2(n− 1) edges
between X \ Iv and X ′ \ I ′v and at most M2 −M edges between Iv and I ′v (by
Proposition 1). By the choice of M we have

dH(S, S̄) ≤ 2m + M2(n− 1) + M2 −M

(Mn)2
=

M2n− 1
(Mn)2

<
1
n

.

So, for every v ∈ V (G), either S ∩ (Iv ∪ I ′v) = Iv or S ∩ (Iv ∪ I ′v) = I ′v. Let
T = {v ∈ V | Iv ⊆ S}. Then clearly

dH(S, S̄) =
M2n + 2|EG(T, T̄ )|

(Mn)2

and so dH(S, S̄) ≥ (nM2 + 2k)/(Mn)2 if and only if |EG(T, T̄ )| ≥ k. Thus
Theorem 1 is proved. ��



The Complexity Status of Problems Related to Sparsest Cuts 131

We sketch an alternative NP-completeness proof for Theorem 1, the ingredients
of which might be useful to some of the readers. It is based on the observation
that in the proof of Theorem 3 it is sufficient, ‘for M large enough’, to take M =
n2. This shows that in fact the densest cut problem is NP-complete for instances
G with positive integer edge weights at most M ≤ n2, where n = |V (G)|, and n
is even. By taking the weighted complement of the graph, this statement then
also holds for the sparsest cut problem. Because the weights are polynomially
bounded, this allows the following polynomial transformation to the unweighted
problem. Let G be a sparsest cut instance on n vertices, with edge weights at
most n2. Construct a unit capacity sparsest cut instance H as follows: For every
vertex v of G, introduce a clique Kv on n4 vertices. For every edge uv in G
with capacity c(uv), introduce c(uv) edges between Ku and Kv in an arbitrary
way. (Since c(uv) ≤ n2, no multiedges are needed). This yields the (simple) unit
capacity graph H on n5 vertices (see Fig. 2).
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Fig. 2. Graph H for the alternative proof

Partitions of vertices in G correspond to partitions of cliques in H . In this
way, cuts EG(S, S) of G correspond to cuts EH(S′, S̄′) in H with proportional
density; to be precise dH(S′, S̄′) = dG(S, S̄)/n8. We only need to verify that the
sparsest cut EH(S′, S̄′) of H does not separate any of the cliques, that is, for
every v ∈ V (G), either V (Kv) ⊆ S′ or V (Kv) ⊆ S̄′. Any cut that separates a
clique contains at least n4 − 1 edges, and therefore has density at least

dH(S′, S̄′) ≥ n4 − 1
(n5/2)2

= 4/n6 − 4/n10 > 3/n6.

On the other hand, by taking an arbitrary cut EH(S, S̄) in H that contains n/2
cliques in S and n/2 cliques in S̄ (recall that n is even) we find a cut with lower
density, at most

dH(S, S̄) ≤ M(n/2)2

(n5/2)2
= n4/n10 = 1/n6.

So, a sparsest cut of H corresponds to a sparsest cut of G, and therefore G has
a cut of density D if and only if H has a cut of density D/n8.
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3 The Case of Bounded Treewidth

A tuple (X, T ) is a tree decomposition of a graph G = (V, E) if T is a tree, and
X = {Xv : v ∈ V (T )} is a family of subsets of V such that:

– ∪v∈V (T )Xv = V ,
– for all xy ∈ E, there exists a v ∈ V (T ) with x, y ∈ Xv, and
– for every x ∈ V , the subgraph T [{v ∈ V (T ) : x ∈ Xv}] is connected.

The width of a tree decomposition (X, T ) is maxv∈V (T ) |Xv|−1. The treewidth of a
graph G is the minimum width over all tree decompositions of G. To distinguish
between vertices of G and vertices of T , the latter will be called nodes. If T
is a rooted tree, (X, T ) is called a rooted tree decomposition. A rooted tree
decomposition (X, T ) of G is nice [7] if every node of T is of one of the following
types:

– leaf nodes u are leaves of T and have |Xu| = 1.
– introduce nodes u have one child v with Xu = Xv ∪ {x} for some x ∈ V (G).
– forget nodes u have one child v with Xu = Xv\{x} for some x ∈ Xv.
– join nodes u have two children v and z, with Xu = Xv = Xz.

For fixed k, it can be decided in linear time if a given graph has treewidth
at most k, and in that case, a tree decomposition of width at most k can be
found [6]. In fact, it can be checked that in polynomial time this can be made
into a nice tree decomposition (X, T ) of width at most k, with |V (T )| ∈ O(kn),
where |V (G)| = n. For two vertices u and v of a rooted tree T , we write v ! u
if u is a predecessor of v, or u = v. For a rooted tree decomposition (X, T ) of G
and a node v ∈ V (T ), we define the subgraph G(v) = G[∪z�vXz].

Let (X, T ) be a rooted tree decomposition of a graph G on n vertices with edge
weights w. Denote the root node by r. For u ∈ V (T ), S′ ⊆ Xu, i ≤ n, we define
w(u, S′, i) to be the minimum cut weight over all cuts EG(u)(S, S̄) of G(u) that
satisfy S ∩Xu = S′ and |S| = i, if such a cut exists. If i = 0 then w(u, S′, i) = 0,
provided that S′ = ∅. If i = |V (G(u))| then w(u, S′, i) = 0, provided that
S′ = Xu. In all other cases, we define w(u, S′, i) = ∞. Since G(r) = G, the
following proposition follows immediately from the above definition.

Proposition 3. Let (X, T ) be a tree decomposition of G with root r. The density
of the sparsest cut of G equals the minimum of w(r,S′,i)

i(n−i) taken over all S′ ⊆ Xr

and 1 ≤ i ≤ n− 1.

So to compute the density of a sparsest cut, we only need to compute the values
of w(r, S′, i) for all S′ ⊆ Xr (possibly empty) and i ∈ {0, . . . , n}.
Lemma 1. Let (X, T ) be a nice tree decomposition of width k, of a graph G
on n vertices. In time O∗(n32k), the values w(u, S′, i) can be calculated for all
combinations of u ∈ V (T ), S′ ⊆ Xu and i ∈ {0, . . . , n}.
Proof. We show how w(u, S′, i) can be computed, when all values w(v, S′′, j) are
known for all children v of u.
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If u is a leaf node of T , then i ∈ {0, 1}. Let w(u, S′, i) = 0 if |S′| = i and
w(u, S′, i) = ∞ otherwise. Suppose u is an introduce node with a child v, and
let Xu\Xv = {x}. For all S′ ⊆ Xu:

w(u, S′, i) = w(v, S′ \ {x}, i− 1) + wG({x}, Xu\S′) if x ∈ S′,
w(u, S′, i) = w(v, S′, i) + wG({x}, S′) if x �∈ S′.

Suppose u is a forget node with child v, and let Xv\Xu = {x}. Then

w(u, S′, i) = min {w(v, S′, i), w(v, S′ ∪ {x}, i)} .

Finally, suppose u is a join node with children v and z. By the third property
in the definition of tree decomposition, we know that V (G(v)) ∩ V (G(z)) = Xu,
so for the cut EG(u)(S, S̄) of G(u) that determines w(u, S′, i) the set S contains
j vertices of G(v) and i − j + |S′| vertices of G(z), for some j ∈ {|S′|, . . . , i}.
Therefore,

w(u, S′, i) = min
j:|S′|≤j≤i

w(v, S′, j) + w(z, S′, i + |S′| − j)− wG(S′, Xu\S′).

So all values w(u, S′, i) can be computed using the above expressions, if the nodes
of T are treated in the proper order. Now we consider the time complexity. As a
first step, we build an adjacency matrix for G in time O(n2), which also contains
the weights of the edges. This allows us to determine the existence and weight
of a possible edge between two vertices in constant time. For every node, at
most n2k+1 values need to be computed. In the case of leaf, introduce or forget
nodes, computing a value using the above expressions takes time kO(1). (Note
that for introduce nodes, the weight of some cut in G[Xu] needs to be computed.
To bound the time this takes by a function of k, we have to use the adjacency
matrix.) In the case of join nodes, the computation requires time nkO(1). So
for every node, the complexity is bounded by n2O∗(2k). Since we can ensure
that |V (T )| ∈ O(kn), computing all values for all nodes of T then requires time
O∗(n32k). ��
Lemma 1 and Proposition 3 together prove Theorem 2. Note that we can not
only compute the density of a sparsest cut, but also construct one with the
same time complexity. Furthermore, by inspecting the w(r, S′, i) values, other
important cut problems can be solved as well: a cut EG(S, S̄) is an α-balanced
cut if min{|S|, |S̄|} ≥ α|V (G)|, for 0 ≤ α ≤ 1

2 . In particular, if α = 1
2 , it is a

bisection.

Theorem 4. Let G be a graph on n vertices, for which a tree decomposition of
width k is given. For any α ≤ 1

2 , in time O∗(n32k), a minimum α-balanced cut
of G can be found.

We remark that in the above proof, we first built an adjacency matrix in time
O(n2). One might wonder how the many linear time dynamic programming
algorithms over tree decompositions manage to avoid this step. Indeed, although
it is rarely mentioned explicitly, all such algorithms that are known to us require
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(usually for introduce nodes) that checking whether two vertices are adjacent can
be done in time bounded by some function of k (or preferably constant time),
which cannot be guaranteed with adjacency lists or similar small encodings of the
graph. Note that this small encoding assumption also implies that for every tree
node u, we only know the vertex lists Xu, not the induced subgraphs G[Xu]. This
problem can be solved however by generating and storing an adjacency matrix
using a lazy array data structure [17], which takes time O(|E(G)|) ⊆ O(kn), but
O(n2) space. In short, the adjacency matrix is only initialized on the non-zero
entries, and in addition a pointer is stored here to the corresponding edge in the
adjacency lists or edge list of G. This enables checking in constant time whether
an entry of the matrix is correct. This improvement may also be applied for the
above algorithm.

4 Conclusions

We gave an NP-completeness proof for the unit capacity densest (sparsest) cut
problem. We also showed that the sparsest cut problem can be solved in poly-
nomial time for graphs of bounded treewidth. One may ask how far this can
be generalized to the non-uniform sparsest cut problem. The algorithm from
Section 3 can easily be generalized to give a pseudopolynomial time algorithm
in the case where demands are determined by vertex weights x(v) in the following
way: the weight of edge uv in the demand graph equals x(u)x(v). It seems how-
ever impossible to generalize this approach further, which leads to the following
question:

Is the non-uniform sparsest cut problem NP-hard for graphs of bounded
treewidth? This question has very recently been answered affirmatively in [10],
where the authors use a reduction from the max cut problem to show that the
non-uniform sparsest cut problem is NP-hard on graphs with pathwidth 2. In
the same preprint, the authors claim a constant-factor approximation algorithm
for the non-uniform sparsest cut problem for graphs of bounded treewidth, using
linear programming relaxation techniques.

We complete this contribution with two open complexity problems related to
graphs of bounded treewidth:

(1) the case where the input graph G has bounded treewidth and unit weights,
and the demand graph H has unit weights, and

(2) the case where both G and H have bounded treewidth (but possibly both
are weighted).
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Abstract. We study the approximation complexity of the Metric Di-
mension problem in bounded degree, dense as well as in general graphs.
For the general case, we prove that the Metric Dimension problem is not
approximable within (1−ε)lnn for any ε>0, unless NP ⊆DTIME(nloglogn),
and we give an approximation algorithm which matches the lower bound.
Even for bounded degree instances it is APX-hard to determine (com-
pute) the exact value of the metric dimension which we prove by con-
structing an approximation preserving reduction from the bounded
degree Vertex Cover problem.

The special case, in which the underlying graph is superdense turns
out to be APX-complete. In particular, we present a greedy constant
factor approximation algorithm for these kind of instances and con-
struct a approximation preserving reduction from the bounded degree
Dominating Set problem. We also provide first explicit approximation
lower bounds for the Metric Dimension problem restricted to dense and
bounded degree graphs.

Keywords: Metric Dimension, Bounded Degree Instances, Dense In-
stances, Approximation Algorithms, Approximation Lower Bounds.

1 Introduction

In a connected graph G = (V, E), a vertex v ∈ V resolves or distinguishes a
pair u, w ∈ V if d(v, u) �= d(v, w), where d(·, ·) denotes the length of a shortest
path between two vertices in G. A resolving set of G is a subset V ′ ⊆ V such
that for each pair u, w ∈ V there exists some v ∈ V ′ that distinguishes u and
w. The minimum cardinality of a resolving set is called the metric dimension of
G, denoted by dim(G). The Metric Dimension problem asks to find a resolving
set of minimum cardinality. We call here a graph G = (V, E) k-superdense if the
degree of every vertex is at least |V | − k where k is a constant. Throughout the
paper, we will use the notation n := |V |.

2 Related Work

The notion of resolving sets were introduced independently by Harary and Melter
[12] and Slater [18]. Applications of resolving sets arise in various areas including
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coin weighing problems [20], drug discovery [6], robot navigation [16], network
discovery and verification [1], connected joins in graphs [17], and strategies for
the Mastermind game [8]. The Metric Dimension problem has been widely in-
vestigated from the graph theoretical point of view [19,6,9,3,13,21,5,4]. So far
only a few papers discuss the computational complexity issues of this problem.
The NP-hardness of the Metric Dimension problem was first mentioned in Gary
and Johnson [10]. An explicit reduction from the 3-SAT problem was given
by Khuller, Raghavachari, and Rosenfeld [16]. They also obtain for the Metric
Dimension problem a (2 ln(n) + Θ(1))-approximation algorithm based on the
well-known greedy algorithm for the Set Cover problem and showed that the
Metric Dimension problem is polynomial-time solvable for trees. Beerliova et al.
[1] show that the Metric Dimension problem cannot be approximated within a
factor of o(log(n)) unless P = NP .

Berman, DasGupta, and Kao [2] study various Test Set problems and in par-
ticular give a (1 + ln(n))-approximation algorithm for the Test Set Collection
(TSC) problem. The Metric Dimension problem can be seen as a variant of the
Test Set Collection problem where only certain combinations of tests (corre-
sponding to the vertices of the input graph) are available.

Halldórsson, Halldórsson, and Ravi [11] study the Test Set Collection problem
with bounded test size. They give a (3 + 3 ln(k))-approximation algorithm for
the Test Set Collection problem with test of size at most k.

The approximation complexity of dense and superdense instances of various
optimization problems was studied in [15,14].

3 Our Contributions

This work is the first, best to our knowledge, providing explicit approximation
lower bounds for both bounded degree and dense instances of the Metric Dimen-
sion problem. Furthermore, we improve the upper bounds for general and dense
instances as well as the lower bound for general instances. We also prove that
the Metric Dimension problem restricted to point sets in Rd is polynomial-time
solvable.

Theorem 1. For each d ∈ N, the Metric Dimension problem restricted to finite
sets of points in Rd with the Euclidean distance is in PO.

In contrast, we prove that the general problem is as hard to approximate as the
Set Cover problem.

Theorem 2. For any constant ε > 0, solutions of the Metric Dimension prob-
lem cannot be approximated in polynomial time to within a factor of (1−ε) ln(n),
unless NP ⊂ DTIME(nlog(log(n))).

Berman, DasGupta, and Kao [2] provided a simple greedy heuristic, which they
called the Information Content Heuristic (ICH), for the TSC problem.

Here we use notations from [2] to define an entropy HV ′ for subsets V ′ ⊂ V
and to obtain an improved approximation algorithm for the Metric Dimension
problem, that matches the lower bound of Theorem 2.
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For each subset V ′ ⊆ V we have an associated equivalence relation ≡V ′ given
by u ≡V ′ w ⇐⇒ [∀v ∈ V ′ : d(v, u) = d(w, v)]. Let A1, .., Ak be the equivalence
classes of ≡V ′ , then the entropy of V ′ is defined as HV ′ = log2(Πk

i=1|Ai|!).
The information content of a vertex v ∈ V with respect to V ′ is defined as
IC(v, V ′) = HV ′−HV ′∪{v}. Modified ICH is now ICH applied to the information
content function IC(v, V ′) := HV ′ −HV ′∪{v}.

Modified ICH

V ′ := ∅
while (HV ′ �= 0) do
select a v ∈ argmaxv∈V \V ′(IC(v, V ′))
V ′ := V ′ ∪ {v}
endwhile

Theorem 3. Modified ICH is a polynomial-time approximation algorithm for
the Metric Dimension problem with ratio 1 + ln(|V |) + ln(ln2(|V |)).
We also investigate the Metric Dimension problem in bounded degree graphs. In
particular, we give the following explicit approximation lower bound.

Theorem 4. The B-bounded Metric Dimension Problem is APX-hard for every
B ≥ 3 and it is NP-hard to approximate within any constant better than 353

352 .

We show that even on k-superdense graphs the metric dimension is APX-hard
k ≥ 6. In particular, we obtain explicit approximation lower bounds.

Theorem 5. It is NP-hard to approximate theMetric Dimension on k-superdense
graphs to within any better than 3511

3510 for k = 6, 1090
1089 for k = 7 and 677

676 for k = 8.

We also provide a constant factor approximation algorithm with approximation
ratio (2 + 2 ln(k) + ln(log2(k−1)) + o(1)) for k-superdense instances. Previously,
Halldórsson, Halldórsson, and Ravi [11] used a similar approach for the Test Set
Collection with bounded test sizes, based on a twofold application of the greedy
k-set cover algorithm. Here, we apply first the greedy k-set cover algorithm
and afterwards use the Modified ICH to generate a resolving set. Since in a
k-superdense graph we have d(v, w) ∈ {0, 1, 2}, only three equivalence classes
occur. For every v ∈ V , let Av

0, A
v
1 and Av

2 be the equivalence classes under ≡v.
We present the algorithm Pre-ICH:

1. Apply the greedy algorithm for the Min k-Set Cover problem to instance
SC(G) := (V, {Av

0 ∪Av
2 | v ∈ V }) with solution {Av

0 ∪Av
2 | v ∈ V ′′}.

2. Apply Modified ICH with initial set V ′ := V ′′.

Theorem 6. Pre-ICH is a (2 + 2 ln(k) + ln(log2(k − 1)) + o(1))-approximation
algorithm for the Metric Dimension problem on k-superdense graphs.
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Abstract. When the environment does not allow to access directly to
disseminated data, a sensor network could be one of the most appropri-
ate solution to retrieve the map of interesting areas. Based on existing
approaches, we start our study from the standard random deployment
of a sensor network and then we consider a coarse-grain localization al-
gorithm which associates sensors with coordinates related to a central
node, called sink. Once each sensor is related to an estimated position,
it starts to send data to the sink according to a provided scheduling of
communications which takes care of energy consumption, collisions and
time. We propose a scheduling of communications based on distributed
and fast coloring algorithms which require O(1) computational time. As
the localization is referred to coarse-grain coordinates, it happens that
more than one sensor is associated with the same coordinates, hence
leader-election mechanism is considered.

1 Introduction

A duty-cycle wireless sensor and sink network (DC-WSN) consists of many ran-
domly deployed tiny low-cost sensors which follow a sleep-awake cycle, and a
few powerful entities, called sinks. Clearly DC-WSNs are an extension of wire-
less sensor networks (WSNs) as we address uncertainty about the existence of a
wireless link originating from the random sleep-awake schedules.

Specifically, we consider a dense DC-WSN where each sink is mobile and,
upon reaching a specific location, remains there to collect data from the sensors
in the surrounding area, called sink-region. Sensors are randomly deployed and
are employed in applications where they remain unattended in a vast, possibly
hostile, geographical area for long period of times (e.g., environment monitoring
and intruder tracking). Sensors sense the physical world in their proximity, while
sinks, equipped with much better processing capabilities, higher transmission
power, and longer battery life, move around the area to collect, aggregate, and
transmit to the external world the sensed data collected by the sensors [1, 8, 15].
When a sink reaches an area of interest in the network, sensors in its vicinity
must be organized into a short-lived and mission-oriented subnetwork called
sink-centric network.
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In the rest of this paper, we will focus on the sink-centric network. We consider
localization algorithms in order to provide a virtual infrastructure surrounding
the sink which will be used for routing purposes. Such localization protocols
(also referred to as training protocols) impose a discrete coordinate system on
the sink-region. Sensors that acquire identical coordinates form a cluster of in-
distinguishable nodes. This means that the information sent from a cluster to
the sink will be always the same, regardless the sending sensor. This suggests the
usage of leader election mechanisms within each cluster in order to save energy.

Once sensors in the sink-region are localized, sensory data are relayed to the
sink based on a geographical routing protocol. Latency, energy efficiency, and
collision avoidance are addressed in the design of the routing protocol. We as-
sume that a collision occurs when a sensor receives more than one message at the
same time. Therefore, to avoid message collisions, communication schedules have
to be designed. The main contribution of the paper is the design of a communica-
tion scheduling based on fast and distributed coloring algorithms. The proposed
coloring algorithms are then applied in order to accomplish collision-free leader
election and routing tasks.

1.1 Outline

The next section introduces the model assumptions under which the routing of
sensory data must be performed, and defines the virtual infrastructure commonly
used to organize DC-WSNs with respect to a central sink. Section 2.1 describes
the first contribution of the paper. In particular, the virtual infrastructure is
modified in favor of a uniform usage of the involved sensors. Section 3 intro-
duces and optimally solves a coloring problem arising from the requirement of
scheduling the communications from the sensors toward the sink without colli-
sions. Section 4 describes how the proposed coloring can be used for both leader
election and routing purposes. Finally, Section 5 provides concluding remarks,
and points out possible directions for further investigations.

2 The Model

Time is assumed to be divided into slots. The sensors and the sink use equally
long, in-phase slots, but they do not necessarily start counting time from the
same slot. A sensor possesses three basic capabilities: sensing, computation, and
wireless communication; and operates subject to the following constraints:

a. Each sensor alternates between sleep periods and awake periods – sleep-
awake cycle has a total length of L time slots, out of which the sensor is in
sleep mode for L− d slots and in awake mode for d slots;

b. Each sensor is asynchronous – it wakes up for the first time according to its
internal clock and it is not engaged in an explicit synchronization protocol
with either the sink or other sensors. Sensors that wake up simultaneously
at time slot x are said of type x or equivalently, they belong to time-zone x;
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c. Individual sensors are unattended – once deployed it is neither feasible or
practical to devote attention to individual sensors;

d. No sensor has global information about the network topology, but each one
can hear transmissions from the sink;

e. The sensors are anonymous – they are not associated with unique IDs;
f. Each sensor has a modest non-renewable energy budget and a limited trans-

mission range r;
g. Sensors can transmit and receive on multiple frequency channels.

Concerning the training protocol which will be further discussed later, it imposes
a virtual coordinate system onto the sensor network by establishing:

1. Coronas: The sink-region area is divided into k coronas C0, C1, . . . , Ck−1 each
of fixed width ρ > 0. The coronas are centered at the sink and determined
by k concentric circles whose radii are ρ, 2ρ, · · · , kρ, respectively;

2. Sectors: The sink-region is divided into h equiangular sectors S0, S1, . . . , Sh−1,
originated at the sink, each having a width of 2π

h radians.

In particular, a cluster is the intersection between a corona and a sector where all
sensors acquire the same coordinates. Once the training protocol has terminated,
we assume a data logging application, where the sensors are required to send
their sensory data to the sink. When sensors transmit, if an awake sensor receives
more than one message concurrently on the same frequency channel, we assume
that it hears noise, i.e., a collision occurs.

2.1 Localization

Many research papers have provided different approaches to make anonymous
sensors aware of their coarse-grain positions [2–6, 10–14]. In order to perform
the training, two main procedure are usually executed. In the first, the sink
makes use of its isotropic antenna for the corona training. In the second, the
sink makes use of the directional antenna for the sector training. Our interest
is in the final virtual infrastructure that a training protocol delivers. Our little
modification to the previous approaches is to maintain the area of each cluster
roughly the same among the whole network. In this way we better guarantee a
uniform usage of the disseminated sensors in favor of better performances, and
of an extended network lifespan. In order to obtain the desired configuration, let
� be the number of sectors imposed in corona 1. Considering ρ = 1, the number
of sectors will be doubled at each corona c = 2p, 0 < p ≤ &log2(k − 1)'. In
fact, corona c = 2p has area π(2p+1 + 1) which is almost the double than the
area of corona c = 2p−1. In doing so, we obtain that the proposed subdivision
guarantees the following result:

Lemma 1. The ratio given by the area spanned by two generic clusters is at
most 2.

Proof. Let (c, s), c > 1, be a generic cluster of the imposed virtual infrastructure,
and let p = &log2 c' which implies 2p ≤ c < 2p+1. The area spanned by corona 1
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is 3π and it is divided into � sectors. The area spanned by the generic corona c
is ((c + 1)2 − c2)π and it is divided by construction into 2p� sectors. Hence, the
area of one cluster in corona 1 is equal to A1 = 3π

	 , while the area of one cluster
in corona c is equal to Ac = (2c+1)π

2p	 . The ratio gives:

A1

Ac
= 3

π

�
× 2p�

(2c + 1)π
≤ 3 · 2p

2 · 2p
=

3
2
,

and

A1

Ac
= 3

π

�
× 2p�

(2c + 1)π
≥ 3 · 2p

2((2p+1 − 1) + 1)
≥ 3 · 2p

4 · 2p
=

3
4
.

Hence, the biggest ratio between the area of two generic clusters of the imposed
virtual infrastructure gives:

3
2
A1×4

3
1

A1
= 2. ��

Figure 1 illustrates the virtual infrastructure when � = 4. The sectors in corona c
are numbered from 0 to hc−1 starting to count from the sector above the x-axis.
Noting that the outmost corona c = k − 1 will be divided into h = �2log2(k−1)�

sectors, the virtual infrastructure can be obtained as an ordinary coordinate
system with k coronas and h sectors, in which the inner coronas just ignore
further subdivisions of their coronas if not required with respect to the defined
virtual infrastructure.

3 Coloring

Once that sensors are placed and localized, we need to schedule their commu-
nications toward the sink in order to deliver the sensory data. Communications
should take care of required time, energy efficiency and collisions.

To this aim, we introduce a frequency channel assignment to schedule the com-
munications on the adjacency graph associated with the virtual infrastructure
imposed by the localization algorithm.

Recalling that � is the number of clusters in corona 1 of the virtual infrastruc-
ture, the adjacency graph G	 has one node for each cluster in corona c ≥ 1 and
one edge for each pair of nodes corresponding to adjacent clusters. Formally:

Definition 1. The adjacency graph G	 has one node (c, s), with 1 ≤ c ≤ k − 1
and � ≤ s ≤ hc, for each cluster in corona c ≥ 1 of the virtual infrastructure.
Two nodes (c, s) and (c′, s′), with c ≥ c′, are adjacent if

1. c = c′ and |s− s′| = 1, or
2. c = c′ + 1 and for some x ∈ N, 2x−1 ≤ c′ < c < 2x and s = s′ or
3. for some x ∈ N, c = c′ + 1 = 2x and s′ = & s

2'.
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Figure 1 shows the virtual infrastructure when � = 4 and the associated adja-
cency graph G	. For the rest of our discussion, we do not take into consideration
corona 0, as the scheduling of communications in there (included forwarding
communications from outer coronas) is not necessary due to the proximity of
the sensors with the sink which can retrieve the information by itself. It is like
assuming that if a transmission reaches corona 0 then it reaches the sink.

Fig. 1. On the left, the virtual infrastructure divided into clusters uniquely identified
when � = 4. On the right, the corresponding adjacency graph G4. The shadowed nodes
represent a maximal subset of nodes at pairwise distance at most 2 in the graph, i.e.
each pair of nodes in the subset is at distance at most 2.

In the rest of this section we focus on colorings of the graph G	. Formally:

Definition 2. A distance-two coloring (or frequency channel assignment), is a
function that assigns to each node of G	 a color such that the same color cannot
be assigned to two nodes at pairwise distance smaller than or equal to 2.

In the following, we will refer to distance-two coloring simply as coloring algo-
rithm. We will postpone to Section 4 how such a coloring (or, scheduling) can
be used for leader election and/or for routing purposes.

First of all, observe that by construction, the largest subset of pairwise nodes
at distance at most 2 has size 6 in both G4 and G3 (see Figures 1 and 2 for an
illustration). Thus:

Lemma 2. Any coloring of G	, � > 0, which satisfies distance-two constraint
requires at least 6 colors.

Proof. A generic node x ∈ G	 corresponds to a cluster (c, s) in the imposed
coordinate system. The neighbors of x corresponding to other clusters in c are
at most 2. By construction, x admits only one neighbor corresponding to corona
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c−1 while at most two neighbors corresponding to corona c+1. In fact, clusters
are doubled at every corona labelled by a power of two. Moreover, the intersection
established at some corona, is maintained along all the coronas with bigger labels.
Thus, (c, s) admits only one neighbor (c− 1, s) in corona c− 1 and at most two
neighbors in corona c + 1 (this happens when c + 1 is labelled by a power of
two). All these neighbors along with x form then the biggest set of nodes in
G	 at pairwise distance at most 2, hence 6 colors are required by any coloring
satisfying the distance-two constraint. ��
In the following, we propose two coloring algorithms, called Col4 and Col3,
which color, respectively, the adjacency graphs G4 and G3. Algorithm Col4 uses
8 colors, while Col3 is optimal because it uses exactly 6 colors. Both algorithms
provide a very useful property, that is, each cluster can be colored in constant
time, although Col4 is simpler than Col3. The sensors compute their colors in
constant time once they know the coordinates of the cluster where they reside.

3.1 Algorithm Col4

Algorithm Col4 is based on Table 1 that can be used by each sensor in order
to acquire the corresponding color of the cluster where it resides. The table has
four rows and four columns. Let |i|j denotes the modulo operation, that is the
nonnegative remainder of the division of i by j. Cluster (c, s), 0 < c < k and
0 ≤ s < h, will get the color according to entry [|c− 1|4 , |s|4], We have to show

Table 1. Algorithm Col4: cluster (c, s), 0 < c < k and 0 ≤ s < h, will get the color
according to entry [|c − 1|4 , |s|4]

0 1 2 3
0 RED GREEN ORANGE YELLOW
1 BLUE WHITE CYAN PINK
2 GREEN YELLOW RED ORANGE
3 WHITE PINK BLUE CYAN

that such a coloring respects the imposed distance two constraint. First of all, we
point out that two clusters belonging to two different adjacent coronas necessarily
acquire two different colors. In fact, from Table 1 we have two different subsets
of colors used for even and odd rows, respectively. Another simple observation is
that if two clusters of the same color belong to the same corona, then they are at
a distance which is a multiple of 4. The next lemma shows the remaining cases
that must be addressed for a correct coloring (see Figure 3 for a visualization).

Lemma 3. Consider two clusters (c, s) and (c′, s′). If c = c′ + 2 and (a) s = s′,
or (b) s = 2s′ − 1 or (c) s = 2s′, then Col4(c, s) �= Col4(c′, s′).

Proof. Case (a) can be simply derived by observing Table 1, since at the same
column no colors are repeated. For case (b), if |s′|4 equals 0 then |s|4 equals 3; if
|s′|4 equals 1 then |s|4 equals 1; if |s′|4 equals 2 then |s|4 equals 3; if |s′|4 equals
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3 then |s|4 equals 1. For case (c), if |s′|4 equals 0 then |s|4 equals 0; if |s′|4 equals
1 then |s|4 equals 2; if |s′|4 equals 2 then |s|4 equals 0; if |s′|4 equals 3 then |s|4
equals 2. In all the cases the corresponding entries associate two different colors
to the considered clusters. ��
Corollary 1. Algorithm Col4 assigns colors to clusters satisfying the distance-
two constraint.

A natural question is whether there exists an optimal algorithm which makes
use of six colors in constant time, or at least an algorithm that uses less than
eight colors. This is an open problem that remains to be further investigated.

Fig. 2. On the left, the virtual infrastructure obtained by starting with 3 sectors. On
the right, the corresponding adjacency graph G when corona 1 is divided into 3 sectors.
The shadowed nodes represent a maximal subset of nodes at pairwise distance at most
2 in the graph.

3.2 Algorithm Col3

An optimal coloring Col3 can instead be found for the virtual infrastructure
which partitions the first corona in 3 sectors (Figure 2) and whose adjacency
graph is denoted as G3. Algorithm Col3 is based again on two subsets of colors
as for Col4 but each of three colors {RED; BLUE; GREEN}, {WHITE; PINK;
CY AN}. The first set is used for odd coronas, the second for even coronas.
This again realizes the property for which two clusters at two adjacent different
coronas cannot get the same color. Moreover, for each corona a sequence of
the colors is properly selected and repeated for coloring all the sectors in anti-
clockwise order. Thus, two clusters associated with the same color at the same
corona are at distance which is a multiple of 3. Starting from corona 1, we color
the clusters using the sequence of colors {RED; BLUE; GREEN} in an anti-
clockwise order. Then corona 2 will be colored at the same way but using the
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sequence {WHITE; PINK; CY AN} twice. In what follows, sometimes we refer
to a sequence of colors by means of the sequence of their cardinal numbers in
the sequence instead of the name of the colors. In doing so, any other cluster
(c, s) is colored according to the following actions:

Shifting: Given a sequence of colors {0, 1, 2}, a shifting operation consists in
summing | − 1|3 to each element of the sequence, hence obtaining {2, 0, 1}.

Swapping: Given a sequence of colors {0, 1, 2}, a swapping operation con-
sists in exchanging the first element of the sequence with the third one, hence
obtaining the sequence {2, 1, 0}.

Any cluster (c, s), c > 2, is colored in the following way: if the number of clusters
in corona c is the same as in corona c − 2, then corona c is colored with the
sequence obtained from the sequence used in corona c− 2 by applying a shifting
operation. If the number of clusters in corona c is doubled with respect to corona
c − 2, then corona c is colored with the sequence obtained from the sequence
used in corona c− 2 by applying a swapping operation.

Lemma 4. Algorithm Col3 assigns colors to clusters satisfying the distance-two
constraint.

Proof. It has been already pointed out how different colors are assigned to clus-
ters at distance one. Moreover, if two clusters of the same color belong to the
same corona, then they are at a distance which is a multiple of 3. Therefore, the
proof only needs to show the correctness of the coloring for clusters at distance
two in two different coronas. Let (c, s) and (c′, s′) be two clusters at distance
two, with c > c′.

Fig. 3. The three possible configurations for two clusters at distance 2 when c > c′

Figure 3 shows the possible configurations. If the number of sectors in c is the
same as in c′, then s must be equal to s′. In this case, the sequence of colors used
to color c is obtained form the sequence used in the c′ after a shifting. This im-
plies that colors assigned to (c, s) and (c′, s′) are different. Another configuration
occurs when the number of sectors in c is doubled with respect to c′, then s is
equal either to 2s′ or to 2s′ + 1. Since in this case the sequence of colors used to
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color c has been obtained from the one used in c′ after a swapping operation, by
construction (c, s) may assume any color in the sequence but the one associated
to (c′, s′). In fact, let {0, 1, 2} be the sequence of colors used in c′, then the se-
quence {2, 1, 0} is used in c. Hence, if Col3((c′, s′), {0, 1, 2}) = 0 (1, 2, resp.), then
Col3((c, 2s′), {2, 1, 0}) = 2 (0, 1, resp.). Similarly, if Col3((c′, s′), {0, 1, 2}) = 0
(1, 2, resp.), then Col3((c, 2s′ + 1), {2, 1, 0}) = 1 (2, 0, resp.). ��
We now show that each color assigned by Col3 to a generic cluster (c, s) can be
evaluated in a constant number of steps with the only assumption of knowing
the sequences of colors used in corona 1 and 2. For the ease of the analysis
purposes, from now on we focus only on one set of three colors for coloring
all the coronas instead of presenting two specular arguments for odd and even
coronas, respectively.

Assuming we know the sequence of colors used at a generic corona c′, the
sequence used to color any c > c′ that has the same number of clusters of c′ can
be easily evaluated. In fact, it is sufficient to apply the shifting operation c− c′

times. As such operation is associative, the result does not change if we decrease
by | − (c− c′)|3 each single element of the sequence. However, when the number
of sectors is doubled with respect to c′ then we need a more careful computation.
Actually, we evaluate the first and the third colors of the sequence independently.
The second then comes as a consequence. The next technical lemma provides a
first contribution to the evaluation of the required sequence of colors.

Lemma 5. Let {0, 1, 2} be the sequence of colors used for corona 1, c = 2p for
some p > 0, and {X ′, Y ′, Z ′} be the sequence of colors used for corona c′ =
2p−1, then the sequence of colors {X, Y, Z} used for corona c can be evaluated
as follows:

(a) if |p|2 = 0 then X = X ′, Z = |Z ′ + 1|3 and Y = {X ′, Y ′, Z ′}\{X, Z};
(b) if |p|2 = 1 then X = |X ′ − 1|3, Z = |Z ′ + 1|3 and Y = {X ′, Y ′, Z ′}\{X, Z}.
Proof. We prove the lemma by induction on p. The base of the induction is given
for the two cases p = 1, and p = 2. In the first case, corona c = 2p = 2 is colored
by using the sequence {2, 1, 0} obtained from the one of corona 1 by applying a
swapping operation, hence obtaining X = 2 = |X ′ − 1|3, Z = 0 = |Z ′ + 1|3 and
Y = 1. In the second case, corona c = 2p = 4 is colored by using the sequence
{2, 0, 1} obtained from the one of corona 2 by first applying a shifting operation
and then a swapping one, hence obtaining X = 2 = X ′, Z = 1 = |Z ′ + 1|3
and Y = 0. We assume the claim as true for any p− 1 ≤ 2 and we prove it for
p. Corona c = 2p is colored by using the sequence {X, Y, Z} obtained from the
sequence {X ′, Y ′, Z ′} used in corona c′ = 2p−1 after applying 2p−1 − 1 shifting
operations and one swapping operation. Hence, X = |Z ′ − (2p−1 − 1)|3, Y =
|Y ′−(2p−1−1)|3 and Z = |X ′−(2p−1−1)|3. This leads to X = |Z ′−(2p−1−1)|3 =
|Z ′ − (2

p−1
2 �2+|p−1|2 − 1)|3 = |Z ′ − 4

p−1
2 �2|p−1|2 + 1|3 = |Z ′ − 2|p−1|2 + 1|3;

Y = |Y ′ − 2|p−1|2 + 1|3; Z = |X ′ − 2|p−1|2 + 1|3. If |p|2 = 0 then X = |Z ′ − 1|3,
|Y ′ − 1|3 and Z = |X ′ − 1|3. If |p|2 = 1 then X = Z ′, Y = Y ′ and Z = X ′.
This implies that Y is always different from X and Z, as it is obtained from Y ′

different from X ′ and Z ′ by applying the same rules.
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By induction, the sequence {X ′, Y ′, Z ′} used in corona c′ is obtained by ap-
plying the claim to the sequence {X ′′, Y ′′, Z ′′} used in corona c′′ = 2p−2, i.e.
X ′ = |X ′′ − 1|3, Z ′ = |Z ′′ + 1|3 and Y ′ is the remaining available color. By the
above calculations, if |p|2 = 0, X ′ = Z ′′, Y ′ = Y ′′ and Z ′ = X ′′, and we obtain
X = |Z ′− 1|3 = |X ′′− 1|3, Y ′ = Y ′′, Z = |X ′− 1|3 = |Z ′′− 1|3 = |Z ′′ + 2|3 that
is equivalent to apply first rule (b) and then rule (a) from {X ′′, Y ′′, Z ′′}.

If |p|2 = 1, X ′ = |Z ′′− 1|3, Y ′ = |Y ′′− 1|3 and Z ′ = |X ′′− 1|3, and we obtain
X = Z ′ = |X ′′ − 1|3, Y ′ = |Y ′′ − 1|3, Z = X ′ = |Z ′′ − 1|3 = |Z ′′ + 2|3 that is
equivalent to apply first rule (a) and then rule (b) from {X ′′, Y ′′, Z ′′}. ��
In other words, Lemma 5 provides the tool for evaluating the coloring in a
distributed way by each sensor in constant time with respect to the network
size. In fact, as shown by the next theorem, a sensor requires only calculations
involving values c and s defining the cluster where it resides. Such quantities are
negligible with respect to the size n of the network.

Theorem 1. Let {X, Y, Z} be the sequence of colors used to color corona 1, then
Col3(c, s) can be evaluated in constant time independently of the other clusters.

Proof. Starting from the sequence of colors1 used in corona 1, in order to guess
the sequence of colors used at a generic corona c, it suffices to evaluate p =
&log2 c'. Then, by Lemma 5, we can find the sequence of colors {X ′, Y ′, Z ′}
used at corona c′ = 2p by applying the following rules. Decrease X by |�p

2�|3,
increase Z by |p|3, and choose for Y the remaining available color. Finally, by
applying c−c′ shifting operations, i.e., by decreasing each element of the sequence
evaluated for c′ by |c− c′|3, we obtain the sequence for c. More formally:

X ′ = X −
∣∣∣⌈p

2

⌉∣∣∣
3
− |c− c′|3

Z ′ = Z + |p|3 − |c− c′|3
Y ′ �= X ′ �= Z ′ and Y ′ ∈ {0, 1, 2}

Once the sequence of colors {X ′, Y ′, Z ′} used to color corona c is known, the
corona will be colored in anti-clockwise order from sector 0. Precisely:

Col3(c, s) =

⎧⎨
⎩

X ′ if |s|3 = 0
Y ′ if |s|3 = 1
Z ′ if |s|3 = 2

Thus obtaining Col3(c, s) takes constant time. ��
Figure 4 shows the correct coloring obtained for both the odd and the even
coronas by applying the described Col3 algorithm. The initial step is constituted
by starting with the coloring of corona 1 with the sequences {0, 1, 2} and {5, 4, 3}
for odd and even coronas, respectively.

1 Note that the sequence of colors used for corona 1 may refer, without distinction, to
the set of three colors used for odd coronas or even coronas.
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Fig. 4. The coloring obtained by applying algorithm Col3 on the virtual infrastructure
with three sectors at corona 1, and considering the sequences {0, 1, 2} and {5, 4, 3} for
corona 1 for coloring the odd and the even coronas, respectively

Once the suitable coloring has been performed among sensors, it is used to
schedule communications. Different colors specify different communication fre-
quency channels. This implies that adjacent clusters can perform in parallel
their communications without incurring in collisions. However, before showing
how the routing of sensory data can be performed over the virtual infrastructure,
we provide a further step in the set-up of the network by electing inside each
cluster one leader for each type (time-zone). In this way, we avoid redundant
communications among sensors belonging to the same cluster (hence saving en-
ergy) while we ensure at least one active sensor at any time. Actually, we could
schedule the repetition of the leader election procedure in order to rotate among
sensors, hence prolonging the network lifespan.

4 Leader Election and Routing

In this section, we describe how the routing and the leader election can be
performed in the sensor network without collisions by means of the coloring
algorithms presented in the previous section.

Our routing algorithm requires that, in any cluster, there is a sensor ready to
forward the message going toward the sink at any time slot t. Such a sensor will
be the leader of the sensors that wake up at time t. From now on, we assume
that there is at least one leader awake and ready to forward the message at
any time in any cluster. Specifically, during the routing process, we assume that
sensors transmit during the second time slot of their awake period, while they
are listening during their first one. A message that originates at time t in cluster
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(c, s), will be transmitted by the leader of time-zone t in cluster c at time |t+1|L.
Such a message will be then received and handled by the awake leader of time-
zone |t + 1|L in the cluster destination that receives the message at time |t + 1|L
and forward it toward the sink at time |t+2|L. Note that, the destination cluster
is (c−1, s) if c is not a power of two, and cluster (c−1, & s

2') otherwise. In this way,
a message originated in corona c can be potentially routed in c hops to the sink.
To this aim, observe that a leader transmission reaches the cluster destination as
well as the other adjacent clusters because, during the routing protocol, sensors
broadcast with a radius equal to the corona width. Therefore, to avoid that a
cluster is simultaneously reached by two different leader transmissions on the
same frequency channel, two leaders that use the same frequency channel must
reside in two clusters which are at least at distance three. Thus, any frequency
channel assignment (or, coloring) suitable for routing without collisions must
satisfy the distance-two constraint discussed earlier.

It is worthy to note that a weaker constraint on the distance of leaders trans-
mitting on the same frequency channel is sufficient for the leader election pro-
tocol. Indeed, as it will be explained below, during such a protocol, a message
that originates in cluster (c, s) has for destination the cluster itself. Thus, it is
sufficient that two leaders that transmit on the same frequency channel reside
in two clusters at distance two to avoid collisions. Thus, any coloring suitable
for our routing algorithm is also suitable for the leader election.

A brief description of the routing and leader election protocols follow. Once the
coloring of the virtual infrastructure has been performed, each sensor residing
in a specific cluster is aware of its color. We consider one different frequency
channel for each used color. Hence, each sensor will be aware of the frequency
channel it has to use for transmission tasks. Our first goal is to elect inside
each cluster one leader for each time-zone 0 ≤ x ≤ L − 1. To this aim, we
make use of the well-known uniform leader election for radio networks protocol
presented in [9]. In particular, we can consider the so called Scenario 2 in which
an upper bound to the number of sensors competing for the leader election
inside each cluster and for each time-zone is known. In fact, by exploiting the
arguments presented in [6, 7, 10] such an upper bound is u ≤ 4

3A1Λ = 4π
	 Λ,

where Λ is an estimation of the density of sensors related to one specific time-
zone. From [9], the sensors require on average ln ln u + o(ln ln u) transmissions.
In practice, the protocol works by assigning a probability of transmission to
each sensor. A sensor is elected as leader when it is the only one transmitting
during the time-slot. If more than one sensor transmit or no one transmits, than
the probability to transmit at the subsequent appropriate time-slot decreases or
increases, respectively.

In our setting, we perform L leader elections, one for each time-zone, dis-
tributed over O(ln ln u) subsequent sleep-awake periods. Only the sensors with
the same time-zone are involved in one election. For each time-zone, each sensor
performs one step of its leader election during every period. At the i-th time
slot of the j-th awake period, the sensors of time-zone i perform the j-th step
of their leader election. Each sensor transmits only during the first time-slot
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of its awake period. In doing so, we obtain the required leader election for all
time-zones and all clusters. In fact, the protocol is performed in parallel in all
clusters, each cluster transmitting on the frequency channel assigned to it by the
coloring protocol. Finally, the routing earlier described can start.

Since in each cluster we have elected one leader for each time-zone, there will
always be one leader, in the destination cluster, awake and ready to forward
the message. Moreover, since each communication is performed according to the
frequency channels that satisfy the distance-two constraint, in each time-slot
the message will decrease by one hop its distance from the sink. Thus, using a
multi-hop technique, a message originated in corona c reaches the sink in c time
slots.

5 Conclusions

We investigate a virtual organization of a sink-centric subnetwork in a dense DC-
WSN, which imposes a generalized coordinate system. Such a system provides
a coarse-grained location to the sensors and allows a naive geographic routing
algorithm. All the sensors that acquire the same coordinates form a cluster. For
routing purposes, we assume that the sensors can transmit using different fre-
quency channels. Following a multi-hop approach along the cluster-sink path,
sensors in the outer coronas of the virtual infrastructure transmit their messages
to the sink through intermediate coronas. The message stream can continuously
proceed if there is, at any time, a relaying sensor awake and ready to transmit
and no collisions arise on the frequency channels. To avoid collisions, a frequency
channel assignment (or, coloring) that satisfies a distance-two constraint is pro-
vided for the graph G	 that represents the cluster adjacencies of the virtual
infrastructure that has � clusters in corona 1. An optimal coloring for G3 has
been provided. Such coloring is fully distributed and requires constant time.
Moreover, to avoid redundant messages during the routing protocol, we elect
leaders in each cluster which act as relaying sensors. To this aim, we adapt a
known uniform leader election protocol to our scenario. In the future, we intend
to implement our routing algorithm in both simulated and real settings. More-
over, the study of optimal colorings for adjacency graphs G	 with an arbitrary
number � of clusters in corona 1 is an interesting open problem.
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Abstract. Given an undirected graph with weights on its vertices, the
k most vital nodes independent set problem consists of determining a
set of k vertices whose removal results in the greatest decrease in the
maximum weight of independent sets. We also consider the complemen-
tary problem, minimum node blocker independent set that consists of
removing a subset of vertices of minimum size such that the maximum
weight of independent sets in the remaining graph is at most a specified
value. We show that these problems are NP-hard on bipartite graphs but
polynomial-time solvable on unweighted bipartite graphs. Furthermore,
these problems are polynomial also on graphs of bounded treewidth and
cographs. A result on the non-existence of a ptas is presented, too.
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1 Introduction

In many applications involving the use of communication or transportation net-
works, we often need to identify vulnerable or critical infrastructures. By critical
infrastructure we mean a set of nodes/lines whose damage causes the largest in-
crease in the cost within the network. Modeling the network by a weighted graph,
identifying a vulnerable infrastructure amounts to finding a subset of vertices/
edges of a given size whose removal from the graph causes the largest inconve-
nience to a particular property of the graph in question. In the literature this
problem is referred to as the k most vital nodes/edges problem. A complementary
problem consists of determining a set of vertices/edges of minimum size whose re-
moval involves that the cost within the network is at most a given value. In the
literature this problem is referred to as the min node/edge blocker problem.
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The problems of k most vital nodes/edges and min node/edge blocker have
been studied for various problems, including shortest path, spanning tree, max-
imum flow, assignment, and maximum matching. The k most vital edges prob-
lem with respect to shortest path was proved NP-hard [1]. Later, k most vital
edges/nodes shortest path (and min node/edge blocker shortest path) were
proved not 2-approximable (not 1.36-approximable, respectively) if P�= NP [8].
For spanning tree, k most vital edges is NP-hard [5] and O(log k)-approximable
[5] and randomized 2-approximable [15]. In [17] it is proved that k most vital
edges maximum flow is NP-hard. Also k most vital edges and min edge blocker
assignment are proved NP-hard and not 2-approximable (not 1.36-approximable,
respectively) if P�=NP [2]. For maximum matching, min edge blocker is NP-hard
even for bipartite graphs [16], but polynomial for grids and trees [14].

In this paper, we are interested in determining a subset of k vertices of the
graph whose deletion causes the largest decrease in the maximum weight of an
independent set. This problem is referred to as k Most Vital Nodes Inde-
pendent Set . We also consider the complementary version of this problem,
where given a threshold, we have to determine a subset of vertices of minimum
cardinality that has to be removed such that in the resulting graph the maximum
weight of an independent set is at most this threshold. This problem is referred
to as Min Node Blocker Independent Set.

In Section 3 we consider bipartite graphs. It turns out that a substantial jump
in complexity occurs between unweighted and weighted graphs for these prob-
lems. More precisely we show that the unweighted versions are polynomial while
the weighted versions are NP-hard and the most vital nodes problem even has no
ptas, unless P=NP. In Section 4 we deal with graphs with weights on their ver-
tices, which have either a tree-like structure or a representation associated with
trees. These include trees themselves, cycles, more generally graphs of bounded
treewidth, and cographs (graphs containing no induced P4). For these classes we
design polynomial-time algorithms for the problems mentioned above.

In fact, trees and cycles have treewidth 1 and 2, respectively, therefore our
general algorithm for bounded treewidth works for the former classes, too. Nev-
ertheless, the algorithms on trees and cycles are simpler and this is why we
include them here. It should be noted further that for k fixed, there are only
polynomially many subsets of k removable vertices, therefore k Most Vital
Nodes Independent Set is solvable efficiently on every graph class where the
largest independent set is tractable. On the other hand if k →∞ then a formula
expressing the present problems in second-order monadic logic would have un-
bounded length. Consequently, the general approach to linear-time algorithms
via MSOL is not applicable here. This fact is relevant for both treewidth and
cliquewidth.

2 Preliminaries

Let G = (V, E) be an undirected graph, with V = {v1, . . . , vn}, where each
vertex vi has a weight wi. For an edge vivj ∈ E, we could write vi, vj ∈ e and
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if vi, vj ∈ V ′ then we consider that e ⊂ V ′. When removing a set V ′ of vertices
from G, let us denote the remaining graph by G− V ′. If H is a subgraph of G
then V (H) denotes the vertex set of H . Moreover, for a subset V ′ of vertices
from G, the subgraph induced by V ′ is denoted by G[V ′]. A maximum-weight
independent set of G is a subset of vertices of maximum total weight where any
two vertices are nonadjacent. A minimum-weight vertex cover of G is a subset
of vertices of minimum total weight where every edge of G has at least one
vertex in the set. We denote by α(G) the maximum weight of an independent
set and by τ(G) the minimum weight of a vertex cover. Moreover, α(k) represents
the minimum of α(G − V ′) after removing any set of vertices V ′ of size k. A
matching is a set of mutually vertex-disjoint edges. The largest number of edges
in a matching is denoted by ν(G).

In this paper we are interested in the complexity of the following problems.

k Most Vital Nodes Independent Set
Input: An undirected graph G = (V, E) where each vertex vi has a weight wi,
and an integer k.
Output: A subset V ′ ⊆ V of size k such that the maximum weight α(G − V ′)
of an independent set in G− V ′ is minimum.

Min Node Blocker Independent Set
Input: An undirected graph G = (V, E) where each vertex vi has a weight wi,
and an integer U .
Output: A subset V ′ ⊆ V of minimum cardinality such that the maximum
weight α(G− V ′) of an independent set in G− V ′ is at most U .

Remark 1. The exact versions of k Most Vital Nodes Independent Set
and Min Node Blocker Independent Set are polynomial-time equivalent.
Indeed, if an algorithm Ak solves k Most Vital Nodes Independent Set
for all 1 ≤ k ≤ n, then we can run Ak for k = 1, . . . , n and choose the smallest k
yielding optimum at most U . Conversely, if an algorithm BU solves Min Node
Blocker Independent Set with any bound U , we can apply binary search
to locate the smallest U that requires the removal of at most k vertices.

Theorem 1. If there exists an algorithm that solves the k most vital nodes ver-
sion of an optimization problem P on graphs with n vertices in O(t) time, then
the min node blocker version of P can be solved in O(t log log n) time.

Proof. If the value of an optimum solution is at most U then the optimum size
is 0. Otherwise, we combine the algorithm for the k most vital nodes version
with an accelerated version of approximate binary search. On the size k of a min
node blocker we maintain a lower bound � and an upper bound u, initialized to
�0 = 1 and u0 = n. Instead of using a standard binary search with v = 	+u

2 , we
iteratively set v =

√
�u, as suggested in [7]. More precisely, although computing

the exact value
√

�u can be time consuming, it is shown in [7] that an approxi-
mate value of

√
�u can be computed without affecting the time complexity. The

number of tests for obtaining a lower bound � and an upper bound u such that
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u = � + 1 is O(log log u0
	0

) (see [7] for more details), which means O(log log n)
iterations in our case. Since one iteration takes O(t), finding the smallest k for
which the solution has value at most U takes total running time O(t log log n).�

For the proof concerning the non-existence of a ptas (polynomial-time approx-
imation scheme) we shall use an approximation-preserving reduction, called L-
reduction, which was introduced by Papadimitriou and Yannakakis in [12]. Let
A and B be two optimization problems. Then A is said to be L-reducible to B
if there are two constants a, b > 0 such that

1. there exists a function, computable in polynomial time, which transforms
each instance x of A into an instance x′ of B such that optB(x′) ≤ a·optA(x),

2. there exists a function, computable in polynomial time, which transforms
each solution y′ of x′ into a solution y of x such that |val(x, y)− optA(x)| ≤
b · |val(x′, y′)− optB(x′)|.

For us the important property of this reduction is that if A is L-reducible to B
and A has no ptas then B has no ptas.

3 Complexity on Bipartite Graphs

Maximum-weight independent set is polynomial-time solvable on bipartite graphs.
We show in this section that the k most vital nodes or min node blocker versions
become NP-hard on bipartite graphs, and most vital nodes has no ptas. Never-
theless, these problems remain polynomial-time solvable in the unweighted case.
We first prove this latter fact.

Theorem 2. k Most Vital Nodes Independent Set and also its comple-
mentary problem Min Node Blocker Independent Set are polynomial for
unweighted bipartite graphs. Moreover, if a largest matching and a smallest ver-
tex cover are given with the input, these problems are solvable in linear time.

Proof. Let G = (V, E) be a bipartite input graph on n vertices. From Kőnig’s
theorem [10] we know that τ(G) = ν(G) holds; let us denote here their common
value by t. The classical proof of the equality τ = ν is algorithmic and also
yields a maximum matching M = {e1, . . . , et} and a minimum vertex cover
X = {v1, . . . , vt} in polynomial time. Moreover, we have α(G) = n − t (known
as a Gallai-type identity) and V \ X is a largest independent set in G. Let us
introduce the further notation R = V \ V (M) and r = |R| = n − 2t; i.e., the
number and the set of vertices not contained in any of the matching edges in M .

We can show now that these problems are solvable in linear time, as follows.

k Most Vital Nodes Independent Set
If k ≤ |R|, we remove any k vertices from R. Since the remaining graph (of

order n − k) still contains the matching M of size t, the independence number
cannot be larger than n − k − t. It is also clear that α cannot be decreased by
more than k if we remove just k vertices, hence the solution obtained is optimal.
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If k > |R|, we remove the entire R and the vertices of &(k − r)/2' edges
from M , and one further vertex if k − r is odd. This decreases the size of M
by �(k − r)/2� and the independence number by &(k + r)/2', and hence the
new value is �(n − k)/2� (originally we had α(G) = (n + r)/2). This decrease
is optimal, because after the removal of k vertices at least half of the remaining
n− k belong to the same vertex class.

Min Node Blocker Independent Set
If U ≥ n − t, no vertices need to be removed. If t ≤ U < n − t, we remove

n − t − U vertices of R. If U = t − � where 1 ≤ � ≤ t, we remove the entire R
and the 2� vertices of � arbitrarily chosen edges from M . All these choices are
optimal, as follows from the proof concerning most vital nodes. �

We show in the following that these problems become NP-hard in the weighted
case. The following notion will be of essence.

Definition 1. Let G = (V, E) be an undirected graph. The bipartite incidence
graph of G is the bipartite graph H whose vertex set is V ∪ E and there is an
edge in H between v ∈ V and e ∈ E if and only if e is incident to v in G.

Theorem 3. k Most Vital Nodes Independent Set and Min Node
Blocker Independent Set are strongly NP-hard even for bipartite graphs.

Proof. We first prove hardness for k Most Vital Nodes Independent Set.
Let G = (V, E) be an instance of the decision problem associated to Indepen-
dent Set with n vertices and m edges, and an integer �; and let H denote the
bipartite incidence graph of G. The construction of H from G requires linear
time only. Each vertex of E in H has weight 1 and each vertex of V in H has
weight n2. Due to this rather unbalanced weighting, the unique maximum-weight
independent set in H is V ; i.e., α(H) = n3.

We show in the following that if there is an independent set of size at least
� in G then H contains a set S of � vertices such that α(H − S) = (n − �)n2,
and otherwise removing any subset S of � vertices from H , we have α(H −S) ≥
(n−�)n2+1. Since vertices from V have weight n2 and those from E have weight
1, in order to have a maximum-weight independent set as small as possible after
removing a set S of size �, S has to be included in V .

If G contains an independent set S of size �, then removing S from the vertex
set of H , we obtain a graph whose maximum-weight independent set is V \ S.
This set has weight (n− �)n2.

If G contains no independent set of size �, then any S ⊂ V of size � contains
at least an edge e ∈ E in G, and this e in H is nonadjacent to the entire V \ S.
Thus, when we remove any set S of � vertices from H , α(H−S) ≥ (n− �)n2 +1.

Due to Remark 1, Min Node Blocker Independent Set is also strongly
NP-hard. �

We are going to prove an approximation hardness result, too. In the reduction,
the following problem will be used.
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Max k Vertex Cover
Input: A graph G = (V, E) with k ≤ |V |.
Output: The maximum number of edges in G that can be covered by a subset
V ′ ⊆ V of cardinality k.

Max k Vertex Cover-B is the version of Max k Vertex Cover where
the maximum degree of the graph is at most B.

We shall apply the following version of some known results.

Lemma 1. For appropriately chosen B, Max n/2 Vertex Cover-B has no
ptas on graphs G = (V, E) with m = Θ(n) and α(G) = τ(G) = n/2, where
n = |V | and m = |E|, unless P=NP.

Proof. An approximation algorithm for Vertex Cover on graphs with τ(G) ≥
|V (G)|/2 is also an approximation algorithm with the same ratio for general
instances of Vertex Cover [11]. Using the APX-hardness of Vertex Cover-B
[12] and the gap reduction from Vertex Cover-B to Max k Vertex Cover-
B [13] for k ≥ n/2, we conclude that Max k Vertex Cover-B has no ptas
on graphs with n vertices when k ≥ τ(G) ≥ n/2. We can reduce this last
problem to the same problem on instances with k ≥ τ = n/2 by inserting 2τ −n
isolated vertices. Moreover, these last instances are reducible to instances where
k = 2τ = n/2 by inserting k − τ isolated edges. �

We extract the key points of the reduction in the following lemma on independent
sets.

Lemma 2. Let G = (V, E) be a graph with n vertices and m edges, and let H
be the bipartite incidence graph of G. Then the following properties are valid.

(a) Suppose that G has maximum degree at most B, and the weights in H are
wv = B + 1 for all v ∈ V and we = 1 for all e ∈ E. Then, for any
V ′ ⊂ V and any independent set S disjoint from V ′ in H, there exists an
independent set S′ of H such that w(S′) ≥ w(S) and S′ ∩ V = V \ V ′.
Thus, if S′ is maximal, then

S′ = (V \ V ′) ∪ {e ∈ E | e ⊂ V ′}
and, in particular, α(H − V ′) ≥ (B + 1) · (n− |V ′|).

(b) Under the conditions of (a), for any V ′ ⊂ V ∪E with |V ′| < |V | there exists
a V ′′ ⊂ V such that |V ′′| = |V ′| and the maximum weight of an independent
set in H − V ′′ is not larger than that in H − V ′. As a consequence,

α(H − V ′) ≥ α(H − V ′′) = (B + 1) · (n− |V ′|) + |{e ∈ E | e ⊂ V ′′}|.
Moreover, the set V ′′ can be found efficiently.

Proof. (a) If S contains all vertices of V \ V ′, then we have nothing to prove.
Otherwise we modify S step by step, keeping it independent and not decreasing
its value, until it contains the entire V \V ′. Hence, assume that v ∈ V is a vertex
such that v /∈ V ′ ∪ S. If v has no neighbor in S ∩ E, then S ∪ {v} is a proper
extension. Suppose that this is not the case; i.e., there is an edge e ∈ E ∩S such
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that v ∈ e. We now modify S to (S \NH(v))∪{v}, where NH(v) denotes the set
of vertices adjacent to v in H , that is the set of edges incident to v in G. In this
way we have removed at most B neighbors of v from S, each of weight 1, and
inserted v of weight B + 1, hence the total weight of the modified set is at least
w(S). Moreover, the set remains independent because all neighbors of v have
been removed. Thus, after |(V \ V ′) \ S| steps, the required set S′ is obtained.

(b) If V ′ ⊂ V , then V ′′ = V ′ is a proper choice. Hence suppose V ′∩E �= ∅. Let us
introduce the notation n′ = |V ′∩V |, m′ = |E(G[V ′∩V ])\(V ′∩E)|. By (a) we see
that α(H−V ′) = (B +1) ·(n−n′)+m′ holds. Choose e ∈ V ′∩E and v ∈ V \V ′,
and modify V ′ to the set (V ′ \ {e}) ∪ {v}. This keeps cardinality unchanged,
while the first term (B + 1) · (n − n′) decreases by precisely B + 1. Moreover,
since G has maximum degree at most B, the second term m′ can increase by
at most B when we insert v into the set, and can further increase by at most 1
when we omit e. Thus, sum does not increase. Repeatedly eliminating all e ∈ E
from V ′, the required V ′′ is obtained. Then (a) implies that the independent set
of maximum weight in H − V ′′ consists of all v /∈ V ′′ and all e ⊂ V ′′. �

Theorem 4. k Most Vital Nodes Independent Set has no ptas even for
bipartite graphs if P �= NP .

Proof. We prove the non-existence of a ptas for k = n/2, constructing an L-
reduction from Max n/2 Vertex Cover-B to n/2 Most Vital Nodes In-
dependent Set, where instances of the former problem are restricted to graphs
G of maximum degree at most B and also satisfying α(G) = τ(G) = n/2.
In this case, let H denote the bipartite incidence graph of the input graph
G = (V, E), the latter having n vertices and m edges. The vertices of H have
weight wv = B + 1 for all v ∈ V and we = 1 for all e ∈ E.

Consider first an optimum solution V ′ in G. As τ(G) = n/2 has been assumed,
opt1 = m holds and V ′ covers all edges of G. Then removing V \ V ′ from
the vertex set of H , we obtain a graph in which the maximum weight of an
independent set is ((B + 1)/2) · n, as implied by part (a) of Lemma 2. On the
other hand, parts (a) and (b) together yield that after the removal of any n/2
vertices from H , there always remains an independent set of at least that large
weight, thus

opt2 =
B + 1

2
· n ≤ (B + 1) · opt1,

the upper bound being valid since opt1 ≥ n/2 surely holds by the assumption
τ(G) = n/2.

Consider now any subset V ′ of n/2 vertices in H , and denote val2 = α(H−V ′).
Now we apply part (b) of Lemma 2 to obtain an appropriate set V ′′ of n/2
vertices, which is a subset of V . We view V \ V ′′ as a solution in G and denote
its value by val1. In this way we obtain

val2−opt2 ≥ α(H−V ′′)−opt2 = ((B + 1) · (n− |V ′′|) + |E(G[V ′′])|)−B + 1
2

·n

= |E(G[V ′′])| = opt1 − val1,



Complexity of Most Vital Nodes for Independent Set 161

the last equation being valid because opt1 = m and E(G[V ′′]) is precisely the
set of edges not covered by the vertices of V \ V ′′. This completes the proof of
the theorem. �

4 Graph Classes Related to Tree Structures

In this section we consider graph classes representable over tree structures, and
prove that they admit algorithms solving the considered problems in polynomial
time. Efficient solvability for the graph classes in the first two subsections are
implied by the results of the third subsection, too, but the methods for the
former are simpler.

4.1 Trees

Theorem 5. k Most Vital Nodes Independent Set is polynomial on trees.
On trees of order n the algorithm runs in O(nk2) time, for any k ≥ 1.

Proof. Our general approach is to find not only a set of k most vital nodes but
simultaneously also the value of a corresponding largest independent set. For
this purpose we view the input as a rooted tree with an arbitrarily chosen root,
and organize computation according to a postorder traversal.

Consider any tree T with vertices v1, . . . , vn. Each vertex vi can have three
positions in a solution, that we shall denote by marks +,−, 0 as follows:

• ‘+’ means that vi is selected into an independent set;
• ‘−’ means that vi is selected for deletion;
• ‘0’ means that vi is none of the above two types.

In a solution exactly k marks ‘−’ have to occur.
The subtree rooted in vi is denoted by Ti. For each i = 1, . . . , n, each ∗ ∈

{+,−, 0}, and each j = 0, 1, . . . , k, a value zi(j, ∗) will be computed. This zi(j, ∗)
represents the minimum achievable weight of a largest independent set on Ti

under the conditions that exactly j vertices are removed from Ti and vi has mark
∗. For the recursive computation the children of vi with degree d will be denoted
by vi1 , . . . , vid

. We traverse T in postorder and apply dynamic programming.

Recursion. If vi is marked ‘+’, then all its children must have ‘−’ or ‘0’, since
otherwise two vertices selected for the independent set would be adjacent. More-
over, zi(j, ∗) requires that the total number of vertices marked ‘−’ should be
exactly j in Ti. On the other hand, we have one and only one way to make the
final result as small as possible: decide which of the vertices should be marked
with ‘−’. Once this has been decided, the distribution of ‘+’ and ‘0’ positions
aims at maximizing the total weight of ‘+’. This leads to the following general
recursions:

zi(j, +) = wi + min
j1,...,jd≥0

j1+...+jd=j

d∑
	=1

min (zi�
(j	,−), zi�

(j	, 0)) ,
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zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d∑
	=1

min (zi�
(j	,−), max (zi�

(j	, +), zi�
(j	, 0))) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d∑
	=1

min (zi�
(j	,−), max (zi�

(j	, +), zi�
(j	, 0))) ,

For a leaf vi we clearly have zi(0, +) = wi and zi(1,−) = zi(0, 0) = 0. Further,
to indicate that all other combinations of j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0}
are infeasible, we set a dummy symbol zi(j, ∗) = NIL for them. In the recursive
step, terms with value NIL on the right-hand side are neglected, except when all
terms are the same, and in this case we define zi(j, ∗) = NIL, too.

Finding an optimal solution. Assuming that T has root vi0 , after the removal
of k properly chosen vertices the smallest possible value of α is

min (zi0(k,−), max (zi0(k, +), zi0(k, 0))) .

In fact, inserting a new vertex v0 with weight w0 = 0 as new root and parent
for vi0 does not change the optimum, and then we would have z0(k, +) ≤ opt =
z0(k, 0) ≤ z0(k,−). A set of k most vital nodes can also be determined in O(n)
additional steps if we make a little more administration. At the recursive step
for each zi(j, ∗) we register for each edge vivi�

the corresponding value of j	 in
the optimal distribution (j1, . . . , jd) for j and also the mark ∗ ∈ {+,−, 0} of
i	 which gave the optimum for vi. Once these data are available for all vi and
all pairs (j, ∗), we can traverse T in preorder and select the vertices having ‘−’
mark for the most vital set.

Efficient implementation. The key point is to find in polynomial time a best
distribution (j1, . . . , jd) for the ‘max’ and ‘min’ functions acting on the sums.
This can be done, despite that the number of possibilities can even be exponential
if d is proportional to n.

If d = 2 then we have at most j+1 combinations of feasible pairs j1, j2. Hence,
optimal choice can be made in O(k) steps for any one particular j, and in O(k2)
steps for all 0 ≤ j ≤ k. If d is larger, we can split the children of vi into two sets
of (nearly) equal size, {v	 | 1 ≤ � ≤ &d/2'} and {v	 | &d/2'+1 ≤ � ≤ d}, make all
computation in them separately, and then combine the results for vi. (Splitting
corresponds to inserting a ‘supernode’ above each of the two sets, which has
weight zero and becomes a virtual child of vi.) This requires d− 1 rounds for vi.
Since T is a tree, those d− 1 sum up to n− 2, thus the overall running time is
O((k2 + 1)n), and never exceeds O(n3). (Here ‘+1’ is needed for k = 0.) Note
that there are no ‘hidden large constants’ in the ‘O’ notation. �

Theorem 6. Min Node Blocker Independent Set is polynomial on trees.
On trees with n vertices the algorithm runs in O(n3 log log n) time.

Proof. The above algorithm in one iteration for any 1 ≤ v ≤ n runs in O(v2n) =
O(n3) time. Hence, using Theorem 1, finding the smallest k for which the solution
has value at most U takes total running time O(n3 log log n). �
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Remark 2. The algorithm proposed in Theorem 5 solves the k Most Vital
Nodes Independent Set problem on paths in O(kn) time. In fact, in the
general time bound O(nk2) for trees, the factor k2 occurs due to the presence
of vertices with more than one child. This observation implies further that the
algorithm proposed in Theorem 6 solves Min Node Blocker Independent
Set on paths in O(n2 log log n) time.

4.2 Cycles

Theorem 7. k Most Vital Nodes Independent Set is polynomial on cy-
cles. On cycles of order n the algorithm runs in O(kn2) time, for any k ≥ 1.

Proof. Let S∗ = {v1, . . . , vr} ⊂ V be a maximum-weight independent set of a
given cycle C = (V, E). An optimal solution V ′ ⊂ V of k Most Vital Nodes
Independent Set must contain at least one node of S∗, since otherwise α(C−
V ′) is not smaller than α(C). Thus, for each vj ∈ S∗, j = 1, . . . , r, we determine
the k − 1 further nodes to remove in the resulting path as follows. We delete vj

from C and determine a maximum-weight independent set in the resulting path
C−vj by applying the algorithm given in Theorem 5 in order to find an optimal
solution R∗

j ⊂ V \ {vj} of k− 1 Most Vital Nodes Independent Set on the
path C−vj . Then, an optimal solution for k Most Vital Nodes Independent
Set on C is R∗

	 ∪ {v	} such that α(C − v	 −R∗
	 ) = min1≤j≤r α(C − vj −R∗

j ). If
the root is chosen to be an endpoint of the path, the complexity of the algorithm
given in Theorem 5 for path C−vj is O(kn). Since |S∗| ≤ n, in this way k Most
Vital Nodes Independent Set is solved in O(kn2). �

Theorem 8. Min Node Blocker Independent Set is polynomial on cycles.
On cycles of order n the algorithm runs in O(n3 log log n) time.

Proof. The theorem follows from Theorem 7 and Theorem 1. �

4.3 Graphs of Bounded Treewidth

A tree decomposition of a graph G = (V, E) without isolated vertices is a pair
(T,X ) where

– T = (X, F ) is a tree graph with a set X = {x1, . . . , xm} of nodes and a set
F of lines ;

– X = {X1, . . . , Xm} is a set system over V (i.e., over the vertex set of G),
where each Xq is associated with node xq of T ;

– each edge vivj ∈ E of G is contained in at least one Xq for some 1 ≤ q ≤ m;
– for any vi ∈ V , if vi ∈ Xq′ and vi ∈ Xq′′ , then vi ∈ Xq for all q such that xq

lies on the xq′–xq′′ path in T .

The width of (T,X ) is max
1≤q≤m

|Xq|−1, and the treewidth of G, denoted by tw(G),

is the smallest integer t for which G admits a tree decomposition of width t. For
undefined details on tree decomposition we refer to [9].
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Theorem 9. k MostVitalNodes IndependentSet is polynomial on bounded
treewidth graphs. On graphs of order n, the algorithm runs in O(nk2) time for
any k ≥ 1.

Due to space limitation, the proof of this result is omitted and will appear in
the extended version of the paper.

Theorem 10. MinNodeBlocker IndependentSet is polynomial on bounded
treewidth graphs. On graphs of order n the algorithm runs in O(n3 log log n) time.

Proof. The result follows from Theorem 9 and Theorem 1. �

4.4 Cographs

To each cograph G with n vertices, we can associate a rooted tree T , called the
cotree of G. Leaves of T correspond to vertices of the graph G and internal nodes
of T are labeled with either ‘∪’ (union-node) or ‘×’ (join-node). A subtree rooted
at node ‘∪’ corresponds to the union of the subgraphs defined by the children
of that node, and a subtree rooted at node ‘×’ corresponds to the join of the
subgraphs defined by the children of that node; that is, we add an edge between
every two vertices corresponding to leaves in different subtrees. Cographs can be
recognized in linear time and the cotree representation can be obtained efficiently
[4,6]. Moreover, this cotree can easily be transformed in linear time to a binary
cotree with O(n) nodes.

Theorem 11. k Most Vital Nodes Independent Set is polynomial on
cographs. On cographs of order n, the algorithm runs in O(nk2) time, for any
k ≥ 1.

Proof. Consider a cograph G with n vertices v1, . . . , vn. Given a binary cotree
representation T of G, we show in the following how to solve the k Most Vital
Nodes Independent Set using dynamic programming.

Let x1, . . . , xt be the nodes of T where xr is its root and t is in O(n). For
i = 1, . . . , t, denote by Ti the subtree rooted at xi, Gi the subgraph induced by
the vertices corresponding to the leaves of Ti, and Vi these vertices.

Recursion. We associate a (k + 1)-vector to each node xi of T , i = 1, . . . , t.
In the following, a (k + 1)-vector is simply call a vector. For each i and each
j = 0, 1, . . . , k, we compute zi(j) that is the minimum weight of a maximum
independent set on Gi where exactly j vertices are removed from Gi. These
vectors are computed “bottom-up” in the cotree. So, we start by computing
vectors of leaves and after that the vector of an internal node if the vectors of
its two children are already computed.

Given a node xi of the cotree, the corresponding vector is obtained as follows:

– If xi is a union-node with two children x	 and xr, we have no edges be-
tween G	 and Gr. Then the maximum independent set in Gi is the union
of those in G	 and Gr. Thus, since we want to find a maximum-weight
independent set as small as possible, the best choice is given by zi(j) =
minj1+j2=j (z	(j1) + zr(j2)).
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– If xi is a join-node with two children x	 and xr , every vertex in V	 is adjacent
to every vertex in Vr. Then each independent set in Gi is entirely contained
either in G	 or in Gr. So, zi(j) = minj1+j2=j (max(z	(j1), zr(j2))).

– If xi is a leaf then zi(0) = wi, zi(1) = 0, and zi(j) = NIL for j = 2, . . . , k
which means that the latter configurations are infeasible. In the recursive
step, terms with value NIL on the right-hand side are neglected, except when
all terms are the same, and in this case we define zi(j) = NIL, too.

Finding an optimal solution. An optimal solution is obtained at the root xr of T
and its weight is equal to zr(k). Moreover, an optimal set of k removed vertices
can be computed step by step in the recursion. Indeed, let S−

i (j) be the subset
of j removed vertices in Gi. For a leaf xi we have S−

i (0) = ∅, S−
i (1) = {vi} and

S−
i (j) = ∅ for j = 2, . . . , k. For a union-node or a join-node xi with two children

x	 and xr , recursion yields S−
i (j) = S−

	 (j∗1 ) ∪ S−
r (j∗2 ) where j∗1 and j∗2 are the

indices that realize the minimum for zi(j).

Time analysis. For k Most Vital Nodes Independent Set , vectors are
computed in O(k) for each leaf and in O(k2) for each union-node and each join-
node. Since t = O(n), the algorithm runs in O(nk2). �

Theorem 12. Min Node Blocker Independent Set is polynomial on
cographs. On cographs of order n, the algorithm runs in O(n3 log log n) time.

Proof. The theorem follows from Theorem 11 and Theorem 1. �

5 Conclusion

In this paper we studied the complexity of the k most vital nodes and min
node blocker versions of the maximum-weight independent set problem. While
maximum-weight independent set is polynomial on bipartite graphs, the k most
vital nodes and min node blocker versions become NP-hard. Nevertheless the un-
weighted versions remain polynomial on bipartite graphs. In a graph, a maximum-
weight independent set is the complementary set of a minimum-weight vertex
cover. In sharp contrast to this, however, concerning the k most vital nodes or
min node blocker versions an optimum solution for maximum-weight indepen-
dent set may be substantially different from an optimum solution for minimum-
weight vertex cover. Our results on the latter will be included in an extended
paper. We show in this paper that the k most vital nodes version has no ptas.
An interesting open question would be to establish other positive and negative
results concerning the approximability of these versions. In particular it remains
open to decide weather min node blocker on bipartite graphs has a ptas.

Another interesting perspective is to study the complexity of the k most vi-
tal nodes and min node blocker versions of the maximum-weight independent
set problem for graphs of bounded cliquewidth and graphs of bounded NLC-
width, that generalize cographs. Moreover, the study of the complexity and the
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approximation of these versions for further classes of graphs for which maximum-
weight independent set and minimum-weight vertex cover are polynomial is also
of interest.

Note added in Proof. The time bound in Theorem 1 and its applications should
read O(t(log log n + log 1/ε)) and is meant for finding a (1 + ε)-approximation.
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Abstract. A homomorphism from a graph G to a graph R is locally
surjective if its restriction to the neighborhood of each vertex of G is
surjective. Such a homomorphism is also called an R-role assignment of
G. Role assignments have applications in distributed computing, social
network theory, and topological graph theory. The Role Assignment
problem has as input a pair of graphs (G, R) and asks whether G has
an R-role assignment. This problem is NP-complete already on input
pairs (G, R) where R is a path on three vertices. So far, the only known
non-trivial tractable case consists of input pairs (G, R) where G is a
tree. We present a polynomial time algorithm that solves Role Assign-
ment on all input pairs (G, R) where G is a proper interval graph. Thus
we identify the first graph class other than trees on which the prob-
lem is tractable. As a complementary result, we show that the problem
is Graph Isomorphism-hard on chordal graphs, a superclass of proper
interval graphs and trees.

1 Introduction

Graph homomorphisms form a natural generalization of graph colorings: there
is a homomorphism from a graph G to the complete graph on k vertices if and
only if G is k-colorable. A homomorphism from a graph G = (VG, EG) to a graph
R = (VR, ER) is a mapping r : VG → VR that maps adjacent vertices of G to
adjacent vertices of R, i.e., r(u)r(v) ∈ ER whenever uv ∈ EG. A homomorphism
r from G to R is locally surjective if the following is true for every vertex u of G:
for every neighbor y of r(u) in R, there is a neighbor v of u in G with r(v) = y.
We also call such an r an R-role assignment. See Figure 1 for an example.

Role assignments originate in the theory of social behavior [7,19]. A role graph
R models roles and their relationships, and for a given society we can ask if its
individuals can be assigned roles such that relationships are preserved: each per-
son playing a particular role has exactly the roles prescribed by the model among
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Fig. 1. A graph R and a proper interval graph G with an R-role assignment

its neighbors. In this way, a large network of individuals can be compressed into
a smaller network that still gives some description of the large network. Role
assignments are also useful in the area of distributed computing, in which one of
the fundamental problems is to arrive at a final configuration where all proces-
sors have been assigned unique identities. Chalopin et al. [4] show that, under
a particular communication model, this problem can be solved on a graph G
representing the distributed system if and only if G has no R-role assignment
for a graph R with fewer vertices than G. Role assignments are useful in topo-
logical graph theory as well, where a main question is which graphs G allow role
assignments to planar graphs R [21].

The Role Assignment problem has as input a pair of graphs (G, R) and asks
whether G has an R-role assignment. It is NP-complete on arbitrary graphs G,
even when R is any fixed connected bipartite graph on at least three vertices [10].
Hence, for polynomial time solvability, our only hope is to put restrictions on G.
So far, the only known non-trivial graph class that gives tractability is the class
of trees: Role Assignment is polynomial time solvable on input pairs (G, R)
where G is a tree and R is arbitrary [11]. Are there other graph classes on which
Role Assignment can be solved in polynomial time?

We show that Role Assignment can be solved in polynomial time on in-
put pairs (G, R) where G is a proper interval graph and R is arbitrary. Our
work is motivated by the above question and continues the research direction
of Sheng [23], who characterizes proper interval graphs that have an R-role as-
signment for some fixed role graphs R with a small number of vertices. Proper
interval graphs, also known as unit interval graphs or indifference graphs, are
widely known due to their many theoretical and practical applications [3,14,22].
By our result, they form the first graph class other than trees on which Role
Assignment is shown to be polynomial time solvable. To obtain our algorithm
we prove structural properties of clique paths of proper interval graphs related
to role assignments. This enables us to give an additional result, namely a poly-
nomial time algorithm for the problem of deciding whether there exists a graph
R with fewer vertices than a given proper interval graph G such that G has an
R-role assignment. Recall that this problem stems from the area of distributed
computing [4]. It is co-NP-complete in general [5]. Finally, to indicate that Role
Assignment might remain hard on larger graph classes, we show that it is
Graph Isomorphism-hard for input pairs (G, R) where G belongs to the class
of chordal graphs, a superclass of both proper interval graphs and trees.
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2 Preliminaries

All graphs considered in this paper are undirected, finite and simple, i.e., without
loops or multiple edges. A graph is denoted G = (VG, EG), where VG is the set
of vertices and EG is the set of edges. We will use the convention that n = |VG|
and m = |EG|. For a vertex u of G, NG(u) = {v | uv ∈ EG} denotes the set
of neighbors of u, also called the neighborhood of u. The degree of a vertex u is
degG(u) = |NG(u)|. A graph H = (VH , EH) is a subgraph of G if VH ⊆ VG and
EH ⊆ EG. For U ⊆ VG, the graph G[U ] = (U, {uv ∈ EG | u, v ∈ U}) is called
the subgraph of G induced by U . A graph is complete if it has an edge between
every pair of vertices. A set of vertices A ⊆ VG is a clique if G[A] is complete. A
clique is maximal if it is not a proper subset of any other clique.

An isomorphism from a graph G to a graph H is a bijective mapping f :
VG → VH such that for any two vertices u, v ∈ EG, we have uv ∈ EG if and only
if f(u)f(v) ∈ EH . We say that G is isomorphic to H and write G * H .

Let u and v be two vertices of a graph G. Then a path between u and v is a
sequence of distinct vertices P = u1u2 · · ·up starting at u1 = u and ending at
up = v, where each pair of consecutive vertices ui, ui+1 forms an edge of G. If
uv is an edge as well we obtain a cycle. Sometimes we fix an orientation of P . In
that case we write ui

−→
P uj = uiui+1 · · ·uj and uj

←−
P ui = ujuj−1 · · ·ui to denote

the subpath from ui to uj, or from uj to ui, respectively. The length of a path or
cycle is its number of edges. The set of vertices of a path or cycle P is denoted
by VP . A graph is connected if there is a path between every pair of vertices. A
connected component of G is a maximal connected subgraph of G.

Let A1, . . . , Ap be a sequence of sets. For i = 1, . . . , p, we use shorthand
notation A≤i = A1 ∪ · · · ∪Ai and A≥i = Ai ∪ · · · ∪Ap.

2.1 Chordal, Interval, and Proper Interval Graphs

A graph isomorphic to the graph K1,3 = ({a, b1, b2, b3}, {ab1, ab2, ab3}) is called
a claw with center a and leaves b1, b2, b3. A graph is called claw-free if it does
not have a claw as an induced subgraph. An asteroidal triple (AT) in a graph G
is a set of three mutually nonadjacent vertices u1, u2, u3 such that G contains a
path Pij from ui to uj with Pij ∩NG(uk) = ∅ for all distinct i, j, k ∈ {1, 2, 3}. A
graph is called AT-free if it does not have an AT.

A graph is chordal if it contains no induced cycle of length at least 4. A graph
is an interval graph if intervals of the real line can be associated with its vertices
such that two vertices are adjacent if and only if their corresponding intervals
overlap. Interval graphs are a subclass of chordal graphs: a chordal graph is an
interval graph if and only if it is AT-free [17].

The following characterization of interval graphs is also well known. Let G
be a connected graph with maximal cliques K1, . . . , Kp and let Kv denote the
set of maximal cliques in G containing vertex v ∈ VG. Then G is an interval
graph if and only if G has a path decomposition that is a clique path [12], i.e., a
path P = K1 · · ·Kp such that for each v ∈ VG the set Kv induces a connected
subpath in P . We say that the maximal cliques of G are the bags of P . A bag Ki
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introduces a vertex u of G if u ∈ Ki for i = 1 or u ∈ Ki \Ki−1 for some i ≥ 2. In
that case, by the definition of a clique path, u is not in a bag Kh with h ≤ i− 1.
If u ∈ Ki for i = p or u ∈ Ki \ Ki+1 for some i ≤ p − 1, then we say that Ki

forgets u. Note that every bag introduces at least one vertex, and forgets at least
one vertex. Because G is connected, we also observe that each bag, except K1,
contains at least one vertex from a previous bag. We denote the index of the bag
in P that introduces a vertex u (the first bag in which u appears) by fP (u) and
the index of the bag that forgets u (the last bag in which u appears) by lP (u).
We say that u transcends a vertex v in P if fP (u) < fP (v) and lP (v) < lP (u).
A clique path has at most n bags, and can be constructed in linear time (see
e.g. [12]).

An interval graph is proper interval if it has an interval representation in which
no interval is properly contained in any other interval. An interval graph is a
proper interval graph if and only if it is claw-free [22]. Equivalently, a chordal
graph is a proper interval graph if and only if it is AT-free and claw-free. Chordal
graphs, interval graphs, and proper interval graphs can all be recognized in linear
time, and have at most n maximal cliques (see e.g. [3,14]). The following theorem
will be used heavily in our proofs.

Theorem 1 ([15]). A connected chordal graph is a proper interval graph if and
only if it has a unique clique path in which no vertex transcends any other vertex.

Two adjacent vertices u and v of a graph G are twins if NG(u)∪ {u} = NG(v)∪
{v}. Let G be a connected proper interval graph with clique path P = K1 · · ·Kp.
Note that two vertices u and v of G are twins if and only if fP (u) = fP (v) and
lP (u) = lP (v). We partition VG into sets of twins. A vertex that has no twin
appears in its twin set alone. We order the twin sets with respect to P , and label
them T1, . . . , TS , in such a way that i < j if and only if for all u ∈ Ti, v ∈ Tj ,
either fP (u) < fP (v), or fP (u) = fP (v) and lP (u) < lP (v). We call T1, . . . , Ts

the ordered twin sets of G. The following observation immediately follows from
this definition and the definition of a clique path. Hence, this observation is even
valid for interval graphs that are not proper.

Observation 1. Let G be a connected proper interval graph with clique path
P = K1 . . . Kp and ordered twin sets T1, . . . , Ts. Then for h = 1, . . . , s− 1, there
exists a bag that contains twin sets Th and Th+1. Furthermore, if a bag contains
twin sets Tb and Tc with b < c then it contains twin sets Tb+1, . . . , Tc−1 as well.

2.2 Role Assignments

If r is a homomorphism from G to R and U ⊆ VG, then we write r(U) =⋃
u∈U r(u). Recall that r is an R-role assignment of G if r(NG(u)) = NR(r(u))

for every vertex u of G. Graph R is called a role graph and its vertices are called
roles. Throughout the paper, we use n and m to refer to the number of vertices
and edges of G. We frequently make use of the following two known results.
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Observation 2 ([10]). Let G be a graph and let R be a connected graph such
that G has an R-role assignment. Then each vertex x ∈ VR appears as a role of
some vertex u ∈ VG, i.e., r(u) = x. Furthermore, if |VG| = |VR| then G * R.

Lemma 1 ([10]). Let G and R be two graphs such that G has an R-role as-
signment r, and let x, y ∈ VR be roles connected by a path z1 · · · z	 in R, with
x = z1 and y = z	. Then for each u ∈ VG with r(u) = x there exists a vertex
v ∈ VG and a path t1 · · · t	 in G, with u = t1 and v = t	, such that r(ti) = zi for
i = 1, . . . , �.

Our first result, given in Theorem 2, shows that chordal graphs, interval graphs,
and proper interval graphs are closed under role assignments, and it is needed
in Section 3. We postpone its proof to the journal version of this paper. Note
that, for each of the three statements in Theorem 2, the reverse implication is
not valid. In order to see this let G be the 6-cycle and R be the 3-cycle.

Theorem 2. Let G be a graph and let R be a connected graph such that G has
an R-role assignment.
(i) If G is a chordal graph then R is a chordal graph.
(ii) If G is an interval graph then R is an interval graph.
(iii) If G is a proper interval graph then R is a proper interval graph.

3 Role Assignments on Proper Interval Graphs

We start with the following key result. Note that this result is easy to verify for
paths.

Theorem 3. Let G and R be two connected proper interval graphs such that
G has an R-role assignment r. Let P and P ′ be the clique paths of G and R,
respectively. Then the bags of P and P ′ can be ordered such that P = K1 · · ·Kp

and P ′ = L1 · · ·Lq, with q ≤ p, and r(Ki) = Li, for i = 1, . . . , q.

Proof. By the definition of a role assignment, |VG| ≥ |VR| holds. Assume first
that |VG| = |VR|. Then, as a result of Observation 2, G and R are isomorphic.
By Theorem 1 the clique paths of G and R are unique. Hence the ordering of
the bags in each path is unique up to reversal. We can try each direction for one
of the paths, and the statement of the theorem holds.

For the rest of the proof, assume that |VG| > |VR|. Then at least one vertex of
R is the role of more than one vertex of G. Let x be such a role. Then there exist
vertices u and u′ in G with r(u) = r(u′) = x. Assume lP (u) = h and fP (u′) = i,
where we may assume that h < i because Kh and Ki are cliques, and vertices
with the same role can not be adjacent. Let x be chosen in such a way that every
vertex in K≤i−1 has a unique role, i.e., |r(K≤i−1)| = |K≤i−1|.
Claim 1. Every vertex of R occurs as a (unique) role of a vertex of K≤i−1.

We prove this claim by contradiction. Suppose there is a role y that does not
occur as a role of a vertex in K≤i−1. As a result of Observation 2, there exists
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a vertex v in G with r(v) = y. Let fP (v) = j. Since y does not appear as a role
on K≤i−1, we find that j ≥ i. We may choose v such that there is no vertex in
K≤j−1 with role y. Because Kj is a clique, we find that v is the only vertex of
Kj with role y.

Let Q′ = z1 · · · z	, with x = z1 and y = z	, be a shortest path between x and
y in R. By Lemma 1 we find that G contains a path Q1 = t1 · · · t	 with u = t1,
such that r(ti) = zi for i = 1, . . . , �. Since Q′ is a shortest path from x to y in
R, and there is no other vertex in Kj with role y, our choice of v implies that
we may assume that v = t	.

By the same reasoning we find a path Q2 = t′1 · · · t′	, with u′ = t′1 and v = t′	,
such that r(t′i) = zi for i = 1, . . . , �. Hence Q1 and Q2 are two paths with
r(VQ1 ) = r(VQ2 ) = VQ′ and |VQ1 | = |VQ2 | = |VQ′ |. Consequently, u is not on Q2
and u′ is not on Q1. However, since lP (u) = h < fP (u′) = i ≤ fP (v) = j and
Ki, Kj are cliques, we find that Q1 contains a neighbor w of u′.

Suppose i = j. Then u′ and v are neighbors in G, and consequently, xy is an
edge of R. This means that u and v are neighbors in G. Hence, there is a bag in
P containing both of them. This means that h = lP (u) ≥ fP (v) = j. However,
this is not possible since h < i ≤ j.

Suppose i < j. Then w = t2 as otherwise r maps the path u′w
−→
Q1t	 to a path

from x to y in R that is shorter than Q′. By the same reasoning, we find that w
is the only neighbor of u′ on Q1. Since Q1 is a shortest path and uu′ /∈ EG, this
means that G contains an induced claw with center t2 and leaves u, u′, t3, which
contradicts the assumption that G is a proper interval graph. This completes
the proof of Claim 1.

By Claim 1 we find that r(K≤i−1) = VR, and consequently, as |r(K≤i−1)| =
|K≤i−1|, we obtain |K≤i−1| = |VR|. Let r′ be the restriction of r to K≤i−1.

Claim 2. r′ is an R-role assignment of G[K≤i−1].

We prove Claim 2 as follows. Suppose r′ is not an R-role assignment of G[K≤i−1].
Because r is a homomorphism from G to R, we find that r′ is an homomorphism
from G[K≤i−1] to R. Hence, there must exist a vertex t ∈ K≤i−1 and vertices
z, z′ ∈ VR with r′(t) = r(t) = z, zz′ ∈ ER and z′ /∈ r′(NG(t)). Since r is
an R-role assignment of G, we find that z′ ∈ r(NG(t)). Hence lP (t) ≥ i + 1.
Consequently, as t ∈ K≤i−1, we find that t belongs to Ki. We proceed as follows.
Since r(K≤i−1) = VR, there exists a vertex t′ ∈ K≤i−1 with r′(t′) = r(t′) = z′.
By definition of r, we find that t′ has a neighbor s in G with r(s) = z. Because t
has no neighbor with role z′, we find that t and t′ are not adjacent in G. Hence
s �= t holds. Since every vertex of K≤i−1 has a unique role and vertex t ∈ K≤i−1
already has role z, we find that s /∈ K≤i−1. This means that Ki does not only
contain t but also contains t′. However, since Ki is a clique, t and t′ must be
adjacent. With this contradiction we have completed the proof of Claim 2.

Due to Claim 2 and the aforementioned observation that |K≤i−1| = |VR|, we
may apply Observation 2 and obtain that G[K≤i−1] is isomorphic to R. By
Theorem 1, the clique paths of G[K≤i−1] and R are unique. Hence, i = q + 1,
and the statement of the theorem follows. ��



Computing Role Assignments of Proper Interval Graphs 173

Note that Theorem 3 is not valid for interval graphs, which can be seen with
the following example. Let G be the path u1u2u3u4 to which we add a vertex u5
with edge u2u5 and a vertex u6 with edge u3u6. Let P = K1 · · ·K5 be a clique
path of G with K1 = {u1, u2}, K2 = {u2, u5}, K3 = {u2, u3}, K4 = {u3, u6} and
K5 = {u3, u4}. Let R be the 4-vertex path 1234. The unique clique path of R is
P ′ = L1L2L3 with L1 = {1, 2}, L2 = {2, 3} and L3 = {3, 4}. However, we find
that G has an R-role assignment r with r(u1) = r(u5) = 1, r(u2) = 2, r(u3) = 3,
and r(u4) = r(u6) = 4.

Also note that we can apply Theorem 3 twice depending on the way the bags
in the clique path of the proper interval graph G are ordered. This leads to a
rather surprising corollary that might be of independent interest.

Corollary 1. Let G be a connected proper interval graph with clique path P =
K1 · · ·Kp. If G has an R-role assignment and R is connected, then R * G[K≤i]
and R * G[K≥p−i+1], for some 1 ≤ i ≤ p.

As an illustration of Corollary 1 we have indicated the two copies of R in G with
bold edges in Figure 1. Due to Theorem 2 we do not need to restrict R to be a
proper interval graph in the statement of the above corollary. Hence for any two
connected graphs G and R, where G is proper interval with |VG| > |VR|, if G
has an R-role assignment then G contains two (not necessarily vertex-disjoint)
induced subgraphs isomorphic to R.

Theorem 3 only shows what an R-role assignment r of a proper interval graph
G looks like at the beginning and end of the clique path of G. To derive our
algorithm, we need to know the behavior of r in the middle bags as well. We
therefore give the following result, which is valid when R has at least three
maximal cliques and the number of maximal cliques in G is not too small. Its
proof is postponed to the journal version of this paper. The special cases when
R has just one or two maximal cliques or G has few maximal cliques will be
dealt with separately in the proof of Theorem 4.

Lemma 2. Let G be a connected proper interval graph with clique path P =
K1 · · ·Kp. Let R be a connected proper interval graph with clique path P ′ =
L1 · · ·Lq and ordered twin sets X1, . . . , Xt. Let r be an R-role assignment of G
with r(Kq) = Lq. Let T be the subset of Kq that consists of all vertices with roles
in Xt. Then the following holds if q ≥ 3 and p ≥ 2q + 1.

(i) If there is a vertex in T not in Kq+1, then there exists an index i ≥ q+1 such
that K≥q+1 \K≤q ⊆ K≥i and the restriction of r to K≥i is an R-role assign-
ment of G[K≥i] with r(Ki) = Lq. Furthermore, if i > q +1 then r(Kh) ⊆ Xt

for h = q + 1, . . . , i− 1.
(ii) If all vertices in T are in Kq+1, then there exists an index i ≥ q + 1 such

that T = K≤i−1 ∩Ki and T ∩Ki+1 = ∅, and the restriction of r to K≥i is
an R-role assignment of G[K≥i] with r(Ki) = Lq.

Let G and R be two connected proper interval graphs with clique paths P =
K1 · · ·Kp and P ′ = L1 · · ·Lq, respectively. A mapping r : K≤i → VR for some
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1 ≤ i ≤ p is a starting R-role assignment of G[K≤i] if for all u ∈ K≤i \ Ki+1
we have that r(NG(u)) = NR(r(u)), and for all u ∈ K≤i ∩ Ki+1 we have that
r(NG(u)) ⊆ NR(r(u)). Note that a starting R-role assignment of G[K≤i] is an
R-role assignment of G if and only if i = p.

Let 1 ≤ i ≤ p, and let r be a starting R-role assignment of G[K≤i]. We say
that v ∈ K≤i ∩Ki+1 is missing role x ∈ VR if x is a neighbor of r(v), and x is
not a role of a neighbor of v in K≤i. Let X1, . . . , Xt be the ordered twin sets of
R. We denote the set of missing roles of v that are in Xc by Mc(v). We say that
r can be finished by r∗ if r∗ is an R-role assignment of G with r∗(u) = r(u) for
all u ∈ K≤i.

The following lemma is important for our algorithm.

Lemma 3. Let G and R be two connected proper interval graphs. Let G have
clique path P = K1 · · ·Kp, and let R have ordered twin sets X1, . . . , Xt. Let
r : K≤i → VR be a starting R-role assignment of G[K≤i] for some 1 ≤ i ≤ p.
Then K≤i∩Ki+1 does not contain two vertices u, v such that Mc(u)\Mc(v) �= ∅
and Mc(v) \Mc(u) �= ∅ for some 1 ≤ c ≤ t.

Proof. In order to derive a contradiction, assume that such vertices u and v
exist. Note that u and v are adjacent, because both of them belong to bag Ki+1.
Let x ∈ Mc(u) \Mc(v) and y ∈ Mc(v) \Mc(u). Because u misses x and x ∈ Xc,
we find that r(u) is adjacent to all roles in Xc \{r(u)}. Hence r(u) is adjacent to
y ∈ Xc, unless r(u) = y. However, the latter case is not possible, because in that
case v, being adjacent to u, would not miss y. So, indeed r(u) and y are adjacent.
From y ∈ Mc(v) \Mc(u) we then deduce that u already has a neighbor w ∈ K≤i

with role r(w) = y. Since v misses y and R contains no self-loop, we find that
r(v) �= y, and consequently w �= v. Since v misses y, the edge uw must be in a
bag before v got introduced. Hence, we obtain fP (u) < fP (v). Analogously, we
get fP (v) < fP (u). This is not possible, and we have proven Lemma 3. ��
We are now ready to present our main result.

Theorem 4. Role Assignment can be solved in polynomial time on input
pairs (G, R) where G is a proper interval graph and R is an arbitrary graph.

Proof. First we give an algorithm with running time O(n3) that takes as input a
connected proper interval graph G and a connected graph R, and decides whether
G has an R-role assignment.

If |VR| > n or R is not a proper interval graph, then we know by respectively
Observation 2 and Theorem 2 that the answer is NO. These conditions can be
checked in linear time, as explained in the preliminaries. Thus we assume that
|VR| ≤ n and R is a proper interval graph.

Let G have clique path P = K1 · · ·Kp. Recall that P can be constructed
in linear time. Let R have clique path P ′ = L1 · · ·Lq and ordered twin sets
X1, . . . , Xt. Because |VR| ≤ n, we find that q ≤ p and that we can compute
P ′ and the ordered twin sets in O(|VR| + |ER|) = O(n2) time. Since Lemma 2
applies only when q ≥ 3, we distinguish between the cases where q = 1, q = 2,
and q ≥ 3.
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Case 1. q = 1. Then R is a complete graph. By Theorem 3, we find that
|K1| = |L1| must hold, and we give each vertex in K1 a different role. This
yields a starting R-role assignment r of G[K1].

Suppose i ≥ 1 and that we have extended r to a starting R-role assignment of
G[K≤i]. By Lemma 3 we can order the vertices in Ki ∩Ki+1 as u1, . . . , ub such
that M1(ua) ⊆ M1(ua+1) for a = 1, . . . , b − 1. We assign different roles to the
vertices of Ki+1 \ Ki, where we first use the roles of M1(ua) before using any
roles of M1(ua+1) for a = 1, . . . , b− 1. If we have used all the roles and there are
still vertices in Ki+1 with no role yet, we output NO. Otherwise we must verify if
the resulting mapping is a starting R-role assignment of G[K≤i+1] by checking
if all vertices in Ki+1\Ki+2 have neighbors with all the required roles. If this
is not the case, we output NO, because any R-role assignment is a starting role
assignment of G[K≤i+1]. If this is the case, we stop if i+1 = p, because a starting
R-role assignment of G[K≤p] = G is an R-role assignment of G; otherwise we
repeat the above procedure with i := i + 1.

It is clear that this algorithm is correct. It runs inO(n3) time, because ordering
the vertices in Ki ∩Ki+1 takes O(n2) time and there are O(n) bags.

Case 2. q = 2. The algorithm for this case uses similar arguments as above (but
in a more advanced way). Due to space restrictions we postpone its proof.

Case 3. q ≥ 3. First suppose p ≤ 2q. By Theorem 3, both G[K≤q] and
G[K≥p−q+1] must be isomorphic to R and have an R-role assignment, in case G
has an R-role assignment. Because p ≤ 2q, every vertex of G is in K≤q∪K≥p−q+1.
Hence, there are just four possibilities of assigning roles to vertices of G, namely
two possibilities for K≤q combined with two possibilities for K≥p−q+1. We check
if one of them leads to an R-role assignment of G. Verifying whether a mapping
VG → VR is an R-role assignment of G can be done in O(n3) time by considering
each vertex and checking if it has the desired roles occurring in its neighborhood.

Suppose p ≥ 2q + 1. We first check if G[K≤q] is isomorphic to R. This can
be done in linear time [18]. If G[K≤q] is not isomorphic to R then we output NO
due to Theorem 3. Suppose G[K≤q] * R and that without loss of generality we
have a starting R-role assignment r of G[K≤q] with r(Ki) = Li for i = 1, . . . , q.
We now check whether we are in situation (i) or (ii) of Lemma 2. Then in both
situations we can determine in O(n) time the desired index i and afterwards we
continue with the graph G[K≥i] unless we found no starting R-role assignment
of G[K≤i]; in that case we output NO. The total running time of this procedure
is O(n3).

We have thus presented and proved the correctness of an algorithm with
running time O(n3) for testing whether a connected proper interval graph G has
an R-role assignment for a connected graph R. If G is disconnected then we run
the algorithm on each connected component separately. The total running time
is still O(n3). It remains to study the case when R is disconnected. In this case we
cannot assume that |VR| ≤ |VG|. Let cR be the number of connected components
of R. By the definition of a role assignment, G has an R-role assignment if and
only if each connected component of G has an R′-role assignment for some
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connected component R′ of R. Hence we can run our algorithm on every pair of
connected components of G and R. This gives a total running time O(n3 · cR),
which is clearly polynomial. ��
Recall that the problem of testing if a graph G has an R-role assignment for
some smaller graph R is co-NP-complete in general [5]. Theorem 4 together with
Corollary 1 has the following consequence.

Corollary 2. There exists a polynomial time algorithm that has as input a
proper interval graph G and that tests whether there exists a graph R with
|VR| < |VG| such that G has an R-role assignment.

Proof. Let G be a proper interval graph on n vertices. First assume that G is
connected. Let P = K1 . . . Kp be the clique path of G. Recall that p ≤ n. By
Corollary 1 we find that G only has an R-role assignment if R * G[K≤i] for
some 1 ≤ i ≤ p. This means that we need to apply the O(n3) time algorithm
for connected proper interval graphs of Theorem 4 at most p ≤ n times. Hence
we find that testing whether G has an R-role assignment for some graph R with
|VR| < |VG| takes O(n4) time.

Now assume that G is disconnected. Let G1, . . . , Ga with a ≥ 2 be the con-
nected components of G. For j = 1, . . . , a we define nj = |VGj |. As long as
j ≤ a − 1 we do as follows. We consider Gj and check if Gj has an Rj-role
assignment for some role graph Rj with |VRj | ≤ nj . If so, then we replace
connected component Gj by connected component Rj in G, i.e., we output
R = G1 ⊕ . . . Gj−1 ⊕ Rj ⊕ Gj ⊕ . . . ⊕ Ga, where ⊕ denotes the disjoint union
operation on graphs. Suppose not. Then we consider Gj+1. If j = a and we did
not find a suitable role graph R in this way, then we output NO. Because we need
O(n4

j ) time for each Gj and n = n1 + . . . + na, the total running time of this
algorithm is O(n4), which is polynomial, as desired. ��
As a consequence, we have in fact a stronger result: given a proper interval
graph G, we can list in polynomial time all graphs R (up to isomorphism) with
|VR| < n such that G has an R-role assignment.

4 Complementary Results and an Open Question

A homomorphism r from a graph G to a graph R is locally injective if |r(NG(u))|=
|NG(u))| for every u ∈ VG, and r is locally bijective if r(NG(u)) = NR(r(u)) and
|r(NG(u))| = |NG(u))| for every u ∈ VG. Locally injective homomorphisms,
also called partial coverings, have applications in frequency assignment [8] and
telecommunication [9]. Locally bijective homomorphisms are also called cover-
ings and have applications in topological graph theory [20] and distributed com-
puting [1,2]. The corresponding decision problems, called Partial Cover and
Cover respectively, are NP-complete for arbitrary G even when R is fixed to be
the complete graph on four vertices [9,16].

In this section, to give a complete picture, we study the computational com-
plexity of all three locally constrained homomorphisms on chordal, interval, and
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proper interval graphs. Our findings can be summarized in the table below, where
the three problems have input (G, R) and the left column indicates the graph
class that G belongs to. In the table, R is assumed to be an arbitrary graph.

Partial Cover Cover Role Assignment

Chordal NP-complete GI-complete GI-hard
Interval NP-complete Polynomial ?
Proper Interval NP-complete Polynomial Polynomial

We start with the following result, which allows us to conclude several of the
entries in the above table, and which can be viewed as interesting on its own.

Theorem 5. Let G be a chordal graph and let R be a connected graph. Then
there exists a locally bijective homomorphism from G to R if and only if every
connected component of G is isomorphic to R.

Proof. If G is disconnected then we consider each connected component of G
separately. Assume that G is connected. If G is isomorphic to R, then the identity
mapping from G to R is our desired locally bijective homomorphism.

For the reverse implication, suppose that there exists a locally bijective ho-
momorphism r from G to R. Because any locally bijective homomorphism is also
locally surjective, we can apply Theorem 2 in order to find that R is chordal. For
the same reason we can apply Observation 2 in order to find that each vertex in
R appears as a role of at least one vertex in G. We claim that each vertex in R
appears as a role of exactly one vertex in G. In order to derive a contradiction,
suppose there exists a vertex x ∈ VR such that r−1(x) has size at least two.

Let v and v′ be two different vertices of G belonging to r−1(x). Let P be a
shortest path from v to v′ in G. Because P is shortest, P is an induced path. From
the definition of a locally bijective homomorphism we deduce the following two
statements. Firstly, because two vertices with the same role cannot be adjacent,
we find that |VP | �= 2. Secondly, because a vertex has no two neighbors with the
same role, we find that |VP | �= 3. Hence, P is an induced path with |VP | ≥ 4.
This, together with r(v) = r(v′) = x, means that r(P ) forms an induced cycle
D in R with |VD| = |VP | − 1. Because R is chordal, D must consist of three
vertices, say D = xyzx. Consequently, |VP | = 4 holds.

Let C be the connected component of G[r−1(x)∪r−1(y)∪r−1(z)] that contains
v and v′. By definition of a locally bijective homomorphism, every vertex is of
degree two in D. This means that D is an induced cycle in G. Because every
vertex of P belongs to D, and |VP | = 4, we find that |VD| ≥ 4. This contradicts
our assumption that G is chordal. We conclude that indeed each vertex in R
appears as a role of exactly one vertex in G. This means that r is an isomorphism
between G and R, and we find that G * R, as desired. ��
It is known that Graph Isomorphism is Graph Isomorphism-complete even
for pairs (G, R) where G and R are chordal graphs [18]. This implies together
with Theorem 5 that Cover is Graph Isomorphism-complete for pairs (G, R)
where G and R are chordal graphs. On the other hand, Cover is polynomial
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time solvable on interval graphs, and hence also on proper interval graphs, since
isomorphism between two interval graphs can be checked in polynomial time [18].
Because every locally bijective homomorphism is locally surjective, we can use
Theorem 2 to deduce that these three results stay valid for input pairs (G, R)
where only G is required to be chordal and R may be an arbitrary graph. This
explains the three corresponding entries in the table.

Unfortunately, as indicated in the table, the problem Partial Cover remains
NP-complete even on pairs (G, R) where G is a proper interval graph (and R is
an arbitrary graph). To see this, observe that a complete graph G allows a locally
injective homomorphism to an arbitrary graph R if and only if R contains G as
a subgraph. This gives a reduction from the well-known NP-complete problem
Clique (cf. [13]).

We present one more complexity result on the Role Assignment problem.
This result explains a corresponding entry in the table after applying Theorem 2.
It shows that, unless Graph Isomorphism is polynomial time solvable, we do
not have hope of solving Role Assignment in polynomial time on chordal
graphs.

Theorem 6. Role Assignment is Graph Isomorphism-hard on input pairs
(G, R) where G and R are chordal graphs.

Proof. As we argued above, Cover is Graph Isomorphism-complete on input
pairs (G, R) where both G and R are chordal graphs. It is not hard to see that
we may also assume that G and R are connected and have the same number of
vertices. We give a polynomial time reduction from Cover to Role Assign-
ment. Let G and R be two connected role graphs with |VG| = |VR|. We claim
that G allows a locally bijective homomorphism to R if and only if G allows a
locally surjective homomorphism to R.

Suppose G allows a locally bijective homomorphism r to R. Because any
locally bijective homomorphism is locally surjective by definition, r is a locally
surjective homomorphism from G to R. To prove the reverse implication, suppose
G allows a locally surjective homomorphism to R. Recall that |VG| = |VR|. Then
we use Observation 2 to deduce that G * R. Hence, G allows a locally bijective
homomorphism to R, namely the identity mapping. This completes the reduction
and the proof. ��
Just as for Role Assignment, we denote the problems Cover and Partial
Cover as R-Cover and R-Partial Cover, respectively, if R is fixed, i.e., not
a part of the input. In that case we obtain the following result.

Proposition 1. For any fixed R, the problems R-RoleAssignment, R-Cover,
and R-Partial Cover can be solved in linear time on chordal graphs.

Proof. We first observe that a homomorphism from G to R maps the vertices in
a clique of G to different vertices of R. Hence, in order to get a YES answer, a
largest clique in G can have at most |VR| vertices. We compute the number of
vertices in a largest clique of G in linear time. If this number is greater than |VR|,
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we output NO. Otherwise, because the treewidth of a chordal graph is equal to
the number of vertices in a largest clique minus 1, we find that G has treewidth
bounded by |VR|, which is a constant, as R is fixed. Since all three problems are
expressible in monadic second order logic, linear time solvability follows from a
well-known result of Courcelle [6]. ��
We conclude with the following two open questions resulting from the table.

1. Is Role Assignment NP-complete on input pairs (G, R) when G is a
chordal graph?

2. What is the computational complexity of Role Assignment on input pairs
(G, R) when G is an interval graph?
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Abstract. Given a connected graph G and a set F of faulty vertices of
G, let G − F be the graph obtained from G by deletion of all vertices of
F and edges incident with them. Is there an algorithm, whose running
time may be bounded by a polynomial function of |F | and log |V (G)|,
which decides whether G−F is still connected? Even though the answer
to this question is negative in general, we describe an algorithm which
resolves this problem for the n-dimensional hypercube in time O(|F |n3).
Furthermore, we sketch a more general algorithm that is efficient for
graph classes with good vertex expansion properties.

1 Introduction

A study of interconnection networks, originally initiated by particular applica-
tions in telephone and computer networks, has become fairly pervasive in many
different areas in the recent decade. In a whole avenue of problems that arise in
the course of network design, a good deal of attention has been paid to the aspect
of reliability: If some nodes of the network become overloaded or unavailable,
can the network still preserve its functionality?

If interconnection networks are modeled as simple undirected graphs, our
problem may be formulated as follows: Suppose we are given a class G of graphs
such that each graph G ∈ G has a property P . Note that to describe an arbitrary
vertex of G, we need a string of length Ω(log |V (G)|) in the worst case. Let
nG : V (G) → 2V (G) be an oracle which for a given vertex v ∈ V (G) returns the
set N(v) of all neighbors of v in G in time O(|N(v)| · log |V (G)|).
Problem 1.1. Is there an algorithm which

– given an oracle nG for a graph G ∈ G and a set F of faulty vertices of G,
– decides whether the graph G−F , obtained from G by deletion of all vertices

of F and edges incident with them, still possesses the property P ,
– whose running time is bounded by a polynomial function of |F | and log |V (G)|?
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The requirement on the time complexity is motivated by practical considerations.
Recall that to describe an arbitrary input F , a string of length |F |Ω(log |V (G)|)
is needed. It is plausible to presume that the number of nodes which may become
faulty at the same time would be just a fraction of the total number of nodes
of the network. A typical instance of this problem may be a network topology
modeled by the graph of the n-dimensional hypercube with 2n vertices, while
the number of faults is bounded by O(nk) for some natural number k [5,7]. In
this case it would be useful to design an algorithm for Problem 1.1, running in
time proportional to the length of the input F , possibly searching only some
local neighborhood of F in G, rather than exploring the whole graph G− F .

A natural requirement imposed on each reasonable interconnection network
is its connectivity. In this paper we therefore study an instance of Problem 1.1
where property P equals connectivity. To the best of our knowledge, no results
on this problem have been reported previously.

It should be noted that although graph connectivity is a textbook example of
an algorithmic problem that may be solved in linear time [3], our variant is more
involved. In particular, we claim that if G may be an arbitrary connected graph,
an algorithm testing the connectivity of G − F in time |F |k for some natural
number k does not exist. Indeed, suppose that Gx,y and Gx,z are two connected
graphs containing distinct vertices x �= y and x �= z, respectively. Let G1 be the
graph obtained from Gx,y and Gx,z by gluing together vertex x of Gx,y with
vertex x of Gx,z, and G2 be the graph obtained from G1 by adding edge yz.
In order to verify the connectivity of G1 − {x} or G2 − {x}, it is necessary to
check the presence of edge yz, since only this edge distinguishes the connected
graph G2−{x} from disconnected G1−{x}. Since the choice of y and z was quite
arbitrary, it follows that any algorithm that correctly decides on the connectivity
of G−F must necessarily read all edges of this graph. It follows that its running
time is bounded from below by the size of the input graph, which need not be
necessarily a polynomial in |F | and log |V (G)|.

This argument shows that it is necessary to restrict class G to some proper
subclass of connected graphs. In this paper, we resolve our problem for the class
of hypercubes, which has served for decades as a popular topology of intercon-
nection networks for parallel or distributed computing [10]

It is worth mentioning that a fairly special instance of Problem 1.1 for G being
the class of hypercubes and property P being the existence of

(i) Hamiltonian cycles and paths [4],
(ii) long cycles and paths [5,7],

has been studied previously. There are positive results for a special case when
the number of faults is bounded by a certain linear (i) or quadratic (ii) function
of n. On the other hand, when the number of faults is not limited, the problems
are NP-hard [1,6].

The main results of this paper is an algorithm which verifies the connectivity
of the n-dimensional hypercube with f faults in time O(fn3). We also describe a
more general algorithm based on vertex-expansion properties that for the class of
hypercubes works in time O(f2n3.5). The rest of the paper is laid out as follows.
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After introducing some necessary concepts and notations, we start with vertex-
expansion approach in Section 3. In Section 4 we study walk transformations.
This is our main technical tool, applied in Section 5 to derive a theorem relating
connectivity of faulty hypercube with that of certain local neighborhood of the
set of faults. Based on these theoretical results, in Section 6 we describe an
algorithm for connectivity testing and analyze its time complexity. The paper is
concluded with some open problems and directions for further research.

2 Preliminaries

The concepts used in this paper but undefined below may be found e. g. in [3].
In the rest of this text, n always denotes a positive integer while [n] stands for
the set {1, 2, . . . , n}.

Vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.
Given a set V ⊆ V (G) let G[V ] denote the subgraph of G induced by V while
G−V stands for G[V (G)\V ]. The distance between vertices u, v in G is denoted
by dG(u, v), the subscript being omitted if no ambiguity may arise. A square of
the graph G, denoted by G2, is the graph on vertices of G and edges between
every two distinct vertices that are at distance at most two in G. Given a vertex
u, an edge vw and sets S, T ⊆ V (G), we define

d(u, S) = min{d(u, v) | v ∈ S},
d(S, T ) = min{d(u, T ) | u ∈ S},

d(u, vw) = d(u, {v, w}),
N(u) = {v ∈ V (G) | d(u, v) = 1},
N(S) = {v ∈ V (G) | d(v, S) = 1}.

The n-dimensional hypercube Qn is a graph with all binary vectors of length
n as vertices, an edge joining two vertices whenever they differ in a single coor-
dinate. For two vertices u, v of Qn let u, v be the set of coordinates in which
u and v differ. Note that |u, v| = d(u, v). The direction of an edge uv of Qn is
the integer i ∈ [n] in which u and v differ; that is, u, v = {i}.

3 Expansion Approach

In this section we describe an algorithm for testing vertex-deleted connectivity
which works efficiently for graph classes with good vertex expansion.

The set N(S) contaning neighbors of vertices from S ⊆ V (S) that are not in
S is called the boundary of S. The graph G is said to have vertex expansion ε
if |N(S)| ≥ ε · |S| for every S ⊆ V (G) with |S| ≤ |V (G)|/2. Note that nonzero
expansion implies connectedness; otherwise, a component of at most half of the
vertices would have empty boundary.
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Theorem 3.1. Let (Gn)n∈N be a sequence of graphs Gn with vertex expansion
εn > 0 and maximal degree Δn. There is an algorithm that for input n ∈ N,
F ⊆ V (Gn), |V (Gn)|, and εn > 0 tests the connectivity of Gn − F in time

O

( |F |2 ·Δ2
n · log(|V (Gn)|)

εn

)
.

Proof (A sketch.). A component of Gn − F induced by vertices S ⊆ V (Gn) \ F
is said to be

– major if |S| > |V (Gn)|/2;
– small if |S| ≤ |F |/εn.

Obviously, there is at most one major component. If |F | > |V (Gn)|εn/2, we can
afford to run a standard search algorithm in Gn −F . Otherwise, it follows from
vertex expansion of Gn that every component of Gn−F is either major or small.

The key idea is that we can afford searching through small components com-
pletely. Furthermore, if we find more than |F |/εn vertices in the same component,
we know that we are in the major component (and thus we can stop our search).

Hence, the algorithm works as follows. We start searching Gn − F from each
(non-faulty) neighbor v of a faulty vertex u. If we find a component of more
than |F |/εn vertices, we stop the search from v with a remark that there exists
a major component. If we have found a complete small component, we report
that the graph Gn − F is disconnected. Otherwise, we continue the search until
we check all non-faulty neighbors v of all faulty vertices u. In this case, we report
that the graph Gn − F is connected.

The time complexity is obtained as follows. There are at most |F | ·Δn non-
faulty neighbors of faulty vertices. From each of them we search for at most
|F |/εn vertices. For every vertex found we ask oracle for its neighbors, and each
query takes O(Δn · log(|V (Gn)|)) time. ��
It follows from classical results of Harper [8] on isoperimetric problems that the
hypercube Qn has a vertex expansion c√

n
for some constant c.

Corollary 3.1. There is an algorithm for testing connectivity of Qn − F that
runs in O(|F |2 · n3.5) time.

4 Transformations of Walks in Hypercubes

In this section we introduce a useful concept of transformations of one walk to
another walk of the hypercube. This is where the structure of the hypercube
plays its role.

A walk in a simple graph G is a sequence W = (v0, v1, . . . , vk) of vertices in G
such that vi and vi+1 are adjacent for all 0 ≤ i < k. If W starts with the vertex
u and ends with the vertex v, we say that W is a uv-walk.

Let W = (v0, v1, . . . , vk) be a walk in Qn. Let di be the direction of the edge
between vi−1 and vi for every i ∈ [k] . Then the sequence (d1, d2, . . . , dk) is called
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the transitional sequence of the walk W . For a sequence τ over [n] and i ∈ [n] let
#(τ, i) be the number of occurrences of i in τ . It is easy to see that a sequence
τ over [n] is a transitional sequence of some uv-walk in Qn if and only if

u, v = {i ∈ [n]; #(τ, i) is odd}. (4.1)

Thus, we may identify uv-walks in Qn with sequences over [n] satisfying (4.1).
We use both representations of a uv-walk as a sequence of vertices and as its
transitional sequence, depending on what is more convenient.

Let τ be a transitional sequence of a uv-walk W . Consider the following three
operations on τ :

swap(τ1, i, j, τ2) = (τ1, j, i, τ2) for τ = (τ1, i, j, τ2),
inserti(τ1, τ2) = (τ1, i, i, τ2) for τ = (τ1, τ2),
delete(τ1, i, i, τ2) = (τ1, τ2) for τ = (τ1, i, i, τ2),

where τ1, τ2 are contiguous subsequences of τ and i, j ∈ [n]. Since these opera-
tions preserve (4.1), their results are also transitional sequences of some uv-walk.

We say that two uv-walks σ and τ in Qn are equivalent if #(σ, i) = #(τ, i) for
all i ∈ [n]. Note that the operation swap transforms a uv-walk to an equivalent
uv-walk. Conversely, the following proposition holds.

Proposition 4.1. For every two equivalent uv-walks σ and τ in Qn, there is a
sequence of swaps that transforms σ into τ .

Proof. Since σ and τ are equivalent, they have the same length k. Moreover,
there is a permutation f : [k] → [k] such that σ(i) = τ(f(i)) for all i ∈ [k]. An
arbitrary decomposition of f into consecutive transpositions gives us a sequence
of swaps that transforms σ into τ . ��
Let W = (v0, v1, . . . , vk) be a walk in Qn with a transitional sequence τ =
(d1, d2, . . . , dk). We say that inserti(τ1, τ2) on τ is performed in the vertex vi

where 0 ≤ i ≤ k if τ1 = (d1, d2, . . . , di) and τ2 = (di+1, di+2, . . . , dk).

Proposition 4.2. For every two uv-walks σ and τ , there are two sequences of
inserts that transform σ into σ′ and τ into τ ′, respectively, such that σ′ and τ ′

are equivalent. Moreover, these inserts can be performed in arbitrary vertices.

Proof. For every direction i ∈ [n] we perform the operations inserti on σ if
#(σ, i) < #(τ, i), or on τ if #(σ, i) > #(τ, i) until we obtain #(σ, i) = #(τ, i).
These inserts can be performed on any position. ��
Since delete is an inverse of insert, we obtain the following corollary.

Corollary 4.1. For every two uv-walks σ and τ in Qn there is a sequence of
inserts, swaps and deletes (in this order) that turns σ into τ .
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5 Local Connectivity

For a given set F of vertices in Qn we define a subgraph G(F ) = (A∪B ∪F, E)
of Qn by

A = N(F ), B = N(A) \ F, E = {uv ∈ E(Qn); u ∈ A ∪ F}.
That is, G(F ) is the subgraph of Qn on all vertices at distance at most 2 from
F and with all edges at distance at most 1 from F . Our aim in this section is to
show that if G(F ) is connected and G(F ) − F is disconnected, then Qn − F is
also disconnected. Note that if Q2

n[F ] is connected, then G(F ) is connected as
well.

Let W be a walk in Qn and let u be a vertex on W . We say that u is a port
on W if u ∈ A and exactly one of his neighbors on W is in F . Note that if u is
a port on W and not an endvertex, then his second neighbor on W is in A ∪B.
Furthermore, since u may have several occurrences on the walk W , the notion
of ports is defined with respect to a particular occurrence of u on W , and not
the vertex u itself.

For a connected component C of G(F )−F let p(C, W ) denote the number of
ports on the walk W from the component C. First, we show that swap performed
on W preserves the parity of p(C, W ).

↔

↔

↔

↔

↔

swap
u vu v

u vu v

u v u v

u v u v

u v u v

Fig. 1. All possible swaps that change ports

Lemma 5.1. Let W2 be a walk in Qn obtained from a walk W1 by a single swap,
and let F ⊆ V (Qn). For every component C of G(F )−F , the numbers p(C, W1)
and p(C, W2) differ by 0 or 2.

Proof. See Figure 1 for all configurations of swaps that change ports. The vertices
of F are full (red), the vertices of A ∪B are empty (blue), the ports are circled.
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The edges of walks W1, W2 that are incident to F are dashed (red), the edges
of W from G(F ) − F are full (blue).

Note that in each case, the ports change on the vertices u and v. Since u and
v are connected by edges of G(F ) − F , they are in the same component C of
G(F ) − F . In the first, third and last case, the numbers of ports of C changes
by 2, whereas in the second and fourth case, it remains unchanged. ��
Corollary 5.1. For every F ⊆ V (Qn), every component C of G(F ) − F , and
every equivalent walks W1 and W2 in Qn, the parity of p(C, W1) and p(C, W2)
is the same.

Now we show that global connectivity implies local connectivity. That is, dis-
connected Qn − F can be recognized locally on G(F )− F .

Lemma 5.2. Let F ⊆ V (Qn) be such that G(F ) is connected. If Qn − F is
connected, then G(F ) − F is also connected.

Proof. Suppose for a contradiction that there are vertices u, v ∈ A ∪ B =
V (G(F ) − F ) that are connected in Qn − F by a walk P but are disconnected
in G(F ) − F . Clearly, the walk P contains some vertex x that is not from A;
otherwise, P is in G(F ) − F .

Let Cu and Cv denote the components of G(F )−F containing the vertices u
and v, respectively. Since G(F ) is connected, there is a uv-walk R in G(F ). As
u and v are disconnected in G(F )− F , the walk R contains some vertex y ∈ F ,
and an odd number of ports from each component Cu and Cv.

By Proposition 4.2, the walks P and R can be transformed by inserts to walks
P ′ and R′ in Qn, respectively, such that P ′ and R′ are equivalent. Moreover,
inserts on P and on R can be performed at the vertices x and y, respectively. It
follows that the sets of ports on P and R do not change by these transformations.
In particular, p(C, P ′) = p(C, P ) and p(C, R′) = p(C, R) for every component C
of G(F ) − F .

However, from Corollary 5.1 it follows that p(Cu, P ) and p(Cv, P ) have odd
parity. Hence, the walk P contains some port, and consequently, some vertex of
F . This is a contradiction with the assumption that P is a walk in Qn − F . ��
Lemma 5.3. Let F be a set of vertices of Qn such that G(C)−C is connected
for every component C of Q2

n[F ]. Then Qn − F is connected as well.

Proof. Let u, v ∈ V (Qn) \ F and P be an arbitrary uv-walk in Qn. If P con-
tains no vertex from F , we are done. Otherwise it contains a subwalk S =
(x, y1, . . . , ym, z) whose all vertices except x and z are in F . Then y1, . . . , ym be-
long to the same component C of Q2

n[F ]. By our assumption, G(C)−C contains
an xz-walk T . Replacing the subwalk S of P with T , we obtain a uv-walk which
contains less vertices from F than P . Repeating this process for every subwalk of
P of the described type, we finally obtain a uv-walk in Qn − F , and the desired
conclusion follows. ��
Theorem 5.1. Let F ⊆ V (Qn). The graph Qn − F is connected if and only if
G(C)− C is connected for every component C of Q2

n[F ].
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Proof. Let Qn − F be connected and C be a component of Q2
n[F ]. By Lemma

5.2 it suffices to prove that G(C) is connected in order to prove that G(C)− C
is connected.

Let u, v be vertices of G(C) and our aim is to prove that u and v belong
into the same component of G(C). There exist vertices u′, v′ ∈ C such that
d(u, u′) ≤ 2 and d(v, v′) ≤ 2. Since C is a component of Q2

n[F ], there exists a
sequence u′ = w1, w2, . . . , wk = v′ of vertices of C such that d(wi, wi+1) ≤ 2 for
every 1 ≤ i < k. Therefore, vertices w1, w2, . . . , wk belong to the same component
of G(C). Consequently, u and v are in the same component of G(C) as well.

The other implication follows from Lemma 5.3. ��

6 Algorithm

In this section we apply Theorem 5.1 to design an algorithm for testing the
connectivity of Qn − F . To accomplish this task, we employ the following data
structures.

List F of faulty vertices of Qn.
Disjoint-set data structure D [3, Chapter 22] with operations

– Make(v, D) creates a singleton set {v},
– Find(v, D) returns a pointer to the set containing v,
– Union(u, v, D) unites the sets containing u and v,

whose amortized time complexity may be loosely bounded by O(log m), pro-
vided that Make(v, D) was executed m times. We use D to detect the
connectivity of G(C) where C is a component of Q2

n[F ].
Binary trie T [9, Section 6.3] which stores information about some vertices of

Qn. Each vertex of Qn stored in T is represented by a leaf of T , which we
denote by vT . Moreover, vT includes the following additional information:

– a pointer to v in the disjoin-set data structure D
– a boolean variable indicating whether v is healthy or faulty,
– a boolean variable visited indicating that v has been visited and v ∈

N(F ) ∪ F .

Note that we mark as visited only faulty vertices and their neighbors, even
though our algorithm inspects also vertices at distance 2 from F . Given a
vertex v of Qn,

– Insert(v, T ) inserts v into T and returns vT ,
– Retrieve(v, T ) returns vT or NIL if it does not exist.

Both operations require O(n) time.

Given a list F of faulty vertices of Qn, Algorithm 6.1 finds all components of
Q2

n[F ] using a depth–first search (DFS), described as Procedure 6.2. For every
f ∈ F , all vertices v at distance at most two from f are visited. If v is faulty,
DFS is applied recursively on v, which ensures that the algorithm indeed finds
the components of Q2

n[F ]. If v is healthy, then v is inserted into the disjoint-set
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data structure D. Furthermore, sets of D containing vertices u and v are united
for every edge uv at distance one from f . In that way, after a call to DFS(f)
(line 8 of Algorithm 6.1) is completed, disjoint sets of D represent components
of the graph G(C)−C for the component C of Q2

n[F ] containing f . This verifies
the condition of Theorem 5.1.

The trie T is used to store information about the vertices visited during the
search. Note that due to the time and space constraints, T cannot contain each
of 2n vertices of Qn. Faulty vertices are inserted into T during the initialization
of Algorithm 6.1. Healthy vertices of G(C) for a component C of Q2

n[F ] are
inserted into T during the DFS of C. When the whole component of Q2

n[F ] is
found, all healthy vertices are removed from T .

Algorithm 6.1. Connectivity(n, F )
Input: Positive integer n, a list F of faulty vertices of Qn

Output: “Qn − F is connected” or “Qn − F is disconnected”

1 T ← empty trie
2 foreach f ∈ F do fT ← Insert(f, T ) ; mark fT as faulty and non-visited
3 foreach f ∈ F do
4 fT ← Retrieve(f, T )
5 if fT is not visited then
6 mark fT as visited
7 D ← empty data structure for disjoint sets
8 DFS(f) // DFS of the component C of Q2

n[F ] containing f
9 if D contains more than one set then return “Qn −F is disconnected”

10 remove all healthy vertices from T and clean-up data structure D

11 return “Qn − F is connected”.

Removing all healthy vertices from trie T (line 10 of Algorithm 6.1) may be
implemented using the depth-first search of T . Since the total number of calls to
Insert(·, T ) is bounded by O(|F |n2), the total time complexity of this clean-up
is O(|F |n3).

To analyze the time complexity of our algorithm, observe that DFS(f) is
called exactly once for each faulty vertex f ∈ F . Next, considering the code of
Procedure 6.2, the outer for-loop (line 1) is executed for every neighbor of f ,
while the inner for-loop (line 8) is executed for some vertices at distance two
from f . Therefore, the total number of the inner loop executions is bounded by
|F |n2. The time critical operation are Retrieve(·, T ) and Insert(·, T ), requir-
ing O(n) time for each call as noted above. Hence, the total running time of the
algorithm is bounded by O(|F |n3).

Theorem 6.1. Given an integer n ≥ 1 and a set of vertices F of Qn, the
problem whether the graph Qn−F is connected can be decided in O(n3|F |) time.
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Procedure 6.2. DFS(f)
Input: Faulty vertex f of Qn // f belongs to a component C of Q2

n[F ]
Data: Binary trie T , disjoint-set data structure D

1 foreach u ∈ N(f) do
2 uT ← Retrieve(u, T )
3 if uT = NIL then
4 uT ← Insert(u, T ); mark uT as healthy and non-visited; Make(u, D)

5 if uT is not visited then
6 mark uT as visited
7 if uT is healthy then
8 foreach v ∈ N(u) do
9 vT ← Retrieve(v,T )

10 if vT = NIL then
11 vT ← Insert(v, T ); mark vT as healthy and non-visited;

Make(v, D)

12 if vT is healthy then
13 if Find(u, D) �= Find(v,D) then Union(u, v, D)
14 // edge uv belongs to G(C)
15 else if vT is not visited then mark vT as visited; DFS(v)
16 // faulty vertex v belongs to C

17 else DFS(u) // faulty vertex u belongs to C

7 Concluding Remarks

In this paper we have described two algorithms for testing the connectivity of the
n-dimensional hypercube with f faulty vertices. The (more general) expansion
algorithm runs in O(f2n3.5) time, whereas the local connectivity algorithm runs
in O(fn3) time.

It is worth pointing out the following corollary: If |F | = O(nk) for some
k ∈ N, the size of Qn − F is exponential in n, but our algorithm still tests the
connectivity of Qn − F in time which is polynomial in n.

We believe that it would be interesting to find other classes of graphs for
which the connectivity instance of Problem 1.1 has a positive solution. Natural
candidates are other hypercubic networks [10] whose fault-tolerance has been
investigated previously [2,11]. In some networks, transformations of walks are
possible if we allow swaps on larger cycles (of bounded-size), e.g. hexagonal
grids, n-dimensional torus Cn

d with fixed d, planar graphs with faces of bounded
size. We think that the approach described in Section 5 works for such networks
as well.

Another question is what other properties can be efficiently tested in vertex-
deleted graphs. A biconnectivity can be defined such that a graph G = (V, E)
is biconnected if G− {x} is connected for every vertex x. If F is a set of faulty
vertices of a hypercube Qn then every vertex x of distance at least 2 from F
has a connected neighborhood of distance 2 in Qn−F . Thus it suffices to verify
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connectedness for vertices from A∪B. Hence there exists an algorithm deciding
a biconnectivity for Qn−F which requires O(|F |2 ·n5) time. An analogous idea
can work for multidimensional meshes and also for multiconnectivity.
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5. Dvořák, T., Koubek, V.: Long paths in hypercubes with a quadratic number of
faults. Inf. Sci. 179, 3763–3771 (2009)
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Abstract. Recently we have developed a method excluding certain sub-
graphs from a smallest counterexample to the 5-flow conjecture. This is
based on comparing ranks of two matrices of large size. The aim of this
paper is to be more effective by applying these methods so that we reduce
the size of matrices used in the computation.

1 Introduction

A graph admits a nowhere-zero k-flow if its edges can be oriented and assigned
numbers ±1, . . . ,±(k − 1) so that for every vertex, the sum of the values on
incoming edges equals the sum on the outgoing ones. It is well-known that a
graph with a bridge (1-edge-cut) does not have a nowhere-zero k-flow for any
k ≥ 2 (see, e.g., [2,9]). The famous 5-flow conjecture of Tutte [7] is that every
bridgeless graph has a nowhere-zero 5-flow.

Let G be a counterexample to the 5-flow conjecture of the smallest possible
order. It is well-known (see cf. Jaeger [2]) that G must be a snark which is
a cyclically 4-edge-connected cubic graph without a 3-edge-coloring and with
girth (the length of the shortest cycle) at least 5. (Note that a graph is cyclically
k-edge-connected if deleting fewer than k edges does not result in a graph having
at least two components containing cycles.) In [4], we have proved that G must be
cyclically 6-edge-connected applying a method using ideas from linear algebra.
We further improve the method in [5], where we show that if a specified matrix
Mk has the same rank as certain submatrix M

′
k, then G cannot have a circuit

of order k.
In this paper we improve the methods from [4,5] and present an approach

how to reduce the size of matrices Mk and M
′
k. For example, in [5] M7 and M

′
7

have size 819× 162 and 483× 162, respectively. In this paper we reduce the size
of the matrices into 317× 110 and 287× 110, respectively.

2 Preliminaries

The graphs considered in this paper are all finite and unoriented. Multiple edges
and loops are allowed. If G is a graph, then V (G) and E(G) denote the sets
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of vertices and edges of G, respectively. By a multi-terminal network, briefly a
network, we mean a pair (G, U) where G is a graph and U = (u1, . . . , un) is an
ordered set of pairwise distinct vertices of G. The vertices u1, . . . , un are called
the outer vertices of (G, U) and the others are called the inner vertices of (G, U).

To each edge connecting u and v (including loops) we associate two distinct
(directed) arcs, one directed from u to v, the other directed from v to u. If one
of these arcs is denoted x then the other is denoted x−1. Let D(G) denote the
set of such arcs, so that |D(G)| = 2|E(G)|. If v ∈ V (G), then ωG(v) denotes the
set of arcs of G directed from v to V (G) \ {v}.

If G is a graph and A is an additive Abelian group, then an A-chain in G
is a mapping ϕ : D(G) → A such that ϕ(x−1) = −ϕ(x) for every x ∈ D(G).
Furthermore, the mapping ∂ϕ : V (G) → A such that ∂ϕ(v) =

∑
x∈ωG(v) ϕ(x)

(v ∈ V (G)) is called the boundary of ϕ. An A-chain ϕ in G is called nowhere-zero
if ϕ(x) �= 0 for every x ∈ D(G). If (G, U) is a network, then an A-chain ϕ in G
is called an A-flow in (G, U) if ∂ϕ(v) = 0 for every inner vertex v of (G, U).

By a (nowhere-zero) A-flow in a graph G we mean a (nowhere-zero) A-flow in
the network (G, ∅). Our concept of nowhere-zero flows in graphs coincides with
the usual definition of nowhere-zero flows as presented in Jaeger [2]. By Tutte
[7,8], a graph has a nowhere-zero k-flow if and only if it has a nowhere-zero
A-flow for any Abelian group A of order k. Thus the study of nowhere-zero
5-flows is, in a certain sense, equivalent to the study of nowhere-zero Z5-flows.
We use this fact and deal only with Z5-flows because they are easier to handle
than integral flows.

A network (G, U), U = (u1, . . . , un), is called simple if the vertices u1, . . . , un

have degree 1. If ϕ is a nowhere-zero Z5-flow in (G, U), then denote by ∂ϕ(U)
the n-tuple (∂ϕ(u1), . . . , ∂ϕ(un)). By simple counting, we get

∑n
i=1 ∂ϕ(ui) =

−∑
v∈V (G)\U ∂ϕ(v) = 0 (see [3]). Furthermore, ∂ϕ(ui) �= 0 because ui has degree

1 (i = 1, . . . , n). Thus ∂ϕ(U) belongs to the set

Sn = {(s1, . . . , sn); s1, . . . , sn ∈ Z5 − {0}, s1 + . . . + sn = 0}.

For every s ∈ Sn, denote by FG,U (s) the number of nowhere-zero Z5-flows ϕ in
(G, U) satisfying ∂ϕ(U) = s.

A partition P = {Q1, . . . , Qr} of the set {1, . . . , n}, n ≥ 2, is called proper if
each of Q1, . . . , Qr has cardinality at least 2. Let Pn denote the set of proper
partitions of {1, . . . , n} and let pn = |Pn|. If s = (s1, . . . , sn) ∈ Sn, P =
{Q1, . . . , Qr} ∈ Pn, and

∑
i∈Qj

si = 0 for j = 1, . . . , r, then we say that P

and s are compatible. (For example, {{1, 2}, {3, 4, 5}} ∈ P5 is compatible with
(1, 4, 1, 2, 2) ∈ S5.) In this paper, we consider Pn as an pn-tuple (Pn,1, . . . , Pn,pn).
For any s ∈ Sn, denote by χn(s) the integral vector (cs,1, . . . , cs,pn) so that
cs,i = 1 (cs,i = 0) if Pn,i is (is not) compatible with s, i = 1, . . . , pn. In [4] is
proved the following statement.

Lemma 1. Let (G, U), U = (u1, . . . , un), be a simple network. Then there exist
integers x1, . . . , xpn such that for every s ∈ Sn, FG,U (s) =

∑pn

i=1 cs,ixi where
(cs,1, . . . , cs,pn) = χn(s).
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3 Forbidden Networks

Let (H, U), U = (u1, . . . , un), be a simple network. (H, U) is called quasicubic,
if every vertex of H has degree at most 3. By a cubic order of (H, U), denoted
by ν3(H, U), we mean the number of the vertices of H of degree 3. Denote by
SH,U = {s ∈ Sn; FH,U (s) > 0} and by VH,U the linear hull of {χn(s); s ∈ SH,U}
in Rpn .

We say that (H, U) is a forbidden network if H cannot be a subgraph of a
graph homeomorphic to a smallest counterexample to the 5-flow conjecture. By
[5, Lemma 2], if VH,U is equal to the linear hull of {χn(s); s ∈ Sn} in Rpn , then
(H, U) is forbidden. In order to improve this result we need some more notations.

Assume that H is a subgraph of a graph G and (H ′, U ′), U ′ = (u′
1, . . . , u

′
n), is

a simple network. Let G′ arises from G after deleting the vertices from V (H)\U
and identifying ui with u′

i for i = 1, . . . , n. We say that G′ arises from G after
replacing (H, U) by (H ′, U ′).

We say that (H, U) can be regularly replaced by (H ′, U ′) in a class of graphs
C, if for every graph G of C, the graph G′ arising from G after replacing (H, U)
by (H ′, U ′) is always bridgeless.

Lemma 2. Let (H, U), U = (u1, . . . , un), and (H ′, U ′), U ′ = (u′
1, . . . , u

′
n),

n ≥ 2, be quasicubic networks such that ν3(H, U) > ν3(H ′, U ′), VH′,U ′ ⊆ VH,U ,
and (H, U) can be regularly replaced by (H ′, U ′) in the class of cyclically 6-edge
connected quasicubic graphs. Then (H, U) is a forbidden network.

Proof. Let G be a counterexample to the 5-flow conjecture of the smallest
possible order. Then by [4], G is a cyclically 6-edge-connected cubic graph. Sup-
pose that F is homeomorphic with G and H is a subgraph of F . Without abuse
of generality we can assume that u1, . . . , un have all degree 2 in F . Let F ′ be the
graph arising after replacing (H, U) by (H ′, U ′). By assumptions, F ′ is bridgeless
and homeomorphic with a cubic graph G′. Since ν3(H, U) > ν3(H ′, U ′), the or-
der of G′ is smaller than the order of G, therefore G′ and F ′ admit nowhere-zero
5-flows.

Let I (I ′) be the graph arising from F (F ′) after deleting the vertices from
V (H) \U (V (H ′) \U ′). Then (I, U) and (I ′, U ′) are simple networks, and there
is an isomorphism of I and I ′ which maps u1, . . . , un to u′

1, . . . , u
′
n, respectively.

Thus FI,U (s) = FI′,U ′(s) for every s ∈ Sn.
If there exists s ∈ Sn such that FH,U (s), FI,U (s) > 0, then (H, U) and

(I, U) have nowhere-zero Z5-flows ϕ1 and ϕ2, respectively, such that ∂ϕ1(U) =
∂ϕ2(U) = s and the flows ϕ1 and −ϕ2 can be “pieced together” into a nowhere-
zero Z5-flow in F , a contradiction. Thus FH,U (s)FI,U (s) = 0 for every s ∈ Sn.
Since SH,U = {s ∈ Sn; FH,U (s) > 0}, we have FI,U (s) = 0 for every s ∈ SH,U .

By Lemma 1, there exist integers x1, . . . , xpn such that for every s ∈ Sn,
FI,U (s) =

∑pn

i=1 cs,ixi where (cs,1, . . . , cs,pn) = χn(s). Choose n-tuples t1, . . . , tr
from SH,U so that χn(t1), . . . , χn(tr) form a basis in VH,U . Then for every
s ∈ VH,U , there are numbers ys,1, . . . , ys,r such that χn(s) =

∑r
j=1 ys,jχn(tj)
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and, therefore, FI,U (s) =
∑pn

i=1 cs,ixi =
∑pn

i=1(
∑r

j=1 ys,jctj ,i)xi =
∑r

j=1 ys,j

(
∑pn

i=1 ctj ,ixi) =
∑r

j=1 ys,jFI,U (tj) = 0 (because t1, . . . , tr ∈ SH,U ). Thus we
have FI,U (s) = 0 for every s ∈ VH,U .

Since F ′ has a nowhere-zero Z5-flow, there exists t ∈ SH′,U ′ ∩ SI′,U ′ , i.e.,
FH′,U ′(t), FI′,U ′(t) > 0. By assumptions, VH′,U ′ ⊆ VH,U , whence FI′,U ′(t) =
FI,U (s) = 0, which is a contradiction. This proves the statement.

Let Cn be the circuit of order n, i.e., the graph having vertices v1, . . . , vn and edges
v1v2, v2v3, . . . , vnv1. Let Hn arises from Cn after adding new vertices u1, . . . , un

and edges u1v1, . . . , unvn. Then (Hn, Un), Un = (u1, . . . , un), is a simple network.
For i = 1, . . . , n, let xi denote the arc of Hn directed from ui to vi and yi denote
the arc directed from vi to vi+1 (considering the indices mod n).

Consider a graph Hn−2 and change the notation of its vertices by adding
primes, i.e, denote them by v′1, . . . , v

′
n−2, u

′
1, . . . , u

′
n−2. Similarly change the no-

tation of the arcs. Add new vertices v′n−1, v
′
n, u′

n−1, u
′
n and edges v′n−1u

′
n−1, v′nu′

n,
v′n−1v

′
n. Furthermore, let x′

n−1, x′
n, and z′n denote the arcs of H ′

n directed from
u′

n−1 to v′n−1, from u′
n to v′n, and from v′n−1 to v′n, respectively. Then (H ′

n, U ′
n),

U ′
n = (u′

1, . . . , u
′
n), is a simple network.

Lemma 3. For n ≥ 6, ν3(Hn, Un) > ν3(H ′
n, U ′

n) and (Hn, Un) can be replaced
by (H ′

n, U ′
n) regularly in the class of cyclically 6-edge connected cubic graphs.

Proof. ν3(Hn, Un) = n > n− 2 = ν3(H ′
n, U ′

n). Let G′ arises from G after replac-
ing (Hn, Un) by (H ′

n, U ′
n). If G′ has a bridge, then G is not cyclically 6-edge-

connected.

Thus to show that a smallest counterexample to the 5-flow conjecture has no
circuit of length n, it suffices, by Lemmas 2 and 3, to prove that VH′

n,U ′
n
⊆ VHn,Un .

4 Superproper Permutations

We say that s = (s1, . . . , sn) ∈ Sn and t = (t1, . . . , tn) ∈ Sn are θn-equivalent if
s1 = t1, . . . , sn−2 = tn−2 and sn−1 + sn = tn−1 + tn.

A proper partition P = {Q1, . . . , Qr} of the set {1, . . . , n}, n ≥ 2, is called
superproper if n and n − 1 are contained in the same set from Q1, . . . , Qr.
Let P ′

n denote the set of superproper partitions of {1, . . . , n}. (For example,
{{1, 2}, {3, 4, 5}} ∈ P ′

5.) We consider P ′
n as an p′n-tuple (Pn,1, . . . , Pn,p′

n
). For

any s ∈ Sn, denote by χ′
n(s) the integral vector (cs,1, . . . , cs,p′

n
) so that cs,i = 1

(cs,i = 0) if Pn,i is (is not) compatible with s, i = 1, . . . , p′n. Vector χ′
n(s) con-

tains the coordinates of χn(s) corresponding with the superproper partitions
from Pn.

Lemma 4. If s and t are θn-equivalent elements of Sn, then χ′
n(s) = χ′

n(t).

Proof. Follows from the definitions of P ′
n and χ′

n.
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By [4,5], we know that for n ≥ 2,

pn = 1 +
n−2∑
i=2

(
n− 1
i− 1

)
pn−i. (1)

Clearly, p′n = pn = 1 for n = 2, 3. If n ≥ 4, then P ′
n contains exactly pn−2

partitions such that n and n−1 are contained in a 2-element subset and exactly
pn−1 partitions such that n and n− 1 are contained in at least 3-element subset
(in this case we can delete n and get all partitions from Pn−1). Thus, for n ≥ 4,

p′n = pn−1 + pn−2. (2)

The main idea standing behind the reductions presented here, is that instead of
vectors χn(s) we consider vectors of the form χn(s)−χn(t) where s ≡ t(θn). By
Lemma 4, vectors of this form have all coordinates corresponding to superproper
partitions equal to 0. Thus instead of pn dimensional vectors we deal with pn −
p′n = pn−pn−1−pn−2 dimensional vectors. For the case n = 7, we get reduction
from p7 = 162 to p7 − p6 − p5 = 162− 41− 11 = 110.

5 θn-Classes

Lemma 5. Let ϕ1, ϕ2 be nowhere-zero Z5-flows in (Hn, Un) such that ∂ϕ1(Un)
= ∂ϕ2(Un). Then either ϕ1 = ϕ2 or ϕ1(yi) �= ϕ2(yi) for i = 1, . . . , n.

Proof. Follows from the fact that for i = 1, . . . , n, ϕ1(y1)−ϕ1(yi) =
∑r

j=2 ϕ1(xj)
=

∑r
j=2 ϕ2(xj) = ϕ2(y1)− ϕ2(yi).

Let
C(n) = {s ∈ Sn; FHn,Un(s) �= ∅},
Ci(n) = {s ∈ C(n); FHn,Un(s) = i},
C′(n) = {s ∈ Sn; FH′

n,U ′
n
(s) �= ∅},

C′′(n) = C′(n) \ C(n).

By [6], C(n) = C1(n) ∪ C2(n) ∪C3(n) for every n ≥ 2.
Before formulating another lemma, we introduce some more technical no-

tation. For every s ∈ Sn and a proper network (G, U), denote by ΦG,U (s)
the set of nowhere-zero Z5-flows ϕ in (G, U) satisfying ∂ϕ(U) = s. Note that
|ΦG,U (s)| = FG,U (s).

If ϕ is a nowhere-zero Z5-flow in (Hn−2, Un−2) and a ∈ Z5 \ {0, −ϕ(yn−2), },
then denote by ϕ[a] the nowhere-zero Z5-flow in (Hn, Un) such that ϕ[a](xn) =
−ϕ[a](xn−1) = a, ϕ[a](yn) = ϕ(yn−2), ϕ[a](yn−1) = ϕ(yn−2) + a, and ϕ[a](xi) =
ϕ(xi), ϕ[a](yi) = ϕ(yi) for i = 1, . . . , n − 2. (Note that writing ϕ(xi), ϕ(yi)
we consider the arcs xi, yi to be from Hn−2, and writing ϕ[a](xi), ϕ[a](yi) we
consider the arcs xi, yi to be from Hn.)

If ϕ is a nowhere-zero Z5-flow in (Hn, Un) and ϕ(xn−1) + ϕ(xn) = 0 (resp.
ϕ(xn−1)+ϕ(xn) �= 0), then denote by ϕ the nowhere-zero Z5-flow in (Hn−2, Un−2)
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(resp. (Hn−1, Un−1)) such that ϕ(xi) = ϕ(xi), ϕ(yi) = ϕ(yi) for i = 1, . . . , n− 2
(resp. ϕ(xn−1) = ϕ(xn)+ϕ(xn−1), ϕ(yn−1) = ϕ(yn), and ϕ(xi) = ϕ(xi), ϕ(yi) =
ϕ(yi) for i = 1, . . . , n− 2).

If (s1, . . . , sn) ∈ Sn and sn−1 + sn = 0 (resp. sn−1 + sn �= 0), then denote by
s = (s1, . . . , sn−2) ∈ Sn−2 (resp. s = (s1, . . . , sn−2, sn−1 + sn) ∈ Sn−1).

Lemma 6. Let s = (s1, . . . , sn)∈Sn. Then s∈C′′(n) if and only if sn−1+sn = 0,
s ∈ C1(n− 2), and sn = −ϕ(y′

n−2) where ϕ ∈ ΦHn−2,Un−2(s).

Proof. Suppose ϕ′ ∈ ΦH′
n,U ′

n
(s) and ϕ′′ be the restriction of ϕ′ to D(Hn−2).

Then sn = ϕ′(x′
n) = ϕ′(z′n) = −ϕ′(x′

n−1) = −sn−1 and ϕ′′(u′
1, . . . , u

′
n−2) = s.

If sn �= −ϕ′′(y′
n−2), then ϕ′′[sn] ∈ ΦHn,Un(s). Thus if s ∈ C′′(n), then s must

satisfy the assumptions.
If s satisfies the assumptions, then s ∈ C′(n) and we can choose ϕ′ ∈

ΦH′
n,U ′

n
(s). If also s ∈ C(n), take ϕ ∈ ΦHn,Un(s). Then ϕ must be the restriction

of ϕ′ to D(Hn−2) (because s ∈ C1(n − 2)), whence ϕ(xn) = sn = −ϕ(yn−2) =
−ϕ(yn) = ϕ(y−1

n ), which is not possible. Thus s ∈ C′′(n).

By the arithmetic in the group Z5, if (s1, . . . , sn) ∈ Sn and sn−1 + sn = 0
(sn−1 + sn �= 0), then |[s]θn| = 4 (|[s]θn| = 3).

Lemma 7. Let s = (s1, . . . , sn) ∈ Sn.

(1) If sn−1 + sn = 0 and s ∈ C1(n − 2), then |[s]θn ∩ C(n)| = 3 and |[s]θn ∩
C′′(n)| = 1.

(2) If sn−1 + sn = 0 and s ∈ C2(n − 2) ∪ C3(n − 2), then
|[s]θn ∩ C(n)| = 4 and |[s]θn ∩ C′′(n)| = 0.

(3) If sn−1 + sn �= 0 and s ∈ C1(n − 1), then |[s]θn ∩ C(n)| = 2 and |[s]θn ∩
C′′(n)| = 0.

(4) If sn−1 + sn �= 0 and s ∈ C2(n − 1) ∪ C3(n − 1), then
|[s]θn ∩ C(n)| = 3 and |[s]θn ∩ C′′(n)| = 0.

(5) If neither of the assumptions from (1)–(4) occurs, then
|[s]θn ∩ C(n)| = 0 and |[s]θn ∩ C′′(n)| = 0.

Proof. Let sn−1+sn = 0, t ∈ [s]θn∩C(n) and ϕ ∈ ΦHn,Un(t). Then s = t ∈ Sn−2
and ϕ ∈ ΦHn−2,Un−2(s), whence s ∈ C(n − 2). If s ∈ C1(n − 2) (s ∈ C2(n −
2) ∪ C3(n − 2)), then by Lemma 6, |[s]θn ∩ C′′(n)| = 1 (|[s]θn ∩ C′′(n)| = 0).
Using ψ[a] for ψ ∈ ΦHn−2,Un−2(s) and all a ∈ Z5 \ {0,−ψ(yn−2)} we get that
|[s]θn ∩ C(n)| = 3 (|[s]θn ∩ C(n)| = 4). This proves (1), (2), but also (5) for the
case sn−1 + sn = 0.

Let sn−1 + sn �= 0, t ∈ [s]θn ∩ C(n) and ϕ ∈ ΦHn,Un(t). Without loss of
generality we can assume that sn−1 + sn = 1. Then s = t ∈ Sn−1 and ϕ ∈
ΦHn−1,Un−1(s), whence s ∈ C(n− 1).

Assume that s ∈ C1(n− 1) and ϕ′ ∈ ΦHn−1,Un−1(s). Then ϕ′(yn−1), ϕ′(y−1
n−2)

can be either 1,3, or 3,1, or 2,2, respectively. In all three cases, there exist exactly
two nowhere-zero Z5-flows ϕ1, ϕ2 in (Hn, Un) such that ϕ1(xn) �= ϕ2(xn) and
ϕ1 = ϕ2 = ϕ′. This proves (3).
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Assume that s ∈ C2(n − 1) ∪ C3(n − 1) and ϕ′
1, ϕ

′
2 ∈ ΦHn−1,Un−1(s), ϕ′

1 �=
ϕ′

2. Then we can choose the notation of ϕ′
1, ϕ′

2 so that ϕ′
1(yn−1), ϕ′

1(y−1
n−2),

ϕ′
2(yn−1), ϕ′

2(y−1
n−1) are either 1,3,3,1, or 3,1,2,2, or 2,2,1,3, respectively. In all

three cases, there exist nowhere-zero Z5-flows ϕ1, ϕ2, ϕ3 in (Hn, Un) such that
ϕ1(xn) �= ϕ2(xn) �= ϕ3(xn) �= ϕ1(xn) and ϕ1, ϕ2, ϕ3 ∈ {ϕ′

1, ϕ
′
2}. This proves (4).

We have also proved (5) for the case sn−1 + sn �= 0, because we have shown
that if |[s]θn ∩C(n)| �= 0, then either (4) or (5) must hold.

6 Excluding Girth Seven

Lemma 8. Let α1, . . . , αr, β1, . . . , β2s+r, r < s, be not necessarily different
vectors from Rp and α1 − β1, . . . , αr − βr be contained in the linear hull of
βr+1 − βr+2 ,. . . , β2s+r−1 − β2s+r. Then α1, . . . , αr are contained in the linear
hull of β1, . . . , β2s+r.

Proof. Follows immediately from properties of linear dependence in linear spaces.

Let A denote the automorphism group of Z5. The elements of A are α0 = id,
α1 = (1, 2, 4, 3), α2 = (1, 4)(2, 3) and α3 = (1, 3, 4, 2). If s = (s1, . . . , sn) ∈ Sn

and α ∈ A, then denote α(s) = (α(s1), . . . , α(sn)) ∈ Sn. We say that s and
α(s) are σn-equivalent. Clearly, χn(s) = χn(α(s)) and FU,G(s) = FU,G(α(s))
for any simple network (G, U) with n outer vertices (ϕ is a nowhere-zero Z5-
flow in (G, U) if and only if α(ϕ) is so). Therefore, we do not need to consider
all elements from Sn, but only non σn-equivalent representatives of the σn-
equivalence classes (each of them has exactly four elements). Thus, from now
on, we consider only elements s = (s1, . . . , sn) ∈ Sn such that s1 = 1. The same
restriction we consider also for sets C(n), C′(n), C′′(n), and Ci(n), i = 1, 2, 3. Let
c(n) = |C(n)|, c′(n) = |C′(n)|, c′′(n) = |C′′(n)|, and ci(n) = |Ci(n)|, i = 1, 2, 3.

Theorem 1. VH′
7,U ′

7
⊆ VH7,U7 .

Proof. Following Lemma 7, we can denote the elements from C(n) ∪ C′(n) as
s[i,j,k] where 1 ≤ i ≤ 4, 1 ≤ j ≤ bi(n), 1 ≤ k ≤ ri(n),

b1(n) = c1(n− 2), b2(n) = c2(n− 2) + c3(n− 2),
b3(n) = c1(n− 1), b4(n) = c2(n− 1) + c3(n− 1),
r1(n) = r2(n) = 4 r3(n) = 2, r4(n) = 3,

assuming that {s[i,j,k]; k = 1, . . . , ri(n)}, i = 1, . . . , 4, j = 1, . . . , bi(n), are pair-
wise θn-equivalent and satisfy the condition (i) from Lemma 7. If i = 1, then we
also assume that s[i,j,3] ∈ C′′(n) for j = 1, . . . , b1(n).

Define

An = {α[i,j,k] = χn(s[i,j,k])− χn(s[i,j,ri(n)]);
1 ≤ i,≤ 4, 1 ≤ j ≤ bi(n), 1 ≤ k < ri(n)},

Bn = {α[1,j,3]; 1 ≤ j ≤ b1(n)}.
Then Bn ⊆ An. Let Wn be the linear hull of An \Bn in Rpn . If Bn ⊆ Wn, then
by Lemmas 8 and 7, VH′

n,U ′
n
⊆ VHn,Un . Using computers, we have verified that

B7 ⊆ W7. Thus VH′
7,U ′

7
⊆ VH7,U7 .
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By Lemmas 2, 3 and Theorem 1, the smallest counterexample to the 5-flow
conjecture cannot have a circuit of order 7.

7 Computations

Now we discuss the computations mentioned in the proof of Theorem 1. Let Mn

be the matrix whose rows are the vectors from An. Furthermore, we assume that
the first |An \Bn| rows correspond with the elements from An \Bn, and denote
the submatrix composed from these rows by M ′

n. We can also assume that Mn

does not contain the columns corresponding with the superproper permutations
from Pn (because, all these entries are 0 by Lemma 4). Thus Mn has qn =
pn − p′n columns and an = 3b1(n) + 3b2(n) + b3(n) + 2b4(n) rows and M ′

n has
a′

n = yn − b1(n) rows.
By [6], c(1) = c1(1) = c2(1) = c3(1) = c1(2) = c2(2) = 0, c(2) = c3(2) = 1,

and for every n ≥ 3,

c1(n) = 3c1(n− 2) + 2c2(n− 2) + 2c1(n− 1) + 2c2(n− 1),
c2(n) = 2c2(n− 2) + 3c3(n− 2) + c2(n− 1) + 3c3(n− 1),
c3(n) = c3(n− 2),
c(n) = c1(n) + c2(n) + c3(n).

(3)

Let vn = |Sn|. By [5], v2 = v3 = 1 and vn = 3vn−2 + 4vn−1 for n ≥ 4. Using (1),
(2) and (3), we can evaluate qn, an and a′

n for 1 ≤ n ≤ 8.

n 1 2 3 4 5 6 7 8
c1(n) 0 0 0 6 30 120 420 1386
c2(n) 0 0 3 6 15 30 63 126
c3(n) 0 1 0 1 0 1 0 1
c(n) 0 1 3 13 45 151 483 1513
vn 0 1 3 13 51 205 819 3277
pn 0 1 1 4 11 41 162 715
qn 0 0 0 2 6 26 110 512
an 0 0 2 9 29 99 317 999
a′

n 0 0 2 9 29 93 287 879

(4)

To check whether Bn ⊆ Wn we need to apply Gauss elimination to a matrix
Mn and check whether the nonzero entries are only in the rows of submatrix
M ′

n. We have applied this for n = 7, and we got that M ′
7 and M7 have the same

rank. Note that M7 and M ′
7 have size 317×110 and 287×110, respectively. This

is a significant reduction, because in [5] we had to check that a matrix of size
819× 162 has the same rank as its submatrix of size 483× 162.

Using computers we have applied the same approach also for n = 8. But in
this case we get that B8 �⊆ W8. Thus our method cannot be applied for excluding
girth eight.
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flows on wheels. Discrete Math. 308, 2050–2053 (2008)

7. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canad. J.
Math. 6, 80–91 (1954)

8. Tutte, W.T.: A class of Abelian groups. Canad. J. Math. 8, 13–28 (1956)
9. Zhang, C.-Q.: Integral Flows and Cycle Covers of Graphs. Dekker, New York (1997)



Blocks of Hypergraphs
Applied to Hypergraphs and Outerplanarity
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Abstract. A support of a hypergraph H is a graph with the same vertex
set as H in which each hyperedge induces a connected subgraph. We
show how to test in polynomial time whether a given hypergraph has a
cactus support, i.e. a support that is a tree of edges and cycles. While
it is NP-complete to decide whether a hypergraph has a 2-outerplanar
support, we show how to test in polynomial time whether a hypergraph
that is closed under intersections and differences has an outerplanar or
a planar support. In all cases our algorithms yield a construction of the
required support if it exists. The algorithms are based on a new definition
of biconnected components in hypergraphs.

1 Introduction

A hypergraph (see e.g. [2,28]) is a pair H = (V, A) where V is a finite set and
A is a (multi-)set of non-empty subsets of V . There are basically two different
variants of drawing a hypergraph, the edge-standard (drawing each hyperedge
h ∈ A as a star or a tree whose leaves are the elements of h – see Fig. 1(a)) or the
subset standard (drawing each hyperedge h ∈ A as a simple closed region that
contains exactly the vertices in h and no other vertices of V – see Fig. 2(b)). For
drawings in the edge standard see, e.g., [7,11,18,20]. In this paper, we concen-
trate on the second variant which is also called the Euler diagram of the set of
hyperedges. Simultaneous drawings of a graph and a hypergraph in the subset
standard are called clustered graphs. Drawing graphs with overlapping clusters
is discussed in [9,19]. There are different variants on when a hypergraph admits
a nice drawing in the subset standard. Several of them are based on some graphs
associated with the hypergraph.

A hypergraph H = (V, E) is Zykov-planar [28] if and only if there is a plane
multi-graph M with vertex set V such that each hyperedge equals the set of
vertices of some face of M . The hypergraph H can be represented as a bipartite
graph BH with vertex set V ∪A and an edge between a vertex v ∈ V and h ∈ A
if and only if v ∈ h (see Fig. 1(a)). A hypergraph is Zykov-planar if and only if
its bipartite graph is planar [27]. Thus, Zykov-planarity can be tested in linear
time [13].

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 201–211, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Three representations of the hypergraph with hyperedges {s, t, v}, {s, t, u},
{q, u, v}, {w, x, z, v}, {x, y, z}, {w, x, y}, {q, s, t, u, v, w, z, y}

Some work on Euler diagrams and a definition on their well-formedness is
summarized in [12]. The definition is associated with the superdual (or combina-
torial dual) of H . Assuming that no two vertices of H are contained in the same
set of hyperedges, the superdual is a graph on the vertex set V plus an artificial
vertex that is not contained in any hyperedge. There is an edge between two
vertices v and w if and only if the symmetric difference of the set of hyperedges
containing v and the set of hyperedges containing w contains exactly one set h.
Edge {v, w} is then labeled h. Flower et al. [12] show that a hypergraph has a
well-formed Euler diagram if and only if there is a plane subgraph of the super
dual in which each hyperedge and its complement induces a connected subgraph
and in which the labels around each face fulfill some condition. The superdual
of the hypergraph H in Fig. 1 is highly non-connected and, hence, H has no
well-formed Euler diagram. Verroust and Viaud [26] considered Euler diagrams
for hypergraphs with at most 8 hyperedges. The complexity of Euler diagrams
is discussed by Schaefer and S̆tefankovic̆ [21]. Drawings of arbitray hypergraphs
in an extended subset standart where the regions representing the hyperedges
do not have to be connected are discussed by Simonetto and Auber [22,23].

A support [25,15] (or host graph [17]) of a hypergraph H = (V, E) is a graph
G = (V, E) with the property that the subgraph of G induced by any hyperedge
is connected. A hypergraph is (vertex-)planar [14] if it has a planar support. (The
partial connectivity graphs of Chow [8] are planar supports of a dualized version
of a hypergraph.) Planar hypergraphs are a generalization of both, Zykov-planar
hypergraphs [25] and hypergraphs having a well-formed Euler-diagram [12]. It
is NP-complete to decide whether a hypergraph has a planar support [14] even
if the set of hyperedges is closed under intersections and each hyperedge induces
a path in the support. However, it can be decided in linear time whether a hy-
pergraph has a support that is a tree [24], a path, or a cycle [6]. Tree supports
with bounded degrees [6] and minimum weighted tree supports [16] can be con-
structed in polynomial time. Equivalent formulations for hypergraphs having a
tree support can be found in [1].
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To guarantee that each hyperedge can be drawn by a simple closed region,
Kaufmann et al. [15] required compact supports. A support G = (V, E) of a
hypergraph is compact if G is planar, triangulated and no inner face of the
subgraph of G induced by a hyperedge h contains a vertex not in h. It can be
concluded from [14] that it is NP-complete to decide whether a hypergraph
has a compact support even if it is closed under intersections. However, a hyper-
graph has a compact support if it has an outerplanar support. So it would be
interesting to know whether a hypergraph has an outerplanar support. So far the
complexity of outerplanar supports is open. It is NP-complete to decide whether
a hypergraph has a 3-outerplanar support [6] or a 2-outerplanar support [5].

The Hasse diagram of a hypergraph H = (V, A) is the directed acyclic graph
with vertex set A ∪ V and there is an edge (h1, h2) (or (h1, v) and h2 = {v}) if
and only if h2 � h1 and there is no set h ∈ A with h2 � h � h1. A hypergraph
H = (V, A) has an outerplanar support if its based Hasse diagram, i.e. the Hasse
diagram of A ∪ {V } is planar [15].

x y z w v q u t s

(a) based Hasse diagram

x

y

z

w

q u

s

v t

(b) Euler diagram

Fig. 2. Two more representations of the hypergraph with hyperedges {s, t, v}, {s, t, u},
{q, u, v}, {w, x, z, v}, {x, y, z}, {w, x, y}, {q, s, t, u, v, w, z, y}

In this paper, we consider special cases of outerplanar supports. A graph is
a cactus if it is connected and each edge is contained in at most one cycle. A
cactus can be used to represent the set of all minimum cuts of a graph [10].
Cactus supports also have applications in hypergraph coloring [17]. In Sect. 3,
we show that a hypergraph has a cactus support if its based Hasse diagram is
planar but the converse is not true. Further, we show how to decide in polynomial
time whether a hypergraph has a cactus support. The construction is based on a
new definition of biconnected components of a hypergraph introduced in Sect. 2
(see Fig. 1(b) for an illustration).

When drawing Euler diagrams it is desirable to visualize not only the hy-
peredges itself but also the intersection and the differences of two hyperedges.
Motivated by this fact, we consider hypergraphs closed under intersections and
differences (hcid) in Sect. 4. We show that it can be decided in polynomial time
whether a hcid has an outerplanar or planar support.

In the remainder of the paper let H = (V, A) be a hypergraph with n = |V |
vertices, m = |A| hyperedges, and N =

∑
h∈A |h| equals the sum of the sizes of

all hyperedges. The size of the hypergraph is then N + n + m.
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2 Biconnected Components

In this section, we show how to decompose a hypergraph into biconnected com-
ponents that we will call blocks. This decomposition will be constructed in such
a way that there is a support with the property that the blocks of the hypergraph
correspond to the biconnected components of the support.

For a hypergraph H = (V, A) and a subset V ′ ⊂ V the hypergraph induced
by V ′ is H [V ′] = (V ′, A[V ′]) with A[V ′] = {h∩V ′; h ∈ A} \ {∅, {v}; v ∈ V }. I.e.,
A[V ′] contains from each hyperedge the part that is in V ′ omitting the empty set
and the sets of size one to be consistent with the definition for ordinary graphs.
Let H |V ′ = (V ′, A|V ′) with A|V ′ = {h ∈ A; h ⊆ V ′}. Note that H [V ′] does not
have to be planar if H is planar. However, H |V ′ is planar if H is.

The sequence p : v0, h1, v1, . . . , hk, vk is a v0vk-path in H if h1, . . . , hk ∈ A,
v0 ∈ h1, vk ∈ hk, and vi ∈ hi ∩ hi+1, i = 1, . . . k − 1. Vertices v0 and vk are the
end vertices of p. Two vertices v, w of a hypergraph H = (V, A) are connected
if there is a vw-path in H . Connectivity is an equivalence relation on the set of
vertices of a hypergraph and the hypergraphs induced by the equivalence classes
are called connected components [28].

Let v ∈ V . The connected components of H |(V \ {v}) are the parts of v and
v is an articulation point of H if v has more than one part. Note that v is an
articulation point of H if and only if there is a support of H in which v is a cut
vertex. E.g., vertex v is a cut vertex of the hypergraph in Fig. 1 and {w, x, y, z},
{q}, and {u, t, s} are the parts of v.

A decomposition into blocks of a hypergraph H = (V, A) is defined recursively.
H is a block if and only if H is connected and does not contain an articulation
point. If H is not connected then the blocks of H are the blocks of the connected
components of H . If H is connected and contains an articulation point v, let
W1, . . . , Wk be the parts of v. Then the blocks of H are the blocks of H [W1 ∪
{v}], . . . , H[Wk ∪ {v}].

Note that the blocks depend on the choices of the articulation points and
are not uniquely defined. E.g., consider the hypergraph H in Fig. 1. Choosing
the articulation points v, w, and t yields the subhypergraphs induced by the
sets {v, w}, {w, x, y, z}, {v, q}, {t, u, v}, and {t, s} as blocks. These are indicated
within the circles of Fig. 1(b). Choosing s instead of t as an articulation point
would yield the block H [{s, u, v}] instead of H [{t, u, v}].

Note that this definition of articulation points and blocks is related to but
different from the definition given in [1]. Further note that the sum of the sizes
of all blocks is at most three times the size of the hypergraph itself.

We will use the terminology analogously for the bipartite graph BH on the
vertex set V ∪A representing the hypergraph H = (V, A). The connected com-
ponents of H correspond to the connected components of BH . Vertex v is an
articulation point of BH if B[V \ {v} ∪ A \ {h ∈ A; v ∈ h}] contains more than
one connected component which will again be called the parts of v. The blocks
of BH are the bipartite graphs representing the blocks of H . Then the blocks of
BH and, hence, of H can be constructed by determining n times the connected
components of a subgraph of BH .
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Lemma 1. The blocks of the hypergraph H can be found in O(nN + n + m)
time.

Proof. Since the connected components of BH can be computed in O(N +n+m)
time, we may assume that H is connected. Let v1, . . . , vn be any ordering of the
vertices of H . The algorithm Blockfinder(B, k) takes as argument a subgraph
B of BH and a k = 0, . . . , n such that v1, . . . , vk are not articulation points of
B. It outputs a link to the list of blocks of B.

Blockfinder(B, k)

– If there is no k′ > k such that vk′ is contained in B return B
– Let k′ > k be minimal such that vk′ is contained in B
– Remove vk′ and all its adjacent vertices h1, . . . , hj from B and compute the

connected components B1, . . . , B	 of this bipartite graph.
– For i = 1, . . . , �, add vk′ and those hyperedges among h1, . . . , hj that contain

some vertices of Bi with the corresponding edges to Bi.
– Return Blockfinder(B1, k

′), . . . ,Blockfinder(B	, k
′).

Then Blockfinder(BH , 0) finds a partition of H into blocks represented as
bipartite graphs: Assume that Blockfinder returns a subgraph Bi of BH that
contains an articulation point vk′ . Let P1 and P2 be two parts of vk′ in Bi. Con-
sider the subgraph B of BH such that k′ was chosen while proceeding Block-
finder(B, k). Since in the end P1 and P2 are both in Bi there is a path p in
B connecting P1 and P2 that does not contain vk′ . Let p have minimum length
among all such paths. Then p is a path in Bi: Otherwise let p : w0, h1, . . . , h	, w	

and assume that wj is the first vertex of p not in Bi. Let j′ > j be the smallest
index such that wj′ is in Bi. Then there is an articulation point v	, � > k′ of Bi

with v	 ∈ hj ∩ hj′ . Hence, w0, h1, . . . , wj−1, hj , v	, hj′ , wj′ , . . . , h	, w	 is a shorter
path than p connecting P1 and P2. ��
A decomposition of a hypergraph into blocks induces a “block-articulation-point
tree” in the same way as block-cut-point trees for ordinary graphs: Let T be the
bipartite graph that is constructed as follows. The vertices of T are the blocks
of H and those vertices in V that are contained in more than one block. There
is an edge between a vertex v and a block B if and only if v is contained in
B. Then T is the block-articulation-point tree of the chosen decomposition of a
hypergraph into blocks (see Fig. 1(b)).

Lemma 2. A hypergraph has an (outer-)planar support if all its blocks have an
(outer-)planar support.

Proof. Let B1, . . . , Bk be the blocks of a hypergraph H = (V, A). Let Gi =
(Vi, Ei) be a support of Bi for i = 1, . . . , k. Then G = (V, E1 ∪ . . . ∪ Ek) is a
support of H and G1, . . . , Gk are the 2-connected components of G. Proceeding
from the leaves of the block-articulation-point tree one can choose the embedding
of the support of each block such that the articulation point with the parent
block is on the outer face. Hence, if all Gi have an (outer-)planar support then
so does G. ��
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v1
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v4

v3

v2 w

(a) blocks not planar

v6v5v4v3v2v1y

xv w

(b) blocks not outerplanar

Fig. 3. Illustration of some examples. Solid edges indicate a support, dashed curves
indicate hyperedges that contain more than two vertices.

The converse of Lemma 2 is not true. Let H be the hypergraph with hy-
peredges {v, v1}, {v, v4}, {v, v5}, {v2, v4, v, w}, {v3, v5, v, w}, {v1, v2}, {v1, v3},
{v1, v4}, {v1, v5}, {v2, v3}, {v3, v4}, {v4, v5}, {v2, v5}. Then H is planar, v is an
articulation point of H and H [{v1, v2, v3, v4, v5, v}] is a block of H that is not
planar. See Fig. 3(a) for an illustration. In the outerplanar case consider the
hyperedges {v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, {v, y}, {y, v1}, {v, x},
{x, v1}, {v, x, w, v2, v5}, and {v, y, v1, w, v3, v6} and the articulation point v. See
Fig. 3(b) for an illustration. For hypergraphs closed under intersections, however,
we have equivalence. A hypergraph H = (V, A) is closed under intersections if
h1 ∩ h2 ∈ A ∪ {∅} ∪ {{v; v ∈ V }} for h1, h2 ∈ A.

Lemma 3. A hypergraph that is closed under intersections has an (outer-) pla-
nar support if and only if each block has an (outer-) planar support.

Proof. Let H = (V, A) be a hypergraph that is closed under intersections and let
G = (V, E) be an (outer-)planar support of H . Let v ∈ V and let W be a part
of v. We show by induction on the number of vertices of V \W that H [W ∪{v}]
has an (outer-)planar support. There is nothing to show if V = W ∪ {v}.

So let w ∈ V \ (W ∪ {v}). We construct an (outer-)planar support G′ of
H ′ = (V \{w}, {h′ ∈ A; w /∈ h′}∪{h′\{w}; v ∈ h′ ∈ A}). If there is no hyperedge
containing v and w let G′ be the graph that results from G by deleting w and
all its incident edges. Otherwise let h be the intersection of all hyperedges that
contain v and w. Then there is a wv-path in G[h]. Let w′ be the neighbor of w
on this path. Then G′ is constructed from G by merging w and w′. I.e., for each
neighbor u �= w′ of w add {u, w′} to the edge set of G. Finally, remove w and
all its incident edges from G.

If V \ {w} = W ∪ {v} then H ′ = H [W ∪ {v}]. Otherwise v is an articulation
point and W is a part of v in H ′. Hence, by the inductive hypothesis H ′[W ∪
{v}] = H [W ∪ {v}] has an (outer-)planar support. ��

3 Cactus Supports

A cactus is a connected graph that has an outerplanar embedding such that each
edge is incident to the outer face. In this section, we relate cactus supports to
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planar based Hasse diagrams and we show how to utilize the decomposition into
blocks to construct a cactus support if one exists.

It was shown by Kaufmann et al. [15] that a hypergraph H = (V, A) has an
outerplanar support if its based Hasse diagram is planar. In fact, in that case
H has even a cactus support. In the construction of Kaufmann et al. [15] some
unnecessary edges on the outer face have to be omitted. We briefly sketch their
construction and our modification.

Theorem 1. A hypergraph has a cactus support if its based Hasse diagram is
planar.

Proof. Let H = (V, A) be a hypergraph, let V ∈ A, and let its Hasse diagram D
be planar. Assume that a planar embedding of D is given. Let T be the DFS tree
resulting from a directed left-first DFS and replace each non-tree arc e = (h1, h2)
in D by an arc (h1, v) for some v ∈ h2. According to Kaufmann et al. [15], this can
be done by “sliding down” the arcs and thus maintaining planarity. Let D′ be the
thus constructed Hasse diagram and let A′ be the set of vertices of D′ that are not
sinks. Let H ′ = (V, {{v ∈ V ; there is a directed hv-path in D′}; h ∈ A′}. Then T
remains a left-first DFS-tree of D′ and any support of H ′ is a support of H .

Consider a simple closed curve C that visits the sequence v1, . . . , vn of leaves
of T from left to right. We may assume that the vertex V of D is in the exterior
of C, that C intersects no tree edges and that it intersects non-tree edges at most
once. The support sequence σ : w1, . . . , w	 is the sequence of vertices or targets
of intersecting edges as they occur on C. Note that σ contains only vertices of V
and that a vertex of V may occur several times in σ. As mentioned by Kaufmann
et al. [15], each set h ∈ A′ corresponds then to a subsequence of σ.

Let now w	+1 = w1. Then G = (V, {{wi, wi+1}; i = 1, . . . , �}) is a cactus
support of H ′ and, hence, of H . In fact, the edges can be routed along C and the
pieces of the arcs between C and v1, . . . , vn. Then G has a planar embedding in
which each edge is on the outer face. Further, each subsequence of W corresponds
to a walk in G. Hence, G is a cactus support for H ′. ��

However, not only hypergraphs with a planar Hasse diagram have a cactus sup-
port. E.g., A = {{i, i + 1}, i = 1, . . . , 6; {1, . . . , 5}, {2, . . . , 6}, {3, . . . , 7}}. In the
following, we will show how to test efficiently whether any hypergraph has a
cactus support and if so how to construct it in the same asymptotic run time.

Lemma 4. A hypergraph has a support that is a cactus if and only if each block
has a support that is a cycle or an edge.

Proof. The if-part is analogous to Lemma 2. For the only-if-part let H = (V, A)
be a hypergraph and let G = (V, E) be a cactus support of H . Let v be an
articulation point and W a part of v. We show that H [W ∪ {v}] has a support
that is a cactus.

We say that u ∈ W is close to v if and only if there is a path in G from v to
u not containing any edge of G[W ]. Note that G[W ] is a connected subgraph of
a cactus not containing v, hence there are at most two vertices in W that are
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(a) cactus support of H
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(b) cactus support of H [W ∪ {v}]

Fig. 4. Illustration of the proof of Lemma 4. Vertices inside the dashed curve are
contained in a part W of v. Vertices u1 and u2 are close to v. Vertices x and y are end
vertices of pC .

close to v. A cactus support GW = (VW , EW ) of H [W ∪{v}] can be constructed
as follows (see Fig. 4 for an illustration):

– Start with GW ← G[W ∪ {v}]
– For each u ∈ W that is close to v, add {u, v} to EW

– For each cycle of G, let C = {e1, e2, . . . , ek} be its set of edges . If E[W ]∩C �=
∅ and C �⊆ E[W ] then G[W ∩C] is a path pC . If the end vertices x and y of
pC are not both close to v, add {x, y} to EW . ��

A hypergraph H = (V, A) has a support that is a cycle if and only if it has the
circular consecutive ones property, i.e. if and only if there is an ordering v1, . . . , vn

of the vertices such that for each hyperedge h ∈ A there are 1 ≤ j ≤ k ≤ n such
that h = {vj , . . . , vk} or V \h = {vj, . . . , vk}. Summarizing, we have the following
theorem.

Theorem 2. It can be tested in O(nN + n + m) time whether a hypergraph has
a support that is a cactus.

Proof. Compute all blocks in O(nN +n+m) time. Test all blocks in linear time
for the circular consecutive ones property [4]. ��

4 Hypergraphs Closed under Intersections and
Differences

Two hyperedges h1, h2 overlap if h1 ∩ h2 �= ∅, h1 \ h2 �= ∅, and h2 \ h1 �= ∅.
An Euler diagram of two overlapping hyperedges is usually drawn such that
the intersection of the two regions representing the two hyperedges is connected
and such that the part of one of the regions that is not contained in the other
is also connected. See Fig. 5 for an illustration. This motivates the following
definition. A hypergraph H = (V, A) is closed under intersections and differences
if h1∩h2 ∈ A∪{{v}; v ∈ V } and h1 \h2 ∈ A∪{{v}; v ∈ V } for two overlapping
hyperedges h1, h2 ∈ A. In the remainder of this section we show that it is easy
to decide whether a hypergraph closed under intersections and differences has a
planar or an outerplanar support.
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(a) undesired (b) desired
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h1 h2
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(c) illustration of Lemma 5

Fig. 5. (a) Undesired and (b) desired drawings of two overlapping hyperedges and (c)
an illustration of the proof of Lemma 5. In (a) the intersection or the difference of two
hyperedges is not connected, while in (b) it is.

For a hypergraph H = (V, A) let H2 = (V, {h ∈ A; |h| = 2}) be the graph of
all hyperedges of H that contain exactly two vertices. We will show that H2 is
a support of H if H is a block.

Lemma 5. If the hypergraph H is closed under intersections and differences
and does not contain an articulation point then the hypergraph H2 induced by
all hyperedges of size two is a support of H.

Proof. Let H = (V, A) be a hypergraph that is closed under intersections and
differences and assume that H does not contain an articulation point. Let h by a
hyperedge of H . By induction on the size of h, we show that H2[h] is connected.
There is nothing to show if |h| ≤ 2. So assume that |h| > 2.

We first assume that h �= V . Since H does not contain any articulation point
there are at least two hyperedges h1, h2 with h1∩h �= h2∩h that overlap with h.
We have h∩ hi, h \ hi ∈ A∪ {{v}; v ∈ V }, i = 1, 2. By the inductive hypothesis,
H2[h ∩ hi] and H2[h \ hi], i = 1, 2 are all four connected. If h ∩ h1 �= h \ h2 then
it follows that H2[h] is connected.

So assume that for all pairs h1, h2 of hyperedges with h ∩ h1 �= h ∩ h2 that
overlap with h it holds that h ∩ h1 = h \ h2. Hence there is a bisection h1, h2 of
h such that for all hyperedges h1 that overlap with h it holds that h ∩ h1 = h1

or h ∩ h1 = h2. See Fig. 5 for an illustration of this part of the proof. Note
again that by the inductive hypothesis H2[hi], i = 1, 2 are both connected. Since
h contains more than two vertices, we may assume without loss of generality
that h1 contains at least two vertices. If |h2| = 1 there has to be a hyperedge
h′ ⊂ h that overlaps h1 and contains h2. Otherwise every vertex in h1 would be
an articulation vertex. Similarly, if |h2| > 1 there has to be a hyperedge h′ that
overlaps both, h1 and h2. Let h′ be the smallest hyperedge with this property.
Assume that |h′ ∩ hi| > 1 for i = 1 or i = 2. Since H2[hi] is connected there
have to be vertices v ∈ hi ∩ h′, w ∈ hi \ h′ such that {v, w} is a hyperedge.
But then h′ \ {v, w} ∈ A is a smaller hyperedge than h′ with the required
property – a contradiction. It follows that |h′| = 2. Hence, H2[h] contains the
connected subgraphs H2[hi], i = 1, 2 and the edge h′ connecting them. Thus,
H2[h] is connected.
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Assume finally that h = V . If H contains more than two vertices then the
hypergraph (V, A\{V }) has to be connected. Otherwise all but at most one vertex
of H would be articulation points. Since H2[h′] is connected for all hyperedges
h′ �= V it thus follows that also H2[V ] is connected. ��

Note that the hyperedges of size two have to be contained in every support
of a hypergraph. So we have the following corollary.

Corollary 1. It can be decided in O(nN + n + m) time whether a hypergraph
closed under intersections and differences has a planar or outerplanar support.

Proof. First, decompose the hypergraph into blocks. Then test for each block
whether the graph induced by the hyperedges of size two is planar or outerplanar,
respectively (Lemma 3). ��

5 Conclusions

In this paper, we newly defined a decomposition of a hypergraph into blocks.
For any such decomposition there is a support with the property that the blocks
of the hypergraph correspond to the biconnected components of the support.
We then give two applications of the decomposition into blocks. A hypergraph
has a cactus support if and only if each block has the cyclic consecutive one’s
property. A hypergraph that is closed under intersections and differences has an
(outer-)planar support if and only if for each block the graph induced by the
hyperedges of size two is (outer-)planar.

As a future work, we want to improve the run time of the decomposition into
blocks and to solve the problem of testing whether an outerplanar support exists
in more general cases.
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Abstract. In this paper we study the time complexity of the problem Simulta-
neous Embedding with Fixed Edges (SEFE), that takes two planar graphs G1 =
(V, E1) and G2 = (V, E2) as input and asks whether a planar drawing Γ1 of G1

and a planar drawing Γ2 of G2 exist such that: (i) each vertex v ∈ V is mapped
to the same point in Γ1 and in Γ2; (ii) every edge e ∈ E1 ∩ E2 is mapped to
the same Jordan curve in Γ1 and Γ2. First, we show a polynomial-time algorithm
for SEFE when the intersection graph of G1 and G2, that is the planar graph
G1∩2 = (V, E1 ∩ E2), is biconnected. Second, we show that SEFE, when G1∩2

is a tree, is equivalent to a suitably-defined book embedding problem. Based on
such an equivalence and on recent results by Hong and Nagamochi, we show a
linear-time algorithm for the SEFE problem when G1∩2 is a star.

1 Introduction

Let G1 = (V, E1), . . . , Gk = (V, Ek) be k graphs on the same set of vertices. A
simultaneous embedding of G1, . . . , Gk consists of k planar drawings Γ1, . . . , Γk of
G1, . . . , Gk, respectively, such that any vertex v ∈ V is mapped to the same point in
every drawing Γi. Because of the applications to several visualization methods and of
the interesting related theoretical problems, constructing simultaneous graph embed-
dings has recently grown up as a distinguished research topic in Graph Drawing.

The two main variants of the simultaneous embedding problem are the geometric
simultaneous embedding and the simultaneous embedding with fixed edges. The former
requires the edges to be straight-line segments, while the latter relaxes such a constraint
by just requiring the edges that are common to distinct graphs to be represented by the
same Jordan curve in all the drawings. Geometric simultaneous embedding turns out to
have limited usability, as geometric simultaneous embeddings do not always exist if the
input graphs are three paths [4], if they are two outerplanar graphs [4], if they are two
trees [14], and even if they are a tree and a path [3]. Further, testing whether two planar
graphs admit a geometric simultaneous embedding is NP-hard [9].

On the other hand, a simultaneous embedding with fixed edges (SEFE) always exists
for much larger graph classes. Namely, a tree and a path always have a SEFE with few
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bends per edge [8]; an outerplanar graph and a path or a cycle always have a SEFE with
few bends per edge [7]; a planar graph and a tree always have a SEFE [12].

The main open question about SEFE is whether testing the existence of a SEFE of
two planar graphs is doable in polynomial time or not. A number of known results are
related to this problem. Namely, Gassner et al. proved that testing whether three planar
graphs admit a SEFE is NP-hard and that SEFE is in NP for any number of input
graphs [13]; Fowler et al. characterized the planar graphs that always have a SEFE with
any other planar graph and proved that testing whether two outerplanar graphs admit a
SEFE is in P [11]; Fowler et al. showed how to test in polynomial time whether two
planar graphs admit a SEFE if one of them contains at most one cycle [10]; Jünger and
Schulz characterized the graphs G1∩2 that allow for a SEFE of any two planar graphs
G1 and G2 whose intersection graph is G1∩2 [17]; Angelini et al. showed how to test
whether two planar graphs admit a SEFE if one of them has a fixed embedding [1].

In this paper, we show the following results. In Sect. 3 we show a cubic-time algo-
rithm for the SEFE problem when the intersection graph G1∩2 of G1 and G2 is bicon-
nected. Our algorithm exploits the SPQR-tree decomposition of G1∩2 in order to test
whether a planar embedding of G1∩2 exists that allows the edges of G1 and G2 not in
G1∩2 to be drawn in such a way that no two edges of the same graph intersect. In Sect. 4
we show that the SEFE problem, when G1∩2 is a tree, is equivalent to a suitably-defined
book embedding problem. Namely, we show that, for every instance G1, G2 of SEFE

such that G1∩2 is a tree, there exist a graph G′, whose edges are partitioned into two
sets E′

1 and E′
2, and a set of hierarchical constraints on the set of vertices of G′, such

that G1 and G2 have a SEFE if and only if G′ admits a 2-page book embedding in which
the edges of E′

1 are in one page, the edges of E′
2 are in another page, and the order of

the vertices of G′ along the spine respects the hierarchical constraints. Based on this
characterization and on recent results by Hong and Nagamochi [16] concerning 2-page
book embeddings with the edges assigned to the pages in the input, we prove that linear
time suffices to solve the SEFE problem when G1∩2 is a star.

Several proofs are omitted because of space limitations. Further details are in [2].

2 Preliminaries

A drawing of a graph is a mapping of each vertex to a distinct point of the plane and of
each edge to a simple Jordan curve connecting its endpoints. A drawing is planar if the
curves representing its edges do not cross but, possibly, at common endpoints. A graph
is planar if it admits a planar drawing. Two drawings of the same graph are equivalent
if they determine the same circular ordering around each vertex. A planar embedding
is an equivalence class of planar drawings. A planar drawing partitions the plane into
topologically connected regions, called faces. The unbounded face is the outer face.

A Simultaneous Embedding with Fixed Edges (SEFE) of k planar graphs G1 =
(V, E1), G2 = (V, E2), . . . , Gk = (V, Ek) consists of k drawings Γ1, Γ2, . . . , Γk such
that: (i) Γi is a planar drawing of Gi, for 1 ≤ i ≤ k; (ii) any vertex v ∈ V is mapped
to the same point in every drawing Γi, for 1 ≤ i ≤ k; (iii) any edge e ∈ Ei ∩ Ej is
mapped to the same Jordan curve in Γi and in Γj , for 1 ≤ i, j ≤ k. The problem of
testing whether k graphs admit a SEFE is called the SEFE problem. Given two planar



214 P. Angelini et al.

graphs G1 = (V, E1) and G2 = (V, E2), the intersection graph of G1 and G2 is the
planar graph G1∩2 = (V, E1 ∩E2); further, the exclusive subgraph of G1 (resp. of G2)
is the graph G1\2 = (V, E1 \ E2) (resp. G2\1 = (V, E2 \ E1)). The exclusive edges of
G1 (of G2) are the edges in G1\2 (resp. in G2\1).

A book embedding of a graph G = (V, E) consists of a total ordering ≺ of the
vertices in V and of an assignment of the edges in E to pages of a book, in such a way
that no two edges (a, b) and (c, d) are assigned to the same page if a ≺ c ≺ b ≺ d.
A k-page book embedding is a book embedding using k pages. A constrained k-page
book embedding is a k-page book embedding in which the assignment of edges to the
pages is part of the input.

A graph is connected if every pair of vertices is connected by a path. A graph G is bi-
connected (resp. triconnected) if removing any vertex (resp. any two vertices) leaves G
connected. In order to handle the decomposition of a biconnected graph into its tricon-
nected components, we use the SPQR-trees, a data structure introduced by Di Battista
and Tamassia (see, e.g., [5,6]). Definitions about SPQR-trees can be found in [5,6,15].
Here we give some notation. Given a biconnected graph G and its SPQR-tree T , we say
that a vertex v of G belongs to a node μ of T if v is a vertex of the pertinent graph G(μ)
of μ. In this case we also say that μ contains v. We denote by skel(μ) the skeleton of
a node μ of T , that is, the graph representing the arrangement of the triconnected com-
ponents composing G(μ). The edges of skel(μ) are called virtual edges. The skeleton
of a node μ contains a virtual edge representing the rest of the graph, that is, the graph
obtained from G by removing all the vertices of G(μ), except for its poles, together
with their incident edges. In the following, we will only refer to the SPQR-tree of the
intersection graph G1∩2 of two graphs G1 and G2. However, with a slight abuse of no-
tation, we will denote by G1(μ) (by G2(μ)) the subgraph of G1 (of G2) induced by the
vertices in G1∩2(μ).

3 The Intersection Graph Is Biconnected

In this section we describe an algorithm for computing a SEFE of two planar graphs
G1 = (V, E1) and G2 = (V, E2) when the intersection graph G1∩2 is biconnected.
Denote by T the SPQR-tree of G1∩2.

To ease the description of the algorithm, we assume that T is rooted at any edge e of
G1∩2. Such an assumption implies that e is adjacent to the outer face of any computed
embedding of G1∩2. Observe that this does not preclude the possibility of finding a
SEFE of G1 and G2. Namely, consider any SEFE in the plane; “wrap” the SEFE around
a sphere; project the SEFE back to the plane from a point in a face incident to e, thus
obtaining a SEFE of G1 and G2 in which e is incident to the outer face of the embedding
of G1∩2. Furthermore, if e is the parent in T of an S-node, subdivide the edge of T
connecting e to its only child by inserting a P -node. Observe that the described insertion
of an “artificial” P -node ensures that the parent of any S-node is either an R-node or a
P -node.

For every P -node and R-node μ of T , the visible nodes of μ are the children of μ
that are not S-nodes plus the children of each child of μ that is an S-node.

An exclusive edge e of G1 or of G2 is an internal edge of a node μ ∈ T if both the
end-vertices of e belong to μ, at least one of them is not a pole of μ, and there exists no
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Fig. 1. A SEFE of graphs G1(μ) and G2(μ) when μ is a P -node with three children ν1, ν2, and
ν3. Also, ν1 and ν2 have children ρ1,1, . . . , ρ1,5 and ρ2,1, . . . , ρ2,5, respectively. For each visible
node τ of μ, the interior of the cycle delimiting the outer face of G1∩2(τ ) is gray. Solid (dotted)
edges are exclusive edges of G1 (G2). The dashed edge represents the rest of the graph.

descendant of μ containing both the end-vertices of e. An exclusive edge e of G1 or of
G2 is an outer edge of a node μ ∈ T if exactly one end-vertex of e belongs to μ and
this end-vertex is not a pole of μ. An exclusive edge e of G1 or of G2 is an intra-pole
edge of a node μ ∈ T if its end-vertices are the poles of μ. Observe that an exclusive
edge e of G1 or of G2 can be an outer edge of a linear number of nodes of T ; further,
e is an internal edge of at most one node of T ; moreover, e can be an intra-pole edge
of a linear number of nodes of T ; however, e can be an intra-pole edge of at most one
P -node of T . In Fig. 1, edge e1 is an internal edge of μ and an outer edge of ρ1,2, of
ρ2,2, of ν1, and of ν2; edge e2 is an internal edge of ν2 and an outer edge of ρ2,2 and
ρ2,4; edge e3 is an internal edge of μ and an outer edge of ρ1,3, ν1, and ν2; edge e4 is
an intra-pole edge of ρ2,5; edge e5 is an outer edge of ρ1,2, of ν1, and of μ.

We have the following lemmata.

Lemma 1. Let E1∩2(μ) be an embedding of G1∩2(μ), with μ ∈ T , and let e be an
internal edge of μ. Then, G1 and G2 have a SEFE in which the embedding of G1∩2(μ)
is E1∩2(μ) only if both end-vertices of e are incident to the same face of E1∩2(μ).

Proof: Suppose, for a contradiction, that G1 and G2 have a SEFE in which the embed-
ding of G1∩2(μ) is E1∩2(μ) and the end-vertices of e are not both incident to the same
face of E1∩2(μ). Then e crosses G1∩2(μ), hence either two edges of G1 or two edges
of G2 cross (depending on whether e ∈ G1 or e ∈ G2), a contradiction. �

Lemma 2. Let E1∩2(μ) be an embedding of G1∩2(μ), with μ ∈ T , and let e be an
outer edge incident to μ in a vertex u(e). Then, G1 and G2 have a SEFE in which the
embedding of G1∩2(μ) is E1∩2(μ) only if u(e) is on the outer face of E1∩2(μ).

Proof: Suppose, for a contradiction, that G1 and G2 have a SEFE in which the embed-
ding of G1∩2(μ) is E1∩2(μ) and u(e) is not incident to the outer face of E1∩2(μ). Then
e crosses G1∩2(μ), hence either two edges of G1 or two edges of G2 cross (depending
on whether e ∈ G1 or e ∈ G2), a contradiction. �
The algorithm performs a bottom-up traversal of T . When the algorithm visits a node
μ of T , either it concludes that a SEFE of G1 and G2 does not exist, or it determines
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a SEFE Γ (μ) of G1(μ) and G2(μ) such that, if a SEFE of G1 and G2 exists, there
exists one in which the SEFE of G1(μ) and G2(μ) is Γ (μ). The embedding Γ (μ) is
computed by composing and possibly flipping the already computed embeddings of the
descendants of μ. The rest of the graph, that is, the union of the graphs obtained from
G1 and G2 by respectively removing the vertices of G1(μ) and G2(μ), except for u(μ)
and v(μ), and their incident edges, will be placed in the same connected region of Γ (μ).
Such a region is called the outer face of Γ (μ). The computed SEFE Γ (μ) of G1(μ) and
G2(μ) is such that all the outer edges of μ can be drawn towards the outer face, that is,
a vertex z can be inserted into the outer face of Γ (μ) and all the outer edges of μ can be
drawn with z replacing their end-vertex not in μ, still maintaining the planarity of the
drawings of G1(μ) and G2(μ). An example of insertion of z in a SEFE of G1(μ) and
G2(μ) is shown in Fig. 1.

We are now ready to state the algorithm and to prove its correctness. We will later
show that it has a polynomial-time implementation.

If μ is a Q-node, then G1(μ), G2(μ), and G1∩2(μ) have exactly one embedding,
hence no embedding choices have to be done.

If μ is an S-node, some information about the parent of μ in T are needed in order
to decide an embedding for G1(μ), G2(μ), and G1∩2(μ). Hence, such a decision is
deferred to the step in which the parent of μ is analyzed.

If μ is a P -node, then, since for each visible node τ of μ the embeddings of G1(τ)
and G2(τ) are already decided (up to a flip), an embedding of G1(μ) and G2(μ) is
specified by an embedding of skel(μ), that is, an ordering of the nodes νi around the
poles of μ, by a flip for each visible node τ of μ, and by an embedding of all the
exclusive edges of G1(μ) and G2(μ) that have not yet been embedded (that is, the outer
edges of μ, the internal edges of μ, the internal edges of the S-nodes children of μ, and
the intra-pole edge of μ).

First, we determine an embedding E(skel(μ)) of skel(μ). Consider any child νi of μ
that has an outer edge e. If e is an internal edge of μ, then e is an outer edge of a child νk

of μ, with k �= i; hence, by Lemma 1, νi and νk have to be consecutive around the poles
of μ. If e is not an internal edge of μ, then e is an outer edge of μ; hence, by Lemma 2, νi

and the virtual edge representing the rest of the graph in skel(μ) have to be consecutive
around the poles of μ. Consider the graph O which has a vertex for each virtual edge
of skel(μ), and which has an edge between two vertices if the corresponding virtual
edges have to be consecutive around the poles of μ. If O is not a simple cycle and is
not a collection of paths and isolated vertices, then we conclude that G1 and G2 have
no SEFE. Otherwise, consider as the embedding E(skel(μ)) of skel(μ) any ordering of
the virtual edges of skel(μ) around the poles of μ such that any two adjacent vertices
in O are consecutive.

Second, we determine a flip for each visible node τ of μ and an embedding of all
the exclusive edges of G1(μ) and G2(μ) that have not been embedded when processing
the visible nodes of μ. In order to do this, we will use some auxiliary graphs. For each
face fk of E(skel(μ)), denote by ν1(fk) and by ν2(fk) the nodes of T corresponding
to the two virtual edges adjacent to fk in skel(μ) (recall that one of such virtual edges
might be the one representing the rest of the graph), and construct two graphs F 1

k and
F 2

k as follows. The nodes of F 1
k (resp. of F 2

k ) are the edges e of G1\2 (resp. of G2\1)
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such that: (i) e is an internal edge of μ, an outer edge of ν1(fk), and an outer edge of
ν2(fk), or (ii) e is an internal edge of an S-node (either ν1(fk) or ν2(fk)) child of μ,
or (iii) e is an outer edge of μ and fk is incident in E(skel(μ)) to the virtual edge of
skel(μ) representing the rest of the graph and to the virtual edge containing the end-
vertex of e in μ, or (iv) e is an intra-pole edge of μ. Informally speaking, the nodes of
F 1

k (resp. of F 2
k ) are the edges of G1\2 (resp. of G2\1) that have not yet been embedded

by the algorithm after processing all the visible nodes of μ and that could be embedded
into fk. The edges of F 1

k (resp. of F 2
k ) connect two vertices of F 1

k (resp. of F 2
k ) whose

corresponding edges cross if they are both embedded inside fk. In the example of Fig. 1,
vertices e2 and e6 and edge (e2, e6) belong to graphs F 1

1 and F 1
2 .

Denote by τ any visible node of μ. Observe that:

– Deciding the flip for G1∩2(τ) determines the face of E(skel(μ)) into which the
outer edges of τ have to be embedded. Namely, once a flip for G1∩2(τ) has been
fixed, there is exactly one face of E(skel(μ)) into which each of its outer edges can
be embedded without crossing G1∩2(μ). In the example of Fig. 1, fixing the flip for
ρ2,3 determines that e6 is embedded into f1 or into f2.

– Embedding an outer edge e of τ into a face fk determines a flip for τ . Namely,
there is exactly one flip of τ that brings the end-vertex of e in τ to be incident to fk.
In the example of Fig. 1, fixing the embedding of e2 into f1 or into f2 determines
the flip of ρ2,4.

– Embedding an edge e of G1\2 (resp. of G2\1), that is represented by a node in F 1
k

(resp. in F 2
k ), into a face fk determines that an edge e′ such that (e, e′) belongs

to F 1
k (resp. to F 2

k ) can not be embedded into fk. Observe that, if e′ can not be
embedded into fk and e′ is not an intra-pole edge of μ, then there is at most one
face fk′ with k′ �= k into which e′ can be embedded without crossing G1∩2(μ).
In the example of Fig. 1, fixing the embedding of e2 into f1 determines that e6 is
embedded into f2.

Our algorithm uses two sets Ef and Tf . Set Ef contains the edges of G1\2 and of G2\1
that belong to some graph F 1

k or F 2
k , that have been already embedded into a face of

E(skel(μ)), and that have not yet been processed by the algorithm. Set Tf contains
the visible nodes of μ whose flip has already been decided and that have not yet been
processed by the algorithm. When the algorithm processes the elements of Ef and Tf ,
it propagates to other edges and visible nodes the embedding choices already performed
on such elements.

We initialize Ef as follows. For every exclusive edge e of G1 or of G2 in μ that
is an outer edge of two components ν1(fk) and ν2(fk), embed e into fk and add e to
Ef . Note that the embedded edges are all the internal edges and the outer edges of μ.
Further, if there exists an intra-pole edge e ∈ G1 (resp. e ∈ G2) of μ, then embed e
into any face fk of E(skel(μ)) such that no edge e′ has already been embedded into fk,
with (e, e′) ∈ F 1

k (resp. with (e, e′) ∈ F 2
k ). If no such a face fk exists, then conclude

that G1 and G2 have no SEFE, otherwise add e to Ef .
Next, we repeatedly apply the following procedure, called Embedding-Flipping Step,

till the flip of every visible node of μ and the embedding of every edge represented by a
node in some graph F 1

k or F 2
k have been decided, or till the algorithm returns that there

is no SEFE of G1 and G2.
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Embedding-Flipping Step

– Case 1: Ef �= ∅. Consider any edge e ∈ Ef . Remove e from Ef .
For each edge e′ such that e and e′ are adjacent in some graph F 1

k or F 2
k the fol-

lowing operations are performed: (i) if e has been embedded into fk, if e′ has not
yet been embedded into any face of E(skel(μ)), and if e′ belongs to a graph F 1

k′

or F 2
k′ , with k′ �= k, then embed e′ into fk′ and add e′ to Ef ; (ii) if e has been

embedded into fk, if e′ has not yet been embedded into any face of E(skel(μ)),
and if e′ does not belong to a graph F 1

k′ or F 2
k′ , with k′ �= k, then conclude that G1

and G2 have no SEFE; (iii) if e has been embedded into a face fk′ �= fk and if e′

has not yet been embedded into any face of E(skel(μ)), then embed e′ into fk and
add e′ to Ef .

If e is the outer edge of a visible node τ of μ, then: (i) if no flip has yet been
decided for τ , then flip τ so that the end-vertex of e in τ is incident to the face
of E(skel(μ)) into which e has been embedded and add τ to Tf ; (ii) if a flip has
already been decided for τ such that the end-vertex of e in τ is not incident to the
face of E(skel(μ)) into which e has been embedded, then conclude that G1 and G2
have no SEFE.

– Case 2: Ef = ∅ and Tf �= ∅. Consider any node τ ∈ Tf . Remove τ from Tf .
For each outer edge e of τ : (i) if e has not yet been embedded into any face

of E(skel(μ)), then embed e into the face of E(skel(μ)) the end-vertex of e in τ
is incident to and add e to Ef ; (ii) if e has already been embedded into a face of
E(skel(μ)) and the end-vertex of e in τ is not incident to such a face, then conclude
that G1 and G2 have no SEFE.

– Case 3: Ef = ∅ and Tf = ∅. If all the edges of G1\2 and G2\1 that are represented
by nodes in some graph F 1

k or F 2
k have been embedded into a face of E(skel(μ))

and if all the visible nodes of μ have been flipped, then the procedure stops. Other-
wise, if there is a visible node of μ that still has to be flipped, then flip it either way
and insert such a node into Tf . If there is no visible node of μ that still has to be
flipped, then there is an edge e of G1\2 and G2\1 that is represented by a node in
some graph F 1

k or F 2
k that still has to be embedded. Embed e into any face incident

to both the visible nodes of μ the end-vertices of e belong to and add e to Ef .

If μ is an R-node, then the algorithm behaves exactly as in the P -node case, except
that the phase in which the embedding E(skel(μ)) of skel(μ) is chosen is missing, as
skel(μ) has exactly one planar embedding (up to a flip of the entire embedding).

We now prove the correctness of the algorithm.

Lemma 3. A SEFE of G1 and G2 exists if and only if the described algorithm returns
a SEFE of G1 and G2.

Proof: One implication is trivial: If the algorithm returns a SEFE of G1 and G2, then a
SEFE of G1 and G2 exists. We now prove the other implication.

Consider any SEFE Γ of G1 and G2 and, for any node μ of the SPQR-tree T of
G1∩2, consider the outer face of G1∩2(μ) in Γ . Such a face is delimited by two paths
P a(Γ, μ) and P b(Γ, μ) connecting u(μ) and v(μ). Consider such paths as starting at
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u(μ) and ending at v(μ). Denote by La
1(Γ, μ) the ordered list of vertices incident to

the outer edges of μ that belong to G1 and whose end-vertex in μ belongs to P a(Γ, μ).
Such vertices are ordered in La

1(Γ, μ) as they are ordered in P a(Γ, μ). List Lb
1(Γ, μ)

is defined analogously, with P b(Γ, μ) replacing P a(Γ, μ). Lists La
2(Γ, μ) and Lb

2(Γ, μ)
are defined analogously to La

1(Γ, μ) and Lb
1(Γ, μ), with G2 replacing G1.

Suppose that μ is not an S-node, the following claim asserts that each of La
1(Γ, μ),

Lb
1(Γ, μ), La

2(Γ, μ), and Lb
2(Γ, μ) is the same in any SEFE Γ of G1 and G2, that is,

the structure of the outer face of G1∩2(μ) does not depend on the choices made by the
algorithm.

Claim 1. In any SEFE Γ of G1 and G2, for any node μ ∈ T that is not an S-node, lists
La

1(Γ, μ), Lb
1(Γ, μ), La

2(Γ, μ), and Lb
2(Γ, μ) are the same, up to simultaneous swaps of

La
1(Γ, μ) with Lb

1(Γ, μ) and of La
2(Γ, μ) with Lb

2(Γ, μ).

Proof: Suppose, for a contradiction, that there exist two SEFEs and a node of T that is
not an S-node for which the statement does not hold. We will show that this implies
that one of the two SEFEs is not correct.

Consider a node μ ∈ T that is not an S-node, for which the statement does not hold,
and such that for all the descendants of μ in T the statement holds.

If μ is a Q-node, then La
1(Γ, μ), Lb

1(Γ, μ), La
2(Γ, μ), and Lb

2(Γ, μ) are empty lists
and the statement holds, thus obtaining a contradiction.

If μ is an R-node, consider any two SEFEs Γ and Γ ′ of G1 and G2 such that not
all the following four equalities hold La

1(Γ, μ) = La
1(Γ ′, μ), Lb

1(Γ, μ) = Lb
1(Γ ′, μ),

La
2(Γ, μ) = La

2(Γ ′, μ), and Lb
2(Γ, μ) = Lb

2(Γ ′, μ), and such that not all the follow-
ing four equalities hold La

1(Γ, μ) = Lb
1(Γ ′, μ), Lb

1(Γ, μ) = La
1(Γ ′, μ), La

2(Γ, μ) =
Lb

2(Γ ′, μ), and Lb
2(Γ, μ) = La

2(Γ ′, μ). Since the statement holds for every visible node
of μ and since skel(μ) has one planar embedding, up to a reversal of the adjacency lists
of all the vertices, there exists a visible node of μ that is flipped differently in Γ and
in Γ ′ and that has an outer edge e that is also an outer edge of μ. Denote by u(e) the
end-vertex of e in μ. Suppose that u(e) is incident to the outer face of G1∩2(μ) in Γ .
Then, u(e) is not incident to the outer face of G1∩2(μ) in Γ ′. It follows that edge e
crosses G1∩2(μ) in Γ ′, a contradiction.

If μ is a P -node, then the (at most) two children νx and νy of μ that contain end-
vertices of outer edges of μ are incident to the outer face of G1∩2(μ) in any SEFE of G1
and G2. The flips of νx and νy (if they are not S-nodes) or the flips of the children of νx

and νy (if they are S-nodes) determine lists La
1(Γ, μ), Lb

1(Γ, μ), La
2(Γ, μ), and Lb

2(Γ, μ)
in any SEFE Γ of G1 and G2. Then, consider any two SEFE Γ and Γ ′ of G1 and G2
such that not all the following four equalities hold La

1(Γ, μ) = La
1(Γ ′, μ), Lb

1(Γ, μ) =
Lb

1(Γ ′, μ), La
2(Γ, μ) = La

2(Γ ′, μ), and Lb
2(Γ, μ) = Lb

2(Γ ′, μ), and such that not all
the following four equalities hold La

1(Γ, μ) = Lb
1(Γ ′, μ), Lb

1(Γ, μ) = La
1(Γ ′, μ),

La
2(Γ, μ) = Lb

2(Γ ′, μ), and Lb
2(Γ, μ) = La

2(Γ ′, μ). Similarly to the R-node case, if
a visible node of μ has an outer edge e that is also an outer edge of μ and such a node
is flipped differently in Γ and in Γ ′, then the end-vertex u(e) of e in μ is not incident to
the outer face of G1∩2(μ) either in Γ or in Γ ′. It follows that edge e crosses G1∩2(μ)
in Γ or in Γ ′, a contradiction. �
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The following claim asserts that the structure of the outer face of G1∩2(μ) (and of the
exclusive edges of G1 and G2 embedded into it) is the only property coming from an
embedding of G1(μ) and G2(μ) that affects the possibility of constructing a SEFE of
the rest of the graph.

Claim 2. Suppose that a SEFE of G1 and G2 exists. Then, for any node μ ∈ T that
is not an S-node, any SEFE of G1(μ) and G2(μ) in which the outer edges of μ can be
drawn towards the outer face can be extended into a SEFE of G1 and G2.

Proof: Consider any SEFE Γ of G1 and G2 and consider any SEFE Γ (μ) of G1(μ) and
G2(μ) in which the outer edges of μ can be drawn towards the outer face.

Similarly to the proof of Claim 1, it can be proved that if neither La
1(Γ, μ) =

La
1(Γ (μ), μ), Lb

1(Γ, μ) = Lb
1(Γ (μ), μ), La

2(Γ, μ) = La
2(Γ (μ), μ), and Lb

2(Γ, μ) =
Lb

2(Γ (μ), μ) nor La
1(Γ, μ) = Lb

1(Γ (μ), μ), Lb
1(Γ, μ) = La

1(Γ (μ), μ), La
2(Γ, μ) =

Lb
2(Γ (μ), μ), and Lb

2(Γ, μ) = La
2(Γ (μ), μ) holds, then there is an end-vertex of an

outer edge of μ that either is not incident to the outer face of G1∩2(μ) in Γ (μ), thus con-
tradicting the fact that the outer edges of μ can be drawn towards the outer face in Γ (μ),
or is not incident to the outer face of G1∩2(μ) in Γ , thus contradicting the fact that Γ
is a SEFE. By suitably flipping Γ , we can hence assume that La

1(Γ, μ) = La
1(Γ (μ), μ),

Lb
1(Γ, μ) = Lb

1(Γ (μ), μ), La
2(Γ, μ) = La

2(Γ (μ), μ), and Lb
2(Γ, μ) = Lb

2(Γ (μ), μ).
Remove from Γ the drawing of G1(μ) and G2(μ), except for u(μ) and v(μ). Insert

Γ (μ) inside the face of the modified Γ into which the previous drawing of G1(μ) and
G2(μ) used to lie; the modified Γ is scaled up till the insertion of Γ (μ) does not cause
crossings among the edges of the modified Γ and those of Γ (μ). Continuously deform
the edges incident to u(μ) and v(μ) in Γ so that they end at the points where u(μ) and
v(μ) are drawn in Γ (μ). This can always be done since u(μ) and v(μ) are both incident
to the face where Γ (μ) has been inserted. Finally, insert the outer edges of μ. This can
always be done so that no outer edge of μ in G1 (resp. in G2) crosses an edge of G1(μ)
(resp. of G2(μ)), by the assumption that the outer edges of μ can be drawn towards the
outer face, and so that no outer edge of μ in G1 (resp. in G2) crosses an edge of the
graph obtained from G1 be removing G1(μ), except for its poles (resp. of the graph
obtained from G2 be removing G2(μ), except for its poles), since the drawing of such
outer edges in Γ used to exist and La

1(Γ, μ) = La
1(Γ (μ), μ), Lb

1(Γ, μ) = Lb
1(Γ (μ), μ),

La
2(Γ, μ) = La

2(Γ (μ), μ), and Lb
2(Γ, μ) = Lb

2(Γ (μ), μ). �
Finally, the following claim asserts that the algorithm computes a SEFE of G1(μ) and
G2(μ), if it exists, in which the structure of the outer face of G1∩2(μ) is the one that
allows for an extension into a SEFE of G1 and G2.

Claim 3. If, for any node μ ∈ T that is not an S-node, a SEFE of G1(μ) and G2(μ)
exists in which the outer edges of μ can be drawn towards the outer face, then the
algorithm computes one.

Claims 1–3 prove the second implication of the lemma. Namely, when μ is the child of
the root of T , the algorithm computes a SEFE Γ (μ) of G1(μ) and G2(μ), by Claim 3.
Observe that μ is not an S-node, by construction of T . Also, observe that μ has no outer
edge. By Claim 2, Γ (μ) can be extended into a SEFE Γ of G1 and G2, if such a SEFE

exists. To this end, however, it is sufficient to draw the edge that is the root of T . �
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We get the following.

Theorem 1. Let G1 = (V, E1) and G2 = (V, E2) be two planar graphs on the same set
of n vertices such that the intersection graph G1∩2 is biconnected. Then, it is possible
to test whether G1 and G2 admit a SEFE in O(n3) time.

Proof sketch: We sketch how to implement the algorithm described in this section in
O(n3) time. The correctness of the algorithm has already been proved in Lemma 3.

First, we compute labels for the edges of G1 and G2 indicating whether the edge
belongs to G1∩2, to G1\2, or to G2\1. Second, for each node μ of T and for each
exclusive edge e, we compute a label indicating whether e is an outer edge of μ, or an
internal edge of μ, or an intra-pole edge of μ, or none of the previous ones. This can be
done in total O(n2) time by traversing T once for each exclusive edge. Third, we choose
an embedding for the skeletons of the nodes of T . This is trivial for Q-, R-, and S-nodes
and can be done in O(n) time for each P-node μ by computing the graph O representing
the constrained adjacencies among virtual edges of skel(μ) and by checking whether
O is a cycle or a collection of paths. Fourth, we perform the Embedding-Flipping step
in O(n2) time for each node μ ∈ T that is not an S-node. For this sake, we construct
graphs F 1

k and F 2
k for each face fk of the computed embedding of skel(μ). Such graphs

might have a total size that is quadratic in the size of skel(μ); however, once they have
been constructed, the Embedding-Flipping step can be performed in a time that is linear
in the size of such graphs. �

4 The Intersection Graph Is a Tree

In this section we show that the SEFE problem, when the intersection graph is a tree, is
equivalent to a 2-page book embedding problem defined in the following.

Let G be a graph, let (E1, E2) be a partition of its edge set, and let T be a rooted
tree whose leaves are the vertices of G. Problem PARTITIONED T -COHERENT 2-PAGE

BOOK EMBEDDING with input (G, E1, E2, T ) asks: Does a 2-page book embedding of
G exist in which the edges of E1 lie in one page, the edges of E2 lie in the other page,
and, for every internal vertex t ∈ T , the vertices of G in the subtree of T rooted at t
appear consecutively in the vertex ordering of G defined in the book embedding?

We now show how to transform an instance G1 = (V, E1), G2 = (V, E2) of SEFE

in which G1∩2 is a tree into an instance of PARTITIONED T -COHERENT 2-PAGE BOOK

EMBEDDING. Such a transformation consists of two steps.
In the first step, we transform instance G1, G2 of SEFE into an equivalent instance

G′
1, G

′
2 of SEFE such that G′

1∩2 is a tree and all the exclusive edges of G′
1 and of G′

2
are incident only to leaves of G′

1∩2. To this end, we modify every edge (u, v) ∈ G1\2
such that u is not a leaf of G1∩2 as follows. We subdivide edge (u, v) with a new vertex
u′; we add edge (u, u′) to E2, so that u′ is a leaf in the intersection graph of the two
modified graphs. Symmetrically, we subdivide every edge (u, v) ∈ G2\1 such that u is
not a leaf of G1∩2 with a new vertex u′ and we add edge (u, u′) to E1, so that u′ is a
leaf in the intersection graph of the two modified graphs. Note that the exclusive edges
of G1 and G2 that are incident to two non-leaf vertices are subdivided twice. Denote by
G′

1 and by G′
2 the resulting graphs. We have the following:
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(a) (b) (c)

Fig. 2. (a) A SEFE Γ of G1, G2. (b) A SEFE Γ ′ of G′
1, G

′
2. The edges of G1∩2 and of G′

1∩2 are
thick lines, the edges of G1\2 and of G′

1\2 are drawn gray, and the edges of G2\1 and of G′
2\1

are black dotted lines. (c) Euler Tour E of G′
1∩2 and exclusive edges.

Lemma 4. G1, G2 is a positive instance of SEFE if and only if G′
1, G

′
2 is a positive

instance of SEFE. Further, G′
1∩2 is a tree and all the exclusive edges of G′

1 and of G′
2

are incident only to leaves of G′
1∩2. Moreover, G′

1∩2 has O(n) vertices.

Proof: G1∩2 is a tree, by assumption. When an exclusive edge (u, v) in G1 (resp. in
G2) such that u is not a leaf of G1∩2 is subdivided with a vertex u′ and edge (u, u′) is
added to E2 (resp. to E1), an edge is inserted into G1∩2 connecting an internal vertex
of G1∩2 with a new leaf of G1∩2, namely u′. Hence, G1∩2 remains a tree after such
a modification and thus G′

1∩2 is a tree. When an exclusive edge (u, v) in G1 (resp. in
G2) such that u is not a leaf of G1∩2 is subdivided with a vertex u′ and edge (u, u′) is
added to E2 (resp. to E1), the number of incidences between exclusive edges and in-
ternal vertices of G1∩2 decreases by one. Hence, after all such modifications have been
performed, all the exclusive edges are incident only to leaves of G′

1∩2. Each exclusive
edge is subdivided at most twice. Since the number of edges of G1\2 and G2\1 is O(n),
then G′

1∩2 has O(n) vertices. We now prove that G1, G2 is a positive instance of SEFE

if and only if G′
1, G

′
2 is a positive instance of SEFE.

First, suppose that a SEFE Γ of G1, G2 exists. Modify Γ to obtain a SEFE Γ ′ of
G′

1, G
′
2 as follows (see Figs. 2(a) and 2(b)). When an exclusive edge (u, v) in G1 (resp.

in G2) such that u is not a leaf of G1∩2 is subdivided with a vertex u′ and edge (u, u′)
is added to E2 (resp. to E1), insert u′ in Γ along edge (u, v) arbitrarily close to u. Since
the drawing of G1 in Γ is not modified and since the drawing of G2 in Γ is modified by
inserting an arbitrarily small edge incident to a vertex, the resulting drawing is a SEFE

of the current graphs and hence Γ ′ is a SEFE of G′
1, G

′
2. Second, suppose that a SEFE

Γ ′ of G′
1, G

′
2 exists. A SEFE Γ of G1, G2 can be obtained by drawing each edge (u, v)

of G1 (resp. of G2) exactly as in Γ ′. Observe that (u, v) is subdivided never, once, or
twice in G′

1 (resp. in G′
2); then, its drawing in Γ is composed of the concatenation of

the one, two, or three curves representing the parts of (u, v) in Γ ′. That no two edges
of G1 (resp. of G2) intersect in the resulting drawing Γ directly descends from the fact
that no two edges of G′

1 (resp. of G′
2) intersect in Γ ′. �

In the second step, we transform an instance G1, G2 of SEFE such that G1∩2 is a tree
and all the exclusive edges of G1 and of G2 are incident only to leaves of G1∩2 into an
equivalent instance of PARTITIONED T -COHERENT 2-PAGE BOOK EMBEDDING.

The input of PARTITIONED T -COHERENT 2-PAGE BOOK EMBEDDING consists of
the graph G composed of all the vertices which are leaves of G1∩2, of all the exclusive
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� �+

�− � �+

�−

(a) (b)

Fig. 3. (a) A Partitioned T -coherent 2-page book embedding of (G, E1\2, E2\1, T ). The edges in
E1\2 are thin black lines, the edges in E2\1 are thin gray lines. (b) The SEFE of G1, G2 obtained
from the book embedding of (G, E1\2, E2\1, T ).

edges E1\2 of G1\2, and of all the exclusive edges E2\1 of G2\1. The partition of the
edges of G is (E1\2, E2\1). Finally, tree T is G1∩2. We have the following:

Lemma 5. G1, G2 is a positive instance of SEFE if and only if (G, E1\2, E2\1, T ) is a
positive instance of PARTITIONED T -COHERENT 2-PAGE BOOK EMBEDDING.

Proof: Suppose that (G, E1\2, E2\1, T ) is a positive instance of PARTITIONED T -
COHERENT 2-PAGE BOOK EMBEDDING. See Fig. 3. An ordering of the vertices of
G along a line � exists such that the edges in E1\2 are drawn on one side �+ of �, the
edges in E2\1 are drawn on the other side �− of �, no two edges in E1\2 cross, and
no two edges in E2\1 cross. Move all the edges in E2\1 to �+. Since such edges do not
cross in �− and since the ordering of the vertices of G is not modified, the edges in E2\1
still do not cross. Finally, construct a planar drawing of G1∩2 in �−. This can always be
done since, for each internal vertex t of G1∩2, the vertices in the subtree of G1∩2 rooted
at t appear consecutively on �. The resulting drawing is hence a SEFE of G1, G2.

Suppose that G1, G2 is a positive instance of SEFE. Consider any SEFE Γ of G1, G2
and consider an Euler Tour E of G1∩2. Construct a planar drawing of E in Γ as follows.
Each edge of E is drawn arbitrarily close to the corresponding edge in G1∩2. Each
end-vertex t of an edge of E that is a leaf in G1∩2 is drawn at the same point where
it is drawn in Γ . Each end-vertex t of an edge of E that is not a leaf in G1∩2 and
that has two adjacent edges (t, t1) and (t, t2) in E (observe that t1 �= t2 as t is an
internal vertex of G1∩2) is drawn arbitrarily close to the point where t is drawn in Γ ,
in the region “between” edges (t, t1) and (t, t2). Clearly, the resulting drawing of E is
planar (see Figs. 2(b) and 2(c)). Further, all the leaf vertices of G1∩2 are drawn at the
same point in Γ and in the drawing of E . Moreover, all the exclusive edges of G1\2
and all the exclusive edges of G2\1 lie entirely outside E , except for their end-vertices.
Remove all the internal vertices and all the edges of G1∩2 from the drawing. Move all
the edges of G2\1 inside E . The resulting drawing is a Partitioned T -coherent 2-page
book embedding of (G, E1\2, E2\1, T ). Namely, all the edges in E1\2 are on one side
of E and all the edges in E2\1 are on the other side of E . No two edges in E1\2 cross as
they do not cross in Γ . No two edges in E2\1 cross as they do not cross in Γ . Finally,
all the leaf vertices in a subtree of G1∩2 rooted at an internal vertex t of G1∩2 appear
consecutively in E , as the drawing of G1∩2 in Γ is planar. �
Given an instance (G, E1, E2, T ) of PARTITIONED T -COHERENT 2-PAGE BOOK

EMBEDDING, it is possible to construct an equivalent instance of SEFE as follows. Let
G1 be the graph whose vertex set is composed of the vertices of G and of the internal
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vertices of T , and whose edge set is composed of the edges of E1 and of the edges of
T . Analogously, let G2 be the graph whose vertex set is composed of the vertices of G
and of the internal vertices of T , and whose edge set is composed of the edges of E2
and of the edges of T . Analogous to Lemma 5, we can prove the following lemma.

Lemma 6. (G, E1, E2, T ) is a positive instance of PARTITIONED T -COHERENT 2-
PAGE BOOK EMBEDDING if and only if G1, G2 is a positive instance of SEFE.

Since both reductions can easily be performed in linear time we obtain the following.

Theorem 2. PARTITIONED T -COHERENT 2-PAGE BOOK EMBEDDING and SEFE have
the same time complexity.

The problem PARTITIONED T -COHERENT 2-PAGE BOOK EMBEDDING has been re-
cently studied by Hong and Nagamochi [16] when T is a star. That is, the graph has
the edges partitioned into two pages as part of the input, but there is no constraint on
the order of the vertices in the required book embedding. In such a case, Hong and
Nagamochi proved that the problem is O(n)-time solvable [16]. While their motivation
was a connection to the c-planarity problem, Lemmata 4 and 5 together with Hong and
Nagamochi’s result imply that deciding whether a SEFE exists for two graphs whose
intersection graph is a star is a linear-time solvable problem.

Theorem 3. The SEFE problem is solvable in linear time when the intersection graph
is a star.

5 Conclusions

In this paper we have shown new results on the time complexity of the problem of
deciding whether two planar graphs admit a SEFE.

First, we have shown that the SEFE problem can be solved in cubic time if the in-
tersection graph G1∩2 of the input graphs G1 and G2 is biconnected. We believe that a
refined implementation of our approach could reduce such a time bound to quadratic.
More in general, with similar techniques we can solve in polynomial time the SEFE

problem if G1∩2 consists of one biconnected component plus a set of isolated vertices.
Also, the following generalization of the SEFE problem with G1∩2 biconnected seems
worth to be tackled: What is the time complexity of computing a SEFE when G1∩2 is
edge-biconnected?

Second, we have shown that when G1∩2 is a tree the SEFE problem can be equiva-
lently stated as a 2-page book embedding problem with edges assigned to the pages and
with hierarchical constraints. Hence, pursuing an NP-hardness proof for such a book
embedding problem is a possible direction for trying to prove the NP-hardness for the
SEFE problem.
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Abstract. We present the Skip lift, a randomized dictionary data struc-
ture inspired by the skip list [Pugh ’90, Comm. of the ACM]. Similar
to the skip list, the skip lift has the finger search property: Given a
pointer to an arbitrary element f , searching for an element x takes ex-
pected O(log δ) time where δ is the rank distance between the elements x
and f . The skip lift uses nodes of O(1) worst-case size and it is one of
the few efficient dictionary data structures that performs an O(1) worst-
case number of structural changes during an update operation. Given
a pointer to the element to be removed from the skip lift the deletion
operation takes O(1) worst-case time.

1 Introduction

The dictionary problem is fundamental in computer science. It asks for a data
structure in the pointer machine model that stores a totally ordered set S of
n elements and supports the operations search, insert and delete. A large num-
ber of data structures optimally solve this problem in worst-case O(log n) time
per operation. Some of them guarantee an O(1) worst-case number of structural
changes (pointers/fields modifications) after an insertion or a deletion opera-
tion [12,19,11,13,10,6].

Typically the update operations, i.e., insert and delete, are performed in two
phases: First, search for the position where the update has to take place. Second,
perform the actual update and restore the balance of the structure. When the
position where the new element has to be inserted or deleted is already known
then the first phase of an update could be avoided. In general the first phase
is considered to be part of the search operation. A dictionary that guarantees
an O(1) worst-case number of structural changes per update does not necessary
quickly perform the second phase of the update. For example after inserting
a new item in a red-black tree [12], Ω(log n) steps may be required to find
where the O(1) number of rotations have to be performed in order to restore
the balance. Much research effort has been aimed at improving the worst-case
time taken by the second phase of the update: Levcopoulos and Overmars [13]
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presented the first search tree that takes O(1) worst-case time for this second
phase of the update. Later Fleischer [10] simplified this result. Brodal et al. [6]
additionally guaranteed that such structures can also have the finger search
property in worst-case time. These structures however are quite complicated
and not really practical.

On the other hand, most randomized dictionaries are simple, practical and
achieve the same performance as the result of Brodal et al. [6] in the expected
sense. In the worst case though their performance is far from optimal. Here
we develop a simple randomized dictionary, called a skip lift, inspired by the
skip list [18], that improves the worst-case performance of the second phase of
the update operations. Namely we obtain a structure that has the finger search
property in expectation and performs an O(1) worst-case number of structural
changes per update. Given a pointer to the element to be removed from the skip
lift, the deletion operation takes O(1) worst-case time.

In Section 1.1 we describe the original skip list dictionary. In Section 1.2 we
mention some work related to the skip list dictionary. In Section 2 we introduce
our new skip lift data structure. In Section 3 we show how to enhance the skip
lift structure to allow a simple finger search. Finally in Section 4 we give an
overview of some classical randomized dictionary data structures. For each of
them we briefly describe its construction and how the dictionary operations
are performed. We show that in some situations Ω(n) structural changes are
necessary to perform the update operations.

1.1 Skip List

The skip list of Pugh [18] was introduced as a probabilistic alternative to bal-
anced trees. It is a dictionary data structure storing a totally ordered set S of
n elements that supports insertion, deletion and search operations in O(log n)
expected time. Additionally the expected number of structural changes (pointer
modifications) performed on the skip list during an update is O(1). A skip list is
built in levels, the bottom level (level 1) is a sorted linked list of all elements in
S. The higher levels of the skip list are build iteratively. Each level is a sublist
of the previous one where each element of a level is copied to the level above
with (independent) probability p. The copies of an element are linked between
adjacent levels (see Fig. 1.a).

The height h(s) of an element s is defined as the highest level where s appears.
The height H(L) of a skip list L is defined as maxs∈L h(s) and the depth d(s) of
s is H(L)− h(s). The expected height of a skip list is by definition O(log1/p n).
Adjacent elements on the same level are connected by their left and right pointers.
The copies of the same element from two adjacent levels are connected by their
up and down pointers.

Search: To search for a given element x in a skip list we start from the highest
level of the sentinel element which has a key value −∞. We follow the right
pointers on a same level until we are about to overshoot the element x, i.e., until
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the element on the right has a key value strictly greater than x. Then we go down
one level and we iterate the process until x is found or until we have reached
the lowest level (in this case we know that x is not in S and we have found its
predecessor).
Updates: To insert an element x in a skip list we first determine its height in
the structure. Then we start a search for x in the list to find the position where
x has to be inserted. During the search we update the pointers of the copies of
the elements that are adjacent to a newly created copy of x.

The deletion of an element x from a skip list is straightforward given the
insertion process. We first search for x and we delete one by one all its copies
while updating the pointers of the copies of elements that are adjacent to a copy
of x.

1.2 Related Work

Precise analysis of the expected search cost in a skip list has been extensively
studied, we refer to the thesis of Papadakis for more information [17]. Several
variants of the skip list have been considered: Munro et al. [16] developed a
deterministic version of the skip list, based on B-trees [3], that performs each
dictionary operation in worst-case O(lg n) time. Under the assumption that the
distribution of access probabilities is given, Martínez and Roura [14] developed
an algorithm that minimizes the expected access time by either building an
optimal static skip list in O(n2 lg n) time or a nearly optimal one in O(n) time.
Bagchi et al. [2] developed the biased skip list; it manages a biased dictionary,
i.e., an ordered set S of elements x associated with a weight w(x) and performs
search, insert, delete, join, split, finger search and reweight operations in worst-
case running times similar to those of biased search trees [4,9]. In the general
case where access probabilities are unknown, Bose et al. [5] prove that for a class
of skip lists that satisfies a weak balancing property, the working-set bound is

3 5 6 9 12 15 22 24 26 30 32 47 59 64 68 70 73 77 80 81 95−∞
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a.

Fig. 1. (a) Skip list, (b) Skip lift
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a lower bound on the time to access any sequence. Furthermore, they develop a
deterministic self-adjusting skip list whose running time matches the working-set
bound, thereby achieving dynamic optimality in this class (both in internal and
external memory).

2 Skip Lift

The average amount of extra information per element (number of copies) in
a standard skip list [18] is constant. In the worst-case this number can reach
Ω(log n). Hence the number of structural changes in a skip list during an update
is Ω(log n) in the worst-case. Here we present a slight modification of the skip
list data structure (as the title of the paper suggests) which guarantees, in the
worst-case, a constant amount of extra information per element and a constant
number of structural changes per update.

A skip lift is a light version of the skip list where copies of elements have been
removed from specific levels. A skip lift only keeps the copies of an element in the
two highest levels where it would appear in the skip list. Every other copy of an
element is removed. The copies of the elements at the same level are connected
with their left and right pointers. Additionally the two copies of an element are
connected with their up and down pointers (see Figure 1.b). Each copy stores its
height in an extra height field.

A level of the skip lift is empty if no element of the set S appears in it.
The copies of the sentinel element appearing in an empty level are deleted. The
remaining copies of the sentinel element are connected with their up and down
pointers. A copy of the sentinel element at height +∞ is explicitly maintained,
this copy is called the header of the skip lift.

3 5 6 9 12 15 22 24 26 30 32 47 59 64 68 70 73 77 80 81 95−∞

Fig. 2. Search Path for the element 95

Search: To search for a given element x in a skip lift we start at the header of
the list. We follow the right pointers on the same level until we see that we are
about to overshoot the element x, i.e., until the element on the right has a key
value strictly greater than x. If it is possible we go down to the next non-empty
level. Otherwise we follow the left pointers until we find an element which allows
us to go down to the next non-empty level. Then we iterate the process until x
is found or when we have reached the lowest level (in this case x is not in S and
we know its predecessor). This procedure is described in detail in Algorithm 1
and illustrated in Figure 2.
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Algorithm 1. Search(x)
c ⇐ header
pred ⇐ −∞
while c �= x and height[c]>1 do

while down[c] = NIL do
c ⇐ left[c]

end while
c ⇐ down[c]
while right[c] �= NIL and right[c] ≤ x do

c ⇐ right[c]
end while
if pred < c then

pred ⇐ c
end if

end while
return pred

Lemma 1. A skip lift supports a search operation in O
(

1
p log1/p n

)
expected

time, where n is the number of elements in the skip lift and p is the probability
for an element in level i to appear in level i + 1.

Proof. The expected length of the search path in a skip lift L corresponds to the
expected number of vertical steps plus the expected number of horizontal steps.
The number of vertical steps performed during a search is upper bounded by
the height H(L) of the skip lift which has an expected value of log1/p n + 1

1−p .
The expected height of a skip lift corresponds exactly to the expected height of
a skip list [18].

Now we are going to bound the number of horizontal steps. At any level i of
L only elements of height i and i + 1 can appear with probability 1/(1 + p) and
p/(1+p), respectively. This means that from any position in level i the expected
number of horizontal steps required to reach an element of height i is at most

∞∑
j=1

j

(
p

1 + p

)j−1 1
(1 + p)

= 1 + p. (1)

Similarly the expected number of horizontal steps required to reach an element
of height i + 1 in level i is at most

∞∑
j=1

j

(
1

1 + p

)j−1
p

(1 + p)
=

1 + p

p
. (2)

Consider e(i, x) the element of height i that has the greatest key value smaller
than x. The search path to an element x in L traverses all elements e(i, x) with
h(x) ≤ i ≤ H(L). These are the only elements where the search path performs
a down step. Between each of these e(i, x) elements, the search path traverses
horizontally a certain number of other elements. On expectation this number
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differs depending on whether the path goes from left to right or right to left.
If the path goes from right to left this expected number corresponds to eq.(1)
otherwise it corresponds to eq.(2). The probability that the search path goes
from left to right on level i is 1/(p + 1). This corresponds to the probability
of seeing e(i, x) before e(i + 1, x) from the position of x on level i which also
corresponds to the probability that an element of height i appears on level i.
Respectively the probability that the search path goes from right to left on level
i is p/(p+1). Hence the expected number of horizontal steps performed between
each element e(i, x) is

p + 1
p

p + 1
+

1 + p

p

1
1 + p

= p +
1
p
.

The expected cost to access the first element e(H(L), x) is smaller than the
expected number of elements of height greater or equal to log1/p n which is 1/p.
Thus total expected number of horizontal steps is upper bounded by

H(L)
(

p +
1
p

)
+

1
p
.

Therfore the expected length of a search path in a skip lift is

H(L) + H(L)
(

p +
1
p

)
+

1
p

=
H(L) + 1

p
+ (p + 1)H(L) = O

( log1/p n

p

)
. ��

Updates: To insert an element x in a skip lift we first determine its height h(x) in
the structure. Then we start to search for x in the list to find the position where x
has to be inserted, i.e., its position in levels h(x) and h(x)−1. Once we find these
positions, the copies of the element x are inserted in the corresponding level. This
is performed similarly to the insertion of an element in a standard doubly-linked
list. If the level where the copy of x has to be insereted is empty then we create a
new copy of the sentinel element and insert it in the skip lift (seeing all copies of
the sentinel element as a doubly-linked list). This process is described in detail
in Algorithm 2. We assume that x is not in the set S (otherwise we could simply
search for x before performing the actual insert operation).

To delete an element x from a skip lift we first search the two copies of x using
the search operation decribed above. Once we found the copies of x we delete
them from their corresponding level. This is performed similar to the deletion
of an element in a standard doubly-linked list. If the deletion of the copies of x
creates an empty level, we remove the corresponding copy of the sentinel element.
This process is described in detail in Algorithm 3.

Theorem 1. The skip lift supports search, insert and delete operations in
O

(
1
p log1/p n

)
expected time and requires O(n) worst-case space. The total num-

ber of structural changes performed during an update is O(1) in worst-case.
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Algorithm 2. Insert(x)
c ⇐ header
h ⇐ randomLevel()
while height[c] ≥ h do

while down[c] = NIL do
c ⇐ left[c]

end while
if c = −∞ and height[down[c]] < h and h < height[c] then

e ⇐ new element(−∞, h)
down[e] ⇐ down[c]
down[c] ⇐ e

end if
c ⇐ down[c]
while right[c] �= NIL and right[c] ≤ x do

c ⇐ right[c]
end while
if height[c] = h then

right[x] ⇐ right[c]
left[x] ⇐ c
left[right[c]] ⇐ x
right[c] ⇐ x
x ⇐ down[x]
if x �= NIL then

h ⇐ h − 1
end if

end if
end while

3 Finger Search
A data structure satisfies the finger search property if searching for an element
x given a pointer, called finger, to an arbitrary element f requires logarithmic
time in the rank distance between x and f in the set of ordered elements. It is
possible to describe a finger search operation on the skip lift (as described in the
previous section) but it is a bit complicated. Instead we show how to enhance
the skip lift structure in order to simplify the description of the finger search.
The enhanced skip lift maintains an extra copy of each element at the bottom
level. This copy is linked to the lowest copy of the corresponding element above
the bottom level with the up and down pointers.

We can search for an element x in an enhanced skip lift starting at the bottom
copy of any element f to which we are given an initial pointer. Assume without
loss of generality that the key value of the element x is greater than that of f
(the opposite case is symmetric). The finger search can be decomposed into an
up phase and a down phase. The up phase behaves as the inverse of the search
operation described in Alg. 1 and the down phase is similar to Alg. 1.

We start the search from the bottom copy of f then from any current position
we follow the left pointers on the same level until the element on the left has
a key value strictly smaller than f . If it is possible we go one level up (if the
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Algorithm 3. Delete(x)
c ⇐ header
while height[c] > 1 do

while down[c] = NIL do
c ⇐ left[c]

end while
c ⇐ down[c]
while right[c] �= NIL and right[c] ≤ x do

c ⇐ right[c]
end while
while c = x do

right[left[x]] ⇐ right[x]
if right[x] �= NIL then

left[right[x]] ⇐ left[x]
else if left[x] = −∞ then

down[up[left[x]]] ⇐ down[left[x]]
if down[left[x]] �= NIL then

up[down[left[x]]] ⇐ up[left[x]]
end if
delete left[x]

end if
c ⇐ down[c]
delete(up[c])

end while
end while

up pointer jumps over more than one level then we do not take it). Otherwise
we follow the right pointers until we find an element which allows us to go one
level up or when the element on the right has a key value greater than x (this
last case corresponds to the end of the up phase). From the current position, the
down phase consists of following the right pointers on the same level until the
element on the right has a key value strictly greater than x. If it is possible we
go down by one level (if the down pointer jumps over more than one level then
we do not take it). Otherwise we follow the left pointers until we find an element
which allows us to go down by one level. Then we iterate the process until x is
found or until we have reached the lowest level (in this case x is not in S and
we know its predecessor).
Theorem 2. Finger searching for an element x given a finger pointing to an
arbitrary element f in an enhanced skip lift takes O

(
1
p log1/p δ

)
time where δ is

the rank distance between the finger and the search element x.

Proof. The search path traverses only elements that are between f and x in the
skip lift. The sublist between f and x contains δ elements by definition. Thus the
expected height of this sublist is O(log1/p δ). In each level we perform O(1/p)
expected steps since this corresponds to the expected number of steps needed to
find an element of height i or i + 1 from any position on level i. Therefore the
total length of the search path is O

(
1
p log1/p δ

)
. ��
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Fig. 3. Modified skip list

4 Overview of Randomized Dictionaries

We present an overview of some classical randomized dictionary data structures.
For each of them we briefly describe its construction and how search, insertion and
deletion operations are performed. It is easy to realize that the structural changes
performed during an update operation can in some situations involve Ω(n) ele-
ments of the structure. Of course those situations are very unlikely to happen but
are not impossible. This means that the skip lift is the first efficient randomized
dictionary that guarantees a O(1) number of structural changes per update.

4.1 Modified Skip List

A modified skip list is a variant of the skip list introduced by Cho and Sahni [8]
that uses nodes of constant worst-case size (containing O(1) pointers). The mod-
ified skip list structure is a skip list where all copies of an element are deleted
except for its highest copy. Thus an element x only appears on the level h(x).
Each element x has three pointers: right[x], left[x] and down[x]. The pointers
right[x] and left[x] point to the elements on level h(x) to the right and the left of
x, respectively. The pointer down[x] points to the element on level h(x)− 1 that
has the smallest key value greater than x. Two sentinel elements with key value
−∞ and ∞ are maintained, a copy of these elements appear in every level. The
down pointer of a copy of a sentinel element points to the copy of itself on the
level below (see Fig. 3).

Search: To search for a given element x in a modified skip list we start from
the highest level of the sentinel element with key value −∞. We follow the right
pointers on a same level until the element on the right has a key value strictly
greater than x. From this point we follow the left pointer then we immediately
go down one level by following the down pointer from this left element. The
process is iterated until x is found or when we have reached in the lowest level
(in this case we know that x is not in S and we have found its predecessor).

Updates: The insert and delete operations require to search the position of x
in the list. When inserting an element x in a modified skip list only one copy
is created in the level h(x) and the down pointer of x is set to the element in
level h(x)− 1 that has the smallest key value greater then x. When deleting an
element x from a modified skip list we have to update the down pointer of all
the elements from level h(x) + 1 that are pointing to x by setting them to the
element on the right of x.
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A degenerate situation would be when all elements in the structure have height
2 except for the very last one (with the greatest key value). Deleting the last
element would force the modification of the down pointer all elements, implying
an Ω(n) number of structural changes in the structure. A similar situation can
occurs if we insert an element just before the last one.

4.2 Treap

A treap is a randomized data structure introduced by Aragon and Seidel [1]. It
is structured as a binary search tree structure, so the left and the right subtrees
of any node only contain elements of smaller or greater key value, respectively.
Each element of S is given a random priority. The treap is built such that the
root is the minimum-priority node and the priority of any non-root node must
be greater than or equal to the priority of its parent (heap-ordering property).

Search: To search for a given element x, we use the standard binary search
algorithm in a binary search tree independently of the priorities.

Updates: To insert a new element x into the treap, we first generate a random
priority for x. We perform a search for x in the treap. If x ∈ S we do nothing
otherwise we make x a child of the last element visited during the search. Then
x is rotated up as long as its priority is smaller than the priority of its parent or
when x becomes the new root.

To delete a node x from the treap three cases are considered. If x is a leaf, we
simply remove it. If x has a single child, we remove x from the treap and make
the child of x the new child of its the parent (or make the child of x the root if
x had no parent). Finally, if x has two children, swap its position in the treap
with its predecessor, resulting in one of the previously discuss cases. In this final
case, the swap may violate the heap-ordering property, so additional rotations
may need to be performed to restore it.

A degenerate situation would be when the tree is a path of n elements. Insert-
ing an element at the end of the path with a given priority that is smaller than
any priority in the tree would bring the new inserted element to the root. This
is performed by a sequence of Ω(n) rotations, i.e., an Ω(n) number of structural
changes in the tree. A similar situation could occur when deleting an element.

4.3 Randomized Binary Search Tree

A Randomized binary search tree is another dictionary data structure developed
by Martínez and Roura [15]. Each subtree of a random search tree is itself a
random search tree. The root of such a tree is chosen uniformly at random
among the elements of S, i.e., with probability 1/n. The remaining of the tree
is defined iteratively.

Search: To search for a given element x, we use the standard binary search
algorithm in a binary search tree.

Updates: To insert a new element x into a random search tree T we proceed
as follows: With probability 1/(|T |+ 1) the element x has to be theroot of the
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Fig. 4. Jumplist

new tree. In this case the tree T is split at x and the two obtained subtrees are
attached as the children of x. Otherwise we iterate the process on the left (right)
subtree if x is smaller (greater) than the key value of the root.

To delete an element x from a random search tree T , we search for it in T .
Once it is found we remove it and we replace the subtree rooted at x by a newly
created subtree obtained by joining the left and right subtree of x (this joining
procedure is fully described in [15]).

A degenerate situation would be when the tree is a path of n elements so that
the key of the elements from the root to the leaf are alternatively greater and
smaller x. Assume we insert a new element with key value x, it could be that
x has to be inserted has the root of the tree. In this case we split the tree at
x which requires an Ω(n) number of structural changes in the tree. The inverse
situation could occur when deleting an element.

4.4 Jumplist

A jumplist of Brönnimann et al. [7] is a randomized data structure inspired by
the randomized tree. It is an linked list data structure ordered by key value whose
nodes are endowed with an additional pointer, the jump pointer (see Fig. 4). An
element x of a jumplist has a next[x] pointer which points to the immediate suc-
cessor of x in S. Additionally an element has a jump[x] pointer which points to
an element further on the list to the right of x. The jumplist is constructed as fol-
lows: The element j pointed to by the jump pointer of the head of the list is chosen
uniformly at random among the elements in the list. This assignment divides the
list into two independent sublists that are built recursively using the same random
process. This construction ensures that the jump pointers do not cross.

Search: The jumplist is based on the jump-and-walk strategy: whenever possible
use the jump pointer to speed up the search, and walk along the list otherwise.
So to search for an element x we use the jump pointer until we are about to
overshoot x in which case we follow the next pointer. We iterate this process
until we find the element x or until the next pointer leads us to an element with
greater key value than x (in this case we know that x is not in S and we have
found its predecessor).

Updates: To insert an element x in a jumplist J we proceed as follows: With
probability 1/|J | the element x has to be the element pointed by the jump
pointer of the head of the list. In this case the whole list is rebuilt from scratch.
Otherwise x is inserted in one of its sublists. In the case where x has to be
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inserted as the new head of a sublist, a process that does not rebuild the sublist
from scratch is called to maintain the randomness of the structure.

Since an insertion could cause the reconstruction of the entire jumplist, this
operation requires an Ω(n) number of structural changes in the list.
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Abstract. A completely separating system (CSS) on a finite set [n] is
a collection C of subsets of [n] in which for each pair a �= b ∈ [n], there
exist A, B ∈ C such that a ∈ A, b /∈ A and b ∈ B, a /∈ B.

An antimagic labeling of a graph with p vertices and q edges is a
bijection from the set of edges to the set of integers {1, 2, . . . , q} such
that all vertex weights are pairwise distinct, where a vertex weight is the
sum of labels of all edges incident with the vertex. A graph is antimagic
if it has an antimagic labeling.

In this paper we show that there is a relationship between CSSs on
a finite set and antimagic labeling of graphs. Using this relationship we
prove the antimagicness of various families of regular graphs.

Keywords: completely separating system, vertex antimagic edge label-
ing, antimagic labeling, regular graph.

1 Introduction

The concept of completely separating system was first introduced in 1969 by
Dickson [7]. Let [n] = {1, 2, . . . , n}. A completely separating system (CSS) on [n]
is a collection C of subsets of [n] in which for each pair a �= b ∈ [n], there exist
A, B ∈ C such that a ∈ A, b /∈ A and b ∈ B, a /∈ B. For example, the collection
{{1, 2}, {1, 3}} is not a CSS. However, the collection {{1, 2}, {1, 3}, {2, 3}} is a
CSS on [3].

The sets in the (n)CSS are usually called blocks and the elements of these sets
are usually called points. Let k be a positive integer and let C be an (n)CSS.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 238–241, 2011.
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If |A| = k for all A ∈ C, then C is said to be an (n, k)CSS. A d-element in a
collection of sets is an element which occurs in exactly d sets in the collection. For
any n, k fixed positive integers, R(n, k) is defined as follows: R(n, k) = min{|C| :
C is an (n, k)CSS}. An (n, k)CSS for which |C| = R(n, k) is a minimal (n, k)CSS.

Subsequently, several variants have been explored in [10], [11], [12], [13] and
[14], among others. Ramsay and Roberts [11], and Roberts [13] have explored
minimal (n)CSSs, (n, h, k)CSSs and (n, k)CSSs. Roberts [13] gave a method
for the construction of a class of minimal (n, k)CSSs. The special case of this
construction given below is our main tool for the study of antimagic labelings of
graphs, so it is restated here.

Roberts’ construction [13]
Assume that k ≥ 2, n ≥ (

k+1
2

)
and k|2n, and let R = R(n, k) = 2n/k. An

(R × k)-array L is constructed, where each row of L forms a subset of [n] and
the R rows of L form an (n, k)CSS. Let eij denote the element of L in row i
and column j. Initialize all elements of L to zero. For e from 1 to n, in order,
include e in the two positions of L defined by

min
j

min
i

{eij : eij = 0},
min

i
min

j
{eij : eij = 0}.

That is, e is placed in the first row of L containing a 0, in the first 0-valued
place in that row, e is then also placed in the first column of L containing a 0,
in the first 0-valued place in that column. Each of the integers 1 to n appears in
L in two positions, and the array L is the array of an (n, k)CSS. This concludes
Roberts’ construction.

In this paper we consider only graphs that are finite, simple and undirected.
The concept of labeling of graphs is becoming increasingly popular, partly

because it contains many interesting mathematical challenges, and partly also
because of the wide range of applications to other branches of science, for exam-
ple, see [3] and [4].

The notion of a vertex antimagic edge labeling, known as an antimagic labeling
of graphs was introduced in 1990 by Hartsfield and Ringel [9]. An antimagic
labeling of a graph with p vertices and q edges is a bijection from the set of
edges to the set of integers {1, 2, . . . , q} such that all vertex weights are pairwise
distinct, where a vertex weight is the sum of labels of all edges incident with the
vertex. A graph is antimagic if it has an antimagic labeling.

Hartsfield and Ringel [9], proposed

Conjecture 1. [9] Every connected graph, except K2, is antimagic.

During two decades many papers on antimagicness of particular classes of graphs
have been published, for example, see [1], [2], [5], [6], [15], [16] and [17]. For a
detailed survey, see [8].
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In this paper we introduce a new approach for obtaining antimagic labeling for
some classes of regular graphs by using results on completely separating systems
(CSSs). Using CSSs, we can determine that some classes of regular graphs are
antimagic and we give an antimagic labeling for such classes of graphs. To the
best of our best knowledge, this is the first time that CSSs have been applied to
produce antimagic graph labelings.

2 Results

In this section we establish a powerful relationship between the combinatorics of
finite sets and graph labeling. This relationship is used together with a known
construction for (q, k)CSSs to produce a family of regular antimagic graphs.

Theorem 1. Let V = {v1, v2, . . . , vp} be a collection of k-subsets of [q]. Then V
is a (q, k)CSS consisting of 2-elements if and only if a k-regular graph G(V, E)
with q edges and p vertices has an edge labeling.

In view of the converse implication in Theorem 1, the existence of an edge
labeling of a graph could be exploited to provide new results in the study of
CSSs. We do not explore this possibility in this paper.

An edge labeling of a graph will often be represented by an array as follows.

• Each vertex is represented by a row (block) of the array;
• Each row (block) consists of the labels of all edges incident with the vertex

represented by that row.

Hereafter we denote by G(V, E, L), a graph G(V, E) having an edge labeling L.

Theorem 2. Let L be the array of a (q, k)CSS obtained by Roberts’ construc-
tion. Then the k-regular graph G(V, E, L), where |V | = p = 2q/k, |E| = q, is
antimagic.

Example 1. Let L be the array of the (12, 4)CSS obtained using Roberts’ con-
struction. Then we have the array L and the corresponding antimagic 4-regular
graph G(V, E, L) are shown in Fig. 1.

1 2 3 4
1 5 6 7
2 6 8 9
3 7 10 11
4 8 10 12
5 9 11 12

611

1

810

2

9
4

7

3
5

12

Fig. 1. The graph G(V, E,L) and its antimagic labeling
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3 Conclusion

To summarize, we have introduced a new method to study the antimagicness of
graphs. Using this method we have proved that some families of k-regular graphs
are antimagic. However, in general, Hartsfield and Ringel’s conjecture remains
open.
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2. Bača, M., Miller, M.: Super Edge-Antimagic Graphs: a Wealth of Problems and
Some Solutions. BrownWalker Press, Boca Raton (2008)

3. Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc.
IEEE 65, 562–570 (1977)

4. Bloom, G.S., Golomb, S.W.: Numbered complete graphs, unusual rulers, and as-
sorted applications. In: Theory and Applications of Graphs (Proc. Internat. Conf.,
Western Mich. Univ., Kalamazoo, Mich., 1976). Lecture Notes in Math., vol. 642,
pp. 53–65. Springer, Berlin (1978)

5. Cheng, Y.: A new class of antimagic Cartesian product graphs. Discrete Math.
308(24), 6441–6448 (2008),
http://dx.doi.org/10.1016/j.disc.2007.12.032

6. Cranston, D.W.: Regular bipartite graphs are antimagic. J. Graph Theory 60(3),
173–182 (2009), http://dx.doi.org/10.1002/jgt.20347

7. Dickson, T.J.: On a problem concerning separating systems of a finite set. J. Com-
binatorial Theory 7, 191–196 (1969)

8. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 16(
DS6)
(2009)

9. Hartsfield, N., Ringel, G.: Pearls in graph theory: a comprehensive introduction.
Academic Press Inc., Boston (1990)

10. Phanalasy, O., Roberts, I., Rylands, L.: Covering separating systems and an ap-
plication to search theory. Australas. J. Combin. 45, 3–14 (2009)

11. Ramsay, C., Roberts, I.T.: Minimal completely separating systems of sets. Aus-
tralas. J. Combin. 13, 129–150 (1996)

12. Ramsay, C., Roberts, I.T., Ruskey, F.: Completely separating systems of k-sets.
Discrete Math. 183(1-3), 265–275 (1998)

13. Roberts, I.T.: Extremal Problems and Designs on Finite Sets. Ph.D. thesis, Curtin
University of Technology (1999)

14. Roberts, I., D’Arcy, S., Gilbert, K., Rylands, L., Phanalasy, O.: Separating systems,
Sperner systems, search theory. In: Ryan, J., Manyem, P., Sugeng, K., Miller,
M. (eds.) Proceedings of the Sixteenth Australasian Workshop on Combinatorial
Algorithms, pp. 279–288 (September 2005)

15. Wang, T.M.: Toroidal grids are anti-magic. In: Wang, L. (ed.) COCOON 2005.
LNCS, vol. 3595, pp. 671–679. Springer, Heidelberg (2005)

16. Wang, T.M., Hsiao, C.C.: On anti-magic labeling for graph products. Discrete
Math. 308(16), 3624–3633 (2008)

17. Zhang, Y., Sun, X.: The antimagicness of the cartesian product of graphs. Theor.
Comput. Sci. 410(8-10), 727–735 (2009)

http://dx.doi.org/10.1002/jgt.20027
http://dx.doi.org/10.1016/j.disc.2007.12.032
http://dx.doi.org/10.1002/jgt.20347


Parameterized Complexity of k-Anonymity:
Hardness and Tractability

Paola Bonizzoni1, Gianluca Della Vedova2, Riccardo Dondi3, and Yuri Pirola1

1 DISCo, Univ. Milano-Bicocca
bonizzoni@disco.unimib.it, pirola@disco.unimib.it

2 Dip. Statistica, Univ. Milano-Bicocca
gianluca.dellavedova@unimib.it

3 Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli
Studi Culturali, Università degli Studi di Bergamo
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Abstract. The problem of publishing personal data without giving up
privacy is becoming increasingly important. A precise formalization that
has been recently proposed is the k-anonymity, where the rows of a ta-
ble are partitioned in clusters of size at least k and all rows in a cluster
become the same tuple after the suppression of some entries. The natu-
ral optimization problem, where the goal is to minimize the number of
suppressed entries, is hard even when the stored values are over a binary
alphabet or the table consists of a bounded number of columns. In this
paper we study how the complexity of the problem is influenced by dif-
ferent parameters. First we show that the problem is W[1]-hard when
parameterized by the value of the solution (and k). Then we exhibit a
fixed-parameter algorithm when the problem is parameterized by the
number of columns and the number of different values in any column.

1 Introduction

In epidemic studies the analysis of large amounts of personal data is essential.
At the same time the dissemination of the results of those studies, even in a
compact and summarized form, can provide some information that can be ex-
ploited to identify the row pertaining to a certain individual. For instance, ZIP
code, gender and date of birth can uniquely identify 87% of individuals in the
U.S. [17]. Therefore when managing personal data it is of the utmost importance
to effectively protect individuals’ privacy.

One approach to deal with such problem is the k-anonymity model [15,17,14,
11]. Each row of a given table represents all data regarding a certain individual.
Then different rows are clustered together, and some entries of the rows in each
cluster are suppressed (i.e. they are replaced with a ∗) so that each cluster
consists of at least k identical rows. Therefore each row r in the resulting table
is clustered with at least other k − 1 rows identical to r, hence the resulting
data do not allow to identify any individual. While such formulation is not
really sophisticated and has some practical limitations, it is definitely interesting
from a theoretical point of view, as witnessed by the rich literature available.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 242–255, 2011.
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We will focus on separating the cases that can be solved efficiently from those
that are intractable, therefore hinting at which strategies are likely or not going
to be successfully employed when studying more sophisticated formalizations.
Notice that different formulations of the problem have also been proposed [1],
for example allowing the generalization of entry values, that is an entry value
can be replaced with a less specific value [3], or considering a notion of proximity
among values [9].

A parsimonious principle leads to the optimization problem where we want to
minimize the number of entries in the table to be suppressed. The k-anonymity
problem is known to be APX-hard even when the matrix entries are over a binary
alphabet and k = 3 [5], as well as when the matrix has 8 columns and k = 4
(this time on arbitrary alphabets) [5]. Recently, a polynomial time algorithm for
2-anonymity has been given in [4].

Furthermore, a polynomial-time O(k)-approximation algorithm on arbitrary
input alphabet, as well as approximation algorithms for restricted cases are
known [2]. Recently, two polynomial-time approximation algorithms with fac-
tor O(log k) have been independently proposed [13, 10].

In this paper we investigate the parameterized complexity [7,12] of the prob-
lem, unveiling how different parameters are involved in the complexity of the
problem. A first systematic study of the parameterized complexity of the
k-anonymity problem has been proposed in [6]. Here, we follow the same di-
rection, showing that the problem is W[1]-hard when parameterized by the size
of the solution and k, and we provide a fixed-parameter algorithm, when the
problem is parameterized by the number of columns and the maximum number
of different values in any column. These problems were left open in [6].

In Table 1 we report the status of the parameterized complexity of the
k-anonymity problem, where in bold we have emphasized the new results pre-
sented in this paper. We recall that a problem P parameterized by a set S of
parameters is in the class FPT [7] if it admits an exact algorithm with complex-
ity f(S)nO(1), where f is an arbitrary function, and n is the size of the input
problem, while it is W[i]-hard [7], for some 1 ≤ i ≤ p if it is unlikely to be
fixed-parameter tractable. We recall that XP [7] is a superclass of all sets W[p].
Moreover, proving that a problem Π with parameter set S is NP-hard when all
parameters in S are some constants, implies that (Π, S) /∈ XP unless P = NP.

Table 1. Summary of the parameterized complexity status of the k-anonymity prob-
lem; |Σ| represents the maximum number of different values in a column, m represents
the number of columns, n represents the number of rows, k represents the minimum
size of a cluster, e represents the size of the solution

− k e k, e

− NP-hard [11] /∈ XP [5, 2] W[1]-hard new W[1]-hard new

|Σ| /∈ XP [5] /∈ XP [5] ??? ???
m /∈ XP for m ≥ 8 [5] /∈ XP for m ≥ 8, k ≥ 4 [5] FPT [6] FPT [6]
n FPT [6] FPT [6] FPT [6] FPT [6]

|Σ|, m FPT new FPT [6] FPT [6] FPT [6]
|Σ|, n FPT [6] FPT [6] FPT [6] FPT [6]
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The rest of the paper is organized as follows. In Section 2 we introduce some
preliminary definition and we give the formal definition of the k-anonymity prob-
lem. In Section 3 we show that the k-anonymity is W[1]-hard when parameterized
by the size of the solution and k. In Section 4 we give a fixed parameter algo-
rithm, when the problem is parameterized by the number of columns and the
maximum number of different values in any column. Due to space constraint,
some proofs in the paper are omitted.

2 Preliminary Definitions

Let us introduce some preliminary definitions that will be used in the rest of the
paper. Given a graph G = (V, E), and V ′ ⊆ V , the subgraph induced by V ′ is
denoted by G[V ′] = (V ′, E′), where E′ = E ∩ (V ′ × V ′).

Given an alphabet Σ, a row r is a vector of elements taken from the set Σ, and
the j-th element of r is denoted by r[j]. Notice that it is equivalent to consider
a row as a vector over alphabet Σ. Let r1, r2 be two equal-length rows. Then
H(r1, r2) is the Hamming distance of r1 and r2, i.e. |{i : r1[i] �= r2[i]}|. Let R be
a set of l rows, then a clustering of R is a partition Π = (P1, . . . , Pt) of R. Given
a clustering Π = (P1, . . . , Pt) of R, we define the cost of a row r belonging to
the set Pi of Π as cΠ(r) = |{j : ∃r1 ∈ Pi, r1[j] �= r[j]}|, that is the number of
entries of r that have to be suppressed so that all rows in Pi are identical. The
cost of a set Pi, denoted by cΠ(Pi), is defined as |Pi|cΠ(r), for some row r ∈ Pi.
The cost of Π , denoted by c(Π), is defined as

∑
Pi∈Π cΠ(Pi).

We are now able to formally define the k-Anonymity Problem (k-AP).

Problem 1 k-AP.
Input: a set R of equal length rows over an alphabet ΣR.
Output: a clustering Π = (P1, . . . , Pt) of R such that |Pi| ≥ k for each set Pi,
and c(Π) is minimum.

Given a set S of parameters, we denote by 〈S〉-AP the k-AP problem parame-
terized by S, thus omitting k. The following parameters are considered:

– m is the number of columns of the rows in R;
– n is the number of rows in R;
– |Σ| is the maximum number of different values in any column of the table;
– k is the minimum size of a cluster;
– e is the maximum number of entries that can be suppressed in a solution.

Let Π = (P1, . . . , Pz) be a solution of the k-AP problem. Notice that a sup-
pression at position j of a row r is represented by replacing the symbol r[j]
with a ∗. Given a set Pj of Π , some entries of the rows clustered in Pj are
eventually suppressed, so that the resulting rows are all identical to a vector r
over alphabet ΣR ∪ {∗}; such a vector is the resolution vector associated with
Pj . Given a resolution vector r, we define del(r) as the number of entries sup-
pressed in r, that is del(r) = |{j : r[j] = ∗}|. Given a resolution vector r and
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a row ri ∈ R, we say that r is compatible with row ri iff r[j] �= ri[j] implies
r[j] = ∗. Given a row ri of R and a set of resolution vectors S′, we define the set
comp(ri, S

′) = {r ∈ S′ : r is compatible with ri}.
Given a set R of rows, a group of rows of R is a maximal set of identical rows.

Given a group g, the representative of g, denoted by r(g), is any row of g, while
s(g) is the number of rows in g and exc(g) = max{0, s(g)− k}. We say that r(g)
is compatible with a resolved vector r iff r(g) �= r implies r[j] = ∗. Furthermore,
comp(r(g), S′) is the set {r ∈ S′ : r is compatible with r(g)}. A set R of rows
can be partitioned in groups of identical rows in polynomial time [6], therefore
we can compute in polynomial time whether R can be partitioned into groups
of size at least k. If this is not possible, then at least k entries of R must be
suppressed to get a solution of the k-AP problem, that is e ≥ k.

Hence the following property holds.

Proposition 1. [6]
The 〈e〉-AP is in FPT if and only if 〈e, k〉-AP is in FPT.

Consequently our parameterized reduction [7, 12] will show the fixed-parameter
intractability of 〈e〉-AP and 〈e, k〉-AP.

3 〈e〉-AP and 〈e, k〉-AP Are W[1]-Hard

We show that 〈e〉-AP and 〈e, k〉-AP are W[1]-hard. Given an set R of equal length
rows, 〈e〉-AP and 〈e, k〉-AP ask if there exists a clustering Π = (P1, . . . , Pt) of
R such that |Pi| ≥ k for each set Pi, and c(Π) ≤ e. We present a parameter
preserving reduction from the h-Clique problem, which is known to be W[1]-
hard [8], to the 〈e〉-AP problem. Given a graph G = (V, E), an h-clique is a set
V ′ ⊆ V where each pair of vertices in V ′ are connected by an edge of G, and
|V ′| = h. The h-Clique problem asks for a subset V ′ of the vertices of a given
graph G inducing an h-clique in G.

Clearly the vertices of a h-clique are connected by
(
h
2

)
edges. Given a graph

G = (V, E), we use mG and nG to denote respectively the number of edges
and of vertices of G. We construct the instance R of 〈e〉-AP associated with G.
First, let us define k = 2h2. The set R consists of (k + 1)mG + (k − (

h
2

)
) rows

and 2h + nG columns over alphabet ΣR = {0, 1} ∪ {σi,j : (vi, vj) ∈ E}. More
precisely, for each edge e(i, j) = (vi, vj) in E, there is a group R(i, j) of k + 1
identical rows rx(i, j), 1 ≤ x ≤ k + 1, where

– rx(i, j)[l] = σi,j , for 1 ≤ l ≤ 2h;
– rx(i, j)[2h + i] = 1, rx(i, j)[2h + j] = 1;
– rx(i, j)[2h + l] = 0, for l �= i, j and 1 ≤ l ≤ n.

Moreover, R also contains a group R0 made of k − (
h
2

)
identical rows equal to

02h+nG .

Lemma 2. Let R be the instance of 〈e〉-AP associated with G and consider
two rows r, rx(i, j) of R, such that r ∈ R0 and rx(i, j) ∈ R(i, j). Then, r[t] �=
rx(i, j)[t], for each 1 ≤ t ≤ 2h.
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Proof. By construction, r[t] = 0 for all t with 1 ≤ t ≤ 2h, while rx(i, j)[t] = σi,j .
�

Lemma 3. Let G = (V, E) be a graph, let V ′ be a h-clique of G and let R be
the instance of 〈e〉-AP associated with G. Then we can compute in polynomial
time a solution Π of 〈e〉-AP over instance R with cost at most 6h3.

Lemma 4. Let G = (V, E) be an instance of h-Clique, let R be the instance of
〈e〉-AP associated with G and let Π be a solution of 〈e〉-AP over instance R with
cost at most 6h3. Then we can compute in polynomial time a h-clique V ′ of G.

Proof. First we will prove that Π must have a set R′
0 ⊃ R0. Assume to the

contrary that in Π there are two sets A, B containing at least a row of R0.
Notice that |R0| < k while |A|, |B| ≥ k. Moreover, by Lemma 2, all rows in A or
B must have suppressed the first 2h entries, which results in at least 4hk > 6h3

suppressions, contradicting the assumption on the cost of the solution. Hence,
R0 is properly contained in a set R′

0 of Π , as |R0| < k. Moreover, let r′ be a row
of R′

0 \R0 and let r be a row of ∈ R0. By Lemma 2 r′[t] �= r[t] for each column t,
1 ≤ t ≤ 2h, therefore all entries in the first 2h columns of each row in R′

0 must
be suppressed.

Now, let us prove that, for each set R(i, j) of R, there exists a set R′(i, j) of
Π such that R′(i, j) ⊆ R(i, j). Assume to the contrary that no such set R′(i, j)
exists, for a given R(i, j). Then either R(i, j) ⊆ R′

0 or there exists a row of R(i, j)
clustered together with a row of R(x, y) in Π , with (x, y) �= (i, j). In the first
case, that is R(i, j) ⊆ R′

0, |R′
0| ≥ 2k + 1 − (

h
2

)
, by construction all entries of

the first 2h columns of the rows in R′
0 must be suppressed, resulting in at least

2h(4h2 − (
h
2

)
) > 6h3 suppressions and thus contradicting the assumption on the

cost of the solution. Consider now the second case, that is there is a set A in Π
containing at least a row of two different sets R(i, j) and R(x, y) of R. Observe
that given r′ ∈ R′

0 \ R0 and r ∈ R0, r and r′ differ in the first 2h columns.
Thus the entries of the first 2h columns of the rows of R′

0 must be suppressed,
resulting in at least 4hk > 6h3 suppressed entries and thus contradicting the
assumption on the cost of the solution. Hence, for each set R(i, j) of R, there
exists a set R′(i, j) of Π such that R′(i, j) ⊆ R(i, j).

By our previous arguments we can assume that Π consists of the clusters R′
0

and R′(i, j), for each R(i, j) ∈ R, and that |R(i, j)| − 1 ≤ |R′(i, j)| ≤ |R(i, j)|.
Notice that only R′

0 can contain some suppressed entries. Also |R′
0| = k, for

otherwise we can improve the cost of Π by moving a row in R(i, j) ∩ R′
0 from

R′
0 to R′(i, j). Now let E′ be the set of edges (vi, vj) of G such that a row of

R(i, j) is in R′
0 and let V ′ be the set of vertices incident on at least an edge in

E′. Then we can show that G[V ′] is a h-clique. Notice that the entries in the
first 2h columns of R′

0 must be suppressed, as well as all columns with index
2h+ l such that vl ∈ V ′, since in those columns all rows in R0 have value 0 while
some row in R′

0 \R0 have value 1. An immediate consequence is that the overall
number of suppressed entries is at least 2hk + k|V ′|. Since, by hypothesis, the
number of suppressed entries is at most 6h3 = 3kh, then |V ′| ≤ h. Notice that,
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since |R0| = k − (
h
2

)
and |R′

0| = k, then R′
0 \ R0 contains exactly

(
h
2

)
distinct

rows corresponding to edges in E′ incident on V ′ vertices. Hence V ′ induces a
h-clique in G. �
From Lemma 3 and 4, our reduction is parameter preserving, therefore 〈e〉-AP
is W[1]-hard.

Theorem 5. 〈e〉-AP and 〈e, k〉-AP are W[1]-hard.

Corollary 6 is a consequence of Theorem 5 and Proposition 1.

Corollary 6. 〈e, k〉-AP is W[1]-hard.

4 An FPT Algorithm for 〈|Σ|, m〉-AP

In this section we present a fixed-parameter algorithm for the 〈|Σ|, m〉-AP prob-
lem, that is the instance of the AP problem, where the number m of columns and
the maximum number |Σ| of different values in any column are two parameters.
Notice that k-AP parameterized by exactly one of |Σ| or m is not in FPT, as
k-AP is APX-hard (hence NP-hard) even when one of |Σ| or m is a constant [5].

Before giving the details of the algorithm, let us first introduce some pre-
liminary definitions. Let R be an instance of 〈|Σ|, m〉-AP, and for each column
of R with index j, 1 ≤ j ≤ m, let Σj be the set of different values that the
rows of R have in column j. Notice that |Σj| ≤ |Σ|, for each 1 ≤ j ≤ m. Let
Σ∗

j = Σj ∪ {∗} and Σ∗ = Σ ∪ {∗}. Assume Π = {P1, · · · , Pz} is a feasible solu-
tion of 〈|Σ|, m〉-AP over instance R. The set S′ consisting of a resolution vector
for each set Pi ∈ Π is called candidate set for solution 〈|Σ|, m〉-AP. Let S be
the set of possible rows of length m and having value over alphabet Σ∗

j for the
position j, 1 ≤ j ≤ m, then |S| is bounded by |Σ∗|m. Given a candidate set S′,
notice that S′ ⊆ S and that each row r ∈ R must be compatible with at least
one resolution vector in S′.

Given a row r and the set S′ of resolution vectors, recall that we denote by
Comp(r, S′) the set of resolution vectors of S′ compatible with r. Moreover, given
a resolution vector r′ ∈ S′, we denote by del(r′) the number of suppressions in r′.
For each row r ∈ R we define its weight as w(r) = maxrx∈Comp(r,S′){m−del(rx)}.
Notice that w(r) = m whenever r is compatible with a row without suppressions.
Informally, the weight of a row is equal to the maximum number of its entries
that might be preserved in a solution where S′ is the set of resolution vectors.
Finally, we define W =

∑
r∈R w(r) and w′(rx) = W + m − del(rx) + 1 for each

row rx ∈ S′. Notice that w′(rx) ≥ ∑
r∈R w(r), for each rx ∈ R. The weights

defined above will be used later in Section 4.1 to define the weight function wh.
Let us first describe the general idea of the algorithm. Given a candidate set

S′, the algorithm computes an optimal solution ΠS′ associated with a candidate
set S′ ⊆ S (see Algorithm 1). The algorithm consists of two main phases. In the
first phase (Section 4.1), given the set R of input rows and the candidate set S′,
the algorithm builds a weighted bipartite graph GS′,R associated with R and S′.
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Algorithm 1. Solving 〈|Σ|, m〉-AP

Input: An instance R of 〈|Σ|, m〉-AP made of a set of n rows, each one
consisting of m symbols, and an integer e

Output: a solution of 〈|Σ|, m〉-AP over instance R, if 〈|Σ|, m〉-AP admits a
solution that suppresses at most e entries;

S ← the set of resolved vectors of length m, where each j-th symbol, 1 ≤ j ≤ m,1

is taken from the alphabet Σ∗
j ;

W =
∑

r∈R w(r);2

foreach subset S′ of S do3

GR,S′ ← the graph associated with R,S′;4

M ← a maximum matching of GR,S′ ; w ← the weight of M ;5

if M is feasible and w ≥ (W + 1)k|S′| + m|Rl
dist ∪ Rl

safe| − e then6

return the solution ΠS′(M) of R associated with M ;7

return No such solution exists8

In the second phase (Section 4.2) a solution of 〈|Σ|, m〉-AP is computed starting
from a maximum weighted matching of the graph GS′,R. Section 4.3 is devoted
to prove that the solution computed by the algorithm is optimal.

4.1 Building the Graph GR,S′

Let us consider a candidate set S′ of vectors for an optimal solution of 〈|Σ|, m〉-
AP. Since S′ ⊆ S, there exist at most 2|Σ

∗|m possible candidate sets of rows S′,
therefore our FPT algorithm computes each candidate set S′ and verifies if there
exists a solution ΠS′ with cost at most e. In order to verify if such a solution
exists, the algorithm builds a bipartite graph GR,S′ , as described in this section.
The intuitive idea behind the graph is that edges of the graph correspond to
possible ways of assigning each row in R to a resolution vector x ∈ S′. Rows
assigned to the same resolution vector x ∈ S′ are clustered in the solution ΠS′ .

The construction of the vertex set of the graph is based on a partition of R
into two disjoint sets called Rsafe and Rdist (that is Rdist = R \Rsafe). The set
Rsafe consists of those rows r ∈ R belonging to the group g such that:

– s(g) ≥ k, that is r belongs to a group of at least k identical rows, and
– there exists a row rj ∈ S′, such that rj and r(g) are the same vector.

Notice that only rows in Rsafe might have no suppressed entry in a solution
ΠS′ .

The vertex set of GR,S′ = (V, E) has 6 sets. Two sets (Rl
dist, Rr

dist) consist of
vertices associated with the rows in Rdist, three sets (R′l

safe, Rl
safe, Rr

safe) consist
of vertices associated with the rows in Rsafe, and a final set called T consists
of vertices associated with the rows in S′. In the latter case notice that for each
row x in S′ there exist k vertices in T to ensure that the cluster associated with
x has size at least k. The vertex set is defined as follows:

– for each row x ∈ Rdist, there is a corresponding vertex Rl
dist(x) in Rl

dist and
a corresponding vertex Rr

dist(x) in Rr
dist;
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– for each group g consisting of the set of rows {x1, x2, . . . , xs(g)}, where
each xi ∈ Rsafe, 1 ≤ i ≤ s(g), there are k corresponding vertices in
R′l

safe, (such vertices are denoted by R′l
safe(g, 1), . . . , R′l

safe(g, k)), exc(g) cor-
responding vertices in Rl

safe (such vertices are denoted by Rl
safe(g, 1), . . . ,

Rl
safe(g, exc(g)), and exc(g) corresponding vertices in Rr

safe (such vertices
are denoted by Rr

safe(g, 1), . . . , Rr
safe(g, exc(g));

– for each row x ∈ S′, there are k corresponding vertices in T (such vertices
are denoted by T (x, 1), . . . , T (x, k)).

Notice that our graph GR,S′ is edge-weighted. Let wh be the weight function
assigning a positive weight to each edge of GR,S′ . Given the set of edges E′ ⊆ E,
we denote by wh(E′) =

∑
e∈E′ wh(e).

First, notice that the set S′ consists of two disjoint sets: the set S′
safeconsists

of those rows in S′ that have no suppressions, while S′
cost = S′\S′

safe. Each edge
connects a vertex of R′l

safe ∪ Rl
safe ∪ Rl

dist with a vertex of Rr
safe ∪ Rr

dist ∪ T ,
hence the graph GR,S′ is bipartite. The set S′ consists of two disjoint sets: the
set S′

safeconsists of those rows in S′ that have no suppressions, while S′
cost =

S′ \ S′
safe. Intuitively, each edge represents a possible assignment of a row in R

to a resolution vector in S′.

Algorithm 2. From a matching to a feasible solution of 〈|Σ|, m〉-AP.
Input: A graph GR,S′ associated with an instance R and a maximum weight

matching M of GR,S′

Output: A solution ΠS′(M) of 〈|Σ|, m〉-AP over instance R
foreach edge y of M do1

if y = (Rl
dist(r), T (x, j)) then /* edges defined at point 1 */2

row r is assigned to a set whose resolution row is x, x ∈ S′3

if y = (Rl
dist(r),R

r
dist(r)) then /* edges defined at point 2 */4

row r is assigned to a set whose resolution row is ry = arg maxw(r),5

ry ∈ S′;
if y = (R′l

safe(g, i), T (x, j)) then /* edges defined at point 3 */6

assign the i-th row of g to a set whose resolution row is x, x ∈ S′;7

if y = (Rl
safe(g, i), T (x, j)) then /* edges defined at point 4 */8

assign the i-th exceeding row of g to a set whose resolution row is x,9

x ∈ S′;
if y = (Rl

safe(g, i), Rr
safe(g, i)) then /* edges defined at point 5 */10

assign the i-th exceeding row of group g to the set whose resolution row11

is r(g), with r(g) ∈ S′ and r ∈ Rsafe;

Now we are ready to define formally the set of edges E of GR,S′ and the
weight function wh. There are five possible kinds of edges.

1. Let r be a row of Rdist, and let x be a row in Comp(r, S′) ∩ S′
cost. Then

there is an edge y = (Rl
dist(r), T (x, j)), for each 1 ≤ j ≤ k, with weight

wh (y) = w′(x).
2. Let r be a row in Rdist. Then there is an edge y = (Rl

dist(r), Rr
dist(r)) with

weight wh (y) = w(r).
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3. Let g be a group consisting of rows {r1, . . . , rs(g)}, where ri, for each i with
1 ≤ i ≤ s(g), is a row of Rsafe; let r′ be the resolution vector of S′

safe

identical to r(g). Then there is an edge yi = (R′l
safe(g, i), T (r′, i)), for each i

with 1 ≤ i ≤ k. All edges yi have weight wh (yi) = w′(r′).
4. Let g be a group consisting of rows {r1, . . . , rs(g)}, where ri, for each i with

1 ≤ i ≤ s(g), is a row of Rsafe; let x be a row in Comp(r(g), S′)∩S′
cost. Then

there is an edge yi,j = (Rl
safe(g, i), T (x, j)), for each i with 1 ≤ i ≤ exc(g)

and for each j with 1 ≤ j ≤ k. All edges yi,j have weight wh (yi,j) = w′(x).
5. Let g be a group consisting of rows {r1, . . . , rs(g)}, where ri, 1 ≤ i ≤ s(g), is

a row of Rsafe. Then there is an edge yi = (Rl
safe(g, i), Rr

safe(g, i)) for each
i with 1 ≤ i ≤ exc(g). All edges yi have weight wh (yi) = w(r(g)).

4.2 Computing a Solution of 〈|Σ|, m〉-AP

In this section we prove in Lemma 9 that ΠS′(M) is a clustering of the rows
in R that is a feasible solution for the 〈|Σ|, m〉-AP problem. See Fig. 1 for an
example.

Since GR,S′ is bipartite, we can efficiently compute a maximum weight match-
ing M of GR,S′ [16]. Given a matching M of the graph GR,S′ , Algorithm 2 com-
putes in polynomial time a clustering ΠS′(M) of the rows in R. Informally, the
clustering is computed by assigning the rows in R to the resolution vector in S′,
using the edges in the matching M .

Notice that, each vertex Rl
safe(r, i) has only the edge (Rl

safe(r, i), T (r, i)) on it,
hence we can always add those edges to any matching1. Let M be a matching of
GR,S′ and let v be a vertex of GR,S′ , then we say that v is covered by a matching
M if there exists an edge of M for which v is one of its endpoints. Moreover, we
will say that M is feasible if all vertices in T are covered by M . When a matching
M covers all vertices in Rl

dist ∪ Rl
safe and is feasible, it is defined as a complete

matching. Let Π be a clustering of an instance R of the 〈|Σ|, m〉-AP problem.
Then Π is feasible if and only if each set of the partition Π contains at least
k rows. The next part of this section is devoted to show that every maximum
weight matching M is complete and that clustering ΠS′(M) is feasible. First, we
will show in the next two lemmata that, given W ′ = k

∑
rx∈T w′(rx), W ′ is a

threshold that distinguishes between matchings that are feasible and those that
are not.

Lemma 7. Let M be a matching of GR,S′ , let X be the subset of T consisting
of the vertices of T that are covered by M , and let M1 be the subset of the edges
of M that have one endpoint in X. Then the total weight of the edges in M1 is
exactly

∑
T (t,i)∈X w′(t).

Proof. It is an immediate consequence of the observation that all edges where
an endpoint is T (t, j) have the same weight w′(t), with t ∈ S′. �

1 Notice that these connected components are introduced only to simplify the relation-
ship between a matching M and the corresponding solution ΠS′(M) of 〈|Σ|, m〉-AP.
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Rows R

Name Data w Group
r1 aaa 3
r2 aaa 3
r3 aaa 3

g1

r4 aaa 3
r5 aba 2 g2

r6 bbb 2 g3

r7 bbc 2 g4

Resolution vectors S′

Name Vectors w

s1 aaa 21
s2 a*a 20
s3 bb* 20

Rl
dist(r7)

Rl
dist(r6)

Rl
dist(r5)

Rl
safe(g1, 2)

Rl
safe(g1, 1)

R′l
safe(g1, 2)

R′l
safe(g1, 1)

Rr
safe(g1, 2)

Rr
safe(g1, 1)

Rr
dist(r7)

Rr
dist(r6)

Rr
dist(r5)

T (s3, 1)

T (s3, 2)

T (s2, 1)

T (s2, 2)

T (s1, 1)

T (s1, 2)

2

2

2

3

20

20

20

20

20

20 3

20

20

20

20

21

21

Fig. 1. An instance R of 〈|Σ|, m〉-AP, with k = 2 and m = 3, a resolution vector set
S′ and the associated graph GR,S′ . The thick edges are a maximum weight matching
of GR,S′ . The corresponding solution is made of the sets {r1, r2, r3} (cost 0), {r4, r5}
(cost 2), {r6, r7} (cost 2).

Lemma 8. Let M be a matching of GR,S′ and let M1 be the subset of the edges
of M that have one endpoint in T . Then the total weight of the edges in M1 is
at least W ′ = k

∑
r∈S′ w′(r) if and only if M is feasible.

Proof. Let M1 be the subset of the edges of M that have one endpoint in T ,
and let W1 be the total weight of edges in M1. An immediate consequence of
Lemma 7 is that W1 = W ′ if and only if M1 is feasible. Assume now that M is
not feasible, then there exists at least one vertex S′(x, j) ∈ T that is not covered
by M . Again, a consequence of Lemma 7 is that W1 ≤ W ′ − w′(x). Let M2 be
the set M \ M1. By construction, w′(x) > W and W is an upper bound on the
total weight of M2, therefore W1 + wh(M2) < W ′, completing the proof. �
Using Lemmata 7 and 8, we can prove Lemma 9.

Lemma 9. Let M be a maximum weight matching of GR,S′ , then M is complete
and the solution ΠS′(M) computed by Algorithm 2 is feasible.

4.3 Proving the Optimality of ΠS′(M)

This section is devoted to prove that, starting from a maximum weight matching
M , Algorithm 2 computes an optimal solution ΠS′(M) of 〈|Σ|, m〉-AP. In order
to prove that any maximum weight matching M of the graph GR,S′ leads to
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an optimal solution of 〈|Σ|, m〉-AP over instance R, we are going to prove that∑
(u,v)∈M wh ((u, v)) ≥ (W + 1)k|S′|+ m|Rl

dist ∪Rl
safe ∪R′l

safe|− e if and only if
〈|Σ|, m〉-AP over instance R admits a solution with cost not greater than e, and
such solution is computed by applying Algorithm 2. Such result will be obtained
through a sequence of technical lemmata.

Since M is a maximum weighted matching, we can assume by Lemma 9 that
M is complete. Given a complete matching M , we denote by M(T ) the set of
edges of M with one endpoint in Rl

dist ∪ Rl
safe ∪ R′l

safe and one endpoint in T ,
while we denote by M(L) the set of those edges of M that have one endpoint in
Rl

dist ∪ Rl
safe and one endpoint in Rr

dist ∪ Rr
safe. Furthermore, let us denote by

V (T ) the set of vertices of Rl
dist ∪Rl

safe ∪R′l
safe that are endpoints of an edge in

M(T ) and by V (L) the set of vertices of Rl
dist ∪ Rl

safe that are endpoints of an
edge in M(L). Notice that by definition of V (L) and, by definition of complete
matching, V (T ) ∪ V (L) = Rl

dist ∪ Rl
safe ∪ R′l

safe. Finally, let us denote by R(L)
the set of rows in R associated with the vertices in V (L). Lemma 10 shows how
the weight of a complete matching M is related to the edge weights of GR,S′ .

Lemma 10. Let M be a complete matching of GR,S′ , and let wh(M) be the
total weight of M . Then

wh(M) = k
∑
r∈S′

(W + m − del(r) + 1) +
∑

r∈R(L)

(m − del(r)) =

= (W +1)k|S′|+m|Rl
dist ∪ Rl

safe ∪ R′l
safe| −(k

∑
r∈S′

del(r)+
∑

r∈R(L)

del(r)).

Proof. The total weight wh(M) of the matching M is defined as

wh(M) =
∑

(u,v)∈M(T )

wh((u, v)) +
∑

(u,v)∈M(L)

wh(u, v).

By Lemma 8 and by definition of the weight function wh,

wh(M) = k
∑
r∈S′

w′(r) +
∑

r∈R(L)

(m − del(r))

and by definition of w′(r) it holds

wh(M) = k
∑
r∈S′

(W + m − del(r) + 1) +
∑

r∈R(L)

(m − del(r)).

Hence

wh(M) = (W + m + 1)k|S′| − k
∑
r∈S′

del(r) +
∑

r∈R(L)

m −
∑

r∈R(L)

del(r).

By definition of feasible matching and by construction of graph GR,S′ , |V (T )| =
|T |. Furthermore, since |T | = k|S′|, then mk|S′| = m|T | = m|V (T )|. By con-
struction

∑
r∈R(L) m = m|V (L)| and V (T ) ∪ V (L) = Rl

dist ∪ Rl
safe. Hence

wh(M) = (W + 1)k|S′| + m|Rl
dist ∪Rl

safe| − (k
∑
r∈S′

del(r) +
∑

r∈R(L)

del(r)). �
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In the next two lemmata, we will show that: (i) given an instance R of 〈|Σ|, m〉-
AP, if there exists a solution of 〈|Σ|, m〉-AP over R that suppresses at most e
entries then the graph GR,S′ associated with R admits a complete matching of
GR,S′ with total weight wG(M) ≥ (W + 1)k|S′| + m|Rl

dist ∪ Rl
safe ∪ R′l

safe| − e;
(ii) given a complete matching of the graph GR,S′ of total weight wG(M) ≥
(W +1)k|S′|+m|Rl

dist∪Rl
safe∪R′l

safe|−e, Algorithm 2 returns a solution ΠS′(M)
of 〈|Σ|, m〉-AP that suppresses at most e entries. These lemmata, coupled with
Lemma 9, prove the correctness of Algorithm 2 in Theorem 13.

Lemma 11. Let R be an instance of 〈|Σ|, m〉-AP, let ΠS′ be a feasible solution
of 〈|Σ|, m〉-AP over instance R that suppresses at most e entries, let GR,S′ be
the graph associated with R and S′. Then there exists a complete matching of
GR,S′ with total weight wG(M) ≥ (W + 1)k|S′| + m|Rl

dist ∪ Rl
safe ∪ R′l

safe| − e.

Lemma 12. Let R be an instance of 〈|Σ|, m〉-AP, let GR,S′ be the graph asso-
ciated with R, and let M be a complete matching of GR,S′ of weight wh(M) ≥
(W + 1)k|S′| + m|Rl

dist ∪ Rl
safe ∪ R′l

safe| − e. Then, starting from the matching
M of GR,S′ , Algorithm 2 computes a feasible solution ΠS′(M) of 〈|Σ|, m〉-AP
over instance R, where there are at most e suppressions.

Proof. Since M is complete, for each vertex T (x, j) of T , with 1 ≤ j ≤ k, there
exists an edge (v, T (x, j)) ∈ M for some v ∈ (Rl

dist ∪ Rl
safe ∪ R′l

safe). Then
Algorithm 2 defines a solution ΠS′(M) for 〈|Σ|, m〉-AP assigning, for each edge
(v, T (x, j)), the row r corresponding to vertex v to the set that has resolution
vector x. More precisely, row r is defined by Algorithm 2 as the j-th element
of the set that has resolution vector x. Therefore each set associated with a
resolution row x ∈ S′ will consist of at least k rows compatible with x. Hence
ΠS′(M) is a feasible solution.

Recall that M has a total weight of at least (W + 1)k|S′|+ m|Rl
dist ∪Rl

safe ∪
R′l

safe| − e. We will prove that ΠS′(M) induces at most e suppressions. By
Lemma 10, wh(M) = k

∑
r∈S′(W + m − del(r) + 1) +

∑
r∈R(L) m − del(r) =

(W+1)k|S′|+m|Rl
dist∪Rl

safe∪Rl
safe|−(k

∑
r∈S′ del(r)+

∑
r∈R(L) del(r)) ≥ (W+

1)k|S′|+m|Rl
dist∪Rl

safe∪Rl
safe|−e where k

∑
r∈S′ del(r)+

∑
r∈R(L) del(r) ≤ e.

Notice that, by definition of ΠS′(M), each vertex of V (T ) corresponds to a row in
R assigned to a set with a resolution vector in S′. Such rows associated with V (T )
induce a cost in ΠS′(M) of k

∑
r∈S′ del(r). Furthermore, the vertices of V (L)

corresponds to rows of R inducing a cost of at most
∑

r∈R(L) del(r). Therefore
ΠS′(M) induces k

∑
r∈S′ del(r) +

∑
r∈R(L) del(r) ≤ e suppressions. �

We can conclude that Algorithm 1 is indeed correct.

Theorem 13. Let R be an instance of 〈|Σ|, m〉-AP. Then Algorithm 1 returns
a solution ΠS′(M) of cost at most e if and only if such a solution exists.

If 〈|Σ|, m〉-AP admits a solution that suppresses at most e entries, then there
exists a set S∗ of resolution vectors such that ΠS∗ is a solution for 〈|Σ|, m〉-
AP with resolution vectors S∗ with the property that ΠS∗ suppresses at most
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e entries. Now, there exist O(2(|Σ|+1)m

) possible sets of resolution vectors and
the construction of graph GR,S′ requires O(k|S∗||R|) ≤ O(ke|R|) ≤ O(kmn2).
A maximum matching M of a bipartite graph can be computed in polynomial
time [16] and starting from M , we can compute a solution of the 〈|Σ|, m〉-AP
in time O(|M |) ≤ O(m). Hence the overall time complexity of the algorithm is
O(2(|Σ|+1)m

kmn2).

5 Conclusions

We have studied the tractability of the k-anonymity problem depending on dif-
ferent parameters. We have shown that the problem is W[1]-hard when param-
eterized by the size of the solution e and k, while it admits a fixed parameter
algorithm when parameterized by the number of columns and the maximum
number of different values in any column.

Some problems remain open: the computational complexity of k-anonymity
when the input matrix consists of two columns, and the parameterized complex-
ity of 〈e, |Σ|〉-anonymity.
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Abstract. Pseudo bicliques relax the rigid connectivity requirement of
bicliques to effectively deal with missing data. In this paper, we propose
an algorithm based on reverse search to generate all pseudo bicliques in a
given graph. We introduce various enhancements to our algorithm based
on the structure of pseudo bicliques and underlying bipartite graph. We
perform composite analysis using theoretical bounds and computational
experiments, to show that these improvements significantly reduce the
running time of our algorithm. Our algorithm is optimal in the sense
that it takes average linear time to generate each pseudo biclique.

1 Introduction

Bicliques are used to model various real-world problems: document and words
co-clustering, discovery of web communities and protein interactions [5,3]. Due
to the rigid connectivity requirement of biclique, it is not suitable for dealing
with missing data. Therefore, researchers are now considering pseudo bicliques
to model more natural interactions in real world problems [5].

There are many ways to define pseudo biclique, we consider density based
model of pseudo bicliques. The benefit of this model is that the restraint on the
number of edges changes with the size of the subgraph. Thus, small subgraphs
are classified as pseudo bicliques only if they are bicliques. The generation of
density based pseudo biclique is a non-trivial task because straightforward back-
tracking and branch-and-bound schemes involve a NP-complete problem [7].
Secondly, the monotone property does not hold in the family of density based
pseudo bicliques.

Some schemes have been devised to enumerate pseudo bicliques [6,5] but no
significant work is conducted for density based pseudo bicliques. David Gibson [2]
proposed an algorithm for finding as many disjoint dense subgraphs in a given
graph as possible, but his algorithm skips some useful dense graphs. In [4], the
scheme to find quasi cliques in a given graph is extended to deal with quasi
bicliques, but it can only list balanced quasi bicliques.

In this paper, we design an efficient algorithm for listing all pseudo bicliques
in a given graph G. The framework of our algorithm is based on reverse search
[1,7]. We evaluated the performance of our algorithm on randomly generated
bipartite graphs. The results are very promising and shows that average linear
time is incurred for generating a pseudo biclique.
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2 Pseudo Biclique Generation Algorithm

In this section, we develop an algorithm to list all pseudo bicliques in a given
bipartite graph G = (V1∪V2, E) using reverse search. Let us first formally define
density and pseudo biclique subgraphs.

Definition 1. For a bipartite graph G = (V1 ∪ V2, E), the density ρ(G) is given
by ρ(G) = |E|

|V1||V2|

Definition 2. A pseudo-biclique BU1,U2 is a bipartite subgraph of graph G, if
ρ(B) ≥ θ, where 0 < θ ≤ 1.

Here, θ is a density threshold. We denote the degree of vertex v in BU1,U2 by
degBU1,U2

(v), the maximum degree by �(BU1,U2) and minimum by δ(BU1,U2).
In reverse search technique, we construct a tree-shaped traversal route on the

family of the combinatorial object under consideration. In order to form the tree,
we define a parent for each element and ensure that definition of the parent is
unique and acyclic. Reverse search algorithm traverses the tree in a depth first
manner to list each structure. In a bipartite graph, the removal of a minimum
vertex does not decrease the density of the resulting subgraph. If there are more
than one such vertices, consider the minimum index one. We use this observation
to define a parent-child relationship on the set of pseudo bicliques.

Lemma 2.1. Let G = (V1 ∪ V2, E) be a bipartite subgraph, and vertex v ∈
(V1 ∪ V2). If degG(v) = δ(G) then ρ(G \ v) ≥ ρ(G).

Proof. We have to show that ρ(G \ v)−ρ(G) ≥ 0. Here, ρ(G \ v) is the density
of the graph G \ v, thus we have ρ(G \ v) − ρ(G) = |E|−degG(v)

(|V1|−1)|V2| − |E|
|V1||V2| . Note

that in a bipartite graph, |E| = Σi∈V1degG(i) = Σj∈V2degG(j), so we have

=
Σi∈V1degG(i) − degG(v)

(|V1| − 1)|V2| − Σi∈V1degG(i)
|V1||V2|

=
|V1|Σi∈V1degG(i) − |V1|degG(v) − (|V1| − 1)Σi∈V1degG(i)

(|V1| − 1)|V1||V2|
=

Σi∈V1degG(i) − |V1|degG(v)
(|V1| − 1)|V1||V2|

≥ |V1|degG(v) − |V1|degG(v)
(|V1| − 1)|V1||V2|

= 0

Using the lemma above, we can establish that each pseudo biclique has density
no more than its parent, thus a parent is a pseudo biclique if BU1,U2 is a pseudo
biclique. In other words, we can say that for any pseudo biclique BU1,U2 , BU1,U2\v
will also be a pseudo biclique if v is a minimum vertex in BU1,U2 .

Now, we outline our pseudo biclique generation algorithm. Given G and θ,
the routine GenPseudoBiclique is called for each edge in E, and it enumerates
all the pseudo biclique in that branch of the enumeration tree.
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Algorithm 1. GenPseudoBiclique(BU1,U2)
Require: Graph G(V1 ∪ V2, E), density threshold θ
1: for each v ∈ {V1 ∪ V2} \ {U1 ∪ U2} do
2: if ρ(BU1,U2 ∪ v) ≥ θ then
3: if BU1,U2 ∪ v is a child of BU1,U2 then
4: Output BU1,U2

5: GenPseudoBiclique(BU1 ,U2 ∪ v)
6: end if
7: end if
8: end for

We traverse the search space in a way that allows straightforward pruning of
non-dense pseudo bicliques. According to the defined adjacency relationship, a
non-dense pseudo biclique will always has non-dense descendants. Thus, during
the traversal we prune the path whenever the density check fails at a node.
In our algorithm, we compute minimum vertex and density before adding each
vertex. In simple implementation, each of these operations will take O(V ) time.
These operations are performed at most V times in an iteration. Thus, time to
compute a pseudo biclique is O(V 2).

Improvements for Efficient Computation: To improve the time require-
ments of the algorithm, we keep information about minimum vertex and degrees
of all vertices of G in current BU1,U2 . This allows us to calculate density in con-
stant time. Furthermore, we observe that in most cases, a comparison between
degBU1,U2

(v) and δ(BU1,U2) is sufficient to verify the parent-child relationship.
We divide the task of determining child of BU1,U2 in one of the following three
cases,where m denotes the minimum vertex in BU1,U2 .

1. If degBU1,U2
(v) is less than δ(BU1,U2), then BU1,U2 ∪ {v} is a child of BU1,U2

2. If degBU1,U2
(v) is greater than δ(BU1,U2) + 1, then it is not a child of BU1,U2

3. Otherwise one of the two possibilities can occur
(a) If v is connected to m, then verify the parent-child relationship
(b) If v is not connected m, then a comparison between label of v and m

completes the task

In all the above cases except 3(a), verification of child can be done in constant
time. Only the case 3(a) takes O(V ) time.

The cost incurred on constant-checkings can be distributed to pseudo bicliques
as overhead. When a pseudo biclique is generated, it takes O(V ). This is because
when a vertex is added to BU1,U2 , the degrees of all of its adjacent vertices in
the array are updated. This operation takes O(Δ(G)) time. For each BU1,U2 , the
number of constant-checkings that does not yield any child are at most O(V ).
We include this overhead in the generation cost of BU1,U2 . In section 3, we have
estimated the non-constant-checkings using experiments and found that they
are O(β(G)), where β(G) is the total number of pseudo bicliques in G. Apart
from this, we propose to start the algorithm with an edge. This will avoid trivial
pseudo bicliques that have all vertices in one partition.
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Fig. 1. Results obtained from computational experiments

3 Computational Results

We carry out experiments to show that average linear cost is incurred for generat-
ing each pseudo biclique. The edges in randomly generated graphs are uniformly
distributed according to the defined edge density. In the experiments, we have
estimated the ratio of the total pseudo bicliques in G to the number of non-
constant-checkings. The number of pseudo bicliques depends on the given θ or
on the graph size. For this purpose, we have evaluated the performance of our
algorithm on three parameters: edge density, density threshold, and number of
vertices. We conducted three different experiments to estimate the desired ratios.
The results of these experiments are shown in Figure 1.

In all experiments, we observe that the number of non-constant-checkings is
less than the pseudo bicliques generated. Thus, we can distribute the cost of these
checkings to pseudo bicliques and hence, amount of work done per structure is
O(V ). Secondly, we observe that the growth rate of the number of non-constant-
checking is far less than that of pseudo bicliques when graph size is increased
or θ is decreased. From this, we deduce that the average cost of computing a
pseudo biclique decreases as the search space of algorithm increases.
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Abstract. We consider here the problem of chaining seeds in ordered
trees. Seeds are mappings between two trees Q and T and a chain is a
subset of non overlapping seeds that is consistent with respect to postfix
order and ancestrality. This problem is a natural extension of a similar
problem for sequences, and has applications in computational biology,
such as mining a database of RNA secondary structures. For the chaining
problem with a set of m constant size seeds, we describe an algorithm
with complexity O(m2 log(m)) in time and O(m2) in space.

1 Introduction

Comparing sequences is a basic task in computational biology, either for min-
ing genomics database, or for filtering large sequence datasets. A fundamental
application of sequence comparison is to search efficiently in a database a set
of sequences close to a query sequence. The exponential increase of available
sequence data motivates the need for very efficient sequence comparison algo-
rithms. In particular, pairwise comparison relying on computing the exact edit
distance between the query and every every sequence of the database can not
practically be applied due to the quadratic time complexity of edit distance com-
putation. A typical approach to tackle this issue is to rely on short sequences,
called seeds, present in the query. Seeds can be detected very quickly in the
database using indexing techniques; then an optimal set of seeds, called a chain,
that tiles both the query and a sequence of the database, must be identified
while conserving the same order in both sequences. Widely used programs such
as BLAST [2] and FASTA [11,14] rely on such an approach. We refer the reader
to [3,7] for surveys of sequence comparison in computational biology. From an
algorithmic point of view, an optimal chain between two sequences, given m
seeds, can be computed in O(m log(m)) time and O(m) space [10] (see [13] for
a recent survey).

With the recent development of high-throughput genome annotation meth-
ods, similar problems appear to be relevant for the analysis of more complex
biological structures [15]. For instance, an RNA secondary structures can be
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represented by a tree or a graph whose nodes are the nucleotides and whose
edges are the chemical bonds between them [16]. Mining large RNA secondary
structure databases, such as Rfam [6], is now an important computational biol-
ogy problem. An initial approach, adapting the notion of edit distance to ordered
trees, was pioneered by Zhang and Shasha [17]. The tree edit approach has been
extended in several ways since then, leading either to hard problems, when a
comprehensive set of edit operations is considered [9], or to algorithms with a
worst-case time complexity at best cubic, even with a minimal set of edit oper-
ations [5,17].

Recently, Heyne et al. [8] introduced a chaining problem on an alternative
representation of ordered trees called arc annotated sequences, motivated by
pairwise RNA secondary structure comparison: once an optimal chain of seeds
between two given RNA secondary structures is detected, the regions between
successive seeds are processed independently using an edit distance algorithm,
which speeds up significantly the comparison process. They considered seeds de-
fined as exact common patterns and designed a dynamic programming algorithm
to solve the seeds chaining problem. To the best of our knowledge, [8] is the first
paper addressing a chaining problem in trees.

After some preliminaries (Sections 2 and 3), we describe in Section 4 an algo-
rithm for finding the score of an optimal chain between two ordered trees (Max-
imal Chaining Problem) in O(m2 log(m)) time and O(m2) space when there are
m seeds of constant size, thus improving on the result of Heyne et al. [8]. We
conclude with further research avenues.

2 Background and Problem Statement

Let T be an ordered rooted tree of size n. Nodes of T are identified with their
postfix-order index from 0 to n − 1. Thus, n − 1 represents the root of T . Ti

is the subtree of T rooted at i. We denote by T [i, j] the forest induced by the
nodes that belong to the interval [i, j]; if i > j, then T [i, j] is empty. The partial
relationship “i is an ancestor of j” is denoted by i ≺ j. For a tree T and a node
i of T , the first leaf visited during a postfix traversal of Ti is denoted by l(i) and
called the leftmost leaf of the node i. The ordered forest induced by the proper
descendants of i is denoted by T̂i = T [l(i), i − 1].

Definition 1. Let T be an ordered rooted tree:

1. Let G = {g0, . . . , gk−1} be an ordered set of k nodes of T , with 0 ≤ gj < n.
If the subgraph of T induced by G is connected, then G is called an internal
tree rooted at gk−1 also referred to as rG.

2. The set of leaves of the internal tree G is denoted by L(G).
3. A node gj of G is said to be completely inside G if gj is not a leaf of T and

all its children belong to G. The set of nodes of G that are not completely
inside G is called the border of G and is denoted by B(G).

4. Two internal trees G1 and G2 overlap if they share at least one node, i.e.
G1 ∩ G2 �= ∅.



262 J. Allali et al.

We now recall the central notion of valid mapping between two trees intro-
duced in [16] for the tree edit distance. Given two trees Q and T , a valid mapping
P between Q and T is a set of pairs of Q × T such that, if (qi, ti) and (qj , tj)
belong to P , then

1. qi = qj if and only if ti = tj ,
2. qi < qj if and only if ti < tj ,
3. qi ≺ qj if and only if ti ≺ tj .

From now we use the term mapping to refer to a valid mapping. Given a mapping
P between Q and T , the smallest internal tree of Q (resp. T ) that contains all
nodes of Q (resp. T ) belonging to a pair of P is denoted by QP (resp. TP ). QP

and TP are respectively called the internal trees of Q and T induced by P .

Definition 2. Let Q and T be two ordered trees.

1. A seed P between Q and T is a mapping between Q and T such that
(rQP , rTP ) ∈ P and all the nodes of the border of QP (resp. TP ) belong
to a pair of P .

2. The border (resp. leaves) B(P ) (resp. L(P )) of the seed P is the set of pairs
(x, y) ∈ P such that x ∈ B(QP ) and y ∈ B(TP ) (resp. x ∈ L(QP ) and
y ∈ L(TP )).

3. The size |P | of the seed P is the number of pairs its mapping contains.
4. For a set S of seeds, ‖S‖ is the sum of the sizes of the |S| seeds in S.

Note that, theoretically, the number of seeds between Q and T can be exponential
in the size of Q and T , although in applications such as RNA secondary structure
comparison, this exponential upper bound is unlikely to be reached (see [8] for
example).

Definition 3. Let Q and T be two ordered trees.

1. A pair (P 1, P 2) of seeds between Q and T is chainable if QP 1 does not
overlap QP 2 , TP 1 does not overlap TP 2 , and P 1 ∪ P 2 is a mapping.

2. A chain is a set C = {P 0, P 1, . . . , P 	−1} of seeds between Q and T such that
any pair (P i, P j) of distinct seeds in C is chainable.

3. Given a scoring function v for the seeds P i, the score of a chain C is the
sum of the scores of its seeds: v(C) =

∑
i v(P i).

4. Given a set S of possibly overlapping seeds between Q and T , CS(Q, T )
denotes the set of all possible chains between Q and T included in S.

We can now define the main problem we consider in the present paper (illustrated
in Fig. 1).

Problem. Maximum Chaining Problem (MCP):
Input: A pair (Q, T ) of ordered rooted trees, a set S = {P 0, . . . , Pm−1} of m
possibly overlapping seeds between Q and T , a scoring function v on the seeds
P i.
Output: The maximum score chain C included in S:

MCP (Q, T, S) = max{v(C); C ∈ CS(Q, T )}.
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Fig. 1. An instance of the MCP with 6 seeds: P 0 = {(2, 10), (3, 11)}, P 1 =
{(6, 3)}, P 2 = {(9, 5)}, P 3 = {(10, 6), (11, 7)}, P 4 = {(7, 4), (11, 7), (12, 8)}, P 5 =
{(3, 1), (13, 9), (14, 11)}. If for every seed v(P i) = |P i|, an optimal chain is composed
of {P 1, P 2, P 4, P 5} and has a score of 8.

Remark 1. The notion of mapping extends naturally to ordered forests. Hence,
if S is a set of seeds such that each seed is a seed between a tree of F1 and a
tree of F2, then the MCP can naturally be extended to ordered forests.

Remark 2. To compare with chaining algorithms for sequences, we represent
a sequence u = (u0, . . . , un−1) by a unary tree, rooted at a node labeled by
un−1, where every internal node has a single child and u0 is the unique leaf: the
sequence of nodes visited by the postfix-order traversal of this tree is exactly u.

Motivation and background. As far as we know, [8] is the only work that at-
tacks the MCP in tree structures, although the authors describe the problem
in terms of arc-annotated sequences. They proposed a dynamic programming
algorithm to solve the maximum chaining problem with some restrictions on
the seeds (precisely, seeds are maximal exact pattern common to the considered
sequences). This dynamic programming technique is different from the approach
used for the currently best known algorithms for Maximum Chaining Problem
in sequences [10,13]. Moreover, when applied to arc-annotated sequences with no
arc (i.e. sequences) and m seeds, it can be shown this algorithm has a worst-case
time complexity in O(m2).

Result statement. Our main result is the following:

Theorem 1. Let S be a set of m seeds between two ordered trees Q and T . After
an O(‖S‖) time preprocessing of the m seeds of S one can solve the Maximum
Chaining Problem in O(‖S‖ log(‖S‖) + m‖S‖ log(m)) time and O(m‖S‖) space.

Note that we described the complexity of our algorithm using uniquely the set
of seeds S, unlike Heyne et al. [8], who, for the same problem, also consider
the sizes of Q and T (see [1] for a detailed analysis of the complexity of the
algorithm of [8]). We prove in Section 4, that our algorithm solves the maximal
chaining problem on sequences (i.e. unary trees as described in Remark 2 above)
in O(m log(m)) time and O(m) space complexity.
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Remark 3. Without loss of generality, from now we assume that the seeds P i

are sorted increasingly according to the postfix number of their roots in Q, that
is: rQP 0 ≤ · · · ≤ rQP i ≤ · · · ≤ rQP m−1 . For a given chain C, the last seed of C is
then the seed with the highest postfix index in Q.

3 Combinatorial Properties of Seeds and Chains

We first describe combinatorial properties of seeds and chains, that naturally
lead to a recursive scheme to compute a maximum chain. Indeed, we show that
given a chain C and its last seed P , the root and border of P define a partition
of both Q−QP and T −TP into pairs of forests that contain the seeds C −{P}
and form sub-chains of C. More precisely, for every border nodes (x, y) of a seed
P , we define the couples of forests included in (Q̂x, T̂y), that is composed of
descendants of (x, y), such that any seed included into such couple of forest is
chainable with P .

Definition 4. Let P be a seed on two trees Q and T and (a, b; c, d) be a quadru-
ple such that l(rQP ) ≤ a < b < rQP , l(rTP ) ≤ c < d < rTP and the pair of forests
(Q[a, b], T [c, d]) does not contain any node involved in P (QP ∩ Q[a, b] = ∅ and
TP ∩T [c, d] = ∅). (a, b; c, d) is a chainable area if for all i ∈ [a, b] and all j ∈ [c, d],
P ∪ (i, j) is a valid mapping. (a, b; c, d) is a maximal chainable area for P if nei-
ther (a−1, b; c, d) or (a, b+1; c, d) or (a, b; c−1, d) or (a, b; c, d+1) are chainable
areas for P .

For example, in Fig. 1, let us consider the seed P = P 5 ; then, (4, 12; 2, 8) is a
maximal chainable area. See also Figure 2.

Fig. 2. Illustration of the notion of chainable areas of a seed of size 5: P =
{(x0, y0), . . . , (x4, y4)} and there are 4 chainable areas for P each indicated by a differ-
ent filling pattern

Definition 5. Let (x, y) ∈ B(P ) for a seed P between Q and T . We define by
F (x, y) = {(ai, bi; ci, di)} the set of all maximal chainable areas for P included
in (Qx; Ty) such that there is no border node of P in Q (resp. T ) on the path
from b to x (resp. d to y). We call this set the chainable areas of (x, y).
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For example, let us consider a pair (x, y) in L(P ) such that x and y are not
a leaf of respectively Q and T , then F (x, y) represents the couple of forests
Q̂x and T̂y, F (x, y) = {(l(x), x − 1; l(y), y − 1)}. In Fig. 1, with P = P 4 and
(x, y) = (11, 7), F (x, y) = {(8, 10; 5, 6)}); if (x, y) = (14, 11) ∈ B(P 5) − L(P 5),
F (x, y) = {(0, 1; 0, 0), (4, 12; 2, 8)}. See also Figure 3.
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Fig. 3. (Left) Illustration of Definition 5 for a seed P (the shaded zone) and (x, y) ∈
B(P )−L(P ): F (x, y) = {(a0, b0, c0, c1), (a1, b1, c1, c1), (a2, b2, c2, c2)}. (Right) Illustra-
tion of the maximum number of chainable areas of a seed.

Definition 6. The chainable areas of a seed P , denoted by CA(P ), is the union
of the sets of quadruples F (x, y) for all pairs (x, y) ∈ B(P ).

Notation. For a seed P (resp. chain C) and a chainable area (a, b; c, d), we say
that P ⊂ (a, b; c, d) (resp. C ⊂ (a, b; c, d)) if a ≤ rQP ≤ b and c ≤ rTP ≤ d.

The following property is a relatively straightforward consequence of the def-
initions of seeds and chainable areas (Fig. 3).

Property 1. Given a seed P between trees Q and T , |CA(P )| ≤ 2 × |B(P )| − 1.

From now, for every (x, y) of a seed P j , we denote by xj the unique node
y of T associated with x in P j . We also denote by Fj(x) the set of quadruples
F (x, xj) for the pair of nodes (x, xj) ∈ P j.

The next property describes the structure of any chain between two forests
Q[a, b] and T [c, d] included in a set of m seeds S = {P 0, . . . , Pm−1}. It is a
direct consequence of the constraints that define a valid mapping and the fact
that seeds are non-overlapping in a chain.

Property 2. Let P j be the last seed of a chain C included into two forests Q[a, b]
and T [c, d].

1. C can be decomposed into |CA(P j)|+2 (possibly empty) distinct sub-chains:
P j itself, |CA(P j)| chains: for each (e, f ; g, h) ∈ CA(P j) a (possible empty)
chain included into Q[e, f ] and T [g, h] and a chain included into the forests
Q[a, l(rj) − 1] and T [c, l(rj

j) − 1].
2. Moreover, C is a chain of maximum score among all chains in Q[a, b] and

T [c, d] that contain P j if and only if all of its sub-chains described above are
chains of maximum score with respect to the corresponding forests defined
by CA(P j).
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Property 2.2 naturally leads to a recursive scheme to compute an optimal
chain between two forests Q[a, b] and T [c, d] that ends by the last seed of a set.
If MCP ′(Q[a, b], T [c, d], {P 0 . . . P j}) is the score of a maximum chain between
Q[a, b] and T [c, d] and that contains P j :

MCP ′(Q[a, b], T [c, d], {P 0 . . . P j}) = (1)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if P j �⊂ (a, b; c, d),

v(P j) +
∑

(e,f ;g,h)∈CA(P j)

MCP (Q[e, f ], T [g, h], {P 0 . . . P j−1}) otherwise.

+MCP (Q[a, l(rj) − 1], T [c, l(rj
j) − 1], {P 0 . . . P j−1})

and thus MCP (Q, T, S) can be computed using MCP ′ as follow1:

MCP (Q[a, b], T [c, d], {P 0 . . . P j}) = max
i=0...j

MCP ′(Q[a, b], T [c, d], {P 0 . . . P i}) (2)

MCP (Q, T, S) = MCP (Q[0, rQ], T [0, rT ], S) (3)

The main challenge in designing an algorithm for the MCP is then to implement
efficiently this recursive formula, that was already central in the dynamic pro-
gramming algorithm of [8]. In Section 4, we will rely on the fact that for every
seed P j, CA(P j) and, for every border node x of P j , Fj(x), have been computed
during a preprocessing phase. A journal version will discuss the issues related to
this preprocessing and will show that it can be done in O(‖S‖) time and space
(see also [1]).

4 Algorithms for the Maximum Chaining Problem

From now, we consider that we are given two ordered trees Q and T , a set
S = {P 0, . . . , Pm−1} of seeds and a scoring score v on S. Furthermore, we
assume that the score v(j) of a seed P j can be accessed in constant time and
the seeds of S are given as a list I of triples (i, f, j) such that: (1) i is the postfix
number of either the root of P j

Q or a border node of P j
Q (ie. i ∈ B(P j

Q) ∪ {rj})
and (2) f is a flag indicating if i is either border (f = 0) or root (f = 1) for P j

Q.
Thus if i is both in B(P j

Q) and the root of P j
Q then i appears in two distinct

triples2. Moreover, for a node i in Q belonging to a seed P j , we assume that the
corresponding node in T , ij (or more precisely its postfix number in T ) can be
accessed in constant time. Finally, for every node i in Q and T , its leftmost leaf
l(i) is also supposed to be accessed in constant time.

As a preprocessing, I is sorted in lexicographic order. Thus, if a node is both
in the border and root of P j , it first appears in I as a border, then as a root.
This sorting can be done in O(||S|| log(||S||)) time. In our algorithms, we visit

1 We remind that the seeds are supposed to be sorted incrementally (see Remark 3).
2 Hence, we do not require as input the whole seeds mappings but just the borders

and roots of the seeds, as it is usual when chaining seeds in sequences.
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successively the elements of I in increasing order, and a seed P j is said to be
processed after its root has been processed (i.e. the current element of I is greater
than (rj , 1, j) for the order defined above).

In the following, we first introduce a simple but non optimal algorithm to
compute the MCP between Q and T which does not require any special data
structure. In a second step, we will present a more efficient method based on a
simple modification of this algorithm.

4.1 A Simple Non Optimal Algorithm

In order to compute in constant time the partial MCP for any pair of forests in
CA(P j) as described in equation (1), we introduce a data structure M indexed
by quadruples of integers (a, b; c, d) defining the forests Q[a, b] and T [c, d]. These
quadruples (a, b; c, d) belong to a set Y = Y1 ∪ Y2 ∪ Y3 defined as follows:

Y1 =
m−1⋃
j=0

CA(P j), Y2 = {(0, rQ, 0, rT )},

Y3 = {(a, l(rj)− 1; c, l(rj
j)− 1) | ∃(b, d); (a, b; c, d) ∈ Y1 ∪Y2 and P j ⊂ (a, b; c, d)}

In algorithm 1, the function Update replaces the value of M [a, b, c, d] by a real
number w if w is greater than M [a, b, c, d]. We also use an array V of m integers
to store the intermediate quantities of MCP

′
. The correctness of the algorithm

relies on the following invariants for the two data structures V and M , that we
prove later:

M1. After P j has been processed, then M [a, b, c, d] = MCP (Q[a, b], T [c, d],
{P 0, . . . , P j}) for every (a, b; c, d) ∈ Y .

V1. After P j has been processed, then V [j] = MCP ′(Q, T, {P 0, . . . , P j}).

Correctness of the algorithm. Obviously, V1 implies that maxj V [j] contains the
score of the maximum chain (equations (2) and (3)). Let us assume now that
M1 is satisfied. If the seed P j has been processed, then V [j] contains the sum
of v(j) (line 1), the MCP scores of the chainable areas of all its border nodes
(line 5) and the MCP score between forests Q(0, l(rj) − 1) and T (0, l(rj

j) − 1)
(line 11). From Property 2 and (1), V [j] = MCP ′(Q, T, {P 0, . . . , P j}) and V1
is satisfied.

We prove M1 by induction. Initially, since no seed has been processed, line 2
ensures that M1 is satisfied. Now let us assume that M1 is satisfied for all
processed seeds {P 0, . . . , P j−1} and the input (i, 1, j) is being processed. If P j �⊂
(a, b; c, d), then by induction, M1 is satisfied for M [a, b, c, d]. Otherwise, the loop
in lines 7 and 8 ensures that M1 is satisfied for all entries M [a, b, c, d] such that
(a, b; c, d) ∈ Y1 ∪ Y2, as (a, l(rj) − 1; c, l(rj

j) − 1) does not contain P j ; thus by
induction M1 is satisfied for this index. Finally, the loop in line 9 update all
(a, b; c, d) ∈ Y3 including P j ,and M1 is satisfied for all entries of M .
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Algorithm 1. MCP1: compute the score of a maximum chain.
1 for j from 0 to m − 1 do V [j] = v(j)
2 foreach (a, b; c, d) ∈ Y do M [a, b, c, d] = 0
3 foreach (i, f, j) in I do

4 if f = 0 then # i.e. (i, ij) ∈ B(P j)
5 foreach (a, b; c, d) ∈ Fj(i) do V [j] = V [j] + M [a, b, c, d]
6 else # i.e. f = 1 and i is the root of QP j , i = rj

7 foreach (a, b; c, d) ∈ Y1 ∪ Y2 s.t. P j ⊂ (a, b; c, d) do

8 Update M [a, b, c, d] with w = V [j] + M [a, l(rj) − 1, c, l(rj
j) − 1]

9 foreach P g ⊂ (rj + 1, b; rj
j + 1, d) do

10 Update M [a, l(rg) − 1, c, l(rg
g) − 1] with w

11 V [j] = V [j] + M [0, l(rj) − 1, 0, l(rj
j) − 1]

12 return maxj V [j]

Complexity analysis. From Property 1, the space required to encode the entries
of M indexed by Y1 is in O(‖S‖). The space required to encode the entries of
M indexed by Y3 is in O(m2), as for every pair of seeds P i and P j, there is at
most one chainable area of CA(P i) that contains P j.

We now address the worst-case time complexity. We do not factor the prepro-
cessing required to compute the Fj and CA and we assume I has been sorted in
time O(‖S‖ log(‖S‖)). The amortized cost of lines 4–5 is O(‖S‖), as each chain-
able area is considered once, there are O(‖S‖) such areas, and we assumed we can
access them in amortized constant time. A naive implementation of lines 6–11
would require O(m2‖S‖) operations: indeed, there are m iterations of the loop
in line 6, the loop in line 7 considers only entries indexed by Y1 ∪ Y2 (there are
O(‖S‖) such entries) and the loop on line 9 iterates O(m) times. However, we can
notice that there are O(m) entries (a, b; c, d) ∈ Y1 ∪Y2 such that P j ⊂ (a, b; c, d),
and it is possible to preprocess I in time and space O(m‖S‖) in such a way that
the loop in line 7 can be implemented to perform O(m) iterations, leading to a
total time complexity of O(‖S‖ log(‖S‖) + m‖S‖+ m3) (respectively for sorting
the input, preprocessing and then the main algorithm).

4.2 A More Efficient Algorithm

We describe and analyze now a more efficient algorithm, which proves our main
result, Theorem 1.

The key ideas are to access less entries from M (while maintaining prop-
erty M1 on the remaining entries though) and to complement M with a data
structure R that can be queried in O(log(m)) instead of O(1), but whose main-
tenance does not require a loop with O(m2) iterations. Formally, let X =
{(a, c) s.t. ∃(a, b; c, d) ∈ Y1 ∪ Y2} and R be a data structure indexed by X such
that, for a given index (a, c) ∈ X , R[a, c] is a set of pairs (j, s) where j is the
index of the seed P j and s is the maximum score of chains in Q[a, rj ], T [c, rj

j ]
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that ends with P j. Roughly, M is used to access, still in O(1) time, the val-
ues MCP (a, l(rj) − 1, c, l(rj

j) − 1, {P 0 . . . P j−1}) required to compute MCP ′

in equation (1) and R[a, c] is used to access, in time O(log(m)), the scores of
the best chains included in (Q[a, rQ], T [c, rT ]) (the values MCP (Q[e, f ], T [g, h],
{P 0 . . . P j−1}) in equation (1)) and replace the entries M [a, b, c, d] with (a, b;
c, d) ∈ Y1 ∪ Y2, which were used in the previous algorithm.

Finally, the algorithm iterates on a list of triples J = I
⋃(∪m−1

j=0 (l(rj),−1, j)
)
,

sorted using the lexicographic order used in the previous section, with the fol-
lowing modification: if we have two seeds P j and P g with g > j such that
(l(rj), l(rj

j )) = (l(rg), l(rg
g)) then only (l(rj),−1, j) occurs in J . This preprocess-

ing requires O(||S|| log(||S||)) time.

Algorithm 2. MCP2(Q, T, S, v): compute a maximum chaining from S.
1 for j from 0 to m − 1 do V [j] = v(j)
2 foreach (a, b; c, d) ∈ Y3 do M [a, b, c, d] = 0
3 foreach (a, c) ∈ X do R[a, c] = ∅
4 foreach (i, f, j) in J do
5 if f = −1 then # i = l(rj)
6 foreach (a, c) ∈ X s.t. a, c < l(rj), l(rj

j) do

7 M [a, l(rj) − 1, c, l(rj
j) − 1]= value s of the last (y, s) of R[a, c] s.t. ry

y < l(rj
j)

8 else if f = 0 then # (i, ij) ∈ B(P j)
9 foreach (a, b; c, d) ∈ Fj(i) do

10 Add to V [j] the value s of the last entry (y, s) of R[a, c] s.t. ry
y ≤ d

11 else # f = 1 and i is the root of QP j , i = rj

12 foreach (a, c) ∈ X s.t. a, c < l(rj), l(rj
j) do

13 w = V [j] + M [a, l(rj) − 1, c, l(rj
j) − 1]

14 Insert entry (j, w) into R[a, c] and update R[a, c] as follow:
15 Find the last entry (y, s) s.t. ry

y < rj
j

16 if s < w then
17 Insert (j, w) just after (y, s) in R[a, c]
18 Remove from R[a, c] all entries (z, t) s.t. rj

j ≤ rz
z and t < w

19 V [j] = V [j] + M [0, l(rj) − 1, 0, l(rj
j) − 1]

20 return maxj V [j]

Correctness of the algorithm. We consider the following invariants.

M2. After P j has been processed, then M [a, b, c, d] = MCP (Q[a, b], T [c, d],
{P 0, . . . , P j}) for every (a, b; c, d) ∈ Y3.

V1. After P j has been processed, then V [j] = MCP ′(Q, T, {P 0, . . . , P j}).
R1. After P j has been processed, then for all (a, c) ∈ X , R[a, c] contains all

(y, s) that satisfies
a. y ≤ j and s = MCP ′(Q[a, ry], T [c, ry

y ], {P 0, . . . , P y}).
b. ∀(z, t) ∈ R[a, c], rz

z < ry
y ⇒ t < s.

R2. ∀(a, c) ∈ X , R[a, c] is totally ordered as follows: (y, s) < (z, t) iff ry
y < rz

z .
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We first assume that R1 and R2 are satisfied. As previously, if V1 is satisfied,
then the algorithm computes MCP (Q, T, S). The initialization line 1 ensures
that V [j] contains v(j). Next to prove V1 we only need to show that, when we
process a border i of a seed P j, in line 10 we add to V [j] the best chain of each
chainable area (a, b; c, d) of the border; it follows from (1) the fact that every
seed P j+e with e > 0 does not belong to the forest Q[a, b] (because b < i ≤ rj+e)
and thus can not belong to a chain in the (a, b; c, d) area, (2) the fact that the
score of this chain is present in R[a, c] (from R1) and (3) the fact that it is the
last entry (y, s) such that ry

y ≤ d (from R2).
M2 is similar to M1 but restricted to entries M [a, b, c, d] such that (a, b; c, d) ∈

Y3. To check it is satisfied, we only need to focus on line 7, as it is the only line
that updates M . For entries M [a, b, c, d] such that a ≥ l(rj) or c ≥ l(rj

j ), then
M [a, b, c, d] = 0 due to the initialization in line 1. For all other entries, M2 follows
immediately from R1 and R2, using argument similar to the previous ones.

Finally, we need to check that R1 and R2 are satisfied. First, as previously, in
the case where a ≥ l(rj) or c ≥ l(rj

j ), R[a, c] = ∅ which is ensured by the initial-
ization in line 3. So we need only to consider the case where a, c < l(rj), l(rj

j),
that is handled in lines 11 to 18. Every seed P y such that y < j has already been
processed and s = MCP ′(Q[a, ry], T [c, ry

y ], {P 0, . . . , P y}) can not be modified
after P y has been processed, so lines 12 and 13, together with M2, ensure that
(y, s) has been inserted into R[a, c] previously, and the same argument applies if
y = j. Entries (z, t) removed at line 18 do not belong to any of these (y, s), which
implies that R1.a and R1.b, and so R1, are satisfied. R2 is obviously satisfied
from the position where (j, w) is inserted into R[a, c] in line 17.

Complexity analysis. The space complexity is given by the space required for
structures M and R. M requires a space in O(m2) as it is indexed by Y3. R
requires a space in O(m‖S‖), as |Y1 ∪ Y2| ∈ O(‖S‖) and for each seed P j ,
an entry (j, s) is inserted at most once in each R[a, c]. All together, the space
complexity is then O(m2 + m‖S‖) = O(m‖S‖).

We now describe the time complexity. First, note that following the tech-
nique used for computing maximum chains in sequence [7,10,13], the structures
R[lQ, lT ] can be implemented using classical data structures such as AVL or con-
catenable queues supporting query requests, insertions and deletions, successor
and predecessor, in a set of n totally ordered elements in O(log(n)) worst-case
time.

Now, we analyze the complexity of lines 5 to 7. The loop of line 6 is performed
at most O(m‖S‖) times and each iteration requires O(log(m)) in time (line 7),
which gives an amortized time complexity of O(m‖S‖ log(m)).

Line 10 is applied at most once for each of the O(‖S‖) chainable area Fj(i)
(Property 1), and each iteration requires O(log(m)), which gives an O(‖S‖ log(m))
amortized time complexity.

Finally, we analyze the complexity of lines 11 to 19. First, we do not consider
the operation in line 18. The loop starting in line 12 is performed in O(m), and
the complexity of each loop is in O(‖S‖). The cost of the operations performed
during each iteration is O(log(‖S‖)) (lines 13 and 16 are both performed in
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O(1) and lines 14 and 15 in time O(log(‖S‖)). The total time complexity of
this part, without considering line 18, is then O(m‖S‖ log(‖S‖)). To complete
the time complexity analysis, we show that the amortized complexity of line 18
is in O(m‖S‖). Indeed, it follows from R2 that all entries removed in one step
are consecutive in the total order on R[a, c] defined in R2. Hence, if one call
to line 18 removes k elements from R[a, c], it can be done in O((k + 2) log(m))
time, as the successor of a given element can be retrieved in O(log(m)) time.
As every element of R is removed at most once during the whole algorithm, this
leads to an amortized complexity of O(m‖S‖ log(m)) for line 18. Altogether,
our algorithm solves computes MCP (Q, T, S) in time O(m‖S‖ log(m)), using
standard data structures and after a preprocessing in time O(‖S‖ log(‖S‖)) to
compute the chainable areas and to sort J .

Additional remarks. If we consider that Q and T are sequences, or, as described
in Section 2, unary trees, then each of the two trees has a single leaf and each seed
is unambiguously defined by its root and border, which implies that‖S‖ = m.
There is only one R[a, c], as a = c = 0, that contains O(m) entries. Hence, all
loops that were iterating on R have now a single iteration, which reduces the
time complexity by a factor m to O(‖S‖ log(m)) = O(m log(m)).

In the complexity analysis above, we followed the approach used for expressing
the complexity of chaining in sequences, as we expressed the complexity only in
terms of the size of the seeds. To express the complexity of our algorithm in
terms of the size of Q and T , a finer analysis of the data structure R and of
the number of different chainable areas leads to the following result: the worst-
case space complexity of our algorithm is O(|Q|2|T |2) (similar to the algorithm
of Heyne et al.), and its worst-case time complexity is in O(‖S‖ log(‖S‖) +
|Q||T | log(|T |)(|Q||T | + m)), to compare with the complexity of the Heyne et al
algorithm, which is in O(‖S‖ log(‖S‖)+|Q|2|T |2(|Q||T |+m)) [1]. This alternative
complexity analysis is mostly of theoretical interest as in practice, for RNA
analysis, one can expect that m � |Q||T |.

5 Conclusion

The current paper describes algorithms to solve chaining problems in ordered
trees. With respect to similar problems in sequences, these methods exhibit a
linear factor increase both in time and space. Chains so obtained can be used to
speed-up RNA structure comparisons, as illustrated in [8,12].

A natural question related to chaining problems, that, as far as we know,
has not been considered in the case of sequences, is to decide whether a given
seed P of a set of seeds S belongs to any optimal chains or not. However a
trade-off between quality and speed needs to be found. Indeed, identifying these
always optimal seeds would probably ensure a chain of good quality, whereas the
high complexity of these identifications might slow down the detection of similar
structures in a large database.
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Appendix

Time Complexity of Algorithm 2

To establish the worst-case complexity of Algorithm 2, we have to study the cost
of the algorithm for each f values. To ease the reading, we denote by n1 the size
of Q and n2 the size of T . Without loss of generality, we furthermore assume
that n2 ≤ n1.

Following invariants R1 and R2, each list of R contains at most min(m, n2)
elements, as there are no (y, s), (y′, s′) ∈ R[a, c] s.t. ry

y = ry′
y′ , and |X | ≤

min(‖S‖, n1n2). Thus, in the worst-case, we have at most O(n2
1n

2
2) different

chainable areas, |R| = O(n1n2), for all (a, c): |R[a, c]| = O(n2) and |X | =
O(n1n2).

f = −1 line 5: Over the whole execution of the algorithm each M [a, l(rj) −
1, c, l(rj

j)−1] is computed only once for all possible quadruplets as there

is no (i, f, j), (i′, f ′, j′) ∈ J such that (l(rj), l(rj
j)) = (l(rj′ ), l(r

j′
j′ )).

Each computation require a search in R[a, c] that can be done in O(log
(n2)). Thus, the total time complexity for this case is O(n2

1n
2
2log(n2)).

f = 0 line 8: The computation line 10 can be store in a dedicated array M ′

such that the best chain of the area (a, b, c, d) is computed only once.
Thus, over all the execution of the algorithm, each different chainable
area requires a search into a R[a, c] and the total time complexity for
this case is O(‖S‖ + n2

1n
2
2 log(n2)).

f = 1 line 11: This case is run once peer seeds, so O(m) times. Each run costs
O(n1n2 log(n2)) and the total time complexity is O(mn1n2 log(n2)).

From above, we conclude that the worst-case time complexity of our algorithm
is

O(‖S‖ log(‖S‖) + n2
1n

2
2log(n2) + ‖S‖ + n2

1n
2
2 log(n2) + mn1n2 log(n2))

= O(‖S‖ log(‖S‖) + n1n2 log(n2)(n1n2 + m) + ‖S‖)
= O(‖S‖ log(‖S‖) + n1n2 log(n2)(n1n2 + m))

which represents an improvement of the worst-case complexity of Heyne et al.
algorithm [8].

To conclude, we can merge the worst-case complexity analysis with the time
complexity analysis of section 4.2 leading to the following time complexity for
Algorithm 2:

O( ‖S‖ computing the chainable areas
+‖S‖ log(‖S‖) sorting the areas
+ min(m, n1n2) × min(‖S‖, n1n2) × log(min(m, n2)) f = −1 case
+‖S‖ + min(‖S‖, n2

1n
2
2) × log(min(m, n2)) f = 0 case

+m × min(‖S‖, n1n2) log(min(m, n2)) f = 1 case
as |X | ≤ min(‖S‖, n1n2) and |R[a, c]| ≤ min(m, n2) for all a, c.
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The union G1 ∪G2 of graphs G1 and G2 is the graph with vertex set V (G1)∪
V (G2) and edge set E(G1) ∪ E(G2). The disjoint union of two graphs G1 and
G2, denoted by G1 ∪̃G2, is the graph obtained by taking the union of G1 and
G2 on disjoint vertex sets, V (G1) and V (G2). The join of two simple graphs G1
and G2, written G1 ∗G2 is the graph obtained by taking the disjoint union of
G1 and G2 and adding all edges joining V (G1) and V (G2).

1.2 Unit Distance Representations

Given a set S of points in the plane, the unit distance graph of S is the graph whose
vertices are these points and edges connect vertices whose Euclidean distance is
1. A graph is called a unit distance graph if it is isomorphic to the unit distance
graph of some set of points in the plane. Unit distance graphs play an important
role in the famous question of the chromatic number of the plane, the so called
Hadwiger-Nelson problem, also popularized by P. Erdős (cf. a survey [16]).

From the computational complexity point of view, David Eppstein recently
remarked [6]: “I’m pretty sure that the Eades-Whitesides logic engine technique
can be used to show that it’s NP-hard to test whether a graph is a unit distance
graph, but I haven’t worked through the details carefully and I haven’t succeeded
in finding a paper that states the hardness of this problem explicitly”. This
indeed is true. In fact, the proof of Eades and Whitesides [4] of NP-hardness
of the nearest neighbor graph in the plane can be adapted to reach this goal,
and even more, cf. Theorem 1. Moreover, Eades and Wormald [5] proved that it
is NP-hard to decide if a given graph has a planar embedding such that edges
are non-crossing, are represented by straight line segments and have unit length
(they call such graphs matchstick graphs). It should be noted that membership
in NP is not known. The recognition problem is in PSPACE, as we will argue
in a broader sense below. Recently Cabello, Demaine and Rote proved that it is
NP-hard to find straight-line embeddings of planar 3-connected infinitesimally
rigid graphs with unit edge lengths; see [3].

Many more authors have considered questions related to unit distance rep-
resentations of graphs, their generalizations to higher dimensions or further re-
strictions; see for example [2,9,10,12,13,14]. The terminology is not fully uniform.
For instance, the definition we used above requires that non-edges have lengths
different than 1, while some authors do not require this. More importantly, an
embedding of a graph in the plane (or higher dimensional space) implicitly as-
sumes that different vertices are represented by distinct points. Viewing an em-
bedding as a mapping from the vertex set into the Euclidean space and lifting
the requirement of injectivity of this mapping opens a new view on unit dis-
tance representations. The aim of our paper is to study these problems from the
computational complexity view. For better orientation in the different variants
considered, we offer the following unifying definitions:

Definition 1. A k-dimensional unit distance representation of a graph G is a
mapping ρ : V (G) → Rk such that for every edge uv ∈ E(G), the Euclidean
distance of ρ(u) and ρ(v) equals 1. The representation is strict if for any pair of
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nonadjacent vertices u and v, the distance of ρ(u) and ρ(v) is different from 1.
The representation is nondegenerate if ρ is injective.

Definition 2. For a graph G, we set

dimNS(G) = min k, such that G has a nondegenerate strict
k-dimensional unit distance representation,

dimNW (G) = min k, such that G has a nondegenerate
k-dimensional unit distance representation,

dimDS(G) = min k, such that G has a strict
k-dimensional unit distance representation

and

dimDW (G) = min k, such that G has a
k-dimensional unit distance representation.

In accordance with the above notation we will sometimes call a representation
weak in the sense of not necessarily strict, and degenerate in the sense of not
necessarily nondegenerate.

A graph G is a unit distance graph (in the plane) if and only if dimNS(G) ≤ 2.
Erdös et al. [7] defined the dimension of a graph G, they denoted as dim(G),
as the minimum integer k such that G has a nondegenerate k-dimensional unit
distance representation; hence their dimension corresponds to our dimNW (G).
Other authors (e.g. [2,12,13,14]) defined the Euclidean dimension of G as what we
call dimNS(G). A graph with dimNS(G) = k is also called a k-dimensional strict
unit distance graph (or, following Boben et al. [1], k-dimensional unit distance
coordinatization).

We also note the connection to graph homomorphisms (i.e., edge-preserving
vertex-mappings between graphs):

Observation 1. A graph G has dimDW (G) ≤ k if and only if there exits a
homomorphism from G to a graph H with dimNS(H) ≤ k, and this happens if
and only if there is a homomorphism from G to a graph H ′ with dimNW (H ′) ≤ k.

Proof. Let ρ : V (G) → Rk be a unit distance representation of G. Let H be
the unit distance graph defined by ρ(V (G)). Then dimNS(H) ≤ k and ρ is a
homomorphism from G to H . Since dimNW (H) ≤ dimNS(H) ≤ k, H serves
as H ′ as well. If, on the other hand, dimNW (H ′) ≤ k and σ : G → H ′ is
a homomorphism, a weak k-dimensional unit distance representation of G is
obtained as the composition of σ and τ : V (H ′) → Rk (the embedding witnessing
dimNW (H ′) ≤ k). �
Another easy but useful observation is the following.

Observation 2. Let ρ : V (G) → Rk be a strict unit representation of a graph
G. If ρ(u) = ρ(v) for some pair of (necessarily nonadjacent) vertices u and v,
then these vertices have the same open neighborhoods.
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Proof. If x is adjacent to u but not to v, then ρ(x) should be at distance 1 from
ρ(u), but at different distance from ρ(v) = ρ(u), what is impossible. �
The following observation is clear from the definition:

Observation 3. For every connected graph G, it holds

dimDW (G) ≤ dimDS(G) ≤ dimNS(G),

and
dimDW (G) ≤ dimNW (G) ≤ dimNS(G).

The wheel graph Wn on n ≥ 4 vertices is defined as Wn = W1,n−1 = K1 ∗Cn−1,
where K1 is the one vertex graph and Cn−1 is the cycle on n−1 vertices. It is well
known [2] that dimNW (Wn) = 3 for n �= 7 and dimNW (W7) = 2. Even though
dimNS(W5) = dimNW (W5) = 3, there exist degenerate planar unit distance
representations of W5; see Fig. 1.

Fig. 1. The wheel graph W5 (on the left), which admits a proper 3 coloring, is not
a planar unit distance graph. Degenerate planar unit distance representations of the
wheel graph W5 are obtained using black vertex identification (in the middle) and
possibly additional gray vertex identification (on the right).

The only connected graph with zero dimension (in all four variants) is K1.
For dimension one we have an easy observation:

Observation 4. For a connected graph G, dimNS(G) = 1 if and only if G is a
path with at least two vertices. The same holds true for dimNW (G) = 1.

For any graph G, dimDW (G) = 1 if and only if G is a bipartite graph with at
least one edge.

For a connected graph G, dimDS(G) = 1 if and only if G can be obtained from
a path P with at least two vertices by replacing its vertices by independent sets,
and replacing the edges of the path P by complete bipartite graphs between the
corresponding independent sets.

All these graphs can be recognized in polynomial time. The problems become
much harder for dimension two and higher. The logic engine construction of
Eades and Whitesides [4] implicitly shows NP-hardness of several variants.

Theorem 1. Deciding dimNS(G) ≤ 2, dimNW (G) ≤ 2, and dimDS(G) ≤ 2 are
NP-hard problems.
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Proof. The crucial building block of their construction of the logic engine is the
wheel W7 which has a unique nondegenerate unit distance representation in the
plane. It follows from the construction that if the formula Φ one reduces from is
not NAE-satisfiable, then the constructed graph GΦ satisfies dimNW (GΦ) > 2,
and hence also dimNS(GΦ) > 2. But since in GΦ no two vertices have the
same neighborhood, every strict unit distance representation is nondegenerate
by Observation 1.2, and hence dimDS(GΦ) > 2 as well. If, on the other hand,
Φ is NAE-satisfiable, GΦ has a non-crossing strict nondegenerate unit distance
representation in the plane. �
The aim of our paper is to discuss the complexity of degenerate representations.
In Sections 3 and 4 we will prove the following theorem.

Theorem 2. For every k ≥ 2, the problem of deciding whether dimDW (G) ≤ k
is NP-hard.

2 PSPACE Membership

The goal of this section is to prove an upper bound on the complexity of the
dimension problems. We prove it in a stronger form, when k is part of the input.

Theorem 3. All four problems of deciding whether dimNS(G)≤k, dimNW (G) ≤
k, dimDS(G) ≤ k, and dimDW (G) ≤ k belong to PSPACE (even when both G
and k are part of the input and the size of the input is measured as n = |V (G)|).

Proof. If k > 2n we answer ”yes” without any computation, since every graph
on n vertices has dimNS(G) ≤ 2n [14]. Hence we may assume k = O(n).

We reduce to solvability of polynomial inequalities with integral coefficients in
the reals, a problem that is known to be in PSPACE [15]. Given a graph G, we
introduce k variables u1, u2, . . . , uk for every vertex u ∈ V (G). The total number
of variables is O(n2).

For every edge uv ∈ E(G), we add inequalities

(u1 − v1)2 + (u2 − v2)2 + . . . + (uk − vk)2 ≥ 1

and
(u1 − v1)2 + (u2 − v2)2 + . . . + (uk − vk)2 ≤ 1.

Obviously, since the values of a solution correspond to coordinates of a k-
dimensional unit distance representation, this system of inequalities has a real
solution if and only if dimDW (G) ≤ k.

If we do not want to allow degenerate representations, we add an inequality

(u1 − v1)2 + (u2 − v2)2 + . . . + (uk − vk)2 > 0

for every two distinct vertices u and v. Solvability of such enlarged system be-
comes equivalent to dimNW (G) ≤ k.
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If instead, we aim at strict representations, we add inequalities

((u1 − v1)2 + (u2 − v2)2 + . . . + (uk − vk)2 − 1)2 > 0

for all nonedges uv �∈ E(G). In such a way the enlarged system of inequalities
describes dimDS(G) ≤ k.

If we consider the conjunction of all above introduced inequalities, we obtain
a system whose solvability is equivalent to dimNS(G) ≤ k.

Note that in each of the cases we have O(n2) inequalities. �

3 2-Dimensional Unit Distance Representations

In this section we prove the case k = 2 of Theorem 2.

Theorem 4. Deciding if dimDW (G) ≤ 2 is NP-hard.

Fig. 2. The well known Moser graph (Moser spindle) is a 2-dimensional strict unit
distance graph

Proof. The proof is based on the Moser graph M (see Fig. 2) which is a well known
2-dimensional strict unit distance graph. It has the property that every homo-
morphism to a unit distance graph H is injective and the image H is isomorphic
to the Moser graph itself. In particular, adding any edge to the Moser graph re-
sults in a graph with dimension at least 3. Hence dimNW (M) = dimNS(M) =
dimDW (M) = dimDS(M) = 2. Using Laman’s Theorem, see e.g. [8], it is not
hard to show that the unit distance coordinatization of Moser graph is rigid.

The NP-hardness reduction goes from 3SAT. Given a formula Φ with a set of
variables X and a set of clauses C (each clause containing exactly 3 literals), we
construct a graph GΦ, such that dimDS(GΦ) ≤ 2 if and only if Φ is satisfiable.

The cornerstone of the construction is a copy of the Moser graph with vertices
{u, T, F, u′, u′′, v, w} and edges as drawn in Fig. 3. For every variable x ∈ X , we
add an edge x′x′′, where x′ represents the positive literal and x′′ the negation
of x. Also each x′ and x′′ are made adjacent to both u and u′. The part of the
construction of GΦ that corresponds to a variable x ∈ X is illustrated by bold
edges in Fig. 3.
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Fig. 3. The variable part of the construction of GΦ
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Fig. 4. The clause part of GΦ

For every clause c ∈ C, say c = (λc,1∨λc,2∨λc,3), the clause gadget is depicted
in Fig. 4. It contains six vertices, three of them being connected to the literals
appearing in c (one to each) and one adjacent to the special vertex F of the
Moser graph.

Formally,

V (GΦ) = {u, v, w, u′, u′′, T, F} ∪
⋃

x∈X

{x′, x′′} ∪
⋃
c∈C

{c1, c2, c3, c4, c12, c34}

and

E(GΦ) = {uT, uF, TF, Tu′, Fu′, uv, uw, vw, vu′′, wu′′, u′u′′} ∪⋃
x∈X

{x′x′′, x′u, x′′u, x′u′, x′′u′} ∪
⋃
c∈C

{c1c2, c2c3, c3c4, c4c1, c1c12, c2c12, c3c34, c4c34,

c12F, c2λc,1, c3λc,2, c34λc,3}.
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Suppose first that dimDW (GΦ) ≤ 2 (i.e., GΦ is homomorphic to a graph H
with dimNS(H) = 2). Consider a strict 2-dimensional unit distance represen-
tation of H . There are at most two paths of length two between two vertices
of a planar unit distance graph [12]. Since there are four paths of length two
between u and u′ in GΦ, the homomorphism either places x′ in T and x′′ in F ,
or vice versa. This placement defines a truth assignment on the variables of Φ -
we say that x is true if x′ is placed in T , and that it is false otherwise. We claim
that Φ is satisfied by this assignment. Suppose there is an unsatisfied clause, say

c1 c4

c2c3

c12 c34

F

Fig. 5. The unsatisfied clause gadget, where c = (λc,1 ∨ λc,2 ∨ λc,3) and λc,1 = λc,2 =
λc,3 = false. In the plane the edge c2c3 can not be represented by line segment of unit
length.

F
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T T
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T

F T

u F
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T F
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F F
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F

T T

T T
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F
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F
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F

T F
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Fig. 6. Case analysis of placement of the vertices of clause gadgets



282 B. Horvat, J. Kratochv́ıl, and T. Pisanski

c = (λc,1∨λc,2∨λc,3). Then all three vertices λc,1, λc,2, λc,3 must be placed in F ,
and the clause gadget must map onto another copy of the Moser graph (with F
being its degree four vertex). But then, in the plane, the edge c2c3 cannot have
a unit length; see Fig. 5. We have a contradiction.

Suppose now that Φ is satisfied by a truth assignment φ : X −→ {true, false}.
We fix a strict planar unit distance realization of the Moser graph, place x′ in T
and x′′ in F whenever φ(x) = true (and vice versa if φ(x) = false). Following the
case analysis in Fig. 6, the vertices of the clause gadgets can be placed in vertices
u, T and F . Hence, we have constructed a well defined surjective homomorphism
of GΦ onto the Moser graph, which has a strict unit distance representation in
the Euclidean plane. Therefore, dimDW (GΦ) ≤ 2. �

4 k-Dimensional Unit Distance Representations

In this section, namely in Theorem 6, we prove the k ≥ 3 part of Theorem 2.
Let Sk(s, r) denote the k-dimensional (hyper)sphere in Rk with center in s

and radius r. When the center and the radius of a sphere are not important, the
abbreviation Sk will be used. The following two lemmas are obvious:

Lemma 1. Let k > 1 be an integer. A non-empty non-degenerated intersection
of two k-dimensional spheres with distinct centers is a (k−1)-dimensional sphere.

Lemma 2. Let S2 denote the circle in the Euclidean plane that is circumscribed
to a unit distance representation of the complete graph K3 on three vertices. Let
G be a connected graph with (possibly degenerate) planar unit distance represen-
tation which places all vertices of G into points that lie on S2. Then χ(G) ≤ 3.

Lemma 2 can be generalized. Let Gk,r,α denote the graph with vertices being
points of a k-dimensional sphere Sk(0, r) with radius r in Rk, where two vertices
are connected if and only if they are at distance α. Lovász [11] proved the
following inequalities.

Theorem 5. Let k ≥ 3 be a natural number. Then, for 0 ≤ α ≤ 2 holds

k ≤ χ(Gk,1,α)

and

χ

(
G

k,1,

√
2(k+1)

k

)
≤ k + 1.

Corollary 1. Let k ≥ 3 be a natural number and let Sk denote the k-dimensional
sphere in Rk that is circumscribed to the unit distance representation of the
complete graph Kk+1 on k+1 vertices. Let G be a connected graph with (possibly
degenerate) k-dimensional unit distance representation which places all vertices
of G into points that lie on Sk. Then χ(G) ≤ k + 1.

Proof. It is known that the circumradius of the (hyper)sphere that is circum-
scribed to the regular simplex with k +1 vertices and all sides of length �, equals
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to �
√

k
2(k+1) . Thus, the circumradius of the sphere Sk is equal to

√
k

2(k+1) . The

representation of the graph G
k,

√
k

2(k+1) ,1
on the sphere Sk can be (down)scaled to

obtain a representation on a k-dimensional unit sphere (with radius one) that is

circumscribed to the regular simplex with all sides of length
√

2(k+1)
k . Following

Theorem 5, χ

(
G

k,1,

√
2(k+1)

k

)
≤ k + 1. A proper (k + 1)-coloring of G

k,1,

√
2(k+1)

k

gives rise to a proper (k + 1)-coloring of G
k,

√
k

2(k+1) ,1
. Since G is a subgraph of

G
k,

√
k

2(k+1) ,1
, χ(G) ≤ k + 1. �

Theorem 6. Let k ≥ 3 be an integer. Deciding if dimDW (G) ≤ k is NP-hard.

Proof. Let K ′
k and K ′′

k be two copies of the complete graph with k ≥ 3 vertices.
Let v, w′, w′′ be additional vertices, such that v, w′, w′′ /∈ V (K ′

k)∪V (K ′′
k ). Denote

M ′
k = K ′

k ∗ {v, w′}, M ′′
k = K ′′

k ∗ {v, w′′} and Mk = M ′
k ∪M ′′

k ∪{w′w′′}, cf. Fig. 7.
The graph Mk is well known Moser-Raiskii spindle.

w'

v

w''

Fig. 7. The rigid graph M6 contains two similar subgraphs, which are obtained as a
graph join of the complete graph on six vertices and two disconnected vertices

Note that dimNS(K ′
k) = dimNW (K ′

k) = k − 1. Since K ′
k ∗ v is the complete

graph on k + 1 vertices, dimNS(K ′
k ∗ v) = dimNW (K ′

k ∗ v) = k. Applying an-
other graph join does not change any of the dimensions. Thus, dimNS(M ′

k) =
dimNS(M ′′

k ) = dimNW (M ′
k) = dimNW (M ′′

k ) = k. Both M ′
k and M ′′

k are rigid in
Rk. Consider a unit distance representation of M ′

k ∪M ′′
k in Rk. We can rotate

M ′′
k around the representation of the vertex v, such that w′ and w′′ end up dis-

tance one apart. Hence dimNW (Mk) = k. It can be easily checked that all fixed
points of the rotation of M ′′

k around the axes of the rotation vw′′ lie on the axes
vw′′, and at the same time none of the vertices of K ′′

k lies on the axes vw′′. Since
there exist infinitely many angles of rotation and only finitely many possible
non-strict situations and degeneracies, we can easily avoid problems. Hence, we
can rotate the subgraph K ′′

k in such a way that dimNS(Mk) = k. Note that Mk
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has the property that every k-dimensional unit distance representation in Rk

places the vertices v and w′ in distinct points (this is guaranteed by the edge
w′w′′).

Suppose a connected graph G is given and its k-colorability is questioned. Let
us construct the graph Hk such that V (Hk) = V (G) ∪ V (Mk) and

E(Hk) = E(G)∪E(Mk)∪
⋃

u∈V (G)

{uv, uw′},

where vertices v, w′ are vertices from Mk.
We reduce from graph k-colorability. We will prove that dimDW (Hk) ≤ k if

and only if χ(G) ≤ k.
Suppose Hk has a (possibly degenerate and possibly weak) unit distance rep-

resentation ρ in Rk. All vertices of G are one apart from ρ(v) and from ρ(w′),
and they all belong to the intersection of two unit k dimensional spheres with
centers in ρ(v) and ρ(w′). Using Lemma 1, a non-empty non-degenerated inter-
section of two k dimensional spheres with distinct centers is a (k−1)-dimensional
one. All vertices of the complete graph K ′

k belong to the same intersection and
hence to the same (k − 1)-dimensional sphere. Since G is connected, we can use
Corollary 1 and χ(G) ≤ k.

Assume now that χ(G) ≤ k. Using a proper k-coloring of G we can map
vertices of G into vertices of K ′

k. Hence Mk is a homomorphic image of Hk and
dimDS(Hk) ≤ k. �

5 Conclusion

We have proven that deciding the existence of a weak degenerate k-dimensional
unit representation is NP-hard for every k > 1, and noted that NP-hardness
of 2-dimensional strict u.d. representations, 2-dimensional nondegenerate u.d.
representations, and 2-dimensional strict nondegenerate u.d. representations are
all NP-hard problems. The latter three results should be extendable to every
k ≥ 2.
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14. Maehara, H., Rödl, V.: On the Dimension to Represent a Graph by a Unit Distance
Graph. Graphs Combin. 6, 365–367 (1990)

15. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals, part I: Introduction. Preliminaries. The geometry of semi-
algebraic sets. The decision problem for the exitential theory of the reals. J. Symb.
Comput. 13, 255–300 (1992)

16. Soifer, A.: The Mathematical Coloring Book: Mathematics of Coloring and the
Colorful Life of its Creators. Springer, Heidelberg (2008)

http://11011110.livejournal.com/188807.html


Recognition of Probe Ptolemaic Graphs�

(Extended Abstract)

Maw-Shang Chang and Ling-Ju Hung

Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi 62102, Taiwan

{mschang,hunglc}@cs.ccu.edu.tw

Abstract. Let G denote a graph class. An undirected graph G is called
a probe G graph if one can make G a graph in G by adding edges between
vertices in some independent set of G. By definition graph class G is a
subclass of probe G graphs. Ptolemaic graphs are chordal and induced
gem free. They form a subclass of both chordal graphs and distance-
hereditary graphs. Many problems NP-hard on chordal graphs can be
solved in polynomial time on ptolemaic graphs. We proposed an O(nm)-
time algorithm to recognize probe ptolemaic graphs where n and m are
the numbers of vertices and edges of the input graph respectively.

1 Introduction

A probe graph P is a two-tuple (PG = (PV , PE), PL) where PG is an undirected
graph with vertex set PV and edge set PE and PL is a function from PV to the
set {P, N, U} of labels, called probes, nonprobes, and primes, respectively and
satisfying the condition that the set of nonprobes is an independent set of PG.
There are three classes of probe graphs: (i) fully partitioned: a fully partitioned
probe graph has no primes; (ii) unpartitioned: all vertices are primes in an unpar-
titioned probe graphs; (iii) partially partitioned: all probe graphs that are neither
fully partitioned nor unpartitioned are partially partitioned. A probe graph P ∗

is an embedding of probe graph P if it is obtained from P by two steps: (i) rela-
beling all primes in P as probes or nonprobes such that all nonprobes in P ∗ form
an independent set in PG and (ii) adding some edges between nonprobes after
relabeling. Let G be a class of graphs. Probe graph P is called a probe G graph
if there exists an embedding P ∗ of P such that P ∗

G ∈ G. Determine whether a
fully partitioned probe graph is a probe G graph is a special case of the G graph
sandwich problem [11]. The recognition of fully partitioned interval graphs arose
from the physical mapping problem in the human genome project [15].

Many graph problems NP-hard on general graphs become solvable in polyno-
mial time on some graph classes. For example, the Hamiltonian cycle problem is
solvable in polynomial time on ptolemaic graphs. We consider the class of probe
G graphs as a promising extension of graph class G to identify more graphs on
� This research is supported by National Science Council of Taiwan under grant no.

NSC 95-2221-E-194-038-MY3.
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Table 1. Some results and open problems on probe graphs. Here n and m are the
number of vertices and the number of edges in a given probe graph and |P| denotes the
number of vertices labeled P in a fully partitioned probe graph.

Graph class Fully partitioned Unpartitioned

probe chordal O(|P|m) [3] O(m2) [3]
probe strongly chordal Poly. [5] Open
probe chordal bipartite Poly. [5] Open
probe interval O(n + m) [14] Poly. [8]
Probe DHG O(n2) [4] O(nm) [10]
probe cographs O(n + m) [13] O(n + m) [13]
Probe bipartite DHG O(n2) [4] O(nm) [9]
probe ptolemaic O(nm) [this paper] O(nm) [this paper]
probe comparability O(nm) [6] Open
probe co-comparability O(n3) [6] Open
probe permutation O(n2) [7] Open
probe trivially-perfect O(n + m) [2] O(n + m) [2]
probe threshold O(n + m) [2] O(n + m) [2]
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Fig. 1. A house, a hole, a domino, and a gem

which some NP-hard problems can be solved in polynomial time. As the first
step of the study of probe G graphs, we developed polynomial time recognition
algorithms. In Table 1, we list some recent results and open problems on the
recognition of probe graphs of different graph classes. In this paper we give an
O(nm)-time algorithm to recognize partially partitioned probe ptolemaic graphs.

Distance-hereditary graphs are those graphs having no house, hole, domino,
or gem as an induced subgraph [1]. Ptolemaic graphs are those graphs that are
chordal and have no gem as an induced subgraph [12]. Ptolemaic graphs are a
subclass of chordal graphs and distance-hereditary graphs.

Let G = (V, E) be a graph. For v ∈ V , NG(v) consists of all vertices adjacent
to v in G, NG[v] = NG(v)∪ {v}, and for X ⊆ V , NG(X) =

⋃
v∈X NG(v)−X . A

module X is a vertex set of G such that NG(v)−X is the same for every v ∈ X .
A twin is a pair of vertices u and v such that {u, v} is a module, the pair is a
true twin if u and v are adjacent and a false twin otherwise. A clique X in G is
a vertex subset such that every two distinct vertices in X are adjacent. A clique
module X of G is a vertex set of G that is both a module and a clique of G. A
clique module is trivial if it consists of exactly a vertex. A universal vertex is a
vertex adjacent to all other vertices. Suppose v is a vertex of ptolemaic graph
G = (V, E) where v is a non-universal vertex. Let C be a minimal component of
G[V −NG[v]] where G[V −NG[v]] is a subgraph of G induced by V −NG[v] and
NG(C) does not properly contain NG(C′) for any component C′ of G[V −NG[v]].
Then either NG(C) is a non-trivial clique module of G or NG(C) consists of
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exactly a vertex that is a cut vertex of G. Notice that NG(C) ⊆ NG(v). If NG(C)
is a non-trivial clique module, then there is at least a pair of true twins in NG(C).

2 A Recognition Algorithm

To determine whether a probe graph P is a probe ptolemaic graph, we have to
determine a label P or N for every prime of P and then add some edges between
nonprobes to make PG a member of ptolemaic graphs. The technique used in
our algorithm is reduction, i.e., reducing the problem into the same problem of
smaller input size. Our algorithm is based upon the following characterization
of probe ptolemaic graphs.

Theorem 1. Suppose P is a partially or fully partitioned probe graph, every
neighbor of a nonprobe is a probe and a non-universal vertex p is a probe. If P
is a probe ptolemaic graph, then one of the following conditions holds:

1. A vertex in NPG(p) is a cut vertex of PG.
2. Two vertices in NPG(p) are true twins in PG and at least one of them is not

a nonprobe.
3. Two vertices in NPG(p) are false twins in PG and none of them is a probe.

If both of them are primes, then both of them are adjacent to a non-neighbor
of p that is not a nonprobe.

4. Two vertices u and v in NPG(p) satisfy all following conditions:
(a) NPG [v] ⊂ NPG [u].
(b) u is not a nonprobe.
(c) v is not a probe.
(d) If one of them is a nonprobe, then v is a nonprobe.

Reducing a cut vertex. A cut vertex of a probe ptolemaic graph is also
a cut vertex of its minimal ptolemaic embedding. Suppose v is a cut vertex of
PG and C is a connected component of PG − v of minimum size. Then P is a
probe ptolemaic graph if and only if P − C has a ptolemaic embedding P ′ and
P [C + v] has a ptolemaic embedding P ′′ such that either P ′

L(v) = P ′′
L(v) = P or

P ′
L(v) = P ′′

L(v) = N.
Reducing true twins. Suppose u and v are true twins in PG and at least

one of them is not a nonprobe. Let u be a probe if at least one of u and v is a
probe and let u be a prime and change its label from U to P if neither of them
are probes. Then P is a probe ptolemaic graph iff P − v is a probe ptolemaic
graph.

Reducing probe true twins. A probe u and a nonprobe v in P are called
probe true twins if NPG [v] ⊂ NPG [u] and all vertices in NPG [u] − NPG [v] are
nonprobes. Suppose probe u and nonprobe v in P are probe true twins of P .
Then P is a probe ptolemaic graph iff P − v is a probe ptolemaic graph.

Reducing false twins. Suppose u and v are false twins in PG and one of
them is a nonprobe. Let u be the vertex that is a prime and change the label of
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u from U to N if exactly one of them is a prime. Then P is a probe ptolemaic
graph if and only if P −v is a probe ptolemaic graph. Suppose two primes u and
v are false twins in PG and both of them are adjacent to two distinct vertices
that are not adjacent to each other in PG and one of them is a probe. Change
the label of u from U to N. Then P is a probe ptolemaic graph iff P − v is a
probe ptolemaic graph.

We sketch the algorithm in the following:

1. If the size of P is small, we solve the problem by brute force.
2. If P is unpartitioned, arbitrarily select an edge (u, v). Generate two partially

partitioned probe graphs. They are obtained from P by relabeling u and v
as probes, respectively. Then P is a probe ptolemaic graph iff one of them
is. They can be checked by the algorithm for partially partitioned case.

3. If P is partially or fully partitioned, there is a probe p. If p is a universal
vertex, then P is a probe trivially perfect graph and can be determined
in linear time [2]. Otherwise we reduce the problem instance to smaller
partially or fully partitioned probe graphs according to the cases given in
Theorem 1.

Theorem 2. There exists an O(nm)-time algorithm to check if a probe graph
P is a probe ptolemaic graph.
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Abstract. Graphs of separability at most k are defined as graphs in which every
two non-adjacent vertices are separated by a set of at most k other vertices. For k ∈
{0,1}, the only connected graphs of separability at most k are complete graphs
and block graphs, respectively. For k ≥ 3, graphs of separability at most k form
a rich class of graphs containing all graphs of maximum degree k. Graphs of
separability at most 2 generalize complete graphs, cycles and trees. We prove
several characterizations of graphs of separability at most 2 and examine some of
their consequences.

1 Introduction

Let G = (V,E) be a graph. The separability sepG(x,y) of two distinct non-adjacent
vertices x,y in G is defined as the minimum cardinality of a set S ⊆ V such that x
and y are in different components of G− S. We define the separability of a graph G,
denoted by sep(G), as the maximum over all separabilities of non-adjacent vertex pairs
(unless G is complete, in which case we define its separability to be 0). Notice that by
definition, graphs of separability at most k are precisely the graphs in which every two
non-adjacent vertices can be separated by removing a set of at most k other vertices.
Hence, by Menger’s Theorem, the separability of G is equal to the maximum number
of internally vertex-disjoint paths connecting two non-adjacent vertices.

Graphs of separability at most k arise naturally in connection with the parsimony
haplotyping problem from computational biology. We are interested in characterizations
and structural properties of graphs of separability at most k, for small values of k. It can
be easily seen that for every k, the set Gk of graphs of separability at most k is closed
under vertex deletions; hence, with every graph G, the class Gk contains all induced
subgraphs of G. Such graph classes are called hereditary. This family of graph classes
is of particular interest, since hereditary (and only hereditary) classes admit a uniform
description in terms of forbidden induced subgraphs. For a set F of graphs, we say that a
graph G is F -free if it does not contain an induced subgraph isomorphic to a member of
F . Given a hereditary class G , denote by F the set of all graphs G with the property that
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G �∈ G but H ∈ G for every proper induced subgraph H of G. The set F is said to be the
set of forbidden induced subgraphs for G , and G is precisely the class of F -free graphs.
The set F can be either finite or infinite, and many interesting classes of graphs can be
characterized as being F -free for some family F . Such characterizations can be useful
for establishing inclusion relations among hereditary graph classes, and were obtained,
among others, for even-signable graphs [11], universally signable graphs [13], and for
perfect graphs in the famous Strong Perfect Graph Theorem conjectured by Berge in
1961 [3] and proved by Chudnovsky, Robertson, Seymour and Thomas in 2006 [7].

There are also theorems that elucidate the structure of graphs in a certain hered-
itary class by showing that every graph in the class either belongs to one of a few
basic classes (in which case it has a prescribed and relatively transparent structure) or
it has one of a set of prescribed structural faults, along which it can be decomposed
in a useful way. Several such decomposition results were obtained in recent years, in-
cluding those for Meyniel graphs [5], perfect graphs [7], cap-free graphs [10], univer-
sally signable graphs [14], even-hole-free graphs [12], certain subclass of odd-hole-free
graphs [9], and (diamond, even hole)-free graphs [23]. Few result of a stronger type are
also known, in which the decomposition can also be reversed in the sense that a graph
is in the class if and only if it can be constructed by gluing basic graphs along the de-
compositions prescribed. Such composition results are known for example for chordal
graphs [19], claw-free graphs [8], graphs with no cycle with a unique chord [29] and
bull-free graphs [6]. Decomposition results often have nice algorithmic consequences
and provide means for obtaining bounds on certain graph parameters in terms of others.

We initiate the study of the structural properties of graphs of separability at most k,
for small values of k. For k ∈ {0,1}, graphs of separability at most k are completely un-
derstood: Graphs of separability 0 are precisely the disjoint unions of complete graphs,
and graphs of separability at most 1 are precisely the block graphs, that is, graphs ev-
ery block of which is complete. From this description, a forbidden induced subgraph
characterization is easy to obtain, and it is immediate how to build such graphs from
the complete graphs. For k ≥ 3, graphs of separability at most k form a rich class of
graphs containing all graphs of maximum degree 3, as well as all pairwise k-separable
graphs (defined by Miller [26]). The main focus of this paper is on the class of graphs of
separability at most 2. These graphs form a common generalization of complete graphs,
cycles and trees, and more generally, block graphs, cacti (graphs in which every edge
belongs to at most one cycle), forests, and block-cactus graphs (graphs in which every
block induces either a complete graph or a cycle).

Our results. We show in Section 2 that graphs of separability at most 2 are precisely
the graphs that can be built from complete graphs and chordless cycles by an iterative
application of the disjoint union operation and of pasting two disjoint graphs along a
vertex or along an edge. In Section 3 we examine the unboundedness of the tree-width
and the clique-width, when restricted to graphs of separability at most 2. We show
that the structure theorem leads to polynomial-time solvability of several generally NP-
hard problems, in this class. The structure theorem also implies the existence of an
efficient recognition algorithm of graphs of separability at most 2. Interestingly, some
well-known hard problems remain intractable when restricted to graphs of separability
at most 2. In Section 4, we characterize the graphs of separability at most 2 in terms
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of minimal forbidden induced subgraphs and minimal forbidden induced minors; these
characterizations imply that every graph of separability at most 2 is universally signable.
Section 5 concludes the paper with some open problems. Due to the space limitations,
some proofs are omitted.

Notation and definitions. All graphs considered are finite, simple and undirected. As
usual, Cn and Kn denote the chordless cycle and the complete graph on n vertices, re-
spectively, and Ks,t the complete bipartite graph with parts of size s and t. For a vertex
x ∈V (G), we denote by N(x) the neighborhood of x, i.e., the set of vertices adjacent to x.
The degree of x is the size of its neighborhood. For a set A ⊆V (G), we denote by N(A)
the set ∪a∈A{u ∈ N(a) : u /∈ A}, and for sets A,B ⊆V (G) we denote NB(A) := N(A)∩B.
Unless stated otherwise, m and n will denote the number of edges and vertices of the
graph under consideration. A graph G is chordal if every cycle in G on at least four
vertices has a chord (an edge connecting two non-consecutive vertices of the cycle).
We say that a graph G is obtained from two graphs G1 and G2 by pasting along a k-
clique, and denote this by G = G1 ⊕k G2, if for some r ≤ k there exist two r-cliques
K1 = {x1, . . . ,xr} ⊆V (G1) and K2 = {y1, . . . ,yr} ⊆V (G2) such that G is isomorphic to
the graph obtained from the disjoint union of G1 and G2 by identifying each xi with yi,
for all i = 1, . . . ,r. In particular, if k = 0, then G1 ⊕k G2 is the disjoint union of G1 and
G2. For terms left undefined, we refer to [18].

2 A Structure Theorem for Graphs of Separability at Most Two

Complete graphs and (chordless) cycles are graphs of separability at most 2. The main
result of this section is the following theorem, showing that complete graphs and cycles
form the main building blocks for every graph of separability at most 2:

Theorem 1. Let G be a graph. Then, G is of separability at most 2 if and only if G
can be built from complete graphs and chordless cycles by an iterative application of
pasting along 2-cliques.

We start with a simple observation and a consequence of it.

Lemma 1. The class G2 is closed under pasting along 2-cliques.

Corollary 1. Let H denote the minimal class of graphs that contains all complete
graphs and chordless cycles, and is closed under pasting along 2-cliques. Then, H ⊆
G2.

A key result to the converse statement is the following lemma.

Lemma 2. Let G ∈ G2. Then, either G is a complete graph, or G is a chordless cycle,
or G has a separating clique of at most two vertices.

Proof. Let G ∈ G2 which is neither complete nor a cycle. Suppose for contradiction that
G has no separating cliques of at most two vertices. In particular, G is connected.

First, we show that G is chordal. Suppose for contradiction that G contains a chord-
less cycle C on at least 4 vertices, and let K denote a connected component of G−V(C).
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Then, the set NC(K) of neighbors of K in C is a clique, for otherwise any two non-
adjacent vertices x and y in NC(K) would be connected by three internally vertex-
disjoint paths in G (by two paths on the cycle C and another one with all its internal
vertices in K). But now, the clique NC(K) is a separating clique in G of at most two
vertices, contrary to the assumption.

It follows from a result of Dirac [19] that every connected chordal graph without
separating cliques is a complete graph. Since G is chordal but not complete and using
the above assumption, we conclude that G contains a (minimally) separating clique K
of at least three vertices, say x1,x2,x3. Let C1 and C2 be two connected components of
G−K. By minimality of K, every vertex of K has a neighbor in Cj, for j ∈ {1,2}. For i∈
{1,2,3} and j ∈ {1,2}, let vi

j ∈ N(xi)∩Cj , and let Tj be a minimal connected subgraph

of Cj containing v1
j ,v

2
j and v3

j . Let G′ = (V ′,E ′) where V ′ = V (T1)∪{x1,x2,x3}∪V (T2)
and E ′ = E(T1)∪{xivi

j : i ∈ {1,2,3}, j ∈ {1,2}}∪E(T2)). Then G′ is a subgraph of G
that consists of three internally vertex disjoint paths, contrary to the fact that G∈G2. �
Proof of Theorem 1. We need to show that G2 = H , where H is the class defined in
Corollary 1. The inclusion G2 ⊇ H has been shown in Corollary 1.

Now we show the inclusion G2 ⊆ H . Suppose that it fails, and let G ∈ G2\H be a
minimal counterexample. By Lemma 2, either G is a complete graph, or G is a chordless
cycle, or G has a separating clique of at most two vertices. Since complete graphs
and chordless cycles belong to H , we conclude that G has a separating clique K of at
most two vertices. Thus, there exist graphs G1 and G2 such that G = G1 ⊕2 G2. Both G1

and G2 are induced subgraphs of G, and therefore belong to G2. Since G is a minimal
counterexample, both G1 and G2 belong to H . But then, since H is closed under pasting
along 2-cliques, it follows that G = G1 ⊕2 G2 belongs to H too; a contradiction. �
As a relaxation of the concept of perfection, Gyárfás introduced in [22] the notion of
χ-bounded classes. A hereditary class of graphs G is called χ-bounded if the chromatic
number χ(G) of every graph in G can be bounded from above by a function of its
maximum clique size ω(G): there exists a function f such that χ(G) ≤ f (ω(G)) holds
whenever G ∈ G . The above structure theorem implies that graphs of separability at
most 2 are χ-bounded:

Proposition 1. For every graph G ∈ G2, it holds that χ(G) ≤ max{3,ω(G)} .

Another immediate consequence of Theorem 1 is that every graph of separability at
most 2 contains either a simplicial vertex (one whose neighborhood forms a clique),
or a pair of adjacent vertices of degree 2. Further consequences of Theorem 1 will be
discussed in the next section.

3 Algorithmic and Complexity Issues

In this section, we examine some algorithmic aspects of graphs of small separability.
First, we observe that Theorem 1, together with a modified version of Tarjan’s decom-
position by clique separators [28] (in which we only consider separating cliques of size
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at most two), implies that graphs of separability at most 2 can be recognized in time
O(mn). An alternative approach, which may be faster for graphs with many edges, is
to directly check, for all non-adjacent vertex pairs, whether there exist three internally
vertex-disjoint paths connecting the two vertices. This can be done in time O(n), us-
ing the algorithm by Nagamochi and Ibaraki [27], and the overall complexity of this
approach is O((

(n
2

)−m)n).
Combined with Tarjan’s algorithm for decomposing a graph along its clique sepa-

rators and its consequences [28], Theorem 1 implies the existence of polynomial-time
solutions to several generally NP-hard problems, when restricted to graphs of separa-
bility at most 2:

Theorem 2. The following problems are polynomially solvable:

− Given a vertex-weighted graph G ∈ G2, find a maximum-weight independent set in
G.

− Given a vertex-weighted graph G ∈ G2, find a maximum-weight clique in G.
− Determine the chromatic number of a given graph G ∈ G2.

In contrast to Theorem 2, it is NP-hard to find the maximum size of an independent
set in a graph of separability at most 3. This follows from the fact that the maximum
independent set problem is NP-hard for graphs of maximum degree 3. Moreover, using a
reduction from the (NP-complete) 3-colorability problem in planar graphs of maximum
degree 4, we show the following result.

Theorem 3. The 3-colorability problem is NP-complete for planar graphs of separa-
bility 3 and of maximum degree 6.

On the other hand, for every fixed k the maximum-weight clique problem is polynomial
for graphs of separability at most k: Observe that every graph of separability at most
k is {Rk}-free, where Rk is the graph obtained from the complete graph on 2� k

2 + 4
vertices by deleting from it a perfect matching. It follows that every graph of separability
at most k contains at most O(n�k/2 +1) maximal cliques (see, e.g., [2]), which can be
enumerated in polynomial time [30].

Some well-known problems remain NP-complete when restricted to graphs of sep-
arability at most 2. More specifically, using reductions from the vertex cover and the
simple max cut problems in general graphs, we show the following result.

Theorem 4. The dominating set problem and the (simple) max cut problem remain
NP-complete when restricted to graphs of separability at most 2.

Theorem 4 is best possible in the sense that both problems are solvable in polynomial
time for graphs of separability at most 1. For the dominating set problem, this follows
from the fact that graphs of separability at most 1 are of clique-width at most 4, and the
results by Courcelle et al. about optimization problems expressible in Monadic Second
Order Logic, on graphs of bounded clique-width [17]. Strictly speaking, to apply the
theorem from [17], bounded clique-width does not suffice, there has to be a polynomial
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algorithm to construct a 4-expression for a given graph of separability 1. But this is not
hard to obtain (see the paragraph following the proof of Poposition 3 below).

For the max cut problem, this follows from the fact that an optimal solution to the
max cut problem for a given graph G can be easily obtained from optimal solutions to
the max cut problem on the blocks of G.

Numerous problems that are NP-hard in general admit polynomial-time solutions
when restricted to graphs of bounded tree-width or clique-width (see, e.g., [1, 16, 17,
20, 21, 24]). We now examine the (un)boundedness of these two graph parameters for
graphs of separability at most 2. First, observe that since the tree-width of a complete
graph Kn is equal to n− 1, the tree-width of graphs in G2 is unbounded. However, it
follows from Theorem 1 that the tree-width tw(G) of a graph G ∈ G2 can only be large
due to the presence of a large clique.

Proposition 2. Let G ∈ G2. Then tw(G) ≤ max{2,ω(G)−1} .

Proposition 2 is best possible in the sense that the tree-width of graphs of separability at
most 3 is not bounded from above by any function of their maximum clique size. (There
exist triangle-free graphs of maximum degree 3 and of arbitrarily large tree-width.)

Proposition 3. The clique-width of graphs of separability at most 2 is unbounded.

Proof. For a graph G, let G∗ denote the graph obtained from G by adding a new vertex
ve for each edge e = xy ∈ E(G) together with the edges {ve,x} and {ve,y}. Apply this
transformation to a complete graph Kn to obtain the graph K∗

n . Then, K∗
n ∈ G2. It is

known that the clique-width of graphs K∗
n is unbounded. In fact, it is at least n/72 for

n ≥ 100 [25]. Therefore, the clique-width is also unbounded in the class G2. �
By contrast, the clique-width of graphs of separability at most 1 is bounded. This fol-
lows from two facts: (i) the clique-width of complete graphs is at most 2, and (ii) the
clique-width of every graph exceeds the maximum clique-width of its blocks by at most
2 [4]. Therefore, since every block of a graph G ∈ G1 is complete and hence of clique-
width 2, the clique-width of G is at most 4 (and a 4-expression can be computed in
polynomial time).

The complexity results for graphs of small separability discussed in this section are
summarized in Table 1.

Table 1. Some complexity results for graphs of small separability
P stands for polynomial, NP-c for NP-complete, bdd for bounded, unbdd for unbounded.

G1 G2 G3

recognition P P P
CLIQUE P P P
CHROMATIC NUMBER P P NP-c
INDEPENDENT SET P P NP-c
DOMINATING SET P NP-c NP-c
MAX CUT P NP-c NP-c
clique-width bdd unbdd unbdd
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4 Characterizations by Forbidden Substructures

In this section, we derive two characterizations of graphs of separability at most two
by means of forbidden substructures: the one in terms of minimal forbidden induced
subgraphs and the one in terms of minimal forbidden induced minors. We also show
that for k > 2, graphs of separability at most k cannot be characterized by forbidden
induced minors.

Minimal forbidden induced subgraphs. For every k, the set of graphs of separability
at most k forms a hereditary graph class. For k ≤ 1, the characterization of graphs in
Gk in terms of minimal forbidden induced subgraphs is easy to obtain. Recall that for
k ∈ {0,1}, the only connected graphs of separability at most k are complete graphs
and block graphs, respectively. It follows that: (i) G0 coincides with the class of {P3}-
free graphs, where P3 is a path on three vertices; (ii) G1 coincides with the class of
{diamond,C4,C5, . . .}-free graphs, where a diamond is a cycle of length 4 with exactly
one chord.

We now provide the characterization of graphs in G2 in terms of minimal forbidden
induced subgraphs. First, let us describe the forbidden induced subgraphs. The graph
K−

5 is K5 minus an edge. 3PC is an acronym for a 3-path configuration, which is one
of the graphs of type H0, H1 or H2 depicted in Fig. 1. A graph of type H0 is called a
3PC(x,y) where vertex x and vertex y are connected by three internally vertex-disjoint
paths P1, P2 and P3. A graph of type H1 is called a 3PC(xyz,u), where xyz is a triangle
in G and P1, P2 and P3 are three internally vertex-disjoint paths with endpoints x, y and
z respectively and a common endpoint u. A graph of type H2 is called a 3PC(xyz,uvw)
and consists of two vertex-disjoint triangles xyz and uvw and three disjoint paths P1, P2

and P3 with endpoints x and u, y and v, and z and w, respectively. Furthermore in all
three cases the vertices of Pi∪Pj (i �= j) must induce a hole (a chordless cycle of at least
four vertices). This implies that all paths P1, P2, P3 of H0 have length greater than one,
and at most one path of H1 has length one. Wheels are graphs of type H3 in Fig. 1; they
consist of a hole called the rim together with a vertex called the center that has at least
three neighbors on the rim.

Theorem 5. Let G be a graph. Then, G is of separability at most 2 if and only if G
contains no induced K−

5 , no induced 3PC and no induced wheel.

Proof. Let F be the set of graphs consisting of the graph K−
5 , all 3PC’s and all wheels.

Let F ′ denote the set of minimal forbidden induced subgraphs for G2. We need to show
that F = F ′.

Let F ∈ F be one of the graphs shown in Fig. 1. It is straightforward to verify that F
is of separability 3, while every proper induced subgraph of F is of separability at most
2 (this can be verified with the help of Theorem 1). Therefore, F ∈ F ′, and consequently
F ⊆ F ′.

It remains to show that F ′ ⊆ F , or equivalently, that if G is F -free, then G is of
separability at most 2. Suppose for contradiction that there exists an F -free graph G
such that the separability of G is at least 3. Among all non-adjacent vertex pairs {x,y}
in G with sepG(x,y) ≥ 3, pick a pair {x,y} such that the total length of three internally
vertex-disjoint paths connecting x and y is as small as possible. Let P,Q,R be three
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K−5 H0 H1 H2 H3

Fig. 1. Forbidden induced subgraphs for graphs of separability at most 2: K−
5 , 3-path configura-

tions and wheels. A dotted line indicates a chordless path containing one or more edges. (Notice
that the illustration of H3 does not capture the definition of wheels in all its generality.)

internally vertex-disjoint paths connecting x and y with smallest total length, and let X
be the subgraph of G induced by V (P∪Q∪R). At least one of the paths P,Q,R contains
at least three edges, for otherwise X would be either a 3PC(x,y) (if no edge connects
internal vertices of the paths), a wheel (if there are at most two edges connecting internal
vertices of the paths), or a K−

5 (otherwise) – contrary to the fact that G is F -free.
A PQ-chord is an edge pq connecting an internal vertex p of P with an internal

vertex q of Q. PR- and QR-chords are defined similarly. A PQ-, PR-, or a QR-chord
will be simply called a chord. Clearly, there must exist a chord since otherwise G would
contain an induced 3PC(x,y). The following claim restricts the set of possible chords.

Claim: Let pq be a PQ-chord. Then, either p ∈ N(x) or q ∈ N(y). Moreover, either
p ∈ N(y) or q ∈ N(x).

Proof of claim: If pq is a PQ-chord such that p �∈ N(x) and q �∈ N(y), then {x, p}
would form a non-adjacent vertex pair in G with sepG(x, p) ≥ 3 and such that there
exist three internally vertex-disjoint paths connecting x and p with total length shorter
than that of {P,Q,R}, contrary to the choice of {x,y}. The other statement of the claim
follows by symmetry.

Let p,q,r and p′,q′,r′ denote the neighbors of x and y on the paths P,Q,R, respectively.
The above claim implies that if both P and Q have at least three edges then every PQ
chord is contained in the set {pq, p′q′}; similar statements hold for the other two pairs
of paths. We split the rest of the proof into two exhaustive cases.

Case 1: Each of the three paths P,Q,R has at least three edges. Let C be the set of
chords. By the above, /0 �= C ⊆ {pq, pr,qr, p′q′, p′r′,q′r′}.

If C = {pq}, then G contains a 3PC(xpq,y), a contradiction.
If C = {pq, p′q′}, then G contains a 3PC(xpq,yp′q′), a contradiction.
If C = {pq, p′r′}, then G contains a 3PC(xpq,r′p′y), a contradiction.
If |C ∩{pq, pr,qr}| ≥ 2, say {pq, pr} ⊆ C, then {p,y} forms a non-adjacent vertex

pair in G with sepG(p,y) ≥ 3 and such that there exist three internally vertex-disjoint
paths connecting p and y with total length shorter than that of {P,Q,R}, contrary to the
choice of {x,y}.

Each remaining subcase is symmetric to one of the above subcases. This completes
Case 1.
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Case 2: P has only two edges. There must exist a QR-chord, since otherwise G
would contain either an induced 3PC(x,y) or an induced wheel. We consider two further
subcases.

Case 2.1. Both Q and R have at least three edges. Let C be the set of chords. Without
loss of generality, qr ∈ C. Note that p (the internal vertex of P) must be contained in
a chord, since otherwise G would contain either an induced 3PC(xqr,y) or an induced
3PC(xqr,yq′r′). However, the only possible chords containing p are pq′ and pr′ since
if pz is a PQ-chord with z �= q′, then {z,y} would form a non-adjacent vertex pair in G
with sepG(z,y)≥ 3 such that there exist three internally vertex-disjoint paths connecting
z and y with total length shorter than that of {P,Q,R}, contrary to the choice of {x,y}.
If q′r′ ∈ C, then, by a similar argument as above, the only possible chords containing p
would be pq and pr, a contradiction since {q,r}∩{q′,r′} = /0. Therefore q′r′ �∈ C.

If {pq′, pr′} ⊆ C, then {q′,r′} forms a non-adjacent vertex pair in G contradicting
the choice of {x,y}. Therefore we may assume, without loss of generality, that C ∩
{pq′, pr′} = {pq′}. But now, G contains an induced 3PC(xqr, pq′y), a contradiction.
This completes Case 2.1.

Case 2.2. Q has only two edges. Recall that there exists at least one QR-chord. By
symmetry, there also exists a PR-chord. Suppose that there exists a PR-chord pw such
that w �∈ {r,r′}. Then, using an arbitrary QR-chord qz it is easy to see that either {w,x}
or {w,y} forms a non-adjacent vertex pair in G contradicting the choice of {x,y}. More-
over, a similar argument shows that for every w ∈ {r,r′}, it is not possible that both pw
and qw are chords. Therefore, we may assume that the only PR- and QR-chords are the
chords pr and qr′.

If pq is also a chord then {p,r′} forms a non-adjacent vertex pair in G contradicting
the choice of {x,y}. On the other hand, if pq is not a chord, then G contains an induced
3PC(xpr,qyr′). This contradiction completes the proof. �
Theorem 5, combined with the forbidden induced subgraph characterization of univer-
sally signable graphs from [13], implies that every graph of separability at most 2 is
universally signable. (In conjunction with structural results about universally signable
graphs [13], this also gives an alternative proof of Theorem 2.) On the other hand, it can
be shown that for k ≥ 3 not all graphs of separability at most k are universally signable.

Minimal forbidden induced minors. Given two graphs G and H, we say that G is an
induced minor of H if G can be obtained from H by a sequence of vertex deletions
and edge contractions. Clearly, every minor-closed graph class is closed under induced
minors, and every class closed under induced minors is hereditary. In the following
theorem, we characterize classes of graphs of bounded separability that are closed under
induced minors.

Theorem 6. The set of graphs of separability at most k is closed under induced minors
if and only if k ≤ 2.

Proof. It is easy to check that for k ∈ {0,1}, the set Gk of graphs of separability at most
k is closed under edge contraction. For k = 2, the fact that graphs of separability at most
2 are closed under induced minors can be shown by induction, using Theorem 1. First,
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observe that the set of cycles and complete graphs is closed under edge contraction.
Suppose that a graph G ∈ G2 can be obtained from two smaller graphs G1,G2 ∈ G2

by pasting along a 2-clique, and let G′ be the graph obtained from G by contracting
an edge e. Then, either e ∈ E(G1) or e ∈ E(G2) (or both). Denoting by G′

i the graph
obtained from Gi by contracting e, we see that G′ can be obtained from G′

1 and G′
2 by

pasting along a 2-clique. By the inductive hypothesis, G′
1,G

′
2 ∈ G2, and since graphs of

separability at most 2 are closed under pasting along 2-cliques, we also have G′ ∈ G2.
Suppose now that k ≥ 3. The graph G6 depicted in Fig. 2 is of separability 3 but can

be contracted to K2,6—a graph of separability 6—contracting the “horizontal" edges.

G6 K2,6

Fig. 2. A graph of separability 3 that can be contracted to a graph of separability 6

By generalizing the example from Fig. 2, it follows that for every k ≥ 3, there exists
a graph of separability 3 (and thus of separability at most k) that can be contracted to a
graph of separability k + 1. Therefore, for every k ≥ 3, the set of graphs of separability
at most k is not closed under induced minors. �
Just as every hereditary graph class can be uniquely characterized by the minimal set
of forbidden induced subgraphs, every graph class closed under induced minors can be
uniquely characterized by the minimal set of forbidden induced minors. Moreover, if
G is a graph class closed under induced minors, and the set F of minimal forbidden
induced subgraphs is known for graphs in G , then it is not hard to obtain from F the set
of F ′ of forbidden induced minors for G . For a set of graphs F ′, we say that a graph
is F ′-induced-minor-free if no induced minor of G is isomorphic to a graph in F ′. The
following straightforward observation establishes the relation between the minimal sets
of forbidden induced subgraphs and minimal forbidden induced minors.

Proposition 4. Let G be a graph class closed under induced minors, and let F be the
set of minimal forbidden induced subgraphs for G . Then, G coincides with the set of all
F ′-induced-minor-free graphs, where F ′ is the set of minimal elements in the poset on
F partially ordered by contraction.

Proposition 4 and the results on forbidden induced subgraphs yield:

Theorem 7. (i) Graphs of separability 0 are precisely the {P3}-induced-minor-free
graphs. (ii) Graphs of separability at most 1 are precisely the {C4,diamond}-
induced-minor-free graphs. (iii) Graphs of separability at most 2 are precisely
the {K2,3,F5,W4,K

−
5 }-induced-minor-free graphs, where K2,3,F5,W4,K

−
5 are the four

graphs depicted in Fig. 3.
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K−5K2,3 W4F5

Fig. 3. Forbidden induced minors for graphs of separability at most 2

5 Open Problems

Problem 1. For k > 2, characterize graphs of separability at most k that cannot be
decomposed along separating cliques of size at most k. Are there other meaningful
(de)composition operations for graphs of separability at most k?

Problem 2. For k > 2, determine whether graphs of separability at most k are χ-
bounded.

Problem 3. For k > 2, characterize graphs of separability at most k in terms of minimal
forbidden induced subgraphs.

For a given hereditary graph class G , the complexity of the independent dominating
set problem is usually “sandwiched" between the complexities of the independent set
and the dominating set problems. This motivates the following problem (which was
suggested by Vadim Lozin):

Problem 4. Determine the complexity of the independent dominating set problem for
graphs of separability at most 2.

Acknowledgements. We thank Marcin Kamiński for stimulating discussions and Vadim
Lozin for suggesting Problem 4.
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Abstract. An antimagic labeling of a graph with p vertices and q edges
is a bijection from the set of edges to the set of integers {1, 2, . . . , q} such
that all vertex weights are pairwise distinct, where a vertex weight is the
sum of labels of all edges incident with the vertex. A graph is antimagic
if it has an antimagic labeling.

Completely separating systems arose from certain problems in informa-
tion theory and coding theory. Recently these systems have been shown
to be useful in constructing antimagic labelings of particular graphs.

Keywords: m-level generalized web graph, m-level generalized flower
graph.

1 Introduction

All graphs in this paper are finite, simple, undirected and connected, unless
stated otherwise. In 1990, Hartsfield and Ringel [6] introduced the concept of
an antimagic labeling of graph, that is a vertex antimagic edge labeling. An
antimagic labeling of a graph with q edges and p vertices is a bijection from the
set of edges to the set of integers {1, 2, . . . , q} such that all vertex weights are
pairwise distinct, where a vertex weight is the sum of labels of all edges incident
with the vertex. A graph is antimagic if it has an antimagic labeling.

Hartsfield and Ringel [6] showed that paths, stars, cycles, complete graphs
Km, wheels Wm and bipartite graphs K2,m, m ≥ 3, are antimagic. They also
conjectured that every connected graph, except K2, is antimagic, a conjecture
which remains open. Subsequently, several families of graphs have been proved
to be antimagic, for example, see [1], [2] and [3]. Many other results concerning
antimagic graphs are catalogued in the dynamic survey by Gallian [5].

In this paper, we give an overview of completely separating systems (CSSs),
define two new families of graphs, the generalized web and generalized flower

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 303–313, 2011.
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and show how CSS may be used to construct antimagic labelings for these new
families of graphs.

Separating systems were first introduced in 1961 by Renyi [9] in the context
of solving certain problems in information theory. Let [n] represent the set of
integers from 1 to n and let C be a collection of subsets of [n]. An element a ∈ [n]
is said to be separated from b ∈ [n] in C if there is a set in C which contains a
but not b. A separating system (or SS) C on [n] is a collection of subsets of [n]
in which for each pair of elements a �= b ∈ [n], either a is separated from b or b
is separated from a.

A completely separating system (CSS) [4] on [n], or (n)CSS, is a collection of
subsets of [n] in which for each pair of elements a �= b ∈ [n], a is separated from
b and b is separated from a in C. For example, in the collection {{1, 2}, {1, 3}},
1 is separated from 2 by {1, 3} but 2 is not separated from 1. The collection
{{1, 2}, {1, 3}} is not a CSS. However, the collection {{1, 2}, {1, 3}, {2, 3}} is a
CSS on [3].

The sets in the (n)CSS are usually called blocks and the elements of these sets
are usually called points. Let k be a positive integer and let C be an (n)CSS. If
|A| = k for all A ∈ C, then C is said to be an (n, k)CSS.

The technique for assigning antimagic labelings using CSS is based on Roberts’
construction for Completely Separating Systems [10], so it is restated here.

Roberts’ construction
Assume that k ≥ 2, n ≥ (

k+1
2

)
and k|2n, and let R = R(n, k) = 2n/k. An

(R × k)-array L is constructed, where each row of L forms a subset of [n] and
the R rows of L form an (n, k)CSS. Let eij denote the element of L in row i
and column j. Initialize all elements of L to zero. For e from 1 to n, in order,
include e in the two positions of L defined by

min
j

min
i

{eij : eij = 0},
min

i
min

j
{eij : eij = 0}.

That is, e is placed in the first row of L containing a 0, in the first 0-valued
place in that row, e is then also placed in the first column of L containing a 0,
in the first 0-valued place in that column. Each of the integers 1 to n appears in
L in two positions, and the array L is the array of an (n, k)CSS. This concludes
Roberts’ construction.

The following example illustrates this construction.

Example 1. Using Roberts’ construction, we obtain the following array of a
(9, 3)CSS

1 2 3
1 4 5
2 6 7
3 6 8
4 7 9
5 8 9
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The following theorems will be useful when creating antimagic labelings of the
generalized web graphs and generalized flower graphs families, so we recall them
here.

Theorem 1. [8] Let V = {v1, v2, . . . , vp} be a collection of k-subsets of [q]. Then
V is a (q, k)CSS consisting of 2-elements if and only if a k-regular graph G(V, E)
with p vertices and q edges has an edge labeling.

Hereafter we denote by G(V, E, L), a graph G(V, E) having an edge labeling L.
Note that in this paper L can be seen as the array of edge labels.

Theorem 2. [8] Let L be the array of a (q, k)CSS obtained using Roberts’ con-
struction. Then the k-regular graph G(V, E, L), where |V | = p = 2q/k, |E| = q,
is antimagic.

Theorem 3. [7] The Cartesian product graph
∏

r K2, r ≥ 2, is antimagic.

Theorem 4. [7] Let Gh = Gh(Vh, Eh, Lh), 1 ≤ h ≤ t, where Lh is the array of
a (qh, kh)CSS obtained using Roberts’ construction. Then the Cartesian product
graph

∏
h Gh is antimagic.

Theorem 5. [7] The Cartesian product
∏

s K2×
∏

h Gh, s, h ≥ 1, is antimagic.

2 Results

We first define two new families of graphs. Let G be a k-regular graph with p
vertices. The generalized pyramid graph, P (G, 1), is the graph obtained from the
graph G by joining each vertex of the graph G to a vertex called the apex, and the
graph G is called the base. Note that the wheel is a special case of the generalized
pyramid graph P (G, 1) when G = Cn, n ≥ 3. The 2-level generalized pyramid
graph, P (G, 2), is the graph obtained from the graph P (G, 1) by attaching a
pendant edge at each vertex of the base G and then joining the pendant vertices
to corresponding vertex of a copy of G. By iterating the process of adding the
pendant vertices and joining them to form a new copy of G, it is called the
m-level generalized pyramid graph (or simply, generalized pyramid graph) and
denoted by P (G, m), m ≥ 1. Alternatively, to get P (G, m) take the Cartesian
product G × Pm adjoin a vertex to each vertex of one end copy of G.

The m-level generalized web graph (or simply, generalized web graph),
WB(G, m), is the graph obtained from the m-level generalized pyramid graph
P (G, m) by attaching a pendant edge at each vertex of the furthermost copy of G
from the apex; and the graph G is called the base of the graph WB(G, m). When
G is a cycle, WB(G, m) is simply called the m-level web graph (see Fig. 3).

The m-level generalized flower graph with p petals (or simply, generalized
flower graph with p petals), FL(G, m, p), is the graph obtained from the gen-
eralized web WB(G, m) by connecting each pendant vertex to the apex with
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an edge. The m-level generalized flower graph with mp petals (or simply, gener-
alized flower graph with mp petals), FL(G, m, mp), is the graph obtained from
the m-level generalized web WB(G, m) by connecting each pendant vertex and
each vertex of the m−1 copies of G to the apex with an edge, except the vertices
of the the nearest copy of G to the apex. When G is a cycle, FL(G, m, mp) is
simply called the m-level flower graph (see Fig. 6).

We denote by T t the transpose of the array T .

Theorem 6. Let Gh = Gh(Vh, Eh, Lh), 1 ≤ h ≤ t, where Lh is the array
of a (qh, kh)CSS obtained using Roberts’ construction. Let G = Gh or

∏
r K2,

r ≥ 2, or
∏

h Gh or
∏

s K2 × ∏
h Gh, s, h ≥ 1 . Then the generalized web graph

WB(G, m), m ≥ 1, is antimagic.

Proof. Assume that G has p vertices and q edges. We divide the proof into two
cases as follows.
Case 1: G = Kp, p ≥ 3.

Let Tl, 1 ≤ l ≤ m + 1, be the (p × 1)-array of edges ei, 1 ≤ i ≤ p. As in the
construction given in the proof of Theorem 2, let Mj , 1 ≤ j ≤ m, be the array
of edge labels of the j-th graph G. We construct the array A of edge labels of
the generalized web graph WB(G, m), m ≥ 1, as follows.

(1) Label the edge ei, 1 ≤ i ≤ p, in the block i of the array Tl, 1 ≤ l ≤ m + 1,
with i + (l − 1)p, 1 ≤ l ≤ 2, and i + (l − 1)p + (l − 2)q, 2 < l ≤ m + 1;

(2) Relabel the edge labels in the array Mj, 1 ≤ j ≤ m, by adding (j + 1)p +
(j − 1)q to each of its edge labels;

(3) Form the array A into two subcases as shown below.

Subcase 1.1: m = 1.
T1
T t

2
T1 T2 M1

By the construction of the array A, it is clear that the weight of each vertex
(block) in the array is less than the weight of the vertex below.
Subcase 1.2: m ≥ 2.

T1
T t

2
T1 M1 T3
T2 M2 .
...

...
...

Tm Tm+1 Mm

The diagram below illustrates the construction used here.
By the construction of the array A, it is clear that the weight of each vertex

(block) in the array is less than the weight of the vertex below.
Case 2: G �= Kp, p > 3.
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M1 M3 M2M4Mm T t
2

T1 T3 T2T4

Fig. 1. Illustration of the construction of the generalized web graph WB(Kp, m), p ≥ 3,
m > 3

M1 M2 MmMm−1 T t
m+1

T1 T2 Tm+1Tm

Fig. 2. Illustration of the construction of the generalized web graph WB(G,m), G �=
Kp, p > 3, m > 3

Let Tl, 1 ≤ l ≤ m + 1, be the (p × 1)-array of edges ei, 1 ≤ i ≤ p. As in the
construction given in the proof of Theorems 2, 3, 4 and 5, let Mj , 1 ≤ j ≤ m, be
the array of edge labels of the j-th graph G. We construct the array A of edge
labels of the generalized web graph WB(G, m) as follows.

(1) Label the edge ei, 1 ≤ i ≤ p, in the block i of the array Tl, 1 ≤ l ≤ m + 1,
with i + (l − 1)(p + q);

(2) Relabel the edge labels in the array Mj, 1 ≤ j ≤ m, by adding jp + (j − 1)q
to each of its edge labels;

(3) Form the array A into two subcases as shown below.

Subcase 2.1: m = 1.
T1

T1 M1 T2
T t

2

By the construction of the array A, it is clear that the weight of each vertex
(block) in the array is less than the weight of the vertex below.
Subcase 2.2: m ≥ 2.

T1
T1 M1 T2
T2 M2 .
...

...
...

Tm Mm Tm+1
T t

m+1

The diagram below illustrates the construction used here.
By the construction of the array A, it is clear that the weight of each vertex

(block) is less than the weight of the vertex below. �
The following example illustrates the construction of an antimagic labeling of
the web graph WB(K3, 2).
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Example 2. Using the construction in the proof of Subcase 1.2 of Theorem 6, we
have the array A of edge labels of the web graph WB(K3, 2)

1
2
3

4 5 6
1 7 8 10
2 7 9 11
3 8 9 12
4 10 13 14
5 11 13 15
6 12 14 15

and the corresponding antimagic web graph WB(K3, 2) as shown in Fig. 3.

1

10

4

5

11

2

7

1314

6

12

3

8

15

9

Fig. 3. The web graph WB(K3, 2) and its antimagic labeling

The only possible edge labeling of K2 can be presented by the (2 × 1)-array,
M0, with both entries 1. Interestingly, the same construction as in the proof of
Case 1 of Theorem 6 also works when the array Mj is replaced by M0j (M0j

is the array of the edge labels of the j-th graph K2), although K2 itself is not
antimagic, then we have

Theorem 7. The generalized web graph WB(K2, m), m ≥ 1, is antimagic.

Moreover, the following theorems are the extensions of Theorems 6 and 7.

Theorem 8. Let Gh = Gh(Vh, Eh, Lh), 1 ≤ h ≤ t, where Lh is the array of a
(qh, kh)CSS obtained using Roberts’ construction. Let G = Gh or

∏
r K2, r ≥ 2,

or
∏

h Gh or
∏

s K2×
∏

h Gh, s, h ≥ 1. Then the generalized flower FL(G, m, p),
m ≥ 1, is antimagic.
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Proof. Assume that G has p vertices and q edges. We divide the proof into two
cases as follows.
Case 1: G = Kp, p ≥ 3.

Let Tl, 1 ≤ l ≤ m + 2, be the (p × 1)-array of edges ei, 1 ≤ i ≤ p. As in the
construction given in the proof of Theorem 2, let Mj , 1 ≤ j ≤ m, be the array
of edge labels the j-th graph G. We construct the array A of edge labels of the
generalized flower graph FL(G, m, p), m ≥ 1, as follows.

(1) Label the edge ei, 1 ≤ i ≤ p, in the block i of the array Tl, 1 ≤ l ≤ m + 2,
with i + (l − 1)p, 1 ≤ l ≤ 3 and i + (l − 1)p + (l − 3)q, 3 < l ≤ m + 2;
(2) Relabel the edge labels in the array Mj by adding 3p + (j − 1)(p + q) to each
of its edge labels;
(3) Form the array A as shown below.
Subcase 1.1: m = 1.

T1 T3
T t

1 T t
2

T2 T3 M1

By the construction of the array A, it is clear that the weight of each vertex
(block) in the array is less than the weight of the vertex below, except in a
few exceptional cases. These cases include the weights of the last block in the
subarray T1T3, the block T t

1T
t
2 and the first block in the subarray T1T3M1 which

need to be verified.
Let rp, rp+1 and rp+2 be the last block in the subarray T1T3 and the block

T t
1T

t
2 and first block in the subarray T1T3M1, respectively. Let wt(rp), wt(rp+1)

and wt(rp+2) be the weights of rp, rp+1 and rp+2, respectively. We have the edge
labels in the block rp, rp+1 and rp+2 as shown below.

rp : p 3p
rp+1 : 1 2 . . . . . . . . . 2p − 1 2p
rp+2 : 1 + p 1 + 2p 1 + 3p . . . (p − 2) + 3p (p − 1) + 3p

It is clear that wt(rp) = 4p < 2p(2p+1)
2 = wt(rp+1) < 7p2−p+4

2 = wt(rp+2).
Subcase 1.2: m ≥ 2.

T1 T3
T t

1 T t
2

T2 M1 T4
T3 M2 .
...

...
...

Tm+1 Tm+2 Mm

The diagram below illustrates the construction used here.
As in Subcase 1.1, we have wt(rp) = 4p < 2p(2p+1)

2 = wt(rp+1). We have the
weight of the first block in the subarray T2M1T4, this is wt(rp+2) = (1+p)+(1+
3p)+ · · ·+((p−1)+3p)+(1+3p+q) = 7p2+p+2q+4

2 . Hence wt(rp+1) < wt(rp+2).
Case 2: G �= Kp, p > 3.

Let Tl, 1 ≤ l ≤ m + 2, be the (p × 1)-array of edges ei, 1 ≤ i ≤ p. As in the
construction given in the proof of Theorems 2, 3, 4 and 5, let Mj , 1 ≤ j ≤ m,
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Mm

T1

T1T3T t
1T t

2

T2 T3

T6 T7

M2M1

M4M3

T5T4

Fig. 4. Illustration of the construction of the generalized flower graph FL(Kp, m, p),
p ≥ 3, m ≥ 3

be the array of edge labels the j-th graph G. We construct the array A of edge
labels of the generalized flower graph FL(G, m, p) as follows.

(1) Label the edge ei, 1 ≤ i ≤ p, in the block i of the array Tl, 1 ≤ l ≤ m + 2,
with i + (l − 1)(p + q), 1 ≤ l ≤ m + 1 and i + (l − 1)p + (l − 2)q, l = m + 2;
(2) Relabel the edge labels in the array Mj , 1 ≤ j ≤ m, by adding jp + (j − 1)q
units to each of its edge labels;
(3) Form the array A as shown below;
Subcase 2.1: m = 1.

T1 T2
T1 M1 T3

T t
2 T t

3

By the construction of the array A, it is clear that the weight of each vertex
(block) in the array is less than the weight of the vertex below.
Subcase 2.2: m ≥ 2.

T1 T2
T1 M1 T3
M2 T3 T4

...
...

...
Mm Tm+1 Tm+2

T t
2 T t

m+2

The diagram below illustrates the construction used here.
By the construction of the array A, it is clear that the weight of each vertex

(block) in the array is less than the weight of the vertex below. �
The same construction as in the proof of Case 1 of Theorem 8 also works when
the array Mj is replaced by the array M0j, although K2 itself is not antimagic,
then we have

Theorem 9. The generalized flower graph FL(K2, m, 2), m ≥ 1, is antimagic.
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T1

T1T2M1

T3 T2

Tm+1

T t
2T t

m+2M2

MmM3

Tm+2T4

Fig. 5. Illustration of the construction of the generalized flower graph FL(G, m, p),
G �= Kp, p > 3, m > 3

The following theorems are the extensions of the generalized flower graphs.

Theorem 10. Let Gh = Gh(Vh, Eh, Lh), 1 ≤ h ≤ t, where Lh is the array
of a (qh, kh)CSS obtained using Roberts’ construction. Let G = Gh or

∏
r K2,

r ≥ 2, or
∏

h Gh or
∏

s K2 ×
∏

h Gh, s, h ≥ 1. Then the generalized flower graph
FL(G, m, mp), m ≥ 2, is antimagic.

Proof. Assume that G has p vertices and q edges. Let Tl, 1 ≤ l ≤ 2m + 1, be the
(p × 1)-array of edges ei, 1 ≤ i ≤ p. As in the construction given in the proof
of Theorems 2, 3, 4 and 5, let Mj , 1 ≤ j ≤ m, be the array of edge labels the
j-th graph G. We construct the array A of edge labels of the generalized flower
graph FL(G, m, mp), m ≥ 2, as follows.

(1) Label the edge ei, 1 ≤ i ≤ p, in the block i of the array Tl, 1 ≤ l ≤ 2m + 1,
with i + (l − 1)p for 1 ≤ l ≤ 3, i + (l − 1)p + (l − 3)q for 3 < l ≤ m + 3 and
i + (l − 1)p + mq for m + 4 ≤ l ≤ 2m + 1;
(2) Relabel the edge labels in the array Mj, 1 ≤ j ≤ m, by adding 3p + (j −
1)(p + q) to each of its edge labels;
(3) Form the array A in two cases.
Case 1: m = 2.

T1 T3
T2 M1 T4
T3 T4 M2 T5

T t
1 T t

2 T t
5

By the construction of the array A, it is clear that the weight of each vertex
(block) in the array is less than the weight of the vertex below, except the
weight of the last vertex (block) in the subarray T3T4M2T5 and the weight of
the block T t

2T
t
2T

t
5 that need to be verified.

Let ef,g be the edge label at the block f and the column g in the array A.
Let r3p and r3p+1 be the last vertex (block) of the subarray T3T4M2T5 and the
block T t

2T
t
2T

t
5 , respectively. Let wt(r3p) and wt(r3p+1) be the weights of the r3p

and r3p+1, respectively. We show in three subcases.
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Subcase 1.1: G = K3.
By exhaustion, we have wt(r9) = 80 < 81 = wt(r10).

Subcase 1.2: G = Kp, p > 3.
We have the edge labels in the blocks r3p and r3p+1 as shown below.

r3p : 3p 4p + q 5p + q − 1 . . . 5p + 2q
r3p+1 : 1 2 . . . 2p − 1 2p 1 + 4p + 2q . . . 5p + 2p

Since, for p > 3, e3p,2p−1 + e3p,2p = 7p + q < p(2p + 1) =
∑2p

h=1 e3p+1,h and for
2p + 1 ≤ g ≤ 3p, e3p,g ≤ e3p+1,g, hence wt(r3p) < wt(r3p+1).
Subcase 1.3: G �= Kp, p > 3.

Similarly to the Subcase 1.2, hence wt(r3p) < wt(r3p+1).
Case 2: m ≥ 3.

T1 T3
T2 M1 T4
T3 M2 T5 Tm+3
T4 M3 . Tm+4
...

...
...

...
Tm+1 Tm+2 Mm T2m+1

T t
1 T t

2 T t
m+3 . . . T t

2m−2 T t
2m−1 T t

2m T t
2m+1

By construction of the array A, it is clear that the weight of each vertex (block)
in the array is less than the weight of the vertex below.

Example 3. Using the construction in the proof of Subcase 1.1 of Theorem 10,
we have the array A of edge labels of the generalized flower graph FL(K3, 2, 6)

1 7
2 8
3 9

4 10 11 13
5 10 12 14
6 11 12 15
7 13 16 17 19
8 14 16 18 20
9 15 17 18 21

1 2 3 4 5 6 19 20 21

and the corresponding antimagic generalized flower graph FL(K3, 2, 6) as shown
in Fig. 6.

The same construction as in the proof of Theorem 10 also works when the
array Mj is replaced by the array M0j , although K2 itself is not antimagic, then
we have

Theorem 11. The generalized flower graph FL(K2, m, 2m), m ≥ 2, is antimagic.
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1
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13

4
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15

9

17

12

18
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20

21

Fig. 6. The generalized flower graph FL(K3, 2, 6) and its antimagic labeling
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Abstract. The study of balls-into-bins processes or occupancy problems
has a long history. These processes can be used to translate realistic
problems into mathematical ones in a natural way. In general, the goal
of a balls-into-bins process is to allocate a set of independent objects
(tasks, jobs, balls) to a set of resources (servers, bins, urns) and, thereby,
to minimize the maximum load. In this paper, we analyze the maximum
load for the chains-into-bins problem, which is defined as follows. There
are n bins, and m objects to be allocated. Each object consists of balls
connected into a chain of length �, so that there are m� balls in total. We
assume the chains cannot be broken, and that the balls in one chain have
to be allocated to � consecutive bins. We allow each chain d independent
and uniformly random bin choices for its starting position. The chain is
allocated using the rule that the maximum load of any bin receiving a ball
of that chain is minimized. We show that, for d ≥ 2 and m ·� = O(n), the
maximum load is ((ln lnm)/ ln d)+O(1) with probability 1−Õ(1/md−1).

Keywords: Balls-into-bins processes, chains-into-bins processes, ran-
dom processes, offline assignment.

1 Introduction

The study of balls-into-bins processes or occupancy problems has a long history.
These models are commonly used to derive results in probability theory. Fur-
thermore, balls-into-bins processes can be used as a means of translating realistic
load-balancing problems into mathematical ones in a natural way. In general, the
goal of a balls-into-bins process is to allocate a set of independent objects (tasks,
jobs, balls) to a set of resources (servers, bins, urns). It is assumed that the balls
are independent and do not know anything about the other balls. Each ball is
allowed to choose a subset of the bins independently and uniformly at random
(i.u.r.) in order to be allocated into one of these bins. The performance of these
processes is usually analyzed in terms of the maximum load of any bin.

One extreme solution is to allow each ball to communicate with every bin.
Thus, it is possible to query the load of every bin and to place the ball into

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 314–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the bin that is least loaded. This allocation process always yields an optimum
allocation of the balls. However, the time and the number of communications
needed to allocate the balls are extremely large. The opposite approach is to
allow every ball to communicate with only one bin. The usual model is for every
ball to be thrown into one bin chosen independently and uniformly at random.
For the case of m balls allocated to n bins i.u.r., it is well known that a bin that
receives m/n + Θ

(√
(m log n)/n

)
balls exists with high probability (w.h.p.).1

An alternative approach which lies between these two extremes, is to allow every
ball to select one of d ≥ 2 i.u.r. chosen bins. The GREEDY[d] process, studied by
Azar et al. [1], chooses d i.u.r. bins per ball, and the ball is allocated into the least
loaded among these bins. For this process, and m ≥ n, the maximum number of
balls found in any bin, i.e., the maximum load, is m/n+ln ln n/ ln d+O(1) w.h.p.
(see, for example, [1], [2]). Thus, even a small amount of additional random choice
can decrease the maximum load drastically compared to a single choice. This
phenomenon is often referred to as the “power of two random choices” (see [7]).

In this paper we consider the chains-into-bins problem which can be regarded as
a generalization of the balls-into-bins problem. We are given m chains consisting
of � balls each. The balls of any chain have to be allocated to � consecutive bins. We
allow each chain d i.u.r. bin choices, and allocate the chain using the rule that the
maximum load of any bin receiving a ball of that chain is minimized. In this paper,
we show that, for d ≥ 2 and m ·� = o(n ·(ln ln m)1/2), the maximum load achieved
by this algorithm is at most (ln ln m/ ln d)+O((m�/n)2)+O(1), with probability
1−O((ln m)d/md−1). This result shows that for a fixed number of balls, the max-
imum load decreases with increasing chain length. The maximum load depends
on the number of chains only in the following sense. Allocating m = n/� chains of
length � (with a total number of n balls) into n bins will, w.h.p., result in a max-
imum load of at most ln ln(n/�)/ ln d + O(1). It follows that if � = O((ln n)a) for
any a > 0, our result is asymptotically the same as that for allocating n/� balls
into n/� bins using GREEDY[d] protocol of [1].

We also prove that the naive heuristic that ‘allocates the chain headers using
GREEDY[d] and hopes for the best’ performs badly for some values of m, � as one
might expect. Indeed, if m ≥ ln2 n and � ≥ (ln m)/ ln ln m, then the maximum
occupancy of this heuristic is at least (ln m)/(2 ln ln m), w.h.p.

Clustering. It can be seen that, provided we can make some extra assumptions,
the results of [1] can be applied to the chains-into-bins problem for m chains of
length �. Suppose we are allowed to cluster the bins into N = n/� clusters of �
successive bins, and each chain can be allocated directly to one cluster. This is
now equivalent to allocating m balls into N bins. Thus, we would get a maximum
load of Θ((ln ln N)/ ln(d) + 1) with GREEDY[d] and (ln ln N)/d + O(1) using
the ALWAYS-GO-LEFT[d] protocol. However, this solution essentially ignores
the model under consideration, and is equivalent in a hashing context to saying
that we do not need to hash the data item at the given location, but rather
somewhere in the next � cells at our convenience. If we have this freedom to

1 A sequence of events An occurs with high probability if limn→∞ P (An) = 1.
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ignore the locations we are given and pack the balls into N = n/� clusters of
length �, then why not N = n/(2�) clusters of length 2�, placing the chains one
after the other? Indeed why not arbitrary N , or even N = 1 and pack the chains
cyclically in a round-robin fashion? That would be even more efficient. Obviously
if such clustering were available it would be easier to organize the behavior of
the balls. We assume henceforth that we have to put the chains where we are
instructed, rather than where we would like to. Finally, we remark that, provided
m = N = n/�, we can get the same results without restructuring the problem,
and thus, the extra provisions are unnecessary.

Applications. Our model can be viewed as a form of hashing in which the first
data item of the chain is placed in the selected position of the hash table, and
the remaining items overflow into the neighbouring positions of the table.

The chains-into-bins problem has several important applications. One example
is data storage on disk arrays, such as RAID systems (see [9]). Here, each data
item is stored on several neighbouring disks in order to increase the data transfer
rate. In this case, the bins model the disks from the storage array, and the
chains model data requests which are directed to several neighbouring “bins.”
A second application is the scheduling of reconfigurable embedded platforms
(see [4,11]). Here, the tasks and the reconfigurable chip are modeled as rectangles
with integral dimensions. All tasks have the same height but different length.
The chip is modeled by a much larger rectangle that can hold several tasks in
both dimensions. The goal is to allocate the tasks to a chip with a fixed length
such that the required height is minimized. In this case, the tasks are modeled
by the chains and the chip is modeled by the bins. The problem also models
a scheduling problem where m allocated items persist in the system for � time
steps. For example, imagine a train traveling in a circle with n station stops.
The bins represent stations and the length of a chain represent the number of
stops traveled by a passenger.

1.1 Related Work

Azar et al. [1] introduced GREEDY[d] to allocate n balls into n bins. GREEDY[d]
chooses d bins i.u.r. for each ball and allocates the ball into a bin with the
minimum load. They show that after placing n balls, the maximum load is
Θ((ln ln n)/ ln d), w.h.p. Compared to single-choice processes, this is an exponen-
tial decrease in the maximum load. For the case where m < n, their results can be
extended to show a maximum load of at most (ln ln n− ln ln(n/m))/ ln d+O(1),
w.h.p. Vöcking [13] introduced the ALWAYS-GO-LEFT[d] protocol, which clus-
ters the bins into d clusters of n/d consecutive bins each. Every ball now chooses
i.u.r. one bin from every cluster and is allocated into a bin with the mini-
mum load. If several of the chosen bins have the same minimum load, the ball
is allocated into the “leftmost” bin. The protocol yields a maximum load of
(ln ln n)/d + O(1), w.h.p. In [5], Kenthapadi and Panigrahy suggest an alterna-
tive protocol yielding the same maximum load. They cluster the bins into 2n/d
clusters of d/2 consecutive bins each. Every ball now randomly chooses 2 of these
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clusters and it is allocated into the cluster with the smallest total load. In the
chosen cluster, the ball is then allocated into the bin with minimum load again.
The authors also argue in that paper that clustering is essential to reduce the
load to (ln ln n)/d + O(1). In [2], the authors analyse GREEDY[d] for m ! n.
It is shown that the maximum load is m/n + ln ln(n), w.h.p. Mitzenmacher et
al. [8] show that a similar performance gain occurs if the process is allowed to
memorize a constant number of bins with small load.

In [10], Sanders and Vöcking consider the random arc allocation problem,
which is closely related to the chains-into-bins problem. In their model, they
allocate arcs of an arbitrary length to a cycle. Every arc is assigned a position
i.u.r. on the cycle. The chains-into-bins problem with d = 1 can be regarded as a
special discrete case of their problem, where the cycle represents the n bins and
the arcs represent the chains (in [10], different arc lengths are allowed). Trans-
lated into the chains-into-bins setting, the authors show the following result. If
m = n/� chains of length � are allocated to n bins (m → ∞), then the maximum
load is at most (ln(n/�))/(ln ln(n/�)), w.h.p. Note that their result is asymp-
totically the same as that for allocating n/� balls into n/� bins, provided that
n/� → ∞. In [3], the author shows that the expected maximum load is smaller if
we allocate n/2 chains of length 2 with one random choice per chain, compared
to n balls into n bins with d = 2.

2 Model and Results

Assume m chains of length � are allocated i.u.r. to bins wrapped cyclically round
1, ..., n. A chain contains � balls linked together sequentially. The first ball of a
chain is called header; the remaining balls comprise the tail of the chain. If chain
i (meaning the header of chain i) is allocated to bin j, then the balls of the chain
occupy bins j, j+1, . . . , j+�−1, where counting is modulo n. We define the h-load
of a bin as the number of headers allocated to the bin. This is to be distinguished
from the load of bin j. The load is the total number of balls allocated to bin j;
that is, the number of chain headers allocated to bins j − � + 1, . . . , j − 1, j.

We consider the case where each chain header randomly chooses d bins
j1, . . . , jd. For random choice jk it computes the maximum load of bins
jk, jk + 1, . . . jk + � − 1. The chain header is allocated to the bin jk ∈ j1, . . . , jd

such that the maximum load is minimized. This allocation process is called
GREEDY CHAINS[d, �].

We show the following result, which is proved in Section 3.

Theorem 1. Let m ≤ n, � ≥ 1, d ≥ 2, and assume m · � ≥ n/(2e) and m ·
� = o(n(ln ln m)1/2). Let m chains of length � be allocated to n bins with d
i.u.r. bin choices per chain header. The maximum load of any bin obtained by
GREEDY CHAINS[d, �] is at most

ln ln m

ln d
+ O

((
m · �

n

)2
)

,

with probability 1 − O((ln m)d/md−1).
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Note that when m · � = O(n), GREEDY CHAINS[d, �] achieves a maximum
load of (ln ln m)/(ln d) + O(1), with high probability. In order to make a direct
comparison, we extend of the results of [1] on the algorithm GREEDY[d] to the
case where m < n.

Theorem 2. Assume that d ≥ 2, m ≤ n, and that c is an arbitrary constant.
Then, the maximum load achieved by GREEDY[d] after the allocation of m balls
is at most

ln ln n − ln ln(n/m)
ln d

+ c

with a probability of 1 − O(n−s), where s is a constant depending on c.

Theorem 2 gives the bin load arising from chain headers (ignoring the rest of the
chain). Since other collisions can occur, for example, between chain headers and
internal links of the chain, this will always be a lower bound on the maximum
load. Then, provided m�/n = O(1),

ln ln n − ln ln(n/m)
ln d

+ O(1) ≤ max load ≤ ln ln m

ln d
+ O(1).

We see that, provided that � = e(lnn)o(1)
(in particular, � is poly-logarithmic in n),

the ratio of the upper and lower bounds on the maximum load is (1 + o(1)).
Finally, suppose we allocate chain headers using GREEDY[d] but ignore the

effect of this allocation on the rest of the chain. The following theorem, proved
in Section 4, shows that this approach leads to a large maximum occupancy.

Theorem 3. Assume that m · � ≥ n/(2e), that m < n/(2e), that m ≥ ln2 n,
and that � ≥ (ln m)/(ln ln m). Then, the maximum occupancy of any bin based
on GREEDY[d] allocation of chain headers is at least (ln m)/(2 ln ln m), w.h.p.

The proofs of Theorem 2and Theorem 3 can be found in Section 4.

3 Analysis of GREEDY CHAINS[d, �]

In this section, we prove Theorem 1. The proof uses layered induction. In the
case of GREEDY[d], Azar et al. [1] use variables γi as a high-probability upper
bound on the number of bins with i or more balls, where γ6 = n/2e and, for
i > 6, γi = e · n · (γi−1/n)d.

Since we allocate chains into bins, we cannot consider only the number of
bins with i or more chain headers, we have to consider both the chain headers
and tails. Hence, to calculate the load of a bin, we have to consider the chain
headers allocated to neighbouring bins. To do so, we define the set Si which can
be thought of as the set of bins which will result in a maximum load of at least
i + 1 if one of the bins in Si is chosen for a chain header. The set Si contains
all bins j with load (at least) i and the bins at distance at most � − 1 in front
of bin j. We emphasize that not all bins in Si have load of i themselves. We use
variables βi as high-probability upper bounds and show that, for i large enough,
|Si| ≤ βi = 2e · m · � · (βi−1/n)d, w.h.p., in our induction. In the following, we
define some sets and random variables that are used in our analysis.
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– Let λj(t) be a random variable counting the h-load of bin j. That is, λj(t)
is the number of chain headers allocated to bin j at (the end of) step t for
t = 0, 1, ..., m.

– For given A ⊆ [n], define λA(t) =
∑

j∈A λj(t). Thus, λA(t) is a random
variable counting the total h-load of the bins in A at the end of step t.

– Let Rj = {j − � + 1, ..., j − 1, j}, the set of bins that will increase the load
of bin j if a chain header is allocated to them.

– Let Lj(t) be a random variable counting the load of bin j at (the end of) step
t. Thus, Lj(t) = λR(j)(t), the load arising from the chain headers allocated
to the � bins of R(j).

– Let Qi(t) = {j : Lj(t) ≥ i} be the set of labels of bins whose load is at least
i at (the end of) step t.

– Let Si(t) = ∪j∈Qi(t)Rj . Thus, Si(t) contains the labels of bins such that an
allocation of a chain header to one of these bins will increase the load of a
bin with a load of at least i by 1.

– Let θ≥i(t) = |Si(t)|.
– Let ht be a random variable counting the height of chain t. The algorithm

GREEDY CHAINS[d, �] allocates the header to the bin which minimizes the
maximum total load ht, where

ht = 1 + min
i=1,...,d

max {Lji+k(t − 1), k = 0, ..., � − 1} (1)

and j1, ..., jd are the bins chosen i.u.r. at step t.

Our method of proving Theorem 1 uses an approach developed in [1], but incor-
porates the added complexity of considering the maximum load over the chain
length. For consistency, we have preserved notation as far as possible.

Let α = m�/n with α ≥ 1/2e and k = #8α2e$. First, we show that i chains
can contribute a block of bins of length at most 2� − 1 to Si(m).

Lemma 1. For i ≥ k, (i) θ≥i(m) ≤ 2m�/i, (ii) θ≥i(m) ≤ n/2.

Proof. To prove part (i) we first consider the following worst case scenario.
Suppose at step t bin j contains i chain headers, bins j − � + 1, ..., j − 1 are
empty, and bins j + 1, ...j + � − 1 do not contain any chain headers. Then,
{j, j + 1, ...j + � − 1} ⊆ Qi(t), {j − � + 1, ..., j, j + 1, ...j + � − 1} ⊆ Si(t) and
|Si(t)| = 2� − 1.

Suppose that Si(t) contains r chain headers. By stacking the r headers on
top of each other in blocks of i, at positions p = k(2� − 1), k = 0, 1, ..r/i, we
maximize the total size of Si(t).

Thus in general r(2� − 1) ≥ i|Si(t)|, which means that we need at least

r ≥ i · |Si(t)|
2� − 1

chain headers. In particular, for t ≤ m, we get

λSi(t)(t) ≥ i · |Si(t)|
2� − 1

>
i · θ≥i(t)

2�
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since θ≥i(t) = |Si(t)|. For t = m, we have

i · θ≥i(m)
2�

≤ λSi(m)(m) ≤ m. (2)

Part (ii) now follows from part (i). Since i ≥ k, α = m�/n, and α ≥ 1/(2e), we
get

θ≥i(m) ≤ θ≥k(m) ≤ 2m�

k
≤ 2m�

8α2e
=

2m�

8 · (m�/n) · αe
=

n

4αe
≤ n

2
.

�
To prove Theorem 1, we define

βi =

⎧⎪⎨
⎪⎩

n i = 1, ..., k − 1;
n

4eα i = k;

2em� ·
(

βi−1
n

)d

i > k.

For i ≥ 0 and j = k + i, it follows from the definition of βi that

βj = βk+i = n · (2e)
di−1
d−1

(4eα)di = n · 2−di · (2eα)−(di(d−2)+1)/(d−1), (3)

and, thus, provided 2eα ≥ 1 (i.e., m�/n ≥ 1/2e), we have βk+i ≤ n · 2−di

.
Define Ei(t) = {θ≥i(t) ≤ βi} and let

Ei = Ei(m) = {θ≥i(m) ≤ βi} (4)

be the event that |Si(t)| is bounded by βi throughout the process. From the
discussion following (2), we have that Ek holds with certainty. Our goal is to
obtain a value for i such that Pr(Ei) is close to 1 and, given Ei, no bin receives
more than i balls, with high probability.

We next state a standard lemma, proof of which is omitted.

Lemma 2. Let X1, X2, ..., Xm be a sequence of random variables with values
in an arbitrary domain, and let Y1, Y2, ..., Ym be a sequence of binary random
variables with the property that Yt = Yt(X1, ..., Xt). If

Pr(Yt = 1 | X1, ..., Xt−1) ≤ p,

then

Pr

(
m∑

t=1

Yt ≥ k

)
≤ Pr(B(m, p) ≥ k),

where B(m, p) denotes a binomially distributed random variable with parameters
m and p.
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As the d choices of bins for a chain header are independent, we have that

Pr (ht ≥ i + 1 | θ≥i(t − 1) = r) ≤
( r

n

)d

,

where ht is given by Eq. (1). For chain t and integer i, let Y
(i)
t be an indicator

variable given by

Y
(i)
t = 1 ⇐⇒ {ht ≥ i + 1, θ≥i(t − 1) ≤ βi} .

Let Xi = (x1
i , . . . , x

d
i ) denote the set bin choices of ith chain header, and let

X1,t = (X1, ..., Xt) be the choices of the first t chains. We define X1,t as the
event {X1,t = (X1, ..., Xt)}.

Assume X1,t−1 ∈ Ei(t − 1), meaning after the allocation of the first t − 1
chains, we have at most βi bins that would result in a load of at least i+ 1 when
hit by chain t. Then,

Pr(Y (i)
t = 1 | X1,t−1) ≤

(
βi

n

)d

and, if X1,t−1 �∈ Ei(t − 1), then Pr(Y (i)
t = 1 | X1,t−1) = 0. Either way,

Pr(Y (i)
t = 1 | X1,t−1) ≤

(
βi

n

)d
Δ= pi.

We can apply Lemma 2 to conclude that

Pr(
m∑

t=1

Y
(i)
t ≥ r) ≤ Pr(B(m, pi) ≥ r). (5)

Considering the extreme case discussed above in Lemma 1, we see that each event
{Y (i)

t = 1} adds at most an extra 2� − 1 bins to Si+1(t). Thus for X1,m ∈ Ei,

θ≥i+1(m) ≤ 2� ·
m∑

t=1

Y
(i)
t . (6)

Let ri = e · m · pi. Then, provided that
∑m

t=1 Y
(i)
t ≤ ri, we have

θ≥i+1(m) ≤ 2�ri = 2�em · pi = 2em� ·
(

βi

n

)d

= βi+1. (7)

From (5) and (6), we have

Pr
(
θ≥i+1(m) > 2� · ri

∣∣∣ Ei

)
≤ Pr

(
m∑

t=1

Y
(i)
t > ri

∣∣∣ Ei

)
≤ Pr(B(m, pi) ≥ ri)

Pr(Ei)
.

(8)



322 T. Batu, P. Berenbrink, and C. Cooper

Provided that m · pi ≥ 2 ln ω (where the precise value of ω is established below
in (13)), using the Chernoff bounds, we get

Pr(B(m, pi) ≥ em · pi) ≤ e−m·pi ≤ 1
ω2 . (9)

Recall that Pr(¬Ek) = 0. Assume inductively that Pr(¬Ei) ≤ i/ω2, for i ≥ k.
Since

Pr(¬Ei+1) ≤ Pr(¬Ei+1 | Ei) · Pr(Ei) + Pr(¬Ei),

we have, from (4), (7), (8), and (9), that

Pr(¬Ei+1) ≤ i + 1
ω2 .

Choose i∗ as the smallest i such that pi =
(

βi

n

)d

≤ 2 ln ω
m . From (3),

i∗ − k ≤ ln ln(m/ ln ω)
ln d

+ O(1). (10)

Also, as α = m�/n = o((ln ln m)1/2), we have that k = o(i∗) so that the induction
is not empty. Since pi∗ ≤ (2 ln ω)/m, we have that

Pr(θ≥i∗+1(m) ≥ (2�) · 6 ln ω | Ei∗) ≤ Pr(B(m, pi∗) ≥ 6 ln ω)
Pr(Ei∗)

≤ Pr(B(m, (2 ln ω)/m) ≥ 6 ln ω)
Pr(Ei∗)

≤ 1
ω2 · Pr(Ei∗)

,

and, thus,

Pr(θ≥i∗+1(m) ≥ (2�) · 6 ln ω) ≤ 1
ω2 · Pr(Ei∗)

·Pr(Ei∗) + Pr(¬Ei∗) ≤ (i∗ + 1)/ω2.

(11)
Conditioned on θ≥i∗+1(m) ≤ 12� lnω, the probability that a chain is placed at
height at least i∗+2 is at most (12� ln ω/n)d. Given that Y ∼ B(m, (12� ln ω/n)d),
Pr(Y ≥ 1) ≤ m(12� lnω/n)d by Markov’s Inequality. Thus applying Lemma 2,
we get

Pr

(
m∑

t=1

Y
(i∗+1)
t ≥ 1

∣∣∣ θ≥i∗+1(m) ≤ (2�) · 6 ln ω

)
≤ m · ( 12	·ln ω

n

)d

Pr(θ≥i∗+1 ≤ 12� · ln ω)
.

(12)
Let ω satisfy

ω =
(

md−1 · ln ln m

(ln m)d

)1/2

. (13)
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Using m · � = o(n(ln ln m)1/2), (13), (12) and (11), the probability that there is
a bin with load at least i∗ + 2 is bounded by a term of order

i∗ + 1
ω2 + O

(
(ln ω)d

md−1

)
= O

(
(ln m)d

md−1

)
.

By plugging in ω and k into (10), we get

i∗ ≤ ln ln m

ln d
+ O(α2) + O(1).

Thus, w.h.p, no bin receives more than i∗ + 1 balls. �

4 Allocating Chain Headers

In this section we present the proofs of Theorem 2 and Theorem 3.

4.1 Proof of Theorem 2

This theorem can be shown similarly to the proof of Theorem 4 in [1]. We define
γ1 = γ2 = · · · = γ5 = n, γ6 = m/(2e), and

γi = em ·
(γi−1

n

)d

for i > 6.

Thus γi = C n(m/(n2e))di

for some C > 1 constant. Integer i∗ is defined as the
smallest i such that em(γi/n)d ≤ 6 ln n, which holds for

i∗ ≤ ln ln n − ln ln(n/m)
ln d

+ O(1).

It can be shown that the maximum load is bounded by i∗ + 2 = (ln ln n −
ln ln(n/m))/ ln d + O(1), w.h.p.

4.2 Proof of Theorem 3

The idea of the proof is as follows. Let Um be the number of bins with load
at least one after the allocation of m chains by GREEDY[d] applied to the
chain headers. We show that, with a good probability, there exists a strip of �
consecutive bins which i) is used by one chain, and ii) at least t of its bins are
in Um. This gives us a bin with load at least t.

First, we find a lower bound on Um. Azar et al. [1] show that the protocol
GREEDY[d] for d ≥ 1 is majorized by GREEDY[1] in the following sense. Let
xi be the load of the bin with the ith largest load after allocation of m balls with
GREEDY[d], and let x′

i be the load of the bin with the ith largest load after
allocation of m balls with GREEDY[1]. It is shown in [1] that there exists a one-
to-one mapping between the random choices of GREEDY[1] and GREEDY[d]
such that for all 1 ≤ j ≤ n,

j∑
i=1

xi ≤
j∑

i=1

x′
i.
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From this it follows that the number of empty bins in an allocation with
GREEDY[d] is smaller that the one in GREEDY[1]. Let f(m) be the number of
occupied bins in an allocation generated by GREEDY[1]. When m = n/(2e) we
get

E[f(m)] = n

(
1 −

(
1 − 1

n

)m)
≥ 0.9m.

As m decreases, m − E[f(m)] decreases, too. Thus, provided m ≤ n/(2e), the
expected number of occupied cells with d ≥ 1 choices per ball is always at least
0.9m. By concentration, we can assume Um ≥ m/2 + 1, provided m ≥ ln2 n.

Given Um, we can assume that the locations of the bins occupied by chain
headers are sampled uniformly without replacement from [1, . . . , n]. We fix one
of the m chains and consider the strip of � consecutive bins occupied by the
chain. Assuming � ≥ 2t, the probability of at least t bins occupied by additional
chain headers in that strip is at least

(
Um − 1

t

)
· (�)t ·

(
1
n

)t

≥
(

m/2
t

)
· (�)t ·

(
1
n

)t

≥
(

m�

2etn

)t

≥
(

1
4e2t

)t

,

as m� ≥ n/(2e) and (�)t = �(� − 1) · · · (� − t + 1) ≥ (�/e)t.
Let c = 1/(4e2). Then, the expected number of chains allocated into a strip

with load at least t = ln m/(2 ln ln m) is at least

m ·
(c

t

)t

= exp (ln m − t ln t/c)

≥ m1/3.

The probability that such an event does not occur tends to zero by the Cheby-
chev’s inequality. �

5 Conclusions and Open Problems

In this paper we analyse the maximum load for the chains-into-bins problem
where m balls are connected in n/� chains of length �. We show that, provided
m� ≥ n/2e and m� = o(n(ln ln m)1/2), the maximum load is at most ln ln m

lnd +
O(1), with probability 1−O((ln m)d/md−1). This shows that the maximum load
is going down with increasing chain length.

Surprisingly, there are many open questions in the area of balls-into-bins pro-
cesses. Only very few results are known for weighted balls-into-bins processes,
where the balls come with weights and the load of a bin is the sum of the weights
of the balls allocated to it. Here, it is even not known if two or more random
choices improve the maximum load, compared to the simple process where every
ball is allocated to a randomly chosen bin (see [12]). Also, it would be interesting
to get tight results for the maximum load and results specifying “worst-case”
weight distributions for the balls. Something in the flavor “given that the total
weight of the balls is fixed, it is better to allocate lots of small balls, compared to
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fewer bigger ones.” Another interesting problem is to show results relating the
maximum load to the order in which the balls are allocated. For example, is it
always better to allocate balls in the order of decreasing ball weight, compared
to the order of increasing ball weight?

For chains-into-bins problem, an open question is to prove Knuth’s [6] con-
jecture stating that breaking chains into two parts only increases the maximum
load. This question still open for a single choice and also for several random
choices per ball. See [3] for a first progress in this direction. Another question
is if similar results to the one we showed in this paper for GREEDY[d] applied
to chains also holds for the ALWAYS-GO-LEFT protocol from [13] applied on
chains.

Finally, we note that it would be interesting to generalize the problem to two
dimensional packing, and consider online allocation of m objects of length � and
width w to the cells of a toroidal grid of length n and width h.
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10. Sanders, P., Vöcking, B.: Tail Bounds And Expectations For Random Arc Alloca-
tion And Applications. Combinatorics, Probability & Computing 12(3) (2003)

11. Steiger, C., Walder, H., Platzner, M.: Operating Systems for Reconfigurable Em-
bedded Platforms: Online Scheduling of Real-Time Tasks. IEEE Trans. Comput-
ers 53(11), 1393–1407 (2004)

12. Talwar, K., Wieder, U.: Balanced allocations: the weighted case. In: Proc. of the
39th Symposium on Theory of Computing (STOC), pp. 256–265 (2007)
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Abstract. A Theta graph is a multigraph which is a union of at least
three internally disjoint paths that have the same two distinct end ver-
tices. In this extended abstract we show full computational complexity
characterization of the problem of deciding the existence of a locally in-
jective homomorphism from an input graph G to any fixed Theta graph.

Keywords: computational complexity; locally injective homomorphism;
Theta graph.

1 Introduction

Let G be a graph. We denote its set of vertices by V (G) and its set of edges
by E(G). Graphs in this extended abstract are generally simple. If they may
have parallel edges or loops, we explicitly say so. We denote the degree of a
vertex v by degG(v) and the set of all neighbors of v by NG(v). We omit G in
the subscript if it is clear from the context. By [n] we denote the set of integers
{1, . . . , n}.

Let G and H be graphs. A homomorphism is an edge preserving mapping
f : G → H . A homomorphism is locally injective (resp. surjective, bijective)
if N(v) is mapped to N(f(v)) injectively (resp. surjectively, bijectively). A lo-
cally bijective homomorphism is also known as a covering projection or simply a
cover. Similarly, locally injective homomorphism is known as a partial covering
projection and a partial cover.

We consider the following decision problem. Let H be a fixed graph and G be
an input graph. Determine the existence of a locally injective (surjective, bijec-
tive) homomorphism f : G → H . We denote the problem by H-LIHom (resp.
H-LSHom, H-LBHom). If there is no local restriction on the homomorphism,
the problem is called H-Hom.

In this extended abstract we consider the H-LIHom problem.

Problem: H-LIHom
Input: graph G
Question: Does there exist a locally injective homomorphism f : G → H .
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Locally injective homomorphisms are closely related to H(2, 1)-labelings, which
have applications in frequency assignment. Let H be a graph. An H(2, 1)-labeling
of a graph G is a mapping f : V (G) → V (H) such that every pair of adjacent
vertices are mapped to distinct and nonadjacent vertices. Moreover, image of
every pair of vertices in distance two is two distinct vertices. The mapping f
corresponds to a locally injective homomorphism to the complement of H .

The computational complexity of H-Hom was fully determined by Hell
and Nešetřil [9]. They show that the problem is solvable in polynomial time
if H is bipartite and it is NP-complete otherwise.

The study of H-LSHom was initiated by Kristiansen and Telle [13] and com-
pleted by Fiala and Paulusma [8] who gave a full characterization by showing
that H-LSHom is NP-complete for every connected graph on at least three
vertices.

The complexity of locally bijective homomorphisms was first studied by Bod-
laender [2] and Abello et al. [1]. Despite the effort [10,11,12] the complete char-
acterization is not known.

Similarly for the locally injective homomorphism the dichotomy for the
complexity is not known. Some partial results can be found in [4,5,7]. Fiala
and Kratochv́ıl [6] also considered a list version of the problem and showed
dichotomy.

Fiala and Kratochv́ıl [5] showed, that H-LBHom is reducible in polynomial
time to H-LIHom. Hence it makes sense to study the complexity of H-LIHom
where H-LBHom is solvable in polynomial time. This is the case for Theta
graphs, which we consider in this extended abstract. Note that no other direct
consequences of complexity of H-Hom or H-SHom to H-LIHom are known.

Fiala and Kratochv́ıl [4] showed, that if Theta graph H contains only simple
paths of length a, then H-LIHom is always polynomial. They also showed that
if H contains only simple paths of two different lengths a and b, then:

– if both a and b are odd, then H-LIHom is polynomial,
– if a and b have different parity, then H-LIHom is NP-complete,
– if both a and b are even, then H-LIHom is as hard as H ′-LIHom, where H ′

is a Theta graph, that arise from H by replacing paths of length a, resp. b
by paths of lengths a

2 , resp. b
2 .

The study of Theta graphs continues in the work of Fiala et al. [7], which proves
NP-completeness for Theta graphs with exactly three odd different lengths of
simple paths. We extend the last result to all Theta graphs, which finishes the
complexity characterization of Theta graphs.

Theorem 1. Let H be a Theta graph with simple paths of at least three distinct
lengths. Then H-LIHom problem is NP-complete.

In the next section, we introduce several definitions and gadgets which we use in
NP-hardness reductions. In Section 3 we state necessary Lemmas for the proof
of Theorem 1. We omitted proofs of some Propositions, Lemmas and Theorems
due to the page limit for this extended abstract.
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2 Definitions and Gadgets

A graph G is a Theta graph (or Θ-graph) if it is the union of at least three
internally disjoint paths that have the same two distinct end vertices. We denote
the two vertices of degree at least three by A and B. Note that if two paths
of the union are of length one, the resulting graph have parallel edges.

A Θ-graph T is denoted by Θ(at1
1 , at2

2 , . . . , atn
n ), where 1 ≤ a1 < a2 < · · · < an

and ti ≥ 1 for all 1 ≤ i ≤ n, if T is the union of paths of lengths a1, a2, . . . , an

and ti are the corresponding multiplicities. We write ai instead of a1
i . We assume

that n ≥ 3 as the case n ≤ 2 is already solved [4].
Throughout this section we assume that T =Θ(at1

1 , . . . , atn
n ) is some Θ-graph.

Let G be a graph and v1, v2, . . . , vn be a path in G. The path is simple if v1
and vn are vertices of degree at least three and all inner vertices of the path have
degree two. We denote a simple path of length n by SPn.

Let G be a graph and f be a locally injective homomorphism from G to T .
Note that f must map all vertices of degree at least three to A or B in T . Hence
every end vertex of every simple path of G must be mapped to A or B. We call
a vertex special if it has degree at least three or if we insist that it is mapped to
A or B. Note that A and B are also special vertices and if v is a special vertex
of degree less than three, then adding extra pendant leaves forces, that v must
be mapped to A or B. We need to control what are the possible mappings of
simple paths. Let v1, v2, . . . , vl−1, vl be a simple path P . For a locally injective
homomorphism f , define a function gP

f (v1, vl) = ai if the edge v1v2 is mapped
by f to an edge of SPai in T . We omit the superscript P if there is only one
simple path containing v1 and vl.

We say that SPn allows decomposition ai − aj if there exists a graph H
containing a simple path P of length n with end vertices u and v and a locally
injective homomorphism f : H → T such that gP

f (u, v) = ai and gP
f (v, u) = aj .

We denote the decomposition by ai −k aj (resp. ai −c aj) if it forces that f(u) =
f(v) (resp. f(u) �= f(v)).

In case of x−k y (resp. x−c y) decomposition we say, that the decomposition
keeps (resp. changes) the parity.

Proposition 1. Every simple path SPai always allows decomposition ai −c ai

and does not allow decomposition ai−kai. Similarly, for i �= j holds that SPai+aj

always allows decomposition ai −k aj and never allows ai −c aj.

The proof of Proposition 1 as well as proofs of the other propositions are omitted
due to the page limit.

Let M be a positive integer and E ⊆ {a1, a2, . . . an}. The following notation
MT

E : x1 − y1, x2 − y2, . . . , xs − ys, (z1 − w1), (z2 − w2), . . . , (zt − wt)
describes the list of all decompositions x − y of SPM where x, y ∈ E . Decompo-
sitions xi − yi must be possible and decompositions zj − wj are optional for all
i ∈ [t] and j ∈ [s]. Moreover, −k and −c can be used instead of just −.

Now we introduce gadget BT
z , which can be used for blocking a simple path

of length z at some vertex. It has a central vertex y which is for every i ∈ [n]
connected by paths of length ai to vertices vi

j where j ∈ [ti]. Moreover, every
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vertex vi
j except vz

1 has two extra pendant leaves (so vi
j is special). If X is a copy

of BT
z , we refer to the vertex vz

1 by X(w) or w if X is clear from the context.
Moreover, we demand that w is special. See Figure 1.

Fig. 1. BT
z and a blocking gadget

Proposition 2. Let G be a graph and let X be a copy of BT
z in G. Moreover,

w has degree at least three. Suppose, that there exists a locally injective homo-
morphism f : G → T . Then:

gf(w, y) = z = gf(y, w)

The gadget BT
z blocks usage of one z at w by forcing T -LIHom to map the

path wy to SPz in T .
We usually need to use several copies of the gadget BT

z at once. Let d1,
d2, . . . , dn be nonnegative integers such that di ≤ ti for all i ∈ [n]. We define the
(ad1

1 , . . . , adn
n )-blocking gadget to be the union of ti − di copies of BT

ai
for every

i ∈ [n] where there is only one vertex w shared by all of them. If X is a copy of
the blocking gadget, we refer to the vertex w by X(w) or w if X is clear from
the context. Note that we will consider only copies of the blocking gadget where
vertex w is special.

In the notation we omit a0 and the superscript di if di = 1. In further fig-
ures, we depict the (ad1

1 , . . . , adn
n )-blocking gadget by a triangle with one vertex

corresponding to w and with inscribed text ad1
1 , . . . , adn

n , see Figure 1.

Proposition 3. Let G be a graph and X be a copy of (ad1
1 , ad2

2 , . . . , adn
n )-blocking

gadget in G where degG(w) ≥ 3. Let P1, P2, . . . , Pk be the all simple paths,
starting at w with without any other intersection with the blocking gadget X
and with end points u1, u2, . . . , uk. Suppose, that there exists a locally injective
homomorphism f : G → T . Then k ≤ ∑n

i=1 di and

∀i ∈ [n] : |{uj, g
Pj

f (w, uj) = ai}| ≤ di.

Note that the blocking gadget on its own is not sufficient for reducing
Θ(ak, bl, cm, at4

4 , . . . , atn
n ) to Θ(a, b, c). The obstacle is that a simple path may

have different possible inner decompositions and the blocking gadget cannot be
used inside paths in general.
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Apart from blocking some paths we also need to force that several special
vertices are mapped to the same vertex (to A or B). Hence we introduce the
following gadget.

Definition 1. Let T = Θ(ak, bl, cm, at4
4 , . . . , atn

n ) be a Θ-graph. Let r ≥ 2 be an
integer and N be the smallest power of two such that N ≥ 2r. Define a graph
PCT

a (r) (see Figure 2) with special vertices u1, u2, . . . , u2N−1, u
′
1, u

′
2, . . . , u

′
N−1,

v1, v2, . . . , v2N−1, v
′
1, v′2, . . . , v

′
N−1 to be a graph constructed in the following way:

– ∀i ∈ {1, 2, . . . , N − 1}, connect vertex u′
i with vertices ui, u2i and u2i+1 by

paths of lengths c, a and b (in this order),
– ∀i ∈ {1, 2, . . . , N − 1}, connect vertex v′i with vertices vi, v2i and v2i+1 by

paths of lengths c, a and b (in this order),
– ∀i ∈ {2, 3, . . . , N − 1}, take copies Ui and Vi of (a, c)-blocking gadget if i is

even and (b, c)-blocking gadget if i is odd and identify vertex ui with Ui(w)
and vertex vi with Vi(w),

– ∀i ∈ {1, 2, . . . , N − 1}, take copies U ′
i and V ′

i of (a, b, c)-blocking gadget and
identify vertex u′

i with U ′
i(w) and vertex v′i with V ′

i (w),
– identify vertex u′

1 with v1 and vertex v′1 with u1.

Fig. 2. Graph PCT
a (N) and local neighborhood of vertices ui and u′

i

Proposition 4. Let r ≥ 2 be an integer, T = Θ(ak, bl, cm, at4
4 , . . . , atn

n ) be a
Θ-graph and let Z be a copy of graph PCT

a (r) in a graph G. Let N be as in
the definition of PCT

a (r). Suppose, that there exists a locally injective homomor-
phism f : G → T , such that for all i ∈ [2N − 1] : f(Z(ui)), f(Z(vi)) ∈ {A, B}.
Then for all even i, j ∈ {N, N + 1, . . . , 2N − 1} the following hold:

f(Z(ui)) = f(Z(uj)) �= f(Z(vj)) = f(Z(vi)),

gf(Z(ui), Z(u′
i/2)) = a = gf(Z(vj), Z(v′j/2)).

Let Z be a copy of PCT
a (r). For i ∈ [N ] we define Z(xi) to be uN+2i−2 and Z(yi)

to be vN+2i−2. Similarly as the gadget PCT
a (r), we define a gadget PCT

b (r), with
the only difference, that a and b are swapped in the construction. We call the
graphs PCT

a (r) and PCT
b (r) parity controllers. With parity controllers we are

able to create arbitrary many special vertices, which are mapped to the same
vertex of T in every locally injective homomorphism to T . Moreover, each of
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these special vertices is an end point of a path which must be mapped to a
simple path of length a (resp. b) in T .

For some T , we reduce 3-SAT or NAE-3-SAT to T -LIHom. In the reduction
we use copies the following gadget for representing clauses.

Let T = Θ(ak, bl, cm, at4
4 , . . . , atn

n ) be a Θ-graph. We define T -clause gadget
to be a graph with special vertices u0, u1, u2, u3 such that, for all i ∈ {1, 2, 3},
vertex ui is connected to u0 by a path of length a + b + c and u0 is identified
with the vertex X(w), where X is a copy of the (a, b, c)-blocking gadget. If Y
is a copy of T -clause gadget, we refer to the vertices uj by Y (uj) or uj if Y is
clear from the context for all j ∈ {0, 1, 2, 3}. Note that we will consider only such
copies of T -clause gadget, that vertices u1, u2 and u3 are special. See Figure 3.

Fig. 3. T -clause gadget

Let Y be a copy of the T -clause gadget and γ ∈ {a, b}. We say, that T is γ-
positive if and only if there exists a locally injective homomorphism f : Y → T
such that:

– f(u0) �= f(u1) = f(u2) = f(u3) ∈ {A, B},
– gf (u1, u0) = gf (u2, u0) = gf(u3, u0) = γ.

Proposition 5. Let a < b < c be positive integers, such that a + b �= c. Let
T = Θ(ak, bl, cm, at4

4 , . . . , atn
n ) be a Θ-graph and Y be the T -clause gadget. Let

γ ∈ {a, b} and x, y, z ∈ {γ, c}.
Then there exists a locally injective homomorphism f : Y → T satisfying:

– f(u0) �= f(u1) = f(u2) = f(u3) ∈ {A, B},
– gf (u1, u0) = x, gf (u2, u0) = y, gf (u3, u0) = z

if and only if at least one of the following conditions hold:

– {x, y, z} = {γ, c},
– x = y = z = γ and T is γ-positive.

3 NP-Completeness Reductions

In this section we give several lemmas, which each show NP-completeness for
some Θ-graphs. Together, they cover all Θ-graphs and hence they imply Theo-
rem 1. We present the proof only of Lemma 1. Proofs of the other lemmas are
omitted due to the page limit.
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Note that the lemmas show only NP-hardness as H-LIHom is clearly in NP
for any H .

In this section we assume that T = Θ(ak, bl, cm, at4
4 , . . . , atn

n ).
Lemmas are grouped into three blocks, which reflect what type of reduction is

used. Reductions in each group are similar. The first group shows NP-hardness
from 3-SAT and NAE-3-SAT.

Lemma 1. Let T be a Θ-graph such that a + b �= c and
(a + b)T

a,b,c : a − b, (a − a)
(a + c)T

a,b,c : a − c, (a − a), (b − b)
then T -LIHom is NP-complete.

Proof. Let φ = ∨p
i=1(c1

i ∧ c2
i ∧ c3

i ) be a boolean formula in conjunctive normal
form with variables s1, s2, . . . , sr (where every clause has exactly 3 literals).
Let var, neg and ord be functions from the set of all literals of the formula φ,
such that var(cj

i ) is the variable corresponding to the literal cj
i , neg(cj

i ) is 0 if
the literal cj

i is a positive occurrence of the variable var(cj
i ) and neg(cj

i ) = 1
otherwise, and ord(cj

i ) is the order of occurrence of the literal of the variable
var(cj

i ) in φ.

Fig. 4. Variable gadget α

Define variable gadget α of order h (see Figure 4) as a graph with special
vertices v0, v1, . . . , v3h−1 such that for all i ∈ {0, . . . , h − 1}, vertices v3i and
v3i+1 are connected by a path of length a+b and vertices v3i+1 and v3i+2 as well
as vertices v3i+2 and v3i+3 are connected by a path of length a+c (all indices are
counted by modulo 3h). For every i ∈ {0, . . . , h− 1} we take two copies B0

i and
B1

i of the (a, b, c)-blocking gadget and identify the vertex B0
i (w) with the vertex

v3i and the vertex B1
i (w) with the vertex v3i+1, and for every j = 0, . . . , h − 1

we take a copy B2
i of the (a, c)-blocking gadget and identify the vertex B2

i (w)
with the vertex v3j+2.

For every i ∈ [r], let ni be the number of occurrences of the variable si in
the formula φ, let Xi be a copy of the variable gadget α of order ni + 1. For
every j ∈ [p] let Zj be a copy of the the clause gadget and let Y be a copy
of the parity controller PCT

b (r). Now define a graph Gφ, which contains copies
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X1, . . . , Xr, Z1, . . . , Zp, Y and for every literal cd
j of the formula φ, if var(cd

j ) = si

then we identify the vertices Xi(v3ord(cd
j )+neg(cd

j )−3) and Zj(ud). For every i ∈ [r]
we replace the copy of the (a, c)-blocking gadget on vertex Xi(v3ni+2) by a
copy of the (a, b, c)-blocking gadget and identify vertices Xi(v3ni+2) and Y (xi)
(clearly the combination of the (a, b, c)-blocking gadget and Y creates for the
vertex Xi(v3ni+2) the same constraints as the (a, c)-blocking gadget), and to
every vertex Xi(vj) and Y (yi) of degree less then three we add new pendant
leaves (so all vertices Xi(vj) and Y (yi) are special).

We claim, that if T is b-positive then φ is satisfiable if and only if there exists
a locally injective homomorphism from Gφ to T . And if T is not b-positive then
φ is NAE-satisfiable if and only if there exists a locally injective homomorphism
from Gφ to T . The fact that 3-SAT and NAE-3-SAT are NP-complete problems
and T -LIHom is in NP imply that T -LIHom is NP-complete.

At first suppose that T is b-positive and there exists a locally injective homo-
morphism f : Gφ → T . Let X be one of the copies of the variable gadget α of
order d in Gφ. Since (a+b)T

a,b,c : a−kb, (a−a), we know that gf(v0, v1) ∈ {a, b}.
If gf(v0, v1) = b, then necessarily gf (v1, v0) = a. But since there is a copy of
the (a, b, c)-blocking gadget on vertex v1 we know, that gf(v1, v2) is b or c. Since
(a + c)T

a,b,c : a −k c, (a − a), (b − b) if gf (v1, v2) = b, then gf (v2, v1) = b,
which is not possible because of the copy of the (a, c)-blocking gadget on v2 and
so gf (v1, v2) = c and necessary gf (v2, v1) = a, gf (v2, v3) = c, gf(v3, v2) = a and
then necessarily gf (v3, v4) = b. And since the gadget X is symmetric, we can con-
tinue in the same way until we reach the vertex v0 again. Then ∀i ∈ {0, . . . , d−2}
if there exists a simple path from v3i to Z(u0) for some copy Z of the clause gad-
get, then gf(v3i, Z(u0)) = c (the corresponding literal is false) and analogically
for the simple path from v3i+1 to Z(u0), for which holds gf (v3i+1, Z(u0)) = b (the
corresponding literal is true). In this case we say that the variable corresponding
to X is false.

If gf (v0, v1) = a then we use a similar idea as in the previous paragraph,
but we argue in the counterclockwise order (gf (v0, v3d−1) must be c, etc.) and
analogically we get, that if appropriate simple paths exists then gf (v3i, Z(u0)) =
b (the corresponding literal is true), resp. gf (v3i+1, Z(u0)) = c (the corresponding
literal is false). In this case we say that the variable corresponding to X is true.

We claim that in this evaluation every clause of φ is satisfied. If not, then
there exists a copy of the clause gadget Z corresponding to some clause and
gf (u1, u0) = gf (u2, u0) = gf (u3, u0) = c in Z. Since there is a copy of the
(a, b, c)-blocking gadget at vertex u0, without loss of generality we suppose that
gf (u0, u1) = c. Thus the simple path u0u1 of length a+b+c allows decomposition
c − c. But this is not possible because 0 < a + b < c + a and a + b �= c, a
contradiction.

On the other side, if T is b-positive and formula φ is satisfiable, then we show
that there exists a locally injective homomorphism f : Gφ → T . Suppose that
e : {s1, . . . , sr} → {true, false} is a satisfying evaluation of the variables of
φ and predefine a function f : Gφ → T in the following way. For every i ∈ [r]
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let ni be the number of occurrences of variable si in φ and let Xi be a copy of
the variable gadget α corresponding to si, for every j = 0, . . . , 3ni + 2 define
f(vj) = A and

– if e(si) = true, then for all j ∈ {0, .., ni} : gf (v3j , v3j+1) = a,
gf (v3j+1, v3j) = b, gf (v3j+1, v3j+2) = a, gf (v3j+2, v3j+1) = c,
gf (v3j+2, v3j+3) = a, gf (v3j+3, v3j+2) = c,

– if e(si) = false, then for all j ∈ {0, .., ni} : gf (v3j , v3j+1) = b,
gf (v3j+1, v3j) = a, gf (v3j+1, v3j+2) = c, gf (v3j+2, v3j+1) = a,
gf (v3j+2, v3j+3) = c, gf (v3j+3, v3j+2) = a.

It is now easy to extend the predefined function f to a locally injective ho-
momorphism from the graph Gφ to T .

If T is not b-positive, the proof is similar to the previous case with the only
difference, that we must to prove that in any locally injective homomorphism
f : Gφ → T , for no copy Z of the clause gadget holds gf (u1, u0) = gf(u2, u0) =
gf (3, u0) = b. If such gadget Z exists, then necessarily f(u1) = f(u2) = f(u3)
(because of parity controller Y and construction of variable gadgets). Because
of Proposition 5 we have that f(u0) = f(u1) and because of (a, b, c)-blocking
gadget on vertex u0 we have, that the simple path of length a+b+c must allows
decomposition b−k c. But this is clearly not possible and so in every clause, there
exists at least one positive and at least one negative literal. So NAE-3-SAT can
be reduced to the T -LIHom. �
Lemma 2. Let T be a Θ-graph such that a + b �= c and

(a + b)T
a,b,c : a − b, (a − a)

(c)T
a,b,c : b − b, c − c, (a − a)

then T -LIHom is NP-complete.

Lemma 3. Let T be a Θ-graph such that a + b �= c and
(a + b)T

a,b,c : a − b, (a − a)
(c)T

a,b,c : a − b, c − c, (a − a)
then T -LIHom is NP-complete.

While in Lemmas 1, 2 and 3 we reduced 3-SAT, resp. NAE-3-SAT to the
T -LIHom, in the next Lemmas 4, 5, 6 and 7, the NP-complete problem of
determining, if there exists a covering projection from a (simple) graph to the
weight graph is reduced to the T -LIHom. The weight graph is a multigraph on
vertices C and D joined by one edge and one loop at each of them. It is known,
that covering projection (or simply cover) from a graph G = (V, E) to the weight
graph exists if and only if G is cubic and we can split the set of vertices V to
two sets V1 and V2 such, that every vertex in V1 has exactly two neighbors in V1
and every vertex in V2 has exactly two neighbors in V2.

Lemma 4. Let T be a Θ-graph where
(c)T

a,b,c : a −k b, c − c, (b − b) or (c)T
a,b,c : a −k b, c − c, (a − a)

then T -LIHom is NP-complete.
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Lemma 5. Let T be a Θ-graph for which l ≥ 2. If there exists positive integer
p such that

(p)T
a,b : a −c a, b −k b

then T -LIHom is NP-complete.

Lemma 6. Let T be a Θ-graph where
(a + c)T

a,b,c : a − c, b −c b, (a − a), (a − b)
then T -LIHom is NP-complete.

Lemma 7. Let T be a Θ-graph where
(c)T

a,b,c : a −k a, a −k b, b −k b, c − c
then T -LIHom is NP-complete.

It is well known, that we can color edges of every cubic bipartite graph with 3
colors in such a way, that all edges incident with one vertex have distinct colors,
while determine, if such an edge 3-coloring exists for general cubic graphs is NP-
complete problem. However, deciding if a given precoloring of a cubic bipartite
graph can be extended to the proper edge 3-coloring of the whole graph is also
NP-complete [3]. We prove Lemmas 8, 9 and 10 by reducing this problem to
T -LIHom.

Lemma 8. Let T be a Θ-graph where
(c)T

a,b,c : a −c b, c − c, (b − b)
then T -LIHom is NP-complete.

Lemma 9. Let T be a Θ-graph where
(a + c)T

a,b,c : a − c, b −k b, (a − a), (a − b), (b −c b)
then T -LIHom is NP-complete.

Lemma 10. Let T be a Θ-graph where k = 1 and
(c)T

a,b,c : a −c a, a −c b, b −c b, c − c

then T -LIHom is NP-complete.

The lemmas are main tools for proving the following two theorems. They clearly
cover all Theta graphs with simple paths of at least three different lengths and
hence imply Theorem 1. Recall that k is the multiplicity of the shortest simple
path a in T .

Theorem 2. Let T be a Θ-graph where k = 1. Then T -LIHom is NP-complete.

Theorem 3. Let T be a Θ-graph where k ≥ 2. Then T -LIHom is NP-complete.
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Abstract. In this paper we obtain parameterized subexponential-time
algorithms for p-Kemeny Aggregation (p-KAGG) — a problem in
social choice theory — and for p-One-Sided Crossing Minimization

(p-OSCM) – a problem in graph drawing (see the introduction for def-
initions). These algorithms run in time O∗(2O(

√
k log k)), where k is the

parameter, and significantly improve the previous best algorithms with
running times O∗(1.403k) and O∗(1.4656k), respectively1. We also study
natural “above-guarantee” versions of these problems and show them to
be fixed parameter tractable. In fact, we show that the above-guarantee
versions of these problems are equivalent to a weighted variant of p-
Directed Feedback Arc Set. Our results for the above-guarantee
version of p-KAGG reveal an interesting contrast. We show that when
the number of “votes” in the input to p-KAGG is odd the above guaran-
tee version can still be solved in time O∗(2O(

√
k log k)), while if it is even

then the problem cannot have a subexponential time algorithm unless
the exponential time hypothesis fails (equivalently, unless FPT=M[1]).

Keywords: Kemeny Aggregation, One-Sided Crossing Minimization,
Parameterized Complexity, Subexponential-time Algorithms, Social
Choice Theory, Graph Drawing, Directed Feedback Arc Set.

1 Introduction

In this paper we study problems from two different areas of algorithmics: p-
Kemeny Aggregation (p-KAGG) — a problem in computational social choice
theory — and p-One-Sided Crossing Minimization (p-OSCM) — a problem
in graph drawing — in the realm of parameterized complexity2.

1 Karpinski and Schudy [24] have, independently of this work, recently obtained an
algorithm for p-KAGG that runs in O∗(2O(

√
k)) time.

2 We use the prefix p- to denote parameterized problems.
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Kemeny Aggregation: Preference lists are extensively used in social science sur-
veys and voting systems to capture information about choice. In many such
scenarios there arises the need to combine the data represented by many lists
into a single list which reflects the opinion of the surveyed group as much as
possible. The p-KAGG problem was introduced by Kemeny [25,26] to abstract
out the problem of combining many preference lists into one. This problem ap-
pears in a variety of applications, such as in breeding problems in agronomy [21].
In p-KAGG we are given a set of permutations (also called votes) over a set of
alternatives (also called candidates), and a positive integer k, and are asked for a
permutation π of the set of candidates, called an optimal aggregation, such that
the sum of the Kendall-Tau distances (KT -distances) of π from all the votes is
at most k. The KT -distance between two permutations π1 and π2 is the number
of pairs of candidates that are ordered differently in the two permutations and is
denoted by KT -dist(π1, π2). The problem is known to be NP-complete [5] and
admits polynomial time approximation schemes (PTASs) [27]. Betzler et al. [6]
considered this problem from the point of view of parameterized algorithms and
obtained an algorithm that runs in time O∗(1.53k) 3. More recently Simjour [31]
obtained an algorithm for the problem that runs in time O∗(1.403k). Very re-
cently, Karpinski and Schudy [24] obtained an algorithm for p-KAGG that runs
in O∗(2O(

√
k)) time.

One Sided Crossing Minimization: The graph drawing problem that we are
interested in is the p-OSCM problem, which is a key ingredient of the well-known
“Sugiyama approach” to layered graph drawing [32]. An input to this problem
consists of a bipartite graph G = (V1, V2, E), a permutation π of V1, and a
positive integer k. The vertices of V1 are placed on a line, also called a layer, in
the order induced by π. The objective is to check whether there is a permutation
πm of V2 such that, when the vertices of V2 are placed on a second layer parallel
to the first one in the order induced by πm, then drawing a straight-line segment
for each edge in E will introduce no more than k pairwise edge crossings. This
seemingly simple problem is NP-complete [18], even on sparse graphs [29].

The study of the parameterized algorithmics of graph drawing problems was
initiated by Dujmović et al [12], and several new generic results were later ob-
tained by Dujmović and others [13]. Dujmović and Whitesides [16] investigated
the p-OSCM problem and obtained an algorithm for this problem which runs
in time O∗(1.6182k). This was later improved to O∗(1.4656k) by Dujmović et
al. [15]. There has been a similar race to obtain better approximation algorithms
for the problem. To the best of our knowledge, the current best approximation
factor for p-OSCM is 1.4664, due to Nagamochi [30].

Our Results. We obtain O∗(2O(
√

k log k))-time algorithms for both p-KAGG and
p-OSCM. These significantly improve the previous best algorithms with run-
ning times O∗(1.403k) and O∗(1.4656k), respectively. Both of our algorithms
are based on modeling these problems as the p-Weighted Directed Feed-
back Arc Set (p-WDFAS) problem. In p-WDFAS we are given a directed
3 The O∗ notation suppresses polynomial terms in the expression.
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(multi)graph D = (V, A), a weight function w : A → R+ and a positive integer
k, and the objective is to find a set of arcs F ⊆ A of total weight at most k
such that deleting F from D makes D a directed acyclic graph; such an F is
called a feedback arc set of D. Both p-KAGG and p-OSCM have been modeled as
p-WDFAS in earlier work as well [1,31,32]; the novelty in our modeling is that it
allows us to work with p-WDFAS on “tournament–like” structures. We call this
specialized problem p-FAST (parameterized Feedback Arc Set on Tournament-
like structures). A tournament is a digraph in which between every two vertices
there is exactly one arc. By a tournament-like structure, we mean a directed
(multi)graph on n vertices that contains a tournament on n vertices as a sub-
graph. Our modeling allows us to use the chromatic-coding technique recently
developed by Alon et al. [3], which they used to obtain the first subexponential
time algorithm for p-WDFAS on tournaments.

Very recently, Karpinski and Schudy [24] have obtained a faster algorithm
for a special case of p-WDFAS restricted to complete digraphs where, for every
two vertices u, v in the digraph, w(uv) + w(vu) = 1 (the probability constraint).
This algorithm runs in O∗(2O(

√
k)) time. Using essentially the same modeling

as we use for p-KAGG, they show that p-KAGG can be solved in O∗(2O(
√

k))
time. As far as we know, the other problems that we deal with in this paper
cannot be modeled as this version of p-WDFAS, and so do not benefit from this
improvement in its running time.

We also study natural “above-guarantee” versions of these problems and show
them to be fixed parameter tractable. We show that the above-guarantee versions
of p-KAGG (A-p-KAGG) and p-OSCM(A-p-OSCM) are both equivalent to p-
WDFAS and hence both have algorithms that run in time O∗(2O(k log k)) [9]. A
finer analysis of A-p-KAGG reveals an interesting contrast in its running time:
if the number of votes in the input to p-KAGG is odd, then A-p-KAGG can still
be solved in time O∗(2O(

√
k log k)), while if it is even, then the problem cannot

have any subexponential-time algorithm unless the exponential time hypothesis
(ETH) is false [22], or equivalently [19], unless FPT=M[1].

It is also worth mentioning that our reduction from p-OSCM to p-WDFAS
on tournaments implies a PTAS for the graph drawing problem. To summarize,
we analyze a common feature of p-KAGG and p-OSCM to provide new insights
and findings of interest to both the Graph Drawing community and the Social
Choice community.

2 Preliminaries

A parameterized problem Π is a subset of Γ ∗ × N, where Γ is a finite alpha-
bet. An instance of a parameterized problem is a tuple (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed-parameter
tractability (FPT) which means, for a given instance (x, k), decidability in time
O(f(k) · p(|x|)), where f is an arbitrary function of k and p is a polynomial in
the input size.
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Let Π1, Π2 be two parameterized problems. A parameterized reduction from
Π1 to Π2 is an algorithm that takes an instance (x, k) of Π1 as input, runs in
time O(f(k) · p(|x|)), and outputs an instance (y, �) of Π2 such that � is some
function of k alone and (x, k) is a YES instance of Π1 if and only if (y, �) is a
YES instance of Π2.

A tournament is a directed graph in which there is exactly one directed arc be-
tween every two vertices. A feedback arc set in a tournament is a set of arcs whose
reversal results in a DAG. A tournament-like graph is a directed (multi)graph
on n vertices, for some n ∈ N, which contains a tournament on n vertices as a
subgraph.

3 FPT Algorithms for p-KAGG

Let S be a finite set, and let π1, π2 be two permutations of S. For u, v ∈ S, we
define

dπ1
π2

(u, v) =

{
0 if π1 and π2 rank u and v in the same order
1 otherwise

The Kendall-Tau distance (KT-distance) of π1 and π2 is defined as:
KT -dist(π1, π2) =

∑
{u,v}⊆S dπ1

π2
(u, v).

Let C be a set of candidates and V a set of votes over C. For any permutation
r of C, the Kemeny Score of r with respect to V is defined as: KS(r, V ) =∑

π∈V KT -dist(r, π). Observe that

KS(r, V ) =
∑
π∈V

KT -dist(r, π)=
∑
π∈V

∑
{u,v}⊆C

dr
π(u, v)=

∑
{u,v}⊆C

∑
π∈V

dr
π(u, v) (1)

3.1 Parameterized Reduction from p-KAGG to p-WDFAS

We now describe a parameterized reduction from p-KAGG to p-WDFAS, briefly
mentioned by Betzler et al. [6], which runs in polynomial time and takes the
parameter from k to k. Let (C, V, k) be an instance of p-KAGG. In what follows,
we assume without loss of generality that |V | ≥ 1. We construct a digraph G
such that (C, V, k) is a YES instance of p-KAGG if and only if G has a feedback
arc set of weight at most k. We set the vertex set of G to be the set C of
candidates. For each vote πi ∈ V and for each pair of vertices (u, v) of G, we add
a new arc with weight 1 from u to v in G if and only if u appears before v in πi

(equivalently, when u is preferred over v by πi). This completes the construction;
the parameter is k.

Fix a vote πi ∈ V . For each pair of candidates u, v ∈ C, πi prefers exactly
one of these candidates over the other. Thus, for any two vertices u, v of G, each
vote contributes exactly one arc between u and v in G. As a consequence, we
have:
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Observation 1. Let G be the digraph constructed from an instance (C, V, k) of
p-KAGG as described above. For any two vertices u, v of G, let i be the number
of arcs in G from u to v, and j the number of arcs from v to u. Then i+j = |V |.
The next two claims show that the reduction is sound.

Claim 1. Let (C, V, k) be a YES instance of p-KAGG, and let G be the digraph
constructed from (C, V, k) as described above. Then G has a feedback arc set of
weight at most k.

Proof. Since (C, V, k) is a YES instance of p-KAGG, there exists a permutation
r of the set C such that

∑
π∈V KT -dist(r, π) ≤ k. For u, v ∈ V (G), let ruv be

the set of arcs in G between u and v that are oriented contrary to the direction
implied by r. That is, if u appears before v in r, then ruv consists of all arcs from
v to u in G; if u appears after v in r, then ruv consists of all arcs from u to v
in G. Using Equation 1, we get

∑
{u,v}⊆C

∑
π∈V dr

π(u, v) ≤ k. By construction,
this implies

∑
{u,v}⊆V (G) |ruv | ≤ k.

That is, there are at most k arcs in G, each of weight exactly 1, that are
oriented contrary to the directions implied by r. Reversing these arcs, we get a
digraph G′ in which every arc is oriented according to the direction implied by r.
Since r is a permutation of V (G) = V (G′), it follows that G′ is acyclic. �
Claim 2. Let G be the digraph constructed from an instance (C, V, k) of p-
KAGG as described above. If G has a feedback arc set S of weight at most k,
then (C, V, k) is a YES instance of p-KAGG.

Proof. Note that since each arc in G has weight exactly 1, S contains exactly k
arcs. Consider the DAG G′ obtained from G by reversing the arcs in S. Note that
this operation preserves the number of arcs between any pair of vertices. From
Observation 1, and since G′ is a DAG, between each pair u, v of vertices of G′

there are exactly |V | arcs, all of which are in the same direction. The arcs of G′

thus define a permutation r of C, where for any u, v ∈ C, u appears before v in r
if and only if there is an arc (in fact, |V | arcs) from u to v in G′. For u, v ∈ V (G),
let ruv be the set of arcs between u and v in G that are oriented contrary to the
direction implied by r. Then ∪{u,v}⊆V (G)ruv = S,

∑
{u,v}⊆V (G) |ruv| = |S| ≤ k,

and from this and the construction we get
∑

{u,v}⊆C

∑
π∈V dr

π(u, v) ≤ k. From
Equation 1 it follows that KS(r, V ) ≤ k, and so (C, V, k) is a YES instance of
p-KAGG. �
The above reduction can clearly be done in polynomial time, and the number
of vertices in the reduced instance (G, k) is equal to the number of candidates
|C| in the input instance (C, V, k). Further, the reduced instance has at least
one arc (in fact, exactly |V | arcs) between every pair of vertices. Let H be the
edge-weighted digraph obtained from G by replacing parallel arcs with single
weighted arcs in the natural way. That is, if there are i > 0 arcs from u to v in
G, then H contains a single arc of weight i from u to v. It is easy to verify that
H has a feedback arc set of weight at most k if and only if G has a feedback arc
set of weight at most k. Hence from Claims 1 and 2 we have
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Lemma 1. Given an instance (C, V, k) of p-KAGG, we can construct, in poly-
nomial time, an equivalent instance (G, k) of p-WDFAS where G is a tournament-
like graph and |V (G)| = |C|.

3.2 A Subexponential FPT Algorithm for p-KAGG

Our algorithm is based on the observation that the algorithm of Alon et al. [3] for
p-WDFAS on tournaments also works for tournament-like graphs. The algorithm
presented in [3] starts by preprocessing the instance and obtains an equivalent
instance with at most O(k2) vertices in polynomial time. That is, given a tourna-
ment T and a positive integer k, in polynomial time the preprocessing algorithm
either concludes that T does not have a feedback arc set of weight at most k or
finds a new tournament T ′ with O(k2) vertices and k′ ≤ k such that the original
tournament T has a feedback arc set of weight at most k, if and only if T ′ has a
feedback arc set of weight at most k′. This preprocessing allows them to assume
that the instance where they actually apply the subexponential time algorithm
is of size O(k2) only, which is integral to their time analysis. Their preprocessing
can also be applied to tournament-like graphs by allowing both directed cycles of
length two and triangles in the reduction rules proposed in [3, Lemma 1]. So we
always first apply these preprocessing rules and obtain a tournament-like graph
on O(k2) vertices. Let the preprocessed tournament-like graph be T = (V, A).

To obtain our algorithm we also use universal coloring families introduced
in [3]. For integers m, k and r, a family F of functions from [m] to [r] is called
a universal (m, k, r)-coloring family if for any graph G on the set of vertices [m]
with at most k edges, there exists an f ∈ F which is a proper vertex coloring of
G. The following result gives a bound on the size of universal coloring families.

Proposition 1. [3] For any n > 10k2 there exists an explicit universal (n, k,

O(
√

k))-coloring family F of size |F| ≤ 2O(
√

k log k) log n.

We enumerate each function in the universal coloring family and then color the
vertices of T with these functions. Observe that since the number of arcs possible
in the solution is at most k, there exists a function f ∈ F such that no end-
points of the arc in the solution is colored with same color, that is, no arc of
the solution is monochromatic. Now using the dynamic programming algorithm
proposed in [3, Lemma 3] we can find a feedback arc set of weight at most k of
T , if there exists one, in time O(2O(

√
k log k)). This yields the following theorem.

Theorem 1. The p-Kemeny Aggregation problem with n candidates can be
solved in 2O(

√
k log k) + nO(1) time.

This is a significant improvement over the previous best known algorithm for
p-Kemeny Aggregation which runs in O∗(1.403k) time [31]. Very recently,
Karpinski and Schudy [24] have, by (1) developing an O∗(2O(

√
k))-time algorithm

for a special version of p-WDFAS and (2) reducing p-KAGG to this version of
p-WDFAS, obtained an algorithm for p-KAGG that runs in O∗(2O(

√
k)) time.
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3.3 FPT Algorithms for A-p-KAGG

Consider an instance of the p-KAGG problem. Let π be any permutation of the
candidate set C, let V be the set of all votes and let KS(π, V ) denote the sum
of the KT -distances of π from all the votes in the set V . Suppose A and B are
two candidates in the input, and let i votes prefer A over B and j votes prefer B
over A. Clearly, the pair {A, B} contributes at least min(i, j) to KS(π, V ). For
{u, v} ⊆ C, let I(u, v) (respectively J(u, v)) be the number of votes that rank
u before v (respectively v before u), and let g =

∑
{u,v}⊆C min{I(u, v), J(u, v)}.

Then KS(π, V ) ≥ g, and so in the natural above-guarantee version of p-KAGG,
which we call A-p-KAGG, we ask for a permutation π of C such that KS(π, V ) ≤
g + k.

We now describe a reduction from A-p-KAGG to p-WDFAS, originally due
to Dwork et al. [17]. When the number of votes in the input instance is odd
(A-p-KAGG(odd)), the reduced instance is a tournament with positive integral
edge weights. When the number of votes is even (A-p-KAGG(even)), the reduced
instance is not necessarily a tournament. In both cases, the parameter goes from
k to k. That is, the reduction takes A-p-KAGG(odd) to p-WDFAS on tourna-
ments, and A-p-KAGG(even) to p-WDFAS in general digraphs, in both cases
preserving the parameter. Together with the subexponential FPT algorithm of
Alon et al. [3] for p-WDFAS on tournaments, this implies a subexponential FPT
algorithm for A-p-KAGG(odd). In the next subsection we describe a parameter-
ized reduction from p-WDFAS to A-p-KAGG(even) in which the parameter goes
from k to 2k. This implies that A-p-KAGG(even) does not have a subexponential
FPT algorithm unless the exponential time hypothesis is false.

Let (C, V, k) be an instance of A-p-KAGG. We construct an instance (H, k)
of p-WDFAS in two stages, as follows.

Stage 1. We construct a digraph G exactly as in the previous reduction. We set
the vertex set of G to be the set C of candidates. For each vote πi ∈ V and for
each pair of vertices (u, v) of G, we add a new arc of weight 1 from u to v in G
if and only if u appears before v in πi (equivalently, when u is preferred over v
by πi).

Stage 2. We now prune the “above-guarantee” arcs of G. We process every two-
vertex subset {u, v} of G as follows: Let there be a total of i arcs from u to v
and j arcs from v to u in H . Assume without loss of generality that i ≥ j. We
replace all the arcs between u and v by a single arc of weight i − j from u to v.
If i − j = 0, then we just remove all the arcs between u and v, and do not add
any arc to replace them. We repeat this for every 2-subset of vertices of G to
obtain a digraph H with integer-weighted arcs. (H, k) is the desired instance of
p-WDFAS.

Suppose the number |V | of votes in the input instance (C, V, k) is odd. Then,
with the same notation as above, i + j = |V | is odd for each 2-subset {u, v}
of G (Observation 1), and so i > j. Thus there is exactly one arc between ev-
ery two vertices of H , and so H is a tournament. If |V | is even, then it is possible
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that i = j for some {u, v} ⊆ V (G), and so in H there will not be any arc
between u and v. Hence when |V | is odd, H is not necessarily a tournament or
a tournament-like graph.

Dwork et al. [17] show that the above reduction is sound; see also Mahajan
et al. [28]:

Lemma 2. [17,28] Let (H, k) be the instance of p-WDFAS obtained from an in-
stance (C, V, k) of A-p-KAGG as described above. Then (H, k) is a YES instance
of p-WDFAS if and only if (C, V, k) is a YES instance of A-p-KAGG.

The fastest known FPT algorithm for p-WDFAS runs in O∗(2O(k log k)) time [9],
and the fastest known FPT algorithm for p-WDFAS on tournaments runs in
2O(

√
k log k) + nO(1) time [3]. Hence from Lemma 2 we get

Theorem 2. The A-p-KAGG problem with n candidates can be solved in
2O(

√
k log k) + nO(1) time when the number of votes is odd, and in O∗(2O(k log k))

time when the number of votes is even.

3.4 A Lower Bound for A-p-KAGG(even)

We now argue that the A-p-KAGG(even) problem does not have a subexponen-
tial FPT algorithm unless the exponential time hypothesis (ETH) is false. To
see this, consider the following sequence of two reductions:

Vertex Cover → Directed Feedback Arc Set → A-p-KAGG

The first reduction is due to Karp [23], and the second is due to Dwork et al.
[17, Theorem 14]. This sequence of reductions take an input instance (G, k) of
Vertex Cover where G is a graph on n vertices and m edges and k ≤ n is a
positive integer, and outputs an instance (C, V, 2k) of A-p-KAGG(even) where
|C| = 3n + 2m, |V | = 4, and the guarantee is g = 2(

(2n
2

)
+

(
n+2m

2

)
+ n + 2m);

see the references for details. Suppose A-p-KAGG(even) has an algorithm that
runs in time O∗(2o(k)). Since k = O(n) throughout the reduction, we can then
use this algorithm to solve Vertex Cover in O∗(2o(n)) time: We first apply
the above sequence of reductions and then apply the supposed subexponential
FPT algorithm for A-p-KAGG(even) to the resulting instance. This would in
turn imply that ETH is false [22], and so we have

Theorem 3. The A-p-KAGG problem with an even number of votes cannot be
solved in O∗(2o(k)) time unless ETH is false.

4 FPT Algorithms for p-OSCM

Let (G = (V1, V2, E), π, k) be an instance of p-OSCM. In what follows, we assume
without loss of generality that in G, every vertex in V2 has at least one neighbor
in V1.
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4.1 Parameterized Reduction from p-OSCM to p-WDFAS

We now describe a parameterized reduction from p-OSCM to p-WDFAS which
runs in polynomial time and takes the parameter from k to k. Let (G=(V1, V2, E),
π, k) be an instance of p-OSCM. For two vertices u, v ∈ V2, let Cuv denote the
number of crossings of edges incident to u with edges incident to v, when u
appears before v in the second layer. It is known [16] that for a given graph
G and a fixed ordering π of the vertices of V1, Cuv is a constant and can be
computed in polynomial time. We construct a digraph H as follows: H has one
vertex for each vertex of V2. For {u, v} ⊆ V2, we draw the arc uv with weight
Cuv if Cuv > 0.

Claim 3. Let (G = (V1, V2, E), π, k) be an instance of p-OSCM, and let H be the
digraph obtained from this instance as described above. (G = (V1, V2, E), π, k)
is a YES instance of p-OSCM if and only if H has a feedback arc set of weight
at most k.

Proof. Suppose (G = (V1, V2, E), π, k) is a YES instance of p-OSCM, and let πm

be a permutation of V2 that witnesses this fact. Place the vertices of H on a line
in the order induced by πm: u is to the left of v if and only if u comes before v
in πm. From the construction it is clear that the sum of the weights of the arcs
in H that go from left to right is at most k, and so these arcs together form a
feedback arc set of H of weight at most k.

Now suppose S is a minimal feedback arc set of H of weight at most k. Let
π′ be the unique permutation of V2 such that if we place the vertices of H on
a line in the order specified by π′, then the arcs that go from left to right are
exactly the arcs in S. It is easily verified that if the vertices of V2 are placed on
the second layer in the order specified by π′, then the number of crossings will
be at most k. �
The above reduction can clearly be done in polynomial time, and the graph H
in the reduced instance (H, k) has |V2| vertices, where the p-OSCM instance is
(G = (V1, V2, E), π, k). Further, it is not difficult to see that the reduced instance
has at least one arc between every pair of vertices. Hence from Claim 3 we have

Lemma 3. Given an instance (G = (V1, V2, E), π, k) of p-OSCM, we can con-
struct, in polynomial time, an equivalent instance (H, k) of p-WDFAS where H
is a tournament-like graph and |V (H)| = |V2|.

4.2 A Subexponential FPT Algorithm for p-OSCM

From Lemma 3, and using the same argument as in Section 3.2, we get

Theorem 4. The p-One-Sided Crossing Minimization problem can be solved
in 2O(

√
k log k) + nO(1) time, where n is the number of vertices in the layer that is

not fixed.
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4.3 Lower and Upper Bounds for A-p-OSCM

Let (G = (V1, V2, E), π, k) be an instance of p-OSCM. For two vertices u, v ∈ V2,
let Cuv be defined as in Section 4.1. It is known that the minimum possible
number of crossings is g =

∑
{u,v}⊆V2

min(Cuv , Cvu) [16]. So in the natural
above-guarantee version of p-OSCM, which we call A-p-OSCM, we ask for a
permutation π of V2 such that the number of crossings induced by π is at most
g + k.

Given an instance (G = (V1, V2, E), π, k) of p-OSCM, the well-known penalty
graph construction of Sugiyama et al. [32] constructs a arc-weighted digraph H
with V2 as the vertex set, and there is an arc in H from u to v with weight
Cvu − Cuv if Cuv < Cvu. It is easy to verify that there is a permutation πm of
V2 such that the number of crossings induced by πm is at most g + k if and only
if H has a feedback arc set of weight at most k. Thus, using the algorithm in [9]
we have

Theorem 5. The A-p-OSCM problem can be solved in O∗(2O(k log k)) time.

Muñoz et al. describe a reduction from Directed Feedback Arc Set to p-
OSCM that in fact is a parameterized reduction from Directed Feedback
Arc Set (where the parameter k is the solution size) to A-p-OSCM which
takes the parameter from k to 2k [29, Proof of Theorem 1]. Hence by a similar
argument as in Section 3.4 we have

Theorem 6. The A-p-OSCM problem cannot be solved in O∗(2o(k)) time unless
ETH is false.

5 Conclusion and Future Work

In this paper we modeled two problems, from two different domains, as the
weighted feedback arc set problem on tournament-like structures. This allowed
us to utilize the recently developed technique of chromatic-coding [3] to obtain
subexponential-time algorithms, that is, algorithms that run in time O∗(c

√
k log k),

for p-Kemeny Aggregation and p-One-Sided Crossing Minimization. The
running time of these algorithms might be seen as a breakthrough compared to
the hitherto best published algorithms, which had running times of the form
roughly O∗(1.5k). It is worth mentioning that apart from problems on graphs of
bounded genus, only very few problems are known to have running times of the
form O∗(c

√
k) [2,10,11].

Our approach also allowed us to show that the above-guarantee versions of
these problems are fixed parameter tractable with algorithms having running
times of the form O∗(ck log k). We also show that the above-guarantee versions
of these problems cannot have algorithms that run in O∗(2o(k)) time, unless the
well known exponential time hypothesis fails.

We believe that our approach will generalize to other related problems con-
sidered in the literature. We cite a few concrete examples in the following.
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– Çakiroglu et al. [8] considered drawing graphs with edge weights. If two edges
cross, then the crossing receives as a weight the product of both edge weights
involved. The overall weight of a crossing is then the sum of all respective
crossing weights, and the goal is to minimize this weight.

– Forster [20] considered the so-called constraint variant where the ordering
of some of the vertices of the free layer is already fixed (as part of the
input). This can be clearly modeled by the so-called positive weighted
completion of an ordering (PWCO) as studied in [14]. There, also an
FPT result was announced, with a running time of O∗(1.52k).

– In radial drawings of graphs, also the restricted (NP-complete) variant called
radial one-sided two-level crossingminimization has been considered
[4].

It also might be interesting to consider the crossing minimization variant of these
problems that attempts to minimize the maximum number of crossings per edge
as proposed in [7] from the viewpoints of fixed parameter tractability and of
approximability.
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Abstract. In the reverse complement (RC) equivalence model, it is not
possible to distinguish between a string and its reverse complement. We
show that one can still reconstruct a binary string of length n, up to
reverse complement, using a linear number of subsequence queries of
bounded length. A simple information theoretic lower bound proves the
number of queries to be tight. Our result is also optimal w.r.t. the bound
on the query length given in [Erdős et al., Ann. of Comb. 2006].

1 Introduction

Reconstructing a string over a finite alphabet Σ from information about its
subsequences is a classic string problem, with applications ranging from coding
theory to bioinformatics. Because of the confusion in terminology in the litera-
ture, we want to give a precise definition right here: Given two strings s, t over
Σ, s = s1 . . . sn and t = t1 . . . tm, we say that t is a subsequence (often called sub-
word) of s if there exist 1 ≤ i1 < i2 < . . . < im ≤ n such that t = si1si2 . . . sim .
It was shown by Simon in 1975 [12] that two strings of length n are equal if their
subsequences up to length �n/2 + 1 coincide. The proof, as given in Chapter
6 of the classic Lothaire book [11] can be easily adapted to yield an algorithm
which reconstructs the string s of length n, using O(|Σ|n) queries of the type
“Is u a subsequence of s?” Here, u is a string of length at most �n/2 + 1.

In this paper, we consider this problem in the RC-equivalence model, which is
motivated by reverse complementation of DNA. Our alphabet consists of pairs
of characters (a, ā), called complement pairs, and for every string s over Σ,
s = s1 . . . sn, we define its reverse complement as s̃ = s̄n . . . s̄1. Two strings s, t
are RC-equivalent if s = t or s = t̃. A string u is an RC-subsequence of s if
u or ũ is a subsequence of s. Erdős et al. showed in [4] that two strings s and
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t of length n are equal if and only if all their RC-subsequences up to length
# 2

3 (n + 1)$ coincide. However, no reconstruction algorithm was given.
Here we present such an algorithm for the case of a binary alphabet, i.e.,

where the alphabet consists of two complementary characters. Our algorithm
reconstructs a string s of length n, using O(n) queries of the type “Is u an RC-
subsequence of s?” where u is a string of length at most # 2

3 (n + 1)$. We note
that our algorithm is optimal both w.r.t. the length of the queries, and w.r.t. the
information theoretic lower bound on the number of queries necessary for exact
reconstruction. We also give a simple algorithm for arbitrary alphabets, adapted
from a paper by Skiena and Sundaram [13], where the length of the queries is
not bounded, using O(n log |Σ|) queries.

It should be noted that the problem differs considerably from the classical
model. For example, consider the string s = āb̄aāb. Then aba is not a subsequence
of s, but it is an RC-subsequence, because āb̄ā is a subsequence of s.

The RC-equivalence model can be viewed as a special case of erroneous in-
formation, where the answers to subsequence queries could be either about the
query string or its reverse complement. It is also a special case of a group action
on Σ∗, the set of finite strings over Σ. The search in Σn is substituted by a
search in Σn/∼, where ∼ is the equivalence induced by the group action.

Related work. Most literature deals with the classical, i.e. non-RC, model. In
addition to the papers mentioned above, we want to point to the following.

When the multiset of subsequences is known, then much shorter subsequences
suffice to uniquely identify a string: A string of length n can be uniquely iden-
tified by the multiset of its subsequences of length � 16

7
√

n + 5, as shown by
Krasikov and Roditty [6]. Dud́ık and Schulman [3] give asymptotic lower and
upper bounds, in terms of k, on the length of strings which can be uniquely
determined by the multiset of their subsequences of length k.

Levenshtein [7] investigates the maximal number of common subsequences of
length k that two distinct subsequences of length n can have. Here, subsequences
are regarded as erroneous versions of the original string. The aim is to find how
many times a transmission needs to be repeated, over a channel which allows a
constant number of deletions, to make unique recovery of the original message
possible.

The case where substrings are considered has also received much attention.
Substrings, often called factors, are contiguous subsequences: t is a substring of
s if there are 1 ≤ i ≤ j ≤ n such that t = si . . . sj . The length of substrings of
a string s of length n which are necessary for uniquely determining s depends
on a parameter of s, namely on the maximal length of a repeated substring, as
shown by de Luca and Carpi in a series of papers [2,1]. An algorithm for recon-
struction was given by Fici et al. in [5], while the uniqueness bound for multisets
of substrings was recently shown to be �n

2  + 1 by Piña and Uzcágetui [9].
The problem of reconstructing a string of length n using substring queries

has also been extensively studied in the setting of Sequencing by Hybridization
(SBH), first suggested by Pevzner [8]. Here, a large number of strings of a certain
length are queried in parallel, using a DNA chip, and the resulting answers are



Efficient Reconstruction of RC-Equivalent Strings 351

then used to reconstruct all or parts of the DNA string. A number of different
SBH techniques have been proposed, leading to different string combinatorial
questions. (See, for example, [14,10] for some more recent results.)

2 Preliminaries

By a paired alphabet we understand a finite set Σ = {a1, . . . , a2δ}, for some
integer δ ≥ 1, together with a non-identity involution operation : Σ (→ Σ,
which we call complement. Thus, for each i = 1, . . . , 2δ, there is a j �= i such
that ai = aj . Notice that by definition, ai = ai, for each i.

Let s = s1 . . . sn be a string (or word) over Σ, i.e., s ∈ Σ∗ =
⋃∞

i=0 Σi, where,
following standard notation, Σi = {x1 . . . xi | xk ∈ Σ, for each k = 1, . . . , i},
and Σ0 is the singleton containing only the empty string ε. For each x ∈ Σ we
also set x0 = ε. The reverse complement of s is defined as s̃ = sn sn−1 . . . s1.
Two strings s, t are RC-equivalent, denoted s ≡RC t, if either s = t or s = t̃. For
a string s = s1 . . . sn over the alphabet Σ, we denote by |s| = n the length of s,
and by |s|a = |{i | si = a}| the number of a’s in s, for a ∈ Σ.

Given two strings s, t over Σ, s = s1 . . . sn, t = t1 . . . tm, we say that t is a
subsequence1 of s, denoted by t ≺ s, if there exist 1 ≤ i1 < i2 < . . . < im ≤
n such that t = si1si2 . . . sim . Further, we define t to be an RC-subsequence,
denoted t ≺RC s if and only if t ≺ s or t ≺ s̃, i.e., if t is a subsequence of s or
of its reverse complement. Note that the condition t ≺ s̃ is equivalent to t̃ ≺ s.

Example 1. Our motivating example is the alphabet of the 4 nucleotides (DNA)
Σ = {A, C, G, T} where (A, T) and (G, C) are complement pairs. Let s =
ACCGATTAC. Then s̃ = GTAATCGGT, GTTT �≺ s but GTTT ≺RC s.

We are now ready to state the problem we investigate in the present paper.

The RC-String Identification Problem. Fix a paired alphabet Σ, together
with a string s over Σ, and let n = |s|. For any positive integer T ≤ n, a
T -bounded RC-subsequence query is any t ∈ ⋃T

i=1 Σi. The answer to such a
query is yes (or positive) if and only if t ≺RC s. Otherwise the answer is no (or
negative). Given the alphabet Σ, the size of the string n, and the threshold on
the length of the queries T ≤ n, the RC-String Identification Problem asks for
the minimum number of T -bounded RC-subsequence queries which are sufficient
to determine the pair (s, s̃), for any unknown string s of size n.

We first present an information theoretic lower bound that holds even in the
case of unbounded queries, i.e. if T = n.

Proposition 1 (Lower Bound). Given a string s of size n from an alphabet
Σ. Any deterministic algorithm that identifies s (up to reverse complement) by
asking RC-subsequence queries needs at least n log |Σ| − 1 queries.

1 In the literature, the term ‘subword’ is also common. However, ‘subword’ is also used
to mean a contiguous subsequence. We avoid the term.
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Proof. Upon identifying a string with its reverse complement, there are at least
|Σn|/2 possible distinct strings of length n. Any query t splits the space of
candidate solutions into two parts. Therefore, at least log |Σn|/2 = n log |Σ| − 1
questions are necessary to identify s.

3 Unbounded Query Size

If T = n (i.e., no constraint is set on the length of a query), then it is easy
to reconstruct a string in linear time. We adapt a simple algorithm from [13],
originally developed for the classic case (where queries would answer no if the
subsequence only appears in the reverse complement of the string). Here we give
a proof sketch and defer the precise analysis to the full version of the paper.

Theorem 1. There exists an algorithm for reconstructing a string using
Θ(n log |Σ|) RC-subsequence queries of unbounded length.

Proof. (Sketch.) For the binary case Σ = {a, b}, we first find A := max{|s|a, |s|b}
by asking queries aχ for χ = 1, 2, 3 . . .. Clearly, A = χ − 1 for the first
χ that gives a no answer. Now there are indices 0 ≤ i0, i1, . . . , iA s.t. s =
bi0abi1a . . . abiA−1abiA . We find i0 by asking baA, b2aA, b3aA, etc., then find i1
by asking bi0abaA−1, bi0ab2aA−1 etc. The total number of queries is at most
3
2n + 2.

Now let Σ = {a1, a1, . . . , aδ, aδ}. For each complement pair ai, āi, we first
determine s|i, the longest subsequence of s which consists only of ai’s and āi’s.
This can be done by using the algorithm for the binary case sketched above. Now
we iteratively interleave the projections: first s|1 with s|2, yielding s|1,2, then s|1,2
with s|3,4 etc. Interleaving two strings u,v that only contain characters from
different complement pairs can be done with 2(|u| + |v| + 1) queries using the
same idea as for the binary case, with the following small alteration: Since either
u and v, or u and ṽ have to be interleaved, we start with u and v, and if we get
a contradictory answer at some point, then we start over with u and ṽ (hence
the factor 2). So the total number of queries for interleaving the projections s|i
is at most 2n log δ + 2(δ− 1). The number of queries of the first phase is at most∑δ

i=1(3
2Ai + 2), where Ai = |s|ai + |s|āi , yielding O(n log |Σ|) questions in total,

using the (natural) assumption that |Σ| = O(n).

4 Bounded Query Size (Binary Alphabet)

We now turn to subsequence queries whose length is bounded by a threshold T .
In the following, the alphabet is binary, i.e., Σ = {a, b}, with b = a. The following
result shows that string identification by T -bounded subsequence queries cannot
be attained in general if the threshold T on the size of the subsequence queries
is set below

⌈2
3n

⌉
.

Fact 1 (Erdős et al., 2006 [4]). For any n ≥ 4 there exist two distinct strings
of size n with exactly the same set of subsequences of length up to

⌈2n
3

⌉ − 1.
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This implies that if we are looking for algorithms which are able to reconstruct
any binary string of size n, we must allow queries of size ≥ #2n/3$ .

Any string s over Σ can be written uniquely in its runlength encoded form:

s = ax1by1ax2by2 . . . axρ−1byρ−1axρbyρ , (1)

with x1 and yρ possibly 0, and all other xi, yi > 0. The number of non-zero xi, yi

is the number of runs of s. We denote by A = |s|a the number of a’s and by
B = |s|b the number of b’s in s. In the following we assume that A ≥ B. This is
without loss of generality since otherwise, swap s and s̃. We will denote by ρa

the number of a-runs, and by ρb the number of b-runs of s. Note that both have
value either ρ or ρ − 1. (We have ρa = ρb = ρ − 1 if and only if the string starts
with a b and ends with an a.)

In this section we prove the main result of the paper, which is given in the
following theorem:

Theorem 2. There is an algorithm which reconstructs a binary string s of
length n using O(n) many RC-subsequence queries of length at most

⌈ 2
3 (n + 1)

⌉
.

Notice that this is tight w.r.t. the lower bound of Fact 1 in all cases except where
n is a multiple of 3. Even for these n, a gap of 1 unit is only necessary in the
special case A = 2

3n. In all other cases, our analysis resists the stricter bound of
T = # 2

3n$.
The proof of the theorem is by examining four cases separately. Recall that

A = |s|a, B = |s|b, and T = 2
3 (n+1). The four cases are: 1. A ≥ T , 2. T > A > B,

3. A = B and s1 = sn, and 4. A = B and s1 �= sn. The following simple lemma
will be used to distinguish these cases.

Lemma 1. Let s be a string of length at least 8 over {a, b}, T =
⌈2

3 (n + 1)
⌉
,

and A = |s|a ≥ |s|b. Then,

1. using O(log n) RC-subsequence queries of length at most T , it is possible to
determine the exact value of A = |s|a if A < T , or to establish the fact that
A ≥ T .

2. Moreover, if A < T, then it can be determined whether s starts and ends with
the same character; furthermore, unless A = n

2 and s1 = sn, we can deter-
mine s1 and sn. Altogether we require at most 3 additional RC-subsequence
queries of length at most T .

Proof. 1. Binary search for A, using queries of the form aχ, for χ ∈ [n
2 , T ], will

either return the exact value of A (if A < T ), or will exit with the maximum
size query aT ≺RC s, thus showing that A ≥ T .

2. Notice that if A = B = n
2 , then the query t = ab

n
2 a will return yes if

and only if s1 = sn. If s1 = sn, then, due to the complete symmetry, we cannot
determine the exact nature of s1 and sn. Otherwise, either T > A = B and
s1 �= sn, or T > A > B. In either case, the query baA has length at most T and
will answer positively if and only if s1 = b. Likewise, the query aAb will answer
positively if and only if sn = b.
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Example 2. Let s1 = aababbba. Then s̃1 = baaababb. The query ab4a will return
yes and we can only determine that the first and last characters are equal, but
not what they are. Instead, for s2 = aababbab, we have s̃2 = abaababb, the query
ab4a will return no, and since the query ab4 is positively answered, we know that
the first character is a (and thus the last character is b).

Given a string s and a subsequence t of s, we say that t fixes the direction of s
if t �≺ s̃. If t fixes the direction of s then for any t′ ≺ s, such that t ≺ t′ we also
have that t′ fixes the direction of s. In general, we shall try to identify s by first
finding some sequence t which fixes the direction of s or s̃ and then extending
this t. The importance of “direction-fixing” is that once we have found t which
fixes the direction of s, by asking queries about super-sequences of t we are sure
that the answers to our queries are only about s and not its reverse complement.

The following two statements formalize two simple facts which will be used
repeatedly in the following, thus, for the sake of completeness, we formally state
and prove them here. Let s be fixed for the rest of this section.

Lemma 2. Let t = t1 . . . tm be a sequence which fixes the direction of s.
Fix a character c ∈ Σ. For each i = 1, . . . , m + 1, let γi = min{max{j |
t1 . . . ti−1c

jti . . . tm ≺ s}, T − m}. Then, for each i = 1, . . . , m + 1, we can
determine γi using 2 log γi + 1 queries, or alternatively, using γi + 1 queries. In
particular, we can determine all γi using at most m + 1 +

∑m+1
i=1 γi queries.

Proof. We can determine all the values γi either with one-sided binary search,
using 2 log γi + 1 queries, or with linear search, using γi + 1 queries.

Example 3. Note that the lemma only assumes that t fixes the direction of s,
but not that the positions in s to which the characters of t are matched are also
fixed. Consider the following example. Let s = a10ba10ba10. Then t = aaa fixes
the direction of s. For c = b, we get γ1 = γ2 = γ3 = γ4 = 2. For c = a, we have
γi = min(27, 22) = 22 for all i (since T = 22).

The next lemma says that if there are large a-runs or large b-runs, then there
cannot be many runs.

Lemma 3. Let s = ax1by1 . . . axρbyρ. Assume that there are 1 ≤ i1 < i2 < · · · <
iq ≤ ρ and k ≥ 0, such that xij ≥ T − B − k (resp. yij ≥ T − A − k) for each
j = 1, . . . , q, and for at least one value of j it holds that xij > T − B − k (resp.
yij > T − A − k). Then

ρa ≤ n−B − q(T −B − k− 1)− 1 (resp. ρb ≤ n−A− q(T −A− k − 1)− 1).

Proof. We limit ourselves to showing the argument for ρa, the number of non-
empty a-runs. Since each run counted by ρa has at least one a, we have the
desired inequality:

n − B = A ≥
q∑

j=1

xij + ρa − q ≥ q(T − B − k) + 1 + ρa − q.
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4.1 The Case Where A ≥ T

Since A ≥ T =
⌈2

3 (n + 1)
⌉
, we have that B ≤ n

3 − 2
3 , so 2B + 1 = 2(n−A) + 1 ≤

2
3 (n + 1) ≤ T. This implies that we can ask queries which include B + 1 many
a’s and up to B many b’s. Let β =

⌈
n
3 − 2

3

⌉
, and t = aβ+1. We have B ≤ β and,

therefore, t fixes the direction of s. Notice also that B + β + 1 ≤ T.
By Lemma 2, with t = aβ+1, we can find L = max{j | bjaβ+1 ≺ s} with

O(log L) queries. Likewise, with t = bLaβ+1 we can find R = max{j | bLaβ+1bj ≺
s}, with O(log R) queries.

Notice that in s, between the left-most L many b’s and the right-most R many
b’s, there may be more than β + 1 many a’s. More precisely, with reference to
(1), the previous queries guarantee that there are 1 ≤ i ≤ j ≤ ρ such that∑i−1

k=1 yk = L and
∑ρ

k=j yk = R. Let w be the substring of s between the L
left-most and the R right-most b’s, i.e., w = axibyi · · ·axj . Moreover, let sleft
and sright be such that s = sleftwsright. We know that |sleft|b = L, |sright|b = R,
and |w|a ≥ β + 1. We will first determine all but the first a-run of w and all of
its b-runs, in particular yielding the exact value of B. Then we determine sleft
and sright. For any a-runs that have length at least T −B, their exact value will
be determined during the final stage.

We have aβ+1 ≺ w, and by the definition of L and R we also have that∑ρ
k=i+1 xk ≤ β and xi >

∑ρ
k=j+1 xk. It follows that, for χ = 1, 2, 3 . . . , β, the

query bLaχbaβ+1−χbR answers negatively as long as
∑j

k=i+1 xk < β + 1 − χ. Let
χ∗ be the first value for which the answer to this query is yes, and χ∗ = β + 1 if
the answer is no for all values of χ. It is easy to see that χ∗ = β +1−∑j

k=i+1 xk.
In particular, χ∗ = β + 1 if and only if w does not contain any b’s. In this case,
set w′ = aβ+1.

If χ∗ ≤ β, define t = bLaχ∗
baβ+1−χ∗

bR. By Lemma 2, with t we can find
the value of yk for each k = i, . . . , j − 1. As a side effect, we also determine
the value of xk for k = i + 1, . . . , j. Now we know that bLw′bR ≺ s, where
w′ = aχ∗

byiaxi+1 . . . byj−1axj . In other words, we know w except for its first
a-run, which may be longer than χ∗. We also know B, the number of b’s of s.

Now we turn to sright. Let us denote by w′−a	 an arbitrary sequence obtained
by removing exactly � many a’s from w′ and leaving the rest as it is. Now
we can use queries of the form bL(w′ − a	)bra	bR−r with r = 1, . . . , R and
� = 1, 2, 3 . . . , in order to determine the values of xk, for each k = j + 1, . . . , ρ.
To see this, it is enough to notice that each such query contains β + 1 many
a’s, therefore it can only be a subsequence of s and not of s̃. Moreover, we
notice that in order to determine xk we need to receive a positive answer to the
query bL(w′ − axk)b

∑k−1
�=j y�axkbR−

∑k−1
�=j y� and a negative answer to the query

bL(w′ − axk−1)b
∑k−1

�=j y�axk+1bR−
∑k−1

�=j y� . Because of
∑ρ

k=j+1 xk < β + 1, both
these queries have length not larger than T. Again, by determining xk for each
k = j + 1, . . . , ρ, we also determine yk for each k = j + 1, . . . , ρ.

By an analogous procedure, we can determine sleft and the first a-run of w,
i.e. all the values xk, for k = 1, . . . , i, where xk ≤ T − B. Again, in this process,
we also determine the size of the runs of b’s, i.e., the yk, for each k = 1, . . . , i−1.
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Finally, we compute the size of the a-runs in s that are larger than T − B.
Notice that for at most two indices we can have xk ≥ T − B, for otherwise
their total sum would be larger than n, the total length of the string. If there
is exactly one such xk, then we can compute it as xk = n − B − ∑

	 �=k x	.
Otherwise, let 1 ≤ i1 < i2 ≤ i be such that xi1 , xi2 ≥ T − B. Then it must hold
that n − B −∑

	 �=i1,i2
x	 = 2(T −B), and thus, xi1 , xi2 = T −B. Otherwise, we

would have that x1 + x2 > 2(T − B), and using Lemma 3, with k = 0, we can
then conclude that ρa ≤ n − 2T + B + 1 ≤ −1, a contradiction.

Notice that we use at most one query per character of s plus at most one query
for each run of s. Therefore, in total we have O(

∑
i(xi +1)+

∑
i(yi +1)) = O(n).

4.2 The Case T > A > B

By Lemma 2 with t = aA and c = b, with O(n) queries we can determine exactly
yk for each k such that yk < T − A. In the process, we also find out exactly xk

for each k = 1, . . . , ρa. The only problem now is to determine those runs of b’s
which have length at least T − A.

Let i1, . . . , iq be the q distinct indices of the runs of b’s such that yij ≥ T −A,
so we have not yet been able to determine their exact value. Clearly, if q = 1, we
can compute yi1 = B−∑

	 �=i1
y	. Likewise, if B−∑

	 �=i1,...,iq
y	 = q(T −A), then

we know yij = T −A for all ij . Otherwise, it must hold that
∑q

j=1 yij > q(T −A).
Let yi1 ≥ yi2 ≥ · · · ≥ yiq and α > 0 such that yi1 = T − A + α. We have

ρb ≤ B − (yi1 + yi2) + 2 = n − A − (T − A + α) − yi2 + 2 ≤ n

3
+

4
3
− α − yi2 .

Now, consider the sequence tχ = (ab)i2−1abχ(ab)ρb−i2 . For each χ = T − A +
1, T − A + 2, . . . , yi2 + 1, such a string has length at most T, since we have

|tχ| = 2ρb+χ−1 ≤ 2ρb+yi2 ≤ 2n

3
+

8
3
−2α−2yi2+yi2 =

2n

3
+

8
3
−2α−yi2 ≤ T−1,

(2)
where the last inequality follows from the fact that α, yi2 ≥ 1.

We will finish the proof for the case T > A > B by distinguishing four cases
according to whether s1 = sn and whether s1 = a or s1 = b. (Note that due
to the assumption A > B we cannot assume w.l.o.g. the identity of the first
character.)

Case 1. If s1 = sn = b, then ρb = ρ, we can remove the first a from tχ, and the
new query fixes the direction of s. This query has length at most T , so we can
identify yi2 . By the same argument, we can also identify yij , for each j = 3, . . . , q,
since yij ≤ yi2 , for each such j. Finally we can determine yi1 by subtraction.

Case 2. If s1 = sn = a, then ρb = ρ − 1. Now we have to add an a at the end
to get a query which fixes the direction of s, and its length is again at most T .
The argument is then analogous to Case 1.

Case 3. Let s1 �= sn and s1 = b. This case is analogous to Case 4. below, replacing
tχ by uχ = (ba)i2−1bχa(ba)ρb−i2 and all following sequences accordingly.
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Case 4. As the final case we have s1 �= sn and s1 = a, so ρb = ρ. We will now
look at the value of X := xρ−i2+1. Note that any query tχ with χ ≤ X would
answer yes because it would be interpreted as t̃χ. Notice that we know the value
of X. If X < T − 2ρ, then we ask query tχ for χ = X + 1. If the answer is yes,
we continue with X + 2, X + 3 . . . until we receive the first no, and we are done,
since the last χ where tχ answered positively was equal to yi2 . By (2), these
queries do not exceed the threshold.

Otherwise, if the query tX+1 answered no or if X > T − 2ρ, then we know
that yi2 ≤ X. In this case, we use the following queries to determine yi2 .

Let w.l.o.g. i2 ≤ ρ − i2 + 1 (otherwise exchange the roles of i2 and ρ − i2 + 1
in the formulas below). Define t′ξ = (ab)i2−1aξ(ba)ρ−2i2+1bξ+1(ab)i2−1. One can
verify that for each ξ = T − A, T − A + 1, . . . , yi2 , we have

|t′ξ| ≤ 2ρb + 2yi2 − 1 ≤ 2n

3
+

2
3
− 2α + 1 ≤ T + 1 − 2α ≤ T − 1, (3)

where the last inequality follows from the fact that α ≥ 1.
We can ask queries t′ξ until either we receive a negative answer or we cannot

enlarge it further because it would violate the bound T. The largest value of ξ
for which we receive a positive answer to query t′ξ correctly gives the value of
yi2 . Clearly this is true if we also receive a negative answer, for the next larger
value. If, instead, we had to stop because of the bound T, we can be sure that
ξ = yi2 , because if yi2 > ξ, then this would contradict the inequality (3).

We ask at most one query per character plus one query per run, except for
Case 4, where we might use two queries per character of the yi2 ’th run of b’s.
Altogether, we have that the total number of queries is O(n).

4.3 The Case T > A = B = n
2 , s1 = sn

We assume w.l.o.g. that the string starts and ends in a. Therefore, with reference
to (1), in this section we have yρ = 0 and our string looks like this:

s = ax1by1ax2by2 . . . axρ−1byρ−1axρ ,

with all xi, yi > 0, i.e., it includes ρ = ρa runs of a’s and ρ − 1 = ρb runs of b’s.
By Lemma 2 with t = ab

n
2 we can exactly determine xk (run of a’s) for each

k, such that xk < T − n
2 − 1 ≤ n

6 − 1
3 . In this process, we determine exactly yk,

for each k = 1, . . . , ρb.
Let 1 ≤ i1 < i2 < · · · < iq ≤ ρa be all the indices of the runs of a’s whose

length we have not been able to determine exactly, i.e., such that xij ≥ T − n
2 −1.

By A = n
2 , we have that q ≤ 3. In fact, the only interesting cases are q = 2 and

q = 3, since, for q = 1 we can determine the only missing xi1 , as the difference
between A and the sum of the remaining xk’s.

For q = 3, by Lemma 3, we have ρa ≤ 3, thus it follows that ρa = 3. Let
t = ababa, and c = a. By Lemma 2 we can determine each xk, such that
xk ≤ T −5. Suppose that for all k = 1, 2, 3, it holds that xk ≥ T −5. Since there
must exist one run of a’s of length ≤ n

6 , we have that n ≤ 9, whence A ≤ 4,
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implying that the only possible case is to have two runs of a’s of length 1 and
one run of a’s of length 2. Direct inspection shows that in this case we can easily
reconstruct the whole string with T -bounded queries.

Finally, if q = 2, by Lemma 3, we have ρa ≤ n
6 + 5

3 . We can now use
query t1 = (ab)i1−1aT−n

2 −1+χ(ba)ρ−i1 , for χ = 1, 2, 3, . . . , until we receive a
negative answer, then xi1 = T − n

2 − 1 + χ − 1. If we never receive a nega-
tive answer and the query becomes of length T, we can resort to the query
t2 = (ab)i2−1aT−n

2 −1+χ(ba)ρ−i2 , for χ = 1, 2, . . . , and proceed analogously. It is
easy to see that we cannot have that both t1 and t2 exceed the threshold T ; the
other value can then be determined by difference.

We have used O(log n + A) = O(n) many queries.

4.4 The Case T > A = B = n
2 , s1 �= sn

Recall that by Lemma 1, in this case we can exactly determine s1 and sn. Let
us assume w.l.o.g. that s1 = a and sn = b. (Otherwise, rename the characters.)
Then the string s has the following shape

s = ax1by1ax2by2 . . . axρ−1byρ−1axρbyρ .

In particular, it starts with a run of a’s and ends with a run of b’s.
We need some more notation. For each i = 1, 2, . . . , 2ρ, we use ri to denote

the size of the i’th run in s starting from the left. I.e., we have xi = r2i−1 and
yi = r2i for each i = 1, . . . , ρ. Also we denote by mi = min{ri, r2ρ−i+1} and by
Mi = max{ri, r2ρ−i+1}. We use the following technical lemma.

Lemma 4. Fix i < ρ and assume that for each k = 1, . . . , i − 1, we know rk

and r2ρ−k+1 and it holds that rk = r2ρ−k+1 < T − n
2 . Then we can determine

mi and min{Mi, T − n
2 }, asking at most max{mi, min{Mi, T − n

2 }} queries.

Proof. For each odd i (i.e., ri denotes the length of a run of a’s) we have

mi = min
{

χ = 1, 2, 3, . . . | tχ = ax1+···+xi−1+χba
n
2 −(x1+···+xi−1+χ) ≺RC s

}
,

min
{
Mi, T − n

2

}
= max

{
χ = mi, mi + 1, . . . , T − n

2
|

qχ = a
n
2 −(y1+···+yi−1)bχay1+···+yi−1 ≺RC s

}
.

Using the above equalities, one can determine the value mi (resp. Mi) by asking
the query tχ (resp. qχ) for increasing values of χ, until the first positive (resp.
negative) answer. This settles the case of i odd.

It is not hard to see that exactly the same argument holds for even i, using
the following:

mi = min
{

χ = 1, 2, . . . | tχ = by1+···+yi−1+χab
n
2 −(y1+···+yi−1+χ) ≺RC s

}
,
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min
{

Mi, T − n

2

}
= max

{
χ = mi, mi + 1, . . . , T − n

2
|

qχ = b
n
2 −(x1+···+xi−1)aχbx1+···+xi−1 ≺RC s

}
.

This completes the proof of the lemma.

Now, let us consider the largest k ≥ 1 such that rj = r2ρ−j+1 < T − n
2 for each

j < k. Note that by repeated application of Lemma 4, we can determine all these
rj ’s. Assume w.l.o.g. that k is odd and let i = #k/2$ . Then we can write:

s = uaxis′byρ−i+1ũ, (4)

where u = ax1by1 . . . axi−1byi−1 is known, and the string s′ is still unknown.
Note that also the two values min{xi, yρ−i+1} and min{max{xi, yρ−i+1}, T − n

2 }
are known (again by application of Lemma 4). Moreover, for determining these
two values and string u, we have used a number of queries linear in 2|u| +
min{max{xi, yρ−i+1}, T − n

2 }.
According to the magnitude of xi and yρ−i+1, we will enter one of the following

three cases, where we will assume, w.l.o.g., that xi ≤ yρ−i+1. (The case where
yρ−i+1 < xi is symmetric.) We illustrate the situation in Figure 1.

s'

vu byp-i+1axi

Fig. 1. The case where |s|a = |s|b and s1 �= sn. We determine s by first finding the first
assymetry in s (xi �= yρ−i+1), and then extending queries for s′, which has fewer b’s
than a’s. Note that up to index i, string s is perfectly symmetric, i.e. we have v = ũ.

The case A = B = n
2 , s1 �= sn, xi, yρ−i+1 < T − n

2 . With reference to
(4), we can use a recursive argument to show how to determine s′. Let n′ = |s′|.
Note that |s′|a > |s′|b and that s′ starts with a b and ends with an a.

Let t′ be a query for s′: Since |s′|a > |s′|b, such queries were defined by one of
the previous cases (Section 4.1 or 4.2). Let t′+ be the query obtained by adding
to t′ an initial b, if t′ does not begin with b, and a final a, if t′ does not end with
an a. Define a query t for s in the following way:

t = a|u|at′+a|u|b (5)

Lemma 5. Let t be defined as in Eq. (5). Then, it holds that

1. t ≺RC s if and only if t′ ≺RC s′.
2. If |t′| ≤ 2(n′+1)

3 , then |t| ≤ 2(n+1)
3 .

Proof. 1. Let t ≺RC s. First assume that t ≺ s. Notice that t′+ starts with a b and
ends with an a, and that t = a|u|at′+a|ũ|a , i.e., the number of a’s in t following
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t′+ equals the number of a’s in ũ. Because of the |u|a many a’s at the beginning
of t, the fact that t is a subsequence of s implies t′+a|ũ| ≺ axis′byρ−i+1ũ, and
because t′+ starts with a b, we also have t′+a|ũ| ≺ s′byρ−i+1ũ. This again implies
that t′+ ≺ s′byρ−i+1 , and because t′+ ends with an a, also t′+ ≺ s′, and thus,
t ≺ s′.

Now let t ≺ s̃, or, equivalently, t̃ ≺ s. We have t̃ = b|u|b t̃′+b|u|a = b|u|b t̃′+b|ũ|b ,
and t̃′+ starts with an a and ends with a b. Thus, because of the |u|b many b’s at
the beginning of t̃ and the fact that t̃′+ starts with an a, we have t̃′+ ≺ s′byρ−i+1ũ.
Further, because of the |ũ|b many b’s at the end and the fact that t̃′+ ends with
a b, this implies t̃′+ ≺ s′. It follows that t′ ≺ s′.

Conversely, if t′ (resp. t̃′) is a subsequence of s′, then clearly, t (resp. t̃) is a
subsequence of s.

2. The length of t is |t| ≤ |u| + 2 + |t′|, where |t′| ≤ 2
3 (n′ + 1) and n′ =

n− 2|u|−xi − yρ−i+1, and yρ−i+1 > xi ≥ 1. This implies xi + yρ−i+1 ≥ 3. Thus,

|t| ≤ |u| + 2 +
2
3

(n − 2|u| − xi − yρ−i+1 + 1)

=
2
3

(n + 1) + 2 − 1
3
|u| − 2

3
(xi + yρ−i+1)

≤ 2
3

(n + 1) + 2 − 1
3
|u| − 2 ≤ 2

3
(n + 1).

Thus it follows that we can use the analysis of the previous sections to pre-
pare a sequence of queries on s which is (i) linear in |s′| and (ii) allows us to
determine the substring s′ of s. Once this is accomplished, the whole s can be
fully determined (up to reverse complement).

The case A = B = n
2 , s1 �= sn, xi, yρ−i+1 ≥ T − n

2 . Notice that, because
of the assumption n ≥ 8 and T − n

2 ≤ xi, yρ−i+1, it follows that xi + yρ−i+1 ≥ 4.
We have |s′| = n − 2|u| − xi − yρ−i+1. This implies

|s′|+|u|+2 ≤ n−xi−yρ−i+1+2+|u| ≤ 2n−2T +2−|u| ≤ 2n

3
+

2
3
−|u| ≤ T. (6)

Thus we can adapt the strategy we described in Section 3 for unbounded
RC-reconstruction to determine s′ and then, by subtraction, also xi and yρ−i+1.
We proceed as follows: Suppose that in the strategy for reconstructing s′, in
the unbounded-query case, we ask a question t′, starting with b and ending
with a. Then we will ask query t = a|u|a+1t′ba|u|b. It is not hard to see that
such t answers positively on s if and only if t′ answers positively on s′. By (6),
|t| = |t′| + 2 + |u| ≤ T .

The only requirement is that t′ begin with b and end with a. However, the
strategy in Section 3 can be easily adapted to this case, under the assumption
that the string to be reconstructed begins with b and ends with a, a condition
that holds for s′. (Notice, in fact, that because the query size is unbounded, any
query in the strategy in Section 3 can be safely extended by an arbitrary prefix
and/or suffix of the string we are trying to reconstruct.)
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Finally, once we have reconstructed s′ we can determine max{xi, yρ−i+1} as
n
2 −|s′|b−|u|. (Recall that we have assumed w.l.o.g. that xi ≤ yρ−i+1; in fact, now
that we know s′, we can determine whether this is the case: we have xi ≤ yρ−i+1
if and only if |s′|a ≥ |s′|b.)
The case A = B = n

2 , s1 �= sn, xi < T − n
2 , yρ−i+1 ≥ T − n

2 . In order
to determine ρ and xi+1, . . . , xρ−i+1, we can use the query

tχ = a|u|a+xibaχba
n
2 −|u|a−xi−χ (7)

as follows. Under the standing hypothesis, we have xi < 2(n+1)
3 − n

2 ≤ yρ−i+1.
The above query tχ has size n

2 + 2 ≤ T, for any n ≥ 8. Moreover, the fact that
xi < yρ−i+1 guarantees that if tχ ≺ s then t fixes the direction of s. To see this,
with reference to (4), it is enough to observe that in this case, in s there are
more a’s following the first b of s′ than there are b’s preceeding the last a of s′.

We use the query tχ as follows: We ask tχ for each χ = 1, 2, 3 . . . , until we get
the first positive answer. Let χ1 be the minimum value of χ for which the answer
is positive. It is not hard to see that this implies xi+1 = χ1. We now continue
asking query tχ for each χ = χ1+1, χ1+2, . . . . Let χ2 be the minimum value of χ
for which we get a new positive answer. Again, this implies that xi+2 = χ2 −χ1.
More generally, for each j = 1, . . . , ρ − i + 1, let χj be the value of χ when we
receive the ith positive answer. Then, we have xi+j = χj − χj−1 (where we set
χ0 = 0 for sake of definiteness).

Note, however, that at this point we do not know ρ. We continue asking tχ

as long as n
2 − |u|a − xi − χ > |u|b, or equivalently, χ < n

2 − |u| − xi. This way
we determine xj , for j = i + 1, . . . , ρ − i + 1 and, in particular, we determine ρ.

Now by Lemma 2, with t = a|u|a+xiba
n
2 −xi−|u|a, we can determine exactly

yj , for each j = i, . . . , ρ − i such that yj < T − n
2 , or, otherwise, establish the

fact that yj ≥ T − n
2 . As in the previous cases, it now remains to determine the

exact values of those runs with length at least T − n
2 .

Let i1, . . . , iq, be such that yij ≥ T − n
2 , for each j = 1, . . . , q. We can also

assume that for at least one 1 ≤ j ≤ q it holds that yij > T − n
2 , for otherwise

we can identify this situation by the fact that n − ∑
	 �∈{i1,...,iq} y	 = q(T − n

2 ),
whence we have yij = T − n

2 , for each j.

For each j such that yij ≥ T − n
2 and whose value is not determined yet, we

use a query of the form:

tχ = (ab)ij−1abχ(ab)ρ−i−ij abxi+1(ab)i−1,

increasing χ until we get the first positive answer. It remains to show that each
of these queries has length smaller or equal to T .

We have that |tχ| = 2ρ + xi + χ− 1. To see that this is smaller or equal to T

for each χ ≤ yij , notice that yij ≥ 2(n+1)
3 − n

2 = n
6 + 2

3 . Further, by assumption,
we have yρ−i+1, yij ≥ n

6 + 2
3 , implying t ≤ n

2 − 2n
6 + 2

3 = n
6 + 2

3 ≤ yρ−i+1. Thus,
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we have ρ ≤ yρ−i+1. Moreover, recall that n
2 = B ≥ yρ−i+1 +ρ+yij −2. Putting

it all together, we get

tyij
= 2ρ+xi +yij −1 ≤ yρ−i+1 + ρ + yij − 1︸ ︷︷ ︸

≤B+1= n
2 +1

+xi ≤ n

2
+xi + 1︸ ︷︷ ︸

≤n
6 + 2

3

<
2(n + 1)

3
≤ T.

As can be readily seen, in all three subcases we use O(|s′|) queries to determine
s′, hence, altogether O(|s|) queries to complete the reconstruction.
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Abstract. Given a real ε > 0, an integer g ≥ 0 and a set of points in the
plane, we study the problem of computing a piecewise linear functional
curve with minimum number of line segments to approximate all points
after removing g outliers such that the approximation error is at most ε.
We give an improved algorithm over the previous work. The algorithm
is based on two dynamic data structures developed in this paper for the
simplicial thickness queries, which are of independent interest. For a set
S of simplices in the d-D space Ed (d ≥ 2 is a constant), the simplicial
thickness of a point p is defined as the number of simplices in S that
contain p. Given a set P of n points in Ed, we develop two linear-space
dynamic data structures to support the following operations. (1) Sim-
plex insertion: Insert a simplex into S. (2) Simplex deletion: Delete a
simplex from S. (3) Simplicial thickness query: Given a query simplex
σ, compute the minimum simplicial thickness among all points in σ ∩P .
The first data structure supports each operation in O(n1−1/d) time with
O(n1+δ) time preprocessing, for any constant δ > 0; the second one sup-
ports each operation in O(n1−1/d(log n)O(1)) time with O(n log n) time
preprocessing. These data structures may also find other applications.

1 Introduction

In this paper, we study the following points approximation problem. Let P =
{pi = (xi, yi) | 1 ≤ i ≤ n} be an input point set in the plane with x1 < · · · < xn.
Each point pi has a weight ui > 0. Let f be a piecewise linear functional curve
for approximating the points in P . The vertical distance between each point pi

and f is defined as d(pi, f) = ui · |yi − f(xi)|. Denote by P ′ ⊆ P an outlier
set for f . Then, the approximation error of f with respect to P ′ is defined
as e(f, P, P ′) = maxpi∈P\P ′ d(pi, f). Given ε > 0 and an integer g ≥ 0, to
approximate the points in P with at most g outliers, we seek a piecewise linear
function f in which any two consecutive line segments need not to be joined
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(see Fig. 1(a)) and an outlier set P ′ with |P ′| ≤ g, such that the number of
segments in f is minimized and e(f, P, P ′) ≤ ε. We call the problem the piecewise
linear approximation with outliers. It was first studied in [7], where it was called
VWPF min-#. In this paper, we use VWPF to denote it. An O(ng4 log2 n)
time algorithm was given in [7] for solving VWPF. In this paper, we derive
an improved algorithm with running time O(n2g) when g = Ω(( n

log2 n
)

1
3 ). The

problem is motivated by the desire to obtain an approximating function with
the smallest possible size while maintaining a certain level of approximation
accuracy after the outliers are detected and removed.

If the approximating function f is required to be a step function (which is
a special case of the piecewise linear function), then the problem is solvable in
O(ng2) time [7]. If g = 0, i.e., no outliers are allowed, then both the step function
case and the piecewise linear function case are solvable in O(n) time [9,12]. These
problems are usually referred to as the min-# versions. For each problem, there
is a corresponding min-ε version, where an integer k is given as input and the
objective is to find an approximating function f (under certain constraints)
minimizing the approximation error such that the number of segments in f is
at most k. The min-ε versions with outliers have also been considered. Refer to
[6,7] for the min-ε results and more discussions.

Our algorithm for VWPF is based on dynamic data structures for a simplex-
related problem, which we call simplicial thickness queries, as follows. For a set
S of simplices in the d-D space Ed (d ≥ 2 is a constant), the simplicial thickness
of a point p is defined as the number of simplices in S that contain p, denoted
by β(p, S). Given a set of n points in Ed, P = {p1, p2, . . . , pn}, for a simplex σ,
define the simplicial thickness of σ as the minimum simplicial thickness among
all points in σ∩P , and denote it by β(σ, S). We seek dynamic data structures to
support the following operations (S = ∅ initially). (1) Simplex insertion: Insert
a simplex into S. (2) Simplex deletion: Delete a simplex from S. (3) Simplicial
thickness query: Given a query simplex σ, report β(σ, S) and the corresponding
point whose simplicial thickness is β(σ, S). Denote the above problem by STQ.

We develop two data structures for STQ by modifying extensively the simplex
range searching data structures in [10,11]. The simplex range searching problem
is to preprocess a set P of n points in Ed such that given any query simplex
σ, the number of points in P ∩ σ can be reported efficiently [4,5,10,11,14]. A
best result is due to Matoušek [11]: An O(n) space data structure with O(n1+δ)
time (δ > 0 is an arbitrary constant) preprocessing and O(n1−1/d) time query.
The above bounds match the lower bound given in [3] for d = 2 and quite
likely for d > 2. Further, an O(n) space data structure is given in [10] with a
slower O(n1−1/d logO(1) n) time query but faster O(n log n) time preprocessing.
Note that the above two data structures are static. By using some standard
techniques [1,13], Matoušek in [10] also gave results for the dynamic version of
the simplex range searching that allows point insertions and deletions (note that
our STQ problem considers simplex insertions and deletions).

By modifying the data structure in [11], we build a STQ data structure in
O(n1+δ) time and O(n) space, which can support the three operations each
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in O(n1−1/d) time. By modifying the one in [10], we build another STQ data
structure in O(n) space and O(n log n) time, which can support each simplex
operation in O(n1−1/d(log n)O(1)) time. Both data structures match the perfor-
mances of those in [10,11]. These data structures are of independent interest.

Our two STQ data structures can be easily extended with the same perfor-
mances to solve the weighted STQ, where each simplex of S has a weight and the
weighted simplicial thickness of a point p is defined as the weight sum of all sim-
plices in S containing p. Further, if the simplicial thickness of each query simplex
σ is defined as the maximum simplicial thickness of all points in σ ∩P , then the
problem (denoted by max-STQ) can also be solved with the same performances.

As by-products, in Section 2, we also solve some other interesting query
problems, e.g., 3-D q-level lowest point queries and 2-D minimum point weight
queries. Due to the space limit, the proofs of all lemmas in the paper are omitted.

In the following paper, we first present our algorithm for VWPF by assuming
that we already have the STQ data structures.

2 An Improved Algorithm for VWPF

This section presents our improved algorithm for VWPF. by assuming we already
have the STQ data structures in Theorems 2 and 3. The VWPF problem was
studied in [7]. Our new algorithm follows the high-level framework of the algo-
rithm in [7] but uses a better approach to handle the low-level computations. We
first reduce a sub-problem in the VWPF algorithm [7] to a new problem, called
3-D q-level lowest point queries, and we further model it as the 2-D minimum
point weight queries, which can be solved by using our STQ data structures.
Consequently, the previous VWPF result in [7] can be improved.

Let P = {pi = (xi, yi) | 1 ≤ i ≤ n} be an input point set in the plane with
x1 < · · · < xn. Each point pi has a positive weight ui. Let ε > 0 be the error
tolerance and g ≥ 0 be the number of allowed outliers. A sub-problem (call it
SUB) in the VWPF algorithm in [7] is as follows. Given P ′ ⊆ P and q (0 ≤ q ≤ g)
with P ′ = ∅ initially, derive a data structure for maintaining P ′, to support the
following operations. (1) Point insertion: Insert a point from P \ P ′ to P ′; (2)
point deletion: Delete a point from P ′; (3) feasibility test: Determine whether
there exists a line segment for approximating the points in the current P ′ with
at most q outliers such that the approximation error of the segment is at most
the given ε. The approximation error of the segment is the maximum vertical
distance between the segment and all non-outlier points in P ′. The lemma below
is given in [7],

Lemma 1. [7] If one can build a data structure in O(T ) time, which can support
point insertion, point deletion, and feasibility test in O(I), O(D), and O(F ) time
each, respectively, for the SUB problem, then the VWPF problem can be solved
in O(T + ng(g + I + D + F )) time.

Thus, our goal is to develop an efficient data structure for SUB. We first reduce
SUB to the 3-D q-level lowest point query as follows. We assume |P ′| > q since
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otherwise the answer to the feasibility test is always true. For each point pt =
(xt, yt) with a weight ut in P ′, we define two (upper) half-spaces ut(axt−b−yt) ≤
ξ and −ut(axt −b−yt) ≤ ξ in the 3-D coordinate system P with a as the x-axis,
b as the y-axis, and ξ as the z-axis. Denote by Hs the set of all these 2|P ′| half-
spaces. Note that given two half-spaces defined by a point in P ′, for any point p
in P , if p is above or on the plane ξ = 0, then p must be in at least one of the
two half-spaces. An important observation is that for any point p = (a′, b′, ξ′) in
P , suppose we use the line y = a′x− b′ to approximate P ′, then for any point pt

in P ′, the vertical distance between pt and the approximating line is at most ξ′

if and only if p is contained in both half-spaces defined by pt. Let H be the set
of planes in P bounding the half-spaces in Hs. Let A denote the arrangement of
the planes in H . We define the q-level of A, denoted by Aq, as the closure of the
set of points that lie on the planes of H and have exactly q planes in H above
them. Due to |P ′| > q, no point on Aq can be lower than the plane ξ = 0. Thus,
we have the following lemma.

Lemma 2. If p∗ = (a∗, b∗, ξ∗) is the lowest point on Aq, then the answer to the
feasibility test is true if and only if ξ∗ ≤ ε; further, if ξ∗ ≤ ε, the function y =
a∗x−b∗ can be used to approximate the points in P ′ such that the approximation
error is at most ε and the number of outliers is at most q.

Let hε be the plane ξ = ε in P . By the preceding lemma, inserting (resp.,
deleting) a point into (resp., from) P ′ is equivalent to inserting (resp., deleting)
two planes into (resp., from) H , and the feasibility test for P ′ can be done by
checking whether the lowest point on Aq is above the plane hε. Fig. 1(b) shows
a 2-D example. Therefore, SUB is reduced to the following 3-D q-level lowest
point query problem. Denote by H∗ the planes defined by all points in P . Given
H ⊆ H∗ (H = ∅ initially), design a data structure to support plane insertion
(i.e., inserting a plane from H∗ \H into H), plane deletion (i.e., deleting a plane
from H), and q-level lowest point query (i.e., determining whether the lowest
point on the q-level of the arrangement of H is above hε).

To solve it, we model the q-level lowest point query as follows. For each hi ∈ H ,
denote by li the intersection line of hε and hi. Note that every hi intersects hε

due to ui > 0 and no plane in H is perpendicular to hε. Let hi
ε be the open

half-plane of hε that is bounded by li (but not including li) and is below the
plane hi. Let LH = {li | hi ∈ H} and Hε = {hi

ε | hi ∈ H}. Clearly, all lines in
LH lie on hε. Let ALH be the line arrangement of LH . For each cell cj of ALH∗ ,
we pick an arbitrary point p̂j in its interior. Let P̂ be the set of all such points
and all vertices of ALH∗ . Then |P̂ | = O(n2).

Lemma 3. For any H ⊆ H∗, let A be the arrangement of H. Then the lowest
point p∗ on Aq is below or on hε if and only if there is a point in P̂ which is in
at most q half-planes of Hε.

Given Hε, for each p̂j ∈ P̂ , define its weight as the number of half-planes in Hε

which contain p̂j . Based on Lemma 3, we model the 3-D q-level lowest point
query as the following 2-D minimum point weight query (MPWQ for short)
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problem: Given a half-plane set Hε with Hε = ∅ initially, design a data structure
for maintaining Hε, to support half-plane insertion (i.e., insert a half-plane to
Hε), half-plane deletion (i.e., delete a half-plane from Hε), and the minimum
point weight query, i.e., finding in P̂ the point with minimum weight.

By the STQ data structures in Theorems 2 and 3, we can easily handle the
MPWQ problem. Note that an open half-plane can be considered as a special
2-D simplex. Let l be an arbitrary line on the plane. Denote by h1

l and h2
l the

two (closed) half-planes bounded by l. Then, for each MPWQ query, we first
apply two simplicial thickness queries on P̂ (with respect to Hε) using h1

l and
h2

l , respectively, and then report the minimum value of these two queries. In this
way, we can obtain similar performance results for MPWQ as those in Theorems
3 and 2, and each MPWQ query takes roughly O(

√
n) time. By careful examining

our STQ data structures, we can actually handle each MPWQ query in O(1)
time, as summarized in the following lemma.

Lemma 4. Given n points, a data structure of O(n) space can be built in
O(n1+δ) time that supports the half-plane insertion, deletion and the MPWQ
query each in O(

√
n), O(

√
n) and O(1) time, respectively; another data structure

of O(n) space can be built in O(n log n) time that supports the three operations
each in O(

√
n(log n)O(1)), O(

√
n(log n)O(1)) and O(1) time, respectively.

Since the 3-D q-level lowest point query problem can be modeled as an MPWQ
problem instance in O(n2) time with a point set of size O(n2), each point inser-
tion, deletion, and feasibility test in Lemma 1 can be handled in O(n), O(n), and
O(1) time, respectively, with an O(n2+δ) preprocessing time, or the three oper-
ations can be handled each in O(n(log n)O(1)), O(n(log n)O(1)), and O(1) time,
respectively, with an O(n2 log n) preprocessing time. By Lemma 1, we have the
following result.

Theorem 1. VWPF is solvable in O(min{n2+δ + n2g, n2g logO(1) n}) time.

When g = Ω(( n
log2 n

)
1
3 ), the time bound of the above algorithm is O(n2g), which

is faster than the previously best-known O(ng4 log2 n) algorithm in [7].

3 Data Structure Based on Hierarchical Cuttings

In this section, we give an STQ data structure by modifying the data structure in
[11], which is based on hierarchical cuttings [2]. The main result is given below.

Theorem 2. Given a set P of n points in Ed, we can build a data structure in
O(n) space and O(n1+δ) time, which can support the simplex insertion, simplex
deletion, and simplicial thickness query each in O(n1−1/d) time for STQ.

We first present a main data structure with performance bounds as stated in
the above theorem for the case with d > 2. For the 2-D case, the main data
structure still works but supports each operation in O(

√
n log n) time. To get

rid of the log n factor, we derive an auxiliary data structure and incorporate it
into the main data structure, which is the most challenging work in this section.
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Fig. 1. (a) Illustrating a piecewise linear function for approximating points in VWPF.
(b) The lowest point on Aq (the bold curve) is p∗. (c) The solid simplex (triangle) is a
node v in Υ , the three points are super-points in P̂v , and the dashed (red) triangles are
primary simplices. (d) Illustrating a simplex insertion. V ′ consists of the four nodes on
the v-to-v′ path plus p̂i (not shown). The black nodes are siblings of the nodes in V ′.

3.1 High Dimensional Space (d > 2)

To make the paper self-contained, we first sketch the data structure in [11]. Its
main idea is to construct a partitioning scheme in the following manner: Given n
points in Ed, divide the space into several regions, such that each region contains
at least a constant fraction of the points and the boundary (i.e., a hyper-plane)
of any half-space misses one (or several) of the regions. Given a query half-space
hs, one can then treat the points in the regions missed by the boundary of hs
very efficiently: Either they are all inside hs or are all outside. Thus, it remains
to handle the points in the regions intersected by the boundary of hs. To this
end, the partition scheme is applied recursively to the subsets of the points in
each of these regions, until trivially small subsets (of O(1) size) are reached. A
data structure capturing this recursive partition of the point set in a suitable
way is usually called a partition tree. In the query answering process, the regions
missed by the boundary of the query half-space are handled directly, and the
regions intersected by the boundary are processed recursively down the tree.

For a point set P of size n in Ed, the linear-space data structure [11], which
supports each simplex range searching query in O(n1−1/d) time, can be built in
O(n1+δ) time. Using a similar presentation as in [11], we first describe a way of
constructing a certain subset P ′ ⊆ P with |P ′| ≥ |P |/2, and a simplex range
searching data structure for P ′ with performance bounds as stated above. To
obtain the data structure for the whole set P , first the construction for P ′ is
performed, and then for P \ P ′, in the same manner, a logarithmic number of
data structures with geometrically decreasing sizes are produced. The space and
construction time of the data structure for the whole set P are the same as stated
above. Any query for P can be answered by querying each of the logarithmic
number of data structures, with a total query time of O(n1−1/d).

We now describe the construction of P ′ and the corresponding data structure
Ψ for it. Ψ has a set of possibly unbounded (not necessarily disjoint) simplices,
Ψ0 = {s1, . . . , st}, with t = n1/d log n. For every 1 ≤ i ≤ t, there is a set Pi ⊂ P ′

of size at most n
2t , with Pi ⊂ si (i.e., all points of Pi are contained in si). The sets

Pi are disjoint and together form the set P ′. For each si, there is a rooted tree Ti

whose nodes are simplices, with si as the root. Each non-leaf simplex of Ti has
O(1) children, which are simplices with disjoint interior that together cover their
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parent. Each point of Pi is contained in exactly one leaf simplex of Ti. The depth
of each tree Ti is at most l = O(log n). Hence, Ψ is essentially a forest of t trees,
with each tree node corresponding to a possibly unbounded simplex. Let Ψb be
the collection of all simplices that lie at distance b from the roots of their trees.
For a simplex s ∈ Ψb, let P (s) = Pi ∩ s, where Ti is the tree containing s. For
any hyper-plane h, let Kb(h) be the set of simplices in Ψb intersected by h, and
Lb(h) be the set of leaf simplices in Kb(h). Let K(h) = ∪l

b=0Kb(h) and similarly
for L(h). It was shown in [11] that

∑l
b=0 |Ψb| = O(n), and for any hyper-plane

h, |K(h)| = O(n1−1/d) and
∑

s∈L(h) |P (s)| = O(n1−1/d). In the forest Ψ , each
node s stores the cardinality of P (s) (i.e., the number of points in P (s)), and
each leaf simplex s also stores the list of points in P (s). Ψ can be constructed
in O(n) space and O(n1+δ) time.

For a simplex range query σ, the number of points in P ′ ∩ σ is computed as
follows. (1) Compute the total cardinality of the point sets Pi whose simplices
si ∈ Ψ0 are completely contained in σ; compute the set K ′ of all simplices in
Ψ0 intersected by the boundary of σ. (2) Repeat the following until K ′ = ∅:
Remove a simplex s from K ′; if s is a leaf simplex, test directly the membership
of each point of P (s) in σ; if s is a non-leaf simplex, determine the position of
each child of s with respect to σ, add to K ′ those children poked by σ, and
count the cardinalities of the point sets in the children of s that are completely
contained in σ. To analyze the running time, since |K(h)| = O(n1−1/d) and∑

s∈L(h) |P (s)| = O(n1−1/d) for any hyper-plane h, Step (2) takes O(n1−1/d)
time. For Step (1), if all simplices of Ψ0 are inspected straightforwardly, it needs
O(n1/d log n) time. For d > 2, this is o(n1−1/d); for d = 2, an auxiliary data
structure in [10] can be utilized to reduce the time to O(

√
n).

Note that for the simplex range searching problem, Chazelle [3] gave some
lower bounds: Under reasonable assumptions on the computation model, a data
structure with O(m) space can support a simplex range query in no better than
Ω(n/m1/d log n) (resp., Ω(n/

√
m) for d = 2) time. In view of these lower bounds,

the data structure Ψ is optimal for d = 2, and quite likely for d > 2 as well.
Based on the above data structure, our STQ data structure is built as follows.

Similarly, we first describe a construction of a subset P ′ ⊆ P with |P ′| ≥ |P |/2,
and a data structure for P ′ with performance bounds as stated in Theorem 2. To
obtain the data structure for the whole set P , we first perform the construction
for P ′, and then for P \ P ′, produce a logarithmic number of data structures
with geometrically decreasing sizes. The space and construction time of the data
structure for P are as stated in Theorem 2. Every simplex insertion, deletion,
or simplicial thickness query for P is processed by performing it on each of the
logarithmic number of data structures, with performance as in Theorem 2.

For P and a dynamic set S of simplices, the construction of P ′ ⊆ P and the
corresponding STQ data structure Ψ ′ is the same as Ψ in [11], except that for
each simplex s ∈ Ψ ′, we store two key values k1(s) and k2(s). To define them, we
need some new definitions. We say that a simplex s′ pokes another simplex s′′ if
s′′ is intersected by the boundary of s′. In other words, s′ pokes s′′ if and only
if their boundaries intersect each other or s′ is properly contained in s′′. Note
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that s′ poking s′′ does not necessarily imply s′′ also poking s′. Ψ ′ is actually
a forest with t trees, T1, T2, . . . , Tt. Let parent(s) denote the parent simplex
of a simplex s ∈ Ψ ′. For each simplex s in a tree Ti, if s is the root si, then
define IS(parent(s)) to be S; otherwise, define IS(s) to be the set of simplices
in IS(parent(s)) that poke s. Note that if s is an ancestor of s′, then IS(s′) ⊆
IS(s). We define k1(s) to be the number of simplices of S in IS(parent(s)) that
contain s completely; define k2(s) to be the minimum simplicial thickness among
all points in P (s) (P (s) = Pi ∩ s, where s ∈ Ti) with respect to the simplices
in IS(s), i.e., k2(s) = minpi∈P (s) β(pi, IS(s)). Further, for each point pi ∈ P (s)
when s is a leaf simplex, we store k1(pi) as the number of simplices in IS(s)
containing pi, i.e., k1(pi) = β(pi, IS(s)). Suppose the k1 values of all simplices
and points in Ψ ′ have been set correctly. Then the k2 values of all simplices in
Ψ ′ can be determined by the following lemma. For each non-leaf simplex s ∈ Ψ ′,
denote by C(s) the set of its children.

Lemma 5. For each non-leaf simplex s ∈ Ψ ′, k2(s) = mins′∈C(s){k1(s′) +
k2(s′)}; for each leaf simplex s ∈ Ψ ′, k2(s) = minpi∈P (s){k1(pi)}.

Comparing with Ψ , since we add only O(1) space to each node (for storing the k1
and k2 values), Ψ ′ uses O(n) space. (IS(s) is only a concept for analysis which
is not computed explicitly.) As S = ∅ initially, all key values are initially zero;
thus the construction time of Ψ ′ is the same as Ψ .

To insert a simplex σ, we do the following. For simplicity of discussion, if a
point pi is in P (s) where s is a leaf simplex, we view pi as a child of s. We call a
simplex s (resp., a point pi) in Ψ ′ an ending node with respect to σ if σ contains
s (resp., pi) completely but pokes the simplices of all its proper ancestors. In the
simplex range query answering procedure on σ, a simplex or a point is an ending
node if and only if all its ancestors will be visited and the procedure will not
proceed onto its children. To insert the simplex σ, for each ending node in Ψ ′,
we increase its k1 value by 1. After the k1 values of all ending nodes have been
updated, we update the k2 values of all involved simplices in Ψ ′ based on Lemma
5 in a bottom-up manner. Precisely, if s′ is an ending node whose k1 value has
been increased, then the k2 values of all its ancestors are updated accordingly
by Lemma 5. To analyze the running time, recall that for any hyper-plane h,
we have |K(h)| = O(n1−1/d) and

∑
s∈L(h) |P (s)| = O(n1−1/d). If a simplex s

in Ψ ′ is in K(h), then all its ancestors in Ψ ′ are in K(h) as well. Further, since
each non-leaf simplex in Ψ ′ has O(1) children, the running time for updating
the k1 and k2 values of all involved simplices in Ψ ′ is O(n1−1/d) for a simplex
insertion if we know all the ending nodes. The ending nodes can be obtained
by the procedure for answering the simplex range query σ in Ψ . However, as
we discussed above, in that procedure, since |Ψ0| = n1/d log n, if we inspect
straightforwardly all simplices in Ψ0, it takes O(n1/d log n) time. For d > 2, this
is o(n1−1/d); but for d = 2, it is O(

√
n log n). We will derive an auxiliary data

structure Υ below to reduce the running time to O(
√

n) time for the 2-D case.
To delete a simplex, we decrease the k1 value of each ending node by 1, and

update the corresponding k2 values. The running time is also O(n1−1/d) for
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d > 2 and O(
√

n log n) for d = 2. The simplicial thickness query σ is to compute
β(σ, S). Let V (σ) (resp., P (σ)) denote the set of simplices (resp., points) in Ψ ′

that are ending nodes with respect to σ. We have the following lemma.

Lemma 6. For each s ∈ V (σ), denote by A(s) the set of all ancestors of s
in Ψ ′ including s, i.e., all nodes in the path from s to the root of the corre-
sponding tree. For each pi ∈ P (σ), denote by s(pi) the leaf simplex such that
pi ∈ P (s(pi)). Then the answer to the simplicial thickness query, i.e., β(σ, S), is
min{mins∈V (σ){k2(s)+

∑
s′∈A(s) k1(s′)}, minpi∈P (σ){k1(pi)+

∑
s′∈A(s(pi))k1(s′)}}.

By Lemma 6, a simplicial thickness query σ on Ψ ′ can be handled as follows. We
apply a similar procedure as for the simplex insertion, in which we accumulate
the k1 values from the root of the corresponding tree in Ψ ′ down to the simplices
on each search path. As we encounter an ending node, if it is a simplex s, we
compute the value k2(s)+

∑
s′∈A(s) k1(s′), and call it the thickness-query value of

s. Since we have the value
∑

s′∈A(s) k1(s′) available, the thickness-query value of
s can be obtained in O(1) time. If the ending node is a point pi, we also compute
its thickness-query value k1(pi) +

∑
s′∈A(s(pi)) k1(s′) in O(1) time. Further, we

maintain the minimum thickness-query value among those that have already
been computed. When the procedure stops, report the minimum thickness-query
value as the answer to the simplicial thickness query. To analyze the running
time, it takes O(1) time at each node for either accumulating the k1 values or
computing the thickness-query value and maintaining the minimum one. Thus,
the running time of a query is the same as a simplex insertion, i.e., O(n1−1/d)
for d > 2 and O(

√
n log n) for d = 2.

3.2 Auxiliary Data Structure for the Planar Case

We design an auxiliary data structure Υ for the 2-D case to organize the t =√
n log n simplices in Ψ0, so that all three operations (i.e., simplex insertion,

simplex deletion, and simplicial thickness query) take O(
√

n) time each. Υ is built
based on the partition tree given in [8]. Note that the auxiliary data structure
in [11] is also a partition tree that was given in [10], but this particular partition
tree does not work well for our STQ problem.

To make Υ work, given a simplex σ for any operation, we need to handled two
questions efficiently. Q1: Which simplices in Ψ0 are poked by σ? Q2: How should
the simplices in Ψ0 which are completely contained in σ be handled? Q1 can be
answered in O(

√
n) time by another data structure in [11]. Consequently, those

simplices in Ψ0 which are poked by σ can be handled by Ψ ′ in O(
√

n) time as
before. Υ is then used to solve Q2. Our goal is to construct Υ in O(n1+δ) time
and O(n) space to handle the three operations each in O(

√
n) time.

We pick an arbitrary point p̂i in each simplex si of Ψ0 as a representing point
for si, and call p̂i a super-point. Recall that each si corresponds to the point set
Pi. Below, we call each simplex si in Ψ0 a primary simplex. Denote by P̂ the
set of all t super-points. For P̂ , we build a partition tree Υ as in [8], which is
built by applying the simplicial partition in [10] recursively. Each node v ∈ Υ
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corresponds to a simplex Δv and a super-point subset P̂v with Δv containing
P̂v. The simplex Δv may also contain other points in P̂ than those in P̂v. Each
internal node v in Υ has O(1) children. The super-point subsets corresponding
to the children of v are pairwise disjoint and form a partition of P̂v. If v is a leaf
node, P̂v has O(1) super-points. The height of Υ is O(log t). It was shown in [8]
that for any constant ε > 0, Υ can be built in O(t1+ε) time and O(t) space, and
each simplex range query on P̂ can be answered in O(t1/2+ε) time.

For each node v in Υ , we store two key values k1(v) and k2(v). To define
k1(v) and k2(v), we need some new concepts. Denote by ψ(v) the union of Δv

and all primary simplices represented by the super-points in P̂v, i.e., ψ(v) =
∪p̂i∈P̂v

si ∪ Δv. We say that a simplex s′ pokes ψ(v) if ψ(v) is intersected by the
boundary of s′ (i.e., the boundaries of s′ and ψ(v) intersect or s′ is properly
contained in ψ(v)). It should be noted that the concept of ψ(v) is used only for
analysis and is never computed in our algorithm. For each v ∈ Υ , denote by π(v)
the union of all point sets corresponding to the primary simplices represented by
the super-points in P̂v, i.e., π(v) = ∪p̂i∈P̂v

Pi. For each primary simplex si ∈ Ψ0,
denote by Si the set of simplices in S that poke si. For each v ∈ Υ , if v is the
root, define IS(v) to be S; otherwise, define IS(v) to be the set of simplices of
S in IS(parent(v)) that poke ψ(v). Note that for any p̂i ∈ P̂ , if p̂i is in P̂v, it
must be Si ⊆ IS(v).

For each v ∈ Υ , k1(v) is defined to be the number of simplices of S in
IS(parent(v)) that contain ψ(v) completely (if v is the root, let k1(v) = 0);
k2(v) is defined to be the minimum simplicial thickness among all points in π(v)
with respect to the simplex set IS(v), i.e., k2(v) = minpj∈π(v) β(pj , IS(v)). Fur-
ther, for each super-point p̂i in a leaf node v (i.e., p̂i ∈ P̂v), we store k1(p̂i) as
the number of simplices in IS(v) that contain si completely, and store k2(p̂i)
as the minimum simplicial thickness among all points in Pi with respect to the
simplex set Si, i.e., k2(p̂i) = minpj∈Pi β(pj , Si). For each tree Ti, let its root be
root(Ti). Also, for each tree Ti in Ψ ′, let IS(root(Ti)) be Si and the key values
in Ψ ′ be defined as above. Thus, for each super-point p̂i, k2(p̂i) = k2(root(Ti)).
For simplicity of discussion, let k1(root(Ti)) = 0 for each Ti. If the k1 values of
all nodes in Υ and the k1 and k2 values of all super-points of P̂ have been set
correctly, the k2 values of all nodes in Υ can be obtained by the lemma below.

Lemma 7. For each internal node v ∈ Υ , k2(v) = minv′∈C(v){k1(v′) + k2(v′)};
for each leaf node v ∈ Υ , k2(v) = minp̂i∈P̂v

{k1(p̂i) + k2(p̂i)}.

Since S = ∅ initially, all k1 and k2 values in Υ are initially zero. Thus, as in
[8], Υ can be built in O(t1+ε) time and O(t) space, with t =

√
n log n. If we set

ε = 1/3, the construction time for Υ is O(n) (and each simplex range query can
then be answered in O(

√
n) time). Next, we discuss how to handle the simplex

insertion, simplex deletion, and simplicial thickness query in Υ and Ψ ′.
Given a simplex σ for an operation (e.g., inserting σ), there are three types

of primary simplices in Ψ0 with respect to σ: (i) Those completely contained in
σ, (ii) those disjoint from σ, and (iii) those poked by σ. The primary simplices
of types (i) and (ii) are mainly handled by Υ , and those of type (iii) are mainly
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handled by Ψ ′. We also need to determine which primary simplices (i.e., their
types) should be handled in Υ , and which should be done in Ψ ′.

To insert a simplex σ, we perform four steps. (1) Clearly, we need to update
the k1 values of some nodes due to the insertion of σ. One way is that for each
node v ∈ Υ that we need to check, we first compute ψ(v) and then determine
whether σ pokes ψ(v). However, since computing ψ(v) is time-consuming, this
method takes too much time. Instead, we use a faster procedure to update the
k1 values of the involved nodes in Υ but may make some errors, and then correct
the errors in a way without computing ψ(v) explicitly. Precisely, we update the
key values of Υ in the same way as we did on Ψ ′, as follows. We increase k1(v)
by 1 if σ contains Δv completely but pokes all its proper ancestor simplices in
Υ , and similarly, increase k1(p̂i) by 1 if σ contains p̂i but pokes all its ancestor
simplices in Υ . We then update the corresponding k2 values by Lemma 7. But,
after this step, some key values may be incorrect. For example, in Fig. 1(c),
suppose the simplex with solid edges is Δv such that σ contains Δv completely
but pokes all its proper ancestor simplices in Υ . Thus, k1(v) is increased by 1 in
Step (1). But, since σ actually pokes ψ(v), by the definition of k1(v) in Υ , k1(v)
should not be increased. This error occurs as we did not use the simplex union
ψ(v) in checking the poking relation. We will fix all errors in the later steps.

(2) Using the data structure in [10] (Lemma 5.3), find the set K ′ of all primary
simplices in Ψ0 that are poked by σ. (3) This step corrects all errors made in Step
(1). We first discuss where these errors can occur. Clearly, all super-points of P̂v

for each v ∈ Υ are contained in Δv. Thus, if for every super-point p̂i ∈ σ, its
simplex si is contained entirely in σ (i.e., si �∈ K ′), then all k1 values in Υ have
been set correctly. Suppose a primary simplex si is poked by σ (i.e., si ∈ K ′)
and p̂i ∈ σ. Let v be the leaf simplex in Υ such that p̂i ∈ P̂v, and V be the set of
nodes in the path from v to root(Υ ) plus p̂i (p̂i may be viewed as a node in V ).
If the k1 value of any node in V is increased in Step (1), this is an error. Since
σ contains p̂i, there must be one and only one node in V whose k1 value is
increased in Step (1). That is, after Step (1), the observation below holds.

Observation 1. For each super-point p̂i ∈ Υ , suppose p̂i is in a leaf node v. If
p̂i is contained in the simplex σ, then there is one and only one node in V whose
k1 value is increased by 1 due to the insertion of σ, where V is the set of nodes
in the path from v to root(Υ ) plus the super-point p̂i.

Thus, the errors in Step (1) are caused by the primary simplices in K ′ whose
representing super-points are contained in σ. Denote by K ′′ the set of primary
simplices in K ′ whose representing super-points are contained in σ.

We fix the errors as follows. Consider a primary simplex si ∈ K ′′ (i.e., p̂i ∈ σ),
and let p̂i be stored in a leaf node v of Υ . By following the path from v to root(Υ ),
we can find the only node v′ whose k1 value gets increased in Step (1) due to the
insertion of σ. Denote by V ′ the set of nodes in the path from v to v′ plus p̂i (see
Fig. 1(d)). Since σ pokes si, σ also pokes ψ(v′′) for each v′′ ∈ V , implying that
the k1 values of all nodes in V should not be increased. But the value of k1(v′)
was actually increased. To correct this error while maintaining the validity of
other key values in Υ , and in particular the validity of Observation 1 for those
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super-points whose primary simplices are not in K ′′, we do the following. (a)
Decrease k1(v′) by 1; (b) for every node in V ′ \{v′}, increase the k1 value of each
of its siblings by 1 (see Fig. 1(d)) (for p̂i, we consider all other super-points in
P̂v as its siblings); (c) for each node in V , update its k2 value by Lemma 7. After
the above process, the error incurred due to σ poking the simplex si is corrected
while the property of Observation 1 is still maintained (for other super-points
minus p̂i). By performing this process for each simplex in K ′′, we correct all
errors made in Step (1), i.e., the k1 values of all nodes and super-points in Υ
are then set correctly for the insertion of σ. Note that once the error on a p̂i-to-
root(Υ ) path gets corrected, the subsequent error correction process (for other
simplices in K ′′) does not increase (wrongly) the k1 value of any node on this
path again. The reason is that the correction process always “pushes” the value
increasing in the downward fashion in Υ and away from each such path. Further,
based on the current k2 value of each super-point, the k2 values of all nodes in
Υ are also set correctly.

(4) For each si ∈ K ′, apply the insertion of σ on Ti, and at the end of this
insertion, if the k2 value of root(Ti) is updated, then after setting k2(p̂i) to the
new value of k2(root(Ti)), update the k2 value of each node in the path from v
to the root of Υ by Lemma 7, where v is the leaf node with p̂i ∈ P̂v. After this
step, for the insertion of σ, the key values of all nodes and super-points in Υ are
set correctly. This finishes the simplex insertion operation for σ.

For Step (1), its running time is O(
√

n). For Step (2), with the data structure
in [10] (whose preprocessing time is O(n) due to t =

√
n log n), K ′ can be

computed in O(
√

n+|K ′|) time. As shown in [11], for any hyper-plane h, Kj(h) =
O(

√
n · 4−(q−j)) for 0 ≤ j ≤ q, where q = θ(log n) 1. Thus, we have |K ′| =

|K0(h)| = O(
√

n · 4−q). Hence, Step (2) takes O(
√

n) time. For Step (3), since
the height of Υ is O(log t) and each node in Υ has O(1) children, for every
si ∈ K ′′, it takes O(log t) time to update the corresponding k1 values in Υ , and
updating the corresponding k2 values of all involved nodes also takes O(log t)
time. Since |K ′| = O(

√
n·4−q), |K ′|·log t = O(

√
n), and K ′′ ⊆ K ′, this step takes

O(
√

n) time. For Step (4), as analyzed before, the computation in all the trees
of Ψ ′ takes O(

√
n) time. For each simplex in K ′, the procedure of updating the

k2 values of the corresponding nodes in Υ takes O(log t) time since each its node
has O(1) children. Thus, this step takes O(

√
n) time due to |K ′| · log t = O(

√
n).

In summary, the simplex insertion takes O(
√

n) time.
The simplex deletion proceeds similarly, except changing the key value in-

creasing (resp., decreasing) to decreasing (resp., increasing), which takes O(
√

n)
time.

For each simplicial thickness query σ, suppose we apply σ as for a simplex
insertion on Υ and Ψ ′, and denote by V (σ) the set of nodes in Υ whose k1 values
are increased, and by P̂ (σ) the set of super-points in Υ whose k1 values are
increased. One may view the nodes in V (σ) and the super-points in P̂ (σ) as the
ending nodes with respect to σ. Denote by K ′ the set of primary simplices in

1 It is shown q = O(log n) explicitly in [11]. By a careful analysis, we can also obtain
q = Ω(log n).
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Ψ0 that are poked by σ. To compute β(σ, S), we use the lemma below. For each
si ∈ K ′, denote by P ′

i the set of points in Pi that are contained in σ.

Lemma 8. For each v ∈ V (σ), denote by A(v) the set of all ancestors of
v in Υ and A(v) also contains v. For each p̂i ∈ P̂ (σ), denote by v(p̂i) the
leaf node of Υ such that p̂i ∈ P̂v(p̂i). Then the answer to the simplicial thick-
ness query, i.e., β(σ, S), is min{β1, β2, β3}, where β1 = minv∈V (σ){k2(v) +∑

v′∈A(v) k1(v′)}, β2 = minp̂i∈P̂ (σ){k1(p̂i) + k2(p̂i) +
∑

v′∈A(v(p̂i)) k1(v′)}, and
β3 = minsi∈K′ minpj∈P ′

i
β(pj , S).

By the above lemma, for each simplicial thickness query on σ, we apply a proce-
dure as for simplex insertion and accumulate the sum of the k1 values from the
root of Υ down to the current node in Υ visited by the procedure. In this way,
β1 and β2 can be obtained in the same time as the simplex insertion operation.
For β3, it can be obtained in the same way as in Lemma 6. Thus, it takes O(

√
n)

time to answer each simplicial thickness query. Theorem 2 thus follows.

4 Data Structure Based on Simplicial Partitions

Our second STQ data structure is based on the simplicial partitions in [10]. A
simplicial partition of a point set P is a collection Π = {(P1, Δ1), . . . , (Pm, Δm)},
where the Pi’s are pairwise disjoint subsets (called the classes of Π) forming a
partition of P , and each Δi is a possibly open simplex containing the set Pi. The
size of Π is m. The simplex Δi may also contain other points in P than those in
Pi. A simplicial partition is called special if max1≤i≤m{|Pi|} < 2 min1≤i≤m{|Pi|},
i.e., all the classes are of roughly the same size.

The data structure in [10] is a partition tree, denoted by T , based on con-
structing special simplicial partitions on P recursively. Given n points in Ed for
any d ≥ 2, T can be built in O(n) space and O(n log n) time, and can answer ev-
ery simplex range query in O(n1−1/d(log n)O(1)) time [10]. Our modifications on
T are similar as before. Namely, we define the k1 and k2 values on each node in
T in the same way as in Section 3 but the auxiliary data structure is not needed.
Due to the space limit, we omit all the details and only give the following result.

Theorem 3. Given n points in Ed, we can build a data structure in O(n) space
and O(n log n) time, which can support the simplex insertion, simplex deletion,
and simplicial thickness query each in O(n1−1/d(log n)O(1)) time for STQ.

5 Handling the Weighted STQ and Max-STQ

It is straightforward to extend our STQ data structures to the weighted STQ
problem. Precisely, we change the definitions of the k1 and k2 values by taking
into account the simplex weights. For example, in the data structure Ψ ′ in Section
3, to solve the weighted case, we define k1(s) as the weight sum of the simplices
of S in IS(parent(s)) that contain the simplex s completely and define k2(s)
as the minimum weighted simplicial thickness among all points in P (s) with
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respect to the simplex set IS(s). The computation of the k2 values still follows
Lemma 5. To insert a simplex σ, whenever the k1 value of a simplex s needs to
be increased, instead of increasing it by 1, we increase it by the weight of σ. The
simplex deletion and weighted simplicial thickness query are handled similarly.
Thus, the results in Theorem 2 still apply to the weighted case. By a similar
extension, the results in Theorem 3 also apply to the weighted STQ.

For the max-STQ, the same results in Theorems 2 and 3 can also be ob-
tained by replacing the min definitions and operations in the data structures
and algorithms by the corresponding max definitions and operations.
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Abstract. Let P = G�H be the cartesian product of graphs G, H . We
relate the cover time COV[P ] of P to the cover times of its factors.
When one of the factors is in some sense larger than the other, its cover
time dominates, and can become of the same order as the cover time of
the product as a whole. Our main theorem effectively gives conditions for
when this holds. The probabilistic technique which we introduce, based
on the blanket time, is more general and may be of independent interest,
as might some of our lemmas.

Keywords: Random walks, cover time, blanket time, effective resis-
tance, cartesian product graphs.

1 Introduction

For a connected graph Let G, denote by V (G) and E(G) the vertex and edge
set respectively. The vertex cover time COV[G] of G is defined as the expected
time it takes a random walk to visit all vertices of the graph, maximised over all
possible starting vertices. This quantity is a fundamental area in the study of
random walks has been extensively studied giving rise to a large body of theory
and application. Let n = |V (G)| and m = |E(G)|. It is a classic result of Aleli-
unas, Karp, Lipton, Lovász and Rackoff [1] that COV[G] ≤ 2m(n − 1). It was
shown by Feige [7], [8], that for any connected graph G, the cover time satisfies
(1 − o(1))n log n≤COV[G] ≤ (1 + o(1)) 4

27n3. Between these two extremal ex-
amples, the cover time, both exact and asymptotic, has been determined for a
number of different classes of graphs.

In this work, we study the cover time of the cartesian product P of two graphs
G, H defined as follows:

Definition 1. The cartesian product P = G�H of finite connected graphs
G, H, is the graph such that

– V (P ) = V (G) × V (H)
– ((a, x), (b, y)) ∈ E(P ) if and only if either

• (a, b) ∈ E(G) and x = y, or
• a = b and (x, y) ∈ E(H)

For a natural number d, we denote by Gd the d’th cartesian power, that is,
Gd = G when d = 1 and Gd = Gd−1�G when d > 1. We can think of P = G�H

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2010, LNCS 6460, pp. 377–389, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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in terms of the following construction: We make a copy of one of the graphs,
say G, once for each vertex of the other, H . For the copy of G corresponding to
vertex x ∈ V (H), Gx, and a vertex a ∈ V (G), we add an edge from a ∈ Gx to
a ∈ Gy for all vertices y ∈ V (H) such that (x, y) ∈ E(H).

In the following, if z is a parameter, let zG represent that parameter for a
graph G. We have the following : n the number of vertices; m the number of
edges; δ the minimum degree; θ average degree; Δ the maximum degree; D
diameter.

In this paper we prove the following

Theorem 1. Let P = G�H where G, H are any connected, finite graphs. We
have

max
{(

δG

ΔH
+ 1

)
COV[H ],

(
δH

ΔG
+ 1

)
COV[G]

}
≤ COV[P ] (1)

and

COV[P ] ≤ K min
{(

1 +
ΔG

δH

)
COV[H ] +

MmGmHnH l2

COV[H ]DG
,

(
1 +

ΔH

δG

)
COV[G] +

MmGmHnGl2

COV[G]DH

}
(2)

Where M = |E(P )|, l = log DG log(nGDG) and K is a universal constant.

This extends much work done on the particular case of the two-dimensional
toroid on n2 vertices, i.e., Zn�Zn where Zn is the n-vertex cycle, and on powers
Gd done by [9]. To prove Theorem 1, we present a framework to analyse the
cover time of a random walk on a graph which works by dividing the graph up
into (possibly overlapping) regions, analysing the behaviour of the walk when
locally observed on those regions, and then composing the analyses of all the
regions over the whole graph. The technique facilitates the analysis of the local
observation on a region by relating it to a walk on a graph derived from that
region. Thus the analysis of the whole graph is reduced to analysis of outcomes
on local regions and subsequent compositions of those outcomes. This framework
can be applied more generally than cartesian products. Some of the lemmas we
use may be of independent interest. In particular, Lemmas 7 and 8 provided
bounds on effective resistances of graph products that extend well-known and
commonly used bounds for the n × n lattice graph.

Our paper uses the very recently proved conjecture that the blanket time
of a graph is within a universal constant factor of the cover time. The blan-
ket time B[G] of a graph G, introduced in [12], is the expected time of the
random walk on G not only to visit every vertex, but to visit all vertices more-
less uniformly (the exact definition given in 2.2). Our analysis is an example of
how to exploit the relation B[G] = O(COV[G]). The lower bound in Theorem
1 implies that COV[G�H ] ≥ COV[H ], and the upper bound can be viewed
as providing conditions sufficient for COV[G�H ] = O(COV[H ]). For example,
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COV[Zp�Zq] = Θ(COV[Zq]) = Θ(q2) subject to the condition p log2 p = O(q).
Thus for this example, the lower and upper bounds in Theorem 1 are within a
constant factor.

2 Preliminaries

2.1 Some Notation

We make use of the following notation: For a graph G let V (G) and E(G) denote
the vertex and edge set of G respectively. For a random variable A representing
a function of a walk, and a vertex u ∈ V (G) let Eu[A] represent the expectation
of A when the walk starts at u. Let τ(u) be a random variable representing
the first time that u is visited by the walk and κ(G) the first time every vertex
in G has been visited by the walk. H[u, v] = Eu[τ(v)] is the hitting time from
u to v, COM[u, v] = H[u, v] + H[v, u] is the commute time between u and v.
COV[G] = maxu∈V (G) Eu[κ(G)] is the cover time of a graph G. Let H+[G] =
maxu,v H[u, v]. The function d(u) gives the degree of vertex u. For clarity, and
because a vertex u may be considered in two different graphs, we may use dG(u)
to explicitly denote the degree of u in graph G.

Ln denotes the n’th harmonic number, that is, Ln =
∑n

i=1 1/i. Note Ln =
log n + γ + O(1/n) Where γ ≈ 0.577. In this paper all logarithms are base-e.

2.2 Blanket Time

Definition 2 ([12]). For a graph G, and δ ∈ [0, 1) define the random variable
Bδ(G) = min{t : (∀v)Nv(t) > δπvt} where Nv(t) is the number of times v has
been visited by time t and πv is the stationary probability of vertex v. The blanket
time Bδ[G] = maxv∈V (G) Ev[Bδ(G)].

The following was very recently proved.

Theorem 2 ([5]). For any graph G, and any δ ∈ (0, 1), we have

Bδ[G] ≤ c(δ)COV[G] (3)

Where the constant c(δ) depend only on δ.

As stated in [12], this is equivalent to saying that the expected time until each
vertex v is visited πvCOV[G] times - which we shall refer to as the blanket-cover
criterion - is O(COV[G]).

2.3 Random Walks and Electrical Networks

We give some key facts and ideas relevant to this work, drawing on [10], which
discusses electrical network theory in the wider context of Markov chains. [6]
is the classical treatment. Consider a finite, connected graph G = (V, E) with
edge weights {c(e) : e ∈ E}. For a vertex u, let c(u) =

∑
v:(u,v)∈E c(u, v) with

each loop counted once, and let c(G) =
∑

u∈V c(u). In the language of electrical
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network theory, the weight c(u, v) is known as the conductance of the edge
(u, v), and the resistance r(u, v) = 1/c(u, v). The random walk on G defined by
the transition matrix P (u, v) = c(u, v)/c(u) defines a reversible Markov chain
with the vertices of G as states and the transition matrix P . The stationary
distribution is π(u) = c(u)/c(G). Conversely, every reversible Markov chain can
be shown to be a network. Thus the two are equivalent. A flow f is an asymmetric
function on oriented edges, i.e., for (u, v) ∈ E(G), f(u, v) = −f(v, u) and net
flow f(u) at a vertex u is

∑
v:(u,v)∈E(G) f(u, v). We note

∑
u∈V (G) f(u) = 0. For

vertices a, z, a flow from a to z f is a flow with the additional properties that
(i) f(u) = 0 for all u ∈ V (G)\{a, z} and (ii)the strength of the flow f(a) ≥ 0.
The energy E(f) of a flow from a to z, f is defined as E(f) =

∑
e∈E f2(e)r(e)

where the sum is over unoriented edges (i.e., each edge is considered once). We
have the following

Lemma 1 (Thomson’s principle). For any finite connected graph, the effec-
tive resistance R(a, z) between a and z is such that

R(a, z) = min{E(f) : f is a unit flow from a to z}. (4)

There is unique minimiser in the above known as the current flow.

This allows us to say that the energy of any unit flow we contruct is an up-
perbound on effective resistance. The following facts are useful. Series law
Edges (a, b), (b, c) with can be replaced by a single edge (a, c) with r(a, c) =
r(a, b) + r(b, c) if there are no other edge incident on b. Parallel law Paral-
lel edges (a, b)1, (a, b)2 can be replaced by a single edge (a, b) with c(a, b) =
c((a, b)1) + c((a, b)2). Shorting law Adding an edge of zero resistance between
two vertices is equivalent to merging them into one vertex, and cannot increase
effective resistance anywhere in the network. Cutting law Removing an edge
with positive conductance cannot decrease effective resistance anywhere in the
network. Monotonicity law The effective resistance between two given vertices
is monotonic in the resistances of the edges in the whole network.

The k × k lattice graph P 2
k , where Pk is the k-path, plays an important role

in our work. We shall analyse random walks on subgraphs isomorphic to this
structure. It is well known in the literature (see, e.g. [10]) that for any pair of
vertices u, v ∈ V (P 2

k ), we have R(u, v) ≤ C log k where C is some universal
constant. We shall quote part of [9] Lemma 3.1 in our notation and refer the
reader to the proof there.

Lemma 2 ([9], Lemma 3.1). (a) Let u and v be any two vertices of P 2
k . Then

R(u, v) < 8Lk, where Lk is the k’th harmonic number.

The following important lemmas are widely used in the field

Lemma 3 ([3]). For vertices u, v ∈ V (G)

COM[u, v] = c(G)R(u, v) (5)

Lemma 4 ([11]). For a finite connected graph G, (a) COV[G] ≤ H+[G]Ln.
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3 Related Work

A d-demensional torus on N = nd vertices is the d’th power of an n-cycle, Zd
n.

The behaviour of random walks on this structure is well studied. It is well-known
(see, e.g., [10]) that COV[Zd

n] = Θ(N(log N)2) when d = 2 and COV[Zd
n] =

Θ(N log N) when d ≥ 3. [4] gives COV[Z2
n] ∼ 1

π N(log N)2. [9] extends the study
of graph powers giving the following theorem

Theorem 3 ([9], Theorem 1.2). Let G = (V, E) be any connected graph on
n vertices with θG = 2|E|/n. Let d ≥ 2 be an integer and let N = nd. For d = 2,
COV[Gd] = O(θGN(log N)2) and for d ≥ 3, COV[Gd] = O(θGN log N). These
bounds are tight.

[2] gives a number of theorems related to random walks and effective resistance
between pairs of vertices in graph products. To give the reader a flavour we quote
Theorem 1 of that paper, which is useful as a lemma implicitly in this paper and
in the proof of [9] Theorem 1.2 to justify the intuition that the effective resistance
is maximised between opposite corners of the square lattice.

Lemma 5 ([2], Theorem 1). Let Pn be an n-vertex path with endpoints x and
y. Let G be a graph and let a and b be any two distinct vertices of G. Consider the
graph G× Pn. The effective resistance R((a,x),(b,v)) is maximised over vertices
v of Pn at v = y.

For P 2
n this is used twice: R((0, 0), (r, s)) ≤ R((0, 0), (n − 1, s)) ≤ R((0, 0), (n −

1, n − 1)).

4 Locally Observed Random Walk

Let G = (V, E) be a connected, unweighted (equiv., uniformly weighted) graph.
Let S ⊂ V and let G[S] be the subgraph of G induced by S. Let B = {v ∈
S : ∃x �∈ S, (v, x) ∈ E}. Call B the boundary of S, and the vertices of V \S
exterior vertices. If v ∈ S then dG(v) (the degree of v in G) is partitioned into
d(v, in) = |N(v, in)| = |N(v)∩S| and d(v, out) = |N(v, out)| = |N(v)∩(V −S)|,
(inside and outside degree). Here N(v) denotes the neighbour set of v.

Let u, v ∈ B. Say that u, v are exterior-connected if there is a (u, v)-path
u, x1, ...xk, v where xi ∈ V \S, k ≥ 1. Thus all vertices of the path except u, v are
exterior, and the path contains at least one exterior vertex. Let A(B) = {(u, v) :
u, v are exterior-connected }. Note A(B) may include self-loops.

Call edges of G[S] interior, edges of A(B) exterior. We say that a walk ω =
(u, x1, ...xk, v) on G is an exterior walk if u, v ∈ S and xi /∈ S, 1 ≤ i ≤ k.

We derive a weighted multi-graph H from G and S as follows: V (H) = S,
E(H) = E(G[S])∪A(B). Note if u, v ∈ B and (u, v) ∈ E then (u, v) ∈ E(G[S]),
and if, furthermore, u, v are exterior connected, then (u, v) ∈ A(B) and these
edges are distinct, hence, H may not only have self-loops but also parallel edges,
ie., E(H) is a multiset.
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Associate with an orientation (u, v) of an edge (u, v) ∈ A(B) the set of
all exterior walks ω = (u, x1, ...xk, v), k ≥ 1 that start at u and end at v,
and associate with each such a walk the value p(ω) = 1/(dG(u)dG(x1)...dG(xk))
(note, the d(xi) is not ambiguous, since xi /∈ E(H), but we leave the ‘G’ subscript
in for clarity). This is precisely the probability that the walk ω is taken by a
simple random walk on G starting at u. Let

pH(u, v) =
∑
k≥1

∑
ω=(u,x1...xk,v)

p(ω), (6)

where the sum is over all exterior walks ω.
We set the edge conductances (weights) of H as follows: If e is an interior

edge, c(e) = 1. If it is an exterior edge e = (u, v) define c(e) as

c(e) = dG(u)pH(u, v) =
∑
k≥1

∑
ω=(u,x1...xk,v)

1
dG(x1)...dG(xk)

= dG(v)pH(v, u)

(7)
Thus the edge weight is consistent. A weighted random walk on H is thus a finite
reversible Markov chain with all the associated properties that this entails.

Definition 3. The weighted graph H derived from (G, S) is termed the local
observation of G at S, or G locally observed at S. We shall denote it as H =
Loc(G, S).

The intuition in the above is that we wish to observe a random walk W(G) on a
subset S of the vertices. When W(G) makes an external transition at the border
B, we cease observing and resume observing if/when it returns to the border.
It will thus appear to have transitioned a virtual edge between the vertex it left
off and the one it returned on. It will therefore appear to be a weighted random
walk on H . This equivalence is formalised thus

Definition 4. Let G be a graph and S ⊂ V (G). For a (unweighted) random walk
W(G) on G starting at x0 ∈ S, derive the Markov chain M(G, S) on the states
of S as follows: (i) M(G, S) starts on x0 (ii) If W(G) makes a transition through
an internal edge (u, v) then so does M(G, S) (iii)If W(G) takes an exterior walk
ω = (u, x1...xk, v) then M(G, S) remains at u until the walk is complete and
subsequently transitions to v. We call M(G, S) the local observation of W(G)
at S, or W(G) locally observed at S.

Lemma 6. For a walk W(G) and a set S ⊂ V (G), the local observation of
W(G) at S, M(G, S) is equivalent to the weighted random walk W(H) where
H = Loc(G, S).

Proof. See Appendix.

5 A General Bound

We give COV[P ] bounds in terms of H , and by symmetry, Theorem 1 can
be inferred. The lower bound is easy: It is clear that the H dimension needs
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to be covered - that is, each copy of G needs to be visited at least once. The
probability of moving through the H dimension is at least ΔH

ΔH+δG
, and the lower

bound follows.
For the upper bound, we first require the following lemmas. Denote by Rmax(G)

the maximum effective resistance between any pair of vertices in a graph G.

Lemma 7. For a graph G and tree T , Rmax(G�T ) < 4Rmax(G�Pr) where
|V (T )| ≤ r ≤ 2|V (T )| and Pr is the path on r vertices.

Proof. Note first the following: (i) By the parallel law, an edge (a, b) of unit
resistance can be replaced with two parallel edges between a, b, each of resis-
tance 2. (ii) By the shorting law, a vertex a can be replaced with two vetices
a1, a2 with a zero-resistance edge between them and the ends of edges incident
on a disributed arbitrarily between a1 and a2. These transformations preserve
electrical properties of a network.

Let F = G�T . Starting from some vertex v in T , perform a depth-first search
(DFS) of T stopping when all vertices in T have been visited. Each edge of T
is traversed at most twice; once in each orientation (though a particular vertex
x will be visited up to d(x) times). Let (ei) be the sequence of oriented edges
generated by the search. The idea is to use (ei) to construct a transformation
from F = G�T to G�Pr. From (ei), we derive another sequence (ai), which
is generated by following (ei) and if we have edges ei, ei+1 with ei = (a, b),
ei+1 = (b, c) such that it is neither the first time nor the last time b is visited
in the DFS, then we replace ei, ei+1 with (a, c). We term such an operation an
aggregation. Consider F ; by (i) above we can replace each unit-resistance edge
by a pair of parallel edges each of resistance 2. For a pair of parallel edges in
the T dimension, arbitrarily label one of them with an orientation, and label
the other with the opposite orientation. Note, orientations are only an aid to the
proof, and are not a flow restriction. We therefore see that (ei) can be interpreted
as a sequence of these parallel oriented edges. Now we modify F using (ai): If
(a, b), (b, c) was aggregated to (a, c), then replace each pair of oriented edges
((x.a), (x, b)) and ((x, b)(x, c)) in F with an oriented edge ((x, a), (x, c)) and
set the resistance of it the sum of the resistances of the replaced edges. This
operation is the same as restricting flow through ((x.a), (x, b)) and ((x, b)(x, c))
to only going from one to the other at vertex (x, b), without the possiblity of going
through other edges, The infimum of this subset of flows is at least the infimum
of the previous set and so by Thomson’s principle, the effective resistance cannot
be decreased by this operation.

For each copy of G in F excluding those that do not correspond to a leaf
of T , by(ii), we can do the following: Create a “twin” copy by associating with
each vertex x ∈ V (F ) (except those excluded) a twin vertex x′, putting a zero-
resistance edge between x and x′. We then (a) redistribute the parallel edges in
the G dimension so as to preserve structural isomorphism between each copy and
G and (b) redistribibute edges in the T dimension so as to respect the sequence
(ai). This means that when we trace (ai) via any vertex x ∈ V (G), then if we
have (a, b), (b, c) in (ai), we must have the corresponding path of oriented edges
((x, a), (x, b)), ((x, b), (x, c)). We then remove the zero-resistance edges between
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each pair of twin vertices, and by Rayleigh’s cutting law, this cannot decrease
the effective resistance. Using the sequence (ai) to trace a path of copies of
G along the T dimension, we see that the resulting structure is isomorphic to
G�Pr. Since the aggregation process only aggregates edges that pass through a
previously seen vertex, r is at least k. Also, because each edge is traversed at
most once in each direction, r is at most 2k. Each edge has resistance at most
4, and so the theorem follows.

Lemma 8. For graphs G, H with with DG =k and k≤nH ≤Rk, Rmax(G�H) <
32(3 + R)Lk ≤ ζR log DG where Lk is the k’th harmonic number and ζ is some
universal constant.

Proof. Let (a, x), (b, y) be any two vertices in G�H . Let D be some diametric
path of G. Let 〈a, D〉 represent the shortest path from a to D in G (which may
trivially be a if it is on D). Similarly with 〈b, D〉. Let TD = D ∪ 〈a, D〉 ∪ 〈b, D〉.
Note k ≤ |V (TD)| ≤ 3k. Now let TH be any spanning tree of H . Applying
Lemma 7 twice we have

Rmax(TD�TH) < 4Rmax(TD�Pr) < 16Rmax(Pr�Ps) (8)

where k ≤ r ≤ 6k and k ≤ s ≤ 2Rk. Considering a series of connected P 2
k

subgraphs and using the triangle inequality for effective resistance, we have
Rmax(Pr�Ps) ≤ 32(3 + R)Lk and the theorem follows.

Lemma 8 gives us an upperbound of ζ log DG for the effective resistance in a
block (definition below), which in turn allows us to bound the maximum hitting
time within a block, and therefore the cover time via Matthews’ technique.

The following proves the upperbound in Theorem 1.

Theorem 4. Let P = G�H where G, H are any connected, finite graphs. We
have

COV[P ] ≤ K

((
1 +

ΔG

δH

)
COV[H ] +

MmGmHnH l2

COV[H ]DG

)
(9)

where l = log DG log(nGDG) and K is some universal constant.

Proof. We group the vertices of H into sets such that for any set S and the
subgraph of H induced by S, H [S]: (i)|S| ≥ DG, (ii)H [S] is connected, (iii)
The diameter of H [S] is at most 4DG. We demonstrate this grouping is possible
through the following algorithm on H : Choose some arbitrary vertex v as the
root, and using a breadth-first search (BFS), descend from v at most distance
DG. The resulting tree T (v) will have diameter at most 2DG. For each leaf l of
T (v), continue the BFS using l as a root. If T (l) has fewer than DG vertices,
append it to T (v). If not, recurse on the leaves of T (l). Each tree then forms a
group that satisfies the three conditions above. The root is part of a new group,
unless it has been appended to another tree.

In the product P we refer to copies of G as columns. In P we have a natural
association of each column with the set S ⊆ V (H) defined above. We denote
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by Block[S] the set of columns in P associated with S union with all edges
incident on vertices in those columns. Therefore Block[S] = (G�H [S])∪{(u, v) ∈
E(P ) : u ∈ V (G�H [S])} (note, this is not a graph since it contains edges with
free ends). For any two vertices (.a), (., b) ∈ Block[S] we can find a connected
subgraph T (a, b) of the tree T that generated S such that a and b are connected
in T (a, b) and DG ≤ |V (T (a, b))| ≤ 4DG. Then using Lemma 8, we can bound
the effective resistance R((.a), (., b)) ≤ 4ζ log DG.

Hence
Rmax(Block[S]) ≤ 4ζ log DG (10)

Similarly, G�H [S] ⊆ Loc(P, V (Block[S])), and so

Rmax(Loc(P, V (Block[S]))) ≤ 4ζ log DG (11)

It is envisaged that the following is used with the idea in mind that G is small
relative to H , and so the cover time of the product is essentially dominated by
the cover time of H .

We use the following two-phase approach

Phase 1. Perform a random walk on W(P ) until the blanket-cover criterion is
satisfied for the H dimension.

Phase 2. Starting from the end of phase 1, perform a random walk on P until
all vertices of P not visited in phase 1 are visited.

Phase 1 can be thought of in the following way: We couple W(P ) with a walk
W(H) such that (i)if W(P ) starts at (., x), then W(H) starts at x, and (ii) W(H)
moves to a new vertex y from a vertex x when and only when W(P ) moves from
(., x) to (., y) for the first time. This coupled process runs until W(H) satisfies
the blanket-cover criteria for H , ie, when each vertex u ∈ V (H) has been visited
at least π(u)COV[H ] times.

Having grouped P into blocks, we analyse the outcome of phase 1 by relating
W(P ) to the local observation on each block. A particular block B will have
some vertices unvisited by W(P ) if and only if W(P ) locally observed on B fails
to visit all vertices. We refer to such a block as failed. Consider the weighted
random walk W(B′) on B′ = Loc(P, V (B)). This has the same law as W(P )
locally observed on B. Hence, we bound the probability of W(P ) failing to cover
B by bounding the probability that W(B′) fails to cover B′. Done for all blocks,
we can bound the expected time it takes phase 2 to cover the failed blocks. We
think of phase 1 as doing most of the “work”, and phase 2 as a “mopping up”
phase. Mopping up a block in phase 2 is costly, but if there are few of them, the
overall cost is within a small factor of phase 1.

We bound Pr(W(B′) fails) by exploiting the fact that W(B′) will have made
some minimal number of transitions t. This is guaranteed because phase 1 termi-
nates only when W(H) has statisfied the blanket-cover criterion on H , that is,
each vertex u ∈ V (H) has been visited at least π(u)COV[H ] times, so each col-
umn Gu in P will have been visited at least that many times. If κ counts the num-
ber of steps of a walk W(B′) until B′ is covered, then Pr(W(B′) fails to cover
B′) = Pr(κ > t) ≤ E[κ]/t by Markov’s inequality.
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Definition 5. For graphs I = J�K, and S ⊂ I, denote by S.J the projection
of S on to J , that is, S.J = {u ∈ J : (u, .) ∈ S}.
For a weighted graph G recall c(G) is the total conductance (weight) of all edges
of G.

Let B be a block and let B′ = Loc(P, V (B)). By Section 4 c(B′) = c(B),
given by the following

c(B) ≤ mG|{u ∈ V (B).H}| + nG

∑
u∈V (B).H

d(u) (12)

Using 11 and Lemma 3 we therefore have for any u, v ∈ V (B′), COM[u, v] ≤
Kc(B′) log DG for some universal constant K. (In what follows K will change,
but we shall keep the same symbol, with an understanding that what we finish
with is a univeral constant). Hence, by Lemma 4

COV[B′] ≤ Kc(B′) log DG log(|V (B′)|) = Kc(B)lB (13)

where lB = log DG log(|V (B)|)
For a block B, the number of transitions on the H dimension - and therefore

the number of transitions on B - as demanded by the blanket-cover criterion is
at least

∑
u∈V (B).H

COV[H ]π(u) =
COV[H ]

2mH

∑
u∈V (B).H

d(u) (14)

Now

Pr(W(P ) fails on B) = Pr(W(B′) fails on B′) (15)

≤ Kc(B)lB

⎛
⎝COV[H ]

2mH

∑
u∈V (B).H

d(u)

⎞
⎠

−1

. (16)

The second equality by Markov’s inequality.
Phase 2 consists of two components: movement between failed blocks, and

covering a failed block it has arrived at. The total block-to-block movement is
upperbounded by the time is takes to cover the H dimension of P (in other
words, for each column to have been visited at least once). We denote this
by COVP [P.H ]. Denoting the covertime of a block B by the walk W(P ) by
COVP [B],

E[Ph2] ≤ COVP [P.H ] +
∑
B∈P

Pr(W(P ) fails on B)COVP [B] (17)

For W(H), the r.v. βH = min{t : (∀v)Nv(t) > π(v)COV[H ]} counts the time
it takes to satisfy the blanket-cover criterion on H .
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The expected number of movements on P per movement on the H dimension
is at most ΔG+δH

δH
. Therefore E[Ph1] ≤ ΔG+δH

δH
E[βH ]. Similarly, COVP [P.H ] ≤

ΔG+δH

δH
COV[H ].

Using 10 and Lemmas 3 and 4 again, we have COVP [B] ≤ K ′c(P )lB where
c(P ) = |E(P )| = M . Theorem 2 gives us EβH ≤ KCOV[H ], for some universal
constant K and so

COV[P ] ≤ E[Ph1] + E[Ph2] (18)

≤ K
ΔG + δH

δH
COV[H ] +

∑
B∈P

Pr(W(P ) fails on B)COVP [B].(19)

We have, using 16

∑
B∈P

Pr(W(P ) fails on B)COVP [B] ≤ K
MmH

COV[H ]

∑
B∈P

c(B)l2B∑
u∈V (B).H d(u)

(20)

and

∑
B∈P

c(B)l2B∑
u∈V (B).H d(u)

≤
∑
B∈P

(
nG +

mG|{u ∈ V (B).H}|∑
u∈V (B).H d(u)

)
l2B (21)

Since
∑

u∈V (B).H d(u) ≥ |{u ∈ V (B).H}|, we have

∑
B∈P

Pr(W(P ) fails on B)COVP [B] ≤ K
MmGmH

COV[H ]

∑
B∈P

l2B (22)

≤ K
MmGmHnH l2

COV[H ]DG
(23)

where l = log DG log(nGDG)
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A Appendix

A.1 Proof of Lemma 6

The states are clearly the same so it remains to show that the transition prob-
ability PM(u, v) from u to v in M(G, S) is the same as PW(H)(u, v) in W(H).
Recall that B is the border of the induced subgraph G[S]. If u /∈ B then an
edge (u, v) ∈ E(H) is internal and so has unit conductance in H , as it does in
G. Furthermore, for an internal edge e, e ∈ E(H) if and only if e ∈ E(G), thus
dH(u) = dG(u) when u /∈ B. Therefore PW(H)(u, v) = 1/dH(u) = 1/dG(u) =
PM(u, v).

Now suppose u ∈ B. Let E(u) denote the set of all edges incident with u
in H and recall A(B) above is the set of exterior edges. The total conductance
(weight) of the exterior edges at u is∑

e∈E(u)∩A(B)

cH(e) =
∑

x∈N(u,out)

∑
v∈B

Pr(walk from x returns to B at v)

=
∑

x∈N(u,out)

1

= d(u, out).

(Note the ‘H ′ subscript in cH(e) above is redundant since exterior edges are only
defined for H , but we leave it for clarity).

Thus for u ∈ B

cH(u) =
∑

e∈E(u)

cH(e) =
∑

e∈E(u)∩G[S]

1 +
∑

e∈E(u)∩A(B)

cH(e)

= d(u, in) + d(u, out)
= dG(u)

Now

PM(u, v) = 1{(u,v)∈G[S]}
1

dG(u)
+

∑
k≥1

∑
ω=(u,x1...xk,v)

1
dG(u)dG(x1)...dG(xk)

(24)
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where the sum is over all exterior walks ω. Thus

PM(u, v) = 1{(u,v)∈G[S]}
1

dG(u)
+ pH(v, u) (25)

PW(H)(u, v) =
1

cH(u)
[
1{(u,v)∈G[S]} + 1{(u,v)∈A(S)}cH(u, v)

]
(26)

=
1

dG(u)
[
1{(u,v)∈G[S]} + 1{(u,v)∈A(S)}dG(u)pH(v, u)

]
(27)

= 1{(u,v)∈G[S]}
1

dG(u)
+ 1{(u,v)∈A(S)}pH(v, u) (28)

= PM(u, v) (29)
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Abstract. Linear time optimal parsing algorithms are very rare in the
dictionary based branch of the data compression theory. The most re-
cent is the Flexible Parsing algorithm of Mathias and Shainalp that
works when the dictionary is prefix closed and the encoding of dictio-
nary pointers has a constant cost. We present the Dictionary-Symbolwise
Flexible Parsing algorithm that is optimal for prefix-closed dictionar-
ies and any symbolwise compressor under some natural hypothesis. In
the case of LZ78-alike algorithms with variable costs and any, linear as
usual, symbolwise compressor can be implemented in linear time. In the
case of LZ77-alike dictionaries and any symbolwise compressor it can
be implemented in O(n log(n)) time. We further present some experi-
mental results that show the effectiveness of the dictionary-symbolwise
approach.

1 Introduction

In [16] Mathias and Shainalp gave a linear time optimal parsing algorithm in
the case of dictionary compression where the dictionary is prefix closed and
the cost of encoding dictionary pointer is constant. They called their parsing
algorithm Flexible Parsing. The basic idea of one-step-lookahead parsing that is
at the base of flexible parsing was firstly used to our best knowledge in [6] in
the case of dictionary compression where the dictionary is prefix closed and the
cost of encoding dictionary pointer is constant and the dictionary is static. A
first intuition, not fully exploited, that this idea could be successful used in the
case of dynamic dictionaries, was given in [7] and also in [11], where it was called
MTPL parsing (maximum two-phrase-length parsing).

Optimal parsing algorithms are rare and linear time optimal parsing results
are rather rare. We can only also cite the fact that greedy parsing is optimal and
linear for LZ77-alike dictionaries and constant cost dictionary pointers (see [19])
and its generalization to suffix closed dictionaries and constant cost dictionary
pointers (see [2]) later used also in [11].
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In this paper we consider the case of a free mixture of a dictionary compressor
and a symbolwise compressor and we extend, in a non obvious way, the result
of Mathias and Shainalp. We have indeed an optimal parsing algorithm in the
case of dictionary-symbolwise compression where the dictionary is prefix closed
and the cost of encoding dictionary pointer is variable and the symbolwise is
any classical one that works in linear time. Our algorithm works under the
assumption that a special graph that will be described in next section is well
defined. Even in the case where this condition is not satisfied it is possible to
use the same method to obtain almost optimal parses. In particular, when the
dictionary is LZ78-alike our algorithm can be implemented in linear time and
when the dictionary is LZ77-alike our algorithm can be implemented in time
O(n log(n)).

The study of free mixtures of two compressor is quite involved and it represents
a new theoretical challenge. Free mixture has been implicitly or explicitly using
for a long time in many fast and effective compressors such as gzip (see [5]),
PkZip (see [10]) and Rolz algorithms (see [14]). For a quick look to compression
performance on texts see Mahony challenge’s page (see [13]).

So, why linear time optimal parsing algorithms are rather rare? Classically
(see for example [18]), for static dictionaries it is possible to associate to any
dictionary algorithm A and to any text T a weighted graph GA,T such that
there is a bijection between optimal parsings and minimal paths in this graph.
The extension of this approach to dynamical dictionaries has been firstly studied,
to our best knowledge, in [17] and it has also been later used in [4]. More details
will be given in next sections.

The graph GA,T is a Directed Acyclic Graph and it is possible to find a mini-
mal path in linear time with respect to the size of it (see [3]). Unfortunately the
size of the graph can be quadratic in the size of the text and this approach was
not recommended in [18], because it is too time consuming. From a philosophical
point of view, the graph GA,T represents a mathematical modelling of the opti-
mal parsing problem. Thus, finding an optimal parsing in linear time corresponds
to discovering a strategy for using only a subgraph of linear size. Indeed, in order
to get over the quadratic worst case problem, there are many different approaches
and many papers deal with optimal parsing in dictionary compressions. For in-
stance the reader can see [1,2,4,6,8,9,11,12,15,16,19,20]. Among them, we stress
[4] where it is shown that a minimal path can be obtained by using a subgraph
of GA,T of size O(n log(n)), in the LZ77 case under some natural assumptions
on the cost function, by exploiting the discreteness of the cost functions.

In this paper we use a similar strategy, i.e. we consider static or dynamical
dictionaries, following the approach of [17] and we discover a “small” subgraph
of GA,T that is linear in the size of the text for LZ78-alike dictionaries and
O(n log(n)) for LZ77-alike dictionaries. This “small” subgraph is such that any
minimal path in it is also a minimal path in GA,T .

In Sect. 2 we recall some literature notions about dictionary and dictionary-
symbolwise compression algorithms and we define the graph GA,T . In Sect. 3
we formalize the definition of optimal algorithm and optimal parsing and extend
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them to the dictionary-symbolwise domain. In Sect. 4 we present the Dictionary-
Symbolwise Flexible Parsing, a parsing algorithm that extends in some sense the
Flexible Parsing (see [16]). We prove its optimality by showing that it corre-
sponds to a shortest path in the full graph, and in Sect. 5 we describe some data
structures that can be used for our algorithm in the two main cases of LZ78-alike
and LZ77-alike dictionaries together the time analysis. Section 6 reports some
experiments, open problems and our conclusions.

2 Preliminaries

Analogously to what stated in [17] and extending the approach introduced in
[18] to the dynamical dictionary case, we show how it is possible to associate a
directed weighted graph GA,T = (V, E, L) to any dictionary compression algo-
rithm A, any text T = a1a2a3 · · · an and any cost function C : E → R+ in the
following way. The set of vertices is V = {0, 1, . . . , n}, where vertex i corresponds
to ai, i.e. the i-th character in the text T , for 1 ≤ i ≤ n and vertex 0 correspond
to the position at the beginning of the text, before any characters. The empty
word ε is associated to vertex 0 that is also called the origin of the graph. The set
of directed edges is E = {(p, q) ⊂ (V ×V ) | p < q and ∃ w = T [p + 1 : q] ∈ Dp},
where T [p + 1 : q] = ap+1ap+2 · · · aq and Dp is the dictionary relative to the
processing step p-th, i.e. the step in which the algorithm either has processed
the input text up to character ap, for 0 < p, or it has to begin, for p = 0. For
each edge (p, q) in E, we say that (p, q) is associated to the dictionary phrase
w = T [p+1 : q] = ap+1 · · · aq ∈ Dp. In the case of static dictionary Di is constant
along the algorithm steps, i.e. Di = Dj , ∀i, j = 0 · · ·n. L is the set of edge labels
Lp,q for every edge (p, q) ∈ E, where the label Lp,q is defined as the cost of the
edge (p, q) when the dictionary Dp is in use, i.e. Lp,q = C((p, q)). When Lp,q is
always defined for each edge of the graph we say that GA,T is well defined.

A dictionary-symbolwise algorithm is a compression algorithm that uses both
dictionary and symbolwise compression methods. Such compressors parse the
text as a free mixture of dictionary phrases and literal characters, which are
substituted by the corresponding pointers or literal codes, respectively. There-
fore, the description of a dictionary-symbolwise algorithm should also include
the so called flag information, that is the technique used to distinguish the ac-
tual compression method (dictionary or symbolwise) used for each segment or
factor of the parsed text. Often, as in the case of LZSS (see [19]), an extra bit is
added either to each pointer or encoded character to distinguish between them.
Encoded information flag can require less (or more) space than one bit.

For instance, a dictionary-symbolwise compression algorithm with a fixed
dictionary D = {ab, cbb, ca, bcb, abc} and the static symbolwise codeword as-
signment [a = 1, b = 2, c = 3] could compress the text abccacbbabbcbcbb as
Fd1Fs3Fd3Fd2Fd1Fd4Fd2, where Fd is the information flag for dictionary point-
ers and Fs is the information flag for the symbolwise code.

More formally, a parsing of a text T in a dictionary-symbolwise algorithm
is a pair (parse, F l) where parse is a sequence (u1, · · · , us) of words such that
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T = u1 · · ·us and where Fl is a boolean function that, for i = 1, . . . , s indicates
whether the word ui has to be coded as a dictionary pointer or as a symbol. See
Tab. 1 for an example of dictionary-symbolwise compression.

A dictionary-symbolwise compression algorithm, analogously as done in [1]
for the pure dictionary case, is specified by:

1. The dictionary description.
2. The encoding of dictionary pointers.
3. The symbolwise encoding method.
4. The encoding of the flag information.
5. The parsing method.

We can naturally extend the definition of the graph associated to an algorithm for
the dictionary-symbolwise case. Given a text T = a1 . . . an, we denote by T [i : j]
the factor of T equal to ai . . . aj . Given a dictionary-symbolwise algorithm A, a
text T and a cost function C defined on edges, the graph GA,T = (V, E, L) is
defined as follows. The vertexes set is V = {0 · · ·n}, with n = |T |. The set of
directed edges E = Ed

⋃
Es, where Ed = {(p, q) ⊂ (V ×V ) | p < q−1, and ∃w =

T [p+1 : q] ∈ Dp} is the set of dictionary edges and Es = {(q−1, q) | 0 < q ≤ n}
is the set of symbolwise edges. L is the set of edge labels Lp,q for every edge
(p, q) ∈ E, where the label Lp,q = C((p, q)). Let us notice that the cost function
C hereby used has to include the cost of the flag information to each edge, i.e.
either C(p, q) is equal to 〈 the cost of the encoding of Fd〉 + 〈 the cost of the
encoded dictionary phrase w ∈ Dp associated to the edge (p, q)〉 if (p, q) ∈ Ed or
C(p, q) is equal to 〈 the cost of encoded Fs〉 + 〈 the cost of the encoded symbol
aq〉 if (p, q) ∈ Es. Moreover, since Ed does not contain edges of length one by
definition, GA,T = (V, E, L) is not a multigraph. Since this graph approach can
be extended to multigraph, with a overhead of formalism, one can relax the
p < q − 1 constrain in the definition of Ed to p ≤ q − 1. All the results we will
state in this paper, naturally extend to the multigraph case.

We call dictionary-symbolwise scheme a set of algorithms having in common
the same first four specifics (i.e. they differ one each other for just the pars-
ing methods). A scheme does not need to contain all algorithms having the
same first four specifics. We notice that any of the specifics from 1 to 5 above
can depend on all the others, i.e. they can be mutually interdependent. Fixed
a dictionary-symbolwise scheme, whenever the specifics of the parsing method
are given, exactly one algorithm is completely described. Notice that the word
scheme has been used by other authors with other related meaning. For us the
meaning is rigorous.

Table 1. Example of compression for the text abccacbbabbcbcbb by a simple Dyctionary-
Symbolwise algorithm that use D = {ab, cbb, ca, bcb, abc} as static dictionary, the iden-
tity as dictionary encoding and the mapping [a = 1, b = 2, c = 3] as symbolwise
encoding

Input ab c ca cbb ab bcb cbb

Output Fd1 Fs3 Fd3 Fd2 Fd1 Fd4 Fd2
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 (ab)
12 (abc)

8 (ca)
8 (ca)

8 (ab)
12 (bcb) 12 (bcb)

14 (cbb)

5 (a) 4 (b) 5 (c) 3 (c) 4 (a) 3 (c) 4 (a) 5 (b) 4 (b) 6 (c) 3 (b) 4 (c) 5 (b) 4 (b)

Fig. 1. Graph GA,T for the text T = abccacabbcbcbb, for the dictionary-symbolwise
algorithm A with static dictionary D = {ab, abc, bcb, ca, cbb} and cost function C as
defined in the graph. The dictionary phrase or the symbol associated to an edge is
reported near the edge label within parenthesis.

3 On Optimality

In this section we assume that the reader is familiar with LZ-alike dictionary
encoding and with some simple statistical encodings such as the Huffman en-
coding.

Definition 1. Fixed a dictionary description, a cost function C and a text T ,
a dictionary (dictionary-symbolwise) algorithm is optimal within a set of algo-
rithms if the cost of the encoded text is minimal with respect to all others algo-
rithms in the same set. The parsing of an optimal algorithm is called optimal
within the same set.

When the length in bit of the encoded dictionary pointers is used as cost func-
tion, the previous definition of optimality is equivalent to the classical well known
definition of bit-optimality for dictionary algorithm. Notice that the above defi-
nition of optimality strictly depends on the text T and on a set of algorithms. A
parsing can be optimal for a text and not for another one. Clearly, we are mainly
interested on parsings that are optimal either for all texts over an alphabet or
for classes of texts. Whenever it is not explicitly written, from now on when we
talk about optimal parsing we mean optimal parsing for all texts. About the set
of algorithm it make sense to find sets as large as possible.

Classically, there is a bijective correspondence between parsings and paths in
GA,T from vertex 0 to vertex n, where optimal parses correspond to minimal
paths and vice-versa. We say that a parse (resp. path) induces a path (resp.
parse) to denote this correspondence. This correspondence was firstly stated in
[18] only in the case of sets of algorithms sharing the same static dictionary and
where the encoding of pointers has constant cost.

For example the path along vertexes (0, 3, 4, 5, 6, 8, 11, 12, 13, 14) is the short-
est path for the graph in Fig. 1. Authors of [17] were the firsts to formally extend
the Shortest Path approach to dynamically changing dictionaries and variable
costs.

Definition 2. A scheme S has the Schuegraf property if, for any text T and
for any pair of algorithms A,A′ ∈ S, the graph GA,T = GA′,T with GA,T well
defined.
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This property of schemes is called property of Schuegraf in honor to the first of
the authors in [18]. In this case we define GS,T = GA,T as the graph of (any algo-
rithm of) the scheme. The proof of the following proposition is straightforward.

Proposition 1. There is a bijective correspondence between optimal parsings
and shortest paths in GS,T from vertex 0 to vertex n.

Definition 3. Let us consider an algorithm A and a text T and suppose that graph
GA,T is well defined. We say that A is dictionary optimal (with respect to T ) if its
parsing induces a shortest path in GA,T from the origin (i.e. vertex 0) to vertex n,
with n = |T |. In this case we say that its parsing is dictionary optimal.

Let A be an algorithm such that for any text T the graph GA,T is well defined.
We want to associate to it a scheme SCA in the following way. Let S be the set
of all algorithms A such that for any text T GA,T exists (i.e. it is well defined).
Let B and C two algorithms in S. We say that B and C are equivalent or B ≡ C
if, for any text T , GB,T = GC,T .

We define the scheme SCA to be the equivalence class that has A as a repre-
sentative. It is easy to prove that SCA has the Schuegraf property.

We can connect the definition of dictionary optimal parsing with the previ-
ous definition of SCA to obtain the next proposition, that says, roughly speak-
ing, that dictionary optimality implies scheme (or global) optimality within the
scheme SCA.

Proposition 2. Let us consider an algorithm A such that for any text T the
graph GA,T is well defined. Suppose further that for a text T the parsing of A
is dictionary optimal. Then the parsing of A of the text T is (globally) optimal
within the scheme SCA.

We have simple examples where a parsing of a text is dictionary optimal and the
corresponding algorithm belongs to a scheme that has not the Schuegraf prop-
erty and it is not (globally) optimal within the same scheme. For pure dictionary
scheme having the Schuegraf Property we mean a dictionary-symbolwise scheme
having the Schuegraf Property where all algorithms in the scheme are pure dic-
tionary. We have to be a bit careful using this terminology. Indeed, LZ78, LZW,
LZ77 and related algorithms often parse the text with a dictionary pointer and
then add a symbol, i.e. the parse phrase is composed by a dictionary pointer and
a symbol. In these cases all edges of GA,T denote parse phrases coupled to the
corresponding symbol. Edges are labeled by the cost of the dictionary pointer
plus the cost of the symbol. We consider these cases included in the class of
“pure dictionary” algorithms and schemes.

4 Dictionary-Symbolwise Flexible Parsing Algorithm

In this section we extend the notion of flexible parsing to the dictionary-symbol-
wise case and we prove that it is still optimal within any scheme having the
Schuegraf Property. We assume here that the dictionary must be at any moment
prefix closed. The algorithm is quite different from the original Flexible Parsing
but it has some analogies with it and, in the case of LZ78-alike dictionaries, it
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makes use of one of the main data structures used for the original flexible parsing
in order to be implemented in linear time. Concerning the costs of encoding
pointers, we recall that costs can vary but that they assume positive values
and that they include the cost of flag information. Concerning the symbolwise
compressor, the costs of symbols must be positive, including the flag information
cost. They can vary depending on the position of the character in the text and
on the symbol itself. We suppose further that a text T of length n is fixed and
that we are considering the graph GA,T , where A is a dictionary-symbolwise
algorithm, and GA,T is well defined under our assumption. We denote by d the
function that represent the distance of the vertexes of GA,T from the origin of
the graph. Such a distance d(i) is classically defined as the minimal cost of all
possible weighted paths from the origin to the vertex i, where d(0) = 0. This
distance obviously depends on the cost function. We say that cost function C is
prefix-non-decreasing at any moment if for any u, v ∈ Dp phrases associated to
edges (p, i), (p, q), with p < i < q, that implies that u is prefix of v, one has that
C((p, i)) ≤ C((p, q)).

Lemma 1. Let A be a dictionary-symbolwise algorithm such that for any text T
the graph GA,T is well defined. If the dictionary is always (at any moment) prefix-
closed and if the cost function is always (at any moment) prefix-non-decreasing
then the function d is non-decreasing monotone.

In what follows in this paper we suppose that the graph GA,T is well defined.
Let us call vertex j a predecessor of vertex i ⇐⇒ ∃(j, i) ∈ E such that
d(i) = d(j) +C((j, i)). Let us define pre(i) to be the smallest of the predecessors
of vertex i, 0 < i ≤ n, that is pre(i) = min{j | d(i) = d(j) + C((j, i))}. In other
words pre(i) is the smallest vertex j that contributes to the definition of d(i).
Clearly pre(i) has distance smaller than d(i). Moreover the function pre is not
necessarily injective. For instance, a vertex can be a predecessor either “via” a
dictionary edge or “via” a symbol edge. It is also possible to extend previous
definition to pointers having a cost smaller than or equal to a fixed c.

Definition 4. For any cost c we define prec(i) = min{j | d(i) = d(j) + C((j, i))
and C((j, i)) ≤ c}. If none of the predecessor j of i is such that C((j, i)) ≤ c
then prec(i) is undefined.

If all costs of the pointers are smaller than or equal to c then for any i one has
obviously that prec(i) is equal to pre(i).

Analogously to the notation of [15], we want to define two boolean operations
Weighted-Extend and Weighted-Exist.

Definition 5. Given an edge (i, j) in GA,T and its associated phrase w, a cost
value c and a character ’a’, the operation Weighted-Extend((i, j), a, c) finds out
whether the word wa is a phrase in Di having cost smaller than or equal to c.

More formally, let (i, j) be such that w = T [i + 1 : j] ∈ Di and, then, (i, j) is
in GA,T . Weighted-Extend((i, j), a, c) = “yes” ⇐⇒ wa = T [i + 1 : j + 1] ∈ Di

and C((i, j + 1)) ≤ c, where C is the cost function associated to the algorithm
A. Otherwise Weighted-Extend((i, j), a, c) = “no”.
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Definition 6. Given 0 < i, j ≤ n and a cost value c, the operation Weighted-
Exist(i, j, c) finds out whether or not the phrase w = T [i + 1 : j] is in Di and
the cost of the corresponding edge (i, j) is smaller than or equal to c.

Let us notice that doing successfully a Weighted-Extend operation on ((i, j), a,
c) means that wa ∈ Di is the weighted extension of w and the encoding of
(i, j + 1) has cost less or equal to c. Similarly, doing a Weighted-Exist operation
on (i, j, c) means that an edge (i, j) exist in GA,T having cost less or equal to c.

Let Ec be the subset of all edges of the graph having cost smaller than or
equal to c.

Definition 7. Let us also define, for any cost c the set Mc ⊆ Ec to be the set of
c-supermaximal edges, where (i, j) ∈ Mc ⇐⇒ (i, j) ∈ Ec and ∀p, q ∈ V , with
p < i and j < q, the arcs (p, j), (i, q) are not in Ec. For any (i, j) ∈ Mc let us
call i a c-starting point and j a c-ending point.

Proposition 3. Suppose that (i, j) and (i′, j′) are in Mc. One has that i < i′ if
and only if j < j′.

By previous proposition, if (i, j) ∈ Mc we can think j as function of i and
conversely. Therefore it is possible to represent Mc by using an array Mc[j] such
that if (i, j) is in Mc then Mc[j] = i otherwise Mc[j] = Nil. Moreover the non-Nil
values of this array are strictly increasing. The positions j having value different
from Nil are the ending positions.

We want now to describe a simple algorithm that outputs all c-supermaximal
edges scanning the text left-to-right. We call it Find Supermaximal(c). It uses
the operations Weighted-Extend and Weighted-Exist. The algorithm starts with
i = 0, j = 1 and w = a1.The word w is indeed implicitely defined by the arc
(i, j) and therefore it will not appear explicitely in the algorithm. At each step
j is increased by one and w is set to w concatenated to T [j]. The algorithm
executes a series of Weighted-Extend until this operation give a positive answer
or the end of the text is reached. After a negative answer of Weighted-Extend,
the algorithm does a series of Weighted-Exist increasing i by one until a positive
answer. The algorithm is stated more formally in the following pseudo code.

Find Supermaximal (c)
01. i ← 0, j ← 1
02. WHILE j < n
03. DO
04. WHILE Weighted-Extend((i, j), aj+1, c) = “yes” AND j < n
05. DO
06. j ← j + 1
07. INSERT (i, j) in Mc, j ← j + 1
08. DO
09. i ← i + 1
10. WHILE Weighted-Exist(i, j, c) = “no” AND i < j

We notice that when exiting from cycle of lines 4 − 6, the cost of the edge (i, j)
could still be strictly smaller than c. The function INSERT simply insert the
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edge (i, j) in the dynamical set Mc. If we represent Mc by an array as described
after Prop. 3, function INSERT sets Mc[j] equal to i. Array Mc[j] was initialized
by setting all its entries to Nil.

Proposition 4. Above algorithm correctly computes Mc.

Proposition 5. For any edge (i, j) ∈ Ec there exists a c-supermaximal edge
(̂i, ĵ) containing it, i.e. such that î ≤ i and j ≤ ĵ.

By previous proposition for any node v ∈ GA,T if there exists a node i < v such
that C((i, v)) = c and d(v) = d(i) + c then there exists a c-supermaximal edge
(̂i, ĵ) containing (i, v) and such that ĵ is the closest arrival point greater that v.
Let us call this c-supermaximal edge (̂iv, ĵv). We use îv in next proposition.

Proposition 6. Suppose that v ∈ GA,T is such that there exists a previous node
i such that C((i, v)) = c and d(v) = d(i) + c. Then îv is a predecessor of v, i.e.
d(v) = d(̂iv) + C((̂iv, v)) and, moreover, d(̂iv) = d(i) and C((̂iv, v)) = c.

Corollary 1. For any vertex v, the edge (̂iv, v) is the last edge of a path of
minimal cost from the origin to vertex v.

In what follows we describe a graph G′
A,T that is a subgraph of GA,T and that

is such that for any node v ∈ GA,T there exists a minimal path from the origin
to v in G′

A,T that is also a minimal path from the origin to v in GA,T . The
proof of this property, that will be stated in the subsequent proposition, is a
consequence of Proposition 6 and Corollary 1.

We describe the building of G′
A,T in an algorithmic way. Even if we do not

give the pseudocode, algorithm Build G′
A,T is described in a rigorous way and

it makes use, as a part of it, of algorithm Find Supermaximal.
The set of nodes of G′

A,T is the same of GA,T . First of all we insert all
symbolwise edges of GA,T in G′

A,T . Let now C be the set of all possible costs
that any dictionary edge has. This set can be build starting from GA,T but in all
known meaningful situations the set C is usually well known and can be ordered
and stored in an array in a time that is linear in the size of the text.

For any c ∈ C we use algorithm Find Supermaximal to obtain the array
Mc[j]. For any c-supermaximal edge (i, j), we add in G′

A,T all edges of the form
(i, x) where x varies from j down to (and not including) the previous arrival
position j′ if this position is greater than i + 1 otherwise down to i + 2. More
formally, for any j such that Mc[j] �= Nil let j′ be the greatest number smaller
than j such that Mc[j] �= Nil. For any x, such that max(j′, i + 2) ≤ x ≤ j, add
(i, x) to G′

A,T together with its label. This concludes the construction of G′
A,T .

Since (i, j) and the dictionary Di is prefix closed then all previous arcs of the
form (i, x) are also arcs of GA,T and, therefore, G′

A,T is a subgraph of GA,T .

Proposition 7. For any node v ∈ GA,T there exists a minimal path from the
origin to v in G′

A,T that is also a minimal path from the origin to v in GA,T .

We can now finally describe the Dictionary-symbolwise flexible parsing.
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The Dictionary-symbolwise flexible parsing firstly uses algorithm Build G′
A,T

and then uses the classical Single Source Shortest Path algorithm to re-
cover a minimal path from the origin to the end of graph GA,T . The correctness
of above algorithm is stated in the following theorem and it follows from above
description and from Prop. 7.

Theorem 1. Dictionary-symbolwise flexible parsing is dictionary optimal.

With respect to the original Flexible Parsing algorithm we gain the fact that it
can works with variable costs of pointers and that it is extended to the dictionary-
symbolwise case. But we loose the fact that the original one was “on-line”. A
minimal path has to be recovered, starting from the end of the graph backward.
But this is an intrinsic problem that cannot be eliminated. Even if the dictionary
edges have just one possible cost, in the dictionary-symbolwise case it is possible
that any minimal path for a text T is totally different from any minimal path
for the text Ta, that is the previous text T concatenated to the symbol ‘a’. Even
if the cost of pointers is constant. The same can happen when we have a “pure
dictionary” case with variable costs of dictionary pointers. In both cases for this
reason, there cannot exists “on-line” optimal parsing algorithms, and, indeed,
flexible parsing fails being optimal in the pure dictionary case when costs are
variable.

On the other hand our algorithm is suitable when the text is cut in several
blocks and, therefore, in practice there is not the need to process the whole
text but it suffices to end the current block in order to have the optimal parsing
(relative to that block). As another alternative, it is possible to keep track of just
one minimal path all along the text and to use some standard tricks to arrange
it if it does not reach the text end, i.e. the wished target node. In the last cases
one get a suboptimal solution that is a path with a cost extremely close to the
minimal path.

5 Data Structures and Time Analysis

In this subsection we analyze Dictionary-symbolwise flexible parsing in both
LZ78 and LZ77-alike algorithms.

Concerning LZ78-alike algorithms, the dictionary is prefix closed and it is
usually implemented by using a technique that is usually referred as LZW im-
plementation. We do not enter in details of this technique. We just recall that
the cost of pointers increases by one unit whenever the dictionary size is “close”
to a power of 2. The moment when the cost of pointers increases is clear to both
encoder and decoder. In our dictionary-symbolwise setting, we suppose that the
flag information for dictionary edges is constant. We assume therefore that it
takes O(1) time to determine the cost of all dictionary edges outgoing node i.

The maximal cost that a pointer can assume is smaller than log2(n) where n
is the text-size. Therefore the set C of all possible costs of dictionary edges has
logarithmic size and it is cheap to calculate.

In [15] it is used a data structure, called trie-reverse pair, that is able to
perform the operation of Extend and Contract in O(1) time.
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Since at any position we can calculate in O(1) time the cost of outgoing edges,
we can use the same data structure to perform our operations of Weighted-Extend
and of Weighted-Exist in constant time. In order to perform a Weighted-Extend
we simply use the Extend on the same non-weight parameters and, if the answer
is “yes” we perform a further check in O(1) time on the cost. In order to perform
a Weighted-Exist we simply use the contract on the same non-weight parameters
and, if the answer is “yes” we perform a further check in O(1) time on the cost.

For any cost c finding Mc and the corresponding arcs in order to build G′
A,T

takes then linear time. Therefore, at a first look, performing the algorithm Build
G′

A,T would take O(n log(n)). But, since there is only one cost active at any
position then if c < c′ then Mc ⊆ Mc′ as stated in the following proposition.

Definition 8. We say that a cost function C is LZW-alike if for any i the cost
of all dictionary pointers in Di is a constant ci and that for any i, 0 ≤ i < n
one has that ci ≤ ci+1.

Proposition 8. If the cost funtcion C is LZW-alike, one has that if c < c′ then
Mc ⊆ Mc′ .

At this point, in order to build G′
A,T it suffices to build Mc where c is the greatest

possible cost. Indeed it is useless checking for the cost and one can just use the
standard operation Extend and Contract. Those operation can be implemented in
O(1) time using the trie reverse trie data structure for LZ78 standard dictionary
or for the LZW dictionary or for the FPA dictionary (see [15]). Indeed we call a
dictionary LZ78-alike if the operations Extend and Contract can be implemented
in O(1) time using the trie reverse trie data structure.

We notice that previous definition of LZ78-alikeness can be relaxed by asking
that the operations Extend and Contract can be implemented in O(1) amortized
time using any data structure, including obviously the time used for building such
data structure.

The overall time for building G′
A,T is therefore linear, as well as its size.

The Single Source Shortest Path over G′
A,T , that is a DAG topologically

ordered, takes linear time.
In conclusion we state the following theorem.

Theorem 2. Suppose that we have a dictionary-symbolwise scheme, where the
dictionary is LZ78-alike and the cost function is LZW-alike. The symbolwise
compressor is supposed to be, as usual, linear time. Using the trie-reverse pair
data structure, Dictionary-Symbolwise flexible parsing is linear.

Concerning LZ77, in [4] it has been given, with a similar shortest path approach,
an optimal parsing algorithm under some assumptions on the cost function. Our
prefix-non-decreasing assumption is weaker than their assumptions in the sense
that it is a consequence of their assumptions (see [4, Fact 4]). The maximal cost
that a pointer can have under their assumption is still O(log(n)) where n is the
size of the text. It seems that it is possible to use the data structure used in
[4] to perform, for any cost, Weighted-Extend and Weighted-Exist in amortized
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O(1) time. Then the overall time for the Dictionary-symbolwise flexible parsing
when the dictionary is LZ77-alike would be O(n log(n)), extending their result to
the dictionary-symbolwise case. The subgraph G′

A,T of GA,T is totally different
from the one used in [4]. Indeed, quite recently, we discovered a simpler data
structure that allows us to perform, for any cost, Weighted-Extend and Weighted-
Exist in amortized O(1) time. This data structure is built by using in a clever
way O(log(n)) suffix trees and it will be described in the journal version of this
paper.

6 Conclusions

In this paper we present some advancement on dictionary-symbolwise theory. We
describe the Dictionary-Symbolwise Flexible Parsing, a parsing algorithm that
extends in non obvious way the Flexible Parsing (see [16]) to variable and un-
bounded costs and to the dictionary-symbolwise algorithm domain. We prove its
optimality for prefix-closed dynamic dictionaries under some reasonable assump-
tion. Dictionary-Symbolwise Flexible Parsing is linear for LZ78-alike dictionaries
and even if it is not able to run online it allow to easily make a block program-
ming implementation and a near to optimal online implementation, too. In the
case of LZ77-alike dictionary, we have reobtained the O(n log(n)) complexity
as authors of [4] recently did and we use a completely different and simpler
subgraph and a simpler data structure.

Our algorithm has therefore two advantages with respect to the classical Flex-
ible Parsing. First, it can handle variable cost of dictionary pointers. This fact
allows to extend the range of application of Flexible Parsing to almost all LZ78-
alike known algorithms of our extension. Secondly, our Dictionary-Symbolwise
Flexible Parsing implemented in the case of LZ77 dictionary gives as particular
case when the symbolwise is not in use, a result that is similar to the one pre-
sented in [4] that has O(n log(n)) complexity, using a completely different and
simpler subgraph and a simpler data structure. Last but not least our algorithm
allows to couple classical LZ-alike algorithms with several symbolwise algorithms
to obtain dictionary-symbolwise algorithms that achieve better compression with
prove of optimality.

It is possible to prove, and we did not do it due to space limitation, that
dictionary-symbolwise compressors can be asymptotically better than optimal
pure dictionary compression algorithms in compression ratio terms, with LZ78
based dictionary and the same can be proved for LZ77 based dictionary. In our
case, using a simple static Huffman coding as symbolwise compressor we im-
proved the compression ratio of the Flexible Parsing of 7% − 4% on texts such
as prefixes of English Wikipedia data base with a negligible slow down in com-
pressing and decompressing time. The slow down comes from the fact that we
have to add to the dictionary compression and decompression time the Huffman
coding and decoding time. The same experimental result holds in general when
the dictionary is LZ78-alike. Indeed a dictionary-symbolwise compressor when
the dictionary is LZ78-alike and the symbolwise is a simple Huffman coding with
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optimal parsing has a compression ratio that is is more or less 5% better than
the compression ratio of a pure LZ78-alike dictionary compressor that uses an
optimal parsing. In general smaller is the file greater is the gain. The 5% refers
to text sizes of around 20 megabytes. Moreover, preliminary results show that
using more powerful but still fast symbolwise compressor, such as an arithmetic
encoder of order 1, there is a further 10% gain in compression ratio. When
the dictionary is, instead, LZ77-alike the gain in compression when we use a
dictionary-symbolwise compressor with optimal parsing and Huffman coding
with respect to a pure dictionary compressor with optimal parsing reduces down
to more or less 3% over texts of 20 megabytes, smaller the file greater the gain.
The compression ratio seems to be sensibly better than in the case of LZ78-alike
dictionaries when we use, in both cases, unbounded dictionaries. The distance,
however, between the compression ratio of dictionary-symbolwise compressors
that use LZ78-alike dictionaries and the ones that use LZ77-alike dictionaries is
smaller, following our preliminary results, when we use an arithmetic encoder of
order 1 instead than an Huffman encoding. We have experimental evidence that
many of the most relevant commercial compressors use, following our definition,
optimal parsing in the dictionary-symbolwise case where the dictionary is LZ77-
alike. The method described in this paper therefore has as a consequence the
possibility of optimizing the trade-off between some of the main parameters used
for evaluating commercial compressors, such as compression ratio, decompression
time, compression time and so on. We plan to extend our experimentation on
LZ-alike dictionary algorithms and many other symbolwise algorithms, since this
direction seems to be very promising.

We conclude this paper with two open problems.

1. Theoretically, LZ78 is better on memoryless sources than LZ77. Experi-
mental results say that when optimal parsing is in use it happens the opposite.
Prove this fact both in pure dictionary case and in dictionary-symbolwise case.

2. Common symbolwise compressors are based on the arithmetic coding ap-
proach. When these compressors are used, the costs in the graph are almost
surely non integer and, moreover, the graph is usually not well defined. The
standard workaround is to use an approximation strategy. A big goal should be
to find an optimal solution for these important cases.

References

1. Bell, T.C., Witten, I.H.: The relationship between greedy parsing and symbolwise
text compression. J. ACM 41(4), 708–724 (1994)

2. Cohn, M., Khazan, R.: Parsing with prefix and suffix dictionaries. In: Data Com-
pression Conference, pp. 180–189 (1996)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

4. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of lempel-ziv com-
pression. In: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on
Discrete Algorithms, SODA 2009, pp. 768–777. Society for Industrial and Applied
Mathematics, Philadelphia (2009)



Dictionary-Symbolwise Flexible Parsing 403

5. Gzip’s Home Page, http://www.gzip.org
6. Hartman, A., Rodeh, M.: Optimal parsing of strings, pp. 155–167. Springer,

Heidelberg (1985)
7. Horspool, R.N.: The effect of non-greedy parsing in ziv-lempel compression meth-

ods. In: Data Compression Conference (1995)
8. Katajainen, J., Raita, T.: An approximation algorithm for space-optimal encoding

of a text. Comput. J. 32(3), 228–237 (1989)
9. Katajainen, J., Raita, T.: An analysis of the longest match and the greedy heuristics

in text encoding. J. ACM 39(2), 281–294 (1992)
10. Katz, P.: Pkzip archiving tool (1989), http://en.wikipedia.org/wiki/pkzip
11. Kim, T.Y., Kim, T.: On-line optimal parsing in dictionary-based coding adaptive.

Electronic Letters 34(11), 1071–1072 (1998)
12. Klein, S.T.: Efficient optimal recompression. Comput. J. 40(2/3), 117–126 (1997)
13. Mahoney, M.: Large text compression benchmark, http://mattmahoney.net/

text/text.html

14. Martelock, C.: Rzm order-1 rolz compressor (April 2008), http://encode.ru/

forums/index.php?action=vthread&forum=1&topic=647

15. Matias, Y., Rajpoot, N., Shainalp, S.C.: The effect of flexible parsing for dynamic
dictionary-based data compression. ACM Journal of Experimental Algorithms 6,
10 (2001)

16. Matias, Y., Shainalp, S.C.: On the optimality of parsing in dynamic dictionary
based data compression. In: SODA, pp. 943–944 (1999)

17. Della Penna, G., Langiu, A., Mignosi, F., Ulisse, A.: Optimal parsing in
dictionary-symbolwise data compression schemes (2006), http://www.di.univaq.
it/mignosi/ulicompressor.php

18. Schuegraf, E.J., Heaps, H.S.: A comparison of algorithms for data base compression
by use of fragments as language elements. Information Storage and Retrieval 10(9-
10), 309–319 (1974)

19. Storer, J.A., Szymanski, T.G.: Data compression via textural substitution. J.
ACM 29(4), 928–951 (1982)

20. Wagner, R.A.: Common phrases and minimum-space text storage. ACM Com-
mun. 16(3), 148–152 (1973)

http://www.gzip.org
http://en.wikipedia.org/wiki/pkzip
http://mattmahoney.net/text/text.html
http://mattmahoney.net/text/text.html
http://encode.ru/forums/index.php?action=vthread&forum=1&topic=647
http://encode.ru/forums/index.php?action=vthread&forum=1&topic=647
http://www.di.univaq.it/mignosi/ulicompressor.php
http://www.di.univaq.it/mignosi/ulicompressor.php


Regular Language Constrained Sequence
Alignment Revisited

Gregory Kucherov1, Tamar Pinhas2, and Michal Ziv-Ukelson2

1 LIFL/CNRS and INRIA Lille Nord-Europe, Villeneuve d’Ascq, France
2 Department of Computer Science, Ben-Gurion University of the Negev,

Be’er Sheva, Israel

Abstract. Imposing constraints in the form of a finite automaton or
a regular expression is an effective way to incorporate additional a pri-
ori knowledge into sequence alignment procedures. With this motiva-
tion, Arslan [1] introduced the Regular Language Constrained Sequence
Alignment Problem and proposed an O(n2t4) time and O(n2t2) space
algorithm for solving it, where n is the length of the input strings and
t is the number of states in the non-deterministic automaton, which
is given as input. Chung et al. [2] proposed a faster O(n2t3) time al-
gorithm for the same problem. In this paper, we further speed up the
algorithms for Regular Language Constrained Sequence Alignment by
reducing their worst case time complexity bound to O(n2t3/ log t). This
is done by establishing an optimal bound on the size of Straight-Line
Programs solving the maxima computation subproblem of the basic dy-
namic programming algorithm. We also study another solution based
on a Steiner Tree computation. While it does not improve the run time
complexity in the worst case, our simulations show that both approaches
are efficient in practice, especially when the input automata are dense.

1 Introduction

1.1 Constrained Sequence Alignment

Sequence alignment algorithms use a position independent scoring matrix, but
when biologists make an alignment they favor some similarities, depending on
their knowledge of the structure and/or the function of the sequences. Various
extensions of the Smith-Waterman algorithm [3] modify the alignment consid-
erations according to a priori knowledge [4–8]. One kind of a priori knowledge
is about shared properties (patterns) which are expected to be preserved by
the alignment. Specifically, in protein sequence alignment, it is natural to ex-
pect that functional sites be aligned together. Several studies suggested taking
into account the patterns (specified by regular expressions) from the PROSITE
database [9] to guide and constrain protein alignments [1, 10], since such patterns
may serve as good descriptors of protein families.

In [1], Arslan introduced the Regular Expression Constrained Sequence Align-
ment Problem. Here, the constraint on sequence alignment is given in the form
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Fig. 1. Examples of a sequence alignment and a regular expression constrained se-
quence alignment on the two strings CACGAG and CAGCGCGA, with a scoring
matrix (-1 for mismatch/insert/delete, 1 for match). (a) The maximal score of the
global alignment is 2. (b) Let R be A(G+C)∗GA, the constrained problem’s score is 1.

of a non-deterministic finite automaton [NFA]. An alignment satisfies the con-
straint if a segment of it is accepted by the NFA in each aligned sequence (see
Fig. 1). Arslan’s dynamic programming algorithm is based on applying an NFA,
with scores assigned to its states, to guide the sequence alignment. This NFA
accepts all alignments of the two input strings containing a segment that belongs
to the input regular language. The algorithm yields O(n2t4) time and O(n2t2)
space complexities, where n is the sequence length and t is the number of states
in the NFA expressing the constraint. The algorithm simulates copies of this
automaton on alignments, updating state scores, as dictated by the underlying
scoring scheme. Chung, Lu and Tang [2] proposed an improvement to the above
algorithm, yielding O(n2t3) time and O(n2t2) space complexities, in the general
case, exploiting the sparse structure of the automaton constructed in Arslan’s
algorithm. This improved algorithm is described in detail in section 1.3.

Our Contribution. In this paper, we further speed up the algorithms for Reg-
ular Language Constrained Sequence Alignment by reducing their worst case
time complexity bound to O(n2t3/ log t). This is done by establishing an op-
timal bound on the size of Straight-Line Programs [SLP] solving the maxima
computation subproblem of the basic dynamic programming algorithm. We also
study another solution based on a Steiner Tree computation. While it does not
improve the run time complexity in the worst case, our simulations show that
both approaches are efficient in practice, especially when the input automata
are dense.

Roadmap. The rest of this paper proceeds as follows. In this section, we de-
fine the Regular Language Constrained Sequence Alignment problem and give
an overview of previous algorithms for the problem. In Section 2, we describe
and analyze two new algorithms based on Steiner Trees and SLPs; Section 2.4
includes some simulations and comparative test results.

1.2 Preliminaries and Definitions

Let Σ be a finite alphabet. Let a, b ∈ Σ∗ two strings over the alphabet Σ. We
denote ai,j the substring of a from index i to index j (included) and ai is the ith

character in a. Let Σ′ = Σ ∪ {−} be an extended alphabet, where − /∈ Σ. Let
X, Y ∈ Σ′∗. We denote X−, the string result of the removal of − characters from
X . Let s : Σ′ × Σ′ \ {−,−} → ,+ be a scoring function over edit operations
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(i.e. replace, insert and delete). (X, Y ) is an alignment of a and b if |X | = |Y |,

X−=a and Y − = b. The score of an alignment (X, Y ) is s((X, Y )) =
|X|∑
i=1

s(Xi, Yi).

Below, we define the alignment optimization problem and its regular language
constrained variant. Both problems are formalized in their score maximization
version (the score minimization version is symmetric).

Definition 1 (Sequence Alignment). Given two strings a and b, both over
a fixed alphabet Σ and a scoring function s. Find an alignment of a and b with
a maximal score under s.

Let LR be a regular language. Let A = (Q, Σ, δ, q0, FA) be an NFA with t states,
such that L(A) = LR. We assume that ε-transitions were removed from A. For
convenience, we denote the automaton transition table δ as follows: q

c−→p states
that there is a transition from state q to state p by character c. In addition, we
denote the number of transitions in δ as |δ|.
Definition 2 (Regular Language Constrained Sequence Alignment).
Given two strings a and b, both over a fixed alphabet Σ, a scoring function s
and an NFA A. Find an alignment (X, Y ) of a and b such that it is the align-
ment with the maximal score under s which satisfies the following condition:
indices i and j exist such that X−

i,j , Y
−
i,j ∈ L(A).

1.3 An Overview of Previous Work

Arslan’s algorithm defines an NFA M , such that the states of M are the ordered
pairs of states of A, therefore, it has O(t2) reachable states. M is defined over
the alphabet Σ′′ = Σ′×Σ′. For every two transitions q

c1−→
1 p1 and q

c2−→
2 p2 in A, the

transitions (q1, q2)
(c1,c2)−−−−−→(p1, p2), (q1, q2)

(c1,−)
−−−−−→(p1, q2) and (q1, q2)

(−,c2)−−−−−→(q1, p2)
exist in M . For any two final states qf1 , qf2 ∈ FA and for any characters c1, c2

the transitions (qf1 , qf2)
(c1,c2)−−−−−→(qf1 , qf2), (qf1 , qf2)

(c1,−)
−−−−−→(qf1 , qf2) and

(qf1 , qf2)
(−,c2)−−−−−→(qf1 , qf2) exist in M . The same addition is done for the initial

state. A sequence alignment table T of size (|a|+1)×(|b|+1) is calculated. Each
cell Ti,j, contains a table of scores, one for every state in M (that is, a pair of
states in A). Ti,j(p, q) is the maximal score of an alignment of a1,i and b1,j, such
that reading it in M ends at (p, q). The table size is clearly O(n2t2), since each
cell holds t2 scores.

In the following recurrence formula for Ti,j , we move from the multiplication
automaton notion of Arslan to a simpler formulation. As a first step, we add to
A transitions q

c−→q where c is any symbol and q is either an initial or final state
in A. The score of Ti,j for a given state (p, q) is computed as follows.

Ti,j(q, p) = max

⎧⎪⎨
⎪⎩

max{Ti−1,j(q′, p)|q′ ∈ Q, q′
ai−→q} + s(ai,−)

max{Ti,j−1(q, p′)|p′ ∈ Q, p′
bj−→p} + s(−, bj)

max{Ti−1,j−1(q′, p′)|q′, p′ ∈ Q, q′
ai−→q, p′

bj−→p} + s(ai, bj)(∗)
(1)
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q0 q1 q2
A,C

A

A

A

C

C

(a)

Ti−1,j−1

predbj
(p)

predai
(q)

Ti,j

p

q

(b)

Fig. 2. (a) An example of an NFA. Its transitions yield the following pred sets:
predA(q0) = ∅, predA(q1) = predA(q2) = {q0, q1}, predC(q0) = {q2}, predC(q1) =
{q0, q2}, predC(q2) = ∅.
(b) Score calculation performed by Arslan’s algorithm. The green scores in Ti−1,j−1,
corresponding to rows predai(q) and columns predbj (p), are used in the calculation of
Ti,j for the state pair (q, p).

For the sake of simplicity, we define max ∅ = −∞. The initialization consists
of assigning 0 to T0,0(q0, q0) and −∞ elsewhere. The optimal alignment score
is max{T|a|,|b|(q, p)|q, p ∈ FA}. There are a total of O(n2t2) scores to calculate.
According to Eq. 1, each score calculation (for a given i, j, q and p) involves O(t2)
values in the worst case, as apparent in the third term marked (∗), because in
an NFA there are at most t transitions q′

ai−→q for a single character ai and,
independently, there are at most t transitions p′

bj
−→q for bj (see Fig. 2(b) ). The

term (∗) is the bottleneck of the algorithm. Since A is non-deterministic, it may
contain O(t2) transitions by any character c.

The algorithm of Chung et al. exploits the following redundancy: Given that
M is an NFA with |δ| = O(t2) states, and assuming no additional knowledge
of M , it can be concluded that M can potentially have O(t4) transitions. Thus,
Arslan’s algorithm iterates over all possibilities of two states of M in each Ti,j

calculation. However, it is known, according to the way M was built, that each
transition in M originates from at most two transitions in A. The iteration over
the two possible transitions can be done independently of each other.

Definition 3. Let A be an ε-free NFA. We denote predc(q) the set of states
with outgoing transitions labeled by character c and leading to state q.

predc(q) = {p|p c−→q} (2)

Using this notation (see Fig. 2(a)), Eq. (1) can be rewritten as follows:

Ti,j(q, p) = max

⎧⎪⎪⎨
⎪⎪⎩

max{Ti−1,j(q′, p)|q′ ∈ predai(q)} + s(ai,−)
max{Ti,j−1(q, p′)|p′ ∈ predbj (p)} + s(−, bj)
max{Ti−1,j−1(q′, p′)|

q′ ∈ predai(q),p′ ∈ predbj (p)} + s(ai, bj)(∗)

(3)

Chung et al. [2] sped up Arslan’s algorithm by removing redundant computations
which were due to the fact that the computed value is based on two independent
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Ti−1,j−1

p′

predai
(q)

p′

Li,j

q

(a) Calculation of Li,j

Li,j

q

predbj
(p)

Ti,j

p

q

(b) Calculation of Ti,j

Fig. 3. Score calculation performed by Chung et al.’s algorithm

optimum calculations, one for each of the compared strings. We next describe
Chung et al.’s algorithm using our own notation. The calculation of (∗) is split
into two steps using an intermediate table L (see Fig. 3).

Li,j(q, p′) = max{Ti−1,j−1(q′, p′)|q′ ∈ predai(q)}
Ti,j(q, p) = max{Li,j(q, p′)|p′ ∈ predbj (p)} + s(ai, bj) (4)

In the first step, the size of the set, over which the maximum is calculated
for every pair of states of A, (q, p′), depends on the existing transitions in the
automaton A with the character ai. Since the size of the set is bounded due
to |predai(q)| ≤ t, the first step takes t3 time. The same argument holds for
the second step. In summary, their algorithm improved the time complexity to
O(n2t|δ|) = O(n2t3), while maintaining the same space complexity.

2 A Faster Algorithm

2.1 Eliminating Duplicate Computations

It is apparent from Eq. (4) that the calculation of Li,j , for a specific value of
p′ and ranging over q, takes the maxima over subsets of indices of column p′ of
Ti−1,j−1, while the calculation of Ti,j, for a specific value of q and ranging over
p, takes the optimum over subsets of indices of the qth row of Li,j (see Fig. 3).

The structure of the NFA transition table, namely the relations between the
predc sets, can be used to reduce the number of components required in consec-
utive subset maxima calculations. For instance, let us assume that a state q′ is
included both in predc(q1) and predc(q2) for q1 �= q2. Then, for a given state p,
the score Ti−1,j−1(q′, p) is taken into account in calculations of both Li,j(q1, p)
and Li,j(q2, p) (see Fig. 4). By minimizing the repetition of score usage, the
efficiency of the calculation of Eq. (1) and Eq. (4) can be improved.

Following the observations above, the goal of speeding up the calculation of
Eq. (4) can be formulated as the following question: What is the most efficient
way to calculate maximum values over given, possibly overlapping, sets of scores?
Thus, the general problem underlying the speed up of these algorithms can be
formulated as follows.
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Ti−1,j−1

p′

predai
(q)

p′

Li,j

q

(a) The calculation of a single score
in Li,j depends on several scores in
Ti−1,j−1

Ti−1,j−1

p′

predai
(q)

p′

Li,j

q

(b) The calculation of a different
score in Li,j can be done according
to the previously calculated score
and some additional scores from
Ti−1,j−1

Fig. 4. Similar and duplicate score calculations in Chung et al.’s algorithm can be
reused

Definition 4 (Subsets Maxima Problem). Let W be a set of scores, with
|W | = t and let V = 〈v1, ..., vt〉 be t subsets of W (vk ⊆ W ). Calculate max vk

for each vk ∈ V .

Thus, for the first part of Eq. 4, having fixed values of i, j and p′ at a specific
step, the set of scores W consists of t scores in Ti−1,j−1 and V consists of scores
which correspond to all possible predai subsets. More formally:

W = {Ti−1,j−1(q′, p′)|q′ ∈ Q}
V = 〈v1, . . . , vt〉, vk = {Ti−1,j−1(q′, p′)|q′ ∈ predai(qk)}, qk ∈ Q

(5)

The values of W and V are similarly established for the second part of Eq. 4.
We represent each subset vk in V by a Boolean vector, where the ith bit reflects

the membership of the ith score in the subset predai(qk). Thus, V is represented
by a tuple of Boolean vectors, denoted S. In the following sections, we discuss two
alternative ways of solving the Subsets Maxima Problem: one based on Steiner
trees (Section 2.2) and the other based on Straight Line programs (Section 2.3).

2.2 An Algorithm Based on a Steiner Minimal Directed Tree

In this section, we explore the possibility of employing Steiner minimal directed
trees to solve the Subsets Maxima Problem. We show that the size of a Steiner
minimal directed tree for a tuple of Boolean vectors S, as described above, is
not greater than the number of transitions of the NFA. Thus, using a heuristic
algorithm for Steiner minimal directed trees improves the run-time of our solu-
tion to Regular Language Constrained Alignment in practice, as demonstrated
by our simulations (Section 2.4). But first, we give a formal definition of Steiner
minimal directed trees and review related work.

There are several Steiner tree and graph problems known in the literature.
The general Steiner tree problem is the problem of spanning a k-sized set S of
vertices of a graph, while including the minimum number of nodes that are not
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in S. One variation of this problem is the Steiner minimal directed tree problem,
which specifies a root node and adds the requirement that the graph be directed.
These problems are known to be NP-hard [11, 12].

In this work, we are interested in the Steiner minimal directed tree problem in
a specific graph, namely the Hamming hypercube. Most Steiner algorithms for
graphs are not applicable to the Hamming hypercube due to its exponential size.
In the Hamming hypercube, the Hamming distance between any two adjacent
nodes of the tree, v and u, is 1. That is, either u has exactly one 1-valued bit
more than v or vice versa.

Definition 5 (The Steiner minimal directed tree problem for Ham-
ming hypercubes). Given a set S of k d-dimensional points, find a rooted
tree in the Hd Hamming hypercube, such that the tree spans S, has the minimal
possible size N and all edges are directed away from the root (For every edge
(v, u) in the tree, if v is closer to the root than u, then u has exactly one more
1-valued bit than v).

This version of the Steiner minimal tree problem is also NP-hard [13] and have
several heuristic algorithms [14–16].

Given a directed Steiner minimal tree for a tuple of Boolean vectors, S, the
subsets maxima of the corresponding weight-subsets tuple, V , can be calculated
by traversing the tree in a top-down fashion.

Theorem 1 (upper bound of |δ| for the size of the Steiner minimal
directed tree). Let A = (Q, Σ, δ, q0, FA) be an NFA and let Sc, for c ∈ Σ, be
sets of Boolean vectors corresponding to δ, as described in subsection 2.1. There
exist Steiner directed trees for sets Sc, such that the sum of their sizes is not
greater that |δ| + t.

Proof. Sc, for a specific c, is a set of Boolean vectors representing predc(A).
Thus, the total number of 1-valued bits in all Sc sets equals |δ|. For each set Sc,
we build a Steiner directed tree, as follows. Let X be a Boolean vector in Sc,
such that bits x1, x2..., xk in X are 1-valued. Starting from the zero vector, 0t, as
the root, we add a chain of nodes in the Steiner tree until X is reached. The first
node connected to 0t is the elementary vector with a 1-valued x1 bit. Similarly,
the ith node is a vector that has all bits equal to its parent node, except for
the xi bit, which is 1-valued in that vector, but is 0-valued in the parent vector.
This path reaches vector X by adding at most k nodes (not including the zero
vector). The total length of the tree Sc is not greater than the total number of
1-valued bits in Sc plus 1 (for the zero vector). Thus, such Steiner directed trees,
for sets Sc, have the sum of their lengths not greater that |δ| + t. �
It is easy to see that the size of the Steiner minimal tree is N = Θ(t2) in the
worst case. Thus, our Steiner-based algorithm, in the framework of Chung et al.,
runs in O(n2t3) time.

Theorem 2 (lower bound). For any set S ⊆ Ht, such that |S| = t, it holds
that N = Ω(t2).
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Proof. For every natural t, we show the existence of a t-sized set S, such that
N is in the order of t2. Let us assume that t = 2k for a natural number k. We
select S to be any t Boolean vectors from the k-dimensional Hadamard code
[17–19]. The Hadamard code contains 2t = 2k+1 vectors, each of length t = 2k,
such that each two vectors have a Hamming distance of at least t

2 = 2k−1. The
Hamming distance within S is at least t

2 (the ( t
4 − 1)-radius ball surrounding

each vector in S does not contain any other vector in S). Moreover, t
4 −1-radius

balls surrounding different vectors in S, are disjoint. Thus, a tree that spans S
requires at least t( t

4 − 1) Steiner nodes. �
In Section 2.4, we compare the sizes of heuristic Steiner directed trees with the
size of the corresponding transition table for simulated NFAs. Our simulations
show that, even though the Steiner-based algorithm does not yield the theoretical
bounds obtained for SLPs, in practice it performs very well.

2.3 A Solution to Subsets Maxima via SLPs

The Subsets Maxima Problem can be reduced to the problem of finding the
shortest possible SLP with Boolean operations. In order to use SLPs for the task
of subsets maxima calculation, we represent V as a tuple of Boolean vectors, S,
as described in subsection 2.1.

Definition 6 (SLP with Boolean operations). We are given a tuple of t
Boolean vectors S = 〈x1, . . . , xt〉, xi ∈ {0, 1}m. An SLP is a sequence of instruc-
tions P , of two types:

– βi := (0, . . . , 0, 1, 0, . . . , 0) (elementary vector),
– βi := βj ∨ βl, with j, l < i (disjunction).

An SLP computes the left-hand side vectors of its instructions 〈β1, . . . , βN 〉, βi ∈
{0, 1}m. An SLP P computes S if 〈βN−t+1, . . . , βN 〉 = S.

Given an SLP for S, the subsets maxima can be calculated by following the SLP
in linear order: if βh is an elementary vector, having the ith bit equal to 1, the
vector is assigned the value of the ith score and if βh is a binary disjunction of
βj and βk, then it is assigned the value of the maximum of their assigned scores.
If βh represents a subset from V , its score is reported.

For the purpose of utilizing SLPs for the Subsets Maxima Problem, in the rest
of this section we address the following goal: given a tuple S of t Boolean vectors
of length t, construct an SLP for S of minimal length. This goal is achieved via
the following two theorems.

Theorem 3 (upper bound). An SLP for S can be generated such that:
(1) N ≤ 2t2

log t , where N denotes the size of the SLP, and

(2) the time required to construct it is O
(

t2

log t

)
.

Proof. We will use the Four-Russians trick. A similar argument is applied in [20].
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Split each vector of S into b = t/ log t blocks of length log t. Each block has
2log t = t possible values. For each i = 1..b, consider the set of all block vectors,
say Wi, such that block i takes all the possible values and the other blocks are
all zeros. All the vectors of Wi can be generated incrementally with t operations
(in a bottom-up fashion): First, all the vectors in Wi which have a single 1-
valued bit are generated, then all the vectors in Wi which have two 1-valued bits
are generated by the disjunction of two vectors in Wi with one 1-valued bit. In
general, all the vectors in Wi with j + 1 1-valued bits are generated by adding
disjunction operations between vectors with j 1-valued bits and vectors with one
1-valued bit in Wi. Therefore, there are a total of bt = t2

log t block vectors and it

takes O
(

t2

log t

)
time to create all the block vectors.

Each vector of S can then be generated in b − 1 disjunction operations from
pre-computed block vectors and there are t vectors in S. All the vectors of S
are, therefore, computed by adding t(b − 1) ≤ t2/ log t operations to the SLP.

The length of the underlying SLP constructed here, equals the number of
disjunction and elementary operations, summed over both stages (block vector
creation plus computing S from the block vectors), which is at most 2t2

log t . The

time required for the construction of the SLP is O
(

t2

log t

)
. �

Remark. Note that the bound in Theorem 3 can be improved by a factor of two
by taking blocks of size log t − log log t.

The above bound is very close to the information-theoretic lower bound, as
shown below.

Theorem 4 (lower bound). An SLP for S requires Ω
(

t2

log t

)
operations.

Proof. We use the standard counting argument. Again, a similar proof can be
found, e.g. in [20].

There are t distinct initialization instructions and, in the minimal SLP, each
of them occurs at most once. Without loss of generality, we assume that the
initialization instructions form t first instructions in the SLP in any fixed order.

Let q be the number of disjunction instructions, i.e. N = t + q. There are at
most N2 possibilities for each disjunction instruction and, therefore, there are
at most (N2)q = N2q different SLPs of length N . On the other hand, there are
(2t)t = 2t2 different tuples S. We then should have N2q ≥ 2t2 , i.e. 2q log(t+q) ≥
t2.

Resolving the inequality with respect to q gives a lower bound, matching that
of Theorem 3 up to a constant factor. Specifically, it implies that, for any ε > 0
and for almost any tuple S, the size of the minimal SLP for S is at least t2

(2+ε) log t .
�

Finally, we conclude that Theorems 3 and 4 improve the worst case bounds of
Regular Language Constrained Alignment by a logarithmic factor.

Theorem 5. Regular Language Constrained Alignment can be computed in
O

(
n2t3

log t

)
time and O

(
n2t2

)
space.
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Proof. The dynamic programming process described in Eq. 4 involves the calcu-
lation of Li,j for every p′ ∈ Q, and then the calculation of Ti,j for every q′ ∈ Q,
using a precomputed SLP, as described above. This takes O(n2 · t ·N), where N
denotes the maximal length of an SLP for the sets V corresponding to the given
NFA. By Theorems 3 and 4, the length of such an SLP is N = Θ

(
t2

log t

)
. �

Discussion. Chung et al.’s algorithm for the Regular Language Constrained
Alignment Problem yields O(n2|Q| · |δ|) = O(n2t3) time and O(n2t2) space.
Thus, the above contribution is only interesting when the input automaton is
dense, i.e. when |δ| is asymptotically larger than O( t2

log t ).
We further note that, in the case when the input is given in the form of a

regular expression rather than an automaton, the complexity analysis of the al-
gorithm can be expressed in terms of the length r of the input regular expression.
This is achieved based on recent algorithms which take as input a regular expres-
sion of length r and convert it into an ε-free NFA with O(r) states and O(r log2 r)
transitions [21–23]. This yields O(n2r2 log2 r) time and O(n2r2) space. Note that
this was not observed by Arslan [4] and Chung et al. [2].

2.4 Simulation Results

We compared the efficiency of using heuristic Steiner minimal directed trees and
SLPs as a function of NFA density (see Fig. 5). To measure this, we randomly
generated NFAs and constructed their corresponding data structures (Steiner
minimal trees and SLPs) and measured their sizes. This simulation was repeated
500 times for each NFA size t, for t = 10, 20, 50, 80.

The random NFAs were constructed as follows. NFAs with a unary alphabet
suffice for our purposes, since, at each step of the algorithm, transitions with a
single character are used (see Eq. (4)). For a given number of states t, the tran-
sition table of an NFA was randomly generated. Only NFAs with t reachable states
were considered. As shown in Fig. 5, the randomly generated NFAs range in
density.

For each NFA, a corresponding heuristic Steiner minimal directed tree is con-
structed, having the t-dimensional Boolean zero vector, 0t, as its root. For the
construction of the heuristic Steiner minimal directed tree, we use the heuristic
algorithms of [15, 16], with a minor modification that forces the constructed tree
to be directed. In addition, for each NFA, a corresponding SLP is constructed.
We use a greedy heuristic, which adds disjunction operations according to the
bit which is set in the maximal number of Boolean vectors in the required set
S. Finally, we compute the size of the SLP, according to the SLP construction
described in Theorem 3, without actually computing the tree. Namely, the size
of the theoretical SLP is min{ 2t2

log t , |δ|}.
We measure the efficiency of a constructed data structure as 1−N/|δ|, where

N is its size (i.e. the size of the constructed Steiner directed tree, the length
of the constructed SLP or the upper bound of the size of the theoretical SLP
construction). The efficiency of the different data structures is compared as a
function of the density of the NFA. The density of the NFA equals |δ|/t2.
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Fig. 5. Efficiency comparison of different data structures as a function of NFA
density. The simulation was repeated for different automaton size (no. of states),
t = 10, 20, 50, 80, each containing 500 randomly generated NFAs with t states and
their corresponding data structures. Legend: blue diamond - heuristic Steiner mini-
mal directed tree, red square - SLP theoretical construction as in Theorem 3, green
triangle - SLP construction via greedy algorithm.

Our simulations show that all proposed data structures have an increased
efficiency as NFA density increases. The heuristic Steiner minimal directed tree
has a relatively high efficiency for low values of t, however, the SLP construction
described in Theorem 3 has a relatively high efficiency for high values of t and
relatively high NFA density.
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Krivoňáková, Nad’a 192
Kubica, Marcin 10
Kucherov, Gregory 404

Langiu, Alessio 390
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