
Chapter 17
Constitutive Models of Mechanical Behavior of
Media with Stress State Dependent Material
Properties

Evgeny V. Lomakin

Abstract The behavior of heterogeneous materials is studied. The dependence of the
effective elastic properties of micro-heterogeneous materials on the loading condi-
tions are analyzed and corresponding mathematical methods for the description of
the observed effects are proposed. The constitutive relations of the theory of elastic-
ity for isotropic solids with stress state dependent deformation properties are con-
sidered. The possible approach to the formulation of the constitutive relations for
the elastic anisotropic solids that elastic properties depend on the stress state type is
considered, and the corresponding constitutive relations are proposed. The method
for the determination of material’s functions on the base of experimental data is
proposed. The quite satisfactory correspondence between the theoretical results and
experimental data is shown.

Key words: Micro-heterogeneous materials. Phenomenological approach. Elastic
properties. Isotropic materials. Anisotropic materials. Stress state dependent prop-
erties.

17.1 Introduction

The experimental studies of deformation properties of many heterogeneous and
composite materials display the dependence of their properties on the conditions
of loading. There are different mechanisms related to this phenomenon. In the case
of granular porous materials, the area of contact between the particles increases un-
der compressive loads. Then one would expect that the elastic characteristics would
increase under compression in comparison with values corresponding to the action
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Fig. 17.1 Effective stress-
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of tensile loads. In the case of cracked materials, the crack opening occurs under
tensile load and the effective cross section carrying the load is less than in a solid
material. Therefore the effective deformation properties depend on the concentra-
tion of microcracks. Under the conditions of compressive loads, it is possible that
the closure of microcracks and the contact of crack faces would happen. The me-
chanical properties in this case depend on the conditions of interactions on the crack
faces that are determined in one’s turn by the ratios between different components
of the stress tensor. This applies equally to an arbitrary type of loading. It means that
the material properties are not invariant to the type of external forces but depend on
the stress state type. For example, the initial slope of the stress-strain curve under
conditions of compression is from 1.3 to 2 times the initial slope of the curve for
tension [8].

Similar results have been obtained for structural graphite [1]. The effective stress-
strain curves of ARV graphite are shown in the Fig. 17.1, which were obtained
by a proportional loading of tubular specimens under plane stress conditions. The

effective stress is σ 0 =
√

3
2 Si jSi j, where Si j = σ i j− σ δ i j is the stress deviator and

σ = 1
3 σ ii is the hydrostatic component of the stress. The effective strain is ε 0 =√

2
3 ei jei j, where ei j = ε i j− 1

3 ε δ i j is the strain deviator and ε = ε ii is the bulk strain.
Curves 1, 2, 3 and 4 correspond to uniaxial tension, uniaxial compression, shear
and uniform biaxial tension, respectively. Instead of the single curve, as usually
supposed in different theories of deformation, there is a fan of effective stress-strain
curves and their deviation is noticeable. The curves have a weak non-linearity and
a linear approximation of them is possible in a certain deformation range. Similar
effects can be demonstrated for rocks, concrete, cast-iron and other materials [4].

The opposite effect sometimes can be observed in the case of composites. The
fabric based carbon-carbon composites or composites with triaxial weave usually
have considerable porosity. The fibers are tightened up under tension but they can
buckle into the pores space under compression. The mechanisms of deformation are
quite different for these loading conditions. The bending stiffness of fibers is much
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lower in comparison with the tensile one. Thus the elastic modulus of the composite
under tension can be greater by a factor of 4 or 5 then the elastic modulus under
compression [2].

17.2 Constitutive Relations for Isotropic Materials

The deformation properties of materials under consideration are the stress-state-
dependent ones. In the general case, the stress state type can be characterized by
two parameters ξ = σ /σ 0 and SIII/σ 3

0 , where SIII = Si jS jkSk j is the third invari-
ant of the deviator of the stress tensor. The hydrostatic component of the stress σ
characterizes the mean value of normal stresses at arbitrary point of a continuum
and the effective stress or the stress intensity σ 0 defines the mean value of shear
stress at the same point of a continuum. The parameter ξ characterizes the stress
state type on the average but the parameter SIII/σ 3

0 specifies the deviation from this
average value. For the formulation of the constitutive relations the parameter ξ is
used. The potential for the elastic solids with stress state dependent properties can
be represented in the form

Φ =
1
2
[1+ ζ (ξ )]

(
A+Bξ 2) σ 2

0 (17.1)

Differentiating Eq. (17.1) with respect to the stresses σ i j, the strain-stress rela-
tions can be obtained

ε i j =
3
2
[A+ ω (ξ )]Si j +

1
3
[B+ Ω (ξ )] σ δ i j,

ω (ξ ) = −1
2

(
A+Bξ 2) ζ ′(ξ )ξ +Aζ (ξ ), (17.2)

Ω (ξ ) =
1
2

(
A+Bξ 2) ζ ′(ξ )/ξ +Bζ (ξ ).

The prime denotes the derivative of function with respect to ξ . The functions ω (ξ )
and Ω (ξ ) and their derivatives are related

ω + ξ 2Ω =
(
A+Bξ 2) (1+ ζ ),

ω ′+ ξ 2Ω ′ = 0.
(17.3)

From Eqs (17.2) and (17.3), it is possible to obtain the following expressions for the
bulk strain ε end the effective strain ε 0:

ε = [B+ Ω (ξ )] σ , ε 0 = [A+ ω (ξ )] σ 0 (17.4)

The Eqs (17.4) determine the relation between the bulk strain and the effective strain
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ε =
B+ Ω (ξ )
A+ ω (ξ )

ξ ε 0 (17.5)

Equation (17.5) signifies that the shear strains can cause the volume alteration of
a material. The bulk strain ε is proportional to the strain intensity ε 0, but the pro-
portionality factor is not constant but it depends on the stress state type parameter
ξ . This factor is the variable quantity according to the type of loading and it has
different values for uniaxial tension, uniaxial compression, shear, different types of
biaxial and triaxial stress states.

Without loss of generality, we can assume that in the case of pure shear (ξ =
0) the function ω (ξ ) has value ω (0) = 0. Then the constant A in Eqs (17.2) is
determined by the slope of effective stress-strain curve in the case of pure shear
and ζ (0) = 0. The functions ω (ξ ), ζ (ξ ) and Ω (ξ ) can be determined on the base
of a series of diagrams of the dependence between the effective strain ε 0 and the
effective stress σ 0. According to the Eq. (17.4), the function ω (ξ ) = −A+ ε 0/σ 0.
The second expression of Eq. (17.2) can be integrated, and it is possible to obtain
the following expression for the function ζ (ξ ):

1+ ζ (ξ ) =
(

A+ ω +Bξ 2− ξ 2
∫ ω ′dξ

ξ 2

)
(A+Bξ 2)−1

As an example of experimental determination of all the parameters in the constitu-
tive relations (17.2), the data obtained for graphite and represented in Fig. 17.1 can
be used.

Fig. 17.2 The graph of func-
tion ω (ξ ) for ARV graphite.
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In consequence of the weak non-linearity of effective stress-strain curves in
Fig. 17.1, it is possible to approximate them by linear functions in the range of de-
formation 0.001. For this approximation the following values of elastic modulus and
Poisson’s ratio are obtained: E+ = 5.1 ·103 MPa, ν + = 0.2 for uniaxial tension and
E− = 7.83 ·103 MPa, ν − = 0.3 for uniaxial compression, respectively. The constant
A can be obtained on the base of the curve 3 in Fig. 17.1 corresponding pure shear,
and it has the value A = 1.35 ·10−4 MPa−1. The graph of function ω = ω (ξ )/A is
shown in Fig. 17.2. The piecewise linear approximation ω =Cξ can be used for this
function with C = 0.45 for ξ > 0 and C = 0.3 for ξ < 0, respectively. The constant
B can be determined on the base of the value of elastic modulus for tension E+, and
this value is B = 1.76 ·10−4 MPa−1. The calculated value of elastic modulus under
compression is E− = 7.81 ·103 MPa. The calculated values of Poisson’s ratio under
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tension and compression are ν + = 0.195 and ν − = 0.42, respectively. The corre-
spondence between the experimental and calculated values of graphite deformation
properties is quite satisfactory.

The Eqs (17.2) can be solved for the stresses by introducing the parameter γ =
ε /ε 0. The Eq. (17.5) gives the possibility to express the parameter ξ as a function
of parameter γ , The potential can be represented in the form

U =
1
2
[1+ η (γ )]

(
1
A
+

γ 2

B

)
ε 2

0 (17.6)

The stress-strain relations can be obtained by differentiating Eq. (17.6) with re-
spect to the strains ε i j

σ i j =
2
3

ψ (γ )ei j + Ψ (γ )ε δ i j,

ψ (γ ) = −1
2

(
1
A
+

γ 2

B

)
η (γ )γ +

1
A
[1+ η ′(γ )], (17.7)

Ψ (γ ) =
1
2

(
1
A
+

γ 2

B

)
η (γ )γ −1 +

1
B
[1+ η ′(γ )].

Some properties of the constitutive relations (17.2) and (17.7) are analyzed in [4, 5,
6]. It is shown that some traditional approaches to the solution of boundary value
problems can not be accepted and new methods are proposed [7].

17.3 Constitutive Relations for Anisotropic Materials

The formulation of the constitutive relations for the anisotropic materials is much
more complex in comparison with the isotropic ones. In general, it is necessary
to suppose that all the anisotropy coefficients are the functions of the stress state
parameter ξ . The potential for an anisotropic solid with stress state dependent de-
formation properties can be represented in the following form:

Φ =
1
2

Ai jkl(ξ )σ i jσ kl (17.8)

Equation (17.8) represents some generalization of classic elastic potential. Differ-
entiating Eq. (17.8) with respect to the stresses and taking into account that

∂ σ 0

∂ σ i j
=

3
2

Si j

σ 0

and
∂ σ
∂ σ i j

=
1
3

δ i j,
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we obtain the dependence of the strains on the stresses:

ε i j = Ai jkl(ξ )σ kl +
1
2

A′mnpq(ξ )σ mnσ pq

[(
1
3
+

3
2

ξ 2
)

δ i j−
3
2

ξ σ i jσ −1
0

]
σ −1

0

(17.9)

From Eq. (17.9) it follows that the strains consist of two parts, one corresponds
to deformations of an anisotropic solid, the second one represents the deformations
of some isotropic solid because this part has isotropic nature. The strain potential
represents the homogeneous function of second order of the components of stress
tensor and according to the Euler theorem one can obtain

2Φ = σ i jε i j (17.10)

From Eq. (17.10) it follows that the Clapeyron theorem is valid for materials under
consideration, namely the work of external forces

A =
1
2

∫

V

σ i jε i jdV. (17.11)

As distinct from classic anisotropic solid, the problem of determination an
anisotropy coefficients as the functions of the stress state parameter ξ arises. Thus,
in general for each stress state type, it is necessary to determine the set of coeffi-
cients Ai jkl(ξ ). The constitutive relations (17.9) seem to be very complex but their
nature is clear and simple and the procedure for the determination of the anisotropy
functions can be proposed. Analyzing these constitutive relations one can discover
that the complex expression in the square brackets reduces to zero in the case of
uniaxial tension and uniaxial compression when the parameter ξ is equal 1/3 and
−1/3, respectively. Let us consider plane stress conditions of an anisotropic solid.
Then relations (17.9) reduce to the following:

ε x = a11(ξ )σ x + a12(ξ )σ y +

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ x

]
Φ 1σ −2

0 ,

ε y = a12(ξ )σ x + a22(ξ )σ y +

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ y

]
Φ 1σ −2

0 ,

γ xy =

[
a66(ξ )−

3
2

ξ Φ 1σ −2
0

]
τ xy,

Φ 1 =
1
2

[
a′11(ξ )σ 2

x + a′22(ξ )σ 2
y + 2a′12(ξ )σ xσ y + a′66(ξ )τ 2

xy

]
.

(17.12)

In the case of potential (17.8), it is necessary to determine the character of de-
pendence of coefficients Ai jkl on the parameter ξ on the base of the experimental
data. The most simple and useful one is a piecewise approximation. In the case of
linear dependence of the coefficients Ai jkl on the parameter ξ , it is possible to write
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Ai jkl = A0
i jkl +Ci jkl(ξ − 1/3), (17.13)

where A0
i jkl are the values of anisotropy coefficients under uniaxial tension (ξ =

1/3). Then the coefficients ai j(ξ ) and the function Φ 1 can be represented in the
form of

ai j(ξ ) = a0
i j + ci j(ξ − 1/3), a0

i j = ai j(1/3),

Φ 1 =
1
2
(c11σ 2

x + c22σ 2
y + 2c12σ xσ y + σ 66τ 2

xy).
(17.14)

Rotating the coordinate system the coefficients of anisotropy ai j are transformed
according to the usual equations for the transformation of components of a fourth
rank tensor [3]. In principal stress axes p and q, Eq. (17.12) can be represented in
the form

ε p = b11(ξ )σ p + b12σ q +

[(
1

9ξ
− ξ
)

σ p +

(
1

9ξ
+

1
2

ξ
)

σ q

]
Φ 1σ −2

0 ,

ε q = b21(ξ )σ p + b22σ q +

[(
1

9ξ
− ξ
)

σ q +

(
1

9ξ
+

1
2

ξ
)

σ p

]
Φ 1σ −2

0 ,

γ pq = b61(ξ )σ p + b62(ξ )σ q,

σ 2
0 = σ 2

p + σ 2
q − σ pσ q,

(17.15)

where bi j are the coefficients of anisotropy in the principal stress axes. Coefficients
ai j and bi j are related by the following formulae:

b11 = a11 cos4 ϕ +(2a12 + a66)sin2 ϕ cos2 ϕ + a22 sin4 ϕ ,

b22 = a11 sin4 ϕ +(2a12 + a66)sin2 ϕ cos2 ϕ + a22 cos4 ϕ ,

b12 = (a11 + a22− 2a12− a66)sin2 ϕ cos2 ϕ + a12.

(17.16)

Similar equations can be written for the coefficients b61, b62 and b66, too. The
coefficients a0

i j and ci j can be determined on the base of experimental data for the
conditions of uniaxial tension and uniaxial compression along the principal axes of
orthotropy and along the directions at some angles with them. Under conditions of
uniaxial tension, σ = 1

3 σ p, σ 0 = σ p, ξ = 1
3 and for the strains along the x and y axes

from Eqs (17.12) we obtain

ε x = a0
11σ x, ε y =

(
a0

12 +
1
4

c11

)
σ x

ε y = a0
22σ y, ε x =

(
a0

12 +
1
4

c22

)
σ y

(17.17)

Under conditions of uniaxial compression (ξ = −1/3) along the same axes, it
can be obtained
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ε x =

(
a0

11−
2
3

c11

)
σ x, ε y =

(
a0

12−
2
3

c12−
1
4

c11

)
σ x

ε y =

(
a0

22−
2
3

c22

)
σ y, ε x =

(
a0

12−
2
3

c12−
1
4

c22

)
σ y

(17.18)

The coefficients a0
11 and a0

22 are determined as ratio of the axial strain to the axial
stress according to Eqs (17.17). The coefficients c11 and c22 can be determined
from Eq. (17.18). The coefficients a0

12, a0
66 c12 and c66 can be determined on the

base of the results of experiments under conditions of uniaxial tension and uniaxial
compression at some angle to the principal axes using Eqs (17.13)–(17.18).

In the case of similar dependence of anisotropy coefficients on the stress state
type parameter ξ , it could be considered a simplified potential

Φ =
1
2
[1+ ζ (ξ )]Ai jklσ i jσ kl (17.19)

In this case, the strain-stress relations (17.12) reduce to the following ones:

ε x = [1+ ζ (ξ )](a11σ x + a12σ y)+

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ x

]
ζ ′(ξ )Φ 0σ −2

0 ,

ε y = [1+ ζ (ξ )](a12σ x + a22σ y)+

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ y

]
ζ ′(ξ )Φ 0σ −2

0 ,

γ xy =

{
[1+ ζ (ξ )]a66−

3
2

ξ ζ ′(ξ )Φ 0σ −2
0

}
τ xy,

Φ 0 =
1
2

[
a11σ 2

x + a22σ 2
y + 2a12σ xσ y + a66τ 2

xy

]
,

σ 0 = (σ 2
x + σ 2

y − σ xσ y + 3τ xy)
1/2

(17.20)

Here the x and y directions coincide with the warp and woof directions of the
cloth, respectively. Coefficients bi j in Eqs (17.15) can be represented in the form
bi j(ξ ) = [1+ ζ (ξ )]bi j. Coefficients ai j and bi j are related by the conversion of for-
mulae (17.16). We can denote the coefficients of the transverse deformation for the
principal and rotated coordinate systems as k12 = ε y/σ x and k′12 = ε q/σ p, respec-
tively. Then from Eqs (17.16) it can be found

a12 =
[
b11k12− a11(b11− k′12− a11 cos2 ϕ − a22 sin2 ϕ )

]
(b11− a11)

−1,

a66 = b11(cos2 ϕ sin2 ϕ )−1− a11 cot2 ϕ − a22 tan2 ϕ − 2a12
(17.21)

For uniaxial test conditions the coefficients a11 = ε x/σ x, a22 = ε y/σ y, b11 = ε p/σ p.
For the potential (17.19), the only function of the stress state type ζ (ξ ) has to be

determined and all the coefficients of anisotropy can be determined on the base of
experiments under conditions of uniaxial tension. The function ζ (ξ ) can be deter-
mined on the base of Eqs (17.10) and (17.19), from which it follows:
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Fig. 17.3 The stress-strain
diagrams for the composite
fiberglass cloth/polyether
resin under conditions of
tension at the angles 0◦, 22.5◦

and 45◦ to the direction of the
warp of the cloth.

σ , MPa σ , MPaσ , MPaσ , MPaσ , MPa

2
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Fig. 17.4 The stress-strain
diagrams under conditions of
compression of the composite
at the angles 0◦, 22.5◦ and 45◦

to the direction of the warp of
the cloth.
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Fig. 17.5 The stress-strain
diagrams for the condi-
tions of shear with tension-
compression directions
0◦ − 90◦, 22.5◦ − 112.5◦

and 45◦−135◦.
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1+ ζ = σ i jε i j(ai jkl σ i jσ kl)
−1 (17.22)

For each stress state type or the type of loading, it is possible to define the values
of function ζ using the known values of strains and stresses. Without the loss of the
generality, one can suppose that ζ (1/3) = 0.

The possibilities of the constitutive relations (17.20) in the description of the me-
chanical behavior of composite materials can be demonstrated on the base of the
comparison of theoretical prediction and experimental data for the composite on
the base of glass cloth and polyether matrix [9]. The plain specimens were used
in the experiments. Therefore the Eqs (17.15), (17.16) and (17.20) can be used for
the analysis of the results of experimental studies of the deformation properties of
the composite. The stress-strain diagrams under tension of the composite in the di-
rection of the warp of the cloth and at the angles 22.5◦ and 45◦to this direction are
shown in Fig. 17.3. The stress-strain diagrams under conditions of uniaxial compres-
sion of the composite are shown in the Figs 17.4 for the same directions. Curves
1 and 2 refer to longitudinal and transverse deformation, respectively. The diagram
for compression along the fibers is linear up to failure. The diagram for tension
displays some nonlinearity. With a certain degree of accuracy, the diagram for ten-
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Direction of loading 0◦ 22.5◦ 45◦

ξ
ε x

σ x

ε y

σ x

ε p

σ p

ε q

σ p

ε p

σ p

ε q

σ p

Experimental 1/3 7.0 −0.64 9.9 −3.14 − −
Theoretical 1/3 − − − − 13 −5.7

Experimental −1/3 5.34 −0.97 7.8 −3.23 10.2 −5.4
Theoretical −1/3 − −0.94 7.5 −3.04 9.9 −5.2

Experimental 0 8.39 −7.04 14.7 −12.15 20.3 −16.9
Theoretical 0 8.17 −6.08 13.7 −11.37 19.7 −16.2

Table 17.1 Experimental and theoretical values of the deformation coefficients of the composite
in 10−5 MPa−1

sion can also be approximated by a linear one. It is possible to accept a measure of
deviation from the initial slope of the diagram corresponding to the nonlinear defor-
mation of 0.002. This linear diagram for the tension in the warp direction is shown
in the Figs 17.3 by the dotted line. Under this approximation, the elastic modulus
of the composite under tension along the fibers is E+ = 1.428 ·104 MPa. The elastic
modulus under the compression in the same direction is E− = 1.873 ·104 MPa.

The analysis of the results of experiments under uniform biaxial loading indicates
that the compliances of the composite in the directions of warp and woof of the cloth
are almost equal within the frame of the adopted approximation. Thus it can be
assumed that a11 = a22 = 1/E+ = 7 ·10−5 MPa−1. On the base of Eq. (17.21) using
the values of compliances given in the first line of Table 17.1 we can determine
the values of other two elastic constants a12 = −1.6 · 10−5 MPa−1 and a66 = 41.2 ·
10−5 MPa−1. When all the anisotropy coefficients for plane stress conditions are
determined, it is possible to calculate the value of function ζ (ξ ) for the conditions
of uniaxial compression (ξ = −1/3). In accordance with Eq. (17.22) and the value
of compliance ε x/σ x under compression we obtain ζ =−0.24.

The stress-strain diagrams for the conditions of shear (ξ = 0) in the plane of
composite layers are shown in Figs 17.5. The experiments were carried out for
three directions of tension-compression with respect to the warp of the cloth, that
is 0◦− 90◦, 22.5◦− 112.5◦ and 45◦− 135◦. Indexes 1 and 2 refer to the tensile
strain and the compressive strain, respectively. Using the values of the strains and
the stresses for the 0◦−90◦ conditions, we can determine the value of function ζ (ξ )
for shear, ζ (0) = −0.13. The graph of the function ζ (ξ ) for the range of variation
of parameter ξ , −1/3 6 ξ 6 1/3, is shown in Fig. 17.6.

Since all the parameters of the constitutive relations represented by Eq. (17.20)
are determined, it is possible to compare the theoretical and experimental data ob-
tained for plane stress conditions. In the case of shear,

σ y =−σ x, σ 0 =
√

3σ x, Φ 0 = (a11− a22)σ 2
x , ξ = 0

and according to Eq. (17.20) we have
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Fig. 17.6 The graph of func-
tion ζ (ξ ) for the composite.

-0.33 0.33

-0.2

ζ

ξ

ε x/σ x = (a11− a12)[1+ ζ (0)+ ζ ′(0)(3
√

3)−1],

ε y/σ x =−(a11− a12)[1+ ζ (0)− ζ ′(0)(3
√

3)−1]
(17.23)

For the case when the stresses are applied at some angle to the fiber direction,
the coefficients a11 and a12 in Eq. (17.23) should be replaced by the coefficients b11

and b12 in accordance with Eq. (17.16). The theoretical and experimental values of
compliances for different types of loading and various loading directions are given
in Table 17.1. The correspondence between the theoretical values and experimental
data is quite satisfactory. The calculated initial slope of the stress-strain diagrams
are shown in Fig. 17.3–Fig. 17.5 by the dotted lines, and the trend of the variation of
initial elastic deformation properties of the composite under various external forces
is described by the considered constitutive equations satisfactorily.

17.4 Conclusions

The dependence of the effective elastic properties of micro-heterogeneous materi-
als on the conditions of loading or the conditions of deformation is studied. The
phenomenological approach to the description of the behavior of the heterogeneous
materials under different types of external forces is considered. The constitutive
equations of the theory of elasticity for isotropic solids with stress state dependent
deformation properties are analyzed. Some properties of constitutive equations are
studied. The method for experimental determination of material functions is pro-
posed.

A possible approach to the formulation of the constitutive equations of the the-
ory of elasticity for the anisotropic solids, which deformation properties depend on
the stress state type is considered. The mechanical properties of these materials are
characterized by a set of the anisotropy functions instead of a set of elastic constants
in the case of the classic linear elastic solid. The method for the determination of
anisotropy functions on the base of experimental data is described. The results of
experimental studies of properties of composite materials on the base of fiberglass
cloth and polyether resin obtained under different loading conditions are analyzed.
The satisfying correspondence between the calculated values of deformation coeffi-
cients and experimental data is demonstrated.
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