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Preface

Generalized Continua are in the focus of scientists from the end of the 19th century.
A first summary was given in 1909 by the Cosserat brothers1 and some previous
works of such famous scientists like Lord Kelvin. All these contributions were fo-
cussed on the fact that in a continuum one has to define translations and rotations
independently (or in other words, one has to establish force and moment actions as
it was done by Euler).

After World War II a true renaissance in this field occurred with a publication
of Ericksen & Truesdell in 1958. Further developments were connected with the
fundamental contributions of, among others, Kröner (Germany), Aero and Palmov
(Soviet Union), Nowacki (Poland), Eringen (USA), and Maugin (France). The rea-
son for the revival was that some effects of the mechanical behavior of solids and
fluids could not be explained by the available classical models. Examples of this are
the turbulence of a fluid or the behavior of solids with a significant and very com-
plex microstructure. The enthusiasm in this field was so great that the International
Union of Theoretical and Applied Mechanics (IUTAM) in the mid 1960s decided
to organize a special IUTAM-Symposium in 1967 in Stuttgart-Freudenstadt (Co-
ordinator E. Kröner). The state of the art was then summarized and published by
Springer2.

Since the suggested models fulfill all requirements from Continuum Thermome-
chanics (the balance laws were formulated and the general representations of the
constitutive equations were suggested) the scientific community was satisfied for a
while but missed real applicative developments. Indeed, for practical applications
the proposed models were not useful. The reason for this was a gap between the
formulated constitutive equations and the possibilities to identify the material pa-
rameters. As often the case one had much more parameters compared to classical
models. In addition, computational progress and available machines in these times

1 E. et F. Cosserat: Cosserat, F.: Théorie des Corps Déformables, Hermann Editeurs, Paris, 1909
(Reprint, Gabay, Paris, 2008)
2 E. Kröner (Ed.): Mechanics of Generalized Continua (Proceedings of the IUTAM-Symposium
on the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart, Germany,
1967), Springer, Berlin/Heidelberg/New York, 1968
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vi Preface

were limited. So from the end of the 1960s until the 1990s, there were only a few
members of the scientific and engineering communities working in the field of Gen-
eralized Continua.

During the last ten years the situation has drastically changed. More and more
researches emerged, being kindled by the partly forgotten models since now one
has available much more computational possibilities and very complex problems
can be simulated numerically. In addition, with the increased attention paid to a
large number of materials with complex microstructure and a deeper understanding
of the meaning of the material parameters (scale effects) the identification becomes
much more well founded. We have thus contributions describing the micro- and
macro-behavior, new existence and uniqueness theorems, the formulation of multi-
scale problems, etc., and now it is time to ponder again the state of matter and to
discuss new trends and applications. Strong interest in the field was checked and
kindled by the two colloquia held in Paris in 2009 and celebrating the centennial
of the Cosserats’ book. The results of the first symposium were published again by
Springer3.

The present publication is a collection of papers of French, German and Russian
scientists in field of Generalized Continua. France, Germany and Russia have a long
tradition in the above mentioned research area. Under the leadership of Gérard Mau-
gin new research directions were established within this topic. In Germany the re-
search in this field was stimulated by Kröner, Lippmann, Besdo, and Rothert among
others. Actual applications are directed to the modeling and simulation of continua
with complex microstructure like foams or porous media. In Russia, starting with
the pioneering works of Aero et al. and Palmov many new models for structural
mechanics applications (rods, plates, and shells) were presented.

During the last years there were established a small number of common projects
of these scientists (for example, Altenbach & Eremeyev worked out new models
for plates made of foams based on the micro-polar elasticity and the Cosserat plate
theory, Maugin & Porubov worked on nonlinear waves in micro-structured bod-
ies; Maugin & Lazar worked on defects in generalized continua, Forest & Sievert
worked on anelasticity in generalized continua). New research directions will be
presented from the point of view of modeling and simulation, experimental iden-
tification, and numerical methods. The basics were discussed at the First trilateral
French-German-Russian seminar held in Lutherstadt Wittenberg (Germany) August
9–11, 2010. The contributions to the present publication are focussed on the most
recent research items, i.e.,

• new models,
• application of well-known models to new problems,
• micro-macro aspects,
• computational effort,
• possibilities to identify the constitutive equations, and

3 G.A. Maugin, A.V. Metrikine (Eds): Mechanics of Generalized Continua: One Hundred Years
After the Cosserats, Advances in Mathematics and Mechanics Vol. 21, Springer, Berlin, 2010
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• old problems with incorrect or non-satisfying solutions based on the classical
continua assumptions

During the Wittenberg seminar the following lectures were presented

• Gérard Maugin: An historical perspective of generalized continuum mechanics
• Patricio Neff: Subgrid interaction and micro-randomness. Novel invariance re-

quirements in infinitesimal gradient elasticity
• Jean-François Ganghoffer: Construction of micropolar continua from the dis-

crete homogenization of repetitive beam lattices
• Alexey Porubov: Nonlinear dynamic processes in media with internal structure
• Evgeny Lomakin: Constitutive models of mechanical behavior of media with

stress state dependent material properties
• Anton Krivtsov: Modeling of media with microstructure at different scale levels

using particles
• Wolfgang Ehlers: Coupling of discrete media and continuum mechanics: a com-

putational approach towards micropolar continua
• Paul Fischer: Cahn-Hilliard generalized diffusion modeling using the C1 natural

element method
• Igor Shardakov: Couple stress effects in elastic materials (analytical and numer-

ical solutions, experiments)
• Lalaonirina R. Rakotomanana: Some remarks on the invariance of Lagrangean

function of higher gradient continuum
• Albrecht Bertram & Samuel Forest: An axiomatic framework for gradient ma-

terials
• Victor Eremeyev: On the application of generalized continua models to struc-

tural mechanics problems
• Elena Ivanova: On one model of generalized continuum and its thermodynami-

cal interpretation
• Rasa Kazakevičiūtė-Makovska: Micromechanical basis of superelastic behavior

of certain biopolymers
• Dmitry Indeitsev: Kinetics of chemical reactions in deformable solids with dy-

namic loading
• Stéphane Berbenni: Internal length scale effects on the local and overall behav-

iors of polycrystals
• Mikhail Karyakin: Theory of isolated and continuously distributed disclinations

and dislocations in micropolar media
• Denis Sheydakov: Buckling of elastic composite rod of micropolar material

subject to combined loads
• Céline Chesnais: Generalized media and structural dynamics
• Vladimir Erofeev: Nonlinear waves in the Cosserat Continuum with restricted

rotation
• Rainer Glüge: Elastic modeling of deformation twinning
• Daniel Scharding: Parameter identification for extended continua
• Arthur Lebée: A full bending gradient theory for periodic plates homogeniza-

tion
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• Thomas Michelitsch: Wave propagation in quasi-continuous linear chains with
self-similar harmonic interactions - towards a fractal mechanics

• Qi-Chang He: Symmetry classes of flexoelectricity
• Sergey Gerasimov: Visualization at studying hydrodynamic instability in strong

media

Contributions in this book provide in print a large selection from these lectures.
Such a publication can be realized only with generous support of different people

and organizations. So we have to acknowledge:

• Dipl.-Ing. Andreas Kutschke and Prof. Victor A. Eremeyev for fulfilling the
organizational duties during the Trilateral seminar,

• Mrs. Dipl.-Ing. Barbara Renner, Mrs. MSc Oksana Ozhoga-Maslovskaja, MSc
Adili Maimaiti, MSc Ivan Lvov, Dipl.-Ing. Andreas Kutschke and Prof. Victor
A. Eremeyev for the assistance in the manuscript preparation,

• Dr. Christoph Baumann from Springer for supporting the project and solving a
lot of difficulties, and last but not least

• the Leucorea administration for organizing the hosting in Wittenberg.

Finally, it should be noted that the Deutsche Forschungsgemeinschaft, the Russian
Foundation of Basic Research and the French partner organization CNRS gave fi-
nancial support for the realization of the project.

Halle, Holm Altenbach
Nizhny Novgorod, Vladimir I. Erofeev
Paris, Gérard A. Maugin

December 2010
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 From Cauchy and the 19th Century . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 True Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Part II Beams, Plates, and Shells

2 Micropolar Shells as Two-dimensional Generalized

Holm Altenbach, Victor A. Eremeyev, and Leonid P. Lebedev
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Basic Relations of Micropolar Shell Theory . . . . . . . . . . . . . . . . . . . 25
2.3 Constitutive Restrictions for Micropolar Shells . . . . . . . . . . . . . . . . . 36
2.4 Phase Equilibrium Conditions in Micropolar Shells . . . . . . . . . . . . . 46
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Structural Dynamics and Generalized Continua . . . . . . . . . . . . . . . . . . . 57
snaHenahpétSdna,nituoBedualC,siansehCeniléC

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Overview of Discrete Homogenization . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Studied Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Transverse Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Longitudinal Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Extension and Application to Buildings . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix

Continua Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 



x Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 A Bending-gradient Theory for Thick Laminated Plates
        Homogenization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

baSmaraKdnaeébeLruhtrA
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Part I
Historical Background and Future Trends



Chapter 1
A Historical Perspective of Generalized
Continuum Mechanics

Gérard A. Maugin

Abstract In a period of forty years the author has had the opportunity to work,
or to entertain friendly connections, with many actors of the scene of generalized
continuum mechanics (GCM). This training and knowledge here is used to the ben-
efit of the readers as an overview of this scene with the aim to delineate further
avenues of development within the framework of the trilateral seminar held in Wit-
tenberg (2010). Starting essentially with Pierre Duhem and the Cosserat brothers,
this specialized, albeit vast, field of continuum mechanics has developed by suc-
cessive abandonments of the working hypotheses at the basis of standard contin-
uum mechanics, that mechanics masterly devised by Euler and Cauchy and some of
their successors in the 19th century (Piola, Kirchhoff, etc.). In the present survey we
briefly analyze successive steps such as the introduction of nonsymmetric stresses,
couple stresses, internal degrees of freedom and microstructure, the introduction of
strain gradient theories, and material inhomogeneities with a length scale, nonlo-
cality of the weak and strong types, the loss of Euclidean geometry to describe the
material manifold, and finally the loss of classical differentiability of basic opera-
tions as can occur in a deformable fractal material object.

Key words: Generalized continua. Nonsymmetric stress. Couple stress. Micro-
morphic bodies. Micropolar materials. Nonlocality. Strain-gradient materials. Non-
Euclidean manifold.

1.1 Introduction

At a recent colloquium [73] we have given a historical view of the development of
so-called “generalized continuum mechanics”. The thesis presented was that gener-
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4 Gérard A. Maugin

alization occurs through the successive abandonment of the basic working hypothe-
ses of standard continuum mechanics of Cauchy: that is, introduction of a rigidly
rotating microstructure and couple stresses (Cosserat continua or micropolar bod-
ies, nonsymmetric stresses), introduction of a truly deformable microstructure (mi-
cromorphic bodies), “weak” nonlocalization with gradient theories and the notion
of hyperstresses, and the introduction of characteristic lengths, “strong nonlocaliza-
tion” with space functional constitutive equations and the loss of the Cauchy notion
of stress, and finally giving up the Euclidean and even Riemannian material back-
ground.

This evolution is paved by landmark papers and timely scientific gatherings (e.g.,
Freudenstadt in 1967, Udine in 1970, Warsaw in 1977) to which the Paris collo-
quium of 2009 must now be added (Maugin and Metrikine, editors [76]). This will
be examined in some detail in the following sections. Here we simply note that the
publication of the book of the Cosserat brothers in 1909 [10] was a true initial land-
mark, although at the time noticed by very few people – among them Élie Cartan
and Ernst Hellinger [44]. In passing we also emphasize that this was one of the first
attempts to exploit some group theoretical argument (so-called Euclidean action) in
the general formulation of continuum mechanics. Thus a real “generalized contin-
uum mechanics” developed first slowly and rather episodically and then with a real
acceleration in the 1960s. Accordingly, a new era was born in the field of continuum
mechanics.

1.2 From Cauchy and the 19th Century

Here we consider as a classical standard the basic model considered by engineers in
solid mechanics and the theory of structures. This essentially is the theory of con-
tinua set forth by A.L. Cauchy in the early 19th century for isotropic homogeneous
elastic solids in small strains. The theory of continua respecting Cauchy’s axioms
and simple working hypotheses is such that the following holds true:

1. Cauchy’s postulate: The traction Td on a facet cut in the solid depends on
the geometry of that facet only at the first order (the local unit normal of com-
ponents n j); it will be linear in that normal. From this follows the notion of
stress tensor σσσ = {σ ji; i, j = 1,2,3}, the so-called stress being the only “in-
ternal force” in the theory. That is, using a classical Cartesian tensor notation:

T d
i = n j σ ji. (1.1)

2. It being understood that both physical space (of Newton) and material man-
ifold (the set of material particles constituting the body) are Euclidean and
connected, hence the notion of displacement u = {ui} is well defined.

3. Working hypotheses

(i) There are no applied couples in both volume and surface.
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(ii) There exists no “microstructure” described by additional internal de-
grees of freedom.

According to items 3 (i) and (ii) the Cauchy stress tensor is symmetric:

σσσ = σσσ T i.e. σ ji = σ i j. (1.2)

This results from the application of the balance of angular momentum. Isotropy,
homogeneity, and small strains are further hypotheses but they are not so central to
our argument.

Then generalizations of various degrees consist in relaxing more or less these
different items above, hence the notion of generalized continuum. This notion of
generalization depends also on the culture and physical insight of the scientists. For
instance the following generalizations are “weak” ones:

• “Generalized” Hooke’s law (linear, homogeneous, but anisotropic medium);
• Hooke–Duhamel law in thermoelasticity;
• Linear homogeneous piezoelectricity in obviously anisotropic media (no cen-

ter of symmetry)

These are “weak” generalizations because they do not alter the main mathemati-
cal properties of the system. Of course, thermoelasticity and linear piezoelectricity
require adding new independent variables (e.g., temperature θ or scalar electric po-
tential φ ). In some sense, the problem becomes four-dimensional for the basic field
(elastic displacement and temperature in one case, elastic displacement and electric
potential in the other). The latter holds in this mere simplicity under the hypoth-
esis of weak electric fields, from which there follows the neglect of the so-called
ponderomotive forces and couples, e.g., the couple

(P×E)i = ε i jk Pj Ek (1.3)

with ε i jk as the permutation symbol in Cartesian tensor index notation, and this will
yield (square brackets denote anti-symmetrization)

σ [ ji] =C ji, e.g., C ji = P[ j Ei], (1.4)

when electric field E and electric polarization P are not necessarily aligned; see
Eringen and Maugin [30]. Such theories, just like standard elasticity, do not involve
a length scale. But classical linear inhomogeneous elasticity presents a higher degree
of generalization because a characteristic length intervenes necessarily, the charac-
teristic length over which the material properties vary in the absence of loading.

1.3 True Generalizations

From here on we envisage three true (in our view) generalizations. The first of these
is that the Cauchy stress tensor becomes nonsymmetric. The second one is that the
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validity of the Cauchy postulate can be lost. And last but not least that the Euclidean
nature of the material manifold can be lost. In what follows all three items will be
discussed in detail.

1.3.1 Various Reasons of the Nonsymmetry of the Cauchy Stress
Tensor

The nonsymmetry may be due to

(i) the existence of body couples (e.g., just as above in electromagnetism:

P×E or/and M×H

if M and H denote volume magnetization and magnetic field; case of intense
electromagnetic fields or linearization about intense bias fields);

(ii) the existence of surface couples (introduction of “internal forces” of a new
type: so-called couple stresses); the medium possesses internal degrees of
freedom that modify the balance of angular momentum;

(iii) the existence of internal degrees of freedom (of a nonmechanical nature in
origin, e.g., polarization inertia in ferroelectrics, intrinsic spin in ferromag-
netics (see [67]);

(iv) the existence of internal degrees of freedom of “mechanical” nature.

This is where the Cosserats’ model comes into the picture. The first example in
this class pertains to a rigid microstructure (three additional degrees of freedom
corresponding to an additional rotation at each material point, independently of the
vorticity). Examples of media of this type go back to the early search for a contin-
uum having the capability to transmit transverse waves (as compared to acoustics
in a pure fluid), i.e., in relation to optics. The works of McCullagh [77] and Lord
Kelvin must be singled out (cf. Whittaker [106]). Pierre Duhem [15] proposes to
introduce a triad of three rigidly connected directors (unit vectors) to represent this
rotation. In modern physics there are other tools for this including Euler’s angles
(not very convenient), quaternions and spinors. It is indeed the Cosserats, among
other studies in elasticity, who really introduced internal degrees of freedom of the
rotational type (these are micropolar continua in the sense of Eringen [26, 27]) and
the dual concept of couple stress. Hellinger, in a brilliant essay [44], recognized at
once the new potentialities offered by this generalization but did not elaborate on
these.

A modern rebirth of the field had to await works in France by crystallographs
(Laval [53, 54, 55]; Le Corre [59]), in Russia by Aero and Kuvshinskii [1], and
Palmov [87], in Germany by Schaefer [94], Günther [43], Neuber [82], and in Italy
by Grioli [42] and Capriz – see his book [7]. But the best formulations are those
obtained by considering a field of orthogonal transformations (rotations) and not
the directors themselves: Eringen [23], Kafadar and Eringen [45], Nowacki [86],
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although we note some obvious success of the “director” representation, e.g., in
liquid crystals (Ericksen [21]; Leslie [62], Stokes [98]) and the kinematics of the
deformation of slender bodies (works by Ericksen, Truesdell, Naghdi).

But in the mid 1960s a complete revival of continuum mechanics took place
which, by paying more attention to the basics, favored the simultaneous formula-
tion of many more or less equivalent theories of generalized continua in the line
of thought of the Cosserats (works by Mindlin [78], Mindlin and Tiersten [81],
Mindlin and Eshel [80], Green and Rivlin [41], Green and Naghdi [40], Toupin
[100, 101], Truesdell and Toupin [103], Truesdell and Noll [102], and Eringen and
Suhubi [31, 32], etc.).

More precisely, in the case of a deformable microstructure at each material point,
the vector triad of directors of Duhem-Cosserats becomes deformable and the ad-
ditional degree of freedom at each point, or micro-deformation, is akin to a general
linear transformation (nine degrees of freedom). These are micromorphic continua
in Eringen’s classification [26, 27]. A particular case is that of continua with mi-
crostretch [24]. A truly new notion here is that of the existence of a conservation
law of micro-inertia (Eringen [2]). We illustrate these various generalizations by
giving the relevant form of the local equation of moment of momentum in quasi-
statics:

• Micromorphic bodies (Eringen [2, 31, 32], Mindlin [78, 80, 81]; Years 1962-
1966) [Notation: µ k ji is the hyperstress tensor, s ji is the so-called symmetric
micro-stress, and `i j is the body-moment tensor of which the skew part repre-
sents a body couple C ji =−Ci j]:

µ ki j,k + σ ji− s ji + `i j = 0, σ ji = σ ( ji)+ σ [ ji],
s[ ji] = 0, ` ji =C ji + `( ji).

(1.5)

• Micropolar bodies (Cosserat brothers [10], etc.) [Notation: µ k[ ji] is the couple-
stress tensor; Ci is the axial vector uniquely associated with C ji while m ji is
associated in the same way with µ k[ ji]]:

µ k[ ji],k + σ [ ji]+Ci j = 0 or m ji, j + ε ik j σ k j +Ci = 0. (1.6)

• Bodies with microstretch (Eringen [24]) [Notation: mk denotes the intrinsic
dilatational stress or microstretch vector; ` is the body microstretch force such
that `i j = (`/3) δ i j, and σ and s are intrinsic and micro scalar forces]:

µ klm =
1
3

mk δ lm−
1
2

ε lmr mkr (1.7)

so that
mkl,k + ε lmn σ mn +Cl = 0, mk,k + σ − s+ `= 0. (1.8)

• Dilatational elasticity (Cowin and Nunziato [11]) [only the second of Eqs (1.8)
is relevant]:

mk,k + σ − s+ `= 0. (1.9)
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In these equations given in Cartesian components in order to avoid any misunder-
standing (note that the divergence is always taken on the first index of the tensorial
object to which it applies), µ ki j is a new internal force having the nature of a third-
order tensor. It has no specific symmetry in Eqs (1.5) and it may be referred to as a
hyperstress. In the case of Eqs (1.6) this quantity is skewsymmetric in its last two
indices and a second order tensor – called a couple stress – of components m ji can
be introduced having axial nature with respect to its second index. The fields s ji

and `i j are, respectively, a symmetric second order tensor and a general second or-
der tensor. The former is an intrinsic interaction stress, while the latter refers to an
external source of both stress and couple according to the last of Eqs (1.5). Only
the skew part of the later remains in the special case of micropolar materials (Eqs
(1.6) in which Ci represents the components of an applied couple, an axial vector
associated with the skewsymmetric C ji). The latter can be of electromagnetic ori-
gin, and more rarely of pure mechanical origin. Equations (1.7) and (1.8) represent
a kind of intermediate case between micromorphic and micropolar materials. The
case of dilatational elasticity in Eq. (1.9) appears as a further reduction of that in Eqs
(1.8). This will be useful in describing the mechanical behavior of media exhibiting
a distribution of holes or cavities in evolution.

Concerning the micromorphic case, a striking example is due to Drouot and Mau-
gin [14] while dealing with fluid solutions of macromolecules, while Pouget and
Maugin [89] have provided a fine example of truly micromorphic solids with the
case of piezoelectric powders treated as continua.

Remark 1.1. Historical moments in the development of this avenue of generaliza-
tion have been the IUTAM symposium organized by E. Kröner in Freudenstadt in
1967 (see Kröner [49]) and the CISM Udine summer course of 1970 (were present:
Mindlin [79], Eringen [25], Nowacki [85], Stojanovic [97], Sokolowski, Maugin,
Jaric, Micunovic, etc.).

Remark 1.2. Strong scientific initial motivations for the studies of generalized media
at the time (1960s-1970s) were (i) the expected elimination of field singularities in
many problems with standard continuum mechanics, (ii) the continuum description
of real existing materials such as granular materials, suspensions, blood flow, etc.
But further progress was hindered by a notorious lack of knowledge of new (and
too numerous) material coefficients despite trials at estimates of such coefficients
e.g., by Gauthier and Jashman [37] at the Colorado School of Mines by building
artificially microstructured solids.

Remark 1.3. The intervening of a rotating microstructure allows for the introduction
of wave modes of rotation of the “optical” type with an obvious application to many
solid crystals (e.g., crystals equipped with a polar group such as NaNO2; cf. Pouget
and Maugin [89, 90]).

Remark 1.4. In some physical theories (micromagnetism, cf. Maugin [64]), an equa-
tion such as the first of Eqs (1.6) can be obtained in full dynamics:

mki j,k + σ [ ji]+Ci j = Ṡi j, (1.10)
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where mki j (Heisenberg exchange-force tensor that is skewsymmetric in its last two
indices), Ci j (interaction couple between material and electronic-spin continua) and
Si j (magnetic spin) all have a magnetic origin.

1.3.2 Loss of Validity of the Cauchy Postulate

Then the geometry of a cut intervenes at a higher order than one (variation of the
normal unit, role of the curvature, edges, apices and thus capillarity effects). We
may consider two different cases referred to as the weakly nonlocal theory and
the strongly nonlocal theory (distinction introduced by the author at the Warsaw
meeting of 1977; cf. Maugin [65]). Only the first type does correspond to the exact
definition concerning a cut and the geometry of the cut surface. This is better re-
ferred to as gradient theories of the n-th order, it being understood that the standard
Cauchy theory in fact is a theory of the first gradient (meaning by this first gradient
of the displacement or theory involving just the strain and no gradient of it in the
constitutive equations).

1.3.2.1 Gradient Theories

Now, as a matter of fact, gradient theories abound in physics, starting practically
with all continuum theories in the 19th century. Thus, Maxwell’s electromagnetism
is a first-gradient theory (of the electromagnetic potentials); the Korteweg theory of
fluids [47] is a theory of the first gradient of density (equivalent to a second-gradient
theory of displacement in elasticity); Einstein’s theory of gravitation (general rela-
tivity [16, 17]) is a second-gradient theory of the metric of curved space-time, and
Le Roux [60, 61] seems to be the first public exhibition of a second-gradient theory
of (displacement) elasticity in small strains (using a variational formulation). There
was a renewal of such theories in the 1960s with the works of Casal [8] on capil-
larity, and of Toupin [100], Mindlin and Tiersten [81], Mindlin and Eshel [80], and
Grioli [42] in elasticity.

However, it is with a neat formulation basing on the principle of virtual power
that some order was imposed in these formulations with an unambiguous deduc-
tion of the (sometimes tedious) boundary conditions and a clear introduction of the
notion of internal forces of higher order, i.e., hyperstresses of various orders (see,
Germain [38, 39]; Maugin [66]). Phenomenological theories involving gradients of
other physical fields than displacement or density, coupled to deformation, were
envisaged consistently by the author in his Princeton doctoral thesis [64] dealing
with typical ferroı̈c electromagnetic materials. This is justified by a microscopic
approach, i.e., the continuum approximation of a crystal lattice with medium-range
interactions; with distributed magnetic spins or permanent electric dipoles. This also
applies to the pure mechanical case (see, for instance, the Boussinesq paradigm in
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Christov et al. [9, 75]). The following are examples of such theories illustrated by
the dependence of the potential energy W per unit volume for small strains:

• Le Roux [60, 61]:
W =W (ui, j,ui, jk, . . .), (1.11)

where ui, j denotes the displacement gradient, and ui, jk is the second gradient of
the displacement.

• Modern form (Mindlin [78, 80, 81], Toupin [100, 101], Sedov [95], Germain
[38], etc.; in the period 1962–1972):

W =W (ei j,ei j,k). (1.12)

In the last case, the symmetric first-order stress ¯σ ji and the second-order stress
or hyperstress mk ji (symmetric in its last two indices) are given by

¯σ ji =
∂ W
∂ ei j

= ¯σ i j , mk ji =
∂ W

∂ ei j,k
= mki j , (1.13)

where ei j is the symmetric small strain, and ei j,k denotes its first gradient. Then
the symmetric Cauchy stress reads

σ ji = ¯σ ji−mk ji,k =
δ W
δ ei j

= σ i j. (1.14)

This is the functional derivative of the energy W .

Very interesting features of these models are:

F1. Inevitable introduction of characteristic lengths;
F2. Appearance of so-called capillarity effects (surface tension) due to the explicit

intervening of curvature of surfaces;
F3. Correlative boundary layers effects,
F4. Dispersion of waves with a possible competition and balance between non-

linearity and dispersion, and the existence of solitonic structures (see Maugin
[70]);

F5. Intimate relationship with the Ginzburg–Landau theory of phase transitions
[12, 93] and, for fluids, van der Waals’ theory [4, 104].

Indeed, a typical characteristic length ` is introduced by the ratio

`=
|mk ji|
| ¯σ ji|

, (1.15)

and this is obviously supposed to be much smaller than a typical macroscopic length
L, i.e., `� L.

Features F2 and F3 above are typically illustrated by the following set of bound-
ary conditions [38, 99] (Ω =−D j n j/2 is the mean curvature)
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n j σ ji +(n j Dp np−D j)(nk mk ji) = T d
i at ∂ B− Γ ↑, (1.16)

nk mk ji n j = Ri at ∂ B− Γ ↑, (1.17)

ε ipq τ p [nk mk jq n j] = Ei along Γ ↑, (1.18)

where Γ ↑ is an oriented edge, τ p denotes its unit tangent, and D indicates a tan-
gential gradient. Here T d

i , Ri and Ei are, respectively, an applied surface traction, a
prescribed double-normal force, and a linear force density.

Remark 1.5. The principle of virtual power here is an interesting tool to obtain the
set (1.16)–(1.18) unambiguously. But it also shows in agreement with Eq. (1.14)
that the power of internal forces can be written either as

p(int)(σ ) =−σ : ∇ u̇, (1.19)

or as
p(int)( ¯σ ,m) =−( ¯σ : ∇ u̇+m : ∇ ∇ u̇), (1.20)

so that
p(int)(σ ) = p(int)( ¯σ ,m)+ ∇ · (m : ∇ u̇). (1.21)

Here we used the convention that

¯σ : ∇ u̇ = σ jiu̇i, j, m : ∇ ∇ u̇ = mk jiu̇i, jk.

Repeated use of the divergence theorem will then directly lead to the set (1.16)–
(1.18).

Truly sophisticated examples of the application of these gradient theories are
found in

(i) the coupling of a gradient theory (of the carrier fluid) and consideration of a
microstructure in the study of the inhomogeneous diffusion of microstructures
in polymeric solutions (Drouot and Maugin [14]).

(ii) the elimination of singularities in the study of structural defects (dislocations,
disclinations) in elasticity combining higher-order gradients and polar micro-
structure (cf. Lazar and Maugin [58]).

Most recent works consider the application of the notion of gradient theory in elasto-
plasticity for nonuniform plastic strain fields (works by Aifantis [2, 3, 107], Fleck
& Hutchinson [33, 34, 35], and many others) – but see the thermodynamically ad-
missible formulation in Maugin [68].

In so far as general mathematical principles at the basis of the notion of gradient
theory are concerned, we note the fundamental works of Noll and Virga [84] and
dell’Isola and Seppecher [13], the latter with a remarkable economy of thought.

1.3.2.2 Strongly Nonlocal Theory (Spatial Functionals)

Initial concepts in this framework were etablished by Kröner and Datta [50], Kunin
[51, 52], Rogula [92], Eringen and Edelen [29]. As a matter of fact, the Cauchy con-
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struct does not apply anymore. In principle, only the case of infinite bodies should
be considered as any cut would destroy the prevailing long-range ordering. Con-
stitutive equations become integral expressions over space, perhaps with a more or
less rapid attenuation with distance of the spatial kernel. This, of course, inherits
from the action-at-a-distance dear to the Newtonians, while adapting the disguise of
a continuous framework. This view is justified by the approximation of an infinite
crystal lattice: the relevant kernels can be justified through this discrete approach.
Of course this raises the matter of solving integro-differential equations instead of
partial-differential equations. What about boundary conditions that are in essence
foreign to this representation of matter-matter interaction? There remains a possi-
bility of the existence of a “weak-nonlocal” limit by the approximation by gradient
models. Typically one would consider in the linear elastic case a stress constitutive
equation in the form

σ ji(x) =
∫

all space

C jikl (|x− x′|)ekl(x
′)d3x′, (1.22)

where the constitutive functions C jikl decreases markedly with the distance between
material points x′ and x. In space of one dimension, an inverse to Eq. (1.22) may be
of the form

σ −K ∇ 2σ = E e (1.23)

with coefficients K and E , a model that we call “Helmholtz’s” one because of the
presence of the Laplacian ∇ 2 that reflects the equivalence of interactions to the
“right” and the “left”. It is this kind of relation that allows one to compare the effects
of “weakly” and “strongly” nonlocal theories in so far as the degree of singularity
of some quantities is concerned (cf. Lazar and Maugin [58]).

The historical moment in the recognition of the usefulness of strongly nonlocal
theories was the EUROMECH colloquium on nonlocality organized by D. Rogula
in Warsaw in 1977 (cf. Maugin [65]). A now standard reference is Eringen’s book
[28]. A recent much publicized application of the concept of nonlocality is that to
damage by Pijaudier-Cabot and Bažant [88].

Note in conclusion to this point that any field theory can be generalized to a non-
local one while saving the notions of linearity and anisotropy; but loosing the usual
notion of flux. Also, it is of interest to pay attention to the works of Lazar and Mau-
gin [56, 57] for a comparison of field singularities in the neighborhood of structural
defects in different “generalized” theories of elasticity (micropolar, gradient-like,
strongly non local or combining these).

1.3.3 Loss of the Euclidean Nature of the Material Manifold

Indeed the basic relevant problem emerges as follows. How can we represent ge-
ometrically the fields of structural defects (such as dislocations associated with a
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loss of continuity of the elastic displacement, or disclinations associated with such a
loss for rotations)? A similar question is raised for vacancies and point defects. One
possible answer stems from the consideration of a non-Euclidean material manifold,
e.g., a manifold without curvature but with affine connection, or an Einstein-Cartan
space with both torsion and curvature, etc. With this one enters a true “geometriza-
tion” of continuum mechanics of which conceptual difficulties compare favorably
with those met in modern theories of gravitation. Pioneers in the field in the years
1950-70 were K. Kondo [46] in Japan, E. Kröner [48] in Germany, Bilby [5] in
the UK, Stojanovic [96] in what was then Yugoslavia, W. Noll [83] and C.C. Wang
[105] in the USA. Modern developments are due to, among others, M. Epstein and
the author [18, 19], M. Elzanowski and S. Preston (see the theory of material inho-
mogeneities by Maugin, [69]). Main properties of this type of approach are

(i) the relationship to the multiple decomposition of finite strains (Bilby, Kröner,
Lee) and

(ii) the generalization of theories such as the theory of volumetric growth (Epstein
and Maugin [20]) or the theory of phase transitions within the general theory
of local structural rearrangements (local evolution of reference; see Mau-
gin [72], examining Kröner’s inheritance and also the fact that true material
inhomogeneities (dependence of material properties on the material point)
are then seen as pseudo-plastic effects [71]).

All local structural rearrangements and other physical effects (e.g., related to the
diffusion of a dissipative process) are reciprocally seen as pseudo material inhomo-
geneities [72]. Many of these advances are first-hand critically expanded in a recent
book [74]. An original geometric solution is presented in the book of Rakotomanana
[91] which offers a representation of a material manifold that is everywhere dis-
located. Introduction of the notion of fractal sets opens new horizons (cf. Li and
Ostoja–Starzewski, [63]). An antiquated forerunner work of all this may be guessed
in Burton [6], but only with obvious good will by a perspicacious reader.

1.4 Conclusions

Since the seminal work of the Cosserats, three more or less successful paths have
been taken towards the generalization of continuum mechanics. These were recalled
above. An essential difference between the bygone times of the pioneers and now
is that artificial materials can be man-made that are indeed generalized continua. In
addition, mathematical methods have been developed (homogenization techniques)
that allow one to show that generalized continua are deduced as macroscopic con-
tinuum limits of some structured materials. This is illustrated by the book of Forest
[36].

In conclusion, we can answer three basic questions that are clearly posed:

(1) Do we need GCM at all?
(2) Do we find the necessary tools in what exists nowadays?
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(3) What is the relationship between discrete and continuous descriptions if there
must exist a consistent relationship between the two?

The first two questions are positively answered in view of the above described devel-
opments. The third question is of a different nature because, in principle, continuum
theories can be developed independently of any precise microscopic vision, being
judged essentially on their inherent logical structure, the possibility to have access
through appropriate experiments to the material constants they introduce, and fi-
nally their efficiency in solving problems. However, in contrast to those hard-line
continuum theoreticians, we personally believe that any relationship that can be es-
tablished with a sub-level degree of physical description is an asset that no true
physicist can discard.
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[50] Kröner, E., Datta, B.K.: Nichtlokal Elastostatik: Ableitung aus der Gitterthe-
orie. Z. Phys. 196(3), 203–211 (1966)

[51] Kunin, I.A.: Model of elastic medium with simple structure and space disper-
sion. Prikl. Mat. Mekh. 30, 542–550 (1966)

[52] Kunin, I.A.: Elastic media with microstructure I & II. Springer-Verlag, Berlin
(1982) (translated from the 1975 Russian edition)



1 A Historical Perspective of Generalized Continuum Mechanics 17
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Chapter 2

Micropolar Shells as Two-dimensional
Generalized Continua Models

Holm Altenbach, Victor A. Eremeyev, and Leonid P. Lebedev

Abstract Using the direct approach the basic relations of the nonlinear micropo-
lar shell theory are considered. Within the framework of this theory the shell can
be considered as a deformable surface with attached three unit orthogonal vectors,
so-called directors. In other words the micropolar shell is a two-dimensional (2D)
Cosserat continuum or micropolar continuum. Each point of the micropolar shell
has three translational and three rotational degrees of freedom as in the rigid body
dynamics. In this theory the rotations are kinematically independent on translations.
The interaction between of any two parts of the shell is described by the forces and
moments only. So at the shell boundary six boundary conditions have to be given.
In contrast to Kirchhoff-Love or Reissner’s models of shells the drilling moment
acting on the shell surface can be taken into account.

In the paper we derive the equilibrium equations of the shell theory using the
principle of virtual work. The strain measures are introduced on the base of the
principle of frame indifference. The boundary-value static and dynamic problems
are formulated in Lagrangian and Eulerian coordinates. In addition, some variational
principles are presented. For the general constitutive equations we formulate some
constitutive restrictions, for example, the Coleman-Noll inequality, the Hadamard
inequality, etc. Finally, we discuss the equilibrium of shells made of materials un-
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dergoing phase transformations, such as martensitic transformations, and formulate
the compatibility conditions on the phase interface.

Key words: Micropolar shells. 6-parametric theory of shells. Variational prin-
ciples. Constitutive inequalities. Coleman-Noll inequality. Hadamard inequality.
Phase transformations.

2.1 Introduction

The Mechanics of Generalized Continua has long history of development. Since
the centurial book of Cosserat brothers [13] in the literature there are known vari-
ous generalizations of the classical or Cauchy continuum which are summarized in
many books and papers, see, for example, the books by Eringen [25, 26], Nowacki
[47], and the recent proceedings [45], see also the historical review by Maugin [44]
in this book. Using the direct approach, Ericksen and Truesdell [24] extended the
Cosserat model to construction of the nonlinear mechanics of rods and shells, i.e. to
one-dimensional and two-dimensional media. Since [24] the generalized models of
shells and plates are extensively discussed in the literature, see the recent review [5].

Below we consider the model of a micropolar shell as the example of the gen-
eralized 2D continuum. Indeed, a micropolar shell is a two-dimensional analogue
of the three-dimensional (3D) micropolar continuum, i.e. a micropolar shell is a de-
formable directed surface each particle of which has six degrees of freedom as rigid
bodies. The kinematics of the micropolar shell is described by two fields. The first
field is the position vector of the base surface of the shell while the second one is
the proper orthogonal tensor describing the rotation of the shell cross-section. In
contrast to Kirchhoff-Love and Mindlin-Reissner type theories of plates and shells
the boundary-value problem of a micropolar shell consists of 6 scalar equations
and 6 boundary conditions. Within the micropolar shell theory the so-called drilling
moment can be taken into account.

Let us note that the basic equations of the micropolar shell models presented
in [16, 22, 23, 60] using the direct approach coincide with the general nonlinear
theory of shells initiated by Reissner [55] and presented by Libai and Simmonds
[38, 39], Pietraszkiewicz [51], and Chróścielewski et al. [10], which is also named
6-parametric theory of shells.

The paper is organized as follows. In Sect. 2.2 we recall the basic equations. We
derive the equilibrium equations from the principle of virtual work. Various state-
ments of the nonlinear boundary-value problem are given and few variational prin-
ciples are formulated. The case of small deformations is also considered. Following
[22] in Sect. 2.3 we present in details some inequalities such as the Coleman-Noll
inequality, the Hadamard inequality, strong and ordinary ellipticity conditions, etc.
These inequalities can be regarded as the constitutive restrictions, i.e. the restric-
tions for the constitutive equations of an elastic shell. In Sect. 2.4 we discuss the
compatibility conditions on the phase interface in shells.
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Further we use the direct tensorial notations, see for example [36, 42]. Vectors are
denoted by semibold normal font like A. Tensors are denoted by semibold sans serif
upright font like A. Functionals are denoted by calligraphic letters like A. Greek
indices take values 1 and 2, while Latin indices are arbitrary.

2.2 Basic Relations of Micropolar Shell Theory

In this section we use the so-called direct approach to the formulation of the ba-
sic equations of micropolar shell theory. The advantage of the latter approach is
discussed in many papers, see for example [24]. Within framework of the direct
approach, an elastic micropolar shell is a two-dimensional analogue of the Cosserat
continuum, i.e. a micropolar shell is a material surface each particle of which has six
degrees of freedom of the rigid body. Further we will use the notations [16, 22, 23].

2.2.1 Kinematics of a Micropolar Shell

Let σ be a base surface of the micropolar shell in the reference configuration (for
example, in an undeformed state), qα (α = 1,2) be Gaussian coordinates on σ , and
r(q1,q2) be a position vector of σ , see Fig. 2.1. In the actual (deformed) configu-
ration the surface is denoted by Σ , and the position of its material points (infinites-
imal point-bodies) is given by the vector R(q1,q2). The orientation of the point-
bodies is described by the so-called microrotation tensor (or turn-tensor) Q(q1,q2),
which is the proper orthogonal tensor. If we introduce three orthonormal vectors dk
(k = 1,2,3), which describe the orientation in the reference configuration, and three

Fig. 2.1 Kinematics of a micropolar shell, reference configuration (on the left) and actual one (on
the right)
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orthonormal vectors Dk, which determine the orientation in the actual configuration,
then the tensor Q is given by Q = dk⊗Dk. Thus, the micropolar shell is described
by two kinematically independent fields

R = R(qα ), Q = Q(qα ). (2.1)

For the micropolar shell made of an elastic material there should exist a strain
energy density W . By using the principle of local action [57, 58] the constitutive
equation for the function W is given by the formula [16, 22, 23]

W =W (R, ∇ R,Q, ∇ Q),

where

∇ ΨΨΨ
�

= rα ⊗ ∂ ΨΨΨ
∂ qα , rα ···rβ = δ α

β , rα ···n = 0, rβ =
∂ r

∂ qβ .

Here the vectors rβ and rα denote the natural and reciprocal bases on σ , n is the
unit normal to σ , δ α

β is the Kronecker symbol, ∇ is the surface nabla operator on
σ , and ΨΨΨ is an arbitrary differentiable tensor field given on σ .

From the principle of material frame-indifference we can find that W depends on
two Cosserat-type strain measures E and K only

W =W (E,K),

E = F···QT , K =
1
2

rα ⊗
(

∂ Q
∂ qα ···QT

)
×
, (2.2)

where F = ∇ R is the surface deformation gradient, T× is the vectorial invariant of
a second-order tensor T defined by

T× = (T mnRm⊗Rn)× = T mnRm×Rn

for any base Rm, see e.g. [36], × is the vector product.
A proper orthogonal tensor describes rotation about an arbitrary axis. It can be

represented by Gibbs’ formula

H = (I− e⊗ e)cos χ + e⊗ e− e× Isin χ , (2.3)

where χ and e are the angle of rotation about the axis with the unit vector e, and I
is the 3D unit tensor, respectively. Introducing the vector θθθ = 2e tan χ /2 and using
the formulae

cos χ =
1− tan2 χ /2
1+ tan2 χ /2

, sin χ =
2tan χ /2

1+ tan2 χ /2

we obtain the representation of Q in the form which does not contain trigonometric
functions

Q =
1

(4+ θ 2)

[
(4− θ 2)I+ 2θθθ ⊗ θθθ −4I× θθθ

]
, θ 2 = θθθ ···θθθ . (2.4)
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In the rigid body kinematics the vector θθθ is called Rodrigues’ finite rotation vector,
cf. [41]. In the theory of Cosserat-type shells we will call it the microrotation vector.
Other known vectorial parameterizations of an orthogonal tensor are summarized in
[53]. From Eq. (2.4), for a given proper orthogonal tensor Q we find uniquely the
vector θθθ

θθθ = 2(1+ tr Q)−1Q×. (2.5)

Using the finite rotation vector we can express K as follows

K = rα ⊗Lα =
4

4+ θ 2 ∇ θθθ ···
(

I+
1
2

I× θθθ
)
. (2.6)

The strain measures E and K are the two-dimensional analogues of the strain mea-
sures used in 3D Cosserat continuum [52, 53].

2.2.2 Principle of Virtual Work and Boundary-value Problems
Statements

The Lagrangian equilibrium equations of the micropolar shell can be derived from
the principle of virtual work

δ
∫∫
σ

W dσ = δ ′A, (2.7)

where

δ ′A =
∫∫
σ

(
f···δ R+ c···δ ′ψψψ ) dσ +

∫
ω 2

ϕϕϕ ···δ Rds+
∫
ω 4

γγγ ···δ ′ψψψ ds,

I× δ ′ψψψ =−QT ···δ Q.

In Eq. (2.7), δ is the symbol of variation, δ ′ψψψ is the virtual rotation vector, f is the
surface force density distributed on σ , c is the surface couple density distributed on
σ , ϕϕϕ and γγγ are linear densities of forces and couples distributed along corresponding
parts of the shell boundary ω , respectively.

Using the formulae [23]

δ W =
∂ W
∂ E
• δ E+

∂ W
∂ K
• δ K,

δ E = (∇ δ R)···QT +F···δ QT , δ K = (∇ δ ′ψψψ )···QT ,

δ ′ψψψ =
4

4+ θ 2

(
δ θθθ +

1
2

θθθ × δ θ
)
,
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where X •Y = X · ·YT for any tensors X and Y of the second-order, see [36], from
Eq. (2.7) we obtain the Lagrangian shell equations

∇ ∇ ∇ ·D+ f = 0, ∇ ∇ ∇ ·G+
[
FT ···D]×+ c = 0, (2.8)

D = P1···Q, G = P2···Q, P1 =
∂ W
∂ E

, P2 =
∂ W
∂ K

, (2.9)

ω 1 : R = ρρρ (s),
ω 2 : ννν ···D = ϕϕϕ (s),
ω 3 : Q = h(s), h···hT = I,
ω 4 : ννν ···G = γγγ (s).

(2.10)

Here ρρρ (s), h(s) are given vector functions, and ννν is the external unit normal to the
boundary curve ω (ννν ···n = 0). Equations (2.8) are the equilibrium equations for the
linear momentum and angular momentum of any shell part. The tensors D and G
are the surface stress and couple stress tensors of the 1st Piola-Kirchhoff type, and
the corresponding stress measures P1 and P2 in Eqs (2.8) are the referential stress
tensors, respectively. The strain measures E and K are work-conjugate to the stress
measures D and G. The boundary ω of σ is divided into two parts ω = ω 1∪ ω 2 =
ω 3∪ ω 4. The following relations are valid

n···D = n···G = n···P1 = n···P2 = 0. (2.11)

The equilibrium equations (2.8) may be transformed to the Eulerian form

∇ ∇ ∇ Σ · T+ J−1f = 0, ∇ ∇ ∇ Σ ·M+T×+ J−1c = 0, (2.12)

where

∇ ∇ ∇ Σ · ΨΨΨ
�

= Rα ··· ∂ ΨΨΨ
∂ qα , Rα ···Rβ = δ α

β , Rα ···N = 0, Rβ =
∂ R
∂ qβ ,

T = J−1FT ···D, M = J−1FT ···G, (2.13)

J =

√
1
2

{[
tr
(
F···FT )]2− tr

[(
F···FT )2

]}
.

Here T and M are the Cauchy-type surface stress and couple stress tensors, ∇ Σ is
the surface nabla operator on Σ associated with ∇ by the formula ∇ = F···∇ Σ .

The equations of motion of the micropolar shell are given by the relations (see,
for example, [4, 10, 23, 38, 39, 59])

∇ ∇ ∇ ·D+ f = ρ
dK1

dt
, (2.14)

∇ ∇ ∇ ·G+
[
FT ···D]×+m = ρ

(
dK2

dt
+v× ΘΘΘ T

1 ···ωωω
)
,

with
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K(v, ωωω ) =
1
2

v···v+ ωωω ···ΘΘΘ 1···v+ 1
2

ωωω ···ΘΘΘ 2···ωωω ,

K1

�

=
∂ K
∂ v

= v+ ΘΘΘ T
1 ···ωωω , K2

�

=
∂ K
∂ ωωω

= ΘΘΘ 1···v+ ΘΘΘ 2···ωωω ,

where

v =
dR
dt

, ωωω =
1
2

(
HT ···dQ

dt

)
×

are the linear and angular velocities, respectively, ρ is the surface mass density in the
reference configuration, ρ K is the surface density of the kinetic energy, and ρ ΘΘΘ 1,
ρ ΘΘΘ 2 are the rotatory inertia tensors (ΘΘΘ T

2 = ΘΘΘ 2). For the dynamic problem (2.14),
the initial conditions are given by

R
∣∣
t=0 = R◦, v

∣∣
t=0 = v◦, Q

∣∣
t=0 = Q◦, ωωω

∣∣
t=0 = ωωω ◦,

where R◦, v◦, Q◦, ωωω ◦ are given initial values.
Under some conditions the equilibrium problem of a micropolar shell can be

transformed to the system of equations with respect to the strain measures

∇ ∇ ∇ ·P1−
(
PT

1 ·K
)
×+ f∗ = 0; (2.15)

∇ ∇ ∇ ·P2−
(
PT

2 ·K+PT
1 ·E

)
×+ c∗ = 0, (2.16)

ω 2 : ννν ·P1 = ϕϕϕ ∗, ω 4 : ννν ·P2 = γγγ ∗, (2.17)

f∗
�

= f ·QT , c∗
�

= c ·QT , ϕϕϕ ∗
�

= ϕϕϕ ·QT , γγγ ∗
�

= γγγ ·QT .

Let the vectors f∗, c∗, ϕϕϕ ∗, γγγ ∗ be given as functions of the coordinates q1,q2. From
the physical point of view it means that the shell is loaded by tracking forces and
couples. Then Eqs (2.15)–(2.17) depend on E, K as the only independent fields.

2.2.3 On the Constitutive Equations of Micropolar Shells

For an elastic shell the constitutive equations consist of the surface strain energy
density as the function of two strain measures. An example of the constitutive equa-
tion is the model of physically linear isotropic shell [10, 18, 23], the energy of which
is given by the quadratic form

2W = α 1tr 2E‖+ α 2tr E2
‖+ α 3tr

(
E‖···ET

‖
)
+ α 4n···ET ···E···n

+ β 1tr 2K‖+ β 2tr K2
‖+ β 3tr

(
K‖···KT

‖
)
+ β 4n···KT ···K···n,

E‖ � E···A, K‖ � K···A.

(2.18)

In Eq. (2.18) there are absent the terms that are bilinear in E and K. It is a conse-
quence of the fact that the bending measure K is a pseudo-tensor that changes the
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sign of the value when we apply the inversion of the space. Note that the constitutive
equations contain 8 parameters α k, β k (k = 1,2,3,4).

In [10] the following relations for the elastic moduli appearing in Eq. (2.18) are
used

α 1 =Cν , α 2 = 0, α 3 =C(1− ν ), α 4 = α sC(1− ν ),
β 1 = Dν , β 2 = 0, β 3 = D(1− ν ), β 4 = α tD(1− ν ),

C =
Eh

1− ν 2 , D =
Eh3

12(1− ν 2)
,

(2.19)

where E and ν are the Young’s modulus and the Poisson’s ratio of the bulk material,
respectively, α s and α t are dimensionless shear correction factors, while h is the
shell thickness. α s is the shear correction factor introduced in the plate theory by
Reissner (α s = 5/6) or Mindlin (α s = π 2/12). The parameter α t plays the same
role for the couple stresses. The value α t = 0.7 was proposed by Pietraszkiewicz
[48, 49], see also [11]. In [10, 11, 12] the influence of α s and α t on the solution is
investigated numerically for several boundary-value problems.

2.2.4 Compatibility Conditions

Let us consider how to determine the position vector R(q1,q2) of Σ from the surface
strain E and micro-rotation Q, which are assumed to be given as continuously dif-
ferentiable functions on σ . By using the equation F = E ·Q the problem is reduced
to

∇ R = F. (2.20)

The necessary and sufficient condition for solvability of Eq. (2.20) is given by the
relation

∇ ∇ ∇ ·(e ·F) = 0, e
�

=−I×n, (2.21)

which we call the compatibility condition for the distortion tensor F. Here e is the
skew-symmetric discriminant tensor on the surface σ . For a simply-connected re-
gion σ , if the condition (2.21) is satisfied, the vector field R may be deduced from
Eq. (2.20) only up to an additive vector.

Let us consider a more complex problem of determination of both the translations
and rotations of the micropolar shell from the given fields of E and K. At first, let
us deduce the field Q(q1,q2) by using the system of equations following from def-
inition (2.2) of K

∂ Q
∂ qα =−Kα ×Q, Kα

�

= rα ·K. (2.22)

The integrability conditions for the system (2.22) are given by the relation



2 Micropolar Shells as Two-dimensional Generalized Continua Models 31

∂ Kα

∂ qβ −
∂ Kβ

∂ qα = Kα ×Kβ (α , β = 1,2). (2.23)

Equations (2.23) are obtained in [38, 49, 50] as the conditions for the existence of
the rotation field of the shell. They may be written in the following coordinate-free
form

∇ ∇ ∇ · (e ·K)+K⊥ ·n = 0, (2.24)

K⊥
�

=
1
2

(
Kα ×Kβ

)⊗(rα × rβ
)
= K2−Ktr K+

1
2

(
tr 2K− tr K2

)
I.

Using F = E ·Q and Eqs (2.2) the compatibility condition (2.21) may be written in
the form

∇ ∇ ∇ ·(e ·E)+ (ET ·e ·K)× = 0. (2.25)

Two coordinate-free vector equations (2.24), (2.25) are the compatibility conditions
for the nonlinear micropolar shell. These conditions and the system of equations
(2.15)–(2.17) form the complete boundary-value problem for statics of micropolar
shells expressed entirely in terms of the surface strain measures E and K.

2.2.5 Variational Statements

The presented above static and dynamic problems have corresponding variational
statements. Two of them for statics and one for dynamics are presented below.

2.2.5.1 Lagrange Principle

Let us assume that the external forces and couples are conservative. In the Lagrange-
type variational principle δ E1 = 0 the functional E1[R,Q] is used, where

E1[R,Q] =
∫∫
σ

Wdσ −A[R,Q], (2.26)

and A is the potential of the external loads.
Here the deformation, i.e. the translations and the rotations, have to satisfy the

boundary conditions (2.10)1 and (2.10)3 on ω 1 and ω 3, respectively. The station-
arity of E1 is equivalent to the equilibrium equations (2.8), (2.9) and the boundary
conditions (2.10)2 and (2.10)4 on ω 2 and ω 4.

2.2.5.2 Hu-Washizu Principle

For this principle the functional is given by
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E2[R,Q,E,K,D,P2] =

∫∫
σ

[W (E,K) −D• (E ·Q− ∇ R) (2.27)

−P2 •
(

K− 1
2

rα ⊗
(

∂ Q
∂ qα ·Q

T
)
×

)]
dσ −

∫
ω 1

ννν ·D · (R− ρρρ )ds−A[R,Q].

From the condition δ E2 = 0 the equilibrium equations (2.8) and (2.9), the consti-
tutive equations, and the relations (2.2) are deduced. For this principle the natural
boundary conditions are given by the relations (2.10)1, (2.10)2 and (2.10)4, respec-
tively.

Several other variational statements are given in [23]. Mixed type variational
functionals are constructed in [10]. They are used for the development of a family of
finite elements with 6 degrees of freedom in each node. Then a number of nonlinear
simulations of complex multifolded shell structures are performed.

2.2.5.3 Hamilton-type Principle

The kinetic energy of micropolar shells can be expressed as

K=
∫∫
σ

ρ K(v, ωωω )dσ , K(v, ωωω ) =
1
2

v···v+ ωωω ···ΘΘΘ 1···v+ 1
2

ωωω ···ΘΘΘ 2···ωωω , (2.28)

where ρ K is the surface density of the kinetic energy, ρ ΘΘΘ 1, ρ ΘΘΘ 2 are the inertia
tensors, ΘΘΘ T

2 = ΘΘΘ 2.
It is obvious that we should assume the kinetic energy to be a positive definite

function that imposes some restriction on the form of the inertia tensors. By physical
meaning, ΘΘΘ 1 and ΘΘΘ 2 have the following properties

ΘΘΘ 1 = HT ···ΘΘΘ ◦1···H, ΘΘΘ 2 = HT ···ΘΘΘ ◦2···H,
dΘΘΘ ◦1
dt

=
dΘΘΘ ◦2
dt

= 0. (2.29)

The Hamilton principle is a variational principle in dynamics. In real motion, the
functional

E3[R,H] =

t1∫
t0

(K−E1)dt (2.30)

takes a stationary value on the set of all possible shell motions that at the range t0,
t1 take given values of the real motion values and satisfy the kinematic boundary
values. In other words, its first variation on a real motion is zero. From condition
E3 = 0 Eqs (2.14) can be established.
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2.2.6 Linear Theory of Micropolar Shells

Let us suppose the strains are small. Then we can simplify the equations of the shell
theory significantly. In this geometrically linear case we do not differ Eulerian and
Lagrangian descriptions. The difference of surfaces σ and Σ is infinitesimal. It is
not necessary to distinguish operators ∇ and ∇ Σ as well as earlier different types of
stress tensors and couple stress tensors. Let us introduce the vector of infinitesimal
displacements u and the vector of infinitesimal rotation ϑϑϑ such that there hold

R≈ r+u, Q≈ I− I× ϑϑϑ . (2.31)

In Eqs (2.31) the last formula follows from the representation of a proper orthogonal
tensor through the finite rotation vector (2.4) if |θθθ | � 1.

Up to the linear addendum, the linear strain measure E and bending strain tensor
can be expressed in terms of the linear strain tensor and linear bending strain tensor
e and κκκ

E≈ I+e, K≈ κκκ , e = ∇ u+A× ϑϑϑ , κκκ = ∇ ϑϑϑ . (2.32)

Here A� I−n⊗n. The tensors e and κκκ are applied in the linear theory of micropolar
shells, cf. [59, 60]. Assuming Eq. (2.32) in the linear shell theory the stress tensors
D, P1, T and the couple tensors G, P2, M coincide. In what follows we will denote
the stress tensor by T and the couple stress tensor by M.

The constitutive equations of an elastic shell can be represented through the func-
tion of specific strain energy W =W (e, κκκ ) as it follows

T =
∂ W
∂ e

, M =
∂ W
∂ κκκ

. (2.33)

In the linear theory the equilibrium equations take the form

∇ ∇ ∇ ·T+ f = 0, ∇ ∇ ∇ ·M+T×+ c = 0, (2.34)

whereas the boundary conditions are transformed to

ω 1 : u = u0(s),
ω 2 : ννν ·T = ϕϕϕ (s),
ω 3 : ϑϑϑ = ϑϑϑ 0(s),
ω 4 : ννν ·M = γγγ (s),

(2.35)

where u0(s) and ϑϑϑ 0(s) are given functions of the arc length that respectively define
the displacements and rotations on a part of the shell contour.

If the strains are small, an example of the constitutive equation is the following
quadratic form
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2W = α 1tr 2e‖+ α 2tr e2
‖+ α 3tr

(
e‖···eT

‖
)
+ α 4n···eT ···e···n (2.36)

+β 1tr 2κκκ ‖+ β 2tr κκκ 2
‖+ β 3tr

(
κκκ ‖···κκκ T

‖
)
+ β 4n···κκκ T ···κκκ ···n.

This form describes physically linear isotropic shells. Here α k and β k are elastic
constants (k = 1,2,3,4) and

e‖
�

= e···A, κκκ ‖
�

= κκκ ···A.

Considering Eqs (2.33) and (2.36), the stress tensor and the couple stress tensor are
expressed by the formulas

T = α 1Atr e‖+ α 2eT
‖ + α 3e‖+ α 4e ·n⊗n, (2.37)

M = β 1Atr κκκ ‖+ β 2κκκ T
‖ + β 3κκκ ‖+ β 4κκκ ·n⊗n. (2.38)

Supplemented with Eqs (2.34) and (2.35), the linear constitutive equations (2.37),
(2.38) constitute the linear boundary-value problem with respect to the fields of
displacements and rotations. It describes the equilibrium of the micropolar shell
when strains are infinitesimal.

When the strains are small, the Lagrange variational principle (2.26) is trans-
formed to the following form

E1[u, ϑϑϑ ] =
∫∫
σ

W (e, κκκ )dσ −A[u, ϑϑϑ ], (2.39)

where the potential of the external loads A[u, ϑϑϑ ] is defined by the equation

A[u, ϑϑϑ ]�
∫∫
σ

(f···u+ c···ϑϑϑ )dσ +
∫
ω 2

ϕϕϕ ···uds+
∫
ω 4

γγγ ···ϑϑϑ ds.

Let functional (2.39) be given on the set of twice differentiable fields of displace-
ments and rotations of the surface σ that satisfy the boundary conditions (2.35)1 and
(2.35)3 on ω 1 and ω 3, respectively. It is easy to check that the condition of the func-
tional to have a stationary value is equivalent to the equilibrium equations (2.34)
and the boundary conditions (2.35)2 and (2.35)4 on ω 2 and ω 4, respectively. Let us
note that when the strains are small and the form W (e, κκκ ) is positive definite, the
Lagrange variational principle is a minimal principle, this means functional (2.39)
takes a minimal value on the equilibrium solution.

In the linear theory it is valid a variational principle for free oscillations. By
linearity, eigen-solutions are proportional to eiΩ t (u= u◦eiΩ t , ϑϑϑ = ϑϑϑ ◦eiΩ t ). Now the
variational Rayleigh principle can be formulated: the forms of the eigen-oscillations
of the shell are stationary points of the strain energy functional
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E4[u◦, ϑϑϑ ◦] =
∫∫
σ

W (e◦, κκκ ◦)dσ , (2.40)

where
e◦ = ∇ u◦+A× ϑϑϑ ◦, κκκ ◦ = ∇ ϑϑϑ ◦,

on the set of functions that satisfy the following conditions

ω 1 : u◦ = 0, ω 3 : ϑϑϑ ◦ = 0 (2.41)

and restriction ∫∫
σ

ρ K (u◦, ϑϑϑ ◦)dσ = 1. (2.42)

Functions u◦, ϑϑϑ ◦ represent the amplitudes of oscillations for the displacements and
small rotations.

The Rayleigh variational principle is equivalent to the stationary principle for the
Rayleigh quotient

R[u◦, ϑϑϑ ◦] =

∫∫
σ

W (e◦, κκκ ◦)dσ

∫∫
σ

ρ K (u◦, ϑϑϑ ◦)dσ
, (2.43)

that is defined on kinematically admissible functions u◦, ϑϑϑ ◦. Note that the least
squared eigenfrequency for the shell corresponds the minimal value of R

Ω 2
min = infR[u◦, ϑϑϑ ◦]

on u◦, ϑϑϑ ◦ satisfying (2.41). Using the Courant minimax principle [14] the Rayleigh
quotient (2.43) allows us to estimate the values of higher eigenfrequencies. For this
we should consider R on the set of functions that are orthogonal to the previous
modes of eigen-oscillations in some sense.

2.2.7 Principle Peculiarities of the Micropolar Shell Theory

Let us summarize principle peculiarities of the shell theory under consideration:

1. The shell equilibrium equation constitute a nonlinear system partial differen-
tial equations. In general, the system is elliptic but in some circumstances the
ellipticity condition can fail. We will discuss this later.

2. General theorems of existence of equilibrium or dynamic solutions are absent.
Moreover, there are examples when under some loads the equilibrium solutions
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does not exist. As for other nonlinear systems, a solution of the equilibrium
problem can be non-unique, in general.

3. The Lagrange variational principle is not minimal, it is only a stationary varia-
tional principle. The only exception is for the linear theory.

4. For the linear theory of micropolar shells it can be demonstrated the theorems
of existence and uniqueness of a solution.

Further developments of this version of the shell theory can be produced in the
following directions:

1. Development of mathematical theory that should be based on the methods of
partial differential equations theory, functional analysis and calculus of varia-
tions.

2. Numerical algorithms for solution of the reduced systems of nonlinear equa-
tions. For example, it can be done within the framework of the finite element
method, see for example the numerical results in [10, 11, 12].

3. Analysis of the restrictions of the nonlinear constitutive equations.
4. Extension of the two-dimensional constitutive equations for the shell made of

various materials. In particular, the extension can include viscoelasticity, ther-
mal effects, etc. In particular, the theory of thermoelastic and thermoviscoelastic
shells with phase transitions is developed in [19].

Some of the above problems will be considered in later sections.

2.3 Constitutive Restrictions for Micropolar Shells

In nonlinear elasticity there are well known so-called constitutive restrictions. They
are the strong ellipticity condition, the Hadamard inequality, the GCN-condition,
and some others [56, 57, 58]. Each of them play some role in nonlinear elasticity.
They express mathematically precise and physically intuitive restrictions for con-
stitutive equations of elastic bodies. In particular, the GCN condition proposed by
Coleman and Noll asserts “that the transformation from deformation gradient to
first Piola-Kirchhoff stress tensor shall be monotone with respect to pairs of defor-
mations differing from one another by a pure stretch” (see, [58]).

The aim of this section is to formulate similar constitutive restrictions in the
general nonlinear theory of micropolar shells. Here we formulate the general-
ized Coleman-Noll inequality (GCN-condition), the strong ellipticity condition of
equilibrium equations and the Hadamard inequality. The inequalities represent pos-
sible restrictions of constitutive equations of elastic shells under finite deformation.
We prove that the Coleman-Noll inequality implies strong ellipticity of shell equi-
librium equations.
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2.3.1 Linear Theory of Micropolar Shells

In the linear shell theory as well as in the case of the three-dimensional elasticity,
it is necessary to establish additional restrictions, so-called constitutive inequalities
or constitutive restrictions. Again we stipulate the specific strain energy W (e, κκκ ) to
be positive definite. Now the energy is a quadratic form of both of the linear strain
tensor and the linear bending strain tensor. In particular, for an isotropic shell it takes
the form (2.36). Positivity of the quadratic form (2.36) for all values of e and κκκ is
equivalent to the following set of inequalities

2α 1 + α 2 + α 3 > 0, α 2 + α 3 > 0, α 3− α 2 > 0, α 4 > 0,
2β 1 + β 2 + β 3 > 0, β 2 + β 3 > 0, β 3− β 2 > 0, β 4 > 0.

(2.44)

The inequality
W (e, κκκ )> 0, ∀ e, κκκ 
= 0

and the following from this the inequalities for the elastic constants of an isotropic
material (2.44) are the simplest example of additional inequalities in the shell the-
ory. When they fail it leads to a number of pathological consequences such as non-
uniqueness of the solution of boundary value problems of linear shell theory that
implies that a solution does not exist for some loads. At second, the propagation of
waves in some directions becomes impossible that is not natural from the physical
point of view. In the case of finite strains, the positive definiteness of the specific en-
ergy W (E,K) is not a warranty that the desired properties of constitutive equations
hold, here must be fulfilled some additional inequalities.

2.3.2 Coleman-Noll Inequality for Elastic Shells

Let us suppose that a certain equilibrium state of a nonlinear elastic shell of the
Cosserat type under the action of a given load is known. Further we will call it
initial or basic stressed state. This state is defined by the vector field R(qα ) and the
tensor field Q(qα ). Along with the basic stressed state we consider some perturbed
equilibrium state which differs from the basic one. The linear parts of increments of
different quantities that characterize the perturbed equilibrium we will denote using
dots above, for example

D··· =
d

dτ
D [∇ (R+ τ u,Q− τ Q× θθθ , ∇ (Q− τ Q× θθθ ))]

∣∣∣∣
τ =0

. (2.45)

Here u is the vector of the additional infinitesimal displacement, while θθθ is the
vector of the additional infinitesimal rotation characterizing the small rotation with
respect to the initial stressed state. The following relations are valid

R··· = u, Q··· =−Q× θθθ , E··· = F···εεε ···QT , K··· = F···κκκ···QT , (2.46)
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εεε = ∇ u+A× θθθ , κκκ = ∇ θθθ , (2.47)

where εεε is the strain tensor and κκκ is the bending strain tensor usually used in the
linear shell theory of the Cosserat-type [23, 36, 60].

Note that as the reference configuration may be chosen any stressed state of the
shell. To avoid awkward expressions and to simplify the calculations let us assume
that the reference configuration coincides with the initial (basic) stressed state of
the shell. This means that in the reference configuration F = E = I−n⊗n, Q = I,
K = 0. Under this choice of the reference configuration and using Eqs (2.9), (2.13),
(2.45)–(2.47) we obtain

D··· =
∂ 2W

∂ E∂ E
• εεε +

∂ 2W
∂ E∂ K

•κκκ−T× θθθ ,

G··· =
∂ 2W

∂ K∂ E
• εεε +

∂ 2W
∂ K∂ K

•κκκ−M× θθθ .
(2.48)

Here and below we use the operation of a scalar product of tensors given by the
formulae(

Ckst pRk⊗Rs⊗Rt ⊗Rp

)
• (UmnRm⊗Rn)

�

=CksmnUmnRk⊗Rs,

(
Vi jRi⊗R j)•(Ckst pRk⊗Rs⊗Rt ⊗Rp

)
• (UmnRm⊗Rn)

�

=Ci jmnVi jUmn.

Suppose that the external couples in the initial and perturbed stressed states of
the shell vanish c = γγγ = 0, while the external forces are “dead”. Then the elastic
energy of the shell is given by the relation

Π ≡ E1 =
∫∫
σ

W dσ −
∫∫
σ

f···(R− r)dσ −
∫
ω 2

ϕϕϕ ···(R− r)ds.

Let us consider the energy increment in the perturbed equilibrium state with respect
to the energy in the initial state taking into account terms of order one and two

Π − Π 0 = τ
(

dΠ
dτ

)
τ =0

+
1
2

τ 2
(

d2Π
dτ 2

)
τ =0

+ ...

According to the constitutive relations of an elastic shell (2.9) and Eqs (2.46), (2.47)
we obtain

dΠ
dτ

=

∫∫
σ

[
tr
(
DT ··· ∇ u

)
+ tr

(
DT ···F× θθθ

)
+ tr

(
GT ···∇ θθθ

)]
dσ (2.49)

−
∫∫
σ

f···udσ −
∫
ω 2

ϕϕϕ ···uds.



2 Micropolar Shells as Two-dimensional Generalized Continua Models 39

Differentiating Eq. (2.49) with respect to the parameter τ and taking into account
that the reference configuration coincides with the basic stressed state and Eqs (2.46)
we get

d2Π
dτ 2

∣∣∣∣
τ =0

=
∫∫
Σ

[
tr
(

D···T ···∇ u
)
+ tr

(
D···T × θθθ

)
+ tr

(
TT ···(∇ u)× θθθ

)
+ tr

(
G···T ···κκκ

)]
dΣ .

From the equilibrium condition of the basic state and considering Eqs (2.8) and
(2.10) it follows that the first variation of the energy

dΠ
dτ

∣∣∣∣
τ =0

vanishes, and the second variation due to Eqs (2.47) and (2.48) could be represented
as

d2Π
dτ 2

∣∣∣∣
τ =0

= 2
∫∫
Σ

wdΣ , w = w′+w′′, (2.50)

w′ =
1
2

εεε • ∂ 2W
∂ E∂ E

• εεε + εεε • ∂ 2W
∂ E∂ K

•κκκ+
1
2
κκκ • ∂ 2W

∂ K∂ K
•κκκ,

w′′ = tr
(
θθθ ×TT ···εεε )− 1

2
tr
(
θθθ ×TT × θθθ

)
+

1
2

tr
(
θθθ ×MT ···κκκ) . (2.51)

The quantity w describes the increment of the elastic energy of the initially pre-
stressed shell under additional infinitesimal deformations. According to Eqs (2.50)
and (2.51) this energy may be decomposed into two parts: the energy of pure strains
w′ and the energy of rotations w′′. The coefficients in the quadratic form w′′ are ex-
pressed in terms of the stress and couple stress tensors of the initial stressed state
and do not depend on material properties of the shell. If the basic stressed state of
the shell is natural (T = M = 0), then w = w′ and the energy density reduces to the
quadratic form of tensors εεε and κκκ. If the decomposition (2.50) and the formulae
(2.51) are compared with the similar results on increment of 3D strain energy den-
sity [21] of micropolar body one can easily note that they coincide up to notation.

One of the well-known in the nonlinear elasticity [56, 57, 58] constitutive in-
equalities is the Coleman-Noll inequality. The differential form of the Coleman-Noll
inequality (so-called GCN-condition) expresses the property that the elastic energy
density under arbitrary infinitesimal non-zero pure strains and bending strains for
any arbitrary reference configuration should be positive. It is necessary to mention
that this inequality does not restrict the constitutive equations with regard to any
rotations.

Taking into account the energy decomposition (2.50) we obtain an analogue of
the Coleman-Noll inequality for elastic shells of the Cosserat type

w′(εεε ,κκκ)> 0 ∀ εεε 
= 0, κκκ 
= 0. (2.52)
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Using Eqs (2.51) inequality (2.52) can be written in the equivalent form

d2

dτ 2 W (E+ τ εεε ,K+ τ κκκ)
∣∣∣∣
τ =0

> 0 ∀ εεε 
= 0, κκκ 
= 0. (2.53)

Condition (2.53) satisfies the principle of material frame-indifference and could
serve as a constitutive inequality for elastic shells.

2.3.3 Strong Ellipticity and Hadamard Inequality

The famous constitutive inequalities in the nonlinear elasticity are the strong ellip-
ticity condition and its weak form known as the Hadamard inequality. Following the
theory of systems of partial differential equations (PDE) [27, 40] in this section we
formulate the strong ellipticity condition of the equilibrium equations (2.8). In the
case of dead loading the linearized equilibrium equations have the form

∇ ∇ ∇ ·D··· = 0, ∇ ∇ ∇ ·G···+ [FT ···D···+(∇ u)T ···D]× = 0, (2.54)

where D··· and G··· are given by formulae similar to Eqs (2.45). Equations (2.54) are
the system of linear PDE of second order with respect to u and θθθ . If we keep in Eqs
(2.54) the differential operators of second order we obtain the relations

∇ ∇ ∇ ·
{[

∂ 2W
∂ E∂ E

•
(
(∇ u)···QT

)
+

∂ 2W
∂ E∂ K

•
(
(∇ θθθ )···QT

)]
···Q
}
,

∇ ∇ ∇ ·
{[

∂ 2W
∂ K∂ E

•
(
(∇ u)···QT

)
+

∂ 2W
∂ K∂ K

•
(
(∇ θθθ )···QT

)]
···Q
}
,

which allow to construct the condition of strong ellipticity of the system (2.54).
Using the formal procedure [27, 40] we replace the differential operator ∇ by the
unit vector ννν tangential to the surface σ , while the vector fields u and θθθ by the
vectors a and b, respectively. Thus, we have the algebraic expressions

ννν ···
{[

∂ 2W
∂ E∂ E

•
(

ννν ⊗ a···QT
)
+

∂ 2W
∂ E∂ K

•
(

ννν ⊗b···QT
)]
···Q
}
,

ννν ···
{[

∂ 2W
∂ K∂ E

•
(

ννν ⊗a···QT
)
+

∂ 2W
∂ K∂ K

•
(

ννν ⊗b···QT
)]
···H
}
.

Let us multiply the first equation by the vector a while the second one by the
vector b and add these expressions. Then we obtain the strong ellipticity condition
of Eqs (2.54) in the following form

ννν ···
{[

∂ 2W
∂ E∂ E

•
(

ννν ⊗a···QT
)
+

∂ 2W
∂ E∂ K

•
(

ννν ⊗b···QT
)]
···Q
}
···a
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+ννν ···
{[

∂ 2W
∂ E∂ E

•
(

ννν ⊗ a···QT
)
+

∂ 2W
∂ K∂ K

•
(

ννν ⊗b···QT
)]
···Q
}
···b > 0,

∀a,b 
= 0.

Using operation • we can transform the latter equations as follows(
ννν ⊗a···QT

)
• ∂ 2W

∂ E∂ E
• (ννν ⊗a···HT )+ 2

(
ννν ⊗a···QT

)
• ∂ 2W

∂ E∂ K
•
(

ννν ⊗b···QT
)

+
(
ννν ⊗b···HT )• ∂ 2W

∂ K∂ E
•
(

ννν ⊗b···QT
)
> 0, ∀a,b 
= 0.

This inequality can be written in a more compact form using the matrix notation

ξξξ ···���(ννν )···ξξξ > 0, ∀ ννν ∈Tx σ , ννν 
= 0, ∀ ξξξ ∈ IR6, ξξξ 
= 0, (2.55)

where ξξξ = (a′,b′) ∈ IR6, a′ = a···QT , b′ = b···QT , and the matrix ���(ννν ) is given by

���(ννν )
�

=

⎡⎢⎢⎢⎣
∂ 2W

∂ E∂ E
{ννν } ∂ 2W

∂ E∂ K
{ννν }

∂ 2W
∂ K∂ E

{ννν } ∂ 2W
∂ K∂ K

{ννν }

⎤⎥⎥⎥⎦ ,

where for any fourth-order tensor K and any vector ννν : K{ννν }
�

= Kklmnν kν mil ⊗ in.
The inequality (2.55) is the strong ellipticity condition of the equilibrium equations
(2.8) of an elastic shells. A weak form of the inequality (2.55) is an analogue of the
Hadamard inequality for the shell. These inequalities are examples of possible re-
strictions of the constitutive equations of elastic shells under finite deformations. As
in the case of simple materials, a break in inequality the (2.55) means the possibility
of existing non-smooth solutions of the equilibrium equations (2.8).

The strong ellipticity condition may be written in the equivalent form

d2

dτ 2 W
(
E+ τ ννν ⊗ a′,K+ τ ννν ⊗b′

)∣∣∣∣
τ =0

> 0 ∀ ννν , a′, b′ 
= 0. (2.56)

Comparing the condition of strong ellipticity (2.56) and the Coleman-Noll inequal-
ity (2.53) one can see that the latter implies the former. Indeed, the inequality (2.53)
holds for any tensors εεε and κκκ. Note that the tensors εεε and κκκ may by nonsymmet-
ric, in general. If we substitute in the inequality (2.53) the relations εεε = ννν ⊗a′ and
κκκ = ννν ⊗b′ then we immediately obtain the inequality (2.56). Thus, the strong el-
lipticity condition is the special case of the Coleman–Noll inequality. This is the
essential distinction between the shell theory of the Cosserat type and the theory of
simple elastic materials [57, 58] where these two properties completely independent
of each other in the sense that neither of them implies the other one. For 3D elastic
micropolar media the strong ellipticity and the Hadamard conditions are formulated
in [21].
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In the shell theory it is widely used the following particular constitutive equation

W (E,K) =W1(E)+W2(K). (2.57)

For example, the constitutive relations (2.18) have the form (2.57).
Now condition (2.55) is equivalent to two more simple inequalities

a··· ∂ 2W1

∂ E∂ E
{ννν }···a > 0, b··· ∂ 2W2

∂ K∂ K
{ννν }···b > 0,

∀ ννν , ννν 
= 0, ννν ···n = 0, ∀ a,b ∈ IR3, a,b 
= 0.

As an example, let us consider when for constitutive equation (2.18) the conditions
(2.55) are valid. It can be shown that the second-order tensors

∂ 2W1

∂ E∂ E
{ννν } and

∂ 2W2

∂ K∂ K
{ννν }

are given by formulas

∂ 2W1

∂ E∂ E
{ννν } = α 3A+(α 1 + α 2)ννν ⊗ ννν + α 4n⊗n,

∂ 2W2

∂ K∂ K
{ννν } = β 3A+(β 1 + β 2)ννν ⊗ ννν + β 4n⊗n.

(2.58)

Inequality (2.55) is valid under the following conditions

α 3 > 0, α 1 + α 2 + α 3 > 0, α 4 > 0, (2.59)

β 3 > 0, β 1 + β 2 + β 3 > 0, β 4 > 0.

For an linear isotropic shell, the inequalities (2.59) provide strong ellipticity of equi-
librium equations (2.34), they are more weak in comparison with the condition
of positive definiteness of (2.44). If we consider the constitutive equations of an
isotropic micropolar shell (2.18) then the inequality (2.55) reduces to the system of
inequalities (2.59).

2.3.4 Strong Ellipticity Condition and Acceleration Waves

Using approach [3, 15, 22], we show that the inequality (2.55) coincides with the
conditions for propagation of acceleration waves in a shell. We consider a motion
that may be accompanied by a jump in the continuity of kinematic and dynamic
quantities on a certain smooth curve C(t), which is called singular (Fig. 2.2). We
assume that the limit values of these quantities exist on C and that they are generally
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different on the opposite sides of C. The jump of an arbitrary quantity ΨΨΨ on C is
denoted by [[ΨΨΨ ]] = ΨΨΨ +− ΨΨΨ −.

ννν

n

C(t)

ΨΨΨ + ΨΨΨ −

τττ

σ

Fig. 2.2 Singular curve

The acceleration wave (weak-discontinuity wave or second-order singular curve)
is a moving singular curve C on which the second derivatives (with respect to the
spatial coordinates and time) of the radius-vector R and the microrotation tensor
Q are discontinuous, while the quantities themselves and their first derivatives are
continuous, this means

[[F]] = 0, [[ ∇ Q]] = 0, [[v]] = 0, [[ωωω ]] = 0 (2.60)

are valid on C. According to Eqs (2.2), the strain measure E and the bending strain
tensor K are continuous near C, and, with respect to constitutive equations (2.9),
jumps of the tensors D and G are absent. The application of the Maxwell theorem
[57] to continuous fields of velocities v and ωωω , surface stress tensor D, and the
surface couple stress tensor G yields a system of equations that relate the jumps of
their derivatives with respect to the spatial coordinates and time[[

dv
dt

]]
=−Va, [[ ∇ v]] = ννν ⊗ a,

[[
dωωω
dt

]]
=−Vb, [[ ∇ ωωω ]] = ννν ⊗b, (2.61)

V [[∇ ∇ ∇ ·D]] =−ννν ···
[[

dD
dt

]]
, V [[∇ ∇ ∇ ·G]] =−ννν ···

[[
dG
dt

]]
.

Here a and b are the vector amplitudes for the jumps of the linear and angular
accelerations, ννν is the unit normal vector to C such that n···ννν = 0, andV is the velocity
of the surface C in the direction ννν . If external forces and couples are continuous, the
relations

[[∇ ∇ ∇ ·D]] = ρ
[[

d
K1

dt

]]
, [[∇ ∇ ∇ ·G]] = ρ γ

[[
dK2

dt

]]
follow immediately from the equations of motion (2.14).
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Differentiating constitutive Eqs (2.9) and using equations (2.60) and (2.61), we
express latter relations only in terms of the vector amplitudes a and b

ννν ··· ∂ 2W
∂ E∂ Y

•
(

ννν ⊗a···QT
)
+ ννν ··· ∂ 2W

∂ E∂ L
•
(

ννν ⊗b···QT
)
= ρ V 2

[
a···QT

+
(

Q···ΘΘΘ T
1 ···QT

)
···
(

b···QT
)]

,

ννν ··· ∂ 2W
∂ K∂ E

•
(

ννν ⊗a···QT
)
+ ννν ··· ∂ 2W

∂ K∂ L
•
(

ννν ⊗b···QT
)
= ρ V 2

[(
Q···ΘΘΘ 1···QT

)
···
(

a···QT
)

+
(

Q···ΘΘΘ 2···QT
)
···
(

b···QT
)]

.

Hence the strong ellipticity condition is valid these relations can be also written in
a more compact form

���(ννν )···ξξξ = ρ V 2
���···ξξξ , (2.62)

where the matrix ��� is given by

���=

⎡⎣ I Q···ΘΘΘ T
1 ···QT

Q···ΘΘΘ 1···QT Q···ΘΘΘ 2···QT

⎤⎦ .
Thus, the problem of acceleration wave propagation in the shell has been re-

duced to the spectral problem given by the algebraic equations (2.62). Owing to the
existence of the potential-energy function W , ���(ννν ) is symmetric. Matrix ��� is also
symmetric and positive definite. This property enables to formulate an analogue of
the Fresnel–Hadamard–Duhem theorem for the elastic shell:

Theorem 2.1. The squares of the velocities of a second order singular curve (ac-
celeration wave) in the elastic shell are real for arbitrary propagation directions
specified by the vector ννν .

Note that the positive definiteness of ���(ννν ), which is necessary and sufficient for the
wave velocity V to be real, coincides with the strong ellipticity inequality (2.55).

For a physically linear shell, let us present an example of solution of problem
(2.62). Suppose that ΘΘΘ 1 is zero and ΘΘΘ 2 is the spherical part of the tensor, that is
ΘΘΘ 2 = ι I), where ι is the rotatory inertia measure. Let us assume that the inequalities
(2.59) are valid. Then solutions of equation (2.62) are
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U1 =

√
α 3

ρ
, ξξξ 1 = (τττ ,0), U2 =

√
α 1 + α 2 + α 3

ρ
, ξξξ 2 = (ννν ,0), (2.63)

U3 =

√
α 4

ρ
, ξξξ 3 = (n,0), U4 =

√
β 3

ρ ι
, ξξξ 4 = (0, τττ ),

U5 =

√
β 1 + β 2 + β 3

ρ ι
, ξξξ 5 = (0, ννν ), U6 =

√
β 4

ρ ι
, ξξξ 6 = (0,n).

Solutions (2.63) describe transversal and longitudinal waves of acceleration and mi-
crorotation accelerations.

2.3.5 Ordinary Ellipticity

When equilibrium equations are not elliptic it may result in the break of continuity
of solutions. Let us consider this in more detail. We will assume singular time-
independent curves of the second order. Suppose on the shell surface σ there exists
a curve γ on which a jump in the second derivatives of the position vector R or
microrotation tensor Q happens. We will call such a jump the weak discontinuity.
For example, the curvature of Σ is determined through second derivatives of R so
such discontinuity can exhibited in the form of sharp bends of the shell surface.

From the equilibrium equations it follows

[[∇ ∇ ∇ ·D]] = 0, [[∇ ∇ ∇ ·G]] = 0.

Repeating transformations of the previous section, we can reduce these to⎡⎢⎢⎢⎣
∂ 2W

∂ E∂ E
{ννν } ∂ 2W

∂ E∂ K
{ννν }

∂ 2W
∂ K∂ E

{ννν } ∂ 2W
∂ K∂ L

{ννν }

⎤⎥⎥⎥⎦ ···
⎡⎣ a′

b′

⎤⎦= 0

We can rewrite this in a more compact form

���(ννν )···ξξξ = 0, ξξξ = (a′,b′) ∈ IR6. (2.64)

The existence of non-trivial solutions of Eq. (2.64) means that weak discontinu-
ities arise. The condition for this is the determinant of matrix ���(ννν ) should be zero.
When there holds

det���(ννν ) 
= 0, (2.65)

such discontinuities are impossible.
For the constitutive equation of the form

W =W1(E)+W2(K),
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condition (2.65) splits into two conditions

det
∂ 2W1

∂ E∂ E
{ννν } 
= 0, det

∂ 2W1

∂ K∂ K
{ννν } 
= 0. (2.66)

As an example, we consider the conditions (2.65) for the constitutive equations
of a physically linear shell (2.18). With the use of Eqs (2.58) we can show the
conditions (2.66) reduce to the inequalities

α 3 
= 0, α 1 + α 2 + α 3 
= 0, α 4 
= 0, β 3 
= 0, β 1 + β 2 + β 3 
= 0, β 4 
= 0.

Condition (2.65) is the ellipticity condition of the equilibrium equations of shell the-
ory (ellipticity in sense of Petrovsky). The condition follows from the general def-
inition of ellipticity in the theory of partial differential equations. Condition (2.65)
is also called the ordinary ellipticity condition, which is more weak than the strong
ellipticity condition (2.55).

2.4 Phase Equilibrium Conditions in Micropolar Shells

In the shell material can arise structural or phase transitions when it is produced or
being in exploitation. For example, such transformations can happen in thin-walled
structures made of polymer material or memory shape alloys. Various phase tran-
sitions can happen in biology membranes or liquid crystal films. In this chapter,
we restrict our consideration by the frontal phase transitions, that is the phase tran-
sitions with a sharp border between the phases. We consider these transitions that
are due to the strain change under constant temperature. Let deformation process to
be isothermal or adiabatic. A practically important example of use of thin-walled
structures gives us the use of the mono- or polycrystal films of the alloys of the type
NiTi, that is NiMnGa, NiTiCu, NiAl, etc., which posses the shape memory effect,
see e.g. [7, 46]. Such films are used in microelectromechanical systems, MEMS,
such as miniature pumps, microengines, etc. One of the first mechanical models of
deformations of martensitic films is proposed in [8, 34], see also [7, 46], where,
in particular, as a result of a special reduction procedure from a three-dimensional
layer to a surface, a model of a directed membrane is elaborated, that is of the shell
that does not possesses bending rigidity. Its constitutive equation depends on the
displacement field and its derivatives but besides, on the director field that is kine-
matically independent of the displacement field. Within the nonlinear shell theory,
investigation of equilibrium of phases is presented in [17] and extended in [54]
to the influence of line tension effects. The quasistatic deformation of two-phase
thermoelastic and thermoviscoelastic shells are considered in [19, 20]. Within the
framework of the theory of biological membranes the phase transitions in 2D struc-
tures are investigated in [2, 9].
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2.4.1 Thermodynamic Continuity Conditions

For the sake of simplicity we restrict ourselves by the case of thermodynamic equi-
librium. This means that we can use the Gibbs’ variational approach [28]. Let us
suppose the phase transition happens along the whole shell thickness simultane-
ously. This allows us to introduce a curve on the shell surface that separates the
material phases with different properties. The assumption is based on experimental
data for deformation of thin plates and thin-walled tubes with shape memory effect,
cf. [31, 32, 33, 37].

For a two-phase shell, surface σ consists of two parts, σ − and σ + (cf. Fig. 2.3),
that are separated by a smooth curve γ . Curve γ is unknown in advance, it is a pre-
image of the phase transition border. In the actual configuration γ is represented by
Γ . We should find the shell deformation (2.1) together with γ . Let us note γ is a
particular case of the singular curve on which the continuity conditions for some
quantities under consideration can be violated.

γ

ννν

σ −ννν

n

ω

σ +

Fig. 2.3 Two-phase shell

Using the Gibbs’ variational principle [28], we will find the conditions of ther-
modynamic equilibrium of the shell in isothermal process. For isothermal or adia-
batic processes, the Gibbs’ principle reduces to the stationary principle for the total
energy over kinematically admissible fields of displacements and microrotations.
Here we should suppose the independent position change for the border between
the phases. With regard to phase transition, the variational principles of continuum
mechanics are developed in [7, 29] among others.

Without the loss of generality, let us suppose that external loads are absent and
that ω = ω 1 = ω 3, i.e. the displacements and rotations are given at the whole shell
contour. Now the strain energy functional takes the form
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E1 = E≡
∫∫
σ

Wdσ . (2.67)

To find the first variation of Eq. (2.67), we use the method presented in [14]. Let
us consider functional (2.67) on a smooth single-parameter family

R = R(qα , τ ), Q = H(qα , τ ), (2.68)

each element of which satisfies the border conditions for all τ . Here τ is a small
time-like parameter. When τ = 0 deformation (2.68) coincides with (2.1). We accept
that in the reference configuration the shell surface as well as the border between
the phases depend on τ as well

σ = σ (τ ), γ = γ (τ )

and γ (τ ) lies on σ (τ ). In other words, we will study the change of the energy func-
tional in case of variable reference configuration. From the physical point of view,
the change of the reference configuration relates to the motion of γ (τ ) on σ due to
phase transition. We consider the boundary motion to be independent of the strain
and rotation fields. This means the surfaces σ and σ (τ ) differ one from another only
by the partition for different material phases by curves γ and γ (τ ), respectively.

Let r = r∗(qα , τ ) be an arbitrary diffeomorphism mapping σ to σ (τ ) and such
that γ (τ ) = r∗(γ , τ ). For sufficiently small τ such a map always exists. We can sup-
pose its support to lie in some small neighborhood of γ . Then

E(τ ) =
∫∫

σ (τ )

W (E(τ ),K(τ ))dσ (τ ), (2.69)

where E(τ ),K(τ ) are the strain measure and the bending strain measure, respec-
tively, that correspond to the family (2.68). We introduce the notations

u =
∂ R(qα , τ )

∂ τ

∣∣∣∣
τ =0

, ψψψ =
1
2

(
∂ H(qα , τ )

∂ τ
···HT
)
×

∣∣∣∣
τ =0

, (2.70)

w =
∂ r∗(qα , τ )

∂ τ

∣∣∣∣
τ =0

.

In Eqs (2.70), u, ψψψ , w are the vectors of small additional displacements, of mi-
crorotations and the vector of small perturbations of the reference configuration σ ,
respectively.

The first variation of E is the Gâteaux derivative, it can be calculated by the
formula

δ E=
dE
dτ

∣∣∣∣
τ =0

.

Using integration over σ in Eq. (2.69) and the formula of differentiation of an area
element, finally we get
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δ E=

∫∫
σ

{
dW
dτ

+W ∇ ∇∇ ·w
}

dσ . (2.71)

Here and in what follows, in the notation we will omit τ = 0. Vector w belongs to
the tangent plane to σ . Indeed, n···w = 0 as w is the infinitesimal velocity vector of
curve γ that changes the position on the immovable surface σ . So we derive

δ E =

∫∫
σ

{
dW
dτ
−w ···∇ W

}
dσ +

∮
γ

ννν ··· [[Ww]]ds,

where ννν is the normal vector to γ that is in the tangent plane to σ . The normal
direction is from σ + to σ −, see Fig. 2.3. Here in what follows, we denote the jump
in quantities on γ with square brackets. For example, [[W ]] = W+−W−. Where it
will be essential, we will use subscripts “+” and “−” of the notation of quantities
for different phases. Let us denote expression ννν ···w by Lγ . Quantity Lγ is the virtual
velocity of the motion of γ in the direction ννν ; it differs from the velocity V of a
singular curve in the previous section in notation only. So we get

∂ E
∂ τ

= (∇ u) ···QT +(F× ψψψ )···QT ,
∂ K
∂ τ

= (∇ ψψψ ) ···QT . (2.72)

Calculating the complete derivative with respect to τ , we take into account that
the independent variables also depend on τ . Using Eqs (2.72) we can demonstrate
that

dW
dτ
−u ···∇ W =

∂ W
∂ E
• ∂ E

∂ τ
+

∂ W
∂ K
• ∂ K

∂ τ
= D• ∇ u+G• ∇ ψψψ − [FT ···D]× ···ψψψ .

Thus

δ E=

∫∫
σ

{
D• ∇ u+G• ∇ ψψψ − [FT ···D]× ···ψψψ }dσ +

∮
γ

Lγ [[W ]]ds, (2.73)

and the energy variation does not depend on the choice of diffeomorphism r∗ and
Eq. (2.73) includes only the motion of γ .

With regard to Eq. (2.11), we get

δ E = δ Iσ + δ Iγ , (2.74)

−δ Iσ =

∫∫
σ

{
(∇ ∇ ∇ ·D) ···u+ [(∇ ∇ ∇ ·G)+ (FT ···D)×

] ···ψψψ }dσ ,

δ Iγ =

∮
γ

{
ννν ··· [[D···u+G···ψψψ ]]+Lγ [[W ]]

}
ds.

Thus, the condition of stationarity

δ E= 0
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splits into two independent equations δ Iσ = 0 and δ Iγ = 0. From the first equation
it follows the equilibrium equations (2.2.1) in each of the phase domains. To ana-
lyze what happens when the contour integral δ Iγ = 0 takes zero value, we should
introduce some assumptions on the nature of variations u and ψψψ in a neighborhood
of γ . The assumptions follow from the smoothness properties of R and Q. Vector
R must be continuous on σ , otherwise the shell lacks its continuity. It follows the
formula that relates the jump of the additional displacement vector to the jump of
the deformation gradient

[[u]]+Lγ ννν ··· [[F]] = 0. (2.75)

We will differ the coherent phase interface, that is when microrotation tensor
Q is continuous, from the phase interface incoherent in rotations, that is when its
continuity on the border between phases its continuity fails. For coherent phase
interface, we obtain the relation for the jumps as it follows

[[ψψψ ]]+Lγ ννν ··· [[K···Q]] = 0. (2.76)

For the phase transition incoherent in rotations, the variations ψψψ ± are independent
and so the last relation is not valid.

Using Eqs (2.75), (2.76) we can transform equation δ Iγ = 0 to the form∮
γ

{
ννν ··· [[D]] ···u−+ ννν ··· [[G]] ···ψψψ −−Lγ ννν ··· [[µµµ ]] ···ννν }ds = 0, (2.77)

where C = WA−D···FT −G···QT ···KT is the energy-momentum tensor or Eshelby
tensor for the shell coherent phase interface [17].

For three-dimensional bodies, the Eshelby tensor describes the energy change
when singularity moves inside it [35, 43]. It describes the motion of cracks, phase
interfaces, dislocations, shear bands, etc. C can be also represented in the following
form

C =WA− ∂ W
∂ E
···ET − ∂ W

∂ K
···KT .

Within the framework of linear theory of plates and shells the properties Eshelby-
type tensors are discussed in [35].

As u−, ψψψ − and Lγ in Eq. (2.77) are arbitrary, by Eq. (2.77), the thermodynamic
equilibrium conditions of the coherent phase interface take the form

ννν ··· [[D]] = 0, ννν ··· [[G]] = 0, ννν ··· [[C]] ···ννν = 0. (2.78)

The first two relations of Eqs (2.78) express the balance conditions for the forces
and couples on the singular curve γ in the equilibrium state; the last equation is an
additional thermodynamic condition that is necessary for finding the position of the
pre-image of γ .

It can be shown that for the phase transition incoherent in rotations, we must
change the second equation in Eqs (2.78) to
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ννν ···G± = 0. (2.79)

In [17] the phase equilibrium conditions (2.78) and (2.79) are derived in another
way. For the geometrically linear shell theory, the phase equilibrium conditions in
displacements and rotations are formulated in [23]. Besides, in [23] they are pre-
sented in terms of stress functions.

2.4.2 Kinetic Equation

The above results allow us to find the time rate change of the strain energy for the
micropolar shell on equilibrium deformation fields that is due to motion of singular
curve γ along the shell. It can be found for any physical phenomenon in which γ
arises. Namely, there holds

dE
dt

=
∮
γ

Lγ ννν ··· [[C]] ···ννν ds. (2.80)

In terms of linear irreversible thermodynamics,

ννν ··· [[C]] ···ννν

is the configurational force, cf. [6, 30, 35]), that is dual to Lγ . Equation (2.80) allows
us to formulate the kinetic equation to describe the motion of γ in the surface under
small perturbations from thermodynamic equilibrium

Lγ =−K (ννν ··· [[C]] ···ννν ) , (2.81)

whereK is a positive definite kinetic function. Equation (2.81) is analogous to the
kinetic equations of the three-dimensional elasticity of two-phase solids, cf. [1, 6].
Equations (2.80) and (2.81) describe the energy change for the motion of a defect in
the micropolar shell. We can generalize Eq. (2.81) with regard for some additional
factors such as the energy of γ , that affect its motion, see [19, 54] for details.

After [1, 6, 20], we use the kinetic function K(ς ) in the form

K (ς ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k(ς − ς 0)

1+ ξ (ς − ς 0)
ς ≥ ς 0,

0 −ς 0 < ς < ς 0,

k(ς + ς 0)

1− ξ (ς + ς 0)
ς ≤−ς 0.

(2.82)

Here k is a positive kinetic factor, ς 0 describes the effects associated with nucleation
of the new phase and action of the surface tension, see [1], and ξ is a parameter
describing the limit value of the phase interface velocity [6].
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2.5 Conclusions

In this paper the basic relations of the nonlinear micropolar shell theory are re-
viewed. In Sect. 2.2 the local equilibrium equations and the dynamic boundary con-
ditions of the micropolar shell are derived in terms of the surface stress and couple
stress measures using the principle of virtual work. The constitutive equations for
elastic shells are defined through the surface strain energy density depending on two
surface strain measures by using the frame-indifference principle. Some variational
principles are formulated and the nonlinear compatibility conditions for the surface
strain measures are presented.

Then in Sec. 2.3 we formulate the differential form of the Coleman-Noll con-
dition which is an analog to the GCN-condition in 3D elasticity. In 3D nonlinear
elasticity the so-called constitutive restrictions or constitutive inequalities are pre-
sented in [57, 58]. From the physical point of view these restrictions express the our
ideas on the physically reasonable behavior of materials. In the linear shell theory,
such a restriction is given by the condition of positive definiteness of the shell strain
energy. For finite deformation, definite positiveness of the energy is not sufficient.
In Sect. 2.3 we also consider the strong ellipticity condition, the Coleman–Noll in-
equality and the condition of ordinary ellipticity. Then we deduce the linearized
equilibrium equations and formulate the strong ellipticity condition (2.55) and the
Hadamard inequality. We proved that the Coleman-Noll condition is more general
and it implies the strong ellipticity of the equilibrium shell equations. We also show
that the strong ellipticity condition is equivalent to the conditions of the existence
of accelerations waves in the shell. We establish that the conditions of ordinary el-
lipticity are more weak. When they fail then there exist non-smooth solutions of the
shell equilibrium equations.

In Sect. 2.4 we establish the conditions of thermodynamic equilibrium for shells
undergoing phase transitions. In case of small deviation from thermodynamic equi-
librium, we formulate a kinetic equation that describe the motion of the phase inter-
face.
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Physik, vol. VIa/2, pp. 347–389. Springer, Berlin (1972)

[28] Gibbs, J.W.: On the equilibrium of heterogeneous substances. In: The Col-
lected Works of J. Willard Gibbs, pp. 55–353. Longmans, Green & Co, New
York (1928)

[29] Grinfeld, M.: Thermodynamics Methods in the Theory of Heterogeneous Sys-
tems. Longman, Harlow (1991)

[30] Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum
Physics. Springer-Verlag, Berlin (2000)

[31] He, Y.J., Sun, Q.: Scaling relationship on macroscopic helical domains in NiTi
tubes. Int. J. Solids Struct. 46(24), 4242–4251 (2009)

[32] He, Y.J., Sun, Q.: Macroscopic equilibrium domain structure and geometric
compatibility in elastic phase transition of thin plates. Int. J. Mech. Sci. 52(2),
198–211 (2010)

[33] He, Y.J., Sun, Q.: Rate-dependent domain spacing in a stretched NiTi strip.
Int. J. Solids Struct. 47(20), 2775–2783 (2010)

[34] James, R.D., Rizzoni, R.: Pressurized shape memory thin films. J. Elasticity
59, 399–436 (2000)

[35] Kienzler, R., Herrman, G.: Mechanics in Material Space with Applications to
Defect and Fracure Mechanics. Springer-Verlag, Berlin (2000)

[36] Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications
in Mechanics. World Scientific, New Jersey (2010)

[37] Li, Z.Q., Sun, Q.: The initiation and growth of macroscopic martensite band
in nano-grained NiTi microtube under tension. Int. J. Plasticity 18(11), 1481–
1498 (2002)

[38] Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech.
23, 271–371 (1983)

[39] Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn.
Cambridge University Press, Cambridge (1998)
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Chapter 3
Structural Dynamics and Generalized Continua

Céline Chesnais, Claude Boutin, and Stéphane Hans

Abstract This paper deals with the dynamic behavior of reticulated beams made of
the periodic repetition of symmetric unbraced frames. Such archetypical cells can
present a high contrast between shear and compression deformability, conversely to
“massive” media. This opens the possibility of enriched local kinematics involving
phenomena of global rotation, inner deformation or inner resonance, according to
studied configuration and frequency range. Firstly, the existence of these atypical
behaviors is established theoretically through the homogenization method of peri-
odic discrete media. Then, the results are adapted to buildings and confirmed with a
numerical example.

Key words: Dynamics. Discrete structure. Periodic homogenization. Local reso-
nance. Atypical modes. Building. Frame. Shear wall.

3.1 Introduction

This paper deals with the macroscopic dynamic behavior of periodic reticulated
structures widely encountered in mechanical engineering. Periodic lattices have
been studied through various approaches [14] such as transfer matrix, variational
approach [11], finite difference operator. Asymptotic methods of homogenization
[16] initially developed for periodic media, were extended to multiple parameters
and scale changes by [8] and adapted to periodic discrete structures by [4], then [12].
Unbraced frame-type structures have also been considered in structural dynamics.
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Fig. 3.1 Examples of atypical
normal modes of reticulated
structures

The first studies focused on an individual bracing element such as a frame or coupled
shear walls [1, 17]. Then the models were extended to the whole building [15, 18]
and to 3D problems with torsion [13, 15]. All those methods aim to relate the fea-
tures of the basic cell and the global behavior.

The morphology of reticulated beams is such that the basic cells can present a
high contrast between shear and compression deformability (conversely to “mas-
sive” beams). This opens the possibility of enriched local kinematics involving phe-
nomena of global rotation, inner deformation or inner resonance, according to stud-
ied configuration and frequency range [6, 9]. A numerical illustration of these atyp-
ical situations is given in Fig. 3.1 that shows some unusual macroscopic modes.

The present study investigates and summarizes those phenomena by a system-
atic analysis performed on the archetypical case of symmetric unbraced frame-type
cells [2, 5, 9]. Assuming the cell size is small compared to the wavelength, the ho-
mogenization method of periodic discrete media leads to the macro-behavior at the
leading order.

The paper is organized as follows. Section 3.2 gives an overview of the method
and the assumptions. In Sect. 3.3, the studied structures are presented. Section 3.4
summarizes the various generalized beam models which can describe the transverse
vibrations according to the properties of the basic cell elements and the frequency
range. Section 3.5 is devoted to longitudinal vibrations and the effect of local res-
onance. Finally Sect. 3.6 explains how the results obtained for this particular class
of structures can be generalized to more complex reticulated structures, for instance
buildings. It is illustrated by a numerical example.

3.2 Overview of Discrete Homogenization

The analysis of periodic lattices of interconnected beams is performed in two steps
[19]: first, the discretization of the balance of the structure under harmonic vibra-
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tions; second, the homogenization, leading to a continuous model elaborated from
the discrete description. An outline of this method is given hereafter.

Discretization of the Dynamic Balance: Studied structures (Fig. 3.2) are made of
plates behaving like Euler-Bernoulli beams in out-of-plane motion, and assembled
with rigid connections. The motions of each extremity connected to the same node
are identical and define the discrete nodal kinematic variables of the system. The
discretization consists in integrating the dynamic balance (in harmonic regime) of
the beams, the unknown displacements and rotations at their extremities being taken
as boundary conditions. Forces applied by an element on its extremities are then
expressed as functions of the nodal variables. The balance of each element being
satisfied, it remains to express the balance of forces applied to the nodes. Thus, the
balance of the whole structure is rigorously reduced to the balance of the nodes.

Homogenization Method: The key assumption of homogenization is that the cell
size in the direction of periodicity `w is small compared to the characteristic size L
of the vibrations of the structure. Thus ε = `w/L << 1. The existence of a macro
scale is expressed by means of macroscopic space variable x. The unknowns are
continuous functions of x coinciding with the discrete variables at any node, e.g.
Uε (x = xn) = U(node n). These quantities, assumed to converge when ε tends to
zero, are expanded in powers of ε : Uε (x) =U0(x)+ ε U1(x)+ ε 2 U2(x)+ . . .. Sim-
ilarly, all other unknowns, including the modal frequency, are expanded in powers
of ε . As `w = ε L is a small increment with respect to x, the variations of the vari-
ables between neighboring nodes are expressed using Taylor’s series; this in turn
introduces the macroscopic derivatives.

To account properly for the local physics, the geometrical and mechanical char-
acteristics of the elements are scaled according to the powers of ε . As for the modal
frequency, scaling is imposed by the balance of elastic and inertia forces at macro
level. This scaling insures that each mechanical effect appears at the same order
whatever the ε value is. Therefore, the same physics is kept when ε → 0, i.e. for
the homogenized model. Finally, the expansions in ε powers are introduced in the
nodal balances. Those relations, valid for any small ε , lead for each ε -order to bal-
ance equations which describe the macroscopic behavior.

Local Quasi-Static State and Local Dynamics: In general the scale separation
requires wavelengths of the compression and bending vibrations generated in each
local element to be much longer than the element length at the modal frequency of
the global system. In that case the nodal forces can be developed in Taylor’s series
with respect to ε . This situation corresponds to a quasi-static state at the local scale.
Nevertheless, in higher frequency range, it may occur that only the compression
wavelength is much longer than the length of the elements while local resonance
in bending appears. The homogenization remains possible through the expansions
of the compression forces and leads to atypical descriptions with inner dynamics.
Above this frequency range, the local resonance in both compression and bending
makes impossible the homogenization process.
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Fig. 3.2 The class of studied structures (left) and the basic frame and notations (right)

3.3 Studied Structures

We study the vibrations of structures of height H = N × `w constituted by a pile
of a large number N of identical unbraced frames called cells and made of a floor
supported by two walls (Fig. 3.2). The parameters of floors (i = f ) and walls (i = w)
are: length `i; thickness ai; cross-section area Ai; second moment of area Ii = a3

i h/12
in direction e3; density ρ i; elastic modulus Ei.

The kinematics is characterized at any level n by the motions of the two nodes
in the plane (e1,e2), i.e., the displacements in the two directions and the rotation
(u1,u2, θ ). These six variables can be replaced by (cf. Fig. 3.3):

• Three variables associated to the rigid body motion of the level n: the mean
transverse displacements, U(n) along e1 and V (n) along e2, and the global ro-
tation α (n) (differential vertical nodal motion divided by ` f ),

• Three variables corresponding to its deformation: the mean and differential ro-
tations of the nodes, θ (n) and Φ (n), and the transverse dilatation ∆ (n).

Because of the longitudinal symmetry, the transverse and longitudinal kinematics,
respectively governed by (U, α , θ ) and (V, Φ , ∆ ), are uncoupled.

A systematic study enables to identify the family of possible dynamic behaviors
by changing gradually the properties of the frame elements and the frequency range.
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Fig. 3.3 Decoupling of transverse (left) and longitudinal (right) kinematics

3.4 Transverse Vibrations

The transverse vibrations can be classified in two categories according to the na-
ture of the governing dynamic balance. For the first category, the horizontal elastic
forces balance the horizontal translation inertia. This corresponds to the “natural”
transverse vibration modes presented in Sect. 3.4.1. It can be shown that the asso-
ciated frequency range is such that the elements behave quasi-statically at the local
scale (for lower frequencies, a static description of the structure is obtained). For the
second category, the global elastic moment is balanced by the global rotation iner-
tia. This leads to unusual gyration modes investigated in Sect. 3.4.3. This situation
occurs at higher frequencies and local dynamics can appear.

3.4.1 “Natural” Transverse Vibrations: Translation Modes

The possible beam-like behaviors were established by varying the properties of the
basic frame elements in [9] to which one may refer for a precise analysis. Here below
the generic beam model derived from this approach is presented and an example
devoted to a given type of cell frame is discussed.

The synthesis of the different macroscopic behaviors shows that only three
mechanisms — shear, global bending, inner bending — govern the physics at the
macroscale (Fig 3.4). Each of them is associated to a stiffness: in shear K, in global
bending Ew I, and in inner bending Ew I . The parameter I is the effective global
bending inertia and I is the effective inner bending inertia. Owing to the quasi-
static local state, these parameters are deduced from the elastic properties of ele-
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Fig. 3.4 The three transverse
mechanisms
(left: shear,
middle: global bending,
right: inner bending)

ments in statics. For structures as in Fig. 3.2, they read (Λ stands for the linear
mass):

K−1 = K−1
w +K−1

f with Kw = 24
Ew Iw

`2
w

and K f = 12
E f I f

`w ` f
(3.1a)

I =
Aw `2

f

2
; I = 2 Iw (3.1b)

Λ = Λ w + Λ f with Λ w = 2 ρ w Aw and Λ f = ρ f A f
` f

`w
(3.1c)

A generic beam model is built in order to involve the three mechanisms. It is gov-
erned by:

• Three beam constitutive laws relating the kinematic variables to (i) the macro-
scopic shear force T , (ii) the global bending moment M and (iii) the inner bend-
ing moment M :

T =−K
(
U ′− α

)
; M =−Ew I α ′ ; M =−Ew IU ′′ (3.2)

• The force and moment of momentum balance equations:
{
(T −M ′)′ = Λ ω 2 U

M ′+T = 0
(3.3)

It is worth noticing that the macroscopic behavior depends only on two kinematic
variables: U and α which describe the rigid body motion of the cross-section. The
third variable associated to the transverse kinematics θ has the status of a “hidden”
internal variable which can be derived from the two other “driving” variables. The
distinction between “driving” and “hidden” variables enables to generalize models
built for the structures as in Fig. 3.2 to more complicated frame-type structures.
Indeed, the implementation of the homogenization method of periodic discrete me-
dia on structures with three walls shows that the additional kinematic variables are
“hidden” variables and that the macroscopic behavior is still described by (3.2) and
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(3.3). However expressions (3.1) which give the macroscopic parameters have to be
modified. Their calculation in the general case is the subject of Sect. 3.6.2.

The generalized beam description presented above includes the three mecha-
nisms but they do not have necessarily the same importance. The dominating ef-
fect(s) that actually drive(s) the effective behavior of a given structure can be iden-
tified through a dimensional analysis. In this aim, we introduce the characteristic
size of vibration for the first mode L̃ = 2 H/π (for the nth mode of a clamped-free
beam the characteristic size is L̃n = 2H/[(2n− 1)π ]). Moreover, the variables are
rewritten as U = U r U∗ and α = α r α ∗ where the superscript r denotes reference
values, and a * denotes the dimensionless terms, O(1) by construction. Introducing
the expressions of the beam efforts (3.2) and making the change of variable x = x/L̃,
the set (3.3) becomes:

{
Ω 2U∗+U∗(2)−C γ U∗(4) = (L α r/U r) α ∗′

α ∗−C α ∗(2) = (U r/L α r)U∗′
(3.4)

where superscripts in brackets stand for the order of derivative. The dimensionless
numbers C, γ and Ω 2 compare respectively global bending and shear, inner and
global bending, translation inertia and shear. They read:

C =
Ew I

K L̃2
; γ =

I

I
; Ω 2 =

Λ ω 2L̃2

K
(3.5)

Eliminating α ∗ (or U∗) in (3.4) gives the differential equation governing U∗ (or α ∗):

C γ U∗(6)− (1+ γ ) U∗(4)− Ω 2 U∗(2)+
Ω 2

C
U∗ = O(ε̃ ) (3.6)

The term O(ε̃ ) highlights the fact that (3.6) is a zero-order balance and hence is
only valid up to the accuracy ε̃ . Consequently, according to the values of C, C γ
and γ compared to ε̃ powers (ε̃ = `w/L̃ = π /(2 N)), equation (3.6) degenerates into
simplified forms. The mapping (Fig. 3.5) gives the validity domain of the seven
possible behaviors according to the two parameters x and y defined by C = ε̃ x and
γ = ε̃ y. Note that, as the validity of the model requires the scale separation i.e.
`w/L̃n < 1, the maximum number of homogenizable modes of a structure of N cells
is nmax = N/3.

3.4.2 An Example: Slender Timoshenko Beam

Consider structures for which C = O(1) and γ ≤ O(ε̃ ). Then the terms related to
C γ and γ are negligible in (3.6) and the generic beam degenerates into a slender
Timoshenko beam driven by:
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Fig. 3.5 Map of different
kinds of transverse “natural”
behaviors in function of the
parameters C = ε̃ x and γ = ε̃ y,
[9]

U∗(4)+ Ω 2 U∗(2)− Ω 2

C
U∗ = O(ε̃ ) (3.7)

To illustrate how to reach (3.7) by homogenization, consider a structure as in Fig. 3.2
with floors thicker than walls:

aw

lw
= O(ε ) ;

a f

lw
= O(

√
ε ) ;

`w

` f
= O(1) ;

Ew

E f
= O(1) (3.8)

so that Λ = O(Λ f ), K = O(Kw) and, as required:

C =
Ew I

Kw L̃2
= O

(
`2

w

a2
w

`2
f

L̃2

)
= O(1) ; γ =

2 Iw

I
= O

(
a2

w

`2
f

)
= O(ε 2) (3.9)

The dynamic regime is reached when Ω 2/C = O(1) i.e., accounting for C = O(1),
when the leading order of the circular frequency is:

ω 0 = O(L̃−1
√

Kw/Λ f ) = O(Kw/
√

Ew I Λ f )

In that case, the leading order equations obtained by homogenization are:

−Kw
(
U 0 ′′− θ 0 ′) = Λ f ω 2

0 U 0 (3.10a)

K f
(
α 0− θ 0) = 0 (3.10b)

−Ew I α 0 ′′−Kw
(
U 0 ′− θ 0) = 0 (3.10c)

Equation (3.10a) expresses the balance of horizontal forces at the leading order,
while (3.10b) and (3.10c) come from the balance of both local and global moments
at the first two significant orders. Equation (3.10b) also describes the inner equi-
librium of the cell and imposes the node rotation θ 0 to be equal to the section
rotation α 0. Thus the macroscopic behavior is described by a differential set that
governs the mean transverse motion U 0 and the section rotation α 0:
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{
−Kw

(
U 0 ′′− α 0 ′) = Λ f ω 2

0 U 0

−Ew I α 0 ′′−Kw
(
U 0 ′− α 0

)
= 0

(3.11)

Eliminating α 0 provides: Ew I U 0(4)+
Ew I
Kw

Λ f ω 2 U 0(2)− Λ f ω 2
0 U 0 = 0

which corresponds to (3.7), i.e. a degenerated form of (3.6) with γ ≤ O(ε̃ ).
The similarity with Timoshenko beams is obvious when rewriting (3.11) with the

macro shear force T̃ 0 and the global bending moment M̃ 0 defined in (3.2) (here with
0 superscript): {

T 0 ′ = Λ f ω 2
0 U 0

M 0 ′+T 0 = 0
(3.12)

Two features distinguish (3.12) from the usual Timoshenko description of “massive”
beams. First, the shear effect (that comes from the bending of the walls in parallel,
see (3.1a)) remains at the leading order even if the reticulated structure is slender.
Second, while the translation inertia is significant in the force balance (3.12a), the
rotation inertia is negligible in the moment balance (3.12b) (where the effective
bending results from the opposite extension-compression of the two walls distant
of the floor length). In other words, the translation is in dynamic regime but the
rotation stays in quasi-static regime for the considered frequency range. This leads
to investigate higher frequencies to obtain rotational dynamics.

3.4.3 Atypical Transverse Vibrations: Gyration Modes

This section is devoted to gyration modes, i.e. transverse modes governed by the
section rotation α (Fig.3.6). Their existence is first established on a particular case.
Then the results are slightly generalized.

Fig. 3.6 Examples of gyra-
tion modes

We come back to the structure studied in the previous section and whose geome-
try and parameters are scaled by (3.8). The frequency range is increased of one order
in ε , i.e. ω 0 = O(`−1

w

√
Kw/Λ f ) which remains sufficiently low to insure that the el-

ements behave quasi-statically at the local scale. Then, the leading order equations
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obtained by homogenization become:

0 = Λ f ω 2
0 U 0 (3.13a)

K f
(
α 0− θ 0) = 0 (3.13b)

−Ew I α 0 ′′−Kw
(
U 0 ′− θ 0) =

ρ f A f `
3
f

420 `w
ω 2

0

(
42 α 0− 7 θ 0) (3.13c)

The comparison of (3.10) and (3.13) shows that the higher frequency leaves the inner
equilibrium condition of the cell (3.13b) unchanged (thus, here also, the mean rota-
tion of the nodes matches the section rotation, i.e. θ 0 = α 0). Conversely, in (3.13a),
the increased order of magnitude of inertia terms makes that Λ f ω 2

0 U 0 cannot be
balanced by horizontal elastic forces, thus the section translation vanishes at the
leading order, U 0 = 0. In parallel, the rotation inertia now appears in the moment
of momentum balance (3.13c). After eliminating θ 0, the macroscopic behavior at
the leading order is described by the following differential equation of the second
degree:

−Ew I α 0 ′′+ Kw α 0 = J f ω 2
0 α 0 (3.14)

θ 0 = α 0; U 0 = 0; J f =
ρ f A f `

3
f

12 `w

This is an atypical gyration beam model fully driven by the section rotation α 0 with-
out lateral translation (more precisely, one shows that the first non vanishing trans-
lation is of the second order ε 2U2 =

(
Kw/(Λ f ω 2

0 )
)
α 0 ′). The gyration dynamics is

governed by the mechanism of opposite traction-compression of vertical elements
(whose elastic parameter is the global bending stiffness Ew I), the shear of the cell
(stiffness Kw) acting as an inner elastic source of moment, and the rotation inertia of
the thick floors (J f ). Solutions of (3.14) (in α 0) have a classical sinusoidal expres-
sion but, due to the presence of the source term Kw α 0, the frequency distribution is
atypical.

Note that the thick floors of the specific studied frame lead to neglect the shear
stiffness of the floors and the rotation inertia of the walls. The particular description
(3.14) can be extended to other types of frames by considering the cell shear stiffness
K instead of Kw and rotation inertia J instead of J f (for structures as in Fig. 3.2,
J = J f + Jw with Jw = ρ w Aw `2

f /2). Introducing the macroscopic shear force T 0 and

the global bending moment M 0 already defined in (3.2) and accounting for U0 = 0
show that (3.14) is nothing but the moment of momentum balance of the usual
Timoshenko formulation:

T 0 +M 0 ′ = J f ω 2
0 α 0 (3.15)

However, in “massive” Timoshenko beams, variables U and α reach the dynamic
regime in the same frequency range, hence both are involved in common modes.
Conversely, for the reticulated beams studied here, “natural” and gyration modes are
uncoupled because the dynamic regimes for U and α occur in different frequency
ranges. This specificity implies that in the frequency range of non-homogenizable
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“natural” modes, it exists homogenizable gyration modes. For a detailed analysis of
the conditions of existence of gyration modes, one may refer to [7].

Because gyration modes appear in a higher frequency domain than “natural”
modes, the elements have not necessarily a quasi-static behavior at the local scale
and phenomena of local dynamics can also occur. In this case, the bending wave-
length in the elements is of the order of their length, whereas the compression
wavelength remains much larger. This enables to expand the compression forces
and to derive a macroscopic behavior. The governing equation of the second degree
presents the same global moment parameter than for local quasi-static state but dif-
fers fundamentally by the inertia term and the inner elastic source of moment, both
depending on frequency:

Ew I α ′′−K(ω ) α + J(ω ) ω 2 α = 0 (3.16)

The reason of these modifications lies in the non expanded bending forces that
strongly depend on the frequency and that give rise to apparent inertia J(ω ) and
moment source. This effect also appears in longitudinal vibrations and is discussed
in the next section.

3.5 Longitudinal Vibrations

The longitudinal vibrations, described by (V, Φ , ∆ ), present a lesser complexity be-
cause the main mechanism is the vertical compression. The difference between the
identified models only relies in the possible presence of local dynamics.

Local Quasi-Static State: This case leads to the classical description of beam char-
acterized by the compression modulus 2 Ew Aw and the linear mass Λ :

2 Ew Aw V ′′+ Λ ω 2 V = 0 (3.17)

The domain of validity of this model is derived by expressing that the order of
magnitude of the fundamental frequency of the whole structure (described by (3.17))
is much smaller than the one of the elements in bending. For structures whose walls
and floors are made of the same material, a sufficient condition is to have a large
number of cells: N ≥ (`i/ai).

Local Dynamics: Similarly to gyration modes, the local dynamics introduces a
frequency depending apparent mass, that can be expressed analytically [5, 6]:

2 Ew Aw V ′′+ Λ (ω ) ω 2 V (x) = 0 (3.18a)

Λ (ω ) = Λ w + Λ f
8

3π
√

ω
ω f 1

[
coth

(
3π
4

√
ω

ω f 1

)
+ cot

(
3π
4

√
ω

ω f 1

)] (3.18b)
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The study of Λ (ω ) (cf. Fig. 3.7), shows that (i) Λ (ω ) → Λ when ω → 0, and
(ii) |Λ (ω )| → ∞ when ω → ω f (2k+1), where ω f (2k+1) are the circular frequencies of
the odd normal modes of horizontal elements in bending. This induces abnormal re-
sponse in the vicinity of the ω f (2k+1) that results in discrete spectrum of frequency
band gaps. Other frequency band gaps are generated by the excitation of modes
of the walls or of the whole cell which blocks the global kinematics [5]. However
this effect is described by higher order equations and, in a damped structure, it has
probably less influence than the frequency band gaps of zero order.

3.6 Extension and Application to Buildings

Ordinary concrete buildings (as the one presented in Fig. 3.8) are very frequently
made up of identical stories and their structure is periodic in height. Moreover, the
experimental modal shapes suggest using continuous beam models to describe their
first modes of vibration. For instance, Fig. 3.9 compares experimental data with the
normal modes of a Timoshenko beam whose features were chosen in order to fit to
the first two experimental frequencies [3, 10]. For these reasons we now propose
to adapt the beam models derived in the previous sections to buildings. Such an
approach presents two main advantages:

• The upscaling analysis provides a clear understanding of the dynamics of the
structure.

• Calculations are greatly reduced since the dynamic analysis is performed on a
1D analytical model instead of the complete 3D numerical model of the build-
ing.

Applications concern as well preliminary design of new structures as seismic diag-
nosis and reinforcement of existing buildings.

As earthquakes principally shake the first “natural” transverse modes of build-
ings, the study focuses on the models of Sect. 3.4.1. The use of homogenized mod-
els requires the structure to respect some conditions. Firstly, the scale separation
implies that the building should have at least N = 5 stories and that the maximum
number of studied modes in a given direction is nmax = N/3. Secondly, the struc-
ture should be symmetric to avoid coupling between the two transverse directions
and torsion because the homogenized models describe motion in a plane. Moreover,
the models were derived by assuming that elements behave like Euler-Bernoulli
beams. This hypothesis is acceptable for structures with columns and beams but not
for structures with shear walls. Therefore, we have to add the shear mechanism in
the elements. This is the subject of Sect. 3.6.1. Next, the new model is applied to
the building of Fig. 3.8 and the calculation of macroscopic parameters is explained
(Sect. 3.6.2).
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Fig. 3.7 Effect of the local resonance on the apparent dimensionless mass Λ ( ˆω )/Λ for Λ w = Λ f

Fig. 3.8 Studied building and its typical floor plan view

Fig. 3.9 Comparison of ex-
perimental (circles) and Tim-
oshenko (continuous lines)
mode shapes in direction y.
Only two parameters were
used for the fitting of the Tim-
oshenko beam: the first two
experimental frequencies.
(Experimental frequencies in
Hz: 2.15 ; 7.24 ; 13.97 ; 20.5 -
Timoshenko beam frequen-
cies in Hz: 2.15 ; 7.24 ; 13.96 ;
20.1)
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3.6.1 Generic Beam Model for Structures with Shear Walls

For the structures with thin columns studied in Sect. 3.4.1, “natural” transverse
modes are governed by three mechanisms: shear, global bending and inner bending
(Fig. 3.4). As the global bending results from the opposite extension-compression
of the two walls, its physics is unchanged by the increase of the wall thickness. On
the contrary, shear and inner bending are generated by the bending of the elements
at the local and the global scales respectively. Therefore the shear mechanism in the
walls has now to be taken into account. For local bending, this effect is naturally
included during the calculation of K the shear stiffness of the cell and it does not
modify the beam models. This is not the case for the shear associated to the bending
of the walls at the global scale which requires to add a fourth mechanism. Conse-
quently, the generic beam model of Sect. 3.4.1 is valid as long as walls behave like
Euler-Bernoulli beams at the global scale.

For structures with shear walls which do not respect the previous condition, a
new model involving the four mechanisms is derived from the homogenization of
the dynamic behavior of structures as in Fig. 3.2 by considering that the elements
behave now like Timoshenko beams. To make the shear associated with inner bend-
ing emerge at the leading order, the wall geometry should respect: aw/`w ≥ O(ε −1).
The new generic beam model is governed by:

• four beam constitutive laws relating the kinematic variables to (i) the shear force
associated to the local bending of the floor T , (ii) the shear force associated to
the shear in the walls τ , (iii) the global bending moment M and (iv) the inner
bending moment M :

T =−K f (α − θ ) M =−Ew I α ′

τ =−Kw
(
U ′− θ

)
M =−Ew I θ ′

(3.19)

• three balance equations closed to (3.3):

τ ′ = Λ ω 2 U ; M ′+T = 0; T −M
′ = τ (3.20)

Combining (3.19) and (3.20) gives the sixth degree differential equation describing
the macroscopic behavior of the structure:

Ew I Ew I
K f

U (6)−
(

Ew I +Ew I− Λ ω 2 Ew I Ew I
Kw K f

)
U (4)

−
(

Ew I

Kw
+Ew I

( 1
Kw

+
1

K f

)
)

Λ ω 2 U ′′+ Λ ω 2 U = 0

(3.21)

The main differences with the model presented in Sect. 3.4.1 are listed below:

• The replacement of U ′′ by θ ′ in the constitutive law associated to inner bending,
• The distinction between the shear forces in the walls and in the floor,
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• An additional balance equation (3.20c) which expresses the inner equilibrium
of the cell.

As a result, (3.21) contains two new terms (in frame) which become negligible when
the shear of the walls is much more rigid than inner bending (Ew I << Kw L2).
Moreover, the three variables related to the transverse kinematics, U , α and θ ,
emerge at the macroscopic scale. Therefore the generalization of this model to more
complicated frame-type structures is an open question. However the implementation
of the homogenization method on structures with three walls shows that this model
is still valid when the three walls are identical. In the following we assume that this
model is a good approximation of the behavior of structures with walls mechanical
properties of which are not too different.

3.6.2 Calculation of Macroscopic Parameters

This section illustrates the relevance of the previous generalized beam model to
describe the dynamic behavior of a 16-story building (Fig. 3.8) on which in situ
measurements have been carried out. The structure is in reinforced concrete with
precast facade panels. In order to evaluate the accuracy of the beam models, the
results are compared with full 3D finite element simulations (and eventually with
the experimental data). The COMSOL Multiphysics software is used in the linear
range. Floors and shear walls are represented by perfectly connected shells and the
influence of facade panels is neglected. We make the number of stories vary between
6 and 30. Reinforced concrete properties are summarized below:

Density Young’s modulus Poisson’s ratio

ρ = 2300 kg/m3 E = 30000 MPa ν = 0.2
(3.22)

The use of the generic beam model of Sect. 3.6.1, which describes shear wall
buildings, requires to calculate five macroscopic parameters: the linear mass which
is equal to the mass of a story divided by the story height and the rigidities associ-
ated to the four mechanisms. The effective inertias of global and inner bending are
evaluated with formulas of the beam theory:

I = ∑
walls

A j d2
j ; I = ∑

walls

I j (3.23)

where A j stands for the cross-section area and I j for the second moment of area of
wall j. The parameter d j is the projection of the distance between the centroid of
wall j and the centroid of all the walls onto the axis y or z (Fig 3.8) according to the
studied direction.

It remains to estimate the two shear rigidities K f and Kw. As the shape of the
floor can be very complex, there is no analytical expression of K f . Thus, we propose
to derive it from the shear rigidity of the whole cell K obtained thanks to a finite
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element modeling of one story. The boundary conditions are those identified by
homogenization and are presented in Fig. 3.10. It consists in:

• preventing the rigid body motion of the cell by blocking both vertical and hor-
izontal translations of a wall and the vertical translation of a second wall at the
centroid of their lower cross-sections,

• imposing periodic boundary conditions between bottom and top of each wall,
• applying a distortion ∆ U/` where ` = 2.70 m is the story height,
• blocking the vertical translation of all the walls which is consistent with a global

shear distortion.

Fig. 3.10 Boundary conditions for the calculation of the shear rigidity of the whole cell K

Note that those boundary conditions allow the rotation of the walls. The shear rigid-
ity of the whole cell K is derived from the calculated shear force in the walls. Then
contributions of the floor K f and the walls Kw are separated thanks to the formula
obtained by homogenization for structures as in Fig. 3.2 (connection in series):

K =

∣∣∑ walls Tj
∣∣

∆ U/`
;

1
K f

=
1
K
− 1

Kw
(3.24)

According to the complexity of the walls, the shear rigidity Kw is evaluated either
with analytical expressions of the beam theory or with the finite element modeling
of one story. In the latter case, the walls are clamped at their extremities, undergo
a distortion (Fig. 3.11) and the shear rigidity is deduced from the calculated shear
force.

Kw = ∑
walls

κ j A j G j or Kw =

∣∣ ∑ walls Tj
∣∣

∆ U/`
(3.25)

(κ j: Timoshenko shear coefficient, A j: cross-section area and G j: shear modulus)
For the studied building, both shear rigidities were estimated with a finite element

modeling. Figure 3.12 presents the deformation of one story due to the load applied
for the calculation of the shear rigidity of the whole cell K in direction y. Note that
the maximum vertical displacement is greater than the imposed horizontal distortion
∆ U = 1 mm. The values of all the macroscopic parameters are given in Table 3.1
for direction y. The resonant frequencies calculated with a finite element modeling
of the whole structure and with the generic beam models of Sects. 3.4.1 (column
structure) and 3.6.1 (shear wall structure) are summarized in Table 3.2.
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Fig. 3.11 Boundary conditions for the calculation of the shear rigidity of the walls Kw

Table 3.1 Values of macroscopic parameters for the studied building in direction y

Λ (t/m) I (m4) I (m4) K (MN) Kw (MN) K f (MN)

100 1648 56 7841 59056 9041

Table 3.2 Resonant frequencies (in Hz) of the studied building in direction y

Mode Finite Elements Generic beam of Sect. 3.4.1
(column structure)

Generic beam of Sect. 3.6.1
(shear wall structure)

6 stories ⇒ ε ≈ 0.26

1 7.43 10.59 + 42% 8.10 + 9.0%
2 23.28 57.48 + 147% 27.79 + 19%

11 stories ⇒ ε ≈ 0.14

1 3.38 4.02 + 19% 3.54 + 4.6%
2 11.69 18.50 + 58% 12.81 + 9.6%
3 21.00 47.94 + 128% 25.88 + 23%

16 stories ⇒ ε ≈ 0.098

1 2.08 (2.15a) 2.31 + 11% 2.13 + 2.2%
2 7.26 (7.25a) 9.53 + 31% 7.63 + 5.1%
3 14.30 (14.00a) 23.33 + 63% 15.61 + 9.2%

30 stories ⇒ ε ≈ 0.052

1 0.91 0.96 + 5.4% 0.92 + 1.4%
2 3.16 3.52 + 11% 3.21 + 1.5%
3 6.36 7.71 + 21% 6.49 + 2.0%

a Experimental frequencies

The generic beam model of Sect. 3.4.1 gives reasonable results for the first res-
onant frequencies when the number of stories is sufficiently high and walls behave
like Euler-Bernoulli beams at the global scale. But, this model and then all its sim-
plified forms are unsuitable for the higher modes and the structures with few stories.
In these cases, the results are significantly improved by the use of the generic beam
model of Sect. 3.6.1 which includes the shear in the walls. The estimated frequen-
cies are very closed to the ones calculated by finite elements (and to the experimental
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Fig. 3.12 Finite element modeling of one story for the calculation of the shear rigidity of the cell K
in direction y. Top: undeformed story, middle and bottom: deformed story.
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data), which shows that the physics of the problem has been taken into account with
considerably reduced calculations.

3.7 Conclusion

At the macroscopic scale, unbraced (or weakly braced) reticulated structures present
a much more complex behavior than usual “massive” media. It comes from the high
contrast between shear and compression deformability which enables enriched lo-
cal kinematics (gyration modes and inner bending mechanism) and phenomena of
local resonance in bending. Consequently, there is an analogy between those struc-
tures and generalized media. The gyration beam model looks like Cosserat medium,
structures where inner bending is not negligible are similar to micromorphic media
and local resonance is a way to design metamaterials. Thanks to dimensional anal-
ysis, it is possible to extend these results to other types of structures of decametric
size such as buildings but also of millimetric size such as foams or of nanometric
size such as graphene tubes. Future works can as well deal with the other vibration
modes which are governed by the inner deformation of the cell (Fig. 3.1).
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Chapter 4
A Bending-gradient Theory for Thick
Laminated Plates Homogenization

Arthur Lebée and Karam Sab

Abstract This work presents a new plate theory for out-of-plane loaded thick plates
where the static unknowns are those of the Love-Kirchhoff theory, to which six com-
ponents are added representing the gradient of the bending moment. The Bending-
gradient theory is an extension to arbitrary multilayered plates of the Reissner-
Mindlin theory which appears as a special case when the plate is homogeneous.
The new theory is applied to multilayered plates and its predictions are compared to
full 3D Pagano’s exact solutions and other approaches. It gives good predictions of
both deflection and shear stress distributions in any material configuration. More-
over, under some symmetry conditions, the Bending-gradient model coincides with
the second-order approximation of the exact solution as the slenderness ratio L/h
goes to infinity.

Key words: Plate theory. Higher-order models. Laminated plates. Composite plates.

4.1 Introduction

Laminated plates are widely used in engineering applications. For instance angle-
ply carbon fiber reinforced laminates are commonly used in aeronautics. However,
these materials are strongly anisotropic and the plate overall behavior is difficult to
capture. The most common plate theory is the Love-Kirchhoff plate model. How-
ever, it is well-known that, when the plate slenderness ratio L/h is not large enough,
transverse shear stresses which are not taken into account in the Love-Kirchhoff
theory have an increasing influence on the plate deflection.

In recent decades many suggestions have been made to improve the estimation
of transverse shear stresses. Two main approaches can be found: asymptotic ap-
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proaches and axiomatic approaches. The first one is mainly based on asymptotic
expansions in the small parameter h/L [2, 3]. However, no distinction between rel-
evant fields and unknowns was made. The second main approach is based on as-
suming ad hoc displacement or stress 3D fields. These models can be “Equivalent
Single Layer“ or ”Layerwise“. Equivalent single layer models treat the whole lam-
inate as an equivalent homogeneous plate. However, when dealing with laminated
plates, these models lead systematically to discontinuous transverse shear stress dis-
tributions through the thickness as indicated by Reddy [4]. In Layerwise models, all
plate degrees of freedom are introduced in each layer of the laminate and conti-
nuity conditions are enforced between layers. The reader can refer to Reddy [4]
and Carrera [5] for detailed reviews of kinematic approaches and to [6, 7, 8] for
static approaches. Layerwise models lead to correct estimates of local 3D fields.
However, their main drawback is that they involve a number of degrees of freedom
proportional to the number of layers. The limitation is immediately pointed out with
functionally graded materials, where the plate constituents properties vary continu-
ously through the thickness [9, 10].

Based on Reissner [11] paper, we suggest an Equivalent Single Layer higher-
order plate theory which gives an accurate enough estimate of transverse shear
stresses in the linear elasticity framework. For this, we are motivated by two obser-
vations. The first one is that Love-Kirchhoff strain fields have clearly been identified
as good first-order approximation for slender plates thanks to asymptotic expansion
approaches. The second one is that the 3D equilibrium plays a critical role in the
estimation of transverse shear stress in all the existing approaches. We show in this
work that revisiting the use of 3D equilibrium in order to derive transverse shear
stress as Reissner [11] did for homogeneous plates leads to a full bending gradient
plate theory. The Reissner-Mindlin theory is as a special case of the new Bending-
Gradient theory when the plate is homogeneous.

In Sect. 4.2 notations are introduced. In Sect. 4.3.1, we resume Reissner’s proce-
dure for deriving transverse shear stress extended to laminated plates. This lead
to the Bending-gradient plate theory detailed in Sect. 4.4. Finally, in Sect. 4.5
the Bending-gradient plate theory is applied to fibrous laminates under cylindri-
cal bending and compared to the exact solution and other Single Equivalent Layer
approaches.

4.2 Notations

Vectors and higher-order tensors are boldfaced and different typefaces are used for
each order: vectors are slanted: TTT , uuu. Second order tensors are sans serif:MMM, eee. Third
order tensors are in typewriter style: ΦΦΦ, ΓΓΓ. Fourth order tensors are in calligraphic
style DDD, ccc. Sixth order tensors are double stroked FFF,WWW.

When dealing with plates, both 2-dimensional (2D) and 3D tensors are used.
Thus, T̃TT denotes a 3D vector and TTT denotes a 2D vector or the in-plane part of T̃TT . The
same notation is used for higher-order tensors: σ̃σσ is the 3D second-order stress tensor
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while σσσ is its in-plane part. When dealing with tensor components, the indexes
specify the dimension: ai j denotes the 3D tensor ãaa with Latin index i, j,k.. = 1,2,3
and aα β denotes the 2D aaa tensor with Greek indexes α , β , γ , · · · = 1,2. C̃CC = Ci jkl is

the fourth-order 3D elasticity stiffness tensor. S̃SS = Si jkl = C̃CC
−1

is the fourth-order
3D elasticity compliance tensor while ccc = cα β γ δ denotes the plane-stress elasticity

tensor. ccc is not the in-plane part of C̃CC but it is the inverse of the in-plane part of S̃SS :
ccc = SSS−1. The identity for in-plane elasticity is iα β γ δ = 1

2

(
δ α γ δ β δ + δ α δ δ β γ

)
, where

δ α β is Kronecker symbol (δ α β = 1 if α = β , δ α β = 0 otherwise). The transpose
operation t• is applied to any order tensors as follows: (tA)α β ...ψ ω = Aω ψ ...β α .

Three contraction products are defined, the usual dot product (ãaa · b̃bb = aibi), the
double contraction product (ãaa : b̃bb= ai jb ji) and a triple contraction product (AAA ∴ BBB=
Aα β γ Bγ β α ). In these definitions Einstein’s notation on repeated indexes is used. It
should be noticed that closest indexes are summed together in contraction products.
Thus, ΦΦΦ ·nnn = Φα β γ nγ is different from nnn ·ΦΦΦ = nα Φα β γ . The derivation operator ˜∇ ∇ ∇
is also formally represented as a vector: ãaa · ˜∇ ∇ ∇ = ai j ∇ j = ai j, j is the divergence and

ãaa⊗ ˜∇ ∇ ∇ = ai j ∇ k = ai j,k is the gradient. Here ⊗ is the dyadic product. Finally, the
integration through the thickness is noted 〈•〉:

h
2∫

− h
2

f (x3)dx3 = 〈 f 〉 .

4.3 Revisiting the Reissner-Mindlin Plate Theory

4.3.1 The Three-dimensional Model

We consider a linear elastic plate of thickness h occupying the 3D domain Ω =
ω ×]−h/2,h/2[, where ω ⊂ R2 is the mid-plane of the plate (Figure 4.1). Cartesian

Fig. 4.1 Plate Configuration
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coordinates (x1,x2,x3) in the reference frame (̃eee1, ẽee2, ẽee3) are used. The constitutive
material is assumed to be invariant with respect to translations in the (x1,x2) plane.
Hence, the stiffness tensor C̃CC is a function of x3 only. The plate is loaded on its upper

and lower faces ω ±= ω ×{±h/2}with the distributed force T̃TT
±

. There are no body
forces and the plate is clamped on its lateral edge, ∂ ω ×]− h/2,h/2[ where ∂ ω is
the edge of ω . The 3D problem P3D is summarized as follows:

P
3D





σ̃σσ · ˜∇ ∇ ∇ = 0 on Ω . (4.1a)

σ̃σσ = C̃CC(x3) : ε̃εε on Ω . (4.1b)

σ̃σσ · ẽee3 = T̃TT
±

on ω ±. (4.1c)

ε̃εε =
1
2

(
˜∇ ∇ ∇ ⊗ ũuu+ ũuu⊗ ˜∇ ∇ ∇

)
on Ω . (4.1d)

ũuu = 0 on ∂ ω ×]− h/2,h/2[. (4.1e)

where ũuu is the 3D displacement vector field, ε̃εε is the strain tensor field and σ̃σσ is the
stress tensor field.

4.3.2 Reissner-Mindlin statically compatible fields

We recall here briefly the procedure for the derivation of Reissner-Mindlin equilib-
rium equations [11, 12, 13]. The generalized Reissner-Mindlin stresses associated
to the 3D stress field σ̃σσ are:

Nα β (x1,x2) =
〈
σ α β

〉
(4.2)

Mα β (x1,x2) =
〈
x3σ α β

〉
(4.3)

Qα (x1,x2) = 〈σ α 3〉 (4.4)

where NNN is the membrane stress, MMM the bending moment, and QQQ the shear forces.
Reissner-Mindlin equilibrium equations are obtained by integrating Eqs (4.1a)

and x3×(4.1a) with respect to x3. Taking also into account boundary conditions (4.1c)
yields:





Nα β ,β + qα = 0 (4.5a)

Qα ,α + q3 = 0 (4.5b)

Mα β ,β −Qα + µ α = 0 (4.5c)

where qi = T+
i + T−i are symmetric loadings per unit surface and µ i =

h
2 (T

+
i −

T−i ) are skew-symmetric loadings per unit surface. More precisely, qqq = (qα ) are
membrane loadings per unit surface, q3 is the out-of-plane loading per unit surface,
µµµ = (µ α ) are couples per unit surface and µ 3 is the transverse bulk loading.
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Since in-plane loadings (qqq, µµµ ) and out-of-plane loadings (q3, µ 3) are not of the
same order in the asymptotic analysis of the plate as h/L goes to 0 (see [3]), and for
the sake of simplicity, we focus only on the out-of-plane loading q3 (qα = µ i = 0).

4.3.3 Localization

The second step of Reissner’s approach consists in deriving the stress energy per unit
surface w∗RM(NNN,MMM,QQQ) from the 3D model. As in many homogenization procedures,
the derivation of w∗RM is based on an approximation scheme for the real 3D stress
fields in terms of the generalized plate stress fields:

σ̃σσ RM
(x1,x2,x3) = σ̃σσ (N)

(x1,x2,x3)+ σ̃σσ (M)
(x1,x2,x3)+ σ̃σσ (Q)

(x1,x2,x3)

where σ̃σσ (N), σ̃σσ (M), and σ̃σσ (Q) are 3D stress fields generated byNNN,MMM and QQQ as follows:





σ (N)
i j = s

(N)
i jα β (x3)Nα β (x1,x2) (4.6a)

σ (M)
i j = s

(M)
i jα β (x3)Mα β (x1,x2) (4.6b)

σ (Q)
i j = s

(Q)
i jα (x3)Qα (x1,x2) (4.6c)

where s
(N)
i jα β (x3), s

(M)
i jα β (x3) and s

(Q)
i jα (x3) are localization tensors depending only on

the x3 coordinate. This can be rewritten using contraction products as:

σ̃σσ RM
= s̃ss

(N) :NNN+ s̃ss
(M) :MMM+ s̃ss

(Q) ·QQQ

Once this approximation of stress fields is set, the stress potential energy density
w∗RM(NNN,MMM,QQQ) is defined simply as the quadratic form:

w∗RM(NNN(xxx),MMM(xxx),QQQ(xxx)) =
1
2

〈
σ̃σσ RM

(x̃xx) : S̃SS(x3) : σ̃σσ RM
(x̃xx)
〉

(4.7)

Hence, a consistent choice for s̃ss
(N), s̃ss

(M) and s̃ss
(Q) is critical.

4.3.4 Love-Kirchhoff Fields

The derivation of s̃ss
(N) and s̃ss

(M) is based on the Love-Kirchhoff plate theory. Accord-
ing to this theory, plane-stress is assumed and the in-plane part of the strain is linear
in x3:

εεε LK = eee+ x3χχχ (4.8)
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where eee is the membrane strain and χχχ the curvature. We draw the reader’s attention
to the fact that strain components ε i3 are not null in the general case. Membrane
stress NNN and bending momentsMMM are linearly dependent on eee and χχχ :

{
NNN=AAA : eee+BBB : χχχ (4.9a)

MMM= t
BBB : eee+DDD : χχχ (4.9b)

with:
(AAA,BBB,DDD) =

〈(
1,x3,x

2
3

)
ccc(x3)

〉
(4.10)

Using 3D constitutive equation under plane-stress assumption, Love-Kirchhoff
constitutive equation (4.9) and in-plane strains definition (4.8), it is possible to ex-
press Love-Kirchhoff stress fields as functions of NNN and MMM:

{
σσσ (N)(x1,x2,x3) = ccc(x3) :

(
aaa + x3

t
bbb
)

:NNN(x1,x2) and σ (N)
i3 = 0 (4.11a)

σσσ (M)(x1,x2,x3) = ccc(x3) : (bbb + x3ddd ) :MMM(x1,x2) and σ (M)
i3 = 0 (4.11b)

where aaa, bbb and ddd are the reciprocal compliance tensors of the constitutive equa-
tion (4.9).

4.3.5 Stress Field Generated by a Linear Variation of the Bending
Moment

The main idea of Reissner’s method [11] is to recall that the shear forces are related
to the bending moment through the plate equilibrium (4.5). With a homogeneous
plate, combining both 3D equilibrium and plate equilibrium enables the derivation
of a stress field directly depending on shear forces. However, with laminated plates
it is not possible to bring out shear force with this procedure. Here, we suggest
considering a more general shear variable for laminates, the full bending gradient:
RRR =MMM⊗ ∇ ∇ ∇ . In the following, we resume the procedure from Reissner [11] for de-
riving shear fields in the case of laminated plates.

We have σ̃σσ (M) · ˜∇ ∇ ∇ = 0 if MMM is (x1,x2)-invariant. When MMM is function of x1 and x2,
we have:

σ̃σσ (M) · ˜∇ ∇ ∇ = s
(M)
i jβ α (x3)Mα β (x1,x2)∇ j = s

(M)
i jβ α Mα β ,γ δ jγ = s

(M)
iγ β α Rα β γ

f (R)i = s
(M)
iγ β α Rα β γ is the force per unit volume generated by first order variations of

the bending momentRRR. Rα β γ is a third-order tensor which respects Mα β symmetries

(Rα β γ = Rβ α γ ). Using σ̃σσ (M) definition (Equation 4.11b) and assuming that each layer
follows monoclinic symmetry we identify the force per unit volume as:

fff (R) = ccc(x3) : (bbb + x3ddd ) ∴ RRR and f (R)3 = 0 (4.12)
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Then, we define σ̃σσ (R) the 3D stress generated by a (x1,x2)-invariant bending gradient

RRR associated to the localization tensor s
(R)
i jα β γ such as σ̃σσ (R)

= s̃ss
(R) ∴RRR. This stress field

is derived through the auxiliary problem:

{
σ̃σσ (R) · ˜∇ ∇ ∇ + f̃ff

(R)
= 0̃00 (4.13a)

σ̃σσ (R) · ẽee3 = 0̃00 for x3 =±h/2 (4.13b)

The (x1,x2)-invariant solution of this problem is easily found, leading to the explicit
determination of s̃ss

(R):

s
(R)
α 3η ζ ε (x3) =−

x3∫

− h
2

cα η γ δ (z)
(

bδ γ ε ζ + zdδ γ ε ζ
)

dz , s
(R)
α β η ζ ε = 0 and s

(R)
33η ζ ε = 0

(4.14)
We have derived a localization tensor s̃ss

(R) which depends on all bending gradient
components: Rα β γ =Mα β ,γ . Accordingly we define a new approximation of stress
fields involving all bending gradient components:

σ̃σσ BG
= σ̃σσ (N)

+ σ̃σσ (M)
+ σ̃σσ (R)

and a new stress energy density identical to Definition 4.7:

w∗BG(NNN,MMM,RRR)

Actually σ̃σσ BG approximation for 3D stress fields is a higher-order gradient the-
ory, as described in [14] for 3D continuum and [15] for periodic beams. However,
to be consistent with higher-order theories, we should have taken into account the
gradient of other static unknowns such as the membrane stress gradient for instance.
It is the choice of the authors to limit the number of static variables only to those
which have a contribution to the macroscopic equilibrium of the plate. Thus the
number of unknowns remains limited and adapted to engineering applications, con-
trary to asymptotic expansions and other rigorous approaches in which no distinc-
tion is made between significant static unknowns.

4.3.6 Mechanical Meaning of the Gradient of the Bending Moment

The full bending gradient RRR has six components (R111, R221, R121, R112, R222, R122)
whereas QQQ has two components. Thus, using the full bending gradient as static
unknown introduces four static unknowns which a priori are not related to plate
equilibrium (4.5c). Only (NNN,MMM,QQQ) appeared while integrating 3D equilibrium equa-
tion (4.1a) through the thickness in Section 4.3.2.
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Let us derive generalized stresses associated to σ̃σσ (R). Using Equation 4.14 and
integrating by parts when necessary leads to:

〈
σ (R)

α β

〉
= 0,

〈
x3σ (R)

α β

〉
= 0,

〈
s
(R)
α 3β γ δ

〉
= iα β γ δ (4.15)

and we have:
〈

σ (R)
α 3

〉
= iii ∴ RRR = QQQ. Only QQQ remains after integrating σ̃σσ (R) through

the thickness and the four other static unknowns are self-equilibrated stress. More
precisely we have:

R111 R221 R121 R112 R222 R122

σ 13

〈
s
(R)
13111

〉
= 1

〈
s
(R)
13122

〉
= 0

〈
s
(R)
13121

〉
= 0

〈
s
(R)
13211

〉
= 0

〈
s
(R)
13222

〉
= 0

〈
s
(R)
13221

〉
= 1/2

σ 23

〈
s
(R)
23111

〉
= 0

〈
s
(R)
23122

〉
= 0

〈
s
(R)
23121

〉
= 1/2

〈
s
(R)
23211

〉
= 0

〈
s
(R)
23222

〉
= 1

〈
s
(R)
23221

〉
= 0

R111 and R222 are the cylindrical bending part of shear forces Q1 and Q2, R121

and R122 are the torsion part of shear forces and R112 and R221 are linked to strictly
self-equilibrated stresses (warping).

4.4 The Bending-gradient Plate Model

Once stress energy density w∗BG(NNN,MMM,RRR) and plate equilibrium equations 4.5 to
which is added RRR =MMM⊗ ∇ ∇ ∇ are given it is possible to build a complete plate theory
using conventional variational tools. The reader is refered to [16] for details.

4.4.1 Summary of the Plate Model

Equilibrium equations and boundary conditions involving stress fields are gathered
in the set of statically compatible fields:





NNN · ∇ ∇ ∇ = 000 on ω (4.16a)

MMM⊗ ∇ ∇ ∇ −RRR= 0 on ω (4.16b)

(iii ∴ RRR) · ∇ ∇ ∇ =−q3 on ω (4.16c)

NNN ·nnn =VVV d on ∂ ω s (4.16d)

MMM=MMM
d on ∂ ω s (4.16e)

(iii ∴ RRR) ·nnn =V d
3 on ∂ ω s (4.16f)
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where ∂ ω s is the portion of edge on which static boundary conditions apply: ṼVV
d

is the force per unit length and MMM
d the full bending moment enforced on the edge.

This set of equations is almost identical to Reissner-Mindlin equations where shear
forces have been replaced by the bending gradient RRR.

Generalized stresses NNN, MMM, and RRR work respectively with the associated strain
variables: eee, the conventional membrane strain, χχχ the conventional curvature and
ΓΓΓ the generalized shear strain. These strain fields must comply with the following
compatibility conditions and boundary conditions:





eee= iii : (∇ ∇ ∇ ⊗UUU) on ω (4.17a)

χχχ = ΦΦΦ · ∇ ∇ ∇ on ω (4.17b)

ΓΓΓ= ΦΦΦ+ iii · ∇ ∇ ∇ U3 on ω (4.17c)

ΦΦΦ ·nnn =HHH
d on ∂ ω k (4.17d)

ŨUU = ŨUU
d

on ∂ ω k (4.17e)

where ŨUU is the 3D displacement of the mid-plane of the plate and ΦΦΦ is the gener-
alized rotation. ΓΓΓ and ΦΦΦ are 2D third-order tensors with the following symmetry:
Φα β γ = Φβ α γ . Moreover, ∂ ω k is the portion of edge on which kinematic boundary

conditions apply: ŨUU
d

is a given displacement and HHH
d is a symmetric second-order

tensor related to a forced rotation on the edge. These fields are almost identical to
Reissner-Mindlin kinematically compatible fields where the rotation pseudo-vector
is replaced by the generalized rotation ΦΦΦ.

Finally, for constitutive material following local monoclinic symmetry with re-
spect to (x1,x2) plane (uncoupling between RRR and (NNN,MMM)) the Bending-gradient
plate constitutive equations are written as:





NNN= AAA : eee+BBB : χχχ (4.18a)

MMM= t
BBB : eee+DDD : χχχ (4.18b)

ΓΓΓ= fff ∴ RRR, where (III−fff ∴ FFF) ∴ ΓΓΓ= 0 (4.18c)

where conventional Love-Kirchhoff stiffness tensors are defined as:

(AAA,BBB,DDD) =
〈(

1,x3,x
2
3

)
ccc(x3)

〉

and fff is the generalized shear compliance tensor1 defined as:fff= h
2∫

− h
2




x3∫

− h
2

(t
bbb + zddd

)
: ccc(z)dz


 ·SSS(x3) ·




x3∫

− h
2

ccc(z) : (bbb + zddd )dz


dx3 (4.19)

1 fα β γ δ ε ζ follows major symmetry: fα β γ δ ε ζ = fζ ε δ γ β α and minor symmetry fα β γ δ ε ζ = fβ α γ δ ε ζ .
Thus there are only 21 independent components
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where SSS = Sα β = 4Sα 3β 3 is the out-of-plane shear compliance tensor. Since fff is
not always invertible, we introduced Moore-Penrose pseudo inverse for the shear
stiffness tensor FFF: FFF= lim

κ →0
(fff ∴ fff+ κ III)−1 ∴ fff

where III is the identity for 2D sixth-order tensors following the generalized shear
compliance fff minor and major symmetries (Iα β γ δ ε ζ = iα β ε ζ δ γ δ ). The solution of
the plate model must comply with the three sets of equations (4.16, 4.17, 4.18). The
compliance fff is positive. However when fff is not definite, there is a set of solutions,
up to a self-stress field.

4.4.2 Projection of the Bending-gradient Plate Model

In some cases, the Bending-gradient is turned into a Reissner-Mindlin plate model.
This is the case for homogeneous plates. Thus, we need a means to estimate the
difference between both plate models. It is possible to define the exact projection of
the Bending-gradient model on a Reissner-Mindlin model.

The Reissner-Mindlin part of fff is:fffRM =

(
2
3

iii · iii
)
∴ fff ∴(2

3
iii · iii
)

(4.20)fffRM can be considered as the restriction of fff when setting warping unknowns to zero.
Consequently, we introduce the pure warping part of fff as the orthogonal complement
of fffRM: fffW = fff−fffRM (4.21)

Finally we suggest the following relative distance between the Bending-gradient
plate model and the Reissner-Mindlin one:

∆ RM/BG =
‖fffW‖
‖fff‖ , where ‖fff‖=√fα β γ δ ε ζ fζ ε δ γ β α (4.22)

∆ RM/BG gives an estimate of the pure warping fraction of the shear stress energy
and is a criterion for assessing the need of the Bending-gradient model. When the
plate constitutive equation is restricted to a Reissner-Mindlin one, we have exactly
∆ RM/BG = 0.
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4.5 Application to Laminates

4.5.1 Plate Configuration

We consider angle-ply laminates. Each ply is made of unidirectional fiber-reinforced
material oriented at θ relative to the bending direction x1. All plies have the same
thickness and are perfectly bounded. A laminate is denoted between brackets by the
successive ply-orientations along thickness. For instance [0◦,90◦] denotes a 2-ply
laminate where the lower ply fibers are oriented in the bending direction. The con-
stitutive behavior of a ply is assumed to be transversely isotropic along the direction
of the fibers and engineering constants are chosen similar to those of [1]:

EL = 25×106psi, ET = 1×106psi, GLT = 0.5×106psi, GT T = 0.4×106psi,

ν LT = ν T T = 0.25

where GT T has been changed to preserve transversely isotropic symmetry. L is the
longitudinal direction oriented in the (x1,x2) plane at θ with respect to ẽee1, T is the
transverse direction.

4.5.2 Distance Between the Reissner-Mindlin and the
Bending-gradient Model

In Table 4.1, are given the values of ∆ RM/BG for the laminates considered in this
work. For a single ply, the criterion is zero since the Bending-gradient model is ex-
actly a Reissner-Mindlin model in this case. However, when there are several plies,
the distance is greater than 10%. Thus with these laminates, the shear constitutive
equation cannot be reduced to a Reissner-Mindlin behavior.

Stack [0◦] [0◦,90◦] [30◦,−30◦]s [30◦,−30◦]

∆ RM/BG 0 16.0% 16.0% 23.9 %

Table 4.1 The criterion ∆ RM/BG for several laminates

4.5.3 Cylindrical Bending

Pagano [1] gives an exact solution for cylindrical bending of simply supported com-
posite laminates. We choose the same configuration for the Bending-gradient model.
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Fig. 4.2 Pagano’s cylindrical bending configuration

The plate is invariant and infinite in x2 direction. It is out-of-plane loaded with
q3(x1) = −q0 sin κ x1 where λ = 1/κ is the wavelength of the loading (Fig. 4.2).
The plate is simply supported at x1 = 0 and x1 = L with traction free edges:

U3 (0)= 0, U3 (L) = 0, MMM(0)= 0, MMM(L) = 0, NNN(0)·eee1 =000, NNN(L) eee1 =000 (4.23)

M22 (0) =M22 (L) = 0 is the additional boundary condition compared to the Reiss-
ner-Mindlin plate model. This additional boundary condition takes into account free
edge effects similar to those described in [17] for periodically layered laminate. The
resolution is provided in details in [18].

Closed-form solutions using the Reissner-Mindlin model were also derived in
order to compare them with the Bending-gradient. The work of Whitney [19] was
used for deriving transverse shear stress distributions and shear correction factors
were taken into account into the shear constitutive equation of the Reissner-Mindlin
plate model.

A comparison with a finite elements solution was also performed on ABAQUS
[20]. Since the Bending-gradient is an Equivalent Single Layer theory, conventional
shell elements were chosen (3 displacements and 3 rotations). Transverse shear
fields with shell elements in ABAQUS are derived using an approach very similar
to [19] where it is furthermore assumed that the plate overall constitutive equation
is orthotropic with respect to the main bending direction. S4, linear quadrangle with
full integration elements, were used. A convergence test was performed. This study
enforced the typical size of an element lchar = h/5 where h is the plate thickness. For
instance when the slenderness is h/L = 1/4 there are 20 elements. Figure 4.3 shows
a typical deformation of this mesh. Periodicity was enforced on lateral edges of
the strip in Fig. 4.3 by equating corresponding rotations and displacements. Finally,
section integration is performed during the analysis.

Two error estimates are introduced: the first one for the transverse shear part of
the stresses for which we introduce the following seminorm:

‖σσσ ‖2 =

L
2∫

− L
2

h
2∫

− h
2

σ α 3Sα 3β 3σ β 3dx3dx1
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Fig. 4.3 Finite Element undeformed and deformed mesh for an anisotropic laminate

and we define the relative error as: ∆ (σσσ ) = ‖σσσ Ex−σσσ ‖
‖σσσ Ex‖ , where σσσ Ex is the exact shear

stress distribution from Pagano [1, 21, 22]. The second one is the mid-span deflec-
tion relative error:

∆ (U3) =
UEx

3 (L/2)−U3(L/2)

UEx
3 (L/2)

,

where UEx
3 (x1) is the plate deflection taken for the exact solution.

4.5.4 Results

First, we consider a skew-symmetric cross ply [0◦,90◦] laminate. In this case, the
plate configuration fulfills the assumptions made for the finite elements approxima-
tion (orthotropic laminate). In Fig. 4.4, shear stress distribution in both directions are
plotted for the exact solution from Pagano [1] σσσ Ex, the Bending-gradient solution
σσσ (R), Whitney’s shear distribution σσσ (Q),W and the finite elements solution σσσ (Q),FE .
The slenderness ratio is set to L/h = 4 as conventionally done when benchmark-
ing plate models. The three approximate solutions yield the same distribution. The
discrepancy with the exact solution is well-known and associated to edge effects.
In Fig. 4.5 the transverse shear stress distribution error ∆ (σσσ ) versus the slenderness
ratio L/h is plotted for the Bending-gradient solution (BG), the finite elements so-
lution (RM,FE) and the closed-form Reissner-Mindlin solution (RM,WE). In this
case, Whitney’s solution converges with L/h whereas finite elements and Bending-
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Fig. 4.4 Normalized shear distribution σ 13 at x1 = 0 for a [0,90◦] laminate, L/h = 4
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Fig. 4.5 Shear stress distribution error versus
slenderness ratio for a [0◦,90◦] laminate
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Fig. 4.6 Deflection error versus slenderness
ratio for a [0,90◦] laminate

gradient approximations do not converge and lead to rather small errors (' 10−3).
In Fig. 4.6 the mid-span deflection error is also plotted versus the slenderness ratio.
The three approximate solutions yields almost the same error.

We consider now a symmetric and non-orthotropic [30◦,−30◦]s laminate. This
configuration does not comply with the assumptions made for the finite elements
approach. In Fig. 4.7 shear distributions are compared to the exact solution. The
Bending-gradient solution remains close to the exact solution. However finite ele-
ments and Whitney’s solution yield different distributions which are not as accu-
rate as the Bending-gradient. More precisely, in Direction 2, the FE solution does
not capture the change of slope associated to the change of ply orientation. In Di-
rection 1 the macroscopic equilibrium is respected for all approximated solutions
(〈σ 13〉 = Q1). However in Direction 2 we can see that

〈
σ FE

23

〉
6= Q2 for both finite
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elements and Whitney’s solution. In Fig. 4.8 the transverse shear stress distribu-
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Fig. 4.7 Normalized shear distribution in both directions at x1 = 0 for a [30◦,−30◦]s laminate,
L/h = 4, a) σ 13 b) σ 23.
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Fig. 4.8 Shear stress distribution error versus
slenderness ratio for a [30◦,−30◦]s laminate
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Fig. 4.9 Deflection error versus slenderness
ratio for a [30◦,−30◦]s laminate

tion error versus the slenderness ratio is plotted. Contrary to the finite elements
solution and Whitney’s solution, the Bending-gradient solution converges when the

plate is slender. More precisely we have: ∆ (σσσ BG) ∝
(

h
L

)2
in this case. In Fig. 4.9 the

mid-span deflection error is also plotted versus the slenderness ratio. The Bending-
gradient solution is the most accurate one for conventional slenderness.

Finally, in Fig. 4.10 the comparison is made for a non-symmetric and non-
orthotropic ply [30◦,−30◦]. Again, this configuration does not comply with the as-
sumptions made for the finite elements approach. The Bending-gradient solution
remains close to the exact solution and Whitney’s solution yields acceptable re-

sults (except a mismatch for σ (QQQ),W
23 ). However in this case, finite elements yields
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inappropriate results: in Direction 1 the stress distribution does not respect macro-
scopic equilibrium

〈
σ FE

13

〉
6= Q1. We checked nevertheless that FE nodal forces ful-

fills macroscopic equilibrium. This inaccuracy is also clear in Fig. 4.5 showing the
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Fig. 4.10 Normalized shear distribution in both directions at x1 = 0 for a [−30◦,30◦] laminate,
L/h = 4, a) σ 13 b) σ 23.
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Fig. 4.11 Shear stress distribution error versus
slenderness ratio for a [30◦,−30◦] laminate
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Fig. 4.12 Deflection error versus slenderness
ratio for a [30◦,−30◦] laminate

transverse shear stress distribution error versus the slenderness ratio whereas the
Bending-gradient converges as ∆ (σσσ BG) ∝

(
h
L

)2
and both the Whitney and finite el-

ements solutions lead to non-negligible errors. Again, in Fig. 4.12, the deflection
error indicates that FE are too compliant and that the Bending-gradient is more ac-
curate than the Reissner-Mindlin solution.
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4.5.5 Discussion

We have compared three approaches for deriving an approximation of the exact
solution for cylindrical bending suggested by Pagano [1, 21, 22].

First we derived closed-form solutions for the Reissner-Mindlin model using
shear correction factors and shear distributions from [19]. This approach yields a
fair estimation of the deflection and shear distributions in cylindrical bending but it
is not as accurate as the Bending-gradient approximation in most cases. The main
limitation of this approach is the cylindrical bending assumption. It is not sure that
shear correction factors and shear distributions will remain valid with more gen-
eral plate boundary conditions, especially involving torsion, whereas the Bending-
gradient theory is not limited to cylindrical bending.

Second, we implemented a finite elements approximation, using conventional
shell elements. This approach assumes both cylindrical bending and orthotropy in
the same direction. When these assumptions are not valid, the results might be
really affected both for deflection and stress distribution as demonstrated for the
[30◦,−30◦] laminate.

Finally, the Bending-gradient solution was presented. This approach enables
the derivation of stress distributions and gives good enough deflection and stress
distribution estimates whatever the plate configuration and the bending direction
are. Moreover, it was numerically demonstrated that in some configurations the
Bending-gradient solution converges with the slenderness ratio.

Let us state this convergence condition precisely. We chose to neglect the gra-
dient of membrane stress NNN⊗ ∇ ∇ ∇ since it is not related to macroscopic stress. In
the cylindrical bending configuration, the membrane stress is reduced to N22. When
N22 = 0, the membrane stress gradient vanishes. This is the case for [30◦,−30◦]s and
[30◦,−30◦] since they are balanced laminates (as many θ plies as−θ plies). In these
cases, the Bending-gradient solution converges because the stress fields related to
the membrane stress gradient do not contribute to the final solution. It is possible to
generalize this result to any boundary conditions with mirror symmetric laminates
(BBB = 0) for which the membrane problem is fully uncoupled from the out-of-plane
problem. With these laminates, the Bending-gradient solution is the Saint-Venant
solution for an out-of-plane loaded plate.

4.6 Conclusion

In the present paper, we derived a new plate theory, the Bending-gradient theory,
which is the extension of Reissner-Mindlin theory to laminated plates. Compari-
son with the exact solution for cylindrical bending of cross ply laminates demon-
strates that the Bending-gradient gives good predictions of both deflection and shear
stress distributions in any material configuration. It is also the Saint-Venant solution
when membrane stresses are fully uncoupled from bending moments and gener-
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alized shear stresses. Finally, with usual laminated plates, we pointed out that the
Bending-gradient cannot be reduced to a Reissner-Mindlin plate model.

Several outlooks are under consideration. First, this plate theory can be extended
to periodic plates such as sandwich panels [23, 24]. Second, the estimation of the in-
fluence of the membrane stress gradient on the quality of the shear stress estimation
should be studied in detail.
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Chapter 5
Internal Length Scale Effects on the Local and
Overall Behavior of Polycrystals

Stéphane Berbenni

Abstract A breakthrough in the general hypothesis of spatially homogeneous in-
tragranular fields accepted in mean field approaches based on the classic Eshelby’s
inclusion problem (self-consistent schemes, etc.) is proposed. Instead of consider-
ing uniform intra-granular plastic strains as usually prescribed in mean field ap-
proaches, intragranular slip patterns are modeled in single slip configurations both
by distributions of coaxial circular glide loops and by distributions of flat ellipsoids
(also called oblate spheroids). Both types of modeling assume slip configurations
constrained by spherical grain boundaries, and, mechanical interactions between
slip bands are taken into account (for mechanical fields and free energy). It is then
found that intra-granular mechanical fields strongly depend on the grain size and
the slip band spacing. In addition, in the case of glide loops, the modeling is able
to capture different behaviors between near grain boundary regions and grain inte-
riors. In particular, a grain boundary layer with strong gradients of internal stresses
(and lattice rotations) is found. These results are confirmed quantitatively by EBSD
measurements carried out with orientation imaging mapping (OIM) on deformed Ni
polycrystals and on specific grains undergoing quasi single slip. Furthermore, as a
result of the computation of the elastic energy, an average back-stress over the grain
(in the case of loops) or over slip bands (in the case of oblate spheroids) can be de-
rived so that it is possible to define new interaction laws for polycrystal’s behavior
which are naturally dependent on grain size and slip band spacing.
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Stéphane Berbenni
LPMM, CNRS, Arts et Métiers ParisTech, Technopole, 4, rue Augustin Fresnel, 57078 Metz Cedex
03, France
e-mail: stephane.berbenni@ensam.eu

99
Advanced Structured Materials  7, DOI: 10.1007/978-3-642-19219-7_5,
© Springer-Verlag Berlin Heidelberg 2011

H. Altenbach et al. (eds.), Mechanics of Generalized Continua,
,



100 Stéphane Berbenni

5.1 Introduction

In the mechanics of materials, the classic scale transition schemes (self-consistent
schemes, etc.) were elaborated for efficient and practical reasons from two restric-
tive hypotheses. The first one is based on a separation of scales between the micro-
scopic and the macroscopic states, and, a macro-homogeneous condition allowing
the use of Continuum Mechanics in a simplified local context. The second one is an
implicit micro-homogenization of internal inelastic processes like crystallographic
slip which are modeled using averaging procedures of discrete slip patterns (Fig.
5.1(a)). The latter reduces the predictive capabilities of homogenization schemes to
render microstructural internal length effects on the mechanical fields.

On the experimental point of view, the spatial heterogeneity of plastic flow was
first highlighted through the observation of the surface of metals which indicated
that slip consists of discrete events localized along slip bands [18, 21, 29, 30, 37].
Deformation patterns emerging at the surface can be observed during tensile or
compression tests on single crystals and polycrystals with large grains as well as
fine grains for a variety of metals using experimental techniques such as EBSD
[1, 2, 20, 23, 40, 45, 47] or AFM [9, 11, 17, 46, 48, 50]. The slip steps observed on
the surface of these materials (Fig. 5.1(b)) manifest the cooperative motion of dis-
locations leading to a highly localized deformation. The collective role of discrete
dislocations on the internal mechanical fields is then found to be predominant.

Here, the objective is to describe intra-granular plastic heterogeneities like slip
bands from discrete plastic distortions and to study their influences on local elas-
tic fields and global free energies as well as homogenized behavior. These one
are not contained in the mean field approaches. More specifically, one describes
discrete quantas of plastic slip either by circular glide loops represented by spa-

Fig. 5.1 (a) Mean field modeling of the fluctuation of plastic fields at the bi-crystalline interface;
(b) Atomic Force Microscopy (AFM) picture of the plastically deformed microstructure close to a
grain boundary in Brass (after 1.5% of macroscopic strain).
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tial Dirac distribution functions, or, by flat ellipsoidal plastic inclusions (oblate
spheroids) inside grains. Thus, intra-granular plastic strains arising from disloca-
tions are no more considered homogeneous and uniform as in classic mean field
approaches in continuum mechanics such as the self-consistent model (1st order
schemes) [5, 7, 19, 26, 31, 43]. Hence, this work is also a break with the classic
Eshelby’s framework [14] of the uniform plastic inclusion, considering the case of
strongly heterogeneous and discrete plastic events within grains.

In Sect. 5.2, one presents the general theory starting from field equations of
the problem. Section 5.3 introduces resolution methods based on Fourier trans-
forms or Green functions. The basics of continuum theory of defects and the mean
field approach based on the Eshelby concept are briefly recalled in Sect. 5.4. Sec-
tion 5.5 considers intra-granular slip bands like super-dislocation loops, theoreti-
cal results and experimental comparisons using the EBSD technique. In Sect. 5.6,
oblate spheroids are used to describe slip bands and associated numerical results
are presented. Section 5.7 proposes a new interaction law in the approximation of
diluted plasticity based on an averaged backstress due to plasticization inside super-
dislocation loops. Sect. 5.8 concludes.

In the whole paper, the used notations for a given quantity X are the following:

• vector: X
• 2nd order tensor: X

∼
• 4th order tensor: X

≈

Their index notations are:

• vector: Xi

• 2nd order tensor: Xi j

• 4th order tensor: Xi jkl

Some symbols are also used. ”·” represents the simple product between:

• two vectors A and B, A ·B = AiBi

• one 2nd order tensor and one vector A
∼

and B, A
∼
·B = Ai jB j

”:” represents the contracted product between:

• two 2nd order tensors A
∼

and B
∼

, A
∼

: B
∼
= Ai jBi j

• one 4th order tensor and one 2nd order tensor A
≈

and B
∼

, A
≈

: B
∼
= Ai jklBkl

“⊗” represents the dyadic product between:

• two vectors A and B, A⊗B = AiB j

“ ∇ ” represents the gradient operator, and, ” ∇ t” its transpose.
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5.2 Field Equations and Thermodynamics

Let us consider an individual spherical inclusion (the considered grain) with volume
Vg embedded in an infinite matrix with volume V � Vg (i.e. unbounded material).
One assumed no volume force and isothermal conditions in the medium. Further-
more, quasi-static loading is assumed.

On the boundary ∂ V of V , a prescribed displacement ud (Dirichlet conditions) is
considered:

ud = β 0

∼
· x =

(
E
∼
+ Ω
∼

)
· x on ∂ V, (5.1)

where β 0

∼
, E
∼

, Ω
∼

are respectively uniform imposed distortion, strain, and rotation on

∂ V .
Alternatively, a prescribed traction vector td on ∂ V (Neumann conditions) can

also be considered such that:

td = Σ
∼
·n on ∂ V, (5.2)

where n is the outward unit vector to ∂ V .
The other field equations are constituted of:

• the stress equilibrium condition for the symmetric Cauchy stress tensor σ
∼

:

div σ
∼
= 0 in V , (5.3)

• the compatibility relation for total distortion β
∼

or total strain ε
∼

where u is the

displacement field:

β
∼
= ∇ u, or , ε

∼
=

1
2

(
∇ u+ ∇ tu

)
, (5.4)

so that β
∼

splits into two terms:

β
∼
= ε
∼
+ ω
∼
, (5.5)

where ω
∼

is the rotation,

• the total strain (resp. the total distortion) in the small perturbation hypothesis
write as the sums of an elastic strain ε e

∼
(resp. elastic distortion β e

∼
) and a plas-

tic strain ε p
∼

(resp. plastic distortion β p

∼
) which will be described for various

representations, namely discrete vs. mean field approaches:

ε
∼
= ε e

∼
+ ε p

∼
, β
∼
= β e

∼
+ β p

∼
, (5.6)

• the constitutive equation for homogeneous and linear elasticity:
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σ
∼
=C
≈

: ε e

∼
=C
≈

: (ε
∼
− ε p

∼
), (5.7)

where C
≈

denotes the homogeneous elastic moduli.

Given the symmetries Ci jkl =C jikl =Ci jlk =Ckli j and Eqs. (5.3), (5.4) and (5.7), the
Navier-type equation is obtained (here written in explicit index notations):

Ci jkl
(
ul,k− ε p

kl

)
, j =Ci jklul,k j−Ci jkl ε

p
kl, j = 0. (5.8)

The Helmholtz free energy per unit volume φ for the whole system V usually
depends on the volume density of elastic energy. As it will be further shown due to
the singularity of discrete plastic sources (in the case of dislocation loops), the free
energy must also include the dislocation core energy owing to elastic but non linear
core effects. Other contributions such as the stacking fault energy are neglected.
Then:

φ
(

E
∼
, ε p

∼
(x)
)
=

1
V

∫

V
wel(x)dV, (5.9)

where wel(x) =
1
2 σ
∼
(x) : ε e

∼
(x) is the volume density of elastic energy. Equation (5.9)

only holds in the case of isothermal and quasi-static conditions. After algebraic
manipulations, φ takes the form of:

φ
(

E
∼
, ε p

∼
(x)
)
=

1
2

(
E
∼
−E p
∼

)
: C
≈

:
(

E
∼
−E p
∼

)
− 1

2V

∫

V
τ
∼
(x) : ε p

∼
(x)dV, (5.10)

where E p
∼

= 1
V

∫
V ε p
∼
(x)dV denotes the averaged plastic strain over the whole volume

V . The last part of φ that contains the internal stress field τ
∼
(x) will be denoted φ int for

the internal elastic energy per unit volume. Thus, the internal elastic energy named
Φ int =V.φ int reads:

Φ int =−
1
2

∫

V
τ
∼
(x) : ε p

∼
(x)dV. (5.11)

The internal stress τ
∼
(x) is defined as follows:

τ
∼
(x) = σ

∼
(x)− Σ

∼
, (5.12)

where Σ
∼

is the macroscopic stress defined by Σ
∼
= 1

V

∫
V σ
∼
(x)dV and verifying the

macroscopic behavior law:

Σ
∼
=C
≈

:
(

E
∼
−E p
∼

)
. (5.13)

The Legendre-Fenchel transform [32] of the Helmholtz free energy per unit vol-
ume φ gives the complementary energy ψ per unit volume:

ψ
(

Σ
∼
, ε p

∼
(x)
)
=−φ

(
E
∼
, ε p

∼
(x)
)
+ Σ
∼

: E
∼
. (5.14)

After a few derivations, one finds:
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ψ
(

Σ
∼
, ε p

∼
(x)
)
=

1
2

Σ
∼

: S
≈

: Σ
∼
+ Σ
∼

: E p
∼
+

1
2V

∫

V
τ
∼
(x) : ε p

∼
(x)dV, (5.15)

where S
≈
=C
≈
−1.

The unknown fields are the displacements u, from which the total distortions β
∼

,

and, the stresses σ
∼

are derived. The displacement field inside V can be decomposed

into the displacements from the remote boundary load ud and internal (or disturbed)
displacements u(x). In the following, one only focuses on the internal field u(x) due
to the disturbances enhanced by plastic sources in the medium through the resolution
of the Navier-type equation (here written in index notation):

Ci jklul,k j(x)−Ci jklβ
p
lk, j(x) = 0,

ud
i (x) = 0 on ∂ V.

(5.16)

In order to solve Eq. (5.16) for a given plastic field in the grain Vg, two techniques
based on the Fourier transforms or the Green functions are adopted in the following.

5.3 Resolution Methods

5.3.1 Fourier Transforms

Following [36] or [34], the problem can be solved using the Fourier transform
method, where displacement field u or distortion field β

∼
are solved in the Fourier

space and then in the real space using the inverse Fourier transform theorem. Let ξ

be the Fourier vector of magnitude ξ =
√

ξ · ξ and of components ξ i in cartesian

coordinates. One denotes i as i =
√
−1.

Let ũ(ξ ) and β̃ p

∼
(ξ ) be the Fourier transforms of the displacement and the plastic

distortion defined by:

ũ(ξ ) =
∫

V
u(x)e−iξ ·x dV,

β̃ p

∼
(ξ ) =

∫

V
β p

∼
(x)e−iξ ·x dV.

(5.17)

Conversely, the inverse Fourier transforms are defined as:

u(x) =
1

8π 3

∫

Vξ
ũ(ξ )e+iξ ·x dVξ ,

β p

∼
(x) =

1
8π 3

∫

Vξ
β̃ p

∼
(ξ )e+iξ ·x dVξ .

(5.18)
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Then transforming Eq.(5.16) in the Fourier space gives the following algebraic equa-
tion to solve:

Ci jkl ξ l ξ jũk(ξ ) =−iCi jkl ξ j β̃ p
lk(ξ ), (5.19)

or in the more compact form:

ũk(ξ ) = G̃ik(ξ )X̃i(ξ ), (5.20)

where G̃ik(ξ ) =
(
Ci jkl ξ l ξ j

)−1
and X̃i(ξ ) is defined as:

X̃i(ξ ) =−iCi jmnξ j β̃ p
nm(ξ ). (5.21)

G̃
∼
(ξ ) can be identified as the Fourier transform of the elastic Green tensor [36].

Then, the problem solutions in the general case write:

uk(x) =
−i

8π 3

∫

Vξ
ξ jCi jmnG̃ik(ξ )β̃

p
nm(ξ )e+iξ ·x dVξ ,

β lk(x) =
1

8π 3

∫

Vξ
ξ l ξ jCi jmnG̃ik(ξ )β̃

p
nm(ξ )e+iξ ·x dVξ .

(5.22)

Assuming isotropic elasticity defined by shear modulus µ and Poisson’s ratio ν ,
G̃
∼

and X̃ read:

G̃ik(ξ ) =
1
µ

(
δ ik

ξ 2 −
1

2(1− ν )
ξ iξ k

ξ 4

)
, (5.23)

X̃i(ξ ) =−i2µ ξ j

(
ε̃ p

i j(ξ )+
ν

1− 2ν
δ i j ε̃ p

kk(ξ )
)
. (5.24)

Then, regarding isotropic elasticity the problem solutions for displacement and
distortion fields can be written:

uk(x) =
−i

4π 3

∫

Vξ

(
δ ikξ j

ξ 2 −
1

2(1− ν )
ξ iξ jξ k

ξ 4

)

·
(

ε̃ p
i j(ξ )+

ν
1− 2ν

δ i j ε̃ p
qq(ξ )

)
e+iξ ·x dVξ ,

β lk(x) =
1

4π 3

∫

Vξ

(
δ ikξ jξ l

ξ 2 − 1
2(1− ν )

ξ iξ jξ kξ l

ξ 4

)

·
(

ε̃ p
i j(ξ )+

ν
1− 2ν

δ i j ε̃ p
qq(ξ )

)
e+iξ ·x dVξ .

(5.25)

In the peculiar case where β p
qq = 0 (plastic incompressibility) then Eq.(5.25) re-

duces to:
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uk(x) =
−i

4π 3

∫

Vξ

(
δ ikξ j

ξ 2 −
1

2(1− ν )
ξ iξ jξ k

ξ 4

)
ε̃ p

i j(ξ )e
+iξ ·x dVξ ,

β lk(x) =
1

4π 3

∫

Vξ

(
δ ikξ jξ l

ξ 2 − 1
2(1− ν )

ξ iξ jξ kξ l

ξ 4

)
ε̃ p

i j(ξ )e
+iξ x dVξ .

(5.26)

The internal stress field τ
∼
(x) is derived from the Hooke’s law:

τ i j(x) = 2µ
(

ε i j(x)− ε p
i j(x)+

ν
1− 2ν

δ i jε kk(x)

)
. (5.27)

Applying Parseval’s identity to the last term of Eq.(5.10) containing internal
stresses named φ int allows us to compute it as:

φ int =−
1

2V

∫

V
τ
∼
(x) : ε p

∼
(x)dV =− 1

8π 3

1
2V

∫

Vξ
τ̃
∼
(ξ ) : ε̃ p?

∼
(ξ )dVξ , (5.28)

where ε̃ p?
∼

(ξ ) is the complex conjugate of ˜ε p
∼
(ξ ). Furthermore τ̃

∼
(ξ ) writes:

τ̃ i j(ξ ) = 2µ
(

ε̃ i j(ξ )− ε̃ p
i j(ξ )+

ν
1− 2ν

δ i j ε̃ kk(ξ )
)
, (5.29)

with ε̃ i j(ξ ) = 1
2 i
(

ξ jG̃ki(ξ )+ ξ iG̃k j(ξ )
)

X̃k(ξ ).
The methodology to determine the whole mechanical fields and elastic energy is

the following. The first step is to compute the Fourier transforms of plastic distor-
tions. Then, in order to calculate the displacement u(x) the integration is performed
in the Fourier space. The total strain ε

∼
(x) can be computed either from the displace-

ment in the real space or in the Fourier space. Then, the internal stresses τ
∼
(x) are

computed in the real space using the Hooke’s law. τ̃
∼
(ξ ) is also calculated to ob-

tain the internal elastic energy Φ int = V.φ int from Parseval’s identity (Eq. (5.29)).
The main difficulties arise from the calculation of β̃ p

∼
(ξ ) and from the mathemati-

cal integrations linked to inverse Fourier transforms. One gives in the next sections
different situations for which the calculations are carried out analytically to derive
internal stresses and internal elastic energies in the case of discrete distributions of
intra-granular dislocations loops.

5.3.2 Green Functions

The resolution method based on Green functions G
∼

associated to an infinite medium

of elastic moduli C
≈

is briefly recalled. From Eq. (5.16) and introducing G
∼

, the total

distortions β
∼
(x) write in index notations [6]:
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β ji(x) =−
∫

V
Gki,l j

(
x− x′

)
Cklmnε p

mn(x
′)dV ′. (5.30)

Total strains ε
∼
(x) and rotations ω

∼
(x) are deduced from Eq. (5.30):

ε
∼
(x) =

∫

V
Γ
≈
(x− x′) : C

≈
: ε p

∼
(x′)dV ′,

ω
∼
(x) =

∫

V

AΓ
≈
(x− x′) : C

≈
: ε p

∼
(x′)dV ′

(5.31)

where Γ
≈

et AΓ
≈

are respectively the so-called symmetric and skew parts of the mod-

ified Green tensor as defined by Kröner [28].

Γ i jkl
(
x− x′)

)
=−1

2

(
Gik, jl(x− x′)+G jk,il(x− x′)

)
,

AΓ i jkl
(
x− x′)

)
=−1

2

(
Gik, jl(x− x′)−G jk,il(x− x′)

)
.

(5.32)

Using Eq. (5.31) and the Hooke’s law gives the internal stresses τ
∼
(x) as functions

of plastic fields:

τ
∼
(x) =

∫

V
l
≈
(x− x′) : ε p

∼
(x′)dV ′, (5.33)

where l
≈
(x− x′) is given by:

l
≈
(x− x′) =−C

≈
δ (x− x′)+C

≈
: Γ
≈
(x− x′) : C

≈
. (5.34)

Replacing τ
∼
(x) in Eq. (5.10) by Eq. (5.33) gives the expression for the Helmholtz

free energy per unit volume as a function of Σ
∼

and ε p
∼
(x):

φ
(

E
∼
, ε p
∼
(x)
)
=

1
2

(
E
∼
−E p
∼

)
: C
≈

:
(

E
∼
−E p
∼

)

− 1
2V

∫

V

[∫

V
l
≈
(x− x′) : ε p

∼
(x′)dV ′

]
: ε p

∼
(x)dV.

(5.35)

The complementary energy per unit volume writes according to Eq. (5.15):

ψ
(

Σ
∼
, ε p

∼
(x)
)
=

1
2

Σ
∼

: S
≈

: Σ
∼
+ Σ
∼

: E p
∼

+
1

2V

∫

V

[∫

V
l
≈
(x− x′) : ε p

∼
(x′)dV ′

]
: ε p

∼
(x)dV.

(5.36)
Equations (5.33), (5.35) and (5.36) indicate the complexity of interactions between
plastic heterogeneities.
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5.4 Continuum Theory of Defects and Mean Field Approaches

Several physical mechanisms can be responsible for plastic deformation of metals
like creation, motion and annihilation of dislocations. A the level of one grain within
the polycrystal (for which the grain size is supposed larger than the induced inter-
nal lengths due to plastic deformation mechanisms), plastic flow results from the
collective motion of dislocations on well defined crystallographic slip planes [37].
Given the complexity of dislocated crystals (dislocation pile-ups, cells, tangles etc.),
piecewise mean plastic fields over the grains lead to strong simplifications.

The kinematics adopted in the framework of crystal plasticity is often limited to
mean crystallographic slip which allows to retrieve the overall plastic behavior of
polycrystals only [8] but does not capture local effects and size effects. The plastic
distortion β p

∼
(x) induced by one dislocation loop is [24]:

β p

∼
(x) = b⊗ nδ (S), (5.37)

where δ (S) denotes the Dirac delta function in the n direction:

δ (S)≡
∫

S

δ (x− x′)dS(x′). (5.38)

Let us consider a crystal (single crystal or grain within a polycrystal) with N
slip systems. Each system (s) is characterized by a unit vector normal to the slip
plane n(s) and a unit vector in the slip direction m(s). b(s) = b(s)m(s) is the Burgers
vector associated to (s) where b(s) is its magnitude. From Eq. (5.37), one has for
each system (s):

β p

∼
(x) = b(s)⊗ n(s)δ (S(s)), (5.39)

If several dislocations with same Burgers vector b(s) = b and unit normal n(s) are
present in the crystal volume Vc, then the average value of β p

∼
over Vc is:

β p

∼
= γ (s)m(s)⊗ n(s), (5.40)

where γ (s) is the averaged slip on (s):

γ (s) =
b
Vc

∫

Vc

δ (S(s))dV. (5.41)

The contributions of the N slip systems in the crystal give:

β p

∼
=

N

∑
s=1

γ (s)m(s)⊗ n(s). (5.42)
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This averaging scheme leads to a homogeneous plastic deformation inside the
crystal volume. A lot of microstructural details are consequently lost, especially the
discrete nature of plastic deformation as well as the short range interactions between
dislocations. From the continuum mechanics of defects developed by Kröner [25,
27], a dislocation density tensor α

∼
(as first introduced by Nye [38]) can be associated

to any β p

∼
:

α
∼
=−Curl

∼
β p

∼
, or , α i j =− ∈ilm β p

m j,l , (5.43)

where ∈ilm is the permutation operator. Eq. (5.43) is a general definition whatever
the physical content of β p

∼
. That’s the reason why Kröner [25] introduced the notion

of ”quasidislocation”.
The mean field Eshelby-Kröner’s plastic inclusion concept [14, 26] considers an

isolated grain I with uniform plastic distortion β p

∼
I . This grain is embedded in a

matrix M with uniform plastic distortion β p

∼
M . Hence, the plastic distortion jump at

the interface grain/matrix [β p

∼
] is:

[β p

∼
] = β p

∼
I− β p

∼
M. (5.44)

Using Eq. (5.43), this jump leads to a singular distribution of interfacial quasidislo-
cation density:

α S
i j =∈ilm [β p

m j]nl , (5.45)

where n is the unit vector outward normal to the interface in the direction of the
matrix.

Let us briefly recall the plastic Eshelby’s ellipsoidal inclusion concept [14] as the
basic ingredient of the so-called mean field approaches like the Equivalent Inclusion
Method [36], the Mori-Tanaka estimate [3, 35, 49], the Self-Consistent scheme [7,
19, 26] etc. Here, only the inclusion I is subjected to a given uniform plastic strain
ε p
∼

I , and, ε
∼

I , ω
∼

I are respectively the mean strains and rotations on V I . From Eqs.

(5.31) and from [14]:
ε
∼

I = T
≈

II : C
≈

: ε p

∼
I ,

ω
∼

I = Q
≈

II : C
≈

: ε p

∼
I ,

(5.46)

where:

T II
i jkl =

1
V I

∫

V I

{∫

V I
Γ i jkl(x− x′)dV ′

}
dV,

QII
i jkl =

1
V I

∫

V I

{∫

V I

AΓ i jkl(x− x′)dV ′
}

dV.

(5.47)
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In Eq. (5.47), T
≈

II : C
≈

is the Eshelby tensor S
≈

Ei associated to C
≈

for interior points

to the inclusion. The internal stresses inside the inclusion τ
∼

I are obtained from the

Hooke’s law:
τ
∼

I =C
≈

:
(

S
≈

Ei− I
≈

)
: ε p

∼
I , (5.48)

where I
≈

is the fourth order unit tensor Ii jkl =
1
2

(
δ ikδ jl + δ il δ jk

)
.

From the previous formulas, one considers now a spherical grain of radius R
with volume Vg embedded in an infinite medium V where no macroscopic strain is
imposed on its boundary ∂ V . Furthermore, only one single slip system is considered
and characterized by the unit vector normal to the slip plane n=(0,0,1) and the unit
vector along the slip direction m = (1,0,0) . Then, the only non zero plastic strain
components are shear components ε p

13(x) = ε p
31(x) =

1
2 β p

31(x) defined as:

ε p
13(x) =

{
ε 0

13 if x ∈Vg

0 if x /∈Vg,
(5.49)

where ε 0
13 = 1/2γ . In this mean field representation, γ constitutes a uniform plastic

shear produced by glide dislocation loops continuously and uniformly distributed
inside the grain. Regarding internal stress for interior points to the grain, the only
non zero component τ 0

13 is then uniform and depends on ε 0
13 and elastic constants. It

comes directly from Eq. (5.48):

τ 0
13 =−2µ

7− 5ν
15(1− ν )

ε 0
13. (5.50)

For exterior points to the grain, the internal stress is no more uniform [15] and for the
case of the sphere, its expression is computed using the formulas recently developed
in [22]. In this representation, the internal elastic energy named Φ 0

int simply yields
after Eq.(5.11):

Φ 0
int = 8µ π R3 7− 5ν

45(1− ν )
(
ε 0

13

)2
. (5.51)

The mean field model of plastic source due to dislocation loops consists in a uniform
plastic strain inside the grain for which the internal stress field and the internal elas-
tic energy are related to the classic Eshelby tensor for a spherical inclusion. The two
following discrete approaches are set up to describe the micro-plastic deformation
of metals and the collective formation of slip bands [37] inside grains.
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5.5 Modeling Intragranular Slip Bands as Super-dislocation
Loops Constrained by Grain Boundaries

The first approach is based on the presence of discrete distributions of circular super-
dislocation loops constrained by grain boundaries. Many static configurations are
possible like homogeneous and periodic distributions corresponding physically to
homogeneous glide (e.g. in the stage I of FCC crystals), or, localized slip (observed
during the stage II of FCC metals), or, more general non uniform slip line pattern as
observed by Atomic Force Microscopy (AFM). Here, the Fourier transform method
is used to calculate the elastic fields.

5.5.1 Elastic Fields

One first considers the case of one circular glide loop of radius a in the local frame
(x1,x2,0) associated to the slip plane. The loop is characterized by a Burgers vector
b = (b,0,0) and a unit normal n = (0,0,1). The only non zero component of β p

∼
is

β p
31(x) = bH

(
1− ρ

a

)
δ (x3), (5.52)

where ρ et x3 are respectively the radial coordinate and the altitude in cylindrical
coordinates (ρ , θ ,x3) defined by (x1 = ρ cos θ ,x2 = ρ sin θ ,x3). δ (x3) is the Dirac
delta function in the direction (x3) and H is the Heaviside function:

H
(

1− ρ
a

)
=

{
1 si ρ ≤ a

0 si ρ > a.
(5.53)

The Fourier transform of Eq. (5.52) reads:

β̃ p
31(ξ ) = 2π ba

J1 (aq)
q

, (5.54)

where ξ 1 and ξ 2 are defined by ξ 1 = qcos φ , ξ 2 = qsin φ with q =
√

ξ 2
1 + ξ 2

2 , J1 is
the Bessel function of first kind. Using Eq. (5.25), the displacements read:

uk(x) =
−i

4π 3

∫

Vξ

(
δ 1kξ 3 + δ 3kξ 1

ξ 2 − 1
1− ν

ξ 1ξ 3ξ k

ξ 4

)
ε̃ p

13(ξ )e
+iξ ·x dVξ , (5.55)

In cylindrical coordinates, dV = ρ dρ dθ dx3 and (ρ , θ ,x3) are defined by x1 =

ρ cos θ , x2 = ρ sin θ , x3 = x3, and ρ =
√

x2
1 + x2

2. The mathematical integrations
are performed using the cylindrical coordinates of the Fourier space [4]:
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uρ =
bcos θ sgn(x3)

4(1− ν )

(
2(1− ν )J(1,0;0)− |x3|

a
J(1,0;1)+

|x3|
ρ

J(1,1;0)

)

uθ =
bsin θ sgn(x3)

4(1− ν )

(
−2(1− ν )J(1,0;0)+

|x3|
ρ

J(1,1;0)

)

u3 =
bcos θ

4(1− ν )

(
(1− 2ν )J(1,1;0)+

|x3|
a

J(1,1;1)

)
.

(5.56)

where sgn(x3) = +1 for x3 > 0 and sgn(x3) = −1 for x3 < 0. J(m,n; p) are the
Lipschitz-Hankel integrals [13, 44] defined by:

J(m,n; p) =
∫ +∞

0
Jm(Q)Jn(ρ Q)e−

Q|x3|
a Qp dQ,

with ρ = ρ /a, Q = aq and Jm(Q) are Bessel functions of order m (m, n and p are
integers). The complete expressions of the elastic fields ε e

∼
(x) and ω e

∼
(x), as well as

the internal stresses τ
∼
(x) are easily derived from Eq. (5.56) and are given in [4] and

[39].
The internal elastic energy of one loop Φ 1d

int is calculated independently using the
Parseval’s identity:

Φ 1d
int =

µ b2

16π 3

∫

Vξ

(
ξ 2

2

ξ 2 +
2

1− ν
ξ 2

1 ξ 2
3

ξ 4

)
|θ̃ 1d(ξ )|2 dVξ , (5.57)

with |˜θ 1d(ξ )|2 = 4π 2a2 (J1 (aq))2 /q2 (from Eq. (5.54)).
After introducing the dislocation core radius, the mathematical integration gives:

Φ 1d
int =

µ b2

2
a

2− ν
1− ν

1
k

((
1− k2

2

)
K(k)−E(k)

)
, (5.58)

where k2 = a2

a2+r2
c
, K(k) and E(k) are respectively first order and second order ellip-

tic integrals. Here, one follows De Wit [12] by setting rc to 0.5b to take into account
the dislocation core energy.

Now, one focuses the study on a distribution of periodic circular glide dislocation
loops lying in successive planes parallel to (x1,x2,0) along the grain of radius R (Fig.
5.2). Successive loops are spaced by a given distance h. All loops are constrained by
the spherical grain boundary (considered as no penetrable to dislocations) and have
same Burgers vector b defined as b=(b,0,0) and same unit normal n=(0,0,1). The
first objective is to derive the plastic distortion field for this periodic distribution. As
shown in Fig. 5.2, an odd number (2N + 1) of circular loops is considered so that
the only non zero plastic distortion component is:

β p
31(x) = b

+N

∑
n=−N

H
(

1− ρ
a(n)

)
δ (x3− nh), (5.59)



5 Internal Length Scale Effects on the Local and Overall Behavior of Polycrystals 113

Fig. 5.2 Spherical grain with
radius R and periodic dis-
location loops spaced by h.
The grain is embedded in an
infinite elastic medium [4].

x3

R

n

ρ

x2

h

x1

where a(n) =
√

R2− (nh)2 is the radius of the loop at altitude x3 = nh. After a few
calculations, the Fourier transform reads:

β̃ p
31(ξ ) = bθ̃ d(ξ ), (5.60)

where:

θ̃ d(ξ ) = 2π
+N

∑
n=−N

e−inhξ 3a(n)
J1

(
a(n)q

)

q
. (5.61)

The internal stresses and elastic distortions are simply obtained by summing the
individual contributions of all concentric circular glide loops of consecutive radii
a(n) at altitudes x3 = nh for n varying from −N to N. The peculiar case of n = 0
gives the internal elastic stress field of one loop centered at the origin.

For the distribution depicted in Fig. 5.2, the averaged plastic distortion over the
grain volume Vg contains the areas (denoted S(n)) formed by the circular loops of
radius a(n):

β p
31

Vg
= b

+N
∑

n=−N
S(n)

Vg
=

3
4

b
R

+N

∑
n=−N

(
1−
(

nh
R

)2
)
, (5.62)

One applies the Parseval’s identity to find the internal elastic energy due to the
distribution of discrete loops denoted Φ d

int :

Φ d
int =

µ b2

16π 3

∫

Vξ

(
ξ 2

2

ξ 2 +
2

1− ν
ξ 2

1 ξ 2
3

ξ 4

)
|θ̃ d(ξ )|2 dVξ , (5.63)

with:
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|θ̃ d(ξ )|2 = 4π 2
+N

∑
n=−N

a(n)
2

(
J1

(
a(n)q

))2

q2

+ 8π 2
N−1

∑
n=−N

+N

∑
m=n+1

cos((m− n)hξ 3)a
(n)a(m)

J1

(
a(n)q

)
J1

(
a(m)q

)

q2 .

(5.64)

Thus, the elastic energy derived in Eq. (5.63) contains two contributions as seen
in Eq. (5.64). The first term can be identified as the self energies of the 2N + 1
dislocation loops which are derived from the expression for one loop, and, the sec-
ond term can be identified as the contribution of interaction energies between the
loops. Considering two coaxial circular glide loops of respective radii a(n) and a(m)

and separated by a distance d, one has (superscript ”2d” denotes ”2 discrete coaxial
dislocation loops”):

|θ 2d(ξ )|2 = 4π 2
[

a(n)
2

(
J1

(
a(n)q

))2

q2 + a(m)2

(
J1

(
a(m)q

))2

q2

]

+ 8π 2 cos(dξ 3)a
(n)a(m)

J1

(
a(n)q

)
J1

(
a(m)q

)

q2 .

(5.65)

The first two terms correspond to the self-energies Φ (n)or(m)
sel f of the loops with radii

a(n)or(m) computed using Eq. (5.58). The last term represents their interaction energy

Φ (nm)
inter which writes:

Φ (nm)
inter =

µ b2a(n)a(m)

2π

∫

Vξ

(
ξ 2

2

ξ 2 +
2

1− ν
ξ 2

1 ξ 2
3

ξ 4

)
cos(dξ 3)

J1

(
a(n)q

)
J1

(
a(m)q

)

q2 dVξ .

(5.66)

The mathematical integration of Eq. (5.66) gives [4]:

Φ (nm)
inter = µ b2

√
a(n)a(m)

2− ν
1− ν

1
k

((
1− k2

2

)
K(k)−E(k)

)

− µ b2

4
1√

a(n)a(m)

d2k
1− ν

((
1− k2

2

)(
1− k2)−1

E(k)−K(k)

)
,

(5.67)

with:

k2 =
4a(n)a(m)

(
a(n)+ a(m)

)2
+ d2

. (5.68)

Thus, by carefully summing self- and interaction- energies, one obtains the elastic
energy of the discrete distribution Φ d

int as:
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Φ d
int =

+N

∑
n=−N

Φ (n)
sel f +

N−1

∑
n=−N

+N

∑
m=n+1

Φ (nm)
inter . (5.69)

In the next section, various distributions corresponding to different values of spatial
period h and different grain radii R will be considered.

5.5.2 Theoretical Results

Figure 5.3 displays the internal stress contours in the plane (x1,x2) for the shear com-
ponent τ 13 at altitude x3 = 0.5R in case where different numbers of discrete disloca-
tion loops spread in the grain (of volume Vg). By construction, the number of loops
is always an odd number. Here, one respectively considers 3 loops (Fig. 5.3(a)), 11
loops (Fig. 5.3(b)) and 101 loops (Fig. 5.3(c)). Now, τ 13 is normalized with µ ε 0

13 to
be compared with the Eshelby’s solution at same average plastic strain ε 0

13 over the
grain. One can show using the equations that the ratio τ 13/ε 0

13 is independent of the
value of the grain radius R. Hence, the result of Fig. 5.3 holds whatever the value
of R. For comparison, Fig. 5.3(d) displays the case of the Eshelby’s solution of uni-
form plastic strain ε 0

13 inside the grain. As shown in Fig. 5.3(a,b), it seems that the

Fig. 5.3 Contours for internal stress component τ 13 normalized with µ ε 0
13 at x3 = 0.5R for different

number of loops. Comparison with the Eshelby’s solution at same average plastic strain over the

grain. (x1,x2) are normalized with R(x3) =
√

R2 + x2
3 [4].
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Fig. 5.4 Variation of the internal stress component τ 13 normalized with µ ε 0
13 along the (x3) axis

at ρ = 0 for different number of loops. Comparison with the Eshelby’s solution at same average
plastic strain over the grain [4].

internal stresses due to a distribution of periodic loops in the (x3) direction are al-
most uniform in a region surrounding the center of the sphere (named ”grain core”)
and are highly inhomogeneous in the remaining region close to the grain boundary
(named ”grain boundary layer”). Figure 5.4 displays the variation of τ 13/(µ ε 0

13) (i.e.
the same shear component as on Fig. 5.3) along the (x3) axis as a function of x3/R
for ρ = 0. Fig. 5.3 and Fig. 5.4 clearly show that a gradual increase in the number of
loops inside the grain leads to a reduction of the grain boundary layer thickness (in
the 3D space). The result given by the analytical Eshelby’s solution is retrieved for
a very high number of closely separated loops within the physical limit where dislo-
cation cores do not overlap. This tendency which is observed for τ 13 is also valid for
other internal stress components as well as for the volume density of elastic energy
defined by wel(x) =

1
2 σ
≈
(x) : ε e

≈
(x).

Unlike the internal stress fields, the elastic energy, once normalized with

8µ π R3(ε 0
13)

2

to be compared with the grain size independent Eshelby’s solution, is not invariant
with R (Fig. 5.5). This effect arises from the expression of the self-energy (Eq.
(5.58)) which accounts for the dislocation core parameter rc. As the Burgers vector
is the same for each loop whatever the grain size, this variation with R is all the more
important as grain size is decreased. For a periodic distribution of loops, it is seen
from Fig. 5.5 that the normalized internal elastic energy decreases for an increasing
number of loops inside the grain. The convergence towards the Eshelby’s solution
now depends on R. The Eshelby’s solution with a uniform plastic strain ε 0

13 inside
the grain is actually retrieved numerically for the distance hmin ' 3.332b. This value
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Fig. 5.5 Evolution of the normalized elastic energy for a periodic distribution of single glide dis-
location loops as a function of the number of loops inside the grain for various grain sizes. Com-
parison with the Eshelby’s solution at same average plastic strain over the grain [4].
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Fig. 5.6 Evolution of the normalized elastic energy for a periodic distribution of single glide dis-
location loops as a function of 1/R for constant average plastic strain within the grain ε 0

13 (i.e.
different values for h). Comparison with the Eshelby’s solution at same average plastic strain over
the grain [4].

is only a numerical value which has no physical meaning as the annihilation distance
between edge dipoles is found to be on the order of some tens atomic distances [16].

Figure 5.6 shows the evolution of the normalized elastic energy with R for con-
stant values of mean plastic strain ε 0

13 and distance h between loops. A 1/R scaling



118 Stéphane Berbenni

law is observed. This grain size effect can be written as follows:

Φ (N) = α
1
R
+ Φ (N)

Eshelby. (5.70)

Φ (N) denotes the ”normalized” elastic energy. As observed in Fig. 5.6, the coeffi-
cient α depends on ε 0

13. Here, ε 0
13 is fixed by the chosen value for h according to

Eq. (5.62). The relation between α and ε 0
13 (or h) can be easily identified using Fig.

5.6. Here, α decreases with h which means that the grain size effect is even less
pronounced that the values of h are low. Thus, Fig. 5.6 demonstrates that a ”mi-
crostructural error” occurs when the discrete nature of slip is neglected and when
plastic slip is assumed homogeneous over the grain. The most important result lies
in the grain size dependence of the elastic energy linked to the discrete microstruc-
ture.

5.5.3 Experimental Comparisons

The experimental observations of deformed polycrystalline metals show that all
grains are quickly plastically deformed through the presence of slip line patterns.
In order to evaluate the influence of discrete intra-granular plasticity on the elas-
tic fields like lattice rotations, one has considered particular grains in pure poly-
crystalline Nickel deforming according to one predominant slip system. Thus, the
discrete distribution of intra-granular super-dislocation glide loops can be charac-
terized according to a single slip system by a given discrete distribution for slip
band spacing (denoted h(n)) depending on the spatial positions of slip bands (n) in-
side the grain. This distribution have been measured on surface reliefs by Atomic
Force Microscopy (AFM) (Fig. 5.7(a)). In the modeling, these particular grains are
supposed to be embedded in an infinite elastic matrix representing the surrounding
grains. Thus, in spite of the potential presence of inter-granular plasticity effects,
these ones are neglected in the present micromechanical model in order to focus
only on the effects of the intra-granular discrete microstructure on the rotations in-
side the grain. In the following, discrete plasticity in the neighboring grains is then
disregarded.

Figure 5.8 reports the profile of the surface along a line perpendicular to the slip
lines (Fig. 5.7(a)). It is noteworthy that a background correction was performed.
Steps due to the emergence of dislocations are observed on the sample surface as
peaks labelled ”a” to ”o”. The SEM micrograph reported in Fig. 5.7(b), which cor-
responds to the peak ”g” on Fig. 3a, shows that each peak of the AFM profile corre-
sponds to several discrete slip lines. So, it is important to denote that the resolution
does not allow measuring the step produced by a single slip line as observed in Fig.
5.7(b). The steps observed by AFM correspond to slip bands which can be modeled
by non uniform description of super-dislocation loops characterized by its ”own
Burgers vector” with the magnitude B(n) = k(n)b, where b is the magnitude of the
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Burgers vector b for a perfect dislocation. Like in Fig. 5.2, the plastic distortion is
defined in the local frame associated with the most active slip system of unit normal
n = (0,0,1)) and with B = (B1,0,0) = (B,0,0) but the distribution in not periodic
anymore:

β p
31 = ∑

n
B(n)

1 n3δ (S(n)) = ∑
n

B(n)H
(

1− ρ
a(n)

)
δ
(

x3

({
h(n)
}))

, (5.71)

where a(n) =
(

R2− x3

({
h(n)
}))0.5

is the loop radius at altitude x3

({
h(n)
})

de-

termined by a spatial distribution of non equally spaced slip bands denoted
{

h(n)
}

.

δ
(

x3

({
h(n)
}))

is the Dirac delta function in the (x3) direction at the altitude

x3

({
h(n)
})

. The other notations are the same as in Eq. (5.59).

In order to compare experimental data with the results of the presented theory,
lattice rotation arising from the presence of dislocations has to be determined in
each point of the grain represented in Fig. 5.9. This is performed by making a dis-
crete sum over all the super-dislocation loops present in the grain using of the elastic
fields and deriving the misorientation angles in relation to an orientation chosen in
the center of the grain. The angles were calculated and compared to EBSD mea-
surements in [39].

Fig. 5.7 (a) AFM micrograph: Deformation microstructure of a polycrystalline pure nickel sample
at 1.5% of macroscopic strain. The slip bands with the highest amplitudes are labeled ”a” to ”o”.
(b) SEM micrograph of slip lines constituting the slip band labeled ”g” in (a)
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To compare the local intra-granular misorientations calculated with the microme-
chanical model to the EBSD measurements, a line parallel to the slip bands in the
observation plane has been selected (Fig. 5.9(b)). The measured variations of these
misorientations along this line with respect to a reference point chosen in the grain
center are first reported in Fig. 5.10. A strong variation occurs between near grain
boundary regions (with a maximal misorientation about 1.6 deg) and grain core
(zero misorientation). In Fig. 5.11, the calculated misorientations are reported using
the previous assumptions (super-dislocation loops, etc.) in the case of non uniform
slip bands spacing distribution as measured on surface relief by AFM. It can be
denoted that the model results fit quite well the experimental results. Especially, at
grain boundary (left side in Fig. 5.11 from ”distance=0 µ m”), the perturbed zone
size for misorientation and the order of magnitude of the maximal misorientation at
grain boundary is consistent with the experimental value. By taking into account the
discrete nature of plasticity at the mesoscale, the model is then able to predict the
major features of intra-granular elastic fields.

5.6 Modeling Intragranular Slip Bands as Plastic Oblate
Spheroids Constrained by Grain Boundaries

The second discrete micromechanical approach treats intra-granular slip bands in
single slip configurations as discrete distributions of plastic micro-regions (intra-
granular inclusions) of oblate spheroidal shapes. In contrast with super-dislocation
loops, the plastic distortion inside each oblate spheroid is considered as uniform (not

Fig. 5.8 AFM profile of the slip bands inside the grain shown in Fig. 5.7.
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singular), i.e. it results from an averaging procedure performed on each slip band.
The main advantage is not only to take into account the slip band length effect on
mechanical fields but also the one due to their aspect ratios.

5.6.1 Elastic Fields

One considers that plastic deformation is distributed along slip bands inside an in-
dividual grain. Due to curved grain boundaries, one assumes that the slip bands
are described by oblate spheroids (Fig. 5.12) which are considered periodic, with
a characteristic period h, inside a spherical grain of radius R and volume Vg (Fig.
5.13). The use of oblate spheroids allows to take advantage of the Eshelby’s proper-
ties for ellipsoidal inclusions [14]. One uses the following terminology: the length
of the largest half axis of oblate spheroid (denoted by ’a’ in Fig. 5.12) is called the
oblate radius or the slip band radius, and the length of the smallest half axis of oblate
spheroid (denoted by ’c’ in Fig.5.12) is called the oblate thickness or the slip band
thickness for the sake of simplicity. As for super-dislocation loops, one considers a
single slip system with unit vector m in the slip direction and unit vector n normal
to the slip plane. Thus, this static configuration implies that all the slip bands I of
volume VI are coplanar and elongated in the slip plane with the smallest half axis c
in the direction of n.

Hence, two major non-dimensional internal length scale parameters inherent to
the microstructure are introduced. The first one is h/R which characterizes the spa-
tial distribution of slip bands. In this study, these ones are considered equally spaced
for the sake of simplicity. The second one is c/R which dictates the morphology of

Fig. 5.9 : (a) AFM micrograph: Deformation microstructure of a particular grain in a polycrys-
talline pure nickel sample with 1.5% plastic strain (b) EBSD measurement of intra-granular mis-
orientations in relation to a reference point in the grain center after 1.5% of global plastic strain.
The dotted line serves as reference for the spatial evolution of intra-granular misorientations [39].
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Fig. 5.10 EBSD-OIM measurement: Intra-granular misorientation (in deg) in relation to a refer-
ence point in the grain center along a line parallel to the slip lines in the observation plane after
1.5% strain (see Fig. 5.9(b)) [39].

Fig. 5.11 Theoretical intra-granular misorientations (in deg) in the case of a non-uniform distri-
bution of loops at 1.5% of macroscopic strain. The values are given with respect to a reference
point in the grain center along a line parallel to the slip lines in the observation plane (Fig. 5.9(b))
and at 1.5µ m from the central super-loop. Inset: Effect of the distance from the central loop on the
theoretical intra-granular misorientations along the aforementioned line parallel to the slip lines
[39].
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slip bands, i.e. their aspect ratio. As a consequence, the volume fraction of slip bands
inside the grain depends on both parameters.
The associated plastic strain is defined through the Schmid tensor R

∼
= 1

2 (m⊗ n+ n⊗m)

and the slip γ (x) by:
ε p

∼
(x) = R

∼
γ (x), (5.72)

where:

γ (x) = ∑
I

γ I θ I(x) =

{
γ I if x ∈VI,

0 if x /∈VI,
(5.73)

and where θ I(x) is the characteristic function. It depends on the location of the slip
band I, on the volume VI , and, on the fact that the bands are constrained by the grain
boundary. Hence, Eq. (5.72) reads:

ε p

∼
(x) = ∑

I
ε p

I
∼

θ I(x), (5.74)

where ε p
I
∼
= R
∼

γ I is the plastic strain in the Ith slip band. So, the average plastic strain

over the grain is:
ε p
∼

g
= ∑

I
f I ε p

I
∼
, (5.75)

where f I =VI/Vg is the volume fraction of the Ith slip band in the grain. The macro-
scopic strain is deduced from Eq. (5.74) by:

E p
∼

= f gε p
∼

g
, (5.76)

where f g =Vg/V is the grain volume fraction.
Now, if one uses Eq. (5.74) in Eq. (5.33), the average internal stresses over a

given slip band N is:
τ
∼

N = ∑
I

L
≈

NI : ε p
I
∼
, (5.77)

where according to Eq. (5.34):

L
≈

NI =
1

VN

∫

VN

[
−C
≈

θ I(x)+C
≈

:
∫

VI

(
Γ
≈
(x− x′)

)
: C
≈

dV ′
]

dV. (5.78)

Fig. 5.12 A slip band is rep-
resented by an oblate spheroid
with half axes (a,a,c) .
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Fig. 5.13 Distribution of slip bands with individual volumes VI and spatial period h constrained
by a spherical grain with radius R. The plastic strain in each band is due to slip in the direction of
the perfect Burgers vector b in the single slip plane of unit normal n. The grain is embedded in an
infinite elastic matrix.

Finally, the expression for τ
∼

N is deduced from Eq. (5.78):

τ
∼

N =−C
≈

:
[

I
≈
− S
≈

esh,N
]

: ε p
N
∼
+ ∑

I
I 6=N

C
≈

: T
≈

NI : C
≈

: ε p
I
∼
. (5.79)

In the last equation, S
≈

esh,N = T
≈

NN : C
≈

is the Eshelby tensor for an oblate spheroid

and T
≈

NI is expressed by:

T
≈

NI =
1

VN

∫

VN

∫

VI

Γ
≈
(x− x′)dV ′dV. (5.80)

Now, using Eqs. (5.74) and (5.76) in Eq. (5.36) gives:

ψ
(

Σ
∼
, ε p

∼
(x)
)
=

1
2

Σ
∼

: S
≈

: Σ
∼
+ f gΣ

∼
: ε p
∼

g
+

1
2

f g ∑
N

∑
I

f N ε p
N
∼

: L
≈

NI : ε p
I
∼
. (5.81)
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It is noteworthy that the same expression for τ
∼

N as Eq. (5.77) can be retrieved

directly from Eq. (5.81) by computing the driving force associated with the plasti-
cization process (ε p

N
∼

) inside the band N denoted F
∼

N [33, 41]. It writes F
∼

N = ∂ ψ
∂ ε p

N∼

so

that τ
∼

N = 1
f g f N F

∼
N− Σ

∼
.

From the configuration depicted in Fig. 5.13, one considers a spherical grain with
a periodic distribution of slip bands characterized in the coordinates of the active slip
system by the unit vector in slip direction m = (1,0,0) and the unit vector normal
to the slip plane n = (0,0,1). The plastic strains in the Ith slip band ε pI reduces to
two non zero components ε pI

13 = ε pI
31 = 1

2 γ I , so:

ε p
13(x) = ∑

I
ε pI

13 θ I(x), (5.82)

and, from Eq. (5.76):
E p

13 = f g ∑
I

f I ε pI
13 . (5.83)

Again, one considers isotropic elastic properties characterized by Lamé elastic
moduli (shear modulus µ and λ ). For any (i, j) = (1,3), Eq. (5.77) simplifies to:

τ̄ N
13 = 2 ∑

I
LNI

1313ε pI
13 . (5.84)

where:

LNN
1313 = LNN

3113 =−2µ
(

1
2
− Sesh,N

1313

)
(5.85)

LNI
1313 = LNI

3113 = 2µ 2 (T NI
1313 +T NI

1331

)
, if N 6= I, (5.86)

The complementary energy per unit volume reads:

ψ
(

Σ
∼
, ε p

∼
(x)
)
=

1
2

Σ
∼

: S
≈

: Σ
∼
+ 2 f gΣ 13ε p

13

g
+ ψ internal , (5.87)

where:
ψ internal = 2 f g ∑

N
∑

I

f N ε pN
13 LNI

1313ε pI
13 . (5.88)

The expression of Sesh,N
1313 for oblate spheroids is given in [36], and, the expressions

of T NI
1313 and T NI

1331 are computed in [10] reducing these interaction terms to single
integrals and using a Gauss-Legendre algorithm.



5.6.2 Theoretical Results

In order to exhibit the internal length scale effects of the microstructure at a given
macroscopic stress, one compares the results at same E

∼
p, so that the complementary

energy per unit volume only depends on the variations of the internal complemen-
tary energy per unit volume ψ internal defined in Eq. (5.88). In order to simplify
the comparison with the Eshelby’s solution, ψ internal is normalized with respect to
(8π µ R3(ε p

13

g
)2)/V . The average plastic strain over the grain ε p

13

g
is obtained from

Eq. (5.75) and taken equal to the plastic strain ε 0
13 introduced in the uniform plastic

Eshelby’s inclusion (Eq. (5.49)). The normalized internal part of the complemen-
tary energy per unit volume for the Eshelby’s solution associated with a spherical
inclusion gives the constant value (7− 5ν )/(45(ν − 1)) [36]. In these simulations,
ν = 0.3.

Here, one explores the influence of the spatial period h between slip bands on
ψ internal

N for different numbers of bands (from 3 to 99) and for a given grain ra-
dius R. Figure 5.14 represents ψ internal

N as a function of the non-dimensional internal
length scale parameter h/R when c/R is set to 0.01. One observes that for a given
number of slip bands, ψ internal

N reaches a maximum for a critical value of h/R. Fur-
thermore, as the number of bands is increased, this critical value decreases (but does
not scale linearly with h/R), and, the corresponding maximum value for ψ internal

N in-
creases without reaching the Eshelby’s solution. These simulations show that for a
given number of equally-spaced bands in a grain, one can deduce an optimized con-
figuration defined by a critical value of h/R denoted by hopt/R and reported in Table
5.1. The existence of a maximum for ψ internal

N depends on both the spatial distribu-
tion and the morphology of slip bands which act simultaneously in a complex way.
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Fig. 5.14 Normalized internal part of the complementary energy per unit volume (denoted
W internal

N in the text) as a function of non dimensional internal length parameter h/R for various
numbers of slip bands in the grain. Comparison with the Eshelby’s solution (dashed lines).
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Fig. 5.15 Normalized internal part of the complementary energy per unit volume (denoted
W internal

N in the text) as a function of h/R for various numbers of slip bands in the grain and
for 3 different values of c/R (square: 0.001; circles: 0.01; triangles: 0.1). Comparison with the
Eshelby’s solution (dashed lines).

For high h/R values with respect to hopt/R and in the case of a few slip bands, these
ones are located far from each other, and, their morphologies are much different
from the middle to the top of the grain. Thus, the part of ψ internal

N due to self energies
is mainly responsible for low levels of ψ internal

N . Conversely, for low h/R values with
respect to hopt/R, the slip bands are close to each other and their volume fraction
in the grain becomes important which leads to low local slip in each band. In this
case, the part of ψ internal

N due to interaction energies is predominant and monitors a
decrease of ψ internal

N for low h/R. Finally, between these two states (low and high
h/R), the opposite contributions of the two parts due to self- and interaction- ener-
gies make occur a configuration of slip bands for which ψ internal

N is maximum. The
influence of the second non-dimensional internal length scale parameter c/R is also
explored in Fig. 5.15. The number of slip bands is limited to 9 because large values
of c/R (up to 0.1) prevent from having more than 9 bands inside the grain. For the
same number of slip bands spreading into the grain, one found that the larger c/R,
the higher ψ internal

N . In addition, the corresponding values of hopt/R are increased as

c/R 0.001 0.01 0.1
3 bands 0.419 0.422 0.460
5 bands 0.296 0.298 0.322
9 bands 0.186 0.187 0.200

49 bands 0.039 0.039 /
99 bands 0.020 0.020 /

Table 5.1 Numerical values for hopt/R at different c/R for numbers of slip bands inside the grain
ranging from 3 to 99.
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c/R increases (Table 5.1). Moreover, the effect of c/R becomes less important as the
number of slip bands increases. Indeed, in this case, the part of ψ internal

N due to in-
teraction energies also become predominant, and, c/R has less influence on the part
due to interaction energies than on the one due to self energies. From Fig. 5.15, the
coupled effects of both non-dimensional internal length scale parameters are more
pronounced for a small number of slip bands.

5.7 Towards new Interaction Laws Including Discrete Plasticity

From the aforementioned equations for in situ grains with discrete plasticity, it is
now possible to define new so-called accommodation laws for polycrystalline metals
assuming intra-granular discrete single slip concentrated into slip bands described
as periodic distributions of dislocation loops [42] of or oblate spheroids [10]. Let us
for illustration focus only on the grain-size dependent accommodation due to intra-
granular distributions of dislocation loops. The calculation of an average backstress
over the grain due to intra-granular dislocations as the ones described in Fig. 5.2
allows us to define a new interaction law in the case of an approximation of diluted
plastic grains. This new law depends on grain size and the spatial distribution of
loops inside grains.

Let us now consider the averaged plasticization process of the grain with volume
Vg, i.e. the variation of γ considered as the mean plastic slip over Vg (with γ = 2ε 0

13).
As a result of the plasticization process, the Helmholtz free energy per unit volume
φ (Eq. (5.10)) is modified. Hence, it is possible to define a thermodynamic driving
force T [33, 41] accounting for this variation of energy due to the plasticization
process such that T = −∂ φ /∂ γ . Then, the mean resolved shear backstress denoted
τ ∗ appears in the expression of T as:

T = fg (τ − τ ∗) , (5.89)

where fg =Vg/V and τ is the applied resolved shear stress.
In the case of the mean field Eshelby’s approach (with isotropic elasticity and

plastic incompressibility), one finds from Eq. (5.51):

T = fg

(
τ − µ

7− 5ν
15(1− ν )

γ
)
. (5.90)

Thus, the mean resolved shear backstress τ ∗esh reduces to:

τ ∗esh = µ
7− 5ν

15(1− ν )
γ . (5.91)

This expression shows that τ ∗esh scales linearly with γ but is not dependent on the
grain radius R.
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Let us consider again the discrete distribution of dislocation loops of Fig. 5.2.
Besides, loops are assumed to constitute ”super-dislocations” with apparent Burgers
vector B = kb where k stands for the number of ”real” planar dislocations that have
slipped on the glide plane as a result of a Frank-Read process (multiplication of
planar dislocation loops on a same glide plane due to a single Frank-Read source).
In this case, the mean plastic slip produced by the super-dislocation loops over the
grain volume yields:

γ = B

+N
∑

n=−N
S(n)

Vg
. (5.92)

where S(n) is the area formed by super-dislocation loop (n) (defined in Eq. (5.62)).
From Eq. (5.92), it can be seen that a variation of γ may be caused either by an

increase of the apparent Burgers vector magnitude B or by a modification of the
total area formed by the loops. For the sake of simplicity, one assumes no variation
of internal length (R and h) during the plastic deformation. Therefore, one neglects
the possible multiplication of Frank-Read sources on new glide planes. Besides,
one does not take into account the possible formation of dislocation pile-ups, so
that the ”super-dislocations” remain constrained at the boundary. As a consequence,
the plasticization mechanism considered here is restricted to a possible variation of
B which is moreover assumed to be continuous in time and identical for all super-
dislocation loops in the grain. Such mechanism may be considered as a kind of ”con-
tinuous Frank-Read source” where dislocation loops multiply on a same glide plane
and induce an increasing step at the boundary. It is however a crude description of
real complex events as experimental studies reveal strong temporal and spatial het-
erogeneity of slip lines growth [37]. By using Eqs (5.10, 5.58, 5.69), the expression
of τ ∗ is given by [4, 42] :

τ ∗ = τ ∗esh + µ χ (h,R) γ , (5.93)

where χ is a complex function depending on h and R [4, 42].
As a direct application of the previous section, it is possible to model the effect

of grain size on the polycrystal’s behavior through a simplified description of the
intra-granular microstructure and the interaction between grains. In order to better
highlight the effects of intra-granular plastic slip heterogeneities on the overall be-
havior, a very simple transition scheme is used. The objective here is not to develop
an accurate homogenization scheme and then to compare the results with existing
bounds. The sense of this work is more to shed some light on the differences be-
tween a conventional mean-field approach and a discrete, more physically-based
one resulting from the previous considerations on the inhomogeneous plastic inclu-
sion problem. For this purpose, a diluted model restricted to small plastic strains
is adopted. Plastic grains are supposed to be embedded in a purely elastic homo-
geneous effective medium (HEM) (Fig. 5.16). Grains of spherical shape and with
isotropic orientations are considered. Isotropic and homogeneous elasticity through-
out the whole samplematerial is assumed. Plastic deformation is supposed to be
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(a) (b)

2R 2R

h

Fig. 5.16 Illustration of the two different situations considered for the HEM. (a) Spherical grains
with uniform plastic strain embedded in a purely elastic HEM (diluted Eshelby’s model). (b) Spher-
ical grains with a discrete distribution of dislocation loops embedded in a purely elastic HEM. All
the loops are constrained by the grain boundary and are spaced by the same distance h [42].

caused by single crystallographic slip only. Consequently, only one slip system can
thus be active per grain I, the one giving the highest value of the applied resolved
shear stress τ I

appl. For simplicity, the effect of grain rotation is neglected. As in
Eshelby-Kröner’s model [14, 26], the interaction between grains is supposed to be
accommodated in a purely elastic way. Only a small fraction of grains is supposed
to become plastic so that the hypothesis of grains embedded in a purely elastic ho-
mogeneous equivalent medium holds (Fig. 5.16). These hypotheses can correspond
roughly to the early stages of micro-plastic deformation (transient regime). In case
of large strains (more than 0.2%), the following simple model would overestimate
the values of internal stresses and would give a too stiff estimation of the overall
response.

From Eq. (5.93), it is then possible to define a mean ”effective” resolved shear
stress τ I

e f f acting on the single slip system for each grain I:

τ I
e f f = τ I

appl− µ
(

7− 5ν
15(1− ν )

− χ (h,R)
)

γ I , (5.94)

where χ (h,R) is given in [42].
A rate-independent crystal plasticity framework is followed. The slip system be-

comes active (i.e. γ̇ I 6= 0) if the standard Schmid law with consistency is respected:

{
τ I

e f f = R
∼

: σ I
∼

= τ I
c ,

τ̇ I
e f f = τ̇ I

c ,
(5.95)

where τ I
c is the critical resolved shear stress (the same for all grains I). This one is

supposed constant during plastic deformation (no additional isotropic hardening is
considered). Thus, τ̇ I

e f f = 0, which is equivalent to:

γ̇ I =
τ̇ I

appl

Θ
, (5.96)
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where Θ =−µ
(

7−5ν
15(1−ν ) − χ (h,R)

)
is a constant term during straining.

Uniaxial tensile tests along the (x1) direction in the global frame are simu-
lated from a set of 1000 grains with isotropic orientation distribution. A FCC crys-
tallographic structure is assumed for the grains with 12 slip systems of the type
(111)〈110〉. Elastic constants of copper are used (µ = 42GPa and ν = 0.324). The
value of τ I

c is set to 2MPa. The proportion of grains that become plastic is fixed to
20%. Accordingly, tests are limited to very small plastic strains and the distance be-
tween super-dislocation loops is supposed to be the same for all the simulated tests
whatever the grain size. h is set to 0.1µ m which is a value that roughly corresponds
to experimental measurements of slip line distance in the stage I of copper single
crystals [37].

Figure 5.17 shows a grain-size dependence of the overall tensile behavior of the
polycrystals. Contrary to conventional mean-field approaches, the initial strain hard-
ening occurring at very low plastic strains evolves now with the grain size. It should
be noted however that, as expected, the pure deviation from elastic response is not
grain-size dependent. A grain-size effect on the yield strength, defined for instance
as the macroscopic stress at a macroscopic plastic strain of 0.2%, might even so be
captured. The simulated size effect arises directly from the internal stresses induced
by the considered discrete intra-granular microstructure. The mean resolved shear
stress computed for each grain contains indeed the function χ (h,R). For a constant
distance between super-dislocation loops, it was found that this function scales with
the inverse of the grain size [4, 42]. Inset of Fig. 5.17 shows that this scaling is re-
trieved at the macroscopic scale, with an inverse relation between the flow stress Σ 11

and the grain radius R. From Fig. 5.17, it can be seen that the polycrystal’s behav-
ior converges towards the solution given by the traditional diluted plastic Eshelby’s
homogenization scheme when the grain size increases. Actually, because h is kept

Fig. 5.17 Uniaxial macroscopic tensile stress-plastic strain curves simulated with various grain
sizes (the origin of the y-axis starts at 4MPa). h is set to 0.1 µ m for all tests. The curve denoted
”Eshelby” represents the response of the diluted Eshelby’s model. Inset: macroscopic flow stress
as a function of 1/R for three different plastic strains [42].
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constant, the number of dislocation loops per grain increases with the grain size and
so plastic distortions inside grains become more and more uniform. This result illus-
trates the fact that Eq. (5.94) tends to the diluted plastic Eshelby’s homogenization
scheme (i.e. χ (h,R)→ 0) for a high number of loops inside grains.

5.8 Conclusions

Intragranular plastic slip heterogeneities have been first modeled by discrete dis-
tributions of circular glide super-dislocation loops inside a grain embedded in an
infinite elastic matrix. Then, field equations and free energy have been solved using
the methods of Fourier transforms. The presented results show a strong discrep-
ancy of internal stresses with the Eshelby’s solution especially in a grain bound-
ary layer. As the number of loops increases, the thickness of this layer decreases
and the classic Eshelby’s result is retrieved. These new insights determined through
a micromechanics-based approach are consistent with experimental observations
(EBSD measurements) reporting different behaviors and dislocation structures be-
tween near grain boundary regions and grain interior. On the static viewpoint, the
present modeling reports strong stress gradients in the grain boundary layer. Because
of such gradients, the relaxation of internal stresses during plasticization will lead to
different microstructures between grain boundary region and grain core. From ther-
modynamic considerations specific to an average plasticization mechanism, a mean
back-stress over the inclusion was derived. As a result, it was possible to propose a
new interaction law for the polycrystal’s behavior which is explicitly dependent on
the grain size and on the mean slip line spacing. A diluted model was used to com-
pute the macroscopic deformation of a FCC polycrystal at very low plastic strains.

The second approach described intra-granular slip bands occurring in the micro-
plastic regime of polycrystalline metals by discrete periodic distributions of copla-
nar flat ellipsoidal plastic inclusions (oblate spheroids). Then, in addition to the
grain size, the microstructure is characterized by the spatial period of slip bands and
their thickness. One considered the field equations and the thermodynamics frame-
work associated with an isolated in situ plastic grain embedded in an infinite elastic
matrix. One investigated the role of both non-dimensional internal length scale pa-
rameters of the microstructure on the normalized internal part of the complementary
energy per unit volume in the case of an in situ grain. For a given number of slip
bands inside the grain, one found there exists a critical value which maximizes this
energy. The internal stresses due to the discrete distribution of intra-granular plastic
oblate spheroids within the in situ grain can also be used to derive new accommo-
dation laws [10].
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Chapter 6
Formulations of Strain Gradient Plasticity

Samuel Forest and Albrecht Bertram

Abstract In the literature, different proposals for a strain gradient plasticity theory
exist. So there is still a debate on the formulation of strain gradient plasticity models
used for predicting size effects in the plastic deformation of materials. Three such
formulations from the literature are discussed in this work. The pros and the cons
are pointed out at the light of the original solution of a boundary value problem that
considers the shear deformation of a periodic laminate microstructure.

Key words: Strain gradient plasticity. Continuum thermodynamics. Laminates.
Constrained plasticity.

6.1 Introduction

The objective of this work is to present three main formulations of strain gradient
plasticity that are available in the literature and to illustrate the pros and the cons of
these approaches by means of a specific example for which an analytical solution
is derived. The targeted model is one of the most simple strain gradient plastic-
ity model which serves as a paradigm for most available strain gradient theories,
namely the well–known Aifantis model [1]. For that purpose we start from an initial
plasticity model for which the set of degrees of freedom and of the state variables
are defined as follows:

DOF0 = {u } STATE0 = {ε∼, α }
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The displacement degrees of freedom are denoted by the vector u from which the
linear strain tensor ε∼ is derived. The hardening/softening properties of materials are
accounted for by means of internal variables, α , that can be tensors of any rank1.
Examples for such internal variables in the context of isotropic plasticity are

α = p, ε∼
p,X∼ ...

where ε∼
p is the plastic strain tensor, p is the cumulative plastic strain, that will be

used for isotropic hardening, and X∼ , the kinematic hardening variable [2, 3]. The
continuum thermomechanics framework with internal variables has been settled in
[4, 5, 6]. Internal variables are computed by integrating the evolution equations that
are time differential equations. It has already been recognized that these evolution
equations may well result from approximations of more general partial differential
equations where the spatial derivatives are neglected due to the rapid local vari-
ations [7]. The objective of gradient theories is therefore to restore the status of
internal degree of freedom to internal variables. Depending on the order of the par-
tial differential equations, additional boundary conditions are usually necessary to
solve boundary value problems. In the following, we call

• internal variables: state variables, the evolution of which is controlled by time
differential equations;

• internal degrees of freedom: state variables the evolution of which is controlled
by time and space partial differential equations, without need for additional
boundary conditions;

• degrees of freedom: variables (not necessarily state variables) controlled by a
space and time partial differential equations, the resolution of which requires
additional boundary conditions to be specified.

The question arises how to enlarge the space of state variables to the gradient of
α –variables, so as to introduce characteristic lengths in the continuum modeling:

STATE = {ε∼, α , ∇ α }

Such a gradient term enters in particular Aifantis isotropic model that postulates the
following evolution of the equivalent stress measure under plastic loading:

σ eq = R0 +H p− c ∇ 2 p (6.1)

where R0 is the initial yield strength, H is the classical hardening modulus and c
denotes the square of a characteristic length. Various attempts have been proposed
in order to derive the Laplace term introduced in the yield function from a consistent
thermomechanical setting. The first proposal in [8] will be recalled in Sect. 6.2.2. It
is based on the introduction of an extra–entropy flux. In contrast, other authors have
tried to circumvent the introduction of extra–entropy flux or extra energy terms by
setting specific boundary conditions associated to the higher order partial differen-
tial equations, as shown in Sect. 6.2.1. An alternative approach is to formulate an

1 In the present contribution, the variable α is treated as a scalar, for the sake of simplicity.
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extended principle of virtual power, as initially proposed by [9] for damage vari-
ables. This amounts to raising the status of internal variable to additional degrees
of freedom. This is the subject of Sect. 6.3 where the original principle of virtual
power [10] is extended to gradient variables in the spirit of [11]. This track has been
followed in the last ten years in the following works [12, 13, 14, 15].

Finally, a boundary value problem on a periodic two–phase laminate microstruc-
ture under shear loading conditions is solved in order to illustrate the new boundary
or interface conditions and determine the variables which are discontinuous across
the interface. This example has been originally handled for Cosserat and micromor-
phic single crystals in [16, 17], but it is solved here for the first time for the Aifantis
model, so that comparisons will be drawn with other generalized continuum theo-
ries.

Throughout the work, for the sake of conciseness, the temperature θ is assumed
to be uniform and constant.

6.2 Derivation Based on the Exploitation of the Entropy
Principle

In this section, the energy principle is assumed to hold in its usual local form

ė = P
(i), with P

(i) = σ∼ : ε̇∼ (6.2)

where e is the internal energy density and P(i) the usual power density of inter-
nal forces. The Helmholtz free energy density, ψ = e− η θ , is assumed to depend
on the already defined set STATE and we give the following names to the partial
derivatives with respect to α and its gradient:

ψ = e− θ η , a =− ∂ ψ
∂ α

, b =− ∂ ψ
∂ ∇ α

(6.3)

where η is the entropy density function.

6.2.1 Vanishing Generalized Tractions

The entropy principle is now postulated first in its global form on the material do-
main V ∫

V
θ η̇ dV ≥ 0

and converted into the Clausius–Duhem inequality
∫

V

(
P

(i)− ˙ψ
)

dV ≥ 0 (6.4)
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∫

V

[(
σ∼ −

∂ ψ
∂ ε∼

)
: ε̇∼+ aα̇ + b · ∇ α̇

]
dV ≥ 0 (6.5)

in the absence of extra–entropy flux. The global Clausius–Duhem inequality is
transformed in the following way:

∫

V

[(
σ∼ −

∂ ψ
∂ ε∼

)
: ε̇∼+ aα̇ − α̇ divb + div(α̇ b )

]
dV ≥ 0 (6.6)

∫

V

[(
σ∼ −

∂ ψ
∂ ε∼

)
: ε̇∼+(a− divb )α̇

]
dV +

∫

∂ V
α̇ b ·n dS ≥ 0 (6.7)

It is temptating to assume at this stage that the flux of b vanishes at the boundary of
the domain V

b ·n = 0, ∀x ∈ ∂ V (6.8)

This condition corresponds to a Neumann extra–boundary condition for the partial
differential equation for α . It follows that the residual dissipation takes the follow-
ing canonical form involving the rate of the α –variable and the associated thermo-
dynamical force and dissipation potential

∫

V
A α̇ dV ≥ 0, A := a− divb (6.9)

in addition to the state law σ∼ = ∂ ψ /∂ ε∼.
Positivity of dissipation can then be ensured by the choice of a convex dissipation
potential Ω providing the evolution equation for α :

α̇ =
∂ Ω
∂ A

(6.10)

This condition of vanishing flux at a boundary is discussed in [18] in the context of
generalized standard gradient models.

On which domain V of the material body should the previous reasoning be ap-
plied? In principle, the thermodynamical statements are to be applied to each sub-
domain of the body. But it is hard to believe that the condition of vanishing gen-
eralized traction will be applied to the boundary of any subdomain. This point will
be checked in the analytical example of Sect. 6.4. In the literature, the condition is
usually limited to the outer boundary of the considered body (so–called insulation
condition in [19]), or at the boundary of the part of the body which undergoes plas-
tic loading. The latter applies to the finite element implementation of such gradient
models, as proposed in [20].
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6.2.2 Extra–entropy Flux

In general, according to the thermodynamics of irreversible processes [6], an extra–
entropy flux in the entropy inequality cannot be excluded. It is introduced in the
form of the vector field k in the local form of the entropy imbalance:

η̇ + divk ≥ 0 (6.11)

In the isothermal case, the Clausius–Duhem inequality then takes the form:

P
(i)− ˙ψ + div θ k ≥ 0 (6.12)

The exploitation of Clausius–Duhem inequality continues as follows:

(σ∼ −
∂ ψ
∂ ε∼

) : ε̇∼+ aα̇ + b · ∇ α̇ + div θ k ≥ 0 (6.13)

(σ∼ −
∂ ψ
∂ ε∼

) : ε̇∼+(a− divb )α̇ + div(α̇ b + θ k )≥ 0 (6.14)

At this point, the following astute choice of the extra–entropy flux is proposed in [8]

σ∼ =
∂ ψ
∂ ε∼

, k :=− α̇
θ

b (6.15)

With this choice, the residual dissipation reduces to the same form as (6.9), so that
again a dissipation potential Ω (A ) can be introduced, thus setting the framework of
standard generalized gradient models. The difference compared to the previous ap-
proach is that no restriction arises in the derivation concerning the additional bound-
ary condition to solve (6.1). As a result, the flux b ·n can take any needed values at
boundaries and interfaces. The approach provides no indication nor restrictions on
the necessary boundary conditions.

6.3 Derivation Based on the Modification of the Energy Principle

An alternative to the previous approaches is to consider that the introduction of
mechanical gradient effects must be accompanied by a modification of the power
of internal forces which enters the principle of virtual power. When higher order
gradients of the displacement field exist like in Mindlin’s second gradient theory
[11, 21, 22] or gradients of additional degrees of freedom, like in Eringen’s micro-
morphic model [23], the power of internal variable is extended to include a power
induced by the higher order gradients or the gradients of additional degrees of free-
dom. Let us consider for instance Mindlin’s second gradient model which incor-
porates the effect of the strain gradient ∇ ε∼. The stress conjugate of the strain rate
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gradient in the power of internal forces is the third rank double stress tensor. If the
strain is decomposed into elastic and plastic contributions,

ε∼ = ε∼
e + ε∼

p, (6.16)

one may consider materials for which most of the gradient effects come from ∇ ε∼
p,

so that the effect of ∇ ε∼
e can be neglected. The latter term disappears but the triple

contraction of the double stress and of the gradient of plastic strain remains. This
suggests that when the gradient of α –variables is considered, one is entitled to intro-
duce a corresponding internal power. This approach is presented in this section and
has been followed in the references [9, 12, 15] for gradient of damage and plasticity
models.

We introduce the enriched power density of internal forces and of contact forces

P
(i) = σ∼ : ε̇∼+ aṗ+ b · ∇ ṗ, P

(c) = t · u̇ + ac ṗ (6.17)

where a and b are generalized stresses acting on the virtual field α and its gradient,
respectively. The usual traction vector is t and ac denotes the generalized traction.
Such generalized stresses are called micro–forces in [14]. A generalized principle
of virtual power is stated with respect to the virtual fields of displacements and the
α –variable. The methodology originates from the works [10, 22] and was extended
to generalized continua in [13, 24]. The application of this principle results in an
additional balance equation, complementing the usual balance of momentum equa-
tion:

div σ∼ = 0, a = divb , ∀x ∈V (6.18)

written here in the static case and in the absence of body forces. The corresponding
equilibrium conditions at the boundaries are:

t = σ∼ ·n , ac = b ·n , ∀x ∈ ∂ V (6.19)

An essential feature of the model is that the extended power of internal forces inter-
venes in the energy balance equation:

ė = P
(i) (6.20)

thus including the additional contributions of generalized stresses. This also holds
for the entropy principle in its local form:

P
(i)− ˙ψ ≥ 0 (6.21)

The Clausius–Duhem inequality then becomes:

(σ∼ −
∂ ψ
∂ ε∼e ) : ε̇∼

e +(a− ∂ ψ
∂ α

)α̇ +(b − ∂ ψ
∂ ∇ α

) · ∇ α̇ + σ∼ : ε̇∼
p ≥ 0 (6.22)

At this stage, we adopt the following state laws
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σ∼ =
∂ ψ
∂ ε∼e , a =

∂ ψ
∂ α
−R, b =

∂ ψ
∂ ∇ α

(6.23)

thus assuming that no dissipation is associated with the generalized stress b . This is
the most simple assumption that is sufficient for deriving Aifantis model, in partic-
ular. R is the dissipative part of generalized stress a.

At this point it is more convenient to specify the internal variable that is required
to derive Aifantis model. We adopt: α ≡ p, so that the considered internal variable
is the cumulative plastic strain. The residual dissipation is then

σ∼ : ε̇∼
p−Rṗ≥ 0 (6.24)

Let us choose a simple quadratic free energy potential

ψ (ε∼
e, p, ∇ p) =

1
2

ε∼
e : C
≈

: ε∼
e +

1
2

H p2 +
1
2

c ∇ p · ∇ p (6.25)

from which the state laws are derived:

σ∼ =C
≈

: ε∼
e, R = H p− a, b = c ∇ p (6.26)

where C
≈

is the four–rank tensor of the elastic moduli, H is the usual hardening mod-

ulus and c is an additional material parameter (unit MPa.mm2). The yield function
is taken as

f (σ∼ ,R) = σ eq−R0−R (6.27)

Under plastic loading, this gives

σ eq = R0 +R = R0 +H p− a= R0 +H p− divb = R0 +H p− c ∇ 2 p (6.28)

so that Aifantis equation (6.1) is recovered. The plasticity flow and evolution rules
are

ε̇∼
p = λ̇

∂ f
∂ σ∼

, ṗ =−λ̇
∂ f
∂ R

= λ̇ (6.29)

with λ being the plastic multiplier. These equations are used in the next section to
solve a specific boundary value problem.

6.4 Analysis of a Simple Boundary Value Problem for Laminate
Microstructures

Laminate microstructures are prone to size effects especially in the case of metals
for which the interfaces act as barriers for the dislocations. The material response
then strongly depends on the layer thickness. This situation has been considered
for Cosserat and micromorphic single crystals under single and double slip in [16,
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17]. The laminate microstructure is considered here in the case of Aifantis isotropic
model. It is a periodic arrangement of two phases including a purely elastic material
and a plastic strain gradient layer. The unit cell corresponding to this arrangement is
shown in Fig. 6.1. It is periodic along all three directions of the space. It must must
be replicated in the three directions so as to obtain the complete multilayer material.
The thickness of the hard elastic layer is h, whereas the thickness of the soft plastic
strain gradient layer is s.

1
2
O

s h
Fig. 6.1 Unit cell of a periodic two–phase laminate.

6.4.1 Position of the Problem

The unit cell of Fig. 6.1 is subjected to a mean simple shear γ̄ in direction 1. The
origin O of the coordinate system is the center of the soft phase. The displacement
field is of the form

u1 = γ̄ x2, u2(x1) = u(x1), u3 = 0 (6.30)

where u(x1) is a periodic function which describes the fluctuation from the homoge-
neous shear. This fluctuation is the main unknown of the boundary value problem.
We compute the gradient of the displacement field and strain tensors:

[ ∇ u ] =




0 γ̄ 0
u,1 0 0
0 0 0


 ,

[
ε∼
]
=




0 1
2(γ̄ + u,1) 0

1
2(γ̄ + u,1) 0 0

0 0 0


 (6.31)

where u,1 denotes the derivative of the displacement u with respect to x1. After
Hooke’s law, the only activated simple stress component is σ 12. Due to the balance
of momentum equation and the continuity of the traction vector, this stress compo-
nent is homogeneous throughout the laminate.

The elastic law in the elastic phase and the elastic–plastic response of the soft
phase are then exploited in the next section to derive the partial differential equa-
tions for plastic strain and, finally, for the displacement fluctuation. The explicit
solution is found after considering precise interface conditions regarding continuity
of various variables.
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Note that the solution is known for conventional plasticity, i.e. in the absence of
strain gradient effect. The plastic strain is expected to be homogeneous in the soft
phase for any loading γ̄ . Plastic strain therefore exhibits the usual jump at the in-
terface. The introduction of higher order interface conditions, associated with strain
gradient plasticity, will induce a non–homogeneous plasticity field.

6.4.2 Analytical Solution

Assuming plastic loading in the soft phase, the von Mises criterion is fulfilled:
√

3|σ 12|= R0 +H p− cp,11 (6.32)

Since the stress component σ 12 is uniform, the previous equation can be differenti-
ated with respect to x1, which gives:

p,1− ω −2p,111 = 0, ω 2 =
H
c

(6.33)

The form of the plastic strain field therefore is

p = α cosh(ω x1)+ β (6.34)

where α and β are integration constants. In the elastic zone, the stress is given by

σ 12 = µ (γ̄ + uh
,1) =⇒ uh

,1 =C (6.35)

where the uniformity of stress has been used again. An additional integration con-
stant C must be determined. The exponent h has been added to indicate the displace-
ment fluctuation inside the elastic phase. The arbitrary translation for uh will be set
to zero. The field us can be determined from the elasticity law in the soft phase:

σ 12 = µ (γ̄ us
,1−
√

3p) (6.36)

An additional constant D arises from the integration of this equation, that remains
to be determined.

The four unknown integration constants α , β ,C,D will be determined from 4
conditions at the interface between both materials at x1 =±s/2:

• Continuity of simple traction:
√

3µ (γ̄ +C) = R0 +Hβ (6.37)

• Continuity of displacement u(x1) at s/2:

us
( s

2

)
= uh

( s
2

)
(6.38)
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uh(x1)=Cx1, us(x1)=

[
R0

µ
√

3
+(

H

µ
√

3
+
√

3)β − γ̄
]

x1+

√
3α
ω

sinh(ω x1)+D

(6.39)
• Periodicity of displacement u(x1):

us
(
− s

2

)
= uh

( s
2
+ h
)

(6.40)

• Continuity of plastic strain p at the interface x1 =
s
2

p
( s

2

)
= 0 (6.41)

α cosh
(

ω
s
2

)
+ β = 0 (6.42)

The last condition is necessary to close the system. Differentiability and hence con-
tinuity of plastic strain p is required in strain gradient plasticity theory. In the elastic
phase, p = 0 so that p should also vanish at the interface.

The identification of the constants provides:

β =

(
γ̄ − R0

µ
√

3

)
(s+ h)

H
µ
√

3
(s+ h)+

√
3s− tanh(ω s

2)
2
√

3
ω

(6.43)

α = − β
cosh(ω s

2)
(6.44)

C =
R0

µ
√

3
− γ̄ +

H√
3µ

β (6.45)

D = C
s
2
−
[

R0

µ
√

3
+(

H

µ
√

3
+
√

3)β − γ̄
]

s
2
−
√

3α
ω

sinh
(

ω
s
2

)
(6.46)

where homogeneous elasticity has been assumed for simplicity, with µ being the
shear modulus of both phases.

As a result, we find that the double traction cannot vanish on the soft side of the
interface, x1 = s−/2.

b1(x1) = cα sinh(ω x1) , b1(
s
2

−
) = cα sinh

(
ω

s
2

)
6= 0 (6.47)

In the elastic phase, the generalized stress identically vanishes since no plastic strain
occurs. It follows that the generalized traction b1 exhibits a jump across the inter-
face.

We illustrate the previous solution for a special choice of material parameters
oriented towards plasticity of metals at the micron scale. The parameters used in the
simulations are:

s = 0.007 mm, h = 0.003 mm, γ̄ = 0.01,
µ = 300 GPa, R0 = 20 MPa, H = 10 GPa, c = 0.005 MPa.mm2.
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Fig. 6.2 Distributions of plastic strain, normalized displacement fluctuation and normalized gen-
eralized stress vector component in the unit cell of the laminate microstructure.

The distribution of plastic slip, of displacement and of generalized stress compo-
nent b1 are shown in Fig. 6.2. The plastic strain displays a typical cosh profile with
boundary layer effects close to the interface, due to the continuity requirement. The
displacement fluctuation is clearly periodic. The jump of the generalized traction at
the interface is also visible.

6.5 Discussion

Three different formulations of strain gradient plasticity have been reported in this
contribution. The first model is based on the assumption of vanishing general trac-
tion at the boundary of some domain and in particular, as advocated by several
authors, at the interface between the elastic and plastic loading domain. The exam-
ple of the laminate microstructure considered in Sect. 6.4 clearly shows that this
assumption cannot be valid systematically. Indeed, if a condition of vanishing dou-
ble traction is imposed on the interface x1 = s/2 in the laminate microstructure, this
amounts to prescribe vanishing of the plastic strain and its first derivative at the in-
terface. Accordingly, the solution of the equation (6.33) yields p =Cst, which is the
standard solution in classical plasticity.

The presented analytical example is compatible with the second formulation of
strain gradient plasticity based on the introduction of an additional entropy flux.

The third approach based on the introduction of the extended power of internal
forces has the advantage that it provides a variational formulation of the strain gra-
dient plasticity boundary value problem in the form of a generalized principle of
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virtual power. This has a direct implication on the numerical treatment by means
of the finite element method for instance. In the finite element implementation, the
plastic strain is handled as an additional degree of freedom. The power of inter-
nal forces is discretized in space and the generalized stresses are computed from
the constitutive equations (6.26). The plastic multiplier is computed by taking the
enhanced hardening rule into account [24]. A Lagrange multiplier is then needed
to ensure that the additional degree of freedom coincides with the time integrated
cumulative plastic strain. The additional boundary condition arises naturally from
the finite element formulation, the reaction to the nodal degrees of freedom being
related to the generalized traction.

It seems that there is a real necessity for an energy cost associated with the devel-
opment of the plastic strain gradient. Finite element simulations are presented in lit-
erature that include the plastic strain gradient, computed at the end of the increment,
in the hardening rule. They do not consider generalized stresses nor associated addi-
tional boundary conditions. Such a procedure is known to lead to mesh–dependent
results even in the hardening regime [25]. This pleads for the adoption of the third
proposed approach to strain gradient plasticity.
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Chapter 7

On one Model of Generalized Continuum and its
Thermodynamical Interpretation

Elena A. Ivanova

Abstract We consider the mechanical model of a two-component medium whose
first component is a classical continuum and the other one is a continuum having
only rotational degrees of freedom. We show that the proposed model can be used
for the description of thermal and dissipative phenomena. It is the presence of ad-
ditional rotational degrees of freedom and, accordingly, additional inertia and elas-
tic characteristics which can be interpreted as thermodynamical material parameters
that distinguish the proposed model among other continuum models. In special cases
the mathematical description of the proposed model is proved to reduce to the well-
known equations such as the heat conduction, the self-diffusion and the coupled
thermoelastic equations. The mathematical description of the proposed mechanical
model includes not only the classical formulation of the coupled problem of ther-
moelasticity but also the formulation of the coupled problem of thermoelasticity
with the hyperbolic type heat conduction equation. In the context of the introduced
theory we consider the original model of internal damping.

Key words: Micropolar media. Two-component continuum. Hyperbolic thermovis-
coelasticity.

7.1 Introduction

At present thermodynamics covers widespread frame including gas dynamics, ther-
moelasticity, thermoviscoelasticity, thermoelectric and thermomagnetic phenom-
ena, phase changes and chemical reactions. At the same time it constitutes a set
of scientific areas which are not connected to each other and differ by both the inter-
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pretation of the fundamental concepts and the applied mathematical methods. Deal-
ing with the mathematical methods we should refer to the thermodynamic potential
theory underlying the chemical and electrochemical thermodynamics, continuum
mechanics within the framework of which the models of thermoelastic and ther-
moviscoelastic media have been developed, the methods of crystal lattice dynamics
underlying the description of transport phenomena in solids, and also the classical
and quantum statistics [1, 2]. In view of the aforesaid it is important to develop a uni-
fied theory for the description of all thermodynamical phenomena which are studied
now in different science areas by using various methods. We are firmly convinced
that it can be made on the basis of the fundamental laws of mechanics by using the
continuum mechanics methods. The idea of the mathematical description of various
physical phenomena in microcosm by using the continual models based on rota-
tional degrees of freedom and the moment interactions was repeatedly asserted by
P. A. Zhilin [3, 4, 5, 6] and other authors – see e. g. [7, 8, 9]. The model proposed in
the present paper is a realization of this idea as applied to the description of thermal
and dissipative phenomena.

There exist different macroscopic and microscopic models of internal damping
[2, 10, 11, 12, 13]. The point of view that internal damping is concerned with ther-
mal effects is widespread. According to the quantum theory [2], the distribution of
phonons is in a local thermodynamical equilibrium and the temperature changes
adiabatically, when acoustic wave propagates. Consequently, regions separated by
the half-wavelength distance from one another have different temperatures and the
irreversible heat flow between these regions arises as a result of the heat conduc-
tion phenomena. This process causes transfer of energy of mechanical vibrations
into heat energy. We do not call in question the idea about interplay of the inter-
nal damping and thermal effects. We emphasize that analysis of the experimental
values of the volume (acoustic) viscosity and the shear viscosity of various sub-
stances shows that the viscosities are independent substance characteristics which
are not related to the heat-conduction coefficient and other thermodynamical param-
eters [14, 15, 16, 17]. However, we are sure that the internal damping and the heat
conduction mechanism have the same physical nature. In our opinion the internal
damping and heat conduction should be considered as a result of the interaction of
atoms with the infinite surrounding medium which can be called the “thermal field”
or the “thermal ether”. We propose the mechanical model “thermal ether” which is
a continuum of particles having translational and rotational degrees of freedom and
interacting by elastic moments. We consider two problems of elastic interaction of
the “thermal ether” with the particle having a special structure. As a result of analy-
sis of the problems we show that the influence of the “thermal ether” on the particle
can be modeled by the damping moment proportional to the angular moment of the
particle. Using of the damping moment in the model of a two-component medium
allows us to describe the internal damping and the heat conduction mechanism.
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7.2 The Simplest Model of a Body-point

We consider the material system (see Fig. 7.1) consisting of the frame and N rigid
bodies attached to the frame by means of elastic springs. For simplicity we suppose
that all bodies can move only in the line of axis x and rotate only on axis x. We
introduce following notations: m, J, x, ϕ are the mass, the moment of inertia, the
displacement and the angle of rotation of the frame; mi, Ji are the mass and the
moment of inertia of rigid body number i; xi, ϕ i are the displacement and the angle
of rotation of rigid body number i relative to the frame. The springs are considered
to be elastic helical lines whose properties consist in the fact that when twisting
in one direction they become longer and when twisting in the opposite direction
they shorten. Conformably, when stretching and pressing the springs they become
twisted in different directions. We suppose that the internal energy Ui of spring
number i as well as the force Fi and the twisting moment Mi modeling the influence
of spring number i on the frame take the form:

Ui =Ui(xi + χ ϕ i), Fi =
∂ Ui

∂ xi
, Mi =

∂ Ui

∂ ϕ i
, (7.1)

where χ is the coefficient, characterizing the difference of the elastic spring under
consideration from analogous spring possessing axial symmetry. Objects similar to
considered spring are usually called chiral objects. Therefore we call χ by coeffi-
cient of chirality.

As evident from Eqs (7.1), the force and the twisting moment can be represented
by means of the derivative of the internal energy with respect to its argument xi +
χ ϕ i

1. As a result the simple relation between Mi and Fi can be brought to light:

Fi =U ′i , Mi = χ U ′i ⇒ Mi = χ Fi. (7.2)

The equations of motion of the frame have the form:

Fig. 7.1 Particle possessing
the internal structure

1 In what follows we denote this derivative by prime.
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mẍ = F +
N

∑
i=1

Fi, J ¨ϕ = M+
N

∑
i=1

Mi, (7.3)

where F and M are the external force and the external twisting moment acting on
the frame. The equations of motion of the rigid bodies are:

mi(x+ xi)
·· =−Fi, Ji(ϕ + ϕ i)

·· =−Mi, i = 1,N. (7.4)

The analysis of Eqs (7.3) and (7.4) shows that translational and rotational motion of
the frame are interdependent. If there is no external moment acting on the frame and
the initial angular velocity is equal to zero, then because of the internal dynamics of
the system the frame starts rotating. If there is no external force acting on the frame
and the initial velocity is equal to zero, then because of the internal dynamics of the
system the frame starts moving.
Example 1. We consider the free motion of the system, represented in Fig. 7.1. Let
us introduce notations for total inertia characteristics of the internal bodies of the
system:

m∗ =
N

∑
i=1

mi, J∗ =
N

∑
i=1

Ji. (7.5)

For simplicity we suppose that all rigid bodies have the same masses mi = m∗/N
and the same moments of inertia Ji = J∗/N. Moreover, we suppose that the internal
energies of the springs Ui are the quadratic forms of deformations and all springs
have stiffness equal c. In that case:

Ui = c(xi + χ ϕ i)
2 ⇒ Fi = c(xi + χ ϕ i), Mi = χ c(xi + χ ϕ i). (7.6)

Taking into account Eqs (7.6) we rewrite the equations of motion of the rigid bodies
(7.4) in the form:

m∗
N

(x+ xi)
·· =−c(xi + χ ϕ i),

J∗
N

(ϕ + ϕ i)
·· =−χ c(xi + χ ϕ i). (7.7)

From Eqs (7.7) we obtain:

(xi + χ ϕ i)
··+ k2

∗ (xi + χ ϕ i) =−(x+ χ ϕ )··, k2
∗ = Nc

(
1

m∗
+

χ 2

J∗

)
. (7.8)

Provided that F = 0, M = 0 and Fi, Mi satisfy Eqs (7.6) the equations of the motion
of the frame (7.3) take the form:

mẍ = c
N

∑
i=1

(xi + χ ϕ i), J ¨ϕ = χ c
N

∑
i=1

(xi + χ ϕ i). (7.9)

The system of equations (7.9) can be rewritten in the more convenient form, namely
in the form of equation
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mẍ =
J
χ

¨ϕ , (7.10)

and equation

(x+ χ ϕ )·· = k̃2

N

N

∑
i=1

(xi + χ ϕ i), k̃2 = Nc

(
1
m
+

χ 2

J

)
. (7.11)

From Eqs (7.8) and (7.11) we obtain the equation in x+ χ ϕ :

(x+ χ ϕ )····+ k2(x+ χ ϕ )·· = 0, k2 = k2
∗+ k̃2. (7.12)

Taking into account the initial conditions we get the solution of the system (7.10),
(7.12) in the form:

x(t) = x|t=0 + ẋ|t=0 t

+
c

mk2

N

∑
i=1

[
(xi + χ ϕ i)

∣∣∣
t=0

(
1− cos(kt)

)
+(xi + χ ϕ i)

·∣∣∣
t=0

(
t− sin(kt)

k

)]
, (7.13)

ϕ (t) = ϕ |t=0 + ˙ϕ |t=0 t

+
χ c
Jk2

N

∑
i=1

[
(xi + χ ϕ i)

∣∣∣
t=0

(
1− cos(kt)

)
+(xi + χ ϕ i)

·∣∣∣
t=0

(
t− sin(kt)

k

)]
.

(7.14)

Now we introduce the quantities averaged over a period:

x̄(t) =
k

2π

t+π /k∫
t−π /k

x(τ )dτ

= x|t=0 + ẋ|t=0 t +
c

mk2

[
N

∑
i=1

(xi + χ ϕ i)
∣∣∣
t=0

+
N

∑
i=1

(xi + χ ϕ i)
·∣∣∣

t=0
t

]
,

(7.15)

¯ϕ (t) =
k

2π

t+π /k∫
t−π /k

ϕ (τ )dτ

= ϕ |t=0 + ˙ϕ |t=0 t +
χ c
Jk2

[
N

∑
i=1

(xi + χ ϕ i)
∣∣∣
t=0

+
N

∑
i=1

(xi + χ ϕ i)
·∣∣∣

t=0
t

]
.

(7.16)

Let us assume that we can observe on average values of the displacement and the
angle of rotation of the frame. The motion of the rigid bodies inside the frame is not
available for observation. In that case we will interpret the system under considera-
tion as a single whole particle (“body-point”). Then quantities x̄(t) and ¯ϕ (t) we will
consider as characteristics of the position and the orientation of the particle. Now
we discuss two variants of the initial conditions.



156 Elena A. Ivanova

Variant 1. The stiffness of springs connecting the internal bodies and the frame is
very large. In that case impact on the frame setting it in motion in the initial instant
of time will set the internal bodies in the same motion. Then it is reasonable to
assume that in the initial instant of time the relative displacements and angles of
rotation as well as the relative velocities of the internal bodies are equal to zero:

xi
∣∣
t=0 = 0, ϕ i

∣∣
t=0 = 0, ẋi

∣∣
t=0 = 0, ˙ϕ i

∣∣
t=0 = 0. (7.17)

In that case expressions for x̄(t) and ¯ϕ (t) are:

x̄(t) = x|t=0 + ẋ|t=0 t, ¯ϕ (t) = ϕ |t=0 + ˙ϕ |t=0 t. (7.18)

It is easy to see that the displacements and the angles of rotation determined by
Eqs (7.18) are independent.
Variant 2. The stiffness of springs connecting the internal bodies and the frame is
very small. Then impact on the frame setting it in motion in the initial instant of
time will not be passed to the internal bodies. Therefore we can assume that in the
initial instant of time the absolute displacements and angles of rotation as well as
the absolute velocities of the internal bodies are equal to zero:

(x+xi)
∣∣
t=0 = 0, (ϕ + ϕ i)

∣∣
t=0 = 0, (ẋ+ ẋi)

∣∣
t=0 = 0, ( ˙ϕ + ˙ϕ i)

∣∣
t=0 = 0. (7.19)

In that case expressions for x̄(t) and ¯ϕ (t) take the form:

x̄(t) =
[
1− µ

m

](
x|t=0 + ẋ|t=0 t

)
− χ µ

m

(
ϕ |t=0 + ˙ϕ |t=0 t

)
,

¯ϕ (t) =
[

1− χ 2 µ
J

](
ϕ |t=0 + ˙ϕ |t=0 t

)
− χ µ

J

(
x|t=0 + ẋ|t=0 t

)
,

(7.20)

where parameter µ having the dimension of mass calculated by the formula:

µ =

(
1
m
+

1
m∗

+ χ 2
[

1
J
+

1
J∗

])−1

. (7.21)

As evident from Eqs (7.20), the initial displacements and translational velocities of
the frame have an influence on its rotational motion, and the initial angles of rota-
tion and angular velocities of the frame influence have action upon its translational
motion.

Thus, based on the considered example we conclude that the presence or absence
of cross effect of the translational and rotational motions depend on the internal
structure and the parameters of the system.
Example 2. We consider the motion of the system represented in Fig. 7.1 under the
action of the external force and twisting moment being linear time functions:

F = AFt, M = AMt, AF = const, AM = const. (7.22)
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Taking into account Eqs (7.22) we write the equations of the frame motion (7.3) in
the form:

mẍ = AFt +
N

∑
i=1

Fi, J ¨ϕ = AMt +
N

∑
i=1

Mi. (7.23)

As in preceding example, we suppose that all rigid bodies have the same masses
mi = m∗/N and the same moments of inertia Ji = J∗/N. The elastic forces and mo-
ments characterizing the interaction of the rigid bodies and the frame are calculated
by Eqs (7.6). The equations of motion of the internal bodies (7.7), as well as their
sequent Eqs (7.8), are correct in the problem under discussion.

By using Eqs (7.6) for the forces Fi and the moments Mi the equations of motion
of the frame (7.23) can be reduced to the equivalent system including the equation

mẍ− J
χ

¨ϕ = AFt− AMt
χ

(7.24)

and equation

(x+ χ ϕ )·· = AFt
m

+
χ AMt

J
+

k̃2

N

N

∑
i=1

(xi + χ ϕ i). (7.25)

From Eqs (7.8) and (7.25) we obtain the equation in x+ χ ϕ :

(x+ χ ϕ )····+ k2(x+ χ ϕ )·· = k2
∗

(
AFt
m

+
χ AMt

J

)
. (7.26)

Solving Eq. (7.26) we get the following expression for the variable (x+ χ ϕ )··

(x+ χ ϕ )·· = (x+ χ ϕ )
∣∣∣
t=0

cos(kt)+
1
k
(x+ χ ϕ )·

∣∣∣
t=0

sin(kt)+
k2∗
k2

(
AFt
m

+
χ AMt

J

)
.

(7.27)
Now we suppose that the oscillation period is much smaller than an observing

time on the motion process. In that case the characteristics of the motion averaged
over a period is of interest for us:

x̄(t) =
k

2π

t+π /k∫
t−π /k

x(τ )dτ , ¯ϕ (t) =
k

2π

t+π /k∫
t−π /k

ϕ (τ )dτ . (7.28)

By averaging over a period Eqs (7.24) and (7.27) we obtain:

m ¨̄x− J
χ

¨̄ϕ = AFt− AMt
χ

, ¨̄x+ χ ¨̄ϕ =
k2∗
k2

(
AFt
m

+
χ AMt

J

)
. (7.29)

Now we transform the system (7.29) to the following form:
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m

(
1+

Jk2

χ 2mk2∗

)(
1+

J
χ 2m

)−1
¨̄x+

Jk̃2

χ k2∗

(
1+

J
χ 2m

)−1
¨̄ϕ = AFt,

χ mk̃2

k2∗

(
1+

J
χ 2m

)−1
¨̄x+ J

(
1+

Jk2

χ 2mk2∗

)(
1+

J
χ 2m

)−1
¨̄ϕ = AMt.

(7.30)

Let us suppose that the mass and the moment of inertia of the frame are related by
the formula

J = χ 2m. (7.31)

We introduce following notations:

m̂ =
m
2

(
1+

k2

k2∗

)
, B̂ =

χ mk̃2

2k2∗
, Ĵ =

J
2

(
1+

k2

k2∗

)
. (7.32)

Taking into account Eqs (7.31) and (7.32) we rewrite the system (7.30) in the form:

m̂ ¨̄x+ B̂ ¨̄ϕ = AFt, B̂ ¨̄x+ Ĵ ¨̄ϕ = AMt. (7.33)

By comparison of Eqs (7.33) describing the behavior of the average over a period
characteristics of the motion with the starting Eqs (7.23) we see that the influence
of the internal structure of the system on the motion of the frame can be taken
into account both by means of the internal forces and moments and with the aid
of the additional inertial parameters ensuring the interplay of the translational and
rotational motions.
Example 3. Now we study the motion of the considered system (see Fig. 7.1) under
the action of the external force and twisting moment being periodic time functions:

F = F0 sin(ω t), M = M0 sin(ω t), F0 = const, M0 = const. (7.34)

Taking into account Eqs (7.34) we write down the equations of the motion of the
frame (7.3) in the form:

mẍ = F0 sin(ω t)+
N

∑
i=1

Fi, J ¨ϕ = M0 sin(ω t)+
N

∑
i=1

Mi. (7.35)

After simple transformations similar to those carried out in the preceding example
we reduce the equation of the motion of the frame to the system of equations

mẍ− J
χ

¨ϕ =

(
F0− M0

χ

)
sin(ω t),

(x+ χ ϕ )·· = (x+ χ ϕ )
∣∣∣
t=0

cos(kt)+
1
k
(x+ χ ϕ )·

∣∣∣
t=0

sin(kt)

+
k2∗ − ω 2

k2− ω 2

(
F0

m
+

χ M0

J

)
sin(ω t).

(7.36)
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Now we suppose that the free period is much smaller than the period of force os-
cillations. Introducing the average over a period characteristics of the motion (7.28)
and averaging Eqs (7.36) over a period we obtain:

m ¨̄x− J
χ

¨̄ϕ =
k

π ω
sin
( π ω

k

)(
F0− M0

χ

)
sin(ω t),

¨̄x+ χ ¨̄ϕ =
k(k2∗ − ω 2)

π ω (k2− ω 2)
sin
( π ω

k

)(F0

m
+

χ M0

J

)
sin(ω t).

(7.37)

We suppose that ω � k∗ and, hence, ω � k. Moreover, the mass and the moment of
inertia of the frame are assumed to be related by Eq. (7.31). Then by using notations
(7.32) we can rewrite the system (7.37) in the form:

m̂ ¨̄x+ B̂ ¨̄ϕ = F0 sin(ω t), B̂ ¨̄x+ Ĵ ¨̄ϕ = M0 sin(ω t). (7.38)

By comparison of Eqs (7.38) describing the behavior of the average over a period
characteristics of the motion with the starting Eqs (7.35) we come to the conclusion
that the result is the same to that obtained in the preceding example. Namely, the
dynamics of the internal structure of the system has action upon the motion of the
frame and the influence in question can be taken into account by means of the ad-
ditional inertial parameters ensuring the interplay of the translational and rotational
motions.
Example 4. Now we study the motion of the considered system (see Fig. 7.1) under
the action of conservative load which is modeled by a linear elastic force. In that
case the equations of the frame motion (7.3) take the form:

mẍ =−CFx+
N

∑
i=1

Fi, J ¨ϕ =
N

∑
i=1

Mi, (7.39)

where CF is the stiffness of the elastic spring. The equations of the frame motion
(7.39) by using Eqs (7.6) and (7.8) can be reduced to the following system of equa-
tions:

mẍ− J
χ

¨ϕ =−CFx, (x+ χ ϕ )····+ k2(x+ χ ϕ )·· =−CF

m

(
ẍ+ k2

∗x
)
. (7.40)

It is easy to see that at the zero initial conditions lead the system (7.40) to the form:

mẍ+ B̂ ¨ϕ =−CF x, B̂ẍ+ Ĵ ¨ϕ =−CMϕ , (7.41)

where constants B̂, Ĵ and CM are calculated by the formulae:

B̂=− J
χ
, Ĵ = J

[
J

χ 2m
+

CF

mk̃2
+

CF J

χ 2m2k̃2

]
, CM =

CF J

mk̃2

(
k2 +

Jk2∗
χ 2m

)
. (7.42)
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As evident from a comparison of Eqs (7.39) and (7.41) in the case of discussion
we can take into account the influence of the dynamics of the internal structure by
means of of the additional inertial parameters and of an external elastic moment
proportional to the angle of rotation of the frame.

Let us consider Eqs (7.33), (7.38) and (7.41). The quantities on the right-hand
side of the equations are the forces and the moments. Hence, the left-hand side of
Eqs (7.33), (7.38) and (7.41) can be interpreted as the derivatives of the momentum
and the angular momentum. Then the foregoing equations should be regarded as the
equation of motion of the particle whose momentum K1, the angular momentum K2

and kinetic energy K are:

K1 = m̂ẋ+ B̂ ˙ϕ , K2 = B̂ẋ+ Ĵ ˙ϕ , K =
1
2

m̂ẋ2 + B̂ẋ ˙ϕ +
1
2

Ĵ ˙ϕ 2, (7.43)

Consequently, parameter B̂ is the moment of inertia. The particle whose dynamic
structures are defined by Eqs (7.43) is a special case of the body-point proposed by
P. A. Zhilin – see [3].

7.3 Continuum of One-rotor Gyrostats

The material medium (see Fig. 7.2) consisting of one-rotor gyrostats is considered.
A one-rotor gyrostat consists of a rotor concealed in a rigid body which is called
“carrier body”. A rotor can rotate independently of the carrier body rotation, but a
rotor can not move independently the carrier body motion. A carrier body of the gy-
rostat is a classical rigid body, and a rotor is a non-classical particle whose properties
will be defined in what follows.

To derive the dynamic equations of the continuum we apply the spatial descrip-
tion. Let vector r determine the position of some point of space. We introduce fol-
lowing notations: ρ (r, t) is the mass density of the material medium at a given point
of space; v(r, t) is the velocity field; u(r, t) is the displacement field; P̃(r, t), ω̃ (r, t)
are the fields of the rotation tensors and the angular velocity vectors of the carrier
bodies; P(r, t) and ωωω (r, t) are fields of the rotation tensors and the angular velocity
vectors of the rotors.

The particles of continuum under consideration possess the internal degrees of
freedom. Therefore, in order to describe the motion of this continuum it is not suffi-
cient to formulate the balance equations of the momentum and the angular momen-
tum for the control volume of the continuum. It is necessary to add these equations
to the balance equation of the angular momentum for the rotors in control volume
of the continuum. Therefore below we need the densities of the momentum and the
angular momentum of the carrier bodies

ρ K(cb)
1 = ρ (1− ζ )v, ρ K(cb)

2 = ρ
[
r× (1− ζ )v+ I∗ · ˜ωωω

]
, (7.44)
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and the momentum and the angular momentum of the rotors

ρ K(rot)
1 = ρ (ζ v+B ωωω ), ρ K(rot)

2 = ρ
[
r× (ζ v+B ωωω )+Bv+ J ωωω

]
. (7.45)

Here I∗ is the inertia tensor of the carrier body of the gyrostat, B and J are the
moments of inertia of the rotor. Dimensionless parameter ζ in Eqs (7.44) and (7.45)
characterizes the distribution of mass in the gyrostat: if m is the mass of the gyrostat
then (1− ζ )m is the mass of its carrier body and ζ m is the mass of its rotor. Below
we will see that the value of parameter ζ is not important. The densities of the
momentum and the angular momentum of the gyrostats are

ρ K1 = ρ K(cb)
1 + ρ K(rot)

1 , ρ K2 = ρ K(cb)
2 + ρ K(rot)

2 . (7.46)

We assume that in the reference configurations the tensors P̃(r, t) and P(r, t) are
equal to the unit tensor. Therefore, upon the linearization near the reference position
they take the form

P̃(r, t) = E+ ϕϕϕ (r, t)×E, P(r, t) = E+ θθθ (r, t)×E, (7.47)

where ϕϕϕ (r, t), θθθ (r, t) are the rotation vector fields of carrier bodies and rotors, re-
spectively, E is the unit tensor. Kinematic relations in the linear approximation are

v =
du
dt

, ˜ωωω =
dϕϕϕ
dt

, ωωω =
dθθθ
dt

. (7.48)

The mass balance equation in the linear approximation takes the form

dρ
dt

+ ρ ∇ ·v = 0 ⇒ ρ = ρ ∗
(
1− ∇ ·u). (7.49)

Here ρ ∗ is the mass density per unit volume in the reference position. Note that
mass density at the initial time instant ρ 0 may not coincide with the mass density
in the reference position ρ ∗. These two quantities are related with each other by the

Fig. 7.2 Elementary volume
of continuum consisting of
one-rotor gyrostats
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formula
ρ 0 = ρ ∗

(
1− ∇ ·u0

)
, (7.50)

and they coincide only if the medium is not deformable at the initial time instant.
The equations of motion of the material continuum can be written in the form

∇ · τττ + ρ ∗f = ρ ∗
d
dt

(
v+Bωωω

)
, ∇ · µµµ + τττ ×+ ρ ∗m = ρ ∗

d
dt

(
I(0)∗ · ˜ωωω

)
, (7.51)

where inertia tensor I(0)∗ is calculated in the reference configuration. tensor τττ is the
stress tensor, and tensor µµµ is the moment stress tensor modeling the influence of
surrounding medium on the carrier bodies of gyrostats. The second equation in
Eqs (7.51) is the equation of the motion of the carrier bodies. That is why the right-
hand part of this equation does not depend on the velocity v. The equation of motion
of the rotors takes the form

∇ ·T+ ρ ∗L = ρ ∗
d
dt

(
Bv+ Jωωω

)
, (7.52)

where T is the moment stress tensor modeling the influence of surrounding medium
on the rotors of gyrostats.

After simple transformations the equation of energy balance is written as follows:

ρ ∗
dU
dt

= τττ T · ·dεεε
dt

+ µµµ T · ·dκκκ
dt

+TT · ·dϑϑϑ
dt

, (7.53)

where U is the internal energy density per unit mass and the strain tensors εεε , κκκ , ϑϑϑ
are introduced into consideration. These tensors are calculated by the formulas

εεε = ∇ u+E× ϕϕϕ , κκκ = ∇ ϕϕϕ , ϑϑϑ = ∇ θθθ . (7.54)

In what follows we consider the elastic material i. e. a material whose density
of internal energy and the tensors of force and moment stresses depend only on
the strain tensors and do not depend on the velocities. For the elastic material the
Cauchy–Green relations follow from the equation of energy balance (7.53):

τττ = ρ ∗
∂ U
∂ εεε

, µµµ = ρ ∗
∂ U
∂ κκκ

, T = ρ ∗
∂ U
∂ ϑϑϑ

. (7.55)

To close the system of differential equations it is necessary to express the internal
energy as a function of the strain tensors

ρ ∗U = ρ ∗U(εεε ,κκκ ,ϑϑϑ ). (7.56)

Now we consider the physically linear theory and therefore we represent the density
of internal energy in the following form:
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ρ ∗U = τττ T
0 · ·εεε + µµµ T

0 · ·κκκ +TT
∗ · ·(ϑϑϑ − ϑϑϑ ∗)+

1
2

εεε · · 4C1 · ·εεε + εεε · · 4C2 · ·κκκ +

+
1
2

κκκ · · 4C3 · ·κκκ + εεε · · 4C4 · ·(ϑϑϑ − ϑϑϑ ∗)+ κκκ · · 4C5 · ·(ϑϑϑ − ϑϑϑ ∗)+

+
1
2
(ϑϑϑ − ϑϑϑ ∗) · · 4C6 · ·(ϑϑϑ − ϑϑϑ ∗).

(7.57)

Coefficients τττ 0, µµµ 0 and T∗ are called the initial stresses, ϑϑϑ ∗ is the reference value of
ϑϑϑ . Coefficients of the quadratic form 4Ci are called the stiffness tensors. In the lin-
ear theory the stiffness tensors do not depend on time. The only restriction imposed
on the stiffness tensors is concerned with the requirement of positive definiteness of
the quadratic form (7.57). The structure of the stiffness tensors and the values of the
coefficients of elasticity are determined by the physical properties of the material
medium.

After substituting expression for the density of internal energy (7.57) in the
Cauchy–Green relations (7.55) we obtain the following constitutive equations:

τττ T = τττ T
0 + 4C1 · ·εεε + 4C2 · ·κκκ + 4C4 · ·(ϑϑϑ − ϑϑϑ ∗),

µµµ T = µµµ T
0 + εεε · · 4C2 +

4C3 · ·κκκ + 4C5 · ·(ϑϑϑ − ϑϑϑ ∗),
TT = TT

∗ + εεε · · 4C4 + κκκ · · 4C5 +
4C6 · ·(ϑϑϑ − ϑϑϑ ∗). (7.58)

According to Eqs (7.58) all stress tensors can depend on all strain tensors. It means,
in particular, that the moment stress tensor of rotors can depend not only on their
relative orientation, but also on the relative orientation and relative position of the
carrier bodies.

7.4 The Simplest Theory of One-rotor Gyrostats Continuum

We consider the material continuum (see Fig. 7.3) that consists of one-rotor gy-
rostats. In limits of linear theory the motion of this continuum is described by
Eqs (7.48), (7.49), (7.51), (7.52), (7.54) and (7.58). Free space between the gyrostats
is filled up by body-points whose structure coincides with the structure of rotors be-
longing to the gyroststs. The body-points in the space between the gyrostats are the
elementary particles of a continuum which will be called the “thermal ether” in what
follows. In fact, the material continuum represented in Fig. 7.3 is a two-component
medium. We are not going to study in detail the motion of the body-points con-
tinuum (“thermal ether”) and the interaction between the gyrostats continuum and
the body-points continuum. We consider only the gyrostats continuum as an object
under study. The interaction between the carrier bodies of the gyrostats and the inter-
action between rotors of the gyrostats are characterized by tensors of the force and
moment stresses (7.58). The body-points continuum (“thermal ether”) positioned in
space between gyrostats is considered to be an external factor with respect to the
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Fig. 7.3 Elementary volume
of continuum interacting with
environment

continuum under study. That is why we will model the influence of the “thermal
ether” on the gyrostats by an external moment in the equation of the rotors motion
(7.52).

Accepting two important hypotheses we consider a special case of the linear
theory of one-rotor gyrostats continuum.
Hypothesis 1. Vector L (the mass density of external actions on the rotors of gy-
rostats) is a sum of the moment Lh characterizing external actions of all sorts and
the moment of linear viscous damping

L f =−β (Bv+ Jωωω ). (7.59)

The moment (7.59) characterizes the influence of the “thermal ether”. Structure of
the moment is chosen in accordance with the results of solving some model prob-
lems. One of these problems is considered in Sect. 7.8. Now we explain the physical
meaning of the moment of linear viscous damping (7.59). We suppose that the ro-
tors of the quasi-rigid bodies interact with body-points of the “thermal ether” and
this interaction is described by the elastic moments analogous to the moments char-
acterizing the interaction of the rotors with each other. The “thermal ether” having
infinite extent eliminates energy of the oscillating rotors. The solution of modeling
problems reveals that in the case of an infinite surrounding medium the dissipative
moment arising due to the interaction with this medium is proportional to the proper
angular momentum vector (dynamic spin).
Hypothesis 2. The moment stress tensor T characterizing the interactions between
rotors is the spherical tensor

T = TE. (7.60)

In view of assumptions (7.59) and (7.60) the equation of the rotors motion (7.52)
takes the form

∇ T − ρ ∗β (Bv+ Jωωω )+ ρ ∗Lh = ρ ∗
d
dt

(
Bv+ Jωωω

)
, (7.61)
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In view of assumption (7.60) the last term on the right-hand side of the energy
balance equation (7.53) can be reduced to the more simple form. By using notation
ϑ = tr ϑϑϑ the energy balance equation (7.53) is written as

ρ ∗
dU
dt

= τττ T · ·dεεε
dt

+ µµµ T · ·dκκκ
dt

+T
dϑ
dt

. (7.62)

Since the material medium under consideration is an elastic one, we obtain from
Eq. (7.62) the Cauchy–Green relations of which the first and the second ones coin-
cide with the first and the second relations of (7.55) respectively and the third one
has a simpler form:

τττ = ρ ∗
∂ U
∂ εεε

, µµµ = ρ ∗
∂ U
∂ κκκ

, T = ρ ∗
∂ U
∂ ϑ

. (7.63)

According to Eq. (7.62) the density of internal energy is a function of arguments
εεε , κκκ and ϑ . Let us construct the physically linear theory based on representation of
the internal energy density in the following form:

ρ ∗U = τττ 0 · ·εεε +T∗ (ϑ − ϑ ∗)+
1
2

εεε · · 4C1 · ·εεε +ϒ trεεε (ϑ − ϑ ∗)+
1
2

K(ϑ − ϑ ∗)2. (7.64)

Then the constitutive equations (7.58) take the form

τττ T = τττ T
0 + 4C1 · ·εεε + ϒ (ϑ − ϑ ∗)E, µµµ = 0, T = T∗+ ϒ trεεε +K(ϑ − ϑ ∗).

(7.65)
Thus the simplest linear theory of the material continuum consisting of one-rotor
gyrostats is described by Eqs (7.48), (7.51), (7.54), (7.61) and (7.65).

7.5 Temperature and Entropy

Let us consider the foregoing mathematical model of elastic continuum of one-rotor
gyrostats. Suppose that the model describes the behavior of a classical medium
which possesses not only elastic properties but also the viscous and thermic prop-
erties. Now we can give a thermodynamic interpretation of the variables describing
motion and interaction of the rotors and next we can carry out the identification of
the model parameters and well-known thermodynamic constants.

Let us consider the energy balance equation (7.62). Conceive that Eq. (7.62) is
the equation of energy balance for a classical moment medium (medium without
rotors). Then the last term on the right-hand side of Eq. (7.62) can be treated as
a thermodynamical one. The physical quantities T and ϑ acquire the meaning of
temperature and volume density of entropy, respectively.

It is evident, that the dimensions of the temperature and the entropy defined by
formula (7.62) are different from the dimensions of those in classical thermody-
namics of the present simple case. This problem can be solved by introduction of a
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normalization factor:

T = aTa, ϑ =
1
a

ϑ a. (7.66)

Here a is the normalization factor; Ta is the absolute temperature measured by a
thermometer; ϑ a is volume density of the absolute entropy. Let us introduce the
similar relations for the remaining variables:

θθθ =
1
a

θθθ a, ωωω =
1
a

ωωω a, Lh = aLa
h, L f = aLa

f . (7.67)

Now rewriting all equations for new variables and using new parameters

Ba =
B
a
, Ja =

J
a2 , ϒ a =

ϒ
a
, Ka =

K
a2 , (7.68)

we can eliminate the normalization factor a from these equations at least in the linear
formulation of the problem and in some particular cases of physical nonlinearity.

7.6 Linear Theory of Thermoelasticity

Classical theory of thermoelasticity is a momentless one. Therefore considering the
problem of thermoelasticity in the context of proposed model we assume only the
force interaction between carrier bodies of the gyrostats and only the force action of
external factors upon them:

µµµ = 000, m = 000. (7.69)

In the static problems from the second equation of (7.51) under the assumption
(7.69) it follows that τττ × = 000. In the dynamic problems the stress tensor can be
nonsymmetric in spite of assumption (7.69). In this case it is necessary to take into
account the dependence of the strain tensor εεε on the angle of rotation of carrier
bodies ϕϕϕ . Thus, assumption (7.69) does not imply the transition to the momentless
theory of elasticity for carrier bodies. In addition let us assume that I(0)∗ = 0. In this
case tensor τττ will be symmetrically both in the static and dynamic problems and all
equations concerned with rotational motions of the carrier bodies of gyrostats can
be excluded.

Applying the linear theory it is admissible in certain range of temperatures and
entropy densities to change some reference values T ∗a and ϑ ∗a . Let us introduce de-
viations of the temperature and the density of entropy from their reference values:

Ta = T ∗a + T̃a, ϑ a = ϑ ∗a + ˜ϑ a. (7.70)

Resume of the basic equations of linear theory of the elastic medium consisting
of the one-rotor gyrostats includes the dynamic equations (7.51), (7.61) which under
notations (7.66) – (7.70) take the form



7 On one Model of Generalized Continuum and its Thermodynamical Interpretation 167

∇ · τττ + ρ ∗f = ρ ∗
d
dt

(
v+Baωωω a

)
,

∇ T̃a− ρ ∗β (Bav+ Jaωωω a)+ ρ ∗La
h = ρ ∗

d
dt

(
Bav+ Jaωωω a

)
,

(7.71)

the mass balance equation (7.49), the kinematical and geometrical relations (7.48)
and (7.54) which under notations (7.66) and (7.67) and condition of symmetry of
the stress tensor are reduced to

ρ = ρ ∗ (1− ε ), v =
du
dt

, ωωω a =
dθθθ a

dt
,

εεε =
1
2

(
∇ u+ ∇ uT ) , ε = trεεε , ϑ a = trϑϑϑ a = ∇ · θθθ a,

(7.72)

and the constitutive equations (7.65) which under notations (7.66) – (7.70) and the
condition of symmetry of the stress tensor are written as

τττ =
(

Kad− 2
3

G
)

ε E+Gεεε + ϒ a ˜ϑ a E, T̃a = ϒ a ε +Ka ˜ϑ a, (7.73)

where Kad is the adiabatic modulus of compression (the adiabatic bulk modulus), G
is the shear modulus.

Let us suppose that Ba = 0 and other parameters take the values

β Ja =
T ∗a

ρ ∗λ
, Ka =

T ∗a
ρ ∗cv

, ϒ a =− α KisT ∗a
ρ ∗cv

, (7.74)

where cv is the specific heat at constant volume, λ is the heat-conduction coefficient,
Kis is the isothermal modulus of compression (the isothermal bulk modulus), α is
the volume coefficient of thermal expansion,

Kad = Kis
cp

cv
, cp− cv =

α 2KisT ∗a
ρ ∗

⇒ Kad = Kis +
α 2K2

isT
∗

a

ρ ∗cv
, (7.75)

where cp is the specific heat at constant pressure. In this case we can transform the
system of equation (7.71) – (7.73) to the following form:

∇ · τττ + ρ ∗f = ρ ∗
d2u
dt2 , τττ =

(
Kis− 2

3
G
)

ε E+2Gεεε − α KisT̃a E,

∆ T̃a− ρ ∗cv

λ

(
dT̃a

dt
+

1
β

d2T̃a

dt2

)
=

α KisT ∗a
λ

(
dε
dt

+
1
β

d2ε
dt2

)
− ρ ∗ ∇ ·La

h,

(7.76)

Thus, the mathematical description of the proposed mechanical model includes as
a special case the formulation of the coupled problem of thermoelasticity with the
hyperbolic type heat conduction equation.
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7.7 Model of Internal Damping

There exist different macroscopic and microscopic models of internal damping.
At present, however, viscoelasticity is not a well-developed science for the treat-
ment of thermodynamical and dissipative phenomena. The point of view that inter-
nal damping is concerned with thermal effects is widespread. The distribution of
phonons is in a local thermodynamical equilibrium, i. e. the temperature changes
adiabatically, when acoustic wave propagates. Consequently, regions separated by
the half-wavelength distance from one another have different temperatures and the
irreversible heat flow between these regions arises as a result of the heat conduction
phenomena. This process causes transfer of the energy of mechanical vibrations into
heat energy. Now we do not call in question the idea about interplay of the internal
damping and thermal effects. We emphasize that the analysis of the experimental
values of the volume (acoustic) viscosity of various substances shows that the vol-
ume viscosity is an independent substance characteristic which is not related to the
heat-conduction coefficient and other thermodynamical parameters. This means that
we should not consider the nature of the acoustic viscosity to be directly connected
with heat conduction mechanisms. Let us emphasize that by discussing the internal
damping we mean only the volume (acoustic) viscosity. In our opinion the shear
viscosity has an absolutely different nature and it is not discussed here.

Let us consider the energy dissipation caused by heat conduction phenomena.
It is well-known that this energy dissipation takes place only in the case when the
process is not isothermal and not adiabatic. Now let us consider the energy dissipa-
tion caused by the viscosity. This energy dissipation always takes place processes
included adiabatic processes. Proceeding from this fact we assume that dissipation
is caused only by viscosity and the process is adiabatically, i.e. the volume density
of entropy is constant:

ϑ a = ϑ ∗a = const ⇒ ˜ϑ a = 0 ⇒ T̃a = ϒ a ε . (7.77)

By comparison of the equations describing the dynamics of one-rotor gyrostat
continuum with the classical equations of thermoelasticity we assumed that Ba = 0.
Now we reject this restriction. We suppose that the terms containing parameter Ba

are concerned with the internal damping mechanism. In order to argue in favor of
this hypothesis we consider the heat conduction equation

∆ T̃a− ρ ∗β Ja

Ka

dT̃a

dt
− ρ ∗Ja

Ka

d2T̃a

dt2

= β ρ ∗
(

Ba− ϒ aJa

Ka

)
dε
dt

+ ρ ∗
(

Ba− ϒ aJa

Ka

)
d2ε
dt2 − ρ ∗ ∇ ·La

h.

(7.78)

Let us transform this equation by using the adiabatic condition (7.77). As a result
we obtain

ϒ a ∆ ε − ρ ∗β Ba
dε
dt
− ρ ∗Ba

d2ε
dt2 =−ρ ∗ ∇ ·La

h. (7.79)
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It is easy to see that Eq. (7.79) contains a dissipative term. This dissipative term is
in no way concerned with the heat conduction phenomena.

In order to clarify the physical meaning of the coefficients in Eq. (7.79) we stop
the discussion of the proposed model and consider the motion of a viscous fluid in
which the pressure obeys the Stokes law. The liquid state (in the case of no external
mass forces) is described by the following equations:

∇ p = ρ ∗
dv
dt

, p = η v
dε
dt

, (7.80)

where η v is the volume (acoustic) viscosity. From Eqs. (7.80) we obtain the relation
between the flow of matter ρ ∗v and the volume strain gradient

η v ∇ ε = ρ ∗v. (7.81)

By taking the divergence of both sides of Eqs. (7.81) we obtain the self-diffusion
equation which can be generalized by adding the source term ρ ∗Ψ to it:

η v∆ ε − ρ ∗
dε
dt

=−ρ ∗Ψ . (7.82)

Comparing Eq. (7.79) with the self-diffusion equation (7.82) we find these two equa-
tions to be equivalent with the only difference that the former contains the inertial
term if

ϒ a

β Ba
= η v,

1
β Ba

∇ ·La
h = Ψ . (7.83)

From the first equation of (7.83) by using the third equation of (7.74) we get

β Ba =− α KisT ∗a
ρ ∗cvη v

. (7.84)

As evident from Eq. (7.84), parameter Ba is negative for finite values of the volume
viscosity η v and is equal to zero when η v→ ∞ .

In order to clarify the physical meaning of the obtained result we now consider
the dissipative term in equation (7.71) for the rotor dynamics

ρ ∗La
f =−β ρ ∗(Bav+ Jaωωω a). (7.85)

Upon substituting expressions for parameters (7.74), (7.84) into Eq. (7.85) we get

ρ ∗La
f =

α KisT ∗a
cvη v

v− T ∗a
λ

ωωω a. (7.86)

Let us calculate the power of the dissipative moment (7.86):

ρ ∗La
f · ωωω a =

α KisT ∗a
cvη v

v · ωωω a− T ∗a
λ

ωωω a · ωωω a. (7.87)
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The second term in expression (7.87) is a dissipative one. When the heat-conduction
coefficient decreases the dissipation increases. The first term in expression (7.87)
determines the process which under the certain conditions can become inverse to
the dissipative one. In particular, in the isothermal case the inequality v · ωωω a > 0
is valid and, therefore, the first term in expression (7.87) determines the process
of energy supply from the thermal ether. When the volume viscosity decreases the
energy supply in the body from the thermal ether increases.

Let us transform Eq. (7.87) by separating the total squares in it:

ρ ∗La
f · ωωω a =

λ α 2K2
isT
∗

a

4η 2
v c2

v
v ·v− T ∗a

λ

(
ωωω a− λ α Kis

2η vcv
v
)2

. (7.88)

It is easy to see that the second term in expression (7.88) determines the dissipative
process and the first term characterizes the process of the energy supply from the
thermal ether. The first term is inversely as the square of the viscosity. Therefore,
when the volume viscosity decreases the supply of energy of the thermal ether into
the body increases. The second term defining the dissipative process also depends
on the volume viscosity. As a result the energy interchange between the body and the
thermal ether depends on the volume viscosity in a complicated manner. Thus the
volume viscosity characterizes the natural ability of a substance to absorb the energy
of the thermal ether. Will this ability be realized? It depends on other properties of
the substance and external circumstances. The volume viscosity of gases is very
small and therefore gases possess a good ability to absorb the energy of the thermal
ether. Therefore the gas particles are in a state of intense mgotion in spite of the
energy dissipation caused by the heat conduction phenomena. The volume viscosity
of fluids (even inviscid fluid) is much larger than the volume viscosity of gases.
The volume viscosity of solids is as large as that it can be considered to approach
infinity. In this case parameter Ba is negligible. Thus the problem of thermoelasticity
is admissible for solids while for fluids and gases it is important to take into account
the terms dependint on the volume viscosity.

7.8 Interaction of Body-point and “Thermal Ether”

In what follows we consider a model problem which solution allows us to substan-
tiate the choice of the low of viscous damping (7.59).

Fig. 7.4 Interaction of the body-point with the semi-infinite continuum
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Let us consider a semi-infinite inertial rod (see Fig. 7.4), consisting of the body-
points which are similar to the rotors of the one-rotor gyrostats. The rod is connected
with the analogous body-point by means of an inertialess spring working in torsion
(rotation about the axis of the rod). The inertia of the rod is characterized by the
moments of inertia B̂, Ĵ and the linear density σ ρ̃ , where σ is “the area of rod
section” and ρ̃ is the volume density of mass. The elastic properties of the rod are
characterized by the torsional stiffness σ k̃, where the coefficient σ is introduced in
order that stiffness k̃ possesses the dimension in 3D problems. The inertia of the
body-point is characterized by the mass m and the moments of inertia B, J. The
torsional stiffness of the spring connecting the body-point with the rod is equal
to σ k∗/r0, where r0 is “the length” of the spring. The coefficients σ and r0 are
introduced in order that stiffness k∗ possesses the dimension like k̃. The motion
of the system is described by the following quantities: u(s, t) is the longitudinal
displacement of the rod, θ (s, t) is the rotation angle of the rod particles, y(t) is
the displacement of the body-point along the axis of the rod, ψ (t) is the angle of
rotation of the body-point about the axis of the rod. We suppose that the particles
of the rod interact only by the moment. The force interaction of the rod particles is
assumed to be zero. At the initial instant of time the displacements and the rotation
angles as well as the translational and angular velocities are equal to zero. The body-
point possesses a non-zero initial angular velocity directed along the axis of the rod
and a non-zero initial angle of rotation about the axis of the rod. It is evident that
under such an initial condition the system will be in motion which are longitudinal–
torsional oscillations.

The longitudinal–torsional oscillations of the rod are described by the linear
equations:

∂ T
∂ s

= σ ρ̃
(
B̂ü+ Ĵθ̈

)
, T = σ k̃

∂ θ
∂ s

, σ ρ̃
(
ü+ B̂θ̈

)
= 0, (7.89)

where s is the space coordinate (0≤ s < +∞ ). After simple transformation the sys-
tem (7.89) can be reduced to the wave equation in of the unknown θ :

∂ 2θ
∂ s2 −

1
c2 θ̈ = 0, c2 =

k̃

ρ̃ (Ĵ−B̂2)
. (7.90)

The boundary conditions for the rod take the form:

σ k̃
∂ θ
∂ s

∣∣∣∣
s=0

=− σ k∗
r0

(
ψ − θ |s=0

)
. (7.91)

Now we formulate the equations of the body-point motion:

m
(
Bÿ+ J ¨ψ

)
=− σ k∗

r0

(
ψ − θ |s=0

)
, m

(
ÿ+B ¨ψ

)
= F. (7.92)

Here F is an external force. The initial conditions for the body-point have the form:
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y(0) = y0, ψ (0) = ψ 0, ẏ(0) = v0, ˙ψ (0) = ω 0. (7.93)

Let us represent the solution of the Eq. (7.90) in the form given by d’Alembert
and Euler:

θ (s, t) = f (s− ct)+ g(s+ ct). (7.94)

Since the waves propagate to the right and there are no perturbations at infinity, we
can assert that g(s+ct) = 0. In view of zero initial conditions for the rod we see that
the function f (s− ct) is not equal to zero only on the negative semiaxis. Hence

θ (s, t) =

{
0, s > ct,

f (s− ct), s < ct.
(7.95)

Let us denote:
θ ∗(t) = θ (s, t)

∣∣
s=0 = f (s− ct)

∣∣
s=0. (7.96)

Then
θ̇ ∗(t) =−c f ′(s− ct)

∣∣
s=0, (7.97)

where the derivation with respect to argument (s− ct) is denoted by the stroke.
Hence

∂ θ
∂ s

∣∣∣∣
s=0

= f ′(s− ct)
∣∣
s=0 =−

1
c

θ̇ ∗(t). (7.98)

Subject to (7.96), (7.98) the boundary condition for the rod (7.91) takes the form

σ k̃
c

θ̇ ∗ =
σ k∗
r0

(
ψ − θ ∗

)
, (7.99)

and the equations of the body-point motion (7.92) can be rewritten as follows

m(Bÿ+ J ¨ψ )+
σ k∗
r0

(
ψ − θ ∗

)
= 0, m(ÿ+B ¨ψ ) = F. (7.100)

Let us express the difference (ψ − θ ∗) from Eq. (7.99) and put it in the first equation
of (7.100). We obtain:

Bÿ+ J ¨ψ +
σ k̃
mc

θ̇ ∗ = 0. (7.101)

Now we integrate Eq. (7.101) taking into account the initial conditions. As a result
we obtain:

Bẏ+ J ˙ψ +
σ k̃
mc

θ ∗ = Bv0 + Jω 0. (7.102)

Let us express θ ∗ from Eq. (7.102) and substitute it in Eqs (7.100). We obtain the
following system of equations:

m(Bÿ+ J ¨ψ )+mβ (Bẏ+ J ˙ψ )+
σ k∗
r0

ψ = mβ (Bv0 + Jω 0), m(ÿ+B ¨ψ ) = F,

(7.103)



7 On one Model of Generalized Continuum and its Thermodynamical Interpretation 173

where coefficient β is calculated by the formula:

β =
ck∗
r0k̃

=
k∗/r0√

k̃ρ̃ (Ĵ−B̂2)
. (7.104)

According to Eqs (7.103), the moment of viscous damping characterizing the
radiation of energy in the surrounding medium is proportional to the angular mo-
mentum of the body-point, i. e. it depends on both the angular velocity and the
translational velocity. If B = 0 then the dependence on the translational velocity
vanishes. In this case the problem under consideration becomes similar to the prob-
lem of the motion of an ordinary oscillator on the elastic waveguide. Analysis of
formula (7.104) for the coefficient of damping β allows us to conclude that increas-
ing the torsional stiffness of the spring connecting the body-point and the rod causes
increasing of the radiation in the surrounding medium.

7.9 Conclusion

A model of a two-component continuum is suggested which takes into account ther-
momechanical processes. The mathematical description of this model is developed
in the framework of physically and geometrically linear theory. In future we intend
to carry out further development of the theory in two directions. The first one is con-
cerned with consideration of nonlinear effects in the context of the same mechani-
cal model. This is necessary for describing the behavior of substances in the states
near the phase changes and heat-conduction processes under the circumstances of
quickly varying and superhigh temperatures. The second direction deals with a mod-
ification of the mechanical model by taking into account the additional degrees of
freedom for introducing the chemical potential and a number of additional physi-
cal characteristics of the medium. This is necessary to describe the phase changes
and chemical reactions and also to take into account the interaction of the substance
with the electromagnetic field and to describe thermoelectric and thermomagnetic
effects.
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Chapter 8
Micromechanical Bases of Superelastic Behavior
of Certain Biopolymers

Rasa Kazakevic̆iūtė-Makovska and Holger Steeb

Abstract This work presents a new constitutive theory aiming to describe the
truly exceptional, only little known and almost completely uncharacterized thermo-
mechanical properties of the whelk egg capsule biopolymer (WECB) which has
been recently reported in the literature. The mechanical model is based on the con-
cept of generalized continua. It includes familiar damage-type models and pseudo-
elastic models for stress softening (the Mullins effect) in elastomers (natural and
synthetic rubbers) and soft tissues. However, the mechanical behavior of WECB is
in many aspects very different from the behavior of other elastomeric materials and
these differences have been accounted for in the developed constitutive model.

Key words: Biopolymers. Constitutive models. Superelasticity. Generalized con-
tinua.

8.1 Introduction

The macroscopically observed behavior of solid materials is governed by the un-
derlying physical mechanisms which take place at smaller (meso- , micro- and even
nano-) scales and which must be accounted for in the relevant continuum models.
This multiscale issue is a long standing problem in the field of generalized continua
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[8]. More recently, there is observed an increasing interest in the molecular basis of
mechanical and thermal properties of natural polymers (biopolymers) with the hope
to develop biomimetic materials for biomedical applications [3].

This work is concerned with the whelk egg capsule biopolymer (WECB) which is
a proteinaceous composite material with truly exceptional thermo-mechanical prop-
erties recently reported in the literature [9, 11, 12]. Some of these properties are
shortly discussed in Sect. 8.2, where also similarities and dissimilarities with other
polymers and elastomers as well as with shape memory alloys are pointed out. In
Sect. 8.3, the structure of WECB and the micro-mechanisms underlying the macro-
scopically observed thermo-mechanical properties of this material are discussed on
the bases of results presented in the above cited contributions. This analysis leads
to the concept of a scalar micro-structural variable which measures an extent of the
α -helix ↔ β -sheet transition, which has been recognized as the basic mechanism
responsible for the behavior of WECB. It is next stipulated, following earlier works
[4, 6, 14], that the evolution of this micro-structural variable must be accompanied
by microforces and microstresses, which are assumed to satisfy their own balance
law. This balance equation, together with the classical balance laws of linear and
angular momentum are the only postulates on which the complete purely mechani-
cal theory is developed (Sect. 8.4). This model is phenomenological in nature and it
applies to different classes of materials with widely varying mechanical properties.
In the following Sect. 8.5, the general theory is reduced to a pseudo-elastic model
proposed in [10] and used in the description of the Mullins effect observed in elas-
tomers and soft tissues (see [1, 6] and references cited therein). Then, in Sect. 8.6
we formulate the superelastic model for the whelk egg capsule biopolymer. Subse-
quently, in Sect. 8.7, we reduce the theory of superelasticity to a one-dimensional
setting and develop a methodology to identify the relevant response functions. Fi-
nally, an illustrative example of special constitutive model is presented in Sect. 8.8.

8.2 Macroscopic Thermo-mechanical Properties of WECB

In recent experimental studies [9, 11, 12], the qualitative and quantitative thermo-
mechanical characterization of the egg capsules produced by Busycon canalicula-
tum and Busycon carica has been reported with the goal to assess the response of
this material to applied stresses and temperature, and to understand how it compares
to other structurally important biomaterials.

The results reported in [9, 11, 12] indicate that whelk egg capsule biopolymer
(WECB) has a long-range elasticity domain but, additionally, exhibits the interest-
ing feature of a fully recoverable and repeatable order of magnitude decrease in
elastic stiffness occurring at approximately 3 % - 5% strain (Fig. 8.1). This drastic
reduction in the elastic stiffness appears to be a material failure, yet is fully recov-
erable as it is clearly observed from cyclic tests (Fig. 8.2). This behavior may be
contrasted with the mechanical properties of other polymers and elastomers.
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Fig. 8.1 Extension to failure of the WECB specimen

In quasi-static tension tests, typical elastomers such as natural and synthetic rub-
bers as well as soft tissues show a characteristic stress hardening with increasing
strains, S-shaped and J-shaped stress-strain curves, respectively. This property is
a result of the finite chain extensibility which exhibit all elastomeric materials in-
cluding soft tissues [1, 6, 13]. In contrast, WECB shows a kind of yielding or tensile
failure typical for metals rather than for elastomers. An apparent yielding of WECB
is transient only and a complete recovery occurs during unloading to zero stress. In
contrast, all elastomers show a certain permanent set (plastic strain) upon complete

Fig. 8.2 Many cycles of extension of the WECB specimen to a fixed strain level
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Fig. 8.3 Cycles of extension of the WECB specimen to successively increasing strains

unloading [1, 6, 13]. In this respect, WECB may be considered as a highly elas-
tic protein polymer with self-healing mechanical properties similar to those of the
byssal threads, c.f. [9]. However, WECB recovers from stresses much more rapidly,
almost instantaneously, a property unknown in any other natural or synthetic mate-
rial.

Even more striking differences between the behavior of WECB and other elas-
tomeric materials may be observed from cyclic tests to successively increasing strain
levels (Fig. 8.3). In the case of WECB, the reloading curves completely coincide
with the primary loading curve of the virgin sample. This property is totally absent
in all elastomeric materials including soft tissues for which the primary loading,
unloading and reloading curves are different [1, 6, 13].

The complete recovery phenomenon of WECB during unloading to a zero stress
state is reminiscent of pseudo-elastic effect typical for shape memory alloys (SMA)
[7]. This similarity has certain physical bases. However, these two classes of ma-
terials are different in their thermal properties. As it could be observed in Fig. 8.4,
increasing the temperature of the water bath in which the WECB specimen is being
quasi-statically cycled results in a decrease of the yield stress and a recession of the
Hookean region. At temperatures approaching 100◦C, the Hookean region appears
to be absent (Fig. 8.5). In sharp contrast, for SMA the transition stress has a lin-
ear relationship with temperature having the positive slope matching the Clausius-
Clapeyron law of thermoelastic martensitic transformations [7]. For WECB, the
transition stress is non-linear, in general, with a negative slope (Fig. 8.5). However,
the transformation strain in both cases is not influenced by temperature.

The test results of Fig. 8.4 show that the elastic modulus for WECB has an in-
verse relationship to temperature. Thus, although WECB should be considered as an
elastomeric material due to its microstructure and long range elasticity, it behaves
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Fig. 8.4 Representative extension curves for the WECB at different temperatures

Fig. 8.5 Graph of the WECB yield (transition) stress v.s. temperature exposure

contrary to entropic elasticity, the most characteristic properties of natural and syn-
thetic rubbers as well as of soft tissues [1, 13].

8.3 Structure of WECB and Micro-mechanisms of Straining

The studies [11, 12] show that the whelk egg capsule biopolymer (WECB) is a
proteinaceous composite elastomer possessing α -helical structural motifs (deter-
mined from X-ray diffraction studies) and hierarchical layers of ordered fibrous
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constituents, suggestive of a structure analogous to an intermediate filament (IF)-
based material such as that of hard α -keratin [2]. Moreover, the light microscopy
studies reported in the same contributions reveal that WECB can be composed of
numerous distinct layers of material that possess subtle differences in observable
texture, although it is purported that the layers are all composed of the same mate-
rial.

Furthermore, wide angle X-ray scattering studies reported in [9] show a coiled
coil (cc) α -helix↔ β -sheet transition when the material is strained past the appar-
ent yield point. This transition is reversed back to the cc α -helix when the material is
cycled back to zero strain. The governing physical mechanism is responsible for the
macroscopically observed complete recovery of strain upon unloading to the zero
stress level, an effect which is know as the superelastic behavior typical for shape
memory alloys (SMA) resulting from the austenite-martensite phase transition. The
observed analogy in macroscopic behavior and the phase transition mechanisms
suggest that the constitutive modeling of WECB may be based on either of the two
approaches:

• A quasi-convex relaxation approach used to construct effective models for ma-
terials that undergo phase transformations, such as austenite-martensite phase
transition in SMA.

• A phase transition variable concept similar to the concept of martensitic volume
fraction used in modeling the shape memory alloys. In this concept, the state
variables such as stress, strain and temperature are considering as functions of
the phase transition variable.

Both approaches are phenomenological, formulated within the well-developed con-
cepts of continuum thermodynamics. Moreover, such models can be built up largely
independently of the specific classes of materials. In this paper, we follow another
approach which has been earlier applied by the authors to model the basic properties
of elastomers [6] and polymers [4, 14].

8.4 Micromechanically Motivated Constitutive Models

Consider a continuous body identified with a fixed uniform reference configuration
B in the physical space. A motion of B is the mapping of material points xxx and
time t given by yyy = yyy(xxx, t). The deformation gradient is FFF = ∇ ∇ ∇ yyy with detFFF > 0.
Assuming sufficient continuity of the relevant fields, the balance equations of linear
and angular momentum take the local form for quasi-static conditions

DivPPP+ bbb = 000, PPPFFFT −FFFPPPT = 000. (8.1)

Here PPP(xxx, t) denotes the first Piola-Kirchhoff stress tensor and bbb(xxx, t) is the external
body force.

Considering α -helix↔ β -sheet transition as the physical mechanism underlying
the macroscopically observed mechanical properties of WECB, we shall assume
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that this process is characterized by a single scalar field variable α = α (xxx, t) . This
micro-variable serves to measure the amount of phase transition from the α -helix to
the β -sheet and hence it varies from 0 to 1 (say), with α = 0 and α = 1 correspond-
ing to pure α -helix and the β -sheet phases, respectively. Although the mechanism
of the α -β transition occurring in WECB due to straining is not completely under-
stood, it is natural to postulate that the evolution of the microvariable α is accom-
panied by microforces and microstresses satisfy their own law of balance, which in
the local form reads [4, 6, 14]

Div πππ + ζ + β = 0. (8.2)

In this theory, πππ (xxx, t) is a microstress (vector), ζ (xxx, t) an internal microforce (scalar)
and β (xxx, t) an external microforce.

The balance laws of macroforces (8.1)1 and microforces (8.2) may be expressed
in the weak form

Wi(P, t)−We(P, t) = 0 (8.3)

representing the principle of virtual velocities for any part P of the body B. Here

Wi(P, t) =
∫

P

(PPP · ∇ ∇ ∇ vvv+ ζ ν + πππ · ∇ ∇ ∇ ν ) dV (8.4)

and
We(P, t) =

∫

P

(bbb · vvv+ β ν ) dV−
∫

∂ P

(PPPnnn · vvv+(πππ ·nnn) ν ) dA (8.5)

are the mechanical power of internal and external macro- and microforces/ stresses
acting on any part of the body. In (8.4) and (8.5), vvv = vvv(xxx, t) and ν = ν (xxx, t) are the
macroscopic and microscopic velocity fields.

In an isothermal context, the second law of thermodynamics requires that the
rate of increase of energy cannot exceed the power expended on any part of the
body. Letting Ψ denote the free energy, the second law for the considered purely
mechanical theory takes the form of dissipation inequality

δ ≡ Σ − ˙Ψ ≥ 0, (8.6)

where the stress power density is given by

Σ = PPP · ḞFF + ζ α̇ + πππ · ∇ ∇ ∇ α̇ (8.7)

in consistency with the derived form of the internal mechanical power (8.4).
Throughout this paper we use a superposed dot to denote the material time derivative
with respect to the (macroscopic) motion of the material point.

The constitutive theory requires that Ψ , PPP, ζ and πππ are given as functions of the
variables FFF , α , ∇ ∇ ∇ α , ḞFF and α̇ . In modern theories of continuum thermodynamics,
such response functions must satisfy a priori the dissipation inequality (8.6) for all
admissible processes. As a result we obtain:
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1) the free energy is independent of ḞFF and α̇ ,

Ψ = ˆΨ (zzz), zzz≡ (FFF, α , ∇ ∇ ∇ α ), (8.8)

2) the microstress is related to the free energy through the relation

πππ = ∂ ∇ ∇ ∇ α ˆΨ (zzz), (8.9)

3) the macrostress and the microforce admit the representations

PPP = ∂ FFF ˆΨ (zzz)+ P̂PPv(zzz, ḞFF , α̇ ), (8.10a)

ζ = ∂ α ˆΨ (zzz)+ ζ̂ v(zzz, ḞFF , α̇ ), (8.10b)

4) the additional response functions P̂PPv(zzz, ḞFF , α̇ ) and ζ̂ v(zzz, ḞFF, α̇ ) appearing in
(8.10a) and (8.10b) must satisfy the reduced dissipation inequality

δ = P̂PPv(zzz, ḞFF , α̇ ) · ḞFF + ζ̂ v(zzz, ḞFF , α̇ )α̇ ≥ 0 (8.11)

for all admissible values of their arguments.

The microstress πππ drives the changes in the gradient of the microvariable α and
thus it will only be a factor in regions where α rapidly varies from point to point
in the material. This is the case in problems of strain localizations and size effect
observed in many materials [4, 14], but this is not of primary importance in the
problem considered in this work.

8.5 Non-gradient Models and Pseudo-elasticity

For homogenous deformation or deformations with only mild changes in α , the
influence of the gradient of the microvariable ∇ ∇ ∇ α on the material behavior may be
expected to be small and hence negligible. In this case, the free energy is given by
Ψ = ˆΨ (FFF, α ) and the general constitutive equations (8.10a) and (8.10b) are reduced
to

PPP = ∂ FFF ˆΨ (FFF, α )+ P̂PPv(FFF , α , ḞFF , α̇ ), (8.12a)

ζ = ∂ α ˆΨ (FFF , α )+ ζ̂ v(FFF , α , ḞFF , α̇ ) (8.12b)

with πππ = 000 in consistency with the assumption that ∇ ∇ ∇ α ∼= 000 . By implication, the
governing macroscopic field equation resulting from the balance of linear momen-
tum takes the form

Div(∂ FFF ˆΨ (FFF , α )+ P̂PPv(FFF , α , ḞFF , α̇ ))+ bbb = 000 (8.13)
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and the balance law of microforces (8.2) is reduced to an evolution law for the
microvariable α in the implicit form

∂ α ˆΨ (FFF , α )+ ζ̂ v(FFF, α , ḞFF , α̇ ) = 0. (8.14)

Here and in the following, we neglect the external microforce β .
If the resulting constitutive relation (8.14) may be solved for the rate of change

of the microvariable α , then it assumes the form of an evolution law

α̇ = α̂ (FFF , α , ḞFF), (8.15)

which in the classical theory of materials with internal variables is postulated as the
basic constitutive assumption.

The behavior of all materials, except of truly elastic ones, depends on the his-
tory of strain. Creep and stress-relaxation are the most familiar examples of such
dependency and the quasilinear viscoelastic model accurately describes these ef-
fects. Most of the elastomeric materials, including soft tissues, demonstrate a dif-
ferent strain-history dependence known as stress softening or as the Mullins effect
[1, 6, 10]. In such materials, the stress-strain relation depends on the maximum pre-
vious strain experienced by the specimen. Moreover, these materials become perma-
nently softened after the strain reaches a new maximum for the first time. It has been
also suggested that stress softening may explain preconditioning behavior. Thus,
some of the history dependence in elastomeric material that has previously been at-
tributed to viscoelasticity may actually be the result of stress softening, which may
be modeled on the basis of the theory presented in the current investigation. Indeed,
it has been shown in [6] that under the additional assumption ζ̂ v(FFF , α , ḞFF , α̇ ) = 0,
the evolution equation (8.14) representing the balance of microforces reduces to the
form postulated in [10] as the basic constitutive equation of a pseudo-elastic model
for the Mullins effect.

8.6 Constitutive Model of Superelasticity

Ideal elasticity is the basic model describing the property whereby the energy ex-
pended in the deformation of the material recovers completely if the applied forces
are entirely removed. In the uni-axial case, the energy expended in deformation is
given by the area under the stress-strain curve. Therefore, an ideal elastic mate-
rial exhibits a perfect reversible stress-strain relation, i.e. the loading and unloading
curves coincide.

The whelk egg capsule biopolymer (WECB) is not ideal elastic in that sense. As
we can observe in Fig. 8.2, the loading and unloading curves do not coincide. This is
also observed for all elastomeric materials. However, WECB exhibits three striking
features in its mechanical response totally absent in elastomers and soft tissues:
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1. the complete recovery upon reducing the deforming stress to zero (no residual
strains or permanent set),

2. the reloading stress-strain path coincide completely with the primary loading
curve of the virgin sample,

3. unloading and reloading paths are retraced for any number of cycling loading.

These mechanical properties under the additional assumption of rate independence
allow us to formulate the constitutive model for this kind of biopolymers by intro-
ducing additional assumptions into the general theory presented in Sect. 8.5.

Keeping in mind the principle of material objectivity, the free energy is assumed
to be a function of the Green-Lagrange strain tensor EEE , i.e. Ψ = ˆΨ (EEE, α ), so that the
stress-strain relation (8.12a) may be rewritten in terms of the second Piola-Kirchhoff
stress tensor SSS as

SSS = ∂ EEE ˜Ψ (EEE, α ), (8.16)

where SSS and EEE are defined by

SSS = FFF−1PPP, (8.17a)

EEE =
1
2

(
FFFT FFF− 111

)
. (8.17b)

In consistency with the assumption of rate independency, the dissipative part of
the macroscopic stress tensor has been set to zero in the constitutive relation (8.16).
However, this assumption does imply that the dissipative part of the microforce may
be neglected. Thus, the constitutive relation (8.14) preserves its general form, which
written in terms of EEE reads

∂ α ˜Ψ (EEE, α )+ ζ̃ v(EEE, α , ĖEE, α̇ ) = 0, (8.18)

so that the principle of material objectivity is identically satisfied.
For rate independent models, the dependence of the response function ζ̃ v on the

strain rate is very special, actually it only depends on the distinction between load-
ing and unloading process. In order to quantify loading/unloading process in the
general three-dimensional theory, we introduce the scalar measure of deformation
extent defined as ε = ε̃ (EEE) . A simple example of such a measure is given by the
Euclidean norm of the strain tensor EEE , but in the present paper we do not specify
this measure explicitly. The only general requirement is that ε vanishes in any rigid
motion, i.e. ε̃ (000) = 0 . Moreover, we assume that the sign of ε̇ correctly quantifies
the loading/unloading process. These requirements combined with the assumption
of rate independence allow the constitutive relation (8.18) to be written in the form

∂ α ˜Ψ (EEE, α )+ ζ̃ v(EEE, α ,sign ε̇ , α̇ ) = 0. (8.19)

Thus, the evolution of the microvariable α (xxx, t) depends on the strain rate only
through the sign of the rate of the measure of deformation extent with sign ε̇ > 0
and sign ε̇ < 0 defining the loading and unloading process, respectively.
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If in addition the constitutive relation (8.19) may be solved for α̇ , then the evo-
lution of the microvariable α is determined by two constitutive laws:

sign ε̇ > 0 (loading)
α̇ = ζ L(EEE, α ), (8.20a)

sign ε̇ < 0 (unloading)
α̇ = ζ U(EEE, α ; ε m), (8.20b)

where ζ L(EEE, α ) and ζ U(EEE, α ; ε m) are independent response functions, and ε m de-
notes the maximum strain undergone by the material during loading process.

The set of evolution laws (8.20a) and (8.20b) together with the stress-strain re-
lation (8.16) completely describe the behavior of the material for an arbitrary de-
formation history. Furthermore, the assumptions leading to this constitutive model
are consistent with the mechanical properties of whelk egg capsule biopolymer
(WECB).

8.7 Identification of Response Functions: 1D Theory

In the one-dimensional case, the general constitutive relations derived in the previ-
ous section give the stress-strain relation in the form

σ = σ̃ (ε , α ) = ∂ ε ˜ψ (ε , α ). (8.21)

Here σ and ε are the uni-axial engineering stress and strain, respectively, and
˜ψ (ε , α ) is the corresponding free energy function. Let us recall, that the engineering

strain is defined by ε = λ −1, where the stretch λ = dy/dx is the ratio of the actual
and reference length of a material line element.

In specifying the evolution laws (8.20a) and (8.20b) for the uni-axial case, we
make the following assumptions. First, we assume that in the case of uni-axial de-
formation, the general measure of deformation extent introduced in the previous
section coincides with the engineering strain and hence the same symbol is used
for both quantities. Second, we assume that the general evolution laws (8.20a) and
(8.20b) may be integrated, in order to obtain expressions in an explicit form. By
implication of these two assumptions, the evolution laws for the microvariable α
are obtained as:

sign ε̇ > 0 (loading)
α = α̃ l(ε ), (8.22a)

sign ε̇ < 0 (unloading)
α = α̃ u(ε ; ε m). (8.22b)

Both assumptions are consistent with the theory of stress softening in elastomeric
materials [1, 5, 10]. In effect, the problem of constitutive modeling is reduced to the
determination of the response function ˜σ (ε , α ) for the stress σ or equivalently to the
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determination of the free energy function ˜ψ (ε , α ), and the response functions α̃ l(ε )
and α̃ u(ε ; ε m) occurring in the evolution laws . The constitutive setting developed
below gives the set of evolution laws (8.22a) and (8.22b) for any thermodynamically
admissible response function σ̃ (ε , α ).

8.7.1 Modeling the Loading Path

In a standard tensile test up to failure (Fig. 8.1), the stress-strain curve exhibits
three nearly linear distinct domains with the tangential moduli depending on the
strain level in a characteristic way shown in Fig. 8.6. In the presented theory, the

Fig. 8.6 Experimentally determined variation of the tangential modulus of elasticity with strain
for the WECB data shown in Fig. 8.1.

tangential modulus is determined by the derivative of the constitutive relation (8.21)
with respect to strain:

E =
dσ̃
dε

=
∂ ˜σ
∂ ε

+
∂ ˜σ
∂ α

∂ α̃
∂ ε

. (8.23)

Setting

A(ε , α )≡ ∂ ˜σ (ε , α )

∂ α
, B(ε , α )≡ ∂ ˜σ (ε , α )

∂ ε
(8.24)

for notational simplicity, the relation (8.23) takes the form of the first order differ-
ential equation of the form

A(ε , α )
∂ α̃ (ε )

∂ ε
+B(ε , α )−E(ε ) = 0. (8.25)
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Both A(ε , α ) and B(ε , α ) are uniquely determined functions whenever any partic-
ular form of the response function ˜σ (ε , α ) is assumed. Moreover, the tangential
elastic modulus as function of strain, E(ε ), may be determined from the data of
standard tensile test (see Fig. 8.6). As a result, the general solution of the differ-
ential equation (8.25) with the initial condition α̃ (0) = 0 yields the evolution law
(8.22a) in the most general form. This methodology makes it possible to determine
the evolution law (8.22a) directly from the experimental data for any particular form
of the response function ˜σ (ε , α ), equivalently for the assumed free energy function
˜ψ (ε , α ).

8.7.2 Modeling the Unloading Paths

In order to determine the evolution law (22b) for the unloading process, we first
need an appropriate method to characterize the unloading curves from any prede-
fined strain ε m. For the complete loading-unloading cycle with given ε m, the most
important property is the hysteretic effect. It was shown in [11] that the hysteresis
sharply increases for pre-strains up to abound 5 % and only small changes are ob-
served for higher pre-strains. This observation is in close relation with the variation
in the tangent elastic modulus shown in Fig. 8.6.

Besides the hysteresis for the complete loading-unloading cycle, we need to
characterize the unloading curves within each cycle. There are two basic quanti-
ties which serve this purpose, the stress ratio defined as ρ σ ≡ σ u/σ l at any value of
strain ε and the strain ratio ρ ε ≡ ε u/ε l or strain difference δ ε = ε l − ε u defined at
any value of stress σ (Fig. 8.7).

Fig. 8.7 Cyclic tension test: Definition of stress and strain ratio
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Fig. 8.8 Stress ratio vs. normalized strain for the data of Fig. 8.3.

Figure 8.8 shows the stress ratio computed for the data shown in Fig. 8.3. Here
the normalized strain is defined by ξ ≡ ε /ε m for any pre-strain ε m. Using the concept
of the stress ratio ρ σ and the strain ratio ρ ε , the response function in the evolution
law for the unloading process can be determined as follows. Taking into account
the constitutive law (8.21) together with the evolution laws (8.22a) and (8.22b), we
obtain

ρ σ = ρ̃ σ (ε ; ε m)≡
σ u

σ l
=

˜σ (ε , α̃ u(ε , ε m))

˜σ (ε , α̃ l(ε ))
. (8.26)

Furthermore, it follows that the stress-strain relation for the unloading from any
value of pre-strain ε m is given by the relation

˜σ u(ε ; ε m) = ρ̃ σ (ε ; ε m) ˜σ l(ε ), (8.27)

where
˜σ u(ε ; ε m)≡ ˜σ (ε , α̃ u(ε ; ε m)), ˜σ l(ε )≡ ˜σ (ε , α̃ l(ε )). (8.28)

Note that the stress ratio ρ̃ σ (ε ; ε m) may be determined directly from cyclic tension
tests. Moreover, the response function ˜σ l(ε ) for the loading process is determined
by the method described in the previous section. Thus, the relation (8.27) serves to
determine the response function ˜σ u(ε ; ε m) for the unloading process and implicitly
it determines the response function for evolution law (8.22b). It could be observed
in Fig. 8.8, that the stress ratio curves determined for different pre-strains collapse
to a single curve for a normalized strain ξ higher than 0.4. Thus, within this range
the mechanical behavior of WECB during unloading is essentially independent of
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Fig. 8.9 Plots of strain ratio vs normalized strain for the data of Fig. 8.3.

the pre-strain ε m. In view of the relations derived above, we conclude that the extent
of the α -helix ↔ β -sheet transition in that range of deformation is actually inde-
pendent of the pre-strain. However, for lower values of ξ , the sharp differences
are observed between the stress ratio computed for different unloading curves. It is
interesting to note that the highest value of stress ratio is obtained at the smallest
pre-strain. This observation may be used to characterize quantitatively the extent of
the α -helix↔ β -sheet transition. However, in that range of deformation, the com-
putation of the stress ratio is very sensitive to measurement errors. For this reason,
the strain ratio may be considered as a more appropriate quantity for the charac-
terization of the unloading curves (see Fig. 8.9) and for the development of the
corresponding evolution law.

8.8 Special Models

As an illustrative example of the general constitutive relations for the superelastic
behavior of WECB in uni-axial cyclic tension tests, let us consider a very simple
stress-strain law in the form

σ = ˜σ (ε , α ) = H(α )ε (8.29)

with the (effective) elastic modulus H(α ) given by

H(α ) = (1− α )EA+ α EB. (8.30)
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Here, EA and EB are the elastic moduli in the Hookean and yield regime indicated
in Fig. 8.1. Under the assumptions (8.29) and (8.30), Eq. (8.25) reads

ε
∂ α̃ (ε )

∂ ε
+ α̃ (ε )+ Ẽ(ε ) = 0, (8.31)

where Ẽ(ε ) is defined by

Ẽ(ε ) =
1

EA−EB
(E(ε )−EA). (8.32)

The general solution of differential equation (8.31) has the form

α̃ (ε ) =
1
ε
(−
∫

Ẽ(ε )dε +C) (8.33)

with the constant C to be determined from the initial condition α̃ (0) = 0. The con-
stants EA and EB as well as the function E(ε ) may be determined from the data
(see e.g. Fig. 8.6). Then, the integral in (8.33) may easily be computed yielding the
evolution law (8.22a) for α in the loading process. For the unloading process, the
substitution of the assumptions (8.29) and (8.30) into the relation (8.27) gives

EA− (EA−EB)α̃ u(ε ; ε m) = ρ̃ σ (ε ; ε m)H(α̃ l(ε )), (8.34)

where H(α̃ (ε )) is defined by (8.33) and (8.30). As a result, the evolution law (8.22b)
is obtained in the form

α̃ u(ε ; ε m) =
1

EA−EB
(EA− ρ̃ σ (ε ; ε m)H(α̃ l(ε ))). (8.35)

The same approach may be applied to more general assumptions than (8.29) and
(8.30).

8.9 Discussion

The present contribution provides a basis for the constitutive modeling of biopoly-
mers having the thermo-mechanical properties observed for the whelk egg capsule.
This biomaterial displays true superelasticity in the sense that it fully recovers its
shape after the deforming force is removed. However, the loading and unloading
paths do not coincide. Therefore, this material is not elastic in the sense of clas-
sical theories of continuum mechanics. Moreover, the behavior of the whelk egg
capsule biopolymers (WECB) is totally different from the behavior of known elas-
tomeric materials including soft tissues and some other biomaterials. In particular,
for WECB the reloading curve completely coincides with the loading curve of the
virgin sample, the property totally absent in other materials. Hence, we introduced
a novel modeling framework for such a material behavior which is denoted as su-
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perelasticity. This theory is distinct from superelastic models for the shape memory
alloys as well as from pseudo-elastic models for the stress softening behavior of
elastomers. The proposed extended continuum theory is based on micromechanisms
which are built into the macroscopic theory through a scalar phase field measuring
the extent of the α - β transition. In a general setting, the evolution of this mi-
crovariable is accompanied by microforces and microstresses satisfying their own
balance equation. Thus, it fits in the context of extended continuum theories. When
restricted to smooth deformations, the balance of microforces could be reduced to a
(local) evolution law for the extent of the α -helix↔ β -sheet transition.
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Chapter 9
Construction of Micropolar Continua from the
Homogenization of Repetitive Planar Lattices

Francisco Dos Reis and Jean-François Ganghoffer

Abstract The derivation of the effective mechanical properties of planar lattices
made of articulated bars is herewith investigated, relying on the asymptotic homog-
enization technique to get closed form expressions of the equivalent properties ver-
sus the geometrical and mechanical microparameters. Considering lattice microrota-
tions as additional degrees of freedom at both scales, micropolar equivalent continua
are constructed from discrete lattices made of a repetitive unit cell, from an exten-
sion of the asymptotic homogenization technique. We will show that it is necessary
to solve on two different orders a linear system of equations giving the kinematic
variables, at both the first and second order. The effective strain and effective curva-
ture appear respectively as the first and second order strain variables. In the case of
a centrosymmetric unit cell, there is no coupling between couple stresses and strains
nor between stress and curvature. The unknown kinematic variables are determined
by solving the translational and rotational equilibrium for the whole lattice. This in
turn leads to the expression of the stress vector and couple stress vector, allowing
to construct the Cauchy stress and couple stress tensors. The homogenized behav-
ior of the tetragonal and hexagonal lattices is determined in terms of homogenized
micropolar moduli.

Key words: Lattice homogenization. Micropolar continuum. Effective properties.
Negative Poisson’s ratio. Hexagonal lattice. Centrosymmetric solid.

9.1 Introduction

The derivation of the mechanical properties of foams with a regular architecture (in
the sense of endowed with a quasi periodic network) in relation to the topology of
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the cellular material and the material mechanical properties is especially interesting
and important, in order to understand the observed behavior and to possibly tune
the foam architecture to achieve certain properties at the structural level. The inter-
est of the extension of the equivalent medium representative of the initial discrete
lattice at the macroscopic scale to a micropolar medium is particularly visible in
the understanding of the behavior of those lattices under certain loading conditions
(concentrated forces, damage tolerance, holes) and/or geometry (stress concentra-
tion in a perforated plate). For example, in a biomechanical context, the micropolar
theory applied to bone (Fatemi et al. [3], Rosenberg and Cimrman [13], Yoo and
Jasiuk [17]). Fatemi et al. [3] shows that stress concentrations at the bone-prosthesis
interface are significantly smaller, when compared to a classical elasticity theory. In
another context, Liu and Su [8] show an increase of the microbending stiffness of
multilayered beams.

Some authors have used methods based on strain energy to homogenize: in [6]
the strain energy density is expressed as a function of the kinematic parameters; a
continuum results when using a Taylor series expansion of those parameters, which
limits the method to cells with a single node. The energy is the equivalent contin-
uum is then expressed versus the strain tensor and microbending. A similar energy
approach is involved in Florence and Sab [4], Pradel and Sab [10], but in situations
with more than one node per unit cell. It is nevertheless necessary to obtain the
kinematic parameters giving the minimum of the energy functional via Lagrange
multipliers. Another approach is given in Warren and Byskov [16], basing on the
writing of the equilibrium equations at the truss nodes and the homogenization by
averaging the forces acting on a RVE. The resolution of the derived equations is
done in the specific case of lattice symmetry with a mesh endowed with 120 de-
grees rotational symmetry (”three-fold symmetry”). In conclusion, we note that the
micropolar homogenization methods being developed present limitations related to
the type of mesh treaties or to a rather cumbersome mathematical method. There is
accordingly a need to develop a general and versatile tool able to calculate the ef-
fective behavior of taylored materials endowed with a discrete topology up to polar
continua.

In the present contribution, we extend the discrete homogenization technique re-
cently developed by (Caillerie et al. [1], Mourad [9], Raoult et al. [11], Tollenaere
and Caillerie [14]) to calculate the effective behavior of periodic lattices endowed
with local rotational degrees of freedom; the geometrically linear framework is con-
sidered in the present contribution. Contrary to literature works, the method is not
limited to a single node per cell. Its originality lies in that it reflects the mechanical
equilibrium at each node and its resolution leads to a system of linear equations suf-
ficiently simple and general to be easily programmable. We shall restrict our study to
the 2D case, small elastic deformations and unit cells exhibiting a central symmetry.

The outline of the paper is as follows: we briefly recapitulate the constitutive
equations of micropolar continua and the central problem of the asymptotic expan-
sion of the parameters. We next discuss the main steps of the micropolar asymptotic
method. The classical examples of the tetragonal and hexagonal lattices are treated
to illustrate the method, and the effective elastic micropolar properties of those lat-
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tices are calculated versus the lattice geometrical and mechanical parameters. We
conclude with a few perspectives this work opens up.

9.2 Micropolar Constitutive Equations

The micropolar theory and its variant the so-called ’couple stress theory’ is a gen-
eralization of classical elasticity based on a single variable kinematic displacement.
A micropolar theory assumes the existence of an additional kinematic local rotation
variable, called microrotation, associated with pairs of stress components. In a 2D
plane stress situation, the stress tensor has four components σ x, σ y, σ xy, σ yx and the
couple stress (or moment per unit area) has two components mxz,myz in 2D (Fig.
9.1). In the same way as for the stress field, the components of microbending κxz

σ

σ

σ

σ

y

yx

σ
yx

σ y

x
σ

x

xy

σ xy

m

m

yz

xz

m
xz

myz

x

y

dx

dy

Fig. 9.1 Components of stress and couple stress problem in a plane micropolar

and κyz induced by the couple stress enter as additional kinematic variables. The
components of the unsymmetrical strain and curvature tensors are then defined by
(following Eringen, see [2])

ε x =
∂ u
∂ x

, ε y =
∂ v
∂ y

, ε xy =
∂ v
∂ x
− φ , ε yx =

∂ u
∂ y

+ φ ,κxz =
∂ φ
∂ x

,κyz =
∂ φ
∂ y

.

The constitutive equations of a general linear anisotropic micropolar elastic medium
write

σ kl = Aklmnε mn +Bklmnκmn

mkl = Cklmnε mn +Dklmnκmn
(9.1)

For periodic and centro-symmetric structures (the stiffness coefficients of the
medium are invariant under coordinates inversion), the two pseudo tensors Bklmn =
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Cklmn therein are nil [6, 7, 15]. The constitutive equations in the more specific case
of an isotropic planar Cosserat medium then reduce to the relations

σ kl = λ ε rrδ kl +(µ ∗+κ) ε kl + µ ∗ε lk

mkl = α φ r,rδ kl + β φ k,l + γ φ l,k (9.2)

For a 2D problem, the constants α and β therein are zero. An equivalent form of the
constitutive law is {σ }= [K]{ε }, with the stiffness matrix

[K] =




K11 K12 K13 K14 0 0
K21 K22 K23 K24 0 0
K31 K32 K33 K34 0 0
K31 K42 K43 K44 0 0
0 0 0 0 K55 0
0 0 0 0 0 K66




As there are no normal efforts (to the considered plane) in the considered plane
stress situation, we deduce the compliance [S] = [K]−1. The micropolar moduli are
then expressed from the relations

µ ∗+κ = K33 = K44; µ ∗ = K34 = K43γ = K55 = K66.

As for nonpolar media, one derives the homogenized traction modulus

E∗1 =
1

S11
,

the Poisson’s ratio ν 12 =−S21E∗1 , and the effective shear modulus

G = µ ∗+
κ

2
.

Additional quantities typical of the micropolar theory are the characteristic length

lchara =

√
γ

2(2µ ∗+κ)

and the coupling factor

N2 =
κ

2(µ ∗+κ)
.

N ranges from 0 (the classical elastic theory) to 1 (for the ”couple stress theory”).
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9.3 Asymptotic Parameters

The discrete homogenization techniques requires a development of the beam length
lε b, width t ε b and thickness eε b, and the two kinematic variables, viz the displace-
ment uε n, and the rotation at the lattices nodes φ ε n, versus the small parameter ε ,
ratio of the beam length to a characteristic length of the lattice at the macro scale.
Regarding the beam length lε b, we rely on the results of Mourad [9], hence write
lε b = ε lb0 + ε 2lb1 + .... As to the width of the beam tb, we can simplify the expres-
sions of the bending and stretching stiffness by defining the parameter

η =
tb

lb
.

The thickness can be considered as a constant e = const = 1. Observe that other
models identify the beam width to its thickness. Hence, the stretch behavior is quan-
tified by the extensional stiffness

kl =
EsS
lb =

Estbe
lb = Esη ,

whereas a bending stiffness is elaborated as

k f =
12EsI

(lb)
3 = Esη 3,

with the quadratic moment given by

I =
e
(
tb
)3

12
.

This yields the following expressions for the asymptotic expansions of the tensions
and moments adopting a Bernoulli beam model

Nbε = Esη
(

eb · ∆ Ubε
)

(9.3)

T bε
t = Esη 3eb⊥ · ∆ Ubε − 1

2
Esη 3ε Lb0

(
φ O(b)ε + φ E(b)ε

)
(9.4)

MO(b)ε = Esη 3ε 2

(
Lb
)2

6

(
2φ O(b)ε + φ E(b)ε

)
− 1

2
Esη 3ε Lbeb⊥ · ∆ Ubε (9.5)

ME(b)ε = Esη 3ε 2

(
Lb
)2

6

(
φ O(b)ε + 2φ E(b)ε

)
− 1

2
Esη 3ε Lbeb⊥ · ∆ Ubε (9.6)

Other frameworks may be considered, as one may keep only one of the two pa-
rameters ε , η in the expression of resultants and moments; we presently keep both
parameters, which avoids oversimplifications of the expression of the transverse ef-
fort, which depends on parameter η .
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We notice a difference with the method developed in Mourad [9] and Caillerie
et al. [1]: those authors use the moment equilibrium to replace the expression of
the transverse forces Tb

t in the Eq. (9.4) by the couple M generated by the angular
variation between two consecutive beams. This modeling approach is customary in
the field of applications considered by the authors, namely molecular dynamics or
interatomic physics, with an application to carbon nanotubes. The authors adopt the
mechanics of interacting bars, whereas we choose beam mechanics for the descrip-
tion of the lattice behavior. In our treatment, the expression of the couple stresses
and thereby of the transverse forces is linked to the difference of displacements
between the extremity nodes of a given beam. Figure (9.3) shows the difference be-
tween both methods (considering the linearized method adopted in Caillerie et al.
[1]). In present approach, the couple is a function of the displacement difference
between the end nodes of a given beam; contrary to this, the angular variation be-
tween two beams is used in Caillerie et al. [1]. Moreover, in order to be able to

ϕ

ϕ

L

L

1 d1

2 d2

M

Fig. 9.2 Differences between the couples in the present method and in Caillerie et al. [1]: Couple
due to the angular variation between two bars

M

M

Tt

-Tt

d

Fig. 9.3 Differences between the couples in the present method and in Caillerie et al. [1]: Couple
generated by the displacement difference between the end nodes of the same beam (present work)
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use the rotational equilibrium equations, the previous authors identify the rotation
of the beam to a rigid body motion, implying the assumption of beams without in-
ternal transverse force. We adopt, to the contrary, the beam theory, with the couple
considered as an internal moment.

As to the kinematic variables, we consider that the two terms in the expression
of the shear forces and moments are of identical order to formulate the following
development of the displacement

uε (λ ε ) = u0 (λ ε )+ ε u1 (λ ε )+ ε 2u2 (λ ε )+ . . . (9.7)

which in turn gives the displacement difference between the end nodes of a beam

∆ Ubε = uε (E(b))−uε (O(b))

= ε
(

uER(b)
1 −uOR(b)

1 +
∂ u0

∂ λ i δ ib
)

︸ ︷︷ ︸
+

∆ Ub
1

ε 2
(

uER(b)
2 −uOR(b)

2

)

︸ ︷︷ ︸
∆ Ub

2

(9.8)

For the rotation variable, we separate the terms function of the symmetric and anti-
symmetric strain tensors (respectively denoted by the symmetrical and antisymmet-
rical brackets)

φ nε (λ ε ) = φ 0][ (λ ε )+ φ n
0[] (λ

ε )+ ε φ n
1][ (λ

ε ) + ... (9.9)

The first order antisymmetrical part of the microrotation, term

φ 0][ (λ ε )

is independent of the node, hence it represents the equivalent (homogenized) micro-
rotation of the unit cell. Reporting previous expansions of the microrotation gives
the following expression of the rotation variable at the origin and end nodes (Fig.
9.4)

φ O(b)ε = φ 0][+ φ OR(b)
0[] + ε φ OR(b)

1][ + . . . (9.10)

φ E(b)ε = φ 0][+ φ ER(b)
0[] + ε

( ∂ φ 0][

∂ λ i δ ib + φ ER(b)
1][

)
+ . . . (9.11)

9.4 Asymptotic Homogenization of Polar Lattices: Description of
the Main Steps

The general principle of the micropolar asymptotic method (this denomination is
relevant for polar lattices, and will be used here and in the sequel) consists in writing
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Fig. 9.4 Deformation parameters of the beam

the equilibrium equations of the equivalent micropolar continuum in virtual power
form to evidence the stress tensor and σ and the micromoment tensor m as inter-
nal dyadic products (in the space of tensors) with the base vectors of a curvilinear
coordinate system, viz

∫

Ω

(gσσσ · ei
λ )︸ ︷︷ ︸

Si

.
∂ v
∂ λ i

dλ +

∫

Ω

(gm · ei
λ )︸ ︷︷ ︸

µ i

.
∂ w
∂ λ i

dλ = 0

In a second step and anticipating forthcoming developments, one shall show that the
equilibrium equations of the discrete medium take the same form after homogeniza-
tion, viz

∑
b

Tb.v+∑
b

Mb.w = 0
homogenization→

∫

Ω

Si.
∂ v
∂ λ i

dλ +

∫

Ω

µµµ i.
∂ w
∂ λ i

dλ = 0

The comparison of the homogenized formulation with the previous continuum mi-
cropolar equilibrium allows then to identify the stress vector Si and the couple stress
vector µµµ i, leading thereafter to the elaboration of the associated stress and couple
stress. The underlying steps of the asymptotic method are next detailed.
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9.4.1 First Step: Formulation of the Equilibrium Equations
Highlighting the Stress Vector Si and the Couple Vector µµµ i

In order to set the stage, let write the equilibrium equations of a micropolar medium
in a quasi static context Forest [5], adopting a weak formulation:

∫

Ω

(σσσ . ∇ x) .vdx+
∫

Ω

(m. ∇ x− ∈: σσσ ) .wdx

= −
∫

Ω

fvol.vdx−
∫

Ω

cvol.wdx

−
∫

∂ Ω

(σσσ .n− tedge).vds−
∫

∂ Ω

(m.n−Medge).wds

(9.12)

considering a domain Ω submitted to edge traction tedge and surface couples Medge.
The weak form of those equilibrium equations involve virtual velocities{v,w}, re-
spectively equivalent to the rates {u̇, φ̇φφ }. The components of the two tensors m and
σσσ are decoupled in the case of a centro-symmetric medium, which implies that the
terms of the couple stress tensor are self-balanced in the absence of distributed cou-
ples. According to Riahi and Curran [12], in the absence of torque density and if the
terms of the couple stress tensor are self-balanced, then the term ∈: σσσ = 0, which
means that Cauchy stress remains symmetrical. Choosing the virtual fields v, w nil
outside the considered domain Ω , previous equations resume to the sole volume
integrals; in the absence of body forces and body couples, previous general equilib-
rium equations then entail the following quasi static equilibrium equations:

∫

Ω

(σσσ . ∇ x) .vdx = 0 (9.13)

∫

Ω

(m. ∇ x) .wdx = 0 (9.14)

The stress and couple stress tensors shall be evidenced thanks to a change of vari-
ables, following the method developed in Mourad [9]. Let xi denote the cartesian
coordinates of a material point P, such that x = xiei in a fixed cartesian basis ei,
and let define the generalized curvilinear coordinates λ = (λ 1, λ 2, λ 3), inducing the
change of variables x = ψψψ (λ 1, λ 2, λ 3), assumed to be one-to-one. Observe that the
parameterization of material points with a curvilinear Lagrangian variable allows
the treatment of lattices having the geometry of 2D shells. The following covariant
vectors are defined

eλ
k =

∂ xi

∂ λ i ei (9.15)

dual to the contravariant vectors ei
λ , in the sense of the inner products ei

λ .e
λ
j = δ i

j
(the Kronecker symbol). The change of variable x = x(λ ) is next done in Eqs (9.13)
and (9.14): this induces the transformation dx = gdλ . The gradients of the virtual
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velocities are next expressed in the curvilinear coordinate system, viz

∇ xv =
∂ v
∂ λ i ⊗ ei

λ ; ∇ xw =
∂ w
∂ λ i ⊗ ei

λ .

The Eqs (9.13) and (9.14) can be expressed under the form:
∫

Ω

(σσσ . ∇ x) .vdx =
∫

Ω

σσσ : (∇ xv)dx

=

∫

Ω

σσσ : (
∂ v
∂ λ i ⊗ ei

λ )gdλ =

∫

Ω

(σσσ ei
λ ).

∂ v
∂ λ i gdλ = 0

(9.16)

∫

Ω

(m. ∇ x) .wdx =
∫

Ω

m : (∇ xw)dx

=
∫

Ω

m : (
∂ w
∂ λ i ⊗ ei

λ )gdλ =
∫

Ω

(mei
λ ).

∂ w
∂ λ i gdλ = 0

(9.17)

One adopts the following definition of the stress and couple stress vectors:

Si = gσ ei
λ (9.18)

µµµ i = gmei
λ (9.19)

From the Eqs (9.16) and (9.18), one can write the translational equilibrium:

∫

Ω

Si.
∂ v
∂ λ i dλ = 0 (9.20)

Similarly, from Eqs (9.17) and (9.19), the moment equilibrium writes:

∫

Ω

µµµ i.
∂ w
∂ λ i dλ = 0 (9.21)

One then expresses the curvilinear gradients of the virtual velocities versus those of
the nodal positions,

∂ v
∂ λ i = ∇ xv.

∂ R
∂ λ i ;

∂ w
∂ λ i = ∇ xw.

∂ R
∂ λ i ,

with R the position vector of a lattice node. The two previous discrete equilibrium
equations can then be transformed into continuous formulations after homogeniza-
tion. Pursing further, one can write the Eqs (9.20) and (9.21) under the form

∫

Ω

Si.
∂ v
∂ λ i dλ =

∫

Ω

Si.(∇ xv.
∂ R
∂ λ i )dλ =

∫

Ω

(
Si⊗ ∂ R

∂ λ i

)
: (∇ xv)

1
g

dx = 0 (9.22)
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∫

Ω

µµµ i.
∂ w
∂ λ i dλ =

∫

Ω

µ i.

(
∇ xw.

∂ R
∂ λ i

)
dλ =

∫

Ω

(
µµµ i⊗ ∂ R

∂ λ i

)
: (∇ xw)

1
g

dx = 0

(9.23)

Those equations highlight the stress and couple stress tensors as the following
dyadic products of the stress and couple stress vectors with the curvilinear gradi-
ent of the position vector:

σσσ =
1
g

Si⊗ ∂ R
∂ λ i (9.24)

m =
1
g

µµµ i⊗ ∂ R
∂ λ i (9.25)

The next step consists in expressing both vectors Si and µµµ i according to the topology
of the unit cell and the mechanical properties of the constitutive beams.

9.4.2 Second Step: Homogenization of the Discrete Equilibrium
Equations

The vectors of effort Tb decomposes into a normal and a transverse contribution

Tb = Nbeb +T b
t eb⊥ (9.26)

The equilibrium of forces for the whole lattice expresses in virtual power form and
after asymptotic development as

∑
vi∈Z2

∑
b∈BR

Tε b.(vε (O(b))− vε (E (b))) = 0 (9.27)

with v(.) a virtual velocity field choosing to vanish on the edges. The description of
the kinematic and static variables for a bar within the lattice is exposed on the Fig.
9.4. The moment equilibrium can be written in two different ways, as the virtual
power for all lattice nodes

∑
vi∈Z2

∑
b∈BR

(
MO(b).w(O(b))+ME(b).w(E (b))

)
= 0 (9.28)

or as the sum of the equilibrium balances of the individual beams

∑
vi∈Z2

∑
b∈BR

(
MO(b).w(O(b))+ME(b).w(E (b))

+
Lb

2
(eb∧TE(b)).w(C (b))− Lb

2
(eb∧TO(b)).w(C (b))

)
= 0

(9.29)
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with ebthe director for each bar, and Lb the bar length; those two elements remain
fixed under the presently adopted small strains formalism. MO(b) and ME(b)are the
moments in the origins and ends of a generic beam respectively, and w(.) the virtual
rotation rate.

9.4.2.1 Description and Parametrization of the Lattice Geometry

We denote by NR and BR respectively, the set of node and beam indices belonging
to the reference cell. Thus, to each pair vi = (v1,v2) ∈ Z2, we associate a reference
cell. The nodes of the whole lattice can then be defined by the triplet ñ=

(
n,v1,v2

)
∈

NR ×Z2. Similarly, the beams of the lattice can be described by the triplet b̃ =(
b,v1,v2

)
∈BR ×Z2.

In the reference cell, each beam is oriented so that it has an origin node O
(
b̃
)

and an end node E
(
b̃
)
. Although we can choose the origin node as part of the

reference cell, this is not necessarily the case for the end node; the end node belongs
nevertheless to a cell that is close. If the original node O

(
b̃
)

is associated with
a triplet ñ =

(
n,v1,v2

)
, the end node E

(
b̃
)

is necessarily associated with a node
numbered

(
m,v1 + δ 1,v2 + δ 2

)
. In most cases, the end node belongs to an adjacent

cell, which means that the shift variables δ i belong to the set δ i ∈ {−1,0,1}. We
further associate to each beam a node at its center, denoted C (b).

9.4.2.2 Asymptotic Development of the Virtual Velocity and Rotation Rate

For any virtual velocity field vε (λ ), a Taylor series development leads to

vε (E (b))− vε (O(b)) = vε (λ ε + ε δ ib)− vε (λ ε ) = ε
∂ v(λ ε )

∂ λ i δ ib (9.30)

Similarly, the previous expansion of the rotation rate leads to

wC(b)ε =
1
2

(
wE(b)ε +wO(b)ε

)

wO(b)ε (λ ) = w(λ ) (9.31)

wE(b)ε (λ + ε δ i) = w(λ )+ ε
∂ w(λ )

∂ λ i δ ib

9.4.2.3 Final Balance Equations

Inserting Eqs (9.30), (9.4) and (9.3) in (9.27) leads after development and ordering
following the successive powers of ε to
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∑
vi∈Z2

∑
b∈BR

[
ε 2
(

Esη
(

eb · ∆ U1

)
eb

+

(
Esη 3eb⊥ · ∆ U1−

1
2

Esη 3Lb0
(

2φ 0][+ φ OR(b)
0[] + φ ER(b)

0[]

))
eb⊥
)
· ∂ v(λ ε )

∂ λ i δ ib

+ ε 3
(

Esη
(

eb · ∆ U2

)
eb +

(
Esη 3eb⊥ · ∆ U2

− 1
2

Esη 3Lb0
(

φ OR(b)
1][ + φ ER(b)

1][ +
∂ φ 0][

∂ λ i δ ib
))

eb⊥
)
· ∂ v(λ ε )

∂ λ i δ ib
]

(9.32)
This discrete equation is transformed into a continuous Riemann integral on the
domain Ω when the family of lattices parameterized by ε tends to a continuum
(we envisage a fixed reference domain, and increase the density of belas within this
domain). For any enough regular function g, the quantity

ε 2 ∑
vi∈Z2

g(ε vi)

can be interpreted as the Riemann sum of an integral over Ω , viz
∫

Ω

g(λ )dλ

when ε → 0. The Eq. (9.32) becomes after homogenization :

∫

Ω

Si.
∂ v(λ )

∂ λ i dλ = 0 (9.33)

with the stress vector Si = Si
1 + ε Si

2 decomposing into a first and second order con-
tribution, respectively vectors Si

1, Si
2, as

Si
1 = ∑

b∈BR

(
Esη

(
eb · ∆ U1

)
eb

+

(
Esη 3eb⊥ · ∆ U1−

1
2

Esη 3Lb0
(

2φ 0][+ φ OR(b)
0[] + φ ER(b)

0[]

))
eb⊥
)

δ ib

and

Si
2 = ∑

b∈BR

(
Esη

(
eb · ∆ U2

)
eb

+

(
Esη 3eb⊥ · ∆ U2−

1
2

Esη 3Lb0
(

φ OR(b)
1][ + φ ER(b)

1][ +
∂ φ 0][

∂ λ i δ ib
))

eb⊥
)

δ ib.

The stress tensor σσσ is then reconstructed from Si as Eq. (9.24)

σσσ =
1
g

Si⊗ ∂ R
∂ λ i (9.34)
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The moment equilibrium, Eq. (9.29) is further homogenized inserting the asymp-
totic expansions of the virtual rotation rate, Eq. (9.31), the parameters and moments,
Eqs (9.6) and (9.5). We obtain after simplification the following expression (sup-
ported by the normal vector to the lattice plane)

∑
vi∈Z2

∑
b∈BR

(
ε 3

(
Esη 3

(
Lb
)2

12

(
φ ER(b)

0[] − φ OR(b)
0[]

))

+ ε 4

(
Esη 3

(
Lb
)2

12

(
−φ OR(b)

1][ +
∂ φ 0][

∂ λ i δ ib + φ ER(b)
1][

)))
δ ib.

∂ w0

∂ λ i = 0

(9.35)

The homogenization of this equation is done similarly as for the efforts: it becomes
after passage to the limit ε → 0

∫

Ω

µµµ i ∂ w0 (λ )
∂ λ i dλ = 0 (9.36)

with the couple vector identified to

µ i = µ i
1 + ε µ i

2,

incorporating the first order micropolar stress vector

µµµ i
1 = ∑

b∈BR

(
Esη 3

(
Lb
)2

12

(
φ ER(b)

0[] − φ OR(b)
0[]

))
δ ib

and the second order micropolar vector

µµµ i
2 = ∑

b∈BR

(
Esη 3

(
Lb
)2

12

(
−φ OR(b)

1][ +
∂ φ 0][

∂ λ i δ ib + φ ER(b)
1][

))
δ ib.

This allows finding the couple stress tensor m from the vectors µ i as described in
Sect. 9.4.1

m =
1
g

µ i⊗ ∂ R
∂ λ i (9.37)

9.4.2.4 Simplification of the Expressions of Si and µµµ i

We can simplify the expressions of the vectors of effort Si and couple stress µµµ i

using a result on the symmetry properties of the lattice. It was recalled in the intro-
ductory paragraph (Sect. 9.2) the general form of the constitutive equations of linear
micropolar elasticity

σ kl = Aklmnε mn +Bklmnκmn

mkl =Cklmnε mn +Dklmnκmn
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Relying on the obtained expression of the homogenized constitutive law, we can
identify this form from the expressions of the homogenized stress and couple stress
tensors:

σσσ =
1
g

(
Si

1 + ε Si
2

)
⊗ ∂ R

∂ λ i

σσσ =
1
g

Si
1⊗

∂ R
∂ λ i

︸ ︷︷ ︸
[A]{ε }

+
1
g

ε Si
2⊗

∂ R
∂ λ i

︸ ︷︷ ︸
[B]{κ}

(9.38)

m =
1
g

(
µ i

1 + ε µ i
2

)
⊗ ∂ R

∂ λ i

m =
1
g

µ i
1⊗

∂ R
∂ λ i

︸ ︷︷ ︸
[C]{ε }

+
1
g

ε µ i
2⊗

∂ R
∂ λ i

︸ ︷︷ ︸
[D]{κ}

(9.39)

It has been shown that for centro-symmetric medium Trovalusci and Masiani [15],
the coupling matrices [B] and [C] vanish; we limit our study to this type of lattice.
This means that the previously defined vectors µµµ i

1 and Si
2 vanish. This in turn leads to

a substantial simplification of the expression of the stress and couple stress vectors:

Si = Si
1 = ∑

b∈BR

(
Esη

(
eb · ∆ U1

)
eb

+

(
Esη 3eb⊥ · ∆ U1−

1
2

Esη 3Lb0
(

2φ 0][+ φ OR(b)
0[] + φ ER(b)

0[]

))
eb⊥
)

δ ib

= ∑
b∈BR

(
Nb

1 eb +Tb
1te

b⊥
)

δ ib (9.40)

µµµ i = µµµ i
2 = ∑

b∈BR

((
Esη 3

(
Lb
)2

12

(
−φ OR(b)

1][ +
∂ φ 0][

∂ λ i δ ib + φ ER(b)
1][

)))
δ ib

︸ ︷︷ ︸

∑
b∈BR

1
2

(
M

E(b)
2 −M

O(b)
2

)
δ ib= ∑

b∈BR


ME(b)

2 +ε
Lb

2
(eb∧Tb

2)


.e3δ ib

(9.41)

There are still unknown displacements and rotations in the vectors Si and µµµ i, namely
the functions of displacement un

1, un
2 (first order kinematic variables) and the func-

tions of rotation φ n
0[] and φ n

1][, which intervene at the second order. The resolution of
these unknowns is the goal of the next section.
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9.4.3 Determination of the Unknown Displacements un
1, un

2 and
Unknown Rotations φφφ n

0[] and φφφ n
1][

As the lattice is in equilibrium, the unit cell is too, so we can write from Eq. (9.27)
the lattice translational equilibrium

∑
b∈BR

(
Neb +Tteb⊥

)
· (v(E (b))− v(O(b))) = 0 (9.42)

As this equation is about two orders, we will resolve it on each order




∑
b∈BR

(
Esη

(
eb · ∆ U1

)
eb +

(
Esη 3eb⊥ · ∆ U1

−1
2

Esη 3Lb0
(

2φ 0][+ φ OR(b)
0[] + φ ER(b)

0[]

))
eb⊥
)
· (v(E (b))− v(O(b))) = 0

∑
b∈BR

(
Esη

(
eb · ∆ U2

)
eb +

(
Esη 3eb⊥ · ∆ U2

−1
2

Esη 3Lb0

(
φ OR(b)

1][ + φ ER(b)
1][ +

∂ φ 0][

∂ λ i δ ib

))
eb⊥
)
· (v(E (b))− v(O(b))) = 0

(9.43)
Since the virtual velocity field is a priori arbitrary, one can develop each of the two
previous equations in as many independent equations as the number of nodes in the
elementary cell. Reasoning in the same way for the moments from the Eq. (9.28),
the rotational balance of the mesh nodes must be ensured, hence

∑
b∈BR

(
MO(b).w(O(b))+ME(b).w(E (b))

)
= 0 (9.44)

This general equation writes more specifically




∑
b∈BR

((
kb

f
Lb

6

(
Lb
(

3φ 0][+ 2φ OR(b)
0[] + φ ER(b)

0[]

)

−3eb⊥ ·
(

∆ Ub
1

)))
e3

)
.w(O(b))

+

((
kb

f
Lb

6

(
Lb
(

3φ 0][+ φ OR(b)
0[] + 2φ ER(b)

0[]

)

−3eb⊥ ·
(
∆ Ub

1

)))
e3
)
.w(E (b)) = 0

∑
b∈BR

((
kb

f
Lb

6

(
Lb
(

2φ OR(b)
1][ + φ ER(b)

1][ +
∂ φ 0][(λ ε )

∂ λ i δ ib
)

−3eb⊥ ·
(
∆ Ub

2

)))
e3
)
.w(O(b))

+

((
kb

f
Lb

6

(
Lb

(
φ OR(b)

1][ + 2

(
φ ER(b)

1][ +
∂ φ 0][(λ ε )

∂ λ i δ ib

))

−3eb⊥ ·
(

∆ Ub
2

)))
e3

)
.w(E (b)) = 0

(9.45)
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In the same way as for the equilibrium of forces, and since the virtual rotation rate
w(.) is a priori arbitrary, those equations expand in as many independent equations
as nodes in the elementary cell: totally, 6n scalar equations are written, with n the
number of elementary cell nodes, to solve for the 6n unknowns (for each node, on
two orders, one has two vectorial displacement, un

1, un
2, and two scalar rotations, φ 0[]

and φ 1][). The first order rotation φ 0][, linked to the anti-symmetric part of tensor
strain, is obtained by identifying afterwards the variable micropolar rotation

φ 0][ =
1
2

(
∂ v
∂ x
− ∂ u

∂ y

)
= φ

in the first order solution for the micropolar rotation variables. The present homog-
enization scheme has been automatized and implemented into a dedicated code, al-
lowing to treat any lattice, with the topology of the unit cell together with the beam
mechanical properties given as input; the homogenized properties (and the effective
constitutive law) are given as output. Finite element simulations for a complete lat-
tice may be performed in parallel to assess the computed effective behavior. Two
examples are chosen in the sequel to illustrate the presented methodology.

9.5 Examples

9.5.1 Square Lattice

Despite its simplicity, the square lattice shown in Fig. 9.5 is an interesting applica-
tion, since literature works report various homogenized micropolar behaviors, with
sometimes even contradictory results. The unit cell consists of two orthogonal bars

Fig. 9.5 Square lattice: Macroscopic lattice

of identical length L, with associated directors e1 = (1,0)T ; e2 = (0,1)T . The previ-
ous formula for the normal and transverse efforts Eqs (9.45) and (9.43) give for this
lattice at first order the resultants (normal and transverse effort) and moment as
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n1

L

Y2

Y1

b1

b2

i

j

Fig. 9.6 Square lattice: Unit cell of the square lattice

N1
1 = kl

∂ u
∂ x

; N2
1 = kl

∂ v
∂ y

;

T 1
1t = k f

(
L

∂ v
∂ x
−Lφ 1

1

)
; T 2

1t = k f

(
−L

∂ u
∂ x
−Lφ 1

1

)
;

ME(1)
1 =

k f L2

2

(
φ 1

1 −
∂ v
∂ x

)
;MO(1)

1 =
k f L2

2

(
φ 1

1 −
∂ v
∂ x

)
;ME(2)

1 =
k f L2

2

(
φ 1

1 +
∂ u
∂ y

)
;

Mb2
O =

k f L2

2

(
φ 1

1 +
∂ u
∂ y

)

There is a single unknown in these equations, the first order rotation φ 1
1 , that after

resolution becomes

φ 1
1 =

1
2

(
∂ v
∂ x
− ∂ u

∂ y

)
.

Identifying φ 0][ = φ , gives immediately,

φ 1
1 =

1
2

(
∂ v
∂ x
− ∂ u

∂ y

)
= φ .

At the second order, one has the following expression of the resultant and mo-
ment:

N1
2 = 0; N2

2 = 0;

T 1
2t =−

k f L

2

(
2φ 1

2 +L
∂ φ 0][

∂ x

)
; T 2

2t =−
k f L

2

(
2φ 1

2 +L
∂ φ 0][

∂ y

)
;

ME(1)
2 =

k f L2

6

(
3φ 1

2 + 2L
∂ φ 0][

∂ x

)
; MO(1)

2 =
k f L2

6

(
3φ 1

2 +L
∂ φ 0][

∂ x

)
;
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ME(2)
2 =

k f L2

6

(
3φ 1

2 + 2L
∂ φ 0][

∂ y

)
; MO(2)

2 =
k f L2

6

(
3φ 1

2 +L
∂ φ 0][

∂ y

)
.

To second order, there is also a single rotation variable φ 1
2 , that after resolution

expresses as

φ 1
2 =−L

4

( ∂ φ 0][

∂ x
+

∂ φ 0][

∂ y

)
= φ 1

1][.

We can now express the vectors Siet µ i, from the Eqs (9.40) and (9.41)

S1 =




klL
∂ u
∂ x

k f L

(
∂ v
x
− φ
)


 ; S2 =




k f L

(
∂ u
y
− φ
)

klL
∂ v
∂ y


 ;

µµµ 1 =




0

0

k f L3

12
∂ φ
∂ x


 ; µµµ 2 =




0

0

k f L3

12
∂ φ
∂ y




The stress and couple stress tensors are successively obtained from the Eqs (9.24)
and (9.25), viz

σ =
1
g

Si⊗ ∂ R
∂ λ i ;m =

1
g

µ i⊗ ∂ R
∂ λ i ,

with g = L2 the determinant of the Jacobean and the position vector R being ex-
tended to account for the third dimension, with derivatives

∂ R
∂ λ 1 =

[
L
0

]
,

∂ R
∂ λ 2 =

[
0
L

]
.

The 2D micropolar constitutive law is best formulated in matrix form, using the
vector representation of the kinematic and static variables:

{σσσ }=





σ xx

σ yy

σ xy

σ yx

mzx

mzy





= [K]





ε xx

ε yy

ε xy

ε yx

κzx

κzy





= [K]





∂ u
∂ x
∂ v
∂ y

∂ u
∂ y

+ φ
∂ v
∂ x
− φ

∂ φ
∂ x
∂ φ
∂ y





The stiffness [K] diagonal matrix has here a simple diagonal form
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[K] =




kl

kl

k f

k f

k f L2

12
k f L2

12




=




Esη 0 0 0 0 0

0 Esη 0 0 0 0

0 0 Esη 3 0 0 0

0 0 0 Esη 3 0 0

0 0 0 0
L2Esη 3

12
0

0 0 0 0 0
L2Esη 3

12




=




Est
L

Est
L

12EsIz

L3
12EsIz

L3
EsIz

L
EsIz

L




(9.46)

The Young’s modulus is trivial, since this lattice is ortho-tetragonal, only the beams
in the direction of loading therefore appears:

E∗1 = E∗2 = kl = Es η =
Es t
L

.

The Poisson’s modulus is zero ν 12 = ν 21 = 0, hence this lattice shows no contrac-
tion. The micropolar moduli κ and µ ∗ are:

κ = k f = Es η 3 = 12
Es Iz

L3 ; µ ∗ = 0.

The shear modulus is:

G =
k f

2
=

Es η 3

2
= 6

Es Iz

L3 .

The modulus of microbending stiffness is identical for both axes:

γ =
k f L2

12
=

L2Esη 3

12
=

EsIz

L
,

and has the units of Newton, contrary to the other micropolar modulus κ, express-
ing in N/m. One may add the following constants related to the micropolar theory,
namely the characteristic length L2

chara =
L2

24 and the coupling coefficient N2
coupl =

1
2 .

Note that this coupling coefficient is not equal to 1, thereby proving that we are not
in the case of a theory ”couple stress” but rather a micropolar theory.
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9.5.2 Hexagonal Lattice

The hexagonal lattice defined by Fig. 9.7 allows to validate the homogenization
method in the case of a non-orthogonal set of unit cell vectors; furthermore, the
unit cell includes internal nodes, which illustrate the powerfulness of the discrete
homogenization technique (most literature works restrict to unit cells including a
single node).

1 2

3

n1

n2

n1

n1

Fig. 9.7 Unit cell of the hexagonal lattice

Each beam has a length L; the lengths of the periodicity vectors Y1 and Y2 in the
Cartesian basis are L1 = L2 =

√
3L. The other features of the lattice are synthesized

in the connectivity Table 9.1.

Table 9.1 Connectivity array
for the hexagonal lattice

beam 1 2 3

O(b) 1 2 2
E(b) 2 1 1
δ 1 0 1 0
δ 2 0 0 1

We obtain after calculations the homogenized stress tensor

σσσ =

[
σ 11 σ 12

σ 21 σ 22

]

with
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σ 11 =
kl
√

3(kl
∂ u
∂ x + 3k f

∂ u
∂ x + kl

∂ v
∂ y −

(
∂ v
∂ y

)
k f )

6(kl + k f )
,

σ 12 =
k f
√

3
(

kl
∂ v
∂ x − k f

∂ v
∂ x + k f

∂ u
∂ y + 3

(
∂ u
∂ y

)
kl + 2 φ kl + 2k f φ

)

6(kl+ kt)
,

σ 21 =
k f
√

3(3kl
∂ v
∂ x +

(
∂ u
∂ y

)
kl + k f

∂ v
∂ x − k f

∂ u
∂ y − 2 φ kl− 2k f φ )

6(kl + k f )
,

σ 11 =
kl
√

3
(

kl
∂ u
∂ x − k f

∂ u
∂ x + kl

∂ v
∂ y + 3

(
∂ v
∂ y

)
k f

)

6(kl + k f )

and the homogenized couple stress tensor

mmm =




0 0 0

0 0 0
√

3L2k f

36
∂ φ
∂ x

√
3L2k f

36

(
∂ φ
∂ y

)
0




Using the condensed vector notation, we obtain the stiffness matrix

[K] =




√
3kl (kl+3k f )
6(kl+k f )

√
3kl (kl−k f )
6(kl+k f )

0 0 0 0
√

3kl (kl−k f )
6(kl+k f )

√
3kl (kl+3k f )
6(kl+k f )

0 0 0 0

0 0
√

3k f (k f +3kl)
6(kl+k f )

√
3k f (kl−k f )
6(k f +k f )

0 0

0 0
√

3k f (kl−k f )
6(k f +k f )

√
3k f (k f +3kl)

6(kl+k f )
0 0

0 0 0 0
√

3k f .L
2

36 0

0 0 0 0 0
√

3k f .L
2

36




=




K11 K12 0 0 0 0
K21 K22 0 0 0 0
0 0 K33 K34 0 0
0 0 K43 K44 0 0
0 0 0 0 K55 0
0 0 0 0 0 K66




with
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K11 = K22 =
1
6

√
3Es η

(
1+ 3 η 2

)

1+ η 2

K12 = K12 = −1
6

√
3Es η

(
−1+ η 2

)

1+ η 2

K33 = K44 =
1
6

√
3Es η 3

(
3+ η 2

)

1+ η 2

K34 = K43 = −1
6

√
3Es η 3

(
−1+ η 2

)

1+ η 2

K55 = K66 =
Esη 3

√
3L2

36

We extract from the previous matrix the homogenized moduli, which express
versus the geometrical and mechanical lattice parameters:

µ ∗ =
1
6

√
3k f
(
kl− k f

)

kl + k f
=−
√

3Es η 3
(
−1+ η 2

)

6(1+ η 2)
=−2

Iz Es
(
−tL2 + 12 Iz

)√
3

L3 (tL2 + 12 Iz)
;

κ =
k f
√

3
3

=
Es η 3

√
3

3
= 4

√
3Iz Es

L3 ; γ =

√
3k f .L2

36
=

Esη 3
√

3L2

36
=

√
3Iz Es

3L

E∗ =
4
(
k f kl
√

3
)

3
(
kl + 3k f

) = 4/3
Es η 3

√
3

1+ 3 η 2 = 16

√
3Es Iz t

L(tL2 + 36 Iz)
;

ν =
kl− k f

kl + 3k f
=−−1+ η 2

1+ 3 η 2 =−−tL2 + 12 Iz

tL2 + 36 Iz
;

G∗ =
1
3

klk f
√

3
kl + k f

=
Es η 3

√
3

3(1+ η 2)
= 4

√
3Es Iz t

L(tL2 + 12 Iz)

l2
chara =

L2
(
kl + k f

)

48kl
=

L2
(
1+ η 2

)

48
; N2 =

kl + k f

3kl + k f
=

1+ η 2

3+ η 2

We find the same results as other authors such as Pradel and Sab [10] and Kumar
and McDowell [7], but with a different method. From a mathematical point of view,
other methods search the minimum of an energy functional by means of gradients
or Lagrange multipliers. We have to solve a linear system, which seems to be the
simplest resolution method.

9.6 Conclusions and Perspectives

The discrete homogenization method based on asymptotic expansions of the fields
(nodal position, forces and moments) proves a systematic method to calculate the
equivalent - in an homogenized sense - properties of lattices with a general periodic
architecture, characterized by the topology of bars within a repetitive unit cell. The
construction of micropolar continua from elastic lattices endowed with translational
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and rotational degrees of freedom has been undertaken in the present contribution,
whereby the asymptotic homogenization method has been extended to polar lattices.
From a technical viewpoint, the novelty of the present approach lies in the calcula-
tion of the transverse forces, which does not require the moment equilibrium, since
the expression of the transverse forces is linked to the relative displacements of the
extremities of a given bar, in the spirit of beam theory. The extension of the asymp-
totic homogenization to micropolar continua has been presently exemplified by the
treatment of the tetragonal and hexagonal lattices in the micropolar framework. The
advantage of this method is its simplicity of implementation, and generality. It boils
down to a final matrix system to solve analytically, that lends itself readily to pro-
gramming and automatic processing of any centro-symmetric lattice.

The micropolar continuum is in fact not the more general effective model one
can obtain from the present two scale homogenization procedure: since the kine-
matics is developed up to second order of the small parameter ε , one shall expect to
formulate a second order gradient (in the displacement) micropolar continuum. Due
to truncation in the asymptotic expansions of the kinematic variables (hence also in
the static variables) and the restriction to centro-symmetrical unit cells, the second
order gradients of the displacements have been presently discarded.

The asymptotic homogenization scheme opens the way for the study of a mul-
titude of different lattices (auxetic, chiral, non centrosymmetric), the automatized
calculation of their effective mechanical behavior and the understanding of the un-
derlying deformation mechanisms at the cell scale. From a general point of view,
it opens the perspective of optimizing the topology and the mechanical properties
of materials having a discrete structure such as foams, but also textiles or more
generally any repetitive structure made of discrete elements akin to 1D structural el-
ements like bars or beams. Globally speaking, the discrete homogenization provides
an explicit link between the micro and macroscale behaviors, hence increasing our
understanding of the microstructural origin of the deformation mechanisms of the
taylored materials widely used nowadays.
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Chapter 10
Nonlinear Waves in the Cosserat Continuum
with Constrained Rotation

Vladimir I. Erofeev, Aleksandr I. Zemlyanukhin, Vladimir M. Catson, and Sergey
F. Sheshenin

Abstract The nonlinear viscoelastic micropolar medium with constrained rotation
(the Cosserat pseudo-continuum) is considered. Using the method of bound nor-
mal waves, the original nonlinear system describing the dynamics of the medium is
transferred to a system of evolutionary equations. It is shown that these evolution-
ary equations are four nonlinear partial differential equations two of which are the
Burgers equations and the other two are the modified Korteweg-de Vries (mKdV)
equations. The paper presents the results of the numerical study of nonlinear vis-
coelastic wave evolution.

10.1 Basic Hypotheses and Dynamic Equations

It is known that one of assumptions of the classical mechanics of continuous media
is the supposition about the equivalence of action of all internal forces applied to an
area, to the action of their resultant applied to the gravity center of the area. However
it is fulfilled not always, and generally action of the system of forces applied to the
area, is equivalent to the action of the main vector and the main moment of these
forces. The natural moments of momentum of material points of the medium and
the presence of the distributed bulk and surface couples, which are usually assumed
to be negligible in the classical mechanics of continuous media, will be taken into
account in this paper.
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Under such assumptions, there arise in the solid body both stresses σ ji and couple
stresses m ji, which are described by the asymmetrical tensors. The motion of such
a medium is characterized by two field variables: the displacement vector ū and the
vector of rotations ¯Ψ . It is generally considered that the components of the vectors
of displacements and rotations are kinematically independent (Cosserat continuum)
[1], and the vector equations for the momentum and the moment of momentum play
the role of the basic governing equations.

Besides the general case, the simplified alternative of the micropolar medium (the
pseudo-Cosserat continuum) is considered, in which the strong dependence of the
vector of rotations on the rotor of displacements ( ¯Ψ =

(
1
/

2
)

rot ū is the constrained
rotation) is supposed that coincides with the relations of the classical theory of elas-
ticity, but couple stresses and the asymmetry of the stress tensor are maintained. In
such a medium, the symmetric part of the stress tensor depends on the symmetric
tensor of the strains in the same way as in classical theory of elasticity.

The dynamic equations of the pseudo-Cosserat continuum have the form [2]:

ρ ¨̄u− (λ + µ )graddiv ū− µ ∆ ū− 1
4
(γ + ε )rotrot ∆ ū+

I
4

rotrot ¨̄u = F̄1 + F̄2. (10.1)

Here λ and µ are the Lamé constants; α , γ , and ε are additional elastic constants
of the micropolar material, satisfying the restrictions α ≥ 0, γ + ε ≥ 0, −(γ + ε )≤
γ − ε ≤ (γ + ε ); ρ is the density of the medium; I is a constant describing the inertia
properties of the macrovolume. This constant is equal to the product of the moment
of inertia of a particle of the substance around of any axis passing through its gravity
center and the number of particles in the unit volume.

Vector F̄1 includes the viscoelastic components, and vector F̄2 comprises the non-
linear elastic components. The explicit view of the nonlinear terms is given for some
cases in [2], the viscoelastic components – in [3].

System (10.1) enables one to describe both the longitudinal elastic waves (dilata-
tion waves) and the shear waves. Thus, waves of a dilatation in the Cosserat medium
are identical to the properties of the corresponding waves in the classical medium.
These waves propagate with the velocity

cl =
√

(λ + 2µ )
/

ρ ,

while the shear waves are dispersive in such a medium and distinct from the clas-
sical shear waves. In the low-frequency range (ω → 0) these waves travel with the
velocity close to

cτ =
√

µ
/

ρ ,

and in a high-frequency field (ω → ∞ ) – with the velocity close to

c2 =
√
(γ + ε )

/
I.
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Let us consider the propagation of plane waves along the x1-axis: longitudinal
waves u1 = u(x, t) and shear waves u3 = w(x, t). In this case the vector equation
(10.1) will be rewritten as a system of two one-dimensional scalar equations:




∂ 2u
∂ t2 − c2

l
∂ 2u
∂ x2 =

1
ρ

∂
∂ x

{
g1

2

(
∂ u
∂ x

)2

+
g2

2

(
∂ w
∂ x

)2
}
+ γ 1

∂ 3u
∂ x2∂ t

,

∂ 2w
∂ t2 − c2

τ
∂ 2w
∂ x2 +

(γ + ε )
4ρ

∂ 4w
∂ x4 −

I
4ρ

∂ 4w
∂ x2∂ t2

=
1
ρ

∂
∂ x

{
g2

∂ u
∂ x

∂ w
∂ x

+ g5

(
∂ w
∂ x

)3
}
+ γ 2

∂ 3w
∂ x2∂ t

− γ 3
∂ 3w
∂ t3 .

(10.2)

Here
g1 = 3λ + 6µ + 2A+ 6B+ 2C,

g2 =
λ
2
+ µ +

A
4
+

B
2
,

g5 = 3

(
λ
2
+ µ +

A
2
+B+ J

)

are coefficients characterizing the nonlinearity of the material; γ 1, γ 2, and γ 3 are
factors describing its viscosity; A,B,C,D,G,J,H are the Landau elasticity moduli
[2].

10.2 Derivation of Evolution Equations

The investigation of the wave propagation of waves with finite amplitudes in the
Cosserat continuum considering the constrained rotation is rather complicated even
in the case of the one-dimensional processes (10.2). It is much easier to deal with
evolutionary equations, which are approximate and maintain in itself the major
factors influencing the wave processes. There exist physically and mathematically
enough correct methods of transition from the initial equations to the evolutionary
ones [4]. We shall use the method of the bound normal waves, developed in [4]. For
this purpose, we rewrite the system (10.2) in the form

∂ u
∂ t

+B(q)u = F(u,q) (10.3)

with uT = (V,u,w,Q) as a four-dimensional vector of physical variables;
V = ∂ u/∂ t; Q = ∂ w/∂ t;
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B(q) =




0 −c2
l q2 0 0

−1 0 0 0
0 0 0 −1

0 0 −c2
τ q2 +

γ + ε − Jc2
τ

4ρ
q4 0




is a linear operator matrix;

F =




{
g1

ρ
u2 +

g2

ρ
w2 + γ 1clu

}
q3

0
0{

2g2

ρ
uw+

(
γ 2cτ − γ 3c3

τ
)

w

}
q3 +

3g5

ρ
w3q4




is a vector of nonlinear quantities; q = ∂ /∂ x is a differential operator.
The conversion from the system (10.2) to the equations of the bound normal

waves consists in a diagonalization of the operator matrix B(q) by transition into its
natural basis using the change of variables

u(x, t) =
4

∑
k=1

rk(q)Uk(x, t), (10.4)

where Uk (x, t) are new variables; rk are the right eigenvectors of matrix B

B·rk = pkrk;

pk (q) are its eigenvalues.
Substitution of Eq. (10.4) into the vector equation (10.3) and multiplication of its

left-hand and right-hand sides by the left-hand eigenvectors l j (q) lead, if one takes
into account the orthogonality condition l jrk = 0 at j 6= k, to equations of the bound
normal waves (∂ Uk/∂ t)+ pk (q)Uk = (l jrk)

−1 [lkF(rkUk,q)], where pk determines
different branches of the dispersion equation of the linearized system. Arbitrariness
in a choice of eigenvectors can be used for the reduction of the right-hand side to
the simplest form. Using this fact, let us decompose the eigenvalues pk into Taylor
series on q. If only the first two terms in this expansion are preserved, we shall
obtain the following evolutionary equations:

∂ U1,2

∂ t
± cl

∂ U1,2

∂ x
± γ 1

2
∂ 2U1,2

∂ x2 =∓ g1

clρ
U1,2

∂ U1,2

∂ x
∓ g2

cl ρ
U3,4

∂ U3,4

∂ x
,

∂ U3,4

∂ t
± cτ

∂ U3,4

∂ x
±
(
γ 2cτ − γ 3c3

τ
)

2cτ

∂ 2U3,4

∂ x2 ±
(
Jc2

τ − γ − ε
)

8cτ ρ
∂ 3U3,4

∂ x3

=∓ 9g5

2cτ ρ
U2

3,4
∂ U3,4

∂ x
∓ g2

cτ ρ
U1,2

∂ U3,4

∂ x
. (10.5)
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The relations between the new variables (Ui) with the original ones (u,w) are de-
fined by the following expressions:

∂ u
∂ x

=U1 +U2,

∂ w
∂ x

=U3 +U4 . (10.6)

The first two equations of the set (U1,2) represent Burgers’ equation known in the
theory of nonlinear waves, whereas the second two equations (U3,4) are the not less
known modified Korteweg-de Vries equations (mKdV) [5]. Here the equations are
interrelated with each other.

10.3 Numerical Simulation

In the numerical experiment we consider the waves running in one direction, in
other words, we analyze the set of equations for U1 and U3:

∂ U1

∂ t
+ cl

∂ U1

∂ x
+

γ 1

2
∂ 2U1

∂ x2 =− g1

cl ρ
U1

∂ U1

∂ x
− g2

cl ρ
U3

∂ U3

∂ x
,

∂ U3

∂ t
+ cτ

∂ U3

∂ x
+

(
γ 2cτ − γ 3c3

τ
)

2cτ

∂ 2U3

∂ x2 +

(
Jc2

τ − γ − ε
)

8cτ ρ
∂ 3U3

∂ x3

=− 9g5

2cτ ρ
U2

3
∂ U3

∂ x
− g2

cτ ρ
U1

∂ U3

∂ x
. (10.7)

As a matter of convenience of simulation, we introduce the dimensionless vari-
ables (x′, t ′), pass into the moving reference frame and use the classical designations
for the longitudinal and the shear wave modes:

x′ =
x
Λ
, t ′ =

t · cl

Λ
,

x∗ = x′− t ′, t∗ = t ′,
U1 =U, U3 =W.

where Λ is a characteristic wavelength. Then, Eqs (10.7) take the form (a ”sprocket
wheel” index is hereinafter dropped):

∂ U
∂ t

+ a1
∂ 2U
∂ x2 + a2U

∂ U
∂ x

+ a3W
∂ W
∂ x

= 0,

∂ W
∂ t

+C
∂ W
∂ x

+ a4
∂ 2W
∂ x2 + a5

∂ 3W
∂ x3 + a6W 2 ∂ W

∂ x
+ a7U

∂ W
∂ x

= 0 . (10.8)

Here
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a1 =
γ 1

2cl Λ
, a2 =

g1

c2
l ρ

, a3 =
g2

c2
l ρ

, C =

(
cτ
cl
− 1

)
, a4 =

(
γ 2cτ − γ 3c3

τ
)

2cτ cl Λ
,

a5 =

(
Jc2

τ − γ − ε
)

8cτ cl ρ Λ 2 , a6 =
9g5

2cτ cl ρ
, a7 =

g2

cτ cl ρ
.

For computing the Eqs (10.8), the semi-implicit spectral scheme [6] is used with
the following parameters of the grid: step ∆ x = 0,25; length L = 128; number of
nodes N = 512; time step ∆ t = 0,1. The requirement of periodicity is supposed for
x-coordinate.

With the initial conditions in the form

u0(x) = w0(x) = 2exp

{
−
(

1
1000∆ x

[
x− L

4

])2
}
,

shown in Fig. 10.1 and the following values of the coefficients a1 = 2, a2 = 1,
a3 = 0,5, a4 = 0,01, a5 = 2, a6 = 2, a7 = 0,1, C =−0,5, the wave behavior will be
rather stable. The choice of small a4 applies particular restrictions on the coefficients
γ 2 and γ 3 of the original set (10.7).
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Fig. 10.1 Initial conditions (t = 0) for the longitudinal (U) and shear (W ) waves in the form of
Gauss pulse

Such a choice is also made because the great value of the viscosity coefficient
leads to too fast attenuation of perturbations that prevents from formation of soli-
tary waves. The Gauss pulse of the function W exhibits the classical behavior that
is typical for the mKdV equation: it breaks up on some soliton-like perturbations
(Fig. 10.3). However, in contrast to the classical mKdV solitons, the amplitude of
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Fig. 10.2 Longitudinal (U) and shear (W ) solitons at time t = 20
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Fig. 10.3 Longitudinal (U) and shear (W ) solitons at time t = 80

solitons of function W prolongs to grow up to some limiting value constrained by at-
tenuation factors (a1,a4 = 0,01). After some time, the three first solitons are leveled
on amplitudes, and the wave tail damps (Fig. 10.3). Perturbations of the function
U behave a little differently. Here, the major source of soliton-like waves is not the
initial perturbation, but the nonlinear coupling with the equation for W. Solitons
U are induced by soliton-like pulses W, due to that their amplitude depends on the
quantity of the coupling coefficient a3. In this system such behavior is natural, as the
equation for U does not contain dispersion terms and cannot have natural solitary-
wave solutions. The increase of coupling coefficients a3 and a7 leads to the increase
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Fig. 10.4 Initial conditions (t = 0) for the longitudinal (U) and shear (W ) waves in the form of
Gauss pulse

of the limiting amplitude of solitons and to the decrease of their width. Thus, in the
Cosserat medium with the constrained rotation, solitons of the longitudinal strain
are generated only on account of shear solitons.

The choice of initial conditions in the form of a pulse with zero initial energy for
the shear wave W and in the case of absence of the longitudinal wave U = 0

w0(x) =−
0,06
∆ x

(
x− L

4

)
exp

{
−
(

1
1000∆ x

[
x− L

4

])2
}

gives the following evolutionary pattern for the values of the coefficients a1 = 2,
a2 = 1, a3 = 1, a4 = 0,01, a5 = 2, a6 = 2, a7 = 0,2, C = −0,5 (Fig. 10.4). The
positive part of the perturbation W grows and, at the particular moment, absorbs
the negative part, being transformed into a solitary wave. The solitary wave W, like
in the above considered case, induces soliton-like perturbation of function U (Fig.
10.5).

It is interesting to note that the wave a behavior drastically changes if the corre-
lation between the nonlinearity coefficients in the equation for U varies, namely, if
a2 increases and a3 decreases. We shall keep former initial conditions for U and W
(Fig. 10.4), but we shall increase a2 up to 4,5 and simultaneously decrease a3 twice.
Thus, we have: a1 = 2; a2 = 4,5; a3 = 0,5; a4 = 0,01; a5 = 2; a6 = 2; a7 = 0,2;
C =−0,5.

The evolution of perturbation W qualitatively differs a little from the previous
case unless the height of a solitary wave pulse is not so great. At the same time,
before formation of a soliton, perturbation U passes through a certain transition
process. The competition of effects of nonlinearity of the second (in the equation
for U) and the third (in the equation for W) orders leads to that the forward front
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Fig. 10.5 Longitudinal (U) and shear (W ) solitons at time t = 34
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Fig. 10.6 The Π -shaped pulse of longitudinal wave (U) and the shear (W ) soliton

of perturbation moves a little bit faster than a back one. As a result, the Π -shaped
pulse generates, which moves with the velocity of the soliton function W (Fig. 10.3).
However, after a time, the back front starts to overtake the forward one, and the Π -

shaped pulse is transformed into a usual solitary wave (Fig. 10.3).
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Fig. 10.7 Longitudinal (U) and shear (W ) solitons
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Chapter 11
Wave Propagation in Quasi-continuous Linear
Chains with Self-similar Harmonic Interactions
- Towards a Fractal Mechanics

Thomas M. Michelitsch, Gérard A. Maugin, Franck C. G. A. Nicolleau, Andrzej F.
Nowakowski and Shahram Derogar

Abstract Many systems in nature have arborescent and bifurcated structures such as
trees, fern, snails, lungs, the blood vessel system, but also porous materials etc. look
self-similar over a wide range of scales. Which are the mechanical and dynamic
properties that evolution has optimized by choosing self-similarity so often as an in-
herent material symmetry? How can we describe the mechanics of self-similar struc-
tures in the static and dynamic framework? In order to analyze such material systems
we construct self-similar functions and linear operators such as a self-similar variant
of the Laplacian and of the D’Alembertian wave operator. The obtained self-similar
linear wave equation describes the dynamics of a quasi-continuous linear chain of
infinite length with a spatially self-similar distribution of nonlocal inter-particle
springs. The dispersion relation of this system is obtained by the negative eigen-
values of the self-similar Laplacian and has the form of a Weierstrass-Mandelbrot
function which exhibits self-similar and fractal features. We deduce a continuum ap-
proximation that links the self-similar Laplacian to fractional integrals which also
yields in the low-frequency regime a power law scaling for the oscillator density
with strictly positive exponent leading to a vanishing oscillator density at frequency
zero. We suggest that this power law scaling is a characteristic and universal feature
of self-similar systems with complexity well beyond of our present model. For more
details we refer to our recent paper [7].
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11.1 Introduction

So far there is no generally accepted theory which is able to describe material
systems with fractal micro-structures possessing self-similarity as a material sym-
metry. Nevertheless, some important initial steps have been performed (see papers
[1, 2, 3, 4, 5, 6] and the references therein). One direction is to model fractal ma-
terials by using fractional calculus as suggested recently by Ostoja-Starzewski [3].
This theory aims to construct a homogenized continuum theory of fractal materials.

In the meantime simple models are desirable of physical systems with fractal
and self-similar features where ”simple” means here simple enough to be accessible
for an analysis. The hope is to gain in this way some general insight in the physics
and the mechanics of fractal media by capturing some essential physical properties
due to self-similarity and fractality. The goal of this paper is to introduce such a
simple model. This paper is organized as follows: First we derive the mathematical
framework which allows us to tackle material systems with self-similar features. To
establish the physical model we introduce the notion of self-similar functions and
self-similar linear operators such as the Laplacian and deduce the conditions of their
existence. By utilizing this machinery we analyze the wave propagation properties
of a one-dimensional linear chain having self-similar harmonic interactions. This
model system is probably one of the most simple one featuring self-similar physi-
cal properties. It turns out that physical systems with self-similarity as a symmetry
property require non-local particle-particle interactions and a (quasi-) continuous
distribution of mass. We define this model system by its Hamiltonian functional
which yields an equation of motion which can be conceived as a fractal, self-similar
wave equation containing the self-similar Laplacian introduced in the mathemati-
cal framework. The (negative) eigenvalue spectra of this self-similar Laplacian is
obtained in the form of Weierstrass-Mandelbrot functions which are exactly self-
similar and in certain cases fractal functions. Moreover, we consider a continuum
limit where the Laplacian takes the form of fractional integrals giving a link to the
approach proposed by Ostoja-Starzewski [3]. In this continuum approach the vi-
brational spectra takes the form of power functions yielding a density of normal
oscillators in form of a characteristic power law for low frequencies with positive
exponents giving a vanishing oscillator density at frequency ω = 0. We believe that
this feature is universal for self-similar material systems.
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11.2 The Mathematical Framework

11.2.1 The Self-similar Problem - Self-similar Functions

Before we consider a physical problem we need to define the notion ”self-similar”.
We call a function φ (h) self-similar with respect to variable h if it fulfills [7]

φ (Nh) = N δ φ (h) (11.1)

∀h > 0, but only for a given value N > 1 ∈ R1 and as a consequence for all of its
integer powers Ns, s ∈ Z0). We call (11.1) the affine problem where φ constitutes a
(non-unique) solution to be found. A such solution of (11.1) can be represented in
the form

φ (h) =
∞

∑
s=−∞

N−δ s f (Nsh) (11.2)

where f can be any function for which the series (11.2) converges. We can write
(11.2) more conveniently in operator form

φ (h) = T̂N(h) f (h) (11.3)

where T̂N(h) is a self-similar operator defined by

T̂N =
∞

∑
s=−∞

N−δ sÂs
N (11.4)

where the operator ÂN is defined by

ÂN f (h) =: f (Nh) (11.5)

The operator (11.4) fulfills also the condition of self-similarity ÂN T̂N = N δ T̂N .
We emphasize that we can restrict ourselves on N > 1 (N ∈ R) and exclude the
pathological case N = 1.

It is important to consider for which class of functions f (t) the series (11.2) con-
verges absolutely. One shows that f (t) is admissible if they are restraint by power
functions (t > 0)

lim
t→0
| f (t)| ≤ a0 t α (11.6)

and
lim
t→∞
| f (t)| ≤ c∞ t β (11.7)

where a0,c∞ > 0 are positive nonzero constants. The exponents α , β ∈R are allowed
to take values β < α only. From this follows that neither power functions f = t γ

1 We can restrict ourselves on N > 1 since exchange N → N−1 in (11.1) represents the identical
problem.
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nor self-similar functions themselves are admissible in (11.2). A function f (t) is
admissible if the series φ (h) of (11.2) converges absolutely, i.e. δ is within the
interval

β < δ < α (11.8)

The case β = 0 is met if | f (t)| ≤ const which includes all periodic functions, how-
ever only some of them are admissible. As we introduced the affine problem (11.1)
it does not have a unique solution. The self-similarity condition (11.1) defines only
the function space of possible solutions. The following brief consideration shows
which condition is to be added in order to make its solution unique. To this end we
put

h = Nu = Nn+χ (11.9)

where n = floor(u) ∈ ZZ0 denoting the largest integer inferior to u where u = lnh
lnN .

That is we can put
u = floor(u)+ χ (u) (11.10)

where 0 ≤ χ (u) < 1 denotes the non-integer rest which is zero when u itself is
integer. We hence can write for the self-similar function

φ (h) = φ (NnN χ ) = N δ nφ (N χ ), 0≤ χ < 1 (11.11)

which can be rewritten by using Nn = hN−χ in the form

φ (h) = hδ N−δ χ φ (N χ ), 0≤ χ < 1 (11.12)

From this relation follows that any value of φ (h) is uniquely determined by its val-
ues φ (N χ ) in the interval 1≤ h = N χ < N (since 0≤ χ < 1) and can be constructed
from these by (11.12). From these observations we can now formulate the self-
similar problem having a unique solution:

It exists a unique function φ (h) which fulfills (11.1) ∀h > 0 for prescribed N > 1
and δ which takes in the interval 1≤ τ < N the values

φ (τ ) = v(τ ), 1≤ τ < N (11.13)

where v(τ ) can be any arbitrary function defined over [1,N) and its solution has the
representation

φ (τ ) = hδ N−δ χ v(τ ), 1≤ τ = N χ < N (11.14)

Hence by adding (11.13) to the condition of self-similarity (11.1) makes its so-
lution unique. (11.14) is in accordance with (11.2) when we introduce v(τ ) nonzero
uniquely in the interval 1≤ τ < N and zero elsewhere. Then the series

φ (h = Nnτ ) =
∞

∑
s=−∞

N−δ sv(Ns+nτ ) (11.15)

has the only non-vanishing term for s =−n and converges for all δ ∈ R and yields
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φ (h) = N δ nv(τ ) = hδ N−δ χ v(τ ) (11.16)

in accordance with (11.14).
Before we pass to the physical model another observation on self-similar func-

tions might be useful: In many physical problems an expansion of solutions into
ortho-normal modes reflecting the symmetry of the physical system and being
eigenmodes of the physical problem are highly desirable. As starting point to con-
struct a complete set of ortho-normal self-similar eigenmodes we make use of
(11.12) which we can rewrite in the form

φ (h) = hδ g(lnh) (11.17)

where g(lnh) =N−δ χ φ (N χ ) is invariant when we replace h by Nh (since χ (u+n)=
χ (u)). It is for our convenience that we write g as a function of ln(h). That is

g(ln(Nh)) = g(lnh+ lnN) = g(lnh) (11.18)

is a periodic function with periodicity length lnN. It follows that g(lnh) can be
represented in terms of a Fourier series

g(lnh) =
∞

∑
m=−∞

am e
2π im
lnN lnh (11.19)

where each of the functions
e

2π im
lnN lnh = h

2π im
lnN

fulfills this symmetry. We hence can write for φ (h) with (11.17)

φ (h) =
∞

∑
m=−∞

am hδ + 2π im
lnN (11.20)

where the ensemble of functions

φ m(h) = hδ + 2π im
lnN

constitute a set of eigenfunctions with self-similar symmetry, each obeying the re-
lation of self similarity

φ m(Nh) = N δ φ m(h) (11.21)

and with the orthogonality condition (φ +
n (h) = h−δ − 2π in

lnN )

∫ N

1
φ +

n (h)φ m(h)
dh
h

=

∫ N

1
h

2π i(m−n)
lnN −1dh = δ nm lnN (11.22)

where δ mn denotes the Kronecker-symbol. The am are uniquely determined by the
values of in the interval v(τ ) 1≤ τ < N, namely

am =
1

lnN

∫ N

1
v(τ )τ −(δ +1+ 2π im

lnN )dτ (11.23)
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from which follows (1≤ h < N)

v(h) =
∞

∑
m=−∞

1
lnN

∫ N

1

hδ + 2π im
lnN

τ (δ +1+ 2π im
lnN )

v(τ )dτ =

∫ N

1
δ (h− τ )v(τ )dτ (11.24)

from which follows

1
lnN

∞

∑
m=−∞

1
τ

( t
τ

)δ + 2π im
lnN

= δ (t− τ ), (11.25)

where δ (ξ ) denotes Dirac’s δ -function.

11.2.2 A Self-similar Analogue to the Laplace Operator

We construct an exactly self similar function from the second difference according
to

φ (x,h) = T̂N(h)(u(x+ h)+ u(x− h)−2u(x)) (11.26)

which assumes the form

φ (x,h) =
∞

∑
s=−∞

N−δ s {u(x+Nsh)+ u(x−Nsh)− 2u(x)} (11.27)

which is a self-similar function with respect to its dependence on h with

ÂN(h)φ (x,h) = φ (x,Nh) = N δ φ (x,h)

but a regular function with respect to x. Function φ (x,h) exists if the series (11.27)
is convergent. Let us assume that u(x) is a smooth function with a convergent Taylor
series for any h. Then we have with

u(x± h) = e±h d
dx u(x)

and
u(x+ h)+ u(x− h)−2u(x)=

(
eh d

dx + e−h d
dx − 2

)
u(x)

which can be written as

u(x+ h)+ u(x− h)− 2u(x)= 4sinh2
(

h
2

d
dx

)
u(x) = h2 d2

dx2 u(x)+ orders h≥4

(11.28)
thus α = 2 in criteria (11.6) is met. If we demand u(x) being Fourier transformable
we have as necessary condition that

∫ ∞

−∞
|u(x)|dx (11.29)



11 Wave Propagation in Quasi-continuous Linear Chains . . . 237

exists. From this we have with limt→∞ |u(t)|= 0 the behavior

lim
t→∞
|u(x+ t)+ u(x− t)− 2u(x)|= |− 2u(x)|= 2|u(x)|t0 (11.30)

from which follows β = 0 in criteria (11.7). Hence (11.27) is convergent in the range

0 < δ < 2 (11.31)

The 1D Laplacian ∆ 1 is defined by

∆ 1u(x) =
d2

dx2 u(x) = lim
τ→0

(u(x+ τ )+ u(x− τ )− 2u(x))
τ 2 (11.32)

where the limiting case τ → 0 is well defined. In the following we will see that
this is not so in the case of its self-similar counterpart. Let us define a self-similar
analogue to the 1D Laplacian. We emphasize that also other definitions could be
imagined. However, the definition to follow has a certain “physical” justification as
we will see in the next section. We put

∆ (δ ,N,τ )u(x) =: const lim
τ→0

τ −λ φ (x, τ ) (11.33)

= const lim
τ→0

τ −λ
∞

∑
s=−∞

N−δ s (u(x+Nsτ )+ u(x−Nsτ )− 2u(x))

where we have introduced a renormalisation-multiplier τ −λ with the power λ to be
determined to keep the limiting case finite. The constant factor const indicates that
there is a certain arbitrariness in this definition.

Let us now consider the limit τ → 0 by the sequence τ n = N−n+χ with n→ ∞
and 0≤ χ < 1 kept constant during the limiting process. Then we have

∆ (ξ ,N,h)u(x) = lim
n→∞

N λ (n−χ )N−δ n
∞

∑
s=−∞

ξ s−n [u(x+Ns−nN χ )+ u(x−Ns−nN χ )−2u(x)
]

(11.34)
which assumes by replacing s→ s− n the form

∆ (δ ,N,h=N χ )u(x) = N−λ χ φ (x,N χ ) lim
n→∞

N−(δ −λ )n (11.35)

which is only finite and nonzero if λ = δ . We see that the limiting case h(χ )→ 0 is
non-unique as it depends on χ . The “Laplacian” can then be defined by for any h by

∆ (δ ,N,h)u(x) =: lim
n→∞

N δ nφ (x,N−nh) = φ (x,h) (11.36)

which simply recovers expression (11.27). By using (11.28) we can write for (11.27)

∆ (δ ,N,h) = 4T̂N(h)sinh2
(

h
2

∂
∂ x

)
= 4

∞

∑
s=−∞

N−δ s sinh2
(

Nsh
2

∂
∂ x

)
(11.37)
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where T̂N(h) is the self-similar operator defined in (11.4). The self-similar analogue
of Laplace operator defined by (11.37) depends actually on the constants δ ,N,

χ =
lnh
lnN
− f loor

(
lnh
lnN

)
with 0≤ χ < 1.

We furthermore observe the self-similarity of Laplacian (11.37), namely

∆ (δ ,N,Nh) = N δ ∆ (δ ,N,h) (11.38)

11.2.3 Continuum Approximation - Link with Fractional
Derivatives

It will be illuminative to consider in brief the link of the self-similar Laplacian de-
fined by (11.27) and fractional derivatives. To this end we consider the limiting case
N = 1+ ε and sε = v where 0 < ε << 1 is assumed to be “small” so that dv ≈ ε
and Ns = (1+ ε )

v
ε ≈ ev. Then we can write (11.2) in the form

φ (h) =
∞

∑
s=−∞

N−sδ f (Nsh)≈ 1
ε

∫ ∞

−∞
e−δ v f (hev)dv (11.39)

which can be further written with hev = τ and dτ
τ = dv and τ (v→ −∞ ) = 0 and

τ (v→ ∞ ) = ∞ as

φ (h)≈ hδ

ε

∫ ∞

0

f (τ )
τ 1+δ dτ (11.40)

which has the same conditions of existence as the discrete sum, i.e. it is required that
β < δ < α where f has to be a function fulfilling (11.6) and (11.7). Application of
(11.40) on Laplacian (11.37) yields

∆ (δ ,N,h)u(x)≈
hδ

ε

∫ ∞

0

(u(x− τ )+ u(x+ τ )− 2u(x))

τ 1+δ dτ (11.41)

where 0 < δ < 2 as in the discrete case. After some simple manipulations integral
(11.41) can be further expressed as a convolution in the form

∆ (δ ,ε ,h)u(x)≈
∫ ∞

−∞
g(|x− τ |)d2u

dτ 2 (τ )dτ (11.42)

with the kernel

g(|x− τ |) = hδ

δ (δ − 1)ε
|x− τ |1−δ , 0 < δ < 2 , δ 6= 1 (11.43)
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and g(|x|) =− h
ε ln |x| for δ = 1. After some manipulations we can further write for

δ 6= 1 (11.42) in terms of fractional integrals [7]

∆ (δ =2−D,ε ,h)u(x)≈
h2−D

ε
Γ (D)

(D− 1)(D− 2)

(
D
−D
−∞ ,x +(−1)D

D
−D
∞ ,x

)
∆ 1u(x) (11.44)

where ∆ 1u(x) = d2

dx2 u(x) denotes the conventional 1D-Laplacian and D = 2− δ > 0
which is positive in the admissible range of 0 < δ < 2. For 0 < δ < 1 the quantity
D can be identified with the (estimated) fractal dimension of the fractal dispersion
relation of the Laplacian [8]. In (11.44) we have introduced the Riemann-Liouville
fractional integral D−D

a,x which is defined by (e.g. [9, 10])

D
−D
a,x v(x) =

1
Γ (D)

∫ x

a
(x− τ )D−1v(τ )dτ (11.45)

where Γ (D) denotes the Γ -function which represents the generalization of the fac-
torial function to non-integer D > 0. The Γ -function is defined as

Γ (D) =
∫ ∞

0
τ D−1e−τ dτ , D > 0 (11.46)

For positive integers D> 0 the Γ -function reproduces the factorial-function Γ (D) =
(D− 1)! with D = 1,2, ..∞ .

11.3 The Physical Model

In this section we utilize parts of the above developed machinery to analyze a simple
self-similar model system. A physical system which exhibits self-similarity (scaling
invariance) as a symmetry property is distinguished by certain characteristic func-
tions such as their Hamiltonian reflecting this symmetry which we introduce in the
form [7]

H =
1
2

∫ ∞

−∞

(
u̇2(x, t)+V (x, t,h)

)
dx (11.47)

where the elastic energy density V (x, t,h) is a self-similar function with respect to
h is given by2

V (x, t,h) =
1
2

∞

∑
s=−∞

N−δ s [(u(x, t)− u(x+Nsh, t))2

+ (u(x, t)− u(x−Nsh, t))2
] (11.48)

Each mass point represented by x is connected by springs of spring constants
N−δ s to mass points x±hNs (N > 1 ∈ R, s =−∞ , ..+ ∞ ) distant from x by hNs. The

2 The additional multiplier 1/2 avoids double counting.
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range of these distances is from infinitely close (s =−∞ ) to infinitely far (s =+∞ ).
The elastic energy density (11.48) fulfills the condition of self-similarity

V (x, t,Nh) = N δ
V (x, t,h) (11.49)

for all h > 0 and where N > 1 ∈ R is given fix. It follows that (11.49) also holds
when we replace N by any of its integer powers including zero Ns (s ∈ Z0). The
exigence of convergence of the elastic energy (11.48) defines the range of admissible
exponents δ , namely

0 < δ < 2 (11.50)

The equation of motion of this system is obtained by

∂ 2u
∂ t2 =− δ H

δ u
(11.51)

(where δ /δ u denotes a functional derivative) and can be written as

∂ 2u
∂ t2 = −

∞

∑
s=−∞

N−δ s
{

2u(x, t)

− u(x+ hNs, t)− u(x− hNs, t)
}

∂ 2u
∂ t2 = ∆ (δ ,N,h)u(x, t)

where ∆ (δ ,N,h) is the self-similar variant of the Laplacian operator introduced in
(11.27). Equation (11.52) can be conceived as wave equation in a medium of self-
similar symmetry. The series (11.52) converges only in the range (11.50), i.e. only
for δ being in this interval the elastic energy density is finite and our physical prob-
lem is well-posed.

By exploiting that the displacement field u(x, t) is Fourier transformable

u(x, t) =
1

2π

∫ ∞

−∞
ũ(k, t)eikxdk (11.52)

and with eikx being an eigenfunction of our Laplacian defined in (11.52), we find its
eigenvalue-spectra by

∂ 2ũ
∂ t2 (k, t) =− ¯ω 2(k) ũ(k, t) (11.53)

and obtain the dispersion relation ¯ω 2(k) = ω 2(kh) in the form

ω 2(kh) = 4
∞

∑
s=−∞

N−δ s sin2
(

khNs

2

)
(11.54)
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Fig. 11.1 Dispersion relation ω 2(k) in arbitrary units (non-fractal case)

representing a Weierstrass-Mandelbrot type function which converges only in the
interval (11.50). The dispersion relation (11.54) is in the subinterval 0 < δ < 1
a non-differentiable and fractal function having the fractal (Hausdorff) dimension
D = 2− δ (1 < D < 2) [8] whereas in the interval 1 < δ < 2 a smooth and once
continuously differentiable function of D = 1. Relation (11.54) fulfills in its entire
range of convergence (11.50) the condition of self-similarity

ω 2(Nkh) = N δ ω 2(kh) (11.55)

reflecting nothing else but the self-similarity of the Laplacian of equation (11.52).
Figures 1-4 are representations of the self-similar dispersion relation (11.54) in the
admissible range 0 < δ < 2 : Fig.1 represents a non-fractal case, i.e. the dispersion
relation is here a non-fractal smooth curve of D = 1. Figures 2-4 represent fractal
cases where 0 < δ < 1 has been decreased, i.e. the fractal dimension 1 < D < 2 is
increasing from figure 2 to figure 4. The increase of the fractal dimension causes
an increasingly erratic behavior of the curves where fig. 4 is already close to the
plane-filling dimension 2.

11.4 Density of Normal Modes

We consider now again the limiting case as in Sec. 11.2.3 which allows a continuum
approximation, i.e. for N = 1+ ε , 0 < ε << 1. For sufficiently “small” |k|h (h > 0),
we arrive by replacing the sum (11.54) by the corresponding integral at [7]
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Fig. 11.2 Dispersion relation ω 2(k) in arbitrary units of fractal dimension D
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Fig. 11.3 Dispersion relation ω 2(k) in arbitrary units of fractal dimension D

ω 2(kh)≈ (h|k|)δ

ε
C (11.56)

which is only finite if (|k|h)δ is in the order of magnitude of ε or smaller. In this way
we smoothen the dispersion curve, i.e. in this operation we loose its fractal character.
This regime which includes the long-wave limit k→ 0 is hence characterized by a
power law behavior ¯ω (k) ≈ const |k|δ /2 of the dispersion relation. The constant C
introduced in (11.56) is given by the integral
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Fig. 11.4 Dispersion relation ω 2(k) in arbitrary units of fractal dimension D

C = 2
∫ ∞

0

(1− cos τ )
τ 1+δ dτ (11.57)

which exists for δ being within interval 0 < δ < 2.
We again emphasize that this approximation holds only for “small” ε ≈ lnN 6= 0

(0 < ε � 1)3. In this limiting case we obtain the oscillator density [7]4

ρ (ω ) = 2
1

2π
d|k|
dω

(11.58)

which is normalized such that ρ (ω )dω counts the number (per unit length) of nor-
mal oscillators having frequencies within the interval [ω , ω + dω ]. We obtain then
asymptotically for sufficiently small ω a power law of the form

ρ (ω ) =
2

π δ h

( ε
C

) 1
δ ω

2
δ −1 (11.59)

where δ is restricted within interval 0 < δ < 2. We observe that in this δ -interval
the power 2

δ −1 is restricted within the range 0 < 2
δ −1< ∞ , especially with always

vanishing oscillator density ρ (ω → 0) = 0. We conjecture that a power law scaling
in the vicinity of ω = 0 of the oscillator density of the form (11.59) with always
positive exponent and vanishing oscillator density at ω = 0 is an universal footprint
of self-similar and fractal material systems.

3 ε = 0 has to be excluded since it corresponds to N = 1.
4 The additional multiplier ”2” takes into account the two branches of the dispersion relation
(11.54) (one for k < 0 and one for k > 0).
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11.5 Conclusions

We have developed a mathematical framework which enables us to construct in a
simple manner self-similar functions and linear operators. In this way we are able to
tackle a wide range of physical problems with inherent self-similar symmetry. We
also demonstrated existing links to the fractional calculus. The present framework
could be a useful point of departure versus a ”fractal mechanics” which is presently
a widely open but more than ever exciting new field.
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Chapter 12
Nonlinear Dynamic Processes in Media with
Internal Structure

Alexey V. Porubov, Boris R. Andrievsky and Eron L. Aero

Abstract The generation of the bell-shaped localized defects in the lattice is stud-
ied numerically using essentially nonlinear proper structural model that describes
coupling with macro-strains. It is macro-strain localized wave that provides defects
generation, the parameters of this wave are very important for localization or delo-
calization of the variations in the structure of the lattice.

Key words: Microstructure. Localized defect. Nonlinear wave.

12.1 Governing Equations

Generally nonlinear model of the crystalline lattice taking into account deep varia-
tions in the structure of solid, allows description of the cardinal, qualitative varia-
tions of the cell properties, lowering of potential barriers, switching of interatomic
connections, arising from singular defects and other damages, phase transitions.

Here we consider an essentially proper structural nonlinear model that treats a
continuum approach and a crystal translational symmetry without making a contin-
uum limit of a discrete model [1, 2]. The equations are derived for the vectors of
macro-displacement U and relative micro-displacement u for the pair of atoms with
masses m1, m2,

U =
m1U1 +m2U2

m1 +m2
, u =

U1−U2

a
,

where a is a period of sub-lattice. The first variable allows us to describe macro-
strains, while the second variable accounts for the reference displacement of the
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internal or the lattice structure. The following coupled governing equations are ob-
tained in [1, 2] in the 1D case,

ρ Utt −E Uxx = S(cos(u)− 1)x, (12.1)

µ utt − κ uxx = (SUx− p)sin(u). (12.2)

Choice of the trigonometric function allows us to describe translational symmetry of
the crystal lattice. It accounts for a strong nonlinearity allowing transition of atoms
in neighboring cells to realize the micro-mechanism of the cardinal re-arrangement
of the structure.

12.2 Localized Macro-strain Waves and Corresponding
Deviations in Crystalline Lattice

Exact localized traveling wave solutions to Eqs (12.1) and (12.2) may be obtained
by direct integration [3]. Assume that solution depends only on the phase variable
θ = x−V t. Then Eq. (12.1) is resolved for the micro-field by

cos(u) = 1− (E− ρ V 2)Uθ − σ
S

, (12.3)

where σ is a constant of integration. Equation (12.2) is integrated once, multiplied
by uθ and integrated again. Then Eq. (12.3) is substituted in this equation finally
giving an ordinary differential equation for the macro-strain v =Uθ

v2
θ = a0 + a1 v+ a2 v2 + a3 v3 + a4 v4, (12.4)

these coefficients may be found in [3]. When a0 = 0, a1 = 0, the ODE (12.4)
possesses known exact localized bell-shaped traveling wave solutions of two kinds

v1 =
A

Q cosh(k θ )+ 1
, (12.5)

v2 = − A
Q cosh(k θ )− 1

. (12.6)

these parameters are defined for two values of σ , σ = 0 and σ = −2S [3]. Thus,
for are σ = 0 we obtain

A =
4 S

ρ (c2
0 + c2

L− V 2)
,Q± = ± c2

L− V 2− c2
0

c2
L− V 2 + c2

0

,k = 2
√

p

µ (c2
l − V 2)

, (12.7)

where c2
L = E/ρ , c2

l = κ /µ , c2
0 = S2/(p ρ ).
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Fig. 12.1 Simultaneous propagation of macro- and micro- bell-shaped strain waves according to
the exact solutions. Points of time correspond to the neighboring peaks.

Table 12.1 Wave shapes for σ = 0

V 2 (0;c2
L− c2

0) (c2
L− c2

0;c2
L) (c2

L;c2
L + c2

0) > c2
L + c2

0

Shape of v Tensile (12.5) Tensile (12.5) Compression
(12.6)

Compression
(12.5)

Shape of u Kink Bell-shaped Kink Kink
Choice of Q± Q+ Q− Q+ Q+

The shape of u depends upon the value of the first derivative at θ = 0 in the
r.h.s. of Eq. (12.3). Reversing the cos- function for derivation of the expression for
u, one has to avoid the points where the first derivative does not exist. This breaking
happens for θ = 0 at σ = 0 and for Q = Q+. Therefore, the solution for u
obtained using both (12.5) and (12.6) should be written as

u = ± arccos

(
(ρ V 2−E)Ux

S
+ 1

)
for θ ≤ 0, (12.8)

u = ± π ∓ arccos

(
(ρ V 2−E)Ux

S
+ 1

)
for θ > 0. (12.9)
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Fig. 12.2 Generation of moving tensile localized bell-shaped defect in a lattice from initial motion-
less Gaussian input for u. Points of time correspond to the neighboring peaks. Dotted oscillating
lines account for the amplitude variations.

However, the first derivative is zero for Q = Q− at θ = 0, and the expression for
u reads

u = ± arccos

(
(ρ V 2−E)Ux

S
+ 1

)
. (12.10)

The solution (12.8), (12.9) accounts for the kink-shaped profile of the wave, while
solution (12.10) describes the bell-shaped localized wave. The velocity intervals
when one or another profile exists are shown in Table 12.1. Similar analysis for
σ = − 2S may be found in [3, 4].

It is known [3] that simultaneous existence of macro-strain waves v of tensile
and compression is impossible. This is not true for the waves u describing structural
deviations or defects in the lattice, due to the signs± in Eqs (12.8), (12.9) or (12.10).
Shown in Fig. 12.1 is the propagation of macro-strain tensile wave and the tensile
wave of u in the interval (c2

L− c2
0;c2

L) for σ = 0. However, the same tensile macro-
strain wave v may be accompanied by the micro-strain compression wave, u, this is
governed by the initial condition for u. An important problem is to know which wave
is generated when an initial condition for u differs from the exact solutions (12.5),
(12.10) at t = 0. What happens when an initial profile contains both the tensile and
compression parts, and how its initial position relative to the initial position of the
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Fig. 12.3 Generation of mov-
ing compression localized
bell-shaped defect in a lattice
from the input for u contain-
ing both positive and negative
amplitude parts. The initial
positions of the peak of v
maximum and minimum of
u are noted by xv, xp and xn
respectively. They are also
marked by arrows.
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macro-strain wave v affect generation and propagation of the localized bell-shaped
waves for u and v? These questions will be studied numerically in the next Section.

12.3 Generation of Localized Defects in Crystalline Lattice

To solve Eqs (12.1) and (12.2) numerically the standard MATLAB routine ode45 is
used [5]. For this purpose the equations are transformed to a finite-dimensional ap-
proximation, substituting finite difference relations for corresponding space deriva-
tives. To check numerical results parallel computing using numerical tools of the
Mathematica 7 is performed.

We consider only the interval (c2
L− c2

0;c2
L) for σ = 0. According to the exact

solution here only bell-shaped localized waves may propagate. Numerical simula-
tions with initial conditions coinciding with exact solutions (12.5), (12.10) at t = 0
confirm propagation of the bells-shaped waves of permanent shape and velocity ac-
cording to the exact solutions, see Fig. 12.1.

The single equation with ODE of the form (12.4) has been studied numerically
in [6, 7, 8]. It was found that rather arbitrary initial pulse splits into a sequence of
localized waves, and each of them is described by the exact solitary wave solutions.
Localization or delocalization of the input took place according to the conditions
od the existence of the traveling wave solutions. Now we are going to see whether
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Fig. 12.4 Generation of mov-
ing tensile localized bell-
shaped defect in a lattice from
the input for u containing pos-
itive and negative amplitude
parts. The initial positions of
the peak of v maximum and
minimum of u are noted by xv,
xp and xn respectively. They
are also marked by arrows.
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the same predictions of the solutions (12.5), (12.10) are realized for the coupled
equations (12.1) and (12.2).

First the initial condition for u is chosen in the form of the motionless Gaus-
sian distribution while the input for v has the form of the exact solution (12.5) at
t = 0, and its initial velocity is chosen equal to that of the exact solution. Shown in
Fig. 12.2 is a generation of the tensile localized wave u with the amplitude finally
propagating according to the exact solution (12.10) shown in Fig. 12.1. During this
process the wave for v suffers variations in the amplitude. The formation of the wave
happens with oscillating variations in the amplitude which are shown by dotted line
in the figure. Finally the amplitudes and velocities of the bell-shaped waves for u
and v do not vary anymore, and traveling bell-shaped tensile waves with constant
velocity propagate according to the exact solution (12.5), (12.10). Similarly a com-
pression bell-shaped wave for u arises when an initial profile for u is chosen with
negative amplitude.

One has to note that the positions of the maxima/minima for the inputs for v and
u coincide in Figs 12.1 and 12.2. Next series of calculations demonstrates strong
affect of their relative positions on the wave localization. Now the motionless input
for u contains both positive and negative parts, each having the form of the Gaussian
distribution, while the input for v remains in the form of the exact solution (12.5)
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Fig. 12.5 Delocalization of
the input for u containing pos-
itive and negative amplitude
parts. The initial positions of
the peak of v maximum and
minimum of u are noted by xv,
xp and xn respectively. They
are also marked by arrows.
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Fig. 12.6 Variations in the tensile wave for u due to decrease in the initial amplitude by factor
noted in figure.
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Fig. 12.7 Changing of the initial tensile wave for u to the compression one due to decrease in the
initial amplitude of u by factor noted in figure.
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Fig. 12.8 Changing of the sign of localized wave for u due to decrease in the initial amplitude of
u by factor noted in figure.



12 Nonlinear Dynamic Processes in Media with Internal Structure 253

50 100 150 200 250 300
x

-0.5

0.5
1.0
1.5
2.0
2.5

v

20 40 60 80 100
x

-1

1

2

u

150 200 250 300
x

-1.5
-1.0
-0.5

0.5
1.0
1.5

u

t=0

t=0

Ampl factor=0.75

Fig. 12.9 Delocalization of the wave for u due to decrease in the initial amplitude of u by factor
noted in figure.

at t = 0. The position of the maximum of the input for v is denoted by xv in
Figs 12.3,12.4 and 12.5, while the positions of the maximum and the minimum of
the input for u are denoted by xp and xn respectively. No simultaneous generation
of tensile and compression waves of u is seen in figures, either compression wave
arises in Fig. 12.3 or tensile one in Fig. 12.4 depending on the values of xv and xp
and xn. Certainly there exist the values of the initial positions when no localized
wave for u arises, see Fig. 12.5.

Similar changing of the kind of localized wave for u is observed when initial
conditions in the form of the exact solutions are chosen for both functions v and
u but the first one is multiplied by an amplitude factor. One can see in Fig. 12.6
that decrease in the initial amplitude of v gives rise to oscillating variations of the
amplitude of moving localized defect u. Further decrease in amplitude yields change
of the sign of the amplitude of u shown in Fig. 12.7 but the resulting wave evolves
to the wave of permanent shape similar to the case shown in Fig. 12.2. At smaller
initial amplitude of v a more complicated evolution of u is shown in Fig. 12.8 where
changing of the sign of the amplitude of the wave for u is seen. Decreasing the
initial amplitude for v we finally obtain a delocalization of the initial profile of u in
Fig. 12.9.

No localized wave formation is observed from motionless inputs for v and u
that might be an evidence of the dependence of existence of the bell-shaped waves
on their velocity, see Table 1. Also no multiple solitary wave formation is found
contrary to the results for a single equation in [6, 7, 8].
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12.4 Conclusions

It is shown how localized moving defects may arise in a lattice due to the propaga-
tion of a macro-strain wave. The role of the sign of the input for u as well as the
relative position of the inputs and the amplitude and velocity of the input for v are
found to affect generation of tensile or compression localized bell-shaped dynamic
internal deviations, u. An analysis based on the traveling wave exact solution may
explain some features of generation of localized strain waves in the general case.
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Chapter 13
Buckling of Elastic Composite Rods made of
Micropolar Material Subjected to Combined
Loads

Denis Sheydakov

Abstract In the present paper, the stability of a nonlinearly elastic rod with a com-
posite structure is analyzed. It is assumed that the interior (core) of the rod is made
of micropolar material, while the behavior of the exterior (coating) is investigated in
the framework of a classic non-polar continuum model. The problem is studied for
a case of axial compression of a rod under external hydrostatic pressure. Using the
linearization method in a vicinity of the basic state, the neutral equilibrium equa-
tions have been derived, which describe the perturbed state of a composite rod. By
solving these equations numerically for some specific materials, the critical curves
and corresponding buckling modes have been found, and the stability regions have
been constructed in the planes of loading parameters (relative compression and ex-
ternal pressure). An extensive analysis has been carried out for the influence of a
size effect and coating properties on the buckling of elastic composite rod made of
micropolar material subject to combined loads.

Key words: Buckling. Nonlinear elasticity. Micropolar rod. Coating influence.
Combined loads.

13.1 Introduction

The problem of equilibrium stability for deformable bodies is of major importance
both from theoretical and practical point of view, because the exhaustion of load-
carrying capability and collapse of buildings and engineering structures quite often
occurs due to buckling under external loads. In the case of elastic medium, the sta-
bility theory is extensively developed for classic non-polar materials. There is large
number of papers on stability both for thin and thin-walled bodies in the form of
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rods, plates and shells, and for massive (three-dimensional) bodies. However, due
to the increasing number of new constructional materials, the problem of stability
analysis for bodies with a complex structure becomes relevant. One example of a
prospective class of new materials is foams, which are used in the modern automo-
tive and airspace industries. The constructions made of metallic or polymeric foams
combine low weight, high specific strength, and excellent possibilities to absorb en-
ergy. As a rule, they have a composite structure (porous core covered by hard and
stiff shell), which is necessary for corrosion protection and optimization of mechan-
ical properties during loading. Due to a microstructure influence, the behavior of
foams cannot be adequately described within the framework of classic non-polar
continuum model. To create a mathematical model of the porous elastic body, it
seems reasonable to use the model of micropolar continuum, or Cosserat continuum
[1, 3, 4, 7, 10], i.e. medium with couple stresses and rotational degrees of freedom.
Given the above, in the present paper we have carried out the stability analysis for a
quite common element of constructions – a composite cylindrical rod with a porous
core.

13.2 Equilibrium of the Compressed Composite Cylinder under
External Pressure

Consider the composite cylindrical rod of length l and radius r2. The behavior of
the inner part of the rod (0≤ r ≤ r1) is described by the model of micropolar elastic
body. The outer part (r1 ≤ r ≤ r2) is made of classic non-polar material. Then, in
the case of axial compression of the rod under external hydrostatic pressure, the
position of a particle in the strained state is given by the radius vectors R and R∗
(here and below by ‘∗’ we denote the quantities related to the coating, without ‘∗’ –
related to the inner part of the rod) [6, 11]:

R =

{
f (r), 0≤ r ≤ r1

f∗(r), r1 ≤ r ≤ r2
, Φ = ϕ , Z = α z (13.1)

R = f (r)eR + α z eZ , 0≤ r ≤ r1

R∗ = f∗ (r)eR + α z eZ , r1 ≤ r ≤ r2

(13.2)

Here r, ϕ ,z are cylindrical coordinates in the reference configuration (La-
grangian coordinates), R, Φ ,Z are Eulerian cylindrical coordinates,

{
er,eϕ ,ez

}
and

{eR,eΦ ,eZ} are orthonormal vector bases of Lagrangian and Eulerian coordinates,
respectively, α is compression ratio along the axis of the cylinder, f (r) and f∗(r)
are some functions characterizing the radial deformation of the composite rod and
determined from the equilibrium equations and boundary conditions.

In addition, for r ≤ r1 a proper orthogonal tensor of microrotation H is given,
which represents the rotation of the particle for micropolar medium and at the con-
sidered strain has the form
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H = er⊗ eR + eϕ ⊗ eΦ + ez⊗ eZ (13.3)

According to expressions (13.1), (13.2), the deformation gradients C and C∗ are
(hereinafter ′ denotes the derivative with respect to r):

C = grad R = f ′er⊗ eR +
f
r

eϕ ⊗ eΦ + α ez⊗ eZ, 0≤ r ≤ r1

C∗ = grad R∗ = f ′∗er⊗ eR +
f∗
r

eϕ ⊗ eΦ + α ez⊗ eZ, r1 ≤ r ≤ r2

(13.4)

where grad is gradient in the Lagrangian coordinates.
It follows from relations (13.3), (13.4) that for the micropolar part (0≤ r ≤ r1)

of the rod the wryness tensor L is equal to zero [8, 9]

L×E =−(gradH) ·HT = 0

and stretch tensor Y is expressed as follows

Y = C ·HT = f ′er⊗ er +
f
r

eϕ ⊗ eϕ + α ez⊗ ez (13.5)

According to (13.4), for the coating (r1 ≤ r ≤ r2) the expressions for stretch ten-
sor U∗ and macrorotation tensor A∗ have the form [6]:

U∗ =
(

C∗ ·CT
∗
) 1

2
= f ′∗er⊗ er +

f∗
r

eϕ ⊗ eϕ + α ez⊗ ez

A∗ = U−1
∗ ·C∗ = er⊗ eR + eϕ ⊗ eΦ + ez⊗ eZ

(13.6)

We assume that the elastic properties of the rod are described by the physically
linear material, whose specific strain energy in the case of micropolar body is a
quadratic form of the tensors Y−E and L [2, 5]:

W (Y,L) =
1
2

λ tr2 (Y−E)+
1
2
(µ + κ ) tr

(
(Y−E) · (Y−E)T

)
+

+
1
2

µ tr(Y−E)2 +
1
2

γ 1tr2L+
1
2

γ 2tr
(

L ·LT
)
+

1
2

γ 3tr L2

µ + κ > 0, λ + 2µ + κ > 0, γ 2 ≥ 0, γ 1 + γ 2 + γ 3 > 0

(13.7)

and in the case of classic non-polar medium – quadratic form of the tensor U∗−E
[6]:

W∗ (U∗) =
1
2

λ ∗tr2 (U∗−E)+ µ ∗tr(U∗−E)2 , µ ∗ > 0, λ ∗+ 2µ ∗ > 0 (13.8)

Here λ , µ and λ ∗, µ ∗ are Lame coefficients for the rod core and coating, respectively,
κ , γ 1, γ 2, γ 3 are micropolar elastic coefficients, E is the unit tensor.
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It follows from expressions (13.3), (13.5), and (13.7) that for the inner part of the
rod the Piola-type couple stress tensor is equal to zero in the case of axial compres-
sion of the rod under external hydrostatic pressure

G =
∂ W
∂ L
·H =

(
γ 1 (trL)E+ γ 2L+ γ 3LT

)
·H = 0

and Piola-type stress tensor D is

D =
∂ W
∂ Y
·H =

(
λ tr(Y−E)E+ µ

(
YT−E

)
+(µ + κ )(Y−E)

)
·H =

=
(
λ s+ χ

(
f ′− 1

))
er⊗ eR +

(
λ s+ χ

(
f
r
− 1

))
eϕ ⊗ eΦ +

+(λ s+ χ (α − 1))ez⊗ eZ; s = f ′+
f
r
+ α − 3, χ = 2µ + κ

(13.9)

According to (13.6), (13.8), the expression of Piola stress tensor D∗ for coating
has the form:

D∗ =
∂ W∗
∂ U∗

·A∗ = (λ ∗tr(U∗−E)E+ 2µ ∗ (U∗−E)) ·A∗ =

=
(
λ ∗s∗+ 2µ ∗

(
f ′∗− 1

))
er⊗ eR +

(
λ ∗s∗+ 2µ ∗

(
f∗
r
− 1

))
eϕ ⊗ eΦ +

+(λ ∗s∗+ 2µ ∗ (α − 1))ez⊗ eZ ; s∗ = f ′∗+
f∗
r + α − 3

(13.10)

The equilibrium equations of nonlinear micropolar elasticity in the absence of
mass forces and moments are written as follows [2, 11]

divD = 0, divG+
(

CT ·D
)
×
= 0 (13.11)

where div is the divergence in the Lagrangian coordinates. The symbol × represents
the vector invariant of a second-order tensor:

K× = (Kmnem⊗ en)× = Kmnem× en

The equilibrium equations for classic non-polar continuum in the absence of
mass forces have the form [6]:

divD∗ = 0 (13.12)

Boundary conditions

D∗r |r=r2
=− α p f∗ (r2)

r2
, D∗r |r=r1

= Dr|r=r1
, f∗ (r1) = f (r1) , f (0) = 0

(13.13)
express the effect of hydrostatic pressure p (calculated per unit area of the deformed
configuration) on the lateral surface of the rod (r = r2), rigid coupling of coating
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with micropolar part (r = r1) and the absence of radial displacement on the axis of
the rod (r = 0).

By solving the boundary problem (13.11) – (13.13) while taking into account the
relations (13.9), (13.10), we find the unknown functions f (r) and f∗ (r)

f (r) = c1r, f∗ (r) = c∗1r+
c∗2
r

c1 =
(2µ ∗− α p) (k− k∗)

(
r2

1− r2
2

)
+ 2(λ ∗+ 2µ ∗)kr2

2

(2(λ − λ ∗− µ ∗)+ χ ) (2µ ∗− α p)r2
1 +(2λ + χ + 2µ ∗) (2λ ∗+ 2µ ∗+ α p) r2

2

c∗1 =
(2µ ∗− α p)(k− k∗)r2

1 +(2(λ + µ ∗)+ χ )k∗r2
2

(2(λ − λ ∗− µ ∗)+ χ ) (2µ ∗− α p)r2
1 +(2λ + χ + 2µ ∗) (2λ ∗+ 2µ ∗+ α p) r2

2

c∗2 =
([1− α ] (2λ µ ∗− λ ∗χ )+ α p(k− k∗)) r2

1r2
2

(2(λ − λ ∗− µ ∗)+ χ ) (2µ ∗− α p)r2
1 +(2λ + χ + 2µ ∗) (2λ ∗+ 2µ ∗+ α p) r2

2

k = (3− α ) λ + χ , k∗ = (3− α ) λ ∗+ 2µ ∗

13.3 Equations of Neutral Equilibrium

Suppose that in addition to the above-described state of equilibrium for the com-
posite rod, there is infinitely close equilibrium state under the same external loads,
which is determined by:

1. for the micropolar part – the radius vector R+ η v, and microrotation tensor
H− η H× ω ,

2. for the coating – the radius vector R∗+ η v∗.

Here η is a small parameter, v and v∗ are vectors of additional displacements, ω
is a linear incremental rotation vector, which characterizes the small rotation of the
particles for micropolar medium, measured from the initial strain state.

The perturbed state of equilibrium for the micropolar medium is described by the
equations [2]:

divD• = 0, divG•+
[
gradvT ·D+CT ·D•

]
×
= 0 (13.14)

D• =
d

dη
D(R+ η v,H− η H× ω )

∣∣∣∣
η =0

G• =
d

dη
G(R+ η v,H− η H× ω )

∣∣∣∣
η =0
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where D• and G• are the linearized Piola-type stress tensor and couple stress ten-
sor. In the case of physically linear micropolar material (13.7) for these tensors the
following relations are valid:

D• =
(

∂ W
∂ Y

)•
·H+

∂ W
∂ Y
·H• =

(
λ (trY•)E+(µ + κ )Y•+ µ Y•T

)
·H−

−
(

λ tr(Y−E)E+ µ
(

YT−E
)
+(µ + κ )(Y−E)

)
·H× ω

(13.15)

G• =
(

∂ W
∂ L

)•
·H+

∂ W
∂ L
·H• =

(
γ 1 (trL•)E+ γ 2L•+ γ 3L•T

)
·H−

−
(

γ 1 (trL)E+ γ 2L+ γ 3LT
)
·H× ω

(13.16)

Y• = (gradv+C× ω ) ·HT, L• = grad ω ·HT

Here Y• is the linearized stretch tensor, L• is the linearized wryness tensor.
The equations of neutral equilibrium in the framework of non-polar nonlinear

theory of elasticity have the form [6]:

divD•∗ = 0, D•∗ =
d

dη
D∗ (R∗+ η v∗)

∣∣∣∣
η =0

(13.17)

Representation of the linearized Piola stress tensor D•∗ for physically linear material
(13.8) is obtained by linearization of constitutive relations (13.10) with regard to
(13.6):

D•∗ =
(

∂ W∗
∂ U∗

)•
·A∗+

(
∂ W∗
∂ U∗

)
·A•∗ = (λ ∗ (trU•∗)E+ 2µ ∗U•∗) ·A∗+

+(λ ∗tr(U∗−E)E+ 2µ ∗ (U∗−E)) ·U−1
∗ · (gradv∗−U•∗ ·A∗)

(13.18)

Here U•∗ is the linearized stretch tensor, which can be expressed in terms of the
linearized Cauchy-Green deformation tensor:

(U∗ ·U∗)• =
(

C∗ ·CT
∗
)•

=⇒ U•∗ ·U∗+U∗ ·U•∗ = gradv∗ ·CT
∗ +C∗ · (gradv∗)

T

Linearized boundary conditions on the lateral surface of the composite rod
(r = r2) and on the interface (r = r1) are written as follows:

er ·D•∗|r=r2
=−pJ∗er ·C−T

∗ ·
(
(Divv∗)E−GradvT

∗
)
, J∗ = detC∗

er ·D•∗|r=r1
= er ·D•|r=r1

, v∗|r=r1
= v|r=r1

, er ·G•|r=r1
= 0

(13.19)
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where Div and Grad are the divergence and gradient in the Eulerian coordinates.
We assume that at the ends of the rod (z = 0, l) there is no friction and constant

normal displacement is given. This leads to the following linearized boundary con-
ditions:

1) for the micropolar part of the rod (0≤ r ≤ r1):

ez ·D• · eR|z=0,l = ez ·D• · eΦ |z=0,l = ez · v|z=0,l = 0

ez ·G• · eZ|z=0,l = er · ω |z=0,l = eϕ · ω |z=0,l = 0
(13.20)

2) for the coating (r1 ≤ r ≤ r2):

ez ·D•∗ · eR|z=0,l = ez ·D•∗ · eΦ |z=0,l = ez · v∗|z=0,l = 0 (13.21)

We write the vectors of additional displacements v and v∗, and incremental rota-
tion ω in the basis of Eulerian cylindrical coordinates:

v = vReR + vΦ eΦ + vZeZ

v∗ = v∗ReR + v∗Φ eΦ + v∗ZeZ (13.22)

ω = ω ReR + ω Φ eΦ + ω ZeZ

With respect to representation (13.22), the expressions for the linearized stretch
tensors Y• and U•∗, and wryness tensor L• have the form:

Y• =
(

∂ vΦ
∂ r
− f ′ω Z

)
er⊗ eϕ +

1
r

(
∂ vR

∂ ϕ
− vΦ + f ω Z

)
eϕ ⊗ er+

+

(
∂ vZ

∂ r
+ f ′ω Φ

)
er⊗ ez +

(
∂ vR

∂ z
− α ω Φ

)
ez⊗ er+

+
1
r

(
∂ vZ

∂ ϕ
− f ω R

)
eϕ ⊗ ez +

(
∂ vΦ
∂ z

+ α ω R

)
ez⊗ eϕ +

+
∂ vR

∂ r
er⊗ er +

1
r

(
∂ vΦ
∂ ϕ

+ vR

)
eϕ ⊗ eϕ +

∂ vZ

∂ z
ez⊗ ez

(13.23)

U•∗ =
∂ v∗R
∂ r

er⊗ er +
1
r

(
∂ v∗Φ
∂ ϕ

+ v∗R

)
eϕ ⊗ eϕ +

∂ v∗Z
∂ z

ez⊗ ez+

+
1

r f ′∗+ f∗

(
f ′∗

(
∂ v∗R
∂ ϕ
− v∗Φ

)
+ f∗

∂ v∗Φ
∂ r

)(
er⊗ eϕ + eϕ ⊗ er

)

+
1

f ′∗+ α

(
f ′∗

∂ v∗R
∂ z

+ α
∂ v∗Z
∂ r

)
(er⊗ ez + ez⊗ er)+

+
1

f∗+ α r

(
f∗

∂ v∗Φ
∂ z

+ α
∂ v∗Z
∂ ϕ

)(
ez⊗ eϕ + eϕ ⊗ ez

)

(13.24)
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L• =
∂ ω R

∂ r
er⊗ er +

1
r

(
∂ ω Φ
∂ ϕ

+ ω R

)
eϕ ⊗ eϕ +

∂ ω Z

∂ z
ez⊗ ez +

+
∂ ω Φ
∂ r

er⊗ eϕ +
1
r

(
∂ ω R

∂ ϕ
− ω Φ

)
eϕ ⊗ er +

∂ ω Z

∂ r
er⊗ ez + (13.25)

+
∂ ω R

∂ z
ez⊗ er +

1
r

∂ ω Z

∂ ϕ
eϕ ⊗ ez +

∂ ω Φ
∂ z

ez⊗ eϕ

According to relations (13.3) – (13.6), (13.15), (13.16), (13.18), (13.22) –
(13.24), the components of the linearized Piola-type stress tensor D• and couple
stress tensor G•, and Piola stress tensor D•∗ are written as follows:

er ·D• · eR = (λ + χ )
∂ vR

∂ r
+

λ
r

(
∂ vΦ
∂ ϕ

+ vR

)
+ λ

∂ vZ

∂ z

er ·D• · eΦ = (µ + κ )
∂ vΦ
∂ r

+
µ
r

(
∂ vR

∂ ϕ
− vΦ

)
+

(
λ s+ µ

(
f ′+

f
r

)
− χ
)

ω Z

er ·D• · eZ = (µ + κ )
∂ vZ

∂ r
+ µ

∂ vR

∂ z
−
(
λ s+ µ

(
f ′+ α

)
− χ
)

ω Φ

eϕ ·D• · eR =
µ + κ

r

(
∂ vR

∂ ϕ
− vΦ

)
+ µ

∂ vΦ
∂ r
−
(

λ s+ µ
(

f ′+
f
r

)
− χ
)

ω Z

eϕ ·D• · eΦ = λ
∂ vR

∂ r
+

λ + χ
r

(
∂ vΦ
∂ ϕ

+ vR

)
+ λ

∂ vZ

∂ z

eϕ ·D• · eZ =
µ + κ

r
∂ vZ

∂ ϕ
+ µ

∂ vΦ
∂ z

+

(
λ s+ µ

(
f
r
+ α

)
− χ
)

ω R

ez ·D• · eR = (µ + κ )
∂ vR

∂ z
+ µ

∂ vZ

∂ r
+
(
λ s+ µ

(
f ′+ α

)
− χ
)

ω Φ

ez ·D• · eΦ = (µ + κ )
∂ vΦ
∂ z

+
µ
r

∂ vZ

∂ ϕ
−
(

λ s+ µ
(

f
r
+ α

)
− χ
)

ω R

ez ·D• · eZ = λ
∂ vR

∂ r
+

λ
r

(
∂ vΦ
∂ ϕ

+ vR

)
+(λ + χ )

∂ vZ

∂ z
(13.26)
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er ·G• · eR = (γ 1 + γ 2 + γ 3)
∂ ω R

∂ r
+

γ 1

r

(
∂ ω Φ
∂ ϕ

+ ω R

)
+ γ 1

∂ ω Z

∂ z

er ·G• · eΦ = γ 2
∂ ω Φ
∂ r

+
γ 3

r

(
∂ ω R

∂ ϕ
− ω Φ

)

eϕ ·G• · eR =
γ 2

r

(
∂ ω R

∂ ϕ
− ω Φ

)
+ γ 3

∂ ω Φ
∂ r

er ·G• · eZ = γ 2
∂ ω Z

∂ r
+ γ 3

∂ ω R

∂ z
,

ez ·G• · eR = γ 2
∂ ω R

∂ z
+ γ 3

∂ ω Z

∂ r

eϕ ·G• · eΦ = γ 1
∂ ω R

∂ r
+

γ 1 + γ 2 + γ 3

r

(
∂ ω Φ
∂ ϕ

+ ω R

)
+ γ 1

∂ ω Z

∂ z

eϕ ·G• · eZ =
γ 2

r
∂ ω Z

∂ ϕ
+ γ 3

∂ ω Φ
∂ z

,

ez ·G• · eΦ = γ 2
∂ ω Φ
∂ z

+
γ 3

r
∂ ω Z

∂ ϕ

ez ·G• · eZ = γ 1
∂ ω R

∂ r
+

γ 1

r

(
∂ ω Φ
∂ ϕ

+ ω R

)
+(γ 1 + γ 2 + γ 3)

∂ ω Z

∂ z

(13.27)

er ·D•∗ · eR = (λ ∗+ 2µ ∗)
∂ v∗R
∂ r

+
λ ∗
r

(
∂ v∗Φ
∂ ϕ

+ v∗R

)
+ λ ∗

∂ v∗Z
∂ z

er ·D•∗ · eΦ =

(
2µ ∗+

(λ ∗s∗− 2µ ∗) r
r f ′∗ + f∗

)
∂ v∗Φ
∂ r
− λ ∗s∗− 2µ ∗

r f ′∗ + f∗

(
∂ v∗R
∂ ϕ
− v∗Φ

)

er ·D•∗ · eZ =

(
2µ ∗+

λ ∗s∗− 2µ ∗
f ′∗ + α

)
∂ v∗Z
∂ r
− λ ∗s∗− 2µ ∗

f ′∗ + α
∂ v∗R
∂ z

eϕ ·D•∗ · eR =

(
2µ ∗

r
+

λ ∗s∗− 2µ ∗
r f ′∗ + f∗

)(
∂ v∗R
∂ ϕ
− v∗Φ

)
− (λ ∗s∗− 2µ ∗)r

r f ′∗ + f∗

∂ v∗Φ
∂ r

eϕ ·D•∗ · eΦ = λ ∗
∂ v∗R
∂ r

+
λ ∗+ 2µ ∗

r

(
∂ v∗Φ
∂ ϕ

+ v∗R

)
+ λ ∗

∂ v∗Z
∂ z

eϕ ·D•∗ · eZ =

(
2µ ∗

r
+

λ ∗s∗− 2µ ∗
f∗+ α r

)
∂ v∗Z
∂ ϕ
− (λ ∗s∗− 2µ ∗) r

f∗+ α r
∂ v∗Φ
∂ z

ez ·D•∗ · eR =

(
2µ ∗+

λ ∗s∗− 2µ ∗
f ′∗ + α

)
∂ v∗R
∂ z
− λ ∗s∗− 2µ ∗

f ′∗ + α
∂ v∗Z
∂ r

ez ·D•∗ · eΦ =

(
2µ ∗+

(λ ∗s∗− 2µ ∗) r
f∗+ α r

)
∂ v∗Φ
∂ z
− λ ∗s∗− 2µ ∗

f∗+ α r
∂ v∗Z
∂ ϕ

ez ·D•∗ · eZ = λ ∗
∂ v∗R
∂ r

+
λ ∗
r

(
∂ v∗Φ
∂ ϕ

+ v∗R

)
+(λ ∗+ 2µ ∗)

∂ v∗Z
∂ z

(13.28)
Expressions (13.14), (13.17), describing the perturbed state of equilibrium for

micropolar rod with a solid coating, constitute a system of nine partial differential
equations with nine unknown functions vR,vΦ ,vZ,v∗R,v

∗
Φ ,v∗Z, ω R, ω Φ , ω Z in it. Sub-

stitute into
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vR =VR (r)cosnϕ cos β z, vΦ =VΦ (r) sinnϕ cos β z

vZ =VZ (r)cosnϕ sin β z, v∗R =V ∗R (r)cosnϕ cos β z

v∗Φ =V ∗Φ (r) sinnϕ cos β z, v∗Z =V ∗Z (r)cosnϕ sin β z (13.29)

ω R = Ω R (r)sinnϕ sin β z, ω Φ = Ω Φ (r)cosnϕ sin β z

ω Z = Ω Z (r) sinnϕ cos β z

β = π m/l, m = 1,2, ..., n = 0,1, ...

leads to the separation of variables ϕ ,z in these equations and allows to satisfy the
linearized boundary conditions (13.20), (13.21) at the ends of the rod.

By taking into account the relations (13.4), (13.9), (13.22), (13.26) – (13.29),
equations of neutral equilibrium (13.14), (13.17) are written as follows:

(λ + χ )V ′′R +
λ + χ

r
V ′R−

λ +(µ + κ ) ξ + µ
r2 VR +

n(λ + µ )
r

V ′Φ −

−n(λ + 3µ + 2κ )
r2 VΦ + β (λ + µ )V ′Z + β B2Ω Φ −

nB1

r
Ω Z = 0

(µ + κ )V ′′Φ −
n(λ + µ )

r
V ′R−

n(λ + 3µ + 2κ )
r2 VR +

µ + κ
r

V ′Φ −

− (λ + µ )n2 +(µ + κ ) ξ
r2 VΦ −

nβ (λ + µ )
r

VZ− β B3Ω R +B1Ω ′Z = 0

(µ + κ )V ′′Z − β (λ + µ )V ′R−
β (λ + µ )

r
VR−

nβ (λ + µ )
r

VΦ +
µ + κ

r
V ′Z−

−
(
(λ + µ ) β 2 +

ξ − 1
r2 (µ + κ )

)
VZ +

nB3

r
Ω R−B2Ω ′Φ −

B3

r
Ω Φ = 0

γ Ω ′′R− β B3VΦ +
nB3

r
VZ +

γ
r

Ω ′R−
[

γ + γ 2 (ξ − 1)
r2 −

(
f
r
+ α

)
B3

]
Ω R−

−n(γ − γ 2)

r
Ω ′Φ +

n(γ + γ 2)

r2 Ω Φ − β (γ − γ 2) Ω ′Z = 0

γ 2Ω ′′Φ + β B2VR +B2V ′Z +
n(γ − γ 2)

r
Ω ′R +

n(γ + γ 2)

r2 Ω R +
γ 2

r
Ω ′Φ −

−
[
(γ − γ 2)n2 + γ 2ξ

r2 −
(

f ′+ α
)

B2

]
Ω Φ −

nβ (γ − γ 2)

r
Ω Z = 0

γ 2Ω ′′Z −
nB1

r
VR−B1V

′
Φ −

B1

r
VΦ + β (γ − γ 2) Ω ′R +

β (γ − γ 2)

r
Ω R−

−nβ (γ − γ 2)

r
Ω Φ +

γ 2

r
Ω ′Z−

[
γ β 2 +

n2

r2 γ 2−B1

(
f ′+

f
r

)]
Ω Z = 0 (13.30)
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(λ ∗+ 2µ ∗)(V ∗R )
′′+

λ ∗+ 2µ ∗
r

(V ∗R )
′+

n
r

(
λ ∗+ µ ∗−

rB∗1
r f ′∗+ f∗

)
(V ∗Φ )′−

− n
r2

(
λ ∗+ 3µ ∗+

rB∗1
r f ′∗+ f∗

)
V ∗Φ + β

(
λ ∗+ µ ∗−

B∗2
f ′∗+ α

)
(V ∗Z )

′−

− 1
r2

(
λ ∗+(ξ + 1) µ ∗+

β 2r2B∗2
f ′∗+ α

+
n2rB∗1

r f ′∗+ f∗

)
V ∗R = 0

(
µ ∗+

rB∗1
r f ′∗+ f∗

)
(V ∗Φ )′′− 1

r2

(
(λ ∗+ µ ∗)n2 + µ ∗ξ +

rB∗1
r f ′∗+ f∗

+
β 2r3B∗3
f∗+ α r

)
V ∗Φ −

−n
r

(
λ ∗+ µ ∗−

rB∗1
r f ′∗+ f∗

)
(V ∗R )

′− n
r2

(
λ ∗+ 3µ ∗+

rB∗1
r f ′∗+ f∗

)
V ∗R +

+
1
r

(
µ ∗+

rB∗1
r f ′∗+ f∗

)
(V ∗Φ )′− nβ

r

(
λ ∗+ µ ∗−

rB∗3
f∗+ α r

)
V ∗Z = 0

(
µ ∗+

B∗2
f ′∗+ α

)
(V ∗Z )

′′−
(
(λ ∗+ 2µ ∗) β 2 +

n2

r2

[
µ ∗+

rB∗3
f∗+ α r

])
V ∗Z −

−β
(

λ ∗+ µ ∗−
B∗2

f ′∗+ α

)
(V ∗R )

′− β
r

(
λ ∗+ µ ∗−

B∗3
f ′∗+ α

+
f ′′∗ rB∗2

( f ′∗+ α )2

)
V ∗R −

−nβ
r

(
λ ∗+ µ ∗−

rB∗3
f∗+ α r

)
V ∗Φ +

1
r

(
µ ∗+

B∗3
f ′∗+ α

− r f ′′∗ B∗2
( f ′∗+ α )2

)
(V ∗Z )

′ = 0

B1 = µ
(

f ′+
f
r

)
+ λ s− χ , B2 = µ

(
f ′+ α

)
+ λ s− χ

B3 = µ
(

f
r
+ α

)
+ λ s− χ , B∗1 = µ ∗

(
f ′∗+

f∗
r
− 2

)
+ λ ∗s∗

B∗2 = µ ∗
(

f ′∗+ α − 2
)
+ λ ∗s∗, B∗3 = µ ∗

(
f∗
r
+ α − 2

)
+ λ ∗s∗

ξ = n2 + r2β 2 + 1, γ = γ 1 + γ 2 + γ 3

The expressions for the linearized boundary conditions (13.19) take the form:
1) for r = r2:
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(λ ∗+ 2µ ∗) (V ∗R )
′+

λ ∗+ α p
r2

(V ∗R + nV∗Φ )+ β
(

λ ∗+
f∗
r2

p

)
V ∗Z = 0

(
α p− µ ∗

r2
+

B∗1
r2 f ′∗+ f∗

)
(nV ∗R +V ∗Φ )+

(
µ ∗+

r2B∗1
r2 f ′∗+ f∗

)
(V ∗Φ )′ = 0 (13.31)

β
(

f∗
r2

p− µ ∗+
B∗2

f ′∗+ α

)
V ∗R +

(
µ ∗+

B∗2
f ′∗+ α

)
(V ∗Z )

′ = 0

2) for r = r1:

(λ ∗+ 2µ ∗) (V ∗R )
′+

λ ∗
r1

(V ∗R + nV ∗Φ )+ β λ ∗V ∗Z − (λ + χ )V ′R−

− λ
r1

(VR + nVΦ )− β λ VZ = 0

(
B∗1

r1 f ′∗+ f∗
− µ ∗

r1

)
(nV ∗R +V ∗Φ )+

(
µ ∗+

r1B∗1
r1 f ′∗+ f∗

)
(V ∗Φ )′+

+
µ
r1

(nVR +VΦ )− (µ + κ )V ′Φ −B∗1Ω Z = 0 (13.32)

β
(

B∗2
f ′∗+ α

− µ ∗
)

V ∗R +

(
µ ∗+

B∗2
f ′∗+ α

)
(V ∗Z )

′+ µ β VR−

−(µ + κ )V ′Z +B∗2Ω Φ = 0

γ Ω ′R +
γ 1

r1
(Ω R− nΩ Φ )− γ 1β Ω Z = 0,

γ 3

r1
(nΩ R− Ω Φ )+ γ 2Ω ′Φ = 0

γ 3β Ω R + γ 2Ω ′Z = 0, VR−V ∗R = 0, VΦ −V ∗Φ = 0, VZ−V ∗Z = 0

Thus, the stability analysis of the composite rod is reduced to solving a linear
homogeneous boundary problem (13.30) – (13.32) for a system of ordinary differ-
ential equations. For its solvability, it is necessary to formulate an additional six
conditions at r = 0, which can be obtained by requiring boundedness of unknown
functions and their derivatives with respect to r [12]:

n = 0 : VR(0) =VΦ (0) =V ′Z(0) = 0, Ω R(0) = Ω Φ (0) = Ω ′Z(0) = 0

n = 1 : V ′R(0) =V ′Φ (0) =VZ(0) = 0, Ω ′R(0) = Ω ′Φ (0) = Ω Z(0) = 0
(13.33)

13.4 Numerical Results

In the present paper, we have carried out the stability analysis for the composite
cylindrical rod, the inner part of which is made of dense polyurethane foam [5]
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λ = 797.3 MPa, µ = 99.67 MPa, κ = 8.67 MPa

γ 1 =−26.65 Pa ·m2, γ 2 = 45.3 Pa ·m2, γ 3 = 34.65 Pa ·m2

As the coating material, we have considered aluminum

λ ∗ = 61.9 ·103 MPa, µ ∗ = 26.2 ·103 MPa

and polycarbonate

λ ∗ = 2.3 ·103 MPa, µ ∗ = 0.8 ·103 MPa

By numerical solution [13] of the linear homogeneous boundary value problem
(13.30) – (13.33) on the buckling of an elastic micropolar rod with a solid coat-
ing subject to axial compression and external pressure, in the plane of the loading
parameters the critical curves corresponding to different buckling modes are found
for these materials. As a result of analysis of these curves, the stability regions are
constructed for rods of various sizes and with different coating thickness.

For convenience, we introduce the following dimensionless parameters:

δ = 1− α , p̃ = p/µ , l̃ = l/lb, h = 1− r1/r2

where lb =
√

γ 2/2(2µ + κ ) is characteristic length for bending [5]. The ratio of the
length of the undeformed rod to its diameter is 20 (l = 40r2) for all the presented
results. Stability analysis was carried out for the rods, whose coating thickness does
not exceed 5% of the diameter (h≤ 0.1).
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Fig. 13.1 Stability regions in the case of a thin aluminum coating

In Fig. 13.1, the stability regions are constructed in the plane of the loading pa-
rameters (relative axial compression δ and external pressure p̃) for a rod with a
thin aluminum coating. Instability regions are shaded. The relative thickness of the
coating is 0.5% (h = 0.01, left graph) and 1.5% (h = 0.03, right graph) of the di-
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ameter for the undeformed rod. The stability boundaries for rods of different size
are presented – l̃ = 40, l̃ = 80 and l̃ = 200. Also on the graphs are the stability
boundary (dotted line), obtained in the buckling analysis of composite rod without
the influence of couple stresses, i.e. when the behavior of the inner part of the rod is
described by the physically linear material (13.8) with the Lame coefficients λ , µ .

200
~
 l

200
~
 l

80
~
 l

80
~
 l

40
~
 l 40

~
 l

05.0 h 1.0 h

!

p
~

p
~

!

Fig. 13.2 Stability regions in the case of an aluminum coating of average thickness

The results obtained for a rod with an aluminum coating of average thickness
are shown in Fig. 13.2. The relative thickness of the coating is 2.5% (h = 0.05, left
graph) and 5% (h = 0.1, right graph) of the diameter. All notations are the same as
the one used in Fig. 13.1.

It follows from graphs in Fig. 13.1 and Fig. 13.2 that in the case of the aluminum
coating at h ≤ 0.1 the stability of the rod with respect to the external pressure very
much depends on the thickness of the coating. It is established that the rods with a
thicker coating are generally more stable, except in the case of low pressure, when
the rods with a thinner coating are more stable. In addition, from Fig. 13.1 shows
that the stability of a rod with a thin aluminum coating noticeably depends on its
size – for l̃ < 500 rod having a small size is more stable than a large rod (for l̃ >
500 the size effect was not detected). However, in the case of coating of average
thickness (0.04 < h≤ 0.1), the influence of size on the loss of stability is very small
(see Fig. 13.2). Therefore, for this case the couple stresses can be neglected in the
stability analysis.

In Fig. 13.3 and Fig. 13.4, the stability regions are constructed for a rod with
a softer (in comparison with aluminum) polycarbonate coating. The relative thick-
ness of the coating is 0.5% (Fig. 13.3, left graph), 1.5% (Fig. 13.3, right graph),
2.5% (Fig. 13.4, left graph) and 5% (Fig. 13.4, right graph) of the diameter for the
undeformed rod.

It follows from graphs that in the case of the polycarbonate coating at h≤ 0.1 the
stability of the rod with respect to the external pressure do not depends very much on
the thickness of the coating. In connection with this, the rods with a thinner coating
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Fig. 13.3 Stability regions in the case of a thin polycarbonate coating
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Fig. 13.4 Stability regions in the case of a polycarbonate coating of average thickness

are generally more stable, except in the case of high pressure, when the rods with a
thicker coating are more stable. At the same time, according to the obtained results
the stability of a rod with a polycarbonate coating considerably depends on its size
(the size effect was detected for l̃ < 1000). Moreover, unlike the case of aluminum
coating, the influence of size on the stability of the rod is rather significant not
only for a thin polycarbonate coating (h≤ 0.04), but also for a coating of average
thickness (0.04 < h≤ 0.1), as shown in Fig. 13.3 and Fig. 13.4. This confirms the
expediency of taking into account the couple stresses in this case.

13.5 Conclusion

In the framework of bifurcation approach, the stability analysis was carried out for
an elastic micropolar rod with a solid coating subject to axial compression and ex-
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ternal pressure. For the physically linear material, a system of linearized equilib-
rium equations was derived, which describes the behavior of the composite rod in
a perturbed state. Using a special substitution the stability analysis was reduced to
solving a linear homogeneous boundary problem (13.30) – (13.33) for a system of
ordinary differential equations. In the case of a cylindrical rod of dense polyurethane
foam with aluminum or polycarbonate coating the stability regions were found in
the plane of loading parameters. It was established that for h ≤ 0.1 in the case of
an aluminum coating usually the rods with a thicker coating are more stable, but in
case of polycarbonate coating on the contrary – with a thinner coating. In addition,
it was revealed that for a rod with a polycarbonate coating the size effect on the rod
stability is quite considerable, in contrast to the rod with an aluminum coating, for
which this effect is apparent only in the case of a thin coating (h≤ 0.04).
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Part V
Geometry and Defects



Chapter 14
Theory of Isolated and Continuously Distributed
Disclinations and Dislocations in Micropolar
Media

Mikhail I. Karyakin and Leonid M. Zubov

Abstract The paper deals with nonlinear theory of defects like dislocations and
disclinations either isolated or distributed with a certain density in an elastic medium
with internal rotational degrees of freedom and couple stresses. The general theory
is illustrated by finding the solution of problems of internal stresses induced in an
elastic disc with an isolated wedge disclination as well as the distribution of such
disclinations. Some results concerning the influence of the microstructure on the
possibility of the hole formation along the dislocation line are presented.

Key words: Dislocations. Disclinations. Cosserat continuum. Micropolar media.
Couple stresses. Cavitation.

14.1 Introduction

Classical continuum mechanics, in particular, classical elasticity, is based on the
model of simple material [6]; the free energy density and stresses at a particle of
simple material are completely determined by the values of deformation gradient
and temperature in the particle; besides, the Cauchy stress tensor is symmetric. The
model of simple material perfectly describes behavior of medium in many cases
however there are situations when we have to consider micro-inhomogeneous struc-
ture of the material; to these, polycrystalline grained materials, polymers, com-
posites, suspensions, liquid crystals, geophysical structures, etc. assume to attract
ideas of micro-non-homogeneity [5]. To describe mathematically the physical and
mechanical properties of above medium, continuum theories dealing with couple
stresses and rotational interaction of particles are used.

The most essential distinction between the results of couple stress elasticity and
those of classical theory occurs when the stressed state of the body changes drasti-
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cally, that is in some vicinity of stress concentrators such as corners, crack edges,
dislocation and disclination lines and other defects. Thus the study of nonlinear ef-
fects of couple stresses in the theory of dislocations and disclinations is of interest.

The paper presents main relations of the nonlinear theory of isolated disloca-
tions in micropolar media. Some examples of the influence of the couple stresses
accounting upon the mechanical fields generated by dislocations and disclinations
in the nonlinear elastic media and upon the cavitation near the crystal structure de-
fects are given. It is established that this influence is qualitatively different for the
dislocations and disclinations.

The resolving equations of the continual theory of defects are obtained by the
limiting transition from the discrete set of isolated dislocations and disclinations
to their continuous distribution. It is particularly shown that such transition in the
general three-dimensional case can be performed for continuous distribution of dis-
locations only when disclinations are absent or isolated. The transition is possible
in the plane problem for the micropolar elastic medium. The general theory is illus-
trated by solving a problem of internal stresses induced in an elastic disc by a given
distribution of wedge disclinations.

14.2 Isolated Defects in Nonlinearly Elastic Bodies with Couple
Stresses

14.2.1 Nonlinear Cosserat Continuum

The model of nonlinearly elastic Cosserat continuum suggests that any continuum
particle has all the rigid body degrees of freedom. A position of particle in the de-
formed state is specified by the radius-vector R, while the particle orientation is
determined by a proper orthogonal tensor H called the microrotation tensor. Follow-
ing the principle of local action in continuum mechanics, we suggest the function of
specific (per reference configuration unit volume) potential strain energy of elastic
continuum of the form

W =W (R,gradR,H,gradH), grad = rs ∂
∂ qs ,

rk =
∂ r
∂ qk , rs · rk = δ s

k , s,k = 1,2,3,

(14.1)

where qs are Lagrangian coordinates, r is the particle radius-vector in the reference
(undeformed) configuration. By the principle of material frame indifference [6], the
strain energy density of elastic body, W , is invariant under rigid body motions of
medium. The invariance of W under translations results in the independence of W
(in Eq. (14.1)) of the argument R. The invariance under observer frame rotations
implies that
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W ((gradR) ·O,H ·O,(gradH) ·O) =W (gradR,H,gradH) (14.2)

for any orthogonal (that is OT = O−1) tensor O. Setting O = HT in Eq. (14.2), we
obtain

W =W
(
(gradR) ·HT,(gradH) ·HT) . (14.3)

In Eq. (14.3), it was taken into account that H ·HT = E, where E is the identity
tensor. The relation (14.3) is a necessary consequence of the equality (14.2); it is
easy to verify that it is sufficient for the invariance of the energy under rigid body
motions. Taking into account the skew symmetry of tensors (∂ H/∂ qk) ·HT (k =
1,2,3) we can represent the third order tensor gradH ·HT in terms of the second
order tensor L as follows

gradH ·HT =−L×E, L =
1
2

rk
(

∂ H
∂ qk ·H

T
)

×
. (14.4)

Here T× denotes the vector invariant of a 2nd order tensor T, T× = (Tskrs⊗ rk)× =
Tskrs×rk. By Eqs (14.3), (14.4), the elastic potential, W , at a given material particle,
relates with the deformation of a neighborhood of the particle by two 2nd order
tensors: the strain measure,

Y = (gradR) ·HT, (14.5)

and the bending strain tensor, L.
For simplicity we assume that both mass external loads, and forces and cou-

ples distributed over the body surface are absent. Then from the variation principle
δ
∫

vW dv = 0 we obtain an equilibrium equations

div(P ·H) = 0, div(K ·H)+ (CT ·P ·H)× = 0, (14.6)

boundary conditions for ∂ v

n ·P ·H = 0, n ·K ·H = 0, (14.7)

and the equations of state

P =
∂ W
∂ Y

, K =
∂ W
∂ L

, W =W (Y,L). (14.8)

Here, P and K are the stress tensor and couple stress tensor, respectively, both of the
Kirchhoff type; div is the divergence operator in the reference configuration of the
material body (i.e., in the Lagrangian coordinates); v is the volume occupied by the
elastic Cosserat medium in reference configuration; n is normal to the boundary of
the body ∂ v.
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14.2.2 Weingarten’s Theorem for the Finite Plane Deformation of
Couple Stress Medium

Consider the problem of determining the displacement and microrotation fields of
the Cosserat continuum when the fields of tensors Y and L are given as twice dif-
ferentiable functions of Lagrangian coordinates.

Restricting ourselves to the case of plane strain described by the relations

Xl = X1(x1,x2), X2 = X2(x1,x2), X3 = x3, (14.9)

where xk, Xk are the coordinates of medium points in the Cartesian basis ik before
and after the deformation, respectively, we can simplify the problem on the stresses
due to isolated defect, in particular, we can obtain expressions for its characteristics
in terms of ordinary contour integrals. Let us introduce the complex coordinates

ζ = x1 + ix2, ζ̄ = x1− ix2, z = X1 + iX2, z̄ = X1− iX2.

The plane deformation (14.9) is described by a complex-valued function

z = z(ζ , ¯ζ ), X3 = x3. (14.10)

In the multiply connected domain occupied by the body in undeformed state, the
tensors Y and L are given by

L = L1(ζ , ζ̄ )f1f3 +L2(ζ , ζ̄ )f2f3, (14.11)

Y = Y β
α (ζ , ζ̄ )fα fβ + f3f3, (14.12)

where fα , fβ are the complex bases associated with the complex coordinates ζ , ζ̄
[9], f3 = f3 = i3.

We shall seek H in the form

H = eiχ f1f1 + e−iχ f2f2 + f3f3. (14.13)

In this general representation of rotation tensor under plane strain, χ is the parti-
cle finite rotation angle to be determined. Substituting Eqs (14.11), (14.13) into Eq.
(14.4), we get

∂ χ
∂ ζ

= L1,
∂ χ
∂ ζ̄

= L2. (14.14)

We can write the solvability condition for Eqs (14.14) with respect to χ as

∂ L1

∂ ζ̄
=

∂ L2

∂ ζ
. (14.15)

Comparing the expression for the deformation gradient, gradR, answering the
transformation (14.10), with gradR = Y ·H, derived from the definition of Y, with
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Fig. 14.1 Integration contour
from M0 to M in the doubly
connected domain σ .

M0

M
τ

σ

regard for Eqs (14.12), (14.13), we find

∂ z
∂ ζ

= Y 1
1 eiχ ,

∂ z

∂ ζ̄
= Y 1

2 eiχ . (14.16)

In view of Eq. (14.14), the solvability condition for these equations takes the
form

d Y1
2

d ζ
− d Y1

1

d ζ̄
+ iL1Y 1

2 − iL2Y 1
1 = 0. (14.17)

Thus the Eqs (14.15), (14.17) are the compatibility equations under plane medium
deformation which are equivalent to three real-valued equations.

If a value of the rotation angle, χ 0 = χ (ζ 0, ζ̄ 0) is given at a point M0 with com-
plex coordinates ζ 0, ζ̄ 0, then the rotation field in a simply connected domain is
uniquely determined by the system (14.14). Having found χ (ζ , ζ̄ ), we can uniquely
evaluate the function z(ζ , ζ̄ ) by integrating the system (14.16) with a given value
z0 = z(ζ 0, ζ̄ 0).

Let us now consider the case of doubly connected domain (Fig. 14.1). Suppose
that the integration contour consists of a curve connecting points M0, M and non-
intersecting the partition τ , and a closed, non-contractible-into-point contour which
revolves n times (n full turns) in positive direction. In a doubly connected domain
the solution of Eqs (14.14) is multi-valued and takes the form

χ = χ ∗+ nK, χ ∗ = χ 0 +

∫
M

M0

(
L1 dζ +L2 d ζ̄

)
,

K =
∮

L1 dζ +L2 d ζ̄ .
(14.18)

From Eqs (14.16), (14.18), it follows a multi-valued expression for the quantity z
which describes the location of continuum particles in the deformed state
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z = z0 + einK
∫

M

M0

eiχ ∗
(
Y 1

1 dζ +Y 1
2 d ζ̄

)
+

+
(

1+ eiK + . . .+ ei(n−1)K
)∮

eiχ ∗
(
Y 1

1 dζ +Y 1
2 d ζ̄

)
,

(14.19)

where n is a constant for multi-valuedness of the problem. The integrals with vari-
able upper limit are evaluated over the curves which do not enclose the domain hole;
the closed contour is through M0 and passes around the hole one time.

On the cut converting the domain into a simply connected one, the limiting values
of functions χ and z are related by

χ +− χ − = K, z+ = z−eiK + β , (14.20)

β = z0
(
1− eiK)+

∮
eiχ ∗

(
Y 1

1 dζ +Y1
2 d ζ̄

)
. (14.21)

The relation (14.20) represents the statement of Weingarten’s theorem in the case
of nonlinear couple-stress theory of plane elasticity; it can be rewritten in the real-
valued form

u+−u− =
4

4+ ω 2 ω ×
(

R−+
1
2

ω ×R−

)
+b,

b = ℜ (β )i1 + ℑ (β )i2, ω = 2tan
K
2

i3

(14.22)

14.2.3 Wedge Disclination

The problem to find out the stressed state of couple-stress body with Volterra dis-
location can be solved by the following approach: the problem states in a multiply
connected domain, the strain tensors Y and L, as unknowns, must satisfy the equi-
librium equations, the compatibility equations, and the integral relations specifying
the dislocation and disclination parameters. As an example of application of this
approach, let us consider the plane problem of defect in an elastic ring.

We shall seek tensors Y and L in the form

Y = Yr(r)er⊗ er +Yϕ (r)eϕ ⊗ eϕ + ez⊗ ez,

L = Lr(r)er⊗ ez +Lϕ (r)eϕ ⊗ ez,
(14.23)

where r, ϕ , z are cylindrical coordinates in the reference configuration, er, eϕ , ez are
the unit basis vectors related to the coordinates. The compatibility equation (14.15)
now becomes

dLϕ

dr
+

1
r

Lϕ = 0,

whence Lϕ = C/r. To define the constant C, we invoke the relation (14.18) with a
given constant K,
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Lϕ =
K

2π r
. (14.24)

In view of Eqs (14.23), (14.24), the complex-valued compatibility equation
(14.17) is equivalent to the following real relations

Lr(r) = 0,
dYϕ

dr
+

1
r

Yϕ −
κ
r

Yr = 0, κ = 1+
K
2π

. (14.25)

Using Eq. (14.14), we find the rotation field of medium χ ∗ = (κ −1)ϕ . Thus by Eq.
(14.13), the microrotation tensor is defined.

Calculating the parameter β from Eq. (14.21), we obtain the relation

β =
(
1− eiK)

(
z0−

1
κ

Yϕ (r0)

)
,

which demonstrates that the representation (14.23) enables us to solve the problem
on the wedge disclination in the ring whereas this representation is not sufficient to
solve the translational dislocation problem. Indeed if κ 6= 0, setting K = 0 we obtain
that β = 0 also, that means that there is no defect in the body.

Let us now study the stressed state of a body with disclination for physically
linear micropolar material [9] with the specific potential energy of the form

2W = λ tr2 U+(µ + ψ ) tr(U ·UT)+ (µ − ψ ) trU2+

+ δ tr2 L+(γ + η ) tr(L ·LT +(γ − η ) trL2, U = Y−E,
(14.26)

where λ , µ , δ , γ , ψ , and η are elastic moduli. Using Eqs (14.8), (14.23) and (14.26),
one can verify that the couple equilibrium equation in (14.6) is satisfied identically,
and the force equilibrium equation for unloaded body takes the form

(λ + 2µ )
dYr

dr
+ λ

dYϕ

dr
+

λ (1− κ )+ 2µ
r

Yr+

+
λ (1− κ )− 2µ κ

r
Yϕ = 2(λ + µ )

1− κ
r

.

(14.27)

We assume that the ring boundaries, r = rl and r = r0 are free of load. This implies
the following boundary conditions:

(λ + 2µ )Yr + λ Yϕ = 2(λ + µ ) at r = r1,r0 (14.28)

The case of solid disk (r1 = 0) is of most interest. Solving the boundary problem
(14.25), (14.27) and (14.28) and then passing to the limit as r1→ 0, we obtain
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Yr =
κ (1− 2ν )

(1+ κ )(1− ν )
ρ κ −1 +

1
(1+ κ )(1− ν )

,

Yϕ =
κ (1− 2ν )

(1+ κ )(1− ν )
ρ κ −1 +

κ
(1+ κ )(1− ν )

,

ν =
λ

2(λ + µ )
, ρ =

r
r0
.

(14.29)

Introducing the tensors of stresses T and couple stresses M, which are similar to
the Cauchy stress tensor in the elasticity theory of simple materials by relations

T = J−1(gradR)T ·P, M = J−1(gradR)T ·K,

J = det(gradR),

on the basis of Eqs (14.26) and (14.29) we find the components of Cauchy stress
tensor

TRR = 2µ
ρ κ −1− 1

(1− 2ν )ρ κ −1+ 1
,

TΦ Φ = 2µ
κ ρ κ −1− 1

(1− 2ν )κ ρ κ −1+ 1
.

These expressions have no singularity at the disclination axis and coincide with
principal stresses in elastic medium without couple stresses [8].

The non-vanishing components of the couple-stress tensor M take the form

MΦ Z = (γ + η )
κ − 1
rYr

,

MZΦ = (γ − η )
κ − 1
rYrYϕ

.

(14.30)

Relations (14.29), (14.30) show that, as ρ → 0, the couple stress MΦ Z has a singular-
ity of the order ρ −1 if κ > 1 and of the order ρ −κ if κ < 1, whereas the singularity of
MZΦ is of the order ρ −1 if κ > 1 and of the order ρ 1−2κ if κ < 1. The linearization of
Eqs (14.30) with respect to parameter (κ − 1), when ρ > 0, results in some formu-
las, known from linear couple-stress theory [4], according to which the singularity
of couple stresses is of the order ρ −1 as ρ → 0 for all κ 6= 0.
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14.3 Continuously Distributed Dislocations and Disclinations in
Nonlinearly Elastic Micropolar Media

14.3.1 Density of Dislocations

To introduce the density of dislocations in a micropolar medium, let us consider the
problem of determining the field of displacements in the medium u = (Xk− xk)ik
by using the tensor fields of deformation measure Y(xs) and microrotations H(xs)
that are assumed to be continuously differentiable and single-valued in the multiply
connected domain σ . Taking into account that gradu = Y ·H−E and following [1],
we arrive at the expression

bN =

∮

γ N

ik ·Y ·Hdxk (14.31)

for the Burgers vectors of dislocations that are responsible for the lack of unique-
ness of the displacement field in the multiply connected domain. Here, γ N is a simple
closed contour enveloping the line of only the Nth dislocation. Taking (14.31) into
account, we apply the method proposed in [1] to move from the discrete set of trans-
lational defects, or dislocations, to their continuous distribution. Using the known
definition of the density of dislocations as the tensor d0 [7] whose flux through any
surface is equal to the total Burgers vector of dislocations crossing this surface, we
arrive at the equation

curl(Y ·H) = d0, (14.32)

where curl is the curl operator in the Lagrangian coordinates. For a given dislocation
density tensor d0, which must satisfy the condition divd0 = 0, Eqs. (14.4), (14.6),
(14.8), and (14.32) form a complete system of equations with unknowns Y and H.

Under certain assumptions about the dislocation density, the system of Eqs
(14.4), (14.6), (14.8) and (14.32) can be transformed by excluding the microrota-
tion tensor H from the unknown functions and taking the tensor fields Y and L as
unknowns. Multiplying Eqs (14.6) and (14.32) by the tensor HT from the right and
taking representation (14.4) into account, we obtain the system of equations

divP− (PT ·L)× = 0,

divK− (KT ·L+PT ·Y)× = 0,
(14.33)

curlY+Y××L = d, d≡ d0 ·HT. (14.34)

Here, the invariant fiber bundle of second-rank tensors is defined in terms of the
vector products of the basis vectors rs as follows:

Y××L = (Ymnim⊗ in)×× (Lksik⊗ is) = YmnLks(im× ik)⊗ (in× is).

Below, the modified dislocation density tensor d will be treated as given.
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The microrotation tensor must also be excluded from relation (14.4), specifying
the bending strain tensor of the micropolar medium. To this end, we consider the
problem of determining the microrotation tensor field H in the micropolar medium
with continuously distributed dislocations in terms of a given bending strain tensor
field L. We now remove the requirement of the uniqueness of the tensor field H in
the multiply connected domain σ and use the condition of uniqueness and differen-
tiability of the tensor L in this domain. Using Eq. (14.4), we compose the following
system of equations for the tensor H:

∂ H
∂ xs

=−Ls×H, Ls = is ·L. (14.35)

Excluding the unknown orthogonal tensor H from system (14.35), we arrive at
the tensor solvability condition

curlL+
1
2

L××L = 0. (14.36)

This condition is a necessary and sufficient condition for the existence of the
unique microrotation field in the simply connected domain σ when the tensor H
is given in a certain point of the domain. If the σ domain is multiply connected,
the solution of the Cauchy problem for system (14.35) is generally multi-valued.
The possible multiple-valuedness of the solution is removed after the transforma-
tion of the multiply connected domain to simply connected one by introducing the
necessary number of cuts τ M , M = 1,2, . . .. The microrotation tensor takes different
values H+ and H− at the different edges of the cut. The relation H+ = H− · Φ M ,
where Φ M is the properly orthogonal tensor that is constant for a given cut τ M , is
proved by using the continuity and uniqueness of the bending strain tensor L in the
domain σ and applying the method proposed in [9]. The existence of the above jump
of the microrotation tensor at the cut τ M means the existence of isolated rotational
defects, or disclinations, in an elastic micropolar body with distributed dislocations.
As well as in the Cosserat continuum without dislocations [9], the Frank vector of
each isolated disclination is expressed in terms of the bending strain tensor field
through the multiplicative contour integral. These integral relations, together with
Eqs. (14.33), (14.34), and (14.36) and the boundary conditions on the body surface,
provide the formulation of the boundary value problem concerning the equilibrium
of the micropolar medium with continuously distributed dislocations and isolated
disclinations. Since the properties of multiplicative line integrals are complicated
[9], the limiting transition from a discrete set of isolated disclinations to their con-
tinuous distribution is generally impossible. Nevertheless, as will be shown below,
this transition is possible in the plane problem for the micropolar elastic medium.
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14.3.2 Plane Deformation

We consider plane deformation in the (x1,x2) plane. In this case, the dislocation
density tensor has the form d0 = i3 ⊗ a0 (a0 · i3 = 0) [1], where a0 is the edge
dislocation density vector, and the distortion tensor C satisfies the incompatibility
equation

∇ · (e ·C) = a0, e =−i3×E, ∇ = i1
∂

∂ x1
+ i2

∂
∂ x2

. (14.37)

Here, ∇ is the two-dimensional gradient operator and e is the discriminant ten-
sor. The H tensor for plane deformation is expressed in terms of the angle χ of
microrotation about the x3 axis through the formula

H = gcos χ + esin χ + i3⊗ i3, g = E− i3⊗ i3. (14.38)

Using Eqs (14.4) and (14.38), we obtain

L = l⊗ i3, l = ∇ χ . (14.39)

In view of Eqs (14.5) and (14.38), Eq. (14.39) is transformed as

∇ · (e ·Y ·g)+ l · (e ·Y · e) = a, (14.40)

where a = a0 ·HT.
According to Eq. (14.39), the microrotation field is determined in terms of the

bending strain field through the quadratures

χ =

r∫

r0

l ·dr+ χ (r0), r = x1i1 + x2i2. (14.41)

When the condition ∇ ·e · l= 0 is valid, the line integral in Eq. (14.41) is indepen-
dent of the integration path if the σ domain is simply connected. For the multiply
connected plane domain homeomorphic to the circle with circular holes, expression
(14.41) generally specifies a multi-valued function. Transforming the multiply con-
nected domain to the simply connected one by means of cuts, we find that the values
χ ± at the opposite edges of each cut may differ by a constant:

χ +− χ − = θ S, S = 1,2, . . . .

Constants θ S are independent of the choice of the system of cuts and are expressed
in terms of the bending strain field through an ordinary (not multiplicative) contour
integral. The existence of nonzero constants θ S means that isolated wedge disclina-
tions exist in a multiply connected micropolar body. Using the method described in
[1] for the transformation of a discrete set of disclinations to their continuous dis-
tribution, we arrive at the following incompatibility equation for bending strains of
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the plane medium:
∇ · e · l = β , (14.42)

where β is the scalar density of wedge disclinations. For the plane case, equilibrium
equations (14.33) take the form

∇ ·P+ l ·P · e = 0, ∇ ·K · i3 = tr(P · e ·YT ·g) (14.43)

and, together with incompatibility equations (14.40) and (14.42), form the complete
system of nonlinear equations determining the internal stresses in the plane medium
with distributed dislocations and disclinations. When α = β = 0 relations (14.40),
(14.42) constitute another form of the compatibility equations (14.15), (14.17).

14.3.3 Sample Problem

We illustrate the above theory by solving the problem of determining internal
stresses induced in an elastic disc by the axisymmetrically distributed wedge discli-
nations. Let us use the model of the physically linear micropolar medium (14.26)
and let a = 0 and β = β (r). We seek the strain field in the form

Y = Y1(r)er⊗ er +
h(r)

r
eϕ ⊗ eϕ + i3⊗ i3,

l = l1(r)er + l2(r)eϕ ,

er = i1 cos ϕ + i2 sin ϕ , eϕ =−i1 sin ϕ + i2 cos ϕ ,

(14.44)

where the polar coordinates r and ϕ on the disc plane vary in the intervals r1≤ r≤ r0

and 0 ≤ ϕ ≤ 2π . In view of Eqs (14.8), (14.26) and (14.44), the system of Eqs
(14.40), (14.42) and (14.43) is reduced to the equation

h′′− g′

g
h′− g2h =

(1− rg)g
1− ν

, (14.45)

ν =
λ

2(λ + µ )
, rg(r) =

r∫

r1

β (ρ )ρ dρ + 1.

The strain components and couple stresses are expressed in terms of the functions
h(r) and g(r) as

Y1 =
h′(r)
rg(r)

, l1 = 0, l2 = g(r)− 1
r
,

K = [g(r)− r−1][(γ + η )eϕ ⊗ i3 +(γ − η )i3⊗ eϕ ].

(14.46)

Equation (14.45) has the general solution
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h(r) =C1et(r)+C2e−t(r)+
1

1− ν

[
r− e−t(r)

∫
et(r) dr

]
,

t(r) =
∫

g(r)dr.

The constants C1 and C2 are found from the condition that the disc edges r = r1

and r0 are unloaded.

14.4 Singular Solutions of the Problems of the Nonlinear Theory
of Elastic Dislocations

It is known [2, 3] that problems on the equilibrium of nonlinear elastic bodies con-
taining dislocations or disclinations might have so called singular solutions describ-
ing the holes formation along the line of the defects. The integral relation was pre-
sented [3] that could be used to determine the radius of the forming hole depending
on the model of elastic media and parameters of defect. For incompressible elastic
cylinder this relation could be obtained by means of calculation the variation of the
specific (per unit length) strain energy of the deformed cylinder Π with respect to
virtual hole radius A:

dΠ
dA

= 2π
r0∫

0

r
∂ W
∂ C
� ∂ C

∂ A
dr = 0, (14.47)

where C — deformation gradient tensor, W (C) — strain-energy function, r0 — ra-
dius of the cylinder in the undeformed state,� denotes the inner product in the space
of second-order tensors. Parameter A is the constant of integration when solving in-
compressibility condition detC = 1 to find the radius of the point of the cylinder in
the deformed state R =

√
r2 +A2. It is obvious that for solid cylinder A has the sense

of the hole radius; if A = 0 then no hole arises.
Since the vicinity of dislocation line (so called “dislocation core”) is obviously

the region of the high stress concentration the account of microstructure effects on
its study within the framework of continuum mechanics seems to be quite actual.
The simplest way of such microstructure accounting is the usage of Cosserat model
of elastic media.

For the problem of the screw dislocation the deformed state of the cylinder with
dislocation can be expressed by means of following semi-inverse representation

R = R(r), Φ = ϕ , Z = aϕ + z, (14.48)

and
H = erer + cos χ (r)(eϕ eϕ + ezez)+ sin χ (r)(eϕ ez− ezeϕ ), (14.49)

where a = b/2π , b — Burgers vector length.
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Strain tensors Y and L relevant to (14.48), (14.49) have the form

Y = R′(r)erer +
1
r
[R(r)cos χ (r)+ asin χ (r)]eϕ eϕ +

1
r
(acos χ (r)−

−R(r)sin χ (r))eϕ ez + sin χ (r)ezeϕ + cos χ (r)ezez, (14.50)

L = χ ′(r)erer +
sin χ (r)

r
eϕ eϕ +

cos χ (r)− 1
r

eϕ ez. (14.51)

For the case of pseudo-Cosserat continuum function χ (r) is obtained from the con-
ditions of constrained rotation Y× = 0:

χ (r) = arctg
a

r+R
. (14.52)

From all has been said it follows the relation for determination of the arising hole
radius that replaces (14.47) in the case of incompressible Cosserat media

dΠ
dA

= 2π
r0∫

0

r
∂ W
∂ Y
� ∂ Y

∂ A
dr+ 2π

r0∫

0

r
∂ W
∂ L
� ∂ L

∂ A
dr = 0. (14.53)

The necessary condition of the hole formation can be written as some asymptotic
condition for the function of specific potential energy. It follows from the condition
of the convergence of integrals in (14.53) at the R = 0. For the most typical case of
additive structure of the strain-energy function

W =WY (Y)+WL(L),

we obtained two independent conditions for each integral. In particular for strain-
energy function containing terms trα L the hole formation is possible only if α < 2;
if this function contains term tr(Y− I)n then cavitation can exist only for n = 1; for
materials with strain-energy functions with terms trα (L ·LT), trα (L2) the non-
regular solution can exist only for α < 1.

Some results of numerical investigation of the hole formation in the incompress-
ible cylinder for pseudo-Cosserat continuum with the strain-energy function

W = 2µ trU+ η | trL| , U = Y−E, (14.54)

are presented at the Fig. 14.2.
The solid line at the figure corresponds to the case of vanishing couple stresses

when (14.54) reduces to the Bartenev-Hazanovich model. One can see that in this
case the account of microstructure in the problem of screw dislocation leads to the
decreasing of the formed hole radius in contrast with classical elastic media up to
the total disappearance of the hole. It should be noted that in this case as well as in
the case of momentless nonlinear elasticity the total energy of the cylinder with a
hole is less than that of solid cylinder.

For more complex constitutive equation with energy
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Fig. 14.2 The dependence of the hole radius on the dislocation parameter a = b/2π . Material
(14.54).

W = 2µ trU+
η
α
| trL|α (14.55)

the influence of couple stress upon the hole formation is not such unambiguous:
the account of couple stresses might lead both to increasing and decreasing of the
hole radius. There exists a region of material parameters of elastic potential (14.55)
where the singular solution does not exist for some areas of the Burgers vector. It
was shown numerically that it was the couple stresses component of elastic potential
that influenced upon the disappearance of the singular solution.

It should be noted that the same analysis performed for the problem of wedge
disclination showed that conversely to the case of screw dislocation the account for
microstructure by means of Cosserats model doesn’t lead to any changes in the abil-
ity of the hole formation as well as its size in comparison with classical nonlinear
elasticity theory. All types of the considered Cosserat models (both compressible
and incompressible, pseudo-continuum and true continuum) exhibit the same be-
havior in this sense.
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Chapter 15
On the Form-Invariance of Lagrangian Function
for Higher Gradient Continuum

Nirmal Antonio Tamarasselvame and Lalaonirina R. Rakotomanana

Abstract In this work, we consider an elastic continuum of third grade. For the sake
of simplicity, we do not consider kinetic energy in the Lagrangian function. In this
work, we reformulate the problem by considering Lagrangian function depending
on the metric tensor g and on the affine connection ∇ assumed to be compatible
with the metric g, and rewrite the Lagrangian function as L (g, ∇ , ∇ 2). Following
the method of Lovelock and Rund, we apply the form-invariance requirement to the
Lagrangian L . It is shown that the arguments of the function L are necessarily
the torsion ℵ and/or the curvature ℜ associated with the connection, in addition to
the metric g. The following results are obtained: (1) L (g, ∇ ) is form-invariant if
and only if L (g, ℵ ); (2) L (g, ∇ 2) is form-invariant if and only if L (g, ℜ ); and (3)
L (g, ∇ , ∇ 2) is form-invariant if and only if L (g, ℵ , ℜ ).

Key words: Strain gradient continuum. Form-invariance. Nonholonomic deforma-
tion. Quotient law.

15.1 Introduction

For analyzing the deformation of the elastic continuous media, the strain tensor and
the stress are related by the constitutive laws. It is then convenient to introduce a
potential energy function here denoted W and also called the strain energy function
because of its dependence with respect to the strain. For extended model including
couple-stress, the same kinematics as classical elasticity is used but the strain energy
density is assumed to be a function of both the strain and the curl of strain e.g. [32].
Another extension of the model was the elastic continuum with micro-structure e.g.
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[21] where the strain energy density is function of the strain, the first gradient of the
strain and the second gradient of the strain.

15.1.1 Lagrangian Function

In continuum mechanics, the deformation is classically defined by means of the
field of displacement vector u(x, t) ∈ R3 defined on a manifold, where x ∈ R3 and
t ∈ R+ defines a material point position within the space and the time respectively
e.g. [19]. In theory of elasticity, one uses the strain energy function W = W (E)
which depends only on strain tensor E (Green-Lagrange strain tensor). The strain
tensor E = (1/2)(∇ u+ ∇ T u+ ∇ T u∇ u) is formulated by means of covariant deriva-
tives of displacement field u. The symbol ∇ represents more generally an affine
connection introduced for the derivation of tensor fields defined on a Riemannian
manifold e.g. [19]. The (material) metric tensor g = I+ 2E is related to strain, and
consequently to derivatives of displacement. In elasticity, the Lagrangian scalar den-
sity L (ut , ∇ u) = (ρ /2)‖ut‖2−W (∇ u) is used in dynamic problems to obtain the
equations of motion [19]. The first term is the kinetic energy and the second term
one the strain energy density (per volume unit). For the sake of simplicity in this
paper, we do not consider kinetic energy in the Lagrangian density. Consequently
we limit ourself to the strain energy density L ≡W , third grade model accounting
for the inertial terms may be found in e.g. [1] where they applied Noether’s theorem
for establishing conservation and balance laws. From another point of view, it may
be observed that the introduction of the method of path-integration, or Cartan circuit
method, allowed to point out the influence of the torsion tensor in the formulation of
linear momentum conservation for discrete points e.g. [12] or continuous medium
e.g. [13], [26].

In early 1960s, Toupin developed elastic continuum models with couple-stress
[32] and observed that some components of the gradient of strain were not accounted
for. Later he pointed out the correspondence of strain gradient elastic models and
discrete lattice models of solids with nevertheless some flaws when considering
centro-symmetric materials. To overcome this problem, Mindlin [21] have proposed
a strain gradient theory, adapted for elastic material, in which the strain energy func-
tion is assumed to depend on both the strain, strain gradient, and second gradient of
the strain. More recently, the correspondence of the second gradient strain contin-
uum with fluid like material with heterogeneous density including capillarity effects
was analyzed by Forest et al. [9]. It should be also noticed that the second gradient
of strain theory may find its roots in the domain of solids with Volterra’s disloca-
tions where torsion and curvature tensors are involved e.g. [27]. More precisely,
last 1999s and early 2000s, the strain gradient theory have been used notably in
the works of Hutchinson and Fleck [7], [8], Nix, Gao and al. [10], [11], Cermelli
and Gurtin [5]. The theories of elastic or elastic plastic continuous media were de-
veloped by accounting for the presence of dislocations and disclinations into the
material (heterogeneous body), either with a strain gradient density e.g. [15], [16],
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or in the context of affinely connected manifold with torsion e.g. [14], [24], [27],
[33]. Constitutive laws of heterogeneous solids are obtained by choosing free en-
ergy functions depending on higher order of displacement and rotation gradient e.g.
[18], or on density dislocation tensor e.g. [25]. Most of them were derived from
original potential proposed by Mindlin e.g. [21].

All of these previous results suggested us to consider, in the present work,
higher gradient continuum elastic properties which are often resumed by a po-
tential energy function W (Ei j,Ei j,k,Ei j,kl) depending on higher derivatives of the
components of the strain tensor E. In this work, we slightly modify the depen-
dence and thus consider a strain gradient elastic continuum defined by a Lagrangian
function of the type L (gα β ,gα β |λ ,gα β |λ |µ ) where the (material) metric tensor
gα β := δ α β + ∇ α uβ + ∇ β uα + ∇ α uγ ∇ β uγ is formulated by means of derivatives
of displacement field u (gα β is usually called Cauchy-Green strain tensor). We
notice that quantities gα β are the components of the metric tensor onto a ma-
terial base which deforms with the continuum. A generic function of the type
L (∇ α uβ , ∇ λ ∇ α uβ , ∇ µ ∇ λ ∇ α uβ ) can be considered for elastic material of grade
three e.g. [1], such a model is included in the class of materials we are studying in
the present paper. The symbol | denotes the covariant derivative with respect to an
affine connection ∇ . It is reminded that the affine connection is not a tensor. Such a
Lagrangian function defines second / third grade continuum models e.g. [21]. As we
previously mention, we do not consider kinetic energy in the Lagrangian function.

15.1.2 Invariance Principles

Our investigations in the present work are focused on the invariance properties of the
Lagrangian function, defined on a Riemannian manifold with an affine connection.
It is necessary to define the notion of invariance of such function. We introduce
three following notions of invariance: Euclidean-Frame-Indifference (EFI), Form-
Invariance (FI) and Rigid-Motion-Indifference (RMI). These notions are more pre-
cisely defined in e.g. [30]:

• Euclidean-Frame-Indifference (EFI): Invariance with respect to Euclidean ob-
servers.

• Form-Invariance (FI): The Lagrangian function has the same mathematical
shape in any coordinate system.

• Rigid-Motion-Indifference (RMI): Invariance with respect to superimposed
rigid body motions.

The term ”invariance” is related to a mathematical function, it is then used for FI.
Whereas the term ”indifference” is related to the visions of Euclidean observers
(see [30]), it is then used for EFI and RMI. In the present paper, a method is given to
select the invariant variables under the action of the homeomorphism, upon which
this model must depend. Actually it will be the action of the diffeomorphism, since
we work with a differential manifold and we will introduce some higher gradient
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variables. In physics, form-invariance is also known as diffeomorphism-invariance
meaning that the expression of physical quantities (for instance the energy) have
the same form under the arbitrary coordinate transformation. It is merely a kind
of change of variable with a diffeomorphism. The term ”Form-invariance” is used
instead of ”diffeomorphism-invariance”, but both of them may be used hereafter.
Since we are dealing with continuum evolving in an Euclidean ambient space, the
condition EFI is required for any constitutive laws. And it is also proved in [30]
that any two of previous notions automatically imply the third. Consequently, the
additional condition of FI allows to ensure the indifference of the constitutive laws
with respect to the superimposed rigid body motion (RMI). In the following, central
focus is the FI (under the action of the homeomorphisms, and more exactly of the
diffeomorphisms in such a case) that appears like a mathematical condition for en-
suring the principle of objectivity of constitutive laws of continuous medium. Prin-
ciple based on homeomorphisms is unambiguously developed in lieu of the usual
material frame-indifference.

15.1.3 Objectives

Many strain gradient models use an Euclidean connection which derives from the
metric, e.g. [34] for which the connection is that of Levi-Civita. Any affine connec-
tion defines the tensor of torsion ℵ and the tensor of curvature ℜ and according
to the Fundamental theorem in Riemannian geometry, the torsion associated with
the connection of Levi-Civita is null e.g. [4]. There exist some approaches based on
Cartan geometry [3] with a connection which does not derive from the metric and
for which the associated torsion and curvature do not necessarily vanish e.g [27].
The functions defined on Riemannian manifold should be tensors, which are used to
represent physical fields. We aim to extend the form of the strain density L , more
precisely by analyzing the arguments of L . For more generality we will consider a
scalar field, also noted L , rather than a density field. To obtain the corresponding
density field, it is sufficient to multiply the scalar field by the volume-form, uniform
and constant e.g. [28]. We will shed light on the invariance principle of the scalar
field, or more precisely the Form-Invariance of the Lagrangian function. In a first
part we consider a strain gradient elastic continuum defined by a Lagrangian func-
tion of the type L (g, ∇ g, ∇ 2g) which may be formulated L (gα β ,gα β |γ ,gα β |γ |λ ), in
an arbitrary coordinate system (xα ). The symbol | denotes the covariant derivative
with respect to an affine connection ∇ (we call bi-connection the operator second
covariant derivative ∇ 2 = ∇ ◦ ∇ ). Lovelock and Rund have shown that if one as-
sumes a dependence as L (gα β ,gα β ,γ ) (comma denotes a partial derivative), then
by applying the form-invariance requirement, the scalar function takes necessarily
the form of L (gα β ). The first part of the present work was inspired in part of re-
sults in Lovelock and Rund, [17] (1975). In their work, Lovelock and Rund have
implicitly used the Levi-Civita affine connection. By applying the Lemma of Ricci,
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the covariant derivative of the metric tensor with respect to this connection is equal
to zero e.g. [4].

Remark 15.1. It should be stressed that our purpose in this paper is not particularly
to consider the formulation of constitutive laws satisfying the Euclidean Frame-
Indifference and / or the Indifference with respect to Superimposed Rigid Body Mo-
tions such as rotations and translations. The term invariance is taken in the sense of
Form-Invariance [30]. It is not limited to the so-called Euclidean objectivity. Indeed,
by assuming that the potential energy density admits the metric tensor components
as arguments, the Euclidean-Frame Indifference is a priori satisfied. We would like
to go one step further for strain gradient continuum as in e.g. [31].

In a second part we consider both independent arguments metric and affine connec-
tion which is compatible with the metric (meaning that ∇ g≡ 0). To obviate the prob-
lem of metric compatibility, we slightly extend the dependence of the Lagrangian
function by proposing the form of L (g, ∇ , ∇ 2). Applying the form-invariance prin-
ciple, it is shown that the arguments of the function L are necessarily the torsion
ℵ and/or the curvature ℜ associated with the connection, in addition to the metric.
Finally, the strain energy density of a continuous medium depends on tensorial ar-
guments, which is expected to describe some physical phenomenons. To start with,
we recall some mathematical preliminaries in differential geometry, necessary for
our work.

15.2 Mathematical Preliminaries and Framework

15.2.1 Coordinate Systems

We fixe once and for all the n-dimensional vector space E (referential rigid body).
An n-dimensional manifold X , embedded onto E , is a point set which is covered
completely by a countable set of neighborhoods U1,U2, ..., such that each point P ∈
X belongs to at least one of these neighborhoods. A coordinate system is defined on
each Uk such that one may assign in a unique manner n real numbers x1, ...,xn to
each point P ∈Uk. As P ranges over Uk, the corresponding numbers x1, ...,xn range
over an open domain Dk of E . Thus it exists a one-to-one mapping of each Uk onto
Dk, this mapping will be assumed continuous. The numbers x1, ...,xn are called the
coordinates of P. In the case where U1 ∩U2 6= /0 there are two sets of coordinates
associated to a same point P ∈ U1 ∩U2. Let (yi) (Latin indices) and (xα ) (Greek
indices) corresponding coordinate systems respectively in U1 and U2, Latin indices
and Greek indices will be used to distinguish two different coordinate systems. The
transformation between coordinates (yi) and (xα ) is diffeomorphic:

yi = yi(xα ), xα = xα (yi) (15.1)
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Jα
i =

∂ xα

∂ yi , Jα
i j =

∂ Jα
i

∂ y j =
∂ 2xα

∂ yi∂ y j , Jα
i jk =

∂ Jα
i j

∂ yk
=

∂ 3xα

∂ yi∂ y j∂ yk
(15.2)

We also have that for any coordinate system (yi), and for any permutation σ ∈ ℑ n

∂ n

∂ y1...∂ yn =
∂ n

∂ yσ (1)...∂ yσ (n)
(15.3)

When a lowercase index such as j, k, l,... appears twice in a term then summation
over that index is implied. The range of summation is 1,..., n, the letter n is excep-
tionnaly exclued from the summation. We have

∂ xα

∂ yi

∂ yi

∂ xβ = Jα
i Ai

β = δ α
β ,

∂ yi

∂ xα
∂ xα

∂ y j = Ai
α Jα

j = δ i
j (15.4)

with respectively summation (Einstein’s convention) over i and α from 1 to n.

15.2.2 Components of Tensor

We notice TPX the tangent space of X at point P and TPX∗ its dual space. Let
{e1, ...,en} a base of TPX (contravariant vectors with the lower index) and the re-
ciprocal base {f1, ..., fn} in TPX∗ (covariant vectors with upper index) such that
〈fi,e j〉= δ i

j (symbol of Kronecker).

Definition 15.1. (Tensor) Let {u1, ...,uq} ∈ TPX and {v1, ...,vp} ∈ TPX∗ some arbi-
trary vectors. A p-contravariant and q-covariant tensor field T on X is a multilinear
form defined at each point P ∈ X by

T : (v1, ...,vp,u1, ...,uq) ∈ (TPX∗)p× (TPX)q −→ T (v1, ...,vp,u1, ...,uq) ∈ R
The sum (p+ q) is called the rank of the tensor field. The couple (p,q) is called its
type.

Definition 15.2. (Components of tensor) If T is a tensor field of type (p,q) then

the scalars T
j1... jq

l1...lp
are the components of T with respect to the base formed by

{e j1 , ...,e jq} and {fl1 , ..., flp}, defined by

T
l1...lp
j1... jq

= T (fl1 , ..., flp ,e j1 , ...,e jq)

In the present study, a tensor will be assimilated to its components, as soon as the
vector bases are defined.

Definition 15.3. If T
h1...hr

k1...ks
constitutes the components of a tensor type (r,s) then,

under the transformation (15.1)

T
j1... jr

l1...ls
= A j1

α 1 ...A
jr
α r J

β 1
l1
...Jβ s

ls
T

α 1...α r
β 1...β s

(15.5)



15 On the Form-Invariance of Lagrangian Function for Higher Gradient Continuum 297

and the corresponding inverse formulation

T
α 1...α r

β 1...β s
= Jα 1

j1
...Jα r

jr Al1
β 1
...Als

β s
T

j1... jr
l1...ls

(15.6)

Properties 15.2.1 According to the previous results:

• A scalar ψ is a tensor type (0,0) which has the same form in any coordinate
system : ψ in (yi), ψ in (xα ) and ψ = ψ .

• If all the components of a tensor vanish in an arbitrary coordinate system then
they vanish in any other coordinate system.

Definition 15.4. (Metric) A metric tensor, noted g, is a tensor type (0,2), symmetric
and inversible. In base {e1, ...,en}, the components of g are gi j, the components of
the inverse of g are gi j and gikgk j = δ i

j.

Definition 15.5. (Riemannian manifold) A differential manifold X endowed with a
metric (X ,g) is a Riemannian manifold.

In the present paper, the choice of a metric tensor components gα β may be ex-
plained as follows. Locally, at any point P∈X of the Riemannian manifold, it should
be mentioned that in any coordinate basis, the tangent space TPX is spanned by
{e1, · · · ,en}, and the dual space TPX∗ by {f1, · · · , fn}. There is an alternative choice
by taking the base defined as êa := F−1 (ea), where detF > 0, and in such a way that
g(êb, êb) := δ ab. The quantity F is related to the so-called gradient of transformation
in continuum mechanics e.g. [19], or also ”vielbeins” in differential geometry e.g.
[23]. In the present paper, F is not necessarily a gradient of a mapping. In contin-
uum mechanics, it is thus possible to define the Green-Lagrange strain tensor E as
follows:

Eα β := (1/2)
[
g
(
eα ,eβ

)
− g
(
êα , êβ

)]

Conceptually, it is not necessary to introduce the tensor E as a basic strain variable,
g being sufficient. We just remind that the arguments of any scalar field L may be
chosen as the components of the metric gα β onto a ”deformed base” {e1, · · · ,en},
according to a linear tangent transformation F, instead of Eα β .

Remark 15.2. The definition of strain E do not require a priori the explicit intro-
duction of displacement field and its gradient. It merely expresses the difference of
shape between two configurations of a continuum. This aspect will be detailed in
the following.

15.2.3 Affine Connection

A connection is an extra structure which specifies how vectors and more generally
tensors are transported along a curve on the manifold. An infinite number of con-
nections exist on a manifold X , such as affine connection, geodesic connection and
crystal connection. A local tangent base is associated to a coordinate system: the
contravariant base {eα } is associated to the system {yα }.
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Definition 15.6. (Affine connection) An affine connection ∇ on X is a map defined
by

∇ : (u,v) ∈ TP (X)×TP (X)−→ ∇ uv ∈ TP (X) (15.7)

wich satifies the following conditions (λ and µ are scalars, φ is scalar field)

• ∇ λ u1+µ u2
v = λ ∇ u1v+ µ ∇ u2v

• ∇ u (λ v1 + µ v2) = λ ∇ uv1 + µ ∇ uv2

• ∇ φ uv = φ ∇ uv
• ∇ u (φ v) = φ ∇ uv+u(φ )v

The coefficients of the affine connection are Γ c
ab such that ∇ ea eb := Γ c

abec. The
quantity ∇ u represents a derivative along the direction u. It is usual to define the
covariant derivative, which generalizes the derivative of tensor fields defined on
manifold, in the sense of the affine connection ∇ . The covariant derivative of a
tensor type (p,q) is a tensor type (p,q+ 1). For example, the covariant derivative
of a scalar field φ and a vector field w along the vector ek (one of the vectors of
the base) may be expressed in terms of their components on the local base {ea}
associated to the coordinate system (ya)

∇ ek φ =
∂ φ
∂ yk

, ∇ ek w =

(
∂ wa

∂ yk
+ Γ a

kcwc
)

ea.

For tensor components, we adopt the notations
∂ (..)
∂ yk = (..),k and ∇ ek (..) = (..)|k.

15.2.3.1 Torsion and Curvature

We now consider a manifold endowed with an affine connection ∇ .

Definition 15.7. (Torsion) The torsion tensor ℵ is a tensor type (1,2)

{
ℵ
(
fk,ei,e j

)
= fk

(
∇ eie j− ∇ e j ei

)

ℵ k
i j = Γ k

i j − Γ k
ji

(15.8)

Definition 15.8. (Curvature) The curvature tensor ℜ is a tensor type (1,3)

{
ℜ
(
fk,ei,e j,el

)
= fk

(
∇ ei ∇ e j el− ∇ e j ∇ ei el

)

ℜ k
i jl = (Γ k

jl,i + Γ m
jl Γ k

im)− (Γ k
il, j + Γ m

il Γ k
jm)

(15.9)

Remark 15.3. First, the definition of the torsion and the curvature tensors do not
require the existence of a metric tensor on the manifold. Second, there exist general
definitions of the torsion and the curvature, which used the Lie-Jacobi bracket e.g.
[4]. The theorem of Frobenius, e.g. [23], allows to simplify the expression of the
torsion and the curvature projected onto the vector base associated to a coordinate
system.
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15.2.3.2 Levi-Civita Connection

The connection of Levi-Civita is an example of Euclidean connection (derived from
the metric) and introduced by the following fundamental theorem, see proof in e.g.
[23]:

Theorem 15.1. (Fundamental theorem of Riemannian geometry) On any Rieman-
nian manifold (X ,g), there exists a unique connection compatible with the metric
and free-torsion ( ℵ = 0). This connection is called the Levi-Civita connection and
usually denoted ∇ .

The coefficients of ∇ reduce to the symbols of Christoffel
∂ eb

∂ ya = Γ c
baec, calculated

in terms of the metric g e.g. [23]

Γ c
ab = (1/2)gcd(gad,b + gdb,a− gab,d) (15.10)

For example, if h is a tensor type (0,2) then the covariant derivative (in the sense of
Levi-Civita) with respect to ek (a vector of the base) is a tensor type (0,2+ 1) for
which the coordinates are noticed

∇ ek hi j = hi j|k =
(

hi j,k− Γ a
ik ha j− Γ a

jkhia

)
(15.11)

and then with respect to el (vector of the base), the second covariant derivative (in

the sense of Levi-Civita) is ∇ el

[
∇ ek hi j

]
= hi j|k|l with

hi j|k|l = hi j,kl− Γ a
ik ha j,l− Γ a

jkhia,l− Γ a
ik,lha j− Γ a

jk,lhia− Γ b
il hb j,k

+ Γ b
il (Γ

c
bkhc j + Γ c

jkhbc)− Γ b
jl hib,k + Γ b

jl (Γ
c

ik hcb + Γ c
bkhic)

− Γ b
kl hi j,b + Γ b

kl (Γ
c

ibhc j + Γ c
jbhic) (15.12)

where we have considered Γ = Γ for the sake of the simplicity.

Properties 15.2.2 Let X a Riemannian manifold and P ∈ X any point. In orthonor-
mal base (associated to a normal coordinate system) centered on P, the symbols of

Christoffel vanish: Γ k
i j(P) = 0 for i, j,k = 1, ...,n.

Remark 15.4. A normal coordinate system on a Riemannian manifold centered at P
may be also defined by local relations:

gα β (P) := δ α β , Γ γ
α β (ξ ) ξ α ξ β ≡ 0

where (ξ 1, · · · , ξ n) are local coordinates of points P′ := P+ ξ about the center P.
Riemannian normal coordinates are a standard tool of various differential geometry
theorems, their choice to derive equations allow to simplify most problems.

No confusion will be done between the differentiation of any tensor field with re-
spect to yk (in the sense of Levi-Civita) and the differentiation with respect to the
affine connection ∇ ek .
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15.2.4 Holonomic and Nonholonomic Transformations

Consider a Riemannian manifold (X ,g) embedded in a n-dimensional Euclidean
space E . Let X ∈ X a point of the manifold, and let consider a mapping ϕ which
associates X to a point of the Euclidean space x ∈ E . We denote the mapping x(X)
for simplifying. For the sake of the simplicity, we assume that the coordinates X =
(X1, · · · ,Xn) are Cartesian.

15.2.4.1 Holonomic Mapping

Let consider a smooth and single valued mapping (it is a homeomorphism and we
call it holonomic mapping e.g. [27]). It is usual to define the deformation gradient
also called basis triads (rigorously it is not a gradient) in components form, together
with its reciprocal basis triads:

F i
α (X) :=

∂ xi

∂ X α (X) , F β
j (x) :=

∂ X β

∂ x j (x)

The triads satisfy the orthogonality and the completeness relationships:

F i
α (X) F β

i [x(X)] = δ β
α , F i

α (X) F α
j [x(X)] = δ i

j

We may write the vector transformation and the components of the metric tensor,
where êi is a vector rigidly attached to the Euclidean space E:

eα = F i
α êi, gα β = g

(
eα ,eβ

)

On the one hand, since the transformation x(X) is smooth and single valued, it is
integrable, i.e. its derivative commute, by using the classic Schwarz’s integrability
conditions:

∂ F i
α

∂ X β −
∂ F i

β

∂ X α =
∂ 2xi

∂ X β ∂ X α −
∂ 2xi

∂ X α ∂ X β = 0

On the other hand, we can differentiate the vector base, :

∂ eα

∂ X β := Γ γ
α β eγ =

∂ F i
α

∂ X β êi =
∂ F i

α
∂ X β F γ

i eγ =⇒ Γ γ
α β =

∂ F i
α

∂ X β F γ
i

Then it is straightforward to check that the torsion tensor is equal to zero during an
holonomic transformation:

ℵ γ
α β :=

(
∂ F i

α
∂ X β −

∂ F i
β

∂ X α

)
F γ

i = 0
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15.2.4.2 Nonholonomic Mapping and Torsion

Let consider mapping that is not smooth and/or not single valued. In such a case,
the basis triads are not integrable. However, it is possible to map the points sur-
rounding X defined by the tangent vector dX to the vector dx via an infinitesimal
transformation defined by the triads:

eα = F i
α êi, dxi = F i

α dX α

in which the coefficients functions F i
α (X) are not integrable in the sense of

∂ F i
α

∂ X β −
∂ F i

β

∂ X α =
∂ 2xi

∂ X β ∂ X α −
∂ 2xi

∂ X α ∂ X β 6= 0

In such a case, the mapping is called nonholonomic. It is necessary to modify
slightly the previous development to give (the base {ê1, · · · , ên} is assumed rigidly
attached to the Euclidean space):

∂ eα

∂ X β −
∂ eβ

∂ X α =

(
∂ F i

α
∂ X β −

∂ F i
β

∂ X α

)
F γ

i eγ 6= 0

showing that the torsion tensor ℵ γ
β α eγ is not equal to zero for such a nonholonomic

mapping. It does not lead to a single valued mapping x(X). Such a transformation
may capture the translational dislocations of Volterra e.g. [20].

15.2.4.3 Nonholonomic Transformation and Curvature

As third example, consider a transformation for which x(X) may be or not itself
integrable, while the first derivatives of the vectors {e1, · · · ,en}, where eα := F i

α êi,
are not integrable. Such non integrability is captured by the non commutativity of
the second-order derivatives:

∂
∂ X α

(
∂ eλ
∂ X β

)
− ∂

∂ X β

(
∂ eλ
∂ X α

)
=

∂
∂ X α

(
Γ κ

λ β eκ

)
− ∂

∂ X β

(
Γ κ

λ α eκ
)

From this relation, we easily deduce that the Cartan curvature is not equal to zero:

ℜ κ
α β λ =

(
Γ κ

β λ ,α + Γ ξ
β λ Γ κ

α ξ

)
−
(

Γ κ
α λ ,β + Γ ξ

α λ Γ κ
β ξ

)
6= 0

We can also calculate the non-commutativity by directly introducing the basis triads
to give

ℜ κ
α β λ = F κ

i

(
∂ 2F i

λ
∂ X α ∂ X β −

∂ 2F i
λ

∂ X β ∂ X α

)
6= 0
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Such a transformation may be related to the process of rotational dislocations e.g.
[20], or some plastic deformation. This short section permits us to highlight the
role of torsion and curvature tensors on the classification of continuum transforma-
tions. More general proof may be found in a previous work, devoted to the class of
”weakly continuous medium” [26].

Remark 15.5. Torsion tensor is associated to translational dislocations or also to the
local discontinuity of any scalar field on the continuum, while curvature tensor is
associated to the rotational dislocations or also to the local discontinuity of vector
field on the continuum [26] .

15.3 Quotient Law

Now we remind some technical theorems in tensorial analysis [17].

Lemma 15.1. Locally at point P, let the both (n×n) quantities Σ i j and Σ i j
then the

both (n× n× n) quantities Σ i j,k and Σ i j,k
(the comma ”,” doesn’t represent partial

derivative). If, for any symmetric tensor type (0,2) h,

Σ i jhi j + Σ i j,khi j|k = Σ i j
hi j + Σ i j,k

hi j|k (15.13)

then
(Σ i j + Σ ji) = (Σ i j

+ Σ ji
) (15.14)

and
(Σ i j,k + Σ ji,k) = (Σ i j,k

+ Σ ji,k
) (15.15)

for i, j, k = 1, ...,n

Proof. The equality (15.13) being valid for any symmetric tensor h, it is thus valid
for a non null constant tensor (locally). The covariant derivative vanishes and from
(15.13) we have the following equality (Σ i j)hi j = (Σ i j

)hi j. The term hi j cannot
simplify because of the summation in i and j. For i and j fixed, we choose hi j =
h ji = 1 and the other components null. For i and j range over {1, ...,n}, we obtain





Σ 11 = Σ 11

Σ 12 + Σ 21 = Σ 12
+ Σ 21

Σ 13 + Σ 31 = Σ 13
+ Σ 31

...

(15.16)

thus we obtain (15.14). In the same way, locally at point P, a null tensor h with a
non null constant covariant derivative can be chosen too. In this case from (15.13)
(Σ i j,k)hi j|k = (Σ i j,k

)hi j|k. The term hi j|k cannot simplified because of the summation
in i, j and k. For i, j and k fixed, we choose hi j|k = h ji|k = 1 and the other components
null. For i, j and k range over {1, ...,n}, we obtain
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



Σ 11,1 = Σ 11,1

Σ 11,2 = Σ 11,2

Σ 12,1 + Σ 21,1 = Σ 12,1
+ Σ 21,1

Σ 12,2 + Σ 21,2 = Σ 12,2
+ Σ 21,2

Σ 13,1 + Σ 31,1 = Σ 13,1
+ Σ 31,1

Σ 13,2 + Σ 31,2 = Σ 31,2
+ Σ 31,2

...

(15.17)

thus we obtain (15.15).

�

We have also the version with the partial derivative:

Lemma 15.2. Locally at point P, let the both (n×n) quantities Σ i j and Σ i j
then the

both (n× n× n) quantities Σ i j,k and Σ i j,k
(the comma ”,” doesn’t represent partial

derivative). If, for any symmetric tensor type (0,2) h,

Σ i jhi j + Σ i j,khi j,k = Σ i j
hi j + Σ i j,k

hi j,k (15.18)

then
(Σ i j + Σ ji) = (Σ i j

+ Σ ji
) (15.19)

and
(Σ i j,k + Σ ji,k) = (Σ i j,k

+ Σ ji,k
) (15.20)

for i, j, k = 1, ...,n

Now the following quotient theorem holds e.g. [17]

Theorem 15.2. (Quotient law) Locally at point P, if the (n× n) quantities Σ i j and
the (n× n× n) quantities Σ i j,k (the comma ”,” doesn’t represent the partial deriva-
tive) are such that the quantities Σ i jhi j + Σ i j,khi j|k represent a scalar field for any
symmetric tensor type (0,2) h, then the quantities (Σ i j + Σ ji) and (Σ i j,k + Σ ji,k) rep-
resent respectively the components of a tensor type (2,0) and the components of a
tensor type (3,0).

Proof. Let define the scalar ψ = Σ i jhi j + Σ i j,khi j|k and ψ = Σ α β hα β + Σ α β ,γ hα β |γ
in the system (yi) and (xα ) respectively for any symmetric tensor type (0,2) h. The
equality ψ = ψ becomes

Σ i jhi j + Σ i j,khi j|k = Σ α β ∂ yi

∂ xα
∂ y j

∂ xβ hi j + Σ α β ,γ ∂ yi

∂ xα
∂ y j

∂ xβ
∂ yk

∂ xγ hi j|k (15.21)

According to the lemma 15.1

Σ i j + Σ ji = Σ α β ∂ yi

∂ xα
∂ y j

∂ xβ + Σ α β ∂ y j

∂ xα
∂ yi

∂ xβ (15.22)
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and

Σ i j,k + Σ ji,k = Σ α β ,γ ∂ yi

∂ xα
∂ y j

∂ xβ
∂ yk

∂ xγ + Σ α β ,γ ∂ y j

∂ xα
∂ yi

∂ xβ
∂ yk

∂ xγ (15.23)

then a permutation between i and j gives





Σ i j + Σ ji = (Σ α β + Σ β α )
∂ yi

∂ xα
∂ y j

∂ xβ

Σ i j,k + Σ ji,k = (Σ α β ,γ + Σ β α ,γ )
∂ yi

∂ xα
∂ y j

∂ xβ
∂ yk

∂ xγ

(15.24)

Therefore (Σ i j + Σ ji) and (Σ i j,k + Σ ji,k) are respectively components of tensor type
(2,0) and (3,0) according to the definitions (15.5) and (15.6).

�

15.4 Dependence with Respect to the Metric

In this section, we consider a scalar field L depending on the metric tensor and its
partial derivatives L = L (gi j,gi j,k,gi j,kl) and L = L (gα β ,gα β ,γ ,gα β ,γ λ ) respec-
tively in system (yi) and (xα ). The corresponding partial derivatives are noticed

Λ i j =
∂ L

∂ gi j
, Λ i j,k =

∂ L

∂ gi j,k
, Λ i j,kl =

∂ L

∂ gi j,kl
. (15.25)

According to the symmetry of g, we have the major properties of symmetry

Λ i j = Λ ji, Λ i j,k = Λ ji,k, Λ i j,kl = Λ ji,kl = Λ i j,lk. (15.26)

Minor symmetry property Λ i j,kl = Λ kl,i j is also satisfied but they are not necessary
here. The form-invariance of the Lagrangian function L (which could be consid-
ered as a necessary part of the Indifference of the constitutive laws with respect to
Superimposed Rigid Body Motions e.g. [2]) takes the form of

L (gα β ,gα β ,γ ,gα β ,γ λ ) = L (gi j,gi j,k,gi j,kl). (15.27)

Remark 15.6. For recall, because no observer is distinguished, laws in physics have
to be observer-invariant. For our particular case about the Lagrangian function for-
mulation, this means that the functions L should have the same shape for arbitrary
coordinate systems: they are called form-invariant.
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15.4.1 Metric Tensor

According to the definitions (15.5) and (15.6), the components of the metric and its
derivatives satisfy the following transformations





gi j = Jα
i Jβ

j gα β

gi j,k = (Jα
ik Jβ

j + Jα
i Jβ

jk)gα β + Jα
i Jβ

j Jγ
k gα β ,γ

gi j,kl = (Jα
iklJ

β
j + Jα

ikJβ
jl + Jα

il Jβ
jk + Jα

i Jβ
jkl)gα β

+ (Jα
ik Jβ

j Jγ
h + Jα

i Jβ
jkJγ

l + Jα
il Jβ

j Jγ
k + Jα

i Jβ
jlJ

γ
k + Jα

i Jβ
j Jγ

kl)gα β ,γ

+ (Jα
i Jβ

j Jγ
k Jλ

l )gα β ,γ λ

(15.28)

According to the symmetry J µ
pq = J µ

qp (the transformation is assumed of class C2),
one can write J µ

pq = (1/2)(J µ
pq+J µ

qp), that induces 1 (∂ Jα
i j/∂ J µ

pq) = (1/2)δ α
µ (δ q

i δ p
j +

δ q
j δ p

i ), (∂ Jα
i jk/∂ J µ

pq) = 0 and (∂ Jα
i /∂ J µ

pq) = 0. Now, introducing the expressions

(15.28) into the equality (15.27), and differentiating with respect to J µ
pq give

0 = Λ i j,k
[
δ α

µ (δ q
k δ p

i + δ q
i δ p

k )J
β
j + δ β

µ (δ
q
k δ p

j + δ q
j δ p

k )J
α
i

]
gα β

+ Λ i j,kl
[
Jα

i Jβ
j δ γ

µ (δ
q
k δ p

l + δ q
l δ p

k )+ Jα
i Jγ

k δ β
µ (δ

q
j δ p

l + δ q
l δ p

j )
]

gα β ,γ

+ Λ i j,kl
[
Jβ

j Jγ
k δ α

µ (δ q
i δ p

l + δ q
l δ p

i )+ Jα
i Jγ

l δ β
µ (δ

q
j δ p

k + δ q
k δ p

j )
]

gα β ,γ

+ Λ i j,kl
[
Jβ

j Jγ
l δ α

µ (δ q
i δ p

k + δ q
k δ p

i )
]

gα β ,γ

+ Λ i j,kl
[
Jβ

jkδ α
µ (δ q

i δ p
l + δ q

l δ p
i )+ Jα

il δ β
µ (δ

q
j δ p

k + δ q
k δ p

j )
]

gα β

+ Λ i j,kl
[
Jβ

jl δ
α
µ (δ q

i δ p
k + δ q

k δ p
i )+ Jα

ik δ β
µ (δ

q
j δ p

l + δ q
l δ p

j )
]

gα β

The previous equation is valid for an arbitrary coordinate transformation, in partic-
ular for the identity transformation: xα = yi, Jα

i = δ α
i , Jα

i j = 0. In such a case, we
simplify

0 = Λ i j,k
[
δ α

µ (δ q
k δ p

i + δ q
i δ p

k )δ
β
j + δ β

µ (δ
q
k δ p

j + δ q
j δ p

k )δ
α
i

]
gα β

+ Λ i j,kl
[
δ α

i δ β
j δ γ

µ (δ
q
k δ p

l + δ t
hδ p

k )+ δ α
i δ γ

k δ β
µ (δ

q
j δ p

l + δ q
l δ p

j )
]

gα β ,γ

+ Λ i j,kl
[
δ β

j δ γ
k δ α

µ (δ q
i δ p

l + δ q
l δ p

i )+ δ α
i δ γ

l δ β
µ (δ

q
j δ p

k + δ q
k δ p

j )
]

gα β ,γ

+ Λ i j,kl
[
δ β

j δ γ
l δ α

µ (δ q
i δ p

k + δ q
k δ p

i )
]

gα β ,γ

Further simplifications and symmetry of Λ induce 2

1 If one does not consider the symmetric part then there is a loss of some terms in the derivation.
2 The Latin indices and Greek indices mix since the transformation is the identity.
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2Λ qβ ,γ pgµ β ,γ +2Λ pβ ,γ qgµ β ,γ + Λ α β ,pqgα β ,µ + Λ pβ ,qgµ β + Λ qβ ,pgµ β = 0. (15.29)

In the particular case of a normal coordinate system, these reduce to Λ pµ ,q +
Λ qµ ,p = 0. According to the symmetry of Λ i j,k, for arbitrary indices i, j,k, we have

Λ ji,k + Λ ki, j = 0

Λ k j,i + Λ ki, j = 0 (i←→ k)

Λ ji,k + Λ k j,i = 0 (i←→ j)

then
Λ ji,k =−Λ ki, j = Λ k j,i =−Λ ji,k,

and finally
Λ ji,k = Λ i j,k = 0. (15.30)

Nevertheless equations (15.30) are only valid in normal coordinate system.

15.4.2 Introduction of Tensors

Introducing the expressions (15.28) into (15.27) and differentiating respectively
with respect to gα β ,γ λ , gα β ,γ , gα β , allows to write





Λ α β ,γ λ = Λ i j,klJα
i Jβ

j Jγ
k Jλ

l

Λ α β ,γ = Λ i j,kl ∂ gi j,kl

∂ gα β ,γ
+ Λ i j,k ∂ gi j,k

∂ gα β ,γ

Λ α β = Λ i j,kl ∂ gi j,kl

∂ gα β
+ Λ i j,k ∂ gi j,k

∂ gα β
+ Λ i j ∂ gi j

∂ gα β

(15.31)

The first equation shows that Λ i j,kl are components of a tensor type (4,0). Con-
versely the two others equations show that Λ i j,k and Λ i j are not components of
tensor. Thus we should introduce two tensorial quantities instead of Λ i j,k and Λ i j

respectively. Let h an arbitrary symmetric tensor type (0,2) (i.e. h follows the same
rule of transformation (15.28) as g), and Π i j and Π i j,k (the comma ”,” doesn’t rep-
resent partial derivative) two unknown quantities that verify the following equation

Λ i j,klhi j,kl + Λ i j,khi j,k + Λ i jhi j = Λ i j,klhi j|k|l + Π i j,khi j|k + Π i jhi j (15.32)

The formulations of the covariant derivative (15.11) and (15.12) are introduced into
(15.32), that reduces to an equality without covariant derivative terms. It depends on
{Γ k

i j , Γ k
i j,l}, {hi j, hi j,k, hi j,kl}, {Λ i j, Λ i j,k, Λ i j,kl} and {Π i j, Π i j,k}. Then, the lemma

15.2 is applied to the equation (15.32) in order to identify the coefficients of hi j,k

and hi j (the coefficients of hi j,kl are the same in both hand sides of equation). Some
adequate permutations between the indices are necessary. For the sake of the clarity,
details of calculus are reported in annex. Let us recall that Λ i j , Λ i j,k and Λ i j,kl have
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properties of symmetry but it is not necessary the case for Π i j and Π i j,k. Thus we
obtain the following equations





Π i j,k
(S) = Λ i j,k + 2Γ i

alΛ
a j,kl + 2Γ j

alΛ
ia,kl + Γ k

blΛ
i j,bl

Π i j
(S) = Λ i j + Γ i

ak,lΛ
a j,kl + Γ j

ak,lΛ
ia,kl

− Γ b
al Γ

i
bkΛ

a j,kl − Γ b
cl Γ

j
bkΛ ic,kl

− Γ i
blΓ

j
ckΛ bc,kl − Γ j

blΓ
i

ckΛ bc,kl

− Γ b
kl Γ

i
cbΛ c j,kl − Γ b

kl Γ
j

cbΛ ci,kl

+ (1/2)Γ i
ak(Π

a j,k + Π ja,k)+ (1/2)Γ j
ak(Π

ia,k + Π ai,k)

(15.33)

where Π i j,k
(S) = (1/2)(Π i j,k + Π ji,k) and Π i j

(S) = (1/2)(Π i j + Π ji).

Lemma 15.3. F := Λ i j,klhi j,kl + Λ i j,khi j,k + Λ i jhi j is a scalar field.

Proof. Let us notice F = Λ i j,klhi j,kl + Λ i j,khi j,k + Λ i jhi j and F = Λ α β ,γ λ hα β ,γ λ +

Λ α β ,γ hα β ,γ + Λ α β hα β respectively in system (yi) and (xα ). According to (15.31),

Λ α β ,γ λ hα β ,γ λ =
[
Λ i j,klJα

i Jβ
j Jγ

k Jλ
l

]
hα β ,γ λ

Λ α β ,γ hα β ,γ =

[
Λ i j,kl ∂ gi j,kl

∂ gα β ,γ
+ Λ i j,k ∂ gi j,k

∂ gα β ,γ

]
hα β ,γ

Λ α β hα β =

[
Λ i j,kl ∂ gi j,kl

∂ gα β
+ Λ i j,k ∂ gi j,k

∂ gα β
+ Λ i j ∂ gi j

∂ gα β

]
hα β

By factorization of the coefficients of Λ i j,kl , Λ i j,k and Λ i j we obtain F = (a)+(b)+
(c) with

(a) = Λ i j,kl
[

∂ gi j,kl

∂ gα β ,γ λ
hα β ,γ λ +

∂ gi j,kl

∂ gα β ,γ
hα β ,γ +

∂ gi j,kl

∂ gα β
hα β

]

(b) = Λ i j,k
[

∂ gi j,k

∂ gα β ,γ
hα β ,γ +

∂ gi j,k

∂ gα β
hα β

]

(c) = Λ i j
[

∂ gi j

∂ gα β
hα β

]

According to the relations (15.28), the quantities in square brackets are simplified,
(a) = Λ i j,kl

[
hi j,kl

]
, (b) = Λ i j,k

[
hi j,k

]
, (c) = Λ i j [hi j] and thus F = F .

�

Lemma 15.4. (F - Λ i j,klhi j|k|l) is a scalar.

Proof. Let us notice G := Λ i j,klhi j|k|l and G := Λ α β ,γ λ hα β |γ |λ . By (15.31) we have

Λ α β ,γ λ hα β |γ |λ = Λ i j,klJα
i Jβ

j Jγ
k Jλ

l hα β |γ |λ (15.34)
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h being a tensor type (0,2), the second covariant derivative hα β |γ |λ form the com-

ponents of a tensor type (0,4). Consequently Jα
i Jβ

j Jγ
k Jλ

l hα β |γ |λ = hi j|k|l , thus G = G.

By previous lemma, we have F−G = F−G.

�

Remark 15.7. A direct and simple proof may be obtained by observing that Λ i jkl is
in fact a tensor type (4,0) and hi j|k|l is a tensor type (0,4), then their contraction is
a scalar.

Consequently, Π i j,khi j|k + Π i jhi j is a scalar for an arbitrary tensor type (0,2) h.

Using the quotient theorem 15.2, Π i j,k
(S) and Π i j

(S) are the components of tensor type
(3,0) and (2,0) respectively, these tensors are also symmetric.

15.4.3 Theorem

The expressions of Π i j,k
(S) in (15.33) holds in an arbitrary coordinate system. In nor-

mal coordinate system, the Christoffel symbols vanish, e.g. [23] and we have, from
(15.33), Π i j,k

(S) = Λ i j,k. However, from (15.30) Λ i j,k = 0 in normal coordinate system,

thus Π i j,k
(S) = 0 in normal coordinate system and too for any other coordinate system,

because Π i j,k
(S) are components of tensor. The first equation in (15.33) is simplified

in any coordinate system

0 = Λ i j,k + 2Γ i
alΛ

a j,kl + 2Γ j
alΛ

ia,kl + Γ k
blΛ

i j,bl . (15.35)

We can establish the following theorem:

Theorem 15.3. Let a scalar field L = L
(
gi j,gi j,k,gi j,kl

)
defined on a Riemannian

manifold. If
∂ L

∂ gi j,kl
= 0 then

∂ L

∂ gi j,k
= 0.

Proof. ∀ i, j,k, l, the condition Λ i j,kl = 0 is introduced into (15.35).

�

Consequently, from the second equality of (15.33), we deduce
∂ L

∂ gi j
= Π i j

(S). An

equivalent formulation of theorem 15.3 may be found in [Lovelock and Rund, [17]].

Theorem 15.4. On a Riemannian manifold, there does not exist a scalar density
such L = L (gi j,gi j,k) that only depends on the metric gi j and their first partial
derivatives gi j,k.



15 On the Form-Invariance of Lagrangian Function for Higher Gradient Continuum 309

15.4.4 Discussion

In any coordinate system, we have the following decomposition
{

Π i j = (1/2)(Π i j + Π ji)+ (1/2)(Π i j− Π ji)
Π i j,k = (1/2)(Π i j,k + Π ji,k)+ (1/2)(Π i j,k− Π ji,k)

(15.36)

In [17], the quantities Π i j and Π i j,k are assumed to be symmetric with respect to
the indices i and j: Π i j = Π ji, Π i j,k = Π ji,k and it is proven that the quantities Π i j,k

are always null. In the present study it has been proven that only the symmetric part
Π i j,k

(S) is null: the quantities Π i j,k are skew-symmetric Π i j,k = −Π ji,k. The present
study is slightly more general than the result presented in [17].

To study the fields in physics, the arguments must be tensors. The metric is a
tensor and consequently the Lagrangian L (g) depends on a tensor. To extend the
arguments of L , defined on Riemannian manifold endowed with an affine connec-
tion ∇ , the new form is then L (g, ∇ g, ∇ 2g) where all the arguments are tensors. The
corresponding form in the coordinate system (xα ) is L (gα β ,gα β |γ ,gα β |γ |λ ). If the
connection is Euclidean (derived from the metric) then we have gα β |γ ≡ gα β ,γ since
Γ γ

α β ∼ gα β ,γ . In [17], the used connection is implicitly that of Levi-Civita, thus we
have studied the form with partial derivatives L (gα β ,gα β ,γ ,gα β ,γ λ ). Another mo-
tivation is that, according to the Lemma of Ricci e.g. [4], the covariant derivative
of the metric tensor g, in the sense of Levi-Civita connection, is identically equal to
zero.

15.5 Invariance with Respect to the Connection

The metric is imposed by the ambiant space (Euclidean space) and there exist many
possibilities for the affine connection. It is possible to put restrictions on the possible
form of connections. We demand that the metric be covariantly constant: ∇ g ≡ 0.
In such a case the connection is said to be compatible with the metric. The choice
of the connection is free but it is worth to use a connection compatible with the
metric. This involves that ∇ g cannot be an explicit argument of the Lagrangian
L . This is the reason why we consider an argument ∇ rather than ∇ g. We labeled
the biconnection ∇ 2 = ∇ ◦ ∇ . In order to extend the list of arguments of L , we
will consider the following forms: L (g, ∇ ), L (g, ∇ 2) and L (g, ∇ , ∇ 2). However it
should be stressed that the connection is not tensor conversely to the metric, thus we
aim to obtain tensorial arguments instead of the connection and/or the bi-connection.
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15.5.1 Preliminary

We define the invariance of any scalar field (more precisely the form-invariance):
L (X ,Y ) = L (X ′,Y ′) with both formal arguments X and Y defined in any two co-
ordinate systems (with and without ’).

Lemma 15.5. Let us consider arbitrary constants K1, K2, C1, C2, C3 and the vari-
ables x, x′, y, y′, p, p′, q, q′ which follow the transformations





x′ = K1 x+K2

y′ = K1 y
p′ = C1 p+C2 (x+ y)+C3

q′ = C1 q

(15.37)

Now let us consider a scalar function L which satisfies the equations (form-
invariance)

1. L (x,y) = L (x′,y′)
2. L (p,q) = L (p′,q′)
3. L (x,y, p,q) = L (x′,y′, p′,q′).

If (∂ K1/∂ K2) = 0, (∂ K1/∂ C3) = 0, (∂ K2/∂ C3) = 0, (∂ C1/∂ C3) = 0 then, from
equation (1.) we have L (y) = L (y′), from equation (2.) we have L (q) = L (q′),
from equation (3.) we have L (y,q) = L (y′,q′).

Proof.
Equation 1
According to (15.37) we have L (x,y) = L (K1 x+K2,K1 y). We differentiate this
equation with respect to K2, to find

0 =
∂ L

∂ x′
∂ x′

∂ K2
+

∂ L

∂ y′
∂ y′

∂ K2

0 =
∂ L

∂ x′

[
∂ K1

∂ K2
x+ 1

]
+

∂ L

∂ y′
∂ K1

∂ K2
y

which involves that ∂ L /∂ x′ = 0 if ∂ K1/∂ K2 = 0. Then, according to (∂ L /∂ x) =
(∂ L /∂ x′)(∂ x′/∂ x), we prove that ∂ L /∂ x = 0.
Equation 2
According to (15.37) we have L (p,q) = L (C1 p +C2 (x + y) +C3,C1 q). We
differentiate this equation with respect to C3, to find

0 =
∂ L

∂ p′
∂ p′

∂ C3
+

∂ L

∂ q′
∂ q′

∂ C3

0 =
∂ L

∂ p′

[
∂ C1

∂ C3
p+

∂ C2

∂ C3
(x+ y)+ 1

]
+

∂ L

∂ q′
∂ C1

∂ C3
q

which involves that ∂ L /∂ p′ = 0 if ∂ C1/∂ C3 = 0, the term in square brackets
not vanishing. Then, according to (∂ L /∂ p) = (∂ L /∂ p′)(∂ p′/∂ p), we prove that
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∂ L /∂ p = 0. Finally we obtain L (q) = L (q′).
Equation 3
According to (15.37) we have L (x,y, p,q) =L (K1 x+K2,K1 y,C1 p+C2 (x+y)+
C3,C1 q). We differentiate this equation with respect to C3, to find

0 =
∂ L

∂ x′
∂ x′

∂ C3
+

∂ L

∂ y′
∂ y′

∂ C3
+

∂ L

∂ p′
∂ p′

∂ C3
+

∂ L

∂ q′
∂ q′

∂ C3

0 =
∂ L

∂ x′

[
∂ K1

∂ C3
x+

∂ K2

∂ C3

]
+

∂ L

∂ y′
∂ K1

∂ C3
y+

∂ L

∂ p′

[
∂ C1

∂ C3
p+

∂ C2

∂ C3
(x+ y)+ 1

]

+
∂ L

∂ q′
∂ C1

∂ C3
q

which involves that ∂ L /∂ p′ = 0 if ∂ K1/∂ C3 = 0, ∂ K2/∂ C3 = 0, ∂ C1/∂ C3 = 0.
Then we have ∂ L /∂ p = 0. According to (∂ L /∂ x) = (∂ L /∂ p′)(∂ p′/∂ x), we
prove that ∂ L /∂ x = 0. To finish, according to (∂ L /∂ x) = (∂ L /∂ x′)(∂ x′/∂ x) =
(∂ L /∂ x′) K1, we prove that ∂ L /∂ x′ = 0. Finally we obtain L (y,q) = L (y′,q′).

�

Remark 15.8. The previous proof is based on the principle of fields invariance in-
troduced by Lovelock and Rund [17]. It is equivalent to the form-invariance, a term
borrowed from [30].

In an arbitrary coordinate system (yi), the components of the metric, the connec-
tion and the bi-connection are respectively gi j, Γ k

i j and Γ k
i j,l + Γ m

i j Γ k
lm. The forms

L (g, ∇ ), L (g, ∇ 2) and L (g, ∇ , ∇ 2) are then explicitly written as L (gi j, Γ k
i j ),

L

(
gi j, Γ k

i j,l + Γ m
i j Γ k

lm

)
and L

(
gi j, Γ k

i j , Γ k
i j,l + Γ m

i j Γ k
lm

)
, respectively. Let (xα ) an

other coordinate system, let us assume the form-invariance of the scalar field L

(three cases):




L (Γ k
i j ) = L (Γ γ

α β )

L (Γ k
i j,l + Γ m

i j Γ k
lm) = L (Γ γ

α β ,λ + Γ µ
α β Γ γ

λ µ )

L (Γ k
i j , Γ k

i j,l + Γ m
i j Γ k

lm) = L (Γ γ
α β , Γ

γ
α β ,λ + Γ µ

α β Γ γ
λ µ )

(15.38)

where the components of the metric will be omitted for the sake of simplicity. For
further applications, let us introduce the following components





Tk
i j = (1/2)

(
Γ k

i j − Γ k
ji

)Sk
i j = (1/2)

(
Γ k

i j + Γ k
ji

)Bk
li j = (1/2)

(
Γ k

i j,l + Γ m
i j Γ k

lm− Γ k
l j,i− Γ m

l j Γ k
im

)Ak
li j = (1/2)

(
Γ k

i j,l + Γ m
i j Γ k

lm + Γ k
l j,i + Γ m

l j Γ k
im

)
(15.39)

According to (15.39), one permutation between i and j allows the decomposition
Γ k

i j = Sk
i j +Tk

i j. One permutation between i and l allows the decomposition Γ k
i j,l +
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Γ m
i j Γ k

lm = Ak
li j +Bk

li j. One first permutation between i and j then one other successive

permutation between i and l allow the simultaneous decompositions Γ k
i j = Sk

i j +Tk
i j

and Γ k
i j,l + Γ m

i j Γ k
lm = Ak

li j +Bk
li j. The details of calculus are given in annex. Thanks to

these decompositions, the form-invariance of L (15.38) becomes




L (Sk
i j,Tk

i j) = L (Sγ
α β ,Tγ

α β )

L (Ak
li j,Bk

li j) = L (Aγ
λ α β ,Bγ

λ α β )

L (Sk
i j,Tk

i j,Ak
li j,Bk

li j) = L (Sγ
α β ,Tγ

α β ,Aγ
λ α β ,Bγ

λ α β )

(15.40)

15.5.2 Application

Let us consider the following identification of variables x, x′, y, y′, p, p′, q, q′:

x = Sk
i j, y = Tk

i j, p = Ak
li j, q = Bk

li j, (15.41)

x′ = Sγ
α β , y′ = Tγ

α β , p′ = Aγ
λ α β , q′ = Bγ

λ α β . (15.42)

The transformation laws between the above variables take the form of (15.37) with
(see annex) 




K1 = Ji
α J j

β Aγ
k

K2 = J j
α β Aγ

j

C1 = Ji
α J j

β Jl
λ Aγ

k

C2 = Ji
α λ J j

β Aγ
k + Ji

λ J j
α β Aγ

k + Ji
α J j

β λ Aγ
k

C3 = Ji
µ Jl

λ J j
α β Aγ

jA
µ
il + Ji

µ λ J j
α β Aµ

i Aγ
j

(15.43)

We have ∂ K1/∂ K2 = 0, ∂ K1/∂ C3 = 0, ∂ K2/∂ C3 = 0, ∂ C1/∂ C3 = 0. According to
lemma 15.5, the invariance of L (15.40) means





L (Tk
i j) = L (Tγ

α β )

L (Bk
li j) = L (Bγ

λ α β )

L (Tk
i j,Bk

li j) = L (Tγ
α β ,Bγ

λ α β )

(15.44)

We now identify the components of torsion tensor by ℵ k
i j = 2Tk

i j and the components

of curvature tensor by ℜ k
li j = 2Bk

li j. From (15.44) we have





L (ℵ k
i j) = L (ℵ γ

α β )

L (ℜ k
li j) = L (ℜ γ

λ α β )

L (ℵ k
i j , ℜ k

li j) = L (ℵ γ
α β , ℜ

γ
λ α β )

(15.45)
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15.5.3 Synthesis

For the sake of the simplicity we have previously omitted the argument gi j. Adding
this argument does not change the proof. The overall result then includes the metric,
the connection, and the bi-connection as arguments of the Lagrangian function L .
We also have the following Form-Invariance:





L (gi j, ℵ k
i j) = L (gα β , ℵ

γ
α β )

L (gi j, ℜ k
li j) = L (gα β , ℜ

γ
λ α β )

L (gi j, ℵ k
i j , ℜ k

li j) = L (gα β , ℵ
γ
α β , ℜ

γ
λ α β )

(15.46)

All the arguments of L are components of tensors, they are invariant under the ac-
tion of the diffeomorphism (in the sense that they transform covariantly according
to usual tensor transformations depending on their type). Therefore, the Lagrangian
function is form-invariant. The components of torsion are explicitly defined accord-
ing to the coefficients of connection and the components of curvature are explicitly
defined according to the coefficients of biconnection. From (15.46) we have





L (gi j, Γ k
i j ) = L (gα β , Γ

γ
α β )

L (gi j, Γ k
i j,l + Γ m

i j Γ k
lm) = L (gα β , Γ

γ
α β ,λ + Γ µ

α β Γ γ
λ µ )

L (gi j, Γ k
i j , Γ k

i j,l + Γ m
i j Γ k

lm) = L (gα β , Γ
γ

α β , Γ
γ

α β ,λ + Γ µ
α β Γ γ

λ µ )

(15.47)

The results are summarized in the following theorem:

Theorem 15.5. Let a Riemannian manifold (X ,g) embedded into an Euclidean
space and endowed with an affine connection ∇ compatible with the metric (∇ g =
0). To the connection are associated the torsion tensor ℵ and the curvature tensor
ℜ . For any scalar field L defined on X, the form-invariance induces

L (g, ∇ )=L (g, ℵ ), L (g, ∇ 2)=L (g, ℜ ), L (g, ∇ , ∇ 2)=L (g, ℵ , ℜ ) (15.48)

The equations (15.48) can be read in the two directions:

• L = L (g, ∇ ) is form-invariant if and only if L = L (g, ℵ )
• L = L (g, ∇ 2) is form-invariant if and only if L = L (g, ℜ )
• L = L (g, ∇ , ∇ 2) is form-invariant if and only if L = L (g, ℵ , ℜ )

Under the same hypothesis as for the theorem 15.5, we have the corollary:

Corollary 15.1. On Riemannian manifold, there does not exist a scalar field L

(form-invariant) which depends on the metric g and the Levi-Civita connection ∇ .

Proof. According to the theorem 15.1 and theorem 15.5: L (g, ∇ ) =L (g, ℵ = 0) =
L (g).

�

Remark 15.9. The corollary 15.1 can be proven by using the components formu-
lation. Indeed, the coefficients of the connection of Levi-Civita are the Christoffel
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symbols labeled Γ k
i j (15.10) which depend on the components of the metric and

its first partial derivatives e.g. [23]. According to the theorem 15.4: L (gi j, Γ
k
i j) =

L (gi j,gi j,k) = L (gi j).

Remark 15.10. Our extension consists in using an affine connection which does not
derive from a metric but however compatible with the metric, and thus to introduce
the torsion and/or the curvature to describe the dislocations and the disclinations
field e.g. [20], [27]. However the connection of Levi-Civita is compatible, is derived
from the metric and especially the associated torsion necessary vanishes (theorem
15.1). Although essential and used for models of continuous medium, the applica-
tion of Levi-Civita connection seems limited and is not adapted in this framework.

15.6 Strain Gradient Continuum

According to the form of the strain energy potential (part of the Lagrangian func-
tion), the potential energy of a system depends on the strain tensor E and possibly
on other arguments. In Riemannian geometry, the metric g and the affine connection
∇ are fundamental tools to describe the tensor fields and their derivatives defined on
manifold. The torsion ℵ and the curvature ℜ are tensors which are associated to
the affine connection. This geometrical approach is applied in the study of defects
through continuous media e.g. [13], [20], [27], [33] and more generally in physics,
e.g. [4], [12]. For continuum mechanics, the metric tensor g is related with the strain
tensor E, by the following relation [29]:

g = I+ 2E, gi j = δ i j + 2Ei j (15.49)

where I is the identity tensor type (0,2). It should be also stressed that the relation
(15.49) implicitly assumes that material coordinates within the continuum are used
for describing the continuum transformation (i.e. we use Lagrangian description
with convected vector base e.g. [27]). Consequently the first type of the scalar field
(Lagrangian) L we would like to analyze, takes the form of (by abuse of notation)

L (gi j,gi j,k,gi j,kl)≡L (Ei j,Ei j,k,Ei j,kl). (15.50)

In the framework of strain gradient continuum, the forms of Lagrangian functions
are L (Ei j,Ei j|k) for first or L (Ei j,Ei j|k,Ei j|k|l) for second strain gradient model.
Many strain gradient models use an affine connection which derives from the met-
ric. Consequently, the Lagrangian is respectively reformulated by L (Ei j,Ei j,k) and
L (Ei j,Ei j,k,Ei j,kl). According to the theorem 15.4 [17], the form L (Ei j,Ei j,k) does
not exist. Consequently the possible forms are e.g. [1]:

• L (Ei j) which is used in classical elasticity theory.
• L (Ei j,Ei j,kl) and L (Ei j,Ei j,k,Ei j,kl) which are used in strain gradient theory.
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In the case where the affine connection is Euclidean3, among the Lagrangian ar-
guments we find necessarily the second order of the derivative of the strain. Thus
the strain gradient theory is more precisely named the second strain gradient theory,
also called continuum of grade three e.g. [1]. But the partial derivatives of tensor
components are not necessary the components of tensor, therefore the quantities
Ei j,k and Ei j,kl may not represent physical quantities, in general. Indeed, according
to the equation between the strain and the metric (15.49), we observe that the com-
ponents gi j,k and gi j,kl are not components of tensor by (15.28). We choose then a
non Euclidean connection but compatible with the metric. The affine connection is
not a tensor however, the studied forms L (g, ∇ ), L (g, ∇ 2) and L (g, ∇ , ∇ 2) are re-
spectively equivalent to L (g, ℵ ), L (g, ℜ ) and L (g, ℵ , ℜ ). All the arguments are
tensors and can represent physical quantities. The proof is based on the invariance
principle, essential criterium in study of fields in physics.

Let us consider a continuous medium (continuum) modeled by a Riemannian
manifold endowed with an affine connection (compatible with the metric). The
choice of the continuum comes owing to the fact that torsion is null (Riemannian
approach) or not (Cartan approach). By the way, the introduction of torsion and cur-
vature was done in previous works as tensorial measures of Volterra dislocations
and disclinations e.g. [20], [27].

• L (g, ℵ = 0, ℜ = 0) corresponds to an elastic energy strain function.
• L (g, ℵ ) is associated to an elastic continuum with dislocation.
• L (g, ℵ , ℜ ) is associated to an elastic continuum with dislocation and disclina-

tion.

The elasticity of the continuum refers to the metric as argument of the Lagrangian
whereas the dislocations and disclinations are described by the torsion and the cur-
vature tensors associated to the affine connection ∇ e.g. [20], [26].

Remark 15.11. For establishing the form-invariance requirement we are searching
for constitutive laws of higher gradient continuum mechanics, we do not take all
applicable arbitrary coordinate systems. We limit to coordinate systems xα and yi

that are all diffeomorphically equivalent to each other. This is obviously a larger
class than the orthogonal transformations (rotation and translation of coordinates)
and even much larger than the class of coordinate systems related by linear transfor-
mations, but it should be again recalled that still just an small fraction of all possible
coordinate systems e.g. [27]. Further studies in this direction still hold as great chal-
lenge, by considering the concept of path-dependent integration method e.g. [12].

15.7 Concluding Remarks

Most of the materials may be regarded as Noll’s simple materials [24]. Reduced
form of their constitutive laws are therefore determined through both the Euclidean-

3 The Euclidean connection derived from the metric tensor of a referential body was mostly the
connection used in mechanics for over two centuries, e.g. [27].
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Frame Indifference and the Form-Indifference that ensure the Indifference with re-
spect to Superimposed Rigid Body Motions (rigid translation and rigid rotation)
[30]. Elastic simple material is therefore well defined by a strain energy density
function depending on the metric tensor components as arguments. Strain Gradi-
ent continuum does not belong to the Noll’s simple materials class, strain energy
density also depend on higher space derivatives of the metric tensor. The goal of
the present paper was to analyze the form-invariance of second strain gradient, or
also named third grade continuum. The ratio supporting the interest of such a third
grade continuum may be found initially in [22] and recently in e.g. [9], [15]. In
a previous work, we were also leaded to third grade models however from a dif-
ferential geometry point of view, when accounting for discontinuity of scalar and
vector fields within the continuum [26]. We do not pay attention to the inertial terms
in the present paper, reducing the Lagrangian function to the strain energy density
function.

According to a method borrowed from [17], the present investigations has shown,
on the one hand, the necessary dependence of the Lagrangian function on the second
order derivative of the metric, or the strain (main argument). On the other hand,
the form-invariance method applied to a Lagrangian function that depends on both
the metric and the (compatible) connection involves the necessary dependence of
the Lagrangian with respect to the torsion and/or the curvature associated to the
connection. It is observed that the introduction of the affine connection as arguments
of any physical quantity, such as the Lagrangian function, has its roots in basic
physics of spacetime. Connection was already introduced in the earlier works of
Einstein, Weyl, and Cartan to describe the concept of gravity e.g. [6], in which the
both metric and connection are considered as two of the fundamentals tools for
mechanics and physics. The Lagrangian function is reduced to an elastic potential
energy function and the dimension of its arguments inform on the character of higher
order of gradient. The form L (g, ℵ ) is associated to a second strain gradient elastic
continuum with the argument torsion, whereas the form L (g, ℵ , ℜ ) is associated to
an elastic continuum of third grade with the curvature also as additional argument.

Acknowledgements N. Antonio Tamarasselvame has been supported by an ARED grant of the
”Région de Bretagne”.

Appendix 1

Let (yi) and (xα ) two coordinate systems associated to respectively the tangent bases
{ei} and {eα }. Let ∇ the affine connection and its coefficients

∇ ei e j = Γ k
i j ek

∇ eα eβ = Γ γ
α β eγ

The coordinate transformation of ∇ is
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Γ γ
α β eγ = ∇ eα eβ

= ∇ Ji
α ei

(
J j

β e j

)

= Ji
α

[
∇ ei

(
J j

β

)
e j + J j

β ∇ ei e j

]

= Ji
α

[
∇ Aα

i eα

(
J j

β

)
e j + J j

β Γ k
i j ek

]

= Ji
α

[
Aα

i J j
α β e j + J j

β Γ k
i j ek

]
,

say [
Γ γ

α β

]
=
[(

Ji
α J j

β Aγ
k

)
Γ k

i j

]
+ J j

α β Aγ
j . (15.51)

Let the ”double connection” ∇ 2 = ∇ ◦ ∇

∇ eλ

[
∇ eα eβ

]
= ∇ eλ

[
Γ µ

α β eµ

]

= ∇ eλ

[
Γ µ

α β

]
eµ + Γ µ

α β
[
∇ eλ eµ

]

= Γ µ
α β ,λ eµ + Γ µ

α β Γ γ
λ µ eγ

=
[
Γ γ

α β ,λ + Γ µ
α β Γ γ

λ µ

]
eγ .

Without going into details, the coordinate transformation of ∇ 2 is
[
Γ γ

α β ,λ + Γ µ
α β Γ γ

λ µ

]
=
[
Ji

α J j
β Jl

λ Aγ
k

(
Γ k

i j,l + Γ d
i j Γ k

ld

)]

+
(

Ji
α λ J j

β Aγ
k + Ji

λ J j
α β Aγ

k + Ji
α J j

β λ Aγ
k

)
Γ k

i j

+ Ji
µ Jl

λ J j
α β Aγ

jA
µ
il + Ji

µ λ J j
α β Aµ

i Aγ
j

(15.52)

The equalities (15.51) and (15.52) show that the connection ∇ and the biconnection
∇ 2 are not tensors, according to (15.6). However, in the both equalities, if the terms
out of the square brackets vanish then the components are components of tensor.
These quantities are symmetric with respect to α and β for (15.51) and with respect
to α and λ for (15.52). Then the torsion (15.7) and the curvature (15.8) are defined,
with respect to the affine connection ∇ , on the base {ea} associated to coordinate
system (ya).

Appendix 2

Identification of Coefficients

Let us apply the Lemma 15.2 to the equation
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Λ i j,klhi j,kl + Λ i j,khi j,k + Λ i jhi j = Λ i j,klhi j|k|l + Π i j,khi j|k + Π i jhi j,

for the identification of the coefficients of hi j,k and hi j. Let us recall that

Λ i j,klhi j|k|l = Λ i j,kl [hi j,kl− Γ a
ik ha j,l− Γ a

jkhia,l− Γ a
ik,lha j− Γ a jk,lhia

− Γ b
il hb j,k + Γ b

il (Γ
c

bkhc j + Γ jk
c hbc)− Γ b

jl hib,k

+ Γ b
jl (Γ

c
ik hcb + Γ c

bkhic)− Γ b
kl hi j,b + Γ b

kl (Γ
c

ibhc j + Γ c
jbhic)]

and
Π i j,khi j|k = Π i j,k[hi j,k− Γ a

ik ha j− Γ a
jkhia].

The equation of the coefficients of ”hi j,k” is

Λ i j,khi j,k =−Λ i j,kl [Γ a
ik ha j,l + Γ a

jkhia,l + Γ b
il hb j,k + Γ b

jl hib,k + Γ b
kl hi j,b]+ Π i j,khi j,k.

The following permutations are necessary to write explicitly the common factor hi j,k

in all the terms in right hand side (above):

• a←→ i and l←→ k for Λ i j,klΓ a
ik ha j,l

• a←→ j and l←→ k for Λ i j,klΓ a
jkhia,l

• b←→ i then b→ a for Λ i j,klΓ b
il hb j,k

• b←→ j then b→ a for Λ i j,klΓ b
jl hib,k

• k←→ b for Λ i j,klΓ b
kl hi j,b.

Then, the symmetry of Λ and h reduces the identification of coefficients of hi j,k

(1/2)(Π i j,k + Π ji,k) = Λ i j,k + 2Γ i
alΛ

a j,kl + 2Γ j
alΛ

ia,kl + Γ k
blΛ

i j,bl .

In the same way, the equation of the coefficients of ”hi j” is

Λ i jhi j = Λ i j,kl [−Γ a
ik,lha j− Γ a

jk,lhia + Γ b
il (Γ

c
bkhc j + Γ c

jkhbc)+ Γ b
jl (Γ

c
ik hcb + Γ c

bkhic)

+ Γ b
kl (Γ

c
ibhc j + Γ c

jbhic)]− Π i j,kΓ a
ik ha j− Π i j,kΓ a

jkhia + Π i jhi j.

The following permutations are necessary to refind the common factor hi j in all the
terms in right hand side (above):

• a←→ i for Λ i j,klΓ a
ik,lha j and Π i j,kΓ a

ik ha j

• a←→ j for Λ i j,klΓ a
jk,lhia and Π i j,kΓ a

jkhia

• c←→ i for Λ i j,klΓ b
il Γ c

bkhc j and Λ i j,klΓ b
kl Γ

c
ibhc j

• c←→ j for Λ i j,klΓ b
jl Γ

c
bkhic and Λ i j,klΓ b

kl Γ
c
jbhic

• c←→ i and b←→ j for Λ i j,klΓ b
il Γ c

jkhbc and Λ i j,klΓ b
jl Γ

c
ik hcb.

Then, the symmetry of Λ and h reduces the identification of coefficients of hi j
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(1/2)(Π i j + Π ji) = Λ i j + Γ i
ak,lΛ

a j,kl + Γ j
ak,lΛ

ia,kl

− Γ b
al Γ

i
bkΛ

a j,kl− Γ b
cl Γ

j
bkΛ ic,kl

− Γ i
blΓ

j
ckΛ bc,kl − Γ j

blΓ
i

ckΛ bc,kl

− Γ b
kl Γ

i
cbΛ c j,kl − Γ b

kl Γ
j

cbΛ ci,kl

+ (1/2)Γ i
ak(Π

a j,k + Π ja,k)+ (1/2)Γ j
ak(Π

ia,k + Π ai,k).

Coefficients of Biconnection

We apply the permutation between i and l, like thisSk
i j,l +Tk

i j,l +Sm
i jSk

lm +Sm
i jTk

lm +Tm
i jSk

lm +Tm
i jTk

lm

= (1/2)
[Sk

i j,l +Sm
i jSk

lm +Sm
i jTk

lm +Sk
l j,i +Sm

l jSk
im +Sm

l jTk
im

]

+(1/2)
[Sk

i j,l +Sm
i jSk

lm +Sm
i jTk

lm−Sk
l j,i−Sm

l jSk
im−Sm

l jTk
im

]

+(1/2)
[Tk

i j,l +Tm
i jTk

lm +Tm
i jSk

lm +Tk
l j,i +Tm

l jTk
im +Tm

l jSk
im

]

+(1/2)
[Tk

i j,l +Tm
i jTk

lm +Tm
i jSk

lm−Tk
l j,i−Tm

l jTk
im−Tm

l jSk
im

]
.

Then we develop the expression in the right hand side. We haveSk
i j,l−Sk

l j,i +Tk
i j,l−Tk

l j,i = Γ k
i j,l− Γ k

l j,i,

and

• Sm
i jSk

lm−Sm
l jSk

im = (1/4)
(

Γ m
i j Γ k

lm− Γ m
l j Γ k

im

)
+(1/4)

(
Γ m

i j Γ k
ml− Γ m

l j Γ k
mi

)

+ (1/4)
(

Γ m
ji Γ k

lm− Γ m
jl Γ k

im

)
+(1/4)

(
Γ m

ji Γ k
ml− Γ m

jl Γ k
mi

)

• Sm
i jTk

lm−Sm
l jTk

im = (1/4)
(

Γ m
i j Γ k

lm− Γ m
l j Γ k

im

)
− (1/4)

(
Γ m

i j Γ k
ml− Γ m

l j Γ k
mi

)

+ (1/4)
(

Γ m
ji Γ k

lm− Γ m
jl Γ k

im

)
− (1/4)

(
Γ m

ji Γ k
ml− Γ m

jl Γ k
mi

)

• Tm
i jTk

lm−Tm
l jTk

im = (1/4)
(

Γ m
i j Γ k

lm− Γ m
l j Γ k

im

)
− (1/4)

(
Γ m

i j Γ k
ml− Γ m

l j Γ k
mi

)

− (1/4)
(

Γ m
ji Γ k

lm− Γ m
jl Γ k

im

)
+(1/4)

(
Γ m

ji Γ k
ml− Γ m

jl Γ k
mi

)

•
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i jSk

lm−Tm
l jSk

im = (1/4)
(

Γ m
i j Γ k

lm− Γ m
l j Γ k

im

)
+(1/4)

(
Γ m

i j Γ k
ml− Γ m

l j Γ k
mi

)

− (1/4)
(

Γ m
ji Γ k

lm− Γ m
jl Γ k

im

)
− (1/4)

(
Γ m

ji Γ k
ml− Γ m

jl Γ k
mi

)
.

The sum of the four previous equalities is equal to Γ m
i j Γ k

lm− Γ m
l j Γ k

im. Then we haveSk
i j,l +Sk

l j,i +Tk
i j,l +Tk

l j,i = Γ k
i j,l + Γ k

l j,i,

and

• Sm
i jSk

lm +Sm
l jSk

im = (1/4)
(

Γ m
i j Γ k

lm + Γ m
l j Γ k

im

)
+(1/4)

(
Γ m

i j Γ k
ml + Γ m

l j Γ k
mi

)

+ (1/4)
(

Γ m
ji Γ k

lm + Γ m
jl Γ k

im

)
+(1/4)

(
Γ m

ji Γ k
ml + Γ m

jl Γ k
mi

)

• Sm
i jTk

lm +Sm
l jTk

im = (1/4)
(

Γ m
i j Γ k

lm + Γ m
l j Γ k

im

)
− (1/4)

(
Γ m

i j Γ k
ml + Γ m

l j Γ k
mi

)

+ (1/4)
(

Γ m
ji Γ k

lm + Γ m
jl Γ k

im

)
− (1/4)

(
Γ m

ji Γ k
ml + Γ m

jl Γ k
mi

)

• Tm
i jTk

lm +Tm
l jTk

im = (1/4)
(

Γ m
i j Γ k

lm + Γ m
l j Γ k

im

)
− (1/4)

(
Γ m

i j Γ k
ml + Γ m

l j Γ k
mi

)

− (1/4)
(

Γ m
ji Γ k

lm + Γ m
jl Γ k

im

)
+(1/4)

(
Γ m

ji Γ k
ml + Γ m

jl Γ k
mi

)

• Tm
i jSk

lm +Tm
l jSk

im = (1/4)
(

Γ m
i j Γ k

lm + Γ m
l j Γ k

im

)
+(1/4)

(
Γ m

i j Γ k
ml + Γ m

l j Γ k
mi

)

− (1/4)
(

Γ m
ji Γ k

lm + Γ m
jl Γ k

im

)
− (1/4)

(
Γ m

ji Γ k
ml + Γ m

jl Γ k
mi

)
.

The sum of the four previous equalities is equal to Γ m
i j Γ k

lm + Γ m
l j Γ k

im. Consequently,Sk
i j,l +Tk

i j,l +Sm
i jSk

lm +Sm
i jTk

lm +Tm
i jSk

lm +Tm
i jTk

lm

= (1/2)
(

Γ k
i j,l + Γ m

i j Γ k
lm− Γ k

l j,i− Γ m
l j Γ k

im

)
+(1/2)

(
Γ k

i j,l + Γ m
i j Γ k

lm + Γ k
l j,i + Γ m

l j Γ k
im

)
.
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Chapter 16
Cahn-Hilliard Generalized Diffusion Modeling
Using the Natural Element Method

Paul Fischer, Amirtham Rajagopal, Ellen Kuhl, and Paul Steinmann

Abstract In this work, we present an application of two versions of the natural ele-
ment method (NEM) to the Cahn-Hilliard equation. The Cahn-Hilliard equation is
a nonlinear fourth order partial differential equation, describing phase separation of
binary mixtures. Numerical solutions requires either a two field formulation with
C0 continuous shape functions or a higher order C1 continuous approximations to
solve the fourth order equation directly. Here, the C1 NEM, based on Farin’s inter-
polant is used for the direct treatment of the second order derivatives, occurring in
the weak form of the partial differential equation. Additionally, the classical C0 con-
tinuous Sibson interpolant is applied to a reformulation of the equation in terms of
two coupled second order equations. It is demonstrated that both methods provide
similar results, however the C1 continuous version needs fewer degrees of freedom
to capture the contour of the phase boundaries.

16.1 Introduction

The Cahn-Hilliard equation is a mathematical description of the kinematics and
morphology evolution of phase separation. Typical examples of phase separation
include multiphase fluid flow [1, 2], image processing [3], mineral exsolution and
growth [4], biological applications [5] and polymer science [6], just to mention a
few.
In phase separation or spinodal decomposition, a binary mixture of two compo-
nents moves against the concentration gradients and forms components pure in each
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phase. This effect is driven by the gradients of the chemical potential. The whole
process is governed by two energies, a local configurational energy and a nonlocal
surface energy. The local configurational energy is a function of the concentrations,
whereas the surface energy is dependent on the concentration gradients.
Starting with a homogeneous mixture, the spinodal decomposition can be classified
into two stages. The initial stage of the phase separation minimizes the configura-
tional energy by driving the local concentration into the two valleys of the energy
potential that are associated with the pure phases. The second stage, which could be
identified to be equivalent to Ostwald ripening [7], minimizes the surface energy by
reducing the number of pure phase regions.
The numerical solution of the Cahn-Hilliard equation is extremely challenging. This
is because of multiple reasons. Firstly, the initial phase separation and the minimiza-
tion of the surface energy takes place at different time scales. Secondly, the configu-
rational energy is a highly nonlinear function of the concentration. And third, maybe
the most critical, the Cahn-Hilliard equation is a fourth order partial differential
equation. These three difficulties result in the necessity of adaptive time stepping
schemes and the requirement of iterative solutions within the application of implicit
time stepping schemes. The treatment of the fourth order gradients of the concen-
tration is requiring either higher-order approximation schemes or the decomposition
of the partial differential equation into two equations, requiring a lower continuity.
Both methods have shown to be applicable for the solution of the Cahn-Hilliard
equation, i.e. see [8, 9, 10] for C1 continuous approximation schemes, [11] for the
application to the discontinuous Galerkin method or [4, 12, 13] for application of
the operator decomposition.
In this paper, we present a comparison of the direct solution based on the C1 natural
element method and an equation decomposition, treated with the C0 NEM based on
Sibson’s interpolant.
We start with a review of the Cahn-Hilliard equation in section 16.2, the decompo-
sition of the Cahn-Hilliard equation into two second order equations is revisited in
section 16.3. This is followed by section 16.4, introducing the weak forms of the
equations. The natural element method, used for the discretization of the concentra-
tion field is explained in section 16.5. The special treatment of periodic boundary
conditions is mentioned as well. For temporal discretization, a generalized trape-
zoidal method is discussed in section 16.6. This is followed by the introduction of
the discrete residuals and stiffness matrices in section 16.7. The contribution closes
with a numerical example and discussion of the results in section 16.8 and section
16.9.

16.2 Governing equations

Considering a binary mixture of two constituents with c and 1−c as their respective
concentrations. The concentration c satisfies 0≤ c≤ 1. Pure phases are obtained for
c = 0 and c = 1. Let B ⊂ Rd , d = 1, 2 or 3 be and open, simply connected domain.
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The Cahn-Hilliard equation describes the evolution of the concentration ċ by the
following diffusion equation,

ċ =− ∇ · j with j =−M ∇ µ . (16.1)

Here, the flux of the concentration j is driven by the gradients of the chemical po-
tential ∇ µ weighted by the mobility M > 0.
The chemical potential µ is the variational derivative of the free energy density Ψ c,
µ = δ c(Ψ c). For the Cahn-Hilliard equation, the free energy density

Ψ c = Ψ con(c)+ Ψ sur(∇ c), (16.2)

is decomposed into the configurational energy, parameterized in terms of the local
concentration c and the surface term Ψ sur(∇ c), parameterized in the concentration
gradient.
The configurational energy is assumed to have the symmetric form

Ψ con = RT [c log(c)+ [1− c] log(1− c)+ 2θ c[1− c]]. (16.3)

In the previous equation (16.3) R is the gas constant, Tc the critical temperature,
i.e. the lowest temperature at which the two phases attain the same composition, T
the absolute temperature in Kelvin and θ = Tc/T is the dimensionless ratio between
the critical and the absolute temperature. The contribution of the configurational
energy to the chemical potential will be denoted as

µ c = δ cΨ con. (16.4)

Ψ sur(∇ c), denotes the surface energy parameterized in terms of the concentration
gradient ∇ c. Here a quadratic function is used for the interface energy expression

Ψ sur =
1
2

λ || ∇ c||2, (16.5)

where the parameter λ is related to an internal length scale l as λ = l2RT . Its con-
tributions to the chemical potential takes the following explicit representation

− ∇ · (δ ∇ cΨ sur) =−λ ∆ c. (16.6)

By inserting (16.4) and (16.6) in (16.1), we obtain the typical fourth order Cahn-
Hilliard equation

ċ = ∇ · (M ∇ (µ c− λ ∆ c)). (16.7)

To achieve the initial boundary value problem, the boundary Γ = ∂ B of the domain
with an outward unit normal n is considered. Here, it is assumed that the boundary
is sufficiently smooth. The boundary is composed of two complementary parts Γ =
Γ c ∪ Γ t = Γ g ∪ Γ q on which either Dirichlet or Neumann boundary conditions are
prescribed. The strong form of the problem is stated as follows:
Find c : B× (0,T )→ R such that
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ċ = ∇ · (M ∇ (µ c− λ ∆ c)) in B× (0,T ) (16.8)

satisfying the initial value
c(x,0) = c0(x) in B (16.9)

subject to the following boundary conditions

c = c̄ on Γ c× (0,T ) or M ∇ (µ c− λ ∆ c) ·n = t̄ on Γ t × (0,T )
∇ c ·n = ḡ on Γ g× (0,T ) or Mλ ∆ c = q̄ on Γ q× (0,T ).

(16.10)

In the above equation (16.10), the boundary conditions are represented in a general
form. The upper row constitute the Dirichlet boundary conditions on the concentra-
tion and the first order Neumann boundary conditions. The second row of (16.10)
represent the remaining set of boundary conditions. In this contribution, periodic
Dirichlet boundary conditions are used.

Mobility:
In most physical applications, the mobility M is assumed as M = Dc[1− c]/[RT ],
where D is the diffusivity which has units of length2/time. The above relationship
for the mobility restricts the diffusion process primarily to the interfacial zones and
is commonly referred to as degenerate mobility. To simplify the equations, the mo-
bility is often approximated to be constant M = D/[RT ].

16.3 Decomposition of the diffusion equation

To avoid the difficulty of the fourth order diffusion equation, the additional non-local
concentration field

c̄ = c+ κ ∆ c (16.11)

is introduced. Accordingly the surface part of the chemical potential

− ∇ λ ∆ c =−γ ∇ (c̄− c) (16.12)

can be expressed in terms of the local concentration field c and the nonlocal concen-
tration field c̄. The new parameters κ and γ are introduced as decomposition of the
parameter λ by γ = λ /κ . In principle, this decomposition can be chosen arbitrarily.
Here the concrete value is used for scaling of the numerical equations.
By inserting (16.12) into the original form of the Cahn-Hilliard equation (16.7), the
single fourth order partial differential equation is thus replaced by the two sets of
second order equations

ċ = ∇ · (M ∇ (µ c + γ [c− c̄]))

c̄ = c+ κ ∆ c.
(16.13)



16 Cahn-Hilliard Generalized Diffusion Modeling Using the Natural Element Method 329

16.4 Weak form of the Cahn-Hilliard equation

The weak form of equation (16.7) and (16.13) is achieved by multiplication with
the test functions w and w̄ and integrating over the domain B. By application of
integration by parts, symmetric equations are derived. The result of the fourth order
equation (16.7) is given by

∫

B

wċ+ ∆ wMλ ∆ c+ ∇ w · [M ∇ µ c + ∇ Mλ ∆ c] dV

−
∫

Γ
wM ∇ (µ c− λ ∆ c) ·n−Mλ ∆ c ∇ w ·n dA=̇0.

(16.14)

Whereas the weak form of (16.13) results in
∫

B

ċw+ ∇ w · [M ∇ · [µ c + γ [c− c̄]]] dV−
∫

Γ
wM ∇ µ ·n dA=̇0

∫

B

w[c̄− c]+ ∇ w̄ · κ ∇ c dV−
∫

Γ
w̄λ 2 ∇ c ·n dA=̇0.

(16.15)

In contrast to (16.14), where second order derivatives are occurring, (16.15) only
contains first derivatives in the resulting expressions.

16.5 The natural element method

For the approximation of the concentration field c, we make use of the natural ele-
ment method. In the C0 continuous case, the shape functions are the Sibson’s inter-
polant [17]. Here, the definition of these functions is shortly revisited.
Considering a set of nodes N = {p1,p2, ...,pn} ∈ Rd , the first-order Voronoi dia-
gram V (N ) is the subdivision of the Euclidian space Rd into convex regions

V (pI) = {c ∈ Rd : ||x−pI ||< ||x−pJ||∀J 6= I}, (16.16)

the Voronoi cells. The Voronoi cell is the set of points being closer the point pI than
to any other point pJ ∈N . By the introduction of a new nodal point x, in the set
N , the new set ˜N := N ∪ x is introduced. The corresponding Voronoi cells are
denoted as Ṽ (pi). The Sibson’s interpolant is thus defined as

N0
I (x) :=

A(V (pI)∩ Ṽ (x))
A(Ṽ (x))

, (16.17)

where A(◦) denotes the d-dimensional volume measure. The overlap of the sets
V (pI) and Ṽ (x) is demonstrated in Fig. 1(a). The Sibson interpolant posseses the
properties non-negativity, 0 ≤ N0

I ≤ 1, partition of unity ∑ I N0
I = 1, interpolation

at the nodes NI(pJ) = δ IJ , linear completeness ∑ I pIN0
I (x) = x and linear behav-

ior along the boundary, thus allowing the exact imposition of essential boundary



330 Paul Fischer, Amirtham Rajagopal, Ellen Kuhl, and Paul Steinmann

conditions. The functions are C∞ everywhere apart from the boundary of the shape
function supports and the nodes, where they are C1 and C0, respectively. The Sibson
interpolant, related to the point p5 is presented in Fig. 1(b).

p1

p2

p3

p4

p5
p6

p7

p8

p9

X

(a) (b)

Fig. 16.1 (a) Overlap of the original Voronoi cell V5 and V̄x. (b) Sibson interpolant N0
5 .

Farin’s C1 interpolant is making use of the fact that the Sibson natural neigh-
bor interpolants can be considered as generalized barycentric coordinates. The C1

continuity at the nodal points is then introduced by the embedding of the Sibson
interpolant into a cubic Bernstein-Bézier patch. For a point x, the shape functions,
interpolating the concentration are given by

N1
3I−2(x) = (N0

I (x))
3 + ∑

J 6=I

3(N0
I (x))

2N0
J (x)+ ∑

J 6=I 6=K 6=J

2N0
I (x)N

0
J (x)N

0
K(x).

(16.18)
and the additional functions for the interpolation of the gradients

(
NI

3I−1(x)
NI

3I(x)

)
= ∑

I 6=J

[pJ−pI]N
0
I (x)

2N0
J (x)

+
1
4 ∑

J 6=I 6=K 6=J

[pJ +pK− 2pI ]N
0
I (x)N

0
J (x)N

0
K(x).

(16.19)

For the detailed description, the interested reader is referred to [16] or [15]. The C1

continuous natural element shape functions have the following desirable properties:

• quadratic completeness
• behavior like cubic Hermit shape functions along the boundary of the geometry
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(a) (b)

Fig. 16.2 C1 Natural element shape functions, related to the nodal concentration value and the
nodal gradient. (a) N1

13 and (b) N1
15

• interpolation of the nodal function values and nodal derivatives
N1

3I−2(xJ) = δ IJ , N1
3I−1(xJ) = 0, N1

3I(xJ) = 0
N1

3I−2,x(xJ) = 0, N1
3I−1,x(xJ) = δ IJ , N1

3I,x(xJ) = 0
N1

3I−2,y(xJ) = 0, N1
3I−1,y(xJ) = 0, N1

3I,y(xJ) = δ IJ .

Those properties and the ability to model highly complex geometries makes them
extremely suitable for numerical treatment of the Cahn-Hilliard equation. In contrast
to different C1 continuous methods, the NEM has the advantage, that it is interpola-
tionary at the boundary of the domain and it can easily handle complex topologies
of the domain. However its major advantage is that its complexity does not increase
when extending to three dimensions.

16.5.1 Periodic boundary conditions

The behavior of the C1 interpolants along the boundary of the domain is identical to
cubic Hermite interpolation. Unfortunately, this statement is not true for the normal
derivatives of the function. Due to this reason, for exact application of C1 continuous
boundary conditions either the bubble functions b = N0

I N0
J N0

K have to be rearranged
at the boundary, such that the normal derivative is linear between two boundary
nodes or the Voronoi cells have to be computed directly on the periodic topology. In
this contribution, the latter has been chosen.
Considering a periodic box with width l1 and height l2, the distance on the modulo
space R/l1R×R/l2R is given by
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d(x,y) :=

[

∑
i

[min{|xi− yi|, l1−|xi− yi|}]2
] 1

2

(16.20)

and the periodicity is a simple consequence of the definition of the Sibon interpolant.

16.6 Time integration

To discretize the residual equation in time, the generalized trapezoidal method is
used. To this end, the time interval (0, τ ) is partitioned into discrete strictly positive
subintervals [tn, tn+1] with current increment ∆ t = tn+1− tn. From here on, the index
◦n+1 is omitted for sake of transparency.
The starting point is the known concentration cn, at the beginning of the current time
step ∆ t. The generalized trapezoidal method is used for the update of the concentra-
tion in time, according to the concentration functional

Π B(c,w) =
∫

B

∆ wMλ ∆ c+ ∇ w · [M ∇ µ c + ∇ Mλ ∆ c] dV

−
∫

Γ
wM ∇ (µ c− λ ∆ c) ·n+Mλ ∆ c ∇ w ·n dA

(16.21)

or the corresponding expression for the two field problem

Π c
B(c,w) =

∫

B

∇ w · [M ∇ · [µ c + γ [c− c̄]]] dV

−
∫

Γ
M ∇ µ ·n dA

(16.22)

In a semi-discretized form, using the generalized trapezoidal method, we write

Rn,α (c,w) =
∫

B

1
∆ t

w[c− cn] dV+α ∆ tΠ B(c,w)+ [1− α ]∆ tΠ B(cn,w)=̇0.

(16.23)

16.7 Stiffness matrices

By introducing the C1 continuous interpolation functions in the semi-discretized
form (16.23), the discrete residuals are

Rn,α (c,N
1
I ) =

∫

B

N1
I

1
∆ t

[c− cn] dV+α Π B(c,N1
I )+ [1− α ]Π B(cn,N

1
I )=̇0.

(16.24)
For the solution of the highly-nonlinear discrete residual equations (16.24), the
Newton-Raphson method is used,
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Rk+1
n,α = Rk

n,α + dRn,α =̇0 with dRI =
3m

∑
J=1

KIJdcJ. (16.25)

The corresponding iteration matrix takes the following explicit representation:

KIJ =
∫

B

N1
I

1
∆ t

N1
J

+ α
[∫

B

∆ N1
I λ
[
M∆ ∂ cMN1

J

]
dV

+

∫

B

∇ N1
I ·
[
∇ µ c∂ cMN1

J +M∂ cµ c ∇ N1
J + λ

[
∆ c∂ cM ∇ N1

J + ∇ M∆ N1
J

]]
dV

+

∫

B

∇ N1
I ·
[
λ ∆ c∂ 2

c M ∇ cN1
J +M∂ 2

c µ c ∇ cN1
J

]
dV
]
.

(16.26)

For the mixed form, the two sets of residual equations are identified as follows:

Rc
n,α = N0

I
c− cn

∆ t
+ α Π B(c,N0

I )+ [1− α ]Π B(cn,N
0
I )=̇0

Rc̄ = N0
J [c̄− c]+ ∇ N0

J κ ∇ c
(16.27)

with the following iteration matrices

Kcc
IK =

∫

B

N0
I

1
∆ t

N0
K

+ ∇ N0
I · [M∂ c µ c + γ ] ∇ N0

K

+ ∇ N0
I · [∂ cM ∇ [µ c + γ [c− c̄]]]N0

K

+ ∇ N0
I · [M∂ c ∇ cµ c]N

0
K dV

Kcc̄
IL =−

∫

B

∇ N0
I ·Mγ ∇ N0

L dV

K c̄c
JK =−

∫

B

N0
J N0

K + ∇ NJ · κ ∇ N0
K dV

K c̄c̄
IL =

∫

B

N0
J N0

L dV .

(16.28)

16.8 Computational results

Here, the solution for the C0 and C1 NEM are compared. A periodic unit square
domain with length l1 = 20 and l2 = 20 is used. For the comparison of the results,
the initial concentration is given by

c0(x) =

{
0.45 for mini(xi)≤ 2.34

0.45 for mini(xi)> 2.34.
(16.29)
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The computations are performed with degenerate mobility and the following dimen-
sionless material parameters: D = 2, RT = 2000, θ = 1.1 and λ = 500. An initial
time step of ∆ t = 10×10−3 is considered. Fig. 16.3 illustrates the behavior of the in-
ternal energies for different discretizations. The fine discretizations have 200, 1250
and 5000 degrees of freedom in case of the C0 continuous discretization and 192,
1200 and 7500 in case of the C1 continuous results. To be able to see any differences
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Fig. 16.3 Energy evolution whithin the phase separation processes.

the coarsest meshes with 64 points in case of the C1 solution and 100 points for the
C0 continuous solution is used for the contour plots in Fig. 16.4.

16.9 Conclusions

In case of the natural element method, we have shown that both, the C1 as well as
the C0 continuous discretization methods lead to similar results. For the coarse solu-
tion, the C1 continuous discretization delivers smoother pictures, compare Fig. 16.4.
However, even more important, the C1 continuous discretization demonstrates faster
convergence in the energy plot, see Fig. 16.3. Especially to reach the energy level
of the semi-stable solution after phase separation, the C0 continuous discretization
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C1

C1

C0

C0

t ≈ 0.01 t ≈ 0.025 t ≈ 0.08

t ≈ 0.20 t ≈ 0.40 t ≈ 1

Fig. 16.4 Evolution of concentration for a coarse mesh. Comparison of C1 and C0 NEM.
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method needs a much higher total number of degrees of freedom. Additionally, the
initial behavior for the C1 NEM is similar for the medium and fine concentrations,
whereas it is still varying a lot in case of the C0 NEM. Therefore, we propose to
chose the C1 continuous discretization whenever possible.
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Chapter 17
Constitutive Models of Mechanical Behavior of
Media with Stress State Dependent Material
Properties

Evgeny V. Lomakin

Abstract The behavior of heterogeneous materials is studied. The dependence of the
effective elastic properties of micro-heterogeneous materials on the loading condi-
tions are analyzed and corresponding mathematical methods for the description of
the observed effects are proposed. The constitutive relations of the theory of elastic-
ity for isotropic solids with stress state dependent deformation properties are con-
sidered. The possible approach to the formulation of the constitutive relations for
the elastic anisotropic solids that elastic properties depend on the stress state type is
considered, and the corresponding constitutive relations are proposed. The method
for the determination of material’s functions on the base of experimental data is
proposed. The quite satisfactory correspondence between the theoretical results and
experimental data is shown.

Key words: Micro-heterogeneous materials. Phenomenological approach. Elastic
properties. Isotropic materials. Anisotropic materials. Stress state dependent prop-
erties.

17.1 Introduction

The experimental studies of deformation properties of many heterogeneous and
composite materials display the dependence of their properties on the conditions
of loading. There are different mechanisms related to this phenomenon. In the case
of granular porous materials, the area of contact between the particles increases un-
der compressive loads. Then one would expect that the elastic characteristics would
increase under compression in comparison with values corresponding to the action
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Fig. 17.1 Effective stress-
strain diagrams of ARV
graphite. 0.001 0.002 0.003 ε 0
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of tensile loads. In the case of cracked materials, the crack opening occurs under
tensile load and the effective cross section carrying the load is less than in a solid
material. Therefore the effective deformation properties depend on the concentra-
tion of microcracks. Under the conditions of compressive loads, it is possible that
the closure of microcracks and the contact of crack faces would happen. The me-
chanical properties in this case depend on the conditions of interactions on the crack
faces that are determined in one’s turn by the ratios between different components
of the stress tensor. This applies equally to an arbitrary type of loading. It means that
the material properties are not invariant to the type of external forces but depend on
the stress state type. For example, the initial slope of the stress-strain curve under
conditions of compression is from 1.3 to 2 times the initial slope of the curve for
tension [8].

Similar results have been obtained for structural graphite [1]. The effective stress-
strain curves of ARV graphite are shown in the Fig. 17.1, which were obtained
by a proportional loading of tubular specimens under plane stress conditions. The

effective stress is σ 0 =
√

3
2 Si jSi j, where Si j = σ i j− σ δ i j is the stress deviator and

σ = 1
3 σ ii is the hydrostatic component of the stress. The effective strain is ε 0 =√

2
3 ei jei j, where ei j = ε i j− 1

3 ε δ i j is the strain deviator and ε = ε ii is the bulk strain.
Curves 1, 2, 3 and 4 correspond to uniaxial tension, uniaxial compression, shear
and uniform biaxial tension, respectively. Instead of the single curve, as usually
supposed in different theories of deformation, there is a fan of effective stress-strain
curves and their deviation is noticeable. The curves have a weak non-linearity and
a linear approximation of them is possible in a certain deformation range. Similar
effects can be demonstrated for rocks, concrete, cast-iron and other materials [4].

The opposite effect sometimes can be observed in the case of composites. The
fabric based carbon-carbon composites or composites with triaxial weave usually
have considerable porosity. The fibers are tightened up under tension but they can
buckle into the pores space under compression. The mechanisms of deformation are
quite different for these loading conditions. The bending stiffness of fibers is much
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lower in comparison with the tensile one. Thus the elastic modulus of the composite
under tension can be greater by a factor of 4 or 5 then the elastic modulus under
compression [2].

17.2 Constitutive Relations for Isotropic Materials

The deformation properties of materials under consideration are the stress-state-
dependent ones. In the general case, the stress state type can be characterized by
two parameters ξ = σ /σ 0 and SIII/σ 3

0 , where SIII = Si jS jkSk j is the third invari-
ant of the deviator of the stress tensor. The hydrostatic component of the stress σ
characterizes the mean value of normal stresses at arbitrary point of a continuum
and the effective stress or the stress intensity σ 0 defines the mean value of shear
stress at the same point of a continuum. The parameter ξ characterizes the stress
state type on the average but the parameter SIII/σ 3

0 specifies the deviation from this
average value. For the formulation of the constitutive relations the parameter ξ is
used. The potential for the elastic solids with stress state dependent properties can
be represented in the form

Φ =
1
2
[1+ ζ (ξ )]

(
A+Bξ 2) σ 2

0 (17.1)

Differentiating Eq. (17.1) with respect to the stresses σ i j, the strain-stress rela-
tions can be obtained

ε i j =
3
2
[A+ ω (ξ )]Si j +

1
3
[B+ Ω (ξ )] σ δ i j,

ω (ξ ) = −1
2

(
A+Bξ 2) ζ ′(ξ )ξ +Aζ (ξ ), (17.2)

Ω (ξ ) =
1
2

(
A+Bξ 2) ζ ′(ξ )/ξ +Bζ (ξ ).

The prime denotes the derivative of function with respect to ξ . The functions ω (ξ )
and Ω (ξ ) and their derivatives are related

ω + ξ 2Ω =
(
A+Bξ 2) (1+ ζ ),

ω ′+ ξ 2Ω ′ = 0.
(17.3)

From Eqs (17.2) and (17.3), it is possible to obtain the following expressions for the
bulk strain ε end the effective strain ε 0:

ε = [B+ Ω (ξ )] σ , ε 0 = [A+ ω (ξ )] σ 0 (17.4)

The Eqs (17.4) determine the relation between the bulk strain and the effective strain
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ε =
B+ Ω (ξ )
A+ ω (ξ )

ξ ε 0 (17.5)

Equation (17.5) signifies that the shear strains can cause the volume alteration of
a material. The bulk strain ε is proportional to the strain intensity ε 0, but the pro-
portionality factor is not constant but it depends on the stress state type parameter
ξ . This factor is the variable quantity according to the type of loading and it has
different values for uniaxial tension, uniaxial compression, shear, different types of
biaxial and triaxial stress states.

Without loss of generality, we can assume that in the case of pure shear (ξ =
0) the function ω (ξ ) has value ω (0) = 0. Then the constant A in Eqs (17.2) is
determined by the slope of effective stress-strain curve in the case of pure shear
and ζ (0) = 0. The functions ω (ξ ), ζ (ξ ) and Ω (ξ ) can be determined on the base
of a series of diagrams of the dependence between the effective strain ε 0 and the
effective stress σ 0. According to the Eq. (17.4), the function ω (ξ ) = −A+ ε 0/σ 0.
The second expression of Eq. (17.2) can be integrated, and it is possible to obtain
the following expression for the function ζ (ξ ):

1+ ζ (ξ ) =
(

A+ ω +Bξ 2− ξ 2
∫ ω ′dξ

ξ 2

)
(A+Bξ 2)−1

As an example of experimental determination of all the parameters in the constitu-
tive relations (17.2), the data obtained for graphite and represented in Fig. 17.1 can
be used.

Fig. 17.2 The graph of func-
tion ω (ξ ) for ARV graphite.

-0,33 0 0,33 0,66

ω

0,5

ξ

In consequence of the weak non-linearity of effective stress-strain curves in
Fig. 17.1, it is possible to approximate them by linear functions in the range of de-
formation 0.001. For this approximation the following values of elastic modulus and
Poisson’s ratio are obtained: E+ = 5.1 ·103 MPa, ν + = 0.2 for uniaxial tension and
E− = 7.83 ·103 MPa, ν − = 0.3 for uniaxial compression, respectively. The constant
A can be obtained on the base of the curve 3 in Fig. 17.1 corresponding pure shear,
and it has the value A = 1.35 ·10−4 MPa−1. The graph of function ω = ω (ξ )/A is
shown in Fig. 17.2. The piecewise linear approximation ω =Cξ can be used for this
function with C = 0.45 for ξ > 0 and C = 0.3 for ξ < 0, respectively. The constant
B can be determined on the base of the value of elastic modulus for tension E+, and
this value is B = 1.76 ·10−4 MPa−1. The calculated value of elastic modulus under
compression is E− = 7.81 ·103 MPa. The calculated values of Poisson’s ratio under
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tension and compression are ν + = 0.195 and ν − = 0.42, respectively. The corre-
spondence between the experimental and calculated values of graphite deformation
properties is quite satisfactory.

The Eqs (17.2) can be solved for the stresses by introducing the parameter γ =
ε /ε 0. The Eq. (17.5) gives the possibility to express the parameter ξ as a function
of parameter γ , The potential can be represented in the form

U =
1
2
[1+ η (γ )]

(
1
A
+

γ 2

B

)
ε 2

0 (17.6)

The stress-strain relations can be obtained by differentiating Eq. (17.6) with re-
spect to the strains ε i j

σ i j =
2
3

ψ (γ )ei j + Ψ (γ )ε δ i j,

ψ (γ ) = −1
2

(
1
A
+

γ 2

B

)
η (γ )γ +

1
A
[1+ η ′(γ )], (17.7)

Ψ (γ ) =
1
2

(
1
A
+

γ 2

B

)
η (γ )γ −1 +

1
B
[1+ η ′(γ )].

Some properties of the constitutive relations (17.2) and (17.7) are analyzed in [4, 5,
6]. It is shown that some traditional approaches to the solution of boundary value
problems can not be accepted and new methods are proposed [7].

17.3 Constitutive Relations for Anisotropic Materials

The formulation of the constitutive relations for the anisotropic materials is much
more complex in comparison with the isotropic ones. In general, it is necessary
to suppose that all the anisotropy coefficients are the functions of the stress state
parameter ξ . The potential for an anisotropic solid with stress state dependent de-
formation properties can be represented in the following form:

Φ =
1
2

Ai jkl(ξ )σ i jσ kl (17.8)

Equation (17.8) represents some generalization of classic elastic potential. Differ-
entiating Eq. (17.8) with respect to the stresses and taking into account that

∂ σ 0

∂ σ i j
=

3
2

Si j

σ 0

and
∂ σ
∂ σ i j

=
1
3

δ i j,
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we obtain the dependence of the strains on the stresses:

ε i j = Ai jkl(ξ )σ kl +
1
2

A′mnpq(ξ )σ mnσ pq

[(
1
3
+

3
2

ξ 2
)

δ i j−
3
2

ξ σ i jσ −1
0

]
σ −1

0

(17.9)

From Eq. (17.9) it follows that the strains consist of two parts, one corresponds
to deformations of an anisotropic solid, the second one represents the deformations
of some isotropic solid because this part has isotropic nature. The strain potential
represents the homogeneous function of second order of the components of stress
tensor and according to the Euler theorem one can obtain

2Φ = σ i jε i j (17.10)

From Eq. (17.10) it follows that the Clapeyron theorem is valid for materials under
consideration, namely the work of external forces

A =
1
2

∫

V

σ i jε i jdV. (17.11)

As distinct from classic anisotropic solid, the problem of determination an
anisotropy coefficients as the functions of the stress state parameter ξ arises. Thus,
in general for each stress state type, it is necessary to determine the set of coeffi-
cients Ai jkl(ξ ). The constitutive relations (17.9) seem to be very complex but their
nature is clear and simple and the procedure for the determination of the anisotropy
functions can be proposed. Analyzing these constitutive relations one can discover
that the complex expression in the square brackets reduces to zero in the case of
uniaxial tension and uniaxial compression when the parameter ξ is equal 1/3 and
−1/3, respectively. Let us consider plane stress conditions of an anisotropic solid.
Then relations (17.9) reduce to the following:

ε x = a11(ξ )σ x + a12(ξ )σ y +

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ x

]
Φ 1σ −2

0 ,

ε y = a12(ξ )σ x + a22(ξ )σ y +

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ y

]
Φ 1σ −2

0 ,

γ xy =

[
a66(ξ )−

3
2

ξ Φ 1σ −2
0

]
τ xy,

Φ 1 =
1
2

[
a′11(ξ )σ 2

x + a′22(ξ )σ 2
y + 2a′12(ξ )σ xσ y + a′66(ξ )τ 2

xy

]
.

(17.12)

In the case of potential (17.8), it is necessary to determine the character of de-
pendence of coefficients Ai jkl on the parameter ξ on the base of the experimental
data. The most simple and useful one is a piecewise approximation. In the case of
linear dependence of the coefficients Ai jkl on the parameter ξ , it is possible to write
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Ai jkl = A0
i jkl +Ci jkl(ξ − 1/3), (17.13)

where A0
i jkl are the values of anisotropy coefficients under uniaxial tension (ξ =

1/3). Then the coefficients ai j(ξ ) and the function Φ 1 can be represented in the
form of

ai j(ξ ) = a0
i j + ci j(ξ − 1/3), a0

i j = ai j(1/3),

Φ 1 =
1
2
(c11σ 2

x + c22σ 2
y + 2c12σ xσ y + σ 66τ 2

xy).
(17.14)

Rotating the coordinate system the coefficients of anisotropy ai j are transformed
according to the usual equations for the transformation of components of a fourth
rank tensor [3]. In principal stress axes p and q, Eq. (17.12) can be represented in
the form

ε p = b11(ξ )σ p + b12σ q +

[(
1

9ξ
− ξ
)

σ p +

(
1

9ξ
+

1
2

ξ
)

σ q

]
Φ 1σ −2

0 ,

ε q = b21(ξ )σ p + b22σ q +

[(
1

9ξ
− ξ
)

σ q +

(
1

9ξ
+

1
2

ξ
)

σ p

]
Φ 1σ −2

0 ,

γ pq = b61(ξ )σ p + b62(ξ )σ q,

σ 2
0 = σ 2

p + σ 2
q − σ pσ q,

(17.15)

where bi j are the coefficients of anisotropy in the principal stress axes. Coefficients
ai j and bi j are related by the following formulae:

b11 = a11 cos4 ϕ +(2a12 + a66)sin2 ϕ cos2 ϕ + a22 sin4 ϕ ,

b22 = a11 sin4 ϕ +(2a12 + a66)sin2 ϕ cos2 ϕ + a22 cos4 ϕ ,

b12 = (a11 + a22− 2a12− a66)sin2 ϕ cos2 ϕ + a12.

(17.16)

Similar equations can be written for the coefficients b61, b62 and b66, too. The
coefficients a0

i j and ci j can be determined on the base of experimental data for the
conditions of uniaxial tension and uniaxial compression along the principal axes of
orthotropy and along the directions at some angles with them. Under conditions of
uniaxial tension, σ = 1

3 σ p, σ 0 = σ p, ξ = 1
3 and for the strains along the x and y axes

from Eqs (17.12) we obtain

ε x = a0
11σ x, ε y =

(
a0

12 +
1
4

c11

)
σ x

ε y = a0
22σ y, ε x =

(
a0

12 +
1
4

c22

)
σ y

(17.17)

Under conditions of uniaxial compression (ξ = −1/3) along the same axes, it
can be obtained
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ε x =

(
a0

11−
2
3

c11

)
σ x, ε y =

(
a0

12−
2
3

c12−
1
4

c11

)
σ x

ε y =

(
a0

22−
2
3

c22

)
σ y, ε x =

(
a0

12−
2
3

c12−
1
4

c22

)
σ y

(17.18)

The coefficients a0
11 and a0

22 are determined as ratio of the axial strain to the axial
stress according to Eqs (17.17). The coefficients c11 and c22 can be determined
from Eq. (17.18). The coefficients a0

12, a0
66 c12 and c66 can be determined on the

base of the results of experiments under conditions of uniaxial tension and uniaxial
compression at some angle to the principal axes using Eqs (17.13)–(17.18).

In the case of similar dependence of anisotropy coefficients on the stress state
type parameter ξ , it could be considered a simplified potential

Φ =
1
2
[1+ ζ (ξ )]Ai jklσ i jσ kl (17.19)

In this case, the strain-stress relations (17.12) reduce to the following ones:

ε x = [1+ ζ (ξ )](a11σ x + a12σ y)+

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ x

]
ζ ′(ξ )Φ 0σ −2

0 ,

ε y = [1+ ζ (ξ )](a12σ x + a22σ y)+

[(
1

3ξ
+

3
2

ξ
)

σ − 3
2

ξ σ y

]
ζ ′(ξ )Φ 0σ −2

0 ,

γ xy =

{
[1+ ζ (ξ )]a66−

3
2

ξ ζ ′(ξ )Φ 0σ −2
0

}
τ xy,

Φ 0 =
1
2

[
a11σ 2

x + a22σ 2
y + 2a12σ xσ y + a66τ 2

xy

]
,

σ 0 = (σ 2
x + σ 2

y − σ xσ y + 3τ xy)
1/2

(17.20)

Here the x and y directions coincide with the warp and woof directions of the
cloth, respectively. Coefficients bi j in Eqs (17.15) can be represented in the form
bi j(ξ ) = [1+ ζ (ξ )]bi j. Coefficients ai j and bi j are related by the conversion of for-
mulae (17.16). We can denote the coefficients of the transverse deformation for the
principal and rotated coordinate systems as k12 = ε y/σ x and k′12 = ε q/σ p, respec-
tively. Then from Eqs (17.16) it can be found

a12 =
[
b11k12− a11(b11− k′12− a11 cos2 ϕ − a22 sin2 ϕ )

]
(b11− a11)

−1,

a66 = b11(cos2 ϕ sin2 ϕ )−1− a11 cot2 ϕ − a22 tan2 ϕ − 2a12
(17.21)

For uniaxial test conditions the coefficients a11 = ε x/σ x, a22 = ε y/σ y, b11 = ε p/σ p.
For the potential (17.19), the only function of the stress state type ζ (ξ ) has to be

determined and all the coefficients of anisotropy can be determined on the base of
experiments under conditions of uniaxial tension. The function ζ (ξ ) can be deter-
mined on the base of Eqs (17.10) and (17.19), from which it follows:
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Fig. 17.3 The stress-strain
diagrams for the composite
fiberglass cloth/polyether
resin under conditions of
tension at the angles 0◦, 22.5◦

and 45◦ to the direction of the
warp of the cloth.

σ , MPa σ , MPaσ , MPaσ , MPaσ , MPa

2
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Fig. 17.4 The stress-strain
diagrams under conditions of
compression of the composite
at the angles 0◦, 22.5◦ and 45◦

to the direction of the warp of
the cloth.
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Fig. 17.5 The stress-strain
diagrams for the condi-
tions of shear with tension-
compression directions
0◦ − 90◦, 22.5◦ − 112.5◦

and 45◦−135◦.
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1+ ζ = σ i jε i j(ai jkl σ i jσ kl)
−1 (17.22)

For each stress state type or the type of loading, it is possible to define the values
of function ζ using the known values of strains and stresses. Without the loss of the
generality, one can suppose that ζ (1/3) = 0.

The possibilities of the constitutive relations (17.20) in the description of the me-
chanical behavior of composite materials can be demonstrated on the base of the
comparison of theoretical prediction and experimental data for the composite on
the base of glass cloth and polyether matrix [9]. The plain specimens were used
in the experiments. Therefore the Eqs (17.15), (17.16) and (17.20) can be used for
the analysis of the results of experimental studies of the deformation properties of
the composite. The stress-strain diagrams under tension of the composite in the di-
rection of the warp of the cloth and at the angles 22.5◦ and 45◦to this direction are
shown in Fig. 17.3. The stress-strain diagrams under conditions of uniaxial compres-
sion of the composite are shown in the Figs 17.4 for the same directions. Curves
1 and 2 refer to longitudinal and transverse deformation, respectively. The diagram
for compression along the fibers is linear up to failure. The diagram for tension
displays some nonlinearity. With a certain degree of accuracy, the diagram for ten-
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Direction of loading 0◦ 22.5◦ 45◦

ξ
ε x

σ x

ε y

σ x

ε p

σ p

ε q

σ p

ε p

σ p

ε q

σ p

Experimental 1/3 7.0 −0.64 9.9 −3.14 − −
Theoretical 1/3 − − − − 13 −5.7

Experimental −1/3 5.34 −0.97 7.8 −3.23 10.2 −5.4
Theoretical −1/3 − −0.94 7.5 −3.04 9.9 −5.2

Experimental 0 8.39 −7.04 14.7 −12.15 20.3 −16.9
Theoretical 0 8.17 −6.08 13.7 −11.37 19.7 −16.2

Table 17.1 Experimental and theoretical values of the deformation coefficients of the composite
in 10−5 MPa−1

sion can also be approximated by a linear one. It is possible to accept a measure of
deviation from the initial slope of the diagram corresponding to the nonlinear defor-
mation of 0.002. This linear diagram for the tension in the warp direction is shown
in the Figs 17.3 by the dotted line. Under this approximation, the elastic modulus
of the composite under tension along the fibers is E+ = 1.428 ·104 MPa. The elastic
modulus under the compression in the same direction is E− = 1.873 ·104 MPa.

The analysis of the results of experiments under uniform biaxial loading indicates
that the compliances of the composite in the directions of warp and woof of the cloth
are almost equal within the frame of the adopted approximation. Thus it can be
assumed that a11 = a22 = 1/E+ = 7 ·10−5 MPa−1. On the base of Eq. (17.21) using
the values of compliances given in the first line of Table 17.1 we can determine
the values of other two elastic constants a12 = −1.6 · 10−5 MPa−1 and a66 = 41.2 ·
10−5 MPa−1. When all the anisotropy coefficients for plane stress conditions are
determined, it is possible to calculate the value of function ζ (ξ ) for the conditions
of uniaxial compression (ξ = −1/3). In accordance with Eq. (17.22) and the value
of compliance ε x/σ x under compression we obtain ζ =−0.24.

The stress-strain diagrams for the conditions of shear (ξ = 0) in the plane of
composite layers are shown in Figs 17.5. The experiments were carried out for
three directions of tension-compression with respect to the warp of the cloth, that
is 0◦− 90◦, 22.5◦− 112.5◦ and 45◦− 135◦. Indexes 1 and 2 refer to the tensile
strain and the compressive strain, respectively. Using the values of the strains and
the stresses for the 0◦−90◦ conditions, we can determine the value of function ζ (ξ )
for shear, ζ (0) = −0.13. The graph of the function ζ (ξ ) for the range of variation
of parameter ξ , −1/3 6 ξ 6 1/3, is shown in Fig. 17.6.

Since all the parameters of the constitutive relations represented by Eq. (17.20)
are determined, it is possible to compare the theoretical and experimental data ob-
tained for plane stress conditions. In the case of shear,

σ y =−σ x, σ 0 =
√

3σ x, Φ 0 = (a11− a22)σ 2
x , ξ = 0

and according to Eq. (17.20) we have
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Fig. 17.6 The graph of func-
tion ζ (ξ ) for the composite.

-0.33 0.33

-0.2

ζ

ξ

ε x/σ x = (a11− a12)[1+ ζ (0)+ ζ ′(0)(3
√

3)−1],

ε y/σ x =−(a11− a12)[1+ ζ (0)− ζ ′(0)(3
√

3)−1]
(17.23)

For the case when the stresses are applied at some angle to the fiber direction,
the coefficients a11 and a12 in Eq. (17.23) should be replaced by the coefficients b11

and b12 in accordance with Eq. (17.16). The theoretical and experimental values of
compliances for different types of loading and various loading directions are given
in Table 17.1. The correspondence between the theoretical values and experimental
data is quite satisfactory. The calculated initial slope of the stress-strain diagrams
are shown in Fig. 17.3–Fig. 17.5 by the dotted lines, and the trend of the variation of
initial elastic deformation properties of the composite under various external forces
is described by the considered constitutive equations satisfactorily.

17.4 Conclusions

The dependence of the effective elastic properties of micro-heterogeneous materi-
als on the conditions of loading or the conditions of deformation is studied. The
phenomenological approach to the description of the behavior of the heterogeneous
materials under different types of external forces is considered. The constitutive
equations of the theory of elasticity for isotropic solids with stress state dependent
deformation properties are analyzed. Some properties of constitutive equations are
studied. The method for experimental determination of material functions is pro-
posed.

A possible approach to the formulation of the constitutive equations of the the-
ory of elasticity for the anisotropic solids, which deformation properties depend on
the stress state type is considered. The mechanical properties of these materials are
characterized by a set of the anisotropy functions instead of a set of elastic constants
in the case of the classic linear elastic solid. The method for the determination of
anisotropy functions on the base of experimental data is described. The results of
experimental studies of properties of composite materials on the base of fiberglass
cloth and polyether resin obtained under different loading conditions are analyzed.
The satisfying correspondence between the calculated values of deformation coeffi-
cients and experimental data is demonstrated.
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