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Abstract. Highly efficient compression provides a promising approach
to address the transmission and computation challenges imposed by mov-
ing object tracking applications on resource constrained Wireless Sensor
Networks (WSNs). In this paper, we propose and design a Compressive
Sensing (CS) based trajectory approximation algorithm, Adaptive Algo-
rithm for Compressive Approximation of Trajectory (AACAT), which per-
forms trajectory compression, so as to maximize the information about
the trajectory subject to limited bandwidth. Our extensive evaluation us-
ing “real” trajectories of three different object groups (animals, pedestri-
ans and vehicles) shows that CS-based trajectory compression reduces up
to 30% transmission overheads, for given information loss bounds, com-
pared to the state-of-the-art trajectory compression algorithms. We im-
plement AACAT on the resource-impoverished sensor nodes, which shows
that AACAT achieves high compression performance with very limited
resource (computation power and energy) overheads.

1 Introduction

Object tracking is on horizon due to multitude of application scenarios in the
present time. The Virtual Fencing (VF) application devised by the CSIRO ICT
Center, Australia is one such example, where the locations of animals are con-
trolled, not by a physical fence, but with stimuli (e.g. auditory and mild electric
shocks) applied by special devices worn by the animals. Ethical considerations
are critical in the VF application and observations regarding the states of each
animal must be maintained. Since continuous human observation is infeasible,
it is important to return data about the states of the animals and the stimuli
applied. The VF application operates in a delay tolerant fashion. The position
data of an animal is recorded and stored in a sensor node attached to the animal.
There is also a small number of fixed nodes which are connected to the basesta-
tions. When animals enter the transmission range of a fixed node, position data
from their sensor nodes are uploaded to the basestations. Due to uncoordinated
movement of the animal connection time (amount of time a fixed node is con-
nected with the mobile node) is typically unpredictable. Therefore, the amount
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of data that can be uploaded during a connection is also unpredictable in the
VF application.

The VF application poses two fundamental challenges. First, monitoring a
large number of animals requires the availability of their complete geographi-
cal traces (trajectories), which leads to transmission challenges due to limited
bandwidth of wireless nodes. Second, limited transmission opportunities and con-
nection time often cause the memory buffer to become full, therefore it becomes
necessary to discard data, which leads to data loss.

Besides the VF application, trajectory compression is becoming essential in a
number of participatory sensing [2] applications, such as, social networking (user
locations need to be continuously uploaded) and traffic conditions monitoring
(traffic condition is inferred by analyzing position data uploaded from vehicles)
using mobile phones. Although, mobile phones have access to higher bandwidth,
expensive cellular communications often restricts the amount of data that can
be transmitted. GPRS or cellular bandwidth imposes strong restriction on the
amount of transmission.

An efficient trajectory compression algorithm helps to cope with limited band-
width; therefore, trajectory compression has been extensively studied in the last
decades. One class of these compression algorithms [6,12] is mainly guided by
the advances in the field of line simplification and cartographic generalization.
The primary disadvantage of these algorithms is the frequent elimination or mis-
representation of important points, such as sharp angles. Another class [1,10] of
algorithms achieves compression via predictions; however, these algorithms gen-
erally assume that the mobile objects have a limited number of movement states
(e.g moving speed and direction), which may be impractical in the reality.

Recent developments in Compressive Sensing (CS) theory [3] provide an at-
tractive alternative for trajectory compression in WSNs. Given that a trajectory
segment f ∈ R

n is compressible in a sparsifying domain (e.g. Fourier, Discrete
Cosine Transform (DCT) etc.), then a small number of coefficients (which will
be denoted by k is this paper), is sufficient to accurately represent the trajectory
segment. The key idea behind CS is that it takes a small number of projections
m(<< n) to accurately recover f with high probabilities (projections are typi-
cally aggregations of data points of a trajectory segment, we define it in detail
in Section 3). Since, only m(<< n) projections need to be transmitted to the
basestations, CS offers efficient use of bandwidth.

The key challenge of applying CS in trajectory compression is that we need to
estimate the compressibility, namely the parameter k, of the trajectory in-situ to
obtain the most benefits out of CS in practice, because the number of compres-
sive projections (m) is a function of compressibility (k) that changes dynamically
with the speed of the mobile objects. Intuitively, when an object is stationary
or moves with a constant speed, the compressibility of its trajectory is high and
thus it requires a smaller number of projections to recover the trajectory ac-
curately. On the other hand, when the speed of the object changes frequently,
the compressibility of the trajectory diminishes and it requires a larger number
of projections to recover the trajectory accurately. However, the conventional
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method of computing compressibility is computationally expensive, and is in-
feasible for resource constrained WSN nodes. We propose and design a Support
Vector Regression (SVR), namely ε-SV regression [18], based in-situ compress-
ibility estimation technique, to provide an accurate estimation of k based on the
speed information of the nodes, and has small computational overheads.

Our key contributions can be summarized as follows:

1. We present an Adaptive Algorithm for Compressive Approximation of Trajec-
tory (AACAT), which adapts the number of CS projections while accurately
approximating the trajectory. An ε-SV regression based estimation is pro-
posed to adapt the number of CS projections to the object’s speed in-situ,
which improves the compression performance of CS based on the local speed
observations.

2. Our evaluations, based on the trajectories of three types of moving objects,
exhibiting large range of speed variations, show that CS-based trajectory
compression achieves 30% better “transmission versus accuracy trade-off”,
compared to two other state-of-the-art trajectory compression algorithms
based on Kalman filter and Spatiotemporal compression techniques. Our
evaluations also show that CS-based trajectory compression is resilient to
information loss as it offers promising “loss-distortion trade-off”.

3. Our implementation of AACAT on Fleck 3b platform consisting of an 8-
bit microcontroller and 8 kB RAM, demonstrates the resource efficiency of
AACAT that makes it a viable algorithm for resource impoverished sensor
nodes. Furthermore, we show that AACAT approximates trajectories with
high accuracy using empirical study.

2 Datasets

We evaluate the performance of AACAT using three datasets from WSN deploy-
ments and field experiments. These three datasets are made up of animal (cow),
pedestrian and vehicle trajectories respectively, which will demonstrate the per-
formance of AACAT with a large range of speed variation of mobile nodes. The
animal trajectories were collected from a real WSN deployment at the Wivenhoe
Dam, where sensor nodes are mounted on the cow collars and locations are sam-
pled by the GPS receivers at 2 Hz. We collected trajectories of 36 cows for one
week. The pedestrian and vehicle datasets were created with the help of 20 staff
and student members of the CSIRO ICT center. They were given Nokia N97
mobile phones for a two-week period to use during their daily commute. Anno-
tation was used to differentiate vehicle and pedestrian data. A python script was
installed on the phone that recorded the GPS coordinates at 2 Hz. In summary,
we collected 75,000 segments of cow trajectories, 1,000 segments of pedestrian
trajectories and 5,000 segments of vehicle trajectories, where each segment has
n = 512 data points1.

1 We also conducted experiments with smaller segment lengths e.g. 128, 256 and ob-
served similar results.
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The ε-SV regression method used for estimating k involves a training and a
test phase. We divided our datasets into training and testing datasets to use
during the training and validation phases, respectively, and ensured that they
are independent. For example, the training set for pedestrian was formed using
the trajectories within the campus of the CSIRO ICT center and the test set was
formed using trajectories outside of the CSIRO ICT center campus. For animals,
we used the trajectories of half of the cows as the training set and trajectories
from the rest of the cows as the test dataset. Finally, training and test datasets
for vehicle were formed using trajectories from separate road segments.

3 Compressive Sensing for Trajectory Compression

We first present the problem that we solve in this paper followed by the basic
idea of CS and how to apply CS theory to trajectory compression.

3.1 Problem Formulation

Consider f ∈ Rn is a trajectory segment containing n consecutive position data
points of a moving object. In order to conserve bandwidth, we want to acquire
only m << n projections of f , which can be used to accurately reconstruct f
at the basestations. Due to limited transmission opportunities and connection
time, some of these m projections may further be discarded. Therefore, it is also
required that reconstruction performance degrades gracefully with the loss of
projections.

3.2 Compressive Sensing

The theory of CS provides an attractive solution to the problem of recovering
a compressible signal from a few projections. Given the trajectory segment f is
an n data point discrete time signal, using an n × n orthonormal basis matrix
Ψ = [ψ1|ψ2|...|ψn] with the vectors ψi as basis vectors, f can be represented as,

f = Σn
i=1ψiαi or f = Ψα, (1)

where, α is an n× 1 column vector of weighting coefficients αi = 〈f, ψi〉 = ψT
i f

and .T denotes the transposition. Note that a position data point is typically
represented using two geographic Cartesian coordinates, Northing and Easting,
where Northing refers to the northward-measured distance (or the y-coordinates)
and Easting refers to eastward-measured distance (or the x-coordinates). For
simplicity, we consider Northing and Easting separately i.e. f contains either
n consecutive Northing or Easting data points. Our approach is to separately
recover the Northing and Easting data points of a given trajectory segment to
recover the corresponding segment. Note that f and α are equivalent representa-
tion of the trajectory segment, with f in the time domain and α in the Ψ domain.
Generally, f is compressible when it has a few large and many small coefficients
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in the Ψ domain. Formally, f is compressible when the reordered entries of its
Ψ -coefficients decay like power law; i.e. when we rearrange the sequence of α in
decreasing order of magnitude |α|(1) ≥ |α|(2) ≥ ... ≥ |α|(n), for some the r ≥ 1,
the zth largest entry obeys,

|α|(z) ≤ Const.z−r. (2)

Instead of conducting point-wise measurements, CS takes m << n projections
of f , where each projection is an inner product between f and a projection vector
φj as in yj = 〈f, φj〉. Forming a m× n projection matrix Φ using m vectors φT

j ,
we can write the projection operation in matrix form, as follows:

y = Φf = ΦΨα = Θα (3)

Eq. (3) represents the typical CS encoding process, where Θ = ΦΨ .
Since m << n, the problem of recovering f from y and Θ is ill-conditioned.

CS shows that a sufficient condition for a stable solution is that for an arbitrary
3k sparse vector v and for some δ > 0, Θ satisfies

1 − δ ≤ ||Θv||
||v|| ≤ 1 + δ. (4)

Condition (4) is called Uniform Uncertainty Principle (UUP) [4] or Restricted
Isometry Property (RIP). CS theory also suggests mechanisms to generateΘ ma-
trices that satisfy the RIP with high probabilities. For example, if Φ is formed
by sampling iid entries from the normal distribution with mean 0 and variance
1/m, then for an arbitrary orthonormal basis Ψ , Θ = ΦΨ obeys RIP with over-
whelming probability, when m ≥ ck log (n

k ) with c as a small constant [5].
Condition (4) ensures that f can be recovered from (3); however, since m <<

n, there are many α′ that satisfies y = Θα′. Encouragingly, CS optimization
based on �1 norm

α̂ = argmin
α′

||α′||, s.t. y = Θα′ (5)

can accurately estimate f (namely producing the k-term approximation by
returning its largest k coefficients) with high probabilities, using only m ≥
ck log (n

k ) projections [4]. Eq. (5) is the CS decoding (reconstruction) process.
Since (5) is a convex optimization problem, it can be solved in polynomial time
and k-approximation of f (which will be denoted by f̂) can be recovered using
f̂ = Ψα̂.

Given that f is compressible, i.e. k is very small, we have ck log (n
k ) << n.

Therefore, using the CS theory, we can accurately recover f using only a small
number of projections m and achieve high compression ratio m

n , since m << n.
Consider, we compute m(= ck logn) projections of f . Due to limited trans-

mission opportunities and connection time, some of these projections (e.g. μ)
are discarded and only m̂ = m− μ of them are transmitted to the basestations.
Using m̂ projections we cannot recover f accurately, rather we can produce
k̂ ≤ k approximation of f with an increase of the reconstruction error. However,
in Section 6.1 we will empirically show that the reconstruction error increases
gracefully with the increase of μ.
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3.3 Adaptive Compressive Sensing

In order to get the most benefit out of CS in practice, we need to find a basis
where the trajectory data points are most compressible. In [15] we report that
trajectories of all three object groups have most compressible representation
in DCT. Now consider that a trajectory segment has k significant coefficients
while represented in DCT. In CS, the number of projections, m, to approximate
the trajectory segment accurately is determined by this number of significant
coefficients, k. Typically, k changes dynamically with the speed of the object.
Therefore, computing k for every trajectory segment would further improve the
compression performance. However, computing k for a trajectory segment in-
volves a transpose of an n × n matrix (O(n2

2 ) operations) and then multipli-
cation of the n × n matrix with an n × 1 vector (O(n2) operations), which are
computationally expensive for resource impoverished wireless sensor nodes. Note
that the transpose operation can be saved by storing ΨT in the memory, how-
ever the multiplication (ΨT f) will still incur high computational expenses. An
efficient estimation of k is therefore required, which accurately estimates k in-
curring affordable computation cost. In the next section we will propose an ε-SV
regression based technique to estimate k, which accurately estimates k incurring
reasonable computational expenses.

4 In-situ Estimation of k

In this section we first show the correlation of the speed of the moving objects
with k, then we use ε-SV regression to model this correlation.

4.1 Correlation between Speed and k

Given f ∈ R
n is an n data point Northing or Easting segment of a moving

object recorded over time ti, (i = 1, ..., n), the quantity |fi+1−fi|
ti+1−ti

, (i = 1, ..., n−1)
produces the speed along the corresponding Northing or Easting axis. We aim
to estimate k based on the speed of the moving object.

We process the trajectory in the test data set, segment by segment where each
segment is of length n. The n data points of a trajectory segment gives n − 1
speed readings along both Northing and Easting axes. In order to investigate
the correlation of speed with k, for each segment we compute mean, variance,
minimum and maximum (we call them speed candidates hereafter) of the corre-
sponding n−1 speed readings and plot them against the corresponding k values,
where we use a value of k that approximates the corresponding trajectory seg-
ment (Northing and Easting separately) within a small (one meter) error.

Figure 1 summarizes the correlations of different speed candidates with k over
all the segments of the training set from animals2. For a given speed candidate
2 Due to space constraints, in Fig. 1 we only depict the correlation for Northing. Similar

results are observed for Easting. Furthermore, we only use the animal dataset for
this illustration since similar to animal, for the rest two datasets, mean, variance
and maximum speed show the best correlation with k.
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e.g mean speed, we compute the mean speed of each of the trajectory segments
and compute the corresponding k value to approximate the trajectory segment
within one meter error. We then plot these mean speeds along x-axis and corre-
sponding k values in y axis in Fig. 1(a). In particular, instead of plotting the k
values, we plot the ratio between k and the total number of coefficients within a
trajectory segment along the y-axis. We observe that mean, variance and maxi-
mum speed are well correlated with k, because with the increase of these speed
candidates, the corresponding values of k increase proportionally. For clarity we
also show the value of correlation coefficients (CC) in the caption of the corre-
sponding figure. In the next section we will model the correlations between the
three chosen speed candidates (mean, variance and maximum) and k using ε-SV
regression.
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Fig. 1. The correlations of various speed candidates with k. The values of the correla-
tion coefficients (CC) are shown in the caption of corresponding figure.

4.2 Modeling Correlation by ε-SV Regression

Consider for a given speed candidate s, the training set,{(s1, k1), ..., (sL, kL)},
s ∈ R, k ∈ R, has L elements, where si is ith value of s and ki is the corresponding
value of k. The ε-SV regression determines a function g(s) that has at most ε
deviation from the actual ki for all the training data, and at the same time is as
flat as possible. The function g is typically computed from

g(s) = 〈ω, s〉 + b with ω ∈ R
n, b ∈ R, (6)

where 〈., .〉 denotes the dot product within R
n. In (6) flatness is achieved by

minimizing ω. Because of space limit, we only show the case for linear function
in (6), readers are encouraged to read [18] for the complete description of ε-
SV regression. One of the main characteristics of ε-SV regression is that it is a
Quadratic Problem (QP) which has a unique global solution in general.

In Section 4.1, we have shown that three candidates namely mean, variance
and maximum values of speed have close correlation with k. Using ε-SV regres-
sion we further attempt to find the best candidate among them. We use the
combinations of these candidates to increase the scope of our search. We first
train the ε-SV regression process using the mapping of k with different speed
candidates of the training dataset. In these mappings the values of k were chosen
to approximate the corresponding trajectory segment within one meter error3.
3 We chose the values of k to approximate Northing and Easting separately within 0.5

meter, therefore the resultant distance error is less than or equals to one meter.
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Table 1. MEE of k estimation for different speed candidates. The smallest MEE for
different forms of the datasets are highlighted in the corresponding column.

MEE of k estimation
Speed animal vehicle pedestrian universal

candidates

mean 2.97 1.28 0.19 3.82

variance 2.74 2.06 0.19 3.29

max 3.67 1.05 0.20 4.41

mean, variance 2.78 1.29 0.19 3.47

mean, max 3.44 0.93 0.19 4.35

variance, max 3.10 1.05 0.19 3.95

variance, mean, max 3.25 0.92 0.19 4.16

For each speed candidate, the training process computes the correlation function
g(s) as in (6).

We then use the test datasets to estimate k for different candidates by passing
the values of the speed candidate (s) to the function g(s) computed during
the training process. We also use two different forms of datasets within the
training and validation process. In the first form, we use the data from individual
object group (i.e. animal, pedestrian separately), whilst in the second form we
combine data from all three object groups to form a “universal” dataset. In
particular, we combine the training and test datasets of individual object group
to form, respectively, the universal training and test datasets. The underlying
idea of using a universal dataset is to investigate the performance of a universal
training (training SVR using the combined datasets of different object groups)
over individual training (training SVR using individual object group dataset).
Note that a universal training can lessen the requirement of using individual
training results for estimating k of corresponding object trajectories.

We compute the Mean Estimation Error (MEE) to compare the the per-
formance of estimating k using different speed candidates. If there are total J
segments in a trajectory dataset, MEE is computed by ( 1

J

∑J
i=1(δ

i
E +δi

N)), where
δi
E is the absolute difference between the test and the estimated k for ith trajec-

tory segment (Easting) and δi
N is the absolute difference between the test and

the estimated k for ith trajectory segment (Northing). MEE for various candi-
dates are summarized in Table 1. We observe that for the animal, pedestrian
and universal datasets, the variance of speed produces the smallest MEE, but
the combination of mean, variance and maximum speed produces the smallest
MEE for the vehicle dataset.

In order to use ε-SV regression for estimating k in-situ, we create a lookup ta-
ble (ε-SV lookup) based on the ε-SV regression training results. The advantage of
using a lookup table over running resource-intensive ε-SV regression on the nodes
is the higher computation efficiency, which is crucial for resource impoverished
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sensor nodes. The disadvantage of this strategy is relatively lower quality esti-
mation of k, because of the limitation of search spaces of a pre-calculated lookup
table can have. We will demonstrate this design trade-off in details in Section 6.

5 AACAT Algorithm

In our current implementation, AACAT has two main threads where Thread
1 stores and compresses the data (generates projections) and Thread 2 oppor-
tunistically transmits the projections to the basestations. Memory management
is handled via fixed-length linked lists, where we store the position data and the
projections in two separate lists called receiveQUEUE and sendQUEUE, respec-
tively (for Northing and Easting we use separate sendQUEUE and receiveQUEUE).
The size of the receiveQUEUE is chosen so that it can fit data of one trajectory
segment. Each segment is identified using the timestamp of the first sample
in the segment. Projections attached with the same timestamp are used to re-
construct the corresponding segment in the basestations. Northing and Easting
segments are reconstructed separately and then combined to recover the corre-
sponding trajectory segment. We also use separate lookup tables for Northing
and Easting, where the values of the speed candidate(s) are rounded to one
decimal place.

Thread 1 constantly takes samples from the GPS module and adds the
samples to the receiveQUEUE when the receiveQUEUE is not full. Once the
receiveQUEUE is full, Thread 1 computes the projection(s) of the samples in the
queue, by first determining k using the ε-SV lookup table, followed by comput-
ing m = �ck log (n

k )� projections of the samples. We observed c = 1 is sufficient
for pedestrian and vehicle datasets, but a higher value (c = 2) is required for
animal dataset. We used iid Gaussian N (0, 1

m ) numbers as the elements of the
projection vector which can be constructed distributedly at the node and the
basestations by using the same seed of a pseudo-random generator. The lookup
operation selects the value of the speed candidate in the table that has the small-
est difference with the speed candidate of the current segment and retrieves the
corresponding k value.

If the sendQUEUE is not full, projections are appended in the sendQUEUE. Oth-
erwise, the projections can be discarded from the sendQUEUE randomly because
each projection is a linear combination of the samples in a segment. This prop-
erty offers promising loss-distortion trade-off as in Section 6 we demonstrate
that the reconstruction error increases gracefully as we reduce the number of
projections. Algorithm 1 shows the pseudocode of Thread 1.

The role of Thread 2 is to detect the network connectivity. Once the net-
work is connected, it attempts to transmit a copy of the element at the head of
sendQUEUE. If the element is successfully received, it removes the sample at the
head of the list that in turns frees up one space in the sendQUEUE.
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Algorithm 1. Thread 1
Ensure: Memory for linked list is allocated
1: receiveQUEUE ← list to store incoming position data (GPS samples)
2: sendQUEUE ← list to store outgoing AACAT projections
3: while GPS has lock do
4: p← New GPS position
5: if receiveQUEUE NOT full then
6: push p to receiveQUEUE

7: else
8: look up k of the segment at receiveQUEUE and compute m = �ck log (n

k
)�

projections.
9: for all projection do

10: if sendQUEUE NOT full then
11: push one projection in sendQUEUE.
12: else
13: if Each segment has one projection then
14: Randomly delete one segment.
15: else
16: Randomly delete one projection of a segment having more than one

projection.
17: end if
18: end if
19: end for
20: end if
21: end while

6 Evaluation

We use Average Distance Error (ADE), which gives the distance between the
real and reconstructed trajectory.

Consider that N i
ω, 1 ≤ i ≤ n and Ei

ω, 1 ≤ i ≤ n are respectively the consecu-
tive Northing and Easting data points of a trajectory segment ω, and N̂ i

ω, 1 ≤ i ≤
n and Êi

ω, 1 ≤ i ≤ n are the reconstruction of N i
ω, 1 ≤ i ≤ n and Ei

ω, 1 ≤ i ≤ n,
respectively. If there are J segments in a trajectory dataset, we compute ADE
by,

ADE= 1
nJ

∑J
w=1

∑n
i=1

√

(N i
ω − N̂ i

ω)2 + (Ei
ω − Êi

ω)2.

6.1 Transmission–Accuracy Trade-off of CS

CS achieves promising transmission versus accuracy trade-off, since it requires
only a small number of projections to accurately recover a trajectory segment.
We compare this trade-off of CS with that of two widely used trajectory compres-
sion algorithms: Kalman Filter (KF) and Spatiotemproal compression algorithm
(SPT).

KF is a stochastic, recursive data filtering algorithm widely used for system
state estimation, where state estimation process operates using recursive steps
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of prediction and correction based on observations. We used a centralized imple-
mentation of KF where Northing and Easting were separately modeled as state
variables and the predictions were made remotely at the basestations using the
data acquired from mobile nodes. In order to make a fair comparison the number
of bytes transmitted by CS is the same as the number of bytes transmitted by
KF (Note that the number of bytes (4kB) for a projection value is the same as
the number of bytes for a Northing or Easting point).

SPT is the improvement proposed by Meratina et al. [12] to the prominent
Douglas-Peucker (DP) [7] method. It leverages the Synchronous Euclidean Dis-
tance (SED) [13] that is the measurement of the distance between an observed
position and its estimated position based on a constant velocity model. For
a triplet of points with low SED, the middle point can be removed from the
trajectory with small loss of information. Similar to KF, the number of bytes
transmitted by SPT is the same as the number of bytes transmitted by CS. Note
that in both SPT and KF, when there is a missing data point, we use the last
observed data point as the current data point.
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Fig. 2. Benchmarking CS using KF and SPT

In Fig. 2 we compare the transmission-accuracy trade-off of CS, KF and SPT.
For CS, along x-axis is the percentage of the number of projections to the total
number of data points, but for KF and SPT, along x-axis is the percentage ratio
of the number of transmitted data points to the total number of data points.
For all CS, KF and SPT along y-axis is the ADE. We consider an n data point
trajectory segment which is comprised of n Northing and n Easting data points.
Therefore, the total number of data points within a trajectory segment is 2n,
and the number of transmitted projections or data points is the summation of
the number of transmitted Northing and Easting projections or data points, re-
spectively. We observe that, to approximate an animal trajectory segment within
10 m error, both SPT and KF requires approximately 30% more transmissions
compared to CS. However, due to higher compressibility, the difference between
CS and KF/SPT is smaller for the vehicle and pedestrian trajectories.

Due to delay tolerant transmission and fixed size memory buffer, data loss is
very likely to happen in the delay tolerant networks. We illustrate some examples
of possible data loss in Fig. 3, where for different latencies along the x-axis
we compute the percentage of possible transmissions along y-axis. Consider a
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sampling frequency h Hz and inter-connection interval (since a mobile node has
only intermittent connection with the fixed node, the inter-connection interval
is the time between 2 connections with the fixed node by a mobile node) �
seconds. The total number of projections need to be transmitted during � seconds
is: T = 0.4�h (we arbitrarily choose 0.4, since from Fig. 2, 40% transmission
approximates the animal trajectory within 10 m error). Then, for a bandwidth B
kbps and connection time τ seconds (the amount of time a mobile node associates
with a fixed node), the allowed transmission is Δ = τB kb. The percentage of
CS transmission is therefore Δ

TQ , where each projection is Q kb. In Fig 2, we
use three different connection times, 120, 240 and 360 s, respectively and two
different bandwidths, 50 and 128 kbps, respectively. We observe that unless the
inter-connection interval is very small (1 or 2 min), even for high bandwidth
(e.g. 128 kbps) and connection time (e.g. 360 s), it is impossible to transfer
100% projections.

One key advantage of the CS theory is that it offers promising loss-distortion
trade-offs. In Fig. 4 we illustrate the loss distortion trade-off of CS based recon-
struction. Along the x-axis is the percentage of missing projections and along
the y-axis is the corresponding distance error. We first compute the average
number of projections (η) required to approximate a trajectory segment within
one meter error. Starting from η, we gradually reduce the number of projections,
compute the corresponding error, and plot the results in Fig. 4. We observe that
reconstruction performance degrades gracefully with the loss of projections. Such
as, for all three object groups, for up to 60% loss of projections, the ADEs are
within 10 meters. However, the reconstruction error increases rapidly (especially
for animals) beyond that point.

We have made a number of comparisons to evaluate the performance of AA-
CAT. Due to space limit we are unable to report the results here. Reader are
encouraged to read [15] to find the detailed about these comparison results.

6.2 System Performance

We implemented AACAT on the Fleck 3b nodes, which are in-house sensor
platform based on an 8-bit Atmel Amega 1281 microcontroller with 8 kB RAM
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Fig. 5. The reconstruction performance of AACAT on Fleck 3b platform. The thick
line is the ground truth and the thin line is the trajectory approximation produced by
AACAT. ADE is 3.67 meters.

Table 2. Memory and energy consumption of AACAT

Process current (mA) time (ms) energy (mJ) memory (kB)

projection 8 16.4 ± 0.8955 0.47 1.18
lookup 8 7.68 ± .01 0.18 1.67

(similar to Mica family motes) and a 50 kbps Nordic NRF905 transceiver working
on ISM 900 band, and evaluated the system performance with field experiments.
During the experiments, each subject (human) was given a Fleck to carry around
and was asked to walk along a road segment outside our lab. A fixed (connected)
node was placed in the middle of the road segment which was one hop away from
a basestation placed in the lab.

Two receiveQUEUEs of capacity of 512 data points were declared, one for
Northing and the other for Easting. Projected values of Northing and Easting
were stored separately in two sendQUEUEs with capacity of 128 projections
each. Size of the queues was chosen based on available memory within the 8 kB
RAM total on a Fleck 3b. Beacons were broadcast from the fixed node every
second. After hearing a beacon from the fixed node, mobile nodes transmitted
packets which would be forwarded to the basestations. The reconstruction result
of a trajectory segment is shown in Fig. 5. The thick line is the ground truth
which was recorded by carrying an additional Fleck 3b, recording GPS samples
at 2 Hz. It is evident that the reconstruction is very close (ADE is 3.67 meter)
to the real trajectory.

The projection and lookup operations are two key operations in AACAT. In
Table 2, we summarize the memory and energy usage of one ε-SV lookup and
one projection operations of 512 data points. The mean computation time for
both operations is small. For example, it takes only approximately 16.4 ms for
a Fleck3b to compute a projection, which is 16.4 ÷ (256 ∗ 1000) ≈ 0.006% of
the total time to collect one segment of data. Furthermore, the memory usage
(maximum 14% of available RAM) and the energy consumption (maximum 0.47
mJ) of the projection and lookup operations are quite low and are affordable on
the resource constrained WSN nodes.

7 Related Work

Approximation of the mobile object trajectory using only partial information
collected from sensor nodes has been widely studied in the past. The central
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themes of the previously proposed algorithms can be classified into two broad
categories: prediction and compression.

Prediction can be made in both centralized and distributed fashion. In a
centralized prediction technique (e.g. [8]) a basestation based on the information
extracted from the movement history of an object, predicts its future movement
states, which are then sent to the corresponding sensor nodes. If the prediction
do not match with the sensor readings, the sensor nodes correct the basestation
by sending their own readings. To save node to base communications of the
centralized techniques, dual prediction techniques are proposed in [11,21] where
the predictions take place distributedly at both sensor nodes and basestation,
and updates are sent to the basestation only when the prediction error exceeds
some given threshold.

Both the centralized and distributed prediction techniques use either individ-
ual or group movement history for prediction. The prediction with individual
history (e.g. [19,21] ) predicts the movement of an object from its own history.
Considering in practice an arbitrary movement trajectory that an object may
follow, the simple prediction models in the existing work results in poor predic-
tion performances. The prediction with group history (e.g. [1,10] ) categorizes
the objects into groups, and the prediction of a moving object is made based
on the history of all objects from the same group. Group history provides richer
information about the object movements than the individual history, but, these
techniques assume a limited number of movement states (e.g. moving speed and
direction) that a moving object can have. However, in practice even within the
same group, different objects may demonstrate different movement patterns at
different times (e.g., morning, noon and night) and/or with different tasks (e.g.,
surveillance and disaster response).

Compression algorithm proposed in [20] performs recursive segmentation of
the trajectory, until a trajectory segment can be modeled with an interpolation
function with a small error. Compression is achieved by only transmitting the
relevant parameters of the interpolation function. However, compression perfor-
mance of [20] has so far been evaluated using simulated trajectories without
considering the resource (computation power, energy and bandwidth) usage ef-
ficiency, which is crucial in tiny embedded sensor nodes.

In [17] authors propose a low-energy adaptation of the lossless compression
algorithm (LZW) for WSN, however, a likely scenario in the VF application is
that in order to cope with limited bandwidth a large amount of data may need
to be discarded. Therefore, a lossless compression algorithm is not a good fit.
Furthermore, the authors do not exploit temporal correlations of the data to
achieve compression, which can be explored to achieve better compression ratio.

Theoretical results provided in [9] show that CS is not an efficient compression
technique while applied with ordinary quantization, however our empirical re-
sults show that CS provides reasonably good compression. In particular, we show
that CS provides better compression compared to two other state-of-the-art tra-
jectory compression techniques. Furthermore, in number of other papers [14,16]
it is shown that CS provides promising compression in WSNs.
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8 Conclusion

In this paper we present a trajectory approximation technique, called AACAT,
which utilizes the embedded redundancy of trajectory data using the emerg-
ing theory of Compressive Sensing (CS). Furthermore, AACAT introduces a
ε-SV regression-based in-situ compressibility estimation technique to adapt the
number of required projections to trajectory data compressibility dynamically
that improves the performance of CS trajectory compression. Our evaluation by
three different trajectory datasets, collected by sensor nodes carried by animals,
pedestrians and vehicles, shows that for a reasonable approximation accuracy,
CS-based compression reduces 30% transmission overhead compared to the stat-
of-the-art trajectory compression techniques driven by the classical Kalman Fil-
ter and Douglus-Peckur algorithms. Our evaluation also shows that CS-based
trajectory compression is loss-resilient since the reconstruction error increases
gracefully with the loss of projections. Finally, an end-to-end system, which is
implemented on resource-impoverished sensor nodes with 8-bit microcontrollers
and 8 kB RAM, demonstrates that AACAT achieves high compression perfor-
mance with very little resource (computation power and energy) overhead.
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