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Preface

This volume contains the proceedings of EWSN 2011, the 8th European Confer-
ence on Wireless Sensor Networks. The conference took place in Bonn, Germany
during February 23–25, 2011. The aim of the conference was to discuss the latest
research results and developments in the field of wireless sensor networks.

EWSN received a total of 87 paper submissions of which 14 were selected
for publication and presentation, yielding an acceptance rate of about 16%.
Paper submissions were received from 29 different countries in all parts of the
world. EWSN adopted a double-blind review process, where the identities of
the paper authors were also withheld from the reviewers. The selection process
involved around 250 reviews with all papers being evaluated by at least three
independent reviewers. In addition, the reviews where discussed by the Technical
Program Committee in a virtual meeting after collecting all reviews and prior to
making final decisions. The final program covered a wide range of topics which
were grouped into five sessions: Routing and Mobility, Optimization Techniques,
MAC Protocols, Algorithms for Wireless Sensor Networks, and Systems and
Abstractions. It included theoretical and analytical approaches, together with
empirical research and protocol/system design and implementation.

The conference included a keynote by Mani Srivastava with the title “System
Issues in Wireless Sensor Networks,” a demo and poster session, co-chaired by
Luca Mottola and Daniel Minder, for which separate proceedings are available,
and an industrial demo session, co-chaired by Herman Tuininga and Siebren
de Vries, where companies working in the area of wireless sensor networks had
the chance to exhibit their products throughout the conference. The conference
also included a tutorial on “Machine Learning for Wireless Sensor Networks” by
Anna Förster and a tutorial on “TeenyLIME” by Amy Murphy.

We would like to thank everyone who contributed to EWSN 2011. In partic-
ular, we would like to thank the Technical Program Committee for their reviews
and input in forming the program. We also would like to thank the local admin-
istration at the University of Bonn for their help with the conference planing
and last, but certainly not least, our sponsors: Networked Embedded Systems
Group at the University of Duisburg-Essen (Gold Sponsor), CONET Network
of Excellence (Gold Sponsor), Boeing (Bronze Sponsor), and Libelium (Bronze
Sponsor).

February 2011 Pedro José Marrón
Kamin Whitehouse
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Prediction Accuracy of Link-Quality Estimators

Christian Renner, Sebastian Ernst, Christoph Weyer, and Volker Turau

Hamburg University of Technology, Hamburg, Germany
{christian.renner,c.weyer,turau}@tu-harburg.de

Abstract. The accuracy of link-quality estimators (LQE) is mission-
critical in many application scenarios in wireless sensor networks (WSN),
since the link-quality metric is used for routing decisions or neighbor-
hood formation. Link-quality estimation must offer validity for different
timescales. Existing LQEs describe and approximate the current qual-
ity in a single value only. This method leads to a limited accuracy and
expressiveness about the presumed future behavior of a link. The LQE
developed in this paper incorporates four quality metrics that give a
holistic assessment of the link and its dynamic behavior; therefore, this
research is an important step to achieving a higher prediction accuracy
including knowledge about the short- and long-term behavior.

1 Introduction

For most algorithms in wireless sensor networks (WSN) it is essential that each
node has thorough knowledge about its direct neighbors. This information is col-
lected and provided by neighborhood management protocols and is used, e.g., for
routing decisions, group formation, or data sharing. The dynamic behavior over
time of the wireless channel and the missing correlation between adjacency and
possibility of communication—due to obstacles and multi-path propagation—
render the definition of the neighborhood of a node a non-trivial task. One
important criterion used by neighbourhood management protocols to determine
the importance of a node is the quality of the communication between nodes,
which in turn is provided by a link-quality estimator (LQE). Depending on the
intended application, either the short- or long-term qualities of a link or a com-
bination of both is preferred for choosing an appropriate node in the vicinity [2].
In the past many different approaches were investigated [14,6,4,7,2,11,3,1] or are
currently used, e.g., in TinyOS [10,8].

In principle a LQE measures the quality based on logical (e.g., packet success
rate) or physical (e.g., received signal strength) metrics. Newer proposals use
a combination of these in order to improve the accuracy of the prediction [1].
However, common to these LQEs is that the measured quality is squeezed into a
single value—e.g., a moving average—due to memory restrictions and for easier
comparability. In doing so, the value represents only a snap-shot of the plain
link-quality at a specific point in time without any additional information about
variation and the current trend of the long- or short-term behavior in the past.
The expressiveness of such a single-value metric is limited: This procedure is

P.J. Marrón and K. Whitehouse (Eds.): EWSN 2011, LNCS 6567, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Link-quality estimation of a deteriorating and an improving link with a single-
value (left) and statistical multi-value (right) technique

comparable to a stock market, where a stock is described only by its current
value or an average of its last values. Based on this limited information it is a
game of luck to decide in which stocks to invest in the future. Furthermore, it is
important to know which stock will perform better for a short-term profit and
which is suitable for a long-term investment.

The same considerations are valid for judging the quality of a link. Figure 1 vi-
sualizes the problem of comparing two link-qualities. With a metric that reflects
only the current quality, a comparison is nearly impossible even for a short-term
projection. Based on a single-value prediction the deteriorating link appears su-
perior, since its current link-quality is higher. When using multi-value prediction
the dynamic behavior of links can also be incorporated into the decision, so that
the improving link will be favored: Although its current link-quality is lower,
its positive trend and low deviation lead to a better future perspective when
compared to the large variation and negative trend of the deteriorating link.
Furthermore, all existing LQEs are only capable of providing either a short- or
a long-term prediction. Yet, an application often needs different prediction win-
dows, e.g., a long-term prediction for forming a cluster and a short-term one for
selecting the eligible next routing hop.

In this paper we present a LQE that effectively calculates for each link four
quality characteristics: short- and long-term quality, variation, and an indicator
of the current trend. This LQE is a general approach that can be easily adopted
to various sources of link-quality metrics. Intensive simulations and experiments
are undertaken in order to proof the advantages of the newly developed approach
over existing ones. We compare and analyze the ability of link-quality tracking
of modern and well-known LQEs with our new approach. In this context, we
identify problems and benefits of the different estimators, and we also deter-
mine the correlation and average error with respect to empirical ground-truth
measures. Moreover, we analyze the ability of the LQEs to select reliable links,
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which is commonly needed for routing decisions and cluster formation. The paper
concludes with a discussion of the results and intended future research activities.

2 Link-Quality Estimation Techniques

Estimating link-qualities in WSNs is a nontrivial task. Many existing solutions
for other wireless networks are not feasible for WSNs. Particularly, the lack of
infra-structure, limited memory, energy constraints, and low-cost transceivers
complicate possible solutions. Various approaches were proposed in the past
to overcome these limitations and to provide a meaningful metric describing the
actual link-quality and thus predicting its future behavior. In this section, a brief
overview and discussion of general link-quality metrics is carried out, followed
by a thorough view on already existing approaches employing them.

2.1 Link-Quality Metrics

Basically, there exist two different categories of link-quality metrics: physical and
logical indicators. The former are provided by the radio hardware and are based
on the signal strength of a received packet, such as the Received Signal Strength
Indication (RSSI), the Link-Quality Indication (LQI), or Signal-to-Noise Ratio
(SNR). The logical indicators estimate the link quality by keeping track of mes-
sage losses. Examples of such metrics are: Packet Success Rate (PSR), Required
Number of Packets (RNP) [4], or Expected Transmission Count (ETX) [6] for
describing the effort needed to successfully transmit a packet.

Physical Metrics. Using physical metrics has several advantages. The metrics
come without any additional costs, since the measurement is performed by the
receiver hardware every time a packet is received, or can at least be calculated
easily in the case of SNR. Also only a small number of samples is needed to
get a first approximation of the link-quality. Additionally, the metrics can be
measured by utilizing any traffic on the wireless channel without the need of
periodical broadcasts if the application produces enough traffic.

However, several research activities on this topic have shown that the physical
metrics are of shortened use [12]. First of all, the metrics are strongly dependent
on the receiver hardware—e.g., in our experiments with the Atmel RF230 many
links have a RSSI value close to the sensitivity of the transceiver, but provide
reliable packet reception at the same time. Secondly, the RSSI and LQI are only
available for successfully received packets, but not in the case of packet loss.
There exist different attempts to improve the quality of the measurements—e.g.,
RSSI calibration [5]—but these introduce a higher computation-complexity not
suitable for WSNs. Another disadvantage is the expressiveness of these metrics
with respect to the application-related perception, i.e., the expected PSR. In [9]
Lal et al. show that physical metrics cannot always predict the PSR, especially
in case of long-range links with an RSSI near the sensitivity threshold of the
radio chip. In those cases the SNR-to-PSR relation is not deducible at all.
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Logical Metrics. The advantages of logical metrics are that they do not de-
pend on specific hardware characteristics and correlate directly with an appli-
cation point of view, i.e., the ratio of successfully transmitted packets. This
however leads to the problem that a node needs to track the ratio between the
number of successfully received packets versus packet loss in an efficient way.
A window-based approach consumes too much memory, and counting received
and lost packets does not incorporate that recent events should be weighted
higher. Hence, most of the logical metrics are calculated with an Exponentially
Weighted Moving Average (EWMA) [14]. In contrast to physical metrics, LQEs
based on this method rely on frequent packet transmissions in order to keep the
link-quality estimates up-to-date.

Periodic broadcast packets are often used to achieve this goal and are also
the most commonly brought-up drawback of these approaches, since they waste
energy and occupy the wireless channel. However, the measurements—even of
the physical link-quality estimators—are conducted by the receiver, but the in-
formation must be available at the sender. To perform the necessary exchange of
information for each neighboring node, piggy-backing this data on top of appli-
cation packets is risky due to increased packet size, especially in dense networks.
Moreover, the time of information exchange depends on the network traffic of
each node, so that large delays may occur and nodes make decisions based on
outdated link-quality data. Thus, a periodic information exchange using ded-
icated broadcasts is always necessary when link-quality estimation is needed.
This mitigates animadversion on the periodical broadcasts.

2.2 Link-Quality Estimators for Sensor Networks

Woo et al. define the Window Mean with EWMA (WMEWMA) [14], one of the
first LQEs for estimating the PSR. In a previous work they also investigate and
compare WMEWMA with different existing approaches. Thereafter, EWMA-
based estimators have been widely adopted in WSNs.

ETX introduced by De Couto et al. [6] tries to estimate the number of trans-
missions that are necessary to send a packet successfully. The number of received
packets within a fixed window is counted and compared to the number of ex-
pected packets that are periodically broadcasted by each node. The disadvantage
of ETX is that it is only updated at the end of each window. A short window
thus leads to a high fluctuation of the ETX metric and a long window to an
infrequently updated ETX. Cerpa et al. [4] introduce RNP that incorporates
the distribution of losses within the window. They observed that a link with
consecutive losses should be rated lower than links with discrete losses. Four-
Bit (4B) [7] is based on ETX with several enhancements. They use an EWMA
for estimating the ETX and a second one for smoothing the final 4B metric.
Additionally, 4B uses additional information from the link and network layer.

The Link Estimation Exchange Protocol (LEEP) is based on 4B and part
of the current TinyOS version [8]. LEEP constitutes a layer between the MAC
protocol and the application or routing engine, respectively. Whenever a packet is
sent, LEEP attaches additional information to that packet: a sequence number,



Prediction Accuracy of Link-Quality Estimators 5

a counter for the number of known neighbors, and the ID and in-bound link
quality of these neighbors. If the space (left by the upper layer) in the packet
is too small, a round-robin procedure is used. The main disadvantage of LEEP
is that in case of consecutive packet losses the link-quality is not updated. In
addition to the limited number of possible links, due to memory restrictions, this
behavior can result in a full neighborhood table with nodes that no longer exist.

The Adaptive Link Estimator (ALE), introduced by Weyer et al. [13], is an
EWMA filter of the measured PSR. Each node sends a beacon per time interval
(a so-called round) and records received beacons from other nodes within this
interval. At the end of each round, link qualities are recomputed. Upon recep-
tion of a beacon from a previously unknown node the associated link-quality is
initialized with a value of 50% to achieve a shorter rise-time for new links. The
weight of the EWMA is adapted to the quality of the link. For good links ALE
uses a higher weight for more stable estimation, while links with a lower quality
are estimated in an agile fashion for a faster reaction.

An approach using Kalman Filter Based Link-Quality Estimation is proposed
by Senel et al. [11]. They filter the RSSI of successfully received packets with a
Kalman filter and subtract the noise floor to obtain an estimation of the SNR.
Finally, a PSR is derived by applying a hardware specific SNR-PSR mapping for
the transceiver. This approach is very complex and suffers from the restricted
correlation between SNR and PSR [9].

The Fuzzy Link-Quality Estimator (F-LQE) is proposed by Baccour et al. [1].
The idea is to combine four different metrics into a single quality indicator using
Fuzzy Logic. These four metrics are SNR, PSR, link asymmetry level (ASL),
and stability (SF). The SNR is calculated after each successful packet reception
by subtracting the power on the channel directly after packet reception from the
signal strength of the packet. An EWMA filter is used to obtain the PSR. From
the latter, the asymmetry level is obtained by calculating the absolute difference
between the unidirectional PSR values of a node pair. The stability is defined as
the coefficient-of-variation of the most recent 30 PSR values of a link.

3 Holistic Packet Statistics

All of the approaches presented in Sect. 2.2 have in common that they squeeze
link quality into a single value. We argue that there should be a multi-faceted
representation of link quality. Hence, we have devised the concept of Holistic
Packet Statistics (HoPS). HoPS is tailored to provide detailed information about
the static and dynamic behavior of a link using four distinct descriptors of the
link quality. Due to the troublesome nature of the expressiveness of SNR values
and the corresponding PSR matches—as laid out in Sect. 2.1—we take a dif-
ferent course than recent approaches and focus on the development of a more
sophisticated link-quality assessment using logical metrics.

HoPS allows for utilizing enriched link information by granting access to all
four link-quality metrics rather than hiding information by compressing them
into a single value. Yet, this does not imply that there is no way to combine
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the values of HoPS into a single link-quality estimate. In this section, we define
the four quality metrics of HoPS and present two possible solutions for dynamic
link-quality assessment.

3.1 Link-Quality Descriptors

The four link-quality descriptors used by HoPS are measured at the receiver side
by monitoring the packet success rate. Thus, a packet should contain a sequence
number for the detection of packet loss. Additionally, the metrics should be
updated frequently in a constant interval. Many presented LQE implementations
(cf. Sect. 2.2) update only after a packet is successfully received; this leads to a
wrong estimation if no more packets are received from a node.

Short-term Estimation is realized using a first-order EWMA filter for retrieving
the in-bound PSR of a link in the recent past:

hST
τ = α ·hST

τ−1 + (1 − α) · qτ . (1)

The choice of the coefficient α influences the sensitivity to short-term changes in
link quality. In the straight-forward case, qτ is a binary value indicating whether
an expected packet at time τ was received. Another option would be using a
windowed mean, if more than one packet is received from the same node within
an update interval. This technique is comparable to WMEWMA.

Long-term Estimation is obtained by a second-order EWMA filter, i.e., the val-
ues of the first-order estimation in (1) are smoothed by

hLT
τ = β ·hLT

τ−1 + (1 − β) ·hST
τ . (2)

To achieve a strong smoothing effect, choosing β larger than α is advisable.
The dynamics of a link are obtained by means of the lower and upper devi-

ation of the short-term estimation from the long-term estimation. The sum of
lower and upper deviation yields the average absolute deviation. Due to space
constraints the detailed derivation is omitted. To track the time-variant changes
of these deviations and to preserve memory, another EWMA filter is applied:

δ+
τ = γ · δ+

τ−1 + (1 − γ) ·ϕ (
hST

τ , hLT
τ

)
, (3)

δ−τ = γ · δ−τ−1 + (1 − γ) ·ϕ (
hLT

τ , hST
τ

)
, (4)

with ϕ(x, y) =

{
x − y, if x > y

0 else
. (5)

These two values are utilized as follows.

Absolute Deviation Estimation is the estimated average absolute deviation

hσ
τ = δ+

τ + δ−τ . (6)

This value gives an impression of the stability of the link in terms of the variation
of hST

τ around its mean hLT
τ . Its calculation demands less computing power than

the recursively determined standard deviation, while not being less expressive.
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Trend Estimation is intended to reflect the course that a link is taking:

hθ
τ = δ+

τ − δ−τ . (7)

A floating link—i.e., its long-term quality has had no notable changes in the
past and is therefore not likely to change in the future—can be identified by
values of hθ close to zero. In contrast, positive values indicate an improving link,
whereas negative values expose a deteriorating link. The absolute value of the
trend indicates the slope of the current trend.

3.2 Theory in Praxis

At this point, we give a brief introduction to the interpretation and usage of
the four link-quality metrics of HoPS. There are many possible solutions for the
utilization of the four link-quality indicators of HoPS. For instance, a routing
protocol could favor a less varying link over one with the same long-term quality.
Another possibility would be to use the variation and trend in order to compute
a lower bound link-quality with a given confidence. Hence, there is no silver
bullet for an enriched employment of these values. However, we want to present
two examples of merging the four HoPS ingredients into a prediction value.

The first approach is a dynamically adjusted link-quality estimator:

Hdyn
τ = hLT

τ +

∣∣hθ
τ

∣∣
hσ

τ

· (hST
τ − hLT

τ

) (
0 ≤

∣∣hθ
τ

∣∣
hσ

τ

≤ 1

)
(8)

This estimator describes a floating link (hθ ≈ 0) by its long-term behavior and
a massively changing link (

∣∣hθ
∣∣ ≈ hσ) by its short-term estimate. Intermediate

assessment is achieved using the relative behavior of trend and variation.
Approach number two is a confident long-term predictor:

Hpred
τ =

⎧⎪⎨⎪⎩
hLT + hθ − ω ·hσ, if hθ ≥ ω ·hσ (0 ≤ ω < 1)
hLT + hθ + ω ·hσ, if hθ ≤ −ω ·hσ

hLT else
(9)

In contrast to the previous method, a link is classified by the difference between
trend and variation. If a clear trend can be identified—i.e., a relative thresh-
old ω is exceeded—the long-term value is shifted correspondingly. The goal is to
improve the prediction of the link behavior by incorporating the trend.

4 Evaluation Methodology

To evaluate and compare HoPS with the LQEs introduced in Sect. 2.2, we con-
ducted simulations based on a 13-day real-world experiment. The purpose of this
experiment is to gather real-world data in terms of the PSR and channel infor-
mation, which is used by the TinyOS Simulator (TOSSIM) to feed the different
LQEs. The main benefits of this approach are (i) detailed information about
node connectivity in a real-world scenario, (ii) an identical runtime situation for
all experiments, and (iii) repeatable experiments under real-world conditions.
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4.1 Data Basis

A sensor-node testbed, consisting of 15 IRIS nodes with distances between 1 m
and 40 m, was employed in our University building. All nodes were USB-powered.
Every node broadcasted beacon messages within a fixed interval of 4 s with a
random jitter using a uniform distribution. The transmit power was 0 dBm on
radio channel 22. Packets consisted of a virtual payload of 13bytes—containing
a beacon sequence number—and a 13byte MAC header. Clear Channel Assess-
ment (CCA) was performed with at most 5 retries. We have not deactivated this
feature, as we are interested in realistic connectivity behavior of a sensor net-
work; moreover, a failed CCA implies that the sender experiences a high radio
signal, but it does not necessarily imply the inability of the receiver to correctly
receive a packet. Upon reception of a beacon, the following data is logged on
the connected computer: node ID of sender and receiver, the sequence number,
LQI, and SNR. From this data, a detailed track of packet receptions and cor-
responding physical channel quality was produced. More than 280 000 packets
were transmitted per node.

4.2 Methodology and Metrics

We adjusted the physical layer of TOSSIM to reproduce our office environment.
This layer utilizes the data basis to decide if a packet sent at a given time is
received by other nodes in the network. When a node puts a radio packet onto the
channel, this physical layer checks for all other nodes in the network, if they have
received the experiment beacon in that time slot. The packet is only delivered
to the nodes, for which this is the case. The result is a realistic, repeatable, and
fair simulation environment.

We obtained the PSR ground truth by applying Hamming windows of lengths
from 30 s to 60 min. The different LQEs are compared in terms of their ability to
correctly represent the current and future course of each link. For this compari-
son, we used a normed cross correlation function (CCF) and the mean absolute
error (MAE). Quality values are in the range of 0 to 100% with an 8-bit reso-
lution; EETX values are converted to PSR. In case of F-LQE, the raw value is
used. The implementations of LEEP and RNP have a resolution of tenth. ALE
and HoPS run with 16-bit integers. To achieve fair conditions, we also ran an
adapted version of LEEP using double precision.

4.3 Parameters

The parameters of the LQEs have been chosen as proposed in the corresponding
papers. LEEP and RNP use an EWMA coefficient of 0.9 and update the esti-
mations every 3 packets. F-LQE uses the fuzzy membership functions from [1]
and a fuzzy parameter of 0.6. ALE uses filter coefficients of 0.9 in agile and
0.987 in stable link state, where PSR estimates of 86% and 74% serve as the
thresholds to switch states. The parameters for HoPS are α = 0.9 for short-term
and β = γ = 0.997 for long-term and deviation estimation. HoPS initializes
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hST = hLT = 50% for new links. The threshold for the stable long-term predic-
tion is ω = 0.25. These parameters have been determined using a Java GUI that
was developed for detailed link assessment and link-quality filter design.

5 Evaluation Results

In this section, the most important evaluation results are presented. First, the
ability of different LQEs of link-quality tracking is analyzed and compared using
the testbed data introduced in Sect. 4.1. Second, their performance in terms of
correct link selection is evaluated.

5.1 Link-Quality Tracking

The estimation methods of the different LQEs vary largely, so that light has
to be shed on their ability of link-quality tracking. In case of good links with
a stable PSR above 95% and a SNR well above 5 dB, all LQEs achieve good
estimates. If, in contrast, links have a dynamic behavior, this picture changes.

Medium Link. A medium link with a long-term PSR above 75%, notable short-
term deviations, and SNR values below 5 dB is shown in Fig. 2. The second plot
reveals that ALE tracks the long-term quality very well, but immediately toggles
to the agile state, when its estimation falls below the 74% PSR threshold, and
returns to the stable state after reaching the 86% PSR threshold. In the worst
case, this may lead to oscillation between these states. F-LQE assigns a rather
low value to the link, which is mainly caused by the low SNR values: the quality
value is only about half the value of the long-term PSR. Instead of following
the application-relevant PSR value, F-LQE mirrors the course of the SNR. This
leads to the strong lag regarding the recovery phase towards the end of the
displayed time window, where the short-term PSR is approaching the long-term
measure even before the SNR value is increasing again. LEEP and RNP natively
describe link-quality as EETX values with a resolution of tenth, so that their
quality curve degenerates to a step function. RNP tracks variations of the link
quality very quickly, but produces many overshoots. In contrast to this, LEEP
offers a strong low-pass characteristic, but produces peak values. They occur
on some rapid short-term PSR improvements. This behavior is alleviated, if the
resolution of LEEP is increased (LEEP dbl), so that LEEP can track link quality
more smoothly.

The short- and long-term estimations of HoPS follow the corresponding
ground-truth trace accurately, giving a differentiated picture of the link’s course.
In addition, the variation value produced by HoPS resembles the absolute aver-
age deviation of the two estimates in the recent past. The latter corresponds to
the variation of the ground truth in the top plot. Up to the middle of the time
window, the HoPS trend correctly identifies the link to be floating. With a small
time delay, the decreasing short-term link-quality is identified. Due to the rather
small and slow change, trend and variation stay below an absolute value of 10%.
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Fig. 2. LQE performance for a medium link with moderate to low SNR

After the short disturbance of the link, the trend approaches zero and the varia-
tion is decreasing towards its old value. HoPS Dyn is in a stable long-term state
until the beginning of the disturbance. Due to the increasing absolute value of
the trend at that point, HoPS Dyn takes an intermediate value between short-
and long-term prediction of HoPS. During the link recovery phase, HoPS Dyn
slowly returns to the stable prediction. In contrast, HoPS Pred is only marginally
influenced by the disturbance, since it is too short and small.

Poor Link. A study of a deteriorating link reveals additional differences be-
tween the LQEs. The link displayed in Fig. 3 drops from a high, stable quality
state to a completely useless link within less than 5 minutes.

ALE implicitly trusts the link for a few minutes due to the large filter coef-
ficient. After falling below the 74% border line, ALE follows the quality drop
quickly, but with a notable time-delay. The better a link has been, the larger
this delay will be. Due to the adapted filter coefficient, the PSR bursts at the
end of the displayed window are tracked closely. Although link tracking appears
to work quite well, there are drawbacks. Firstly, there is no option to choose be-
tween short- and long-term estimation values. Secondly, random effects caused
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Fig. 3. LQE performance for a deteriorating link with low SNR

by the static thresholds for changing the link state may occur. The large peak af-
ter the long link disturbance misses the 86% threshold for changing to the stable
state by less than 20%, which corresponds to the reception of only 2 packets.

F-LQE identifies the degenerating quality at the beginning accurately, since
it coincides with a sudden SNR drop, but stops updating the quality estimate,
because no more packets are received. Only upon the reception of new packets,
the quality estimate is updated—which is happening quaintly when the link
comes up again. Note that F-LQE assigns a larger link-quality value to the link
in its broken state than to the medium link in the previous example. RNP and
LEEP reveal the same weakness, plus RNP overestimates the link during its
bursty phase at the end. For an application, the broken link would look like a
perfect (RNP) or good (LEEP) link for more than 15minutes.

In contrast, HoPS keeps track of the declining link-quality for both the short-
and long-term values. Due to the large filter coefficient of HoPS LT, there is a
notable lag. The question on which value to trust is answered by the variation
and trend: They take large values that have about the same absolute value. This
indicates a massive change of the link away from its long-term behavior. Due to
the small slope of HoPS LT, trend and variation keep their large absolute values
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Fig. 4. Ability of the different LQEs to track the course of the empirical PSR

until the end of the disturbance. At this point they are decreasing again, since
the link is revitalizing. HoPS Dyn detects the deterioration phase quickly and
switches to the short-term estimate. The previous dip in link-quality is ignored
due to the almost zero trend at this point. During the bursty phase at the end,
HoPS Dyn sticks to the short-term estimate, thus reflecting the uncertain future
of the link. Note that this behavior can be adjusted by the choice of the deviation
filter coefficient γ. HoPS Pred reacts slowly to the broken state of the link, but
has a similar course as the long-term ground truth in the first plot. However, it
does not react to the improving link-quality in a suitable way.

Statistical Analysis. While these examples give a detailed understanding of
the strengths and weaknesses of the LQEs, a statistical evaluation of all links is
shown in Fig. 4. The box-and-whisker plots summarize the ability of link-quality
tracking using the CCF-norm and the MAE (in absolute percent error) for all
links in the testbed, on which at least one packet was received. For short-term
estimation ALE, HoPS ST and HoPS Dyn give the best results, see Fig. 4(a)
and 4(c). Here, HoPS ST gives the best results, because it always is in an agile
mode, whereas ALE can only follow poor links quickly. Both RNP and F-LQE
exhibit large variations in their ability to track link-quality. We are aware that
F-LQE does not actually try to estimate the PSR, but from an application point
of view, the PSR (or ETX) is the relevant link-quality metric. Because F-LQE
has a very low correlation values, it cannot even track the relative behavior of the
PSR, so that it is doubtful whether its values are useful for applications at all. A
detailed view into the course of a few links reveals why LEEP is performing with
a relatively low MAE: Many links have a quality-value close to 100% for long
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(b) 60 min empirical PSR

Fig. 5. Relative number of correct (solid) and wrong (hashed) link classifications (se-
lections: bottom, rejections: top)

times. For these links, LEEP predicts a value of 0EETX, yielding a 100% PSR
and thus a low error. This partially cancels the heavy estimation errors when
LEEP is not updating its quality metric. In contrast, pure EWMA approaches
suffer from optimal links, since they are slow in taking extreme values.

Long-term link-quality estimation, see Fig. 4(b) and 4(d), is handled well by
the same candidates as before. ALE and all HoPS estimators except HoPS ST
give very low MAE values with a median of about 1%. 75% of the links are
predicted correctly with an error less than 2%. This is a lower value than the
best quarter of LEEP estimates. It comes as a little surprise that LEEP shows
a comparable performance for both short- and long-term ground truth traces. It
therefore turns out, that for long-term link-quality assessment a strong low-pass
behavior is beneficial, because many links had only short disturbances. However,
this picture may slightly change for a different testbed.

The outliers in the CCF-plots are caused by very weak links with short bursts
of medium or high PSR values. We did not filter these links out manually, as
they are realistic phenomena and a clear criterion for removement could not be
found. It shows that HoPS performs a little better in the presence of these links.

5.2 Link Selection

In many application scenarios, nodes have to select links from a set of avail-
able candidates. This could be the case for selecting the next hop in a routing
protocol or for deciding whether to keep or replace a possible neighbor in a size-
limited neighborhood table. The latter example is of particular importance in
dense networks, in which nodes can only track a small subset of all available
communication partners due to memory restrictions and the lack of dynamic
memory allocation in most sensor node operating systems.

Figure 5 shows the link-selection decisions of the LQEs for all available links
and after each 4 s time interval for thresholds of 85% and 95% link-quality,
respectively. If the current quality estimate of a link is equal to or above the
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threshold, that link is selected (solid areas), otherwise it is rejected (hashed
areas). The decisions of the LQEs are compared to the real course of the link for
1 min and 60 min windows. Correct decisions are the solid areas at the bottom
(correct selections) and the hashed areas at the top (correct rejections) of each
bar. False rejections are represented by the lower hashed areas and false selections
are indicated by the upper solid ones. The classification of the windows can also
be read from the figures—e.g., Fig. 5(a) reveals that a fraction of 0.74 and 0.61,
respectively, were above the two thresholds for the short-term window.

For the 1 min window in Fig. 5(a), HoPS ST achieves the smallest number
of false decisions while HoPS LT generates the most errors due to its heavy
smoothing. The other candidates produce comparable results for the 85% deci-
sion threshold. For the 95% one, LEEP makes a large number of false selections,
because its resolution in this area is too low. Using a finer (LEEP dbl) resolution,
this number is decreased at the cost of an increased amount of false rejections. In
terms of cluster formation and long-term routing decisions, false selections may
pose a severe hazard on throughput and network stability, whereas false rejec-
tions lead to a negative impact only in sparse networks with very few links. Here,
network connectivity can be prevented, if there are too many false rejections.
HoPS ST and Dyn achieve better selection results for the 95% decision threshold
than ALE, where HoPS Dyn produces more false selections than HoPS ST.

The 60 min window in Fig. 5(b) flips the coin in favor of the long-term HoPS
solutions HoPS LT and HoPS Pred. For the decision threshold of 85% they leave
out some good links, but produce way less false selections than LEEP and ALE,
which have the same performance in this setting. The 95% threshold gives an
even more differentiated picture. HoPS Pred and HoPS LT make few wrong
selections and rejections. HoPS Dyn produces comparable results; while falsely
selecting almost as many links as ALE, the number of false rejections is only half
as large. HoPS ST is too agile to produce good results. Increasing the resolution
of LEEP decreases the number of false selections insufficiently.

To investigate the decisions of the LQEs in more detail, Fig. 6 portrays the
relative distribution of selected (solid bars) and rejected (hashed bars) links
for the long-term ground truth with 95% decision threshold. The solid curve
indicates the Cumulative Distribution Function (CDF) for selected links, i.e., the
fraction of selected links with an actual PSR on the X-coordinate. Similarly, the
dash-dotted curve indicates the inverse CDF for rejected links, i.e., the fraction
of rejected links with an actual PSR greater than the value on the X-coordinate.
The crossing points at the 95% vertical borderline resemble the decision accuracy.

10% of the links selected by LEEP have an actual PSR less than 95%, while
almost no links with a PSR of at least 97% have been rejected. The opposite case
is true for ALE. More than 10% of the rejected links are actually better than 95%.
At the same time, link selection works well: Less than 4% of the falsely selected
links turn out to have a PSR below 94%. The selection CDF for HoPS Dyn and
HoPS Pred follows almost the same course as the one of ALE, but the rejection
CDF is lower—approximately 7% for HoPS Pred and 5% for HoPS Dyn. The two
HoPS derivatives therefore exhibit a better rejection behavior of links below the
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Fig. 6. Distribution of 60 min link PSRs for selected (solid) and rejected (hashed) links
based on a decision threshold of 95% PSR (good links)

decision threshold by incorporating the trend and variation. The main difference
between HoPS Dyn and HoPS Pred is that the latter has identified the links in
the region between 96% and 97% more accurately.

6 Conclusion

In this paper, we have presented a novel approach on link-quality estimation
in wireless sensor networks: the Holistic Packet Statistics (HoPS). This new
LQE calculates four distinct quality metrics, describing the short- and long-
term quality of a link at the same time, while also providing information about
the dynamics of a link by means of the variation and trend of the link-quality. All
of these metrics can be accessed by the application. These metrics are calculated
efficiently using EWMA filters and hence have a small memory footprint not
exceeding that of well-known competitors, such as F-LQE or LEEP.

HoPS has been compared to a bouquet of existing LQEs by using PSR data
gathered in an indoor testbed. Due to its four metrics, HoPS tracks the progress
of a link accurately, being therefore able to inform an application about the
course of short- and long-term link-quality. An adaptive link-quality estimate
can be provided by taking the variation and trend into consideration. This is
supported by a comparative study of PSR traces of various links. An additional
analysis of the correlation and average absolute error of real PSR values proves
the gain of HoPS over existing LQEs. Moreover, it has been shown that HoPS
improves link selection for routing decisions or neighborhood formation.

However, open issues and future work have been identified. Firstly, useful link-
quality prediction is only possible, if link behavior is studied in more detail—e.g.,
sensing that a good link is currently deteriorating is more useful, if it is known
in how many cases a link recovers quickly versus the times it breaks down com-
pletely. Secondly, the potential of HoPS can only be fully exploited, if its metrics
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are actually used by the application. Merging the four values into a single pre-
diction value brings low improvements only. Therefore, advanced routing and
neighborhood management protocols have to be devised. We plan to make fur-
ther investigations on this ground, hoping to push link-quality assessment in
wireless sensor networks a step forward.
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Abstract. The network topology has a significant impact on the per-
formance of collection protocols in wireless sensor networks. In this pa-
per, we introduce an unobtrusive methodology to quantify the impact
of the topology on the performance of collection protocols. Specifically,
we propose a protocol-independent metric, the Expected Network Deliv-
ery, that quantifies the delivery performance that a collection protocol
can be expected to achieve given the network topology. Experimental
evidence obtained with two collection protocols on numerous topologies
on testbeds shows that our approach enables a systematic evaluation of
protocol performance.

1 Introduction
The rich and active research in network protocols in Wireless Sensor Networks
(WSNs) has progressively emphasized the testbed evaluation of protocols over
simulation. Several testbeds exist with a hundred or more mote-class nodes.
The use of these testbeds has led to protocols that can function in the harsh
environment they often encounter in real-world deployments. The Collection
Tree Protocol (CTP) [7], for example, was adopted in several deployments [2][9]
due to the promising results it achieved on a large number of testbeds.

Experiments on a testbed subject a network protocol to the vagaries of real-
world wireless links [17], with no approximations or simplifying assumptions
about their behavior. This is a clear improvement over simulation. The uncer-
tainty in the behavior of wireless links is valuable for protocol evaluation, but
it also represents a drawback of testbed experiments compared to simulations.
Network simulations offer a fine-grained control of the network environment and
the propagation conditions. In contrast, testbed users can only test their proto-
cols on specific, non-reproducible situations, because they have almost no control
over the state of the network.
� Lead Authors.
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In a wireless network, the topology is jointly determined by the network lay-
out and the link dynamics. The effective topology over which routing paths are
established also depends on the choice of routing destination, which corresponds
to the sink placement in the context of WSNs. The combination of the network
layout, the link dynamics, and the sink placement, which we simply refer to as
network topology, has a large impact on protocol performance.

The performance of a protocol is a function of the topology as well as of the
protocol’s own mechanisms. Thus, we cannot attribute the performance achieved
by a protocol entirely to its mechanisms without considering the state of the
network. This makes it challenging to reason about protocol performance on a
testbed. Figure 1 shows that both CTP and the Arbutus collection protocol [12]
achieve a wide range of delivery ratio and goodput levels even on a single testbed.
With both protocols, we observe a dichotomy between high-performing and low-
performing topologies, which we refer to, respectively, as Class A and Class B
topologies. Due to the lack of a methodology to describe the topology on which
a testbed experiment is performed, even in papers where protocols are compared
experimentally on real-world testbeds, there is at most a quick comment on the
topology used. Different experiments may have been run over different network
topologies, which makes it difficult for the community to reproduce the testbed
results or to systematically reason about the differences in protocol performance
across testbeds.

To cope with the lack of control over the state of a testbed across multiple
experiments, we propose to explicitly capture the state of the network while
evaluating protocols on the testbeds. For this purpose, we introduce a protocol-
independent network metric, the Expected Network Delivery (END), that cap-
tures the reliability of the achievable routing paths from each node to the sink.
The END quantifies the delivery performance that a collection protocol can be
expected to achieve given the network topology. This metric helps decouple the
impact of the network topology from the impact of the protocol’s own mecha-
nisms on collection routing performance.

Using the END to characterize the network enables a systematic testbed eval-
uation of network protocols despite the lack of control over the testbed topology.
A collection protocol, for example, might achieve different delivery ratios when
tested on different testbeds or even on the same testbed at different times. If the
END changes significantly across multiple experiments, changes in the network
topology can explain the performance variations. On the other hand, if the END
remains stable, the difference in performance can be attributed to the mecha-
nisms in the protocol that reacted differently on different experiments despite
the network state being roughly the same. Moreover, the range of END values
across different experiments captures the range of network conditions encoun-
tered during the experiments. If we test a protocol across a large number of
testbeds but only span a narrow END range, then we have failed to test the
protocol across a wide range of network conditions.

We have run a large number of experiments with two different collection
protocols, CTP [7] and Arbutus [12], on the Motelab [23] testbed over a period
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Fig. 1. The performance of collection protocols in MoteLab varies significantly depend-
ing on the sink placement, as shown by these results obtained with CTP and Arbutus.
There are two distinct performance classes, which we label as A and B.

of several months. Furthermore, we have tested the performance of CTP on
the Castalia wireless sensor network simulator [1]. We observed that different
combinations of protocol, sink placement, testbed, and experiment time results in
a wide range of performance. With the END computed during these experiments,
we were able to conclude that the performance variations were primarily due to
the properties of the topology present during those experiments rather than the
protocol mechanisms.

In this paper, we make these contributions:

– We show that the performance of collection protocols on testbeds depends
on the network topology at the experiment time.

– We design the END, a protocol-independent metric to capture the key prop-
erties of the network topology that affect the performance of the protocol.

– We propose a methodology to systematically evaluate the performance of a
protocol across various testbeds, topologies, and experiments despite having
no control over the network dynamics on the testbeds.

– We evaluate the effectiveness of the END, by analyzing the results from a
large number of testbed experiments as well as simulations, with CTP and
Arbutus collection protocols as examples.

– We show that our methodology is applicable not only to collection, but also
to other categories of protocols.

2 Quantifying the Impact of the Topology

In this section we define the Expected Network Delivery, our primary topology-
aware metric, along with a secondary metric called Balanced Delivery. We illus-
trate that these metrics quantify the impact of the network topology on collection
performance by capturing the impact of the key links in the network given the
node layout and the sink placement.
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2.1 Expected Network Delivery

Let N ⊂ N denote the set of nodes in a WSN. We assume a many-to-one traffic
flow to a sink s ∈ N enforced by an arbitrary distributed routing protocol.
When node i transmits to node j, they form a directional wireless link that we
denote as (i, j). We use a comma-separated list of nodes within square brackets
to denote a route; for instance, if i uses j as a relay to get its packets to s,
the corresponding two-hop route is represented as [i, j, s]. We define the (one
hop) link Packet Reception Ratio (PRR) over the link (i, j), πi,j , as the fraction
of the packets transmitted by i that were directly received by j (i.e., over one
hop) over a given time window T . The link PRR values collectively give us a
snapshot of the network connectivity over T . We account for asymmetric links
by using λi,j � min(πi,j , πj,i) as the PRR for the link (i, j). We refrain from
using an ETX-like metric such as the product πi,jπj,i because the forward and
the reverse channel are not independent [3].

Given the specific sink placement, each node employs a distributed routing
protocol to find a route to the sink. We assume that the protocol’s goal is to
maximize the delivery of data packets to the sink. To capture the state of the
network, we acquire network connectivity data while the protocol is running
and, after the completion of the experiment, compute the link PRRs and apply
Dijkstra’s algorithm [5] with 1/λi,j as the link metric to obtain the paths from
each node to the sink that maximize the overall delivery to the sink. We then
compute the Expected Path Delivery (EPD) ek from node k to the sink s as

ek = ΠH−1
h=0 λrh,rh+1 , (1)

where rh represents the hth hop between k and s (with r0 � k and rH � s), and
H denotes the number of links that form the route between k and s. In order to
quantify the expected performance of a collection protocol with a global knowl-
edge of the network topology, we define our topology-aware collection metric,
the Expected Network Delivery (END), denoted as END ∈ [0, 1], as the
expected path delivery averaged over all nodes:

END =
1
|N |

∑
k∈N

ek. (2)

The END is therefore a function of the link PRRs, which capture the net
effect of all the vagaries of wireless propagation. For this reason, our metric
captures the ground truth of the state of the network and describes the network
topology in a protocol-independent fashion. The END captures the impact of
the link connectivity on a network-wide level, distinguishing the key links from
the redundant ones. Though in this paper we focus on many-to-one traffic, our
methodology is based on the connectivity properties of the network and could
be applied to any traffic pattern.

Although our metric is protocol-independent, it is necessary to extract it while
a given protocol is running so that we can capture the properties of transitional
links during the experiment. If a topology is dominated by unstable links whose
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coherence time is lower than or comparable to the duration of the experiment,
then even capturing connectivity data right before and right after the experiment
would be misleading. Since WSN routing protocols typically employ broadcast
control traffic for topology discovery and route maintenance,we obtain our met-
rics by computing the PRR measurements based on the protocol’s control traffic,
which is acquired over the testbed’s backchannel. This approach is non-intrusive,
because it relies on passive measurements that do not interfere with the protocol.
We ignore all protocol-specific information, such as, for instance, the contents of
the neighbor tables.

Since the END is computed by using λi,j � min(πi,j , πj,i) as the PRR for
the link (i, j), the END is insensitive to the direction of the network traffic. For
this reason, we complement the END with a secondary metric, the Balanced
Delivery (BD). The BD, denoted as Bs ∈ [−1, 1], is defined as:

Bs = E(out)
s − E(in)

s , (3)

where E
(out)
s ∈ [0, 1] is the Outbound Expected Network Delivery (O-END) of

the sink s, and E
(in)
s ∈ [0, 1] is the Inbound Expected Network Delivery (I-END)

of the sink s. The I-END is obtained by applying Dijkstra’s algorithm with
λi,j � πi,j , while the O-END is obtained by applying Dijkstra’s algorithm with
λi,j � πj,i.

2.2 Capturing the Impact of the Key Links

We use the network shown in Fig. 2 as an example to explain how the proposed
metrics are computed. In the figure, the value on each directional link indicates
the PRR. In Table 1, we report the optimal route from each node k to the sink s
obtained with Dijkstra’s algorithm, along with the corresponding expected path
delivery ek with respect to the appropriate link metric. The END, I-END, and
O-END are obtained by averaging out the expected path deliveries over all nodes.

The distribution of the link PRR for all the links in the network might seem
like a promising alternative to the END. A network with a large number of
high quality links should result in a better protocol performance. However, the
protocol performance depends on the quality of the links that the protocol uses
and not on the quality of the remaining links. We use the expression key links
to indicate those links whose absence would partition the network or force the
routing protocol to use unreliable links. Because efficient and reliable routing
protocols select key links, the END is designed to capture their impact. To
clarify this point, let us perturb the network in Fig. 2 in different ways to see
how the END responds as opposed to the mean link PRR.

1. An unreliable key link becomes reliable. The improvement of a key link is
a huge benefit to the network, and so the value of a valid topology-aware
metric should increase significantly. Link (s, 2) is a key link with a low PRR.
If the PRR of this link increases to 1, the END increases by more than 66%
(from 0.4 to 0.67), while the mean link PRR only changes slightly (from 0.67
to 0.69).
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Fig. 2. A sample network with challenging connectivity conditions. The numeric values
next to the arrows represent the PRR of the corresponding links in the direction of the
arrow.

Table 1. Expected path delivery (EPD) values for the nodes in the network in Fig.
2. The EPD is computed in three different ways: with λi,j � min(πi,j , πj,i) to obtain
the END, with λi,j � πi,j to obtain the I-END, and with λi,j � πj,i to obtain the O-
END. The END, I-END, and O-END are computed as the average of the corresponding
EPDs.

Node k Route ek

λi,j � min(πi,j , πj,i) λi,j � πi,j λi,j � πj,i

1 [1, s] 0.4 0.4 0.4
2 [2, s] 0.2 1 0.2
3 [3, s] 0.6 0.6 1
4 [4, 1, s] 0.4 0.4 0.4
5 [5, 1, s] 0.4 0.4 0.4
6 [6, 2, s] 0.2 1 0.2
7 [7, 2, s] 0.2 1 0.2
8 [8, 3, s] 0.6 0.6 1
9 [9, 3, s] 0.6 0.6 1

END=0.4 I-END=0.67 O-END=0.57

2. A reliable key link becomes unreliable. Link (3, s) is the most reliable key link
in the network, although its PRR is just 0.6. If we set π3,s = 0, the END
drops 50% (from 0.4 to 0.2), while the mean link PRR remains virtually
unchanged. The drop in the END in response to the worsening of a key link
is proportional to the relative importance of the link. For instance, link (3,
8) is only used for route [8, 3, s] and is not as critical as (3, s); if we set
π3,8 = 0, the END only decreases by 15% (from 0.4 to 0.34).
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These examples illustrate that the added value of the END comes from its
ability to distinguish the links that matter from those that do not.

3 Network Topology and Protocol Performance

In this section, we show how the END and BD metrics make it possible to
isolate and better understand the impact of the network topology on protocol
performance. We also explore the generality of these metrics by applying them
to simulation studies of collection and point-to-point routing protocols.

3.1 Experiments and Metrics

Table 2 shows an overview of the experiment sets used in this paper (the results
in Fig. 1 are from the experiments in motelab-arbutus and motelab-ctp). We also
performed a smaller number of experiments on the Tutornet testbed, as well as
simulations on TOSSIM [10] and Castalia [1].

Table 2. Overview of the experiment sets used in the paper

Experiment set Testbed Routing IPI [sec] IBI [min] Points Duration [hrs]

ave min max tot
motelab-ctp MoteLab CTP 10 Trickle 18 1 1 1 18

motelab-arbutus MoteLab Arbutus 10 1 32 0.5 0.2 1 16

In our experiments, each node injects packets at a constant Inter-Packet Inter-
val (IPI) value towards the single destination, the sink. The IPI includes a small
jitter to avoid packet synchronization across the nodes. The routing protocols
broadcast their own control messages, known as beacons, at a given Inter-Beacon
Interval (IBI), which is fixed for Arbutus and variable for CTP, which employs
adaptive beaconing [7]. In this study, we use the performance metrics typically
employed in evaluation of routing protocols:

– Delivery Ratio: The ratio of the number of packets that are delivered to the
sink to the total number of injected packets.

– Goodput: Number of application packets delivered to the sink per node per
unit time (here measured in pkts/sec).

– Delay: The time it takes for a packet to travel from the source to its desti-
nation.

– Cost: The total number of transmissions (including retransmissions) needed
to get a packet from its source to the sink.

During each experiment, we log all control beacons and use them offline to
measure the PRR for all the network links. In turn, the measured PRR is em-
ployed to compute the END metric for the experiment at hand.
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Table 3. END and delivery ratio for four examples of MoteLab topologies

Sink Class END Delivery Ratio

46 A 0.73 0.9984
25 A 0.38 0.9864
22 B 0.18 0.8722
90 B 0.05 0.5119
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Fig. 3. With both CTP and Arbutus, the
END metric generally correlates with the
delivery rate, and the performance di-
chotomy shown in Fig. 1 is confirmed.
Low END values correspond to a less pre-
dictable performance.
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Fig. 4. For both CTP and Arbutus, the
END predicts the performance dichotomy
between Class A and Class B also in good-
put. In general, the better the END, the
higher the goodput.

3.2 Protocol Performance and Topology

Table 3 shows the values of the END metric and the delivery ratio from four
examples of MoteLab topologies from motelab-arbutus that yield very different
performance levels. The delivery ratios range from 99.84% with sink 46 to about
51% with sink 90. Across the experiments, there is a distinct correlation between
higher delivery ratio and higher END.

Figure 3 shows the delivery ratio vs. the END metric for the experiments in
motelab-ctp and motelab-arbutus. Qualitatively, we observe a correlationbetween
the END metric and the delivery ratio for both CTP and Arbutus; this confirms
that the performance variations across different experiments may be traced back
to changes in the network topology. With a lower END, the best possible achiev-
able performance is also lower, as reflected in the protocol performance.

Table 4 and Table 5 summarize the results from the experiments in motelab-
ctp and motelab-arbutus. We note that the dichotomy between Class A and
Class B that was evident in Fig. 1 is also visible in these results. We can use
the END metric to classify the topologies according to the expected achievable
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Table 4. Results from the experiment set motelab-ctp. Performance of CTP at IPI=10s
averaged over different END ranges: Class B, Class A, and its subclasses, A+ (upper
Class A) and A- (lower Class A).

END Range Delivery Ratio Goodput [pkts/sec] Path Length Cost

mean σ mean mean σ mean σ

[0, 0.5) (B) 0.06 0.09 0.61e-3 7.1 2.5 23.7 18.9
[0.5, 0.9) (A-) 0.9246 1.47e-2 9.2e-2 4.1 0.9 5.5 2.8
[0.9, 1] (A+) 0.9997 2.33e-4 9.9e-2 3.2 0.2 3.7 0.2
[0.5, 1] (A) 0.9361 0.31e-2 9.3e-2 4.0 0.9 5.2 0.9

Table 5. Results from the experiment set motelab-arbutus. Performance of Arbutus
at IPI=10s averaged over different END ranges.

END Range Delivery Ratio Goodput [pkt/sec] Path Length Cost Delay [sec]

mean σ mean mean σ mean σ mean σ

[0, 0.5) (B) 0.66 0.15 0.6e-2 5.0 1.5 10.9 3.4 241.7 240.4
[0.5, 0.9) (A-) 0.9967 4e-3 8.8e-2 2.9 0.5 8.9 5.5 1.3 1.5
[0.9, 1] (A+) 0.9996 2e-4 9.3e-2 2.9 0.5 3.3 0.6 0.2 0.1
[0.5, 1] (A) 0.9975 3.6e-3 8.9e-2 2.9 0.5 7.3 5.3 1.0 1.3

performance. The END also correlates to various degrees with other metrics such
as goodput, cost, and delay.

The END metric helps us understand the protocol performance in the context
of the network topology over which an experiment is run. With the END metric,
we can precisely identify the cases where a low protocol performance is due to
an adverse network topology.

3.3 Explaining Protocol Performance

The END metric can help explain the reasons behind the achieved protocol per-
formance. For example, in Class B topologies Arbutus performs more efficiently
than CTP due to the use of different retransmission strategies: Arbutus employs
unconstrained retransmissions (compared to 32 times for CTP) and limits packet
loss at the price of delay, as shown in Table 5. In Class A topologies, CTP and
Arbutus perform more similarly and achieve high delivery ratio. We expect this
result considering the abundance of high quality key links in Class A topologies.

Figure 5 shows the packet loss and the corresponding END with a specific
sink placement (node 22) in MoteLab. Each datapoint represents the packet loss
and the value of the END metric over one of 50 experiments. There is a clear
negative correlation between the END and the packet loss.

In Class B topologies, a high delivery ratio comes with a high cost because a
large number of retransmissions is needed to deliver packets over unstable key
links. In Class A, however, a high delivery ratio does not imply a high cost
because the key links in Class A topologies have a high PRR and generally
require a single transmission.
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3.4 Comparisons across Testbeds

The END metric enables a direct comparison of results obtained from different
testbeds thereby overcoming the biggest shortcomings in testbed experimenta-
tion – the inability to directly compare the results from different testbeds. The
results obtained on different testbeds are directly comparable if the END metrics
across those experiments are similar.

In one experiment run on the Tutornet testbed, CTP achieved a delivery of
99.9% with an END of 0.89. Both CTP and Arbutus performed similarly in
the MoteLab runs from motelab-ctp and motelab-arbutus when the END was
in that same ballpark. Because the END values across these experiments on
two different testbeds are similar, we know that the network topologies during
these experiments were similar, and these two performance results are directly
comparable. Thus, the END metric tells us when the topologies on two testbeds
are similar and gives us a way to directly compare the results from two testbeds.

3.5 Comparisons over Time

Even if the sink placement and the network layout are fixed, protocol perfor-
mance can still change over time due to the temporal changes in the link qualities
in the network. Figure 5 shows that a testbed can have a time-varying topology
that yields a time-varying performance. The performance peaks correspond to
END maxima, while the performance lows map to END minima. We conjecture
that this is due to the high impact of transitional links with this particular sink
assignment: transitional links are more likely to get stuck in bad fading spots
at night than they are during the day, when they can leverage induced fading
effects [11].

This example shows that the END can also be employed for a systematic
evaluation of a single protocol over time.
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3.6 Directionality and Outliers

The quality of the links to the sink’s neighbors, to a large extent, determines
the performance of a collection protocol. A link can have bidirectional loss,
dominantly outbound loss, and dominantly inbound loss. The nodes cannot send
data to the sink if the links from these neighbors of the sink have high bi-
directional or inbound losses, while acknowledgments and control packets from
the sink tend to get dropped with high outbound loss.

Figure 6 shows the BD vs. the END for each of the motelab-ctp and motelab-
arbutus experiments. We observe that the outbound losses are common in Class
B topologies. Both protocols suffer significant outbound losses in those topolo-
gies. Because it contains several mechanisms to boost reliability, Arbutus per-
forms significantly better than CTP with Class B topologies. Figure 6 shows that
a near-zero BD always corresponds to a high END and therefore to high delivery
ratios. We also found that near-zero BD are rare, suggesting that most links were
unstable and asymmetric during our experiments. Strong dominantly inbound
losses were never observed in our experiments. The corresponding topologies
would result in near-zero packet delivery.

Moderate inbound loss (BD> 0) typically indicates the presence of connectiv-
ity outliers. If the END is very high (typically > 0.8), a positive BD is indicative
of the presence of leaf connectivity outliers, i.e., nodes with poor downstream
links that are attached to the collection tree as leaf nodes. These leaf outliers
result in a positive BD in Fig. 6. The positive BD allows us to determine that
the dominant cause of CTP’s poor performance is downstream loss. Thus, the
BD metric enhances the performance analysis by adding directionality to the
overall topology information captured by END.

3.7 Applicability to Simulation

Even an accurate qualitative description of a simulation setup makes it difficult
to quickly determine the impact of the simulation environment on the protocol
performance. Instead, the END metric can be used to succinctly capture the
topology information used in simulations. Figure 7 shows the values of the END
and the delivery ratio obtained by running CTP on 50 different network topolo-
gies (each consisting of 100 nodes) within the Castalia simulation environment
[21][1]. For each network, the END and the delivery ratio were averaged over 50
simulation runs. Similarly to the testbed experiments, the END metric and the
delivery ratio from the simulations show a significant degree of correlation. In
this specific case, low END values correspond to relatively high average delivery
ratios because in the simulations the channel remains constant across retransmis-
sions. Because the END metric succinctly captures the property of the topology
instantiated during the simulation, it allows us to understand the impact of the
topology on the protocol performance in simulation.
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Fig. 7. END vs. delivery in a series of
Castalia simulation runs of CTP. Each
circle represents the average over 50
simulation runs with a given 100-node
network.
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Fig. 8. Expected Path Delivery vs. mea-
sured path delivery in a series of TOSSIM
simulation runs of TYMO, a point-to-
point routing protocol (each circle repre-
sents one simulation run)

3.8 Applicability Beyond Collection

The definition of the END given in equation (2) presupposes a many-to-one
traffic pattern. This formulation is specific to collection, but the framework is
more generally applicable. For example, in the case of point-to-point routing,
the Expected Path Delivery (EPD) given in equation (1) can be employed to
gauge the expected performance on a route between two nodes. Figure 8 shows
the results of a TOSSIM simulation of TYMO, a TinyOS implementation of
the Dynamic MANET On-demand (DYMO) routing protocol [4]. Each circle
represents one simulation run, and each run has a different set of link dynamics.
These simulation results show that the EPD correlates well with the measured
path delivery, and two performance classes can be identified as was the case with
the testbed experiments in Fig. 3.

3.9 Limitations

Though the END and the BD are protocol-independent in their definition, their
calculation leverages the protocol’s control traffic. There is arguably some resid-
ual dependence on the protocol, mainly because we need to leverage the proto-
col’s traffic to measure connectivity. Measuring the accuracy of the computed
PRR would require the injection of additional traffic, which would affect the
protocol’s performance and perturb the results. This is a fundamental limitation
of our framework that is due to the need to measure the network as we use it
[8]. Another limitation lies in the fact that the END is averaged over the dura-
tion of each experiment. In networks where bimodal links dominate, or in long
experiments, a time-dependent formulation of the END is in order and will be
addressed in our future work.
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4 Related Work

The impact of the network topology on protocols has been studied in the context
of wired networks, with a specific focus on the Internet. Early studies considered
the node degree distribution and the neighborhood size [6]. In [13], network
topology is characterized with three metrics: the expansion (average number
of nodes within a given hop count), the resilience (minimum cut-set size for a
balanced bipartition of the network), and the distortion (which captures how
path lengths are affected by link failures). Our study, however, is specific to
wireless sensor networks, whose low-power communication hardware underscores
the probabilistic nature of wireless links [17] and makes it impossible to treat
them as Boolean objects (as in wired networks).

Recently, the lack of a wireless lexicon to describe the complexities of real-
world wireless networks has been pointed out, and there have been a few efforts
on the definition of link-level parameters that capture the vagaries of the be-
havior of low-end wireless network. In [19], a measure of link bimodality (the β
factor) is defined, and its impact on protocol performance is characterized. In
[18], a measure of inter-link cross-correlation (the κ factor) is proposed. A re-
lated effort is the development of the Stanford Wireless Analysis Tool (SWAT)
[20], a software tool for the collection of network measurements. In these studies,
network measurements are taken by injecting special traffic patterns: broadcast
traffic in [19] and a round-robin of packet bursts in [18]). Our effort can be viewed
as complementary to these studies, because (1) we focus on a network-wide met-
ric as opposed to a link-level metric, and (2) we perform passive measurements
directly from the broadcast control traffic injected by the protocol under test
as it is running. Our approach is particularly valuable for unstable topologies
that show different behaviors at different times. Initially, we also attempted to
measure the network before and/or after running the protocol, and for unstable
topologies the Expected Network Delivery often appeared to be uncorrelated
from the various performance dimensions.

Similarly to the CTP work [7] and to the aforementioned studies, we capitalize
on remote-access testbeds and their backchannels to gain a thorough understand-
ing of the reasons for packet loss. Similarly to the Visibility framework [22], our
approach makes it easier to diagnose the causes of failures. Differently from that
framework, however, our approach is unobtrusive because it does not require any
changes to the protocol under test. Similarly to [8], we note that testbed condi-
tions vary so rapidly that even back-to-back experiments are not guaranteed to
share the same conditions, which is why we measure the PRR from a protocol’s
control traffic while the protocol is running.

While in [22] visibility is pursued from within the protocol, the achievement
of visibility through passive inspection by way of a sniffer network is the focus
of [14], [16], and [15]. We believe that coupling our method with passive inspec-
tion techniques would greatly benefit the overall system visibility that passive
inspection strives for.
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This work is informed with a deep awareness of the vagaries of wireless prop-
agation [17], in particular the existence of the transitional region of connectivity
[24][25] and the temporal properties of wireless links [3].

5 Conclusion

The wide range of protocol performance levels across different topologies suggests
that just looking at the performance results with no regard to the topology only
gives an incomplete picture of the protocol performance. The END is a signifi-
cant step towards a systematic methodology for the comparison of experimental
results across protocols, time, and testbeds. We showed that the END exposes
specific features of the network topology that can significantly affect the network
performance.

The effectiveness of our approach in describing the state of the network dur-
ing an experiment suggests that it is possible to succinctly represent the net-
work topology in the context of the design goals of a protocol. We primarily
focused on collection protocols, but also showed that our methodology applies
to point-to-point routing. We underscored its added value in the context of
testbed experiments, and we showed that our framework is also applicable to
the characterization of simulation scenarios.
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Abstract. Highly efficient compression provides a promising approach
to address the transmission and computation challenges imposed by mov-
ing object tracking applications on resource constrained Wireless Sensor
Networks (WSNs). In this paper, we propose and design a Compressive
Sensing (CS) based trajectory approximation algorithm, Adaptive Algo-
rithm for Compressive Approximation of Trajectory (AACAT), which per-
forms trajectory compression, so as to maximize the information about
the trajectory subject to limited bandwidth. Our extensive evaluation us-
ing “real” trajectories of three different object groups (animals, pedestri-
ans and vehicles) shows that CS-based trajectory compression reduces up
to 30% transmission overheads, for given information loss bounds, com-
pared to the state-of-the-art trajectory compression algorithms. We im-
plement AACAT on the resource-impoverished sensor nodes, which shows
that AACAT achieves high compression performance with very limited
resource (computation power and energy) overheads.

1 Introduction

Object tracking is on horizon due to multitude of application scenarios in the
present time. The Virtual Fencing (VF) application devised by the CSIRO ICT
Center, Australia is one such example, where the locations of animals are con-
trolled, not by a physical fence, but with stimuli (e.g. auditory and mild electric
shocks) applied by special devices worn by the animals. Ethical considerations
are critical in the VF application and observations regarding the states of each
animal must be maintained. Since continuous human observation is infeasible,
it is important to return data about the states of the animals and the stimuli
applied. The VF application operates in a delay tolerant fashion. The position
data of an animal is recorded and stored in a sensor node attached to the animal.
There is also a small number of fixed nodes which are connected to the basesta-
tions. When animals enter the transmission range of a fixed node, position data
from their sensor nodes are uploaded to the basestations. Due to uncoordinated
movement of the animal connection time (amount of time a fixed node is con-
nected with the mobile node) is typically unpredictable. Therefore, the amount
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of data that can be uploaded during a connection is also unpredictable in the
VF application.

The VF application poses two fundamental challenges. First, monitoring a
large number of animals requires the availability of their complete geographi-
cal traces (trajectories), which leads to transmission challenges due to limited
bandwidth of wireless nodes. Second, limited transmission opportunities and con-
nection time often cause the memory buffer to become full, therefore it becomes
necessary to discard data, which leads to data loss.

Besides the VF application, trajectory compression is becoming essential in a
number of participatory sensing [2] applications, such as, social networking (user
locations need to be continuously uploaded) and traffic conditions monitoring
(traffic condition is inferred by analyzing position data uploaded from vehicles)
using mobile phones. Although, mobile phones have access to higher bandwidth,
expensive cellular communications often restricts the amount of data that can
be transmitted. GPRS or cellular bandwidth imposes strong restriction on the
amount of transmission.

An efficient trajectory compression algorithm helps to cope with limited band-
width; therefore, trajectory compression has been extensively studied in the last
decades. One class of these compression algorithms [6,12] is mainly guided by
the advances in the field of line simplification and cartographic generalization.
The primary disadvantage of these algorithms is the frequent elimination or mis-
representation of important points, such as sharp angles. Another class [1,10] of
algorithms achieves compression via predictions; however, these algorithms gen-
erally assume that the mobile objects have a limited number of movement states
(e.g moving speed and direction), which may be impractical in the reality.

Recent developments in Compressive Sensing (CS) theory [3] provide an at-
tractive alternative for trajectory compression in WSNs. Given that a trajectory
segment f ∈ R

n is compressible in a sparsifying domain (e.g. Fourier, Discrete
Cosine Transform (DCT) etc.), then a small number of coefficients (which will
be denoted by k is this paper), is sufficient to accurately represent the trajectory
segment. The key idea behind CS is that it takes a small number of projections
m(<< n) to accurately recover f with high probabilities (projections are typi-
cally aggregations of data points of a trajectory segment, we define it in detail
in Section 3). Since, only m(<< n) projections need to be transmitted to the
basestations, CS offers efficient use of bandwidth.

The key challenge of applying CS in trajectory compression is that we need to
estimate the compressibility, namely the parameter k, of the trajectory in-situ to
obtain the most benefits out of CS in practice, because the number of compres-
sive projections (m) is a function of compressibility (k) that changes dynamically
with the speed of the mobile objects. Intuitively, when an object is stationary
or moves with a constant speed, the compressibility of its trajectory is high and
thus it requires a smaller number of projections to recover the trajectory ac-
curately. On the other hand, when the speed of the object changes frequently,
the compressibility of the trajectory diminishes and it requires a larger number
of projections to recover the trajectory accurately. However, the conventional
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method of computing compressibility is computationally expensive, and is in-
feasible for resource constrained WSN nodes. We propose and design a Support
Vector Regression (SVR), namely ε-SV regression [18], based in-situ compress-
ibility estimation technique, to provide an accurate estimation of k based on the
speed information of the nodes, and has small computational overheads.

Our key contributions can be summarized as follows:

1. We present an Adaptive Algorithm for Compressive Approximation of Trajec-
tory (AACAT), which adapts the number of CS projections while accurately
approximating the trajectory. An ε-SV regression based estimation is pro-
posed to adapt the number of CS projections to the object’s speed in-situ,
which improves the compression performance of CS based on the local speed
observations.

2. Our evaluations, based on the trajectories of three types of moving objects,
exhibiting large range of speed variations, show that CS-based trajectory
compression achieves 30% better “transmission versus accuracy trade-off”,
compared to two other state-of-the-art trajectory compression algorithms
based on Kalman filter and Spatiotemporal compression techniques. Our
evaluations also show that CS-based trajectory compression is resilient to
information loss as it offers promising “loss-distortion trade-off”.

3. Our implementation of AACAT on Fleck 3b platform consisting of an 8-
bit microcontroller and 8 kB RAM, demonstrates the resource efficiency of
AACAT that makes it a viable algorithm for resource impoverished sensor
nodes. Furthermore, we show that AACAT approximates trajectories with
high accuracy using empirical study.

2 Datasets

We evaluate the performance of AACAT using three datasets from WSN deploy-
ments and field experiments. These three datasets are made up of animal (cow),
pedestrian and vehicle trajectories respectively, which will demonstrate the per-
formance of AACAT with a large range of speed variation of mobile nodes. The
animal trajectories were collected from a real WSN deployment at the Wivenhoe
Dam, where sensor nodes are mounted on the cow collars and locations are sam-
pled by the GPS receivers at 2 Hz. We collected trajectories of 36 cows for one
week. The pedestrian and vehicle datasets were created with the help of 20 staff
and student members of the CSIRO ICT center. They were given Nokia N97
mobile phones for a two-week period to use during their daily commute. Anno-
tation was used to differentiate vehicle and pedestrian data. A python script was
installed on the phone that recorded the GPS coordinates at 2 Hz. In summary,
we collected 75,000 segments of cow trajectories, 1,000 segments of pedestrian
trajectories and 5,000 segments of vehicle trajectories, where each segment has
n = 512 data points1.

1 We also conducted experiments with smaller segment lengths e.g. 128, 256 and ob-
served similar results.
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The ε-SV regression method used for estimating k involves a training and a
test phase. We divided our datasets into training and testing datasets to use
during the training and validation phases, respectively, and ensured that they
are independent. For example, the training set for pedestrian was formed using
the trajectories within the campus of the CSIRO ICT center and the test set was
formed using trajectories outside of the CSIRO ICT center campus. For animals,
we used the trajectories of half of the cows as the training set and trajectories
from the rest of the cows as the test dataset. Finally, training and test datasets
for vehicle were formed using trajectories from separate road segments.

3 Compressive Sensing for Trajectory Compression

We first present the problem that we solve in this paper followed by the basic
idea of CS and how to apply CS theory to trajectory compression.

3.1 Problem Formulation

Consider f ∈ Rn is a trajectory segment containing n consecutive position data
points of a moving object. In order to conserve bandwidth, we want to acquire
only m << n projections of f , which can be used to accurately reconstruct f
at the basestations. Due to limited transmission opportunities and connection
time, some of these m projections may further be discarded. Therefore, it is also
required that reconstruction performance degrades gracefully with the loss of
projections.

3.2 Compressive Sensing

The theory of CS provides an attractive solution to the problem of recovering
a compressible signal from a few projections. Given the trajectory segment f is
an n data point discrete time signal, using an n × n orthonormal basis matrix
Ψ = [ψ1|ψ2|...|ψn] with the vectors ψi as basis vectors, f can be represented as,

f = Σn
i=1ψiαi or f = Ψα, (1)

where, α is an n × 1 column vector of weighting coefficients αi = 〈f, ψi〉 = ψT
i f

and .T denotes the transposition. Note that a position data point is typically
represented using two geographic Cartesian coordinates, Northing and Easting,
where Northing refers to the northward-measured distance (or the y-coordinates)
and Easting refers to eastward-measured distance (or the x-coordinates). For
simplicity, we consider Northing and Easting separately i.e. f contains either
n consecutive Northing or Easting data points. Our approach is to separately
recover the Northing and Easting data points of a given trajectory segment to
recover the corresponding segment. Note that f and α are equivalent representa-
tion of the trajectory segment, with f in the time domain and α in the Ψ domain.
Generally, f is compressible when it has a few large and many small coefficients
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in the Ψ domain. Formally, f is compressible when the reordered entries of its
Ψ -coefficients decay like power law; i.e. when we rearrange the sequence of α in
decreasing order of magnitude |α|(1) ≥ |α|(2) ≥ ... ≥ |α|(n), for some the r ≥ 1,
the zth largest entry obeys,

|α|(z) ≤ Const.z−r. (2)

Instead of conducting point-wise measurements, CS takes m << n projections
of f , where each projection is an inner product between f and a projection vector
φj as in yj = 〈f, φj〉. Forming a m× n projection matrix Φ using m vectors φT

j ,
we can write the projection operation in matrix form, as follows:

y = Φf = ΦΨα = Θα (3)

Eq. (3) represents the typical CS encoding process, where Θ = ΦΨ .
Since m << n, the problem of recovering f from y and Θ is ill-conditioned.

CS shows that a sufficient condition for a stable solution is that for an arbitrary
3k sparse vector v and for some δ > 0, Θ satisfies

1 − δ ≤ ||Θv||
||v|| ≤ 1 + δ. (4)

Condition (4) is called Uniform Uncertainty Principle (UUP) [4] or Restricted
Isometry Property (RIP). CS theory also suggests mechanisms to generate Θ ma-
trices that satisfy the RIP with high probabilities. For example, if Φ is formed
by sampling iid entries from the normal distribution with mean 0 and variance
1/m, then for an arbitrary orthonormal basis Ψ , Θ = ΦΨ obeys RIP with over-
whelming probability, when m ≥ ck log (n

k ) with c as a small constant [5].
Condition (4) ensures that f can be recovered from (3); however, since m <<

n, there are many α′ that satisfies y = Θα′. Encouragingly, CS optimization
based on �1 norm

α̂ = argmin
α′

||α′||, s.t. y = Θα′ (5)

can accurately estimate f (namely producing the k-term approximation by
returning its largest k coefficients) with high probabilities, using only m ≥
ck log (n

k ) projections [4]. Eq. (5) is the CS decoding (reconstruction) process.
Since (5) is a convex optimization problem, it can be solved in polynomial time
and k-approximation of f (which will be denoted by f̂) can be recovered using
f̂ = Ψα̂.

Given that f is compressible, i.e. k is very small, we have ck log (n
k ) << n.

Therefore, using the CS theory, we can accurately recover f using only a small
number of projections m and achieve high compression ratio m

n , since m << n.
Consider, we compute m(= ck log n) projections of f . Due to limited trans-

mission opportunities and connection time, some of these projections (e.g. μ)
are discarded and only m̂ = m− μ of them are transmitted to the basestations.
Using m̂ projections we cannot recover f accurately, rather we can produce
k̂ ≤ k approximation of f with an increase of the reconstruction error. However,
in Section 6.1 we will empirically show that the reconstruction error increases
gracefully with the increase of μ.
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3.3 Adaptive Compressive Sensing

In order to get the most benefit out of CS in practice, we need to find a basis
where the trajectory data points are most compressible. In [15] we report that
trajectories of all three object groups have most compressible representation
in DCT. Now consider that a trajectory segment has k significant coefficients
while represented in DCT. In CS, the number of projections, m, to approximate
the trajectory segment accurately is determined by this number of significant
coefficients, k. Typically, k changes dynamically with the speed of the object.
Therefore, computing k for every trajectory segment would further improve the
compression performance. However, computing k for a trajectory segment in-
volves a transpose of an n × n matrix (O(n2

2 ) operations) and then multipli-
cation of the n × n matrix with an n × 1 vector (O(n2) operations), which are
computationally expensive for resource impoverished wireless sensor nodes. Note
that the transpose operation can be saved by storing ΨT in the memory, how-
ever the multiplication (ΨT f) will still incur high computational expenses. An
efficient estimation of k is therefore required, which accurately estimates k in-
curring affordable computation cost. In the next section we will propose an ε-SV
regression based technique to estimate k, which accurately estimates k incurring
reasonable computational expenses.

4 In-situ Estimation of k

In this section we first show the correlation of the speed of the moving objects
with k, then we use ε-SV regression to model this correlation.

4.1 Correlation between Speed and k

Given f ∈ R
n is an n data point Northing or Easting segment of a moving

object recorded over time ti, (i = 1, ..., n), the quantity |fi+1−fi|
ti+1−ti

, (i = 1, ..., n−1)
produces the speed along the corresponding Northing or Easting axis. We aim
to estimate k based on the speed of the moving object.

We process the trajectory in the test data set, segment by segment where each
segment is of length n. The n data points of a trajectory segment gives n − 1
speed readings along both Northing and Easting axes. In order to investigate
the correlation of speed with k, for each segment we compute mean, variance,
minimum and maximum (we call them speed candidates hereafter) of the corre-
sponding n−1 speed readings and plot them against the corresponding k values,
where we use a value of k that approximates the corresponding trajectory seg-
ment (Northing and Easting separately) within a small (one meter) error.

Figure 1 summarizes the correlations of different speed candidates with k over
all the segments of the training set from animals2. For a given speed candidate
2 Due to space constraints, in Fig. 1 we only depict the correlation for Northing. Similar

results are observed for Easting. Furthermore, we only use the animal dataset for
this illustration since similar to animal, for the rest two datasets, mean, variance
and maximum speed show the best correlation with k.
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e.g mean speed, we compute the mean speed of each of the trajectory segments
and compute the corresponding k value to approximate the trajectory segment
within one meter error. We then plot these mean speeds along x-axis and corre-
sponding k values in y axis in Fig. 1(a). In particular, instead of plotting the k
values, we plot the ratio between k and the total number of coefficients within a
trajectory segment along the y-axis. We observe that mean, variance and maxi-
mum speed are well correlated with k, because with the increase of these speed
candidates, the corresponding values of k increase proportionally. For clarity we
also show the value of correlation coefficients (CC) in the caption of the corre-
sponding figure. In the next section we will model the correlations between the
three chosen speed candidates (mean, variance and maximum) and k using ε-SV
regression.
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Fig. 1. The correlations of various speed candidates with k. The values of the correla-
tion coefficients (CC) are shown in the caption of corresponding figure.

4.2 Modeling Correlation by ε-SV Regression

Consider for a given speed candidate s, the training set,{(s1, k1), ..., (sL, kL)},
s ∈ R, k ∈ R, has L elements, where si is ith value of s and ki is the corresponding
value of k. The ε-SV regression determines a function g(s) that has at most ε
deviation from the actual ki for all the training data, and at the same time is as
flat as possible. The function g is typically computed from

g(s) = 〈ω, s〉 + b with ω ∈ R
n, b ∈ R, (6)

where 〈., .〉 denotes the dot product within R
n. In (6) flatness is achieved by

minimizing ω. Because of space limit, we only show the case for linear function
in (6), readers are encouraged to read [18] for the complete description of ε-
SV regression. One of the main characteristics of ε-SV regression is that it is a
Quadratic Problem (QP) which has a unique global solution in general.

In Section 4.1, we have shown that three candidates namely mean, variance
and maximum values of speed have close correlation with k. Using ε-SV regres-
sion we further attempt to find the best candidate among them. We use the
combinations of these candidates to increase the scope of our search. We first
train the ε-SV regression process using the mapping of k with different speed
candidates of the training dataset. In these mappings the values of k were chosen
to approximate the corresponding trajectory segment within one meter error3.
3 We chose the values of k to approximate Northing and Easting separately within 0.5

meter, therefore the resultant distance error is less than or equals to one meter.
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Table 1. MEE of k estimation for different speed candidates. The smallest MEE for
different forms of the datasets are highlighted in the corresponding column.

MEE of k estimation
Speed animal vehicle pedestrian universal

candidates
mean 2.97 1.28 0.19 3.82

variance 2.74 2.06 0.19 3.29

max 3.67 1.05 0.20 4.41
mean, variance 2.78 1.29 0.19 3.47

mean, max 3.44 0.93 0.19 4.35
variance, max 3.10 1.05 0.19 3.95

variance, mean, max 3.25 0.92 0.19 4.16

For each speed candidate, the training process computes the correlation function
g(s) as in (6).

We then use the test datasets to estimate k for different candidates by passing
the values of the speed candidate (s) to the function g(s) computed during
the training process. We also use two different forms of datasets within the
training and validation process. In the first form, we use the data from individual
object group (i.e. animal, pedestrian separately), whilst in the second form we
combine data from all three object groups to form a “universal” dataset. In
particular, we combine the training and test datasets of individual object group
to form, respectively, the universal training and test datasets. The underlying
idea of using a universal dataset is to investigate the performance of a universal
training (training SVR using the combined datasets of different object groups)
over individual training (training SVR using individual object group dataset).
Note that a universal training can lessen the requirement of using individual
training results for estimating k of corresponding object trajectories.

We compute the Mean Estimation Error (MEE) to compare the the per-
formance of estimating k using different speed candidates. If there are total J
segments in a trajectory dataset, MEE is computed by ( 1

J

∑J
i=1(δ

i
E +δi

N)), where
δi
E is the absolute difference between the test and the estimated k for ith trajec-

tory segment (Easting) and δi
N is the absolute difference between the test and

the estimated k for ith trajectory segment (Northing). MEE for various candi-
dates are summarized in Table 1. We observe that for the animal, pedestrian
and universal datasets, the variance of speed produces the smallest MEE, but
the combination of mean, variance and maximum speed produces the smallest
MEE for the vehicle dataset.

In order to use ε-SV regression for estimating k in-situ, we create a lookup ta-
ble (ε-SV lookup) based on the ε-SV regression training results. The advantage of
using a lookup table over running resource-intensive ε-SV regression on the nodes
is the higher computation efficiency, which is crucial for resource impoverished
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sensor nodes. The disadvantage of this strategy is relatively lower quality esti-
mation of k, because of the limitation of search spaces of a pre-calculated lookup
table can have. We will demonstrate this design trade-off in details in Section 6.

5 AACAT Algorithm

In our current implementation, AACAT has two main threads where Thread
1 stores and compresses the data (generates projections) and Thread 2 oppor-
tunistically transmits the projections to the basestations. Memory management
is handled via fixed-length linked lists, where we store the position data and the
projections in two separate lists called receiveQUEUE and sendQUEUE, respec-
tively (for Northing and Easting we use separate sendQUEUE and receiveQUEUE).
The size of the receiveQUEUE is chosen so that it can fit data of one trajectory
segment. Each segment is identified using the timestamp of the first sample
in the segment. Projections attached with the same timestamp are used to re-
construct the corresponding segment in the basestations. Northing and Easting
segments are reconstructed separately and then combined to recover the corre-
sponding trajectory segment. We also use separate lookup tables for Northing
and Easting, where the values of the speed candidate(s) are rounded to one
decimal place.

Thread 1 constantly takes samples from the GPS module and adds the
samples to the receiveQUEUE when the receiveQUEUE is not full. Once the
receiveQUEUE is full, Thread 1 computes the projection(s) of the samples in the
queue, by first determining k using the ε-SV lookup table, followed by comput-
ing m = �ck log (n

k )	 projections of the samples. We observed c = 1 is sufficient
for pedestrian and vehicle datasets, but a higher value (c = 2) is required for
animal dataset. We used iid Gaussian N (0, 1

m ) numbers as the elements of the
projection vector which can be constructed distributedly at the node and the
basestations by using the same seed of a pseudo-random generator. The lookup
operation selects the value of the speed candidate in the table that has the small-
est difference with the speed candidate of the current segment and retrieves the
corresponding k value.

If the sendQUEUE is not full, projections are appended in the sendQUEUE. Oth-
erwise, the projections can be discarded from the sendQUEUE randomly because
each projection is a linear combination of the samples in a segment. This prop-
erty offers promising loss-distortion trade-off as in Section 6 we demonstrate
that the reconstruction error increases gracefully as we reduce the number of
projections. Algorithm 1 shows the pseudocode of Thread 1.

The role of Thread 2 is to detect the network connectivity. Once the net-
work is connected, it attempts to transmit a copy of the element at the head of
sendQUEUE. If the element is successfully received, it removes the sample at the
head of the list that in turns frees up one space in the sendQUEUE.
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Algorithm 1. Thread 1
Ensure: Memory for linked list is allocated
1: receiveQUEUE ← list to store incoming position data (GPS samples)
2: sendQUEUE ← list to store outgoing AACAT projections
3: while GPS has lock do
4: p ← New GPS position
5: if receiveQUEUE NOT full then
6: push p to receiveQUEUE

7: else
8: look up k of the segment at receiveQUEUE and compute m = �ck log (n

k
)�

projections.
9: for all projection do

10: if sendQUEUE NOT full then
11: push one projection in sendQUEUE.
12: else
13: if Each segment has one projection then
14: Randomly delete one segment.
15: else
16: Randomly delete one projection of a segment having more than one

projection.
17: end if
18: end if
19: end for
20: end if
21: end while

6 Evaluation

We use Average Distance Error (ADE), which gives the distance between the
real and reconstructed trajectory.

Consider that N i
ω, 1 ≤ i ≤ n and Ei

ω, 1 ≤ i ≤ n are respectively the consecu-
tive Northing and Easting data points of a trajectory segment ω, and N̂ i

ω, 1 ≤ i ≤
n and Êi

ω, 1 ≤ i ≤ n are the reconstruction of N i
ω, 1 ≤ i ≤ n and Ei

ω, 1 ≤ i ≤ n,
respectively. If there are J segments in a trajectory dataset, we compute ADE
by,

ADE= 1
nJ

∑J
w=1

∑n
i=1

√
(N i

ω − N̂ i
ω)2 + (Ei

ω − Êi
ω)2.

6.1 Transmission–Accuracy Trade-off of CS

CS achieves promising transmission versus accuracy trade-off, since it requires
only a small number of projections to accurately recover a trajectory segment.
We compare this trade-off of CS with that of two widely used trajectory compres-
sion algorithms: Kalman Filter (KF) and Spatiotemproal compression algorithm
(SPT).

KF is a stochastic, recursive data filtering algorithm widely used for system
state estimation, where state estimation process operates using recursive steps
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of prediction and correction based on observations. We used a centralized imple-
mentation of KF where Northing and Easting were separately modeled as state
variables and the predictions were made remotely at the basestations using the
data acquired from mobile nodes. In order to make a fair comparison the number
of bytes transmitted by CS is the same as the number of bytes transmitted by
KF (Note that the number of bytes (4kB) for a projection value is the same as
the number of bytes for a Northing or Easting point).

SPT is the improvement proposed by Meratina et al. [12] to the prominent
Douglas-Peucker (DP) [7] method. It leverages the Synchronous Euclidean Dis-
tance (SED) [13] that is the measurement of the distance between an observed
position and its estimated position based on a constant velocity model. For
a triplet of points with low SED, the middle point can be removed from the
trajectory with small loss of information. Similar to KF, the number of bytes
transmitted by SPT is the same as the number of bytes transmitted by CS. Note
that in both SPT and KF, when there is a missing data point, we use the last
observed data point as the current data point.
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Fig. 2. Benchmarking CS using KF and SPT

In Fig. 2 we compare the transmission-accuracy trade-off of CS, KF and SPT.
For CS, along x-axis is the percentage of the number of projections to the total
number of data points, but for KF and SPT, along x-axis is the percentage ratio
of the number of transmitted data points to the total number of data points.
For all CS, KF and SPT along y-axis is the ADE. We consider an n data point
trajectory segment which is comprised of n Northing and n Easting data points.
Therefore, the total number of data points within a trajectory segment is 2n,
and the number of transmitted projections or data points is the summation of
the number of transmitted Northing and Easting projections or data points, re-
spectively. We observe that, to approximate an animal trajectory segment within
10 m error, both SPT and KF requires approximately 30% more transmissions
compared to CS. However, due to higher compressibility, the difference between
CS and KF/SPT is smaller for the vehicle and pedestrian trajectories.

Due to delay tolerant transmission and fixed size memory buffer, data loss is
very likely to happen in the delay tolerant networks. We illustrate some examples
of possible data loss in Fig. 3, where for different latencies along the x-axis
we compute the percentage of possible transmissions along y-axis. Consider a
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Fig. 4. Loss distortion trade-offs

sampling frequency h Hz and inter-connection interval (since a mobile node has
only intermittent connection with the fixed node, the inter-connection interval
is the time between 2 connections with the fixed node by a mobile node) �
seconds. The total number of projections need to be transmitted during � seconds
is: T = 0.4�h (we arbitrarily choose 0.4, since from Fig. 2, 40% transmission
approximates the animal trajectory within 10 m error). Then, for a bandwidth B
kbps and connection time τ seconds (the amount of time a mobile node associates
with a fixed node), the allowed transmission is Δ = τB kb. The percentage of
CS transmission is therefore Δ

TQ , where each projection is Q kb. In Fig 2, we
use three different connection times, 120, 240 and 360 s, respectively and two
different bandwidths, 50 and 128 kbps, respectively. We observe that unless the
inter-connection interval is very small (1 or 2 min), even for high bandwidth
(e.g. 128 kbps) and connection time (e.g. 360 s), it is impossible to transfer
100% projections.

One key advantage of the CS theory is that it offers promising loss-distortion
trade-offs. In Fig. 4 we illustrate the loss distortion trade-off of CS based recon-
struction. Along the x-axis is the percentage of missing projections and along
the y-axis is the corresponding distance error. We first compute the average
number of projections (η) required to approximate a trajectory segment within
one meter error. Starting from η, we gradually reduce the number of projections,
compute the corresponding error, and plot the results in Fig. 4. We observe that
reconstruction performance degrades gracefully with the loss of projections. Such
as, for all three object groups, for up to 60% loss of projections, the ADEs are
within 10 meters. However, the reconstruction error increases rapidly (especially
for animals) beyond that point.

We have made a number of comparisons to evaluate the performance of AA-
CAT. Due to space limit we are unable to report the results here. Reader are
encouraged to read [15] to find the detailed about these comparison results.

6.2 System Performance

We implemented AACAT on the Fleck 3b nodes, which are in-house sensor
platform based on an 8-bit Atmel Amega 1281 microcontroller with 8 kB RAM
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Fig. 5. The reconstruction performance of AACAT on Fleck 3b platform. The thick
line is the ground truth and the thin line is the trajectory approximation produced by
AACAT. ADE is 3.67 meters.

Table 2. Memory and energy consumption of AACAT

Process current (mA) time (ms) energy (mJ) memory (kB)
projection 8 16.4 ± 0.8955 0.47 1.18
lookup 8 7.68 ± .01 0.18 1.67

(similar to Mica family motes) and a 50 kbps Nordic NRF905 transceiver working
on ISM 900 band, and evaluated the system performance with field experiments.
During the experiments, each subject (human) was given a Fleck to carry around
and was asked to walk along a road segment outside our lab. A fixed (connected)
node was placed in the middle of the road segment which was one hop away from
a basestation placed in the lab.

Two receiveQUEUEs of capacity of 512 data points were declared, one for
Northing and the other for Easting. Projected values of Northing and Easting
were stored separately in two sendQUEUEs with capacity of 128 projections
each. Size of the queues was chosen based on available memory within the 8 kB
RAM total on a Fleck 3b. Beacons were broadcast from the fixed node every
second. After hearing a beacon from the fixed node, mobile nodes transmitted
packets which would be forwarded to the basestations. The reconstruction result
of a trajectory segment is shown in Fig. 5. The thick line is the ground truth
which was recorded by carrying an additional Fleck 3b, recording GPS samples
at 2 Hz. It is evident that the reconstruction is very close (ADE is 3.67 meter)
to the real trajectory.

The projection and lookup operations are two key operations in AACAT. In
Table 2, we summarize the memory and energy usage of one ε-SV lookup and
one projection operations of 512 data points. The mean computation time for
both operations is small. For example, it takes only approximately 16.4 ms for
a Fleck3b to compute a projection, which is 16.4 ÷ (256 ∗ 1000) ≈ 0.006% of
the total time to collect one segment of data. Furthermore, the memory usage
(maximum 14% of available RAM) and the energy consumption (maximum 0.47
mJ) of the projection and lookup operations are quite low and are affordable on
the resource constrained WSN nodes.

7 Related Work

Approximation of the mobile object trajectory using only partial information
collected from sensor nodes has been widely studied in the past. The central
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themes of the previously proposed algorithms can be classified into two broad
categories: prediction and compression.

Prediction can be made in both centralized and distributed fashion. In a
centralized prediction technique (e.g. [8]) a basestation based on the information
extracted from the movement history of an object, predicts its future movement
states, which are then sent to the corresponding sensor nodes. If the prediction
do not match with the sensor readings, the sensor nodes correct the basestation
by sending their own readings. To save node to base communications of the
centralized techniques, dual prediction techniques are proposed in [11,21] where
the predictions take place distributedly at both sensor nodes and basestation,
and updates are sent to the basestation only when the prediction error exceeds
some given threshold.

Both the centralized and distributed prediction techniques use either individ-
ual or group movement history for prediction. The prediction with individual
history (e.g. [19,21] ) predicts the movement of an object from its own history.
Considering in practice an arbitrary movement trajectory that an object may
follow, the simple prediction models in the existing work results in poor predic-
tion performances. The prediction with group history (e.g. [1,10] ) categorizes
the objects into groups, and the prediction of a moving object is made based
on the history of all objects from the same group. Group history provides richer
information about the object movements than the individual history, but, these
techniques assume a limited number of movement states (e.g. moving speed and
direction) that a moving object can have. However, in practice even within the
same group, different objects may demonstrate different movement patterns at
different times (e.g., morning, noon and night) and/or with different tasks (e.g.,
surveillance and disaster response).

Compression algorithm proposed in [20] performs recursive segmentation of
the trajectory, until a trajectory segment can be modeled with an interpolation
function with a small error. Compression is achieved by only transmitting the
relevant parameters of the interpolation function. However, compression perfor-
mance of [20] has so far been evaluated using simulated trajectories without
considering the resource (computation power, energy and bandwidth) usage ef-
ficiency, which is crucial in tiny embedded sensor nodes.

In [17] authors propose a low-energy adaptation of the lossless compression
algorithm (LZW) for WSN, however, a likely scenario in the VF application is
that in order to cope with limited bandwidth a large amount of data may need
to be discarded. Therefore, a lossless compression algorithm is not a good fit.
Furthermore, the authors do not exploit temporal correlations of the data to
achieve compression, which can be explored to achieve better compression ratio.

Theoretical results provided in [9] show that CS is not an efficient compression
technique while applied with ordinary quantization, however our empirical re-
sults show that CS provides reasonably good compression. In particular, we show
that CS provides better compression compared to two other state-of-the-art tra-
jectory compression techniques. Furthermore, in number of other papers [14,16]
it is shown that CS provides promising compression in WSNs.
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8 Conclusion

In this paper we present a trajectory approximation technique, called AACAT,
which utilizes the embedded redundancy of trajectory data using the emerg-
ing theory of Compressive Sensing (CS). Furthermore, AACAT introduces a
ε-SV regression-based in-situ compressibility estimation technique to adapt the
number of required projections to trajectory data compressibility dynamically
that improves the performance of CS trajectory compression. Our evaluation by
three different trajectory datasets, collected by sensor nodes carried by animals,
pedestrians and vehicles, shows that for a reasonable approximation accuracy,
CS-based compression reduces 30% transmission overhead compared to the stat-
of-the-art trajectory compression techniques driven by the classical Kalman Fil-
ter and Douglus-Peckur algorithms. Our evaluation also shows that CS-based
trajectory compression is loss-resilient since the reconstruction error increases
gracefully with the loss of projections. Finally, an end-to-end system, which is
implemented on resource-impoverished sensor nodes with 8-bit microcontrollers
and 8 kB RAM, demonstrates that AACAT achieves high compression perfor-
mance with very little resource (computation power and energy) overhead.
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Abstract. This paper examines the accuracy of software-based on-line
energy estimation techniques. It evaluates today’s most widespread en-
ergy estimation model in order to investigate whether the current me-
thodology of pure software-based energy estimation running on a sensor
node itself can indeed reliably and accurately determine its energy con-
sumption - independent of the particular node instance, the traffic load
the node is exposed to, or the MAC protocol the node is running. The pa-
per enhances today’s widely used energy estimation model by integrating
radio transceiver switches into the model, and proposes a methodology
to find the optimal estimation model parameters. It proves by statistical
validation with experimental data that the proposed model enhance-
ment and parameter calibration methodology significantly increases the
estimation accuracy.

1 Introduction

With energy efficiency being a major concern in the design of Wireless Sensor
Networks (WSNs), researchers have thoroughly investigated how to save energy
by intelligent design of the communication protocols. On the MAC level, Energy-
Efficient Medium Access Control (E2-MAC) protocols have been proposed to
minimize the energy wastage of the radio transceiver, which is typically the major
energy consumer of the node onboard components. Most simulation-based E2-
MAC protocol studies rely upon simple energy models of the wireless transceiver
chips, with the node’s energy consumption being computed as the sum of the
energy it spends in the different transceiver states. Most of todays’ simulation
models implemented in mainstream network simulator frameworks (e.g. ns-2,
OMNeT++) distinguish three or even four states (receive/idle, transmit, sleep),
as well as switching states with corresponding transition delays.

With research on WSNs becoming more mature, many E2-MAC protocols
have also been prototyped and evaluated on real sensor hardware testbeds.
Not surprisingly, experimental validation of E2-MAC protocols have proven to
be much more resource intensive than using mainstream network simulators.

P.J. Marrón and K. Whitehouse (Eds.): EWSN 2011, LNCS 6567, pp. 49–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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While commonly used networking metrics such as packet delivery rate, source-
to-sink latencies or maximum throughput can easily be determined in real-world
testbeds, measuring the power consumption of sensor nodes is much harder:
costly high-resolution digital multimeters or cathode-ray oscilloscopes need to
be hooked to the nodes in order to sample the varying low currents and voltages.

Researchers have henceforth ported the same simple state-based energy esti-
mation models of WSN simulators into their real-world sensor MAC protocols
or radio chip drivers. Software-based energy estimation has been proposed in
[6] as a viable alternative to using costly hardware-based energy measurement
equipment, and has been integrated into the Contiki OS [5] - one of todays’ most
widespread sensor node operating systems. The Contiki mechanism consists in
bookkeeping the time the radio resides in the different transceiver modes on the
node itself, and multiplying these times with previously determined power levels
to obtain rough estimates for the consumed energy. Many prominent E2-MAC
protocol studies (e.g. [19] [14]) have entirely relied their experimental research
results upon the same software-based approach for estimating the energy con-
sumption of their protocol prototypes. More and more recent research papers
have utilized exactly this approach (e.g. [8], [2]), although, as already pointed
out in [6], no existing study has yet validated the accuracy of this approach with
physical hardware-based energy measurements. This paper bridges this missing
gap and thoroughly examines the accuracy and the limits of software-based en-
ergy estimation on the MSB430 sensor nodes platform [1]. It evaluates several
energy estimation models with prototype implementations of 802.11-like CSMA
and three E2-MAC protocols (S-MAC [19], T-MAC [17], WiseMAC [7]). We ran a
plethora of experiments under different traffic load levels and with different node
instances, in order to statistically describe the achieved estimation accuracies.

The paper is organized as follows: we elaborate on related work on software-
based energy estimation and measurement in Sect. 2. In Sect. 3 we introduce the
experiment setup for evaluating the different energy estimation models, model
enhancements and calibration techniques. Section 4 discusses the observed de-
viations between different sensor nodes’ current draws and their effect on the
resulting estimation accuracy. Section 5 evaluates the maximum achievable ac-
curacy of the most widely used energy estimation model (henceforth referred-to
as the Three States Model) with various wireless channel MAC protocols and
traffic rates. We then refine and enhance the estimation model and calibration
methodology and experimentally validate the gain in accuracy. Section 6 dis-
cusses the maximum accuracy gain that can be achieved with sophisticated and
fine-grained parameter calibration. Section 7 concludes the paper.

2 Related Work: Hardware-Based Energy Measurement
vs. Software-Based Energy Estimation

In numerous E2-MAC protocol studies [14] [3], cathode-ray oscilloscopes have
been used to quantify the energy consumed by a sensor node in a real-world
experiment. The basic idea of the methodology is to connect the sensor node in
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series with a low-impedance shunt resistor and to measure the resistive voltage
drop across the shunt, in order to infer the current flowing through the circuit.
This methodology has been applied by a number of studies and can be seen
as the cleanest approach of energy measurement, as it does not incur any side-
effects to the sensor node hardware or software. Its main drawback, however, is
the costly measurement equipment required and the time-consuming operation
of it. Furthermore, if current traces need to be stored in a reasonable resolution
during an experiment of several minutes or even hours, the collected raw current
traces become huge and quickly cause storage- and memory problems. Only few
testbeds have integrated support for distributed real-time energy-measurements,
as e.g. MoteLab [18] with some of its nodes, or PowerBench [10]. Hence, in most
studies on energy-efficiency issues on the MAC and/or routing layer, researchers
have only measured a node’s current over a short period of time in order to
calibrate a simulation and/or estimation model, and have omitted the energy
aspect for the rest of the empirical evaluation.

Sensor Node Management Devices (SNMD) [12] have been developed as a
cost-effective alternative to using high-frequency multimeters or oscilloscopes
for side-effect free high-resolution energy measurement of sensor nodes. SNMDs
continuously measure the sensor node current and voltage with resolutions of up
to 2 kHz, and therefore need to be connected via USB to a backbone network.
This is usually possible in wired stationary testbeds and lab environments, but
less in outdoor deployments. With costs of the circuitry components still in the
range of 300$, it is a convenient measurement tool for lab environments, but still
too costly for large deployments of WSNs or WSN testbeds.

Dunkel et al. [6] motivate the need for software-based on-line energy esti-
mation, because only on-line estimation mechanisms running on the node itself
enable the node to take energy-aware decisions about routing, clustering or trans-
mission power scheduling. The authors experimentally correlate the estimated
energy with the sensor nodes lifetime, however underline that “further study is
needed to accurately quantify the error rate of the mechanism”.

PowerBench [10] partly tackles the issue of the accuracy of software-based en-
ergy estimation. The authors elaborate on the difference between their software-
based energy estimations (calculated with the commonly used Three States
Model) and the physically measured energy consumption of the nodes. When
running B-MAC [14] and Crankshaft [9], this difference reaches up to 21% of the
measurement values. Per-node-calibration is shown to vastly reduce this estima-
tion error. With the deviations between software-based estimation and physical
measurements still ranging from 2% to almost 14% for some of the examined
E2-MAC protocols, the software-based estimation approach still leaves room for
further improvements. The authors further note that frequency of state transi-
tions have a significant impact on the estimation accuracy.

Software-based energy estimation techniques clearly have their advantages
and drawbacks. A purely software-based approach can only deliver estimates. It
further introduces inherent side-effects, as the estimation mechanism itself causes
computational costs, which are hard to account for. The advantages, however,
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are manifold: with an energy estimation being present on the node at run-time,
many power-aware WSN algorithms can be applied in real-world deployments.
With the WSN field moving from simulation-based towards real-world testbed-
based research, finding a simple and painless, but yet accurate methodology for
quick and reliable energy estimation can be a significant milestone.

3 Experiment Equipment and Setup

3.1 Sensor Network Management Devices (SNMD)

We used Sensor Node Management Devices (SNMD) [11] to measure and retrieve
the node’s current and voltage in high resolution, in order to be able to calculate
the physically measured energy consumption and compare it to software-based
estimations later on. SNMDs have been specifically designed to accurately mea-
sure current and voltage of sensor nodes with a sampling resolution of up to
20 kHz (up to 500 kHz buffered). SNMDs measure the resistive voltage drop
across a 1 Ω shunt resistor. The accuracy of the SNMD has been evaluated us-
ing high-precision laboratory equipment for different current ranges. The SNMD
firmware corrects each sampled measurement by an error term, which was ob-
tained during evaluative testing in advance. This has been shown to reduce the
measurement error introduced by the measurement circuit below ± 0.5% for any
current in the range of 0-100 mA in [12]. As the accuracy of the SNMD has been
calibrated using highly accurate state-of-the art measurement equipment, we
can safely assume that it provides best possible physical hardware-based energy
measurements. Throughout the experimental analysis of this paper, we decided
to stick to a sampling rate of 1000 Hz, as the accuracy gain with even higher
rates proved to be negligible with the chosen node type and bandwidth settings.
Other node platforms, e.g. nodes with IEEE 802.15.4-based radios with higher
bandwidth could however probably profit from the high maximum sampling rate
of the SNMD.

3.2 The Modular Sensor Boards (MSB430) Platform

The MSB430 node [1] has a CC1020 [16] byte-level radio transceiver operating
in the 804-940 MHz ISM frequency band. In its base configuration, the node
features a Sensirion SHT11 temperature and humidity sensor, as well as the
Freescale MMA7260Q accelerometer. Besides ScatterWeb2 OS [15], the MSB430
can be run with the popular Contiki OS [5] since recently (v.2.4). While the
maximum raw bit rate of the CC1020 is 153.6 kbit/s, the ScatterWeb2 OS we
utilized throughout this paper currently only supports a data rate of 19.2 kbit/s.

3.3 Experiment Setup

We kept the measurement setup as simple as possible, in order to be able to re-
peatedly perform a significant number of experiment runs with different wireless
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Fig. 1. Node A generating packets, node B hooked to SNMD

channel protocols and traffic rates on the same experiment setup. We lay out
nodes A, B, C with a distance of 30 cm on a table, as depicted in Fig. 1. As we
wanted to simultaneously obtain both the software-based estimations and the
unaffected physical hardware-based measurements of the same node B, we had
to keep node B unplugged from any serial interface, as the node would otherwise
draw some small current from the powered USB serial interface cable. Hence, in
order to obtain the software-based estimations of node B without accessing it
over a serial cable, we let node B write its energy estimation model data (time
in transmit mode, time in receive mode, etc.) into the packet payload.

Packets are 50 bytes each (10 bytes header, 40 bytes payload). In each ex-
periment run, node A starts sending constant-rate traffic of rate r towards node
B during Texp = 600s. Right after the reception of the first packet, Node B
starts keeping track of the time its transceiver resides in the different states.
After injecting its estimation model data into the packet, Node B forwards the
packets to node C, which decapsulates the packet and logs node B ’s energy esti-
mation data to the serial interface, which is connected to a Desktop PC. During
the entire experiment, the current trace of node B is read from the SNMD’s se-
rial interface, which is connected to the same Desktop PC. As discussed later in
the analysis, we varied the traffic rate r at node A from very low rates (1 packet
every 100s) to high rates (2 packets/s) with each different wireless channel MAC
protocol. We measured 10 independent runs for each setting, and evaluated dif-
ferent node instances. In Sect. 4, node B (the measurement node) was exchanged
with other node instances of the same type.

4 Hardware-Dependent Energy Consumption Deviations

Applying software-based energy estimation inevitably introduces inaccuracies.
The differences between the estimated power consumption and the physically
measured power consumption can generally be explained by the slightly differing
behavior of the nodes’ electronic hardware components, or may stem from the
inherent imperfection of the software-based model and the applied estimation
methodology. This section elaborates on the effect of the slight deviations on the
power consumption of different node instances of the same node type, whereas
Sect. 5 discusses the impact of choosing an appropriate estimation model and
calibrating the model parameters.
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Fig. 2. Energy consumed by 8 different instances of nodes

4.1 Different Current Draws with Different Nodes

As discovered in previous experimental studies [13] [10], the power consumption
of different instances of the same type of sensor node often varies in the range of
some few percent. [13] presumes that this variation stems from differences in the
electronic components tolerances. We hence first examined multiple instances of
MSB430 nodes running different wireless MAC protocols, given a constant traffic
rate of 1 packet each 20s over Texp = 600s. With this evaluation, we quantify
the estimation inaccuracies caused by the variation in the energy consumption
of different instances of the same node type - in our case the MSB430 platform.

Figure 2 depicts the energy consumed by eight different instances of MSB430
nodes and the four examined protocols during 10 experiment runs. Each bar
depicts the mean value and standard deviation measured during 10 independent
runs - the latter was low in most cases and is hence barely visible. The energy
consumption obviously varies heavily from protocol to protocol (eg. WiseMAC
vs. CSMA). The variation from node to node however is also clearly visible, e.g.
the energy consumed by node 6 running CSMA is roughly 4% higher than that of
node 2. We investigated the reason for these differences in the current traces and
found that indeed, the current drawn from different nodes can vary to a certain
degree, and that the variation can even differ for each of the different transceiver
states. Figure 3 depicts the current traces of nodes 1 and 2 running CSMA and
receiving a data packet, and sending it further to another node. As one can
clearly see, node 1 draws approx. 2 mA less than node 2 when transmitting.
Although the transmission power settings were set identically for all nodes, the

Fig. 3. Current draw of nodes B and C
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current levels in the transmit state obviously varied to a certain degree. A further
anomaly we encountered is that some nodes drew more current in receive mode
when actually receiving data compared to listening to an idle channel, whereas in
most cases, no significant difference between these two cases could be measured.
This effect is visible in Fig. 3 as well: node 1 consumes approximately 3 mA
more when receiving data, compared to node 2 which consumes more or less the
same current when receiving data or listening to an idle channel. As both nodes
are running the same interrupt service routine code and did not run any other
computationally intensive tasks during this time, the CPU can neither be held
accountable for this effect. We further discovered slight differences in the peak
energy consumption as well as in the duration of transceiver switches depend-
ing on the protocol, and even depending on the traffic load. We presume that
these differences stem from the inaccuracies in the production of the electronic
components. Fast switching between the different operation modes of the radio
could probably also have a temporary impact on the behavior of active circuit
elements. Although the temperature is known to impact on the power consump-
tion of electronic devices, we can safely exclude this as an explanation for the
discovered deviations, as all experiments were run under room temperature in
the same laboratory environment.

4.2 Statistical Characterization of Node Deviations

In an attempt to quantify the discovered differences between the eight measured
node instances, we a) determined the mean and standard deviation of the mea-
sured energy consumptions of all measurement runs of all eight nodes for the
CSMA protocol in the experiment described in 3.3 (with Texp = 600s and a
traffic rate r of 0.05 packets/s), and b) compared each pair of nodes to deter-
mine the the maximally differing nodes. We chose CSMA because at examined
traffic rates, no packet loss occurred within all CSMA runs. Hence, the CSMA
experiment runs were most suited for examining the per-node differences.

a) The mean consumed energy of the eight different nodes throughout Texp

was 57.55 Joules with a standard deviation of 1.54%. Hence, roughly two thirds
of all node instances exhibit a value in-between 57.55 Joules ± 1.54%, given
that the variation between different nodes follows normal distribution. We con-
jectured that the latter is the case, as Jarque-Bera’s test on the normality of the
measurement variation (JB-value: 0.701) could not be rejected (cf. [4]).

b) The maximum deviation between the mean measured energy consumption
of the two maximally differing nodes was determined to be 4.24% (of the re-
spective higher value). We tested the claim that these two nodes do actually
differ significantly from each other, i.e. that the discovered deviations are not
caused by coincidence or the limited set of observations. We found that the null-
hypothesis of a two-sided t-test claiming that the two nodes exhibit the same
mean energy consumption (=on average consume the same amount of energy)
could safely be rejected at the 95% confidence level. This however was not the
case for all the node pairs, as some groups of nodes obviously exhibit similar
patterns in their energy consumption (cf. Fig. 2).
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Fig. 4. Current Draw of node B

Fig. 5. Node B as modeled by the Three States Model

5 Evaluating Software-Based Energy-Estimation Models

In this section we analyze the impact of the choice of the estimation model on
the resulting estimation accuracy for experiments with different traffic load levels
and wireless channel protocols. With the variation between different nodes being
in the range of more than 4% for the specified experiment scenario, we decided
to use exactly the same sensor node and also the same SNMD device throughout
the entire analysis in this section, in order not to introduce variations caused by
differing measurement hardware and measured hardware.

5.1 Three States Model (recv/idle, transmit, sleep)

The most frequently used model to date for estimating a node’s energy consump-
tion - especially in E2-MAC protocol studies - consists in modeling the latter
as a function of the three states of the radio transceiver receive/idle listening,
transmit and sleep (cf. [10] [19] [14]). We henceforth refer to this model as the
Three States Model. The Contiki OS (v. 2.4) energy estimation mechanism mod-
els the radio’s power consumption using this model, but separately tries to keep
track of the CPU power consumption, which can vary depending on the Low-
Power-Mode (LPM) it is currently operating. The ScatterWeb2 OS used in this
study puts the CPU to LPM1 as soon all events have been processed, where the
node’s current is approximately 1.8 mA, given that the radio is turned off. With
the CPU active and the radio off, the node current is roughly 3.5 mA. As our
examined E2-MAC protocols generally do not incur intensive computations, we
neglected to account for the CPU costs separately, and considered the CPU’s
power consumption to be integrated within the three states of the transceiver.
Estimating the CPU power consumption in software when applying E2-MAC
protocols is anyway not easy to achieve, as most of the MAC-related CPU activ-
ity takes place in interrupt service routines. Accounting for such may even cause
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more costs than the protocol-related computations themselves (c.f. [13]). If the
CPU activity does not vary much across state changes of the radio transceiver,
modeling the CPU and radio integrally safely holds. Figure 4 illustrates that for
the given E2-MAC protocol, accounting for CPU in a combined manner with
the three different power levels of the radio transceiver is sufficient.

We henceforth modeled the energy consumption of our S-MAC [19], T-MAC
[17], WiseMAC [7] and CSMA implementations using the abovementioned Three
States Model. We let the nodes keep track of the time differences between the
transceiver switches, in order to determine how much time has been spent in
each state. Figure 4 depicts the current draw during the active interval of an S-
MAC frame containing an RTS/CTS handshake and a subsequent data packet
transmission. Figure 5 illustrates how this current draw is being approximated by
the Three States Model. The total energy consumed (denoted as E) corresponds
to the area below the current draw multiplied by the supply voltage, which is
assumed to be constant. Analytically, the Three States Model can be formulated
as equation MI. The consumed energy E is calculated as the sum of the total
time spent in the receive state multiplied by the respective power level TrcvPrcv,
and the respective terms for the transmit and sleep states (TslpPslp and TtxPtx).
This approach is identical to the one applied in [10], [19] and [14].

E = PrcvTrcv +PtxTtx +PslpTslp = IrcvVrcvTrcv +ItxVtxTtx +IslpVslpTslp (MI)

Parameter Definition through Example Measurement: [19], [14], [3] and
[10] calibrate the parameters of their energy model by measuring the currents
the nodes draw in the different states, and multiplying it with the supply volt-
age to obtain Prcv, Ptx and Pslp. They do so by using either oscilloscopes or
high-precision multimeters and by measuring the current in each state over a

Fig. 6. Measured vs. Estimated Energy Consumption
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certain timespan. In the first attempt, we pursued exactly the same approach,
and determined the mean values of Ircv, Itx, Islp by measuring each state of the
measurement node using the SNMD for a couple of seconds. The stable mean
values were determined to be 23.5353 mA, 37.4872 mA and 2.1495 mA for Ircv,
Itx, Islp, respectively. We further set the voltage according to the supply voltage
of the SNMD to Vrcv = Vtx = Vslp = 4.064V .

Figure 6 depicts the mean values of the energy measurements and the esti-
mations being computed with the Three States Model - using the parameters
for Prcv, Ptx Pslp measured in the example trace. One can clearly see that the
estimations fit quite well for low traffic rates, but that the gaps between mean
estimations and mean measurements become larger with higher rates of packets
being sent over the measurement node. For most protocols - especially S-MAC
and T-MAC - the energy estimation over-estimates the energy consumed by the
node with increasing load. This increasing over-estimation stems from the fact
that the Three States Model does not account for the transceiver switches. As
one can clearly see comparing Fig. 4 with Fig. 5, the current draw decreases to
roughly 4 mA when the transceiver is switched to receive or transmit - hence
drawing less current than estimated with the Three States Model. By defining
parameters through example measurement, the impact of the applied traffic load
and the frequent transceiver switches as well as the particularities of the MAC
protocol are not being taken into account at all. Extrapolating from a short
example measurement of a node hence leads to suboptimal parameters for the
Three States Model, even when using the same node for parameter calibration
and the evaluation of the accuracy.

Parameter Definition through Ordinary Least Squares (OLS): Being
able to physically measure the current draw of a sensor node and at the same
time obtain the software-based estimation calculated by the node itself offers
the opportunity to relate the estimations to the real-world measurements. Using
the plethora of experimental data gained in the many experiments runs (in total
over 12 GB), we reflected upon a method to determine more resilient parameters
for the unknown variables Prcv, Ptx, Pslp of the Three States Model. Ideally, the
software-based energy estimation running on the node should neither rely on
the particularities of a specific MAC protocol, nor on the shape or intensity of
the traffic. Ordinary Least Squares (OLS) Regression Analysis yielded the most
suitable technique to determine the unknown variables for a linear estimation
model with multiple unknown variables. OLS minimizes the sum of squared
errors (SSE) between estimations and observations (= the measurements). We
formulated a multivariate OLS regression model with the explanatory variables
Trcv, Ttx, Tslp (the times spent in the different transceiver states, calculated at
runtime), as well as the physically measured dependent variable E obtained using
the SNMD device. The resulting estimation equation hence simply comprises
equation MI and the error term ε for the residuals.

E = PrcvTrcv + PtxTtx + PslpTslp + ε (OLS-I)
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With the above multivariate OLS model, the unknown parameters are estimated
as the OLS estimator β̂ = ( ˆPrcv, P̂tx, ˆPslp) which calculates as

β̂ = ((X ′X)−1X ′)y

where X is the matrix of all the observations of the explanatory variables, con-
sisting in 3 columns (Trcv, Ttx, Tslp) and a row for each measurement, and y
the vector with the corresponding observations of the dependent variable. We
assessed the coefficient of determination R2 to measure the goodness of fit of the
multivariate linear regression model and obtained a surprisingly high value of
R2 = 0.9980.

Estimation Accuracy of the Three States Model: In order to determine
the accuracy of the OLS-calibrated software-based model, a cross-validation with
totally new experimental data is inevitable to omit overfitting effects (cf. [4]). The
determination of the parameters Prcv, Ptx, Pslp using OLS regression was hence
achieved on a first set of experiment runs, the so-called training set. The results
concerning the estimation accuracy of this section however were gained with a
new set of experimental data, to which we will further refer as validation set.
We fed β̂ containing the OLS estimators of the unknown variables ˆPrcv, P̂tx, ˆPslp

into the node’s estimation model and estimated the energy consumption with the
validation set. We considered the so-called mean absolute error (MAE) (=the
average difference, cf. [4]) between the estimations and the measured values to
be the best statistical measure for the accuracy of the employed Three States
Model. The MAE and its standard deviations calculated across all protocols
and traffic rates in the validation set (henceforth always given as percentage
of the SNMD-measured values) is depicted in Fig. 7. For each traffic rate, the
estimation error using the OLS estimator parameters is 4.2% to 35.9% lower
than the corresponding error when using the model parameters defined through
example measurement. Across all measurements, the mean absolute estimation

Fig. 7. Absolute Mean Estimation Error (in %) vs. Traffic Rate (packets/s)
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Fig. 8. Current Draw of node B

Fig. 9. Current modeled by the Three States Model with State Transitions

error and standard deviation (denoted as μ± σ) of the Three States Model with
the parameters defined by example measurement equals 3.77% ± 3.17%. When
determining the parameters by OLS, we obtain 3.00 % ± 2.55% - hence achieving
an overall MAE reduction error by 21%.

5.2 Three States Model with State Transitions

With the mean absolute estimation error still in the range of 3% or more, we in-
vestigated further means to improve the estimation accuracy. As Fig. 8 exhibits,
the current draw temporarily drops to approximately 4 mA during the state
switches. These state switches remain unaccounted for in the OLS regression
model specified in equation OLS-I. We first attempted to sum up the transition
times between the transceiver states. This approach however led to unsatisfac-
tory results, as the ScatterWeb2 OS only supports a clock in milliseconds pre-
cision. Simply counting the transceiver switches and integrating them into the
OLS regression model however led to a significant improvement in the estima-
tion accuracy. The number of transceiver switches (from an arbitrary state) to
the receive, transmit or sleep state was hence accounted for with the additional
regressands srcv, stx, and sslp. We refer to this model as the Three States Model
with State Transitions hereafter, as specified in equation MII.

E = TrcvPrcv + TtxPtx + TslpPslp + αsrcv + βstx + γsslp (MII)

According to this enhanced model, the energy consumed by an arbitrary node
is a function of the total time it has its radio transceiver in the three differ-
ent states (denoted as Trcv, Ttx, Tslp) and the three adjustment terms αsrcv,
βstx, and γsslp. The parameters α, β, γ compensate for the transceiver switches
to the states receive, transmit and sleep. Their optimal values are determined
empirically using OLS regression.
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Parameter Definition through Ordinary Least Squares (OLS): We spec-
ified the corresponding OLS regression model to equation MII with the explana-
tory variables Trcv, Ttx, Tslp, srcv, stx, sslp, as well as the dependent variable E
(for which we obtain the real measured value using the SNMD device) as

E = PrcvTrcv + PtxTtx + PslpTslp + αsrcv + βstx + γsslp + ε (OLS-II)

The OLS estimator β̂ = ( ˆPrcv, P̂tx, ˆPslp, α̂, β̂, γ̂) is calculated in analogy to
Sect. 5.1. We obtained a coefficient of determination of R2 = 0.9998 for the
multivariate linear regression model OLS-II, a slightly higher value than for
OLS-I. However, when comparing the goodness of fit of two regression mod-
els, the R2 indicator is not a meaningful criterion, as it never decreases when
adding more regressands. The so-called adjusted coefficient of determination R̄2

(cf. [4]) adjusts for the number of explanatory terms in a model. Unlike R2,
this coefficient only increases when the increase of explanatory variables actu-
ally improves the model. An increase of R̄2 upon addition of an explanatory
variable to a multivariate OLS model is hence generally understood as a proof
that the new model delivers a better fit to the measured data. An even better
coefficient for comparing the goodness of fit of two regression models however is
the Akaike Information Criterion (AIC) (cf. [4]). The lower the AIC value, the
better the fit to the model. We measured the R̄2 and AIC coefficients before
and after adding the transceiver switches srcv, stx, sslp, to the OLS model (OLS-I
vs OLS-II). With R̄2 increasing from R̄2

I = 0.9801 to R̄2
II = 0.9980, and AIC

decreasing from AICI = 2.5036 to AICII = 0.2154, we can safely claim that
the Three States Model with State Transitions delivers a significantly better fit
to the measurement data than the today’s most widely used simple Three States
Model.

Estimation Accuracy of the Three States Model with State Transi-
tions: We calibrated the OLS estimators for the parameters of the second
model with the training set, and examined the resulting estimation accuracy
on the validation set . Across all measurements, the MAE and standard devia-
tion (denoted as μ±σ) of the software-based estimations using the Three States
Model with State Transitions (and the parameters determined by OLS) com-
pared to the physically measured values equals 1.13% ± 1.15%. Comparing this
result to the 3.00 % ± 2.55% obtained with the Three States Model (and the
parameters determined by OLS), our proposed model enhancement led to an
overall reduction of the MAE by remarkable 62.3% (cf. Fig. 7).

6 The Impact of Calibration on the Estimation Accuracy

This section evaluates the impact of different possible granularities of calibration
on the achievable accuracy of the software-based energy estimation technique.
Throughout this section we henceforth utilize the same multivariate OLS regres-
sion methodology and the Three States Model with State Transitions as described
in Sect. 5, as applying this model generally led to the lowest estimation errors.
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Fig. 10. Absolute Mean Estimation Error (in %) vs. Traffic Rate (packets/s)

6.1 Per-Node Calibration

Different wireless sensor node instances often exhibit a slightly different behavior
with respect to their power consumption levels in the different transceiver states.
This effect has been observed in previous studies [13] [10], and has been quantified
for the utilized MSB430 platform in Sect. 4. We have encountered node pairs of
the same node type that differed by more than 4% in their physically measured
energy consumption. Hence, even the best node-generic software-based energy
estimation mechanism can be more than 4%, if its underlying model parameters
were not calibrated on a per-node basis.

Researchers intending to calibrate their energy estimation model with only
one particular sensor node instance must therefore be aware that their energy
consumption estimates will deviate from the real energy consumption by the
unavoidable hardware-based variation, unless each node has previously been
calibrated individually. Calibrating on a per-node basis however means that
every single node needs to be physically measured (e.g. with an SNMD or a
high-resolution multimeter) ideally with different MAC protocols and different
traffic rates. Only this time-intensive calibration leads to the set of per-node but
protocol-generic estimation model parameters which has been shown in Sect. 5.2
to reduce the mean absolute estimation error (μ ± σ) to 1.13% ± 1.15%.

6.2 Per-Node and Per-Protocol Calibration

In Sect. 5.2, we intentionally generalized from the particularities of the MAC
protocol by running OLS over four different MAC protocols. Hence, we obtained
protocol-independent (but node-specific) estimation parameters. In order to ob-
tain per-protocol (and node-specific) calibrated OLS estimator parameter values,
the methodology applied in Sect. 5 can be applied without any adaptation. How-
ever only the observations of the specific protocol and node have to be chosen
from the training set in order to calculate the OLS estimator. The same special-
ization effect can also be achieved by supplying more information to the OLS
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regression model with introducing so-called dummy variables that indicate the
currently used protocol (cf. [4], p. 299ff). We propose this per-protocol calibra-
tion as an even more accurate estimation approach, which might be useful if
researchers know exactly what protocol they intend to use on the MAC layer in
advance. We calculated different OLS parameter sets for each of the four proto-
cols (S-MAC, T-MAC, WiseMAC, CSMA) and used the same node (node 1 in
Fig. 2) used in Sect. 5 for calculating the resulting accuracy on the validation
set. The combined approach of per-node and per-protocol calibration obviously
leads to the highest accuracy. Across all four protocols and traffic rates, we ob-
tained a mean estimation error and standard deviation (μ± σ) of only 0.42% ±
0.72%. The combined calibration approach however has multiplicative impact on
the overhead before network deployment, as all nodes need to be equipped with
tailor-made estimation model parameters for each protocol. Figure 10 illustrates
the different estimation errors measured when applying the the per-node and
protocol-generic or the per-node and per-protocol calibration approach.

7 Conclusions

This paper evaluates the accuracy of software-based energy estimation models
on the MSB430 platform. We have identified and quantified the different factors
which cause deviations of the software-based estimations from the real physically
measurable energy consumption. The inaccuracies in the production of the elec-
tronic components have been shown to impact on different power consumption
levels, which led to nodes differing by more than 4% in their energy consump-
tion. The paper conveys that software-based energy estimation can be a valuable
alternative to using sophisticated measurement hardware, especially in outdoor-
deployments where the latter is impossible - at least for evaluating protocols
where the CPU is used frugally, i.e., E2-MAC or routing protocols. Enhancing
today’s most widely used simple Three States Model with information regarding
the state transitions and applying multivariate OLS regression to calibrate the
model parameters has been shown to remarkably reduce the estimation error.
The mean absolute error (MAE) and standard deviation (μ ± σ) of the energy
estimations of the software-based model using protocol-generic but per-node cal-
ibrated parameters could be pushed to as few as 1.13% ± 1.15%. Applying even
more sophisticated parameter calibration of per-node and per-protocol calibra-
tion has been shown to reduce the mean absolute error and standard deviation
to as few as only 0.42% ± 0.72% across the four evaluated wireless channel MAC
protocols S-MAC, T-MAC, WiseMAC, and 802.11-like CSMA.
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Abstract. In wireless sensing applications, it is often necessary to iden-
tify high-level events based on low-level sensor signals. Due to the limited
computing and energy resources available on existing hardware platforms,
achieving high precision classification of high-level events in-network is
a challenge. In this paper, we present a new classification technique for
identifying events of interest on resource-lean sensors. The approach in-
troduces an innovative condensed kd-tree data structure to represent pro-
cessed sensor data and uses a fast nearest neighbor search to determine
the likelihood of class membership for incoming samples. The classifier
consumes limited resources and provides high precision classification. To
evaluate the approach, two case studies are considered, in the contexts of
human movement and vehicle navigation, respectively. The classification
accuracy is above 85% across the two case studies.

1 Introduction

Wireless sensor networks (WSNs) [1] offer the potential to identify high-level
events using simple sensor signals. Event detection involves extracting infor-
mation from raw sensor readings and reporting the occurrence of interesting
events in the physical world. The detection challenge stems from the resource
constraints associated with common hardware platforms.

A great deal of work has focused on event detection in sensor network sys-
tems, particularly in the context of accelerometer data – also our focus. Due to
their relatively inexpensive price, accelerometers are largely available for stan-
dard sensor nodes and mobile phones. By observing and analyzing accelerometer
readings, rich information regarding movement, tilt, speed, and vibration can be
extracted. Consider some of the representative application areas. People-centric
event detection systems focus on the analysis of human movement using wear-
able sensor nodes. A wearable system is often able to detect walking, sitting,
standing, and other human behaviors performed by the carrier [6, 8, 10]. This
type of system is also applied in clinical research [3, 16], for instance, in study-
ing the movement of Parkinson’s patients undergoing particular drug therapies.
Others have considered the identification of context information based on sensor
movements. Nericell [19] uses a mobile phone accelerometer to identify traffic
and road conditions when carried by a driver. Other application areas involve
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structural vibration monitoring of bridges [11, 12], buildings [26], roads [13], and
even volcanos [24]. In these projects, imperceptible vibrations are collected, and
events of interest are extracted and recorded.

To detect interesting events, an accelerometer must typically provide a high
sampling rate. If a 2-axis accelerometer is used with a 16-bit ADC, 240KB of
raw acceleration data is produced if the sensor is sampled for 10 minutes at
100Hz. If a 30 byte packet payload is used, it requires at least 8000 packets to
transmit this data, assuming single hop communication and zero packet loss. (In
TinyOS [14], the maximum payload size is 28 bytes by default.) This is not a
feasible choice given the resource constraints of the target platforms.

As a result, feature extraction and/or data compression techniques are often
applied [11, 19, 24]. However, these techniques often rely on time-consuming
manual observation and analysis of the characteristics of the data. Further, these
techniques often target a narrow set of data (e.g., specific acoustic samples);
solutions may not be transferable to other scenarios. Finally, for acceleration-
based detection, a fixed node orientation is typically required.

In contrast, as an alternative approach, machine learning and pattern recog-
nition techniques enable automation and transferability. Machine learning tech-
niques are used to generate classification functions based on empirical data col-
lected during a training phase. The generated functions are used to classify in-
coming sensor data into one or more groups. However, traditional classification
techniques are computationally prohibitive for most sensor nodes. One solution
is to collect sensor readings and process the data on a PC/server [3, 9, 23], but
again, the cost of communication is high. One collateral effect is that the high
cost, particularly in terms of energy, inhibits re-training, which is necessary in
dynamic environments.

The main challenge addressed by our work centers on the mismatch between
computationally intensive classification techniques and resource-constrained sen-
sor nodes. We present a generic, node-level classification technique for resource-
constrained sensors, such as the popular Tmote platform, with an MSP430 mi-
croprocessor. We also present preprocessing techniques for accelerometer data,
designed to enhance classification accuracy. In the classifier design, we use an
innovative condensed kd-tree, which can reduce the number of nodes in a stan-
dard kd-tree by 90.0%. Adapting the nearest neighbor search to the condensed
tree, we classify incoming events in O(n

1
2 ) time for the 2-dimensional case, where

n denotes the tree size. The preprocessing technique uses a sliding window to
smooth the accelerometer readings in O(1) time; this improves the performance
of the classifier significantly. The classifier yields high classification accuracy in
our case studies and reduces communication overhead and energy consumption
compared to the raw data collection approach. Moreover, since the classifier is
generated in-network, re-training is energy-efficient.

The main contributions of our work are: (1) We present a new classification
technique based on a condensed kd-tree data structure, using a dynamically-
scoped nearest neighbor search; (2) We describe preprocessing techniques for
accelerometer data to improve classification accuracy; (3) We apply (1) and (2) in
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the context of two case studies based on prototype implementations for TinyOS.
The classification accuracy is above 85% in the two case studies considered.

Paper Organization. Section 2 summarizes the most relevant related work.
Section 3 describes the condensed kd-tree design, the fast classification technique,
and the preprocessing strategy for accelerometer data. Section 4 describes the
system implementation and experimental setup used in our analysis and the two
case studies used to evaluate our classification approach. Section 5 summarizes
our contributions.

2 Related Work

A number of other authors have investigated event detection using classification-
based techniques. We briefly describe some of the work most relevant to ours.

Ganti et al. describe SATIRE [6], a software architecture for wearable sensor
networks that includes services for accelerometer sampling, data storage, and
data transmission, as well as a web-based data portal. A Hidden Markov Model
(HMM) is used to classify human activities and find possible hidden states –
unobserved states under the assumption of a Markov process; the processing is
performed by an upper-tier host application. A similar approach is seen in the
work of He et al. [9]. The authors use the Viterbi algorithm [5] to find the most
likely sequence of hidden states in a HMM, and again, the algorithm is applied on
an upper-tier host. A sliding window preprocessing scheme that computes the
arithmetic mean within each interval is applied to reduce the communication
overhead between nodes and the host. The Tmote Invent platform is used as
a wearable device in their project, the same type of sensor used in our work.
Lorincz et al. describe Mercury [16] to sense abnormal patient activity using a
wearable sensor network. Sensor nodes log all collected data to flash storage and
transmit a small portion of the collected data back to a host server; five standard
features are extracted on the sensor nodes. The authors describe a throttling
driver that coordinates data downloads based on configured feature thresholds
and a target battery lifetime. Their system does not include in-network machine
learning; event detection is delegated to a host server.

Miluzzo et al. present CenceMe [18], a smartphone application designed to
detect user-centric events using audio and accelerometer data. A partially on-
phone classification algorithm is implemented in their work. Classifier training
is performed on a desktop machine, and a decision tree is generated using the
J48 decision tree algorithm [25]. The generated decision tree is exported to a
resource-rich smartphone, which processes raw data using a Discrete Fourier
Transform (DFT) and classifies the resulting data. Lu et al. present Sound-
Sense [17], an event detection application that classifies daily environmental
sounds using a smartphone. This application preprocesses raw sound data and
uses coarse classification to classify the resulting data into groups. It then clas-
sifies each group into finer “intra-category” subdivisions. Unrecognized sounds
are categorized into new classes based on a Mel Frequency Cepstral Coefficient
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(MFCC) feature vector [15]. The system is capable of distinguishing a number
of common sounds. It is unclear where the training phase is performed.

Mohan et al. present Nericell [19], a system used to monitor road and traffic
conditions using GPS, microphone, and accelerometer data from a smartphone.
Accelerometer data is used to detect braking events and road bumps. A key con-
tribution is the presentation of a 3-axis accelerometer reorientation algorithm.
Machine learning is not used in this paper; the classification results stem from
manual analysis of the features of the sensor data. For example, bump detec-
tion is achieved by comparing vertical acceleration readings with an acceleration
threshold based on traveling speed, derived from empirical observation.

Kim et al. [13] present a classification approach used to detect military vehicles
using acoustic and seismic sensors deployed on a road. The Gaussian Mixture
Model (GMM) algorithm [21] is applied as a basic classifier, and the resulting
likelihood measurements are processed through a decision tree generated using
the Classification and Regression Tree (CART) [2] algorithm. The computation
is performed on an upper-tier host. Kim et al. [11] present work focused on
vibration monitoring using sensors attached to a bridge. High-rate accelerometer
sampling and data transmission techniques are used in their approach. Event
detection and classification are performed on a resource-rich host.

In contrast to the above work, we describe a complete training and classifi-
cation approach for resource-constrained sensor nodes. Our work assumes the
absence of a basestation.

3 Condensed kd-Tree Classifier Design

In this section, we present the design of the condensed kd-tree classifier. We
employ a condensing technique to store the tree using limited memory. The clas-
sifier training phase involves processing training data elements labeled with their
respective class designations, which are then inserted into the tree; a classifier is
generated as the output of this stage. The classification phase uses the classifier
to assign incoming data elements to their respective classes.

3.1 kd-Tree Data Structure

A kd-tree is a binary tree data structure which is broadly used to solve geometry
problems and can be used as a classifier using k-nearest neighbor search [4, 7, 22].
A kd-tree is built by alternately splitting the point set by half in one of the di-
mensions of the pattern space. As shown in Fig. 1, a kd-tree node splits the point
set evenly into two sets based on the median x coordinate, then y coordinate,
and splits the resulting set on x again, and so on, cycling through the dimen-
sions. Each node corresponds to a rectangular region of the plane; child nodes
again partition the parent region. A range query recursively visits all partitions
of the tree that intersect the query range and returns all the visited nodes in the
range; the worst-case query time is O(n1−1/d) in d dimensions.
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Fig. 1. kd-Tree Data Structure Fig. 2. Condensed kd-Node

A balanced kd-tree can be constructed by recursively inserting the median
node within each region into the tree. To expedite tree construction, we use
fast randomized construction to insert the nodes. Our observations show that
a balanced kd-tree can be constructed by inserting accelerometer readings in
sample order, since the data oscillates for typical in-network sensing tasks. As a
result, the pseudo-randomized construction runs in O(n log n) time.

3.2 Nearest Neighbor Classification

We first describe the process of nearest neighbor classification in an uncondensed
kd-tree. A kd-tree can be used as a classifier using k-nearest neighbor search in
the pattern space, where each dimension of the tree corresponds to a dimension
within the pattern space. In our case, points belonging to different classes are
stored in the same tree. We begin by abandoning the standard requirement
of a fixed k-neighbor search. Instead, we introduce a dynamic neighborhood
mechanism: We define D as the neighborhood threshold. A node j is a neighbor of
node i iff the Euclidean distance from node i to node j is less than D. For a node
x, we define the magnitude m(ci) of class ci as the number of neighboring nodes
associated with ci, weighted by their respective distances from x. The likelihood
of a point belonging to a class is proportional to the magnitude of the class
within its neighborhood. Let P (ci|x) denote the posteriori probability that point
x belongs to class ci, and dp denote the Euclidean distance from point x to some
neighboring point p. The number of neighboring points associated with class ci is
proportional to P (ci|x), and the distance dp is inversely proportional to P (ci|x).
Intuitively, the weight can be defined as 1

D+dp
, where the inverse proportionality

is linear. To exaggerate the proportionality, we impose an exponent of 2 as a
penalty on dp. As a result, we must add an exponent of 2 on D. Using D2 as
the numerator, the weight function is confined to the range [1/2, 1]. We can
evaluate the magnitude of each class by taking the summation of neighboring
nodes associated with the class, appropriately weighted:

P (ci|x) ∼ m(ci) =
∑

p

w(ci) =
∑

p

D2

D2 + d2
p

(1)

In a kd-tree, nearest neighbor classification is an alternative form of a range
query, which has worst-case O(n1−1/d) running time. Classification begins with
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the find-node operation. Find-node performs an inexact search to find the query
point in the tree; it stops at the node which defines the minimal region contain-
ing the query point. Call this node Q. Next, a breadth first search of the nearest
neighbors of the query point is performed, beginning from Q. To support breadth
first search, we use back links between children and parents. The search traverses
the tree using normal breadth first search. We use neighborhood threshold dis-
tance D to eliminate branches that are out of range. The search process runs in
O(n1−1/d) time in d dimensions, the same as the range query. This running time
is acceptable with a small number of nodes in a low-dimensional space. We will
return to this point in a later section.

3.3 Condensed kd-Tree

Due to the memory limitations of common sensor nodes, it is typically infeasible
to construct a complete kd-tree using raw accelerometer data. For example, if we
collect 2000 samples, and each tree node requires 12 bytes, the tree will consume
approximately 24KB – far beyond the available memory of the MSP430 (10KB).
To overcome this, we introduce a condensing technique.

Table 1. kd-Node Data Structure

Domain Attribute Description Modified

key value[ ] int [D] invariant key values Original
cond value[ ] float [D] condensed mean values Augmented
count[ ] int [C] count of condensed points of each class Augmented
left struct kdNode * left child pointer Original
right struct kdNode * right child pointer Original
parent struct kdNode * parent pointer Original

To reduce the size of the tree, a merge operation is introduced. We merge
each new node with an existing node if the new node is within the condensing
radius of the existing node. The node structure is shown in Table 1: key value
stores the sample values originally used to define the node. left, right, and parent
store pointers to the left child, right child, and parent, respectively. To support
condensing, we augment each kd-tree node with two new fields: count is an
array that stores the frequency of class membership for the samples merged
with the node. The cond value field stores the arithmetic means of all sample
values represented by the node. The original sample values (key value) serve as
invariant keys in the condensed tree. This invariant property is necessary since
cond value cannot be used as a key in the search since it may change after a
merge operation.

We construct the tree by inserting the data samples in sample order. The
insert operation traverses down from the root to the leaves. The new node will
be merged if it is within the condensing radius of an existing node’s key values.
The merge operation updates the condensed mean values stored by the existing
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node and updates the count element of the associated class. If a merge cannot
be performed, the insert operation proceeds as usual. In either case, insert takes
O(log n) time. As discussed later in Section 4.1, it requires little time to search
in our condensed kd-tree.

Figure 2 illustrates the merge operation. Point A denotes a pair of invariant
key values in the tree; R is the condensing radius. The hollow points around A
represent the values associated with A prior to insertion. The condensed values,
shown as a filled circle, are adjusted after every merge. In the condensed kd-tree,
the key values maintain the tree property, while the condensed values represent
the mean of all values merged with the node. Since the condensing radius limits
the allowable distance of merge candidates, the condensed values will not be
pulled outside the condensing radius, which avoids reconstruction of the tree.

To accommodate potential “border crossings” induced by the merge opera-
tion, the classification operation must be adapted. We again use inexact search
to find the node containing the most similar key values, and then begin a breadth
first search to query the neighboring nodes in range. The search is based on key
values. However, the associated condensed values are likely to be different, but
not by a distance greater than the condensing radius R. If a condensed point
has been skewed into the neighborhood threshold of a given node, while the key
values are out of range, it is possible to miss a neighboring node during the
search process. Figure 2 illustrates this situation. The condensed values for node
A are represented by a filled circle in the graph; B is the invariant key of another
node, and D is the neighborhood threshold. When a breadth first search reaches
B (prior to A), A and its subtree will not be visited since it is out of range of
the neighborhood threshold. However, the condensed values should be included
when calculating the magnitude since it is in range. To overcome this, we use
D + R as the neighborhood search range instead of D during an inexact search
query. The classification still runs in O(n1−1/d) time. The magnitude function
must also be revised to consider the number of merged nodes associated with
class ci, denoted by Φci :

P (ci|x) ∼ m(ci) =
∑

w(ci) =
∑ ΦciD

2

D2 + d2
p

(2)

To improve accuracy, R should be less than D. At the same time, if R is too
small, the condensing ratio of the tree, i.e., one minus the ratio of the condensed
size to the original size, will be low. Considering the tradeoffs, we choose the
condensing radius R to be less than or equal to half of the neighborhood threshold
D in our case studies. With condensing, the size of the trees in our case studies
were reduced by more than 95%, while the classification accuracy was reduced
by less than 10%.

3.4 Sample Preprocessing

While this approach is suitable for the target hardware platforms, raw accelerom-
eter data is often difficult to classify directly. Consider, for example, attempting
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(a) Samples (accel.)
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(b) Samples (jerk)
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(c) Samples (jerk, sliding)

0 200 400 600 800

−1
00

0
−5

00
0

50
0

10
00

Index

A
cc

el
 X

 (
m

g)

●

●

●

●
●

●●

●

●
●

●●
●

●
●●
●
●
●
●

●●
●

●●
●
●
●
●

●
●
●

●

●

●

●●
●●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●●
●
●●●●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●●
●

●
●
●
●●●●
●
●
●●●●●
●●
●
●●
●
●
●

●

●
●

●●

●●●
●
●

●
●

●

●

●

●

●●

●
●
●●●●●
●●●●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●●
●

●
●
●●
●
●●●
●●
●
●
●●●●●

●

●

●●

●

●●
●

●

●
●●
●

●

●
●

●
●●

●●
●
●

●
●

●●●●
●

●●●
●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●
●

●
●

●

●

●●

●
●
●

●

●●●
●●●●
●●
●●●●●●●

●
●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●●●●●●●●●●●●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●●
●

●
●

●●
●●●●
●●
●
●●●●
●●
●
●
●
●
●
●●
●●

●●

●

●
●

●

●

●●

●●●

●●
●●
●●●●●●●●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●
●
●
●
●●
●
●●●●●
●
●
●●
●●
●

●
●●
●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●
●●
●●●●●●●●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●●

●

●
●
●●
●
●●●
●
●
●
●
●●●●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
●
●●
●
●●●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●
●●
●●

●

●
●
●●●●
●●●●●●●●

●
●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●
●

●●
●●●
●●●●●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●
●●●

●

●
●
●
●●●
●●
●●●●
●●●
●
●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●●

●
●●●
●
●
●
●●●
●
●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●
●

●
●

●
●
●●●

●●●
●●
●
●●
●
●

●

●●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● Walk
Run

(d) Acceleration (X-axis)
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(e) Jerk (X-axis)
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(f) Jerk (X-axis, sliding)

Fig. 3. The Impact of Preprocessing

to determine whether a target is walking or running based on accelerometer data
collected from a sensor carried by the target. Figure 3 shows training data and
corresponding preprocessed data collected from a simple trail: The user carried
a sensor node in his pocket, training the classifier by walking and running for
several seconds. The original acceleration readings are represented in 2 dimen-
sions in Fig. 3a. A large number of samples are “mixed together” in the middle
of the plane since the arithmetic mean of a series of vibration data settles at
a fixed point, as shown in Fig. 3d. Meanwhile, the standard deviation of the
data across the classes is relatively large, scattering the readings throughout the
space. Since the kd-tree classifier uses neighboring samples to classify incoming
data, the classifier will be error-prone if it is generated on raw accelerometer
readings. For this case, the accuracy for walking events is below 50% (when
tested on the training data).

To construct an accurate classifier, we must separate the data centers of the
two classes. More precisely, the goal is to separate the arithmetic means and
decrease the standard deviations across the two groups. For this purpose, we use
jerk, the rate of change in acceleration: j = da/dt = d2v/d2t.

By transforming the raw accelerometer readings to absolute values of jerk |j|,
we can separate the arithmetic means of the two groups, as shown in 3e, making
it possible to construct a proper classifier. As shown in Fig. 3b, fewer samples
from different classes are tangled together.

However, even if the arithmetic means are separated, high standard devia-
tions may cause the two groups to overlap, as shown in Figs. 3b and 3e. The
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Fig. 4. kd-Tree (condensed) Fig. 5. Sensor Carried by User

performance of the classifier can be further improved by computing the mean
value of jerk over a fixed size moving window. Consider, for example, a window
of size 40, corresponding to a 400 ms period when the sampling rate is 100Hz.
This scenario is illustrated in Figs. 3c and 3f. The standard deviation of the jerk
data is smoothed, further separating the data groups. Indeed, the two groups
are almost completely separated, and therefore, the kd-tree classifier achieves
accuracy above 90% in this trial. In general, the groups can be further separated
by increasing the window size. However, this increases the effective sampling pe-
riod. We typically choose the size in the range of 40 to 80. During preprocessing,
we store jerk data in a circular queue; the arithmetic mean can be updated in
O(1) time. This presents a general preprocessing step for constructing classi-
fiers on roughly periodic data with close arithmetic means and large standard
deviations.

Using this preprocessed dataset, we constructed a condensed kd-tree, illus-
trated in Fig. 4. Each point represents a set of condensed values. We now consider
the implementation and performance.

4 Case Studies

4.1 Case Study 1: Human Movement

The goal of the first application case study is to identify the walking, running,
and jumping activities of a carrier. As introduced in Section 1, detecting human
movements is a common task for wearable sensor systems [6, 8, 10]. In this
case study, we use Tmote Invent sensor nodes, each equipped with a 2-axis
accelerometer. The accelerometer provides measurements in the range of ±5g in
the X-Y plane of the device. As shown in Fig. 5, the carrier can put the sensor
node into a pocket, or hang it on a neck strap. The orientation of the device is
not required to be vertical or horizontal. The carrier simply needs to make sure
that orientation is fixed across training and detection. If the orientation changes,
the classifier must be retrained.
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Fig. 6. Condensed kd-Tree Classifier (condensing radius = 7)

Implementation of the Condensed kd-Tree Classifier. We implemented
the condensed kd-tree classifier on a Tmote Invent to detect human movement.
To start the training phase, the user clicks the function button on the device.
The sampling rate is set to 100Hz, as recommended by the Tmote Invent man-
ual. For each class, the training phase collects 1500 samples (15 seconds). The
node computes jerk using the sliding window preprocessing technique described
in Section 3.4; jerk samples are directly inserted into the tree. When sampling
for a given class is complete, the device waits for a button click event to trig-
ger classification for the next class. When all the training tasks are complete,
the device transitions to the online phase, in which unknown data samples are
classified. In our experiment, the classifier is triggered by the vibration detec-
tion module on the Tmote Invent. Once the node is triggered, it preprocesses
the acceleration samples through the moving window to generate jerk data. The
tree classifies the jerk data and yields the final classification result, which may
be sent back to a basestation or stored on the node.

In our experiments, there are 1500 jerk samples for each class. Thus, 4500
samples are inserted into the tree. Figure 6a shows the preprocessed jerk sam-
ples for walking, running, and jumping events with a sliding window size of 50.
Figure 6b shows the invariant keys and aggregate values stored in the condensed
kd-tree. The cross points denote the invariant keys, and the circles denote the
condensed values, which have been skewed away from the invariant keys. The
number associated with each node denotes the total number of samples it rep-
resents. If we constructed this tree without condensing, it would contain 4500
nodes with 89 levels. But as shown in Fig. 6b, with a condensing radius of 7,
the number of nodes has been decreased to 61, and the depth of the tree has
been reduced to 12. The tree uses only 1,464 bytes of RAM – suitable for typical
sensor nodes. In this case, the condensing technique saves more than 97% in
memory space.
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Fig. 7. Impact of Condensing Radius on Tree Size

During the online phase, each jerk sample is used as a query point for the
nearest neighbor search. The number of neighbors searched is dynamic, based on
the condensing radius and neighborhood threshold. We tested condensing radius
values from 1 to 14. The neighborhood threshold was set to slightly larger than
twice the condensing radius. The nearest neighbor search uses the magnitude
function from Section 3.3 to evaluate class membership.

Figure 7 summarizes the impact of the condensing radius on the size and
depth of the generated tree. As shown in Fig. 7a, the number of nodes required
to represent the classifier is in excess of 1200 with a condensing radius of 1. It
drops to less than 100 when the condensing radius is set to 6, and less than
30 when the condensing radius is larger than 10. (Note that the scale on the y
axis is logarithmic). Figure 7b shows that the depth of the tree also decreases
significantly with increasing condensing radius. As a point of reference, tree
depth is 25 with a condensing radius of 2; it decreases to 12 with a condensing
radius of 7. As a result, the speed of the nearest neighbor search is dramatically
increased (since the search traverses each node at most once).

We are also interested in the relationship between the size of the training
dataset and the size of the resulting tree. Figure 8 summarizes the relationship.
A total of 6400 training samples were inserted into the tree; the tree size was
recorded after every 100 samples. The condensing radius was set to 7. The graph
shows that the rate of increase in tree size decreases significantly with sample
count. Indeed, the tree structure becomes relatively stable beyond 5000 samples.
This feature allows the tree to be trained with large datasets. In addition, it
provides the potential to accept new training data in the future to improve
accuracy.

We next evaluate the relationship between condensing radius and accuracy.
As shown in Fig. 9, overall classification accuracy decreases only slightly with
increasing condensing radius. The average rate of decrease in accuracy is smaller
than 1% for a unit increase in condensing radius. The impact does, however, vary
among classes. For example, classification accuracy for running events decreases
by 21% when the condensing radius is increased from 1 to 14, but accuracy for
jumping events actually increases by 9% from 2 to 14. The explanation for this
is that the tree loses granularity as the condensing radius is increased. As shown
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Fig. 10. Window Size vs Accuracy
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in Fig. 6a, the data points associated with running events are inbetween the data
points associated with walking events and jumping events. At the boundary of
two classes, a small set of data points are often “tangled” around the boundary.
These points may be merged to a single condensed point. The condensed value
is based on the average of all values in the region, and is therefore biased against
the minority class in that region. The larger the condensing radius, the larger
the number of nodes that may be merged with a condensed node, and by con-
sequence, the larger the potential skew. The accuracy along the boundary may
decrease as a result.

Considering the tradeoff between efficiency and accuracy, choosing an appro-
priate condensing radius is a key consideration in this approach. In this case
study, values between 5 and 8 appear to be good choices.

We also investigate the relationship between window size and classifier ac-
curacy. Since the standard deviation of the sample data is reduced under the
condensing operation, we evaluate the impact without condensing. The results
are summarized in Fig. 10. Classification accuracy is plotted for window sizes
varying from 1 to 90. The sliding window preprocessing technique improves accu-
racy significantly. The accuracy increases with window size up to a given point.
The accuracy reaches approximately 92% in this case. However, larger windows
require longer sampling times and larger buffer sizes.
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We now consider classification speed using the condensed kd-tree. We tested
4000 random samples in a condensed kd-tree constructed using the training
data collected for this case study. The condensing radius was set to 7, and the
neighborhood threshold was set to 15. Fig. 11 summarizes the results. The X-axis
denotes the number of traversal steps taken during the nearest neighbor search;
the Y-axis shows the frequency over the trial. Note that a search includes two
phases – finding the target node and finding the nearest neighbors. The slowest
classification takes no more than 45 steps; the fastest takes only 15. Most take
33-36 steps, or 15-16 steps. The average number of steps is 28.6. This operation
is fast enough to be executed on typical sensor nodes.

The kd-tree classifier offers advantages along several key dimensions, such
as accuracy, speed, storage efficiency, and retraining. Specifically, the kd-tree
classifier achieves accuracy above 85%, and the classification speed of the con-
densed kd-tree is fast enough for typical sensing scenarios. Further, the training
phase requires limited memory by avoiding the use of a large buffer for storing
the training samples – as would be required, for instance, in a Bayesian classi-
fier [20]. In the classification phase, it uses less than 2.4KB to store the tree.
Most interesting, the tree can be further trained without any reconstruction.
The number of nodes increases slowly with an increase in samples.

4.2 Case Study 2: Driving Events

The second application case study explores the detection of driving events, again
using the accelerometer on the Tmote Invent. A similar effort is discussed in
[19], which centers on detecting road conditions, but without the use of a formal
classifier. Our goal is to detect four basic actions: accelerating, braking, turning
left, and turning right. The hardware setup is similar to the last case study. The
Tmote Invent is installed inside a car; again, the orientation of the node is not
relevant. The sampling period in the training phase was set to 2 seconds (200
samples); 5 training periods were performed for each event.

We applied the same preprocessing and classification techniques as in the
first case study. However, we discovered that our preprocessing techniques were
not suitable for the driving scenario since the absolute value of jerk is similar
for most of the target classes. Figure 12b shows the preprocessed jerk samples.
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(c) Preprocessed accel.

Fig. 12. The Impact of Preprocessing (Driving Events)
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Fig. 13. Accuracy and Size of kd-Tree Classifier

Many of the data points are tangled together in the left part of the graph,
especially for data points associated with turning and braking events. As a result,
the classifier cannot correctly classify the preprocessed data. We analyzed the
problem and found that the most significant difference among the samples from
different classes is the direction of acceleration, which is not considered in our
first approach. Hence, instead of using absolute jerk, a scalar, we used the original
data, which contains direction information, to construct the classifier. Figure 12a
shows the original acceleration samples. Since the acceleration directions of the
four classes are different on the X-Y plane, the sample points are scattered in four
parts of the graph. As a result, the generated classifier is capable of classifying
the events, with high accuracy, using the original data. Figure 13a shows the
accuracy of the condensed classifier using the original samples. We considered
condensing radius values between 3 and 13. Without any preprocessing, the tree
achieves accuracy above 78% with a condensing radius less than or equal to 11.

To further improve the accuracy of the classifier, we introduce an alterna-
tive preprocessing technique. Recall that computing the arithmetic mean across
a moving window can be used to decrease the standard deviation of the data,
“smoothing” the irregular vibration. Without converting the acceleration sam-
ples to jerk, we directly process the data through the moving window. As a result,
the overlapping areas between different classes are significantly reduced in size.
Figure 12c shows the preprocessed acceleration samples. After preprocessing, the
acceleration samples appear as smooth curves. Figure 13b summarizes the ac-
curacy using preprocessed acceleration data. Classification accuracy is improved
by 5% on average, yielding overall accuracy above 85% with a condensing radius
less than or equal to 11. By reducing the standard deviation, the samples are less
scattered in the pattern space. Consequently, the tree size is reduced. As shown
in Figs. 13a and 13b, for each condensing radius, the tree size is significantly
larger without preprocessing. As a point of reference, the tree size is reduced to
74 with a condensing radius of 11, and the overall accuracy is still above 85%.

Based on the case studies considered, using jerk samples to construct a clas-
sifier is more effective for scenarios where the difference among events is based
largely on undirected vibration. In these scenarios, the arithmetic means of the
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classes formed based on the original samples are close, and the standard devia-
tions are typically large. Using preprocessing to transform these samples to jerk,
the arithmetic means can be separated, and the standard deviations decreased.
In contrast, it is preferable to construct a classifier using acceleration data if
the main difference among events is the direction of acceleration. The sliding
window preprocessing technique can be applied on both scenarios to improve
the performance, but without computing jerk samples in the second scenario.

5 Conclusion

While machine learning techniques offer a number of advantages in the context
of sensor-based event detection, their application presents a challenge for in situ
scenarios. Existing techniques are resource-intensive, precluding direct imple-
mentation on mote-class platforms. In this paper, we described a new technique
that supports both training and classification on resource-lean devices.

Condensed kd-tree classification is a novel classification method that uses
an enhancement of a standard kd-tree as the underlying representation struc-
ture. A dynamically-scoped nearest neighbor search technique is used to classify
incoming data samples based on the distance-weighted categorizations of corre-
sponding neighbors. The representation allows developers to adjust the tree size
to accommodate memory-limited hardware without a significant loss in classi-
fier accuracy. We considered pre-processing enhancements to the classifier and
evaluated its performance in two representative case studies.

The classification method supports fast classification, achieves high accuracy,
requires little memory, and supports in-network retraining. It is suitable for a
wide range of sensor network applications.

Acknowledgments. This work is supported by the National Science Founda-
tion award CNS-0745846.
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Abstract. We describe a software framework for prescribing the trajec-
tory path of a mobile sink in a wireless sensor network under an extensible
set of optimization criteria. The framework relies on an integrated mobil-
ity manager that continuously advises the sink using application-specific
network statistics. We focus on a reference implementation for TinyOS.
Through extensive physical experimentation, we show that the mobility
manager significantly improves network performance under a range of
optimization scenarios.

1 Introduction

Wireless sensor networks afford the promise of ultra-dense instrumentation of the
natural and built environment for purposes of observation and control. For these
networks to become integrated as part of a permanent planetary monitoring
fabric, network longevity obstacles must be overcome. Several methods have
been proposed to extend the lifetime of multi-hop networks, including the use
of multiple sinks, improved sensor distribution, energy-balanced clustering, data
mules, and other strategies. In this paper, we focus on the use of mobile base-
stations, which periodically alter the routing structure to avoid the possibility
of static bottlenecks. While introducing a mobile sink is not always possible, a
number of existing applications inherently rely on mobile sinks.

Sink mobility introduces a number of questions: When should a sink move?
Where should it move? How is its location shared with the routing network? How
are multi-hop routes maintained in the presence of mobility? Our objective is to
design a generalized framework that provides answers to these questions. To our
knowledge, we are the first to consider an intelligent mobile sink that requires
no a priori scheduling. Instead, a distributed mobility manager collects salient
network statistics and uses these statistics to drive mobility decisions. While
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others have considered the problem of sink mobility in sensor networks, all but a
few [7, 9] have relied exclusively on simulations. In contrast, we have developed
an integrated hardware/software testbed to conduct experiments. The testbed
includes a programmable mobile element and a network of 30 TelosB nodes.

We report three contributions: (Sects. 2 and 4) A generalized framework and
reference architecture to support mobility decisions in sensor networks. (Sect. 3)
A collection of decision metrics to support sink mobility, including (i) residual
node energy, (ii) regional network congestion, and (iii) average relay distance.
We also describe how new metrics are readily integrated into the framework.
(Sect. 5) A prototype implementation of the framework for TinyOS.

Problem Definition. We consider a sensor network consisting of an arbitrary
number of nodes, deployed arbitrarily. Each node participates in a spanning
tree routing layer rooted at a base-station (sink) and communicates sampled
data over this layer. Hence, the load on each device comprises (i) sampling
sensors, (ii) transmitting sampled data toward the sink, (iii) relaying received
data toward the sink, and (iv) updating the routing path when needed (e.g., ,
due to node death). For nodes closest to the base-station, (iii) quickly becomes
the dominating factor; a small set of nodes must relay all sampled network data,
creating a lifetime bottleneck.

While there is substantial prior work focused on introducing sink mobility to
mitigate this bottleneck (detailed in Sect. 7), questions concerning the trajec-
tory of the sink have not been completely addressed. Examples of simplifying
assumptions adopted in prior work include time invariance of battery and radio
performance, uniform radio propagation range, and independence of MAC de-
lays on energy consumption [7, 11, 21]. In contrast, our work makes only two
basic assumptions: The target network must provide time synchronization, and
the geographic extent of the network must be known to the mobile sink.

While the most important mobility goal is ensuring uniform energy consump-
tion across the network, other optimization metrics are also possible. A base-
station might, for instance, attempt to locate itself to reduce network conges-
tion or to overhear an interesting data stream. Hence, we define the problem as
follows: the design of a generalized framework for prescribing a sink
mobility path under an extensible set of optimization criteria, in a
manner responsive to real-time network conditions.

2 System Architecture

The architecture is illustrated in Fig. 1; the corresponding component interfaces,
expressed in nesC, are shown in Fig. 2.

Metric Generator. An implementation of the MetricGenerator interface runs on
each node, monitoring its runtime behavior and recording a set of statistics
material to the relevant optimization goal. For example, ResidualEnergyMonitor,
discussed later, is a specialization of MetricGenerator that computes a real-time
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Fig. 1. Framework Architecture

interface MetricGenerator {
command int getCurrentValue();

}
interface MetricAnalyzer {

command int compare (int m1, int m2);
}
interface RouteManager {

command void formRoute();
command void cancelRoute();
command int getParent();
command int getDistance();

}
interface MobilityManager {

command bool isMoveNecessary();
command int getNewRegion();
command void moveToRegion(int target );

}

Fig. 2. Framework Interfaces

estimate of available device energy. This value (obtained through a call to getCur-

rentValue()) is then transmitted over the routing layer to the sink to support its
mobility decision. In many cases, the metric data can be piggybacked on stan-
dard application data packets. In Sect. 3, we describe three different metrics for
which we have built generators. The descriptions there roughly correspond to
implementations of getCurrentValue().

Metric Analyzer. The sink must be able to impose an ordering on this data for
purposes of comparison. In the case of residual energy, the sink should move
to the region where the average residual energy is highest, whereas in the case
of network congestion, the sink should move to the region where congestion is
lowest. To support relative valuation, an implementation of the MetricAnalyzer

interface is used on the mobile device. The interface provides a compare() oper-
ation that returns 1 if m1 is better than m2, −1 if m2 is better than m1, and 0 if
the values are indistinguishable — where the definition of better depends on the
optimization goal. The mobility manager relies on MetricAnalyzer to determine
when the local-area average of collected metric values dictates a move, and to
perform pairwise area comparisons when determining where to move.

Route Manager. When the sink moves from one position to another, the routing
topology must be updated to ensure node-to-sink connectivity. This process is
supported by an implementation of the RouteManager interface, used both at the
sensing end-points and the sink. When a move begins, the sink invokes cancel-

Route() to initiate route cancelation. When the move is complete, formRoute() is
invoked to reestablish the routing tree. Each end-point records its position using
two state variables, the node’s parent and distance from the root. RouteManager

is intentionally general. Several strategies have been proposed to dynamically
modify the structure of a routing tree [2, 4, 11, 12, 18]. Any of these may be
used to implement the RouteManager interface.
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Fig. 3. TelosB Current Draw

Term Notation Current

Radio in transmit mode ITx 17.4675 mA
Radio in receive mode IRx 21.0675 mA
MCU active IMcuActive 1.9325 mA
MCU sleep IMcuSleep 0.0437 mA
Sensor use ISensor 0.0061 mA

Fig. 4. Tmote Sky Current Draw

Mobility Manager. An implementation of MobilityManager is used by the sink to
signal the need for movement and identify the new target location. The sink pe-
riodically polls for a movement signal using isMoveNecessary(). If a true response
is received, getNewRegion() is used to compute the new sink location. This de-
cision is based on a pairwise comparison of the metric values associated with
all movement alternatives (using MetricGenerator and MetricAnalyzer). Finally,
moveToRegion() directs the mobile platform to its new location.

3 Decision Metrics

Residual Energy. The first decision point we consider relates directly to net-
work longevity — the residual energy available to each device. We adopt the
Credit-Point (CREP) system [23] for estimating residual energy: Emax = Vb ×
Ib × 3600 Joules. Here Vb and Ib correspond to battery voltage and capacity,
respectively. Borrowing from [23], for a pair of AA batteries, the capacity is 2.2
A-Hr, with an effective voltage of 3V; we can compute the maximum energy as
Emax = 3×2.2×3600 = 23760 J. Based on this initial energy budget, the CREP
system deducts “energy points” from Emax for each action on the device.

The CREP model assumes a constant battery voltage, which is invalid for
most, if not all, battery chemistries. To lift this assumption, we periodically
sample the battery voltage using VoltageC, provided by TinyOS. The results are
used to compute the energy consumed during a given period based on (1), substi-
tuting the actual battery voltage for Vb. To deduct “energy points”, the monitor
records the actions performed by a node during each activity period, along with
the duration of each activity, focusing only on the most energy-intensive activi-
ties. For example, the monitor records the time the microcontroller was active,
the time the radio spent in transmit and receive modes, the particular sensors
activated, etc. Energy points are assigned empirically by measuring the cur-
rent draw during each activity/configuration (a priori). A sample current plot is
shown in Fig. 3; mean values are used as energy points, as summarized in Ta-
ble 4. Using these values, energy points are deducted for each activity performed.
No additional hardware is required to support this metric.
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Network Congestion. The second metric is designed to minimize network conges-
tion, and thus avoid message loss and energy depletion through retransmissions.
To compute the level of network congestion in a given region, we aggregate mul-
tiple measures. Specifically, our congestion monitor measures the average packet
reception rate (PRR), the average received signal strength (RSSI), and the aver-
age link quality indicator (LQI) along all incoming links at each node. In many
cases, PRR can be measured directly. In particular, if messages are transmitted
at a specific period in a given application, receiving nodes can measure the packet
reception rate directly. Alternatively, in [16], the authors study the correlation
between RSSI and PRR. They conclude that when RSSI values are higher than
the radio sensitivity threshold (about −90dBm for the CC2420 radio), they are
strongly correlated with the packet reception rate.

It is important to note that radio-level metrics, like RSSI and LQI, provide
information beyond what can be gleaned from the packet reception rate alone.
RSSI, for instance, is useful in measuring the noise floor within the vicinity of
a node. A high noise floor increases the likelihood of congestion(-like scenarios).
Bluetooth devices, when operated near a CC2420 radio, can cause the noise
floor to rise as high as −25dBm. Providing access to this information enables
the mobile sink to avoid such regions during intermittent periods of interference.

Average Distance to Sink. The final metric is designed to reduce the average
number of transmission hops. If, for instance, the base-station is located far
from the principal data source (which may vary over time), the sink should
relocate closer to the source to reduce the workload on intermediate nodes. The
implementation approach is straightforward. It assumes that each data packet
is tagged with the distance-to-root value maintained by the publishing device.
This information is then used by each node to compute a moving average over
the distances of the nodes contained within its respective routing subtree.

4 Managing Mobility

Discovery Phase. We assume that the mobile base-station has no a priori knowl-
edge of the network deployment. Instead, the sink uses the assumed network
extent information to divide the deployment area into a regular grid of a desired
granularity. It then proceeds to tour the region, using a beacon-based discovery
process to define the membership of each grid cell. If a node is “contained” in
multiple cells, it is assigned to the cell that offers the best link quality. This
discovery phase may be repeated if network characteristics are fundamentally
changed — if, for instance, nodes are inserted or removed.

Mobility Management Phase. Throughout the life of the network, the mobility
manager is responsible for signaling the need for sink movement and determining
the new target location. But the travel trajectory is not without constraints.

How far can the sink go? The maximum travel distance in a single move
is limited by the duty cycle of the application. More specifically, the best per-
formance will be achieved if the time required to complete a move is less than



86 M. Mudigonda et al.

procedure MobilityManager
While collecting metrics:

if (alarmExpires) then call MetricAnalyzer
end MobilityManager
procedure MetricAnalyzer

Calculate average metric for Rcurrent

if compare(avg metric(Rcurrent), threshold) < 0 then call Move
end MetricAnalyzer
procedure Move

Rnew := (r ∈ R : (∀r′ ∈ Rreach : compare(avg metric(r), avg metric(r′)) ≥ 0)
Calculate route from Rcurrent to Rnew

Broadcast cancel route message
Perform move
Advertise current location to initiate route reconstruction

end Move

Fig. 5. Mobility Management Algorithm

the application reporting period. Otherwise, the movement of the base-station
will interfere with data collection (since the routing tree will be in transition).
More important, stationary nodes are required to remain active during the tran-
sition to ensure route reconstruction. Hence, long moves can degrade system
performance and limit the lifetime of the network.

To limit the reach of the sink, the mobility manager estimates the travel time
associated with each path candidate based on the speed of the mobile device.
The manager culls candidate paths that require travel time significantly beyond
that of the application reporting period. This includes subtracting, from the
allowable time, the time spent ranking the target candidates based on collected
metric data, as well as the estimated time to reconstruct the routing tree.

Where should the sink go? We now consider the details of the mobility
algorithm summarized in Fig. 5. While the sink is stationary, the mobility man-
ager receives a continuous stream of metric data from across the network. At a
fixed period, an analysis alarm is signaled to activate the metric analyzer. To
synchronize sink movement with the application sleep cycle, the alarm period is
a multiple of the application sleep period. The analyzer in turn compares the av-
erage of the decision metrics from its current region (Rcurrent) to its movement
threshold and determines whether to move.

If a move is required, the sink identifies the best target location (Rnew)
by comparing the metric averages of all regions within its single-step reach
(Rreach). This comparison is realized using an implementation of compare() ap-
propriate to the desired optimization goal. It next computes the route to the
new location and broadcasts a cancel route message to alert the network that
it has become unrooted. The stationary nodes wait in an active state during
the move and wait for the base-station’s location advertisement to begin route
reconstruction.

The metric analyzer may require history data to achieve optimal performance.
If the analyzer simply selects the best target location within its reach during each
step, it could become trapped within a set of local maxima/minima. A more
sophisticated analyzer can overcome this problem. Given that the analyzer has



A Mobility Management Framework 87

25

19

1610

41

22

28

23

17

13

11

5

26

72

29

24

20

14

12

18

6

30

27

21

15

9

83

Region 1 Region 2 Region 3 Region 4 Region 5

(a) Testbed Layout (b) Testbed Realization

Tmote Sky

USB external

storage

NSLUBattery

Robot

Mote

connected

using serial 

interface 

(c) Mobility Platform

Fig. 6. Testbed Infrastructure

access to network-wide metric data, it can compute the optimal target location
and factor this information into the movement decision in each step. Hence, the
analyzer can select, in each step, the region within its reach that brings the sink
closer to the network-wide optimum.

5 Evaluation and Results

We developed a prototype implementation for TinyOS 2.x and conducted exten-
sive experimental studies using a physical testbed. Given that our primary opti-
mization goal was network lifetime, we compared the lifetime benefits achieved
using our sink manager to other mobility management strategies.

Testbed Infrastructure. Our studies were conducted using a testbed of 30 ceiling-
mounted Tmote Sky nodes placed in a pseudo-random fashion throughout a 1500
sq. ft. (60’ x 25’) area, as shown in Figs. 6(a) and 6(b). To ensure multi-hop
connectivity, radio power was reduced, and each node was required to select a
parent outside its grid cell. The motes were powered using standard consumer
batteries; each experiment used a fresh set. The base-station uses a Tmote Sky
linked to a Linksys NSLU2 device. The NSLU2 is in turn connected to an iRobot
CreateTM, shown in Fig. 6(c). As shown in Fig. 6(a), the testbed is partitioned
into 5 regions. The sink’s reach is limited to one region transition per step.

5.1 Energy Consumption and Lifetime

We characterize the network lifetime increase enabled by a sink under four mo-
bility strategies: (a) no movement, (b) a fixed arbitrary path, (c) a fixed path
computed using a linear programming formulation, and (d) a dynamic path
guided by our mobility manager. The experiments were conducted using an ap-
plication with a sleep period of 10 minutes. Each time a node wakes, it samples
its local sensors and transmits the sampled data to its parent. It then waits to
receive and relay each data point from its subtree before returning to sleep.

Static Base-Station. We ran two experiments with a static sink. The two
were identical, except for the sink location. In the first run, the base-station was
placed near the center of the network. In the second, it was placed near one end
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Fig. 8. Energy Usage (mobile, arbitrary path)

of the network. Each run was executed for a duration of ten hours. We measured
the residual energy of each node before and after each run. Figs. 7(a) and 7(b),
summarize the energy consumed by each node in the network, in Joules.

As shown in Fig. 7(a), nodes near the center of the network consumed consid-
erably more energy than nodes near the edges of the network. The situation in
the second experiment is similar, except that the peak is shifted to the network’s
edge, as shown in Fig. 7(b). The results are not surprising: The activity period
of nodes closer to the base-station is longer since these nodes must forward all
of the messages from their respective subtrees. Since the base-station is static,
nodes near the base-station consume more energy over the run.

Mobile Base-Station on Arbitrary Path. We next consider a mobile base-
station that traverses a pre-determined path spanning each of the regions within
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Fig. 9. Energy Usage (mobile, linear programming)

the deployment area. The device remains stationary at four points for an epoch
of 2.5 hours each. The results are summarized in Fig. 8.

As the sink moves from region to region, the energy consumption trend is
clearly visible in Figs. 8(b)–8(e). The combined total consumption is shown in
Fig. 8(f). Although the consumption pattern is not completely uniform, it is im-
proved over the static case. Comparing Figs. 8(f) and 7(a), the average difference
between the maximum and minimum consumption across nodes is approximately
1.5J in the static sink case, and approximately 1J in the mobile case. While the
result is far from optimal, it demonstrates the lifetime extension opportunities
afforded by a mobile sink. The limiting factor is that the movement path ignores
the residual energy available across the network. It offers no way to adapt to
consumption conditions.

Mobile Sink on Pre-Computed Path using LP. Prior work in route man-
agement relies on linear programming (LP) to derive an optimal path for the
mobile sink [3]. An important characteristic of the LP approach is an underlying
assumption that radio behavior is time-invariant. This enables pre-calculation
of the complete base-station route and corresponding sojourn times based on
the transmission range of each sensor and the sink, respectively. We applied
a standard LP formulation to our setup to obtain a pre-calculated sink path
and compared the performance of the LP approach to our algorithm. Here we
describe the important elements of the LP formulation, beginning with the ob-
jective function: maximize { minNodei {residual energy at node i} }.

The residual energy of each mote can be computed as the difference between
the initial energy and the energy consumed during each sojourn period of the
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Fig. 10. Energy Usage (mobile, mobility manager)

mobile sink. Thus, given the energy consumed at each node while the sink is at
a location k, it is easy to compute the optimal sink path.

However, computing the energy consumed at each sensor node is non-trivial.
The residual energy available at a given device depends on its data relay activity.
Simultaneously solving for the optimal inter-node routes and the sink traversal
path is generally not possible in a linear program. Hence, we partition the pro-
gram into two components and run them serially. The behavior of each node
is assumed to be time-invariant; we pre-compute the optimal multi-hop routes
from each node to every potential sink location. For each sink site k, determining
the multi-hop route that yields the least energy consumption involves solving a
supplementary LP with an objective of minimize { maximum {energy consumed
at each node i when sink is at site k} }. On solving the supplementary LP and
passing the output to the primary residual energy maximization LP, we obtain
the desired route, which is optimal when radio behavior is time-invariant. Note
that the ordering of the target locations is only influenced by the reach constraint
imposed on the sink in each step. Thus, using the observed energy depletion rate
and the reach information in our testbed, we compute the LP-based sink route.

Figure 9 shows the results across four epochs, each of 2.5 hours in duration,
when the sink uses this computed path. Figures 9(b)–9(e) show the energy con-
sumed in each epoch; Fig. 9(f) shows the total energy consumed.

Mobile Base-Station on Dynamic Path. Finally, we study the performance
of the mobility management framework. In this set of experiments, the base-
station is deployed at an arbitrary initial location without a pre-defined traversal
path. The mobility management framework is used to collect residual energy
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Table 1. Standard Deviation of Power Consumption

Sink Location Mean (J) Std Deviation (J)

Static (Middle) 1.62 0.4393
Static (End) 1.75 0.5981
Mobile (Arbitrary) 1.56 0.3270
Mobile (LP-computed) 1.49 0.2330
Mobile (Dynamic) 1.43 0.1329

data and to inform the sink’s trajectory to maximize residual energy across the
network. Every hour, the sink determines whether the regional residual energy
has fallen below the required threshold. If so, the mobile sink initiates a move.
It first computes the average amount of residual energy available in each region
within its reach. The sink then determines the new target location and directs
the robot to move to the corresponding coordinate location.

Again, the experiment was executed for ten hours. Note that it does not
matter where the sink is placed since the mobility manager uses network mea-
surements to guide its path. The experiment resulted in a total of three moves,
dividing the run into four epochs. The results are summarized in Fig. 10. It is
important to emphasize the low degree of variability across the network.

Comparing Mobility Strategies. To quantify the uniformity of energy con-
sumption across mobility strategies, we compare standard deviations in Table 1.
When the static sink is placed at the center of the network, the standard devia-
tion in residual energy is low. Perhaps surprisingly, the opposite is true when the
sink is placed at one end of the testbed. The explanation is straightforward: The
nodes in the testbed form their routing paths based on network connectivity.
When the static sink is placed at one end of the network, the nodes that are at
the other end are at a distance of five hops from the sink. However, when the
sink is at the center, the nodes that are furthest away are only three hops; the
resulting difference in load is smaller.

The standard deviation in energy consumption is smallest in the case of the
dynamically computed path. This shows that our mobility decision engine is
effective in achieving the intended goal — ensuring that all nodes in a sensor
network deplete their energy reserves at approximately equal rates. Further, the
mean energy consumption is also reduced when the sink is moved along the path
computed by our mobility manager.

Effective Lifetime. The goal of engineering an intelligent sink is to extend ef-
fective network lifetime. Figure 11 shows a comparison of expected node lifetimes
using various mobility management strategies. These are estimates of how long
each device will stay active based on battery capacity and average consumption
rates; network dynamics will obviously play a role in determining the actual
lifetimes. The arbitrary path strategy does a poor job of ensuring uniformity.
As expected, the LP-computed path reduces variability, as does our dynamic
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strategy. Notice, however, the expected lifetime of the first node to die in each
of these cases; there is a significant difference. With a pre-defined path, the first
node dies in 42 hours, whereas with the LP-computed path, the first node dies
at 63 hours. Using our mobility manager, the first node dies after 68 hours.

Mobility Overhead. There is a cost associated with each transition. When the
sink moves from one location to another, routes from the stationary nodes to
the sink must be recomputed. In our case, we use a näıve strategy, canceling all
routes and reforming the tree. Over the experiments we ran, we observed that
the energy cost for the stationary nodes is about 0.1 J for each sink transition.
Further, our protocol introduces an extra cost for sending residual energy data
(4 bytes per message). The overhead is justified by the significant benefit that
changes in the network topology can offer.

Throughput. Finally, we consider the throughput of the network as a valida-
tion measure to ensure that the application is functioning properly. While our
initial experiments exhibited poor yield, we were able to improve the yield using
a supplementary radio layer focused on reducing link quality variation among
nodes [6]. Figure 12 shows that most nodes deliver 60% to 80% of their messages.

5.2 Network Congestion

We also studied the impact of the network congestion decision metric. The ex-
perimental setup (length, application) was the same, except that the mobil-
ity manager used NetworkCongestionMonitor as the metric generator. In Fig. 13,
we compare the average throughput from each node when using the network
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congestion metric as compared to the residual energy metric. When the sink
makes mobility decisions based on network congestion, the average throughput
increases from 66% to 85%. Note that we did not consider network longevity,
focusing exclusively on improving network throughput.

We next repeated the experiments, applying both metrics. The primary metric
was network congestion; residual energy was used as a secondary metric in the
event of ties. In this case, the average throughput was approximately 79%, and
the lifetime of the first node to die was 59 hours. In the future, we expect to
further investigate simultaneous optimization strategies using multiple metrics.

6 Discussion

Extending to Other Metrics. The prototype implementation of the mobility man-
agement framework demonstrates the utility of our approach in managing a
mobile sink. Using this implementation, we have conducted significant evalua-
tion studies to verify that the approach achieves uniform energy consumption
across the network. The primary extension point for using the implementation
in settings other than a testbed environment is the use of other decision metric
components. Although we have not presented complete evaluation results here
(primarily for lack of space), we have experimented with this possibility using
the network congestion monitor and the message distance monitor. The benefit
afforded by these metrics is easy to see: If the sink is located in a congested area,
the throughput of the network is bound to suffer; and if a majority of messages
must travel a long distance, throughput is again going to be affected.

Our mobility management framework can be viewed as a harness for devel-
oping specific strategies for controlling a mobile sink. For example, in [9], the
authors use a mobile sink to collect data from a sensor network with the aim
of reducing the number of multi-hop data transmissions. The sink can travel at
varying speeds depending upon how much data it can buffer. This system can
be implemented using our framework by designing a metric analyzer component
sensitive to buffer size, which determines both a target speed and location for
the sink. One of the directions for our future development is to develop a generic
testbed that can be available for testing such mobility protocols.

Sophistication in Metric Analysis. A potential problem with performing simple
pair-wise analysis in the metric analyzer is network partitioning. Consider a
scenario in which the sink is in a given region of the network, and a small
number of nodes bridge its current reach with the rest of the network. If these
nodes die, the sink may deplete the regions in its current reach and declare the
lifetime of the sensor network to be over. With a more careful analysis, the sink
can detect that the throughput has dropped in an unpredictable manner. This
recognition can trigger another discovery traversal to rebuild the sink’s view of
the available nodes.

As another example, we observe that there is a correlation between the in-
degree of the sink and network congestion. The larger the number of adjacent
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(gateway) nodes, the higher the level of congestion and associated retransmis-
sions near the sink. Thus, it may be in the best interest of both the sink and
the network to limit the number of gateways it associates with. However, if the
number of gateways is too small, they will become overloaded by the network
traffic being routed to the sink. Hence, it may be valuable to limit the between-
ness of the gateway nodes (i.e., the number of multi-hop routes passing through
each node) [10]. Our framework is capable of accounting for such constraints.

7 Related Work

The literature is rich with work focused on extending the lifetime of sensor
networks [13, 14, 17, 24]. Here we present an overview of related research and
identify the novelty of our contributions (summary in Table 2).

Table 2. Comparison of Related Schemes for Managing Mobile Sinks

Algorithm Algorithm
execution

Metric Platform mobility Metric
generation

Joint Mobility and Rout-
ing [11]

Offline Load distribution Low Simulated
Model

Greedy Maximum Residual
Energy (GMRE) [3]

Online Residual energy Variable Simulated
Model

Adaptive Sink Mobility [19] Online Data events Variable Observed

Deterministic/Random
Walk Models [5]

None N/A Pre-defined N/A

Our Dynamic Mobility Man-
agement Framework

Online Parameterizable: Residual
energy, network congestion,
distance to sink

Variable depending
on network condi-
tions

Observed

Mathematical Sink Trajectory Models. Luo et al. [11] show, using a mathemati-
cal model, that when nodes are distributed according to a Poisson distribution
within a circle, the (near-) optimal mobility strategy is for the sink to travel
along the periphery of the circle. They argue that using such a path will improve
lifetime by approximately 500% over using a static sink. They also propose an
algorithm for routing to the sink. As the sink moves along the network boundary,
message flows from the network “follow” the sink.

Wang et al. [21] present an LP formulation for determining an optimal sink
trajectory parameterized by sojourn time. Their model makes several simplifying
assumptions, limiting its use. Basagni et al. [3] improve upon the LP model pre-
sented in [21] by lifting some of these assumptions. They also present a new path
planning scheme, Greedy Maximum Residual Energy: rather than pre-computing
the sojourn times at different nodes in the network, the mobile sink greedily se-
lects a neighboring node as its new location based on residual energy.

Efficient Message Routing Protocols. Baruah et al. [2] present an approach to
maintaining node-to-sink routes within a network. They do not address the prob-
lem of determining an optimal mobility pattern, instead focusing on how to
maintain usable data routes. Urgaonkar et al. [18] present an approach that
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allows static nodes to learn a sink’s mobility pattern. Some nodes (“moles”)
statistically characterize the sink’s (random) movements using a probability dis-
tribution function; the result is used to inform message forwarding decisions.

Luo et al. [12] extend MintRoute [22] by adding steps to account for (i) link
breakage, (ii) topological changes, and (iii) packet loss. They test their routing
protocol using TOSSIM and illustrate the energy savings associated with using
a mobile, time-synchronized sink. Chakrabarti et al. [4] use a pre-defined path to
bring the mobile sink close to each node in the network to minimize long-range
radio transmissions, thus reducing transmission energy.

Data Ferrying/Relaying. Jea et al. [8] present a load-balanced data collection
algorithm that uses multiple mobile elements (“mules”) to collect data. The
authors provide evidence supporting the use of large storage buffers on both the
static nodes and mules to ensure data integrity. Shah et al. [15] provide insight
into buffer requirements for nodes and mules within a sensor network and the
effects of various buffer sizes on transmission success rates.

Somasundara et al. [1] and Kansal et al. [9] prove that mobile-sink-based
sensor networks transmit fewer packets of data when compared to their static
counterparts. They propose a model for calculating a data-complete trajectory
for a mobile sink. Wang et al. [20] discuss two alternatives to using a mobile sink
for sensor network lifetime extension in cases where utilizing a mobile sink might
be infeasible. The first method uses extra static nodes near the sink. These extra
nodes act like “sleeper” nodes within the network, and sleep for long durations,
but once other nodes around the gateway begin to fail, they wake up to continue
servicing the network. The second method uses additional resource-rich nodes
near the sink, which together provide a rudimentary load balancing service by
distributing the workload of the other gateway nodes.

8 Conclusion

We presented the design of an extensible, generalized framework for managing
the trajectory of a mobile sink within a static sensor network. The framework
supports objective-specific mobility decision metrics, based on which the path of
a mobile sink can be computed dynamically. The framework does not require any
a priori information about the sensor network, except for the extent of the area it
covers. The framework periodically calculates the quality of each region within
the network using dynamic measurements, based on an optimization-specific
notion of quality (e.g., maximum residual node energy). This global portrait is
used to drive sink mobility decisions without any assumptions of constancy or
uniformity in radio reach or power consumption.

We also presented a reference implementation of the framework for TinyOS,
with an emphasis on decision metrics aimed at ensuring uniform energy con-
sumption across devices. The goal was to maximize network longevity. We eval-
uated this implementation using experiments on a testbed of TelosB motes. The
dynamic base-station path computed by our mobility manager achieved a lower
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mean and standard deviation in energy consumption (1.43J and 0.13J) compared
to an arbitrary path (1.56J and 0.33J), and a path computed using a typical LP
formulation (1.49J and 0.23J). This means that the rate of consumption was
more uniform, and consequently, the effective lifetime of the network was longer.
Although the energy savings look modest, the lifetime extension was substantial.
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Abstract. In a number of application domains, the volatility of the
monitored environment where Wireless Sensor Networks (WSNs) oper-
ate engenders timing constraints on the generation, processing, and com-
munication of sensory data. In this paper, we primarily focus on the use
of an information theoretic approach, namely network coding, to improve
the on-time delivery of messages in IEEE 802.15.4-compliant networks.
We further study the real-time gain that packet skipping can provide on
its own and in combination with network coding. Subsequently, we inves-
tigate the potential benefits of introducing deadline-awareness into the
coding mechanism through the use of an Earliest Deadline First (EDF) -
based scheduling policy. Simulation results show that network coding and
packet skipping are by themselves effective techniques to increase on-time
goodput, with additional gain obtained when the two techniques are used
concurrently. Our results further provide insight into the performance of
deadline-aware scheduling in a network coding environment.

1 Introduction

The advent of wireless sensor networking is shaping a future where Ubiquitous
Computing and Ambient Intelligence become a reality. A key characteristic that
differentiates Wireless Sensor Networks (WSNs) from other systems is their prox-
imity to the environment they monitor. The main function of sensor networks
is to report the state of such a physical environment. The latter often being
dynamic and volatile means that the state snapshot made through sensing by
a deployed WSN remains valid for a limited amount of time, after which it be-
comes outdated and its underlying sensory data obsolete. For example, the vital
signs defining the status of a patient are dynamic by nature. Related sensed
values, measured by a Body Sensor Network (BSN), would provide the state of
the patient at a particular point in time. They remain valid, as well as any con-
clusion based on them, only as long as the vital signs are stable. Any subsequent
actuation (e.g. automatic update in drug administration) is correct as long as
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the information it is based upon is still a valid depiction of the patient’s situa-
tion. Additionally, it is expected that originally decoupled, application-specific
networks, will cooperate and converge towards supporting multiple applications
in a concurrent manner. Such a convergence would practically mean that differ-
ent data rates and deadline requirements will have to be dealt with by the same
device. Hence the importance of studying real-time aspects under different load
conditions.

Given the above emerging scenarios, we take a look at WSNs from a real-
time perspective where the definition of correctness now spans two dimensions:
correctness in computation/sensing/analysis, and meeting deadlines when de-
livering information and performing actions. At the communication level, two
aspects come into light: the timely delivery of information to achieve correct
application behavior (e.g. timely and correct actuation) under different network
loads, and the elimination of obsolete information in order to avoid false conclu-
sions and reduce useless overhead.

In this paper we investigate a novel approach for improving real-time perfor-
mance in sensor networks by considering recent information-theoretic advances.
More specifically, we explore the idea of network coding [1] where routing el-
ements in a network execute algebraic coding operations on packets besides
simply forwarding them. Network coding increases the information content per
packet transmission without incurring significant overhead [13]. In this paper
we leverage this advantage that network coding provides in order to expedite
the transmission of real-time packets through the network. Although we explore
the above characteristic in a simple network topology, the presented results are
transferable to more complex networks. The reason is that in generic multi-hop
topologies, router nodes are the meeting point of packets coming from different
neighboring nodes and are responsible of forwarding them towards their destina-
tions. A router node can take advantage of the communication pattern between
its neighbors and the broadcast nature of the wireless channel; instead of for-
warding each packet separately, the router can opportunistically combine two
packets through an algebraic XOR operation, and broadcast one resulting coded
packet instead of two packets. Provided that nodes store copies of packets they
have recently transmitted, the two concerned direct neighbors of the router can
decode (through a XOR operation) the coded packet and retrieve the informa-
tion content relevant to them. Fig. 1(a) demonstrates the basic concept, where
node A wants to communicate packet 1 to node B, and C is communicating
packet 2 to node D, with node R being a common routing point for both flows.
The following communication sequence takes place: Node A broadcasts packet
1 and C broadcasts packet 2. nodes M and N rebroadcast packet 2 and packet
1, respectively. Node R codes the two packets (1 XOR 2) and broadcasts the re-
sulting coded packet. Node M retrieves packet 1 by decoding the received packet
([1 XOR 2] XOR 2) and forwards it to node B. Node N performs a similar
decoding operation ([1 XOR 2] XOR 1) and delivers packet 2 to node D.

Our contribution in this paper is multi-fold: 1) We investigate network cod-
ing from a real-time perspective, i.e. by assessing its impact on the delivery of
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Fig. 1. Network coding of two and four packet flows

real-time data (goodput) that are associated with per-packet deadlines. This is
in contrast to previous non-sensor networking work where coding was primarily
employed with the purpose of improving throughput and delay optimization at
the flow-level. 2) We investigate the impact that packet skipping (i.e. proactive
message removal from transmission queues) can have on timeliness. 3) We inves-
tigate the joint real-time performance of the combination of coding and packet
skipping, and assess their relative contributions for different loads and different
timing requirements. 4) We provide insight into the performance of deadline-
aware packet scheduling in a network coding environment, relative to the widely
adopted and simpler to implement First Come First Served (FCFS) scheduling
policy.

To the best of our knowledge, our work is the first to consider network coding
over IEEE 802.15.4 networks and to investigate coding as a method to improve
real-time performance. We developed a performance model that characterizes an-
alytically the real-time performance of a single M/M/1 node with network coding
in [2]. The complexities we faced in that work forced us to seek a simulation-
based study that we present here.

2 Related Work

A fair amount of work has targeted real-time aspects in WSNs. Existing ap-
proaches try to address timeliness at specific layers separately [6,9,8,10,12], or
with sophisticated cross-layer techniques [7,15]. Caccamo et al. designed an im-
plicit prioritized protocol based on the Earliest Deadline First (EDF) Policy for
hard real-time sensor networking [6]. A cellular topology is adopted and channel
diversity is used among neighboring cells. Intra-cell communication is achieved
by replicating the transmission schedule at all cell nodes and employing EDF to
schedule channel access. Inter-cell communication uses a globally synchronized
TDMA mechanism. He et al. proposed SPEED [10], a protocol that provides
real-time unicast, area-multicast and area-anycast services. It achieves soft real-
time end-to-end communication by maintaining a certain velocity for a packet
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travelling across the network. RAP, a cross-layer real-time communication ar-
chitecture designed by Lu et al. [15], provides high-level services to applications
and introduces the concept of Velocity Monotonic Scheduling (VMS), a packet
scheduling policy that takes into account both the deadline of packets and the
remaining distance they have to cover to reach their destination. More recently,
Aoun and van der Stok [3] provided an in-depth schedulability analysis of real-
time periodic messages in an overloaded point-to-point IEEE 802.15.4 setting,
and analyzed the performance of different service rejection criteria, identifying
the optimal strategies for different operational conditions. The idea of network
coding has been applied in IEEE 802.11-based multi-hop wireless networks and
throughput benefits in the order of 3-4 times over baseline 802.11 have been
demonstrated for bulk data transfers [13,14,4]. In this paper we take an addi-
tional step by studying its performance in the case where packets have specific
delivery deadlines, i.e. when throughput and goodput hold different meanings.

3 System Model

The system under consideration is an IEEE 802.15.4 mesh network and is de-
picted in Fig. 1(b). The four nodes A, B, C, and D, referred to as source nodes,
communicate with each other in pairs, acting concurrently as sources and sinks
of information. The nodes are not within reliable communication range, thus
requiring a router. This scenario is realistic since the transmission range is usu-
ally quite shorter than the carrier sensing range [17]. Our topology choice of
having the sources as direct neighbors of the router R is motivated by a need to
reduce the complexity of the analysis, while maintaining representative results
and shedding light on the fundamental performance of network coding.

Source nodes maintain two queues; a transmission queue (TxQ) and a decod-
ing queue (DcQ). The TxQ holds messages that are generated by the node and
need to be transmitted. The DcQ holds copies of messages that have already
been transmitted. These copies are used to decode algebraically coded packets
and retrieve their information content. The router node maintains n reception
queues RxQi. A reception queue RxQi is associated with source node i and func-
tions as forwarding queue; it stores messages that were received from that source
node and need to be forwarded to its counterpart node. All the aforementioned
queues are implemented at the network layer. No modifications are introduced
to the IEEE 802.15.4 MAC.

3.1 IEEE 802.15.4

The IEEE 802.15.4 MAC/PHY standard [11] is the most popular standard for
low data rate wireless PANs. The standard specifies four physical layers (PHY)
with three of them being based on direct sequence spread spectrum (DSSS)
techniques. We consider the DSSS PHY working in the 2450 MHz band with a
data rate of 250 Kbps. Regarding the MAC layer, the IEEE 802.15.4 specifies a
beacon-enabled mode and a beaconless mode. In beacon-enabled mode, channel
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access is arbitrated through the use of a slotted CSMA/CA algorithm. Beaconless
mode employs non-slotted CSMA/CA. In this work we adopt the beaconless
mode.

Three configurable attributes define the functioning of non-slotted CSMA/CA
Medium Access Control: macMinBE, macMaxBE, and macMaxCSMABackoffs.
The algorithm functions as follows: When a node has a packet to send, it first
chooses a random number n of backoff periods (each equal to 320μs), where n is
uniformly distributed between 0 and 2BE-1. The variable BE refers to the Backoff
Exponent, that is initially set to macMinBE. Once n backoff periods elapse, the
node checks whether the channel is free or not. If it is free, the node initiates the
packet transmission. If on the other hand the channel is busy, BE is incremented
by 1, unless it has already reached the value adopted by macMaxBE. In that
latter case, BE is set to macMaxBE. The process of choosing a random number
n of periods, waiting for them to elapse and then checking the channel is again
repeated. In total, the MAC will try this process macMaxCSMABackoffs times,
after which it will report a failure to the upper layer in case the channel is never
found to be free. Otherwise, a success will be reported (we assume broadcast
transmissions without ACKs). As a consequence of the CSMA/CA mechanism,
the time it takes to service a packet is variable.

4 Coding, Scheduling, and Skipping Mechanisms

Three mechanisms were implemented on top of the 802.15.4 MAC layer and
are described below. Note that all these mechanisms are closely related with
respect to their functionality and their impact on performance. In this paper we
assume that new packets with firm deadlines are generated at the application
layer of the source nodes. A generated packet is forwarded to the network layer
and is subsequently presented for admission at the TxQ. If the queue is full,
the packet is discarded (Drop-Tail policy). Otherwise, it is admitted. Similar
admission behavior takes place at the router node for the RxQs.

4.1 Packet Coding

Digital network coding, when enabled, occurs at the router node when both RxQs
belonging to a pair of inter-communicating source nodes are populated, and the
MAC layer is ready to service a packet. The payloads of the Head-of-Line (HOL)
packets of the two queues are algebraically coded with each other, resulting in
a coded packet. The sequence number of both packets and the IDs of the two
source nodes are appended to the payload, resulting in a minor extra overhead
of 4 bytes. Similarly to the Sliding Window Protocol, we assume periodic reuse
of the available range of sequence numbers. In case only one RxQ is populated,
its HOL packet is given to the MAC for servicing. In that sense, network coding
is opportunistic in that it exploits the coincidental presence of two packets that
can be coded. In essence, a synchronous presence is not required per se, but is
leveraged when it occurs.
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When a coded packet is received at a source node, the latter will first check
whether it is one of the two intended recipients. It will subsequently check the
appended sequence numbers and search its DcQ for a copy of its native packet
used in the coding process. In case a copy is found, the payloads of the coded
packet and the copy are XORed with each other, resulting in the payload in-
tended for the source node. Otherwise, the decoding process fails and the packet
is considered as lost.

4.2 Scheduling and Queue Management

The TxQs at the source nodes are served using the First Come First Served
(FCFS) scheduling policy, where the packet with the smallest queue admission
time among all packets residing in the queue is committed first to the MAC
layer for servicing. The scheduling of packets at the router operates as follows:
1) A ”horizontal” FCFS mechanism orders the packets in each RxQ in increasing
order of queue admission time, 2) A ”vertical” FCFS mechanism decides which
RxQ (two of them when network coding is enabled) to serve next. This ”vertical”
FCFS is greedy: It does not consider a combination of admission times for two
packets that can be coded. It bases its scheduling decision on one admission
time (the smallest). In case no coding opportunity exists, the native FCFS chosen
packet is passed directly to the MAC. The concept of the two-dimensional FCFS
scheduling that we just described is illustrated in Fig. 2. To assess the impact
of deadline-awareness in the coding process, we shall also investigate at a later
stage in this paper the performance of an Earliest Deadline First (EDF)-based
scheduling policy (both horizontal and vertical) at the router node.

��������	
������ ������������ ����
������� � �!�"������

#�$%&'(

#�$%&)*

#�$%&'+

#�$%&),

Fig. 2. Two-dimensional scheduling at the router node

The proposed scheduling and coding algorithms, as well as all transmission
queues, are implemented at the network layer. No queue build-up happens at
the MAC: At all nodes, packets are committed one at a time to the MAC thus
allowing full decision control at the network layer over the precise packets that
will be served and the packets that will be denied service (skipped). At a source
node, a copy of a transmitted packet is stored in the DcQ. The copy is removed
when the source node overhears R forwarding this packet (in native or coded
form) or any other previously committed packet that has: 1) a higher sequence
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number (in case of FCFS at the router), or 2) a higher sequence number and
a bigger absolute deadline (in case EDF is adopted at the router). When the
DcQ is full, no copy is stored and the packet is flagged to inform node R that it
should not be coded.

4.3 Packet Skipping

Packet skipping refers to the action of denying future service (i.e. transmission)
to a packet that is already residing in a transmission queue. The procedure, when
activated, proactively cleans the queues upon the arrival of new packets in order
to potentially reserve the buffer space for packets that have higher probability of
arriving on-time. Packet skipping is executed before coding and before any type
of packet is committed to the MAC layer in order to avoid coding and serving
packets that are expired or are unlikely to meet their timing constraints.

To decide whether to execute packet skipping for a particular packet, an
estimate of the MAC service time is used. Estimation is needed due to the
variable service time mentioned in section 3.1. The estimate is set to the mean
of the service time values of the last 10 serviced packets. To account for the actual
2-hop communication path, source nodes multiply the calculated estimate by 2.
Thus, they rely on a rather optimistic estimation of the waiting time plus service
time that their packets will experience at the router node. The lead time (i.e.
the remaining time until deadline expiration) of every packet in the queue is
compared to the estimated service time. If the lead time is smaller, the packet
is dropped from the queue. Otherwise, it is maintained.

5 Performance Evaluation

5.1 Simulation Setup

We have built our performance assessment environment in OMNet++ [18], on
top of simulation models of wireless propagation, multiple access interference, ra-
dio state machine and the IEEE 802.15.4 non beacon-enabled MAC protocol. The
accuracy of the models for timeliness evaluation has been validated by Rousselot
et al. [16]. The MAC layer is configured with macMinBE=3, macMaxBE=5,
and macMaxCSMABackoffs=4, which correspond to the default values spec-
ified in the standard [11]. The network consists of 4 source nodes [A,B,C,D] and
a router R, as depicted in Fig. 1(b). The communication pattern is between A
and B (flow 1), and between C and D (flow 2).The size of TxQ for each source
node is equal to 10 packets and the DcQ has a size equal to 20 packets. Each of
the RxQ queues at node R can hold up to 10 packets.

Source nodes generate packets following an exponentially distributed inter-
arrival time with mean τ . The smaller τ is, the higher is the generation rate
and thus the higher the network load is. Each node generates 10000 messages
in total. The value of τ is gradually varied in the simulations to assess the
system performance under different traffic loads. Packets have to traverse two
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Fig. 3. (a) Percentage of packets received at the source nodes within their deadlines
and (b) Average buffer occupancy at node R, for the baseline case, coding (Cdg),
skipping (Skp) and the combination of Cdg and Skp

hops (e.g. A-R-B). Plain packets have a physical frame size of 60 bytes and
coded packets 64 bytes. Every generated packet has a firm absolute deadline
associated with it, after which its information content becomes obsolete. The
absolute deadline is equal to the absolute generation time of the packet plus
a relative deadline. In the first part of the evaluation, relative deadlines are
uniformly distributed over the interval [10ms,100ms], thus with a mean value
equal to 55ms and a width of 90ms. In a second phase, we shall vary the average
relative deadline in order to assess the performance of coding and skipping for
different timeliness requirements. In all presented figures, FCFS/DT refers to
the simple baseline mechanism (First Come First Served with Drop-Tail). The
acronym Cdg refers to network coding, and Skp refers to packet skipping. Four
mechanisms are investigated: the baseline case (FCFS/DT), the baseline case
plus network coding (FCFS/DT + Cdg), the baseline case plus packet skipping
(FCFS/DT + Skp), and finally, the baseline case plus a combination of coding
and skipping (FCFS/DT + Cdg + Skp).

5.2 Case 1: Constant Average Deadline

In this section, the relative deadline of generated packets is uniformly distributed
between 10ms and 100ms. Fig. 3(a) presents, for all mechanisms, and as a func-
tion of τ , the percentage of packets that make it on time to their destination
out of all 40000 packets generated in the network. Fig. 3(b) provides the average
buffer space occupancy at the router node (total over all RxQs). We recall that
the larger τ is, the lighter the network load is.

The results show that the timeliness performance of baseline FCFS/DT is the
worst among the four mechanisms, in particular for high loads (1ms < τ < 30ms).
For larger τ values, all methods have similar performance, since the network load
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is low and the queueing delays are small. Applying algebraic coding at node R
provides a gain that reaches up to 57% over the baseline case. This performance
improvement can be explained by studying Fig. 3(b). By XOR-ing payloads
and servicing two packets concurrently, network coding considerably reduces
the overall buffer usage at node R, relative to baseline FCFS/DT. The drop in
buffer occupancy is visible in the same operation region where the on-time gain
is noticed (10ms < τ < 30ms). A reduction in buffer space occupancy reduces
the number of messages dropped at node R by the Drop-Tail policy. The ability
of FCFS/DT + Cdg to service two packets concurrently further reduces the
queueing time that packets have to endure at node R before having access to
the MAC layer for servicing.

The relative goodput gain is nevertheless negligible for values of τ smaller
than 10ms. There are two reasons behind this: 1) For such small inter-arrival
times, a bottleneck exists at the source nodes, with a high percentage of packets
being dropped at these nodes by the Drop-Tail mechanism or otherwise having
to experience significant waiting times in the TxQ queues once admitted (the
average queue size at the source nodes was measured to be equal to 9.5 packets)
2) Due to the high packet generation rate, The DcQ at the source nodes become
considerably loaded, with a significant amount of sent packets being flagged as
not valid for coding. This flagging process reduces the ability of node R to code
packets, and its impact is reflected in the average buffer occupancy; as shown in
Fig. 3(b), no difference in buffer occupancy between FCFS/DT and FCFS/DT
+ Cdg is noted for τ smaller than 10ms. When assuming a DcQ of infinite size,
a drop of 25% in this same region was noticed.

Packet skipping outperforms both baseline FCFS/DT and simple algebraic
coding. By proactively dropping packets that have a high probability of missing
their deadlines, skipping favors those packets which are more likely to satisfy
their timing requirements. On the other hand, simple FCFS/DT and its net-
work coding variant FCFS/DT + Cdg treat every single packet that is admitted
to the transmission queue. Both remain oblivious to the fact that buffering and
servicing expired packets and packets with short lead times consumes both pre-
cious buffer space and MAC service time. This in turn increases the number of
packets rejected by Drop-Tail and increases the waiting time of other admit-
ted packets with more relaxed deadlines. The reduction in congestion obtained
through packet skipping is correlated with a reduction in buffer occupancy, as
illustrated in Fig. 3(b). A similar reduction in buffer occupancy at the source
nodes was also observed.

The ability of network coding to simultaneously serve two packets at router R,
adds to the efficient buffer space and MAC usage provided by packet skipping.
As shown in Fig. 3(a), a combination of coding and skipping performs the best
among all tested cases. Applying network coding in addition to proactively clean-
ing queues reduces the waiting time of packets at node R and reduces further the
average queue size at the router (Fig. 3(b)). Overall, applying a combination of
network coding and packet skipping can provide up to 65% more on-time pack-
ets than traditional FCFS Drop-Tail. Finally, it is also important to mention
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Fig. 4. Percentage difference in on-time packets for coding, skipping, and their combi-
nation, relative to baseline FCFS/DT

that the higher performance of both skipping and coding is also coupled with a
decrease in transmitted messages, and thus comes at less transmission effort.

5.3 Case 2: Varying Average Deadlines and Packet Arrival Rates

In this section we investigate the real-time performance of coding, skipping,
and their combination, for different timeliness requirements and different loads.
For that purpose, the average relative deadline of generated packets is varied
from 55ms to 605ms in steps of 25ms, while maintaining a uniform deadline
distribution with a constant width of 90ms. The network load is also varied by
varying the mean inter-arrival time of packets at the source nodes from 1ms to
50ms in unit steps. The difference in on-time packets between each of the three
methods and baseline FCFS/DT is plotted in Fig. 4. Note that the percentage
values are relative to the total 40000 generated packets.

We shall first consider the impact of solely applying packet skipping (i.e.
FCFS/DT + Skp). Fig. 4(a) shows a clear performance benefit of skipping for
mean inter-arrival times τ between 1ms and an upper limit τl. The value τl for
which performance improvement is still witnessed decreases when the average
deadline is increased; the higher the deadline is, the narrower is the range of τ
values for which packet skipping outperforms baseline FCFS/DT. Indeed, higher
deadlines implies that less packets will get expired or be assessed as outdated,
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which further implies that less packets will be denied service. The peak increase,
that initially reached up to 60% for an average deadline of 55ms, gradually fades
away for higher deadlines values, with less than 20% peak improvement left at
a deadline of 350ms, and 5% for a deadline of 500ms.

Moving to the case of FCFS/DT + Cdg, a number of performance-related
aspects can be deduced from Fig. 4(b). The most striking difference between
FCFS/DT + Skp and FCFS/DT + Cdg is that, unlike skipping where the gain
gradually decreases for higher deadline values, coding has the ability to maintain
a constant gain for large average deadlines, with a constant peak gain of more
than 30% for deadlines above 400ms. The ability of coding to reduce buffer occu-
pancy time and thus reduce the number of dropped packets at node R provides
this constant gain irrespective of the average deadline. Whereas skipping is able
to provide improvement for small τ values (e.g. τ less than 10ms for a 55ms
average deadline), coding alone does not deliver gain over baseline FCFS/DT
under these high arrival rates, for the same reasons mentioned in section 5.2.
The actual lower limit of τ above which coding starts to provide performance
gain is deadline-dependent. A further aspect where coding and skipping differ is
in the evolution of the peak performance relative to the deadline value; for all
values of τ , skipping provides the highest improvement for the lowest considered
average deadline (55ms), whereas the performance of coding first increases when
the deadline is increased, before reaching a maximum value beyond which it
gracefully decreases to the observed constant gain value.

To assess the combination of coding and skipping, we plot in Fig. 4(c) the per-
centage on-time difference for the combined FCFS/DT + Cdg + Skp approach.
We also plot in Fig. 5 the gain difference between FCFS/DT + Cdg + Skp and
FCFS/DT + Skp. The general characteristics mentioned for FCFS + Cdg still
hold for the combined approach, with one major exception; FCFS/DT + Cdg
+ Skp provides gain even for the smallest range of τ . Fig. 5 shows that it is the
contribution of packet skipping that accounts for this difference. Interestingly,
this contribution is shifted to lower values of τ compared to the FCFS/DT +
Skp case. This is explained by the fact that network coding operates in the same
region as skipping, thus reducing the impact that skipping would otherwise have
had if it were applied alone. The impact of skipping remains in the region where
coding was not initially providing significant gain, i.e. for the highest network
loads.

5.4 Peak Performance and Optimal Operation Point

The results plotted in Fig. 4 indicate that for every considered average deadline,
there exists a specific value of τ for which the maximum gain is achieved. This
value will be referred to as τmax. We shall try to elucidate the existence of such
an optimal τ using FCFS/DT + Cdg as illustrative example. Fig. 6(a) plots the
measured value of τmax for every average deadline. It additionally plots the value
of τ , referred to as τp, for which the maximum increase in delivered throughput
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Fig. 5. On-time difference between FCFS/DT + Cdg + Skp and FCFS/DT + Skp

at the sink nodes occurs (regardless of whether the packets made it within their
deadline or not). Finally, the stability point τstable of the queueing system at the
router node is also plotted. Stability, from a queueing theory perspective, is the
operation regime where a queueing system reaches and maintains an equilibrium
state, i.e. when the arrival rate of packets at the queue is smaller or equal to
the average departure rate. The stability point was identified by measuring the
average packet arrival rate and average departure rate at node R, and identifying
the smallest value of τ for which the ratio of these two rates is equal to 1. Note
that node R has the highest load among all nodes in the network. As such, source
nodes are also in a stable state at τstable.

For all deadlines, τp remains equal to τstable, meaning that the relative
throughput increase is always maximized at the stability point. Indeed, the
stability point offers the maximum number of opportunities for coding, while
reducing the number of packets dropped by the Drop-Tail mechanism. A ma-
jor observation is that for deadlines bigger or equal to 400ms, τmax and τp are
exactly equal to τstable; for high deadline values, the peak increase in on-time
packets relative to FCFS/DT is achieved at the stability point of the network.
On the other hand, for deadlines up to 200ms, the goodput is maximized for
τmax values bigger than τstable and τp. For such deadlines, even though the rel-
ative throughput is still maximized at τstable, a lower network load is needed to
reduce the waiting time of packets in the queues. For deadlines between 300ms
and 400ms, the shift between τmax and τstable is due to the fact that the goodput
increase is measured as a difference to the baseline case, which unlike coding,
still does not provide any positive gain for this deadline range.

Finally, to present insight into the behavior of the system for higher node den-
sities and loads, Fig. 6(b) plots, for a fixed deadline of 200ms and an increasing
number of nodes: τp, τmax, and the range of τ for which the provided goodput
increase is at least 50% of the increase provided at τmax. An observation we can
make here is that the bigger/more loaded the network is, the more τmax diverts
from τp, and the wider the 50% range of τ values becomes. The aforementioned
results validate our position of looking at network coding from a real-time good-
put perspective, versus looking at it from a throughput perspective.
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5.5 Deadline-Aware Coding Using EDF Scheduling

We have till now assessed the performance of network coding while maintaining
the same scheduling policy (FCFS). A yet unexplored dimension is the order
with which packets are serviced at the router R. The following section assesses
the impact of servicing queues based on the absolute deadlines of packets. To-
wards that end, FCFS is replaced by an Earliest Deadline First (EDF) variant:
The packet P with the smallest absolute deadline among all packets residing in
the RxQs is chosen first for service. In case a packet exists in the second RxQ
belonging to the same flow, this packet can be opportunistically coded with P.
Two scenarios are considered: In the first scenario, the average relative deadline
of both flows is increased from 55ms to 605ms. In the second scenario, one flow
has a fixed average deadline of 55ms, while the average relative deadline of the
second flow is varied from 55ms to 605ms. This scenario is suitable for study-
ing the impact of the vertical scheduling component. Given the insight obtained
in the previous sections, we shall restrict ourselves to a comparison between
FCFS/DT + Cdg + Skp and EDF/DT + Cdg + Skp.

Fig. 7 conveys the results of the first scenario (on-time difference for EDF
relative to FCFS). Little difference is observed. Only minor improvements of 1-
2% exists, for very limited operation points. In fact, for τ smaller than 10ms and
high deadlines such as 400ms, we observed a decrease between 2-5% for EDF,
that we found to be due to a less effective DcQ cleaning in the case of EDF
than in the case of FCFS (As mentioned in section 4.2, for FCFS, the sequence
number of an overheard packet is enough to clean smaller sequence-numbered
packets from the DcQ, whereas for EDF, both the overheard sequence number
and the absolute deadline should be bigger than those of a stored packet to safely
remove the latter). The obtained result might seem striking at first, given the
proven optimality of EDF in real-time systems. In fact, EDF has been proven
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Fig. 7. Deadline-aware coding: On-time difference relative to FCFS

to be optimal only in the case where all tasks (in our case all packets) can be
serviced in an order such that all the deadlines are met, i.e. if a feasible schedule
exists [5]. This is obviously not the case here, because of the load conditions,
the limited available buffer space, the stochastic service time introduced by the
CSMA/CA mechanism and the transmission failures that occur.
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Fig. 8 illustrates, for the second scenario, the per-flow on-time and buffer
usage difference of EDF relative to FCFS. By taking the absolute deadlines
into account, vertical EDF favors the communication flow A-B since it has, on
average, smaller deadlines. This results in an improved on-time performance
relative to deadline-oblivious FCFS (Fig. 8(a)) and is correlated with a decrease
in the buffer space usage at the router node for the RxQs that hold packets
from A and B (Fig. 8(c)). The gain in the A-B flow comes at the expense of the
communication flow C-D, as shown in Fig. 8(b). Due to the favoring of flow A-B,
the packets of flow C-D experience more waiting time at node R. This reflects
itself in an increased buffer occupancy for this flow, as conveyed in Fig. 8(d),
which in turn results in a higher dropping rate of packets by the Drop-Tail
mechanism.

6 Conclusion

This work is the first to propose and investigate the use of network coding
for improving the real-time performance in IEEE 802.15.4-based wireless sensor
networks. Our results show that coding, packet skipping, and especially their
combination, can be effective techniques that significantly increase the number of
on-time received packets. The actual on-time gain depends on both the network
load and the timing constraints of packets. Nevertheless, unlike packet skipping,
network coding is able to maintain a constant gain for increasing deadline values.
In addition to the novel approach that looks at network coding from a real-time
perspective and investigates coding on top of IEEE 802.15.4 networks, this work
opens the door to a number of new directions. More specifically, there is a need
for analytical models that characterize the performance of packet skipping and
network coding in general networks. In the domain of real-time scheduling, a
comparative analysis between different scheduling algorithms in the presence of
coding and skipping would be an interesting step forward in the topic, especially
for varying load conditions.

Acknowledgments. Antonios Argyriou would like to acknowledge the sup-
port from the European Commission through the STREP project CONECT
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Abstract. Significant research efforts are being devoted to Body Area
Networks (BAN) due to their potential for revolutionizing healthcare
practices. Energy-efficiency and communication reliability are critically
important for these networks. In an experimental study with three dif-
ferent mote platforms, we show that changes in human body shadowing
as well as those in the relative distance and orientation of nodes caused
by the common human body movements can result in significant fluctua-
tions in the received signal strength within a BAN. Furthermore, regular
movements, such as walking, typically manifest in approximately peri-
odic variations in signal strength. We present an algorithm that predicts
the signal strength peaks and evaluate it on real-world data. We present
the design of an opportunistic MAC protocol, named BANMAC, that
takes advantage of the periodic fluctuations of the signal strength to
achieve high reliability even with low transmission power.

1 Introduction

As the fraction of the aging population is increasing, the load on the healthcare
services is also growing. Yet, there is a severe current and projected shortage
of healthcare personnel. For example, a shortage of 1 million registered nurses
by the year 2020 is projected within the USA alone [26]. Networks of sensors
around as well as inside the human body, referred to as Body Area Networks
(BAN), promise to revolutionize healthcare practices as they facilitate, among
other things, better diagnosis, fast emergency response and personalized medi-
cation [12]. But although BANs have the potential to enable low-cost, personal-
ized healthcare systems, it is still unclear whether they can meet the stringent
QoS requirements imposed by some applications. To limit the interference to
neighboring BANs and to keep the specific absorption rate (SAR) as low as
possible in the interest of protecting the human tissues, it is desirable that the
transmission power be kept low. The error-proneness of the low-power wireless
communication, however, is a major challenge. Although the distances between
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devices in BANs are usually small, the wireless signal may experience severe
attenuation from human body shadowing [17]. Furthermore, the changes in the
environment as well as relative distance and orientation of the devices resulting
from human mobility can introduce significant variations in the quality of the
wireless signal.

We begin this paper with an experimental investigation of the signal strength
dynamics within a BAN during periodic human movements, such as walking. We
observe that the periodic changes in the relative positions of the limbs typically
manifest in significant periodic changes in received signal strength (of several
dBs). Furthermore, the signal strength amplitudes are typically long-lasting, of
the order of 100s of milliseconds, when compared to the airtime of packets,
which are of the order of only a few milliseconds. To exploit this effect we pro-
pose BANMAC, a MAC protocol that is built on the idea of opportune packet
transmission, that is, packets are scheduled such that they are transmitted when
signal strength is high, because then the chances are better that the packets are
received correctly.

The main contributions of this paper are:

1. An empirical characterization of RSSI fluctuations in a BAN while the sub-
ject is walking outdoors. This work is complimentary to some of the studies
done by the IEEE 802.15.6 working group in indoors settings [6]. Contrary to
the indoors study [6], we did not always find significant differences in RSSI
measurements due to internal versus external antenna. Specifically, the node
placements where body shadowing is significant resulted in no significant
difference.

2. The design and evaluation of an RSSI-based opportune transmission win-
dows prediction algorithm.

3. BANMAC, a MAC protocol for BANs that schedules transmissions oppor-
tunistically when the link margin is likely to be higher than the average. We
have designed BANMAC to be compatible with the recommendations of the
IEEE 802.15.6 working group for MAC protocols in BANs.

The rest of this paper is organized as follows: in Sec. 2 we present a description
of our experimental setups and report on typical signal strength fluctuations that
we observed in BANs. We present the details and evaluations of an opportune
transmission window prediction algorithm in Sec. 3. We then present BANMAC
that is based on the idea of transmitting during high RSSI windows in Sec. 4.
We discuss related work in Sec. 5 and conclude the paper in Sec. 6.

2 RSSI Measurements

This section describes our experimental setup and reports on typical RSSI fluc-
tuations observable in a BAN when the subject is walking. We performed ex-
periments with three different node platforms: Shimmer2, TelosB and MicaZ.
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Fig. 1. Node posi-
tions: the sender is in
the right pocket
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Fig. 2. RSSI measured on the right hand (top) and back
(bottom) while the subject is walking

2.1 Experimental Setup: Shimmer2

In our setup, a BAN consists of eight Shimmer2 [24] nodes. Like the popular
Telos [23] platforms, Shimmer2 integrates the Texas Instruments MSP430 MCU
and the IEEE 802.15.4-compliant CC2420 transceiver [4]. The Shimmer2 plat-
form also incorporates a Bluetooth radio, but we don’t use it. Our Shimmer2
nodes are also equipped with a 2 GB MiniSD card, which was sufficient to store
all traces that accumulated during one set of experiments.

The nodes were positioned on the subjects as shown in Fig. 1. An experiment
consisted of one node (sender) continuously broadcasting IEEE 802.15.4 packets
with a constant transmission frequency of 200 Hz – one 14-byte (MPDU size)
packet every 5 ms. The other seven nodes (receivers) were passively listening for
these packets (they did not send acknowledgments). The sender used a trans-
mission power of -10 dBm1, and it was always located in the right trouser pocket
of the subject2. Our measurement software accesses the CC2420 radio directly,
i.e., there is no MAC layer involved and the senders send packets immediately
without clear channel assessment (CCA). Each of the seven receiver nodes keeps
statistics of the number of correctly received packets and the associated Received
Signal Strength Indicator (RSSI), which is measured using the first eight sym-
bols following the start-of-frame delimiter (SFD) of the received packets [4]. The
receiver nodes are placed on the left and right ankle, left trouser pocket, left and
right hand, in the center of the chest, and in the center of the back (Fig. 1).

1 The CC2420 supports a transmission power of 0 dBm, but previous work [13] has
shown that -10 dBm often results in acceptable packet reception rates.

2 In real life this node could be the user’s cell phone, which is often carried around
this location.
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Fig. 3. Typical RSSI fluctuations during a 5-minute experiment

In each experiment the subjects walked continuously outdoors in a large park,
an environment of negligible external RF interference, as we verified with the help
of periodic noise-floor measurements on the nodes. The subjects were walking
at the speed of approximately 1.2 steps/s, which is a typical walking speed. A
single experiment lasted for 5 minutes (60,000 packets). Three different subjects
performed 10 experiments each.

RSSI Fluctuations. While a subject was walking, the changes in the relative
positions of the limbs manifested as periodic fluctuations in the RSSI. For exam-
ple, the top graph in Fig. 2 shows a 10-second snapshot of the RSSI obtained in
one experiment on a node that was positioned on the right hand of the subject
(recall that the sender is always located in the right trouser pocket). The graph
shows a period of about 1.2 s, which matches the step frequency of the subject.
It also shows the frequent occurrence of a a plateau of about 1 s duration with
RSSI values of −60 dBm followed by short trough with RSSI values as low as
−80 dBm, corresponding to a significant RSSI range of approximately 20 dB.
The node position, however, has an impact on the RSSI pattern: for example,
the RSSI time series obtained in the same experiment on the back of the subject
is much more noisy (Fig. 2 bottom).

Our goal is to exploit the RSSI fluctuations by scheduling packet transmissions
such that they occur when the RSSI values are high, because then the chances
are better that the packet are received correctly [25]. One precondition is that
there is enough variance in the RSSI time series. To get an estimate of the
magnitude of the RSSI fluctuations, we examined the RSSI inter-quartile ranges
(IQR): for every 5-minute experiment we determined the distance between the
75th percentile and the 25th percentile of the RSSI readings per node position,
essentially the range of the middle 50% of the data. Figure 3 summarizes the
results in a violin plot (a combination of a boxplot and a kernel density plot),
where the IQRs are shown as thin black boxes around the median (white dot).
Thus the edges of the boxes represent the 25th and 75th percentiles. In this
experiment the RSSI IQR varied between 2 and 9 dB. Note that RSSI values
below the −94 dBm sensitivity threshold of the radio [4] are unavailable because
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these packets are typically dropped. Figure 3 can be regarded as a representative
example for the 10 experiments carried out by that specific subject, because in all
experiments performed by a certain subject we found the corresponding median
and IQR to be usually very similar.

The larger the RSSI IQR the more spread out are the RSSI values and thus
the higher the potential for exploiting fluctuations by timely packet scheduling.
Figure 5 shows a CDF of the RSSI IQR for all 30 experiments including the data
of all three subjects. It can be seen that half of the links have an RSSI IQR of
at least 5 dB and on 20% of the links the RSSI IQR is at least 8 dB.

2.2 Experimental Setup: MicaZ and TelosB Platforms

We repeated a set of similar experiments on the TelosB and MicaZ platform. Like
Shimmer2, both platforms are also equipped with the CC2420 radio, but they
have different antennas: while Shimmer2 has an SMD antenna, TelosB features
inverted-F microstrip antenna and MicaZ features a half-wave dipole antenna.
One of the goals was to investigate the differences arising due to different types of
antennas. In these experiments we reduced the transmission rate to 20 packets/s
and set the transmission power to -20 dBm. We used only one sender/receiver
pair at a time. The sender was positioned on either the right foot or the right
upper arm and the receiver was positioned on the chest. The receiver forwarded
the received packets over the serial port to a laptop. The subject was walking
at normal walking speed outdoors on a lawn.

In the following, we use MA to indicate the experiments with MicaZ nodes
where the sender was placed on the upper arm and TA to indicate the same
experiments where the nodes were TelosB motes. Similarly, we use ML to indicate
the experiments with MicaZ nodes where the sender was placed on the leg and
TL to indicate the same experiments where the nodes were TelosB motes. We
also performed these experiments where the subject stood still, which we label
as “MA Static” and so on.
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RSSI Fluctuations. Fig. 4 shows violin-plots of some representative results
(again in all experiments performed by a given subject the median and IQR
per node position are usually very similar) and Fig. 5 shows the IQR CDFs for
the two platforms. We found an IQR link margin of approx. 5 dB for the chest-
arm pairs and of approx. 10 dB for chest-leg pairs (Table 1). Thus, aside from
some differences due to different transmission power levels, the RSSI IQRs on
the TelosB and MicaZ platforms are similar to those obtained on the Shimmer2
platform, which confirms that the effect is not platform-specific, but a general
one.

Due to mobility, the standard deviations of RSSI fluctuations increased by
approx. 1 dB when the sender was placed on the upper arm (Table 1). This
fluctuation increased to 2.9 dB for MicaZ and 1.4 dB for TelosB motes when
the sender was placed on the leg. However, mobility does not necessarily results
in the decrease of the mean or median of the RSSI fluctuations. Contrary to
the indoor measurements reported in [6], we found comparable attenuation (in
ML and TL configurations) using printed (TelosB) and dipole (MicaZ) antennas,
which can be explained by the absence of multi-path receptions outdoors.

Table 1. Summary of RSSI fluctuations

RSSI
Expt. Config. Median

Gain
(dB)

IQR
(dB)

Range
(dB)

Std.
Dev
(dB)

MA -51 4 31 2.81
MA Static -55 2 27 1.79
TA -65 5 17 3.68
TA Static -62 5 21 2.87
ML -65 12 26 6.19
ML Static -62 4 21 3.33
TL -64 9 37 5.56
TL Static -67 7 20 4.11

2.3 Discussion

The RSSI fluctuations are influenced by several factors. The periodic changes in
the relative positions of the limbs causes periodic differences in (1) relative node
distance, which influences path-loss and fading, (2) shadowing and (3) relative
node orientation. All these, in conjunction with the irregular antenna radiation
pattern of the nodes, can result in different signal strength at the same distance.
Our evaluation of the RSSI IQRs revealed that the magnitude of the RSSI fluc-
tuation is usually position-dependent and often significant (several dB). In addi-
tion, the absolute RSSI values were often close to the sensitivity threshold of the
radio, where even a small change in RSSI can result in a substantial difference
in packet delivery performance [25]. However, in order to exploit any fluctua-
tion, the RSSI pattern must also be predictable. Ideally, it should be periodic
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and maintain durable amplitudes as shown in the top graph in the top Fig. 2,
because then the packets can be scheduled within the RSSI peak time windows
and the packet losses can be reduced.

3 Opportune Transmission Windows

We use the term opportune transmission window (OTW) to describe a time
interval that yields high RSSI values relative to the average RSSI of the link.
Assuming that the subject performs regular movements, intuitively, we can pre-
dict an OTW by adding the current step period to the time of the previous
OTW center. In this section we describe a method that derives both of these
from RSSI time series obtained from a set of initial probe (control) packets.

3.1 RSSI-Based OTW Prediction

The main difficulty in using RSSI measurements to predict opportune transmis-
sion windows arises due to significant noise content in the RSSI measurements
(Section 2.1). The second challenge arises due to the irregularities of human
movements, which are usually never exactly periodic. Consequently, the simplis-
tic approach of locating the peaks and extrapolating the inter-peak separation
to predict OTW fails. However, we observed that in the Fourier domain the
dominant peak in the power spectrum of RSSI time series corresponds to the
speed of the subject.

RSSI-based OTW Prediction Algorithm. In order to find the OTW the
sender transmits RSSI probe packets which are received at an appropriate node
specified by the coordinator. The probe packets are transmitted at (sufficiently)
low frequency, interspersed between data packets. The receiver returns the RSSI
values of the probe packets in aggregated form to the coordinator, possibly pig-
gybacked on the data packets. The coordinator maintains a moving window of



Opportunistic Packet Scheduling in Body Area Networks 121

0

1

2

3

4

5

6

7

0 50 100 150 200

A
bs

ol
ut

e 
dr

ift
 fr

om
 th

e 
R

S
S

I p
ea

ks
 (

se
c)

Time (sec)

Predicted OTW (center)
RSSI Fluctuations Period/4
RSSI Fluctuations Period/2

Fig. 8. Deviations of OTW predictions
without dynamic correction

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

A
bs

ol
ut

e 
dr

ift
 fr

om
 th

e 
R

S
S

I p
ea

ks
 (

se
c)

Time (sec)

Fig. 9. Deviations of OTW predictions
with periodic corrections: MicaZ sample

the RSSI time series. At the coordinator node, we apply fast Fourier transform
(FFT) to the RSSI time series and find the dominant frequency. To determine
the phase, we first apply a tight bandpass filter centered at the dominant fre-
quency. Figures 6-7 show the filtered signal superimposed on samples of raw
RSSI data. On the filtered signal, we then apply an extrema identification algo-
rithm to determine the peaks. Since the RSSI sample has arbitrary phase at the
two ends, we select the last but one peak as the basis for OTW predictions, to
which we add integral multiples of the period (1/dominant frequency) for one
set of nodes and odd half integral multiples of period for the other set of nodes,
where the nodes on the left hand and right leg constitute one of the two sets,
and symmetrically the nodes on the left hand and the right leg constitute the
other. The first set is defined by the membership of the node that provides the
RSSI samples. The rectification of the drifts in OTW predictions due to irreg-
ularities in the subject’s movements can be done by re-running the algorithm
either periodically or on-demand, for example, when significant deviation from
the predictions are detected.

3.2 Evaluation

For evaluating the OTW prediction algorithm, we used the measurement data
described earlier in Section 2.2. Our bandpass filter uses Butterworth filters.
The filter pass frequencies were set to 0.1 Hz below and above the dominant
frequency. The cutoff frequencies were 0 Hz and twice the central frequency. The
passband ripple was set to 1 dB and the stopband attenuation was set to 30 dB.

Figure 8 shows the RSSI peak prediction drifts, or, the absolute difference
between the peaks of the filtered RSSI signal and the center of predicted OTWs.
For this figure, the expected times of RSSI peaks were obtained by adding mul-
tiples of the period obtained initially. The deviations are the differences of the
nth RSSI peak prediction time and the actual nth peak observed in the filtered
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data. Due to varying pace, stopping and other irregularities in walking, the drift
generally grows with time.

The next three figures (Fig. 9–11) show the absolute deviations between the
center of predicted OTWs and the nearest bandpass filtered RSSI peaks observed
in the experiments, when the predictions were periodically adjusted. We sampled
RSSI periodically every 12 s and collected RSSI samples at 20 Hz for 4.5 s. In
other words, we used approx. one-third of the RSSI time series to validate this
algorithm. The sampling time of 4.5 s was chosen to ensure the inclusion of at-
least one pair of consecutive RSSI peaks. In figures 9–11, the drifts less than
0.25 ∗ period are shown with diamonds, those less than 0.5 ∗ period and greater
than 0.25 ∗ period with triangles and the larger drifts with circles. The means of
the absolute deviations were 0.28 s for the MicaZ samples, 0.21 s for the TelosB
samples and 0.18 s for the Shimmer2 samples. In all three cases, the non-central
node was on one of the legs.

We observed that both the probe frequency and the probe duration can be sig-
nificantly reduced without sacrificing accuracy of predictions. The optimization
of these parameters is one of our future work. We note that if the coordinator
and at-least one of the nodes have more than one radio transceiver, such as in the
Shimmer2 motes, then our OTW prediction method can also be applied using
secondary radios.

4 BANMAC

In this section we illustrate the use of the work presented in the previous two
sections. We present BANMAC, a MAC protocol for body area networks which
attempts to schedule transmissions during the time windows when the RSSI
is expected to be larger than average. Our network model consists of a set of
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nodes connected in star topology to a coordinator node where the coordinator
is significantly more powerful than the rest of the nodes.

Similar to IEEE 802.15.4, BANMAC alternates between centralized and dis-
tributed medium access modes. In the centralized mode, where the scheduling
decisions are made by the coordinator, the channel access is collision-free and
the MAC protocol supports features such as priority and guaranteed data rate.
In the distributed scheduling mode of BANMAC, the nodes determine the time
windows for opportunistic transmissions locally and contend for channel access
during these windows. We describe the centralized scheduling algorithm of BAN-
MAC in the following subsection (4.1). A detailed presentation of BANMAC will
appear in a separate publication.

4.1 Centralized BANMAC Scheduling

Opportune Transmission Windows (OTW). Recall that we use the term oppor-
tune transmission window (OTW) to describe a time interval that yields high
RSSI values relative to the average RSSI of the link, for example, the time in-
terval of 3.5 s to 4.0 s in the top graph in Fig. 2. Assuming that the period and
phase of the RSSI fluctuations are known (we describe an algorithm that derives
this information from the RSSI time series in the previous section), let T be the
period of RSSI fluctuations. Let t = 0 correspond to the start of the positive
half-cycle (zero phase) for some node i as shown in Fig. 12. Then, the OTWs of
node i span [nT +(T/4−Δ/2), nT +(T/4+Δ/2)) where n is an integer and Δ is
the width of the OTWs. The left hand and right leg move in synchrony, and so
do the other pair. Due to the synchronous and alternating motion of the pair of
limbs, the time axis contains alternating OTWs, each OTW for the set of nodes
on the two limbs that move together. These are shown as Δ(S1) and Δ(S2) in
the figure, where node i belongs to the set S1. Observe that Δ(S1) and Δ(S2)
need not overlap. The gaps may be used for communication with nodes whose
RSSI do not exhibit periodic fluctuations and for distributed medium access.

Time
RSSI

Opportune Transmission Windows

Δ(S1) Δ(S2) Δ(S1)

Fig. 12. Opportune transmission win-
dows alternate for the two sets of nodes
S1 and S2, explained in the text

W1

W2
W3

W4

W5

W6

W7

R

Δ

Next Tx Window

Pivot

α7

Fig. 13. Pendulum task model
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Pendulum Opportunistic Transmissions
Name Symbol Name Expression
Pivot P Target Tx

time
tT

Weight of bob Wi Importance wi

Diameter of
bob

e Tx duration e

Swing range 2R Opportune
Tx window

Δ − e

Fig. 14. Mapping of opportunistic transmissions
parameters to Gravitational Task Model

R

Potential Energy

W R

X

Pivot Proj.

x

C
os

t

Fig. 15. Cost at displacement
x from pivot (OTW center) in
the Gravitational Task Model

Scheduling

We associate a cost function with the time of transmissions where the minima
of the cost function coincide with the center of the OTWs. In the following, we
present an algorithm that minimizes the cost of a set of transmissions. We adapt
the Gravitational Task Model of Guerra and Fohler [10] to solve this problem.
Their work is inspired from the physical system of a set of pendulums in equi-
librium (Fig. 13), where the equilibrium is characterized by the minimum total
potential energy of the set of pendulums.

Problem Formulation. Let us consider a set of n transmissions T = {X1, . . .Xn}
to be scheduled during a given opportune transmission window, where Xi de-
notes the events of polling by the coordinator followed by the transmission of
data packet to the coordinator. It may be that a number of data packets are
sent to the coordinator following one poll packet. For the sake of simplicity of
presentation, we treat the transmission of m data packets in succession as m
single transmissions. Let tT denote the center of the OTW and let Δ denote
the width of the OTW. Let wi denote the numerical measure of the impor-
tance of Xi. Finally, let e be the time needed to complete a single transmission
event, Xi.

We map our problem formulation to a Gravitational Task Model instance as
follows: we consider a set of n pendulums hanging from a pivot (Fig. 13). A bob
in the pendulum system corresponds to one transmission. The diameter of the
bobs (the same for all bobs) map to the transmission duration e. The weights of
the pendulums correspond to the importance of transmissions. Furthermore, the
swing range 2R maps to the width of OTW (minus a correction term), Δ − e3.
Table 14 presents a summary of the mappings.

The potential energy of a bob is Ui = weight * vertical displacement from
the minimum = −Wi

√
R2 − x2

i where xi is the horizontal deviation of the bob
from the central position, that is, the horizontal deviation from the projection

3 We have simplified the model presented in [10] by redefining R as above.
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of tT (Fig. 15). The minimization of the potential energy can be expressed as
the following nonlinear program (NLP):

Minimize
n∑

i=1

−Wi

√
R2 − x2

i , (1)

subj. to xi+1 − xi = e, i = 1, . . . n − 1, (2)
where |xi| ≤ R, i = 1, . . . n − 1. (3)

In (2), the equality sign (rather than ≥) is chosen because all transmissions
within any given window have the same target transmission time, and hence, the
optimal solution can’t have gaps. We solve this NLP in linear time-complexity
by using the physical facts that in equilibrium, the bobs touch each other and
the net torque on the system is zero. The interested reader is referred to [10] for
more details. A transmission schedule is given by the projection of bobs on a
horizontal line below the pendulums. However, the projections, if not corrected,
overlap. In the following, we find expressions for the projections of the center of
bobs sufficiently shifted such that the projections of the bobs do not overlap.

Minimum cost schedule. Let αi be the angle that pendulum i makes with
the vertical (Fig. 13). Then the displacement of the center of the bob along the
X-axis is xi = R sin αi. Thus, we get

R sin αi+1 − R sin αi = e, ∀i (4)
n∑

i=1

WiR sin αi = 0. (5)

Eqn. 4 can be re-written as:

R sin αi = R sin αn − (n − i)e. (6)

Substituting (6) in (5), we get the expression for the displacement of the last
bob in equilibrium:

R sinαn =
∑n−1

i=1 (n − i)eWi∑n
i=1 Wi

(7)

The conditions sinαn > (1 − e
2R ) in (7) and sinα1 < −(1 − e

2R ) in (6) indicate
the unschedulability of T within the opportune transmission window.

Examples. Let us consider a set of four pendulums, which models a set of
four transmissions, say T , to be scheduled in a given OTW. From (7), we get,

x4 = R sin α4 =
e(3W1 + 2W2 + W3)
W1 + W2 + W3 + W4

. (8)

Consider the case of equal weight bobs, i.e., Wi = W ∀i. Then, the displacement
of the fourth pendulum from the center is R sin α4 = 1.5e. We use (6) to get the
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displacements of other pendulums. The displacement of the third pendulum is
R sin α3 = 0.5e, that of the second pendulum is R sinα2 = −0.5e and that of the
first pendulum is R sinα1 = −1.5e. Thus the first transmission is scheduled at
tT − 2e, the second transmission is scheduled at tT − e and so on. Now suppose
W1 >> Wi, i = 2, 3, 4. Then, from (8), R sinα4 � 3e, which corresponds to the
case of pendulum 1 being almost at the center as expected.

The work presented in [10] (and Equation 4) minimizes the cost function for
a given ordering of transmissions. From symmetry, the ordering that maximizes
the number of schedulable transmissions corresponds to the ordering where the
“center of mass” is located in the middle. However, the possibility of performing
such orderings is limited by the start time constraints and transmission order
dependencies.

5 Related Work

Several studies have focused on the effects of human body shadowing on RF
communication. Kara et al. describe an experimental study that evaluates at-
tenuation due to people crossing a 2.4 GHz band link [15]. They show that the
human body can result in attenuation of up to 20 dB. Shadowing effects caused
by a human body have been studied in [8] for 802.11 radios. There are also
several studies that focus on human body shadowing at other frequencies. For
example, the 900 MHz and 60 GHz bands are the focus of [18] and the 10 GHz
band is the focus of [9].

Due to its focus on low-power communication, the work of Miluzzo et al. [17] is
closely related to ours. The authors performed an experimental study in which
they investigate person-to-person communication with IEEE 802.15.4 radios.
Their results indicate that the position of the radio on the human body as well
as the attenuation introduced by the human body has a significant effect on the
performance of the communication. The experimental part of our work can be
regarded complementary as we have focused on intra-BAN communication only.
Some of the work presented in IEEE 802.15.6 WG proceedings is also related to
ours. Davenport et al. present a study of link characterization of medical BAN
indoors [6]. In [2], Cai et al. derive a two state channel model based on empirical
RSSI measurements in BANs, which also match our experimental results. A
MAC protocol for BANs is proposed in [30], where throughput maximization is
the objective. To the best of our knowledge, our work is the first to propose the
idea of opportunistic transmission scheduling exploiting RSSI fluctuations for
better reliability.

Like BANs, energy efficiency is one of the main concerns in Wireless Sensor
Networks (WSN). A number of energy efficient MAC protocols have been pro-
posed for WSNs. Putting nodes to sleep is the primary mechanism for energy
saving in S-MAC [28] and T-MAC [5]. Their main difference is the use of fixed
versus variable sleep cycles (see [11] for a comparative study) . Since all receivers
listen during wake-up periods when the energy spent while not receiving trans-
missions is wasted, low power listening (LPL) at the receivers improves energy
efficiency. Berkeley-MAC [19], WiseMAC [7] and X-MAC [1] use this paradigm.
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Large latency is a critical problem with this approach. X-MAC improves energy
efficiency of B-MAC and WiseMAC by strobing the long preambles and inserting
receiver ID in the strobes. An early CTS in X-MAC alleviates the latency prob-
lem. CMAC [16] also tries to improve the LPL latency. However, the protocol has
the overhead of synchronizing time slots. Scheduled channel polling (SCP) [29]
eliminates the need for long preambles in LPL by synchronized polling. At the
time of polling, a sender wakes up the receiver and after performing a short
carrier sense, it transmits the packet. SCP has been found to decrease the limit-
ing duty cycle LPL from 1-2% to 0.1%. TDMA based MAC protocols can offer
bounded delays and collision-free transmissions. TRAMA [20] is a collision-free
TDMA MAC protocol for WSN. ZMAC [22] is a hybrid MAC protocol, that
operates in CSMA mode under light load conditions and in TDMA mode under
heavy load conditions.

Targeted scheduling of tasks have been studied before by the real-time systems
research community. Time Value Functions (TVF) or, Time Utility Functions
(TUF) express the value of the completion of a task as a function of time.
Jensen et al. proposed the use of TVFs for real-time process scheduling [14].
Chen and Muhlethaler present a heuristic to schedule tasks that attempts to
maximize the sum of TVF for each task [3]. Wang and Ravindran improve the
heuristic of Chen and Muhlethaler from O(n3) time complexity to O(n2) time
complexity [27]. See [21] for a survey.

6 Conclusion

In an experimental study conducted with three mote platforms, we showed that
regular human movements often manifest in significant periodic RSSI fluctua-
tions. We presented and evaluated an algorithm that predicts opportune trans-
mission windows and deals with the issue of irregularities of human movements
and noisy RSSI signals. We also presented a sketch of a MAC protocol for BANs,
called BANMAC, that takes advantage of these fluctuations by opportunistically
scheduling transmissions when the RSSI is likely to be higher than the average
for better reception reliability. In an ongoing work, we are integrating BANMAC
to the IEEE 802.15.4 protocol stack. We plan to extend our work to incorporate
dynamic power control and channel migration in the near future.
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Abstract. Accuracy is one of the most important performance metrics
in clock synchronization. While state-of-the-art synchronization proto-
cols achieve μsec-order average accuracy, they usually do not focus on
the worst case accuracy and do not have any deterministic guarantees.
This lack of accuracy guarantee makes it hard for sensor networks to
be incorporated into larger systems that require more reliability than
e.g., typical environmental monitoring applications do. In this paper, we
present a clock synchronization algorithm with deterministic accuracy
guarantee. A key observation is that the variability of oscillation fre-
quency is much smaller in a single crystal than between different crystals.
Our algorithm leverages this to achieve much tighter accuracy guaran-
tee compared to the interval-based synchronization methods mostly pro-
posed in the literature of distributed systems. We designed an algorithm
to solve a geometric problem involving tangents to convex polygons, and
implemented that in TinyOS. Experimental results show the determin-
istic error bound less than 9.2 clock ticks (280 μsec) on average at the
first hop, which is close to the simulation results. Further, by a combi-
nation with previously proposed synchronization algorithms, it achieves
the estimation error of 1.54 ticks at 10 hop distance, which is more than
40% better than FTSP, while giving deterministic error bounds.

1 Introduction

Clock synchronization is a fundamental service that is required in many appli-
cations in sensor networks as well as in distributed systems in general. It is of
more importance when sensor networks extend beyond research-oriented systems
and get incorporated into industrial systems often referred to as cyber-physical
systems (CPS). These systems are often mission-critical, and thus providing a
performance guarantee is as important as yielding a good average performance.
In the context of clock synchronization, performance guarantee corresponds to
guarantees on accuracy.

Accuracy guarantee in clock synchronization, especially deterministic one,
is important in sensor networks in several situations including sensor fusion,
coordinated actions, and hard-realtime applications, as discussed in [7]. We add
security applications to the list. For example in secure localization (e.g., [8]), the
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accuracy of clock synchronization directly affects the reliability of the location
estimation and thus the security level that the application can provide.

Recent research on clock synchronization in wireless sensor networks has
been mostly focused on improving the average case accuracy rather than the
worst case. Although state-of-the-art techniques enable impressive average per-
formance of few microseconds error [14,15,21], they either do not have any guar-
antees or only have probabilistic guarantees on the worst case accuracy.

In this paper, we propose a novel clock synchronization algorithm that gives
a deterministic accuracy guarantee characterized by upper and lower limits on
the current time. Although the basic idea is analogous to classical interval-based
clock synchronization [6,7,9,13,16,18,20], there are several key differences that
enable our algorithm to achieve more correct and tighter bounds. One of the dif-
ferences is the bounded drift fluctuation, which is given in the data sheet of crys-
tal oscillators and we also experimentally verified by ourselves. The algorithm
does not require or construct a fixed network topology and works completely in
a distributed manner. It is also efficient by packing the information for multiple
receivers into a single packet thus leveraging the broadcasting nature of wireless
communication.

Our contribution is a novel clock synchronization algorithm that

– Gives deterministic accuracy guarantee without simplifying assumptions,
– Is fully distributed and does not require any a priori knowledge on the net-

work topology or the topology being stationary, and
– Achieves good clock estimation when combined with other algorithms.

We implement the algorithm in TinyOS for testbed experiments and compare
the results with simulation and FTSP.

The rest of the paper is organized as follows. In Section 2, we present the
system model as well as the experimental results on temperature vs. clock fre-
quency. We present main ideas of the synchronization algorithm in Section 3 and
the details in Section 4. In Section 5, we discuss some of the issues that arise
in implementing the algorithm in TinyOS. Section 6 presents the evaluation re-
sults from both simulation and testbed experiments. We overview related work
in Section 7 and Section 8 concludes the paper.

2 System Model

We first define the clock model and describe the assumptions. Then we vali-
date these assumptions through preliminary experiments on the frequency vs.
temperature characteristics of crystals.

2.1 Clocks

We refer to the clock reading at node v as localtime at v and denote as sv.
There are one or more nodes that have access to accurate time e.g., through
GPS. These nodes are called roots and their time is called globaltime t, which is
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also called “wall-clock time” or “physical time” in the literature. All other nodes
are just referred to as nodes. Node v’s clock has a clock drift hv(sv), which is
defined as the amount of increase in globaltime when the localtime is increased
by unit amount. For each node, we define clock function fv to give corresponding
globaltime for each localtime as follows:

fv(sv) =
∫ sv

0
hv(τ)dτ + δv,

where δv is a constant called clock offset. As a notational convention, we assume
globaltime ti corresponds to localtime sv

i ; i.e., ti = fv(sv
i ).

The drift consists of drift offset hv and drift fluctuation αv(sv), where the
former is a constant and the latter is a time-varying function:

hv(sv) = hv + αv(sv).

While these are not known in advance, we assume they satisfy the following two
properties:

– Bounded drift offset: 1 − η ≤ hv ≤ 1 + η,
– Bounded drift fluctuation: |αv(sv)| ≤ ξ,

where η and ξ are given constants. The values of η and ξ depend on the type
of crystal oscillator and usually specified in or can be calculated from the data
sheet. In normal temperature range, ξ is much smaller than η. Note that we do
not assume any statistical properties for αv(sv) except that it is bounded by ξ.
Also note that η and ξ are different from “drift bound” (usually denoted by ρ)
that often appears in the literature. Since 1 − ρ ≤ hv(sv) ≤ 1 + ρ by definition,
we can consider that ρ = η + ξ. This is one of the key differences between the
proposed algorithm and so-called interval-based methods, which we will discuss
later in Section 3.4.

The objective of a synchronization algorithm is for each node to obtain a
mapping from its localtime to the globaltime. We specifically focus on giving a
deterministic guarantee on accuracy: for any localtime, each node must be able
to tell the interval that the globaltime is contained within.

2.2 Crystal Oscillator

The assumptions of bounded drift offset and bounded drift fluctuation are not
common and also very important for our algorithm. For these reasons, we have
measured these values in the actual nodes to assess how reasonable these as-
sumptions are. Since temperature is the primary cause that affects the clock
frequency [22], we measure the frequency under different temperatures.

Crossbow Telos (Rev. B) nodes use Citizen CMR200T for 32.768kHz crys-
tal oscillator [3]. This is a tuning fork crystal unit [1] and is known to have a
quadratic relation between frequency and temperature. The relation is expressed
by f = f0(1+β(T −T0)2), where f0 is the nominal frequency, T0 is the reference



Clock Synchronization with Deterministic Accuracy Guarantee 133

 32767

 32767.5

 32768

 32768.5

 32769

 32769.5

-5  0  5  10  15  20  25  30  35  40  45

F
re

qu
en

cy
 (

H
z)

Temperature (Celsius)

Fig. 1. Temperature vs. frequency of 32.768 kHz crystal oscillator: For 19 nodes

temperature, and β is a constant called “temperature coefficient.” In practice
the actual frequency f ′

0 at T0 is different from f0 by a small amount and the
bound on frequency tolerance (f ′

0 − f0)/f0 is usually specified in the data sheet.
For CMR200T, f0 = 32768 Hz, β = −0.034 ± 0.006 ppm/�2 (ppm: parts-per-
million), and the frequency tolerance is ±20 ppm [1]. The characteristic differs
by types and also by parameters of the cut.

Figure 1 shows the relation of temperature and frequency measured at 19 Telos
B nodes. Clock frequency is measured by counting the number of ticks precisely
in 10 seconds, which is obtained from PPS (Pulse-per-Second) output of a GPS
module (Garmin 18x LVC). This GPS module guarantees that the PPS signal is
aligned to the start of each GPS second within 1 μsec [2]. We gradually change
the environment temperature and associate the measured clock frequency with
the temperature measured simultaneously by the onboard sensor.

All nodes exhibit curves peaked between 20 to 25 � and their shapes are
close to the one specified in the data sheet (not shown). As for the offset, the
peaks are above the nominal frequency (32768 Hz) in 18 out of 19 nodes. This
is likely to be due to the mismatch between ideal and actual load capacitance.
Specifically, CMR200T requires load capacitance of 12.5 pF, whereas the MPU
(MSP430F1611) has internal 12 pF fixed capacitance per pin [5] and they are
added serially for two pins, resulting in 6 pF capacitance in total. Smaller load
capacitance leads to higher oscillation frequency [4] and apparently, it is in accor-
dance with the results. Unfortunately, since there are other sources of parasitic
capacitance e.g., from PCB traces, we do not have a guarantee as strong as that
for the frequency tolerance in the crystal’s datasheet. However, based on the
observation, the curve still satisfies the frequency tolerance specification and we
assume the frequency is only shifted by unknown small constant amount.

In summary, as we expected, we have observed larger variability among differ-
ent crystals than in a single crystal at different temperatures. To accommodate
the shift of peak frequency, we set the nominal frequency f0 = 32768.5 [Hz]. In
the later experiments, we assume the temperature range is 10 to 35 �. Then
we can guarantee the frequency range for a single crystal is within 10 ppm (0.33
Hz in 32 kHz crystal) from both the specification and the measurement results.
Since the peak frequency is within 20 ppm from the nominal frequency, we set
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Root

Node

(a) Message exchange: t0, t3 are not known.

Globaltime

Localtime

Bottom constraint
Top constraint

(b) Constraints on clock function

Fig. 2. Basic idea for synchronization between a root and a node

the drift offset bound η to 25 ppm and the fluctuation bound ξ to 5 ppm to cover
the whole range. If the temperature range is broader or unknown, these param-
eters must be chosen accordingly and conservatively to assure the correctness of
the accuracy guarantee.

3 Synchronization with Accuracy Guarantee

In this section we describe the overall idea of our synchronization algorithm. For
clarity we first assume constant drift (i.e., no drift fluctuation: ξ = 0) and explain
the algorithm for synchronization between a root and a node. Then we extend it
for synchronization between two nodes to enable network-wide synchronization,
and also describe how we can take into account the drift fluctuation. Finally we
discuss the differences between our algorithm and interval-based methods.

3.1 Main Idea

Our synchronization algorithm is based on a simple causality principle that a
message is received only after it is sent. From sender and receiver timestamps,
each node obtains a set of constraints that its clock function must satisfy.

Figure 2(a) shows the message exchange between a root and a node. The
node sends a message at localtime s0 and the root receives it at globaltime t1.
Then the root sends back a message at t2 with the information on previously
received message (s0, t1) as well as with the timestamp t2. Upon receiving the
message, the node can do the following calculations. For the first message, since
the receiving time is later than the sending time, t0 ≤ t1, though we cannot
know t0. Using f(s0) = t0, where f is the clock function for the node, we have
f(s0) ≤ t1. Similarly for the second message, we obtain f(s3) ≥ t2.

The constraints that give upper or lower bounds for a clock function are called
top constraints and bottom constraints, respectively (Fig. 2(b)). A constraint Ci

is expressed by (si, li, typei), where si is localtime, li is called the value of Ci,
and typei is either “top” or “bottom.”
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Globaltime

Localtime

Upper line

Lower line

Lower limit

Upper limit

Bottom polygon

Top polygon

Fig. 3. Upper/lower limit given by
upper-/lowermost line satisfying all
constraints

Globaltime

Fig. 4. Node-node message exchange:
t0, ..., t3 are not known

After several messages are exchanged, each node has a set of top constraints
and bottom constraints (Fig. 3). When we ignore the drift fluctuation (this is
relaxed later in the section), f is a linear function that satisfies all the constraints.
Of all such linear functions, we can determine the ones that give the maximum
and minimum globaltime at given localtime s. We call these upper line and lower
line, which are collectively called limiting lines. The maximum and minimum
globaltime are called upper limit and lower limit at localtime s, respectively.
Further, we call a constraint a support or a support constraint when it determines
the upper or lower line.

The problem of finding limiting lines can be viewed in a more geometric way
by considering two polygonal objects for each of the sets of top and bottom
constraints. The clock function is a long bar and the upper and lower limits
correspond to the range of motion when it is inserted between two polygons.

3.2 Network-Wide Synchronization

The algorithm for synchronization between a root and a node can be extended
for network-wide synchronization. We describe the case for two nodes where
neither of them is a root. We use fH

v and fL
v to denote the upper and lower

limits at node v. For any localtime sv, they satisfy fL
v (sv) ≤ fv(sv) ≤ fH

v (sv).
Figure 4 shows the message exchange for synchronization between two nodes.

Suppose node v initiates the message exchange. Different from the root vs. node
case, at localtime sv

0, v sends the lower limit fL
v (sv

0) instead of sv
0 itself, which

node v remembers for later use. Node w records the localtime sw
1 when it receives

the message, but it remembers the upper limit fH
w (sw

1 ) instead. Then in the
response message, node w puts the pair (fL

v (sv
0), fH

w (sw
1 )) as well as the lower

limit fL
w (sw

2 ), just as node v did. This pair of (lower limit at sent time, upper
limit at received time) is called SyncInfo for the original sender.
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After this message exchange, node v obtains the following two constraints:

top: fv(sv
0) = t0 < t1 = fw(sw

1 ) ≤ fH
w (sw

1 ) (1)
bottom: fv(sv

3) = t3 > t2 = fw(sw
2 ) ≥ fL

w (sw
2 ) (2)

Note that t0, ..., t3, fw(sw
1 ), fw(sw

2 ) are all unknown.
As a side-effect, node w also obtains a bottom constraint fw(sw

1 ) > fL
v (sv

0)
from the first message. This is a preferable property especially for wireless envi-
ronment where every communication is essentially a broadcast. For network-wide
synchronization, multiple receivers within the communication range of a sender
can obtain a bottom constraint. We can also embed multiple SyncInfo in one
message so that multiple receivers can obtain top constraints simultaneously.

3.3 Compensation for Drift Fluctuation

So far we have assumed that clock drift is constant. However, in practice,
clock drift fluctuates over time with external causes, mostly due to tempera-
ture changes. Here we extend the algorithm for the case with drift fluctuations.

The idea is to compensate each of the constraints for the effect of drift fluctua-
tion after the constraint is obtained. For constraint Ci = (si, li, typei), we define
compensated constraint C̃i(s) = (si, l̃i(s), typei) at localtime s, where compen-
sated value l̃i(s) is defined as follows:

l̃i(s) =
{

li + ξ(s − si) if typei = “top”
li − ξ(s − si) if typei = “bottom”

Then we have the following lemma:

Lemma 1. Given f(s) that satisfies all the constraints and f(s1) = t1, linear
function g(s) = hs + δ with g(s1) = t1 satisfies all the compensated constraints,
where h, δ is the drift offset and clock offset, respectively.

Proof is omitted from this version. Then we have the following theorem:

Theorem 1. ∀s.gL(s) ≤ fL(s) ≤ fH(s) ≤ gH(s), where gL(s), gH(s) are the
lower and upper limits at localtime s calculated for linear clock function g(s)
with the slope in [1 − η, 1 + η] that satisfies all the compensated constraints.

Figure 5 explains compensated constraints. As Fig. 5(a) shows, at localtime s2,
the value of the top constraint at s0 is increased by ξΔs02, and that of the bottom
constraint at s1 is decreased by ξΔs12. Then, as shown in Fig. 5(b), we change the
value for all constraints in the same way and the limiting lines are determined for
these compensated constraints. Since the compensated constraints are “looser”
than the original ones, according to Theorem 1, the new interval of upper and
lower limits contains the one calculated without compensation. In this way, after
compensation, we only need to solve the same problem of finding limiting lines.
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Original value

Compensated value

(a) Compensation at localtime s2

Limiting lines
before compensation

After compensation

(b) Limiting lines at localtime si

Fig. 5. Compensated constraints

3.4 Comparison with Interval-Based Methods

Our algorithm shares the idea with the clock synchronization algorithms that
provide an interval that the globaltime is contained. These algorithms, often
called “interval-based algorithms,” are proposed mostly in the literature of dis-
tributed systems before sensor networks emerged, but there are some papers in
the contexts of mobile ad-hoc networks [18] and sensor networks [7] as well. Here
we compare the proposed algorithm with these works.

While it is often claimed that an algorithm guarantees the accuracy, the cor-
rectness may not hold in the context of sensor networks. For example, some of
the interval-based algorithms just ignore transmission delay (e.g., [7,16]). This is
not an appropriate assumption when the transmission delay is dominant in the
resulting accuracy. More often clock drift is assumed to be constant [6,9,23]. This
is not appropriate as well for sensor networks that are often deployed outside
and exposed to drastic temperature changes. Our algorithm does not make these
assumptions and only uses the bounded drift offset and bounded drift fluctua-
tion assumptions, both of which are guaranteed to be correct and derived from
the data sheet of crystal oscillator.

Meanwhile, the common underlying idea for interval-based synchronization
methods is to bound the actual length of any time interval by using most
pessimistic value of clock drift. For example, when clock drift bound is ρ, we
can guarantee that the actual length of localtime interval Δs is bounded by
[(1−ρ)Δs, (1+ρ)Δs]. In our settings, we can emulate this by setting drift offset
bound η = 0 and drift fluctuation bound ξ = ρ. This is because their assump-
tion is precisely equivalent to assuming that each crystal can fluctuate in the
whole range of [1− ρ, 1+ ρ]. In the experiments, we will use this to compare our
algorithm with the interval-based methods.

4 Algorithm Details

In this section we describe the algorithm in more detail. Receive and Send are
the procedures called upon message reception and transmission, respectively.
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Upon receiving a new message, constraints are added using AddConstraints

and Convexify, and limiting lines are calculated using UpdateUpper-

Line/UpdateLowerLine. As we see later, all these procedures can be done
in the time logarithmic to the number of constraints stored in a node.

4.1 Communications

A root broadcasts a message periodically. The period is to be determined based
on application requirements and energy availability. In the experiments we use
uniformly random period in 18 − 22 seconds.

Upon receiving a new message, a node updates upper and lower lines. This
is necessary because, due to the compensation of drift fluctuation, the limiting
lines will change even without any changes in the sets of constraints.

After that, the node adds a bottom constraint based on the received time and
the lower limit that the message has. The same information is saved as SyncInfo,
which will be sent back to the sender. Then the node scans through all SyncInfo
that the message carries. If there is one for this node, it adds a top constraint
based on that.

Shortly after receiving, a node sends a message when one of the new con-
straints has become a support. We use this “pulse-like” propagation pattern
based on the analysis in [14]. Upon sending a message, the node first updates
the lower line to calculate the current lower limit.

4.2 Computations

Add Constraint. After adding a new constraint, we call Convexify to elimi-
nate any non-convex constraints, since they will never become supports, as seen
from Fig. 3. Then, if the new constraint violates the current limiting line, we
update the limiting line.

Convexify. Convexify is the procedure for making the set of constraints form
a convex polygon by eliminating non-convex constraints. Finding non-convex
constraints is easily done by calculating the turning direction of two vectors
(typically by using the external product) made by three points. This is similar
to what Graham scan [10] does for calculating the convex hull of points. However,
since in our case the points are already sorted and we know the set is convex
without the new point, we can use binary search to find a convex point instead
of linearly scanning the points. This makes the running time O(log n), when n
is the number of top/bottom constraints stored in the node.

One thing to note is that, in case of top constraints, a newly added constraint
may not be the latest constraint in terms of localtime. Therefore, we may need to
run the above binary search for both directions from the inserted point, though
it does not affect the order of the computation time.
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procedure Receive(fL
w , {S}) � at localtime sv

recv ; {S}: Set of SyncInfo in received message
UpdateUpperLine

UpdateLowerLine

AddConstraint(sv
recv, fL

w , bottom)
fH

v ← CalcUpperLimit

if fH
v �= ∞ then SaveSyncInfo(src = w, fL

w , fH
v )

for Si ∈ {S} do
if Si is for this node then

sv
send ← RetrieveSendTime(Si)

AddConstraint(sv
send, value(Si), top)

if new constraint became a support then Send

procedure Send � at localtime sv
send

UpdateLowerLine

fL
v ← CalcLowerLimit(sv

send)
StoreSendTime(sv

send, fL
v )

SendMessage(fL
v , {S}) � {S}: Set of SyncInfo

procedure AddConstraint(Cnew)
if Cnew is a top constraint then

CT OP ← CT OP ∪ Cnew � CT OP : set of top constraints, sorted by localtime
Convexify(Cnew)
if Cnew ∈ CTOP ∧ Cnew violates upper line then UpdateUpperLine

else � Cnew is Bottom
CBOT ← CBOT ∪ Cnew � CBOT : set of bottom constraints, sorted by localtime
Convexify(Cnew)
if Cnew ∈ CBOT ∧ Cnew violates lower line then UpdateLowerLine

procedure Convexify(Cnew)
Find leftmost Ci s.t. {Ci, ..., Cnew} is non-convex
Remove non-convex constraints between Ci, Cnew

Find rightmost Cj s.t. {Cnew, ..., Cj} is non-convex
Remove non-convex constraints between Cnew, Cj

procedure UpdateUpperLine

l ← FindTangent

if Slope(l)> 1 + η then l ← FindTopSupport(1 + η)

procedure UpdateLowerLine

l ← FindTangent

if Slope(l)< 1 − η then l ← FindBottomSupport(1 − η)

Update Limiting Lines. The core of the procedures for updating upper and
lower lines is FindTangent. In FindTangent we find a tangent of two convex
polygons. Note that polygons are convex whenever FindTangent is called. A
naive method mentioned in [6] is to try all possible pairs of vertices and check if
the line intersects with the polygons. This takes O(n2) time in the worst case,
but can be improved to O(log2 n) by using nested binary search. Further, by
using more sophisticated algorithms, it is improved to O(log n) time [11,17].

When the slope of the calculated limiting line is out of range of [1− η, 1 + η],
we can replace the line with the slope (1+η) (for upper line) or (1−η) (for lower
line). In this case the line is supported by one point instead of two. Searching the
support is done efficiently by calculating the slope of each edge of the polygon,
and since it is convex, the slope is monotonically increasing (for top polygon) or
decreasing (for bottom polygon). By using binary search, it takes O(log n) time.
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5 Implementation

We have implemented the proposed synchronization algorithm in TinyOS 2.1.1.
Besides dealing with limitations in TinyOS programming, we needed to address
several fundamental issues specific to our synchronization algorithm.

5.1 Delay Compensation

Reducing the transmission delay between sender and receiver is the key to achiev-
ing precise synchronization. This also applies to our algorithm, as the minimum
possible gap between upper and lower limits is at least twice as big as the mini-
mum transmission delay (proof omitted).

To minimize the transmission delay, we use MAC-layer timestamping, which
is to put a timestamp when the packet is actually transmitted over radio. In case
of CC2420 radio chip, the timestamp for a packet is obtained when SFD (start
frame delimiter) is captured. Since this is same for both sender and receiver, two
timestamps are expected to be obtained at very close time points.

A problem in MAC-layer timestamping is the delay after a node calculates
the lower limit until the packet is transmitted. A receiver can get a tighter
bottom constraint if the lower limit is calculated at the time when the packet is
transmitted. However, it is not feasible to recalculate it at MAC layer.

A solution for this problem is to reconstruct the lower limit at the receiver
side. At localtime s1, the sender calculates the lower limit fL(s1), puts it in
the packet, and issues the send command. In the timestamp field, which will be
rewritten at the MAC-layer, the sender put s1, the localtime when it calculated
the lower limit. At the MAC-layer this field is rewritten with the difference with
value in the field and the current timestamp s2. When the packet is received,
the receiver carries fL(s1) and Δs12 = s2 − s1. Then it calculates the delay-
compensated lower bound f̃L(s2) as follows:

f̃L(s2) = fL(s1) + (1 − 3η − ξ)Δs12.

This is based on the following theorem. Proof is omitted from this version.

Theorem 2. fL(s2) ≥ fL(s1) + (1− 3η − ξ)Δs12, where fL(s2) is actual lower
limit at localtime s2.

5.2 Quantization Error

There are several issues related to quantization error that affect the correctness
of the algorithm. One is about the order of timestamping. We strictly require
that the timestamp at the sender is taken before that at the receiver. However,
when we consider integer timestamps, this is not always satisfied. This order
violation will not happen if the receiver timestamp is always taken more than
one clock tick after the sender’s one, but unfortunately in our case, the difference
is much smaller than one tick. To avoid this situation, we add one clock tick to
the receiver’s timestamp.
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Fig. 6. Comparison between proposed and interval-based methods

The other is about compensated constraints. Even though the original value
of each constraint is an integer, it will become a noninteger when we calculate
the compensated value. For not to violate the compensated constraints, we need
to be conservative on quantization. Specifically, we round up the value for a
top constraint and round down the value for a bottom constraint. Because of
this, there are some cases that message transmission loops in two nodes without
receiving any new messages. To avoid this, a node does not send a message if it
has sent the previous one within a short (∼ 1 sec) period.

6 Evaluations

In this section we evaluate the proposed synchronization algorithm by both
simulation experiment and testbed experiment. For the performance metric, we
use the error bound, which is calculated from the upper and lower limits by
(fH(s)−fL(s))/2. This is the minimum error bound, which is achieved by using
the average of upper and lower limits as the estimate.

6.1 Comparison with Interval-Based Method

First we compare the proposed algorithm and interval-based methods by sim-
ulation. We use a topology of one root at the end and 10 nodes connected in
line. Figure 6(a) compares the error bounds of three nodes (at 1st, 5th, and
10th hop from the root) for both algorithms. For all three nodes, the proposed
algorithm achieves much smaller error bounds than the interval-based method.
This suggests the information on drift fluctuation bound can help improving the
accuracy in clock synchronization.

To see this effect in more quantitative way, we change the drift fluctuation
bound ξ and see the error bound. For the proposed method, the drift offset bound
η is kept constant at 25ppm, and we emulate an interval-based method by setting
η′ = 0 and ξ′ = η + ξ based on the discussion in Section 3.4. Figure 6(b) shows
the results for the first hop. The results show that the proposed method can
achieve smaller error bound for all cases and the improvement is bigger for the
smaller ξ.
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Fig. 7. Testbed experiment: Error bounds of 10 nodes in a line topology
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Fig. 8. Comparison between simulation and testbed experiment

6.2 Testbed Experiments

We programmed 11 Telos B nodes; one for root and other 10 for nodes. In the
software we made a line topology with a root at one end. The UserINT ports
of the root and all nodes are connected to a single trigger source that emits
a trigger every two seconds. Upon receiving a trigger, the root node sends the
current time and all other nodes send the upper and lower limits at that time
to the PC. We use serial communication via USB port for the communication
with the PC to avoid congesting the radio channel.

Comparison with Simulation Results. Figure 7 shows the error bound of
all 10 nodes (except the root). Figure 8 shows the comparison between measured
and simulated results. The change of error bounds closely matches the simulation
result both in the transient state at first (Fig. 8(a)) and in the steady state after
long time (Fig. 8(b)), though the average error bound in the experiment is a
little (9-13%) higher than in the simulation. The error bound at the first hop is
9.2 ticks, which corresponds to 280.0 μsecs at 32768.5Hz clock, and it is roughly
proportional to the hop distance from the root.

Improved Clock Estimation and Comparison with FTSP. As an exten-
sion we have incorporated the ideas from previous work to improve the clock esti-
mation performance. We slightly change the proposed algorithm and add the cur-
rent estimate of globaltime in each message, in addition to the lower bound of it.
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Fig. 9. Upper/lower limits and estimate at
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Fig. 10. Comparison with FTSP:
Average estimation error

For estimation, we use a common method used in e.g.,[12,14]: Each node consid-
ers the time lapse between receiving and sending, makes a table of (localtime,
globaltime) pair, and uses linear regression to obtain an estimate.

Figure 9 shows upper/lower limits and estimate at the first hop in the 10-
node line topology. The vertical axis is the error from globaltime. Since the
upper and lower limits are deterministic bounds, the error for upper limit is
always positive and that for lower limit is negative. The estimate distributes
around zero. Figure 10 shows the average estimation error for each of 10 hops
line topology compared between the proposed algorithm and FTSP. It is observed
that the average error for the proposed algorithm is comparable to that for FTSP
in the near distance and up to 40% better in the far (At 10th hop, 1.54 vs. 2.65
ticks; 42% better).

7 Related Work

Our synchronization algorithm is most closely related to interval-based methods,
as we have discussed in Section 3.4. Marzullo and Owicki [16] studied the syn-
chronization problem where each time server returns an interval that contains
the true time and the objective is to minimize the length of interval by exchang-
ing messages among multiple time servers. Blum et al. [7] modified their algo-
rithm for sensor networks and improved the average case performance. Römer
proposed another interval-based algorithm tailored for ad hoc networks settings
[18]. Schmid and Schossmaier [20] provided bounds under the assumption that
several performance parameters such as transmission delay bounds as well as
drift bounds are given. In our work, we have made our first attempt to give
bounds only from the information readily available in the specifications of the
hardware components. Potentially we can improve the results when we have
more information about the hardware and the environment.

The use of convex polygons and estimation of clock functions as tangents
to them was first proposed by Duda et al. [9] and studied in further detail
by Berthaud [6]. In [23], the authors designed optimal and approximate algo-
rithms to keep only the constraints that become supports. All these works assume
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constant drift either indefinitely or for a short time. Our algorithm share the same
idea for determining the limiting lines, but without constant drift assumptions.

The notion of delay compensation (Section 5.1) has been discussed in [13,20].
We have extended these results under the bounded drift fluctuation assumption
and also devised a method suitable for the case of MAC-layer timestamping.

Since MAC-layer timestamping reduces the transmission delay down to few
microseconds, clock drift is the main issue for synchronization, since many sensor
nodes use normal crystal oscillators with large drift rather than TCXO or OCXO
due to energy and cost limitations. FTSP [15] estimates the clock drift and offset
with high precision by using linear regression, assuming constant drift for a short
period. GTSP [21] focuses on minimizing the local error among the neighboring
nodes by adjusting the logical clock rate based on the estimation of clock drift of
neighborhood nodes. PulseSync [14] improves the performance at distant hops
by introducing a pulse-like propagation pattern. The latter two papers include
convergence and optimality results on the performance including accuracy, but
they are either asymptotic or probabilistic under the assumption of constant drift
and bounded transmission delay. In this paper we focused on the deterministic
accuracy guarantee instead, though we have demonstrated that the proposed
algorithm can be combined with them to obtain good estimation.

Schmid et al. [19] proposed a method for compensating for the drift change
due to temperature change. This is essentially a software implementation of what
TCXOs do. Using the onboard temperature sensor, each node makes a table
storing the pair of temperature and relative drift. After getting enough entries
in the table, a node can estimate the drift with high accuracy and thus can
compensate for that without communicating with other nodes. Our algorithm
is orthogonal to this. As we have seen in Fig. 6(b), we can achieve tighter error
bound for smaller drift fluctuation bound. Therefore, with this or any other
techniques that reduce drift fluctuation and provide deterministic guarantee for
that, we can improve the accuracy guarantee with the proposed algorithm.

8 Conclusions

We have presented a clock synchronization algorithm that gives deterministic ac-
curacy guarantees. The main idea is to find the upper and lower limits of clock
function that satisfies all the constraints obtained using causality relations in
communication. While the idea is similar to classical interval-based synchroniza-
tion methods, we do not make simplifying assumptions such as constant drift
or negligible transmission delay to obtain strict guarantees. Still, as demon-
strated by the experiments, we achieve tighter guarantees owing to the bounded
drift fluctuation assumption, which is confirmed by the hardware specification as
well as by the preliminary experiments. We have implemented the algorithm in
TinyOS and demonstrated that the accuracy guarantees are close to the simula-
tion results. Furthermore, we extended the algorithm to obtain good estimation
and achieved the estimation error up to 40% better than FTSP.
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Abstract. In this paper, the localization of persons by means of a Wire-
less Sensor Network (WSN) is considered. Persons carry on-body sensor
nodes and move within a WSN. The location of each person is calculated
on this node and communicated through the network to a central data
sink for visualization. Applications of such a system could be found in
mass casualty events, firefighter scenarios, hospitals or retirement homes
for example.

For the location estimation on the sensor node, three derivatives of the
Kalman filter and a closed-form solution (CFS) are applied, compared,
and evaluated in a real-world scenario. A prototype 65-node ZigBee WSN
is implemented and data are collected in in- and outdoor environments
with differently positioned on-body nodes. The described estimators are
then evaluated off-line on the experimentally collected data.

The goal of this paper is to present a comprehensive real-world eval-
uation of methods for person localization in a WSN based on received
signal strength (RSS) range measurements. It is concluded that person
localization in in- and outdoor environments is possible under the con-
sidered conditions with the considered filters. The compared methods
allow for sufficiently accurate localization results and are robust against
inaccurate range measurements.

1 Introduction

With recent and upcoming location-based services, personal localization systems
(PLS) become a more and more important issue. On one hand, end-users can be
provided with their own current position, on the other, this information can be
communicated to a central authority. In outdoor environments, this localization
can be achieved cheap and efficiently with satellite based positioning techniques.
However, especially indoor environments but also places where valid satellite
signals are not available at all times, are yet an open challenge. To provide this
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localization, there are already expensive and accurate real time location systems
(RTLS) based on various technologies such as the upcoming ultra-wideband
(UWB) technology [25], infrared light signals in iGPS systems [4] or others.
Additionally, there are approaches to node tracking from the WSN community,
where localization has been in the focus of research for more than ten years
now [2].

Alternatively, there have also been major improvements in inertial navigation
systems recently. These pedestrian dead reckoning (PDR) concepts, make use of
inertial sensor measurements for position estimation [8].

In this paper, the localization of moving persons in a WSN via RSS range
measurements is considered. The WSN enables the communication of the cal-
culated position estimation to a central data sink. The proposed system allows
for ad-hoc deployment and cheap implementation. Potential application areas
include the tracking of patients and doctors in a hospital or in the compounds of
a retirement home, the navigation of visitors in a museum or also the logistical
coordination of a firefighter/police operation in and around a burning building.

Stochastic information filters [5] are used to cope with the RSS inherent high
measurement fluctuations. The goal of this paper is to evaluate the performance
of efficiently computable Bayesian state estimation for the localization of moving
persons by means of a WSN. For this purpose, three derivatives of the Kalman
filter, the Extended Kalman filter (EKF, [10]), the Unscented Kalman filter
(UKF, [9]) and the recently developed Analytic Moment Calculation (AMC, [3])
filter are compared with a closed form solution (CFS, [7,22]). This comparison
is carried out off-line on a dataset from a 65-node WSN experiment. It is shown
that mobility and high measurement rates allow for a reasonable localization
accuracy.

The remainder of this paper is organized as follows. After a short survey on
the related work (Section 2), a system model is established and the filters are
described (Section 4). The gathered experimental data is presented in Section 5
and the evaluated localization methods are compared in Section 6. In Section 7
the paper is concluded and the next development steps are briefly outlined.

2 State of the Art

Localization in wireless sensor networks (WSN) has been a topic of great interest
in the last years. Most applications of WSN require a correlation of the measured
value with the location of the measurement. Quite some research is being un-
dergone recently on localization methods [1,20,21]. Among the best established
methods is the use of RSS values of radio frequency (RF) signals for localiza-
tion. Due to the simplicity of RSS localization and the availability on most sen-
sor nodes, this method has been carefully examined [2,11,14,24]. In spite of the
amount of published work on the topic, there is still a lack of application-specific
real-world evaluations of localization approaches. The following brief overview
of the state of the art is focused on practically evaluated RSS localization
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approaches on the one hand and applications of Bayesian estimators for position
estimation and tracking on the other.

2.1 RSS Localization in WSN

The approaches that make use of signal strength information for localization in
WSN can mostly be classified into range-based and range-free methods [16,20].
One example for range-free RSS localization are so-called fingerprinting tech-
niques that record RSS values of different neighboring nodes. The position can
then be estimated by finding the best match to a previously recorded data base.
Different kinds of approaches in this direction have been presented [2,11,12]. Al-
ternatively, RSS measurements allow to estimate the distance between a sender
and a receiver. For this, transmit power, antenna characteristics and propagation
path have to be known to some extend [23,24]. The calculated distances can be
used to estimate the position of the node by means of geometric approaches like
trilateration or other methods. In [24] the authors present experimental results
for a range based localization system in an outdoor test area. In [16] the au-
thors combine fingerprinting with RSS-distance measurements and come to the
conclusion that this allows to improve localization accuracy in spite of the large
fluctuations of the RSS values.

However, a lot of the published experimental evaluations lack real-world ap-
plicability. Mostly, a line of sight (LoS) connection is assumed and, if indoor
scenarios are considered at all, the experimental evaluations are limited to a few
rooms. The large fluctuations of RSS values due to multi-path fading and other
effects makes accurate localization difficult, especially in static networks.

2.2 Bayesian State Estimation for WSN Localization

To cope with these fluctuations, Bayesian state estimators such as the Kalman
filter, Particle filters or others have been used for position estimation and track-
ing of robots or persons for some time [5]. In [6], the authors present a Kalman
filter indoor tracking system based on WiFi measurements of mobile phones.
The system is calibrated for the use in a specific environment and permits to
localize the devices. Using a version of the UKF, the authors of [18] present a
moving person tracking system based upon an RSS map. A concept to localiz-
ing the anchor nodes is presented in [17], where the authors propose to use a
mobile robot to collect signal strength data and a Kalman filter to cope with
the high variances. Other Bayesian approaches like particle filters are used to
estimate the location of nodes in a sensor network in various works. In [14], the
authors present a method to localizing and tracking a mobile node based on RSS
measurements.

However, not much work has been done on practical evaluations of Kalman
filters for person tracking in WSN. Especially the application of these approaches
on real-world data and the actual implementation and evaluation of a larger scale
ad-hoc localization WSN has not yet been sufficiently evaluated.
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3 Person Localization System Model and RSS
Measurement Model

In this paper, the dynamic localization of a person in 2-dimensional space is
considered. The state vector xk = [xk,P , xk,V ]T thus consists of the persons’
position xk,P ∈ �2 and velocity xk,V ∈ �2. In these terms, k = 0, 1, ... represents
the discrete time index.

3.1 System Model

The moving person can thus be described by means of a linear discrete-time
dynamic system.

xk+1 = A · xk + wk (1)

Herein wk ∼ N (0,Cw
k ) is a zero-mean Gaussian noise term with covariance

matrix Cw
k . For the considered position velocity model, the system matrix A

and the process covariance Cω are defined by:

A =
[

I T · I
0 I

]
,Cω =

[
T 3

3 Cω
c

T 2

2 Cω
c

T 2

2 Cω
c TCω

c

]
, (2)

where T is the sampling time, I the identity matrix and Cω
c = diag

([
Cω

c,x, Cω
c,y

])
the covariance matrix of the process noise from the continuous-time system
model.

3.2 Measurement Model

In this system, an RSS distance measurement ŷ
(i)
k at time step k represents the

Euclidean distance

h(i)(x) = ‖xk,P − l(i)‖2 (3)

of the moving person at position xk,P to the i-th anchor node at position l(i).
The measurement equation

ŷ
(i)
k = h(i)(xk) + v

(i)
k (4)

is thus non-linear with the zero-mean Gaussian noise term v
(i)
k ∼ N (0, c

(i)
k ) with

variance c
(i)
k . For the RSS range-measurements of the distances the log-distance

path-loss model

PL = P + 10n · log10

(
d

d0

)
+ NG (5)

is used [19]. This model results from the Friis’ free-space equation and is com-
monly used as a simple approximation of the signal strength drop-off over the
distance. The path-loss PL [dBm] for a given distance d is expressed as a function
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of the path-loss coefficient n, a reference measurement P of the received power
at distance d0, and a normally distributed noise term NG. If d0 is assumed to be
1 m, the parameters P and n can be determined experimentally. The inversion
of this function can then be used to estimate the distance ŷ(i)(PL) between a
sender and a receiver for a given RSS measurement on given hardware.

4 Considered Localization Approaches

The optimal approach toward estimating the uncertain state xk of the system,
i.e., position and velocity of the person, is to calculate its probability density
function f(xk) by means of the system and measurement model (1) and (4),
respectively. Although only normally distributed perturbations wk and vk are
assumed, the density of the state will then be non-Gaussian due to the non-
linearity (4) and can even be multi-modal. Thus, in order to derive tractable
estimation techniques, approximate solutions are inevitable. Nonlinear estima-
tors, such as particle filters or Gaussian sum filters, are computationally very
demanding and are impractical on a WSN-typical low-power microcontroller unit
(MCU). Therefore, the use of Kalman filter derivatives is considered in this pa-
per. These filters preserve the Gaussianity of the state estimate and hence allow
for a simple parameterization of the state estimate by the corresponding mean
x̂k and covariance matrix Ck. The considered Kalman filter techniques are com-
pared to a closed-form solution, i.e., a static localization approach that utilizes
no motion model.

4.1 Closed-Form Solution (CFS)

The closed-form solution [7] directly computes an estimate for the position xk,P

by means of a least-squares fitting of the observations. It does not make use of
a motion model, such as (1). Therefore, the velocity xk,V can be omitted. This
solution employs a squared and expanded formulation

(ŷ(i)
k )2 = ‖xk,P ‖2

2 − 2(l(i))T · xk,P + ‖l(i)‖2
2

of the measurement equation (3). For N available measurements at a time in-
stant k, the measurement equations can be reformulated and summarized as⎡⎢⎢⎣

‖l(1)‖2
2 − (ŷ(1)

k )2
...

‖l(N)‖2
2 − (ŷ(N)

k )2

⎤⎥⎥⎦
︸ ︷︷ ︸

=:C

+‖xk,P ‖2
2 ·

⎡⎢⎣1
...
1

⎤⎥⎦
︸︷︷︸
=:1N

= 2 ·

⎡⎢⎣ (l(1))T
...

(l(N))T

⎤⎥⎦
︸ ︷︷ ︸

=:H

·xk,P . (6)

As described in [7,22], a least-squares solution is given by

x̂k,P = G · C + ‖xk,P ‖2
2 · G · 1N (7)
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with G := (HTCv
kH)−1HTCv

k, where Cv
k = diag[c(1)

k , . . . c(N)
k ] comprises the

individual sensor variances. In order to eliminate ‖xk,P ‖2
2 in (7), squaring (7)

provides

(G1N )T(G1N )‖xk,P ‖4
2 + (2(GC)TG1N − 1)‖xk,P ‖2

2 + (GC)T(GC) = 0 ,

which can be converted according to ‖xk,P ‖2
2 and inserted into (7), which yields

an estimate x̂k,P . The closed-form approach is only applicable if (6) is not under-
determined, so that (7) can be solved. This condition is fulfilled if at least three
measurements are available.

The closed-form solution is strongly related to a maximum-likelihood esti-
mation of the position [22]. This has to be considered as a weak spot of this
approach, since no prior information, i.e., knowledge about previous positions,
is incorporated. Compared with this, a dynamic localization approach uses in-
formation about the movement between two measurement steps, is therefore less
susceptible to measurement errors and can provide smoother trajectories.

4.2 Extended Kalman Filter (EKF)

The Kalman filter [10] formulas provide an optimal solution for linear sys-
tems and measurement models corrupted by additive Gaussian noise, where the
stochastic state estimate can then uniquely be parameterized by the conditional
mean x̂k and covariance matrix Ck. In order to apply the Kalman filter to the
nonlinear sensor equation (4), it appears to be most apparent to linearize the
model by a first-order Taylor series expansion

h(i)(xk) ≈ h(i)(x̂p
k) +

(
∂h(i)

∂xk

∣∣∣∣
xk=x̂p

k

)
︸ ︷︷ ︸

=:H(i)
k

(xk − x̂p
k) ,

where h(i) is approximated at the current state estimate x̂p
k = ([xk,P , xk,V ]T)p.

For an observation ŷ
(i)
k , the Kalman fusion step then becomes

x̂e
k = x̂p

k + Kk

(
ŷ
(i)
k − h(i)(x̂p

k)
)

(8)

and

Ce
k = Cp

k − KkH
(i)
k Cp

k (9)

for the estimated mean x̂e
k and covariance matrix Ce

k, respectively. The matrix
Kk denotes the Kalman gain

Kk = Cp
k

(
H(i)

k

)T
(
c
(i)
k + H(i)

k Cp
k

(
H(i)

k

)T
)−1

.

The predicted mean x̂p
k and predicted covariance matrix Cp

k are obtained by
means of the motion model (1) from

x̂p
k = Ax̂e

k−1
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and

Cp
k = ACe

k−1A
T + Cw

k ,

respectively. In order to reduce the computational complexity of the fusion step,
when multiple measurements have to be dealt with at once, an inverse covariance
formulation of the Kalman filter, the information filter [15], can be used. The
formulas of the state prediction are then more involved.

By employing the state prediction as prior knowledge in each fusion step, the
estimation results can be improved significantly. Unfortunately, the EKF can
severely be affected by linearization errors, which often results in an underesti-
mated covariance matrix (9).

4.3 Unscented Kalman Filter (UKF)

In order to overcome the drawbacks of the EKF, the unscented Kalman filter
[9] linearizes the measurement function by means of a linear regression analysis.
For that purpose, a set of L regression points Xi around the prior state estimate
x̂p

k is chosen, for which the corresponding function values

Yi = h(i)(Xi)

are calculated. The linearization h(i)(xk) ≈ H(i)xk +d is then obtained from the
least-squares fit

{H, d} = argmin
H,d

L∑
i=1

ωi · eT
i · ei ,

where the weighted sum of squared errors ei = Yi − (HXi + d) is minimized.
This least-squares problem is solved by

H = CT
xyC

−1
xx and d = Ȳ − H · X̄ (10)

with X̄ =
∑L

i=1 ωi ·Xi, Ȳ =
∑L

i=1 ωi ·Yi, Cxx =
∑L

i=1 ωi ·(Xi−X̄ )·(Xi−X̄ )T, and
Cxy =

∑L
i=1 ωi ·(Xi−X̄ )·(Yi−Ȳ)T. Note that X̄ is equal to x̂p

k for symmetrically
chosen regression points. Subsequently, this linearized mapping can be used to
calculate the estimated mean (8) and covariance matrix (9). The UKF renders,
in general, a significantly better estimation quality than the EKF. Of course,
the quality depends on the number and placement of the regression points and
the estimation may fail if the regression points do not capture the nonlinearity
properly.

4.4 Analytic Moment Calculation (AMC)

The linear regression analysis can, in many situations, be replaced by an analytic
moment calculation, as described in [3]. The mean Ȳ and the covariance matrices
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Cxy and Cxx for (10) can then be calculated in closed-form. More precisely, the
underlying integrals for these moments are directly computed. Of course, the
integrals cannot, in general, be solved efficiently and without numerical integra-
tion, but in the considered localization scenario, this concept is applicable, if a
noise before nonlinearity observation model

ŷ
(i)
k = h̃(i)(xk, v

(i)
k

)
:=

(
h(i)(xk + diag

[
v

(i)
k , v

(i)
k

]))2
,

is used instead of the model (4). Then, the integrals become simple matrix-vector
operations [3]. The AMC provides an optimal stochastical linearization of the
nonlinear measurement mapping and thus promises the best estimation results.

5 Experimental Evaluation

To evaluate these methods, experimental data were collected by means of a
65-node WSN testbed. The used LocNode sensor nodes consist of a Texas In-
struments MSP430 low-power MCU and an IEEE 802.15.4 compliant 2.4 GHz
transceiver CC2520. One version (simple LocNode) is designed to fit in a robust
5.5 x 2 x 2.5 cm3 casing, whereas the other (extended LocNode) allows for the
connection of an SD-card holder or a GPS module via two 20-pin expansion
board connectors. Both versions incorporate a PCB antenna and an identical
RF design (Fig. 1).

Fig. 1. LocNode: simple version in casing and extended version with attached GPS
module

5.1 Setup

60 nodes were deployed in an out- (football field) and indoor (one floor, office
building) setting (Fig. 2). Outdoors, the nodes were placed on the ground in the
grass due to a lack of adequate stands, indoors, the nodes were placed on tables,
window ledges or name plates at the office doors at a height between 1 m and 1.5
m. These anchor nodes were set to broadcast their positions at a per-node rate
of 4 Hz. To allow for real-world evaluation of the considered person localization,
the data collection was carried out as application-realistic as possible. To be able
to analyze varying positions of the node carried by the user, five mobile nodes
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Fig. 2. Positions of anchor nodes and exemplary ground truth trajectories for out-
(left) and indoor (right) experimental setup

(on-body nodes) were used for the data collection. These on-body nodes were
carried on different spots on the test person’s body. Two nodes were hanging on
lanyards around the test persons’ neck in front of the chest and behind the back,
one was mounted on a rucksack structure to provide line of sight connection
in all directions and two were carried in the right and left trouser pockets. For
the off-line data analysis, the packets from all anchor nodes within range were
stored on an SD-card on each on-body node. The corresponding real position,
i.e., the ground truth, is established with an inertially assisted GPS outdoors
and a time based predefined trajectory recording indoors (way point markers on
the floor, synchronization with a stop watch). 5 runs were conducted indoors,
9 runs were conducted outdoors. The test persons walking speed was usually
varying between 0.5 and 1.5 m/s to allow for a realistic movement pattern.

5.2 Data Collection

Each of the two experiments lasted approximately two hours and a total of about
2, 000, 000 packets were collected with the five on-body nodes in 9 respectively
5 runs of 6 to 18 minutes. Figure 3 shows a representation of the collected
data for the in- and outdoor experiments. As expected, the path-loss in outdoor
environments is smaller than indoors. The coefficients P and n represent an
optimal least-squares fit of the log-distance path-loss model (5) to the cumulated
data from all nodes in all experiments. It can be seen that the standard deviation
of the estimated distance can be approximated with σ = d

2 as a function of the
distance. This is used as measurement noise in the filters. Figure 4 illustrates
the effect of varying settings of P and n on the distance estimation for each
recorded RSS value, the effects of varying parameter settings on the localization
accuracy are analyzed in the next section. Usually the log-distance model is
mainly considered accurate for indoor scenarios. Nonetheless, it can be seen in
Fig. 3 that also the outdoor data of the undergone experimental evaluation can be
modeled quite accurately. However, it must be pointed out, that this might be an
effect of the placement of the anchor nodes on the ground in the wet grass. This
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(a) outdoor (b) indoor

Fig. 3. Log-distance path-loss model for in- and outdoor scenario (all nodes in all
experiments)

(a) outdoor, different experiments (b) indoor, different experiments

(c) outdoor, different positions (d) indoor, different positions

Fig. 4. Log-distance path-loss model parameters P and n fitted to different in- and
outdoor experiments and different positions of the on-body nodes, effects on distance
estimation (difference δdest to distance estimation with P and n as in Fig. 3)

results in a substantially lower transmission range. Also, the considered distance
is always the Euclidean distance of a projection in the two dimensional plane
and the different heights of the on-body nodes are neglected for simplification.
Previous experiments with whip-antenna-equipped sensor nodes on tripods at
a height of 1 m above ground showed a different path-loss behavior. Another
antenna or RF-design would require an additional calibration. Various other
works cope with the behavior of RSS values and path-loss models [13,24,26].
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Fig. 5. Estimated trajectories (dotted lines) and corresponding ground truth (solid
line) for node 3 in run 3 (outdoor, RMSE: 11.0 m (CFS), 9.3 m (EKF), 8.8 m (UKF),
8.3 m (AMC))

6 Localization Results and Comparison of Selected
Approaches

Figure 5 shows an example of reconstructed trajectories with the 4 filters in the
outdoor experiment. The dotted line represents the position estimation, the solid
line represents the ground truth. The trajectories in this plot are calculated on
the data collected by node 3 in the third experimental run. As comparison metric,
the root mean square error (RMSE) of the position estimation is used. Figure 6
shows an equivalent example of an indoor experiment. The trajectories in this
plot are calculated on the data collected by node 1 in the third experimental run
of each scenario. In the following, the parameters P and n are chosen based on a
minimum least-squares fit on the cumulated data collected by all on-body nodes
in all runs to prevent over-fitting for a certain on-body node position. The result-
ing RMSE are calculated with position covariance Cω

c = diag ([0.06, 0.06]). The
measurement variance ck = d2/4 is chosen based on the experimentally estab-
lished measurement noise σ = d

2 (Section 5). Measurements with an RSS under
−99 dBm (receiver sensitivity threshold) are filtered out. Also, a validation gate
is used for the Kalman filters to filter out unexpected outliers if the measurement
is out of a 95 % confidence interval of the predicted value. The setting of Cω

would need to be adjusted if the update rate of 4 Hz was changed. For the col-
lected dataset, a higher ck tends to result in a considerable improvement of the lo-
calization accuracy, probably because of the different path-loss behaviors for each
on-body node position. For the purpose of this paper, no further optimization
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Fig. 6. Estimated trajectories (dotted lines) and corresponding ground truth (solid
line) for node 1 in experiment 3 (indoor, RMSE: 5.3 m (CFS), 3.0 m (EKF), 3.0 m
(UKF), 2.5 m (AMC))

of Cω
c and ck was carried out to prevent over-fitting. Also, no analysis of po-

tential improvements by fusing the data collected by all five on-body nodes is
carried out as the intended scenario is to allow the system’s user to carry the
on-body node at an arbitrarily chosen spot.

(a) outdoor (b) indoor

Fig. 7. RMSE of the different localization approaches for each node position (minimum,
maximum and mean for the five node positions)

Figure 7 shows a comparison of the resulting root-mean-position-error for
the different filters in each test run. The bars represent the resulting errors for
the different filters in the different experiments. The mean of all five nodes, as
well as the corresponding maximum and minimum for a certain node position
is depicted. It can be seen that the compared localization approaches allow
for reasonable localization accuracy in all runs. In comparison to the closed
form solution that calculates every position without making use of a predicted
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position and velocity, the inclusion of a system model and a prediction step in the
Bayesian information processing approaches improves the results considerably.
The chosen parameters allow for reproducible accuracies in all test runs.

(a) outdoor (b) indoor

Fig. 8. RMSE of the different localization approaches for each test run (minimum,
maximum and mean for the nine outdoor and five indoor runs respectively)

Figure 8 shows a comparison of the different on-body node positions in the in-
and outdoor experiments. The bars represent the mean of the resulting errors for
all in- and outdoor experiments and the maximum and minimum errors of single
experiments. All on-body node positions result in a comparable total accuracy
in the 9, respectively the 5 runs. All different positions allow to estimate the
trajectory with reasonable accuracy.

(a) outdoor (b) indoor

Fig. 9. Performance of localization approaches for the second run (in- and outdoors)
3 settings

Figure 9 illustrates the influence of different settings of P and n on the lo-
calization accuracy. Run 2 is analyzed exemplary. The parameters are chosen
based on least-squares fits of the log-distance model to the collected packets in a
single experiment (Run 1-3) or in all in-/outdoor experiments. Again, the bars
represent the resulting RMSE of the different on-body node positions. It can
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be seen that the considered localization methods are very robust against other
settings of P and n. This results from the comparatively small estimation dif-
ferences of the different parameter settings in comparison to the measurement
variance (Fig. 4). By tuning these parameters for one specific position of the
on-body node and/or one specific run, an RMSE of < 1.5 m is possible.

6.1 Discussion

Altogether, the data analysis clearly shows, that for the given scenario it is pos-
sible to achieve accuracies on the order of a few meters. As only two data sets
are compared, conclusions on the influence of the node density and the actual
anchor node positioning cannot be made. Also, a comparison of the accuracies in
in- and outdoor environments is difficult because of the difference in the size of
the covered area with the same number of nodes. The Bayesian approaches have
a clear advantage over the closed-form solution in all evaluations. Although the
measured RSS values are subject to strong fluctuations and thus the distance
estimations are very noisy, the Bayesian localization approaches provide good
position estimations. Additionally, this leads to a robustness against different, re-
spectively incorrect path-loss models which allows for little environment-specific
calibration. All compared Kalman filter derivatives lead to comparable errors
in the evaluated scenario. The AMC and UKF filters perform slightly better,
but, due to the good-natured non-linearity of the range measurements, also the
EKF provides good position estimates. All three filters can be implemented
with a comparable computational effort. As mentioned before, on the established
dataset, an increase of the measurement noise results in even smaller localization
errors for the UKF and AMC. The EKF however is more sensitive to even slight
parameter variations due to the linearization.

7 Conclusion and Future Work

In this paper, an approach to moving person localization and tracking in a WSN
is outlined. Bayesian state estimation is used to fuse successive RSS-range mea-
surements and to estimate the current position and velocity of a person. An
experimentally collected data set with a 65-node WSN for both in- and outdoor
scenarios is presented and a position velocity system model is established. For
the position estimation, three derivatives of the Kalman filter are evaluated and
compared with a closed-form solution. In spite of the fluctuations of the RSS
measurements and the resulting large errors in the distance estimation, the ap-
proaches allow to estimate the position of a moving person in in- and outdoor
environments with reasonable accuracy for various applications. It can be con-
cluded, that Bayesian state estimators are a simple, robust and practical method
for person localization in WSN. Also, all of the compared methods can princi-
pally be implemented on a low-power WSN typical MCU. Thus, a cheap and
scalable person localization system can be implemented based on the concepts
presented in this paper.
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For the next future, it is planned to further investigate the outlined ap-
proaches. The influence of external parameters like node density, weather, ex-
perimental surroundings, varying trajectories of moving persons and others is
yet to be systematically evaluated. For this, a simulation environment will be
designed based on the established behavior.

Additionally, the fusion of the RSS measurements with inertial data from
acceleration and gyro sensors is evaluated. With this additional input, it will
be possible to refine the movement model and to further improve the resulting
localization accuracy. An evaluation of the accuracies when considering an ad-
hoc deployment of the anchor nodes is undergone at the moment. This ad-hoc
deployment can e.g. be carried out by means of a pedestrian dead reckoning unit
to provide prior position estimates of anchor nodes, which can then be applied
to initialize simultaneous localization and mapping algorithms (SLAM). Such a
system would enable ad-hoc localization in unknown environments.
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Abstract. Relative ranging between Wireless Sensor Network (WSN)
nodes is considered to be an important requirement for a number of dis-
tributed applications. This paper focuses on a two-way, time of flight
(ToF) technique which achieves good accuracy in estimating the point-
to-point distance between two wireless nodes. The underlying idea is to
utilize a two-way time transfer approach in order to avoid the need for
clock synchronization between the participating wireless nodes. More-
over, by employing multiple ToF measurements, sub-clock resolution is
achieved. A calibration stage is used to estimate the various delays that
occur during a message exchange and require subtraction from the ini-
tial timed value. The calculation of the range between the nodes takes
place on-node making the proposed scheme suitable for distributed sys-
tems. Care has been taken to exclude the erroneous readings from the
set of measurements that are used in the estimation of the desired range.
The two-way ToF technique has been implemented on commercial off-
the-self (COTS) devices without the need for additional hardware. The
system has been deployed in various experimental locations both indoors
and outdoors and the obtained results reveal that accuracy between 1 m
RMS and 2.5 m RMS in line-of-sight conditions over a 42 m range can
be achieved.

1 Introduction

The ability to estimate the relative distance between low-power wireless em-
bedded nodes is paramount for a number of applications which require location-
awareness [5,13]. In the general case, two or more nodes will engage in some kind
of interaction, typically transmit and/or receive signals, and will be tasked with
measuring a property of the signal that can be appropriately processed in order
to extract the relative distance between the two interacting nodes. For example,
by measuring the Received Signal Strength (RSS) value of a signal, the range
between the two nodes can be derived [1]. Another well-known approach is based
on calculating the transit time of a signal and use it to estimate the point-to-
point range of two nodes. These methods are known as Time of Flight (ToF) or
Time of Arrival (ToA). The amount of time that a signal requires to reach the
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receiver is measured with the use of on-node clocks. The a-priori knowledge of
the signal’s velocity enables the approximation of the desired distance.

Important advancements in microelectronics technology over the past decade,
resulted in the production of very accurate clocks (ns accuracy) in electronic
devices. As a result a variety of ToF methods has been utilized in a number of
established navigational and positioning systems (e.g. GPS). Consequently, as
node localization became a necessity in WSNs, ToF techniques for low-power
sensor nodes have been investigated. One major area of concern, has been the
fact that low-power embedded devices are not equipped with high frequency
clocks and time synchronization in these devices is an inherently difficult task,
which also has attracted significant research interest [9, 17].

In this paper a two-way ToF ranging technique for WSNs is proposed. Our
approach is to employ a two-way ToF method in order to avoid the need for
synchronization between the participating nodes. This method targets low-power
embedded devices, thus the clocks that are considered, operate at relatively low-
frequencies (up to 32MHz). Multiple two-way ToF measurements are obtained
which allows the system to achieve sub-clock resolution. The final ToF value is
extracted after averaging the accumulated timing values. A simple, yet practical
procedure is employed to eliminate any erroneous data which are caused because
of surrounding noise or sampling artifacts. A calibration step is also carried out to
exclude the delays that are included in the two-way path of the signal. Accuracy
and latency are important in a ranging system for low-power embedded nodes
capable of operating in real-time. Different to a number of approaches in this
research area where the accumulated data require significant post-processing,
the proposed system completes all the necessary processing on the nodes that
participate in the ranging operation. The range estimate can then be exploited
according to the application needs. The key contributions of this paper are the
implementation of a two-way ToF ranging method on COTS hardware and the
evaluation of its performance on real-world experiments.

The remainder of this paper is organized as follows. The following section
performs a review of previously proposed ToF systems in WSNs with some back-
ground information regarding ToF ranging. In sequel, the specific details of the
two-way ToF ranging that is proposed, are provided in Section 3 alongside an
investigation of the error sources. A thorough analysis, of the implementation
on hardware follows in Section 4. Section 5 presents the experiments that were
carried out in indoors and outdoors locations and the analysis of the results
obtained. Finally, Section 6 summarizes the key points and concludes the paper.

2 Related Work

ToF ranging systems attempt to estimate the point-to-point distance between
two communicating devices by capturing the time that a signal requires to travel
from one device to the other. Since the speed of the signal is known and constant
(e.g., the speed of light for electromagnetic signals), the distance can then be
calculated. McCrady et.al are among the first to propose a ToF ranging sys-
tem for WSNs [12]. However their work lacks implementation. The RSSI and
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ToF methods have been combined in a locationing system [14]. Ultra Wideband
(UWB) transceivers have the ability to yield fine-grained resolution in measuring
the ToF due to the high bandwidth occupancy. Thus, a handful of ToF ranging
systems are based on Ultra Wideband (UWB) technology [2,3,8]. However, low-
power WSNs nodes are normally not equipped with UWB transceivers and their
incorporation on embedded nodes presents a number of challenges. Lanzisera et.
al. propose a ToA locationing scheme for low-power ASIC WSN nodes [7]. In
the prototype an FPGA board is attached to the WSN node to carry out the
necessary calculations. FPGA boards alongside WSN nodes are also used in [6],
where a RF-ToF ranging system is presented and the ToF is extracted by the
channel impulse which is produced after converting the received signal from the
time to the frequency domain by applying FFT. For this procedure, both FPGA
and DAC are used. The approach we propose, differentiates from the previous
approaches since it does not require any additional per-node hardware.

An intriguing approach for ToF ranging in WSNs is the one that employs
acoustic signals instead of electromagnetic ones. It is known that acoustic sig-
nals travel in a much slower speed than electromagnetic signals thus making
them easier to utilize in ToF scenarios. Both ultrasonic and audible sound sig-
nals have been utilized in ToF ranging systems. Occasionally, acoustic and RF
signals can be combined in a time difference of arrival method (TDoA). The two
signals are emitted simultaneously and the RF signal is used to synchronize the
receiver. The TDoA value is considered to be the ToF of the acoustic signal. A
ranging system based on this approach is implemented on the Mica2 mote in [16].
A simple tone which is produced by the mote’s sounder is the acoustic signal
that it is timed. The “Calamari” localization system follows a similar approach
but employs the tone detector of the Mica mote instead of the sounder and re-
quires all participating nodes to be pre-calibrated to achieve good accuracy [23].
Another example where acoustic and RF signals are used on the same system
is the “Cricket” locationing system developed at MIT [15]. One disadvantage of
acoustic ranging, is the limited effective range of acoustic-based ranging systems.
The systems presented previously are capable of producing accurate ranging but
within a limited range. Radio interferometric geolocation is another method to
estimate the range in wireless embedded nodes, by using the radio interferome-
try principle. According to the authors in [10] very good accuracy (< 10cm) can
be achieved. The major drawback of this system, which makes it unsuitable for
real-time ranging, is that a significant amount of time is required for the ranging
algorithm to run to completion.

The proposed ranging method for low-power embedded nodes is inspired by
the work presented by Thorbjornsen et. al. in [22]. Our intention is to evaluate
the two-way ToF ranging technique and ultimately incorporate it in the range-
only tracking system presented in [11]. The approach presented here, attempts
to achieve better resolution in timing the value of the two-way message exchange
by employing a different method on how the timer’s value is captured. Instead
of detecting a received message by sampling the receiver with a constant sam-
pling rate, the receiver is programmed to signal an interrupt whenever a ranging
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message has completed a two-way path. The interrupt routine is then used to
capture the value of the running timer. This approach results in better resolu-
tion of the two-way timing values, thus achieves better resolution in the resulting
distance by processing multiple two-way transactions between the participating
nodes.

3 Overview of the Proposed System

The basic concept of the proposed two-way ToF ranging system is illustrated
in Fig. 1. The objective is to estimate the distance between node A and node
B.Initially node A sends the first ranging signal and captures the time of its timer
(ttAB). Node B receives the signal and after a period of time, that corresponds
to node B swapping its state, from receiver to transmitter (as well as a number
of other delays) node B sends a ranging signal back to node A. Following, node
A receives the reply signal and stores the time of reception (trBA). The timer
in node A measures tA = trBA − ttAB multiple times. Instead of using a clock
at node B to measure the time that the signal spends in the node, our approach
is to measure all the delays that occur during this two-way signal exchange
process. This is accomplished by placing the transceivers at a minimum distance
(< 0.2m) and executing multiple transactions that are averaged to produce the
minimum time(tmin) that is required in order to complete a message exchange.
This time corresponds to a minimal ToF period and reveals all the hardware
and software delays that occur during a two-way ranging transaction. We make
the assumption that the these delays remain constant and are independent of
the distance between the nodes. Subsequently only the propagation delay will
increase the two-way time transfer value as the nodes are placed at greater
distance.

tToF

A B

Transmit at ttAB  

tTof =    [ (trBA – ttAB) – tmin]

Receive the signal

After a delay, transmit 
a ranging singal back

Receive at time trBA 2
1

Fig. 1. Proposed Two-way ToF Ranging

Figure 2 illustrates a timing diagram of a message exchange between the two
nodes. Send and receive occurs on the rising edge of the nodes clocks. Assuming
that for a set distance the tToF will be the same and the delay TB proc that
node B requires to process the ranging signal and submit the reply is constant,
then the only ambiguity will be inserted by the delays associated to the clocks
phase shift and frequency drift. Given that the two clocks are unsynchronized
and have a small difference in frequency the phase offset between the devices will
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oscillate, thus the delays Td1 and Td2 will follow a similar varying pattern. By
oversampling, we capture a normally distributed set of multiple timing transac-
tions centered around the mean ToF value. Subsequently, capturing a sufficiently
large number of timing values will allow us to extract the mean ToF value from
the Gaussian distribution which can be, linearly associated to the distance be-
tween the nodes.

Node A 

Node B 

tToF tB_proc tTOF  td1 td2 

t 

A – Send (ttAB) A – Receive (trBA)

B - Receive B - Send 

… 

… 

… 

… 

constant constant constant 

Fig. 2. Timing Diagram of a two-way message exchange

The calculation phase involves the extraction of the ToF out of the multi-
ple stored timer values. In the event that one, or in general a small fraction
of these n transactions has produced erroneous timing, including them in the
average calculation will result in a distortion of the correct mean value. To avoid
this, and to assure that the ToF calculation is based on the most accurate and
“true” transactions the following procedure is followed. Let us assume that we
obtain n two-way ToF values tn. The initial average mean t̃ToF and the standard
deviation of the n values is given from the following:

t̃ToF =
1
n

n∑
i=1

tn σToF =
1
n

n∑
i=1

(tn − t̃ToF ) (1)

In the following step we calculate the absolute difference of each one of the n
values from the initial mean. Ultimately, out of the n collected ToF values we
exclude the ones that their absolute difference to the initial mean is greater
than the standard deviation. The final t̂ToF value is calculated by averaging the
remaining m values.

t̂ToF =
1
m

n∑
i=1

tm (2)

Obtaining the two-way ToF is the main step in estimating the range between
the two nodes. That value is converted to distance by executing the following.
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1. Calibrate the t̂ToF value by subtracting it from the minimum two-way ToF.
The minimum two-way ToF (tmin) is obtained by placing the nodes at a min-
imum distance and averaging n transactions in a similar way as mentioned
previously.

2. Divide the calibrated value by two, to get a single-way ToF time. tToFfinal
=

1
2
(t̂ToF − tmin).

3. Multiply the above with the speed of light to convert time to distance

3.1 Sources of Ranging Error

The achievable accuracy of any RF-ToF ranging system is primarily limited
by several factors which introduce temporally and spatially random errors [4].
Noise as well as interference, are two major factors that can cause the accuracy
to degrade. For example, noise can cause the receiver to detect signals in the
wrong time leading to faulty measurements. The effect of noise in RF-ranging
methods can be quantified with the use of the Signal-To-Noise Ratio (SNR) on
the receiver’s side and the occupied bandwidth (B). These measures are linked
via the Cramér-Rao Lower bound (CRB). For two-way ToF ranging systems and
n measurements averaged, the CRB of variance σ2

ToF is given by the following
relationship [19].

σ2
ToF ≥ c2

2(2πB)2 · SNR · n (3)

Clock synchronization is a key aspect in every ToA system. The times of trans-
mission and reception of wireless signals must be known using a common time
base in order to deduce accurate measurements. Clock synchronization is of
particular importance in one-way ToA methods. Two-way methods exhibit an
advantage over the one-way method since each node operates its own clock,
hence its own timing system. Nevertheless, in order to extract the ToF value
in a two-way ranging method, the delay time in the replying node as well as
the offset between the node clocks must be approximated and then taken into
account in the calculation of the ToF value. ToF systems can also be affected
from multipath propagation. Multipath interference typically occurs, because
the transmitted signal bounces off objects in the environment, and then adds to
the LoS signal. Consequently, the LoS signal can be severely attenuated which
may result in the signal being incorrectly received or lost completely. The error
caused by multipath interference is difficult to be quantified as it depends upon
the deployment environment.

Apart from the sources of ranging error that were analysed previously a num-
ber of additional uncertainties may add non-deterministic delays that will result
in distorted timing of the two-way round trip timing value. A thorough anal-
ysis of these uncertainties is performed by Maróti et. al [9] in their work on
synchronization techniques. One must also consider that an additional factor of
uncertainty will be the drift over time that the clock oscillator on the embedded
node will demonstrate. The output frequency of the node’s clock is susceptible
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to drift and is affected by the surrounding temperature and the node’s supply
voltage. It is therefore, not uncommon to observe different latencies even on the
same hardware. Additional timing uncertainties may incur from the node’s radio
operation during the submission and reception of packets. These uncertainties
are influenced by factors such as the message length, the interrupt handling and
channel availability. It is imperative to ensure that the effect of these errors will
remain constant as possible in the implementation of the proposed ToF system
in order to avoid erroneous timing of the two-way message transmission that will
result in diminishing ranging accuracy.

Due to the previously mentioned reasons, we expect the ToF values to vary
for a set distance. During the calibration stage the additional delays introduced
by these factors must be sufficiently captured in order to be excluded from the
ToF values. To achieve this, the combined delays which are introduced by these
factors must remain as constant as possible during any experimental set-up.
By oversampling the ToF values sufficiently the errors that are associate to the
timing uncertainties are averaged out and do not affect the mean calculated
averaged measurements given that the calibration values is removed.

4 Implementation

The Texas Instruments (TI) EZ430-RF2500 is a complete wireless development
platform which combines the MSP430 microcontroller (MCU) and the CC2500
low-power radio module. The EZ430-RF2500 target board connects to a standard
USB port for programming, debugging and communications purposes. The MCU
is a 16-bit microcontroller with a clock speed up to 16MHz. It employs 32kB of
flash memory and 1 kB of RAM. The clock system includes a low-power 12KHz
crystal oscillator (VLO) and a more accurate and energy demanding digital
controlled oscillator(DCO) which can be set to a range of frequencies (1-16Mhz).
The DCO operates on factory calibrated settings that demonstrate improved
tolerance against temperature and voltage supply compared to previous versions
of the MSP430 family of microcontrollers. Two timers/counters (named Timer
A (16bit) and Timer B (variable bit-length)) are present and can be linked to
the clock sources [20]. The CC2500 is a low-cost radio transceiver operating in
the 2.4GHz RF band, designed for low-power embedded applications. Various
modulation formats (OOK, 2-FSK, MSK) and data rates (2.4 - 500 kBaud) are
supported. The configuration of CC2500 is done by programming 8-bit registers.
Three registers are associated to general purpose output digital pins (GDO0-2)
that can be used in various ways. The CC2500 radio does not directly support
the IEEE 802.15.4 frame format. It uses a proprietary format, similar to the
one defined in the 802.15.4 protocol. The CC2500 consists of a variable length
preamble sequence, a synchronization word (SYNC WORD), a length byte, an
address byte, the data payload and finally an optional two-byte cycle redundancy
check field (CRC). The packet’s maximum length is 256 bytes [21]. For the
purposes of the proposed ranging system the following configuration settings
were made for the CC2500 transceiver. Two data rate settings were used at
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250kbps and at 500kbps. The transmission power was set to the highest value
possible, that is +1dBm. The modulation used is minimum-shift keying (MSK),
the preamble length was set to 2 bytes and the SYNC WORD to 4 bytes. Finally
SYNC WORD detection was set to 30/32 bits.

To achieve the maximum possible resolution in timing the two-way ToF value,
Timer A is set to continuously count-up mode and is sourced to the DCO which
is set at the maximum possible clock frequency at 16 MHz. In order to capture
the ToF a GDO pin is configured to change state to “high” whenever a SYNC
WORD is transmitted or received. The GDO pin returns in low “state” when
the entire packet is transmitted/received. In the developed software, the GDO
pin is programmed to trigger an interrupt in the event that it changes state from
low-to-high. Using that interrupt, Timer A resets whenever a SYNC WORD of
a ranging message is transmitted and its value, which correspond to the two-way
ToF, is captured directly from the hardware register only when a SYNC WORD
is received (assuming that the incoming message is transmitted from the other
device that takes place in the ranging procedure) through the same interrupt
routine. A binary variable acts as a lock in order to avoid unwanted capturing
of the timer’s value. This method avoids the need for sampling the pin with a
predefined rate, since the GDO pin itself triggers the interrupt and offers better
resolution.

As mentioned earlier, the two-way ToF ranging is performed between a pair
of EZ430-RF2500 devices programmed independently with different software.
One of them is termed as the requester and the other one as the responder.
The requester is the device that initiates the sequence in order for the two de-
vices to engage in exchanging the necessary ranging messages. Practically, the
requester device controls the initiation and termination of the ranging process.
The software that we developed was designed with the following in mind. Both
the requester as well as the responder code must be as simple as possible. No
additional interrupts or unnecessary operation should intervene during the trans-
mission of the ranging packets. The packets to be sent, should be in terms of
size, as minimum as possible to eliminate any delays on the MCU and radio load.
Our major goal is to maintain a constant delay primarily in the responder node
during the relay of the ranging packets. Of all the sources of delay mentioned
analyzed by Maróti et. al we try to keep the propagation delay as the primary
source of variability in the timing of the two-way ToF value. In conclusion, the
developed software targeted at maintaining the hardware delays as constant as
possible.

Additional precautions were taken to minimize the effect of uncertainty
sources during a single two-way transaction. As pointed out in [9], various factors
affect the uncertainties in a message transmission. Through our implementation
we tried to maintain these uncertainties as constant as possible. Constant packet
length was used to avoid varying transmission/reception times. The clear chan-
nel assessment option was not used as we assumed that there was no contention
in accessing the channel during the experiments. An important source of delay
that we had to tackle, is the amount of time the responder needs to acknowledge
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a correct ranging signal and reply accordingly. To guarantee a constant response
time on the responder’s side, we used a minimal static code routine specifically
for this application. All other interrupts were disabled apart from the one associ-
ated to message detection. To evaluate the responder’s reply delay, we used the
same 16MHz clock to capture the time from the moment a packet is detected
at the responder until the reply message is transmitted back. This delay, which
includes the 9.6μs that is required for the transceiver to change state from Rx
to Tx, was found to be constant during the exchange of ranging signals. Nev-
ertheless one of the latencies that we were not able to address pertains to the
interrupt handling. In essence, we assume that the moment an interrupt flag
is raised, from the radio to signal the reception of a ranging packet, the MCU
starts responding to that interrupt accordingly. However in reality there might
be a sub-clock delay between the signalling of the interrupt by the radio and the
MCU’s response, due to the fact that the two components operate on different
clocks. An approach that could mitigate these effects is to drive both the MCU
and Radio from the same clock source. To evaluate the delays associated with
the timing between the nodes, the code on the requester node was altered to
set a pin high immediately after the Send Packet command was strobed to the
CC2500 Radio, and the code on the responder was altered to set a pin “high”
immediately when a packet was received. Two small connections where then sol-
dered to the transmitting and receiving antennas of the devices, and a Teltronix
TDS2014 Four Channel Oscilloscope was then connected to the transmitting
and receiving nodes. This is visualized in Fig. 3(a). In Fig. 3(b), Channel 1 and
2 of the Oscilloscope represent the MCU pin set “high” immediately after the
transmit packet command was strobed; and the signal transmitted on the An-
tenna respectively. Channel 3 and 4 of the Oscilloscope represent the responder’s
antenna signal and the pin set high on successful reception of a packet. From the
timing analysis it can be seen that the transmit to receive signal on the MCU
takes approximately 520μs (at 250kbps) which corresponds to 8320 counts of
an accurate 16MHz clock. This means that our timing values on the requester
correspond well to the total time measured by the oscilloscope. We thus assume
that the radio operation does not add any significant uncertainty to our mea-
surements and the timing values distribution is associated to the phase offset
and clock drift (see section 5.2).

In the requester device a slow clock (12 KHz) sourced at Timer B, triggers
the initiation of the entire process. When Timer B fires, the requester device
sends a “request to send” packet and waits for the responder to reply . This
procedure is repeated twice to ensure that the communication link between
requester-responder is established successfully. Following, the requester begins
the transmission of the first ranging packet (a simple packet with minimum pay-
load) and also resets the value of the 16 MHz timer as explained previously (after
the transmission of the SYNC WORD). Immediately after the transmission is
completed, the requester switches its status to receiver and waits for a return
packet from the responder. Upon, a successful reception of a ranging packet by
the responder, the responder verifies that the received packet is a correct ranging
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(a) (b)

Fig. 3. Investigation of the timing uncertainties

packet (it also swaps status from receiver to transmitter) and then transmits back
a ranging packet at the requester.

On reception of a ranging packet at the requester following previous trans-
mission of a ranging packet, the GDO pin triggers an interrupt (when the SYNC
WORD of the incoming packet is correctly detected) which captures Timer’s A
value which corresponds to the two-way ToF and the additional delays. This
implementation with the use of an interrupt will yield better resolution than
sampling the GDO pin with a constant sampling rate as in [22]. When the full
packet is received, it is checked for correctness and if it is found to be correct the
captured value is stored. The ranging transaction counter is incremented and
the next cycle of ranging transmissions begins. This two-way packet exchange
process is repeated until the nominal ranging transactions number is reached.
The requester device then enters the calculation phase. In the event that a false
packet has triggered the interrupt the captured value is considered erroneous
and disregarded. The calculation phase was described in the previous section
and pertains to the extraction of the ToF value. With this method the ToF av-
eraged value is refined from all the values that might be erroneous. After the
final ToF estimate is produced, the program resets all the variables and waits
for Timer B to fire the next time in order for the same procedure to be repeated.

5 Deployment and Results

The two-way ToF method was tested on field experiments in order to evaluate
the ranging precision and overall performance of the method. The experimental
setup consisted of a pair of EZ430-RF2500 wireless nodes programmed with
the requester and responder code respectively. The ideal environment for this
type of experiment is an obstacle free area with good line-of-sight (LoS) for the
two nodes. In addition, the interference from other wireless systems must be
as low as possible. Since the CC2500 radio transceiver operates on the 2.4GHz
band, it is expected that a number of other wireless networks, like WLAN, will
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cause significant interference if the deployment takes place in areas where such
networks are present. Experiments were carried out on three different locations.

The first site (Location 1) is a level grass field at the University of Southamp-
ton campus where surrounding buildings could be a reason for multipath prop-
agation and a number of WLAN university networks might cause interference.
In this site the maximum communication range between the two nodes was lim-
ited due to space restrictions to 42m in LoS. In the second site (Location 2),
nodes were deployed on a grass field with no obstacles being close to the exper-
imental set-up. The maximum range between the two nodes that allowed the
ranging system to run adequately was 70m in good LoS conditions. A number
of experiments took place indoors in a narrow building corridor at the Univer-
sity of Southampton, School of Electronics and Computer Science (Location 3).
The hallway is 42m long and had a maximum width of approximately 2m and
minimum of 1.7m. In such an environment distortions in the measurements are
expected due to multipath effects.

5.1 Experimental Setup

The EZ430-RF2500 devices were strapped on two wooden chairs to avoid the
signal bouncing off the ground. The elevation was 90 cm off the ground. Both
nodes were powered on from laptops to ensure that they operated with full power
supply. The laptop on the requester was also used in order to log the ranging
data via its USB port. The transmission power of the CC2500 radio was set at
the maximum possible value of +1dBm. Two data rate settings were used for the
node’s radio in these experiments at 250kbps and at 500kbps. Due to the EZ430-
RF2500 design, the antenna orientation plays a significant role on the maximum
communication range. We concluded that the best antenna orientation was with
the two antennas facing each other and being slightly inclined at an angle from
the vertical position, towards the ground. Ranging data were collected from the
requester node in steps of 3m until the maximum communication range where
the experiment was adequately running was reached. A tape measure was used
as reference and in order to measure the “true” distance between the two nodes.
Initially the reference two-way ToF was estimated by placing the two nodes at
a minimum distance (< 0.3m) and averaging 100 two-way transactions. In these
experiments 1000 two-way transactions were used to estimate the distance be-
tween the two nodes. The calculation phase was executed every 100 transactions,
thus 10 times in every location to reach the nominal 1000 values. The requester
nodes was then moved to the next position. The metric used to evaluate the
system’s accuracy is the RMS error which is defined as follows. Assuming we

estimate n positions: drms =

√
1
n

(dreal − desti)2. It must be highlighted that

within the purposes of this work we focused on the point-to-point range between
two embedded nodes only. If multiple pair of nodes are to be engaged in ranging,
the calibration stage must be executed for each individual pair of ranging nodes.

Results from two different days of experiments and for both data rate values
are provided for Location 1 and Location 3. In Location 2 only the 250kbps was
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used as we tried to reach the maximum communication range and the slowest
data rate facilitated our attempt. The collective results are illustrated in Figs. 4–
5 and in Table 1.
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Fig. 4. Ranging results from experiments in (a) Location 1 and (b) Location 3
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Fig. 5. Ranging results from Location 2

Table 1. Results from experiments for the
proposed ToF method

Ranging Results
Loc. Data rate RMS error Max. Error

Loc. 1
250kbps 0.75m 1.79m
250kbps 0.94m 1.84m
500kbps 1.51m 5.32m

Loc. 2 250kbps 2.23m 6m

Loc. 3 250kbps 2.51m 5.32m
500kbps 1.99m 4.82m

5.2 Performance Analysis

First of all, the timer that was used in the timing process is a 16MHz timer
(maximum allowed value for the MCU). This value provides a resolution of
1/16MHz × c = 18.75m In section 3.1 the CRB for a two-way ToF ranging
method was formulated. At 250kbps the CC2500 transceiver occupies 540KHz
of bandwidth while at 500kbps 812KHz. Considering the radio setting (output
power +1dBm) and a typical environment where our experiments are conducted,
a -5db SNR is an expected value. Hence from Equation 3 the lower bound of
the variance of the proposed system, given that 1000 measurements are used, is
σ2

ToF = 137.3ns for the 250kbps and 60.7ns for the 500kbps respectively. These
values correspond to a minimum ranging error standard deviation of 3.5159m
and 2.33m for each data rate respectively (calculated from σToF · c). It must be
noted that the -5db SNR is a typical value and in general the SNR varies in
different deployments.
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To measure the drift in clock frequency, we used a Hameg HM8123 frequency
counter connected to a 10MHz SRS FS725 Rubidium Frequency Standard clock
reference, and measured the clock frequency approximately every second over
a period of 3 hours under room temperature and constant power supply. The
HM8123 gating time was set to 100ms. We recorded the frequency from the
HM8123 via a laptop’s USB port. The results reveal that the DCO clock fre-
quency is normally distributed with a standard deviation of 1.63KHz. The clock’s
accuracy is therefore in the area of 1% and the drift exhibits a standard devia-
tion of 0.01% around the mean value. Due to this behavior, an additional error
of around 17cm per clock cycle will be inserted because of the clock’s instability.
This frequency distribution yields a distribution of the time values similar to the
one illustrated in Fig. 7.
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Fig. 6. Investigation of the 16Mhz clock inaccuracy. Frequency Histogram (a); Fre-
quency vs Time (b)

As stated previously the node performed the necessary calculations whenever
100 two-way transactions were completed. Part of the process is the calculation
of the standard deviation for these 100 transaction in order to exclude the timing
values that fall outside the single deviant boundary. This procedure was repeated
for 10 times in order to reach 1000 transactions. From all the experiments carried
out the standard deviation of the timing values before averaging, was in the range
of 1.4cc − 1.8cc for the 500kbps setting and 2.4cc − 3cc for the 250kbps. After
averaging the 100 values the deviation was reduced to 0.4cc− 0.8cc for both the
500kbps and the 250kbps. Assuming a value of 0.6cc and dividing this by two we
get σToF = 0.3cc. This value is expressed in clock cycles (cc) and a single clock
cycle of the 16MHz timer is (1/16MHz = 62.5ns). Thus the standard deviation
of the proposed system can be approximated as σToF = 18.75ns. This translates
to a maximum standard deviation of 5.62m. To sum up, given the theoretical
derived lower bound, we presented a ToF ranging technique which exhibits a
maximum standard deviation at the same order of magnitude as the theoretical
calculated using the CRB lower bound.

To also verify the distribution of the measurements that the proposed ToF
ranging system yields, an experiment is designed where two nodes are placed in a
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short distance (2̃m) and a vast number of ToF estimates is logged over a period of
time. This experiment was executed with both data rate values. Approximately
10000 two-way ToF values were logged in each execution. The values are plotted
according to 15 equally spaced bins. From Fig. 7 it is clear that the values can
be considered as normally distributed and exhibit a standard deviation which is
very close to the one observed in the previous experiments.
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Fig. 7. Timing Histogram of 10000 two-way values

5.3 Comparison between ToF and RSSI

This section provides a comparison between ToF and RSSI, two of the most well
established methods for estimating the range between two nodes in RF systems.
The CC2500 radio offers the option of capturing the RSSI value of an incoming
packet upon reception. That option was used in one of the outdoor experiments
and the RSSI value of the reply ToF messages sent by the“responder” to the
“requester” was captured. The calculation of the mean RSSI value took place in
a similar way like the ToF by averaging 1000 RSSI values. Figure 8 illustrates
the ToF and RSSI values against the distance of the two nodes. Typically the
RSSI values decay proportionally to d−n where n is the path-loss exponent,
normally between and four [18]. From Fig. 8, it is clear that the this relationship
is not confirmed and thus the equivalent distance estimation will be faulty. On
the other hand the proposed ToF system, demonstrates the expected linearity.
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Although the approach that is followed for the RSSI does not take into account
various factors which cause the attenuation of the signal, like shadowing effects,
we provide it here as a comparison to the proposed ToF method.

6 Conclusions

In this paper, we presented a two-way RF-ToF method for ranging estimation in
wireless embedded nodes. The multiple two-way transaction approach, achieves
two major objectives. Firstly, it does not require the difficult task of synchro-
nization among the participating nodes and secondly, amends the lack of fine
resolution due to the low-frequency clocks that most WSNs are equipped with.
In our opinion the calibration method we follow is effective since it caters for a
number of delays difficult to be measured by using only a clock at the “reply”
device. Sub-clock resolution is achieved by averaging the obtained time values.
In addition, a simple yet effective procedure disposes any erroneous values that
are present in the set of measurements. Experimental results demonstrate an av-
erage accuracy of about 1m in outdoors deployments and about 2.25m indoors.
Accuracy can be further reduced if additional two-way measurements are used.
The proposed ranging system is implemented on COTS hardware. It is therefore
our belief that it can be implemented on different hardware platforms. Unlike
other ToF ranging methods, our system does not require any additional hard-
ware. The entire procedure of obtaining and filtering the values as well as the
calculation of the final ToF is completed on the nodes.

One future direction of this work is to employ the proposed ranging method in
scenarios that include mobile nodes. Mobility poses strict latency demands, and
this system was designed with this in mind. Although, we have not experimented
with tracking of mobile targets yet, we plan this to be one of the application
domains of the work presented in this paper.
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Abstract. Energy reduction is one of the major problems in the de-
sign of a wireless sensor network (WSN). Multiple base stations can be
used to dramatically reduce the energy consumption of sensor nodes. We
consider the following problem of deploying k base stations in a wireless
sensor network: Given a wireless sensor network where the location of
each sensor node is known, partition the whole sensor network into k
disjoint clusters and place one base station for each cluster such that
the maximum total energy consumption of any cluster is minimised. We
propose the first heuristic for this problem. The time complexity of our
heuristic is O(kn3), where n is the number of sensor nodes of the sen-
sor network. In the special case where k is equal to 1, we propose a
quadratic-time algorithm for optimally deploying the base station. Our
simulation results show that our heuristic is efficient.

1 Introduction

A wireless sensor networks (WSN) consists of a set of sensors nodes that commu-
nicate with each other via radio signals. All the sensor nodes works cooperatively
to monitor physical or environmental conditions, such as temperature, sound,
pressure and motion. The applications of WSNs range from area monitoring,
environmental monitoring, to agriculture and structural monitoring. In some
applications, such as border surveillance, bushfire detection and traffic control,
several thousands of sensor nodes might be deployed over the monitored region.
The diameter of the monitored region can be several kilometres.

In wireless sensor networks, sensor nodes are battery powered. Most of the
energy of a sensor node is consumed by communications. One key factor for the
energy consumption of a sensor node is the communication distance. A sensor
node consumes significantly more energy when the communication distance is
increased [1]. As a result, multi-hop communication between each sensor and
the base station is more desirable in a large scale wireless sensor networks than
the single hop communication. In multi-hop communication, a sensor node may
spend most of its energy on relaying data packets. Hence, it is important to
shorten the hop distance between each source sensor node and the base station.
The hop distances can be greatly reduced by deploying multiple base stations.
All the sensor nodes are partitioned into multiple disjoint clusters with one base
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station for each cluster. Each sensor node sends its data only to its designated
base station. Moreover, the location of the base station of each cluster is very
important. If the base station is deployed far from the data sources, many sensor
nodes are required to relay data packets and the energy consumption of those
sensor nodes will be significantly increased. Therefore, it is an important design
issue to find the best location of a base station. Nevertheless, the problem of op-
timally deploying multiple base stations can be reduced to the k-center problem
which is NP-complete [12]. Therefore, a polynomial time algorithm is unlikely
to exist.

In this paper, we study the problem of deploying k base stations such that
the total energy consumption of a WSN is uniformly distributed among all the
clusters. Under our energy consumption model, the total energy consumption
of each cluster is a monotonically increasing function of the total shortest hop
distance of all the sensor nodes of the cluster. The longer the total shortest
hop distance, the more the energy consumption of a cluster. In the special case
where there is only one base station, we propose a quadratic-time algorithm to
optimally place a base station such that the total energy consumption of all the
sensor nodes is minimised. Based on the optimal algorithm for the single base
station problem, we propose a novel heuristic that aims to partition all the sensor
nodes into k disjoint clusters such that the maximum total energy consumption
of any cluster is minimised. We have simulated our heuristic on 195 instances
of different distributions. Our simulation results show that our heuristic is very
effective.

2 Definitions and Network Model

A wireless sensor network consists of a set of n identical sensor nodes each of
which is located in a 2D plane. The location of each sensor node is known.
All the sensor nodes have the same maximum communication distance R. We
assume that there are no communication barriers between any two adjacent
sensor nodes1. Therefore, a sensor node vi can directly communicate with a
sensor node vj if the Euclidean distance between vi and vj is not greater than
R. There are k base stations to be deployed in a target WSN. As a result, all
the sensor nodes need to be partitioned into k clusters with one base station for
each cluster. A sensor node in each cluster sends its data to its base station only.
If the Euclidean distance between a sensor node and its base station is greater
than R, the data of the sensor node must be transmitted via other sensor nodes
to the base station.

Definition 1. The connectivity graph of a wireless sensor network is a undi-
rected graph G =< V, E >, where V = {vi : i = 1..n and vi is a sensor node},
and E = {(vi, vj) : if the Euclidean distance between vi and vj is not greater
than R}.
1 Our approach can be modified to handle the communication barriers.



Efficient Energy Balancing Aware Base Station Deployment 181

Without loss of generality, we assume that the connectivity graph G of the target
wireless sensor network is connected.

Definition 2. Given two sensor nodes vi and vj, the shortest hop distance from
vi to vj is the length of the shortest path from vi to vj in the connectivity graph.

The shortest hop distance of a sensor node vi to the base station gives the lower
bound on the number of hops of a packet transmitted from vi to the base station.

Definition 3. Given a cluster of sensor nodes and a base station, the total
shortest hop distance of the cluster is the sum of all the shortest hop distances
from each sensor node to the base station.

Let P be a set of n distinct points called sites, in a 2D plane. The Voronoi
diagram [11] of P is the subdivision of the plane into n cells, one for each site. A
point q lies in the cell of a site pi ∈ P iff the Euclidean distance between q and
pi is less than the Euclidean distance between q and pj (pj ∈ P and i �= j). The
edges of the Voronoi diagram are all the points in the plane that are equidistant
to the two nearest sites.

Definition 4. A sensor node vi is a neighbour of a sensor node vj if the Voronoi
cells of vi and vj share a Voronoi edge.

Definition 5. Let V be a set of n sensor nodes in a 2D plane and Ci(i =
1, 2, · · · , k) be k disjoint clusters of V . A cluster Ci is a neighbour of a cluster
Cj if there are two sensor nodes vs ∈ Ci and vt ∈ Cj such that vs is a neighbour
of vt.

Definition 6. Given a cluster Ci of sensor nodes and a sensor node vj �∈ Ci, the
Euclidean distance from vj to Ci, denoted d(vj , Ci), is min{d(vk, vj) : vk ∈ Ci

and d(vk, vj) is the Euclidean distance between vk and vj}.
Definition 7. Given a wireless sensor network and a point p on a 2D plane,
the unit sensor density of p is the number of sensor nodes that are one hop away
from p. The maximum unit sensor density of the wireless sensor network is the
largest unit sensor density of all the points on the 2D plane.

Throughout this paper, we assume that the maximum unit sensor density is a
constant. In wireless sensor networks, the maximum communication distance is
typically short in order to reduce the energy consumption of data transmissions.
Hence this assumption is reasonable.

3 An Optimal Algorithm for Single Base Station
Deployment Problem

Deploying a single base station in a cluster is a building block of our heuristic
for optimally deploying k base stations. This problem is described as follows.
Given a cluster of sensor nodes and a base station, find the optimal location
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of the base station such that the total shortest hop distance of the cluster is
minimised. Next, we will propose an efficient algorithm for this problem.

The key idea of our algorithm is to find the candidate locations of the base
station such that one candidate location must be the optimal location of the
base station. To find all possible candidate locations, we consider each pair of
sensor nodes vi and vj . If the Euclidean distance between vi and vj is greater
than 2R, where R is the maximum communication distance of all the sensor
nodes, we will ignore the pair vi and vj . Otherwise, we find the candidate circles
of vi and vj . A candidate circle of vi and vj is a circle that satisfies the following
two constraints:

1. The radius of the circle is R.
2. vi and vj are on its circumference.

The centre of a candidate circle is a candidate location of the base station.
Notice that for each pair of sensor nodes at most two candidate circles exist.
If the Euclidean distance of a pair of sensor nodes is equal to 2R, only one
candidate circle of this pair exists. After finding all the candidate locations, our
algorithm will search for the best candidate location of the base station. The
best candidate location is the one that minimises the total shortest hop distance
of all the sensor nodes to the base station placed at this candidate location. The
algorithm is shown as follows.

Algorithm OptimalD(V )
Input : A set V = {v1, v2, · · · , vm} of m sensor nodes in a 2D plane and a base
station.
Output : The optimal location of the base station such that the total shortest
hop distance of all the sensor nodes to the base station at the optimal location
is minimised, and the resulting total shortest hop distance.
begin
C = ∅;
for each pair of sensor nodes (vi, vj)(vi, vj ∈ V ) do

if the Euclidean distance between vi and vj ≤ 2R then
Find the candidate circles C1 and C2 of vi and vj ;
Let c1 and c2 be the centres of C1 and C2;
C = C ∪ {c1} ∪ {c2};

for each candidate location ci ∈ C do
Place the base station at ci;
Construct the connectivity graph G(V ∪ {ci}) of all the sensor nodes
and the base station;
Compute the total shortest hop distance TSHD(ci) of all the sensor nodes in V
to the base station located at ci;

Let cj be the candidate location with the minimum total shortest hop distance;
return (cj ,TSHD(cj));

end

Theorem 1. Given a cluster of m sensor nodes, the time complexity of the
algorithm OptimalD(V ) is O(m2).
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Theorem 2. The algorithm OptimalD(V ) is guaranteed to find the optimal lo-
cation of the base station.

Proof. Assume that the optimal location is copt. Let S = {v1, v2, · · · , vr} be the
set of sensor nodes that are one hop away from the base station at the optimal
location copt. Draw a circle Copt with the radius R and the centre copt. According
to the definition of the maximum communication distance R, all the sensor nodes
in S must be either in Copt or on the circumference of Copt. Next, we show that
there is a candidate location ck generated by our algorithm such that the set of
sensor nodes that are one hop away from ck is equal to S. Consider the following
three possible cases.

1. There are two sensor nodes vi, vj ∈ S such that vi and vj are on the circum-
ference of Copt. In this case, copt is one of our candidate locations.

2. Only one sensor node vi ∈ S is on the circumference of Copt. Turn the circle
Copt clockwise around vi until another sensor vj ∈ S is on the circumference
of Copt. Now all the sensor nodes in S are still in Copt and this case reduces
to Case 1.

3. No sensor node is on the circumference of Copt. Arbitrarily select a sensor
node vt, and move Copt along the straight line coptvt until one sensor node
in S is on the circumference of Copt. Now all the sensors in S are still in Copt

or on the circumference of Copt. Hence, this case reduces to Case 2.

Based on the above discussions, we can conclude that such a candidate location
ck exists. For each sensor node vi, any path from vi to ck or copt must include
a sensor node in S. Therefore, the shortest hop distance from vi to ck is equal
to that from vi to copt. As a result, ck is also an optimal location of the base
station.

4 Incremental Algorithms for Single Base Station
Deployment Problems

Our heuristic for k base station deployment problem needs to repeatedly find the
optimal location of a base station for a growing or shrinking cluster. A growing
cluster is a cluster of sensor nodes such that a new sensor node is added to it
at a time. A shrinking cluster is a cluster of sensor nodes such that a sensor
node is removed from it at a time. There are two single base station deployment
problems: the single base station deployment problem for a growing cluster and
the single base station deployment problem for a shrinking cluster.

The single base station deployment problem for a growing cluster is described
as follows: Given a cluster Ci of sensor nodes, a new sensor node vk, and a base
station, find the optimal location of the base station such that the total shortest
hop distance from all sensor nodes in Ci ∪{vk} to the base station is minimised.
A bruteforce approach to this problem is to use the algorithm proposed in the
previous section, which takes O(m2) time, where m is the number of sensor nodes
of the cluster. Next, we propose a faster incremental algorithm which takes O(m)
time.
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Let B(Ci) be the set of all candidate locations of the base station for Ci,
SHD(vi, vj) the shortest hop distance between vi and vj , and N(cj) the set of
all neighbouring sensor nodes which are one hop away from a candidate location
cj . The incremental algorithm for the single base station deployment problem
for a growing cluster is shown as follows.

Algorithm IncrementalGrowing(Ci, vk)
Input : A cluster Ci, the set B(Ci) of all candidate locations of the base station for
Ci, the total shortest hop distance TSHD(cj) of each candidate location cj of Ci,
the neighbour set N(cj) of each candidate location cj , and a new node vk.
Output : The optimal location of the base station for Ci ∪ {vk}, the set B(Ci) of all
candidate locations of the base station for Ci ∪ {vk}, the total shortest hop distance
TSHD(cj) of each candidate location cj of Ci ∪ {vk}, and the neighbour set N(cj)
of each candidate location cj of Ci ∪ {vk}.
begin
for each neighbouring candidate location cj of vk do

N(cj) = N(cj) ∪ {vk};
Find the shortest hop distance SHD(vk, vj) from vk to each sensor node vj ∈ Ci;
Construct the set A of all the new candidate locations generated by vk and its
neighbouring sensor nodes;
for each new candidate location cj ∈ A do

Find N(cj);
Find the total shortest hop distance TSHD(cj) from all sensor nodes
in Ci ∪ {vk} to cj ;

for each candidate location cj ∈ B(Ci) do
// Compute the total shortest hop distance of each candidate location.

SHD(cj, vk) = 1 + min{SHD(vs, vk) : vs ∈ N(cj)};
TSHD(cj) =TSHD(cj)+SHD(cj, vk);

B(Ci) = B(Ci) ∪ A;
Find the optimal location co of the base station with the smallest total shortest
hop distance;
return (co,TSHD(co));

end

Theorem 3. The time complexity of IncrementalGrowing(Ci, vk) is O(m).

The single base station deployment problem for a shrinking cluster is described
as follows: Given a cluster Ci of sensor nodes, a sensor node vk ∈ Ci, and a base
station, find the optimal location of the base station for the cluster Ci − {vk}
such that the total shortest hop distance from all sensor nodes in Ci − {vk} to
the base station is minimised. A fast incremental algorithm is shown as follows.

Algorithm IncrementalShrinking(Ci, vk)
Input : A cluster Ci, the set B(Ci) of all candidate locations of the base station for
Ci, the total shortest hop distance TSHD(cj) of each candidate location cj , N(cj),
and a node vk ∈ Ci.
Output : The optimal location of the base station for Ci − {vk}, the set B(Ci) of all
candidate locations of the base station for Ci − {vk}, the total shortest hop distance
TSHD(cj) and the neighbour set N(cj) of each candidate location cj of Ci − {vk}.
begin
Find the shortest hop distance SHD(vk, vj) from vk to each sensor node vj ∈ Ci;



Efficient Energy Balancing Aware Base Station Deployment 185

Compute the set A of all the candidate locations which are solely generated by vk

and its neighbouring sensor nodes;
B(Ci) = B(Ci) − A;
for each neighbouring candidate cj that is one hop away from vk do

N(cj) = N(cj) − {vk};
Ci = Ci − {vk};
for each candidate location cj ∈ B(Ci) do ;

// Compute the total shortest hop distance of each candidate location.
SHD(cj, vk) = 1 + min{SHD(vs, vk) : vs ∈ N(cj)};
TSHD(cj) =TSHD(cj)−SHD(cj, vk);

find the optimal location co of the base station with the minimum shortest
hop distance;
return (co,TSHD(co));

end

Theorem 4. The time complexity of IncrementalShrinking(Ci, vk) is O(m).

5 A Heuristic for the Optimal k Base Station Deployment
Problem

Given k base stations and a set of sensor nodes in the 2D plane, the energy
balancing aware k base station deployment problem is to partition the whole
sensor network into k disjoint clusters and deploy a base station for each cluster
in an optimal way such that the maximum total shortest hop distance of any
cluster is minimised. Similar to the k-center problem [12], this problem is NP-
complete. Next, we will propose an efficient heuristic for this problem.

Conceptually, our heuristic works in two phases. In the first phase, it creates k
initial disjoint clusters by using a greedy approach. In the second phase, it keeps
moving a sensor node from a cluster with a larger total shortest hop distance to
a neighbouring cluster with the smaller total shortest hop distance until a fixed
point is reached.

Next, we describe how each phase works in details. In the first phase, the
algorithm CreatingClusters(V, k) creates k initial disjoint clusters. It starts with
creating the Voronoi diagram of all the sensor nodes. The Voronoi diagram is
used to determine the nearest sensor node of a cluster. Initially, there are n
clusters with one sensor node in each cluster, and the total shortest hop distance
of each cluster is 0. Next, it repeatedly finds a cluster with the smallest total
shortest hop distance and merges it with the best neighbouring cluster until only
k clusters are left. The best neighbouring cluster is the neighbouring cluster that
minimises the total shortest hop distance of the resulting cluster merged from
these two clusters. The pseudo code of the algorithm is shown as follows.

Algorithm CreatingClusters(V, k)
Input : A set V = {v1, v2, · · · , vn} of sensor nodes and k base stations.
Output : The k disjoint clusters and the optimal location of the base station of each
cluster.
begin
Create the Voronoi diagram for all sensor nodes in V ;
for each vi ∈ V do
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Ci = {vi}; TSHD(Ci) = 0;
NumberOfCluster= n;
while NumberOfCluster > k do

Select a cluster Ci with the minimum TSHD(Ci).
Fnd all the neighbouring clusters of the cluster Ci;
for each neighbouring cluster Cj of Ci do

tempCij = Ci ∪ Cj ;
(cij , TSHD(tempCij) =OptimalD(tempCij);

Find the neighbouring cluster Cj that has the minimum TSHD(tempCij);
Merge Ci and Cj into a new cluster Cij ;
TSHD(Cij) =TSHD(tempCij);
NumberOfCluster= NumberOfCluster−1;

end
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Fig. 1. An example for illustrating the algorithm CreatingClusters(V, k)

We use an example to illustrate how the algorithm CreatingClusters(V, k)
works. Consider a wireless sensor network with 11 sensor nodes and 3 base sta-
tions as shown in Fig. 1. Fig. 1(a) shows the Voronoi diagram our algorithm
creates. All the neighbouring nodes of I are E, D, H , and K, and all the neigh-
bouring nodes of H are C, D, G, I, J and K. At the beginning, there are
6 clusters with each sensor being one cluster. Next, the algorithm merges a
smallest cluster with its best neighbouring cluster at a time. Figure 1(b) shows
the intermediate clusters created by the algorithm CreatingClusters(V, k), where
each cluster except the cluster I is merged from two clusters. For example, the
cluster {C, F} is merged from the cluster {C} and the cluster {F}. Figure 1(c)
shows the final clusters {A, B, C, F}, {D, E, I} and {G, J, H, K} created by our
algorithm.

In the second phase, the algorithm ClusterBalancing(C, L) aims to mod-
ify the initial clusters so that the maximum total shortest hop distance of
any cluster is minimised, where C is the set of k initial clusters and L is
the set of the optimal locations of the k base stations. It starts with the ini-
tial k clusters created by the algorithm CreatingClusters(V, k). In each iter-
ation, a modifiable cluster Ci with the highest TSHD among all the clusters
in C is selected. A cluster Ci is modifiable if there exist a neighbouring cluster
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Cs with TSHD(Cs) <TSHD(Ci) and a sensor node vk ∈ Ci such that TSHD(Cs∪
{vk}) <TSHD(Ci) and TSHD(Ci−{vk}) <TSHD(Ci) hold, i.e., moving vk from
Cj to Cs will reduce the maximum total shortest hop distance of both clusters.
If such a modifiable cluster does not exist, all the clusters are balanced and
the algorithm terminates. If such a modifiable cluster Ci exists, the algorithm
will select the neighbouring cluster Cj with the smallest TSHD among all the
neighbouring clusters of Ci and find the set Q of sensor nodes in Ci which are
the neighbouring sensor nodes of Cj . Then it keeps moving a sensor node in Q
with the smallest Euclidean distance to Cj from Ci to Cj until no sensor node
in Q can be moved from Ci to Cj . A sensor node vk ∈ Q is moved from Ci to
Cj only if vk satisfies the following constraints:

1. TSHD(Ci − {vk})<TSHD(Ci).
2. TSHD(Cj ∪ {vk})<TSHD(Ci).

The first constraint ensures that after vk is moved from Ci to Cj , the total
shortest hop distance of Ci is reduced. If a sensor node vs ∈ Q is on the shortest
paths of other sensor nodes in Ci to the base station, moving vs from Ci to
Cj may increase the total shortest hop distance of Ci. The second constraint
guarantees that after moving vk from Ci to Cj , the total shortest hop distance of
Cj will be less than the previous total shortest hop distance of Ci. The algorithm
is shown in pseudo code as follows.

Algorithm ClusterBalancing(C, L)
Input : A set C = {C1, · · · , Ck} of k disjoint clusters and a set L = {c1, · · · , ck} of
the optimal locations of k base stations, where ci(i = 1, 2, · · · , k) is the optimal
location of the base station of the cluster Ci.
Output : A new set of k disjoint clusters with smaller maximum total shortest hop
distance and the optimal location of the base station of each cluster.
begin
// A is the set of clusters from which no sensor node can be moved.
// B is the set of clusters from which a sensor node might be moved.
A = {}; B = C; // Note that C = A ∪ B holds all the time.
for each cluster Ci ∈ C do

modifiable(Ci) = true;
while B 	= ∅ do

Select a cluster Ci with the maximum TSHD(Ci)
and modifiable(Ci) = true from B;
S = {Cs : Cs ∈ Cand Cs is a neighbouring cluster of Ci}.
Find Cj ∈ S with the minimum TSHD(Cj);
Q = {vs : vs ∈ Ci and vs is a neighbouring sensor node of Cj};
NodeMoved(Ci) = 0;
while Q 	= ∅ do

Select a sensor node vs ∈ Q with the smallest Euclidean distance to Cj ;
if TSHD(Ci − {vs})<TSHD(Ci) && TSHD(Cj ∪ {vs})<TSHD(Ci) then

Cj = Cj ∪ {vs}; Ci = Ci − {vs};
Find the new optimal locations of the base stations of Ci and Cj ;
Recalculate TSHD(Ci) and TSHD(Cj);
NodeMoved(Ci) = 1;

Q = Q − {vs};
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if NodeMoved(Ci) > 0 then
for each neighbouring cluster Cj of Ci do

if modifiable(Cj) == false then
modifiable(Cj) = true; A = A − {Cj}; B = B ∪ {Cj};

else
modifiable(Ci) = false; A = A ∪ {Ci}; B = B − {Ci};

end

Now we use an example to illustrate how the algorithm ClusterBalancing(C, L)
works. In Fig. 2, there are three clusters A, B and C. The cluster A has the
largest total shortest hop distance which is 35. A has two neighbouring clusters:
clusters B and C. The total shortest hop distance of B is less than that of C.
Therefore, the neighbouring sensor nodes from A will be moved to B. In Fig. 2(a),
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Fig. 2. An example for illustrating the algorithm ClusterBalancing(C, L)

the neighbouring sensor nodes in the cluster A are A1, A2, and A3. A3 is closest
to the cluster B. TSHD(A − {A3}) is 31 which is smaller than TSHD(A). So
it satisfies the first constraint. TSHD(B ∪ A3) = (23 + 3) = 26, is smaller than
TSHD(A). So, A3 satisfies the second constraint. As a result, A3 is moved to the
cluster B. Subsequently, the sensor node A2 satisfies both constraints and it is
also moved to the cluster B as shown in Fig. 2(b). However, the sensor node A1
does not satisfy the first condition. So it is not moved to the cluster B.

Next we analyse the time complexities of the two algorithms used by our
heuristic.

Theorem 5. The time complexity of CreatingClusters(V, k) is O(n2 log n).

Proof. Given n sensor nodes, its Voronoi diagram can be constructed in O(n log n)
time [11]. The number of neighbouring cluster of each cluster is at most p, where p
is the maximum unit sensor density. Under our assumption, p is a constant. There-
fore, it takes O(1) time to find all the neighbouring clusters of each cluster. Each
merge takes O(s2) time if the number of sensor nodes of the resulting cluster is s.
The whole merge process of clusters can be represented by a merge tree, where each
node denotes merging two clusters into one cluster. At each level of the merge tree,
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the total work is O(n2). Since the merge tree is a balanced tree, its height is at most
log n. Therefore, the total work of the whole merge process is O(n2 log n). As a
result, the time complexity of the algorithm CreatingClusters(V, k) is O(n2 log n).

Theorem 6. The time complexity of ClusterBalancing(C, L) is O(kn3), where
n is the number of sensor nodes of the wireless sensor network.

Proof. It takes at most k−1 sensor motions to reduce the number of sensor nodes
of the cluster with the maximum total shortest hop distance by one. Therefore,
the total number of sensor node motions is bounded by O(kn). For each sen-
sor motion, it takes O(n2) time to find the sensor node vs of Ci that has the
shortest Euclidean distance to Cj by using exhaustive search, and O(n) time
to move vs from Ci to its neighbouring cluster Cj by using our incremental al-
gorithms IncrementalGrowing(Ci, vk) and IncrementalShrinking(Ci, vk). There-
fore, the time complexity of ClusterBalancing(C, L) is O(kn3).

6 Related Work

Deploying multiple base stations in a large scale senor network can significantly
decrease the energy consumption of the sensor nodes by shortening the distance
between the source sensor nodes and the base station. The problems of finding
the best locations of multiple base stations have been studied in a number of pa-
pers under different optimisation objectives. Most papers formulate the problems
as an integer linear programming (ILP) problem [6,2,3]. [6] proposes a heuris-
tic for deploying multiple mobile base stations to maximise the lifetime of the
sensor network. The total lifetime of the network is divided into equal period of
time known as rounds and all mobile base stations change their locations at the
beginning of every round. An ILP formulation is proposed to find the locations
of base stations such that the maximum energy spent by each node in a round is
minimised. [2] proposes a heuristic for maximising the life time of a WSN. The
heuristic consists of a LP formulation for positioning multiple base stations in
a sensor network and an ILP formulation for routing traffic flow from all of the
sensors to these multiple sink nodes. Since the ILP problem is NP-complete, the
ILP-based approaches are not applicable to large scale WSNs.

[3] proposes two-tier WSNs where the entire network is divided into clusters
and each cluster has its own cluster head which is responsible for transferring
data to the base station after collecting data from the sensor nodes. An iterative
algorithm SPINDS is proposed to iteratively move the cluster head to a better
location in order to increase the life time of the WSN. [7] studies the problems of
hybrid sensor networks with resource-rich (micro-servers) and resource-deprived
sensor nodes. An iterative tabu-search based algorithm is proposed to find the
best locations of the micro-servers.

[10] propose an algorithm and a heuristic for placing k base stations in an opti-
mal way such that the average Euclidean distance between the sensor nodes and
their base stations is minimised. The algorithm assumes that each base station
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knows the locations of all sensor nodes and the heuristic assumes that each base
station only knows the locations of its neighbouring sensor nodes and other base
stations. In WSNs, it is possible for a sensor node with a shorter Euclidean
distance to its base station to have a longer hop distance to its base station.
Even worse, it is possible that no sensor node can communicate with the base
station at the location that minimises the average Euclidean distance of all the
sensor nodes to the base station. Consider a WSN with a ring topology, i.e., all
the senor nodes are located on a ring. If the radius of the ring is greater than
the maximum communication distance of the sensor nodes, no sensor nodes can
communicate with the base station at the center of the ring. As a result, it is not
feasible to minimise the average Euclidean distance between the sensor nodes
and their base stations in order to minimise the lifetime or the total energy
consumption of a WSN.

[9] studies the problem of placing k base stations in an optimal way such
that the total latency of all the sensor nodes to their gateways is minimised.
The authors proposed two heuristics for the problem using genetic algorithms.
The problem with minimising the total latency of all the sensor nodes to their
gateways is that it may result in unbalanced energy consumption of all the
clusters.

In a WSN with multiple base stations, base stations should be deployed such
that the total energy consumption of the whole WSN is distributed uniformly
among all the clusters in order to increase the life time of the WSN. To our
knowledge, no previous research on deploying multiple base stations with such
an optimisation objective has been reported. Our work presented in this paper
is the first one on uniformly distributing the total energy consumption among
all the clusters.

7 Simulation Results

In this section, we evaluate the performance of our heuristic via simulations. We
have generated 195 different network instances. The WSN represented by each
instances is connected. All these instances are classified into three categories:
grid, uniform distribution and random distribution. We have used three different
numbers of base stations, i.e., 2, 4 and 6. For uniform and random distributions,
we have varied the number of sensor nodes from 100 to 600 with an increment
of 20 sensor nodes. For either distribution, we have generated 25 instances with
3 different numbers of base stations. For grid, we have generated 45 instances.

In order to simulate our heuristic, we have used a computer with Intel Core 2
Duo processor. The processor has a clock frequency of 3 GHz and 4 GB RAM. In
order to measure the performance of our heuristic, we have introduced a metric
named unbalance factor . Given a WSN N with k clusters, the unbalance fac-
tor of N is defined as (TSHDmax−TSHDmin) / TSHDmax, where TSHDmax =
max{TSHD(Ci) : Ci ∈ N} and TSHDmin = min{TSHD(Ci) : Ci ∈ N}. The
unbalance factor shows how unbalanced the k clusters of a WSN are. The smaller
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(a) Initial clusters (b) Final clusters (c) Initial clusters

(d) Final clusters

Fig. 3. Simulation results for 200 and 400 sensor nodes with 4 base stations in uniform
distribution

the unbalance factor, the more balanced the k clusters. If the unbalance factor
is 0, the k clusters are fully balanced. We have also recorded the running time
of our heuristic for each instance we have generated.

In order to give readers some intuition on the performance of our heuristic,
we have randomly selected 4 instances among all 195 instances we have gen-
erated. The simulations results of these 4 instances are shown in Figs. 3 and
4, where the sensor nodes in the same cluster are shown in the same letter
and colour, and a square denotes a base station. Figure 3(a) shows the initial
clusters of 200 sensor nodes with 4 base stations, generated by our algorithm
CreatingClusters(V, k). Figure 3(b) shows the final clusters generated by our
algorithm ClusterBalancing(C, L), where all the clusters are almost balanced.
Figures 3(c) and 3(d) show the initial clusters and the final clusters, respectively,
of 400 uniformly distributed sensor nodes with 4 base stations. Figures 4(a) and
4(b) shows the simulation results for 300 sensor nodes with 6 base stations where
sensor nodes are deployed in random distribution. Figures 4(c) and 4(d) show
the initial clusters and the final clusters of 256 sensor nodes and 4 base stations
deployed in grid, where both clusters are fully balanced.

The complete simulation results are shown in Figs. 5 and 6. Figure 5 shows the
unbalance factors of the clusters constructed by our heuristic for all the instances
we have generated. Overall, all the clusters constructed by our heuristic are well
balanced. We can observe the following patterns:
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(a) Initial clusters (b) Final clusters (c) Initial clusters

(d) Final clusters

Fig. 4. Simulation results for 300 and 256 sensor nodes with 6 and 4 base stations in
random and grid distributions

(a) (b)

(c)

Fig. 5. Unbalance Factor for sensor nodes in uniform, random and grid distributions
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(a) (b)

(c)

Fig. 6. Running times for all the instances

1. The unbalance factor increases with the number of base stations. The unbal-
ance factor is at most 1% when the number of base stations is 2. The reason
is that when the number of base stations increases, the relative difference
between the cluster with the longest shortest hop distance and the cluster
with the smallest shortest hop distance will increase.

2. Given a fixed number of base stations, the unbalance factor decreases with
the number of sensor nodes. This is because the maximum total shortest hop
distance of any cluster increases with the number of sensor nodes.

Figure 6 shows the running times in second of our heuristic for different instances.
It shows that running time increases approximately cubically with the number
of sensor nodes in all the three distributions, which is consistent with the time
complexity of our heuristic. For the instance that has 600 sensor nodes in random
distribution and 6 base stations, our heuristic took around 38 seconds, which is
the longest running time.

8 Conclusion

In this paper, we proposed the first heuristic for optimally deploying k base
stations in a WSN such that the maximum total shortest hop distance of any
cluster is minimised. The time complexity of our heuristic is O(kn3), where n is
the number of sensor nodes of the WSN. In the spacial case where there is only
one base station, we proposed an optimal algorithm for this problem. We have
performed simulations of our heuristic on 195 instances. The simulation results
show that our heuristic is very effective.
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Although our heuristic performs very well, its approximation ratio is unknown.
We conjecture that it is at most 2. In the future work, we will find the approxima-
tion ratio of our heuristic. Another open problem is to optimally deploy multiple
base stations in a WSN where sensor nodes have variable communication ranges.
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Abstract. In this paper we present BurstProbe, a new technique to ac-
curately measure link burstiness in a wireless sensor network employed
for time-critical data delivery. Measurement relies on shared probing slots
that are embedded in the transmission schedule and used by nodes to
assess link burstiness over time. The acquired link burstiness information
can be stored in the node’s flash memory and relied upon to diagnose
transmission problems when missed deadlines occur. Thus, accurate di-
agnosis is achieved in a distributed manner and without the overhead of
transmitting rich measurement data to a central collection point. For the
purpose of evaluation we have implemented BurstProbe in the GinMAC
WSN protocol and we are able to demonstrate it is an accurate tool
to debug time-critical data delivery. In addition, we analyze the cost of
implementing BurstProbe and investigate its effectiveness.

1 Introduction

Future application areas for wireless sensor networks (WSNs) are industrial pro-
cess automation and control systems. In such systems, the WSN is part of a
control loop, and therefore predictable network performance in terms of mes-
sage transfer delay and reliability is required.

WSNs for such applications are generally built around a schedule-based
Medium Access Control (MAC) protocol. The schedule is calculated such that
deadlines are met even when some retransmissions are necessary to compensate
for losses on wireless links. Due to deadline and/or energy constraints it is ob-
viously not possible to accommodate an arbitrary number of retransmissions
and therefore a worst-case link reliability has to be assumed when determining a
transmission schedule. Recently developed systems for time-critical data delivery
such as WirelessHART [3], ISA100 [4], Munir’s least-burst-routing [7], and Gin-
MAC [13] use worst-case reliability assumptions when determining schedules. In
WirelessHART a fixed number of redundant transmissions is used in the hope
that these are sufficient to compensate for losses. Munir’s least-burst-routing
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and GinMAC determine worst-case link reliability by measurement before de-
ployment and determine the number of required retransmission slots on links
based on this measurement.

Recent deployments show [7,13] that such provisioning before deployment is
generally feasible, however, it cannot be guaranteed that link characteristics are
invariant. For example, an interferer may appear (temporarily) in the vicinity
of the network or links may become (temporarily) blocked by obstacles. It must
be possible to either determine a new valid schedule or to identify and remove
the problem source, which appeared in the sensor field post-deployment. It is
necessary to collect appropriate debugging information during system operation
allowing us to forensically investigate the problem that occurred.

It has been shown [7] that link quality in WSNs used for time-critical data
delivery should be described with more precision than it is possible using simple
metrics such as Packet Reception Rate (PRR) or Expected Transmission Count
(ETX). To design efficient schedules for time-critical systems it is necessary to
understand in detail the distribution and nature of burst errors on links. Unfor-
tunately, as we show, it is impossible to gather such detailed link information by
simply using existing data transmissions. Hence, it is very challenging to monitor
link burstiness in a WSN deployment during network operation.

We propose to periodically measure link burstiness within the network in
order to collect the necessary information for performance debugging in case
that time-critical data delivery fails. Sequences of dedicated test transmissions
- called BurstProbes - are used to obtain a clear picture of link burstiness over
time. These probes are incorporated in the transmission schedule such that they
do not interfere with the network’s time-critical data delivery. As time-critical
WSNs do not have sufficient spare capacity to continuously transmit all of their
measurement data to a central collection point the data is stored in each node’s
flash memory. This data can then be retrieved during network maintenance after
problems have occurred and network debugging is therefore required. The paper
has the following specific contributions:

– BurstProbe: We introduce the novel concept of BurstProbe.
– BurstProbe Implementation: An implementation of BurstProbe within the

GinMAC protocol and an experimental evaluation of its overhead and its
effectiveness is presented.

– Debugging Examples: Different debugging examples using BurstProbe are
presented. We show that problem sources can be identified and that new
viable schedules can be calculated on the basis of recorded measurements.

We implement BurstProbe for GinMAC, a TDMA based MAC layer for time-
critical data delivery that requires offline-dimensioning [13]. BurstProbe enables
GinMAC to become adaptive by allowing it to determine the required number of
retransmission slots when link characteristics change due to interference. Burst-
Probe is currently implemented in GinMAC, but it is suitable for use in any
schedule-based WSN system aiming to achieve time-critical data delivery.

The paper is organised as follows. Section 2 introduces the BurstProbe con-
cept. Section 3 provides a detailed description of the BurstProbe implementation
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Fig. 1. Simple topology and possible schedules for error free and lossy channels

within GinMAC. Section 4 investigates the effectiveness of BurstProbes via ex-
perimental evaluation. Section 5 reports on related work dealing with the de-
ployment of time-critical sensor networks. Section 6 concludes the paper.

2 BurstProbe

In this section we introduce the BurstProbe concept. We describe the motivation
for its design and discuss its capabilities and limitations.

2.1 Scheduling for Timely and Reliable Data Delivery

Consider the simple network topology given in Fig. 1. Assume nodes A, B and
C have to deliver data with period T to the sink node D. In order to guarantee
timeliness a TDMA schedule is applied. A slot in the schedule accommodates
the actual data transmission and a short acknowledgment from the receiver. In
this paper, transmissions within a slot refer to both the original data packet and
corresponding acknowledgment. If we assume that all nodes are in interference
range of each other, the schedule as shown in Fig. 1 can be used. Node A trans-
mits in slot s1 to node B which uses s2 to forward data from A to D; B uses
slot s3 to transmit its own data to D. Node C uses slot s4 to transmit data
to D. The resulting schedule S = {s1, s2, s3, s4} has a duration (which we refer
to as an epoch) of E = |S| · t = 4 · t (with t being the slot length). Data from
all nodes is delivered within the epoch to the sink. We refer to the schedule as
valid schedule if it allows us to deliver data within the required period T . The
schedule is valid if the epoch is shorter than the period (E ≤ T ).

Obviously, the schedule is only valid in situations where all transmissions are
successful. In a wireless environment error free channels are rare and capacity
for potential retransmissions must be incorporated within the schedule. Figure 1
shows a schedule for the aforementioned simple topology which allows for one
retransmission on each link for each transmission. The epoch length has now
doubled to allow for reliable and timely data delivery on potentially lossy links.
The schedule is valid if E ≤ T and if no more than every second transmission
is erroneous. Given the harsh radio environment where some sensor networks
operate it is a challenge to provision the correct number of retransmission slots
in advance.
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Fig. 2. Topology and possible schedules for lossy channels with Bmax = 2, Bmin = 1

The epoch length can be reduced if all nodes are not within communication
range of each other. In this case spatial re-use of TDMA slots is possible and
the epoch can be shortened. However, it has to be noted that in industrial
process automation and control scenarios in which time-critical scheduling is
required it is common that all nodes are at least in interfering range of each
other. In practical industrial deployments spatial slot re-use is rarely an option
and systems such as GinMAC [13] and WirelessHART [3] do not make use of it.
Instead, these systems support concurrent transmissions using several 802.15.4
channels to reduce epoch length.

2.2 Capturing Worst-Case Link Reliability

There are different methods available to describe link reliability. Common meth-
ods are Expected Transmission Count (ETX) or Packet Reception Rate (PRR).
Using PRR gives a worst-case link reliability by a value Pmax indicating that at
least Pmax transmissions out of n transmissions are successful. The problem with
such a metric is that it does not capture the position of losses within the sequence
of n transmissions. For example, the schedule allowing for retransmissions shown
in Fig. 1 is not valid if transmissions in two or more successive TDMA slots fail.
Pmax might be large compared to n indicating a good quality link. However,
this might not be entirely true if losses appear in bursts. Unfortunately, this is
exactly what can be observed in practice: losses cluster [7].

It has been shown that burst lengths [7] are a much better metric to capture
worst-case link reliability for networks that have to support time-critical data
delivery. We define worst-case link reliability using the two values Bmax and
Bmin: a link has no more than Bmax consecutive transmission errors and provides
at least Bmin consecutive successful transmissions between two error bursts. It
is possible to determine Bmax and Bmin before network deployment and to
determine a schedule that can handle the observed worst-case [7,13]. Figure 2
shows the schedule for the example topology for Bmax = 2 and Bmin = 1. Again,
this schedule can only be used if E ≤ T .

2.3 Evaluating Worst-Case Link Reliability

During a deployment a schedule based on Bmax and Bmin may become invalid
as channel conditions change for the worse. Likewise, a schedule may become
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inefficient as channel conditions improve. It is therefore desirable to track the
development of Bmax and Bmin over time in order to be able to adapt the
deployed schedule if necessary. Alternatively, it might be possible to identify
and remove the cause of a link quality degradation.

Nodes could generally use the transmission slots that are assigned to them to
test Bmax and Bmin in every epoch. However, most nodes within the network
are not allocated sufficient transmission slots to determine an accurate reading
of Bmax and Bmin. For example, nodes A and C in the topology shown in
Fig. 2 have only 3 consecutive transmission slots available which would not allow
detection of a change from Bmax = 2 and Bmin = 1 to Bmax = 3 and Bmin = 1.

To ensure that all nodes can accurately measure Bmax and Bmin it is neces-
sary to assign them a sufficient number of consecutive slots within the TDMA
schedule. In most scenarios it is not possible to supply all nodes in this manner
because the TDMA epoch E would grow to exceed the time bound T required
by the application.

2.4 BurstProbe

We propose to use dedicated probe slots to evaluate Bmax and Bmin during
network operations. The usage of a set of probe slots is called BurstProbe. Probe
slots are located at the end of the epoch within the TDMA schedule and are
shared among nodes. Nodes are assigned temporary ownership of the probe
slots which they subsequently use to measure link burstiness. A data packet
and potentially a corresponding acknowledgment is transmitted in each probe
slot and the probe sender records the success pattern. The allocation of probe
slots to nodes can either be determined automatically or by a user that decides
to gather data on specific links. Figure 3 shows the schedule for the example
topology including 4 probe slots at the end of the schedule.

The measurement of Bmax and Bmin is carried out at a different point in
time than a data transmission occurs. In the example shown in Fig. 3 node
A transmits data in slots s1, s2 and s3 at the beginning of an epoch, while
link burstiness is measured in slots s13 to s14 at the end of an epoch. Burst-
Probe is only able to capture link burstiness if burst errors on a link are evenly
distributed. However, our evaluation given in Sec. 4 shows that this is the
case in real deployments and that BurstProbe is an effective measurement
tool.

As probe slots are shared in the network, a node will not have access to them
in every epoch (unless the node is assigned exclusive access). Hence, Bmax and
Bmin is not tested in every TDMA epoch. However, link burstiness in practical
deployments does not tend to change quickly but rather over many TDMA
epochs. Thus, measurement of Bmax and Bmin in every other epoch is sufficient
to obtain an accurate picture of link burstiness development over time. This is
shown in the evaluation in Sec. 4 where we analyze real-world deployments using
BurstProbe.
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Fig. 3. Simple topology and possible schedules for lossy channels with Bmax = 2 and
Bmin = 1 and 4 slots for BurstProbes

2.5 BurstProbe Effectiveness and Cost

The effectiveness of the BurstProbe mechanism is governed by the number of
probe slots, the frequency with which probe sequences are executed and the
nature of interference. Generally, the BurstProbe mechanism is more likely to
determine an accurate Bmax and Bmin if a large number of probe slots are used
and probe sequences are executed frequently. Infrequent usage of BurstProbe is
feasible if the interference patterns are present for long periods.

The usage of BurstProbe causes additional energy costs. Firstly, a node must
be active in additional slots to transmit and receive probe messages (Probing
Cost). Secondly, the handling of the collected measurement data is energy costly
as measurement data is stored locally (Storage Cost). Thus, the usage of Burst-
Probe reduces nodes lifetime.

Our experiments (see Sec. 4) show that probing costs are significant. The duty
cycle of a node further away from the sink doubles in realistic settings. However,
it has to be noted that overall duty cycles are still very low. Storage costs in all
cases are generally negligible.

2.6 BurstProbe Limitations and Optimisations

The outlined BurstProbe mechanism is only able to measure interference on a
link properly if the interference occurs during the time the probes are executed.
Strict periodic interference which falls in the transmission slots of a node but
never within the probe slots cannot be detected. This limitation can be resolved
by introducing a dynamic TDMA schedule where the exact schedule is calculated
by all nodes at the start of an epoch. This would allow us to move probe slots
to the location of the transmission slots. Essentially, the number of available
transmission slots for a specific node would be temporarily increased to ensure
that data transmission and probing occurs at the same point in time. Although
such a mechanism could be implemented, the resulting system would be very
complex. However, as our experiments in Sec. 4 show it is not necessary to
implement BurstProbe in such a way; in typical deployments probing slots at
the end of the schedule produce useful measurement results.

In addition, Burstprobe is designed for use in scenarios which have static or
slow changing topologies. It does not provide any procedure to automatically
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distribute new schedules to nodes in a deployment (this type of procedure would
need to be defined specifically for the TDMA system employed if required).
However, it can be used to gather the data necessary to devise new schedules
when needed.

3 BurstProbe Implementation

We implemented BurstProbe for GinMAC [13], a state of the art solution for
time-critical data delivery in wireless sensor networks.

3.1 GinMAC

GinMAC is a wireless sensor networking MAC protocol that has been specifi-
cally designed to support time-critical application scenarios. Currently, GinMAC
is deployed at an oil refinery in Sines, Portugal [12] where it is used to connect
a number of sensors and actuators used to monitor and control product flow
and processing. Nodes are grouped in small networks running GinMAC at dif-
ferent frequencies (called cells). Cells are interconnected using a wired backbone
infrastructure. The use of cells ensures that GinMAC networks are relatively
small, this is necessary to obtain short epochs E and tight delay bounds. Gin-
MAC includes three main features of particular relevance to this task: Offline
Dimensioning, Exclusive TDMA and Delay Conform Reliability Control. A net-
work dimensioning process is carried out before the network is deployed. The
input for the dimensioning process are network and application characteristics
that are assumed to be known before deployment. The output of the dimension-
ing process is a TDMA schedule with epoch length E that each node has to
implement.

The GinMAC TDMA epoch consists of three types of slots: basic slots, addi-
tional slots and unused slots. First, the epoch contains a number of basic slots
which are selected such that within frame length E each sensor can forward i
messages to the sink and the sink can transmit k messages to each actuator that
might be present. Second, the GinMAC epoch uses additional slots to improve
transmission reliability by providing capacity for retransmissions. Finally, the
epoch may contain unused slots which are purely used to improve the duty cycle
of nodes. The above types of slots within the GinMAC epoch must be designed
such that the delay, reliability and energy requirements are met. However, it may
not always be possible to find a schedule that simultaneously fulfils all require-
ments. The epoch E might be too long and thus application delay targets cannot
be met. If that is the case, some dimensioning assumptions must be relaxed.

To facilitate the description of how the GinMAC protocol operates we pro-
vide here an example of how a simple wireless sensor networking topology is
supported using GinMAC. Consider the deployment of the wireless sensor net-
work topology with 7 nodes (including sink) depicted in Fig. 4. At deployment
time the tree topology shown is determined to be feasible. All links are eval-
uated and Bmax = 1 and Bmin = 1 as worst-case on all links is determined.
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Fig. 4. 7 node example topology. SE = 100 slots are used within the GinMAC epoch

Next, the delay requirement is obtained from the application; for this example
we assume that all nodes must be able to transmit one message within T = 1s
to the sink node. Using a slot length of 10ms an epoch with SE = 100 slots is
feasible. Next the number of basic and additional slots can be computed. Slots
are allocated starting from the leaf nodes. Node 6 is assigned the first 2 slots
in the epoch; one for data and one for a potential retransmission. Node 4 is
assigned the next 4 slots to accommodate transmission of data from node 6 and
4 including potential retransmissions. To accommodate transmissions and po-
tential retransmissions a total of 24 slots are allocated for basic and additional
slots to accommodate upstream traffic. Finally, 5 slots are necessary to allow one
broadcast message to be forwarded from the sink to each node within an epoch.
The downstream slots are used within GinMAC to perform time synchronisation
of all nodes with the sink. Tight time synchronisation is necessary to implement
an effective TDMA schedule. In the example, 29 out of 100 available slots are
used for data transmissions. The remaining 71 slots are unused and can be used
to optimise the nodes duty cycle and to grant application processes execution
time. The resulting TDMA schedule is shown in Fig. 4.

The unused slots in GinMAC represent an ideal opportunity for introducing
probing functionality into its transmission schedule without the risk of disrupting
its primary data transmissions.

3.2 BurstProbes in GinMAC

Within the GinMAC protocol the most appropriate place to insert probes is the
area of unused slots at the end of the active slots. We extended GinMAC such
that a variable number of probe slots can be added at the end of the active slots.
When BurstProbe is executed the result of the probe sequence is recorded in the
node’s flash memory.

The inclusion of probe slots within the schedule is not problematical. However,
the recording of the BurstProbe measurement results on flash memory introduces
a number of challenges. Nodes have a finite amount of flash memory which will
be filled over time. At some point it is necessary to clear the used space to enable
further writing. With flash memory entire sectors must be cleared first before
they can subsequently be reused which requires relatively long sector clearance
operations to be performed. The T-mote Sky, the mote used to execute the
GinMAC implementation, has a flash capacity of 1MByte which is split into 16
sectors of size of 64KB, a sector erase cycle typically takes 1S. Assuming only
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50% of the flash is used to record probe data, 52,500 probe patterns could be
written before such erasing cycles would be needed. In the configuration above
this would occur after only approximately 102 hours of use and would occur many
times over the life time of the network whilst still supporting data transmission.
Therefore, it is essential to execute the blocking clearance operations such that
the time-critical TDMA schedule is not disturbed.

4 Debugging GinMAC with BurstProbes

In this section we show that BurstProbe is a very useful tool to accurately
monitor changes in link burstiness over time. These observations can be used
to either refine the TDMA schedule or to identify and remove the interference
source. We also measure the energy consumption of the BurstProbe mechanism.

4.1 Debugging Scenarios

The GinMAC protocol is designed for industrial process automation and control
applications. For example, it is used to monitor production processes in an oil
refinery [13]. In such a setting a number of typical events can be observed which
have an impact on link quality within a deployed network. Typical events are:

1. Obstacle: An obstacle obstructs (temporarily) communication and link qual-
ity degrades. For example, a truck of a maintenance crew is parked tem-
porarily within a communication link or a new production unit is installed
obstructing communication.

2. Interference: Other wireless communication devices or machinery interferes
(temporarily) with transmissions on links. For example, other networks or
machinery such as pumps may interfere with communication.

The aim of BurstProbe is to identify and quantify these events such that a new
TDMA schedule can be computed. In particular, we are interested in adjusting
the number of retransmission slots as discussed in the previous section. Alter-
natively, if no valid schedule can be computed (due to severe link degradation)
the aim of BurstProbe is to then provide debugging information to help identify
and remove the source of link quality degradation. We evaluate the capability of
BurstProbe to deal with both of these events.

For evaluation we use a simple network consisting of 7 nodes as shown in Fig. 4.
For the experiments a schedule with SE = 100 slots of length 10ms is used which
results in an epoch time of 1s. A variable number of transmission slots and probe
slots are used in each of the executed experiments. Probe slots are assigned to
nodes in a round robin fashion; each node carries out a probe sequence every
7 epochs. Probe results are recorded in the node’s flash memory and can be
analyzed offline. For the purpose of evaluating the BurstProbe mechanism each
node also records the number of retransmissions required in each epoch.
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4.2 Interference on a Single Link

In the first experiment we configure the network for Bmax = 1 and Bmin = 1.
As shown in Fig. 4 we need 29 transmission slots within the epoch of SE = 100
slots. Initially, we use SP = 15 slots for probing and the remaining 56 slots
are unused. Each node transmits one data message within every epoch. In our
experiments we run data transmissions for t = 600s. From t = 200s to t = 400s
transmissions between node 4 and node 2 are disturbed. The disturbance is
created by a purpose built interferer node that induces bursts of random size.
Bursts have a worst-case characteristic of Bmax = 5 and Bmin = 1. Using an
interferer node ensures that a ground truth can be established. The resulting
link characteristic emulates a situation in which an interferer such as electric
machinery or an obstacle would cause temporary link quality degradation.

Figure 5 a) shows the message reception over time as recorded at the sink
node. Every 5 epochs the number of messages received per node over the 5
epoch time period is plotted. At first all messages generated by all nodes are
received at the sink. When the interference starts messages generated by node 4
and node 6 are lost. After the interference stops message losses return again to
zero. By observing message arrival at the sink it is only possible to determine
that a network problem was present from t = 200s to t = 400s. However, it is
not possible to infer from observations at the sink the location of the problem
and how it could be cured. For this, better means of network debugging are
necessary.

To gain more insight in the nature of the network problem we look at the
necessary retransmission on links in the network. As messages have been lost
some links must have used retransmission slots. The usage of retransmissions
over time on the link between node 4 and 2 is shown in Fig. 5 b). Node 4 has
4 transmission slots available to transmit 2 messages every epoch to node 2. If
more than 2 retransmissions are recorded within an epoch messages must have
been lost. Node 6 is affected most by the link degradation as node 4 aims to
deliver its own message first before forwarding messages of child nodes. The
recordings of retransmissions on all other links in the network do not reveal
retransmissions which shows that something must have interfered exclusively on
the link between node 4 and node 2 at 200s < t < 400s. However, even such
a detailed recording of retransmissions over time does not help in determining
how the TDMA schedule should be configured to deal with the problematic link.
From the logs we can infer that the selected values for Bmax and Bmin on link
4−2 are not correct. We cannot, however, infer the true value of Bmax and Bmin

with this approach.
To obtain the true value of Bmax and Bmin we use BurstProbe. Figure 5 c)

shows the recording of BurstProbe results obtained every 7 epochs on link 4−2.
Between epoch 200 and 250 Bmax increases to a value of 4 while Bmin drops to
2. The worst-case over the affected period is a Bmax = 5 and Bmin = 1. This
measurement reflects the worst-case interference induced by the interfering node.
With this data it is now possible to decide on corrective measures. A first option
is to correct the schedule to include slots for the appropriate amount of potential
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Fig. 5. Message receptions over time at the sink; re-transmissions over time at link
4 − 2; BurstProbe result for link 4 − 2

retransmissions on link 4−2. A second option would be to exclude the link from
the topology if it is considered to be of a too poor quality. A third option would
be to investigate the deployment to see if a potential interferer or an obstacle
can be removed. For the purpose of this experiment, we decide to correct the
TDMA schedule for link 4− 2 assuming a Bmax = 4 and Bmin = 1. As only one
measurement showed a Bmax = 5 we do not include it in the corrections.

We repeated our experiment after applying the corrections. Link 4 − 2 now
provides 10 transmission slots to handle Bmax = 4 and Bmin = 1. Fig. 6 a) shows
that almost all messages are delivered to the sink. Figure 6 b) depicts that as
expected 3 or 4 retransmissions are required. The probe results give the same
indication on Bmax and Bmin. As we dimension for Bmax = 4 and Bmin = 1 the
rare worst-case of Bmax = 5 and Bmin = 1 is not captured and some losses still
occur. In summary, BurstProbe enables us to accurately determine a schedule
that is able to handle the link quality degradation in the period 200s < t < 400s.

We also measured the energy consumption of BurstProbe. First, we run the
experiment with BurstProbe disabled and measure the nodes’ transceiver us-
age time and flash usage time. Thereafter, we repeat the experiment with the
BurstProbe mechanism. Our results show that the flash usage time for all nodes
increases by approximately 20ms over the 600s experiment. This overhead is very
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Fig. 6. Message reception over time at the sink; re-transmissions over time at link 4−2;
BurstProbe result for link 4 − 2 using the re-provisioned epoch

Table 1. Radio Duty Cycle with and without BurtsProbes

Node Standard Probes Increase
2 4.11% 5.34% 1.23%
4 3.02% 4.77% 1.75%
6 0.99% 2.87% 1.88%

small given that it is the equivalent of transmitting 4 additional packets over the
10 minute experiment. The changes in the transceiver duty cycle are shown in
Tab 1. Based on the additional slots we expected an increase of 1.9% but the
increase was slightly less due to traffic fluctuations caused by interference.

It is possible to decrease the energy consumption for the BurstProbe mech-
anism by reducing the number of probe slots. To investigate the effect of the
number of probe slots on the accuracy of Bmin and Bmax we ran the experiment
with SP = {6, 8, 10, 12} probe slots. The results are shown in Fig. 7. Only for
SP = 6 BurstProbe cannot identify the worst-case of Bmax = 5 and Bmin = 1 .
Thus, a probe number of SP = 8 is sufficient for our application scenario. With
Sp = 8, the energy cost for BurstProbe for node 4 decreases from 4.77% with
SP = 15 to 3.87%.
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Fig. 7. Bmin and Bmax measurement with SP = {6, 8, 10, 12} probe slots

4.3 Network Wide Interference

In the second experiment we configure the network with the same initial configura-
tion as in the first experiment in Sec. 4.2. The network has 7 nodes, using Bmax = 1
and Bmin = 1, with an epoch of size SE = 100 slots and SP = 15 probe slots. The
experiment was deployed in the shape of an L, centred at the sink with each of the
two branches running 90 degrees away from one another. As shown in Fig. 4 the
first branch consisted of nodes 2, 4, 6 whilst the second had nodes 3, 5, 7. The net-
work is used for t = 600s to transmit data from each node to the sink at a rate of
one packet per epoch per node. From t = 200s to t = 400s a Wi-Fi network occu-
pying the same frequency as the network is enabled which generates interference.
The Wi-Fi access point is located in the vicinity of node 3.

Figure 8 shows both the BurstProbe transmission results and the number of
retransmissions recorded by each node. The figure is divided into two columns
and three rows of smaller plots. The first column has the recorded values of
branch one whilst the second has the values of branch two. With each row, the
distance from the sink increases. The figure shows significant interference on
links 2− 1, 3− 1, 5− 3 and 7− 5 where on a number of occasions all 15 probes
were recorded as lost. At these points in time it is impossible to accurately
calculate the values of Bmax and Bmin. The worst-case value for Bmax and
Bmin where their value could be calculated was Bmax = 14 and Bmin = 1. This
significant interference observed by the probe measurements was also seen in the
high number of retransmissions recorded at each of the above links and high
packet loss rate observed at the sink.

Due to the significance of the interference experienced, resolving the issues
in a similar fashion to the first experiment is difficult. The worst-case values
of Bmax and Bmin were not observed in the experiment as 15 probes proved
insufficient. Furthermore, using the worst-case observable value of Bmax = 14
and Bmin = 1 to re-provision the network would require 197 transmission slots.
This is more slots than are available within the epoch. Although the epoch size
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Fig. 8. Network wide interference caused by Wi-Fi

could be increased, as the epoch size increases so does the message delivery delay.
Here the required epoch size would increase the communications delay beyond
the value acceptable to the application. Therefore, simply re-provisioning the
network is not a viable solution under the interference observed.

The second option to addressing interference issues, discussed in Sec. 4.2, is to
remove problem links. The interference is widespread and occurs on the majority
of links, simply removing links would not lead to a suitable solution. Therefore
the only solution here is to identify and remove the source of the interference.

Figure 8 shows that the interference was recorded as being more prominent
on links 2 − 1, 3 − 1, 5 − 3 and 7 − 5. This information could be used in a
real deployment to identify the location of the interference source. Examining
Fig. 8 we can deduce that the interference source must be in the vicinity of the
sink and the first branch as the interference in the second branch reduces with
distance from the sink. This would provide valuable information in pinpointing
the location of the interference to eradicate it. These results confirm the actual
location of the Wi-Fi interference source as in the vicinity of node 3.

5 Related Work

To date WSN research has produced a number of solutions aimed at addressing
timely data delivery in wireless sensor networks [7,3,4,13]. All of these solutions
require precise knowledge of available link quality in order to select transmission
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schedules. Thus, the BurstProbe mechanism outlined in this paper may be ap-
plied to any of these solutions. With regards to the BurstProbe approach and
the task of debugging wireless sensor networks in general, earlier techniques used
for analysing performance problems relied on the data sink retrieving live debug
data from each node in the network [10]. Other techniques used additional nodes
to monitor radio traffic and problems [1] [11]. The BurstProbe approach is based
on the concept of inserting dedicated probes into unused transmission slots and
recording the probe result patterns locally. Other examples where performance
data is stored locally on motes include [8] where an approach for diagnosing per-
formance anomalies is presented that highlights the potential benefits of using
local flash storage of system data, and Envirolog [6] that is designed to allow
the user to produce an exact replay of recorded events and conditions to aide
performance evaluation. Also related are [5] and [9] which embed performance
related data in application messages to employ a passive approach to anomaly
detection. PD2 [2] takes an alternative approach by focusing on data flows that
individual applications generate, relating poor application performance to loss
and latencies of data flows. This allows performance monitoring and debugging
information to only be enabled on the nodes that data flows are known to tra-
verse, thus reducing the overall overheads imposed. However, whilst all of these
proposed approaches offer different techniques and models for recording and in
some cases disseminating performance information, BurstProbe provides novelty
by provisioning specific transmission slots to insert dedicated probing that can
help determine more accurate information about loss and retransmissions that
are occurring throughout a wireless sensor network deployment.

6 Conclusion

In this paper we presented BurstProbe, a mechanism useful to debug time-critical
WSNs. As shown, BurstProbe is a useful tool for measuring changes in link
burstiness over time within a running network. The BurstProbe measurements
can be used to correct TDMA schedules or to locate sources of interference.
A key characteristic of the BurstProbe mechanism is that it can be included
in WSN systems such as GinMAC or WirelessHART without interfering with
the time-critical data delivery. The cost of the BurstProbe mechanism in terms
of energy cannot be neglected; in the described experiments node duty cycles
increase in the order of 2%. However, we believe that such relatively modest
energy investment is necessary in order to be able to debug WSN for time-
critical data delivery. In our prototype deployment at an oil refinery in Sines,
Portugal the resulting node lifetime of a few months is acceptable as default
system maintenance is carried out frequently. In the paper we discussed the
basic functionality of BurstProbe but many optimisations and refinements are
not explored. Firstly, it is necessary to investigate scheduling mechanisms for
probe slots. It would be useful to schedule more probes on links that currently
experience problems while reducing probe frequency on good links. Secondly, it
would be useful to implement a mechanism to fetch recorded burst probe data
remotely rather than collecting nodes and extracting the data from the flash
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manually for analysis. A mechanism as described in [9] might be a good starting
point for such extension.
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Fredrik Österlind, Joakim Eriksson, and Niclas Finne

Swedish Institute of Computer Science
{adam,luca,nvt,fros,joakime,nfi}@sics.se

Abstract. Sensornet protocols periodically broadcast beacons for
neighborhood information advertisement, but beacon transmissions are
costly when power-saving radio duty cycling mechanisms are used. We
show that piggybacking multiple beacons in a single transmission signif-
icantly reduces transmission costs and argue that this shows the need
for a new layer in the sensornet stack—an announcement layer—that co-
ordinates beacons across upper layer protocols. An announcement layer
piggybacks beacons and coordinates their transmission so that the total
number of transmissions is reduced. With an announcement layer, new
or mobile nodes can quickly gather announcement information from all
neighbors and all protocols by issuing an announcement pull operation.
Likewise, protocols can quickly disseminate new announcement informa-
tion to all neighbors by issuing an announcement push operation. We
have implemented an announcement layer in the Contiki operating sys-
tem and three data collection and dissemination protocols on top of the
announcement layer. We show that beacon coordination both improves
protocol performance and reduces power consumption.

1 Introduction

Sensor network protocols use periodic beacons to advertise information to
neighbors. Examples include routing cost gradients in data collection pro-
tocols [11,23,24], version or sequence numbers in data dissemination proto-
cols [12,15,16], and presence information in neighbor discovery protocols [8,14].
Beacons are transmitted both periodically and when protocols detect poten-
tial inconsistencies. For example, a node in a collection protocol that detects
a loop repairs the network by asking its neighbors for the latest routing cost
gradient [11], and a node in a dissemination protocol that has an older version
than its neighbors achieves consistency by asking its neighbors for the latest
version [15].

Beacons are transmitted as broadcasts so that they reach all nodes in the
neighborhood of the transmitter. Broadcast are, however, costly in terms of
power since low-power networks duty cycle their radios. Many protocols therefore
attempt to reduce the amount of beacons they transmit. For example, the CTP
data collection protocol uses adaptive beaconing [11] and the Trickle and the
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Announcement layer

MAC / Link layers

Fig. 1. The announcement layer coordinates beacons from multiple protocols. This
allows the number of beacon transmissions to be reduced and announcement operations
to be coordinated across protocols.

RPL protocols uses beacon suppression [15,23]. These solutions only work for
one individual protocol, however. When multiple protocols are used concurrently,
each protocol will transmit their beacons independently of each other, increasing
the power consumption.

We argue that there are significant power savings to be made through co-
ordinating and piggybacking beacons from multiple protocols. We present the
announcement layer, a beacon coordination layer for the sensornet stack that
transmission of periodic beacons from multiple protocols, piggyback multiple
beacons into each transmission to reduce the total amount of beacon transmis-
sions, and provide operations for pushing announcements to the neighborhood
and for requesting announcements from neighbors. Figure 1 shows how the an-
nouncement layer fit into the network stack.

The announcement layer defines two operations: push and pull. Push quickly
transmit an announcement to the neighborhood and pull requests announce-
ments from all neighbors. The push operation is used e.g. when a collection
protocol finds a better route and the pull operation is used e.g. when a collec-
tion protocol node detects a routing loop and the latest routing gradients are
needed.

We argue that an announcement layer provide at least three benefits. Re-
duction of bandwidth usage and network congestion since multiple beacons are
collected in a single broadcast transmission (Section 5.1). Reduction of power
consumption since the marginal cost of sending larger packets is low (Section 5).
Easier inter-protocol coordination since announcements from multiple concur-
rent protocols are collected at a single point in the network stack, push and pull
operations can be made across protocols (Section 5.2).

We make our case as follows. We demonstrate that beacon transmissions are
costly that multiple transmissions even more so (Section 2). This motivates the
need for an announcement layer (Section 3). We have implemented an announce-
ment layer in Contiki (Section 4) and demonstrate that the use of an announce-
ment layer reduces the number of beacon transmissions and the power consump-
tion in a series of simulations and testbed experiments (Section 5) and discuss
how an announcement layer differs from existing approaches (Section 6).
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2 Motivation: Beacon Transmissions Are Costly

The background to the announcements programming abstraction stems from
the periodic broadcast beacons used by sensor network protocols to do one-hop
neighborhood information advertisement, and the observation that radio duty
cycling makes broadcast expensive.

2.1 Sensornet Protocols Use Beacons

Sensor network protocols use periodic beacon transmissions to advertise informa-
tion to the one-hop neighborhood. Examples include route metrics in data col-
lection protocols [11] and version numbers in data dissemination protocols [12].

Information advertisement within the physical neighborhood of sensor nodes
may also serve functionality reaching up to the application level, e.g., to co-
ordinate sensors and actuators in a control application [5]. Programming sys-
tems for such application-level information sharing exist, such as Hood [22] and
TeenyLime [4].

Beacons are typically transmitted periodically, but the period often changes
over time. Many protocols exponentially increase their beacon rate when the in-
formation in the beacons has been transmitted several times and is no longer new.
Examples include the Trickle single-packet data dissemination protocol [15], the
multi-packet data dissemination protocol Deluge [12], the CTP data collection
protocol [11], and the RPL low-power IPv6 routing protocol [23].

2.2 Duty Cycling Makes Beacon Transmissions Costly

Beacons need to reach all nodes in the neighborhood of the transmitting node.
Beacons are therefore sent as broadcast messages, but since radio duty cycling
must be used to maintain a low power consumption, broadcast messages become
comparatively expensive in terms of power consumption.

To send a broadcast transmission, the sender must make sure that all its
neighbors are awake to receive the broadcast transmission. Ensuring that all
neighbors are awake to receive the transmission can be done in two ways: either
by having all nodes agree on scheduled rendez-vous when all nodes are simul-
taneously awake, or by having the sender explicitly wake up all its neighbors.
Scheduled rendez-vous are costly since nodes must wake up for every rendez-
vous, even if no data is to be transmitted. Explicit wake-ups are expensive since
the sender must make sure that all nodes receive the message, thus typically
needs to transmit the message multiple times. In contrast, for a unicast trans-
mission, it is enough that only one node—the receiver—is awake to receive the
message. Thus unicast transmissions are fundamentally less expensive.

We perform a set of experiments to quantify the power cost of broadcast
transmissions. We use Contiki 2.5 with the ContikiMAC duty cycling protocol,
the default duty cycling protocol in Contiki 2.5. ContikiMAC is a low-power-
listening MAC protocol that builds on mechanisms from many existing state-of-
the-art duty cycling protocols [2,10,17,19] but adds a very power-efficient channel
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Fig. 2. After a successful transmission, the sender has learned the channel sampling
phase of the receiver, and subsequently needs to send only two transmissions
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Fig. 3. A broadcast transmission must wake up all neighbors. The sender therefore
extends the packet train for a full channel sampling period.

sampling mechanism. From B-MAC [19], ContikiMAC lends the basic idea of
low-power listening. From X-MAC [2], ContikiMAC uses the idea of a packetized
preamble. From WiseMAC [10], ContikiMAC uses the phase-lock mechanism,
which we describe below. From BoX-MAC [17], ContikiMAC uses the idea of
using the data packet as the wake-up signal.

Figure 2 shows the basic operation of ContikiMAC. Nodes wake up period-
ically to sample the radio medium for transmissions. This is performed in a
power-efficient way: a node turns the radio on for only 192 microseconds to mea-
sure the received signal strength. If this indicates a transmission from a neighbor,
the node keeps the radio on. To avoid missing transmissions, the node samples
the radio medium twice within 0.5 ms. A sender triggers a transmission by send-
ing a train of data packets, until one packet finds the receiver’s radio on. Upon
receiving a packet, the receiver answers with a link-layer acknowledgment and
the sender stops transmitting the packet train. In ContikiMAC, unicast trans-
missions are power-efficient because senders phase-lock to the wake-up interval
of its neighbors [10]. A sender synchronizes to the wake-up phase after the suc-
cessful transmission, as shown in Fig. 2. For broadcasts, the sender needs to send
its packet train for a full channel sampling period to ensure that all neighbors
have heard the transmission, as shown in Fig. 3.

To quantify the relative cost of broadcast and unicast, we perform an exper-
iment using two TMote Sky motes running Contiki and ContikiMAC. We use
a channel sampling rate of 16 Hz. We run two experiments, one where we send
broadcast traffic and one where we send unicast traffic, and vary the send rate.
We measure the radio duty cycle using Contiki’s built-in software-based power
profiler [6]. Figure 4 shows the results. We observe that the cost of broadcast is
significantly higher than that of unicast, and that the marginal increase in power
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Fig. 5. Multiple, small broadcast transmissions are significantly more costly than a
single broadcast transmission, for the same amount of data

consumption with increasing send rate is higher for broadcast. Therefore, there is
much larger room for improvement in optimizing broadcast transmissions rather
than unicast transmissions.

2.3 Multiple Transmissions Are More Costly

We perform another experiment, using the setup as above, where we transmit a
fixed amount of data split into one, two, three, or four broadcast transmissions.
The total amount of data is the same in all four cases, and we vary the amount
of data across experiments. The purpose is to study the power consumption of
multiple transmissions versus that of a single transmission, containing the same
amount of data.

The result is shown in Fig. 5 and shows that multiple transmissions are sig-
nificantly more costly than a single transmission, with the same amount of data.
Also, the marginal cost of transmitting additional bytes in a single broadcast is
significantly lower than the cost of transmitting the data as multiple transmis-
sions. This demonstrates that there is a strong incentive to reduce the number
of broadcast transmissions by collecting multiple beacons into a single, larger
packet.
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3 The Announcement Layer

The announcement layer provides beacon coordination for upper layer proto-
cols. Protocols register announcements with the announcement layer and the
announcement layer takes care of the periodic transmission of the announce-
ments. An announcement is the information that a protocol would otherwise
periodically transmit as beacons.

The announcement layer piggybacks announcements from multiple protocols
in each beacon transmission and coordinates the transmissions so that the to-
tal amount of transmissions is reduced. Since the information sent in each an-
nouncement is typically small [11,15,16], several announcements often fit in a
single beacon.

In addition to beacon coordination, the announcement layer provide a small
but powerful set of operations that give protocols the ability to push announce-
ments to neighbors and to pull announcements from neighbors.

An announcement is a key-value pair. The key is an integer that uniquely
identifies the announcement. The value is a data array. The semantics of the value
in an announcement is application-specific and opaque to the announcement
mechanism.

Each announcement has a minimum rate for its periodic transmissions. The
rate is set by the protocol that registered the announcement, and can be dif-
ferent for different announcements. From the minimum rates set for each an-
nouncement, the announcement layer computes a schedule that ensures that one
and only one beacon is transmitted for every beacon interval. Since multiple
announcements are consolidated into each beacon transmission, it is enough to
send one beacon for each interval, thus reducing the total amount of beacon
transmissions. This also means that an announcement may be transmitted more
often than its minimum rate, which is allowed by the semantics of the announce-
ments layer because protocols specify only the minimum transmission rate, not
the maximum rate.

Each announcement has a scope that is either node scope or network scope.
Node-scope announcements have a value that is bound to the node, whereas
network-scope announcements have a value that is shared across the network.
An example of a node-scope announcement is a hops-to-sink metric in a data
collection protocol, which is specific to the node that registered the announce-
ment. An example of a network-scope announcement is a global version number
in a data dissemination protocol, which is the same for all nodes in the network.

3.1 Beacon Coordination

The announcement layer coordinates beacon transmissions for all registered an-
nouncements. The values from multiple beacons is collected into a single broad-
cast transmission. The beacon intervals from all protocols are coordinated to
reduce the total amount of beacon transmissions.

Each protocol registers its maximal beacon interval with the announcement
layer. The announcement layer ensures that at least one beacon is transmitted
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Fig. 6. Beacon coordination: Protocols A, B, and C have registered announcements A,
B, and C. Data from all announcements are consolidated into each beacon transmission.
With beacon coordination, only one beacon per announcement interval is transmitted.
In this example, beacon coordination reduces the number of beacon transmissions from
22 to 12.

within this time interval. If two or more protocols need to transmit a beacon
within a given time interval, beacon coordination will see to it that only the first
beacon is sent. Since each beacon contains all announcements, the first trans-
mission is enough to ensure that both announcements are transmitted within
their respective intervals.

The beacon coordination concept is illustrated in Fig. 6. In the illustration,
three protocols have registered three announcements. Each announcement has a
different beacon interval. A beacon is to be sent randomly within each interval.
Without beacon coordination and beacon consolidation, each protocol would
send their own beacon messages without coordinating with the other protocols
and the system in Fig. 6 would transmit 22 beacons. By contrast, with beacon
coordination and beacon consolidation, the system sends only 12 beacons.

The beacon coordination algorithm is simple. For each new announcement, a
timer fires randomly within each interval. When the timer fires, it checks if a
beacon has already been transmitted within its interval. Unless the protocol has
updated the value of its announcement since the last beacon transmission, there
is no need to send a new beacon and the transmission is consequently cancelled.

3.2 Announcement Operations

The announcement layer defines two primary operations, push and pull. In addi-
tion, the announcements layer provides functions for registering announcement,
to set the value of an announcement, and to set the minimum rate for the periodic
transmission of announcements. Figure 7 shows the operations and functions.

Protocols that use announcements first register the announcement with the
register function. The registration is a simple procedure that binds a key to the
announcement and sets its scope. After registering the announcement, the pro-
tocol will begin receiving notifications when neighbors transmit their announce-
ments. This is handled via a callback function that is given as an argument to
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push(key) Pushes an announcement to neighbors.

pull(key) Pulls an announcement from neighbors.

register(key, scope, callback) Registers an announcement and set its scope.

setValue(key, value) Sets the value of an announcement.

setMinRate(key, rate) Sets the min periodic transmission rate.

Fig. 7. Announcement layer operations

the register function. The protocol gives the announcement its value with the
setValue function. The minimum transmission rate of the announcement is set
with the setMinRate function.

The push and pull operations are used for pushing announcements to the
neighborhood and to request announcements from neighbors, respectively. A
push causes the transmission of an announcement to all neighbors. Protocols can
use this operation to send new information to neighbors quickly. For example,
a node in a data collection protocol that learns a significantly better route may
want to quickly let its neighbors know of this new route. The node would set a
new value for its announcement with the setValue function, and then call the
push operation to push the changed routing metric to its neighbors.

The pull operation requests announcements from neighbors. The operation
causes one or more neighbors to send their announcements to the node that
issued the pull. This operation is used by protocols that are able to discover
when a node needs information from its neighbors. For example, when a mobile
node moves into a new environment it needs to gather information about its
network environment, such as routing metrics. It then issues a pull, which causes
its neighbors to send their announcements to the requesting node.

Although both the push and pull operations are defined to operate only on
a single announcement, the beacon consolidation will collect all a node’s an-
nouncements the beacon transmission. This means that a single push operation
will push all announcements to neighbors. Likewise, a single pull operation will
pull all announcements from neighbors.

The push and pull operations are based on the observed behavior of existing
protocols:

Data collection with CTP. The CTP data collection protocol [11] defines an
implicit push operation and an explicit pull operation. When the routing metric
of a node changes significantly, CTP quickly transmits a beacon message with
the new routing metric, which constitutes an implicit push operation. This makes
the new information propagate faster than with the usual periodic dissemination.
If a node detects that its routing metric is out of date, e.g., if a loop is detected
or if the node has just started, CTP sends a beacon with a pull-bit set, to which
neighbors respond by sending a beacon. This is an explicit pull operation.

Single-packet data dissemination with Trickle. The Trickle single-packet dis-
semination protocol [15] defines implicit push and pull operations. When Trickle
starts sending a new version of the data to be disseminated, Trickle nodes issue
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an implicit push to rapidly propagate the new version through the network. Also,
if a node notices that a neighbor has an older version than the current global
version, the node performs an implicit push by directly broadcasting a beacon
with the latest version. When a node boots up, it performs an implicit pull op-
eration by sending a beacon with version number zero, which causes neighbors
to broadcast the latest version.

Low-power IPv6 routing with RPL. The RPL IPv6 routing protocol defines
explicit push and pull operations [21,23]. Nodes periodically transmit DODAG
Information Objects (DIO) messages to let nodes in their one-hop neighborhood
discover and maintain routes. The DIOs are transmitted at adaptive intervals
and RPL also uses suppression to reduce the amount of transmissions. The
combined effect of adaptive intervals and suppression may cause a node that
has just started or moved into a new neighborhood to wait for a long time
before getting a DIO. An RPL node may therefore send a DODAG Information
Solicitation (DIS) message, to which neighbors reply with DIO messages. This
constitutes an explicit pull.

Neighbor discovery. Many neighbor discovery protocols for mobile sensor net-
works [8,9,13,25] define both push and pull operations, which may be triggered
by physical mobility. Nodes transmit beacons to announce their presence, con-
stituting an explicit push, and may request information from their neighborhood
to gather the identity of surrounding devices when the connectivity may change
because of a changing physical location.

3.3 Protocol Implementations with an Announcement Layer

To demonstrate the feasibility of the announcement layer as a programming
primitive for network protocols, we have rewritten three of the most common
sensor network protocols to use announcements: data collection, single-packet
data dissemination, and multi-packet data dissemination. All three protocol im-
plementations are based on the original implementations in Contiki [7]. The
data collection protocol is Contiki collect, an address-free, tree-based collection
protocol similar to the TinyOS Collection Tree Protocol [11]. The single-packet
data dissemination protocol is based on the Trickle protocol by Levis et al [15].
The multi-packet data dissemination protocol is Deluge [12]. We describe the
implementation of the data collection protocol in detail below.

The starting point for our announcements-based data collection protocol is
the Contiki collect protocol. Contiki collect builds a tree, rooted at the sink, by
letting each node estimate the expected number of transmissions (ETX) to reach
the sink. Nodes outside the neighborhood of the sink select the neighbor with
the lowest ETX routing cost as their parent in the tree. Each node announces
its ETX value to its neighbors through periodic beacons. The beacons are trans-
mitted with an increasing interval, but when a node finds a significantly better
parent, the beacon interval is reset to a low value.

The original Contiki collect module [7] uses periodic beacons to advertise
routing cost. In our rewritten variant, the protocol instead uses announcements
to advertise its routing cost. An excerpt of the rewritten version is shown as
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collectInit () {
register(COLLECT_KEY, NODE_SCOPE)
pull(COLLECT_KEY)

}
receivedAnnouncement(fromAddress, etx) {

addNeighbor(fromAddress, etx)
updateLocalETX ()
setValue(COLLECT_KEY, localETX)
if (newParent) {

push(COLLECT_KEY)
setMinRate(COLLECT_KEY, lowestRate)

}
}
sendDataPacket () {

if (parent == nil) {
pull(COLLECT_KEY)

} else {
sendto(parent)

}
}

Fig. 8. The relevant parts of the data collection protocol with announcements, in
pseudo code

pseudo code in Fig. 8. When the collection protocol is initiated, it registers an
announcement with a pre-defined key and with the node scope. This announce-
ment is used for advertising route metrics. When the node starts, it does not
have any route information and therefore issues a pull to get route information
from neighbors. Likewise, when a node has no parent, it performs a pull to ob-
tain one. When a new parent has been found, the node does a push to let others
know about its new route.

4 Implementation

We have implemented an announcement layer in the Contiki operating system
and the Rime network stack [7]. The announcement layer is implemented as a
separate Rime module that uses a Rime broadcast channel to send and receive
its beacon messages.

Beacon coordination consolidates all announcements into each beacon packet,
but technology-specific limitations on radio packet size may restrict the amount
of announcements that can be consolidated into each packet. For example, the
popular 802.15.4-2006 standard defines a maximum packet size of 127 bytes1.
Our announcement layer implementation handles this by breaking up large bea-
cons into multiple broadcast transmissions.

To avoid instantaneous congestion caused by network synchronization, our
implementations of the push and pull operations incur a random wait period
before the beacons are transmitted. In our implementation, we set the waiting
period to a random time between 0 and 8 seconds.

1 Upcoming versions of the standard increase the maximum packet size to 2047 bytes.
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5 Evaluation

We evaluate three aspects of the announcement layer. First, we quantify the bea-
con coordination mechanism and the resulting reduction in power consumption.
Second, we quantify the cost of the announcement operation in terms of power
consumption and the number of packet transmissions. Third, we use a testbed
experiment to study a sensor network with concurrent protocols.

We use both simulation and testbed experiments. All simulations and ex-
periments are carried out with Tmote Sky motes. For our simulations, we use
the Contiki Cooja network simulator and the MSPsim Tmote Sky emulator [20].
Cooja and MSPsim provides a cycle-level accurate emulation of the MSP430 mi-
crocontroller and a bit-level accurate emulation of the CC2420 radio transceiver,
which makes it possible to correctly emulate low-level protocols such as radio
duty cycling mechanisms. For our testbed experiments, we use a 24-node Tmote
Sky testbed in an office environment with a wired backchannel through which
we obtain logging information. Throughout our experiments, we use Contiki 2.5
and the ContikiMAC low-power listening duty cycling mechanism with a channel
check rate of 8 Hz, which results in an idle duty cycle of 0.5%.

We use the radio duty cycle as a proxy for energy consumption because the
radio transceiver is the most power consuming component. We use Contiki’s
power profiler to measure the radio duty cycle [6], both the amount of time that
the radio spends in listen mode and in transmit mode.

5.1 Beacon Coordination

The purpose of beacon coordination is to reduce the number of beacon transmis-
sions by consolidating all announcements into every beacon and by suppressing
the transmission of redundant beacons.

To evaluate the effectiveness of the beacon coordination mechanism, we set up
a system with a variable number of announcements and set a fixed minimum rate
of ten seconds for each announcement. We vary the number of announcements
and measure the number of beacons that get transmitted as well as the total
power consumption of the system. We run the system both with and without
beacon coordination.

Figure 9 shows the result. We see that without beacon coordination, the num-
ber of beacons per interval increases with the increasing number of announce-
ments. With beacon coordination, however, the number of beacons remains at
one per interval. Similarly, without beacon coordination, the power consump-
tion grows with the number of announcements, but with beacon coordination
the power consumption stays almost constant, even though there is a slight in-
crease in power consumption due to the additional size of each beacon.

5.2 The Cost of Announcement Operations

The push and pull announcement operations involve the transmission and recep-
tion of network traffic, incurring power consumption in the involved nodes. We
quantify the effect of these operations on the power consumption by conducting
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Fig. 10. The cost of the push and pull operations in a 40 node network where all nodes
are in range of each other

three experiments. First, we measure the effect on power consumption caused
by the push operation in a dense network with a varying number of nodes that
issue a push operation. Second, we measure the effect of the pull operation in the
same situation. Third, we quantify the marginal cost of an increasing number of
announcements being pushed in a single push operation.

To quantify the cost of the push operation, we set up a simulated network with
40 nodes. A push operation results in a broadcast transmission, which reaches
all nodes in range. To create a situation in which the push operation was as
expensive as possible, we set up our network so that all nodes are transmission
range of each other. The nodes issue a push every ten seconds and we vary the
amount of nodes that issue a push from one to all nodes. We measure the radio
duty cycle of the nodes over the ten seconds between each push operation. The
result is shown in the left graph in Fig. 10. As expected, we see that the cost
grows linearly with the amount of nodes issuing a push.

The right graph in Fig. 10 shows the result of the same experiment, but with
nodes issuing pull operations instead of push operations. We see that the cost is
higher than for the push operation, but that it is relatively constant regardless of
the number of nodes that issue a pull operation. This is due to the delay between
the reception of a pull request and the corresponding push response: with many
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pull requests, nodes will receive several requests before eventually responding
with a push. Thus the resulting power consumption is not significantly affected
by the number of simultaneous pull operations.

5.3 Case Study: Collection and Dissemination

To study the aggregate effects of announcements on a real-world scenario, we
perform a data collection testbed experiment. We use the Contiki shell to collect
sensor data from a 24 node office testbed. The Contiki shell has one command for
setting up a sink node, collect, which forms a collection tree with the Contiki
collect protocol, and one command for sending data through the collection tree,
send. To start the commands on the nodes in the network, the Contiki shell
provides a mechanism for starting commands on other nodes in the network,
netcmd. The netcmd command uses reliable data dissemination with Trickle
to disseminate the commands through the network. Both the data collection
protocol and the data dissemination protocols use beacons and we expect to see
a reduction in the number of beacons in the network.

We run two versions of the experiment, one with announcement-based imple-
mentations of the protocols and one without. In both experiments we use Con-
tikiMAC with a channel check rate of 8 Hz. We run the network for one hour for
each experiment. With both experiments, we receive an average of 54 packets per
node. Two nodes have poor connectivity and only reported 1 and 3 packets respec-
tively in one experiment, and 1 and 7 packets in the other experiment, whereas the
others reported 60 packets. The longest path was 5 hops long.

We measure the power consumption per Rime channel using Contiki’s power
profiler [6]. We see the resulting breakdown in Fig. 11. The boxes show the
amount of transmission and reception power spent on beacons and data packets,
respectively. The results show that the announcement-based implementation is
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able to reduce the number of beacons. The reduction is due to the suppression
of data dissemination beacons, which account for 9% of the total number of
beacons in the non-announcement-based implementation.

6 Related Work

The idea of inserting a new layer in the network stack to coordinate data from
multiple upper-layer protocols has been used in many contexts. Balakrishnan et
al. [1] introduced an explicit congestion management layer for Internet hosts.
Choi et al. [3] add an isolation layer that shields different sensor network proto-
cols from each other. The announcement layer is different because it focuses on
a specific traffic type: broadcast beacons. Furthermore, since the announcement
layer do not shield protocols from each other, there is no performance penalty
as for the isolation layer by Choi et al [3].

There are many examples where information from multiple packets are com-
bined into a single transmission to improve performance. Lin and Levis [16] ob-
serve that packing multiple pieces of information into the same physical packet
aids in reducing the performance penalty due to broadcast transmissions. How-
ever, their scope is limited to information belonging to a single protocol (DIP),
and comes hardwired with the protocol implementation itself. By contrast, the
announcement layer provide a re-usable, generic mechanism that can be used
across different protocols.

The push and pull operations of the announcement layer are similar to the
operations used in sensor network neighborhood abstractions [18,22]. However,
the latter aim at redefining the notion of physical neighborhood mostly based
on application-level requirements. Announcements, instead, target network-level
functionality that typically leverage communication in the physical neighbor-
hood. In addition, some of the aforementioned systems [18,22] inherently pro-
vide a push-only communication paradigm, whereas announcements also provide
a pull operation.

7 Conclusions

We present the announcement layer that piggybacks announcements from mul-
tiple protocols and coordinates their transmission to reduce the total amount
of beacons. The background to the announcement layer is the observation that
beacon transmissions are costly, and multiple transmissions even more so. In ad-
dition to beacon coordination, the announcement layer provides inter-protocol
coordination through two operations: push and pull. We have implemented an
announcement layer in Contiki and rewritten three staple sensornet protocols on
top of it: data collection, single-packet data dissemination, and multi-packet data
dissemination. We demonstrate that beacon coordination reduces the amount of
beacons and that the cost of the push and pull operations is low.
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