
Chapter 4

An Introduction to Middleware Architectures

and Technologies

4.1 Introduction

I’m not really a great enthusiast for drawing strong analogies between the role of a

software architect and that of a traditional building architect. There are similarities,

but also lots of profound differences.1 But let’s ignore those differences for a

second, in order to illustrate the role of middleware in software architecture.

When an architect designs a building, they create drawings, essentially a design

that shows, from various angles, the structure and geometric properties of the

building. This design is based on the building’s requirements, such as the available

space, function (office, church, shopping center, home), desired aesthetic and func-

tional qualities and budget. These drawings are an abstract representation of the

intended concrete (sic) artifact.

There’s obviously an awful lot of design effort still required to turn the archi-

tectural drawings into something that people can actually start to build. There’s

detailed design of walls, floor layouts, staircases, electrical systems, water and

piping to name just a few. And as each of these elements of a building is designed

in detail, suitable materials and components for constructing each are selected.

These materials and components are the basic construction blocks for buildings.

They’ve been created so that they can fulfill the same essential needs in many types

of buildings, whether they are office towers, railway stations or humble family

homes.

Although perhaps it’s not the most glamorous analogy, I like to think of mid-

dleware as the equivalent of the plumbing or piping or wiring for software applica-

tions. The reasons are:

l Middleware provides proven ways to connect the various software components

in an application so they can exchange information using relatively easy-to-use

mechanisms. Middleware provides the pipes for shipping data between compo-

nents, and can be used in a wide range of different application domains.

1The following paper discusses of issues: J. Baragry and K. Reed. Why We Need a Different View
of Software Architecture. The Working IEEE/IFIP Conference on Software Architecture

(WICSA), Amsterdam, The Netherlands, 2001.

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_4, # Springer-Verlag Berlin Heidelberg 2011

39

l Middleware can be used to wire together numerous components in useful, well-

understood topologies. Connections can be one-to-one, one-to-many or many-

to-many.
l From the application user’s perspective, middleware is completely hidden. Users

interact with the application, and don’t care how information is exchanged

internally. As long as it works, and works well, middleware is invisible
infrastructure.

l The only time application users are ever aware of the role middleware plays is

when it fails. This is of course very like real plumbing and wiring systems.

It’s probably not wise to push the plumbing analogy any further. But hopefully

it has served its purpose. Middleware provides ready-to-use infrastructure for

connecting software components. It can be used in a whole variety of different

application domains, as it has been designed to be general and configurable to meet

the common needs of software applications.

4.2 Middleware Technology Classification

Middleware got its label because it was conceived as a layer of software “plumbing-

like” infrastructure that sat between the application and the operating system, that

is, the middle of application architectures. Of course in reality middleware is much

more complex than plumbing or a simple layer insulating an application from the

underlying operating system services.

Different application domains tend to regard different technologies as middle-

ware. This book is about mainstream IT applications, and in that domain there’s a

fairly well-understood collection that is typically known as middleware. Figure 4.1

provides a classification of these technologies, and names some example products/

technologies that represent each category. Brief explanations of the categories are

below, and the remainder of this chapter and the next two go on to describe each in

detail:

Business Process Orchestrators

Message Brokers

Application Servers

Transport
Message-Oriented

Middleware, Distributed
Objects Systems, SOAP

JEE, CCM, .NET

Mule, WebSphere Message
Broker, SonicMQ

BizTalk, TIBCO StaffWare,
ActiveBPEL

Fig. 4.1 Classifying middleware technologies

40 4 An Introduction to Middleware Architectures and Technologies

l The transport layer represents the basic pipes for sending requests and moving

data between software components. These pipes provide simple facilities and

mechanisms that make exchanging data straightforward in distributed applica-

tion architectures.
l Application servers are typically built on top of the basic transport services.

They provide additional capabilities such as transaction, security and directory

services. They also support a programming model for building multithreaded

server-based applications that exploit these additional services.
l Message brokers exploit either a basic transport service and/or application

servers and add a specialized message processing engine. This engine provides

features for fast message transformation and high-level programming features

for defining how to exchange, manipulate and route messages between the

various components of an application.
l Business process orchestrators (BPOs) augment message broker features to

support workflow-style applications. In such applications, business processes

may take many hours or days to complete due to the need for people to perform

certain tasks. BPOs provide the tools to describe such business processes,

execute them and manage the intermediate states while each step in the process

is executed.

4.3 Distributed Objects

Distributed object technology is a venerable member of the middleware family.

Best characterized by CORBA,2 distributed object-based middleware has been in

use since the earlier 1990s. As many readers will be familiar with CORBA and the

like, only the basics are briefly covered in this section for completeness.

A simple scenario of a client sending a request to a server across an object

request broker (ORB) is shown in Fig. 4.2. In CORBA, servant objects support

interfaces that are specified using CORBA’s IDL (interface description language).

IDL interfaces define the methods that a server object supports, along with the

parameter and return types. A trivial IDL example is:

module ServerExample {
interface MyObject
{

string isAlive();
};

};

This IDL interface defines a CORBA object that supports a single method,

isAlive, which returns a string and takes no parameters. An IDL compiler is

used to process interface definitions. The compiler generates an object skeleton in

2Common Object Request Broker Architecture.

4.3 Distributed Objects 41

a target programming languages (typically, but not necessarily, C++ or Java). The

object skeleton provides the mechanisms to call the servant implementation’s

methods. The programmer must then write the code to implement each servant

method in a native programming language:

The server process must create an instance of the servant and make it callable

through the ORB:

A client process can now initialize a client ORB and get a reference to the

servant that resides within the server process. Servants typically store a reference to

themselves in a directory. Clients query the directory using a simple logical name,

and it returns a reference to a servant that includes its network location and process

identity.

The servant call looks like a synchronous call to a local object. However, the

ORB mechanisms transmit, or marshal, the request and associated parameters

across the network to the servant. The method code executes, and the result is

marshaled back to the waiting client.

Network

Client

Object Reference
request

Server

Servant
reply

server ORBclient ORB

Fig. 4.2 Distributed objects using CORBA

42 4 An Introduction to Middleware Architectures and Technologies

This is a very simplistic description of distributed object technology. There’s

much more detail that must be addressed to build real systems, issues like excep-

tions, locating servants and multithreading to name just a few. From an architect’s

perspective though, the following are some essential design concerns that must be

addressed in applications:

l Requests to servants are remote calls, and hence relatively expensive (slow) as

they traverse the ORB and network. This has a performance impact. It’s always

wise to design interfaces so that remote calls can be minimized, and performance

is enhanced.
l Like any distributed application, servers may intermittently or permanently be

unavailable due to network or process or machine failure. Applications need

strategies to cope with failure and mechanisms to restart failed servers.
l If a servant holds state concerning an interaction with a client (e.g., a customer

object stores the name/address), and the servant fails, the state is lost. Mechan-

isms for state recovery must consequently be designed.

4.4 Message-Oriented Middleware

Message-oriented middleware (MOM) is one of the key technologies for building

large-scale enterprise systems. It is the glue that binds together otherwise indepen-

dent and autonomous applications and turns them into a single, integrated system.

These applications can be built using diverse technologies and run on different

platforms. Users are not required to rewrite their existing applications or make

substantial (and risky) changes just to have them play a part in an enterprise-wide

application. This is achieved by placing a queue between senders and receivers,

providing a level of indirection during communications.

How MOM can be used within an organization is illustrated in Fig. 4.3. The

MOM creates a software bus for integrating home grown applications with legacy

Mainframe

Legacy
Apps

3-tier Application Trading Partners

Fig. 4.3 Integration through messaging

4.4 Message-Oriented Middleware 43

applications, and connecting local applications with the business systems provided

by business partners.

4.4.1 MOM Basics

MOM is an inherently loosely coupled, asynchronous technology. This means the

sender and receiver of a message are not tightly coupled, unlike synchronous

middleware technologies such as CORBA. Synchronous middleware technologies

have many strengths, but can lead to fragile designs if all of the components and

network links always have to be working at the same time for the whole system to

successfully operate.

A messaging infrastructure decouples senders and receivers using an intermedi-

ate message queue. The sender can send a message to a receiver and know that it

will be eventually delivered, even if the network link is down or the receiver is not

available. The sender just tells the MOM technology to deliver the message and

then continues on with its work. Senders are unaware of which application or

process eventually processes the request. Figure 4.4 depicts this basic send–receive

mechanism.

MOM is often implemented as a server that can handle messages from multiple

concurrent clients.3 In order to decouple senders and receivers, the MOM provides

message queues that senders place messages on and receivers remove messages

from. A MOM server can create and manage multiple messages queues, and can

handle multiple messages being sent from queues simultaneously using threads

organized in a thread pool. One or more processes can send messages to a message

queue, and each queue can have one or many receivers. Each queue has a name

which senders and receivers specify when they perform send and receive opera-

tions. This architecture is illustrated in Fig. 4.5.

A MOM server has a number of basic responsibilities. First, it must accept

a message from the sending application, and send an acknowledgement that the

message has been received. Next, it must place the message at the end of the queue

that was specified by the sender. A sender may send many messages to a queue

Sender
Queue

send (Queue, Msg)
Receiver

receive (Queue, Msg)

Fig. 4.4 MOM basics

3MOM can also be simply implemented in a point-to-point fashion without a centralized message

queue server. In this style of implementation, ‘send’ and ‘receive’ queues are maintained on the

communicating systems themselves.

44 4 An Introduction to Middleware Architectures and Technologies

before any receivers remove them. Hence the MOM must be prepared to hold

messages in a queue for an extended period of time.

Messages are delivered to receivers in a First-In-First-Out (FIFO) manner,

namely the order they arrive at the queue. When a receiver requests a message,

the message at the head of the queue is delivered to the receiver, and upon

successful receipt, the message is deleted from the queue.

The asynchronous, decoupled nature of messaging technology makes it an

extremely useful tool for solving many common application design problems.

These include scenarios in which:

l The sender doesn’t need a reply to a message. It just wants to send the message

to another application and continue on with its own work. This is known as send-
and-forget messaging.

l The sender doesn’t need an immediate reply to a request message. The receiver

may take perhaps several minutes to process a request and the sender can be

doing useful work in the meantime rather than just waiting.
l The receiver, or the network connection between the sender and receiver, may

not operate continuously. The sender relies on the MOM to deliver the message

when a connection is next established. The MOM layer must be capable of

storing messages for later delivery, and possibly recovering unsent messages

after system failures.

4.4.2 Exploiting MOM Advanced Features

The basic features of MOM technology are rarely sufficient in enterprise applica-

tions. Mission critical systems need much stronger guarantees of message delivery

and performance than can be provided by a basic MOM server. Commercial-

off-the-shelf (COTS) MOM products therefore supply additional advanced features

to increase the reliability, usability and scalability of MOM servers. These features

are explained in the following sections.

MOM Server

Senders

Message
Handler
Thread Pool

Receivers

Fig. 4.5 Anatomy of a MOM

server

4.4 Message-Oriented Middleware 45

4.4.2.1 Message Delivery

MOM technologies are about delivering messages between applications. In many

enterprise applications, this delivery must be done reliably, giving the sender

guarantees that the message will eventually be processed. For example, an applica-

tion processing a credit card transaction may place the transaction details on a

queue for later processing, to add the transaction total to the customer’s account.

If this message is lost due the MOM server crashing – such things do happen – then

the customer may be happy, but the store where the purchase was made and the

credit card company will lose money. Such scenarios obviously cannot tolerate

message loss, and must ensure reliable delivery of messages.

Reliable message delivery however comes at the expense of performance. MOM

servers normally offer a range of quality of service (QoS) options that let an

architect balance performance against the possibility of losing messages. Three

levels of delivery guarantee (or QoS) are typically available, with higher reliability

levels always coming at the cost of reduced performance. These QoS options are:

l Best effort: The MOM server will do its best to deliver the message. Undelivered

messages are only kept in memory on the server and can be lost if a system fails

before a message is delivered. Network outages or unavailable receiving appli-

cations may also cause messages to time out and be discarded.
l Persistent: The MOM layer guarantees to deliver messages despite system and

network failures. Undelivered messages are logged to disk as well as being kept

in memory and so can be recovered and subsequently delivered after a system

failure. This is depicted in Fig. 4.6. Messages are kept in a disk log for the queue

until they have been delivered to a receiver.
l Transactional: Messages can be bunched into “all or nothing” units for delivery.

Also, message delivery can be coordinated with an external resourcemanager such

as a database.More on transactional delivery is explained in the following sections.

Various studies have been undertaken to explore the performance differences

between these three QoS levels. All of these by their very nature are specific to a

particular benchmark application, test environment and MOM product. Drawing

some very general conclusions, you can expect to see between 30 and 80%

MOM Server

Disk Log

From
senders

To
receivers

Fig. 4.6 Guaranteed

message delivery in message

oriented middleware

46 4 An Introduction to Middleware Architectures and Technologies

performance reduction when moving from best-effort to persistent messaging,

depending on message size and disk speed. Transactional will be slower than

persistent, but often not by a great deal, as this depends mostly on how many

transaction participants are involved. See the further reading section at the end of

this chapter for some pointers to these studies.

4.4.2.2 Transactions

Transactional messaging typically builds upon persistent messages. It tightly inte-

grates messaging operations with application code, not allowing transactional mes-

sages to be sent until the sending application commits their enclosing transaction.

Basic MOM transactional functionality allows applications to construct batches of

messages that are sent as a single atomic unit when the application commits.

Receivers must also create a transaction scope and ask to receive complete

batches of messages. If the transaction is committed by the receivers, these transac-

tional messages will be received together in the order they were sent, and then

removed from the queue. If the receiver aborts the transaction, any messages already

read will be put back on the queue, ready for the next attempt to handle the same

transaction. In addition, consecutive transactions sent from the same system to the

same queue will arrive in the order they were committed, and each message will be

delivered to the application exactly once for each committed transaction.

Transactional messaging also allows message sends and receives to be coordi-

nated with other transactional operations, such as database updates. For example, an

application can start a transaction, send a message, update a database and then

commit the transaction. The MOM layer will not make the message available on the

queue until the transaction commits, ensuring either that the message is sent and the

database is updated, or that both operations are rolled back and appear never to have

happened.

A pseudocode example of integrating messaging and database updates is shown

in Fig. 4.7. The sender application code uses transaction demarcation statements

(the exact form varies between MOM systems) to specify the scope of the transac-

tion. All statements between the begin and commit transaction statements are

considered to be part of the transaction. Note we have two, independent transactions

occurring in this example. The sender and receiver transactions are separate and

commit (or abort) individually.

4.4.2.3 Clustering

MOM servers are the primary message exchange mechanism in many enterprise

applications. If a MOM server becomes unavailable due to server or machine

failure, then applications can’t communicate. Not surprisingly then, industrial

strength MOM technologies make it possible to cluster MOM servers, running

instances of the server on multiple machines (see Fig. 4.8).

4.4 Message-Oriented Middleware 47

Exactly how clustering works is product dependent. However, the scheme in

Fig. 4.8 is typical. Multiple instances of MOM servers are configured in a logical

cluster. Each server supports the same set of queues, and the distribution of these

queues across servers is transparent to the MOM clients. MOM clients behave

exactly the same as if there was one physical server and queue instance.

When a client sends a message, one of the queue instances is selected and the

message stored on the queue. Likewise, when a receiver requests a message, one of

the queue instances is selected and a message removed. The MOM server clustering

implementation is responsible for directing client requests to individual queue

instances. This may be done statically, when a client opens a connection to the

server, or dynamically, for every request.4

MOM Server

Senders Receivers

MOM Server

ApplicationQ

ApplicationQ

Fig. 4.8 Clustering MOM

servers for reliability and

scalability

Begin transaction...
update database record
put message on queue

commit transaction

Begin transaction
...
get message from queue
update database record

commit transaction

2

1

1

3

4

5

3

4
5

6

63

......2

Fig. 4.7 Transactional messaging

4An application that needs to receive messages in the order they are sent is not suitable for

operating in this a clustering mode.

48 4 An Introduction to Middleware Architectures and Technologies

A cluster has two benefits. First, if one MOM server fails, the other queue

instances are still available for clients to use. Applications can consequently keep

communicating. Second, the request load from the clients can be spread across the

individual servers. Each server only sees a fraction (ideally 1/[number of servers] in

the cluster) of the overall traffic. This helps distribute the messaging load across

multiple machines, and can provide much higher application performance.

4.4.2.4 Two-Way Messaging

Although MOM technology is inherently asynchronous and decouples senders and

receivers, it can also be used for synchronous communications and building more

tightly coupled systems. In this case, the sender simply uses the MOM layer to send

a request message to a receiver on a request queue. The message contains the name

of the queue to which a reply message should be sent. The sender then waits until

the receiver sends back a reply message on a reply queue, as shown in Fig. 4.9.

This synchronous style of messaging usingMOM is frequently used in enterprise

systems, replacing conventional synchronous technology such as CORBA. There

are a number of pragmatic reasons why architects might choose to use messaging

technology in this way, including:

l Messaging technology can be used with existing applications at low cost and

with minimal risk. Adapters are available, or can be easily written to interface

between commonly used messaging technologies and applications. Applications

do not have to be rewritten or ported before they can be integrated into a larger

system.
l Messaging technologies tend to be available on a very wide range of platforms,

making it easier to integrate legacy applications or business systems being run

by business partners.
l Organizations may already have purchased, and gained experience in using, a

messaging technology and they may not need the additional features of an

application server technology.

MOM Server

Senders Receivers

MOM Server

ReplyQ

RequestQ

Fig. 4.9 Request–Reply

messaging

4.4 Message-Oriented Middleware 49

4.4.3 Publish–Subscribe

MOM is a proven and effective approach for building loosely coupled enterprise

systems. But, like everything, it has its limitations. The major one is that MOM is

inherently a one-to-one technology. One sender sends a single message to a single

queue, and one receiver retrieves that message for the queue. Not all problems are

so easily solved by a 1–1 messaging style. This is where publish–subscribe archi-

tectures enter the picture.

Publish–subscribe messaging extends the basic MOM mechanisms to support

1 to many, many to many, and many to 1 style communications. Publishers send a

single copy of a message addressed to a named topic, or subject. Topics are a logical
name for the publish–subscribe equivalent of a queue in basic MOM technology.

Subscribers listen for messages that are sent to topics that interest them. The

publish–subscribe server then distributes each message sent on a topic to every

subscriber who is listening on that topic. This basic scheme is depicted in Fig. 4.10.

In terms of loose coupling, publish–subscribe has some attractive properties.

Senders and receivers are decoupled, each respectively unaware of which applica-

tions will receive a message, and who actually sent the message. Each topic may

also have more than one publisher, and the publishers may appear and disappear

dynamically. This gives considerable flexibility over static configuration regimes.

Likewise, subscribers can dynamically subscribe and unsubscribe to a topic. Hence

the subscriber set for a topic can change at any time, and this is transparent to the

application code.

In publish–subscribe technologies, the messaging layer has the responsibility for

managing topics, and knowingwhich subscribers are listening to which topics. It also

has the responsibility for delivering every message sent to all active current sub-

scribers. Topics can be persistent or nonpersistent, with the same effects on reliable

message delivery as in basic point-to-pointMOM (explained in the previous section).

Messages can also be published with an optional “time-to-live” setting. This tells the

publish–subscribe server to attempt to deliver a message to all active subscribers for

the time-to-live period, and after that delete the message from the queue.

The underlying protocol a MOM technology uses for message delivery can

profoundly affect performance. By default, most use straightforward point-to-point

Publisher

Subscriber

Subscriber

Subscriber

Topic

Create/
Publish

Register/
Subscribe

Fig. 4.10 Publish–Subscribe

messaging

50 4 An Introduction to Middleware Architectures and Technologies

TCP/IP sockets. Implementations of publish–subscribe built on point-to-point

messaging technology duplicate each message send operation from the server for

every subscriber. In contrast, some MOM technologies support multicast or broad-

cast protocols, which send each message only once on the wire, and the network

layer handles delivery to multiple destinations.

In Fig. 4.11, the multicast architecture used in TIBCO’s Rendezvous publish–

subscribe technology is illustrated. Each node in the publish–subscribe network

runs a daemon process known as rvd. When a new topic is created, it is assigned a

multicast IP address.

When a publisher sends a message, its local rvd daemon intercepts the message

and multicasts a single copy of the message on the network to the address associated

with the topic. The listening daemons on the network receive the message, and each

checks if it has any local subscribers to the message’s topic on its node. If so, it

delivers the message to the subscriber(s), otherwise it ignores the message. If a

message has subscribers on a remote network,5 an rvrd daemon intercepts the

message and sends a copy to each remote network using standard IP protocols.

Each receiving rvrd daemon then multicasts the message to all subscribers on its

local network.

Not surprisingly, solutions based on multicast tend to provide much better raw

performance and scalability for best effort messaging. Not too long ago, I was

rvd

rvd

Publisher

Subscriber

rvd

Subscriber

rvd

Subscriber

rvrd

rvd

Subscriber

rvd

Subscriber

rvrd

Fig. 4.11 Multicast delivery for publish–subscribe

5And the wide area network doesn’t support multicast.

4.4 Message-Oriented Middleware 51

involved in a project to quantify the expected performance difference between

multicast and point-to-point solutions. We investigated this by writing and running

some benchmarks to compare the relative performance of three publish–subscribe

technologies, and Fig. 4.12 shows the benchmark results.

It shows the average time for delivery from a single publisher to between 10 and

50 concurrent subscribers when the publisher outputs a burst of messages as fast as

possible. The results clearly show that multicast publish–subscribe is ideally suited

to applications with demands for low message latencies and hence very high

throughput.

4.4.3.1 Understanding Topics

Topics are the publish–subscribe equivalent of queues. Topic names are simply

strings, and are specified administratively or programmatically when the topic is

created. Each topic has a logical name which is specified by all applications which

wish to publish or subscribe using the topic.

Some publish–subscribe technologies support hierarchical topic naming. The

details of exactly how the mechanisms explained below work are product depen-

dent, but the concepts are generic and work similarly across implementations. Let’s

use the slightly facetious example shown in Fig. 4.13 of a topic naming tree.

Each box represents a topic name that can be used to publish messages. The

unique name for each topic is a fully qualified string, with a “/” used as separator

between levels in the tree. For example, the following are all valid topic names:

0
100
200
300
400
500
600
700

10 20 30 40 50
No. Of Subscribers

M
ill

is
ec

on
ds MC1

MC2

QB

Fig. 4.12 Publish–subscribe best effort messaging performance: Comparing 2 multicast technol-

ogies (MC1, MC2) with a queue-based (QB) publish–subscribe technology

52 4 An Introduction to Middleware Architectures and Technologies

Hierarchical topic names become really useful when combined with topic wild-

cards. In our example, an “*” is used as a wildcard that matches zero or more

characters in a topic name. Subscribers can use wildcards to receive messages from

more than one topic when they subscribe. For example:

This matches both Sydney/DevGroup/Information and

Sydney/SupportGroup/Information. Similarly, a subscriber

that specifies the following topic:

This will receive messages published on all three topics within the Sydney/
DevGroup tree branch. As subscribing to whole branches of a topic tree is very

useful, some products support a shorthand for the above, using another wildcard

character such as “**”, i.e.,:

The “**” wildcards also matches all topics that are in Sydney/
DevGroup branch. Such a wildcard is powerful as it is naturally extensible. If

new topics are added within this branch of the topic hierarchy, subscribers do not

have to change the topic name in their subscription request in order to receive

messages on the new topics.

Carefully crafted topic name hierarchies combined with wildcarding make

it possible to create some very flexible messaging infrastructures. Consider how

applications might want to subscribe to multiple topics, and organize your design to

support these.

Sydney

DevGroup SupportGroup

InformationInformation

work gossip work gossip

Fig. 4.13 An example of hierarchical topic naming

4.4 Message-Oriented Middleware 53

4.5 Application Servers

There are many definitions for application servers, but all pretty much agree on the

core elements. Namely, an application server is a component-based server technol-

ogy that resides in the middle-tier of an N-tier architecture, and provides distributed

communications, security, transactions and persistence. In this section, we’ll use

the Java Enterprise Edition6 as our example.

Application servers are widely used to build internet-facing applications.

Figure 4.14 shows a block diagram of the classic N-tier architecture adopted by

many web sites.

An explanation of each tier is below:

l Client Tier: In a web application, the client tier typically comprises an Internet

browser that submits HTTP requests and downloads HTML pages from a web

server. This is commodity technology, not an element of the application server.
l Web Tier: The web tier runs a web server to handle client requests. When a

request arrives, the web server invokes web server-hosted components such as

servlets, Java Server Pages (JSPs) or Active Server Pages (ASPs) depending on

the flavor of web server being used. The incoming request identifies the exact

web component to call. This component processes the request parameters, and

uses these to call the business logic tier to get the required information to satisfy

the request. The web component then formats the results for return to the user as

HTML via the web server.
l Business Component Tier: The business components comprise the core business

logic for the application. The business components are realized by for example

Enterprise JavaBeans (EJB) in JEE, .NET components or CORBA objects. The

business components receive requests from the web tier, and satisfy requests

usually by accessing one or more databases, returning the results to the web tier.

Client tier

Web tier

Business Component tier

Enterprise Information System tier

.NET Remoting IIOPRMI

http

SQLJDBC

browsers

Web
Servers

EJBs
.NET
Components

Databases
ERPs

Fig. 4.14 N-Tier architecture

for web applications

6The platform was known as Java 2 Platform, Enterprise Edition or J2EE until the name was

changed to Java EE in version 5.

54 4 An Introduction to Middleware Architectures and Technologies

A run-time environment known as a container accommodates the components.

The container supplies a number of services to the components it hosts. These

varying depending on the container type (e.g., EJB, .NET, CORBA), but include

transaction and component lifecycle management, state management; security,

multithreading and resource pooling. The components specify, in files external

to their code, the type of behavior they require from the container at run-time,

and then rely on the container to provide the services. This frees the application

programmer from cluttering the business logic with code to handle system and

environmental issues.
l Enterprise Information Systems Tier: This typically consists of one or more

databases and back-end applications like mainframes and other legacy systems.

The business components must query and interact with these data stores to

process requests.

The core of an application server is the business component container and the

support it provides for implementing business logic using a software component

model. As the details vary between application server technologies, let’s just look at

the widely used EJB model supported by JEE. This is a representative example of

application server technology.

4.5.1 Enterprise JavaBeans

The EJB architecture defines a standard programming model for constructing

server-side Java applications. A JEE-compliant application server provides an

EJB container to manage the execution of application components. In practical

terms, the container provides an operating system process (in fact a Java virtual

machine) that hosts EJB components. Figure 4.15 shows the relationship between an

application server, a container and the services provided. When an EJB client

invokes a server component, the container allocates a thread and invokes an instance

Application ServerEJB Container

Transaction
Service

Directory
Service

Security
Service

Thread Pool

Connection Pool

Persistence

Lifecycle Management

EJB Pool

Fig. 4.15 JEE application

server, EJB container and

associated services

4.5 Application Servers 55

of the EJB component. The container manages all resources on behalf of the com-

ponent and all interactions between the component and the external systems.

4.5.2 EJB Component Model

The EJB component model defines the basic architecture of an EJB component.

It specifies the structure of the component interfaces and the mechanisms by which

it interacts with its container and with other components.

The latest EJB specification (part of the JavaTM Platform, Enterprise Edition

(Java EE) version 5) defines two main types of EJB components, namely session
beans and message-driven beans. Earlier JEE specifications also defined entity
beans, but these have been phased out and replaced by the simpler and more

powerful Java Persistence API7. This provides an object/relational mapping facility

for Java applications that need access to relational databases from the server tier

(a very common requirement, and one beyond the scope of this book).

Session beans are typically used for executing business logic and to provide

services for clients to call. Session beans correspond to the controller in a model-

view-controller8 architecture because they encapsulate the business logic of a three-

tier architecture. Session beans define an application-specific interface that clients

can use to make requests. Clients send a request to a session bean and block until the

session bean sends a response.

Somewhat differently to session beans, message-driven beans are components

that process messages asynchronously. A message bean essentially acts as a listener

for messages that are sent from a Java Message Service (JMS) client. Upon receipt

of a message, the bean executes its business logic and then waits for the next

message to arrive. No reply is sent to the message sender.

Further, there are two types of session beans, known as stateless session beans

and stateful session beans. The difference between these is depicted in Fig. 4.16.

A stateless session bean is defined as not being conversational with respect to its
calling process. This means that it does not keep any state information on behalf of

any client that calls it. A client will get a reference to a stateless session bean in a

container, and can use this reference to make many calls on an instance of the bean.

However, between each successive bean invocation, a client is not guaranteed to

bind to any particular stateless session bean instance. The EJB container delegates

client calls to stateless session beans on an as needed basis, so the client can never

be certain which bean instance they will actually talk to. This makes it meaningless

to store client related state information in a stateless session bean. From the

container’s perspective, all instances of a stateless session bean are viewed as

equal and can be assigned to any incoming request.

7http://java.sun.com/javaee/reference/faq/persistence.jsp
8See http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

56 4 An Introduction to Middleware Architectures and Technologies

http://java.sun.com/javaee/reference/faq/persistence.jsp
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

On the other hand, a stateful session bean is said to be conversational with

respect to its calling process; therefore it can maintain state information about a

conversation with a client. Once a client gets a reference to a stateful session bean,

all subsequent calls to the bean using this reference are guaranteed to go to the same

bean instance. The container creates a new, dedicated stateful session bean for each

client that creates a bean instance. Clients may store any state information they wish

in the bean, and can be assured it will still be there next time they access the bean.

EJB containers assume responsibility for managing the lifecycle of stateful

session beans. The container will write out a bean’s state to disk if it has not been

used for a while, and will automatically restore the state when the client makes a

subsequent call on the bean. This is known as passivation and activation of the

stateful bean. Containers can also be configured to destroy a stateful session bean

and its associated resources if a bean is not used for a specified period of time.

In many respects, message driven beans are handled by the EJB container in a

similar manner to stateless session beans. They hold no client-specific conversa-

tional data, and hence instances can be allocated to handle messages sent from any

client. Message beans don’t receive requests directly from clients however. Rather

they are configured to listen to a JMS queue, and when clients send messages to the

queue, they are delivered to an instance of a message bean to process.

4.5.3 Stateless Session Bean Programming Example

To create an EJB component in EJB version 3.0, the developer must provide session

bean class and a remote business interface. The remote interface contains the business

EJB Container

state

Stateless bean
pool

Stateful beans
state

state

state

state

state

state

EJB
Clients

Fig. 4.16 Stateless versus stateful session beans

4.5 Application Servers 57

methods offered by the bean. These are of course application specific. Below is a

(cut down) remote interface example for a stateless session bean. Note this is a

standard Java interface that is simply decorated with @Remote annotation:

The class definition is again standard Java, and is simply annotated with

@Stateless. The @Stateless annotation states that this class is a stateless session

bean, and the business interface is used to invoke it.

Accessing an EJB client in EJB 3.0 is very simple indeed, requiring the use of the

@EJB annotation, namely:

EJB clients may be standalone Java applications, servlets, applets, or even other

EJBs. Clients interact with the server bean entirely through the methods defined in

the bean’s remote interface.
The story for stateful session beans is pretty similar, using the @Stateful

annotation. Stateful session beans should also provide a bean specific initialization

method to set up the bean’s state, and a method annotated with@Remove, which is
called by clients to indicate they have finished with this bean instance, and the

container should remove it after the method completes.

4.5.4 Message-Driven Bean Programming Example

Message-driven beans are pretty simple to develop too. In the most common case of

a message driven bean receiving messages from a JMS server, the bean implements

the javax.jms.MessageListener interface. In addition, using the

58 4 An Introduction to Middleware Architectures and Technologies

@MessageDriven annotation, the developer specifies the name9 of the destina-

tion from which the bean will consume messages.

4.5.5 Responsibilities of the EJB Container

It should be pretty obvious at this stage that the EJB container is a fairly complex

piece of software. It’s therefore worth covering exactly what the role of the

container is in running an EJB application. In general, a container provides EJB

components with a number of services. These are:

l It provides bean lifecycle management and bean instance pooling, including

creation, activation, passivation, and bean destruction.
l It intercepts client calls on the remote interface of beans to enforce transaction

and security (see below) constraints. It also provides notification callbacks at the

start and end of each transaction involving a bean instance.
l It enforces session bean behavior, and acts as a listener for message-driven beans.

In order to intercept client calls, the tools associated with a container must

generate additional classes for an EJB at deployment time. These tools use Java’s

introspection mechanism to dynamically generate classes to implement the remote
interfaces of each bean. These classes enable the container to intercept all client calls

on a bean, and enforce the policies specified in the bean’s deployment descriptor.

The container also provides a number of other key run-time features for EJBs.

These typically include:

l Threading: EJB’s should not explicitly create and manipulate Java threads. They

must rely on the container to allocate threads to active beans in order to provide a

concurrent, high performance execution environment. This makes EJBs simpler

to write, as the application programmer does not have to implement a threading

scheme to handle concurrent client requests.
l Caching: The container can maintain caches of the entity bean instances it man-

ages. Typically the size of the caches can be specified in deployment descriptors.

9Specifically, the annotation contains amappedName element that specifies the JNDI name of

the JMS queue where messages are received from.

4.5 Application Servers 59

l Connection Pooling: The container can manage a pool of database connections

to enable efficient access to external resource managers by reusing connections

once transactions are complete.

Finally, there’s also some key features and many details of EJB that haven’t been

covered here. Probably the most important of these, alluded to above, are:

l Transactions: A transaction is a group of operations that must be performed as

a unit, or not at all. Databases provides transaction management, but when a

middle tier such as an EJB container makes distributed updates across multiple

databases, things can get tricky. EJB containers contain a transaction manager

(based on the Java Transaction API specification), that can be used to coordinate

transactions at the EJB level. Session and message driven beans can be annotated

with transaction attributes and hence control the commit or rollback of distri-

buted database transactions. This is a very powerful feature of EJB.
l Security: Security services are provided by the EJB container and can be used to

authenticate users and authorize access to application functions. In typical EJB

style, security can be specified using annotations in the EJB class definition, or

be implemented programmatically. Alternatively, EJB security can be specified

externally to the application in an XML deployment descriptor, and this infor-

mation is used by the container to override annotation-specified security.

4.5.6 Some Thoughts

This section has given a brief overview of JEE and EJB technology. The EJB

component model is widely used and has proven a powerful way of constructing

server-side applications. And although the interactions between the different parts

of the code are at first a little daunting, with some exposure and experience with the

model, it becomes relatively straightforward to construct EJB applications.

Still, while the code construction is not difficult, a number of complexities

remain. These are:

l The EJB model makes it possible to combine components in an application using

many different architectural patterns. This gives the architect a range of design

options for an application. Which option is best is often open to debate, along

with what does best mean in a given application? These are not always simple

questions, and requires the consideration of complex design trade-offs.
l The way beans interact with the container is complex, and can have a significant

effect of the performance of an application. In the same vein, all EJB server

containers are not equal. Product selection and product specific configuration is

an important aspect of the application development lifecycle.

For references discussing both these issues, see the further reading section at the

end of this chapter.

60 4 An Introduction to Middleware Architectures and Technologies

4.6 Summary

It’s taken the best part of 20 years to build, but now IT architects have a powerful

toolkit of basic synchronous and asynchronous middleware technologies to lever-

age in designing and implementing their applications. These technologies have

evolved for two main reasons:

1. They help make building complex, distributed, concurrent applications simpler.

2. They institutionalize proven design practices by supporting them in off-the-shelf

middleware technologies.

With all this infrastructure technology available, the skill of the architect lies in

how they select, mix and match architectures and technologies in a way that meets

their application’s requirements and constraints. This requires not only advanced

design skills, but also deep knowledge of the technologies involved, understanding

what they can be reliably called on to do, and equally importantly, what they cannot

sensibly do. Many applications fail or are delivered late because perfectly good

quality and well built middleware technology is used in a way in which it was never

intended to be used. This is not the technology’s fault – it’s the designers’. Hence

middleware knowledge, and more importantly experience with the technologies in

demanding applications, is simply a prerequisite for becoming a skilled architect in

the information technology world.

To make life more complex, it’s rare that just a single architecture and

technology solution makes sense for any given application. For example, simple

messaging or an EJB component-based design might make sense for a particular

problem. And these logical design alternatives typically have multiple imple-

mentation options in terms of candidate middleware products for building the

solution.

In such situations, the architect has to analyze the various trade-offs between

different solutions and technologies, and choose an alternative (or perhaps nomi-

nate a set of competing alternatives) that meets the application requirements. To be

honest, I’m always a little suspicious of architects who, in such circumstances,

always come up with the same architectural and technology answer (unless they

work for a technology vendor – in that case, it’s their job).

The cause of this “I have a hammer, everything is a nail” style behavior is often a

fervent belief that a particular design, and more often a favored technology, can

solve any problems that arise. As it’s the end of the chapter, I won’t get on my soap

box. But I’ll simply say that open-minded, experienced and technologically agnos-

tic architects are more likely to consider a wider range of design alternatives.

They’re also likely to propose solutions most appropriate to the quirks and con-

straints of the problem at hand, rather than enthusiastically promoting a particular

solution that demonstrates the eternal “goodness” of their favorite piece of technol-

ogy over its “evil” competitors.

4.6 Summary 61

4.7 Further Reading

There’s an enormous volume of potential reading on the subject matter covered in

this chapter. The references that follow should give you a good starting point to

delve more deeply.

4.7.1 CORBA

The best place to start for all CORBA related information is the Object Manage-

ment Group’s web site, namely:

http://www.omg.org

Navigate from here, and you’ll find information on everything to do with

CORBA, including specifications, tutorials and many books. For specific recom-

mendations, in my experience, anything written by Doug Schmidt, Steve Vinosky

or Michi Henning is always informative and revealing.

Talking of Michi Henning, another very interesting technology represented

by the approach taken in Internet Communications Engine (Ice) from ZeroC

(http://zeroc.com/). Ice is open source, and there’s a list of interesting articles at:

http://zeroc.com/articles/index.html

Particularly interesting are “A New Approach to Object-Oriented Middleware”

(IEEE Internet Computing, Jan 2004) and The Rise and Fall of CORBA (ACM

Queue, Jun 2006)

4.7.2 Message-Oriented Middleware

The best place to look for MOM information is probably the product vendor’s

documentation and white papers. Use your favorite search engine to look for

information on IBM WebSphere MQ, Microsoft Message Queue (MSMQ), Sonic

MQ, and many more. If you’d like to peruse the Java Messaging Service specifica-

tion, it can be downloaded from:

http://java.sun.com/products/jms/docs.html

If you’re interested in a very readable and recent analysis of some publish–

subscribe technology performance, including a JMS, the following is well worth

downloading:

Piyush Maheshwari and Michael Pang, Benchmarking Message-Oriented Middle-
ware: TIB/RV versus SonicMQ, Concurrency and Computation: Practice and

Experience, volume 17, pages 1507–1526, 2005

62 4 An Introduction to Middleware Architectures and Technologies

http://www.omg.org
http://zeroc.com/
http://zeroc.com/articles/index.html
http://java.sun.com/products/jms/docs.html

4.7.3 Application Servers

Again, the Internet is probably the best source of general information on applica-

tions servers. Leading product include WebLogic (BEA), WebSphere (IBM), .NET

application server (Microsoft), and for a high quality open source implementation,

JBoss. There’s a good tutorial for JEE v5.0 at:

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

There’s also lots of good design knowledge about EJB applications in:

F. Marinescu. EJB Design Patterns: Advanced Patterns, Processes, and Idioms.

Wiley, 2002

D. Alur, D. Malks, J. Crupi. Core JEE Patterns: Best Practices and Design Strategies.

Second Edition, Prentice Hall, 2003

Two excellent books on transactions in Java, and in general, are:

Mark Little, Jon Maron, Greg Pavlik, Java Transaction Processing: Design and

Implementation, Prentice-Hall, 2004

Philip A. Bernstein, Eric Newcomer, Principles of Transaction Processing, Second

Edition (The Morgan Kaufmann Series in Data Management Systems), Morgan

Kaufman, 2009

The following discusses how to compare middleware and application server

features:

I. Gorton, A. Liu, P. Brebner. Rigorous Evaluation of COTSMiddleware Technology.
IEEE Computer, vol. 36, no. 3, pages 50–55, March 2003

4.7 Further Reading 63

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

	Chapter 4: An Introduction to Middleware Architectures and Technologies
	4.1 Introduction
	4.2 Middleware Technology Classification
	4.3 Distributed Objects
	4.4 Message-Oriented Middleware
	4.4.1 MOM Basics
	4.4.2 Exploiting MOM Advanced Features
	4.4.2.1 Message Delivery
	4.4.2.2 Transactions
	4.4.2.3 Clustering
	4.4.2.4 Two-Way Messaging

	4.4.3 Publish-Subscribe
	4.4.3.1 Understanding Topics

	4.5 Application Servers
	4.5.1 Enterprise JavaBeans
	4.5.2 EJB Component Model
	4.5.3 Stateless Session Bean Programming Example
	4.5.4 Message-Driven Bean Programming Example
	4.5.5 Responsibilities of the EJB Container
	4.5.6 Some Thoughts

	4.6 Summary
	4.7 Further Reading
	4.7.1 CORBA
	4.7.2 Message-Oriented Middleware
	4.7.3 Application Servers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

