
Chapter 15

Software Product Lines

Mark Staples

15.1 Product Lines for ICDE

The ICDE system is a platform for capturing and disseminating information that

can be used in different application domains. However, like any generically appli-

cable horizontal technology, its broad appeal is both a strength and weakness.

The weakness stems from the fact that a user organization will need to tailor the

technology to suit its application domain (e.g., finance), and make it easy for their

users to learn and exploit. This takes time and money, and is hence a disincentive to

adoption.

Recognizing this, the product development team decided to produce a tailored

version of the ICDE platform for their three major application domains, namely

financial analysis, intelligence analysis and government policy research. Each of

the three would be marketed as different products, and contain specific components

that make the base ICDE platform more user-friendly in the targeted application

domain.

To achieve this, the team brainstormed several strategies that they could employ

to minimize the design and development effort of the three different products. The

basic idea they settled on was to use the base ICDE platform unchanged in each of

the three products. They would then create additional domain-specific components

on top of the base platform, and build the resulting products by compiling the base

platform with the domain-specific components. This basic architecture is depicted

in Fig. 15.1.

What the team had done was to take the first steps to creating a product line

architecture for their ICDE technology. Product lines are a way of structuring and

managing the on-going development of a collection of related products in a highly

efficient and cost-effective manner. Product lines achieve significant cost and effort

reductions through large scale reuse of software product assets such as architec-

tures, components, test cases and documentation.

The ICDE product development team already benefits from software reuse in a

few different ways. They reuse some generic libraries (like JDBC drivers to handle

database access), and entire off the shelf applications (like the relational database in

I. Gorton, Essential Software Architecture,
DOI 10.1007/978-3-642-19176-3_15, # Springer-Verlag Berlin Heidelberg 2011

219

the ICDE data store). Market forces are driving the introduction of the three tailored

versions of the ICDE product. But if the team developed each of these separately,

it could triple their development or maintenance workload. Hence their plan is

to reuse core components for the fundamental ICDE functionality and to create

custom components for the functionality specific to each of the three product’s

markets. This is a kind of software product line development, and it should signifi-

cantly reduce their development and maintenance costs.

The remainder of this chapter overviews product line development and archi-

tectures, and describes a range of reuse and variation mechanisms that can be

adopted for product line development.

15.2 Software Product Lines

Widespread software reuse is a “holy grail” for software engineering. It promises a

harmonious world where developers can quickly assemble high-quality solutions

from a suite of preexisting software components. The quest for effective software

reuse has in the past stereotypically focused on “reuse in the small,” exploiting

techniques to reuse individual functions, or libraries of functions for data-types

and domain-independent technologies. Collection class and mathematical function

libraries are good examples. Such approaches are proven to be beneficial, but they

have not realized the full promise of software reuse.

Reusing software is easy if you know it already does exactly what you want. But

software that does “almost” what you want is usually completely useless. For this

reason, to realize the full benefits of software reuse, we need to practice effective

“software variation” as well. Modern approaches to software reuse, such as Soft-

ware Product Line (SPL) development, support software variation “in the large,”

with an architectural basis and a domain-specific focus. Software Product Line

(SPL) development has proven to be an effective way to benefit from software reuse

and variation. It has allowed many organizations to reduce development costs,

reduce development duration, and increase product quality.

In SPL development, a collection of related products is developed by combining

reused core assets with product-specific custom assets that vary the functionality

ICDE
Platform

Fin - ICDE Intel - ICDEGov - ICDE

Key:
Domain-specific
components

Fig. 15.1 Developing

domain-specific products for

the ICDE platform

220 15 Software Product Lines

provided by the core assets. A simple conceptual example of a product line is shown

in Fig. 15.2. In the picture, two different calculator products are developed, with

both using the same core asset internal boards. The different functionalities of the

two calculator products are made available by each of their custom assets, including

the two different kinds of buttons that provide the individualized interface to the

generic, reused functionality.

From this simple perspective, SPL development is just like more traditional

hardware-based product line development, except that in SPL development, the

products are of course software!1

For any product in a SPL, almost everything is implemented by reused core

assets. These core assets implement base functionality which is uniform across

products in the SPL, as well as providing support for variable features which can be

selected by individual products. Core asset variation points provide an interface

to select from among this variable functionality. Product-specific custom assets

instantiate the core assets’ variation points, and may also implement entire product-

specific features.

Software variation has a number of roles in SPL development. The most obvious

role is to support functional differences in the features of the SPL. Software

variation can also be used to support nonfunctional differences (such as perfor-

mance, scalability, or security) in features of the SPL.

SPL development is not simply a matter of architecture, design, and pro-

gramming. SPL development impacts existing processes across the software

development lifecycle, and requires new dimensions of process capability for the

management of reused assets, products, and the overarching SPL itself. The

Software Engineering Institute has published Product Line Practice guidelines

(see Further Reading at the end of the chapter) for these processes and activities

that support SPL development. We will refer to these practice areas later within

this chapter.

Deluxe Buttons

Basic Buttons

Generic CalculatorBasic Calculator

Deluxe Calculator

Fig. 15.2 A schematic view of a simple product line

1Product lines are also widely used in the embedded systems domain, where products are a

software/hardware combination.

15.2 Software Product Lines 221

15.2.1 Benefiting from SPL Development

When an organization develops a set of products that share many commonalities, a

SPL becomes a good approach. Typically an organization’s SPL addresses a broad

market area, and each product in the SPL targets a specific market segment. Some

organizations also use an SPL to develop and maintain variants of a standard

product for each of their individual customers.

The scope of a product line is the range of possible variations supported by the

core assets in a SPL. The actual products in a SPL will normally be within the SPL

scope, but custom assets provide the possibility for developing functionality beyond

the normal scope of the SPL. To maximize the benefit from SPL development, the

SPL scope should closely match both the markets of interest to the company (to

allow new products within those markets to be developed quickly and efficiently),

and also the full range of functionality required by the actual products developed by

the company. These three different categories of product (the company’s markets of

interest, the SPL scope, and the actual products developed by the company) are

depicted in a Venn diagram in Fig. 15.3.

The most obvious benefit from SPL development is increased productivity. The

costs of developing and maintaining core assets are not borne by each product

separately, but are instead spread across all products in the SPL. Organizations can

capture these economies of scale to benefit from the development of large numbers

of products. The SPL approach scales well with growth, as the marginal cost of

adding a new product should be small.

However, SPL development also has other significant benefits. When the core

assets in an SPL are well established, the time required to create a new product in

the SPL is much smaller than with traditional development. Instead of having to

wait for the redevelopment of functionality in the core assets, customers need only

wait for the development of functionality that is unique to their needs.

Organizations can also experience product quality benefits from SPL develop-

ment. In traditional product development, a defect might be repeated across many

products, but in SPL development, a defect in a core asset only needs to be fixed

All Possible Products

Scope of SPL
(All possible products within

Variation supported by core assets)

Actual Products
All possible products
in Markets of Interest

Out-of-scope
variation can be
supported by
custom assets

Fig. 15.3 The scope of an SPL

222 15 Software Product Lines

once. Moreover, although the defect might be initially found in the use of only one

product, every product in the SPL will benefit from the defect fix. These factors

allow more rapid improvements to product quality in SPL development.

There are additional second-order benefits to SPL development. For example,

SPL development provides organizations with a clear path enabling them to turn

customized project work for specific customers into product line features reused

throughout the SPL. When organizations have processes in place to managed

reused assets, the development of customer-specific project work can initially be

managed in a custom asset. If the features prove to have wider significance, the

custom asset can be moved into the reused core asset base.

Another related benefit is that the management of core and custom assets

provides a clear and simple view of the range of products maintained by the

organization. This view enables organizations to more easily:

l Upgrade products to use a new core version
l See what assets are core for the business
l See how products differ from each other
l Consider options for future functionality for the SPL

15.2.2 Product Lines for ICDE

The three planned ICDE products all operate in a similar way and the differences for

each of the products are fairly well understood. The Government product will have a

user interface that supports policy and governance checklists, the Finance product

will support continually updated displays of live market information, and the Intelli-

gence product will integrate views of data from various sources of classified data.

The variation required in the product line can be defined largely in terms of

the data collection components. The GUI options and the access to domain specific

data sources will have to be supported by variation points in the collection com-

ponents. This means the Data Collection client component will need variation

points in order to support access to application domain-specific data sources. This

will require custom components to handle the specific details of each of the new

government/financial/intelligence data sources. The Data Store component should

not need to support any variation for the three different products. It should be able to

be reused as a simple core asset.

15.3 Product Line Architecture

SPL development is usually described as making use of a Product Line Architecture

(PLA). A PLA is a reuse-oriented architecture for the core assets in the SPL. The

reuse and variation goals of a PLA are to:

15.3 Product Line Architecture 223

l Systematically support a preplanned scope of variant functionality
l Enable products within the SPL to easily choose options from among that variant

functionality

A PLA achieves these goals using a variety of technical mechanisms for reuse

and variation that are described in the following sections. Jan Bosch2 has identified

three levels of PLA maturity:

1. Under-specified architecture (ad-hoc variation)

2. Specified architecture

3. Enforced architecture (all required variation supported by planned architectural

variation points)

Increasing levels of architectural maturity provide more benefits from system-

atic variation by making product development faster and cheaper. However,

increasingly mature PLAs provide fewer opportunities for ad-hoc variation, which

can reduce opportunities for reuse. Nonetheless, increasing levels of reuse can be

achieved if there is better systematic variation, that is, better adaptation of the PLA

to the scope and application domain of the SPL.

A PLA is not always necessary for successful SPL development. The least mature

of Bosch’s maturity levels is “under-specified architecture,” and experiences have

been reported of the adoption of SPL development with an extremely under-

specified PLA. Although products in an SPL will always have some sort of archi-

tecture, it does not necessarily have to be a PLA, namely one designed to support

goals of reuse and variation. Essentially, to reuse software, developers must:

1. Find and understand the software

2. Make the software available for use by incorporating it into their development

context

3. Use the software by invoking it

Let’s look at each of these steps in turn.

15.3.1 Find and Understand Software

Software engineers use API documentation and reference manuals to support the

simple reuse of software libraries. For SPL development, the Product Line Practice

guidelines from the SEI (see Further Reading) describe the Product Parts Pattern
which addresses the discovery and understanding of core asset software for SPL

development. This pattern relies on the documentation of procedures to use and

instantiate core assets in the construction of products.

2J. Bosch, Maturity and Evolution in Software Product Lines. In Proceedings of the Second

International Software Product Line Conference (San Diego, CA, U.S.A., August 19–22 2002).

Springer LNCS Vol. 2379, 2002, pp. 257–271.

224 15 Software Product Lines

15.3.2 Bring Software into the Development Context

After finding the software, a developer has to make it available to be used. There are

many ways to bring software into a development context, which can be categorized

according to their “binding time.” This is the time at which the names of reused

software assets are bound to a specific implementation. The main binding times and

some example mechanisms are:

l Programming time – by version control of source code
l Build time – by version control of static libraries
l Link time – by operating system or virtual machine support for dynamic libraries
l Run time – by middleware or application-specific mechanisms for configuration

or dynamic plug-ins, and by programming language mechanisms for reflection

Earlier binding times (such as programming or build time) make it easier to use

ad-hoc variation. Later binding times (such as link or run time) delay commitment

to specific variants, and so make it easier to benefit from the options provided by

systematic variation. Increasingly mature PLAs for SPL development tend to use

later binding time mechanisms. This enables them to maximize the benefits from an

SPL scope that is well understood and has a good fit with the company’s markets of

interest.

15.3.3 Invoke Software

To invoke software, programming languages provide procedure/function/method

call mechanisms. For distributed systems, interoperation standards such as CORBA

and SOAP provide remote invocation mechanisms that are tied into programming

language mechanisms, to allow developers to invoke software systems running on

other machines. These invocation mechanisms are the same for SPL development

as for traditional software development.

15.3.4 Software Configuration Management for Reuse

For organizations that are adopting SPL development, the most common binding

times for reuse are programming time and build time. This makes software confi-

guration management (SCM) a critical supporting process area for SPL develop-

ment. SCM includes version control and change control for software assets.

SCM for SPL development is more complicated than in normal product deve-

lopment partly because configuration identification (CI) is more complicated. CI

is the SCM activity of specifying the names, attributes, and relationships between

configurations (a versioned collection of versioned objects). In normal product

15.3 Product Line Architecture 225

development, a product’s configuration usually has a simple structure (e.g., a single

versioned binary or versioned file system directory hierarchy). However in SPL

development, each core asset, custom asset, and product is a configuration that must

be identified and the relationships between these configurations must be specified

and managed. Basically, SCM gets much more architectural for SPL development.

One approach to SCM for SPL development is depicted in Fig. 15.4. In this

approach, core assets and products each have their own line of development (LOD).

Each product version includes its own custom assets, as well as versions of core

assets. The version control system ensures that reused core assets are read-only for a

product, and that they are not modified solely within the context of a specific

product’s LOD. However, a product’s LOD can take a later version of a core

asset which has been produced on its own LOD.

This view of SPL development provides a quantitative basis for seeing why SPL

development can prove so effective. The LOD for each product contains source

code for customer-specific assets and also (read-only) source code for core assets.

So each LOD contains essentially the same source code as it would were product

line approaches not being used. However the total volume of branched code has

been reduced, because the size of core assets is not multiplied across every product.

Core assets are not branched for each product, and so low level design, coding and

unit test costs within core assets can be shared across many products.

In the ICDE example there are three products, and let’s assume that the core

components have 140,000 LOC (Lines of Code) and each product’s custom part

have 10,000 LOC. In normal product development, each product would be main-

tained on a separate LOD, giving a total of:

ð140; 000þ 10; 000Þ � 3 ¼ 450; 000 branched LOC:

In SPL development, the core is on its own LOD, and each product has a LOD

only for changing their custom assets, giving a total of:

140; 000þ ð10; 000� 3Þ ¼ 170; 000 branched LOC:

Baselines on the Core Asset’s Line of Development

Custom Asset Baselines

One Product’s Line of Development

Read-Only Copies of Core Asset Baselines

Fig. 15.4 A SCM branching pattern for SPL development

226 15 Software Product Lines

That’s only 38% of the original total. The improvement gets better when develop-

ing more products, or when the size of the custom assets compared to core assets is

proportionately smaller.

15.4 Variation Mechanisms

In an SPL, core assets support variable functionality by providing variation points.

A PLA typically uses specific architectural variation mechanisms to implement

variable functionality. However, an SPL can also use nonarchitectural variation

mechanisms to vary software functionality.

In addition to architectural-level variation mechanisms, there are design-level

and source-level variation mechanisms. These different types of variation are not

incompatible. For example, it is possible to use file-level variation at the same time

as architectural variation. This section describes some of the variation mechanisms

at these different levels of abstraction. This classification is similar to the taxonomy

of variability realization techniques in terms of software entities that has been

proposed by Svahnberg et al.3

15.4.1 Architecture-Level Variation Points

Architectural variation mechanisms are high-level design strategies intended to

let systems support a range of functionality. These strategies are only very loosely

related to the facilities of any specific programming language. Examples of these

include frameworks and plug-in architectures. Even the formal recognition of a

space of configuration options or parameters for selecting between variant func-

tionality can be considered to be an architectural variation mechanism.

15.4.2 Design-Level Variation

The boundary between architecture and design is not always a clear one. Here we

will say that design-level mechanisms are those supported directly by programming

language facilities and that architecture-level mechanisms must be created by

programming. Programming language mechanisms can be used to represent varia-

tion. These mechanisms include component interfaces that can allow various

functionally different implementations, and inheritance and overriding that simi-

larly allow objects to have variant functionality that satisfies base classes.

3M. Svahnberg, J. van Gurp, J. Bosch, A Taxonomy of Variability Realization Techniques,
Technical paper, Blekinge Institute of Technology, Sweden, 2002.

15.4 Variation Mechanisms 227

15.4.3 File-Level Variation

Development environments and programming languages provide ways to imple-

ment variation at the level of source code files. Some programming languages

provide conditional compilation or macro mechanisms that can implement func-

tional variation. In any event, build scripts can perform logical or physical file

variation that can be used to represent functional variation.

15.4.4 Variation by Software Configuration Management

The main role of SCM for product line development is to support asset reuse by

identifying and managing the versions of (and changes to) products and their

constituent component assets. New product versions do not have to use the most

recent version of a core asset. SCM systems can allow a product to use whatever

core asset version that meets the needs of the product’s stakeholders. The version

history and version branching space within an SCM tool can be used to represent

variation.

In a version control tool, a branched LOD of a core asset can be created to

contain variant functionality. Branching reused core assets in order to introduce

ongoing variation is a sort of technical decay that reduces the benefits of SPL

development. In the extreme case where every product has its own branch of core

assets, an organization will have voided SPL development completely and will be

back doing ordinary product development. Nonetheless, in some circumstances a

temporary branch is the most pragmatic way to introduce variation into a compo-

nent in the face of a looming delivery deadline.

15.4.5 Product Line Architecture for ICDE

Early on in the development of the ICDE product the development team had put

considerable effort into the product architecture. This means that they’re in the

fortunate position of already having many architectural variation mechanisms in

place, making the adoption of product line development easier. For example, the

Data Source adapter mechanism provides all the required variability for the three

new products. These existing variation mechanisms form the heart of the product

line architecture for the ICDE product line.

The team needs to define some new variation mechanisms too. To support the

real-time display of market information for the Financial product, the existing GUI

components need new functionality. The GUI is currently too rigid, so the team

plans to extend the GUI framework to let them add new types of “plug-in” panels

connected to data sources. When this framework is extended, it’ll be much easier to

228 15 Software Product Lines

implement the real-time display panel, connect it to the market data source, and

include it in the GUI for the Financial product build.

However, although the ICDE team thought the Data Storewould be the same for

all three products, it turns out that separating the classified data for the Security

product is a nontrivial problem, with requirements quite different from the other

two products. The team has to come up with some special-purpose Data Store code
just for that product. The easiest way to make these special changes is in a separate

copy of the code, so in their version control tool they create a branch of the Data
Store component just for the Security product. Having to maintain two different

implementations of the Data Store might hurt a little, but it’s the best the team can

do under a tight deadline. Once the product ships they’ll have time to design a better

architectural variation mechanism for the next release, and move all the products

onto that new Data Store component.

15.5 Adopting Software Product Line Development

Like many radical business changes, the adoption of SPL development in an organi-

zation is often driven in response to a crisis (what Schmid and Verlage4 diplomati-

cally called a “reengineering-driven” situation). This may be an urgent demand to

quickly develop many new products, or to reduce development costs, or to scale

new feature development in the face of a growing maintenance burden. This section

points out some paths and processes relevant to the adoption of SPL development.

There are two different starting points in the adoption of SPL development:

1. Green Fields: where no products initially exist

2. Ploughed Fields: where a collection of related legacy products have already

been developed without reuse in mind

Each situation has special considerations, as described below.

For Green Fields adoption of product lines, the SEI’s What to Build pattern is

particularly relevant. This pattern describes how a number of interacting practice

areas can result in the generation of an SPL Scope (to know what SPL will be built)

and a business case (to know why building the SPL is a good investment for the

organization). The SEI’s Scoping and Building a Business Case practice areas that
are directly responsible for these outputs are supported by the Understanding
Relevant Domains, Market Analysis, and Technology Forecasting practice areas.

An organization has to decide on their markets of interest, their medium-to-

long term SPL scope, and their short-to-medium term product production plans.

The organization must plan and evaluate the various investment options of having

the PLA of the core asset base support a large-enough SPL scope. This makes it

4K. Schmid, M. Verlage, The Economic Impact of Product Line Adoption and Evolution. In IEEE

Software, July/August 2002, pp. 50–57.

15.5 Adopting Software Product Line Development 229

possible to trade off the potential for return from the products that can be generated

within that scope for the markets of interest to the organization.

Investing in a PLA at the beginning of an SPL will provide a better long-term

return assuming that the products in the SPL are successful in the market. However,

the cost and technical difficulty of creating such a PLA ex nihlio can pose a barrier

to the adoption of SPL development, especially if the organization is not already

expert within the application domain being targeted by the SPL.

In contrast, when a set of products exists and is being transitioned to an SPL, an

organization will, as for Green Fields adoption, need to decide on the SPL scope

and markets of interest for the SPL. However, organizations in this position will

generally already have a good understanding about these. The scope of the SPL will

largely be driven by the functionality of existing products and future product plans.

The other significant considerations for Ploughed Fields adoption are potential

barriers related to change control, and defining the core assets and PLA.

Change control issues can pose a barrier to the adoption of SPL development for

an organization’s legacy products. The stakeholders of existing products will

already have established expectations about how their product releases change.

As discussed in the SCM section, every product in the SPL has stakeholders that

influence changes made to core assets, and these core asset changes in the SPL will

ultimately affect every product in the SPL, including other stakeholders. This

change in the nature of product releases must be understood and accepted by the

products’ stakeholders.

When initially defining an SPL for an existing set of independent products, the

organization must decide what is core for every product, and what is custom or

specific to any individual product. Instead of throwing away the existing assets for

the organization’s products and starting from a blank slate, it is possible to use an

extractive approach to mine core assets from existing products. The SEI describes

a product line practice area Mining Existing Assets addressing this activity. In

many ways, the extraction of core assets is like a giant refactoring exercise, as

depicted in Fig. 15.5. Starting from an initial collection of products, the goal of

Custom A

Core

Custom B

Core

Product A

Product B

Custom B

Custom A

Core

Product A

Custom A
Core

Product B

Custom A
Core

Core

Identify
Core

Extract
Core

Refactor Products
into SPL

Fig. 15.5 Mining core assets from a collection of existing products

230 15 Software Product Lines

the exercise is to finish with identical products, except now all built using a

common core asset.

When defining the core assets, the organization can also define a PLA to cater for

variation that is identified among the products. Svahnberg et al. have presented a set

of minimally necessary steps to introduce variability into a SPL. These are:

l Identification of variability
l Constraining variability
l Implementing variability
l Managing the variability

In order to reduce change control conflicts, it may be easier to introduce SPL

development early in the cycle leading to the release of a major new version of a

product. Product stakeholders are prepared for major changes when receiving a

major new version. Although moving to SPL development need not in principle

result in any functional difference to a product, there will at least be change control

policy modifications, which customers may find easier to accept in the context of a

major new product version.

An organization adopting product lines can also reduce business and technical

risks by incrementally rolling out the SPL within the organization. Adoption can be

incremental either by progressively increasing the size of the core assets, by

progressively adding more products to use the core assets, or a combination of both.

15.5.1 Product Line Adoption Practice Areas

The adoption of SPL development has impact outside the technical development

context. Regardless of the starting point for product line adoption (Green or

Ploughed Fields) and regardless of the specific product and technical process

changes that are to be made, many organizational management issues must be

dealt with to successfully transition to SPL development. The SEI product line

practice guidelines describe the Cold Start Pattern that groups together practice

areas that can help an organization effectively prepare for the launch of its first SPL.

The structure of the pattern is shown in Fig. 15.6.

Although the details of these practice areas are beyond the scope of this chapter,

the pattern as a whole highlights the fact that SPL development must have broad

business support from within the adopting organization and from its customers.

15.5.2 Product Line Adoption for ICDE

The ICDE team was driven to SPL development by the daunting prospect of

developing three new products at once. They are creating three new products for

three specific markets, but are using their existing product as a starting point.

15.5 Adopting Software Product Line Development 231

Their adoption of SPL development is thus a Ploughed Field scenario. They have

to mine reusable components from their existing code base.

Luckily their existing customers aren’t going to be too concerned initially about

the move to a PLA, because the move is part of the development of a major new

version of the product. The customers will be happy to upgrade because of the new

features they’ll also be getting.

15.6 Ongoing Software Product Line Development

SPL development must be effective not just for the initial development of new

products, but also for their ongoing maintenance and enhancement. Although SPL

development can have many benefits, it is more complicated than normal product

development. Enhanced processes are necessary to make ongoing SPL develop-

ment effective. This section gives an overview of a few of these SPL development

processes. We pay particular attention to “change control” and “architectural evo-

lution” for SPL development, but also summarize other SEI Product Line Practice

areas for ongoing SPL development.

15.6.1 Change Control

Software change control is related to software configuration management, and is

concerned with planning, coordinating, tracking, and managing the impact of change

to software artifacts (e.g., source code). Change control is harder when you do soft-

ware reuse, and this affects SPL development.

Launching and Institutionalising

Funding Structuring the Organisation

Operations

Organisational
Planning

Customer
Interface

Management

Developing an
Acquisition

Strategy
Training

Organisational
Risk Management

Fig. 15.6 The structure of product line practice areas in SEI’s Cold Start pattern (after Clements

and Northrup 2002, p383)

232 15 Software Product Lines

In any kind of product development, every product has a collection of stake-

holders that is concerned with how their product changes to accommodate their

needs for new functionality. In addition, stakeholders are concerned about nonfunc-

tional characteristics (such as release schedule, product reliability) related to the

release of their products. Risk-averse stakeholders (such as those using safety-

critical software or those in the banking industry) are often motivated to ensure

that their products do not change at all! Such stakeholders sometimes prefer to be

confident in their understanding of the product (bugs and all) rather than use new,

perhaps better versions.

Change control is harder when you do software reuse, including software reuse

for SPL development. For ordinary product development, each product is devel-

oped separately, and so each product’s stakeholders are kept separate too. However,

in SPL development each product depends on reused core assets, and so these

products’ stakeholders also vicariously depend on these reused core assets. If one

product’s customer has a change request that involves a change to a core asset, then

implementing that will force that change on every other customer who uses the new

version of that core asset. The many, often conflicting, needs of the products’

stakeholders will need to be simultaneously satisfied by the reused core assets.

15.6.2 Architectural Evolution for SPL Development

In SPL development there is constant evolution of both individual product custom

assets and the reused core assets. The PLA is the architectural basis for the variation

supported by core assets. A change to a core assets’ interface is a change to the

PLA, and can force changes in all products that use the new version of these core

assets. How then should the new or enhanced core features be added to a product

line? That is, how should changes be made to the PLA?

There are three ways to time the introduction of variation points into core assets:

l Proactive: Plan ahead for future features, and implement them in core assets

before any product needs them.
l Reactive: Wait until a new feature is actually required by a product, and then

implement it in core assets at that time.
l Retroactive: Wait until a new feature is actually required by a product, and then

implement it in a custom asset at that time. When enough products implement

the feature in their custom assets, add it to the core assets. New products can use

the new core assets’ feature, and the older products can drop their custom asset

implementation in favor of the core assets’ implementation.

It is possible to use a mix of these approaches, for different enhancements. For

example, enhancements on a long-term Road Map could be added in a proactive

way, by planning architectural changes to support the future increased scope of

the SPL. Limited but generally useful enhancements to core assets could be added

in a reactive way, by modifying the PLA as required by those enhancements.

15.6 Ongoing Software Product Line Development 233

Enhancements needed by one product that are more speculative or are less well

defined could be added retroactively.

Each of these strategies has different costs, benefits, and risks. The choice of

strategy for a particular feature will be driven by consideration of these tradeoffs in

the organization’s business context. Table 15.1 summarizes some of the differences

between the three approaches:

15.6.3 Product Line Development Practice Areas

The SEI product line practice guidelines provide the Factory pattern that links

together other patterns and their constituent practice areas relevant to the ongoing

development and maintenance of a SPL. The In Motion pattern groups together

organizational management practice areas. Other relevant SEI patterns are the

Monitor, Process, and Curriculum patterns that describe ongoing aspects of SPL

development.

For technical practice areas, the SEI’s Each Asset pattern describes practice

areas that are relevant to the development of core assets. The Product Parts pattern
ties together the core assets with the product development. The Product Builder
pattern describes practice areas relevant to the development of any specific product.

The Assembly Line pattern describes how products are output from the SPL.

15.6.4 Product Lines with ICDE

Doing SPL development wasn’t just an architectural issue for the ICDE team.

Each of the products had a customer steering group that was involved in defining

requirements for the new products, and defined enhancement requests that they

wanted to track through to the delivery of the products. But the ICDE team didn’t

want the Financial product customer steering group to see all the details of the

Security product steering group, and vice-versa. The problem was that some enhance-

ment requests were the same (or similar), and the team didn’t want to get confused

about duplicate requests when they started coding.

Table 15.1 Comparing strategies for architecture evolution

Proactive Reactive Retroactive

No long-term investment No Yes Yes

Reduces risk of core asset change conflict Yes No Yes

Reduces lead time to add feature to first product Yes No No

Reduces risk of core feature not required

in a number of products

No (0 products) No (1 product) Yes

234 15 Software Product Lines

So, the ICDE team set up different customer-facing request systems for each of

the products. These linked to an internal change request system which could track

changes to each of the main reused subsystems and also the product-specific custom

components.

Eventually the first product was released. Instead of releasing all three products at

once, the team shipped the simplest product first, namely the Government product.

The Government customers quickly raised a few postrelease defect reports, but the

ICDE development team was able to respond quickly. The good news was that one of

the defects that was fixed was in the core Data Collection component, so when the

other two products were released later, their customers wouldn’t see that problem.

The ICDE team was beginning to see some quality benefits from SPL development.

The bad news came after the other products were released. The Security and

Financial customers were happy to have the new version, though the Financial

customers did raise a defect report on the Data Analysis component. It would have

been easy to fix in the core component, but by that time the Government customers

had gone into production. They hadn’t seen that problem in the Data Analysis area,
and in fact the bug was related to the framework extensions required to support the

Financial product real-time display panel.

However, if the Data Analysis component changed in any way at all, the

Government customers would have to follow their policy and rerun all of the

related acceptance tests, which would cost them time and money. So they really

didn’t want to see any changes, and put pressure on the ICDE sales team to try to

stop the change.

The ICDE development team really wanted to change the core version, but how

could they satisfy everyone? They thought about faking the core changes in custom

assets just for the Financial product, but in the end they decided to keep the

Government product on the old version of the Data Analysis component, and

implemented the fix in the core. The ICDE development team also created a Core

CCB involving representative members from each of the three customer steering

groups. This meant that in future the negotiations could be managed inside the Core

CCB, instead of via the ICDE sales team.

A bright spot on the horizon was that the Security customers were starting to talk

about their need to see real-time visualization of news reports. The ICDE develop-

ment team could implement that just by reusing the real-time display panel devel-

oped for the Financial product. The company had already accounted for the costs of

developing that feature, so being able to sell it again to other customers would mean

all the new revenue would go straight to the bottom line.

15.7 Conclusions

Product line development has already given many organizations orders of magni-

tude improvements to productivity and time to market, and significant improve-

ments in product quality. If we think about SPL development simply from a SCM

15.7 Conclusions 235

perspective, we can see that (proportionately large) core assets are not branched for

each product, and so the total number of branched lines of code is vastly reduced for

the whole SPL.

What does the future hold for SPL development? Because of its massive

potential, SPL development is likely to become even more widely known, better

understood, and increasingly used. However, SPL development will also have

impacts on software architecture practices, as architectural mechanisms for reuse

in the large become better and more widely understood.

Improved architectural practices combined with a deeper understanding of

specific application domains can also support increasingly declarative variation

mechanisms. This could transform software reuse to be more like the mythical

vision of software construction using software building blocks. Simple reuse relies

heavily on procedural variation, writing ad-hoc code to achieve the particular

functionality that is required. Increasing architectural sophistication and domain

knowledge can support configurable variation, realized by systematic variation

supported by core assets interfaces.

Choosing a variant for such a system requires choosing values from a list of

configuration options. When an application domain is very well understood, then a

domain-specific language becomes a viable way of declaratively specifying product

variation. Sentences in this language can specify system variants, and can be

dynamically interpreted by the core assets.

Other architectural and design approaches such as aspect-oriented programming

and model-driven development also have promise as variation or mass-customiza-

tion mechanisms that may be able to support SPL development.

As the time of system variation extends out of the development context, so does

the need to extend the control and management of variation. For systems that can

vary at installation time, load time, or run time, the need to control and manage

system variation does not end when the system is released from development.

Software configuration management supports control and management of variation

during development. However, for installation, load or run time, existing package

management and application management frameworks have very weak facilities for

version and variation control. In future, the boundaries between configuration

management, package management, and application management will become

blurred. A unified framework is therefore required to control and manage variation

across the entire product lifecycle.

15.8 Further Reading

The Software Engineering Institute has been a leader in defining and reporting the

use of software product lines. An excellent source of information is the following

book by two of the pioneers of the field:

P. Clements, L. Northrop. Software Product Lines: Practices and Patterns.
Addison Wesley, 2001.

236 15 Software Product Lines

The SEI’s web site also contains much valuable information and links to other

product line related sources:

http://www.sei.cmu.edu/productlines/

Other excellent references are:

Klaus Pohl, G€unter B€ockle, Frank J. van der Linden, Software Product Line

Engineering: Foundations, Principles and Techniques, Springer-Verlag 2010

Frank J. van der Linden, Klaus Schmid, Eelco Rommes, Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering, Springer-

Verlag 2007.

Software configuration management is a key part of software product lines.

A good book on this topic is:

S.P. Berczuk, B. Appleton. Software Configuration Management Patterns:

Effective Teamwork, Practical Integration. Addison-Wesley, 2002.

A case study describing how to exploit file-based variation to create a software

product line is:

M. Staples, D. Hill. Experiences Adopting Software Product Line Development
without a Product Line Architecture. Proceedings of the 11th Asia-Pacific

Software Engineering Conference (APSEC 2004), Busan, S. Korea, 30 Nov –

3 Dec 2004, IEEE, pp. 176–183.

A slightly different perspective on product lines is the Software Factories work

by Jack Greenfield et al. This book is definitely worth a read.

J. Greenfield, K. Short, S. Cook, S. Kent, J. Crupi, Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, Wiley 2004.

15.8 Further Reading 237

http://www.sei.cmu.edu/productlines/

	Chapter 15: Software Product Lines
	15.1 Product Lines for ICDE
	15.2 Software Product Lines
	15.2.1 Benefiting from SPL Development
	15.2.2 Product Lines for ICDE

	15.3 Product Line Architecture
	15.3.1 Find and Understand Software
	15.3.2 Bring Software into the Development Context
	15.3.3 Invoke Software
	15.3.4 Software Configuration Management for Reuse

	15.4 Variation Mechanisms
	15.4.1 Architecture-Level Variation Points
	15.4.2 Design-Level Variation
	15.4.3 File-Level Variation
	15.4.4 Variation by Software Configuration Management
	15.4.5 Product Line Architecture for ICDE

	15.5 Adopting Software Product Line Development
	15.5.1 Product Line Adoption Practice Areas
	15.5.2 Product Line Adoption for ICDE

	15.6 Ongoing Software Product Line Development
	15.6.1 Change Control
	15.6.2 Architectural Evolution for SPL Development
	15.6.3 Product Line Development Practice Areas
	15.6.4 Product Lines with ICDE

	15.7 Conclusions
	15.8 Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

