
 

5 From the Internet of Things to the Web of 
Things: Resource-oriented Architecture and 
Best Practices 

Dominique Guinard1,2, Vlad Trifa1,2, Friedemann Mattern1, Erik Wilde3 

1Institute for Pervasive Computing, ETH Zurich 
2SAP Research, Zurich 
3

Abstract Creating networks of “smart things” found in the physical world (e.g., 
with RFID, wireless sensor and actuator networks, embedded devices) on a large 
scale has become the goal of a variety of recent research activities. Rather than 
exposing real-world data and functionality through vertical system designs, we 
propose to make them an integral part of the Web. As a result, smart things be-
come easier to build upon. In such an architecture, popular Web technologies 
(e.g., HTML, JavaScript, Ajax, PHP, Ruby) can be used to build applications in-
volving smart things, and users can leverage well-known Web mechanisms (e.g., 
browsing, searching, bookmarking, caching, linking) to interact with and share 
these devices. In this chapter, we describe the Web of Things (WoT) architecture 
and best practices based on the RESTful principles that have already contributed 
to the popular success, scalability, and evolvability of the Web. We discuss sever-
al prototypes using these principles, which connect environmental sensor nodes, 
energy monitoring systems, and RFID-tagged objects to the Web. We also show 
how Web-enabled smart things can be used in lightweight ad-hoc applications, 
called “physical Mashups”, and discuss some of the remaining challenges towards 
the global World Wide Web of Things. 

School of Information, UC Berkeley 

5.1 From the Internet of Things to the Web of Things 

As more and more devices are getting connected to the Internet, the next logical 
step is to use the World Wide Web and its associated technologies as a platform 
for smart things (i.e., sensor and actuator networks, embedded devices, electronic 
appliances and digitally enhanced everyday objects). Several years ago, in the 
Cool Town project, Kindberg et al. (Kindberg et al. 2002) proposed to link physi-

D. Uckelmann et al. (eds.), Architecting the Internet of Things,
DOI 10.1007/978-3-642-19157-2_5, © Springer-Verlag Berlin Heidelberg 2011

97



98     D. Guinard et al. 

cal objects with Web pages containing information and associated services. Using 
infrared interfaces or bar codes on objects, users could retrieve the URI of the as-
sociated page simply by interacting with the object. Another way to use the Web 
for real-world objects is to incorporate smart things into a standardised Web ser-
vice architecture (using standards, such as SOAP, WSDL, UDDI) (Guinard et al. 
2010d). In practice, this would often be too heavy and complex for simple objects. 

  Instead of these heavyweight Web services (SOAP/WSDL, etc.), often referred 
to as WS-* technologies, recent “Web of Things” projects (Wilde 2007; Guinard 
et al. 2010c; Luckenbach et al. 2005; Stirbu 2008) have explored simple embed-
ded Hypertext Transfer Protocol (HTTP) servers and Web 2.0 technology. In fact, 
recent embedded Web servers with advanced features (such as concurrent connec-
tions or server push for event notifications), can be implemented with only 8 KB 
of memory and no operating system support, thanks to efficient cross-layer 
TCP/HTTP optimisations, and can therefore run on tiny embedded systems, such 
as smart cards (Duquennoy et al. 2009). Since embedded Web servers in an Inter-
net of Things generally have fewer resources than Web clients, such as browsers 
or mobile phones, Asynchronous JavaScript and XML (Ajax) has proven to be a 
good way of transferring some of the server workload to the client.  

  So far, projects and initiatives, subsumed here under the umbrella term “Internet 
of Things”, have focused mainly on establishing connectivity in a variety of chal-
lenging and constrained networking environments. A promising next step is to 
build scalable interaction models on top of this basic network connectivity and 
thus focus on the application layer. In the Web of Things concept, smart things 
and their services are fully integrated in the Web by reusing and adapting technol-
ogies and patterns commonly used for traditional Web content. More precisely, ti-
ny Web servers are embedded into smart things and the REST architectural style 
(Richardson and Ruby 2007; Fielding 2000) is applied to resources in the physical 
world (Guinard et al. 2010c; Luckenbach et al. 2005; Duquennoy et al. 2009; Hui 
and Culler 2008). The essence of REST is to focus on creating loosely coupled 
services on the Web, so that they can be easily reused. REST is the architectural 
style of the Web (implemented by URIs, HTTP, and standardised media types, 
such as HTML and Extensible Markup Language (XML) and uses URIs for iden-
tifying resources on the Web. It abstracts services in a uniform interface (HTTP’s 
methods) from their application-specific semantics and provides mechanisms for 
clients to select the best possible representations for interactions. This makes it an 
ideal candidate to build a “universal” architecture and Application Programming 
Interface (API) for smart things. As we will explain in this chapter, the services 
that smart things expose on the Web usually take the form of a structured XML 
document or a JavaScript Object Notation (JSON) object, which are directly ma-
chine-readable. These formats can be understood not only by machines, but are al-
so reasonably accessible to people; provided meaningful markup elements and va-
riable names are used and documentation is made available. They can also be 
supplemented with semantic information using microformats, so that smart things 



5 From the Internet of Things to the Web of Things     99 

can not only communicate on the Web, but also provide a user-friendly represen-
tation of themselves. This makes it possible to interact with them via Web brows-
ers and thus explore the world of smart things with its many relationships (via 
links to other related things). Dynamically generated real-world data on smart ob-
jects can be displayed on such “representative” Web pages, and then processed 
with Web 2.0 tools. For example, things can be indexed like Web pages via their 
representations, users can “google” for them, and their URI can be emailed to 
friends or it can be bookmarked. The physical objects themselves can become ac-
tive and publish blogs or inform each other using services, such as Twitter.64

 

 The 
general idea is that the Web is being used as a decentralised information system 
for easily exposing new services and applications, made possible, directly or indi-
rectly, by smart things.  

  The Web-enablement of smart things delivers more flexibility and customisation 
possibilities for end-users. As an example, tech-savvy end-users, at ease with new 
technologies, can easily build small applications on top of their appliances. Fol-
lowing the trend of Web 2.0 participatory services, in particular Web Mashups 
(Zang et al. 2008), users can create applications mixing real-world devices, such 
as home appliances, with virtual services on the Web. This type of applications is 
often referred to as physical Mashup (Wilde 2007, Guinard et al. 2010c). As an 
example, a music system could be connected to Facebook or Twitter in order to 
post the songs one mostly listens to. On the Web, this type of small, ad-hoc appli-
cation is usually created through a Mashup editor (e.g., Yahoo Pipes65

  In Section 2 and 3 we provide a “cookbook” describing the design steps towards 
embedding smart things into the Web. We also discuss a number of patterns and 
illustrate them via real prototypes that we have developed over the past few years. 
In Section 4, we use three concrete prototypes to exemplify how developers, do-
main-experts, and tech-savvy users can all benefit from a composable Web of 
Things. Finally, in Section 5 and 6 we discuss the remaining challenges towards 
implementing a World Wide Web of Things. 

), which is a 
Web platform that enables tech-saavy users (i.e., proficient users of technology)  
to visually create simple rules to compose Web sites and data sources. We de-
scribe how these principles and tools can also be applied to empower the user to 
create physical Mashups on top of their things. 

                                                           
64 http://www.twitter.com 
65 http://pipes.yahoo.com/pipes/ 

http://www.twitter.com
http://pipes.yahoo.com/pipes


100     D. Guinard et al. 

5.2 Designing RESTful Smart Things 

The “Web of Things” can be realised by applying principles of Web architecture, 
so that real-world objects and embedded devices can blend seamlessly into the 
Web. Instead of using the Web as a transport infrastructure – as done when using 
WS-* Web services – we aim at making devices an integral part of the Web and 
its infrastructure and tools by using HTTP as an application layer protocol. 

  The main contribution of the “Web of Things” approach is to offer a foundation 
for the next step beyond basic network connectivity. We hope that the Web of 
Things can do for real-world resources what the Web did for information re-
sources: basic connectivity was a necessary, but not a sufficient condition for the 
Internet to grow as spectacularly as it is still growing today; it was the architecture 
of the Web that allowed data and services to be shared in a way that was unheard 
of before, and that spurred the decentralised growth of what was made available 
on the Web. 

  In this section, we describe the use of REST (Fielding 2000) as a universal inte-
raction architecture, so that interactions with smart things can be built around un-
iversally supported methods (Pautasso and Wilde 2009). 

  In the following, we provide a set of guidelines to Web-enable smart things and 
illustrate them with concrete examples of implemented prototypes. As case study, 
we describe how we Web-enabled a wireless sensor network (Sun SPOT66

5.2.1 Modeling Functionality as Linked Resources 

). These 
guidelines are based on the concepts of Resource Oriented Architecture (ROA), 
described by Richardson and Ruby (Richardson and Ruby 2007). Our main goal is 
to focus on how these concepts can be applied and adapted in order to apply to 
smart things. 

The central idea of REST revolves around the notion of a resource as any compo-
nent of an application that is worth being uniquely identified and linked to. On the 
Web, the identification of resources relies on Uniform Resource Identifiers 
(URIs), and representations retrieved through resource interactions contain links to 
other resources, so that applications can follow links through an interconnected 
web of resources. Clients of RESTful services are supposed to follow these links, 
just like one browses Web pages, in order to find resources to interact with. This 
allows clients to “explore” a service simply by browsing it, and in many cases, 
services will use a variety of link types to establish different relationships between 
resources. 

                                                           
66 http://www.sunspotworld.com 

http://www.sunspotworld.com


5 From the Internet of Things to the Web of Things     101 

  In the case of the Sun SPOT, each node has a few sensors (light, temperature, ac-
celerometer, etc.), actuators (digital outputs, LEDs, etc.), and a number of internal 
components (radio, battery). Each of these components is modeled as a resource 
and assigned a URI. For instance, typing a URI such as  

http://.../sunspots/spot1/sensors/light  

in a browser requests a representation of the resource light of the resource sensors 
of spot1. Resources are primarily structured hierarchically and each resource also 
provides links back to its parent and forward to its children. As an example, the 
resource  

http://.../sunspots/spot1/sensors/ 

provides a list of links to all the sensors offered by spot1. This interlinking of re-
sources that is established through both, resource links and hierarchical URI, is not 
strictly necessary, but well-designed URIs make it easier for developers to “under-
stand” resource relationship and even allow non-link based “ad-hoc interactions”, 
such as “hacking” a URI by removing some structure and still expecting for it to 
work somehow.67

  In a nutshell, the first step when Web-enabling a smart thing is to design its re-
source network. Identification of resources and their relationships are the two im-
portant aspects of this step.  

 

5.2.2 Representing Resources 

Resources are abstract entities and are not bound to any particular representation. 
Thus, several formats can be used to represent a single resource. However, agreed-
upon resource representation formats make it much easier for a decentralised sys-
tem of clients and servers to interact without the need for individual negotiations. 
On the Web, media type support in HTTP and the Hypertext Markup Language 
(HTML) allow peers to cooperate without individual agreements. It further allows 
clients to navigate amongst the resources using hyperlinks.  
 
  For machine-to-machine communication, other media types, such as the XML 
and the JSON have gained widespread support across services and client plat-

                                                           
67 In some browsers this “URI hacking” is even part of the UI, where a “go up” function in the 
browser simply removes anything behind the last slash character in the current URI and expects 
that the Web site will serve a useful representation at that guessed URI. 



102     D. Guinard et al. 

forms. JSON is a lightweight alternative to XML that is widely used in Web 2.0 
applications.68

  In the case of smart things, we suggest support for at least an HTML representa-
tion to ensure browsability by humans. Note that since HTML is a rather verbose 
format, it might not be directly served by the things themselves, but by interme-
diate proxies, as described in Section 

 

0. For machine-to-machine communications, 
we suggest using JSON. Since JSON is a more lightweight format compared to 
XML, we believe that it is better adapted to devices with limited capabilities such 
as smart things. Furthermore, it can directly be parsed to JavaScript objects. This 
makes it an ideal candidate for integration into Web Mashups. 

  In the Sun SPOT example, each resource provides both, an HTML and a JSON 
representation. As an example, the listing in Figure 5.1a shows the JSON repre-
sentation of the temperature resource of a Sun SPOT and Figure 5.1b shows the 
same resource represented as an HTML page with links to parents, subresources, 
and related resources. 

1 {"resource": 
2 {"methods":["GET"], 
3 "name":"Temperature", 
4 "children":[], 
5 "content":  
6 [{"description":"Current Temperature", 
7 "name":"Current Ambient Temperature", 
8 "value":"27.75"}]}} 

Fig. 5.1a  JSON Representation of the Temperature Resource of a Sun SPOT 

 

                                                           
68 http://www.json.org 

http://www.json.org


5 From the Internet of Things to the Web of Things     103 

 
Fig. 5.1b  HTML Representation (Rendered by a Browser) of the Temperature Resource of a 
Sun SPOT Containing Links to Parent and Related Resources 

5.2.3 Servicing Through a Uniform Interface 

In REST, interacting with resources and retrieving their representations all hap-
pens through a uniform interface which specifies a service contract between the 
clients and servers. The uniform interface is based on the identification (and thus 
interaction) of resources, and in case of the Web, this interface is defined by the 
HTTP. We concentrate on three particular parts of this interface: operations, con-
tent-negotiation, and status codes. 

5.2.3.1 Operations 

HTTP provides four main methods to interact with resources, often also referred 
to as “verbs”: GET, PUT, POST, and DELETE. GET is used to retrieve the repre-
sentation of a resource. PUT is used to update the state of an existing resource or 
to create a resource by providing its identifier. POST creates a new resource with-
out specifying any identifier. DELETE is used to remove (or “unbind”) a resource.  

  In the Web of Things, these operations map rather naturally, since smart things 
usually offer quite simple and atomic operations. As an example, a GET on  

http://.../spot1/sensors/temperature 

returns the temperature observed by spot1, i.e., it retrieves the current representa-
tion of the temperature resource. A PUT on  



104     D. Guinard et al. 

http://.../sunspots/spot1/actuators/leds/1 

with a GET on /leds/1) switches on the first LED of the Sun SPOT, i.e., it updates 
the state of the LED resource. A POST on  

http://.../spot1/sensors/temperature/rules  

with a JSON representation of the rule as {“threshold”:35} encapsulated in the 
HTTP body, creates a rule that will notify the caller whenever the temperature is 
higher than 35 degrees, i.e., it creates a new rule resource without explicitly pro-
viding an identifier. Finally, a DELETE on  

http://.../spot 

is used to shutdown the node, or a DELETE on  

http://.../spot1/sensors/temperature/rules/1  

is used to remove rule number 1. 

  Additionally, another less-known verb is specified in HTTP and implemented by 
most Web servers: OPTIONS can be used to retrieve the operations that are al-
lowed on a resource. In a programmable Web of Things, this feature is quite use-
ful, since it allows applications to find out at runtime what operations are allowed 
for any URI. As an example, an OPTIONS request on  

http://.../sunspots/spot1/sensors/tilt 

returns GET, OPTIONS. 

5.2.3.2 Content Negotiation 

HTTP also specifies a mechanism for clients and servers to communicate about 
the requested and provided representations for any given resource; this mechanism 
is called content negotiation. Since content negotiation is built into the uniform in-
terface of HTTP, clients and servers have agreed-upon ways in which they can ex-
change information about requested and available resource representations, and 
the negotiation allows clients and servers to choose the best representation for a 
given scenario. 

  A typical content-negotiation for the Sun SPOTs looks as follows. The client be-
gins with a GET request on  

with the updated JSON representation {“status”:“on”} (which was first retrieved 



5 From the Internet of Things to the Web of Things     105 

http://.../spot1/sensors/temperature/rules 

  It also sets the Accept header of the HTTP request to a weighted list of media 
types it understands, for example to: application/json;q=1, application/xml;q=0.5. 
The server then tries to serve the best possible format it knows about and specifies 
it in the Content-Type of the HTTP response. In our case, the Sun SPOT cannot 
offer XML and would thus return a JSON representation and set the HTTP header 
Content-Type: application/json. 

5.2.3.3 Status Codes 

Finally, the status of a response is represented by standardised status codes sent 
back as part of the header in the HTTP message. There exist several dozens of 
codes which each have well-known meaning for HTTP clients. In a Web of 
Things, this is very valuable since it gives us a lightweight but yet powerful way 
of notifying abnormal requests execution. 

As an example, a POST request on  

http://.../sunspots/spot1/sensors/acceleration  

returns a 405 status code that the client has to interpret as the notification that “the 
method specified in the request is not allowed for the resource identified by the 
request URI.” 

5.2.4 Syndicating Things 

Many applications for smart things require syndicating information about objects 
or collections of objects. With Atom, the Web has a standardised and RESTful 
model for interacting with collections, and the Atom Publishing Protocol (Atom-
Pub) extends Atom’s read-only interactions with methods for write access to col-
lections. Because Atom is RESTful, interactions with Atom feeds can be based on 
simple GET operations which can then be cached. Atom enables decoupled scena-
rios by allowing clients to monitor smart things by subscribing to feeds and pol-
ling a feed on a remote server, instead of directly polling data from each device. 

  We implemented this model for the Sun SPOTs, since it fits the interaction mod-
el of sensor networks. Thus, the nodes can be controlled (e.g., turning LEDs on, 
enabling the digital outputs, etc.) using synchronous HTTP calls (client pull) as 
explained before, but can also be monitored by subscribing to feeds (node push). 
For example, a subscription to a feed can be done by creating a new “rule” on a 
sensor resource and POSTing a threshold (e.g., > 100). 



106     D. Guinard et al. 

http://.../sunspots/spot1/sensors/light/rules 

  In response, the Sun SPOT returns a URI to an Atom feed. Every time the thre-
shold is reached, the node pushes a JSON message to the Atom server using 
AtomPub. This allows for thousands of clients to monitor a single sensor by out-
sourcing the processing onto an intermediate, more powerful server. 

5.2.5 Things Calling Back: Web Hooks 

While Atom allows asynchronous communication between clients and smart 
things, clients still need to pull the feed server on a regular basis to get data. In ad-
dition to being inefficient in terms of communications, this might be problematic 
for scenarios where the focus is on monitoring. This is often the case with applica-
tions communicating with wireless sensor networks. 

  For those applications, we suggest supporting HTTP callbacks, sometimes called 
Web hooks.69

  As an example, let us consider again the case of creating a new rule on a Sun 
SPOT: 

 Web hooks are a mechanism for clients and applications that want to 
receive notifications from other Web sites using user-defined callbacks over 
HTTP. Users can specify a callback URI where the application will POST data to 
once an event occurs. This mechanism has been used by the PayPal service which 
allows you to specify a URI to be triggered by the service once payment has been 
accepted.  

http://.../sunspots/spot1/sensors/light/rules 

  Now, alongside with the rule, the client POSTs a URI on which it will listen for 
incoming messages. Every time the threshold is reached, the node (or an interme-
diate) will push a JSON message to the given URI(s).  

  Using Web hooks is a first step towards bi-directional, real-time interaction with 
smart things. However, this model has a number of limitations as it requires from 
clients to have a public URI where data can be posted to, which is rarely the case 
when clients are behind a firewall. We will discuss further solutions in Section 0. 

                                                           
69 http://www.webhooks.org 

http://www.webhooks.org


5 From the Internet of Things to the Web of Things     107 

5.3 Web-enabling Constrained Devices 

Although Web servers are likely to be embedded into more and more devices, we 
cannot assume that every smart device will directly offer a RESTful interface. In 
some cases, it makes sense to hide the platform-dependent protocol to access the 
resources of a particular device, and to expose them as RESTful service provided 
by a gateway. The actual interactions behind that RESTful service are invisible 
and often will include specialised protocols for the specific implementation scena-
rio. REST defines the notion of intermediaries as a core part of the architectural 
style, and therefore such a design can easily be achieved by implementing the 
RESTful service on intermediaries. By using either proxies or reverse proxies, it is 
furthermore possible to establish such an intermediary from the client or from the 
server side, effectively introducing a robust pattern for wrapping non-RESTful 
services in RESTful abstractions. 

  In practice, two solutions are possible: Web connectivity directly on the smart 
things, or indirectly through a proxy. Previous work has shown that serving con-
tent using Web servers on resource-constrained devices is feasible (Duquennoy et 
al. 2009). Also, in the foreseeable future, most embedded platforms will have na-
tive support for TCP/IP connectivity (in particular with 6LowPAN (Hui and Cul-
ler 2008), therefore, a Web server on most devices is a reasonable assumption. 
This approach is sometimes desirable, as there is no need to translate HTTP re-
quests from Web clients into the appropriate protocol for the different devices, and 
thus devices can be directly integrated and make their RESTful APIs directly ac-
cessible on the Web, as shown in the right part of Figure 5.2. 

 



108     D. Guinard et al. 

 
Fig. 5.2  Web and Internet Integration with Smart Gateways and Direct Integration 

  However, when an on-board HTTP server is not possible or not desirable, Web 
integration takes place using a reverse proxy that bridges devices that are not di-
rectly accessible as Web resources. We call such as proxy a Smart Gateway (Trifa 
et al. 2009) to account for the fact that it is a network component that does more 
than only data forwarding. A Smart Gateway is a Web server that hides the actual 
communication between networked devices (e.g., Bluetooth or Zigbee) and the 
clients through the use of dedicated drivers behind a RESTful service. From the 
Web clients’ perspective, the actual Web-enabling process is fully transparent, as 
interactions are HTTP in both cases. 

  As an example, consider a request to a sensor node coming from the Web 
through the RESTful service. The gateway maps this request to a request into the 
proprietary API of the node and transmits it using the communication protocol un-
derstood by the sensor node. A Smart Gateway can support several types of devic-
es through a driver architecture, as shown in Figure 5.3, where the gateway sup-
ports three types of devices and their corresponding communication protocols. 
Ideally, gateways should have a small memory footprint to be integrated into em-



5 From the Internet of Things to the Web of Things     109 

bedded computers already present in network infrastructures, such as wireless rou-
ters, set-top boxes, or Network Attached Storage (NAS) devices. 

  Aside from connecting limited devices to the Web, a Smart Gateway can also 
provide more complex functions to devices such as orchestration and composition 
of several low-level services, offered by various devices into higher-level services 
available through the RESTful service. For example, if an embedded device 
measures the energy consumption of appliances, the Smart Gateway could provide 
a service that returns the total energy consumption as a sum of the data collected 
by all the devices connected to the gateway. Additionally, a gateway could take 
care of notifying all the URI call-backs (or Web hooks) whenever a given condi-
tion is met.  

Example: A Smart Gateway for Smart Meters 
A prototype for a smart meter infrastructure illustrates the application of the WoT 
architecture and the concept of Smart Gateways for monitoring and controlling the 
energy consumption of households. We used intelligent power sockets, called 
Plogg70

                                                           
70 http://www.plogginternational.com 

, which can measure the electricity consumption of the appliance plugged 
into them. Each Plogg is also a wireless sensor node that communicates over Blu-
etooth or Zigbee. However, the integration interface offered by the Ploggs is pro-
prietary, which makes the development of applications using Ploggs rather te-
dious, and does not allow for easy Web integration. 

http://www.plogginternational.com


110     D. Guinard et al. 

 
Fig. 5.3  Appliances Attached to Ploggs Power Outlets Which Communicate with a Smart Ga-
teway Offering the Ploggs’ Functionalities as RESTful Web Services 

  The Web-oriented architecture we have implemented using the Ploggs is based 
on five main layers as shown in Figure 5.3. The Device Layer is composed of ap-
pliances we want to monitor and control through the system. In the Sensing Layer, 
each of these appliances is then plugged into a Plogg sensor node. In the Gateway 
Layer, the Ploggs are discovered and managed by a Smart Gateway as described 
before. In the Mashup layer the Ploggs’ services are composed together to create 
an energy monitoring and control application, using Web scripting languages or 
composition tools. Finally, this application is made available through a Web User 



5 From the Internet of Things to the Web of Things     111 

Interface in a Web browser (e.g., on a mobile phone, a desktop computer, a tablet 
PC, etc.) 

  The Smart Gateway in this example is a C++ application running on an embed-
ded machine, whose role is to automatically find all the Ploggs in the environment 
and make them available as Web resources. The gateway first periodically looks 
for the Ploggs in the area by scanning the environment for Bluetooth devices. The 
next step is to expose them as RESTful resources. A small footprint Web server 
(Mongoose71

  In addition to discovering the Ploggs and mapping their functionalities to URIs, 
the Smart Gateway has two other important features. First, it offers local aggre-
gates of device-level services. For example, the gateway offers a service that re-
turns the combined electricity consumption of all the Ploggs found at any given 
time. The second feature is that the gateway can represent resources in various 
formats. By default an HTML page with links to the resources, is returned, this 
ensures browsability. Using this representation the user can literally “browse” 
with any Web client the structure of smart meters to identify the one he or she 
wants to use and directly test the Ploggs by clicking on links (e.g., for the HTTP 
GET method) or filling forms (e.g., for the POST method). Alternatively, the 
Smart Gateway can also represent results of resources like JSON, to ease the inte-
gration with other Web applications. 

) is used to enable access to the Ploggs’ functionalities over the Web, 
simply by mapping URIs to the various requests of the native Plogg Bluetooth 
API. 

  To illustrate the concept from a client point of view, let us briefly describe an ex-
ample of interaction between a client application (e.g., written in Ajax) and the 
Ploggs’ RESTful Smart Gateway. First, the client contacts the root URI of the ap-
plication  

http://.../EnergieVisible/SmartMeters/  

with the GET method. The server responds with the list of all the smart meters 
connected to the gateway.  

  Afterwards, the client selects from that list the device it wants to interact with 
identified by a URI  

http://.../EnergieVisible/SmartMeters/RoomLamp  

alongside with the format it wants to get back (using HTTP content negotiation, 
see Section 5.2.3). By issuing a GET request on this resource with the Accept 
header set to application/json;q=1, it gets back a JSON representation as shown in 
Figure 5.4 below. In the response message of this listing, the client finds energy 

                                                           
71 http://code.google.com/p/mongoose 

http://code.google.com/p/mongoose


112     D. Guinard et al. 

consumption data (e.g., current consumption, global consumption, etc.) as well as 
hyperlinks to related resources. Using these links, the client can discover other re-
lated “services”.  

1 GET /EnergieVisible/SmartMeters/RoomLamp  
2 [...] HTTP/1.x 200 OK 
3 Content-Type: application/json 
4 { 
5   “deviceName”:  “RoomLamp”, 
6   “currentWatts”:  60.52, 
7   “KWh”:  40.3, 
8   “maxWattage”:  80.56 
9   “links”: 
10   [{“aggregate”:  “../all”}, 
11   {“load”: “../load”}, 
12   {“status”:  “/status”}] 
13 }, {...}] 

Fig. 5.4  JSON Representation of a Plogg connected to a Lamp 

As an example, by contacting  

http://.../RoomLamp/status  

with the standard OPTIONS method, the client gets back a list of the methods al-
lowed on the status resource (e.g., Allow: GET, HEAD, POST, PUT). By sending 
the PUT method to this URI alongside with the representation (e.g., JSON)  {“sta-
tu”:”off”}, the appliance plugged into the Plogg is turned off. 
  The Web-enabling of the Ploggs through a Smart Gateway allows building fully 
Web-based energy monitoring applications. It also enables simple interactions, 
such as bookmarking connected appliances, and control or monitor them from any 
device (e.g., a mobile phone, an embedded computer, a wireless sensor node, etc.), 
offering a standard Web browser or understanding the HTTP protocol. 

5.4 Physical Mashups: Recomposing the Physical World 

In this section, we illustrate how the Web of Things concepts and architecture fa-
cilitates the creation of Mashups in the physical world. A Web Mashup is an ap-
plication that takes several Web resources and uses them to create a new applica-
tion. Unlike traditional forms of integration, Mashups focus mainly on 
opportunistic integration occurring on the Web for an end-user’s personal use and 



5 From the Internet of Things to the Web of Things     113 

generally for non-critical applications (Yu et al. 2008). They are usually created 
ad-hoc, using lightweight and well-known Web technologies, such as JavaScript 
and HTML, and contribute to serving short terms needs. As an example, a Mashup 
can be created to display, on Google Maps, the location of all the pictures posted 
to Flickr.72

  By extending the Mashup concept to physical objects and applying RESTful pat-
terns to smart things, we allow their seamless integration into the Web, thus enabl-
ing a new range of applications based on this unified view of a Web of informa-
tion resources and physical objects. We call this concept “physical Mashup”, 
because it is directly inspired from Web 2.0 Mashups. 

 

  In this section, we present three Mashups representing three different use cases. 
In the first prototype, we create an energy monitoring and control system based on 
the Ploggs Smart Gateway. In the second, we show how domain experts (e.g., 
product managers, marketing executives, etc.) can leverage such tools to build a 
business intelligence platform suited to their business needs. In the last example, 
we show how end-users could use a visual physical Mashup editor to dynamically 
“configure” their home appliances. 

5.4.1 Energy Aware Mashup: “Energie Visible” 

 
Fig. 5.5  The Web-Based User Interface for Monitoring and Controlling the Ploggs 

                                                           
72 http://www.flickr.com 

http://www.flickr.com


114     D. Guinard et al. 

In this first example, we create a Mashup to help households to understand their 
energy consumption and to be able to remotely monitor and control it. 

  The idea of the “Energie Visible”73

  Thanks to the Ploggs Smart Gateway described before, the dashboard can be im-
plemented using any Web scripting language or tool (PHP, Ruby, Python, Java-
Script, etc.). The Energie visible application was built using Google Web Toolkit 
(GWT)

 project is to offer a Web dashboard that 
enables people to visualise and control the energy consumption of their household 
appliances. The dashboard is shown in Figure 5.5 and provides six real-time inter-
active graphs. The four graphs on the right side provide detailed information about 
the current electricity consumption of all the detected Ploggs. 

74

http://.../EnergieVisible/SmartMeters/all.json  

, which is a platform for developing JavaScript Web applications in Java, 
and provides a large number of easily customisable widgets. To display the cur-
rent energy consumption in real time, the application simply sends HTTP GET re-
quests to the gateway  

on a regular basis or subscribes to this resource using Web hooks. The resulting 
feed entry is then dispatched to the corresponding graphs widgets, which can di-
rectly parse JSON, and extract the relevant data in it to be displayed. 

  The “Energie Visible” prototype was deployed at the headquarters of a private 
foundation working on sustainability (cudrefin0275

  The aim of the project was to help visitors and members to better understand how 
much each device consumes in operation and in standby. The Ploggs are used to 
monitor the energy consumption of various devices, such as a fridge, a kettle, sev-
eral printers, a file server, computers and screens. A large display in the office 
enables people passing by to experiment with the energy consumption of the de-
vices. The staff can also access the user interface of any Plogg with the Web 
browser of their office computer. 

) and has now been running re-
liably since November 2008.  

5.4.2 Business Intelligence Mashup: RESTful EPCIS 

 

                                                           
73 The project is available on http://www.webofthings.com/energievisible 
74 http://code.google.com/webtoolkit/ 
75 http://cudrefin02.ch 

http://www.webofthings.com/energievisible
http://code.google.com/webtoolkit
http://cudrefin02.ch


5 From the Internet of Things to the Web of Things     115 

 
Fig. 5.6  Architecture of the RESTful EPCIS Based on the Jersey RESTful Framework and 
Deployed on Top of the Fosstrak EPCIS 

The Electronic Product Code (EPC) Network (Floerkemeier et al. 2007) is a set of 
standards established by industrial key players towards a uniform platform for 
tracking and discovering RFID-tagged objects and goods in supply chains. This 
network offers a standardised server-side EPC Information Service (EPCIS) for 
managing and offering access to track and trace RFID events. Implementations of 
EPCIS provide a standard query and capture API through WS-* Web Services. 

  In order to integrate not only embedded devices, but also RFID-tagged everyday 
items into the Web of Things, we use the concepts presented to turn the EPCIS in-
to a “Smart Gateway”. This helps to better grasp the benefits of a seamless Web 
integration based on REST, as opposed to using HTTP as a transport protocol only 
(as WS-* Web Services use it). 

  The EPCIS offers three core features. First, it offers an interface to query for 
RFID events. The WS-* interface, however, does not allow to directly query for 
RFID events using Web languages, such as JavaScript or HTML. More important-
ly, it does not allow to explore the EPCIS using a Web browser, or to search for 
tagged objects or exchange links pointing to traces of tagged objects. To remedy 
the problem, we implemented a RESTful translation of the EPCIS WS-* interface. 

  As shown in Figure 5.6, the RESTful EPCIS (Guinard et al. 2010b) is a software 
module based on Jersey76

                                                           
76 http://jersey.dev.java.net 

, a software framework for building RESTful applica-
tions. Clients of the RESTful EPCIS, such as browsers or Web applications, can 
query for tagged objects directly using REST and its uniform HTTP interface. Re-
quests are then translated by the framework into WS-* calls on the standard 
EPCIS interface. This allows for the RESTful EPCIS to serve data provided by 

http://jersey.dev.java.net


116     D. Guinard et al. 

any implementation of the EPCIS standard. In our case we use Fosstrak (Floerke-
meier et al. 2007)77

  The first benefit of the RESTful EPCIS is that every RFID event, reader, tagged 
object or location is turned into a Web resource and gets a globally resolvable 
URI, which uniquely identifies it and can be used to retrieve various representa-
tions. EPCIS queries are transformed into compositions of these identifiers and 
can be directly executed in the browser, sent by email, or bookmarked. As an ex-
ample, a factory manager who wants to know what tagged objects enter his factory 
can bookmark a URI, such as: 

, an open source implementation of the standard. 

http://.../epcis/rest/location/urn:company:factory1/reader/urn:company:entra
nce:1 

  Furthermore, these URIs are linked together through their representations in or-
der to reflect the relationships of the physical world. This makes the RESTful 
EPCIS directly browsable. Indeed, in addition to the XML representation of 
tagged objects offered by the standard, it also provides HTML, JSON and Atom 
representations. With the HTML representation, end-users can literally browse 
tagged things and their traces simply by following hyperlinks in the very same 
way as they browse the Web of documents. For example, a location offers links to 
co-located RFID readers. 

  With the Atom representation, end-users can formulate queries by browsing the 
hyperlinked EPCIS and obtain the updated results represented as Atom feeds, 
which browsers can understand and directly subscribe, too. As an example, a 
product manager can create a feed in order to be automatically updated in his 
browser whenever one of his products is ready to be shipped. He can then use the 
URI of the feed to send it to his most important customers so that they could track 
the goods’ progress as well. This is a simple but very useful use case, which 
would require a dedicated client to be developed and installed by each customer in 
the case of the WS-* based EPCIS. 

5.4.3 A Mashup Editor for the Smart Home 

Tech-savvy users can create Web Mashups using “Mashup editors”, such as Ya-
hoo Pipes. These editors usually provide visual components representing Web 
sites and operations (add, filter, etc.) that users only needs to connect (or pipe) to-
gether to create new applications. We wanted to apply the same principles to allow 
users to create physical Mashups without requiring any programming skills. 

 

                                                           
77 http://www.fosstrak.org 

http://www.fosstrak.org


5 From the Internet of Things to the Web of Things     117 

 
Fig. 5.7  The Physical Mashup Framework 

  We briefly introduce our physical Mashup architecture and two Mashup editors 
built on top of it. As shown in Figure 5.7, the system is composed of four main 
parts. We first have RESTful, Web-enabled, smart things and appliances. In our 
prototype, we tag them with small 2D barcodes in order to ease their identification 
with mobile phones. We then have “virtual” services on the Web, such as Twitter, 
Google Visualisation API, Google Talk, etc. In the middle, the Mashup server 
framework allows to compose services of different smart appliances as well as vir-
tual services on the Web. It is in charge of executing the workflows created by 
end-users in their Mashup applications. It discovers, listens, and interacts with the 
devices over their RESTful API. The last components are the Mashup editors 
themselves, which allow users to create Mashup applications very easily. 

  We implemented two Mashup editors using this architecture. The first one is 
based on the Clickscript project.78

                                                           
78 http://www.clickscript.ch 

 A Firefox plugin written on top of an Ajax li-
brary allows people to visually create Web Mashups by connecting building 
blocks of resources (Web sites) and operations (greater than, if/then, loops, etc.). 
Since it is written in JavaScript, Clickscript cannot use resources based on proprie-
tary service protocols. However, it can easily access RESTful services, such as 
those provided by Web-enabled smart appliances. This makes it straightforward to 
create Clickscript building blocks that represent smart appliances. The Mashup 
shown in Figure 5.8 gets the room temperature by GETting the temperature re-

http://www.clickscript.ch


118     D. Guinard et al. 

source. If it is below 36 degrees, it turns off the Web-enabled air-conditioning sys-
tem. 

  The second editor was implemented on the Android Mobile Phone. Once again, 
thanks to the support of HTTP in Android, RESTful communication with smart 
appliances was straightforward. Similarly to Clickscript, the mobile editor allows 
the creation of simple Mashups. However, due to the screen constraints of the mo-
bile phone, a Mashup is created by going through a wizard. Users first select the 
appliances they want to include in the Mashup. They do this simply by scanning a 
barcode on the appliance using the phone’s camera. These codes are basically 
pointing back to the root URLs of the appliance’s RESTful APIs. They then set up 
the rules they want to implement and the virtual services they want to interact 
with. For example, users can create a Mashup that switches on their appliances, 
e.g, turning the heating up, whenever their phone detects that they are moving to-
wards home (based on their GPS traces). 

 

 
Fig. 5.8  Using the Clickscript Mashup Editor to Create a Physical Mashup by Connecting 
Building Blocks Directly to a Browser 

5.5 Advanced Concepts: The Future Web of Things 

So far, we have shown how Web standards and design principles can be leveraged 
for smart things. While this seems to be a rather adequate architecture for the Web 
of Things, many open challenges remain. In this section, we explore three such 
challenges, and sketch potential solutions for each. We begin by discussing the 
needs for real-time data of many smart things applications. Then, we address the 
challenges of finding and understanding services available in a global Web of 
Things. We finally look at mechanisms for sharing smart things.  



5 From the Internet of Things to the Web of Things     119 

5.5.1 Real-time Web of Things 

HTTP is a stateless client/server protocol where interactions are always initiated 
by the client, and there is no protocol context bigger than a request/response ex-
change. This interaction model is well-suited for control-oriented applications 
where clients read/write data from/to embedded devices. However, this client-
initiated interaction models seem inappropriate for bi-directional event-based and 
streaming systems, where data must be sent asynchronously to the clients as soon 
as it is produced. 
 
  For example, many pervasive scenarios must deal with real-time information to 
combine stored or streaming data from various sources to detect spatial or tempor-
al patterns, as is the case in many environmental monitoring applications. As such 
applications are often event-based and embedded devices usually have a low-duty 
cycle (i.e., sleep most of the time), smart things should also be able to push data to 
clients (rather than being continuously polled). To support the complex, data-
centric queries required for such scenarios, more flexible data models are required 
to expose sensor data streams over the Web. In this section, we explore the recent 
developments in the real-time Web to build such a data model that is more suited 
to the data-centric, stream-based nature of sensor-driven applications.  

  As mentioned before, using syndication protocols, such as Atom, improves the 
model when monitoring, since devices can publish data asynchronously using 
AtomPub on an intermediate server or Smart Gateway. Nevertheless, clients still 
have to pull data from Atom servers. Web streaming media protocols (RTP/RTSP) 
have enabled transmission of potentially infinite data objects, such as Internet ra-
dio stations. Sensor streams are similar to streaming media in this respect. Howev-
er, streaming media mainly support play and pause commands, which are insuffi-
cient for sensor streams where more elaborate control commands are needed. The 
Extensible Messaging and Presence Protocol (XMPP)79

  An alternative type of Web applications that attempt to eliminate the limitations 
of the traditional HTTP polling has become increasingly popular. This model, 
called Comet

 is an open standard for 
real-time communication based on exchanges of XML messages, and powers a 
wide range of applications including instant messaging (Google Talk is based on 
XMPP). Although widely used and successful, XMPP is a fairly complex stan-
dard, which is often too heavy for the limited resources of embedded devices used 
in sensor networks. 

80

                                                           
79 http://www.xmpp.org 

 (also called HTTP streaming or server push), enables a Web server 
to push data back to the browser without the client requesting it explicitly. Since 
browsers are not designed with server-sent events in mind, Web application de-

80 http://www.tinyurl.com/tc95h 

http://www.xmpp.org
http://www.tinyurl.com/tc95h


120     D. Guinard et al. 

velopers have tried to work around several specification loopholes to implement 
Comet-like behavior, each with different benefits and drawbacks. One general 
idea is that a Web server does not terminate the TCP connection after response da-
ta has been served to a client, but leaves the connection open to send further 
events. 

  Based on this brief overview, one can observe that the tradeoff between scalabili-
ty and query expressiveness is also present in the Web world. However, as the re-
cent developments in Web techniques have allowed to build efficient and scalable 
publish/subscribe systems, we suggest that a Web-based pub/sub model could be 
used to connect sensor networks with applications. PubSubHubbub (PuSH)81

  The following model can be used to enable Web-based stream processing appli-
cations where users can post queries using an HTTP request to one or more sen-
sors. The HTTP request shown in Figure 5.9, collects the light and temperature 
sensor readings twice per second (the ds.freq=2 Hz parameter) only if the light 
sensor value is not over “200” and the temperature reading is less than “19”: 

 is a 
simple, open pub/sub protocol as an extension to Atom and RSS. Parties (servers) 
speaking the PuSH protocol can get near-instant notifications (via callbacks) when 
a feed they are interested in is updated. PuSH can also be used as a general-
purpose messaging protocol for devices (Trifa et al. 2010).  

1 POST /datastreams/ HTTP/1.1 
2 Content-Type: 

application/x-www-form-urlencoded 
3  
4 ds.device=purpleSensor 
5 &ds.data=temperature,light 
6 &ds.freq=2 
7 &ds.filter=light <= 200 && temperature < 19 

Fig. 5.9  HTTP Request Collecting Light and Temperature Sensor Readings 

  As a result, a specific pub/sub feed will be created on a pub/sub broker as a 
stream (sequence of messages) in which all the data matching the request will be 
pushed by the stream processing engine. This allows decoupling the application 
from the stream processing engine, which can be easily replaced, as long as it sup-
ports the same interface to process Web requests and also can push the matching 
data into the pub/sub broker.  

  All the data samples corresponding to these queries are then pushed into a feed 
on the message broker, where users can subscribe using the PuSH protocol. They 
will then receive the data from the stream pushed from the broker via callbacks.   
                                                           
81 http://code.google.com/p/pubsubhubbub 

http://code.google.com/p/pubsubhubbub


5 From the Internet of Things to the Web of Things     121 

  Although HTTP was not designed for real-time stream delivery, exploratory re-
search in the Web of Things area shows promising results when using Web stan-
dards to interact with distributed sensors and actuators (Trifa et al. 2010). The loss 
in raw performance and latency, due to verbose HTTP requests, is compensated by 
allowing sensor networks to be exposed in an easily accessible and universal way. 
Additionally, thanks to the many advantages offered by Web standards, such as 
transparent proxies, declarative Web-based queries can be mapped to the special-
ised processing features of sensor networks, therefore, one can still take advantage 
of the optimisations and advanced processing implemented within sensor net-
works and other stream processing systems.  
 
  While it is clear that a Web of Things needs more developments and standards in 
the areas that we have described, the developments of recent years and the fore-
seeable future of HTML5 and its Web Sockets and Server-Sent Events is a sign of 
developments moving in the right direction for the WoT. However, it is an impor-
tant task for Internet of Things researchers to identify the shortcomings of the cur-
rent Web architecture and propose solutions that work well for monitoring the real 
world and still integrate well with the Web.  

5.5.2 Finding and Describing Smart Things 

Another major challenge for a global Web of Things is searching and finding rele-
vant devices among billions of smart things that will be connected to the Web. 
Finding them by browsing HTML pages with hyperlinks is literally impossible in 
this case, hence the idea of searching for smart things. Searching for things is sig-
nificantly more complicated than searching for documents, as things are tightly 
bound to contextual information, such as location, are often moving from one con-
text to another, and have no obvious easily indexable properties, such as human-
readable text in the case of documents. 

  Beyond location, smart things need a mechanism to describe themselves and 
their services to be (automatically) discovered and used. But what is the best way 
to describe a thing on the Web so that both, humans and machines, can understand 
what services it provides? This problem is not inherent to smart things, but more 
generally a complex problem of describing services, which has always been an 
important challenge to be tackled in the Web research community, usually in the 
area of the Semantic Web.82

  To overcome the rather limited descriptive power of resources on the Web, sev-
eral languages have been proposed, such as RDF

 

83 or Microformats84

                                                           
82 http://www.w3.org/standards/semanticweb/ 

. Designed 

83 http://www.w3.org/RDF/ 

http://www.w3.org/standards/semanticweb
http://www.w3.org/RDF


122     D. Guinard et al. 

for both, human and machines, Microformats provide a simple way to add seman-
tics to Web resources. There is not one single Microformat, but rather a number of 
them, each one for a particular domain; a “geo” and “adr” microformat for de-
scribing places or an “hProduct” and “hReview” microformat for describing prod-
ucts and what people think about them. Each Microformat undergoes a “standardi-
sation” process that ensures its content to be widely understood and used, if 
accepted. 

  Microformats are especially interesting in a Web of Things for two reasons; first 
they are directly embedded into Web pages and thus can be used to semantically 
annotate the HTML representation of a thing’s RESTful API. Secondly, Micro-
formats (as well as RDFa) are increasingly supported by search engines, such as 
Google and Yahoo, where it is used to enhance the search results. For example, 
the “Geo” Microformat could be used to localise search results close to you or, in 
our context, to localise smart things in your direct vicinity. 

  More concretely, we use a compound of several microformats to describe our 
smart things. This helps the things to be searched by humans using traditional or 
dedicated search engines, but it also helps them being “discovered” and under-
stood by software applications in order to automatically use them. As an example, 
in Figure 5.10 we use 5 microformats to describe a Sun SPOT and embed this se-
mantic information directly in the HTML representation of the SPOT resources. 
 

 
Fig. 5.10  Compound Microformats for Describing a Sun SPOT Using the Geo, hCard, hProduct 
and hReview Microformats 

                                                                                                                                     
84 http://www.microformats.org 

http://www.microformats.org


5 From the Internet of Things to the Web of Things     123 

  The listing shown in Figure 5.11 shows how to define the formal name (fn) of the 
Sun SPOT as well as an authoritative URL, where more information about the de-
vice can be found. We provide this semantic markup in the HTML representation 
of a Sun SPOT: 

1 <span class=”fn”>Sun SPOT</span> 
2 <span class=”URL> 
3     <a href=”http://sunspotworld.com</a> 
4 </span>  

Fig. 5.11  Snippet of the HTML Representation of a Sun SPOT Including the hProduct Micro-
formats 

  While there is still much research to be undertaken to be able to search for and 
discover smart things, the recent developments of the Web standards are going in 
the right direction for globally supporting such semantic descriptions. Indeed, a 
derivative form of the already well supported Microformats, called Microdata,85

5.5.3 Sharing Smart Things 

 
might be part of the HTML 5 standard and might be widely adopted and unders-
tood by most next generation Web browsers and other Web clients. 

The success of Web 2.0 Mashups depends on the trend for Web 2.0 service pro-
viders (e.g., Google, Twitter, Wordpress, etc.) to provide access to some of their 
services through relatively simple, often RESTful, open APIs on the Web. Mashup 
developers often share their Mashups on the Web and expose them through open 
APIs as well, making the service ecosystem grow with each application and Ma-
shup. Figure 5.12 shows the simplified component architecture of a Social Access 
Controller (SAC), which serves as authentication proxy between clients and smart 
things. 
  To ensure the success of physical Mashups, they need to replicate the same level 
of openness. However, enabling such an open model for a Web of Things requires 
a sharing mechanism for physical things supporting access control to the RESTful 
services provided by devices. For example, one could share the energy consump-
tion sensors in one’s house with the community. However, this is a potentially 
risky process, given that these devices are part of our everyday life and their pub-
lic sharing might result in serious privacy implications (if almost no energy has 
been used recently, the home owners may be on vacation and burglars might look 
for these kinds of patterns). HTTP already provides authentication mechanisms 

                                                           
85 http://dev.w3.org/html5/md/ 

http://sunspotworld.com</a
http://dev.w3.org/html5/md


124     D. Guinard et al. 

(e.g., HTTP Authentication86) based on credentials and server-managed user 
groups. While this solution is already available for free on most (embedded) Web 
servers, it still presents a number of drawbacks in the WoT context. First, for a 
large number of smart things it becomes quite unmanageable to share credentials 
for each of them. Then, as the shared resources are not advertised anywhere, shar-
ing also requires the use of secondary channels, such as sending emails containing 
credentials to people. Several platforms, such as SenseWeb (Luo et al. 2008)or 
Pachube87

  A promising solution is to leverage existing social structures of social networks 
(e.g., Facebook, Linkedin, Twitter, etc.) and their (open) APIs to share things. Us-
ing social networks enables users to share things with people they know and trust 
(e.g., relatives, friends, colleagues, fellow researchers, etc.), without the need to 
recreate yet another social network or user database from scratch on a new online 
service. Additionally, this enables advertising and sharing through a unique chan-
nel: you can use various well-known social networks to inform your friends about 
the sensors you shared with them by automatically posting messages to their pro-
file or newsfeed. 

 propose to overcome these limitations by providing a central platform 
for people to share their sensor data. However, these approaches are based on a 
centralised data repository and are not designed to support decentralisation and di-
rect interaction with smart things.  

  The SAC platform (Guinard et al. 2010a) is an implementation of this idea. SAC 
is an authentication proxy between clients (e.g., Web browsers) and smart things. 
Rather than maintaining its own database or list of trusted connections and creden-
tials – as it would be done with simple HTTP authentication – SAC connects to a 
number of social networks (e.g., Twitter, Facebook, LinkedIn, etc.) to extract all 
potential users and groups one could share with. 

 

                                                           
86 http://www.ietf.org/rfc/rfc2617.txt 
87 http://www.pachube.com 

http://www.ietf.org/rfc/rfc2617.txt
http://www.pachube.com


5 From the Internet of Things to the Web of Things     125 

 
Fig. 5.12  Simplified Component Architecture of the SAC  

  This is possible as most social networks offer a Web API (e.g., Facebook Con-
nect88

  The sharing process occurs in three phases. First, the smart things owner accesses 
SAC by logging in, using at least one of his social networks credentials. SAC then 
uses delegated authentication with the social network to identify the owner. Af-
terwards, the smart thing to be shared has to be crawled in order to identify the re-
sources and capabilities of its RESTful services, i.e., which functionalities can be 
shared for that thing. Finally, the user generates the access control list of the smart 
thing by selecting which friends can interact with what resource. 

). Providing an open Web API is one of the success factors of social net-
works themselves. Indeed, these APIs allow third-party Web applications to be 
built using partial data extracted from the social networks and thus to enhance the 
functionality of the social networks.  

  When an owner shares resources with a trusted connection, the latter is informed 
about it directly on their social network. In case of Facebook, it publishes a mes-
sage to the news feed of the friend. In case of Twitter it simply tweets a message 
to the trusted connection (e.g., “Rachel shared her Ploggs Energy sensors with 
you”). The posted message also contains a link that redirects to the shared re-
source. The link does not point to the smart thing directly but to an instance of 
SAC that acts as the authentication proxy, as shown in Figure 5.12 When a trusted 
connection uses the provided link, SAC will verify its identity. If the friend is 
logged in successfully with one of their social networks, SAC will internally 
check whether this person also has access to the requested resource. If it is the 

                                                           
88 http://developers.facebook.com/connect.php 

http://developers.facebook.com/connect.php


126     D. Guinard et al. 

case, SAC logs on the shared resource using the credentials provided by the owner 
when registering the resource. It then redirects the HTTP request of the trusted 
connection to the shared resource. Finally, it redirects the result directly to the 
HTTP client of the trusted connection, for example to a Web browser. 

5.6 Discussing the Future Web of Things 

Thanks to the wide availability of HTTP libraries and clients, and to the loose 
coupling, simplicity, and scalability properties of RESTful architectures, RESTful 
applications have rapidly become one of the most practical integration architec-
tures. This makes it desirable to use Web standards for interacting with smart 
things. Although HTTP introduces a communication overhead and increases aver-
age response latency, it is still sufficient for many pervasive scenarios where long-
er delays do not affect user experience (Drytkiewicz et al. 2004; Priyantha et al. 
2008). Previous work (Trifa et al. 2009; Yazar and Dunkels 2009) has shown that 
the performance of using HTTP as a data exchange protocol is largely sufficient 
for common pervasive scenarios, especially when only a few concurrent users are 
accessing the same resource simultaneously (200 ms mean response time with 100 
concurrent users on a 1.1 GHz server running a Smart Gateway). We have also 
shown that caching techniques can significantly improve the performance of con-
current sensor data reading by using tools used for massively scalable Web sites 
(Trifa et al. 2009). These techniques can be directly applied to Web devices, given 
that devices have on-board HTTP support. 

  Web 2.0 Mashups have significantly lowered the entry barrier for the develop-
ment of Web applications, which is now accessible to non-programmers. It should 
be noted that a resource-oriented approach should not be universally considered as 
the miracle solution for every problem. In particular, scenarios with very specific 
requirements, such as high performance real-time communications, might benefit 
from tightly coupled systems based on different system architectures. However, 
for less constrained applications, where massive scalability, ad-hoc interaction, 
and serendipitous re-use are necessary, Web standards allow any device to speak 
the same language as other services on the Web. This makes the integration of the 
real-world with any other Web content much easier, so that physical things can be 
bookmarked, browsed, searched for, and used just like any other Web resource.  

  Based on our personal experience, the drawbacks of Web architectures are easily 
offset by a notable simplification of the application design, integration, and dep-
loyment processes (Guinard et al. 2009), in particular when comparing RESTful 
devices with other systems for embedded devices, such as WS-* Web services. As 
an example, the Plogg RESTful Gateway and the Sun SPOTs have been used by 
external development teams who read about our project on our Web site. In the 
first case, the idea was to build a mobile energy monitoring application based on 



5 From the Internet of Things to the Web of Things     127 

the iPhone that communicates with the Ploggs. In the second case, the goal was to 
demonstrate the use of a browser-based JavaScript Mashup editor with real-world 
services. According to interviews we conducted with these developers, their expe-
rience confirmed ours. They enjoyed using the RESTful smart things, in particular 
the ease of use of a RESTful Web API versus a different kind of API. For the 
iPhone application, a native API to Bluetooth did not exist at that time. However, 
like for almost any platform an HTTP (and JSON) library was available. One of 
the developers mentioned a learning curve for REST but emphasised the fact that 
it was still rather simple and that once it was learnt, the same principles could be 
used to interact with a large number of services. They finally noted the direct inte-
gration to HTML and Web browsers as one of the most prevalent benefits. 

5.7 Conclusion 

In this chapter, we suggested that Web technologies are – contrary to popular be-
lief – a suitable protocol for building applications on top of services offered by 
smart things. After summarising the core design principles of Web architecture, 
we proposed an architecture for the Web of Things based on the concepts of 
REST, syndication for smart things, Web Hooks, and Smart Gateways. We dem-
onstrate the idea with several prototypes.  

  Thanks to the loose-coupling, simplicity and scalability of RESTful architec-
tures, and the wide availability of HTTP libraries and clients, RESTful architec-
tures are becoming one of the most ubiquitous and lightweight integration plat-
forms. Because of this, using Web standards to interact with smart things seems to 
be increasingly adequate. Although HTTP introduces a communication overhead 
and increases average latency, it is sufficient for many pervasive scenarios where 
such longer delays do not affect user experience.  

  Introducing support for Web standards at the device-level is beneficial for devel-
oping a new generation of networked devices that are much simpler to deploy, 
program, and reuse. Applying the same design principles that supported the suc-
cess of the Web, in particular openness, connectedness, and simplicity, can signif-
icantly leverage the ubiquity and versatility of the Web as a common ground for 
supporting interactions between devices and applications. Furthermore, as most 
mobile devices have already Web connectivity and Web browsers, and most pro-
gramming environments support HTTP, we tap into the very large Web developer 
community as potential application developers for the Web of Things. 



128     D. Guinard et al. 

References 

Drytkiewicz W, Radusch I, Arbanowski S, Popescu-Zeletin R (2004) pREST: a REST-based 
protocol for pervasive systems. Proceedings of the IEEE International Conference on Mobile 
Ad-hoc and Sensor Systems 

Duquennoy S, Grimaud G, Vandewalle J (2009) The Web of Things: interconnecting devices 
with high usability and performance. Proceedings of the 6th IEEE International Conference 
on Embedded Software and Systems (ICESS’09). HangZhou, Zhejiang, China 

Fielding RT (2000), Architectural styles and the design of network-based software architectures. 
Ph.D. Thesis, University of California. Irvine, USA 

Floerkemeier C, Lampe M, Roduner C (2007) Facilitating RFID Development with the Accada 
Prototyping Platform. Proceedings of the Fifth IEEE International Conference on Pervasive 
Computing and Communications Workshops. IEEE Computer Society 

Guinard D, Trifa V, Pham T, Liechti O (2009) Towards Physical Mashups in the Web of Things. 
Proc. of the 6th International Conference on Networked Sensing Systems (INSS). Pittsburgh, 
USA 

Guinard D, Fischer M, Trifa V (2010a) Sharing Using Social Networks in a Composable Web of 
Things. Proceedings of the 1st IEEE International Workshop on the Web of Things (WoT 
2010) at IEEE PerCom, Mannheim, Germany 

Guinard D, Mueller M, Pasquier J (2010b) Giving RFID a REST: Building a Web-Enabled 
EPCIS. Proceedings of the IEEE International Conference on the Internet of Things (IOT 
2010). Tokyo, Japan 

Guinard D, Trifa V, Wilde E (2010c) A Resource Oriented Architecture for the Web of Things. 
Proceedings of IoT 2010, IEEE International Conference on the Internet of Things. Tokyo, 
Japan 

Guinard D,  Trifa M, Karnouskos S, Spiess P, Savio D (2010d) Interacting with the SOA-Based 
Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Ser-
vices., IEEE Transactions on Services Computing. 3, 223–235 

Hui J, Culler D (2008) Extending IP to low-power, wireless personal area networks. IEEE Inter-
net Comput 12:37-45 

Hui J, Culler D (2008) IP is dead, long live IP for wireless sensor networks. Proceedings of the 
6th ACM conference on embedded network sensor systems. ACM, Raleigh, NC, USA 

Kindberg T, Barton J, Morgan J, Becker G, Caswell D, Debaty P, Gopal G, Frid M, Krishnan V, 
Morris H, Schettino J, Serra B, Spasojevic M (2002) People, places, things: web presence for 
the real world. Mob Netw Appl 7:365-376 

Luckenbach T, Gober P, Arbanowski S, Kotsopoulos A, Kim K (2005) TinyREST - A protocol 
for integrating sensor networks into the internet. Proceedings of the Workshop on Real-
World Wireless Sensor Network: SICS. Stockholm, Sweden 

Luo L, Kansal A, Nath S, Zhao F (2008) Sharing and exploring sensor streams over geocentric 
interfaces. Proceedings of the 16th ACM SIGSPATIAL international conference on advances 
in geographic information systems. ACM, Irvine, California 

Pautasso C, Wilde E (2009) Why is the Web Loosely Coupled? A Multi-Faceted Metric for Ser-
vice Design. Proceedings of the 18th International World Wide Web Conference 
(WWW2009). Madrid, Spain 

Priyantha NB, Kansal A, Goraczko M, Zhao F (2008) Tiny web services: design and implemen-
tation of interoperable and evolvable sensor networks. Proceedings of the 6th ACM confe-
rence on embedded network sensor systems. ACM, Raleigh, NC, USA 

Richardson L, Ruby S (2007) RESTful Web Services. O’Reilly Media, Inc 
Stirbu V (2008) Towards a RESTful Plug and Play Experience in the Web of Things. Proceed-

ings of the IEEE International Conference on Semantic Computing 
Trifa V, Wieland S, Guinard D, Bohnert TM (2009) Design and Implementation of a Gateway 

for Web-based Interaction and Management of Embedded Devices. Proceedings of the 2nd 



5 From the Internet of Things to the Web of Things     129 

International Workshop on Sensor Network Engineering (IWSNE 09). Marina del Rey, CA, 
USA 

Trifa V, Guinard D, Davidovski V, Kamilaris A, Delchev I (2010) Web-based Messaging Me-
chanisms for Open and Scalable Distributed Sensing Applications. Proceedings of the 10th 
International Conference on Web Engineering (ICWE 2010). Vienna, Austria 

Wilde E (2007) Putting Things to REST. School of Information. UC Berkeley 
Yazar D, Dunkels A (2009) Efficient Application Integration in IP-based Sensor Networks. Pro-

ceedings of ACM BuildSys, the First ACM Workshop On Embedded Sensing Systems For 
Energy-Efficiency In Buildings, BuildSys. Berkeley, USA 

Yu J, Benatallah B, Casati F, Daniel F (2008) Understanding Mashup Development. IEEE Inter-
net Comput 12:44-52 

Zang N, Rosson MB, Nasser V (2008) Mashups: who? what? why?. Proceedings of CHI ’08 ex-
tended abstracts on Human factors in computing systems. ACM, Florence, Italy 


	5 From the Internet of Things to the Web of Things: Resource-oriented Architecture and Best Practices
	5.1 From the Internet of Things to the Web of Things
	5.2 Designing RESTful Smart Things
	5.2.1 Modeling Functionality as Linked Resources
	5.2.2 Representing Resources
	5.2.3 Servicing Through a Uniform Interface
	5.2.3.1 Operations
	5.2.3.2 Content Negotiation
	5.2.3.3 Status Codes

	5.2.4 Syndicating Things
	5.2.5 Things Calling Back: Web Hooks

	5.3 Web-enabling Constrained Devices
	5.4 Physical Mashups: Recomposing the Physical World
	5.4.1 Energy Aware Mashup: “Energie Visible”
	5.4.2 Business Intelligence Mashup: RESTful EPCIS
	5.4.3 A Mashup Editor for the Smart Home

	5.5 Advanced Concepts: The Future Web of Things
	5.5.1 Real-time Web of Things
	5.5.2 Finding and Describing Smart Things
	5.5.3 Sharing Smart Things

	5.6 Discussing the Future Web of Things
	5.7 Conclusion
	References


