

11 The DiY Smart Experiences Project

A European Endeavour Removing Barriers for User-
generated Internet of Things Applications

Marc Roelands1, Johan Plomp2, Diego Casado Mansilla3, Juan R. Velasco3,
Ismail Salhi4, Gyu Myoung Lee5, Noel Crespi5, Filipe Vinci dos Santos6,
Julien Vachaudez6, Frédéric Bettens6, Joel Hanqc6, Carlos Valderrama6, Nilo
Menezes7, Alexandre Girardi7, Xavier Ricco7, Mario Lopez-Ramos8, Nicolas
Dumont8, Iván Corredor9, Miguel S. Familiar9, José F. Martínez9, Vicente
Hernández9, Dries De Roeck10, Christof van Nimwegen10, Leire Bastida11,
Marisa Escalante11, Juncal Alonso11, Quentin Reul12, Yan Tang12, Robert
Meersman

1 Alcatel-Lucent Bell Labs, Antwerp, Belgium

12

2 VTT, Helsinki, Finland

3 UAH, Madrid, Spain

4 ENSIE, France

5 Institut Telecom SudParis, Paris, France

6 UMONS, Mons, Belgium

7 Multitel asbl, Mons, Belgium

8 Thales, Paris, France

9 UPM, Madrid, Spain

10 CUO, Leuven, Belgium

11 ESI, Bilbao, Spain

12 STARLab, Brussels, Belgium

Abstract In this chapter we discuss the wide range of challenges in user-generated
Internet of Things applications, as being worked on among the large consortium of
the DiY Smart Experiences (DiYSE) project (DiYSE, ITEA2 08005). The chapter
starts with a discussion on the context of ‘DiY’ as a phenomenon to be leveraged,
and eco-awareness as an example application area. The main body of the chapter
is devoted to the technical outline of the DiYSE architecture, starting at the lower
Internet of Things layers of sensors, actuators and middleware, over the role of
semantics in device and service interoperability, up to requirements for the service
framework and the application creation process. Furthermore, the chapter adds

D. Uckelmann et al. (eds.), Architecting the Internet of Things,
DOI 10.1007/978-3-642-19157-2_11, © Springer-Verlag Berlin Heidelberg 2011

279

280 M. Roelands et al.

considerations concerning tangible interaction in the smart space, assumed in Di-
YSE both for the context of experiencing as well as shaping the user experience.
With the chapter, we thus take a holistic view, sampling the range from lower-
layer technical implications of enabling DiY creation in the Internet of Things, up
to the human-level aspects of creative communities as well as tangible interaction.

11.1 Drivers, Motives and Persona in the DiY Society

With the ‘DiY society’ (Von Hippel 2005) a world is imagined where anybody
could become a creator of objects. With the DiYSE project taking the Do-it-
Yourself (DiY) phenomenon as a starting point, we discuss its broader context in
this section.

At first sight, the idea of creating objects might seem like nothing new. People
have been creating things from the very start of civilisation, dating back to the
prehistoric ages where people created very basic tools out of materials at their dis-
posal. Ever since, the process of creating things has evolved and has become more
complex, as the world and society itself became more complex (Sterling 2005). If
we make a time warp to today’s modern world, we see that the introduction of
technology into our lives is at least one of the aspects that have influenced the way
we create, use and perceive objects. Computerised systems are nowadays allowing
us to create very complex products that not everyone is capable of creating from
scratch anymore. In order to incorporate a computerised, electronic system into an
object a certain amount of expertise is needed for programming the system or to
integrate the various hardware and software elements.

So, a major challenge to make the DiY society possible is to make people more
capable of creating meaningful objects again in the context of today’s object com-
plexity, beyond the intended use as driven and orchestrated by solution vendors,
opening up e.g. the physical and electronic customisation possibilities. In an opti-
mal utopian scenario, this means that the creation of technological and purely
physical ‘analogue’ products should be a seamless activity, allowing people to
create things that enhance their lives in a pervasive world. The way this process of
creation is done by someone is inherently linked to characteristics such as personal
background, intention, expertise and motivation.

Of course, all this is to be seen in the context of a complete next generation

‘manufacturing’ ecosystem, of which the viability depends on finding a sustain-
able balance, a multi-sided ‘win-win’, between the various involved actors. This
will eventually determine the economical, next to the evident societal impact.

11 The DiY Smart Experiences Project 281

11.1.1 Evolution of DiY

Recently, Do-it-Yourself as a phenomenon has, again, started to take the central
stage in research and development. To understand why this is the case, several
things can be learned from the history of DiY and can be projected onto how the
phenomenon could be perceived in the future.

11.1.1.1 The Past

Looking at the past, DiY can be seen as a variety of activities. Obviously people
have been making objects themselves since the prehistoric ages, but looking at the
evolution in history regarding the creation of objects one can observe several ele-
ments that had significant impact in how we approach DiY today. A good illustra-
tion of this is the way objects were created in the Middle Ages, as at that time
people started having a marketplace to buy and sell things and there were estab-
lished communities to share and learn new skills (Sennet 2008). In the Middle
Ages, the creation of things was mostly done by skilled craftsmen who grouped
together in guilds. In order for someone to ‘learn’ how to create something one
had to go through a learning process in which a ‘master’ taught his skills to one or
more apprentices.

Since then, we have evolved into a society where skills knowledge is more dis-
tributed among people and is less confined to one person or group. When nowa-
days the term DiY is coined, often the first associations made are about shops sell-
ing home improvement materials and people refurbishing their houses themselves.

11.1.1.2 The Possible Future

With the advent of computers and in particular of the Internet, the notion of DiY
has taken new dimensions. First of all, it is now a lot easier to share and talk about
DiY activities of all kinds through dedicated online community platforms (Dormer
1997). Secondly, more and more people are creating their own electronics, both
hardware and software. Both these facts result in an increasing accessibility of
technology, making tools available for people to enhance the quality of their lives
on other levels than the purely functional.

11.1.2 Why Do People Build Things Themselves?

A central question that still remains is why people would at a certain point decide
to build something themselves. There are at least two ways to approach this ques-

282 M. Roelands et al.

tion. On the one hand it can be seen as part of a motivational psychology, where a
person does something based on intrinsic motivation. This means that the motiva-
tion comes from the person himself wanting to solve a problem in his own life for
example, possibly but not necessarily with cost savings in mind121

11.1.3 People Motivation as Driver

. On the other
hand, DiY can be interpreted on various levels depending on the background of
the person or people involved in the DiY activity, the so-called types of ‘people
logic’. For instance, a person customising his bought shoes is on a different level
than a person who is creating shoes from scratch.

A major driver behind the reason that people at some point decide to create some-
thing themselves instead of buying a ready-made solution from a shop is the rela-
tionship they create with the thing they created themselves. In the context of inte-
rior decoration, Elizabeth Shove describes this type of motivation as follows: “The
house objectifies the vision the occupants have of themselves in the eyes of others
and as such it becomes an entity and process to live up, give time to, and to show
off. What is important are end results, not the actual physical involvement in the
tasks and projects of ‘doing it yourself’” (Shove et al. 2007). Doing something
yourself allows people to identify and relate to objects on a much deeper level
than merely the functional. Von Hippel (2005) also states that “A thing is not
merely a material object, but a frozen techno-social relationship”, which points out
that the relation between a person and an object is something quite delicate. This
emotional link between a person and an object is what defines the meaning a per-
son gives to something. It is this process of giving meaning that is highly stimu-
lated through DiY activities.

11.1.4 People Logics, Distinguishing Motivation Levels

With regard to the previously mentioned motivational aspects, it should be nu-
anced that it does not work the same way for all people. The concept of DiY can
be approached and understood by various people on different levels, depending on
their personal background, personal skill or experience. To understand and com-
prehend these levels better, it should be made clear that what really matters in a

121 Note that, while one would expect DiY activities to save costs to the one performing it, as he
is the one investing time, effort and creativity, the modern DiY in many cases rather is motivated
by feelings of ‘ownership’, ‘passion for creating’ and other psychological motives as discussed
here. So DiY often implies a willingness to pay which is higher as compared to buying off-the-
shelf products solving the same problem. Both cost saving and spending have a place in the DiY
societal phenomenon.

11 The DiY Smart Experiences Project 283

DiY activity is the mindset of a person. Depending on the way people think about
a subject, they will interpret it as being something, DiY or not. We here use the
concept of ‘people logics’ introduced by Mogensen to illustrate this (Mogensen
2004):

• Industrial logic: This way of thinking is mostly straightforward, no-nonsense.
In order for people of this kind to have a drive for DiY, a very small action
would be needed. For example, mounting a device on the wall may give such a
person a feeling of satisfaction.

• Dream society logic: In the dream society, people do things in order to show
themselves to the outside world. Thinking about DiY from such perspective, a
deep customising of a product could suffice to trigger the feeling of ‘I did this
myself’. This could be, for example, choosing the colour and materials of a pair
of shoes.

• Creative man logic: The creative man wants to create things from scratch by
himself based on his own personal needs. Starting from this point of view, this
person could follow an instructable to create his own windmill to provide
power to his house, as an example.

The logics presented here may need to be extended to cover every possible as-

pect of DiY, but the main point is that approaching people based on their mindset
may proof to be the key to getting the masses to engage in (Internet of Things)
DiY activities.

Next to the DiY mindset of people, as the main and basic driver, we mentioned
before that this is to be seen in the context of overall ecosystem dynamics, where
economical constraints are into play. DiY for the practitioner in fact can mean a
cost saving or can be rather a higher spending for the same problem solved, de-
pending on the degree and level of motivation as discussed. This last case is an
obvious opening to business opportunities, as in fact leveraged for years already in
the creative and hobby crafting sector as well as by vendors of high-end modular
systems in various domains.

But with the evolution to cheaper and more accessible electronics, and the po-
tential to easily connect wirelessly and ubiquitously to the internet, fuelling the
Internet of Things as a grassroots economic platform, DiY may also become a
game changer, forcing many product and solution vendors to reconsider opening
up to their products to customisation and interconnectivity as a quality, rather than
pursuing ‘locking in’ consumers into a single-vendor buying track. In fact, this is
what the Institute for the Future (IFTF) predicts in their map on ‘The Future of
Making’ (IFTF 2008). As with other market evolutions, commercial actors antici-
pating taking a strategic role in such a new ecosystem – a ‘Web 2.0 of the Internet
of Things’ – may develop a clear first-mover advantage, comparable to what hap-
pened with the Apple iPhone App Store.

284 M. Roelands et al.

One particular theme, driven by economical but also broader societal choices,
is eco-awareness. The following sections elaborate on this as an example area of
DiY Internet of Things activities.

11.1.5 Eco-awareness, an Example Application Theme in DiYSE

One example area where new DiY user-generated applications could have a large
socio-economic impact is the theme of eco-awareness, including but not limited to
energy-efficient infrastructure. One scenario cluster in the DiYSE project consid-
ers leveraging user-generated pollution data and possibly also safety-related data
in the city for community-building of mass-consumable applications, supporting
this societal awareness. Another set of applications considered is about energy-
efficient comfortable living, with energy consumption monitoring and control us-
ing smart objects. In this section, we discuss the requirements for applying the
DiY concept to this example area.

11.1.5.1 Energy Consumption in a DiY Internet of Things

With the emergence of the Internet of Things, everything is becoming connected,
and so, networks have evolved from primarily a source of information to the most
important platform for many types of applications, involving all kinds of devices
and objects. Likewise, connected communities of people using the ‘connecting to
anything’ capability of the Internet of Things are also expected to grow more and
more. Therefore, the need is emerging for solutions for interdisciplinary fusion
services that combine Information Technology (IT) with other technologies.

Among several applications for interdisciplinary fusion services in relation to
ecological themes, aspects such as energy harvesting and low power consumption
are also quite important elements for Internet of Things smart experiences to be-
come a reality. Current technology seems inadequate for the emerging low-power
processing requirements. The development of new and more efficient and compact
energy storage like fuel cells, printed/polymer batteries, etc; as well as energy
generation devices, coupling energy transmission methods or energy harvesting
using energy conversion, will be pivotal for implementing autonomous wireless
smart systems.

In the DiYSE project we address the challenge of eco-awareness for energy ef-
ficiency by making it more tangible to people, and more ‘DiY’ in people’s mind-
set by introducing network-connected smart objects in the setting. Taking advan-
tage of this paradigm, one can indeed imagine that consumers start monitoring
their energy consumption and thus better understand how their habits relate to
their energy consumption. This not only provides a more fine-grained picture of
the energy consumption in houses, buildings and vehicles to the energy suppliers,

11 The DiY Smart Experiences Project 285

but ultimately, with DiY involvement, it also provides citizens with impactful par-
ticipation means, sharing good practices and energy saving ‘tricks’ using self-
made hardware or software enhancements, fuelling a collective green society
mindset. Also, energy suppliers would be able to interact with their customer
households in a less ‘black-and-white’ fashion, for example activating appliances
that consume much energy, such as washing machines or laundry dryers, at times
when energy can be produced and provided in ways that is environmentally
friendly and well-priced. With service creation technology around connected
smart objects, as researched in DiYSE, a lot more could be offered, like tracking
energy consumption peaks, providing consumer notifications on appliances still
running possibly inadvertently, or other, more complex applications for which
personalisation is an essential factor in mass market acceptance.

11.1.5.2 DiY Engagement in Eco-aware Applications

In the home environment, the big paradigm shift could come when every smart ob-
ject knows the interoperable protocols, removing the need for the dedicated sys-
tems developed independently today. Even beyond that, without putting any pre-
established ‘high-end’ solution in place for which – a priori – cross-system inter-
operability standards would have been established, building intrinsically more
open systems – in a DiY Internet of Things fashion – would encourage inhabitants
to participate effectively in an ecological engagement. For example, maintaining a
comfortable temperature and heating of water are the most energy consuming
tasks in a typical house, with a dramatic potential for energy conservation and as a
consequence a potentially significant positive impact on the environment. With
the family engaging in more elaborate ‘self-configuration’ as a DiY activity, the
house could become so fine-tuned, that the comfort of each of its inhabitants is
simultaneously maximised through learning the individual preference profiles,
while keeping energy consumption within desired limits. In the vehicle environ-
ment, smart objects in the car will be able to manage better the energy needed. Op-
timal route planning will reduce the distance driven, and better control systems for
the car itself will make the ride more energy efficient, all combined contributing to
reduced emissions and less pollution. Here also, awareness among citizens can be
amplified by giving them the means to customise the experience, and even con-
tribute data and measurements to related electronic communities.

Among several applications envisioned in DiYSE, Figure 11.1 shows an appli-
cations overview on the theme of eco-awareness and energy efficiency. For the
home and building environment, objects such as energy saving controllable sock-
ets, smart metering, and home automation controllers are used for energy man-
agement. In vehicles, devices taking part in the navigation control, and devices for
safety, can be used for energy saving.

286 M. Roelands et al.

Fig. 11.1 Applications Using Eco-awareness for Energy Efficiency

The smart home and smart building in fact may cover a wide range of services,
applications, equipment, networks and systems that act together in delivering the
‘intelligent’ environment for domains such as security and control, communica-
tions, leisure and comfort, environment integration and accessibility. Particularly
smart building entails a suite of technologies used to make the design, construc-
tion and operation of buildings more efficiently, applicable to both existing and
newly built properties (GeSI and The Climate Group 2008). Example systems are
building management systems (BMS) that run heating and cooling systems ac-
cording to occupants’ needs, or software that switches off all computers and dis-
plays after everyone has gone home. BMS data can be used to identify additional
opportunities for efficiency improvements.

So, various concepts and approaches are possible in optimising the energy effi-
ciency of buildings and homes, leveraging the intelligent building control in an at-
tractive cost-benefit ratio. A few example applications from this view are:

• intelligent/automated light control, allowing users to lighten their homes before
entering, both for safety and to create a welcoming environment, or to mimic
activity while away – even reconfiguring activities remotely when away from
home / office;

• auto-regulation of heating based on non-occupancy detection, maximising en-
ergy savings, while remote temperature controls still allow for adjustments; and

• media/entertainment control, integrated more comfortably with home activity
compared to stand-alone entertainment systems, and remotely accessible.

In these examples, the home or office becoming a ‘smart space’ with DiY
Internet of Things capabilities would allow much easier ‘programming by doing’
configuration of the otherwise (semi-)professional home automation configura-

11 The DiY Smart Experiences Project 287

tion, and allow for originally unforeseen improvements from community ‘wisdom
of the crowd’.

Automotive transport, as the other area of applications mentioned, represents one
of the main sources of green house gas emissions, but with the generalised avail-
ability of ultra-high-speed broadband access and the ubiquitous provision of next
generation mobile telecom services, many tasks and movements could be coordi-
nated much better, for minimising power consumption. While the main focus of
applying ICT to transport through the development of Intelligent Transport Sys-
tems (ITS) is safety, the efficiency management of transport systems through ITS
can also reduce the environmental impact of transportation. Example applications
for this area currently considered by industry (ITU-T 2008) are:

• enhanced navigation or vehicle dispatch, considering alternative routes, possi-
bly proactively, reducing journey time and energy consumption;

• parking guidance systems, additionally reducing engine time;
• road pricing schemes, such as the congestion charge applied in London, en-

couraging use of public transport during congestion periods.

Furthermore, vehicles can serve as mobile environmental pollution sensors, and
electrical vehicles can play an important role as energy storage, production or
consumption elements in smart energy grids.

Here again, the engagement of people can be dramatically improved, by pro-
viding the flexibility of high (DiY) personalisation, and even having them actively
contribute to the roll-out of the mobile and fixed pollution sensing infrastructure
by sharing personal data and devices. A car vendor, for example, opening up the
car information system to community driven sensor (and other) applications could
have a unique selling point in enhanced in-car navigation, with this maybe even
becoming a must-have feature when the market evolves.

11.1.5.3 Requirements for Enabling DiY in Eco-awareness Applications

In light of the range of possible eco-awareness applications, a number of further
requirements on capabilities at various levels need to be considered, in order for
such DiY, sometimes crowd-sourced value to become possible, for example with
respect to:

• easy installation and integration of everyday objects in our home environment,
locally as well as remotely, for monitoring and control purposes, in particular
for intelligent energy consumption monitoring and control functions;

• public IP network data connectivity and access, directly or indirectly, to all ob-
jects involved in the service or application;

• device virtualisation, installation and provisioning;

288 M. Roelands et al.

• meaningful and permanent, globally unique identification of objects, allowing
for the linking of devices into associated functions, and the unambiguous deri-
vation of meaningful information from raw sensor data;

• search and discovery of suitable, available appliances according to properties
and capabilities;

• web-based information processing, notification and visualisation;
• personalisation of associated services, considering context information, such as

in personal home energy profiles and scenes;
• support for a creation workflow entailing activities involving all the above;
• secure access limitation or sharing of personal or household data across Inter-

net; and
• identity-based user management.

Such groups of requirements may be extrapolated to get to generic requirements
as need to be covered for any creation architecture on top of the Internet of Things
as is aimed at in the DiYSE project. Further in this chapter, specific solution parts
of DiYSE are discussed, addressing these requirements as relevant for diverse use
cases.

11.1.5.4 Technologies and Standards Relevant for DiY Eco-awareness

While energy efficiency in buildings clearly would benefit environmental sustain-
ability, there is still a technological barrier to DiY creation by the masses on this
theme, or, as a start, just even for involvement of all related non-IT professional
parties. Therefore, a way must be found to disseminate and promote technological
good practices for energy efficient buildings – a typical ingredient of a DiY com-
munity phenomenon – and to increase the accessibility for non-technical experts
to a range of available technologies.

As was introduced already in the eco-awareness examples in previous sections,
this could be highly accelerated by the availability of properly standardised, gen-
eral and domain-specifically profiled, interoperable protocols for smart objects
and associated applications, in order to keep users agnostic from the underlying
technology.

A number of existing technologies and standards should therefore be taken into
account, in a first step to enabling DiY creation on top of the Internet of Things:

• Web technologies, including information processing, notification and visualisa-
tion, but also so-called mash-up technologies, should be easily usable in com-
bination with the Internet of Things, as a basic communication platform like
needed for example in energy efficiency in building automation and smart
homes. In fact, the leveraging of this technology has led to early definitions of
a Web of Things, in which a REST-based convention is taken as a first step to
realise physical mash-ups (Guinard et al. 2009).

11 The DiY Smart Experiences Project 289

• Internet of Things and device application programming interface (API) work-
groups in standards bodies like Internet Engineering/Research Task Force
(IETF122/IRTF123), International Telecommunication Union - Telecommunica-
tion Standardisation Sector (ITU-T)124 and World Wide Web Consortium
(W3C)125

• Service deployment, service life cycle management and device management
standards alliances like the Open Service Gateway initiative (OSGi) Alli-
ance

, play a pivotal role.

126, the Universal Plug-and-Play (UPnP) Forum127

• Beyond this, the Internet of Things Research Cluster (IERC)

, and the Digital Living
Network Alliance (DLNA) for home devices configuration and functional ab-
straction.

128

• Optimisation techniques from Cloud Computing could particularly be applied
and combined with the notion of Internet of Things in the context of smart en-
ergy grids, as power needs to be ‘routed’ according to the distributed fluctua-
tions in energy capacity and consumption needs, requiring bidirectional, real
time information exchange among customers and energy management opera-
tions.

 is making an ef-
fort to concertise standardisation and interoperability activities among the many
European projects working around the Internet of Things. In this context, sub-
ject of debate is, for example, the unique identifiers for objects, which, while
mainly stemming from early Internet of Things applications in logistics and
supply chain management, are also required when extending the eco-awareness
theme into the DiY realm. Related especially to naming and addressing for the
Internet of Things also is the work of the European Telecommunications Stan-
dards Institute (ETSI) Technical Committee on Machine-to-Machine Commu-
nication (TC M2M).

11.2 Sensor-actuator Technologies and Middleware as a Basis
for a DiY Service Creation Framework

For applying the freedom of creativity of Web 2.0 to the Internet of Things, as
aimed at in the DiYSE project, it is essential that non-expert users are enabled to
easily search for public devices or share their own, privately bought or DiY-built

122 http://www.ietf.org/
123 http://www.ietf.org/
124 http://www.itu.int/ITU-T/index.html
125 http://www.w3.org/
126 http://www.osgi.org/
127 http://www.upnp.org/
128 http://internet-of-things-research.eu/

http://www.ietf.org
http://www.ietf.org
http://www.itu.int/ITU-T/index.html
http://www.w3.org
http://www.osgi.org
http://www.upnp.org
http://internet-of-things-research.eu

290 M. Roelands et al.

devices, and as such personalise the physical environment by combining and
‘mashing-up’ device functions, regardless of whether the system has prior knowl-
edge about the devices or not. A large, heterogeneous set of device types needs to
be considered, with devices ‘speaking’ a wide range of ‘languages’, having vary-
ing specific constraints in terms of mobility, battery, computation, etc., and serv-
ing different usages, the same device even having different purposes in different
contexts for different users, all in a constantly evolving manner.

Traditional computing approaches are not intended to cope with such complex-
ity. Therefore, this section explores how DiY service creation environments, as
envisioned in the DiYSE project, can deal with plug-and-play connectivity of het-
erogeneous device types, how the function of appearing devices can be under-
stood, and how the data generated by these devices can be interpreted.

11.2.1 Device Integration

In the following subsections we introduce the notion of enhanced device drivers,
as a means of first-level abstraction for heterogeneous device types, and the Di-
YSE Gateway, serving as a proxy for resource-constrained devices. Finally, we
discuss ways to identify and address the discovered devices.

11.2.1.1 A first Level of Abstraction Addressing Device Heterogeneity

As a DiY creation system needs to support legacy devices, and cannot assume that
future devices will respect any specific standard, the only viable solution is to
make the system accept any kind of device interface and describe it using a com-
mon ‘meta-language’ understandable by a machine.

A similar abstraction mechanism is commonly used for peripherals in every
computer operating system, and is known as a device driver. It contains only the
programming interfaces required for the system to communicate with the device,
while hiding specific implementation differences within one device class. How-
ever, the device driver does not contain any information about the different ways
of using the device.

As an example, a user may want to control his motorised pan-tilt-zoom camera
using a WiiMote controller and gestures. This interaction may seem conceptually
straightforward for a human being, but technically it is unfeasible for a non-expert
user unless the specific software exists. It may seem obvious to a human that both
devices could ‘talk’ about pointing a given direction, but machines need additional
knowledge to achieve it. The information about the meaning of actions such as
‘get pointed direction’ or ‘turn to direction’, required for their automatic mapping,
needs to be provided by a human in every case because there is no computer algo-
rithm enabling to find a logical relationship between those.

11 The DiY Smart Experiences Project 291

One solution as investigated in the DiYSE project is to embed the knowledge
about the capabilities of a device in an enhanced driver, so that it is understand-
able by machines without low-level programming intervention. In the example,
the WiiMote driver would be augmented with information such as ‘can control di-
rection’, whereas the camera would have ‘can have its direction controlled’ as a
property exposed by the enhanced driver. Semantic reasoning mechanisms, as dis-
cussed later in this chapter, would use such conceptual information to assist the
user in describing device interactions that make sense conceptually and are at the
same time technically feasible and well-described, so that the desired device inter-
action is executable without the need to develop dedicated software. For instance,
in a most basic scenario not even considering the higher layer semantic reasoning
capabilities of an application creation environment above it, a straightforward re-
quest to the system to link the WiiMote and the camera can already default to the
automatic realisation of the intuitively expected interaction of controlling the ori-
entation of the camera by means of the WiiMote. So, for such basic scenarios, be-
haviour creation can be as simple as defining a Lego crane control, without such
control being predesigned as a fixed function, only relying on the basic semantic
annotations obtained from the enhanced device driver.

With this approach, the problem of complexity due to the heterogeneity of de-
vices is solved at a low-level stage. Even at this basic, not further enhanced level,
non-expert users will not experience a barrier of low-level technical details or
compatibility issues anymore.

Beyond this, in the context of DiY creation of Internet of Things applications,
as an important potential enabling element for the DiY Internet of Things ecosys-
tem, web communities are envisioned to emerge in which experts can publish and
enrich enhanced drivers, so that the spectrum of possible applications constantly
broadens, including newly supported devices as well as new ways of applying ex-
isting device features.

11.2.1.2 Achieving Device Data Connectivity for Resource-constrained
Devices

Despite the progress in leveraging the IPv6 protocol for connecting smart objects
into the cloud, in the foreseeable future many, in one or multiple aspects resource-
constrained devices will remain supporting only dedicated – but nevertheless of-
ten standardised – protocols specifically designed for the resource-constrained na-
ture of the devices. Examples are Wireless Sensor Network nodes, or Zigbee or
Bluetooth peripherals, for which hardware cost, related to memory and processing
power, but especially also energy consumption are important factors.

As such resource-constrained devices are also considered key in the DiYSE
context, the project considers an intermediate gateway function for exposing also
these devices in a uniform way to the overall framework and make them IP-
addressable, to connect them into local or global IP networks for data retrieval,

292 M. Roelands et al.

control, and device management. Such a DiYSE gateway, as we named this func-
tion, requires a flexible abstraction layer hiding the underlying network technol-
ogy heterogeneity, while supporting fast and seamless device deployment. Also,
this layer should relay unique identification of the devices, for transparent interop-
erability and remote device querying, control and monitoring. Figure 11.2 shows
the main modules of a DiYSE Gateway, distinguishing:

• a discovery module for devices being plugged in,
• means to install and execute enhanced drivers, and
• the bookkeeping of connected devices both for keeping track of local execution

and for southbound device exposure.

For devices that directly connect into the cloud via IP, equivalent functions for
proper exposure to the middleware may be provided also, according to a notion
that we could call a cloud DiYSE gateway.

Fig. 11.2 Main Modules of a DiYSE Gateway Function

In the next subsection we discuss some further aspects of the installation, regis-
tration, and integration of these resource-constrained devices, or nodes as we call
them.

11.2.1.3 From Hardware to Device Description

As previously described, we consider the use of enhanced drivers to cope with the
high heterogeneity of nodes. Typically for each new device, the device manufac-
turer, or an expert developer, can make available appropriate driver software,
which eventually gets automatically installed on local DiYSE gateways, thus pro-
viding a description of device capabilities and an interactions-set that users, or
other devices, may leverage.

For this automatic driver installation, a DiYSE gateway triggers a driver-
lookup operation among the different repositories by using uniquely characterising

11 The DiY Smart Experiences Project 293

meta-data extracted from the new node, like type of device, vendor, hardware
MAC address, etc.. On top of the base set of handling functions that devices from
the same hardware family may have, specific additional handlers may be required
for managing additional functionalities, like for instance a special night-capture
function that only a specific type of pan-tilt-zoom camera may have.

A further essential requirement for the integration of large numbers of devices
in the cloud is the capacity to individually identify and address them. Several solu-
tions for that can be considered, such as the use of a generic syntax like Uniform
Resource Identifier (URI, RFC 3986129

In the DiYSE architecture, also a device discovery service is foreseen, provid-
ing high-level descriptions of the capabilities and the services that the installed
nodes can provide. While more and more devices today are discoverable via direct
embedded support for communication protocols like UPnP

) as a permanent and unique identifier in-
cluded in the device description, or, alternatively, the association of an IPv6 ad-
dress with every node, or still, the use of application level identifiers on top of the
network addresses, like logical peer-to-peer (P2P) identifiers or Dynamic DNS. As
many nodes may however not be able to store or compute their identifiers, such
operation often needs to be performed on the connecting DiYSE gateway.

130, DPWS131 or
DLNA132

11.2.2 Middleware Technologies Needed for a DiY Internet of
Things

, most of today’s devices in the surroundings remain to be incompatible
or not equipped with such self-description mechanisms. Thus, DiYSE gateways
use the enhanced drivers to map the node functionality and attributes into a com-
mon description language like DPWS for remote description of connected nodes,
and offer the functionality to expose devices and services and send events beyond
the local network domain boundaries across the internet.

A middleware, being a software infrastructure that ties together hardware, operat-
ing systems, network stacks, and applications, should provide a runtime environ-
ment supporting functions such as multi-application coordination, standardised
system services (e.g. data aggregation, control and management policies), and
mechanisms for adaptive, efficient resource handling. As such, middleware sup-
port is essential for interworking with so-called Reduced Functionality Devices
(RFDs), such as DiYSE nodes, which are by definition resource-constrained de-
vices, and which moreover are using one out of a heterogeneous range of commu-

129 http://www.ietf.org/rfc/rfc3986.txt
130 http://www.upnp.org/
131 http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
132 http://www.dlna.org/home

http://www.ietf.org/rfc/rfc3986.txt
http://www.upnp.org
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://www.dlna.org/home

294 M. Roelands et al.

nication standards, including IEEE 802.15.4, ZigBee, Z-Wave, Bluetooth, and
6LoWPAN.

In the middleware that exposes RFDs as a set of generic services for applica-
tions, we distinguish in the DiYSE project:

• Low Level Services, containing the vital, intensively used functions always
needed for interaction with the hardware, like Real-Time Management, Com-
munication and Context Discovery Management,

• High Level Services, typically less critical, providing a first level of application
support, more adaptable to different scenarios, with functions such as Query,
In-node Service Configuration, and Command,

• Cross-Layer Services, providing mixed high and low level functions, such as
Reasoning, Portable Code Execution Environment, and Security, and

• Control Services, providing the middleware’s core functions of component de-
ployment and lifecycle management as well as inter-component communica-
tion through event communication, by means of entities called Software Com-
ponent Container and Eventing Service Manager.

So, one of the interesting research challenges as investigated in DiYSE with re-
spect to middleware for RFDs is to translate the service-oriented computing
(SOC) paradigm to wireless sensor and actuator networks. The SOC approach is
promising for easy assembly and deployment of interoperable, platform and oper-
ating system independent services in such networks, but should also fulfil typical
additional requirements for smart environments, such as lightweight business logic
optimised for low computational overhead and low battery consumption.

In order to evaluate the performance in low-resources devices in the DiYSE
framework in terms of processor power, memory size, bandwidth and battery life-
time, the RFDs-based approach has been implemented in a Wireless Sensor Net-
work. As illustrated in Figure 11.3, in order to provide advanced sensor services to
the envisioned end user applications, service composition and management tasks
are performed in specialised nodes in the sensor network. To this end, sensor
nodes with Broker, Orchestrator and Trunk Manager roles has been defined.

Broker nodes represent the interface between the Wireless Sensor Network and
external networks. They receive semantic descriptions of the simple services pro-
vided by each sensor using lightweight notation languages, such as Service Map-
ping Description (SMD), on one side and receive service requests from external
networks on the other side. Orchestrator nodes are responsible for implementing a
virtual sensor service paradigm. They perform the composition of the offered sim-
ple services into potentially complex and sophisticated composed services, using
the semantic descriptions of those primitives. The service control plane is imple-
mented in the Trunk Managers, which perform tasks associated with service state
supervision, such as self-configuration, self-adaptation and self-recovery, in order
to increase service availability and network resilience.

11 The DiY Smart Experiences Project 295

Fig. 11.3 Network Architecture and Middleware for WSANs in DiYSE

11.3 Semantic Interoperability as a Requirement for DiY
Creation

As discussed in the previous sections, the interoperability among devices support-
ing different lower layer communication protocols is a crucial requirement that
must be fulfilled to enable the ad-hoc mixing and matching of devices and sensor
nodes in DiY applications, as is aimed at with the DiYSE architecture. As ontolo-
gies have been proposed as a solution not only to provide semantics for the data to
be exchanged, but also for describing the devices themselves, they indeed provide
the necessary means for compositions of devices in applications – by web-based
composition of service-level exposure of the devices, or even beyond that, by
locative, on-the-spot creation of applications in the smart space.

In this section, we first introduce the concepts concerning ontologies in com-
puting science, and then describe through examples how the ontologies are envi-
sioned to achieve semantic interoperability in an Internet of Things creation envi-
ronment as researched in DiYSE.

11.3.1 Ontology

Ontology, as a discipline, is the branch of philosophy that is concerned with the
nature of things that exist in the universe (Smith 2003). More specifically, it is the
science that aims to provide an exhaustive and definitive classification of things
based on their similarities and differences. By exhaustive, we mean that it provides

296 M. Roelands et al.

an explanation for everything that is ongoing in the universe. By definitive, we
mean that every type of things should be included in the classification. In this
sense, the ontology discipline tries to provide answers to the question: What are
the features common to all things?

In computing science, an ontology is commonly defined as: “a formal, explicit
specification of a shared conceptualization” (Studer et al. 1998). More specifi-
cally, an ontology is an engineering artefact composed of (i) a vocabulary specific
to a domain of discourse, and (ii) a set of explicit assumptions regarding the in-
tended meaning of the terms in the vocabulary for that domain. This set of as-
sumptions is generally expressed in terms of unary and binary predicates, by
which concepts and the relations between them are expressed. In its simplest
form, an ontology defines a hierarchy of concepts related by their taxonomical re-
lationships, whereas in more complex cases, additional relationships can be ex-
pressed between concepts to constrain their intended meaning. As an ontology
captures knowledge about a domain, this needs to happen by consensus among a
group of people, in order to reach a common agreement on its conceptualisation.

Different languages have been developed over the last two decades to represent
ontologies. For instance, Simple HTML Ontology Extension (SHOE) (Luke et al.
1997) was developed to annotate web pages with semantics, whereas the Ontology
Exchange Language (XOL) (Karp et al. 1999) was primarily developed to ex-
change ontologies in the bioinformatics domain. Since the World Wide Web con-
sortium has published several recommendations to express ontological content on
the Web. For example, the Resource Description Framework (RDF) (Miller and
Manola 2004) allows users to describe the relation between different web re-
sources, while the Web Ontology Language (OWL) (van Harmelenand and
McGuinness 2004) extends on the RDF vocabulary to provide precise meaning
through formal semantics.

11.3.2 Ontology Engineering Methodologies

Over the last two decades, several ontology engineering methodologies have been
developed. Gruninger and Fox (1995) propose a method inspired by knowledge-
based development using first order logic, starting by identifying a number of mo-
tivating scenarios from which a number of natural language competency questions
are extracted. These questions subsequently lead to the identification and formali-
sation of the terminology and axioms that constitute the ontology. Finally, the on-
tology is evaluated by proving that the original questions can be answered. In this
way, competency questions are used to determine the scope and adequacy of the
ontology. Uschold and King (1995) propose a method for building ontologies
based on their experience with the Enterprise Ontology for system interoperation,
while Methontology (Fernandez et al. 1997) builds on the main activities of soft-
ware development and knowledge engineering methods, proposing an ontology

11 The DiY Smart Experiences Project 297

development life cycle based on evolving prototypes. CommonKADS (Schreiber et
al. 1999) is a methodology for knowledge engineering in general, which is used to
design and analyse knowledge-intensive, structured systems. A knowledge engi-
neer such as a risk analyst in an enterprise, or a knowledge engineer in an onto-
logical domain, can use it to detect the knowledge expansion, e.g. the opportuni-
ties based on the available knowledge resource, and the knowledge acquisition
bottleneck.

Alternatively, the Developing Ontology Grounded Methods and Applications
framework (DOGMA) is a formal ontology engineering framework inspired by
various scientific disciplines, such as database semantics and natural language
processing (De Leenheer et al. 2007). Although DOGMA partly draws on the best
practice of the other methodologies, it differs from these approaches by providing
a strict separation between the lexical representation of concepts and their rela-
tionships and the semantic constraints. This separation results in higher reuse pos-
sibilities and design scalability, and eases ontology engineering, as the complexity
is divided and agreement can be more easily reached. Furthermore, the definition
of terms in a natural language and the grouping of terms have been incorporated.
By grounding knowledge in natural language, domain experts and knowledge en-
gineers can use ordinary language constructs to communicate and capture knowl-
edge. Therefore, domain experts do not have to tackle or learn to think in new
paradigms, e.g. without the need to express their knowledge in RDF or OWL. In-
deed, the complexity of just capturing knowledge is difficult enough already.
Based on this approach, end users are able to represent the domain of discourse in
terms they understand. Once the elicitation process is finished, and the ontology is
formalised, the DOGMA tools can output the information to the requested para-
digms. For example, simple linguistic structures like lexons can be transformed
into RDF triples, which results in data (i.e. facts) being available as part of the
Linked Open Data (LOD) project133

.

133 http://linkeddata.org/

http://linkeddata.org

298 M. Roelands et al.

Fig. 11.4 DOGMA-MESS Iterative Process.

The Meaning Evolution Support System (DOGMA-MESS) is STARLab’s
methodology and tool to support community-driven ontology engineering (de
Moor et al. 2006). The benefit of DOGMA-MESS is that it allows the domain ex-
perts themselves to capture meaning, while relevant commonalities and differ-
ences are identified, so that each iteration in the process results in a useable and
accepted ontology. Hence, it provides an efficient, community-grounded method-
ology to address the issues of relevance. Figure 11.4 illustrates how a domain on-
tology is created through the interaction among three different types of stake-
holders, namely the domain expert, the core domain expert and the knowledge
engineer. The domain expert is a professional within the domain of discourse,
while the core domain expert has a deep understanding of the domain across dif-
ferent organisations. The knowledge engineer, who has excellent expertise in rep-
resenting and analysing formal semantics, is responsible to assist the domain ex-
perts and core domain experts in the processes of ontology creation, validation and
evolution.

11.3.3 Application of Ontology Engineering in the Internet of
Things

In this section we describe three ontology-based services that would enable three
different areas of interoperability as needed for DiY application creation in the
Internet of Things.

11 The DiY Smart Experiences Project 299

11.3.3.1 Knowledge Integration and Sharing

As the Web has changed from a mere repository of documents to a highly distrib-
uted platform where new types of resources can be discovered and even easily
shared, one can extrapolate the Web as an Internet of Things making everyday ob-
jects addressable via IPv6 (Sundmaeker et al. 2010), as well as an Internet of Ser-
vices making services easy to implement, consume, and trade.

However, the diversity of this increasing volume of data, services, and devices
implies that it is impossible for them to work together, as many are designed inde-
pendently, with particular, different application domains in mind. Making knowl-
edge transparent to users and services thus requires the development of a formal
and precise vocabulary that (i) defines concepts shared by a community and (ii)
can be processed by machines.

Fig. 11.5 Ontology-based Knowledge Integration and Sharing

Figure 11.5 shows how a semantic layer can be used to facilitate knowledge in-
tegration and sharing on the Web. For example, the annotation of devices with
concepts from the FIPA Device Ontology Specification134

• the Suggested Upper Merged Ontology (SUMO) (Niles and Pease 2001) is an
upper level ontology developed by the IEEE to promote interoperability, in-
formation search and retrieval, automatic inference, and extendibility;

 would enable users to
retrieve devices, like smartphones, based on their capabilities. Similarly, Eid et al.
(2007) have developed an ontology to discover sensor data like GPS or tempera-
ture, consisting of three components:

• the Sensor Hierarchy Ontology (SHO) includes models for data acquisition
units and data processing and transmitting units; whereas

134 http://www.fipa.org/specs/fipa00091/PC00091A.html

http://www.fipa.org/specs/fipa00091/PC00091A.html

300 M. Roelands et al.

• the Sensor Data Ontology (SDO) describes the context of a sensor with regard
to spatial and/or temporal observations.

Alternatively, the Web Service Modelling Ontology (WSMO)135

11.3.3.2 Ontology-based Search

 provides a
conceptualisation for the core elements of Web Services. For example, the web
service component provides a vocabulary to describe the capabilities, interfaces,
and internal working of a Web Service. In turn, this allows the discovery of ser-
vices, their invocation (context based parameterisation and data transformation),
and their mediation (e.g., the composition and orchestration of services).

The DiYSE project aims to develop a framework to enable communities to create
and exchange applications (i.e. software components) for ubiquitous computing
and ambient intelligence, leveraging the Internet of Things. In practice, these ap-
plications are likely to come from a number of repositories and in a variety of
formats. For example, software components could be indexed or tagged, based on
the type of devices used to run the software. However, different repositories are
likely to use different terminologies for the indexing.

This is where ontology-based search comes in as a solution, as in that approach
the indexes are expressed in terms of an ontology which translates and hides the
different repositories that have committed to it. The advantage of this method is
that users can retrieve information based on unambiguous terms, thus enabling in-
teroperability when interpreting both queries and replies. For example, a commu-
nity may define their own ontology to define the capabilities of their software
components. This ontology would then be used to annotate software components,
thus enabling interoperability. The advantage is that a user may search for existing
solutions according to the community’s vocabulary. If the DiY user finds existing
solutions, then he can either reuse the solution directly or extend the solution to
solve other problems. Otherwise, the DiY user may submit his own annotated so-
lution, which can then be retrieved by other members of the community.

In DiYSE, the ontology-based search needs to serve two types of users. Tech-
nical users are likely to use technical terms to define the capabilities of a hardware
or software component, whereas non-technical users will use other non-technical
terms that are meaningful to them. As a result, semantic ‘translation’ methodolo-
gies are researched that resolve the differences between technical and non-
technical terminologies in order to get to a true DiY ecosystem on top of the Inter-
net of Things.

135 http://www.wsmo.org/

http://www.wsmo.org

11 The DiY Smart Experiences Project 301

11.3.3.3 Context-aware Computing

A further challenge, which is typical for mobile distributed computing in general
but becomes even more explicit in a sensor-rich environment, is to exploit the dy-
namical changes in the environment in applications, by means of those applica-
tions having the capability to adapt to the context in which they are running.
Therefore, context-aware computing (Schilit et al. 1994) focuses on gathering in-
formation about users, like status, location, preferences and profile, next to envi-
ronment factors such as lighting conditions, noise level, network connectivity,
nearby things and even social aspects. This information is then used to adjust the
behaviour of an application to suit user needs and preferences.

As is done in the DiYSE framework, context management can be supported
semantically by two core elements, namely the contextual ontology and the con-
text model. The contextual ontology provides a conceptualisation of the character-
istics of real world objects, while the context model provides access to the contex-
tual knowledge. For example, the iHAP ontology (Machuca et al. 2005) provides a
vocabulary to represent (i) spatial description, (ii) actor description, (iii) context
features description, (iv) service description, and (v) device description in smart
environments like vehicles, homes or public buildings. So, based on for example
this ontology, agents and users are able to interoperate to provide context-aware
services in the dynamically changing smart environments.

In short summary of this section, we have discussed three areas in which ontol-
ogy engineering methodologies are important for the Internet of Things, and for
DiY creation on top of it in particular, as researched within the scope of the Di-
YSE project, namely knowledge integration and sharing, ontology-based search,
and context-aware computing. Essentially, ontologies are a means to the agree-
ments made among a community and are intrinsically community-based, and so
form an enabling step needed for effective sharing and creation activities among
DiY communities. Even when a software agent ‘commits’ to such ontology by us-
ing the same vocabulary in a consistent manner, it shares the same knowledge as
the agents designed by others in the same community. So, this kind of shareability,
as originating from the community, also enables the agents to seamlessly interop-
erate with each other. In other words, the fundamental principle of ontology engi-
neering is ‘autonomy’ (Meersman 2010), granting many engineering advantages
to the application builders and professionals, up to occasional DiY users.

Furthermore, many other generally applicable ontology engineering techniques
can interestingly be leveraged in the Internet of Things, like for instance around
modelling (Spyns et al. 2002; Baglioni et al. 2008), querying (Loiseau et al. 2006),
reasoning (Baglioni et al. 2008), annotating (Kim and Park 2005) and matching
(Tang et al. 2010).

302 M. Roelands et al.

11.4 The DiYSE Service Framework

On top of the network of connected sensor and actuator hardware, uniformly ab-
stracted via sensor abstraction middleware and semantic annotation, the DiYSE
service framework provides a number of service-level functions, in turn needed to
support the application creation layer above it, in which professional developers
up to non-technical end users can shape the smart space by collaboratively creat-
ing and deploying Internet of Things applications. Next to the service functionality
for composition, deployment and execution, this in particular entails also function-
ality to adapt and personalise applications, as well as the creation thereof, to con-
text of use, respectively creation.

Figure 11.6 positions the DiYSE service framework in the high-level overview
of the overall DiYSE architecture. Mediating between all the identified actors and
application areas versus the underlying Internet of Things technologies, three main
functional areas for the framework can be distinguished. We discuss each of them
in the next sections.

11 The DiY Smart Experiences Project 303

Fig. 11.6 Position of the Service Framework in the DiYSE Overall Architecture View

11.4.1 Contextualisation Layer

Under the Contextualisation Layer for DiYSE we group the components for con-
textualisation and personalisation, serving the application and application creation
environment on top of it. In particular, we distinguish three, highly interrelated
functions in it:

304 M. Roelands et al.

• User profiling and personalisation: A user profile is a structured data record
containing user-related information like identifiers, characteristics, abilities,
needs and interests, preferences, behavioural history and extrapolations thereof
for predicting and anticipating future behaviour. It can therefore be exploited to
provide personalised, user-context-aware service recommendation, leveraging
related user profiles from the crowd, and context-awareness during eventual
service use.

• Modelling of the physical context information: The environmental context is
also a very relevant feature in service oriented environments, particularly in
‘smart’ environments, where services are expected to behave intelligently,
learning from and anticipate on what happens in the surroundings. In general,
the establishment of an effective context model is essential for designing con-
text-aware services. Strang and Linnhoff-Popien (2004) provide a survey of the
most important context modelling approaches for pervasive computing, such as
key-value models, mark-up scheme models, graphical models, object oriented
models, logic-based models and ontology-based models. As discussed in previ-
ous sections, DiYSE has selected an ontology-based model for representing the
context. Ontologies have the important benefit of providing a uniform way for
specifying the model’s core concepts as well as an arbitrary amount of sub-
concepts and facts, altogether enabling contextual knowledge sharing and reuse
in a ubiquitous computing system.

• Reasoning: Another key issue in the study of DiY applications is the reasoning
about environmental context and user information, allowing for deduction of
new knowledge in addition of the directly detected information. As the ultimate
goal is to make the services and the surrounding smart, i.e., more closely in ac-
cordance with the specific user expectations, a fundamental challenge exists in
deriving correct and stable conclusions from the typically imperfect context
data acquisition in the highly dynamic and heterogeneous ambient environ-
ment.

11.4.2 Service Composition and Exposition Layer

The Service Composition and Exposition Layer in DiYSE groups the functions
that enable the upper user-facing tools to list and access the different available
services and service parts as provided by any actor of the DiY community, i.e.,
third parties and professionals as well as any users.

It comprises the following functions:

• Service exposure: This function provides a unified access to the services and
components made available by different levels of users, professionals and third
parties (Blum et al. 2008), which is essential for the envisioned DiYSE creation
process. It thus enables the different types of users to discover, compose and

11 The DiY Smart Experiences Project 305

publish at a properly abstracted service-level. Besides that, functionality such
as instantiation and the related exception handling, authentication and authori-
sation, layered functional exposure, configuration and service user interface
representation in the DiYSE creation process is envisioned.

• Semantic engine: The semantic engine function provides the service exposure
function with the abstractions to semantically mediate interaction of devices,
services and actors, according to the methods discussed in the sections on se-
mantic interoperability, section 11.3, leveraging a set of shared ontology re-
positories for that purpose.

• Orchestrator-compositor: As a key part in the DiYSE creation process, the
dynamic composition and orchestration of hybrid and composite services is
needed, leveraging the semantic engine as well as the Contextualisation and
Personalisation Layer, and closely interacting with the service exposure func-
tion, registering also newly composed applications (ESI 2008).

11.4.3 Execution Layer

The main objective of the DiYSE Execution Layer is to execute the composed,
distributed applications in a dynamic, context-aware manner.

One of the main challenges in this layer is to establish a mechanism for manag-
ing dependencies on all the context data at runtime, ranging from user profiles and
user context up to the various aspects of the environment’s context, sensor data
streams as well as events of new devices appearing or disappearing in the envi-
ronment. Moreover, there is a tight relation to the devices in the environment be-
cause of the tangible interaction envisioned in DiYSE, as discussed in later sec-
tions, requiring device-level mediation mechanisms at lower layers, as previously
discussed.

Solutions that have been proposed for execution at the end of a creation process
include the use of software variability for defining those parts in a workflow that
may vary at runtime (Bastida et al. 2008). Before the workflow is executed, its
variable parts are instantiated according to the relevant contextual parameters.

A further aspect to be considered for the Execution Layer is the potential se-
mantic binding of running component instances, and the dynamic adaptation of
these bindings when the environment changes.

11.4.4 DiYSE Application Creation and Deployment

As the main objective of the DiYSE project is to eventually enable non-technical
users to create their own Internet of Things applications based on available de-

306 M. Roelands et al.

vices and service parts, leveraging the environmental and user context, we have
stipulated the overall phases in the DiYSE creation process as follows:

• Installation of sensors, devices or actuators: The main challenge in this
phase is the dynamic and correct registration of all required device information
in a device registry, a driver registry and the service registry, while providing
the user with a highly intuitive procedure, ideally not requiring any ‘unnatural’,
i.e. seemingly unneeded interventions. Support at the hardware and network
level for this in DiYSE was discussed in section 11.2.

• User design of the application: This phase is where the user creates, config-
ures or composes a (partially) new application, taking into account the capabili-
ties (expected to be) available in the environment, according to his/her own
profile and context. The challenge here clearly is to provide the user with the
right kind of tools at the right level of abstraction, according to his/her exper-
tise level. Also, validation or simulation of device interactions and device data
as part of the design is an important aspect. This is partly related to the discus-
sions in section 11.3 on semantics, but is also closely combined with the inter-
action as discussed in section 11.5.

• Production of the application runtime code: After designing the new appli-
cation, its runtime code can be factored, among other processes using variabil-
ity techniques and semantic mapping, as related to what was previously under
section 11.4.

• Deployment of the application: The run time application code is eventually
deployed in a consecutive phase, possibly in a distributed or mobile manner,
according to dynamic device and network resource conditions and other con-
text factors, as applicable at that moment in time, and adapting to environ-
mental context changes.

• Execution of the application: After deployment, the regular execution life cy-
cle phases comes in action, effectively starting or stopping dependable subser-
vices for the application, for the assumed context and user reach.

Finally, users start interacting with the newly created application.

11.5 Interactions, Using and Creating in Smart Spaces

The smart space consists of interactive components, sensors and actuators and al-
lows for very versatile interaction with the services given shape by the tangible,
distributed interface. One could say that the smart space ideally forms an ecology,
in which people seamlessly interact with the environment to achieve specific
goals, in particular also the creation goal which the previously discussed service
framework is aiming to support at the software level.

11 The DiY Smart Experiences Project 307

11.5.1 Service Interaction and Environment Configuration

The interaction will be related to using the services provided by or through the en-
vironment, or to configuring the environment itself. The latter task receives spe-
cial attention in the DiYSE project, as we want to enable the DiY end users to per-
form this task in most cases. This requires the interaction to be very intuitive and
‘programming’-like solutions are out of the question. Configuring the environ-
ment, or defining the ‘intelligence’ of the environment, consists for instance of:

• associating input events, like a button press, a sensor reading change, or GUI
widgets, to actions in the environment, like motors, valves or other actuators,
or application settings, via a set of behaviour rules,

• defining dependencies on context information, like presence detectors, time of
day, or temperature,

• personalising services, like look and feel adaptation to the user’s identity, tak-
ing into account preferences for content, adapting to use patterns, switching to
the preferred input or output modality, or

• creating mash-ups of existing controls, defining a “macro” of control opera-
tions specifying a personal remote interaction to services.

In this project we envision the use of physical browsing techniques to help se-

lecting the physical target objects for use in the configuration by means of touch-
ing or pointing actions. The project is also researching the use of templates, wiz-
ards or ‘define by doing’ approaches to simplify the configuration. The ‘define by
doing’ approach requires the environment to be completely observable. The user
will define complex functionality by creating the specified circumstances and per-
forming a series of actions that show the system what is expected as application
behaviour in those circumstances.

11.5.2 Ecological Design Approach

Refining beyond the essentially different phases as discussed in the previous sec-
tions, the design of a smart space ecology does not happen in one step, but con-
sists of the design of the components (i.e., devices, sensors, actuators, single de-
vice applications) for use in the environment, enabling design, and the design of
the functional environment, local design. While the enabling design will typically
be performed by professionals as part of their product development, local design
can be performed also by the end user, tailoring his environment and combining
the functionality of the enabled products, as exemplified by the configuration task
in the previous paragraph. We coin this to be the Ecological Approach to Smart
Environments (EASE). Note that the approach emphasises the importance of in-

308 M. Roelands et al.

volving the users at all phases of the design (Keinonen 2007; Norros and Salo
2009).

11.5.3 Architectural Support and Modelling for Interaction

To get the various interactive components in the environment to work together to
provide such a context-aware personalised interactive experience is not a trivial
task. Also from the user perspective, the interaction capabilities of the components
must be described properly and be advertised, dependencies on context informa-
tion must be specified, and, as indicated before in the discussions on context, the
user’s preferences and abilities must be taken into account.

The architecture as described in the previous sections provides a good base for
this interactive environment. Interactive component capabilities can be described
using the same ontology-based semantic methods when applying a suitable inter-
action ontology. Interactive events can be channelled through the available inter-
operability solutions. Context information is provided at a suitable level by the
brokers in the system.

The interactive applications themselves need to be modelled in such a way, that
their interactions are easy to map to the components available in the environment.
This requires new solutions. Most user interfaces are designed for a specific plat-
form, even a specific device, and cannot be transferred to other platforms, let
alone a set of interactive components. Remote interfaces, using HTML Forms for
example, have partly solved this problem, as the platform rendering the user inter-
face may be different from the one running the application. This approach has also
allowed for scaling the user interface to devices with various viewports. The
method is sometimes referred to as a multi-channel approach. It works well with
‘window, icon, menu, pointing device’ (WIMP) devices and has successfully been
mapped to mobile devices as well. Mapping for multi-modal interaction or distrib-
uting the interaction over a multi-device solution requires more versatile model-
ling of the user interface. A starting point for this kind of modelling can be found
in the Abstract UI solutions found in UsiXML (Limbourg et al. 2005), Teresa (Pa-
ternò 1999) and the like. But unlike those modelling solutions, the DiYSE system
must moreover be able to resolve the mapping issues at run time, in the changing
environment. This is one of the central themes of research in the project.

11 The DiY Smart Experiences Project 309

11.5.4 Example Personalised Interaction Method: Smart
Companion Devices

11.5.4.1 Multimodal Mood Detection in Smart Companions

In contrast to the multi-channel, spatially distributed user interaction discussed as
a critically needed paradigm leveraging the possibly ‘thin’ nature of sensors and
actuators as an intuitive, natural user (creation) interface in the Internet of Things,
another asymptote of rich, intuitive user interaction is the one of a single- or multi-
object, ‘thick’ smart object paradigm, offering and embodying a human-like coun-
terpart for the user-creator. In the DiYSE project, this is seen as an advancement
beyond classical multimedia interfaces, which ads up to the ‘things’ available in
the smart space for use and DiY creation.

In particular, for smart companions, being robotic pets whose appearance and
behaviour are tailored to human interaction, a comfortable user experience re-
quires the establishment of a meaningful robot behaviour illusion. This can be
achieved employing a variety of techniques, aimed at the recognition of auditory
and visual cues, such as speech/speaker and face/gesture recognition, of which the
most advanced variant is the multimodal approach, combining voice, image and
gesture recognition to derive context. So, context data available through the smart
companion device can be exposed in the DiYSE environment for use by other ser-
vices and applications and vice versa, forming a rich connection to the interacting
user.

In the current state of the art, smart companions lack the ability to detect what
is arguably the most important factor present in normal human interaction: the
mood of the speaker. While speech and non-verbal analysis methods can be ex-
tended to detect mood or emotions, also such affect recognition can be further en-
hanced by associating image analysis to it for face and gesture recognition. These
affect detection techniques have been the object of extensive research, but the as-
sociated computational cost has generally kept their application restricted to rela-
tively powerful computing platforms, restricting the interaction illusion to being it
‘via’ the computer.

The aim of the smart companion work in DiYSE is therefore entailing two
steps: (i) to research and implement affect detection algorithms on a PC platform,
and (ii) to migrate them to an embedded platform present in a state-of-the-art
smart companion robot. A standard back-end software interface is also foreseen
for tying into the DiYSE context-awareness functions, integrating user mood as
well as adapted companion behaviour as enrichments of the DiYSE smart user in-
teraction.

310 M. Roelands et al.

11.5.4.2 Embedded Systems for Autonomous Smart Companions

So, as indicated, the enhancements proposed for the smart companion require a
sufficiently compact, computationally powerful, and relatively low cost hardware
platform. In fact, while serving a different purpose, such hardware requirements
are of a similar nature as those needed for DiYSE Gateways needed to connect the
‘thin’ sensor and actuator nodes. Indeed, fortunately, nowadays available typical
DiY electronics boards could be selected136 as appropriate for this purpose too,
namely Beagle Board137 and Gumstix Overo138

11.5.4.3 Affect Recognition in DiYSE

.

By not taking into account the affective state of the user, the traditional Human-
Computer Interaction systems are often perceived as cold and unnatural when
compared to human-to-human communications. In the past decade, advances have
been achieved toward the collection of large databases of affective displays, as
well as toward the analysis of human behaviours by means of audio-based, video-
based, and audiovisual methods139

A prerequisite in designing automatic affect recognition systems is the avail-
ability of databases containing labelled data of human affective expressions.
Since manual labelling of emotional expressions is time consuming, subjective, er-
ror prone, and expensive, many databases consist of ‘artificially’ acted emotions,
but also recordings of real, spontaneous affective behaviour were collected from
human interviews, phone conversations, meetings, computer-based dialogue sys-

 (Zeng et al. 2009).

136 The most popular embedded systems are built around the ARM architecture. Lately, Intel has
introduced the Atom processor to cater for the same range of applications. These considerations
narrowed our choices to (i) Texas Instruments OMAP based single-board computers and (ii) Intel
Atom based system, presenting a power consumption versus code portability trade-off. From that,
OMAP (v3), supporting WindowsCE, Symbian, Android and Linux, was eventually selected,
leading to Beagle-Board and Gumstix Overo as the preferred platforms for the smart companion.
137 http://beagleboard.org/
138 http://www.gumstix.net/Overo/
139 Most audio-based systems are trained and tested on acted speech in order to recognize proto-
typical emotions. Beside the selection of the classifier, another issue concerns the optimal feature
set among linguistic and paralinguistic descriptors, as well as the reliable extraction of these cues
(e.g. pitch-related prosodic features). Vision-based affect recognition studies mainly focus on fa-
cial expression analysis by means of pattern recognition approaches. The best choice for design-
ing automatic recognizers seems to be the combined use of both geometric and appearance fea-
tures. However, an important challenge remains the robustness to arbitrary head movement,
occlusions, and scene complexity. Finally, while the vast majority of the audiovisual-based sys-
tems implement a decision-level fusion strategy and some other studies focus on the feature-level
fusion approach to recognize coarse affective states (e.g., positive, negative, or neutral), the
model-level fusion methods have the advantage of making use of the correlation between audio
and video data streams without the requirement of perfect synchronization of these streams.

http://beagleboard.org
http://www.gumstix.net/Overo

11 The DiY Smart Experiences Project 311

tems, etc.. While the automatic tool Feeltrace (Cowie et al. 2000) was developed
for labelling such emotional expressions, the development of semi-supervised la-
belling methods remains an open issue.

As a first implementation of affect recognition in DiYSE, we chose to use the
EmoVoice suite (Vogt et al. 2008) in combination with a voice recognition algo-
rithms designed by UMons/Multitel. EmoVoice is in fact intended to be used by
non-experts, opening further possibilities for DiY community scenarios where
DiY creators can directly improve the affect recognition for an envisioned applica-
tion purpose.

11.5.5 Multimodal Middleware Protocol

Multimodal approaches combining voice, image, and gesture recognition must
necessarily acquire data from a variety of devices. The dedicated Multimodal
Middleware Protocol (MMP) provides the low level architecture to glue different
device modality components in a single user interface network. MMP’s goal is to
compose this network, abstracting details like underlying network protocols and
the meaning of custom messages, so that all higher layer semantics and logic can
relate to the composite multimodal interface. In the DIYSE concept the level
above the MMP is a powerful context reasoning system, providing context-aware
computing features, gathering information about users and their environment to
adjust the behaviour of applications. Through the natural interfaces provided by
multimodal devices such as the smart companion, context is seamlessly extended
to social expressivity.

MMP interconnects devices and can store their capabilities in a central point,
called a Multimodal Hub (MMH). Once a device modality component connects to
the MMH, the MMH stores the user interfacing capabilities in terms of production
and consumption of human communication events as sent by the component, and
then manages the connections between components based on default or user-
configured rules.

11.5.6 The Ultimate Example: Simple Smart Space Interaction
with Multi-device Interfaces

Beyond the smart companion view, more heterogeneous scenarios are thus ulti-
mately envisioned in DiYSE. Here is an illustrative example:

Peter arrives at home listening to his favourite MP3 music after an average

day of work. The lights in the hallway turn on automatically as he enters and when
he enters the kitchen to start making dinner the music is automatically transferred

312 M. Roelands et al.

to the kitchen audio system so that he can remove his ear plugs and have his
hands free. While preparing the dinner, his wife Katie arrives. She tells him with
enthusiasm about the inspiring events she experiences at a work trip. She touches
the screen in the kitchen with her mobile phone, which contains the pictures she
has taken during her work trip. The screen comes alive and displays an overview
of the pictures taken during the day. The touch screen of her phone simultaneously
changes for use as a touch pad to control the cursor on the screen. She navigates
to the first picture of interest and says ‘Start slide show’. The screen starts to dis-
play the slideshow. When a video patch appears in the middle of the slide show,
Peter’s music fades out and they hear the audio track of the video. When a par-
ticularly beautiful picture comes up, Peter “steals” the picture by touching the
screen with his mobile. The light slightly disturbs their viewing and Peter points at
the light in the kitchen with his mobile and a personalised service view pops up.
He selects a dimmed atmosphere by tapping his mobile a few times…

The implementation of scenarios like this requires the tight cooperation of all

the available devices in the environment. The simultaneous use of interactive fea-
tures of existing devices to operate new services constitutes to the multi-device in-
teraction experience. Next step refinements of the DiYSE architecture will con-
sider these aspects to yet a more complete extent.

11.6 Conclusion - Future Work of the Consortium

In this chapter we have sketched the wide variety of aspects tackled in the ongoing
endeavour of enabling mass creativity in the Internet of Things, as envisioned by
the DiYSE project.

As the main conclusion of the work done in the project until now, it is clear that
a number of infrastructural measures and creation-supporting functions need to be
in place to realise DiY application creation in the Internet of Things.

With enhanced, semantically annotated device drivers potentially auto-
provisioned in a DiYSE Gateway function, a middleware for proper distributed
execution across sensor network nodes, and a service framework that exposes con-
text-awareness enabling functions and composable service building blocks to-
wards the creation environment, a first basis for enabling such DiY application
creation in the Internet of Things has been defined.

In order to realise the ultimate goal of DiY smart spaces, intuitively shapeable
by non-technical actors, further creation-related enablers are still needed, both at
the level of back-end services and tools, as well as support for sharing DiY ex-
periences across large communities.

At the time of writing of this chapter, the consortium is progressing the detailed
work on the DiYSE architecture according to the elements discussed, is imple-
menting first prototypes, and is conducting interaction (co-)design user research,

11 The DiY Smart Experiences Project 313

further fine-tuning towards the full enablement of communities sharing DiY smart
space applications and smart objects.

Acknowledgements

This work is supported by the ITEA2 Eureka cluster, and the respective national funding authori-
ties of the project partners, under the European ITEA2 project 08005, DiY Smart Experiences
(DiYSE), conducted by 40 partners from 7 European countries. Beyond this book chapter, more
information about the project can be found at the project’s public website http://www.dyse.org.

References

Baglioni M, Macedo J, Renso C, Wachowicz M (2008) An Ontology-Based Approach for the
Semantic Modelling and Reasoning on Trajectories. In: Song I-Y et al. (eds) Advances in
Conceptual Modeling – Challenges and Opportunities, Springer, Berlin Heidelberg

Bastida L, Nieto FJ, Tola R (2008) Context-Aware Service Composition: A Methodology and a
Case Study. SDSOA 2008 Worshop, ICSE Conference Proceedings, Leipzig, Alemania

Blum N, Dutkowski S, Magedanz T (2008) InSeRt, SEW, 32nd Annual IEEE Software Engi-
neering Workshop

Cowie R, Douglas-Cowie E, Savvidou S, McMahon E, Sawey M, Schöder M (2000) ‘Feeltrace’:
An Instrument for Recording Perceived Emotion in Real Time. Proc. ISCA Workshop
Speech and Emotion

De Leenheer P, de Moor A, Meersman R (2007) Context Dependency Management in Ontology
Engineering: a Formal Approach. J Data Semant 8:26-56

de Moor A, De Leenheer P, Meersman R (2006) DOGMA-MESS: A meaning evolution support
system for inter-organizational ontology engineering. Proceedings of the 14th International
Conference on Conceptual Structures (ICCS 2006)

Dormer P (1997) The Culture of Craft. Manchester University Press, Manchester, UK
Eid M, Liscano R, El Saddik A (2007) A Universal Ontology for Sensor Networks Data. Proc.

IEEE International Conference on Computational Intelligence for Measurement Systems and
Applications (CIMSA 2007)

ESI (2008) A3.D20. The Approach to Support Dynamic Composition. SeCSE Deliverable
Fernandez M, Gomez-Perez A, Juristo N (1997) Methontology: From Ontological Art towards

Ontological Engineering. Proc. AAAI97 Spring Symposium Series on Ontological Engineer-
ing

GeSI, The Climate Group (2008) SMART 2020: Enabling the low carbon economy in the infor-
mation age. Creative Commons.
http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf. Accessed 25 September
2010

Gruninger M, Fox M (1995) Methodology for the Design and Evaluation of Ontologies. Proc. of
the Workshop on Basic Ontological Issues in Knowledge Sharing

Guinard D, Trifa V, Pham T, Liechti O (2009) Towards Physical Mashups in the Web of Things.
Proceedings of INSS 2009 (IEEE Sixth International Conference on Networked Sensing Sys-
tems), Pittsburgh, USA.
http://www.vs.inf.ethz.ch/publ/papers/guinardSensorMashups09.pdf. Accessed 25 September
2010

IFTF (2008) The Future of Making. http://www.iftf.org/system/files/deliverables/SR-
1154%20TH%202008%20Maker%20Map.pdf. Accessed 25 September 2010

ITU-T (2008) Intelligent transport systems and CLAM. ITU-T Technology Watch Report #1

http://www.dyse.org
http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf
http://www.vs.inf.ethz.ch/publ/papers/guinardSensorMashups09.pdf
http://www.iftf.org/system/files/deliverables/SR-1154%20TH%202008%20Maker%20Map.pdf
http://www.iftf.org/system/files/deliverables/SR-1154%20TH%202008%20Maker%20Map.pdf

314 M. Roelands et al.

Karp P, Chaudri V, Thomere J (1999) XOL: An XML-Based Ontology Exchange Language. SRI
International. http://www.ai.sri.com/pkarp/xol/xol.html. Accessed 25 September 2010

Keinonen T (2007) Immediate, product and remote design. International Association of Societies
of Design and Research, Honkong

Kim J-J, Park JC (2005) Annotation of Gene Products in the Literature with Gene Ontology
Terms Using Syntactic Dependencies. IJCNLP 2004. Lect Notes Comput Sci 3248:787-796

Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-Jaquero V (2005) USIXML: A
Language Supporting Multipath Development of User Interfaces. In: Bastide R, Palanque P,
Roth J (eds) Engineering Human Computer Interaction and Interactive Systems. Springer,
Berlin, Heidelberg

Loiseau Y, Boughanem M, Prade H (2006) Evaluation of Term-based Queries using Possibilistic
Ontologies. In: Herrera-Viedma E, Pasi G, Crestani F (eds) Soft Computing in Web Informa-
tion Retrieval: Models and Applications. Springer

Luke S, Spector L, Rager D, Hendler J (1997) Ontology-based Web Agents. Proc. International
Conference on Autonomous Agents (Agents97)

Machuca M, Lopez M, Marsa Maestre I, Velasco J (2005) A Contextual Ontology to Provide
Location-aware Services and Interfaces in Smart Environments. Proc. IADIS International
Conference on WWW/Internet

Meersman R (2010) Hybrid Ontologies in a Tri-Sortal Internet of Humans, Systems and Enter-
prises. Keynote talk, InterOntology’10 Conference, KEIO Tokyo

Miller E, Manola F (2004) RDF primer: W3C recommendation. World Wide Web Consortium.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. Accessed 25 September 2010

Mogensen K (2004) Creative Man. The Copenhagen Institute for Futures Studies, Denmark
Niles I, Pease A (2001) Towards a Standard Upper Ontology. Proc. 2nd International Conference

on Formal Ontology in Information Systems (FOIS-2001)
Norros L, Salo L (2009) Design of joint systems - a theoretical challenge for cognitive systems

engineering. Cogn Technol Work 11:43-56
Paternò F (1999) Model-based design and evaluation of interactive applications. Springer, Lon-

don
Schilit B, Adams N, Want R (1994) Context-aware computing applications. Proc. IEEE Work-

shop on Mobile Computing Systems and Applications (WMCSA’94)
Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shabolt N, Van de Velde W, Wielenga

B (1999) Knowledge Engineering and Management: The CommonKADS Methodology. MIT
Press

Sennet R (2008) The Craftsman. Yale University Press, New Haven, CT
Shove E, Watson M, Hand M, Ingram J (2007) The Design of Everyday Life. Berg, London, UK
Smith B (2003) Ontology: An Introduction. In: Floridi L (ed) Blackwell Guide to the Philosophy

of Computing and Information. Blackwell
Spyns P, Meersman R, Jarrar M (2002) Data modelling versus Ontology engineering. SIGMOD

Rec 31:12-17
Sterling B (2005) Shaping things. MIT Press, Cambridge, MA
Strang T, Linnhoff-Popien C (2004) A context modeling survey. First International Workshop on

Advanced Context Modelling, Reasoning and Management, Nottingham, England
Studer R, Benjamin R, Fensel D (1998) Knowledge Engineering: Principle and Methods. Data &

Knowl Eng 25:161-197
Sundmaeker H, Guillemin P, Friess P, Woelfflé S (eds) (2010) Vision and Challenges for Realis-

ing the Internet of Things. http://www.internet-of-things-

Tang Y, Zhao G, De Baer P, Meersman R (2010) Towards Freely and Correctly Adjusted
Dijkstra’s Algorithm with Semantic Decision Tables for Ontology Based Data Matching. In:
Mahadevan V, Zhou J (eds) Proc. of the 2nd International Conference on Computer and
Automation Engineering “ICCAE 2010”. IEEE, Suntec city, Singapore

CERP-IoT.
research.eu/pdf/IoT_Clusterbook_March_2010.pdf. Accessed 25 September 2010

http://www.ai.sri.com/pkarp/xol/xol.html
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf

11 The DiY Smart Experiences Project 315

Uschold M, King M (1995) Towards a methodology for building ontologies. Proc. of the Work-
shop on Basic Ontological Issues in Knowledge Sharing

van Harmelenand F, McGuinness D (2004) OWL web ontology language overview: W3C rec-

Vogt T, André E, Bee N (2008) EmoVoice – A Framework for Online Recognition of Emotions
from Voice. Proc. Workshop on Perception and Interactive Technologies for Speech-Based
Systems

Von Hippel E (2005) Democratizing Innovation. MIT Press, Cambridge, MA
Zeng Z, Pantic M, Roisman GI, Huang TS (2009) A Survey of Affect Recognition Methods: Au-

dio, Visual, and Spontaneous Expressions. IEEE Trans Pattern Anal Mach Intell 31:39-58

ommendation. World Wide Web Consortium. http://www.w3.org/TR/2004/REC-owl-
features-20040210/. Accessed 25 September 2010

http://www.w3.org/TR/2004/REC-owl-features-20040210/.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

	11 The DiY Smart Experiences Project
	11.1 Drivers, Motives and Persona in the DiY Society
	11.1.1 Evolution of DiY
	11.1.1.1 The Past
	11.1.1.2 The Possible Future

	11.1.2 Why Do People Build Things Themselves?
	11.1.3 People Motivation as Driver
	11.1.4 People Logics, Distinguishing Motivation Levels
	11.1.5 Eco-awareness, an Example Application Theme in DiYSE
	11.1.5.1 Energy Consumption in a DiY Internet of Things
	11.1.5.2 DiY Engagement in Eco-aware Applications
	11.1.5.3 Requirements for Enabling DiY in Eco-awareness Applications
	11.1.5.4 Technologies and Standards Relevant for DiY Eco-awareness

	11.2 Sensor-actuator Technologies and Middleware as a Basis for a DiY Service Creation Framework
	11.2.1 Device Integration
	11.2.1.1 A first Level of Abstraction Addressing Device Heterogeneity
	11.2.1.2 Achieving Device Data Connectivity for Resource-constrained Devices
	11.2.1.3 From Hardware to Device Description

	11.2.2 Middleware Technologies Needed for a DiY Internet of Things

	11.3 Semantic Interoperability as a Requirement for DiY Creation
	11.3.1 Ontology
	11.3.2 Ontology Engineering Methodologies
	11.3.3 Application of Ontology Engineering in the Internet of Things
	11.3.3.1 Knowledge Integration and Sharing
	11.3.3.2 Ontology-based Search
	11.3.3.3 Context-aware Computing

	11.4 The DiYSE Service Framework
	11.4.1 Contextualisation Layer
	11.4.2 Service Composition and Exposition Layer
	11.4.3 Execution Layer
	11.4.4 DiYSE Application Creation and Deployment

	11.5 Interactions, Using and Creating in Smart Spaces
	11.5.1 Service Interaction and Environment Configuration
	11.5.2 Ecological Design Approach
	11.5.3 Architectural Support and Modelling for Interaction
	11.5.4 Example Personalised Interaction Method: Smart Companion Devices
	11.5.4.1 Multimodal Mood Detection in Smart Companions
	11.5.4.2 Embedded Systems for Autonomous Smart Companions
	11.5.4.3 Affect Recognition in DiYSE

	11.5.5 Multimodal Middleware Protocol
	11.5.6 The Ultimate Example: Simple Smart Space Interaction with Multi-device Interfaces

	11.6 Conclusion - Future Work of the Consortium
	Acknowledgements
	References

