
Attribute-Based Signatures�

Hemanta K. Maji1, Manoj Prabhakaran1, and Mike Rosulek2

1 Department of Computer Science, University of Illinois, Urbana-Champaign
{hmaji2,mmp}@uiuc.edu

2 Department of Computer Science, University of Montana
mikero@cs.umt.edu

Abstract. We introduce Attribute-Based Signatures (ABS), a versatile primitive
that allows a party to sign a message with fine-grained control over identifying
information. In ABS, a signer, who possesses a set of attributes from the authority,
can sign a message with a predicate that is satisfied by his attributes. The signature
reveals no more than the fact that a single user with some set of attributes
satisfying the predicate has attested to the message. In particular, the signature
hides the attributes used to satisfy the predicate and any identifying information
about the signer (that could link multiple signatures as being from the same
signer). Furthermore, users cannot collude to pool their attributes together.

We give a general framework for constructing ABS schemes, and then show
several practical instantiations based on groups with bilinear pairing operations,
under standard assumptions. Further, we give a construction which is secure
even against a malicious attribute authority, but the security for this scheme is
proven in the generic group model. We describe several practical problems that
motivated this work, and how ABS can be used to solve them. Also, we show how
our techniques allow us to extend Groth-Sahai NIZK proofs to be simulation-
extractable and identity-based with low overhead.

1 Introduction

Alice, a finance manager in a big corporation, while going through her company’s
financial records, has learned about a major international scandal. She decides to send
these records to a major newspaper, retaining her anonymity, but with a proof that she
indeed has access to the records in question. It turns out that several people, due to
a combination of reasons, may have access to these records: those in the New York,
London or Tokyo office who are either finance managers associated with project Skam,
or internal auditors. Alice considers using a ring signature [26] to endorse her message
anonymously, but realizes that it is infeasible not only because of the large number of
people involved, but also because she does not know who these people are. She realizes
she cannot use a group signature [14] either, because the set of people Alice needs to
refer to here is idiosyncratic to her purposes, and may not have been already collected
into a group.1 She is also aware of mesh signatures [9], but mesh signatures provide

� Partially supported by NSF grants CNS 07-16626 and CNS 07-47027.
1 Even if a group exists, the group manager could identify Alice as the informant.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 376–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Attribute-Based Signatures 377

no way to convince the newspaper that the financial record was endorsed by a single
person, not, say, a programmer in the New York office colluding with an internal auditor
in the Smalltown office.

Alice’s needs in this story reflect the challenges in a system where the roles of
the users depend on the combination of attributes they possess. In such systems,
users obtain multiple attributes from one or more attribute authorities, and a user’s
capabilities in the system (e.g., sending or receiving messages, access to a resource)
depend on their attributes. While offering several advantages, attribute-based systems
also present fundamental cryptographic challenges. For instance, suppose Alice wants
to simply send a message to the above group of people using an “attribute-based
messaging” system; then to provide end-to-end secure communication, it must be
possible for her to encrypt a message using attribute-keys (rather than individual users’
keys). Recently cryptographic tools have emerged to tackle some of these challenges
for encryption [27,16,3,31]. In this work, we provide a solution for authentication,
which among other things, will let Alice in the above example leak the financial records
anonymously, but with the appropriate claim regarding her credentials.

Why Attribute-Based Signatures?

The kind of authentication required in an attribute-based system differs from that of-
fered by digital signatures, in much the same way public-key encryption does not fit
the bill for attribute-based encryption. An attribute-based solution requires a richer se-
mantics, including anonymity requirements, similar to signature variants like group sig-
natures [14], ring signatures [26], and mesh signatures [9]. The common theme in all
these signature primitives is that they provide a guarantees of unforgeability and signer
anonymity. A valid signature can only be generated in particular ways, but the signature
does not reveal any further information about which of those ways was actually used to
generate it.

More specifically, group and ring signatures reveal only the fact that a message was
endorsed by one of a list of possible signers. In a ring signature, the list is public, chosen
by the signer ad hoc, and given explicitly. In a group signature, the group must be
prepared in advance by a group manager, who can revoke the anonymity of any signer.
In mesh signatures, a valid signature describes an access structure and a list of pairs
(mi, vki), where each vki is the verification key of a standard signature scheme. A
valid mesh signature can only be generated by someone in posession of enough standard
signatures σi, each valid under vki, to satisfy the given access structure.

In this work we introduce attribute-based signatures (ABS). Signatures in an ABS
scheme describe a message and a predicate over the universe of attributes. A valid ABS
signature attests to the fact that “a single user, whose attributes satisfy the predicate,
endorsed the message.” We emphasize the word “single” in this informal security
guarantee; ABS signatures, as in most attribute-based systems, require that colluding
parties not be able to pool their attributes together.2 Furthermore, attribute signatures do

2 Note that for attribute-based encryption, if collusion is allowed there are fairly easy solutions;
but for ABS, even after allowing collusion (for instance by considering all users to have the
same identity while generating keys), the residual primitive is essentially a mesh signature,
which is already a non-trivial cryptographic problem.

378 H.K. Maji, M. Prabhakaran, and M. Rosulek

not reveal more than the claim being made regarding the attributes, even in the presence
of other signatures.

Ring and group signatures are then comparable to special cases of ABS, in which the
only allowed predicates are disjunctions over the universe of attributes (identities). Only
one attribute is required to satisfy a disjunctive predicate, so in these cases collusion
is not a concern. As in ring signatures, ABS signatures use ad hoc predicates. Mesh
signatures allow more fine-grained predicates, but do not provide hiding of signature
data that would be needed in an ABS scheme. A straight-forward application of mesh
signatures as an ABS scheme would either allow collusion (as in the previous example,
a New York programmer colluding with a Smalltown auditor to satisfy the “New York
auditor” predicate) or allow signatures to be associated with a pseudonym of the signer
(thus linking several signatures as originating from the same signer).

Applications

Attribute-based signatures have natural applications in many systems where users’ ca-
pabilities depend on possibly complex combinations of attributes. ABS is a natural
choice for simple authentication in such systems. One of our motivations for develop-
ing such schemes comes from the authentication requirements in an Attribute-Based
Messaging (ABM) system. In addition to the “leaking secrets” application described
above, in Section 6 we also identify applications in trust negotiation systems.

Overview of Our Results

We introduce the concept of Attribute-Based Signatures (ABS) as a powerful primi-
tive with several applications and several efficient instantiations. Our main technical
contributions in this work are the following:

– A formal security definition for ABS, that includes the guarantees of unforgeabil-
ity (even in the presence of collusion) and privacy for the signer.

– A general framework for constructing ABS schemes. Our framework consists of a
“credential bundle” representing the attributes associated with a single user and a non-
interactive proof of credential ownership that can be bound to a message. The credential
bundle must have the property that multiple users should not be able to collude and
combine their credentials. The proof system must have some zero-knowledge-like
guarantee so that the signature does not leak information about the signer’s identity
or attributes.

We instantiate this framework using Boneh-Boyen [6] or Waters [30] signatures
as the credential bundle, and Groth-Sahai NIZK proofs [18] as the efficient non-
interactive proof system. These instantiations provide practical ABS schemes secure
under standard assumptions in bilinear groups.

– We present a practical ABS scheme suitable for high throughput systems. This
construction deviates from our framework of credential bundles and proof of creden-
tial ownership. In this scheme we do employ a credential bundle scheme (same as
the one in the last item above), but use a novel randomization technique to blind the
actual attributes. This gives the best efficiency among our schemes. Further, this scheme

Attribute-Based Signatures 379

remains secure even against a corrupt attribute-authority. However, the security of this
scheme is proven in the heuristic generic-group model (augmented to handle groups
with bilinear pairings).

– One of the most striking features of our construction is that it is very easily
amenable to natural multi-authority settings. We describe practical considerations re-
lated to such a deployment.

– In the full version we show how our techniques of incorporating digital signatures
and non-interactive proofs can be used to add simulation-extractability to the Groth-
Sahai proof system, several orders of magnitude more efficiently than the only other
comparable scheme, constucted by Groth in [17].
Which among the above schemes will suit an application will depend on the specific
efficiency and security requirements in the system. In all these schemes, the privacy
is unconditional, and it is only the unforgeability that depends on computational
assumptions. Within a large enterprise setting (with pre-authenticated users) where the
threat of forgery may be limited but the volume of signatures may be large, the final
scheme may be the most suited. In more susceptible systems with a high security
requirement, one of the schemes based on the Groth-Sahai proof systems maybe
more suitable (at the expense of efficiency). The choice also depends on whether the
application demands high-volume real-time performance (as in a messaging system) or
involves only offline signing and verification (as in leaking a secret).

All of our instantiations depend on expressing the attribute predicate as a monotone-
span program, which is the state of the art for attribute-based cryptography [16,3,31].
We remark that unlike in many constructions of attribute-based encryption schemes, we
achieve “full security” in all our constructions. That is, we do not weaken the definition
in the manner of “selective-ID” security. Nor do we need to limit our construction to a
small universe of attributes. In all our instantiations, attributes can be arbitrary strings:
given a collision-resistant hash function, an a priori unbounded attribute universe can
be used.

Further Related Work

Groups with bilinear pairings have been used to construct identity-based (e.g., [8]) and
attribute-based encryption schemes [27,16,3]. Non-interactive zero-knowledge proofs
(including identity-based proofs) have previously been used in the context of efficient
constructions of signature primitives [1,20,10,17].

Khader [22,21] proposes a notion called attribute-based group signatures. This
primitive hides only the identity of the signer, but reveals which attributes the signer
used to satisfy the predicate. It also allows a group manager to identify the signer of
any signature (which is similar to the semantics of group signatures [14]); in contrast
we require signer privacy to hold against everyone, including all authorities.

Subsequent to a preliminary (unpublished) version of this work, Li and Kim [24]
gave an ABS scheme that supports predicates which are solely conjunctions of at-
tributes (hence privacy is required only for the identity of the signer and not for the
attributes used in satisfying the predicate), and is restricted to a “selective” unforge-
ability definition. Guo and Zeng [19] construct an attribute-based signature scheme,

380 H.K. Maji, M. Prabhakaran, and M. Rosulek

although their definition of security did not include any privacy for the signer. Shahan-
dashti and Safavi-Naini [28] and Li et al. [23] construct efficient ABS schemes that
support predicates consisting of a single threshold gate.

Binding a non-interactive proof to a message, as we do, is also a feature of identity-
based proofs [20], in which every proof is bound to some identity, and proofs under
one identity cannot be used to forge any proofs under a different identity. Indeed,
such ID-based proofs have been used to construct signature-like primitives; however
the construction from [20] does not have all the properties we need.

Anonymous credentials [13] is one primitive that has some parallels with ABS, but
with goals that differ from ABS in several important ways. ABS could be considered
as providing some of the functionality of AC as a very special case, but with a weaker
anonymity guarantee. Conversely, some of the techniques used to construct efficient AC
systems bear some resemblance to some of our efficient ABS constructions. In the full
version we discuss these similarities and differences in more detail.

Another related primitive (but much simpler than ABS) is identity-based signatures
(IBS) [29]. It is well-known that a simple scheme using traditional certificates realizes
IBS, but dedicated schemes aimed at achieving better efficiency have been widely
studied. We refer the reader to a comprehensive survey by Bellare et al. [2] for details.

Supporting multiple attribute-authorities is crucial to many attribute-based systems.
Previously, there has been much interest on this aspect for attribute-based encryption
schemes; see Chase et al. [11,12]. The constructions in this paper readily generalize to
the multi-authority setting.

2 Preliminaries

2.1 Groups with Bilinear Pairings

Let G,H,GT be cyclic (multiplicative) groups of order p, where p is a prime. Let g be a
generator of G, and h be a generator of H. Then e : G×H→ GT is a bilinear pairing
if e(g, h) is a generator of GT , and e(ga, hb) = e(g, h)ab for all a, b. We review several
standard cryptographic assumptions in such groups:

Definition 1 (q-SDH assumption [6]). Let G, H, and GT be as above. The q-
Strong Diffie-Hellman (q-SDH) assumption holds in (G,H) if, given the elements
(g, gx, gx2

, . . . , gxq

, h, hx) ∈ Gq+1 × H2, for random choice of x ← Zp and ran-
dom generators g ∈ G, h ∈ H, it is computationally infeasible to compute any pair of
the form

(
c, g

1
x+c

) ∈ Zp ×G.

Definition 2 (SXDH assumption [18]). Let G, H, and GT be as above. The Symmetric
External Diffie-Hellman (SXDH) assumption holds in (G,H) if the standard Decisional
Diffie-Hellman (DDH) assumption holds simultaneously in G and H.

Definition 3 (DLIN assumption [7]). Let G, H, and GT be as above, but with
G = H. The Decision-Linear (DLIN) assumption holds in G if, given the elements
(gx, gy, grx, gsy, gt) ∈ G5, for a random choice of x, y, r, s ← Zp, it is computation-
ally infeasible to determine whether t = r + s or t is random in Zp.

Attribute-Based Signatures 381

2.2 Monotone Span Programs

Let Υ : {0, 1}n → {0, 1} be a monotone boolean function. A monotone span program
for Υ over a field F is an �×tmatrix M with entries in F, along with a labeling function
a : [�] → [n] that associates each row of M with an input variable of Υ , that, for every
(x1, . . . , xn) ∈ {0, 1}n, satisfies the following:

Υ (x1, . . . , xn) = 1 ⇐⇒ ∃v ∈ F
1×� :vM = [1, 0, 0, . . . , 0]

and (∀i : xa(i) = 0⇒ vi = 0)

In other words, Υ (x1, . . . , xn) = 1 if and only if the rows of M indexed by {i |xa(i) =
1} span the vector [1, 0, 0, . . . , 0].

We call � the length and t the width of the span program, and � + t the size
of the span program. Every monotone boolean function can be represented by some
monotone span program, and a large class do have compact monotone span programs.
In particular, given a circuit expressed using threshold gates, with the i-th gate being
an

(
�i

ti

)
threshold gate, it is easy to recursively construct a monotone span program with

length
∑

i(�i − 1) + 1 and width
∑

i(ti − 1) + 1.

2.3 Non-interactive Proofs

We refer the reader to [18] for detailed definitions of non-interactive witness-
indistinguishable (NIWI) proofs, but give a brief overview of the necessary definitions
here. A NIWI scheme is comprised of the following main algorithms:

– NIWI.Setup: Outputs a reference string crs.
– NIWI.Prove: On input (crs;Φ;x), where Φ is a boolean formula and Φ(x) = 1,

outputs a proof π.
– NIWI.Verify: On input (crs;Φ;π), outputs a boolean.

The completeness requirement is that NIWI.Verify(crs;Φ; NIWI.Prove(crs;Φ;x)) =
1, if Φ(x) = 1 (i.e., x is a witness for Φ). The (perfect) witness indistin-
guishability requirement is that the distributions NIWI.Prove(crs;Φ;x1) and
NIWI.Prove(crs;Φ;x2) are identical when x1 and x2 are witnesses for Φ. For
the soundness/proof of knowledge requirement, we require the following additional
algorithms:

– NIWI.SimSetup: Outputs a simulated reference string crs and trapdoor ψ.
– NIWI.Extract: On input (crs, ψ;Φ;π), outputs a witness x.

We require that the crs output by NIWI.SimSetup is indistinguishable to that of
NIWI.Setup. Further, we require that for every (crs, ψ) ← NIWI.SimSetup, if
NIWI.Verify(crs;Φ;π) = 1 then NIWI.Extract(crs, ψ;Φ;π) outputs a valid witness
for Φ, with overwhelming probability.

3 Attribute-Based Signatures: Definitions and Security

Let A be the universe of possible attributes. A claim-predicate over A is a monotone
boolean function, whose inputs are associated with attributes of A. We say that an
attribute set A ⊆ A satisfies a claim-predicate Υ if Υ (A) = 1 (where an input is
set to be true if its corresponding attribute is present in A).

382 H.K. Maji, M. Prabhakaran, and M. Rosulek

Definition 4 (ABS). An Attribute-Based Signature (ABS) scheme is parameterized by
a universe of possible attributes A and message space M, and consists of the following
four algorithms.

– ABS.TSetup (to be run by a signature trustee: Generates public reference infor-
mation TPK .

– ABS.ASetup (to be run by an attribute-issuing authority): generates a key pair
APK,ASK ← ABS.ASetup.

– ABS.AttrGen: On input (ASK,A ⊆ A), outputs a signing key SKA.3

– ABS.Sign: On input (PK = (TPK,APK), SKA,m ∈ M, Υ), where Υ (A) =
1, outputs a signature σ.

– ABS.Ver: On input (PK = (TPK,APK),m, Υ, σ), outputs a boolean value.

Definition 5 (Correctness). We call an ABS scheme correct if for all TPK ←
ABS.TSetup, all purported APK , all messages m, all attribute sets A, all signing
keys SKA ← ABS.AttrGen(ASK,A), all claim-predicates Υ such that Υ (A) = 1,
and all signatures σ ← ABS.Sign

(
PK = (TPK,APK), SKA,m, Υ

)
, we have

ABS.Ver(PK = (TPK,APK),m, Υ, σ) = 1.

We present two formal definitions that together capture our desired notions of security.
Slightly weaker security requirements may also be useful for most applications, but we
use the stronger ones because our constructions satisfy them and because they are much
easier to work with.

For simplicity, we only present definitions for the simpler case of a single attribute-
issuing authority. The definitions for multiple authorities are analogous, and we discuss
this case in Section 5.

Definition 6 (Perfect Privacy). An ABS scheme is perfectly private if, for all honestly
generated TPK ← ABS.TSetup, all purported APK , all attribute sets A1,A2, all
SK1 ← ABS.AttrGen(ASK,A1), SK2 ← ABS.AttrGen(ASK,A2), all messages
m, and all claim-predicates Υ such that Υ (A1) = Υ (A2) = 1, the distributions
ABS.Sign(PK,SK1,m, Υ) and ABS.Sign(PK,SK2,m, Υ) are equal.

In other words, the signer’s privacy relies only on the signature trustee, and not the
attribute-issuing authority. Even a malicious and computationally unbounded attribute-
issuing authority cannot link a signature to a set of attributes or the signing key used to
generate it.

We slightly overload notation and write ABS.Sign(ASK,m, Υ) (i.e., with the
attribute authority’s private keyASK instead of PK and SKA) to denote the following
procedure: first, run SKA ← ABS.AttrGen(ASK,A) for any arbitrary A satisfying
Υ ; then output the result of ABS.Sign(PK,SKA,m, Υ). For convenience in the
experiment below we use ABS.Sign(ASK, ·, ·) to generate signatures requested by
the adversary. This is reasonable when the scheme satisfies perfect privacy, since any
other way of letting the adversary obtain signatures will result in the same distribution.

3 For simplicity, we treat the signing key as a monolithic quantity. However, in our construction
the signing key consists of separate components for each attribute in A, and the ABS.Sign
algorithm needs only as much of SKA as is relevant to the claim-predicate.

Attribute-Based Signatures 383

Definition 7 (Unforgeability). An ABS scheme is unforgeable if the success probability
of any polynomial-time adversary in the following experiment is negligible:

1. Run TPK ← ABS.TSetup and (APK,ASK) ← ABS.ASetup. Give PK =
(TPK,APK) to the adversary.

2. The adversary is given access to two oracles: ABS.AttrGen(ASK, ·) and
ABS.Sign(ASK, ·, ·).

3. At the end the adversary outputs (m∗, Υ ∗, σ∗).

We say the adversary succeeds if (m∗, Υ ∗) was never queried to the ABS.Sign oracle,
and ABS.Ver(PK,m∗, Υ ∗, σ∗) = 1, and Υ ∗(A) = 0 for all A queried to the
ABS.AttrGen oracle.

Thus any signature which could not have been legitimately made by a single one of
the adversary’s signing keys is considered a forgery. Note that we do not consider it
a forgery if the adversary can produce a different signature on (m,Υ) than the one he
received from the signing oracle.

4 Constructing ABS Schemes

4.1 Credential Bundles

We introduce a new generic primitive called credential bundles, which we use in our
ABS constructions. Credential bundles model the intuitive requirements of publicly
verifiable attributes that resist collusion.

Definition 8 (Credential bundle scheme). A credential bundle scheme is parameter-
ized by a message space M, and consists of the following three algorithms.

– CB.Setup: Outputs a verification key vk and a secret key sk.
– CB.Gen: On input (sk, {m1, . . . ,mn} ⊆ M), outputs a tag τ and values
σ1, . . . , σn.

– CB.Ver: On input (vk,m, (τ, σ)), outputs a boolean value.

The scheme is correct if, for all (τ, σ1, . . . , σn)← CB.Gen(sk,m1, . . . ,mn), we have
CB.Ver(vk,mi, (τ, σi)) = 1 for all i.

Clearly by excluding some of the σi’s from an existing bundle, one can generate a
new bundle on a subset of attributes. Our main security definition requires that taking a
subset of a single bundle is the only way to obtain a new bundle from existing bundles;
in particular, attributes from several bundles cannot be combined.

Definition 9. A credential bundle scheme is secure if the success probability of any
polynomial-time adversary in the following experiment is negligible:

1. Run (vk, sk)← CB.Setup, and give vk to the adversary.
2. The adversary is given access to an oracle CB.Gen(sk, ·).
3. At the end the adversary outputs (τ∗, (m∗

1, σ
∗
1), . . . , (m∗

n, σ
∗
n)).

We say the adversary succeeds if CB.Ver(vk,m∗
i , (τ

∗, σ∗
i)) = 1 for all i ≤ n, and if no

superset of {m∗
1, . . . ,m

∗
n} was ever queried (in a single query) to the CB.Gen oracle.

384 H.K. Maji, M. Prabhakaran, and M. Rosulek

From any plain digital signature scheme we can easily construct a credential bundle
scheme in which the bundle is a collection of signatures of messages “τ‖mi”, where
each mi is the name of an attribute and τ is an identifier that is unique to each user
(e.g., an email address). Conversely, when a credential bundle scheme is restricted
to singleton sets of messages, its unforgeability definition is equivalent to normal
digital signature unforgeability. Despite this equivalence under black-box reductions,
the syntax of credential bundles more closely models our desired semantics for ABS.

4.2 A Framework for ABS

Our generic ABS construction for the case of a single attribute authority is given in
Figure 1. The construction generalizes easily to the multiple attribute authority case
(Section 5). At a high level, to sign a message m with claim-predicate Υ , the signer
proves that she possesses either a credential bundle containing either sufficient attributes
to satisfy Υ , or a “pseudo-attribute” identified with the pair (m,Υ). Only the signature
trustee is capable of generating bundles involving pseudo-attributes (these are verified
against the trustee’s verification key tvk), but it never does so. Thus the proof is
convincing that the signer satisfied Υ . However, in the security reduction, the pseudo-
attribute provides a mechanism to bind the NIWI proof to a message and give simulated
signatures. In the full version we prove the following:

Let A be the desired universe of ABS attributes. Let A
′ denote a space of pseudo-attributes,

where A∩A
′ = ∅. For every message m and claim-predicate Υ we associate a psuedo-attribute

am,Υ ∈ A
′. Let CB be a secure credential bundle scheme, with message space A ∪ A

′, and let
NIWI be a perfect NIWI proof of knowledge scheme. Our ABS construction is as follows:

ABS.TSetup: The signature trustee runs crs ← NIWI.Setup as well as (tvk, tsk) ←
CB.Setup and publishes TPK = (crs, tvk).

ABS.ASetup: The attribute-issuing authority runs (avk, ask) ← CB.Setup and publishes
APK = avk and sets ASK = ask.

ABS.AttrGen(ASK,A): Ensure that A contains no pseudo-attributes. Then output the result
of CB.Gen(ask,A).

ABS.Sign(PK, SKA, m, Υ): Assume that Υ (A) = 1. Parse SKA as (τ, {σa | a ∈ A}). Υ

is a formula over formal variables A. Define Υ̃ := Υ ∨ am,Υ , where am,Υ ∈ A
′ is the

pseudo-attribute associated with (m, Υ). Thus, we still have Υ̃ (A) = 1. Let {a1, . . . , an}
denote the attributes appearing in Υ̃ . Let vki be avk if attribute ai is a pseudo-attribute,
and tvk otherwise. Finally, let Φ[vk, m,Υ] denote the following boolean expression:

∃ τ, σ1, . . . , σn : Υ̃
({

ai

∣
∣ CB.Ver

(
vki, ai, (τ, σi)

)
= 1

})
= 1 (1)

For each i, set σ̂i = σai from SKA if it is present, and to any arbi-
trary value otherwise (since then its value does not matter). Compute π ←
NIWI.Prove

(
crs; Φ[vk, m, Υ]; (τ, σ̂1, . . . , σ̂n)

)
. Output π as the ABS signature.

ABS.Ver(PK, m, Υ, π): Output the result of NIWI.Verify(crs; Φ[vk, m, Υ]; π).

Fig. 1. General framework for an ABS scheme

Attribute-Based Signatures 385

Theorem 1. Given a NIWI argument of knowledge scheme and any secure credential
bundle scheme (equivalently, any digital signature scheme), the construction in Figure 1
is a secure ABS scheme. Further, if the NIWI argument is perfectly hiding, the ABS
scheme is perfectly private.

4.3 Practical Instantiation 1

Our first practical instantiation uses Groth-Sahai proofs [18] as the NIWI component
and Boneh-Boyen signatures [5] as the credential bundle component. One notable
feature of this choice is that attributes in the scheme are simply Boneh-Boyen signatures
on messages of the form “userid‖attr”.

This instantiation requires cyclic groups of prime order equipped with bilinear
pairings (Section 2.1). The Groth-Sahai system can prove satisfiability of pairing-
product equations in such groups, and the main challenge in this instantiation is
expressing the logic of the claim-predicate and the Boneh-Boyen signature verification
in this limited vocabulary. We identify Z

∗
p with the universe of attributes, where p is the

size of the cyclic group used in the scheme.4

Boneh-Boyen signatures. We briefly review the Boneh-Boyen digital signature
scheme [6]. As before, we suppose there is a bilinear pairing e : G × H→ GT , where
G and H have prime order p, and where g is a generator of G, and h is a generator of
H. The scheme, described below, is strongly unforgeable under the q-SDH assumpion
(Definition 1).

DS.KeyGen: Choose random b, c, d ← Zp and compute B = gb, C = gc, D = gd.
The verification key is (B,C,D) ∈ G3, and the signing key is (b, c, d) ∈ (Zp)3.

DS.Sign(sk,m ∈ Zp): Choose random r ← Zp; output σ =
(
h1/(b+cm+dr), t

)
∈

H× Zp.
DS.Ver(vk,m, σ = (S, r)): Output 1 if e(BCmDr, S) = e(g, h), and 0 otherwise.

Expressing the Non-Interactive Proof using Pairing Equations. We use the notation
introduced in Figure 1. We must show how the statement Φ[vk,m, Υ] (equation 1)
can be efficiently encoded in the Groth-Sahai system when the credential bundles use
Boneh-Boyen signatures.

Groth-Sahai proofs work by first giving a commitment to the values of the witness,
and then proving that the commited values satisfy given pairing equations. Suppose we
commit to a group elementZ (where the group G or H will be clear from context), then
we will let 〈Z〉 denote the formal variable corresponding to that commitment. Thus, we
express the statements to be proven as pairing equations whose formal variables we will
write in the 〈Z〉 notation.

4 More precisely A ∪ A
′ ⊆ Z

∗
p where A

′ is the universe of pseudo-attributes. As is standard,
the universe of (pseudo-)attributes can be extended to {0, 1}∗ by applying a collision-resistant
hash with range Z

∗
p.

386 H.K. Maji, M. Prabhakaran, and M. Rosulek

Suppose the modified predicate Υ̃ has a canonical monotone span program M of
size � × t, where the ith row corresponds to the a(i)-th attribute mentioned in Υ̃ . To
establish Φ[vk,m, Υ], we prove the following equation, which implies it:

∃ τ, σ1, . . . , σn, v1, . . . , vn : vM = [1, 0, . . . , 0]

∧
�∧

i=1

[
vi �= 0⇒ CB.Ver(vk, aa(i), (τ, σa(i))) = 1

]

Then, in addition to τ, {σi}, we will have the signer commit to the vector v which can
be canonically computed from his satisfying assignment of Υ̃ .

This new boolean expression is a conjunction of two kinds of clauses: The first has
the form ∃v : vM = [1, . . . , 0]. To prove it, we commit to the values gvi and prove the
following pairing equations (for each j ∈ [t]):

�∏

i=1

e(〈gvi〉 , hMi,j) =

{
e(g, h) if j = 1
e(g0, h) otherwise

The other clauses have the form ∃ τ, σ, v :
[
v �= 0 ⇒ CB.Ver(vk,m, (τ, σ)) = 1

]
.

When we use Boneh-Boyen signatures as the instantiation of credential bundles, these
clauses can be simplified to

∃ τ, σ, v :
[
v �= 0⇒ DS.Ver(vk, τ‖m,σ) = 1

]

where DS.Ver is the Boneh-Boyen signature verification.
It is crucial that the proof is a proof of knowledge, so the simulator can extract

the credential bundles. Thus we commit to τ and r bitwise, since they are elements
of Zpand could not otherwise be efficiently extracted in the Groth-Sahai scheme. In
this way, the extractor can extract the bits and reconstruct the entire witness τ and
r.5 Let (τ, σ = (S, r), v) be a witness to the above expression. Express τ bitwise as
τ =

∑
i τi2

i. Then τ‖m may be identified with a number m2|τ | +
∑

i τi2
i. Similarly,

interperet r bitwise as r =
∑

i ri2
i.

Using the same notation as before, we can prove satisfiability of the clause as follows.
We commit to each ri and τi in both groups, as gri, hri , gτi , hτi , and then prove that
each is indeed a single bit, using the following pairing equations for all i:

e(〈gri〉 , h) = e(g, 〈hri〉); e(〈gτi〉 , h) = e(g, 〈hτi〉);
e(〈gri〉 , 〈hri〉) = e(〈gri〉 , h); e(〈gτi〉 , 〈hτi〉) = e(〈gτi〉 , h).

Next, observe that the pairing equation e(BCτ‖mDr, Sv) = e(gv, h) is logically
equivalent to the expression v �= 0 ⇒ DS.Ver(vk, τ‖m, (S, r)) = 1, which we
need to prove. However, the prover cannot directly compute BCτ‖mDr or Sv given

5 We remark that the proof need not be a proof of knowledge with respect to v, so it was safe to
use these values directly in Zp.

Attribute-Based Signatures 387

the committed values. Thus the prover commits to some additional intermediate values
Sv ∈ H and Cτ , Dr ∈ G, and proves the following equations:

e(〈Dr〉 , h) =
∏

i e(D
2i

, 〈hri〉); e(〈gv〉 , 〈S〉) = e(g, 〈Sv〉);
e(〈Cτ 〉 , h) =

∏
i e(C

2i

, 〈hτi〉);
e(〈gv〉 , h) = e(BC2|τ|m, 〈Sv〉) e(〈Cτ 〉 , 〈Sv〉) e(〈Dr〉 , 〈Sv〉).

Note that since m and |τ | are public, all the coefficients in these equations can be
publicly computed. This completes the description of how we encode the required logic
into the Groth-Sahai proof system.

There are two instantiations of the Groth-Sahai proof system over prime order
groups, based on the DLIN and SXDH assumptions, both of which are suitable for
our purposes. Using these we obtain the following (a more detailed analysis of the
efficiency is given in the full version).

Theorem 2. Under the q-SDH and either DLIN or SXDH assumptions, there is an
ABS scheme supporting claim-predicates represented as monotone span programs, with
signatures consisting ofO(ks) group elements, where s is the size of the monotone span
program.

4.4 Practical Instantiation 2

We can also instantiate our framework using the same approach as above, but with
the signature scheme of Waters [30]. Signatures in Waters’ scheme do not include any
elements of Zp. This fact allows us to avoid the inefficiency of committing to many
components of the Boneh-Boyen signatures in a bitwise fashion. Furthermore, Waters
signatures are secure under the much weaker BDH assumption, which is implied by the
assumptions required for Groth-Sahai proofs. Thus this instantiation does not require
the additional q-SDH assumption. However, as a tradeoff, the Waters instantiation
requires larger public parameters: a linear (in the security parameter) number of group
elements, not the constant number of group elements needed by the Boneh-Boyen
instantiation.

The details of this instantiation follow a similar approach as the previous one,
incorporating the verification equation of the Waters signature. We refer the reader to
the full version for the complete details.

Theorem 3. Under either the DLIN or SXDH assumptions, there is an ABS scheme
supporting claim-predicates represented as monotone span programs, with signatures
consisting of O(k + s) group elements, where s is the size of the monotone span
program.

4.5 Practical Instantiation 3

We now present an ABS scheme which is our most practical. Signatures in the scheme
consist of exactly s + 2 group elements, where s is the size of the claim-predicate’s
monotone span program. This scheme does not use the Groth-Sahai proof system; we

388 H.K. Maji, M. Prabhakaran, and M. Rosulek

use our own randomization techniques to blind the attributes that are used in signing.
One additional advantage of avoiding a NIZK proof system is that the privacy of the
signers is provided even against a malicious signature trustee; in contrast the above
NIZK-based constructions rely on the signature trustee to set up a common reference
string honestly.

Our approach is motivated by the construction of mesh signatures [9], but incorpo-
rates the efficient credential bundles of the previous construction, as well as the concept
of “pseudo-attributes” to bind a message to the signature. In the full version we give a
high-level motivation of the details of this scheme. Below we give a description of the
construction:

This construction supports all claim-predicates whose monotone span programs have
width at most tmax, where tmax is an arbitrary parameter. We treat A = Z∗

p as the
universe of attributes, where p is the size of the cyclic group used in the scheme.6

ABS.TSetup: Choose suitable cyclic groupsG andH of prime order p, equipped with
a bilinear pairing e : G × H → GT . Choose a collision-resistant hash function
H : {0, 1}∗ → Z∗

p. Choose random generators: g ← G; h0, . . . htmax ← H.
The trustee public key is TPK = (G,H,H, g, h0, . . . , htmax).

ABS.ASetup: Choose random a0, a, b, c← Z∗
p and set:

C = gc; A0 = ha0
0 ; Aj = ha

j and Bj = hb
j (∀j ∈ [tmax]).

The master key is ASK = (a0, a, b). The public key APK is
(A0, . . . , Atmax , B1, . . . , Btmax , C)

ABS.AttrGen: On input ASK as above and attribute set A ⊆ A, Choose random
generatorKbase ← G. Set:

K0 = K
1/a0
base ; Ku = K

1/(a+bu)
base (∀u ∈ A)

The signing key is then SKA = (Kbase,K0, {Ku | u ∈ A}).
ABS.Sign: On input (PK,SKA,m, Υ) such that Υ (A) = 1, first convert Υ to its

corresponding monotone span program M ∈ (Zp)�×t, with row labeling u : [�]→
A. Also compute the vector v that corresponds to the satisfying assignment A.
Compute μ = H(m‖Υ).

Pick random r0 ← Z∗
p and r1, . . . r� ← Zp and compute:

Y = Kr0
base; Si = (Kvi

u(i))
r0 · (Cgμ)ri (∀i ∈ [�]);

W = Kr0
0 ; Pj =

�∏

i=1

(AjB
u(i)
j)Mij ·ri (∀j ∈ [t]).

We note that the signer may not haveKu(i) for every attribute u(i) mentioned in the
claim-predicate. But when this is the case, vi = 0, and so the value is not needed.
The signature is σ = (Y,W, S1, . . . , S�, P1, . . . , Pt).

6 As always, the universe of attributes can be further extended to {0, 1}∗ by applying a
collision-resistant hash having range Z

∗
p. For simplicity of presentation, we do not include

this modification.

Attribute-Based Signatures 389

ABS.Ver: On input (PK, σ = (Y,W, S1, . . . , S�, P1, . . . , Pt),m, Υ), first convert Υ
to its corresponding monotone span program M ∈ (Zp)�×t, with row labeling
u : [�] → A. Compute μ = H(m‖Υ). If Y = 1, then output reject. Otherwise
check the following constraints:

e(W,A0)
?= e(Y, h0)

�∏

i=1

e
(
Si, (AjB

u(i)
j)Mij

)
?=

{
e(Y, h1) e(Cgμ, P1), j = 1
e(Cgμ, Pj), j > 1,

for j ∈ [t]. Return accept if all the above checks succeed, and reject otherwise.
We defer the detailed proof of security (carried out in the generic group model) to the
full version.

Theorem 4. In the generic group model, there is an ABS scheme supporting claim-
predicates represented as monotone span programs, with signatures consisting of s+ 2
group elements, where s is the size of the monotone span program.

5 Multiple Attribute-Authorities

Our first two intantiations of ABS (indeed, our general framework) can be easily
extended for use in an environment with multiple attribute-issuing authorities. Except
in a centralized enterprise setting, a single user would acquire her attributes from
different authorities (e.g., different government agencies, different commercial services
she has subscribed to, different social networks she is registered with and so on). These
different attribute authorities may not trust each other, nor even be aware of each other.
Indeed, some attribute authorities may be untrustworthy, and this should not affect
the trustworthiness of attributes acquired from other authorities, or of ABS signatures
involving trustworthy attributes.

Apart from these mutually distrusting attribute authorities, we still require a (possibly
separate) signature trustee to set up the various public parameters of the ABS signature
scheme itself. A signature trustee does not have to trust any attribute authority. The
attribute authorities use only the public keys from the signature trustee. As long as the
signature trustee is trusted, then the ABS signatures are secure and leak no information
about the identity or attributes of the signer. The only requirement for compatibility
among attribute authorities is that they all have a mechanism for agreeing on a user’s
userid (say, an email address) so that a user’s bundle of credentials may contain
compatible attributes from several authorities.

Finally, the claim-predicate in the ABS signature must carry the identity of the
attribute-authorities who own the various attributes (possibly as meta-data attached
to the attribute description). Given this information, the statement proven in the non-
interactive proof can be modified to refer to the appropriate digital signature verification
keys corresponding to each attribute, including the pseudo-attribute. If one attribute
authority’s signatures are compromised, then an ABS verifier should not give much
importance to attributes from that authority. However, the ABS signatures themselves
are still valid (in that they indeed attest to the given claim-predicate being satisfied) as
long as the trustee is uncorrupted.

390 H.K. Maji, M. Prabhakaran, and M. Rosulek

6 Applications

We identify several natural applications of ABS schemes:

Attribute-based messaging. Attribute-Based Messaging, or ABM, (e.g., [4]) provides
an example of a quintessential attribute-based system. In an ABM system, messages
are addressed not by the identities of the recipients, but by a predicate on users’ at-
tributes which the recipients must satisfy. The users need not be aware of each other’s
identities or attributes. To provide end-to-end message privacy (against users whose at-
tributes do not satisfy the sender’s policy), one can use ciphertext-policy attribute-based
encryption, as proposed by Bethencourt, Sahai and Waters [3]. However, there was no
satisfactory way to achieve authentication (i.e., for the receiver to verify that the sender
also satisfied a particular policy) in an ABM system until now. Existing cryptographic
technology, including certificates and mesh signatures, would not provide an adequate
level of anonymity for the senders while simultaneously preventing collusions.

In a typical ABM system, a certain degree of authorization is required to send mes-
sages to certain groups of users. That is, an attribute-based access control mechanism
must decide whether to allow a messaging attempt from a sender, depending on both
the attributes of the sender and the attribute-based address attached to the message.
ABS can be used to authenticate a sender to the ABM system itself (as opposed to
the scenario above, where the sender was authenticating to the message recipient). As
the messaging system can publicly verify the ABS signature, this solution eliminates the
need for the messaging system to query the attribute database to determine the sender’s
authorization. Indeed, the messaging system need not know the sender’s identity at all.

Finally, because our construction is so readily suited for multi-authority settings,
ABS is a natural choice for inter-domain ABM systems. However, there are many
engineering and cryptographic challenges involved in other aspects of a truly inter-
domain ABM system. For example, Chase’s proposal [11] for multi-authority attribute-
based encryption (originally for the schemes in [27,16], but can be extended to the one
in [3]) requires all the attribute-authorities to share secret keys with a central authority,
thereby requiring the central authority to trust all the attribute authorities. In contrast,
our ABS system requires no such trust between the signature trustee and attribute
authorities. As such, ABS is much better suited to practical inter-domain attribute-based
systems than its encryption counterparts.

Attribute-based authentication and trust-negotiation. ABS can also be used as a more
general fine-grained authentication mechanism. For instance, a server can publish its
access policy for a particular resource along with its encryption public key. When a
client wishes to access the resource, the server issues a random challenge string. The
client can then generate a session key for (private-key) communication, generate an
ABS signature of (challenge, sessionkey) under the server’s policy, and send these to
the server encrypted under the server’s public key. Thereafter, the client and server can
communicate using the shared session key. This simple protocol is robust even against
a man in the middle.

This technique can be extended to multiple rounds as a simple trust negotiation pro-
tocol, in which two parties progressively reveal more about their attributes over several
rounds of interaction. Several recent works also consider cryptographic approaches to

Attribute-Based Signatures 391

trust negotiation that give more privacy to users than is achieved when they simply take
turns revealing their attributes [25,15]. Instead of these techniques, ABS can provide
a sophisticated way to reveal partial information about one’s attributes that is natural
for this setting. Being able to bind a message to such a proof about one’s attributes,
as ABS permits, also allows one to protect the trust negotiation from outside attack,
using an approach as above. At each step of the negotiation, the active party can choose
an “ephemeral key” for secure (private-key) communication and sign it using ABS.
This approach prevents a man-in-the-middle attacks by an adversary who has enough
attributes to intercept the first few steps of the negotiation.

Leaking secrets. The classical application for which the notion of ring-signatures was
developed by Rivest, Shamir and Tauman [26] is “leaking secrets,” that we used as the
motivating example in the opening of this paper. Ring signatures support only claim-
predicates which are disjunctions. Mesh signatures are an extension of this concept
which allow more sophisticated claim-predicates, but permit multiple parties to pool
their attributes (atomic signatures). This is not necessarily the intended semantics in
natural secret-leaking environment. ABS, on the other hand, provides the semantics
that a single user (not a coalition) whose attributes satisfy the stated predicate attests to
the secret.

References

1. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

2. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification
and signature schemes. Journal of Cryptology 22(1), 1–61 (2009); Preliminary version
appeared in Eurocrypt 2004

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy, pp. 321–334 (2007)

4. Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using attribute-based access
control to enable attribute-based messaging. In: ACSAC, pp. 403–413. IEEE Computer
Society, Los Alamitos (2006)

5. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

9. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
210–227. Springer, Heidelberg (2007)

10. Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)

11. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

392 H.K. Maji, M. Prabhakaran, and M. Rosulek

12. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based
encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Computer
and Communications Security, pp. 121–130. ACM, New York (2009)

13. Chaum, D.: Security without identification: Transaction systems to make big brother obso-
lete. ACM Commun. 28(10), 1030–1044 (1985)

14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

15. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials, hidden policies,
and policy cycles. In: NDSS. The Internet Society, San Diego (2006)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.)
ACM Conference on Computer and Communications Security, pp. 89–98. ACM, New York
(2006)

17. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459.
Springer, Heidelberg (2006)

18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

19. Guo, S., Zeng, Y.: Attribute-based signature scheme. In: International Conference on Infor-
mation Security and Assurance, pp. 509–511. IEEE, Los Alamitos (2008)

20. Katz, J., Ostrovsky, R., Rabin, M.O.: Identity-based zero-knowledge. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 180–192. Springer, Heidelberg (2005)

21. Khader, D.: Attribute based group signature with revocation. Cryptology ePrint Archive,
Report 2007/241 (2007), http://eprint.iacr.org/2007/241

22. Khader, D.: Attribute based group signatures. Cryptology ePrint Archive, Report 2007/159
(2007), http://eprint.iacr.org/2007/159

23. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications.
In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS, pp. 60–69. ACM, New York (2010)

24. Li, J., Kim, K.: Attribute-based ring signatures. Cryptology ePrint Archive, Report 2008/394
(2008), http://eprint.iacr.org/2008/394

25. Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. Distributed Computing 17(4),
293–302 (2005)

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

28. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and their applica-
tion to anonymous credential systems. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

29. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

30. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

31. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. Cryptology ePrint Archive, Report 2008/290 (2008),
http://eprint.iacr.org/2008/290

http://eprint.iacr.org/2007/241
http://eprint.iacr.org/2007/159
http://eprint.iacr.org/2008/394
http://eprint.iacr.org/2008/290

	Attribute-Based Signatures
	Introduction
	Preliminaries
	Groups with Bilinear Pairings
	Monotone Span Programs
	Non-interactive Proofs

	Attribute-Based Signatures: Definitions and Security
	Constructing ABS Schemes
	Credential Bundles
	A Framework for ABS
	Practical Instantiation 1
	Practical Instantiation 2
	Practical Instantiation 3

	Multiple Attribute-Authorities
	Applications
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

