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Abstract. Password-based authenticated group key exchange allows
any group of users in possession of a low-entropy secret key to establish
a common session key even in the presence of adversaries. In this paper,
we propose a new generic construction of password-authenticated group
key exchange protocol from any two-party password-authenticated key
exchange with explicit authentication. Our new construction has several
advantages when compared to existing solutions. First, our construction
only assumes a common reference string and does not rely on any ideal-
ized models. Second, our scheme enjoys a simple and intuitive security
proof in the universally composable framework and is optimal in the
sense that it allows at most one password test per user instance. Third,
our scheme also achieves a strong notion of security against insiders in
that the adversary cannot bias the distribution of the session key as long
as one of the players involved in the protocol is honest. Finally, we show
how to easily extend our protocol to the dynamic case in a way that
the costs of establishing a common key between two existing groups is
significantly smaller than computing a common key from scratch.

1 Introduction

Password-authenticated key exchange (PAKE) allows any two parties in pos-
session of a short (i.e., low-entropy) secret key to establish a common session
key even in the presence of an adversary. Since its introduction by Bellovin
and Merritt [14], PAKE has become an important cryptographic primitive due
to its simplicity and ease of use, which does not rely on expensive public-key
infrastructures or high-entropy secret keys.

In the universally composable (UC) framework [18], the authors of [20] show
how their new model (based on the ideal functionality FpwKE) relates to previous
PAKE models, such as [12] or [8]. In particular, they show that any protocol that
realizes FpwKE is also a secure password-authenticated key-exchange protocol in
the model of [12]. Other works in the UC framework include [24] and [26], where
the authors study static corruptions without random oracles as well.

� Work done while being at Télécom ParisTech, Paris, France.
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In this paper, we consider password-authenticated key exchange in the group
setting (GPAKE) where the number of users involved in the computation of a
common session key can be large. With few exceptions (e.g., [1]), most proto-
cols in this setting are built from scratch and are quite complex. Among these
protocols, we can clearly identify two types of protocols: constant-round proto-
cols (e.g., [9,15,5]) and those whose number of communication rounds depends
on the number of users involved in the protocol execution (e.g., [16]). Since
constant-round protocols are generally easier to implement and less suscepti-
ble to synchronization problems when the number of user increases, we focus
our attention on these protocols. More precisely, we build upon the works of
Abdalla, Catalano, Chevalier, and Pointcheval [5] and Abdalla, Bohli, González
Vasco, and Steinwandt [1] and propose a new generic compiler which converts
any two-party password-authenticated key exchange protocol into a password-
authenticated group key exchange protocol. Like [1], our protocol relies on a
common reference string (CRS) which seems to be a reasonable assumption
when one uses a public software, that is somewhat “trusted”. This is also a nec-
essary assumption for realizing PAKE schemes in the UC framework as shown
by [20]. Like [5], our protocol achieves a strong notion of contributiveness in the
UC framework. In particular, even if it can control all the network communica-
tions, the adversary cannot bias the key as long as one of the players involved
in the protocol is honest. We indeed assume that all the communications are
public, and such a network can be seen as a (non-reliable) broadcast channel,
controlled by the adversary: the latter can delay, block, alter and/or replay mes-
sages. Players thus do not necessarily all receive the same messages. Since the
adversary can block messages, we have to assume timeouts for each round. As
a consequence, denial-of-service attacks are possible, but these are out of the
scope of this paper.

Contributions. There are three main contributions in this paper. The first
one regards the optimality of the security, which only allows one password test
per subgroup. As mentioned in [5] and in Barak et al. [10], without any strong
authentication mechanisms, which is the case in the password-based scenario, the
adversary can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each subgroup, playing the role of
the other players. As a result, an adversary can always use each one of these
partitions to test the passwords used by each subgroup. Since this attack is
unavoidable, this is the best security guarantee that we can hope for. In contrast,
the protocol in [5] required an additional password test for each user in the group.

The second contribution is the construction itself, which astutely combines
several techniques: it applies the Burmester-Desmedt technique [17] to any se-
cure two-party PAKE achieving (mutual) explicit authentication in the UC
framework. The key idea used by our protocol is that, in addition to establish-
ing pairwise keys between any pair of users in the ring, each user also chooses
an additional random secret value to be used in the session key generation. In
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order to achieve the contributiveness property, our protocol enforces these ran-
dom secret values to be chosen independently so that the final session key will
be uniformly distributed as long as one of the players is honest. In order to prove
our protocol secure in the UC framework, we also make use of a particular ran-
domness extractor, which possesses a type of partial invertibility property which
we use in the proof. The proof of security assumes the existence of a common
reference string and does not rely on any idealized model. We note that UC-
secure authenticated group key exchange protocols with contributiveness were
already known [25,5], but they either relied on idealized models [5] or were not
applicable to the password-based scenario [25].

Our final contribution is to show how to extend our protocol to the dynamic
case, with forward-secrecy, so that the cost of merging two subgroups is relatively
small in comparison to generating a new and independent common group key
from scratch. This is because given two subgroups, each with its own subgroup
key, we only need to execute two instances of the PAKE protocol in order to
merge these two groups and generate a new group key. Note that, if one were
to compute a common group key from scratch, the number of PAKE executions
would be proportional to the number of users in the group. Since the PAKE
execution is the most computationally expensive part of the protocol, our new
merge protocol significantly improves upon the trivial solution.

2 UC Two-Party PAKE

Notations and Security Model. We denote by k the security parameter. An
event is said to be negligible if it happens with probability less than the inverse
of any polynomial in k. If X is a finite set, x

R← X indicates the process of
selecting x uniformly and at random in X (we thus implicitly assume that X
can be sampled efficiently).

Throughout this paper, we assume basic familiarity with the universal com-
posability framework. The interested reader is referred to [18,20] for details. The
model considered in this paper is the UC framework with joint state proposed
by Canetti and Rabin [21] (the CRS will be in the joint state).

In this paper, we consider adaptive adversaries which are allowed to arbitrarily
corrupt players at any moment during the execution of the protocol, thus getting
complete access to their internal memory. In a real execution of the protocol,
this is modeled by letting the adversary A obtain the password and the internal
state of the corrupted player. Moreover, A can arbitrarily modify the player’s
strategy. In an ideal execution of the protocol, the simulator S gets the corrupted
player’s password and has to simulate its internal state in a way that remains
consistent to what was already provided to the environment.

Split Functionalities. Without any strong authentication mechanisms, the
adversary can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each subgroup, playing the role of the
other players. Such an attack is unavoidable since players cannot distinguish the
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Given a functionality F , the split functionality sF proceeds as follows:
Initialization:

– Upon receiving (Init, sid) from party Pi, send (Init, sid, Pi) to the adversary.
– Upon receiving a message (Init, sid, Pi, G, H, sidH) from A, where H ⊂ G are

sets of party identities, check that Pi has already sent (Init, sid) and that for all
recorded (H ′, sidH′), either H = H ′ and sidH = sidH′ or H and H ′ are disjoint
and sidH �= sidH′ . If so, record the pair (H,sidH), send (Init, sid, sidH) to Pi,
and invoke a new functionality (F , sidH) denoted as FH on the group G and
with set of initially honest parties H .

Computation:

– Upon receiving (Input, sid, m) from party Pi, find the set H such that Pi ∈ H
and forward m to FH .

– Upon receiving (Input, sid, Pj , H,m) from A, such that Pj /∈ H , forward m to FH

as if coming from Pj (it will be ignored if Pj �∈ G for the functionality FH).
– When FH generates an output m for party Pi ∈ H , send m to Pi. If the output

is for Pj /∈ H or for the adversary, send m to the adversary.

Fig. 1. Split Functionality sF

case in which they interact with each other from the case where they interact
with the adversary. The authors of [10] addressed this issue by proposing a new
model based on split functionalities which guarantees that this attack is the only
one available to the adversary.

The split functionality is a generic construction based upon an ideal function-
ality. The original definition was for protocols with a fixed set of participants.
Since our goal is to deal with dynamic groups, not known in advance, we let the
adversary not only split the honest players into subsets H in each execution of
the protocol, but also specify the players it will control. The functionality will
thus start with the actual list of players in G, where H is the subgroup of the
honest players in this execution. Note that H is the subset of the initially honest
players, which can later get corrupted in case we consider adaptive adversaries.
The restriction of the split functionality is to have disjoint sets H , since it models
the fact that the adversary splits the honest players in several concurrent but
independent executions of the protocol. The new description can be found on
Figure 1. In the initialization stage, the adversary adaptively chooses disjoint
subsets H of the honest parties (with a unique session identifier that is fixed for
the duration of the protocol) together with the lists G of the players for each
execution. More precisely, the protocol starts with a session identifier sid. Then,
the initialization stage generates some random values which, combined together
and with sid, create the new session identifier sid′, shared by all parties which
have received the same values – that is, the parties of the disjoint subsets. The
important point here is that the subsets create a partition of the declared honest
players, thus forbidding communication among the subsets. During the compu-
tation, each subset H activates a separate instance of the functionality F on
the group G. All these functionality instances are independent: The executions
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of the protocol for each subset H can only be related in the way the adversary
chooses the inputs of the players it controls. The parties Pi ∈ H provide their
own inputs and receive their own outputs (see the first item of “computation”
in Figure 1), whereas the adversary plays the role of all the parties Pj /∈ H , but
in G (see the second item).

UC 2-PAKE Protocols. Canetti et al. first proposed in [20] the ideal func-
tionality for universally composable two-party password-based key exchange (2-
PAKE), along with the first protocol to achieve such a level of security. This
protocol is based on the Gennaro-Lindell extension of the KOY protocol [27,23],
and is not known to achieve adaptive security.

Later on, Abdalla et al. proposed in [4] an improvement of the ideal func-
tionality, adding client authentication, which provides a guarantee to the server
that when it accepts a key, the latter is actually known to the expected client.
They also give a protocol realizing this functionality, and secure against adaptive
corruptions, in the random oracle model. More recently, they presented another
protocol in [7], based on the Gennaro-Lindell protocol, secure against adaptive
corruptions in the standard model, but with no explicit authentication.

Mutual Authentication. Our generic compiler from a 2-PAKE to a GPAKE,
that we present in Section 4, achieves security against static (resp. adaptive)
adversaries, depending on the level of security achieved by the underlying 2-
PAKE. Furthermore, the 2-PAKE needs to achieve mutual authentication. For
the sake of completeness, we give here the modifications of the ideal functionality
to capture this property: both client authentication and server authentication.
Furthermore, to be compatible with the GPAKE functionality, we use the split
functionality model. For the 2-PAKE, this model is equivalent to the use of
TestPwd queries in the functionality. They both allow the adversary to test the
password of a player (a dictionary attack) either by explicitly asking a TestPwd
query, or by playing with this player. More precisely, an adversary willing to
test the password of a player will play on behalf of its partner, with the trial
password: If the execution succeeds, the password is correct. Finally, the 2-PAKE
functionality with mutual authentication FMA

PAKE, presented in Figure 2, is very
close to the GPAKE functionality, see Section 3. As in the GPAKE one, we
added the contributiveness property. Note that the protocols mentioned earlier
can realize this functionality given very small modifications.

3 UC Group PAKE

We give here a slightly modified version of the ideal functionality for GPAKE
presented in [5], by suppressing the TestPwd queries, which was left as an open
problem in [5], since their protocol could not be proven without them. Our new
functionality thus models the optimal security level: the adversary can test only
one password per subgroup (split functionality). This is the same improvement
as done in another context between [2] and [3]. Furthermore, the players in [5]
were assumed to share the same passwords. We consider here a more general
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The functionality FMA
PAKE is parameterized by a security parameter k, and the pa-

rameter t ∈ {1, 2} of the contributiveness. It maintains a list L initially empty of
values of the form ((sid, Pk, Pl, pw, role), ∗) and interacts with an adversary S and
dynamically determined parties Pi and Pj via the following queries:

– Initialization.
Upon receiving a query (NewSession, sid, Pi, pw, role) from Pi ∈ H:

• Send (NewSession, sid, Pi, role) to S .
• If this is the first NewSession query, or if it is the second one and

there is a record ((sid, Pj , Pi, pw
′, role), fresh) ∈ L, then record ((sid, Pi, Pj ,

pw, role), fresh) in L. If it is the second NewSession query, record the tuple
(sid, ready).

– Key Generation. Upon receiving a message (sid, ok, sk) from S where there
exists a recorded tuple (sid, ready), then, denote by nc the number of corrupted
players, and

• If Pi and Pj have the same password and nc < t, choose sk′ ∈
{0, 1}k uniformly at random and store (sid, sk′). Next, mark the records
((sid, Pi, Pj , pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) complete.

• If Pi and Pj have the same passwords and nc ≥ t, store (sid, sk). Next, mark
the records ((sid, Pi, Pj , pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) complete.

• In any other case, store (sid, error) and mark the records ((sid, Pi, Pj ,
pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) error.

When the key is set, report the result (either error or complete) to S .
– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S , then if

Pi ∈ H and there is a recorded tuple (sid, α) where α ∈ {0, 1}k ∪ {error}, send
(sid, α) to Pi if b equals yes or (sid, error) if b equals no.

– Player Corruption. If S corrupts Pi ∈ H where there is a recorded tuple
((sid, Pi, Pj , pwi, role), ∗), then reveal pwi to S . If there also is a recorded tuple
(sid, sk), that has not yet been sent to Pi, then send (sid, sk) to S .

Fig. 2. Functionality FM A
PAKE

scenario where each user Pi owns a pair of passwords (pwL
i , pwR

i ), each one
shared with one of his neighbors, Pi−1 and Pi+1, when players are organized
around a ring. This is a quite general scenario since it covers the case of a
unique common password: for each user, we set pwL

i = pwR
i . The ring structure

is also general enough since a centralized case could be converted into a ring,
where the center is duplicated between the users. Recall that thanks to the use of
the split functionality, the GPAKE functionality invoked knows the group of the
players, as well as the order among them. The following description is strongly
based on that of [5].

Contributory Protocols. As in [5], we consider a stronger corruption model
against insiders than the one proposed by Katz and Shin in [28]: in the lat-
ter model, one allows the adversary to choose the session key as soon as there
is one corruption; as in the former case, in this paper we consider the notion
of contributiveness, which guarantees the distribution of the session keys to
be random as long as there are enough honest participants in the session: the
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adversary cannot bias the distribution unless it controls a large number of play-
ers. Namely, this notion formally defines the difference between a key distribution
system and a key agreement protocol. More precisely, a protocol is said to be
(t, n)-contributory if the group consists of n people and if the adversary can-
not bias the key as long as it has corrupted (strictly) less than t players. The
authors of [5] achieved (n/2, n)-contributiveness in an efficient way, and even
(n − 1, n)-contributiveness by running parallel executions of the protocol. We
claim that our proposed protocol directly achieves (n, n)-contributiveness (or
full-contributiveness), which means that the adversary cannot bias the key as
long as there is at least one honest player in the group. Note that this definition
remains very general: letting t = 1, we get back to the case in which A can set
the key when it controls at least one player, as in [20].

Ideal Functionality for GPAKE with Mutual Authentication. We as-
sume that every player owns two passwords (pwL

i , pwR
i ), and that for all i,

pwR
i = pwL

i−1. Our functionality builds upon that presented in [5]. In partic-
ular, note that the functionality is not in charge of providing the passwords to
the participants. Rather we let the environment do this. As already pointed out
in [20], such an approach allows to model, for example, the case where some users
may use the same password for different protocols and, more generally, the case
where passwords are chosen according to some arbitrary distribution (i.e., not
necessarily the uniform one). Moreover, notice that allowing the environment to
choose the passwords guarantees forward secrecy, basically for free. More gen-
erally, this approach allows to preserve security1 even in those situations where
the password is used (by the same environment) for other purposes.

Since we consider the (improved) split functionality model, the functionality
is parameterized by an ordered group Pid = {P1, . . . , Pn}, dynamically defined,
consisting of all the players involved in the execution (be they real players or
players controlled by the adversary). Thus, we note that it is unnecessary to
impose that the players give this value Pid when notifying their interest to join
an execution via a NewSession query, as was done in [5]. This additional simpli-
fication has some interest in practice, since the players do not always know the
exact number of players involved, but rather a common characteristic (such as
a Facebook group).

We thus denote by n the number of players involved (that is, the size of Pid)
and assume that every player starts a new session of the protocol with input
(NewSession, sid, Pi, (pwL

i , pwR
i )), where Pi is the identity of the player and

(pwL
i , pwR

i ) its passwords. Once all the players in Pid, sharing the same sid, have
sent their notification message, FGPAKE informs the adversary that it is ready to
start a new session of the protocol.

In principle, after the initialization stage is over, all the players are ready to
receive the session key. However the functionality waits for S to send an “ok”
message before proceeding. This allows S to decide the exact moment when
the key should be sent to the players and, in particular, it allows S to choose
1 By “preserved” here we mean that the probability of breaking the scheme is basically

the same as the probability of guessing the password.
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the exact moment when corruptions should occur (for instance S may decide to
corrupt some party Pi before the key is sent but after Pi decided to participate
to a given session of the protocol, see [28]). One could imagine to get rid of this
query and ask the functionality to generate the session key when the adversary
asks the first delivery query, but it is easier to deal with the corruptions with the
choice made here (which is the same as in [28]). Once the functionality receives
a message (sid, ok, sk) from S, it proceeds to the key generation phase. This is
done as in [5], except that, instead of checking whether the players all share the
same passwords, FGPAKE checks whether the neighbors (the group is assumed to
be ordered) share the same password. If all the players share the same passwords
as their neighbors and less than t players are corrupted, FGPAKE chooses a key sk′

uniformly and at random in the appropriate key space. If all the players share
the same passwords as their neighbors but t or more players are corrupted, then
the functionality allows S to fully determine the key by letting sk′ = sk. In all
the remaining cases no key is established.

This definition of the FGPAKE functionality deals with corruptions of players
in a way quite similar to that of FGPAKE in [28], in the sense that if the adversary
has corrupted some participants, it may determine the session key, but here only
if there are enough corrupted players. Notice however that S is given such power
only before the key is actually established. Once the key is set, corruptions allow
the adversary to know the key but not to choose it.

In any case, after the key generation, the functionality informs the adversary
about the result, meaning that the adversary is informed on whether a key was
actually established or not. In particular, this means that the adversary is also
informed on whether the players use compatible passwords or not: in practice, the
adversary can learn whether the protocol succeeded or not by simply monitoring
its execution (if the players follow the communication or stop it). Finally the key
is sent to the players according to the schedule chosen by S. This is formally
modeled by means of key delivery queries. We assume that, as always in the UC
framework, once S asks to deliver the key to a player, the key is sent immediately.

Notice that, the mutual authentication indeed means that if one of the players
terminates with a session key (not an error), then all players share the key
material; but, it doesn’t mean that they all successfully terminated. Indeed,
we cannot assume that all the flows are correctly forwarded by the adversary:
it can modify just one flow, or at least omit to deliver one flow. This attack,
called denial of service, is modeled in the functionality by the key delivery: the
adversary can choose whether it wants the player to receive or not the good
key/messages simply with the help of the keyword b set to yes or no.

4 Scheme

Intuition. The main idea of our protocol is to apply the Burmester-Desmedt
technique [17] to any secure two-party PAKE achieving (mutual) explicit au-
thentication in the UC framework. More precisely, the players execute such a
protocol in flows (2a) and (2b) (see Figure 4) and use the obtained value in
flows (3) and (4) as in a classical Burmester-Desmedt-based protocol.
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The functionality FGPAKE is parameterized by a security parameter k, and the pa-
rameter t of the contributiveness. It interacts with an adversary S and an ordered
set of parties Pid = {P1, . . . , Pn} via the following queries:
– Initialization. Upon receiving (NewSession, sid, Pi, (pw

L
i , pwR

i )) from player Pi

for the first time, record (sid, Pi, (pw
L
i , pwR

i )), mark it fresh, and send (sid, Pi)
to S .
If there are already n − 1 recorded tuples (sid, Pj , (pw

L
j , pwR

j )) for players
Pj ∈ Pid \ {Pi}, then record (sid, ready) and send it to S .

– Key Generation. Upon receiving a message (sid, ok, sk) from S where there
exists a recorded tuple (sid, ready), then, denote by nc the number of corrupted
players, and
• If for all i, pwR

i = pwL
i+1 and nc < t, choose sk′ ∈ {0, 1}k uniformly

at random and store (sid, sk′). Next, for all Pi ∈ Pid mark the record
(sid, Pi, (pw

L
i , pwR

i )) complete.
• If for all i, pwR

i = pwL
i+1 and nc ≥ t, store (sid, sk). Next, for all Pi ∈ Pid

mark (sid, Pi, (pw
L
i , pwR

i )) complete.
• In any other case, store (sid, error). For all Pi ∈ Pid mark the record

(sid, Pi, (pw
L
i , pwR

i )) error.
When the key is set, report the result (either error or complete) to S .

– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S , then if
Pi ∈ Pid and there is a recorded tuple (sid, α) where α ∈ {0, 1}k ∪ {error}, send
(sid, α) to Pi if b equals yes or (sid, error) if b equals no.

– Player Corruption. If S corrupts Pi ∈ Pid where there is a recorded tuple
(sid, Pi, (pw

L
i , pwR

i )), then reveal (pwL
i , pwR

i ) to S . If there also is a recorded
tuple (sid, sk), that has not yet been sent to Pi, then send (sid, sk) to S .

Fig. 3. Functionality FGPAKE

The split functionality is emulated thanks to the first flow, where the players
engage in their signature verification key, as well as the elements used for the
splitting part of the two-party protocols. They are then (after the dotted line
in the figure) partitioned according to the values they received during this first
round.

Finally, the contributiveness is ensured by the following trick: In addition
to establishing pairwise keys between any two pair of neighbors, the players
also choose on their own a random secret value Ki, which will also be used in
the session key generation. An important point is that these values are chosen
independently thanks to the commitment between flows (2a) and (2b). This will
ensure the session key to be uniformly distributed as long as at least one player
is honest.

Building Blocks. We assume to be given a universally composable two-party
password-based authenticated key exchange with mutual authentication 2PAKE,
achieving or not security against adaptive corruptions. This key exchange is as-
sumed (as defined by the ideal functionality) to give as output a uniformly dis-
tributed random string. Due to the mutual authentication, this protocol results
in an error message in case it does not succeed: Either the two players end with
the same key, or they end with an error. Note, however, that one player can have



Contributory Password-Authenticated Group Key Exchange 151

(1) (VKi, SKi)← SKG
sL

i = split2PAKE(ssid; Pi−1, pw
R
i−1; Pi, pw

L
i )

sR
i = split2PAKE(ssid; Pi−1, pw

R
i−1; Pi, pw

L
i )

(VKi, s
L
i , sR

i )−−−−−−−−−−−→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After this point, the session identifier becomes
ssid′ = ssid‖VK1‖sL

1 ‖sR
1 ‖. . . ‖VKn‖sL

n‖sR
n .

(2a) executes 2PAKE(ssid′; Pi−1, pw
R
i−1; Pi, pw

L
i ),

obtaining KL
i = KR

i−1 shared with Pi−1
. . .−−−−−−−−−−−→

executes 2PAKE(ssid′; Pi, pw
R
i ; Pi+1, pw

L
i+1),

obtaining KR
i = KL

i+1 shared with Pi+1
. . .−−−−−−−−−−−→

chooses at random Ki
$← {0, 1}k

computes XL
i = KL

i ⊕Ki and XR
i = Ki ⊕KR

i

computes and sends ci = com(ssid′, i, XL
i , XR

i )
ci−−−−−−−−−−−→

(2b) opens XL
i , XR

i

XL
i , XR

i−−−−−−−−−−−→
(3) checks cj = com(ssid′, j, XL

j , XR
j ) ∀j �= i and XL

1 ⊕XR
1 ⊕ · · · ⊕XL

n ⊕XR
n = 0

and aborts if one of these values is incorrect

computes KL
j+1 = XR

j ⊕Kj , Kj+1 = XL
j+1 ⊕KL

j+1 ∀j = i, . . . , n + i− 1 (mod n)
computes sk0‖sk1 = f(K1, . . . , Kn), Authi = Mac(sk1; ssid

′, i, {XL
j , XR

j }j),
and σi = Sign(SKi; ssid

′, i, Authi, {XL
j , XR

j }j) Authi, σi−−−−−−−−−−−→
(4) checks Ver(sk1; ssid

′, j, {XL
k , XR

k }k;Authj)
and Verify(VKj ; ssid

′, Authj , {XL
k , XR

k }k; σj) ∀j �= i
If they are correct, then marks the session as complete and sets ski = sk0.
Otherwise, sets ski = error.

Fig. 4. Description of the protocol for player Pi, with index i and passwords pwL
i

and pwR
i

a key while the other is still waiting since the adversary can retain a message:
This is a denial-of-service attack, since a timeout will stop the execution of the
protocol. Mutual authentication guarantees that the players cannot end with
two different keys.

Let (SKG, Sign, Verify) be a one-time signature scheme, SKG being the sig-
nature key generation, Sign the signing algorithm and Verify the verifying al-
gorithm. Note that we do not require a strong one-time signature: Here, the
adversary is allowed to query the signing oracle at most once, and should not be
able to forge a signature on a new message.

Let (Mac, Ver) be a message authentication code scheme, Mac being the au-
thenticating algorithm and Ver the verifying algorithm. A pseudo-random func-
tion could be used, since this is a secure MAC [11].

As usual, we will need a randomness extractor, in order to generate the final
session key, as well as an authentication key (for the key confirmation round,
guaranteed by a Mac computation). But because of the UC framework, and the
definition of the functionality, in the case of a corrupted player, the adversary
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will learn all the inputs of the extractor, chosen by the players, and the session
key chosen by the functionality as well. We will thus have to be able to choose
the inputs for the honest players so that they lead to the expected output. We
thus use a specific randomness extractor, with a kind of partial invertibility: we
consider a finite field F = Fq. The function

f : (F∗ × . . .× F
∗) × (F× . . .× F)→ F

(α1, . . . , αn ; h1, . . . , hn) �→∑
αihi

is a randomness extractor from tuples (h1, . . . , hn) ∈ F
n where at least one hi

is uniformly distributed and independent of the others. Since it can be shown
as a universal hash function, using similar techniques to [22], if we consider any
distribution Di on F

n, for which the distribution {hi|(h1, . . . , hn) ← Di} is the
uniform distribution in F, then the distributions

(α1, . . . , αn, f(α1, . . . , αn; h1, . . . , hn)), (α1, . . . , αn) $← F
∗n, (h1, . . . , hn)← Di

(α1, . . . , αn, U), (α1, . . . , αn) $← F
∗n, U

$← F

are perfectly indistinguishable. The tuple (α1, . . . , αn) is the public key of the
randomness extractor, and it is well-known that it can be fixed in the CRS [29],
with a loss of security linear in the number of queries. Since n might not be fixed
in advance, we can use a pseudo-random generator that generates the sequence
α1,. . . , from a key k in the CRS. Anyway, we generically use f as the variable
input-length randomness extractor in the following. As said above, we will have
to invert f to adapt the input of an honest user to the expected session key: for a
fixed key, some fixed inputs Ii = (h1, . . . , ĥi . . . , hn) ∈ F

n−1 (possibly all but one,
here hi), and the output U , the function gi(Ii, U) completes the input so that the
output by f is U . With our function f , we have gi(Ii, U) = (U −∑

j �=i αjhj)/αi.
Finally, we will also need a commitment scheme. In addition to being hiding

and binding, we will require it to be extractable, equivocable and non-malleable,
such as those of [19,1,7]. Even if this latter commitment is only conditionally ex-
tractable, this will not matter here since the commitment will be opened later:
The user cannot try to cheat otherwise the protocol stops. Note that the ex-
tractable property allows the simulator to obtain the values committed to by
the adversary, the equivocable property allows him to open his values to some-
thing consistent with them, and the non-malleable property ensures that when
A sees a commitment, he is not able to construct another one with a related
distribution. Because of extractability and equivocability, both the hiding and
the binding properties are computational only.

Description of the Protocol. For the sake of completeness, we describe the
case where each player owns two different passwords (pwL

i and pwR
i ), and each

pair of neighbors (while the ring is set) shares a common password (pwR
i =

pwL
i+1). The case where the players all share the same password is easily derived

from here, by letting pwL
i = pwR

i . Note that both cases will UC-emulate the
GPAKE functionality presented earlier.
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We do not assume that the members of the actual group are known in advance.
Then one has to imagine a system of timeouts after which the participants
consider that no one else will notify its interest in participating to the protocol,
and continue the execution. Once the players are known, we order them using a
public pre-determined technique (e.g., the alphabetical order on the first flow).
Then, for the sake of simplicity we rename the players actually participating
P1, . . . , Pn according to this order.

Furthermore, such timeouts will also be useful in Flow (2a) in case a player
has aborted earlier, in order to avoid other players to wait for it indefinitely.
After a certain amount of time has elapsed, the participants should consider
that the protocol has failed and abort. Such a synchronization step is useful for
the contributiveness, see later on.

Informally, and omitting the details, the algorithm (see Figure 4) can be
described as follows: First, each player applies SKG to generate a pair (SKi, VKi)
of signature keys, and sends the value VKi. They also engage in two two-party
key exchange protocols with each of their neighbors: We denote split2PAKE the
corresponding first flow of this protocol, used for the split functionality. The
players will be split after this round according to the values received. At this
point, the session identifier becomes ssid′ = ssid‖VK1‖sL

1 ‖sR
1 ‖. . . ‖VKn‖sL

n‖sR
n

(more details follow). We stress that the round (2a) does not begin until all
commitments have been received. In this round, the players open to the values
committed.

In round (2a), the players check the commitments received (and abort if one
of them is incorrect). Next, player Pi chooses at random a bitstring Ki. It also
gets involved into two 2PAKE protocols, with each of its neighbors Pi−1 and
Pi+1, and the passwords pwL

i and pwR
i , respectively. This creates two random

strings: KL
i = 2PAKE(ssid′; Pi−1, pw

R
i−1; Pi, pw

L
i ), shared with Pi−1, and KR

i =
2PAKE(ssid′; Pi, pw

R
i ; Pi+1, pw

L
i+1), shared with Pi+1. It finally computes XL

i =
KL

i ⊕ Ki and XR
i = Ki ⊕ KR

i and commits to these values. Pictorially, the
situation can be summarized as follows:

Pi−1(pw
R
i−1) Pi(pw

L
i ) Pi(pw

R
i ) Pi+1(pw

L
i+1)

KR
i−1 = KL

i Ki
$← {0, 1}k KR

i = KL
i+1

XR
i−1 XL

i = KL
i ⊕Ki XR

i = Ki ⊕KR
i XL

i+1

where XR
i−1 = Ki−1⊕KR

i−1 = Ki−1⊕KL
i and XL

i+1 = KL
i+1⊕Ki+1 = KR

i ⊕Ki+1.
Once Pi has received all these commitments (again, we stress that no player

begins this round before having received all the commitments previously sent),
it opens to the values committed (round (2b)).

In round (3), the players check the commitments received (and abort if one
of them is incorrect). Next, player Pi iteratively computes all the Kj ’s re-
quired to compute the session keys sk0‖sk1 and the key confirmation Authi =
Mac(sk1; ssid′, i, {XL

j , XR
j }j). It also signs this authenticator along with all the

commitments received in the previous flow.
Finally, in round (4), after having checked the authenticators and the signa-

tures, the players mark their session as complete (or abort if one of these values
is incorrect) and set their session key ski = sk0.
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Remarks. As soon as a value received by Pi doesn’t match with the expected
value, it aborts, setting the key ski = error. In particular, every player checks
the commitments cj = com(ssid′, j, XL

j , XR
j ), the signatures σj = Sign(SKj ; ssid′,

Authj , {XL
k , XR

k }k), and finally the key confirmations Authj = Mac(sk1; ssid′, j,
{XL

k , XR
k }k). This enables the protocol to achieve mutual authentication.

The protocol also realizes the split functionality due to the two following facts:
First, the players are partitioned according to the values VKj and split2PAKE
they received during the first round (i.e., before the dotted line in Figure 4).
All the VKi are shared among them and their session identifier becomes ssid′ =
ssid‖VK1‖sL

1 ‖sR
1 ‖. . . ‖VKn‖sL

n‖sR
n . Furthermore, in round 3, the signature added

to the authentication flow prevents the adversary from being able to change an
XL

i or XR
i to another value. Since the session identifier ssid′ is included in all

the commitments, and in the latter signature, only players in the same subset
can accept and conclude with a common key.

Then, the contributory property is ensured by the following trick: At the
beginning of each flow, the players wait until they have received all the other
values of the previous flow before sending their new one. This is particularly
important between (2a) and (2b). Thanks to the commitments sent in this flow,
it is impossible for a player to compute its values XL

i and XR
i once it has seen

the others: Every player has to commit its values at the same time as the others,
and cannot make them depend on the other values sent by the players (recall
that the commitment is non-malleable). This disables it from being able to bias
the key (more details can be found in the proof, see the full version [6]).

Finally we point out that, in our proof of security, we don’t need to assume
that the players erase any ephemeral value before the end of the computation of
the session key.

Our Main Theorem. Let ŝFGPAKE be the multi-session extension of the split
functionality sFGPAKE.

Theorem 1. Assuming that the protocol 2PAKE is a universally composable
two-party password-based authenticated key exchange with mutual authentication
secure against adaptive ( resp. static) corruptions, (SKG, Sign, Verify) a one-time
signature scheme, com a non-malleable, extractable and equivocable commitment
scheme, (Mac, Ver) a message authentication code scheme, and f a randomness
extractor as defined earlier, the protocol presented in Figure 4 securely realizes
ŝFGPAKE in the CRS model, in the presence of adaptive ( resp. static) adver-
saries, and is fully-contributory.

5 Merging Two Groups

Since the case in which a single user joins an existing group is a particular
case of merging two groups, we concentrate on the latter more general case. Let
G = {P1, . . . , Pn} and G′ = {P ′

1, . . . , P
′
m} be two groups which have already

created two group session keys via the protocol described in Section 4. Using
the same notations, we assume that each player Pk in G has kept in memory
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its own private value Kk as well as all the public values {XL
1 , XR

1 , . . . , XL
n , XR

n }.
Similarly, assume that each player P ′

� in G′ has kept in memory its own private
value K ′

� as well as all the public values {X ′L
1 , X ′R

1 , . . . , X ′L
m , X ′R

m }.
In other words, we ask each player to keep in memory all the values necessary

to the computation of the group’s session key. Remarkably, note that they only
have to keep a single private value, and that all the other values are public, and
can be kept publicly in a single place accessible to the players.

The goal of our dynamic merge protocol is to allow the computation of a joint
group session key between G and G′, without asking the whole new group G∪G′ to
start a key-exchange protocol from scratch. In addition, the protocol we describe
here has two nice properties: First, it does not increase the memory requirements
of each player. Second, it is done in such a way that the situation of each player
after the merge protocol is the same as its situation before it. That way, future
join or merge protocols can easily take place iteratively without any change.

For sake of simplicity, we first describe a basic version of our protocol, in
which only one representative of each group participates in the new exchange of
messages between the two groups. Clearly, this version is not fully contributory
since only two participants take place in the protocol. We then show how to
extend it into a fully contributory protocol, in which all n + m participants will
take part in the message exchange.

Basic Version. Let Pi and P ′
j denote the particular members of G and G′ that

are acting as the representative of these groups. Only these two participants will
take part in the merge protocol. In order to construct a session key for the new
group, these two players are assumed to share a common password, denoted as
pw for Pi and pw′ for P ′

j . The situation is summarized in Figure 5, where the
upper part (1) represents the former second group, with the values computed
during the execution of the GPAKE protocol, and the lower part (2) represents
the former first group, with the values computed during the execution of the
GPAKE protocol. The hatched lines represent the abandoned “links”. Indeed,
both Pi and P ′

j will erase their values Ki and K ′
j and create two new connections

between them, thus creating the new group
G′′ = {P1, . . . , Pi−1, Pi, P

′
j , P

′
j+1, . . . , P

′
m, P ′

1, . . . , P
′
j−1, P

′
j , Pi, Pi+1, . . . , Pn}

These connections are represented vertically in the middle part (2) of the figure.
We stress that during the merge protocol, no value is computed in parts (1)
and (2). The core of the protocol is part (3).

For lack of space, we refer the interested reader to the full version [6] for the
precise description of the protocol. Informally, the merge protocol consists in
the execution of a simplified GPAKE protocol with the whole group G”, but
the interesting point is that only Pi and P ′

j participate and exchange messages,
executing two 2PAKE protocols, instead of the n+m−1 that would be necessary
for an execution from scratch with this new group. Merging two groups is thus
much more efficient. The two executions are performed once for the left part
of (3) in Figure 5, and once for the right part. For Pi and P ′

j , the steps are
similar to those of a normal GPAKE protocol execution. Additionnaly, Pi and
P ′

j have to broadcast the necessary (old) values XL
k , XR

k and X ′L
l , X ′R

l to the
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j−1 P ′
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j

⊕K′
j
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j

K′
j K̃′

j
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j (=K̃′

j
⊕K′R

j
)

(K′
j−1⊕K′R

j−1=)X ′R
j−1

pw′L
j P ′

j P ′
j p̃w′R

j

(2PAKE(ssid;Pi,
˜

pwR
i

,P ′
j ,pw′L

j
)=) K′L

j = KR
i K′R

j = KL
i (=2PAKE(ssid;Pi,pwL

i
,P ′

j ,
˜

pw′R
j
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p̃wR
i Pi Pi pwL

i
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i
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i−1

K̃i Ki

XL
i (=KL

i
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i+1⊕Ki+1=)XL
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i−1 Pi−1 KR

i−1 = KL
i Pi /////////////Ki Pi KR
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i+1 Pi+1 pwL
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pwL
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i+1

XL
i−1(=KL
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Fig. 5. Merging two Groups: (1) represents the former group (P ′
1, P

′
2, . . . , P

′
m); (2) rep-

resents the former group (P1, P2, . . . , Pn); (3) is the proper merge protocol, between
the inviter Pi and the invited P ′

j

other members of each subgroup, to enable them derive the new key. These other
players only participate passively, listening to broadcasts so as to learn the values
needed to compute the new key of the merged group.

This merge protocol is thus only partially contributory since Pi and P ′
j are

the only players participating and exchanging messages. Furthermore, it is not
forward-secure since the players of both groups become able to compute the
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former key of the other group thanks to the values broadcasted by Pi and P ′
j .

Also note that we could simplify this protocol by merging the commitments,
signatures and MACs, doing only one for each player. But we chose to keep the
protocol symmetric, the values x̃ representing roughly the unnecessary values
(of the vanishing players, see the next paragraph) and the values x representing
roughly the needed values.

We claim that after this execution, the players will find themselves in a similar
situation than after a normal GPAKE protocol. For the moment, this is not the
case since Pi and P ′

j appear twice in the ring (see Figure 5). For both of them,
we have to get rid of one instance of the player. To this aim, once this protocol is
executed, Pi “vanishes” on the left part of (3) in Figure 5, letting the player Pi−1

with a new value XR
i−1 equal to XR

i−1 ⊕ X̃L
i and the player P ′

j with a new value

X ′L
j equal to X ′L

j ⊕ X̃R
i . The new 2PAKE-value shared between them is K̃i. The

same thing happens on the right part of (3) in Figure 5: P ′
j vanishes, letting the

player P ′
j−1 with the new value X ′R

j−1 equal to X ′R
j−1 ⊕ X̃ ′L

j and Pi with the new

value XL
i equal to X̃ ′R

j ⊕XL
i . The new 2PAKE-value shared between them is K̃ ′

j .
This way, it is as if the players Pi and P ′

j had only participated once in the new
protocol: Pi between P ′

j−1 and Pi+1, and P ′
j between Pi−1 and P ′

j+1. Finally,
we will only need to keep the following values: K ′

j secretly for P ′
j , Ki secretly

for Pi, and XR
i−1 = XR

i−1 ⊕ X̃L
i , X ′L

j = X ′L
j ⊕ X̃R

i , X ′R
j−1 = X ′R

j−1 ⊕ X̃ ′L
j and

XL
i = X̃ ′R

j ⊕XL
i publicly. The values of the rest of the group remain unchanged.

This will allow to do another join of merge iteratively.
Pictorially, this leads to the new following situation. First, the left part of (3)

in Figure 5 without Pi:

Pi−1(pw
R
i−1) P ′

j(pw
′L
j ) P ′

j(pw
′R
j ) P ′

j+1(pw
′L
j+1)

K̃i K′
j K′R

j = K′L
j+1

XR
i−1 ⊕ X̃L

i = Ki−1 ⊕ K̃i X ′L
j ⊕ X̃R

i = K̃i ⊕K′
j X ′R

j X ′L
j+1

with K̃i, K ′
j

$← {0, 1}k, X ′R
j = K ′

j ⊕K ′R
j and X ′L

j+1 = K ′L
j+1 ⊕K ′

j+1. Then, the

right part of (3) in Figure 5 without P ′
j (with K̃ ′

j, Ki
$← {0, 1}k, XR

i = Ki⊕KR
i

and XL
i+1 = KL

i+1 ⊕Ki+1):

P ′
j−1(pw

′R
j−1) Pi(pwL

i ) Pi(pw
R
i ) Pi+1(pw

L
i+1)

K̃′
j Ki KR

i = KL
i+1

X ′R
j−1 ⊕ X̃ ′R

j = K′
j−1 ⊕ K̃′

j XL
i ⊕ X̃ ′R

j = Ki ⊕ K̃′
j XR

i XL
i+1

Again, all the other values of the rest of the group remain unchanged.

Forward-Secure Fully-Contributory Protocol. The scheme presented in
the previous section does not provide forward secrecy since the players in one
group learn enough information to compute the previous key of the other group.
It is also not fully contributory because Pi and P ′

j are the only players to actively
participate in the merge protocol: they have full control over the value of the
new group session key. In order to achieve these goals, we make two significant
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changes to the above protocol. These changes, presented in the full version [6]
for lack of space, are two-fold: First, to obtain the contributiveness, we impose
to each player of both groups to participate in the later phases of the protocol,
issuing a new fresh value Kk or K ′

�; Second, in order to achieve forward secrecy,
we change the way in which we compute the local key values (all the K’s used by
a user) by using the initial ones as the seed or state of a forward-secure stateful
pseudorandom generator [13] and then use this state to generate the actual K’s
values, as well as the next state.

6 Implementation Considerations

The protocols that have been described above were designed for their security
properties, and for the quality of the proof of security. When it comes to practical
implementations, some additional considerations have to be made.

Definition of the Group. We will consider a use case where the participants
to the GPAKE are already members of a chat room, which is the communication
means used to broadcast messages. The protocol has to be resistant to the fact
that some members of the chat room are idle and will not participate to the
GPAKE, and also that some members of the chat room might have difficulties
to participate because of connectivity issues: this is thus a nice property the
functionality (granted the split functionality) does not need to know the list of
participants in advance.

Therefore, instead of ending the initialization phase when a number n of
participants is reached (as in previous protocols), we end the initialization phase
at the initiative of any of the participants or a timeout. From a practical point of
view, it means that in the algorithm of Figure 4, going to step (2a) does not need
that all commitments are received, on the opposite, these commitments will be
used to dynamically define the group after a certain time, possibly defined by a
timeout: the members of the chat room that have sent their commitments.

Another practical issue is the ordering on the ring, which defines the neighbors
of each participant. Since the group is not known in advance, this ordering will
be defined from the commitments sent in (1): e.g., the alphabetical order.

Authentication within the Group. As explained in the description of the
protocol, is accepted as a member of the group anyone that shares a password
with another member of the group. This is the best authentication that can be
achieved for a GPAKE because a unique shared key is generated for the group.
But after the protocol execution, each user owns a pair (SKi, V Ki) of
signing/verification key. It can be used by each participant to sign his/her own
messages, to avoid that one participant impersonates another. But then, a (multi-
time) signature scheme has to be used, with some formatting constraint to avoid
collisions between the use for the GPAKE protocol and the signature of a message.

Removal of one Participant. This protocol provides the functionality of
adding members to the group in the full version [6], but does not provide the
functionality of removing members. Indeed, while there is a possibility of telling
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two participants apart (cf. previous paragraph) there is no possibility of truly
authenticating a participant. Only the alias (the signing keys) is known.

A functionality that could be implemented is the ban of a participant identified
by his/her alias, e.g., because this participant has sent inappropriate messages.
However, because all the random Ki are known at step (3), it is necessary to
generate new random values that are not known by the banned participant.
Therefore, the recommended way to remove one participant from a group is to
start again the GPAKE protocol with shared passwords that are not known by
this participant.
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