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Preface

The RSA conference was initiated in 1991 and is a major international event for
cryptography and information security researchers as well as the industry related
to these disciplines. It is an annual event that attracts hundreds of vendors and
thousands of participants from industry and academia. Since 2001, the RSA
conference has included the Cryptographers’ Track (called the CT-RSA), which
enables the forefront of cryptographic research to be presented within the formal
program of the conference. CT-RSA has become a major publication venue for
cryptographers worldwide.

This year the RSA conference was held in San Francisco, California, during
February 14–18, 2011. The CT-RSA conference servers were running in the Uni-
versity of Athens, Greece, and we received 82 submissions out of which 3 were
withdrawn. Every paper was reviewed by at least three committee members. The
Program Committee members were also allowed to submit up to one paper for in-
clusion in the program. Such papers were reviewed by at least five committee mem-
bers. The reviewing of the submissions proceeded in two stages: in the first stage
papers were read individually by committee members without knowledge of other
committee members’ opinions. In the second stage, all reviews were made available
to committee members and discussion through a Web bulletin board ensued. After
a total of seven weeks the committee work concluded and a selection of 24 papers
was made for inclusion in the conference program. In a small number of cases a final
round of reviewing took place as some of the papers were accepted conditionally on
specific changes that were requested by the Program Committee. The final revised
versions of the accepted papers is what you will find in this volume.

We were very pleased this year to have three keynote talks included in the CT-
RSA program. Dan Boneh from Stanford University gave a talk on computing
with signed data. Dickie George of the Information Assurance Directorate at
NSA spoke on NSA’s role in the development of DES. Adi Shamir from the
Weizmann Institute of Science gave a talk on the role of academia and industry
in the design and analysis of DES. The talk also featured a mini-talk by Martin
Hellman on that subject.

A number of people played key roles in the success of the conference this year.
First and foremost I would like to thank the authors of all submitted papers;
without their contributions the conference would not have been possible. Second,
a special thanks is due to the members of the Program Committee and the
subreviewers that invested a lot of their time in carefully reading the submitted
papers and contributing to the discussion of each paper. The submission and
review process was supported by the Web submission software written by Shai
Halevi. I would also like to thank Bree LaBollita and Amy Szymanski, who
worked very hard to properly organize the conference this year.

December 2010 Aggelos Kiayias
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Secure Set Intersection with Untrusted
Hardware Tokens
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Abstract. Secure set intersection protocols are the core building block
for a manifold of privacy-preserving applications.

In a recent work, Hazay and Lindell (ACM CCS 2008) introduced the
idea of using trusted hardware tokens for the set intersection problem,
devising protocols which improve over previous (in the standard model
of two-party computation) protocols in terms of efficiency and secure
composition. Their protocol uses only a linear number of symmetric-
key computations and the amount of data stored in the token does not
depend on the sizes of the sets. The security proof of the protocol is in
the universal composability model and is based on the strong assumption
that the token is trusted by both parties.

In this paper we revisit the idea and model of hardware-based secure
set intersection, and in particular consider a setting where tokens are not
necessarily trusted by both participants to additionally cover threats like
side channel attacks, firmware trapdoors and malicious hardware. Our
protocols are very efficient and achieve the same level of security as
those by Hazay and Lindell for trusted tokens. For untrusted tokens, our
protocols ensure privacy against malicious adversaries, and correctness
facing covert adversaries.

Keywords: cryptographicprotocols, set intersection,untrustedhardware.

1 Introduction

A variety of applications with sophisticated privacy requirements can be based on
secure set operations, in particular secure set intersection. Examples are versatile
and range from government agencies comparing their databases of suspects on
a national and international basis, to competing enterprises evaluating their
performance on various aspects (items, deployed processes), to dating services.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 M. Fischlin et al.

The underlying protocols typically involve two mistrusting parties who com-
pute an intersection of their respective sets (or some function of them). As we
elaborate in §1.1 on related work, cryptographic research has proposed several
solutions to this problem, each having its own strengths and weaknesses; in par-
ticular, the efficiency aspect is crucial for deployment in real-life scenarios: While
software-based solutions use expensive public-key operations, it is also possible
to incorporate a tamper-proof hardware token into the protocol, yielding more
efficient schemes and/or avoiding impossibility results. However, this hardware-
based model requires a strong trust model, i.e., a token trusted by all parties.

Background. In this paper we will focus on a recent proposal by Hazay and
Lindell [1] that aims to design truly practical and secure set intersection protocols
by introducing a new party, a (tamper-proof) hardware token T . Here, one party,
called the issuer A, programs a key into the token T which protects this key from
being accessible by the other party B. At the same time, the manufacturer of
the token ensures that the token correctly computes the intended function, i.e.,
A can only choose the secret key but cannot interfere with the token’s program.
The protocol is very efficient and requires the involved parties and the token
to perform a few pseudorandom permutation evaluations, thus disposing of any
public-key operations and/or random oracles as in previous efforts (cf. §1.1).

The use of the token in [1] is justified when trusted hardware manufacturers
are available (e.g., manufacturers which produce high-end smartcards that have
FIPS 140-2, level 3 or 4 certification). The security of the scheme is proven in
the Universal Composability (UC) model [2], guaranteeing security even when
composed with other protocols. It is important to note that today’s high-end
smartcards may have a sufficient amount of resources for executing the entire
ideal functionality in a relatively simple use-case such as set intersection, al-
though probably not on relatively large inputs. However, doing so would require
to program the smartcard to implement this specific functionality. The protocols
of [1] as well as the protocols we propose, on the other hand, can be run in prac-
tice by using cheap smartcards: they assume limited computation capabilities
(only symmetric-key operations) and constant storage (see also [1]).

Motivation. The security proof of the scheme of [1] considers the universal
composability framework inherently relying on the trustworthiness of the token,
since it is assumed that both parties fully trust the token. This assumption,
though, is critical with regard to several aspects regarding to what level tokens
can be trusted in practice.

First, even extensive testing of the token cannot provide protection against
errors and backdoors, introduced accidentally or deliberately in the underlying
hardware and software stack running on it. A well-known example is the “Pen-
tium bug” which caused the floating point division unit of the Intel PentiumTM

processor to compute slightly wrong results for specific inputs [3]. Such flaws in
the hardware can be exploited in so called “bug attacks” [4] to break the se-
curity of the underlying protocol. Moreover, although appropriate certification
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might help to ensure, to some degree, that at least the design of the token is
backdoor-free, it is still unclear how to protect against hardware Trojans being
maliciously introduced into the hardware during the manufacturing process, par-
ticularly because chip production is increasingly outsourced to other countries
which are potentially untrusted or have their own evaluation standards.

Another threat concerns hardware and side-channel attacks allowing to break
hardware protection mechanisms. Modern commercial smartcards have been
equipped with a variety of measures to counter standard side-channel attacks.
However, the severeness of attacks depends of course on the effort (see, e.g., the
recently reported hardware attack on the Trusted Platform Module (TPM) [5]).

Our Contribution and Outline. After summarizing related works on set
intersection and token-based protocols in §1.1, we introduce our setting and the
employed primitives in §2, and review the basic protocol of [1] in §3. Afterwards,
we present the following contributions.

We revisit the model of a fully trusted hardware token and provide several
protocols for secure set intersection that make use of untrusted hardware tokens
and fulfill different security targets. In our protocols only one party A trusts
(some of) the hardware token(s) but the other party B does not. More concretely,
we present a stepwise design of token-based set intersection protocols:

1. Guaranteeing the privacy of B’s inputs in the malicious adversary model,
using a single token trusted only by the issuer A (§4).

2. Additionally guaranteeing the correctness of B’s outputs in the covert ad-
versary model, using a single token trusted only by the issuer (§5).

3. Additionally preserving the privacy of A’s inputs in the malicious adversary
model, using multiple tokens of which at least one is trusted by issuer A (§6).

Moreover, our protocols have the “fall-back” security guarantees to the protocol
of [1]: in case both parties fully trust the token, our protocols still provide the
same security properties as [1]. While the original protocol of [1] does not provide
any security guarantees in the case of untrusted token, our protocols achieve
input privacy for malicious adversaries and output correctness for a covert token,
i.e., any cheating attempt of the token may breach correctness (but not privacy)
and is detectable with high probability.

1.1 Related Work

Set Intersection without Hardware Tokens. Several protocols for two-
party set intersection secure in the semi-honest model have been proposed
[6, 7, 8, 9, 10]. Protocols with security against malicious adversaries are given
in [6,7, 11,12,8, 13,14, 15,16,17]. A detailed summary and performance compar-
ison of most of these protocols is given in [9]. Protocols with covert security are
given in [12, 16]. All these protocols that do not employ hardware tokens need
a non-negligible number of computationally expensive public-key operations [6].
In contrast, the protocols of [1] and our protocols perform a linear number of
fast symmetric-key operations only.
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Set Intersection with Hardware Tokens Trusted by Both Parties. HW
tokens with limited capabilities that are trusted by both parties have been
used to construct more efficient protocols for verifiable encryption and fair ex-
change [18], and secure function evaluation [19, 20]. Additionally, government-
issued signature cards have been proposed as setup assumption for UC [21].
Further, semi-honest tamper-proof hardware tokens can serve as basis for non-
interactive oblivious transfer and hence non-interactive secure two-party com-
putation, called one-time programs [22, 23]. Our tokens need not to be trusted
by both parties. In the rest of the paper we will extend the token-based set
intersection model and protocol proposed recently in [1] which we summarize
in §3.

Set Intersection with Hardware Tokens Trusted by the Issuer Only. HW
tokens trusted by their issuer only were used as setup assumption for construct-
ing UC commitments [24,25,26,27], and information-theoretic one-time programs
[28]. These protocols use HW tokens merely to overcome known impossibility re-
sults, but do not claim to yield efficient protocols for practical applications.

To improve the performance of practical two-party secure function evalua-
tion protocols, garbled circuits can be generated efficiently using a HW token
trusted by its issuer only [29]. Furthermore, truly efficient oblivious transfer pro-
tocols with security against covert adversaries were proposed in [30]. We adapt
techniques of [30] for constructing our protocols for secure set intersection.

2 Preliminaries

We denote the security parameter for symmetric schemes by t. A pseudorandom
permutation (PRP) F is an algorithm which takes as input a key k ∈ {0, 1}t and
describes a “random-looking” permutation Fk(·) over D = {0, 1}t. If we drop the
requirement on F being a permutation, then we have a pseudorandom function
(PRF) instead. If it also holds that it is hard to distinguish permutation Fk from
a random permutation given access to both the permutation and its inverse,
then F is called a strong pseudorandom permutation (SPRP). Note that AES,
for example, is believed to be a strong PRP.

2.1 The Setting for Token-Based Set Intersection Protocols

The general setting for the set intersection protocols we consider is as follows:
Two parties, A and B would like to compute the intersection F∩(X, Y ) = X ∩Y
on their input sets X = {x1, . . . , xnA} and Y = {y1, . . . , ynB} such that only B
obtains the output (while A learns nothing). Note that we assume that the set
sizes are known to both parties. We further assume that elements from X and
Y are from a domain D = {0, 1}t, i.e., X, Y ⊆ D. If needed, larger input data
can be hashed to shorter strings with a collision-resistant hash function.

Our protocols have the following general structure: party A issues, i.e., buys,
one or more hardware tokens T1, . . . , Tn, where Ti is manufactured by the hard-
ware manufacturerMi. It initializes the tokens Ti, and sends them to B. In the
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case of protocols with a single token we simply call the token T and its manufac-
turerM. In our model, any of the participating parties may be dishonest (where
a dishonest token T refers to a maliciously produced token), and all malicious
parties are controlled by a single adversary. We say that a party trusts T iff the
other party cannot collude with M to produce a dishonest or breakable token.
We consider static corruptions only.

To model hardware-based access we assume that, once a token is in posses-
sion of B, A cannot communicate with the token anymore. In particular, the
adversary may construct a malicious token, but may not interact with the token
anymore, once it is sent to B. The adversary can only communicate with the
token through messages sent to and received from B. Analogously, two tokens
cannot communicate directly.

2.2 Security Models

While we denote by A,B, and T respectively the first (left) player, the second
(right) player and the token, we will denote by AI and BI the players of the ideal
world where parties just send their inputs to a set intersection functionality that
then sends the intersection of the received inputs to BI .

We use different security notions. First, we consider unconditional privacy of
the input of a player, i.e., regardless of the actions of the other malicious player,
the input of an honest player will remain private in the sense that anything that
can be computed about it can also be computed in the ideal world.

When we can carry a real-world attack mounted by an adversary during
a protocol run into an ideal world attack, we achieve simulation-based secu-
rity. If simulation cannot be achieved, we will instead downgrade to the weaker
indistinguishability-based security notion. This last notion means that a malicious
player cannot guess which input the other player has used during a protocol run,
even when the honest player uses one of two inputs determined by the adversary.

The traditional notion of security through realizing an ideal functionality
requires the simulation of any real-world attack into an ideal-world attack, and
that the outputs of honest players do not deviate in the two worlds. We then say
that the protocol securely computes (or evaluates) the functionality F∩(X, Y ),
and often specify the adversary’s capabilities further, e.g., that the token is
trusted or that it cannot be compromised by B. This classical notion implicitly
includes a correctness requirement: the output of a honest player depends only
on its input and the implicit input used by the adversary in the protocol run.

When our protocols cannot achieve the correctness and simulation require-
ments simultaneously, we will downgrade the standard security notion to covert
security [31], which means that the adversarial behavior can be detected by the
honest player with some non-negligible probability ε, called the deterrence fac-
tor.1 In all applications where the reputation of a player is more important than

1 In addition the protocol must be detection accurate in the sense that in real-world ex-
ecutions no honest party accuses another honest party of cheating. All our protocols
obey this property, albeit we do not mention this explicitly.
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the output correctness of another player (e.g., where established enterprises of-
fering services to citizens), this notion of covert security suffices, since there is a
deterrence factor that discourages malicious actions.

We note that our protocols provide stronger security guarantees than security
against the strongest notion of covert adversaries defined in [31], as no informa-
tion about honest players’ inputs is leaked, independently of whether cheating
was detected or not. That is, in our case the ideal-world adversary can issue a
cheat command (in case he wants to cheat) and this is announced to the parties
with probability ε – but unlike in [31] the ideal-world adversary here does not
get to learn the honest parties’ inputs in case no cheat is announced. Still, in
such a case we provide no correctness guarantee whatsoever.

3 Both Parties Trust Token [1]

We now review the model and protocol of [1]. Our models and protocols presented
later extend on these to cope with untrusted hardware.

Model of [1]. In the model of [1], the hardware token T is assumed to hon-
estly compute the intended functionality. The authors of [1] argue that this
assumption is justified if highly trusted hardware manufacturers are available,
e.g., manufacturers which produce high-end smartcards that have FIPS 140-2,
level 3 or 4 certification. The token T is as reliable as its manufacturerM and,
as only T is involved in the protocol but not M, this security assumption is
weaker than usingM as a trusted third party.2

Set Intersection Protocol of [1]. The set intersection protocol of [1], depicted
in Fig. 1, works as follows: In the setup phase, A initializes the HW token T
with a random key k, a random message OK, and an upper bound on the size of
B’s input set nB; A sends T to B. In the online phase, B can query the token to
evaluate Fk (where F is a SPRP as defined in §2) on each of its inputs. If T has
been queried nB times, it invalidates k (e.g., by deleting it)3 and outputs OK to
B who forwards it to A. If OK is correct, A sends the evaluation of Fk on each
of his inputs to B. Finally, B computes the intersection by comparing the values
obtained from T with those from A. (Note that at that point B cannot query T
anymore, i.e., all queries to T were independent of A’s inputs.)

Security. According to Theorem 3 of [1], the above protocol UC-securely real-
izes the set intersection functionality when T is honest.

2 This model is somewhat related to the common reference string (CRS) model in
which a party trusted by all players generates a string according to a given distri-
bution. The string is later used in the protocol. While a CRS is a static information
generated before protocol executions, the trusted token will offer a trusted function-
ality during the execution of a protocol.

3 This ensures that B gains no advantage when querying T in an invalid way.
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T

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

Setup Phase:
k,OK ∈R D
init T : k,OK, nB
Online Phase: ∀yj ∈ Y :

ȳj = Fk(yj)

invalidate k
OK′ = OK

T
yj

OK′′

ȳj

OK′′
OK′′ ?

= OK
X̄ = {Fk(x)}x∈X X̄ X ∩ Y = {yj |ȳj ∈ X̄}

done

OK′′ = OK′

Fig. 1. Set Intersection Protocol of [1]: token T is trusted by both parties

Efficiency. T performs nB evaluations of F . The communication in the online
phase contains the OK message from B to A, and a message containing nAt bits
from A to B. The overall online communication complexity is therefore O(nAt).

4 Only Issuer Trusts Token: Privacy of B’s Input

The protocol of [1] assumes that T is fully trusted by both parties. Obviously,
when one of the parties can break into T (e.g., by physical attacks or by colluding
with its manufacturerM), they can break the correctness or the privacy of the
protocol. In the following we extend the protocol of [1] to make it non-interactive
and guarantee privacy of B’s inputs even if A and T are malicious.

Model. We consider the trust model where B does not trust T to behave
correctly, i.e., A can collude with the hardware manufacturer M to produce a
bad token T . This model seems justified, as B is required to use a hardware
token which is provided by A, whom B might not trust.

Problem 1 (A colludes with M to break privacy of B’s inputs). In the protocol
of Fig. 1, the only message in which information about B’s inputs can be leaked
to A is the OK message. A corrupt player A can construct a corrupt token T
that changes the OK message based on the inputs that B feeds to T (i.e., OK is
used as covert channel), or T aborts the protocol (e.g., refuses to output OK).

Protocol. Problem 1 arises in the protocol of [1], as B first provides his input
Y to T , T answers B and finally B sends a message to A which depends on T ’s
answer (OK). We eliminate this source of leakage from T to A in the protocol
as shown in Fig. 2, by making the protocol non-interactive: First, A sends the
permutations X̄ of its inputs (as before). Afterwards, B obtains its permuted
inputs Ȳ from T by sending its inputs Y to T . In contrast to the original
protocol, T cannot reveal the permuted inputs ȳj directly to B as otherwise
B, who already knows X̄ now, could already compute parts of the intersection
X ∩ {y1, . . . , yj} and adaptively change his input depending on this. Instead, T
encrypts each ȳj by XORing it with a pseudo-random pad pj which is derived
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by computing a pseudo-random function fs(j) keyed with a fixed secret key s.
After having queried for all elements in Y , B has an encrypted copy of Ȳ . Now,
T releases the pseudo-random pads pj with which Ȳ is encrypted to B, who can
finally recover Ȳ and compute X ∩ Y as before.

T

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

Setup Phase:
k, s ∈R D
init T : k, s, nB
Online Phase:

pj = fs(j)
ȳ′j = Fk(yj)⊕ pj

T

yj

pj

ȳ′j
X̄ = {Fk(x)}x∈X

X̄ ∀j ∈ {1, .., nB}:

done invalidate k
pj = fs(j)

ȳj = ȳ′j ⊕ pj
X ∩ Y = {yj |ȳj ∈ X̄}

afterwards

Fig. 2. Set Intersection Protocol with Privacy of B’s Inputs (Problem 1) w.r.t. malicious
adversaries: token T is not trusted by B

Theorem 1. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 2:

1. securely evaluates F∩(X, Y ) w.r.t. a malicious B that cannot break into T ;
2. keeps B’s input unconditionally private in the indistinguishability sense w.r.t.

a malicious A;
3. securely evaluates F∩(X, Y ) when both parties trust the token.

Proof. To prove Theorem 1 we treat each corruption case separately.

A is corrupted and T is trusted by A and B. As noted above, non-interactivity
implies that B’s input is protected unconditionally from a malicious A. Here
however, we can even prove unconditional security in a simulation-based sense,
constructing an ideal-world adversary AI that simulates in the ideal world the
attack carried out by A in the real world. The difference here that allows us to
achieve such a stronger security notion is that since the token is trusted, it has
not been produced by A, and therefore A has only black-box access to it. Thus,
given a real-world adversary A, we can construct an ideal-world adversary AI

that includes A and is able to read and write on its communication channels,
including the ones that are supposed to be used for the communication with the
token. Notice that since the token is trusted, from the fact that it answers to
B’s queries, it must be the case that A uploads to T both k and s – otherwise
T would be in an inconsistent state and would not play with B (that therefore
would just abort). Thus, AI will obtain k and s from the initialization of the
token performed by A. Then, AI reads the vector of messages X̄ and inverts each
x̄j ∈ X̄ obtaining the original vector X that corresponds to the set that A would
play in the real world. Then, AI plays X in the ideal world. As a consequence,
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the ideal-world honest player BI will obtain the same input obtained by a real-
world honest player B, that plays the protocol with a trusted token. Finally AI

outputs whatever A outputs. As the joint distribution of the view of A and the
output of B in real and ideal world are clearly identical, property 1 holds.

A is corrupted and T is trusted by A but not B. Since the protocol is non-
interactive, A does not get any message from B and therefore B’s privacy is
protected unconditionally. However, we cannot construct and ideal-world adver-
sary AI since we cannot extract A’s input. Therefore we obtain unconditional
indistinguishability of B’s private input, and property 2 holds.

B is corrupted. To prove that A’s input remains private in a simulation-based
sense against a real-world malicious B we construct an ideal-world adversary BI

that internally simulates a protocol run to B, extracts its input and plays the
extracted input in the ideal world. BI has control over the communication chan-
nels used by B to communicate with T , and thus reads all queries yj performed
by B, sending as answer random values ȳ′

j . Moreover, BI sends to B a random
vector X̄ therefore simulating the message of the honest real-world A. As soon
as all elements of B have been sent to the (simulated) token, BI groups all the
elements in a set Y that is sent to the ideal functionality. BI then obtains from
the ideal functionality the intersection of Y with AI ’s input, where AI is the
honest player of the ideal model. Let Z be the output of BI in the ideal world. BI

now aims at giving Z to B in the internal execution of the real-world protocol.
To do so, it performs the last nB steps of the protocol sending values p1, . . . , pnB

as follows: if yj is in Z then set pj = y′
j⊕ ȳj, else set pj equal to a random string.

Then BI outputs whatever B outputs.
Notice that the only difference in the view of B between the real-world and

the simulated executions is that the former uses the SPRP F and the PRF f ,
while the latter uses random bits. We now show that any distinguisher between
the two views, can be used to build either an adversary for F or an adversary f .

Consider the hybrid experiment G in which the real-world execution is played
but F is replaced by random strings, still keeping consistency so that on the same
input F produces the same output. Clearly G can be run in polynomial time and
is computationally indistinguishable from the real-world execution, otherwise we
have immediately a forgery for the SPRP F .

Consider now the next hybrid game G′ in which all evaluations of f are
replaced by random bits, still keeping consistency as above. Again, any distin-
guisher between G and G′ would immediately produce a forgery for the PRF f .

Finally, consider the simulated execution of the real-world protocol. Both the
message sent over the communication channel (i.e., X̄) and the first bunch of
answers of T (i.e., ȳ′

j) have the uniform distribution and are therefore identically
distributed in both G′ and in the simulated game. The final answers pj received
by B correspond in both the simulated game and in G′ to random messages,
with the only exception of the elements that appear in the intersection. In this
last case the received messages pj correspond precisely to the unique values that
allow B to compute the values in the intersection. This holds both in G′ and in
the simulated execution. This allows us to conclude the proof of property 3. ��
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Efficiency and Token Reusability. While the round complexity of our proto-
col is optimal, compared to the 3 rounds of [1], its computational complexity is
only by a factor of approximately 3 worse. Overall, the computational and stor-
age requirements for T are the same in both protocols, namely symmetric-key
operations (SPRP and PRF), and a small constant amount of secure storage.

Our protocols can be extended to reuse the same token for multiple protocol
runs. For this, all information shared between A and T (i.e., the value k and
s) is derived pseudo-randomly from a master-key known by A and T and some
session identifier. The token T keeps track of the next session id using a strictly
monotonic tamper-proof hardware counter which is available in most smartcards
today. Also updating the usage counter nB inside the token is possible via secure
messaging as described in [1].

5 Only Issuer Trusts Token: Correctness of B’s Output

In this section we extend the protocol of §4 to guarantee privacy and correctness
when B does not trust the token. This is formalized by the following problem.

Problem 2 (A colludes with M to break correctness of B’s output). In the pro-
tocols of Fig. 1 and Fig. 2, a corrupt A can enforce B to obtain in the protocol
wrong outputs, i.e., different from X ∩ Y : This can be done by creating a mali-
cious token T that does not compute the permutation F correctly, but computes
another function F ′ which maps multiple values to the same value or even de-
pends on the history of values seen from B.

Although Problem 2 does not affect the privacy of B’s input, the correctness of
B’s output is no longer guaranteed. In many application scenarios this is not a
problem, as a malicious A could also provide wrong inputs to the computation.
However, a malicious token T could also compute a completely different function
which does not correspond to set intersection at all: For example, a malicious T
could output random values once it has obtained a value yi = 0. In this case,
the protocol computes some set Z � X ∩ Y if 0 ∈ Y , and X ∩ Y otherwise.

Protocol. We extend the protocol of Fig. 2 and adapt the oblivious transfer
protocol of [30] to the set intersection scenario. We will therefore obtain both
input privacy against malicious A and correctness against a covert A in the
covert sense: A can actually succeed in violating the correctness of B’s output
with non-negligible probability but at the same time B can detect the cheating
behavior of A with probability 1/2. The update of the protocol goes as follows:
The basic idea is to let T compute two answers (using two different keys K, KT ),
where B can verify the correctness of one answer (B obtains one key KT from
A) without T knowing which one is verified. For this, B randomly chooses and
sends to A a test value rT and a distinct value r. Then, B obtains the test key
KT = Fk(rT ) from A, whereas the other key K = Fk(r) remains unknown to
B (to ensure this, A checks that rT �= r). Afterwards, B sends (r, rT ) to T in
random order such that T can derive K, KT without knowing which of them
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Setup Phase:

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

k, s, sT ∈R D
init T : k, s, sT , nB T

∀j ∈ {1, .., nB} : pj = fs(j)
ȳ′j = FK(yj)⊕ pj
pTj = fsT (j)

ȳ′Tj = FKT (yj)⊕ pTj

yj

(ȳ′j , ȳ
′T
j )

Online Phase:

r
?

�= rT

KT = Fk(r
T )

K = Fk(r)
X̄ = {FK(x)}x∈X

T

X̄,KT

r, rT ∈R D, r �= rTr, rT

b ∈R {0, 1}
if b = 1: flip order of (r, rT ) (r, rT )

K = Fk(r)
KT = Fk(r

T )

if b = 1: flip order of (ȳ′j , ȳ
′T
j )

done invalidate k
pj = fs(j)
pTj = fsT (j)

if b = 1: flip order of (pj , p
T
j )

ȳTj = ȳ′Tj ⊕ pTj
?
= FKT (yj)

ȳj = ȳ′j ⊕ pj
X ∩ Y = {yj |ȳj ∈ X̄}

afterwards

(pj , p
T
j )

Fig. 3. Set Intersection Protocol with Privacy of B’s Input and (Covert) Correctness
of B’s Output when T is not trusted by B, and Privacy of A’s input when A trusts T

is known to B. Then, for each element yj ∈ Y , B obtains ȳj = FK(yj) and
ȳT

j = FKT (yj) from T (after removing the pads pj and pT
j as in the protocol of

Fig. 2). As B knows the test key KT it can test the correctness of ȳT
j , whereas T

can only guess whether to cheat on ȳj or ȳT
j . Finally, B computes the intersection

from X̄ and Ȳ as before.
The overall protocol shown in Fig. 3 provides A with input privacy against

a malicious B, which cannot break into the token, and provides B with input
privacy (Problem 1) against a malicious A and T and output correctness against
a covert A and T (Problem 2).

Theorem 2. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 3:

1. securely evaluates F∩(X, Y ) w.r.t. a malicious B that cannot break into T ;
2. securely evaluates F∩(X, Y ) w.r.t. a covert A with deterrence factor ε = 1/2;
3. securely evaluates F∩(X, Y ) when both parties trust the token.

B’s input is still (unconditionally) private even w.r.t. malicious A, as in Prop-
erty 2 of Theorem 1.

Proof (Sketch). To prove Theorem 2 we consider each property individually.

Malicious B that cannot break into T . We show an ideal world adversary BI .
This adversary BI internally runs B simulating also T ’s answers. BI sends to B
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a random vector of messages X̄ and a random key KT . When simulating T ’s
answers before done, BI plays honestly when test queries are performed (i.e.,
using KT for the test queries along with the pseudorandom function indexed
by sT ) and sending random messages otherwise, as already done in the proof of
Theorem 1. When message done has been received, BI plays in the ideal world
the input extracted from the queries received by T and gets back the inter-
section Z. Here BI proceeds by computing values pT

j honestly, but adaptively
computing all final pj values so that the view of B will still be computationally
indistinguishable, precisely as in the proof of Theorem 1.

Note that, since A checks that r �= rT , the pseudorandom keys K and KT are
computationally independent, and can be essentially replaced by independent
random keys. A straightforward hybrid game shows that by the pseudorandom-
ness of F this does not change B’s success probability significantly.

Covert A. Informally, the privacy of B’s input is preserved as A does not obtain
any message from B besides the random values r, rT . The same argument which
has been applied already in the proof of Theorem 1 about protecting B’s input
from a malicious sender, applies here as well. The more interesting difference
however consists now in proving correctness of B’s output in the covert sense:
showing that a success of A in violating the correctness of B’s output can be
detected by B with probability ε = 1/2, and this is achieved through the cut-
and-choose construction of [30].

To formally prove the correctness of B’s output we build a simulator Sim
which plays as an honest B against adversaries AdvA and AdvT who control A
and T , respectively. As the token is not necessarily honest and hence a cheating
AdvA does not need to initialize T at all, Sim cannot learn the token’s keys
k, s, sT from the initialization message sent from AdvA to AdvT . Instead, Sim
determines whether the adversary cheats in the protocol as follows: Sim obtains
both opening keys KT and K from AdvA, by rewinding AdvA and swapping the
order of (r, rT ). Afterwards, Sim can verify whether both values ȳj , ȳ

T
j received

from AdvT are correct. If AdvT tried to cheat (e.g., if the check of ȳT
j failed), Sim

catches T in doing so and issues the cheat instruction. Sim aborts in this case
(losing any correctness guarantee in case the cheat is not announced). Otherwise,
Sim continues to play as honest B and extracts A’s inputs from X̄ using K. Note
that Sim simulates the ideal view of a covert A with deterrence factor ε = 1/2,
because for any run in which Sim does not receive both keys, B would detect
cheating with probability 1/2 in the actual protocol, in which case it too aborts.

A and B trust the token. We now prove that when the token T is trusted,
the protocol actually realizes the set intersection functionality (i.e., both input
privacy in the simulation-based sense and output correctness are achieved). The
proof follows closely the one of Theorem 1, indeed since T is honest, both A’s
and B’s input can be extracted by receiving the queries to T , moreover there is
no issue of correctness since T never deviates from the protocol. The only issue to
mention is that a malicious A could play a wrong third message, sending a wrong
KT . Therefore, the ideal world simulator AI will first check that A’s message is
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well formed playing as honest B, and only in case honest B would have obtained
the output, AI forwards the extracted input to the ideal functionality. ��

Efficiency and Amplifying Deterrence Factor. Overall, the protocol in
Fig. 3 approximately doubles the computation performed by T and the commu-
nication between B and T compared to the protocol in Fig. 2. The hardware
requirements for the token are the same.

In analogy to [30], the deterrence factor ε can be increased by using n test
elements rT

i for which B obtains the corresponding test keys KT
i from A. Now, T

can only successfully guess the key on which to cheat with probability p = 1
n+1

s.t. ε = 1−p is polynomially close to 1 in n. Obviously this is a tradeoff between
deterrence factor and efficiency.

6 Only One Token Trusted: Privacy of A’s Input

Model. In this section we extend the model of §4 so that not only B does not
trust the tokens issued by A, but also B is allowed to collude with all but one
hardware manufacturer without A knowing which one. We show how to detect
cheating in this model.

Problem 3 (B breaks into T to break privacy of A’s inputs). In the protocols
so far, a malicious B who can break into T (e.g., by a successful attack or by
colluding with M who builds a trapdoor for B into T ) can obtain k and invert
F to recover A’s inputs from X̄ .

Protocol. To address Problem 3, we extend the protocol of Fig. 3 to multiple
tokens as shown in Fig. 4: Instead of using one token,A uses two hardware tokens
T1 and T2 manufactured by M1 and M2, respectively. Then, A embeds into
each token Ti a different random key and runs the protocol using the sequential
composition FK′ = FK2 ◦ FK1 instead of FK , i.e., B communicates first with T1
and afterwards with T2. As long as at least one token is resistant against B’s
attacks, B cannot invert FK′ and hence cannot recover A’s inputs.

Theorem 3. If F is a SPRP and f is a PRF, then the protocol depicted in Fig. 4:
1. securely evaluates F∩(X, Y ) w.r.t. a malicious B that cannot break into all

but one token Ti;
2. securely evaluates F∩(X, Y ) w.r.t. a covert A with deterrence factor ε = 1/2;
3. securely evaluates F∩(X, Y ) when both parties can trust all tokens.

Proof (Sketch). The proof of Theorem 3 follows similarly to that of Theorem 2,
but using multiple tokens where B can break into all but one.

Malicious B that can break into all but one token Ti. Assume that B corrupts
token T1 and thus learns k1, s1, and sT

1 . Then security for A follows as in the
proof of Theorem 2 from the trustworthiness of T2, only that we consider the
injectively transformed inputs through Fk1(·). Analogously, if B corrupts T2 then
security follows as before, because the outer function is easy to simulate.
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X ∩ Y = {yj |ȳ2,j ∈ X̄}

r
?

�= rT

KT
i = Fki

(rT )
Ki = Fki(r)
X̄ = {FK2(FK1(x))}x∈X

Online Phase:

Ti

r, rT ∈R D, r �= rTr, rT

X̄,KT
1 ,K

T
2
b ∈R {0, 1}
if b = 1: flip order of (r, rT )
for i ∈ {1, 2}: (r, rT )

Ki = Fki(r)
KT

i = Fki(r
T )

Setup Phase:

A
X = {x1, . . . , xnA}

B
Y = {y1, . . . , ynB}

for i ∈ {1, 2}:
ki, si, s

T
i ∈R D

init Ti: ki, si, sTi , nB T1, T2

∀j ∈ {1, .., nB} :

pi,j = fsi(j)
ȳ′i,j = FKi(yi,j)⊕ pi,j
pTi,j = fsTi (j)

ȳ′Ti,j = FKT
i
(yi,j)⊕ pTi,j

yi,j

(ȳ′i,j , ȳ
′T
i,j)if b = 1: flip order of (ȳ′i,j , ȳ

′T
i,j)

yi,j =

{
yj if i = 1

ȳi−1,j else

afterwards done invalidate ki
pi,j = fsi(j)
pTi,j = fsTi (j)

(pi,j , p
T
i,j)if b = 1: flip order of (pi,j , p

T
i,j)

ȳTi,j = ȳ′Ti,j ⊕ pTi,j
?
= FKT

i
(yi,j)

ȳi,j = ȳ′i,j ⊕ pi,j

Fig. 4. Set Intersection Protocol with Privacy of B’s Inputs, (Covert) Correctness of
B’s Output and Privacy of A’s Inputs when A trusts at least one Token

Covert A. The only message A obtains from B are the random values r, rT which
do not depend on B’s inputs, and this proves B’s input privacy. For correctness
of B’s output, we observe that only one token can cheat while the other behaves
correctly such that the probability of being caught remains 1/2. Alternatively,
the two tokens could run a combined cheating strategy: token T1 which is queried
first can only guess on which of the two values to cheat without being detected
with probability 1/2. In case cheating is not detected, T1 can transfer information
on which value it cheated successfully to T2 in the value ȳ1,j. However, the
combined cheating strategy will still be caught with probability at least 1/2.

A and B trust all tokens. In this case the protocol realizes the set intersection
functionalities (i.e., both input privacy in the simulation-based sense and output
correctness are achieved). The proof is similar to that of Theorem 2. ��

Multiple Tokens and Efficiency. The protocol in Fig. 4 can be generalized
to n ≥ 1 tokens T1, . . . , Tn manufactured by M1, . . . ,Mn, where a malicious B
is able to break all but one token. For n = 1, the protocol is equivalent to the
protocol of Fig. 3, where B cannot break into the single token. With n tokens,
the protocol in Fig. 4 is essentially a n-times repetition of the protocol in Fig. 3.
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Abstract. We present a new framework to design secure two-party com-
putation protocols for exponentiation over integers and over ZQ where Q
is a publicly-known prime. Using our framework, we realize efficient pro-
tocols in the semi-honest setting. Assuming the base is non-zero, and the
exponent is at most Q/2 for the ZQ case, our protocols consist of at most
5 rounds (each party sending 5 messages) and the total communication
consists of a small constant number (≤ 18) of encrypted/encoded ele-
ments in ZQ. Without these assumptions, our protocols are still more ef-
ficient than a protocol recently proposed by Damg̊ard et al. in TCC 2006
(24 vs. > 114 rounds, ≈ 279�+12t for an error rate of 2−t vs. > 110� log �
secure multiplications, where � is the bit length of the shares).

Our protocols are constructed from different instantiations of our
framework with different assumptions (homomorphic encryption or obliv-
ious transfers) to achieve different advantages. Our key idea is to exploit
the properties of both additive and multiplicative secret sharing. We also
propose efficient transformation protocols between these sharings, which
might be of independent interest.

Keywords: two-party exponentiation, additive/multiplicative share.

1 Introduction

Secure two-party computation is one of the central topics in cryptography, where
two parties Alice and Bob want to jointly compute a function f(xA, xB) from
their own secret inputs xA and xB without revealing any information about their
inputs. General feasibility results have been developed in the 1980s [1–4], which
the privacy of the honest party holds even if the other party deviates arbitrarily
from the prescribed protocol (the malicious setting). However, the communica-
tion complexity of the protocols depends on the boolean circuit complexity of f ,
which is considered too inefficient for most practical applications.

In many cases such as privacy-preserving data-mining/statistical learning
[5–8] and distributed generation of cryptographic keys [9], the desired function-
ality f involves mostly arithmetic operations such as addition, multiplication,
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division, and exponentiation over the integers and/or the finite fields. More effi-
cient protocols for these basic operations can result in an more efficient protocol
for f . Indeed, a significant effort has focused on designing protocols for these
operations. For examples, Ishai, Prabhakaran, and Sahai [10, 11] studied gen-
eral solutions for secure arithmetic computations over rings, which correspond
to addition/subtraction and multiplication. Bunn and Ostrovsky [6] designed a
division protocol, which is the essential part of their k-means clustering protocol.
Damg̊ard et al. [12] studied the exponentiation operation over integers modulo
a public prime Q and gave the only constant-round protocol in this setting.

Information theoretical security is impossible for two-party computation in
the plain model even if we only consider security against “semi-honest” adver-
saries [3, 13]. Hence, sending certain encrypted/encoded messages is necessary.
For addition and multiplication, we know secure protocols with a small constant
number of rounds involving a constant number of encrypted elements. However,
for integer division and exponentiation, no efficient protocol that sends only a
constant number of encrypted elements is known. (This is possible using a fully
homomorphic encryption scheme [14], but the current candidates [14, 15] are
very inefficient.) Indeed, there is no constant round protocol for division, and
the best known protocol for exponentiation [12] requires a large constant number
of rounds (> 114) and more than 110� log � secure multiplications1, where � is
the bit-length of the inputs, which are expensive for some applications.

Problem Statement. Motivated by building more efficient protocols for basic
operations, we study semi-honest secure exponentiation over different domains
with the goal of achieving efficiency comparable to multiplication. We remark
that our protocols can be made secure against malicious adversaries by standard
but rather expensive techniques such as zero-knowledge proofs. The possibility
of an efficient security-strengthening transformation is outside our scope.

Our setting of secure two-party integer exponentiation is as follows. Two par-
ties Alice and Bob receive inputs as secret shares of integers x and y, and the
goal is to jointly compute a secret share of xy. As usual, a predefined upper
bound M on the result of computation is necessary.2 For example, we are guar-
anteed that xy ≤M . Given M , we can choose a (publicly known) prime Q which
is sufficiently large (say Q > M2) and embed the integers into ZQ. Namely, we
associate integers {0, 1, 2, . . . , Q−1} with elements in ZQ in a natural way, which
induces an ordering on ZQ. The shares are taken to be additive shares over ZQ

– the input to Alice and Bob are (xA, yA) and (xB , yB) respectively such that
x = xA + xB mod Q and y = yA + yB mod Q, and the output of Alice and
Bob is share zA and zB respectively such that zA + zB = xy mod Q.

We also consider modular exponentiation over ZQ, to compute additive shares
of xy mod Q, from additive shares of x and y over ZQ. Now, the exponent y can

1 These come from the bit-decomposition which dominates the complexity [12].
2 An example is unsigned int in C++ which sets M = 232 − 1. We need to avoid

overflow during the computation.
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be any integer in {0, 1, . . . , Q−1}, while the exponent for integer exponentiation
is restricted to y ≤M � Q.

Our Results and Techniques. We present a new framework to design semi-honest
secure two-party exponentiation protocols for the above two settings. The key
idea is to exploit the properties of both additive and multiplicative secret sharing.
We also propose efficient protocols for transformation between these sharings,
which might be of independent interest. Using our framework, the resulting
protocols for integer exponentiation (of non-zero base) use at most 5 rounds
(each party sends at most 5 messages) and exchange a small constant number of
encrypted/encoded elements. For modular exponentiation over ZQ, the resulting
protocols improve the efficiency over the protocol of Damg̊ard et al. [12], and
achieve essentially the same efficiency as the integer exponentiation setting when
the exponent is at most Q/2. A summary of our results is given in Table 1.

We present two implementations basing on homomorphic encryption schemes
and oblivious transfers (OTs) (the latter uses the noisy encoding technique of
Ishai, Prabhakaran, and Sahai [11]). All our protocols share the same framework
and hence have similar round complexity. In the following, we elaborate the
advantages of our different implementations.

– Homomorphic encryption-based approach achieves the best efficiency in
terms of communication and computation.

– Oblivious transfers-based approach inherits the versatility of OTs [10]. Our
protocols can be realized by many different number theoretic assumptions
or even reach information-theoretic security with physical assumptions (e.g.,
binary symmetric channel). Furthermore, OTs can be precomputed [10, 11]
which makes the online efficiency better than the encryption-based protocol
for certain parameter ranges.

Related Works and Comparison. One can consider secure computation for two-
party or multi-party, and there are differences between semi-honest and malicious
security. We focus on the semi-honest two-party setting, but our framework can
be extended to the multi-party setting (without honest-majority).

There are a variety of settings for exponentiation depending on whether the
base x, the exponent y, and the modulus Q are shared or public. For the most
general setting where x, y,Q are shared among all parties, existing solution [16]
considers (information-theoretic) semi-honest secure multi-party computation
with honest majority, hence it is not trivial to be adapted to the two-party
setting. On the other hand, Damg̊ard et al. [12] considered the same setting as
us, where x and y are shared and Q is public. They mentioned that their results
can be extended to the general setting of shared Q by combining their technique
with [16] and [17]. However, they did not explicitly analyze the complexity of
their solution in this setting. Their construction is based on the existence of
secure multiplication on linear shares over ZQ, so it works for both multi-party
with honest majority and two-party. A simpler setting where only y is private,
x and Q are both public, has been considered [5, 18].
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We summarize our results and the related existing results [12, 16] in Table 1.
The round complexity counts the maximum number of messages Alice or Bob
sends, and the communication denotes the total communication complexity of
the protocol, which is the total umber of “unit messages” (i.e., ciphertexts/noisy
encodings/field elements) sent by the two parties. A “ciphertext” refers to that
produced by ElGamal or Paillier encryption schemes. On the other hand, one
noisy encoding requires sending roughly O(k+ �) field elements (i.e., O(�(k+ �))
bits) and uses O(k+�) calls to OT, where k is a security parameter for a security
level of 2k and � = logQ is the length of elements of the field ZQ. In practice,
depending on the size of field ZQ, the length of ciphertext kEnc can be larger
or smaller than the length of noisy encodings O(�(k + �)). Two-party secure
multiplication can also be implemented in different ways as secure exponentia-
tion, which require 4 “unit messages”. Our results and the result of Damg̊ard et
al. [12] are the only constant-round protocols for secure exponentiation (when
both x, y are shared), and both results work for integer exponentiation and mod-
ular exponentiation modulo a prime3 Q. The result of Algesheimer, Camenisch,
and Shoup [16] is for multi-party with honest majority.

We remark that our results for the general case of modular exponentiation over
ZQ require a zero-test and a comparison sub-protocol. Both of them are quite
expensive in comparison with the rest of our protocol, and in fact, dominate the
complexity of our protocols. In particular, the zero-test protocol due to Nishide
and Ohta [19] requires 4 rounds and 12t secure multiplications to achieve an
error rate 2−t. Their comparison protocol [19] requires 15 rounds and 279� +
5 secure multiplications which is the only reason that makes the number of
communication elements of our protocol depending on the field size.

2 Our Framework

Our framework exploits the properties of both additive and multiplicative secret
sharing. A key observation is that exponentiation is very simple when the base
x is shared in multiplicative form and the exponent y is shared in additive form
(over ZQ−1). All we need is to convert the shares of x and y into the desired form.
We formalize our framework in terms of the protocols as described in Figure 1:

1. Alice and Bob convert their additive shares of (x = xA + xB mod Q) to
multiplicative shares (x = x′A ·x′B mod Q). This corresponds to the protocol
A2M (additive sharing to multiplicative sharing) that converts shares from
the additive form to the multiplicative form.

2. Alice and Bob convert their additive shares of (y = yA + yB mod Q) to
additive shares (y = y′A +y′B mod (Q−1)) with y′A, y

′
B ∈ ZQ−1. This corre-

sponds to the modular reduction protocol ModRed, which converts additive
shares of y over ZQ to ZQ−1.

3 Our results extend to a general modulus N if ϕ(N) is available.
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Table 1. A summary of our results and existing protocols [12, 16] for computing
additive shares of xy mod Q from additive shares of x and y mod Q . (� = log Q is the
length of elements of the field ZQ; k denotes the security parameter to achieve security
2k; t denotes the correctness parameter to achieve an error rate 2−t; kEnc denotes the
ciphertext length of the ElGamal or Paillier encryption schemes. We consider 1 secure
multiplication requires 4 ciphertexts/noisy encodings/field elements, depending on the
implementation. Modular Exp. over ZQ in Sec. 3 is only for a safe prime Q.)

Setting Protocol Rounds Communication
Integer Exp. Sec. 3 5 18 ciphertexts = 18kEnc bits

x �= 0 Sec. 4 3 10 noisy encodings = O(� · (� + k)) bits
Integer Exp. Extending Above Above plus a zero-test
arbitrary x above plus 4 (+12t secure multiplications)

Modular Exp. over ZQ Sec. 3 5 18 ciphertexts = 18kEnc bits
x �= 0 and y ≤ Q/2 Sec. 4 3 10 noisy encodings = O(� · (� + k)) bits

Modular Exp. Extending Above Above plus a zero-test and a comparison
over ZQ for above plus 19 (+12t + 279� + 5 secure multiplications)
general case [12] > 114 > 110� log � secure multiplications

Modular Exp. over [12] O(1) O(� log �) secure mult. (large constants)
a shared secret [16] O(�) O(�2) bits (with a large constant)

3. Alice and Bob jointly compute multiplicative shares of z′ = ((x′A)y′
B ·(xB)′y

′
A)

= z′A · z′B mod Q. This uses the protocol SP (“scalar product”4), which
computes multiplicative shares of (x′A)y′

B · (x′B)y′
A . We have

xy = (x′A)(y
′
A+y′

B)(x′B)(y
′
A+y′

B) = (x′y
′
A

A ) ·((x′A)y′
B ·(x′B)y′

A) ·(x′y
′
B

B ) (mod Q)

by the identity aQ−1 = 1 (mod Q) ∀a ∈ Z∗
Q. The terms x′y

′
A

A and x′y
′
B

B can
be computed locally by Alice and Bob, respectively. As a result, they have
multiplicative shares of xy = (z′A · x

′y′
A

A mod Q) · (z′B · x
′y′

B

B mod Q).

4. Alice and Bob locally compute (z′A · x
′y′

A

A mod Q) and (z′B · x
′y′

B

B mod Q),
and convert the multiplicative shares back to the additive shares. zA + zB =
xy = (z′A · x

′y′
A

A ) · (z′B · x
′y′

B

B ) mod Q. This step requires the protocol M2A
(multiplicative sharing to additive sharing) that converts shares from the
multiplicative form to the additive form.

Our exponentiation protocol is a straightforward composition of the above four
protocols. A formal description is given in Figure 2. Note that a secure multiplica-
tion over ZQ can be composed by two invocations of M2A. Our implementations
of M2A based on homomorphic encryption schemes requires a new idea, which is
inspired by the existing integer sharing schemes [16]. In the rest of the paper, we
will present implementations of the above steps basing on different assumptions.
However, there are two subtleties to be addressed in the next two paragraphs.
4 It is possible to define an “exponential module” in such a way that the cross term

xyB
A · xyA

B is the inner product of two module elements. Indeed, this is the reason
that we call it the scalar product protocol.
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A2M Protocol, denoted as (zA, zB) ← (A(xA), B(xB))A2M.

– Inputs: Alice holds xA ∈ ZQ, and Bob holds xB ∈ ZQ, where x = xA +xB ∈ Z∗
Q.

– Outputs: Alice obtains zA, and Bob obtains zB such that zA · zB = x.

Modular Reduction Protocol, denoted as (zA, zB) ← (A(xA), B(xB); Q)ModRed.

– Inputs: Alice holds xA ∈ ZQ, and Bob holds xB ∈ ZQ, and x = xA + xB ∈ ZQ.
– Outputs: Alice obtains zA ∈ ZQ−1, and Bob obtains zB ∈ ZQ−1 such that

zA + zB = x ∈ ZQ−1.

Scalar Product Protocol, denoted as (zA, zB) ← (A(xA, yA), B(xB, yB))SP.

– Inputs: Alice holds xA ∈ ZQ, yA ∈ ZQ−1 and Bob holds xB ∈ ZQ, yB ∈ ZQ−1,
where xA · xB ∈ Z∗

Q.
– Outputs: Alice obtains zA, and Bob obtains zB such that zA · zB = xyB

A · xyA
B .

M2A Protocol, denoted as (zA, zB) ← (A(xA), B(xB))M2A.

– Inputs: Alice holds xA ∈ Z∗
Q, and Bob holds xB ∈ Z∗

Q, where x = xA · xB ∈ Z∗
Q.

– Outputs: Alice obtains zA, and Bob obtains zB such that zA + zB = x.

Fig. 1. The interfaces for Protocol A2M, ModRed, SP, and M2A

Non-Zero Base in Multiplicative Shares. Our first step does not make sense when
x = 0 since x has no multiplicative shares. This is also an “exception case” of
the protocol of Damg̊ard et al. [12]. To handle this, they use a trick to make x
always non-zero, which can also be applied to our protocol.5 However, it costs an
additional equality-test protocol, which is relatively cheap when compared with
their protocol, but is more expensive than the complexity of our protocol. Hence,
we suggest avoiding using that when it can be safely assumed x is non-zero.

Modular Reduction. The second issue is to construct an efficient ModRed proto-
col. In cases where y is already given as shares in ZQ−1 (e.g., when y is randomly
generated by two parties), we do not need to do modular reduction at all. When
the input x is guaranteed to be less than Q/2, we present a simple implemen-
tation in Figure 3 using an M2A protocol. Note that for the setting of integer
exponentiation, the condition y ≤ Q/2 holds for free since we are guaranteed

5 Define x′ = x + (x ?= 0), where (x ?= 0) is 1 if x = 0, and is 0 otherwise. With a
secure equality-test protocol that computes additive shares of (x ?= 0), we can use
the identity xy = x′y − (x ?= 0) to compute xy avoiding the base being zero [12].
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Exponentiation Protocol:

– Inputs: Alice holds xA, yA ∈ ZQ, Bob holds xB , yB ∈ ZQ, where
x = xA + xB ∈ Z∗

Q, y = yA + yB ∈ ZQ.
– Outputs: Alice obtains zA ∈ ZQ, and Bob obtains zB ∈ ZQ such

that zA + zB = xy.

1. Alice and Bob run (x′
A, x′

B) ← (A(xA), B(xB))A2M.
2. Run (y′

A, y′
B) ← (A(yA), B(yB); Q)ModRed.

3. Run (z′
A, z′

B) ← (A(x′
A, y′

A), B(x′
B, y′

B))SP.

4. Run (zA, zB) ← (A(x′y′
A

A · z′
A), B(x′y′

B
B · z′

B))M2A.

Fig. 2. The interface of the exponentiation protocol and its implementation

that y ≤ M � Q. The security and efficiency of the ModRed protocol follow
from those of M2A, and its correctness is proved in the following lemma.

Lemma 1. For a prime Q ∈ Z, xA, xB ∈ ZQ, and x = xA + xB ∈ ZQ. Suppose
x ≤ Q/2, then (zA, zB)← (A(xA), B(xB);Q)ModRed form shares of x in ZQ−1.

Proof. From the construction, it is clear that zA, zB ∈ ZQ−1. From the property
of M2A protocol, we know that z′A + z′B = bA · bB mod (Q − 1). So we know
that z′A + z′B = 1 mod (Q − 1) if and only if xA ≤ Q/2 and xB ≤ Q/2. This
implies x = xA + xB ≤ Q− 1. Thus, we know that x = zA + zB mod (Q− 1).

On the other hand, if z′A+z′B = 0 mod (Q−1), at least one of xA, xB is greater
than Q/2, and thus 2Q > xA + xB > Q/2 > x. This means xA + xB = x +Q,
thus we can see zA + zB = (xA + xB −Q) mod (Q− 1) = x (as x ≤ Q/2).

Note that in Step 3, Alice and Bob require to run M2A protocol over ZQ−1
(corresponding to the inputs and outputs of the invocation). This is valid in our
scheme even though Q− 1 is not a prime. ��

For the general case, however, we do not know an efficient protocol with com-
plexity independent of the bit-length � = logQ. A natural idea to implement
ModRed is to test whether xA + xB ≥ Q or xA + xB < Q, and then subtract Q
before taking mod Q − 1 if it is the former case. However, this idea requires a
secure comparison protocol (e.g. [19]), which is expensive.

Semi-honest Security. We informally define the semi-honest security in the two
party case and refer the readers to the literature (e.g., [5, 8]) for the standard
formal definition. For a deterministic functionality f(·, ·), a protocol is said to
be semi-honest secure if for any honest-but-curious adversary A who corrupts
the first party, there exists a probabilistic polynomial time simulator S, who
gets the inputs and the randomness of A, can produce a view of A which is
(statistically/computationally) indistinguishable against time 2k distinguisher
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Modular Reduction Protocol for a public prime number
Q ∈ Z (for the case where x ≤ Q/2):

– Inputs: Alice holds xA ∈ ZQ, and Bob holds xB ∈
ZQ, and x = xA + xB mod Q such that x ≤ Q/2.

– Outputs: Alice obtains zA, and Bob obtains zB such
that zA + zB = x mod (Q − 1).

1. Alice locally computes a number bA such that bA = 1
mod (Q − 1) iff xA ≤ Q/2 otherwise 0.

2. Bob locally computes a number bB such that bB = 1
mod (Q − 1) iff xB ≤ Q/2 otherwise 0.

3. Run (z′
A, z′

B) ← (A(bA), B(bB))M2A.
4. Alice outputs zA = (xA + z′

A · Q) mod (Q− 1), and
Bob outputs zB = (xB + (z′

B − 1) · Q) mod (Q − 1)

Fig. 3. Protocol ModRed

with advantage 2−k from the real interaction with the second party, where k is
a security parameter. Similar case should hold for the corrupted second party.

3 Implementation Using Homomorphic Encryption

Now we present our implementation of the protocols M2A,A2M, SP using homo-
morphic encryption schemes. Formal description can be found in Figure 4-6.

Homomorphic Encryption. A homomorphic encryption scheme (Gen,Enc,Dec)
has both the message space and ciphertext space associated with certain alge-
braic structure and the encryption function Enc is homomorphic with respect to
the corresponding operation in both spaces. There are several efficient public-key
homomorphic encryption schemes which possess different homomorphic proper-
ties. We will use both the ElGamal encryption scheme [21] and the Paillier
encryption scheme [22]. The ElGamal encryption scheme is semantically secure
over the subgroup of quadratic residue H def= {x2 : x ∈ Z∗

Q} ⊂ Z∗
Q, when Q is

a safe prime (i.e., Q = 2P + 1 where P is also a prime) from a common belief
that the decisional Diffie-Hellman (DDH) assumption holds for H , and possesses
multiplicative homomorphism. On the other hand, the Paillier encryption scheme
is semantically secure over ZN for a composite number N = PQ under the deci-
sional composite residuosity assumption, and possesses additive homomorphism.

We assume that the encryption schemes with security parameter k is semantic
secure against time 2k adversary with advantage 2−k, and our protocol achieve
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semi-honest security against time O(2k/T ) distinguisher with advantageO(2−k),
where T is the run-time of the protocol. To achieve this, we also require that the
modulo N of the Paillier encryption scheme satisfying N ≥ 20 · 2kQ2. This is a
mild requirement6 and can be satisfied by using a larger security parameter.

Our Implementations. We first observe that if we have additive (resp., multi-
plicative) homomorphic encryption schemes over ZQ (resp., Z∗

Q), then secure
A2M,M2A (resp., SP) protocols are very easy to achieve — we can let Alice send
encryption of her input to Bob, who can then perform computation homomor-
phically, and send back an encrypted share to Alice. Intuitively, Bob can learn
nothing since he only receives encrypted messages from Alice; and Alice also
learns nothing, since she only receives a share of the computed value from Bob.

Unfortunately, the Paillier encryption scheme is only semantically secure over
ZN for a composite number N , and the ElGamal encryption scheme is semanti-
cally secure over the subgroup of quadratic residue in Z∗

Q when Q is a safe prime.
These make the implementation of A2M,M2A and SP protocols non-trivial. At
a high level, we overcome these difficulties with the following ideas.

– To implement A2M and M2A using the Paillier encryption scheme over ZN ,
we exploit an idea inspired by the integer sharing schemes of Algesheimer,
Camenisch, and Shoup [16]. Briefly, instead of using secret sharing to hide
the secret x (which can only be done for additively homomorphism over ZQ),
we require N � Q and use a random noise to statistically hide the secret.

– Implementing SP using the ElGamal encryption scheme over H ⊂ Z∗
Q is

trickier. Very briefly, note that Z∗
Q = B × H , where B is the binary sub-

group of Legendre symbols, our idea is to handle the H and B parts of Z∗
Q

separately, where the H part is handled by ElGamal, and the B part is
handled by two calls to A2M and M2A protocols.

Our implementation of the three protocols can be found in Figure 4–6. We
proceed to explain the details of our implementation as follows.

– M2A protocol (Figure 4): Alice sends her encrypted input x̂A = Enc(xA) to
Bob, who can homomorphically compute encrypted secret x̂ = Enc(xA·xB) =
Enc(xA)xB of x using the additively homomorphic property of Enc. Bob then
wants to split the secret x into additive shares, so he selects a random u ∈ ZQ

and computes encrypted share Enc(x + u) = Enc(x) · Enc(u) and his share
−u. However, Paillier encryption is additively homomorphic over ZN with
N � Q, the resulting x+u is a number between 0 andQ2+Q and Bob cannot
send Enc(x + u) back to Alice directly (since it leaks partial information).
Hence, Bob uses a large random noise w (say, in [−N/10, N/10]) to hide the
secret x and sends Enc(w+u+x) to Alice. On the other hand, to help Alice
to find out x+ u mod Q, Bob also sends w mod Q to Alice, who can then
recover x+ u mod Q. Note that the noise hides x+ u statistically.

– A2M protocol (Figure 5): Its idea and structure are similar to those of M2A.

6 It is satisfied automatically unless log Q � k.
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M2A Protocol (zA, zB) ← (A(xA), B(xB))M2A

1. Alice generates a pair of keys (pk, sk) ← Gen(1k), and sends pk and x̂A =
Encpk(xA) to Bob. (Recall that we require N ≥ 20 · 2kQ2.)

2. Bob samples uniformly random u ← ZQ and w ← [−N/10, N/10], computes
v̂ = Encpk(w + u + xA · xB) and sends v̂ and v′ = (w mod Q) to Alice.

3. Alice outputs zA = (Decsk(v̂) − v′ mod Q) = (u + (xA · xB) mod Q).
4. Bob outputs zB = −u.

Fig. 4. Implementation of M2A using (additively) homomorphic encryption

– SP protocol (Figure 6): The SP protocol involves three parts: 1) convert-
ing the messages from Z∗

Q into H (xA, xB → x′A, x
′
B) accompanied parity

bits (zA,1, zB,1, zA,2, zB,2) in Step 1-2, 2) computing (an encrypted share of)
x′yB

A x′yA

B in Step 3-8, and 3) recovering the messages from H to Z∗
Q.

1) Alice and Bob convert the messages into H , where the DDH assumption
is believed to hold, and so ElGamal encryption is semantically secure.
Note that in Z∗

Q, exactly one of xA and −xA is a quadratic residue, and
we denote such one in H as m. From this we can calculate xyB

A (in Z∗
Q)

by first calculating myB in H and then multiplying the outcome with a
number b ∈ {1,−1} depending onm = xA or m = −xA and the parity of
yB. To formalize this, we use two boolean variables �A, tB and set �A = 1
in the case where xA is a quadratic residue and tB = 1 if yB is odd. When
�A = 1 and tB = 1, we know xyB

A = −1 ·myB ; and for all the other cases,
we have xyB

A = myB . This is equivalent to compute (1− 2 · �A · tB) ·myB ,
where additive shares of (1− 2 · �A · tB) can be computed using one M2A
and A2M. That is, we can think of Alice holding wA = 2�A, and Bob
holding wB = tB, and view them as multiplicative shares of w = wA ·wB .
We can then apply M2A to turn them into additive shares w = w′

A +w′
B

(which is 2�A · tB). Alice and Bob can locally compute uA = 1−w′
A, and

uB = −w′
B, so that u = uA + uB is an additive share of 1− 2�A · tB.

2) Both parties send x̂A = EncpkA
(x′A) and x̂B = EncpkB

(x′B) to each other.
Upon receiving x̂A and x̂B , they can compute EncpkA(x′yB

A ) = x̂yB

A and
EncpkB

(x′yA

B ) = x̂yA

B using the multiplicatively homomorphic property of
Enc. To protect their own privacy, they split these values into multiplica-
tive shares, and send each other an encrypted share. For example, Bob
splits the encrypted x′yB

A into (uB · x′yB

A ) · (u−1
B ) for a random uB, and

sends an encrypted (uB ·x′yB

A ) to Alice. Finally, they can locally combine
their shares of x′yB

A and x′yA

B into shares of x′yB

A · x′yB

B .
3) Both parties combines shares into the final output. From Step 1-2, they

have xyB

A = (1−2 · �A · tB) ·x′yB

A = zA,1 · zB,1 ·x′yB

A and xyA

B = (1−2 · �B ·
tA) · x′yA

B = zA,2 · zB,2 · x′yA

B ; and from Step 3-8, x′yB

A x′yA

B = zA,3 · zB,3.
These lead to xyB

A xyA

B = (zA,1 · zA,2 · zA,3) · (zB,1 · zB,2 · zB,3).
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A2M Protocol (zA, zB) ← (A(xA), B(xB))A2M

1. Alice generates a pair of keys (pk, sk) ← Gen(1k), and sends pk and x̂A =
Encpk(xA) to Bob. (Recall that we require N ≥ 20 · 2kQ2.)

2. Bob samples uniformly at random u ← Z∗
Q and w ← [−N/10, N/10], computes

v̂ = Encpk(w + u · (xA + xB)) and sends (v̂, v′) to Alice.
3. Alice outputs zA = (Decsk(v̂) − v′ mod Q) = (u · (xA + xB) mod Q).
4. Bob outputs zB = u−1.

Fig. 5. Implementation of A2M using (additively) homomorphic encryption

SP Protocol (zA, zB) ← (A(xA, yA), B(xB, yB))SP

Let (Gen, Enc, Dec) be ElGamal encryption over H and
(

a
Q

)
be the Legendre symbol.

1. Let �A = 1 if
(

xA
Q

)
= −1, and �A = 0 if

(
xA
Q

)
= 1. Alice sets x′

A = xA · (−1)�A .

Similarly, let �B = 1 if
(

xB
Q

)
= −1 and 0 otherwise. Bob sets x′

B = xB · (−1)�B .
2. Let tA = yA mod 2, and tB = yB mod 2. Alice and Bob run two secure sub-

protocols (each with one M2A and one A2M) to obtain (zA,1, zB,1) such that
zA,1 · zB,1 = 1 − 2 · �A · tB, and (zA,2, zB,2) such that zA,2 · zB,2 = 1 − 2 · �B · tA.

3. Alice generates (pkA, skA) ← Gen(1k), and sends pkA, x̂A = EncpkA(x′
A) to Bob.

4. Bob generates (pkB , skB) ← Gen(1k), and sends pkB, x̂B = EncpkB (x′
B) to Alice.

5. Alice computes ûA = EncpkB (uA), and sends v̂A = ûA · x̂yA
B to Bob, for uA ← Z∗

Q.
6. Bob computes ûB = EncpkA (uB), and sends v̂B = ûB · x̂yB

A to Alice, for uB ← Z∗
Q.

7. Alice computes zA,3 = u−1
A · DecskA (v̂B) = (uB · x′yB

A )/uA.
8. Bob computes zB,3 = u−1

B · DecskB (v̂A) = (uA · x′yA
B )/uB .

9. Alice outputs zA = zA,1 · zA,2 · zA,3, and Bob outputs zB = zB,1 · zB,2 · zB,3.

Fig. 6. Implementation of SP using (multiplicatively) homomorphic encryption

Efficiency. Suppose the key generation has been done in a setup stage, we have:

– M2A protocol: Alice needs to do 1 encryption and 1 decryption. Bob needs to
do 1 encryption and 1 exponentiation with exponent xB ∈ ZQ. The protocol
consists of 1 round and 2 messages, where Alice’s message is a ciphertext,
and Bob’s message is a ciphertext plus an element in ZQ.

– A2M protocol: Alice needs to do 1 encryption and 1 decryption. Bob needs to
do 2 encryptions and 1 exponentiation with exponent u ∈ ZQ. The protocol
consists of 1 round and 2 messages, where Alice’s message is a ciphertext,
and Bob’s message is a ciphertext plus an element in ZQ.

– SP protocol: To compute x′yB

A x′yA

B , both parties need to do 2 encryptions,
1 decryption, 1 multiplication, and 1 exponentiation with exponent in ZQ.
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They exchange 4 messages, each consists of a ciphertext. In addition, each of
zA,1zB,1 and zA,2zB,2 uses one invocation of M2A and one invocation of A2M.
Hence, the total communication consists of 4 + (2 + 2) · 2 = 12 ciphertexts
and 4 field elements, and these takes 1 + (1 + 1) = 3 rounds (since the
computation of zA,1zB,1, zA,2zB,2 and Step 3-4 can be parallelized).

– EXP protocol (for x = 0 and y ≤ Q/2): The total communication consists
of 2(A2M) + 2(ModRed) + 12(SP) + 2(M2A) = 18 ciphertexts and 7 field
elements, and these takes 5 rounds (running A2M and ModRed in parallel.)

For the general case (x might be 0, y might be greater than Q/2), we need
one more equality test which costs 4 rounds and 12t secure multiplications with
error probability 2−t [19], and one more comparison protocol for implementing
ModRed, which costs 15 rounds and 279� + 5 secure multiplications [19]. We
remark that a secure multiplication can be done using 2 invocations of M2A.

For integer exponentiation, we can choose a big enough Q and embed the
integers into ZQ in which we do all the arithmetic computations. We choose Q
to be a big enough safe prime and use homomorphic encryption to build effi-
cient secure integer exponentiation as mentioned. However, for realizing modular
exponentiation for a general Q, we are not aware of any candidate encryption
schemes that can be used in our scalar product protocol. On the other hand, our
protocol to be described in the next section works for a general Q.

4 Implementation Using Oblivious Transfer

We use the noisy encoding techniques proposed by Ishai, Prabhakaran and Sa-
hai [11] to implement our new protocols A2M and SP in Figure 7 and 9. We also
describe M2A from [11] in Figure 8 for completeness.

We use OT (m0,m1;σ)A→B to denote the OT protocol jointly run by Alice,
who holds two messages m(0),m(1) ∈ ZQ, and Bob, who holds the selection bit
σ ∈ {0, 1}. Informally, security requires that after the protocol, Alice cannot
learn σ, while Bob can only obtain m(σ), and receives no further information
of m(1−σ). Similarly, let v be any vector and vi be its i-th element. We use
OT (m(0),m(1); σ)A→B to denote the “vector version” of an OT protocol jointly
run by Alice, who holds two vectors of messages m(0),m(1) ∈ (ZQ)n, and Bob,
who holds the selection vector σ ∈ {0, 1}n and wants to learn m

(σi)
i for i ∈ [1, n].

Noisy Encoding. We review the noisy encoding scheme of Ishai, Prabhakaran and
Sahai [11], which we are going to use as a building block. Encoding of x ∈ ZQ,
denoted as NoisyEnc

ZQ
n (x) where n is a parameter of the encoding and ZQ is the

underlying field/ring, is computed by the following randomized procedure:

1. Pick a random bit-vector σ ← {0, 1}n.
2. Pick a random vector u ∈ (ZQ)n conditioned on

∑n
i=1 ui = x.

3. Pick a random vector pair (v0,v1) ∈ ((ZQ)n)2 conditioned on ∀i,vσi

i = ui.
4. Output (v0,v1,σ).
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The encoding contains two parts: (v0,v1) and σ. It has been proven [11] that
with sufficiently large n, the distribution of (v0,v1) (without σ) statistically
hides x; while one can decode (v0,v1) with σ to retrieve x.

Our Implementations. At a high level, in protocols A2M and M2A (Figure 7, 8),
Bob computes a noisy encoding (u0,u1,σ) of his input xB and sends (u0,u1)
to Alice, which contains the information of xB but statistically hides it from
Alice. Alice can still compute another “re-randomized” encoding of xA + xB or
xA · xB from (u0,u1) to protect her privacy, and use OT to let Bob learn the
messages according to σ. This is similar to our solution based on the homo-
morphic encryption. In protocol SP(Figure 9), both parties need to compute the
noisy encoding of their inputs yA, yB and send the information to each other
since they want the other party to compute xyA

B and xyB

A respectively. Similarly,
they both do re-randomization and use OT to send the messages back.

A2M Protocol (zA, zB) ← (A(xA), B(xB))A2M

1. Bob computes (u0, u1, σ) ← NoisyEnc
ZQ
n (xB), and sends (u0, u1) to Alice.

2. Alice does the following:
– Pick a random p ← Z∗

Q.
– Pick a random vector t = (t1, t2, . . . , tn) conditioned on xA =

∑n
i=1 ti.

– Compute w0 = p · (u0 + t) and w1 = p · (u1 + t).
– Send to Bob with OT ((w0, w1); σ)A→B.
– Output zA = p−1.

3. Bob outputs zB =
∑n

i=1 wσi
i .

Fig. 7. Implementation of A2M using OT

Efficiency. We consider the running time of our protocol and the communication
complexity in terms of the number of bits and the number of messages being
sent. In protocol A2M and M2A, the operations we perform are: (1) multipli-
cation, (2) addition, (3) sampling a random element and (4) oblivious transfer.
Among all these operations, multiplication and oblivious transfer are the most
expensive, so when we measure the efficiency, we count the number of these two
operations. In protocol SP, we need another operation – exponentiation in ZQ,
which is much more expensive than multiplication. Thus, we count the number
of exponentiations and OTs in protocol SP. In the vector version of OT, the
sender sends 2n elements in ZQ and the receiver learns n of them. We consider
this as n operations of basic OT in which the sender sends two elements in ZQ

and the receiver learns one of them. Under this measurement standard:

– M2A and A2M protocols: Alice performs 2n multiplications and n OTs. Bob
only performs additions and sampling random elements. The protocol ex-
changes 2 messages: one with 2n elements in ZQ, and the other with n OTs.
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M2A Protocol [11] (zA, zB) ← (A(xA), B(xB))M2A

1. Bob computes (u0, u1, σ) ← NoisyEnc
ZQ
n (xB), and sends (u0, u1) to Alice.

2. Alice does the following:
– Pick a random t ← (ZQ)n.
– Compute w0 = u0 · xA + t and w1 = u1 · xA + t.
– Send to Bob with OT ((w0, w1); σ)A→B.
– Output zA = −

∑n
i=1 ti.

3. Bob outputs zB =
∑n

i=1 wσi
i .

Fig. 8. Implementation of M2A using OT

SP Protocol (zA, zB) ← (A(xA, yA), B(xB, yB))SP

1. Alice computes (u0
A, u1

A, σA) ← NoisyEnc
ZQ
n (yA), and sends (u0

A, u1
A) to Bob.

2. Bob computes (u0
B , u1

B , σB) ← NoisyEnc
ZQ
n (yB), and sends (u0

B, u1
B) to Alice.

3. Alice picks a random tA ← (Z∗
Q)n, computes w0

A,i = x
u0

B,i

A · tA,i, w1
A,i = x

u1
B,i

A ·
tA,i, and sends to Bob with OT ((w0

A, w1
A); σB)A→B .

4. Bob picks a random tB ← (Z∗
Q)n. compute w0

B,i = x
u0

A,i

B ·tB,i, w1
B,i = x

u1
A,i

B ·tB,i.
and sends to Alice with OT ((w0

B , w1
B); σA)B→A.

5. Alice outputs zA =
∏n

i=1 w
σA,i

B,i /
∏n

i=1 tA,i.
6. Bob outputs zB =

∏n
i=1 w

σB,i

A,i /
∏n

i=1 tB,i.

Fig. 9. Implementation of SP using OT

– SP protocol: Both parties perform 2n exponentiations and n OTs, involving
4 message exchanges: two with 2n elements in ZQ, and two with n OTs.

– EXP protocol (for x = 0 and y ≤ Q/2): The protocol consists of the four
protocols (also protocol ModRed, which requires 1 call of M2A). With paral-
lelization, the round complexity just needs 5 message exchanges. The total
communication complexity is 10n elements in ZQ, and 5n OTs.

For the parameter setting, we need to set n = O(k+ logQ) to achieve a 2−Ω(k)-
security, where it is sufficient to take the hidden constant as 3. For online OT, we
need to send 2 elements in ZQ per OT, and thus the communication complexity
is 10n+ 2 · 5n = 20n = 60k+ 60 logQ elements in ZQ. Due to the lack of space,
security analysis of our protocols are deferred to the full version of this paper.

For the general case (x might be 0, and y might be greater than Q/2), as
before, we need one more equality test in the beginning, which costs 4 rounds
and 12t secure multiplications with error probability 2−t [19], and one more
comparison protocol for implementing ModRed, which costs 15 rounds and 279�+
5 secure multiplications [19]. Recall that we can perform a secure multiplication
using 2 invocations of the M2A protocol.
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5 Conclusion and Future Directions

In this paper, we propose a new framework to efficiently compute exponentiation
when both the base and the exponent are shared among different parties. The
goal is to build constant-round protocols with communication cost comparable
to that of a secure multiplication. Instead of using bit-decomposition, we utilize
the inter-conversion of additive and multiplicative sharing and “scalar product”
over an “exponential module” (A2M, M2A, and SP).

We implemented A2M, M2A and SP in two ways – homomorphic encryption,
and oblivious transfer (OT). We use both an additive homomorphic encryption
and a multiplicative homomorphic encryption (but not a fully homomorphic one)
to achieve efficiency. Our OT-based solution uses the noisy encoding techniques
[11] and provides versatility of the underlying assumption. We remark that these
protocols support precomputation for higher online performance.

The extension of the work runs through several directions. First, our frame-
work of two-party exponentiation implies a framework of multiparty exponenti-
ation without honest majority. So a goal is to devise efficient protocols for the
underlying A2M and M2A for the multiparty setting. Second, to duel with mali-
cious adversaries without loss of efficiency, instead of general knowledge proofs,
a specific arithmetic proof is required. Furthermore, it is worth investigating the
multiparty exponentiation in a general adversary setting. Finally, our solution
for a general modulus requires one invocation of a secure comparison. Hence, a
cheap secure comparison protocol, comparable to the cost of a secure multipli-
cation protocol, would be a key to improve efficiency further.
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Abstract. Inclusion proof shows that a secret committed message is
in a finite group of messages, while exclusion proof shows that a secret
committed message is not in a finite group of messages. A general, flexible
and efficient solution to inclusion proof and exclusion proof is proposed
in this paper. It overcomes the drawbacks of the existing solutions to
inclusion proof and exclusion proof. It achieves all the desired security
properties in inclusion proof and exclusion proof. It is the most efficient
general solution to inclusion proof and exclusion proof and only costs
O(

√
n) for any inclusion proof and exclusion proof regarding any finite

group of n messages.

1 Introduction

In cryptographic secure protocols, sometimes a party chooses a message from
a finite set S = {s1, s2, . . . , sn} and then commits to it. He keeps the message
secret and publishes the commitment. He needs to prove that the message in the
commitment is indeed in S, but cannot reveal the secret message. Such a proof
is called inclusion proof in this paper. For example, in e-auction [18,20,21,25]
and e-voting [19,22,23,24,26], very often a bidder or voter has to prove that his
secret bid or vote is chosen from a list of candidates. As explained in [5], inclusion
proof is also useful in applications like e-cash systems and anonymous credential
systems. In some cryptographic applications, it is needed for a party to prove
that a committed secret message m is not in a finite set S = {s1, s2, . . . , sn}
without revealing it. For example, as explained in [14], a financial institute may
ask a loan applier to prove that he is not in a black list, while the applier does
not want to reveal his identity before the application goes to next step. This
proof is called nonmembership proof in [14] and called exclusion proof in this
paper.

According to [10], any secret knowledge can be proved without revealing it
if there is no critical requirement on efficiency. There are some general zero
knowldge proof techniques [10,9,13,12], which handles various proofs including
inclusion proof and exclusion proof by reducing them to a standard form and
then giving an all-purpose proof. We are not very interested in those techniques
as we focus on high efficiency. Obviously, proof techniques specially designed for
inclusion proof and exclusion proof have an advantage in efficiency improvement
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of the two proofs over the general all-purposed proof techniques as the former
does not need to consider any other proof. So we focus on proof techniques to
handle only inclusion proof and exclusion proof in this paper.

Apart from the straightforward solution to inclusion proof through ZK (zero
knowledge) proof of partial knowledge [7] and the brute-force solution to exclu-
sion proof by proving that the committed integer is unequal to every integer in
the set, there are several more efficient inclusion and exclusion proof schemes
[3,14,5]. However, they have their drawbacks as will be detailed in Section 2.
Inclusion proof in [3] is strictly limited by a few conditions and so lacks gener-
ality and flexibility. Exclusion proof in [14] is a variant of [3], so has the same
drawback. Inclusion proof in [5] lacks public verifiability, must be interactive and
is inefficient when there are many verifiers.

In this paper, new inclusion proof and new exclusion proof are proposed.
They employ the same strategy: reducing a proof regarding a large set to mul-
tiple proofs regarding smaller sets and then reducing each proof regarding a
smaller set to a proof regarding a single integer. In this way, a complex task is
divided into multiple simpler tasks and high efficiency is achieved. After that
a calculation-optimising method is designed to further improve efficiency. The
new proof technique overcomes the drawbacks in [3,14,5] and are very efficient.
It is more efficient than the existing general solutions to inclusion proof and ex-
clusion proof including the straightforward simple solutions and [5], while [3,14]
are special solutions strictly limited to special applications. When the size of S
is n, it only costs O(

√
n) exponentiations in computation and transfers O(

√
n)

integers in communication, no matter what messages are in S and committed.

2 Security Requirements and the Existing Solutions

The following security properties are usually desired in inclusion proof and ex-
clusion proof.

– Completeness: in an inclusion proof protocol, if the committed integer is
in the set and the prover strictly follows the inclusion proof protocol, he
can pass the verification in the protocol; in an exclusion proof protocol, if
the committed integer is not in the set and the prover strictly follows the
exclusion proof protocol, he can pass the verification in the protocol.

– Soundness: in an inclusion proof protocol, if the committed integer is not in
the set, the probability that the prover passes the verification in the protocol
is negligible; in an exclusion proof protocol, if the committed integer is in
the set, the probability that the prover passes the verification in the protocol
is negligible.

– Zero knowledge: in an inclusion proof protocol, no information about the
committed message is revealed except that it is in the set; in an exclusion
proof protocol, no information about the committed message is revealed
except that it is not in the set. More precisely, in both inclusion proof and
exclusion proof, the proof transcript can be simulated without any difference
by a party without any knowledge of any secret.
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– Public verifiability: validity of all the operations can be publicly verified by
any verifier and independent observer, in both inclusion proof and exclusion
proof.

– Generality and flexibility: format of the committed integer and the set is not
limited in any way. More precisely, in any application of inclusion proof or
exclusion proof, just choose a large enough message space for the commit-
ment algorithm to cover any possible committed integer and the set, then
inclusion proof and exclusion proof can always work.

– Non-interaction: when necessary, inclusion proof and exclusion proof can be
non-interactive.

The simplest solution to inclusion proof is ZK proof of partial knowledge [7],
which proves that the committed message may be every message in the set one by
one and then link the multiple proofs with OR logic. This solution is called simple
inclusion proof in this paper. Similarly, exclusion proof can be implemented by
proving that the committed message is unequal to each message in the set one
by one and then linking the multiple proofs with AND logic. Inequality of two
secret integers can be proved using techniques like ZK proof of inequality of
discrete logarithm in [4]. This solution is called simple exclusion proof in this
paper. The advantage of these two simple solutions is generality and versatility.
They can prove inclusion and exclusion regarding any committed integer and
any set. They can achieve all the desired security properties including public
verifiability and flexibility. Their drawback is low efficiency. In communication,
they have to to transfer O(n) integers. In computation, they cost both the prover
and the verifier O(n) exponentiations.

A more efficient inclusion proof is proposed by Camenisch et al. [5]. In [5],
a verifier signs every message in S using his own private key and sends all the
signatures to the prover, who then proves that he knows the signature on the
message in the commitment. In this method, the computational cost of a prover
becomes constant and thus much more efficient although efficiency improvement
in communication and on the verifier’s side is not evident. This inclusion proof
has several drawbacks. Its main drawback is lack of public verifiability. The
signatures sent to the prover are not public. Except for the prover and the verifier
generating them, the other parties including other verifiers do not know whether
any signature of other messages is sent to the prover. So it is a two-party private
proof between a prover and a certain verifier and it has to be separately and
repeatedly run between the prover and every verifier. Therefore, when there are
many verifiers, the overhead for the prover is very high. Moreover, Fiat-Shamir
heuristic cannot be employed to achieve non-interaction and every verifier must
interactively run the inclusion proof protocol with the prover. In addition, this
proof technique cannot handle exclusion proof.

The most efficient inclusion proof is proposed by Camenisch et al. [3]. In [3] to
show that a secret message committed in c is in S, knowledge of integersm and ε
is proved such that m is committed in c and εm = g

∏n
i=1 si where g is a generator

of a cyclic multiplication group with a composite multiplication modulus difficult
to factorize. Obviously, ifm = sj , the prover can use ε = g

∏ j−1
i=1 si

∏n
i=j+1 si to give
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the proof and pass the verification. The main drawback of this solution is lack
of generality and flexibility. It is strictly limited by a few conditions. Firstly, the
messages in the set must be positive prime integers in a certain interval range.
Secondly, the committed message must be proved to be in the interval range to
guarantee that the prover does not commit to the product of some integers in
the set. This limitation implies that additional range proof is needed. Thirdly, a
co-called strong RSA assumption is necessary for security of the inclusion proof
in [3]. Apart from depending on an unusual computational hard problem, the
assumption implies that the set must be chosen independent of the prover so that
it appears random to him. Application of [3] to inclusion is so strictly limited
that its own author Camenisch only suggests to use it in special applications
like anonymous credential. For general purpose inclusion proof, Camenisch et al.
later propose the inclusion proof technique in [5], which we have discussed.

The inclusion proof technique in [3] is extended to exclusion proof by Li
et al. [14]. The key technique in [14] is an accumulator-based proof system, which
can provide a witness for each integer in a special set but not in S to show its
exclusion from S. It is more efficient than the simple exclusion proof, but like the
inclusion proof technique in [3] it is strictly limited in application. It is subject to
three conditions. Firstly, all the messages in S and the committed message must
be prime integers. Secondly, all the messages in S and the committed message
must be non-negative integers smaller than 2ι where ι is a security parameter
denoted as l in [14]. Thirdly, a necessary condition satisfied in [3] is ignored in
[14]: no integer in the set can be larger than the product of any other integers in
the set. Moreover, dependence on the strong RSA assumption implies another
condition in [14]: the set must be chosen independent of the prover so that it
appears random to him.

Although mapping all the the messages in the set and all the messages possible
to commit to into the special supported set may improve applicability of [3]
and [14], this method does not always work simply and effectively. Instead, its
applicability and complexity depend on the application environment as explained
in the following.

– Any two different messages in the set and out of the set respectively cannot
share the same image in the mapping so that the mapping always distin-
guishes the messages in the set and the messages out of the set. Moreover,
sometimes the committed message will be recovered and used later. So the
mapping function needs to be invertible and some simple functions (like
mapping an integer to the prime nearest to it) cannot work.

– Some invertible mapping functions need a large memory to store, especially
when the message space is large.

– In some applications the committed message must be processed in the form
of commitment (e.g. in multi-party secure computation or e-voting where
the commitment function is in the form of an encryption algorithm). Such
applications usually exploit homomorphism of the commitment algorithm to
implement computation of commitments, so the original messages in them
cannot be changed in any way.
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There are some even more special proof schemes [1,15,11], which prove that a
secret committed integer lies in a finite interval range. They are the so called
“range proof” schemes and are incomparable to our work. Moroever, as stated
in Section 1, unpublished and rejected proposals with problems and limitations
are incomparable to our work.

3 New Inclusion Proof and Exclusion Proof

The main idea of the new design is to divide the set S into multiple subsets,
so that inclusion of a message in S is reduced to its inclusion in one of the
subsets and exclusion of a message from S is reduced to its exclusion from all
of the subsets. In this way, an inclusion proof or exclusion proof is reduced to
multiple inclusion proofs or multiple exclusion proofs in a smaller scale. Then
each smaller-scale inclusion proof is reduced to proof of commitment and each
smaller-scale exclusion proof is reduced to proof of uncommitment where the
former proves that a message is committed in a commitment and the latter
proves that a message is not committed in a commitment. To be consistent
with the existing inclusion proof and exclusion proof schemes and make a fair
comparison, the following commitment function is employed.

– p and q are large primes such that q|p − 1 and q > si for i = 1, 2, . . . , n. G
is the cyclic subgroup with order q of Z∗

p . Integers g and h are generators of
G such that logg h is unknown.

– From now on in this paper, all the computations involving the integers in
any matrix and vector is carried out modulo q.

– A prover randomly chooses r from Zq and commits to a secret integer m in
c = gmhr mod p.

3.1 Reducing Inclusion Proof and Exclusion Proof to Simpler
Proofs

The simplifying reduction from inclusion proof and exclusion proof to commit-
ment proof and uncommitment proof is as follows.

1. For simplicity of description, suppose S can be divided into t subsets
S1, S2, . . . , St and each Sl contains k integers sl,1, sl,2, . . . , sl,k.

2. The prover randomly chooses an integer s in Zq and calculates for each Sl

integers bl,i for i = 1, 2, . . . , k in Zq to satisfy∑k
i=1 bl,is

i
l,ρ = s mod q for ρ = 1, 2, . . . , k. (1)

More precisely, integers bl,i for l = 1, 2, . . . , t and i = 1, 2, . . . , k must satisfy⎛⎜⎜⎜⎜⎝
sl,1 s

2
l,1 . . . s

k
l,1

sl,2 s
2
l,2 . . . s

k
l,2

. . . . . . . . . . . .

. . . . . . . . . . . .
sl,k s

2
l,k . . . s

k
l,k

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
bl,1
bl,2
. . .
. . .
bl,k

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
s
s
. . .
. . .
s

⎞⎟⎟⎟⎟⎠



38 K. Peng

for l = 1, 2, . . . , t. As sl,i < q for l = 1, 2, . . . , t and i = 1, 2, . . . , k and they
are different integers,

Ml =

⎛⎜⎜⎜⎜⎝
sl,1 s

2
l,1 . . . s

k
l,1

sl,2 s
2
l,2 . . . s

k
l,2

. . . . . . . . . . . .

. . . . . . . . . . . .
sl,k s

2
l,k . . . s

k
l,k

⎞⎟⎟⎟⎟⎠
is a non-singular matrix for l = 1, 2, . . . , t and there is a unique solution for
bl,1, bl,2, . . . , bl,k: ⎛⎜⎜⎜⎜⎝

bl,1
bl,2
. . .
. . .
bl,k

⎞⎟⎟⎟⎟⎠ = M−1
l

⎛⎜⎜⎜⎜⎝
s
s
. . .
. . .
s

⎞⎟⎟⎟⎟⎠
for l = 1, 2, . . . , t. Therefore, functions Fl(x) =

∑k
i=1 bl,ix

i mod q for l =
1, 2, . . . , t are obtained, each to satisfy

Fl(sl,i) = s for i = 1, 2, . . . , k. (2)

The prover publishes s. Note that Fl() is actually the unique polynomial
with degree at most k to satisfy (2) and Fl(0) = 0. Readers with basic
knowledge in linear algebra should know a few efficient methods, which do
not cost any exponentiation, to calculate Fl() from sl,i for i = 1, 2, . . . , k. Our
presentation of Fl() through matrix calculations is only one of them, which
seems formal and straightforward. Also note that if necessary calculation of
Fl() can be performed beforehand once S is published such that it is already
available when the inclusion proof or exclusion proof starts.

3. The prover calculates ei = em
i−1h

γi mod p for i = 1, 2, . . . , k − 1 where
e0 = c and γi is randomly chosen from Zq. The prover proves validity of
e1, e2, . . . , ek−1 using a zero knowledge proof that he knows m, r and γi for
i = 1, 2, . . . , k − 1 such that c = gmhr mod p and ei = em

i−1h
γi mod p for

i = 1, 2, . . . , k− 1, which can be implemented through a simple combination
of ZK proof of knowledge of discrete logarithm [27] and ZK proof of equality
of discrete logarithms [6].

4. A verifier
(a) calculates bl,i for l = 1, 2, . . . , t and i = 1, 2, . . . , k to satisfy (1) like the

prover does where s is provided by the prover;
(b) verifies the prover’s proof of validity of e1, e2, . . . , ek−1.
He accepts the reduction iff the prover’s proof is passed and e1, e2, . . . , ek−1
are valid.

The operations above have reduced inclusion proof and exclusion proof to com-
mitment proof and uncommitment proof respectively. More precisely,
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– Inclusion of m in S is reduced to inclusion of m in S1 or S2 or . . . . . . or St.
As s = Fl(m) if m ∈ Sl, inclusion of m in Sl is reduced to commitment of s
in ωl where

ωl = C(Fl(m)) = C(
∑k

i=1 bl,ix
i) =
∏k−1

i=0 e
bl,i+1
i mod p.

and C() denotes the commitment function to commit a message m′ in
C(m′) = gm′

hη mod p using a random integer η in Zq.
– Exclusion of m from S is reduced to exclusion of m from S1 and S2 and
. . . . . . and St, while exclusion of m from Sl is reduced to uncommitment of
s from ωl.

3.2 Specification of the Two Simpler Proofs

The reduction work above is the same for inclusion proof and exclusion proof.
After that, the left work is different for inclusion proof and exclusion proof. In
an inclusion proof, the prover has to prove that s is committed to by him in ω1
or ω2 or . . . . . . or ωt. More precisely, he has to prove that he knows logh ω1/g

s

or logh ω2/g
s or . . . . . . or logh ωt/g

s as follows.

1. ωl can be publicly calculated by any verifier in the form

ωl =
∏k−1

i=0 e
bl,i+1
i mod p.

2. If needed the prover himself can secretly calculate ωl/g
s more efficiently:

ωl/g
s =

{
h
∑k−1

i=0 bl,i+1Γi+1 mod p if m ∈ Sl

g(
∑k−1

i=0 bl,i+1mi+1)−sh
∑k−1

i=0 bl,i+1Γi+1 mod p if m /∈ Sl

where Γi = mΓi−1 + γi−1 mod q for i = 2, 3, . . . , k, Γ1 = r and
m2,m3, . . . ,mk can be calculated using k − 1 multiplications and reused
in calculation of ω1, ω2, . . . , ωt.

3. The prover runs ZK proof of partial knowledge [7] to implement the proof
that he knows one of t discrete logarithms logh ω1/g

s, logh ω2/g
s, . . .,

logh ωt/g
s.

4. Any verifier can publicly verify the prover’s proof of knowledge of one of t
discrete logarithms. He accepts the inclusion proof iff the prover’s proof is
successfully verified.

In an exclusion proof, the prover has to prove s is not committed in any of ω1,
ω2, . . . , ωt. Proof that s is not committed in ωl is as follows where the prover
and the verifier can calculate ωl respectively like in the inclusion proof and the
prover knows Ml = Fl(m) =

∑k
i=1 bl,im

i mod q, which is committed in ωl.

1. The prover randomly chooses a positive integer T in Zq and publishes y =
gT (s−Ml) mod p.
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2. He proves knowledge of secret integer x = T (s − Ml) such that
y = gx mod p using zero knowledge proof of knowledge of discrete
logarithm [27].

3. He proves knowledge of secret integers T and r′ such that (gs)Thr′
=

ωT
l y mod p where r′ = T

∑k
i=1(bl,iΓi) mod q, Γi = mΓi−1 + γi−1 mod

q for i = 2, 3, . . . , k and Γ1 = r using zero knowledge proof of knowledge of
discrete logarithm [27] and knowledge proof of equality of discrete logarithms
[6].

4. Any verifier can verify y > 1 and the two zero knowledge proofs. He accepts
the uncommitment claim if and only if all the three conditions are satisfied
in his check.

This proof is called uncommitment proof. The prover repeats it for each l in
{1, 2, . . . , t} and any verifier can verify the prover’s proof. The verifier accepts
the exclusion proof iff the all the t instances of proof are successfully verified.
Note that m2,m3, . . . ,mk can be calculated using k − 1 multiplications and
reused in calculation of M1,M2, . . . ,Mt by the prover.

4 Security Analysis

Completeness of the new inclusion proof and exclusion proof is obvious. Any
reader can follow the running of the two proof protocols step by step to verify
that an honest prover can strictly follow them to pass their verifications. If the
challenges in the employed zero knowledge proof primitives are generated by a
pseudo-random function, no interactive verifier is needed and the new inclusion
proof and exclusion proof can be non-interactive in the random oracle model.
Moreover, public verifiability is achieved in the two proofs as every detail of
them can be publicly verified by any one. Other security properties of them are
proved in Theorems 1, 2 and 3.

Theorem 1. Both the new inclusion proof protocol and the new exclusion proof
protocol achieve honest-verifier zero knowledge.

Proof: Both the new inclusion proof protocol and the new exclusion proof proto-
col only employ three zero knowledge proof primitives: zero knowledge proof of
knowledge of discrete logarithm [27], zero knowledge proof of equality of discrete
logarithms [6] and zero knowledge proof of partial knowledge [7]. Honest-verifier
zero knowledge of these three proof primitives is formally proved when they are
proposed. More precisely, the proof transcripts of the three primitives with an
honest verifier can be simulated without any difference by a party without any
secret knowledge.

Besides the three zero knowledge proof primitives, the two proofs only reveal
s, e1, e2, . . . , ek−1. As s is randomly chosen from Zq, the distribution of s is
uniform in Zq. As ei = em

i−1h
γi mod p for i = 1, 2, . . . , k − 1 and γi is randomly

chosen from Zq, each ei is uniformly distributed in G. So anybody can simulate
s, e1, e2, . . . , ek−1 without any difference by randomly choosing s in Zq and
every ei in G.
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Other integers used in the proof like bl,i and ωl are deterministic public func-
tions of s1, s2, . . . , sn, s, c, e1, e2, . . . , ek−1. So they are not independent vari-
ables affecting zero knowledge of the two proof primitives.

Since the whole proof transcripts of the two proof protocols with an honest
verifier can be simulated without any difference by a party without any secret
knowledge, they achieve honest-verifier zero knowledge. �

Theorem 2. The new inclusion proof is sound. More precisely, if a polyno-
mial prover can extract an opening (m, r) of c such that m = si mod q for
i = 1, 2, . . . , n, then the probability that the prover can pass the verification in
the new inclusion proof is negligible.

Proof: If the prover extracts m, r and passes the verification in the new inclusion
proof with a non-negligible probability while c = gmhr mod p and m = si mod q
for i = 1, 2, . . . , n, a contradiction can be found as follows. As he passes the
verification in the new inclusion proof with a non-negligible probability, he must
have successfully proved validity of e1, e2, . . . , ek−1 with a non-negligible prob-
ability. As proof of validity of e1, e2, . . . , ek−1 is based on proof of knowledge
of discrete logarithm in [27] and proof of equality of discrete logarithms in [6],
whose soundness is formally proved when they are proposed, it is guaranteed
with a non-negligible probability that the prover can calculate integers m, r and
γi for i = 1, 2, . . . , k − 1 in polynomial time such that

c = gmhr mod p (3)
ei = em

i−1h
γi mod p for i = 1, 2, . . . , k − 1 (4)

where e0 = c.
As he passes the verification in the new inclusion proof with a non-negligible

probability, the prover also must have successfully passed the zero knowledge
proof of knowledge of one out of t discrete logarithms [7] with a non-negligible
probability. As soundness of zero knowledge proof of partial knowledge [7] is for-
mally proved when it is proposed, it is guaranteed that for some l in {1, 2, . . . , t}
the prover can calculate integers s and R in polynomial time such that

gshR =
∏k−1

i=0 e
bl,i+1
i mod p (5)

with a non-negligible probability where e0 = c.
(3), (4) and (5) imply that the prover can calculate integers s, R,∑k−1
i=0 bl,i+1m

i+1 and
∑k−1

i=0 bl,i+1Γi+1 in polynomial time with a non-negligible
probability such that

gshR =
∏k−1

i=0 g
bl,i+1mi+1

hbl,i+1Γi+1 = g
∑k−1

i=0 bl,i+1mi+1
h
∑k−1

i=0 bl,i+1Γi+1 mod p

where
Γi = mΓi−1 + γi−1 mod q for i = 2, 3, . . . , k

and Γ1 = r. So

s =
∑k−1

i=0 bl,i+1m
i+1 =
∑k

i=1 bl,im
i mod q
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with a non-negligible probability. Otherwise, with a non-negligible probability
the prover can calculate non-zero (modulo q) integers α = s−

∑k−1
i=0 bl,i+1m

i+1

and β = R −
∑k−1

i=0 bl,i+1Γi+1 in polynomial time to satisfy gαhβ = 1 and thus
can calculate logg h in polynomial time, which is a contradiction.

Note that bl,1, bl,2, . . . , bl,k are generated through∑k
i=1 bl,is

i
l,ρ = s mod q for ρ = 1, 2, . . . , k.

So with a non-negligible probability⎛⎜⎜⎜⎜⎜⎜⎝

sl,1 s
2
l,1 . . . sk

l,1
sl,2 s

2
l,2 . . . sk

l,2
. . . . . . . . . . . .
. . . . . . . . . . . .
sl,k s

2
l,k . . . sk

l,k

m m2 . . . , mk

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
bl,1
bl,2
. . .
. . .
bl,k

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
s
s
. . .
. . .
s
s

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

However, as m = si mod q for i = 1, 2, . . . , n and all the calculations in the

matrix is performed modulo q,

⎛⎜⎜⎜⎜⎜⎜⎝

sl,1 s
2
l,1 . . . sk

l,1 s

sl,2 s
2
l,2 . . . sk

l,2 s

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
sl,k s

2
l,k . . . sk

l,k s

m m2 . . . , mk s

⎞⎟⎟⎟⎟⎟⎟⎠ is a non-singular matrix

and thus (6) absolutely and always fails. Therefore, a contradiction is found and
the probability that a prover can pass the new inclusion proof is negligible if the
integer he commits to in c is not in S. �

Theorem 3. The new exclusion proof is sound and the probability that a prover
can pass its verification is negligible if he can extract an opening (m, r) of c such
that m ∈ S.

Before Theorem 3 is proved, a lemma is proved first.

Lemma 1. The uncommitment proof is sound. More precisely, if the prover
passes its verification, then with an overwhelmingly large probability s = Ml.

Proof: Note that the uncommitment proof is a simple combination of two in-
stances of proof of knowledge of discrete logarithm [27] and one instance of
proof of equality of discrete logarithms [6], whose soundness is formally proved
when they are proposed. So it is guaranteed with an overwhelmingly large prob-
ability that the prover can calculate secret integers x, T and r′ in polynomial
time to satisfy

y = gx mod p
(gs)Thr′

= ωT
l y mod p.

So with an overwhelmingly large probability

(gs)Thr′
= ωT

l g
x mod p. (7)
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As Ml is the message the prover commits to in ωl, the prover can calculate
integers Ml and R in polynomial time such that

ωl = gMlhR mod p

and thus (7) implies that with an overwhelmingly large probability the prover
can calculate x, T , r′, Ml and R in polynomial time such that

(gs)Thr′
= (gMlhR)T gx mod p.

So with an overwhelmingly large probability the prover can calculate T (s−Ml)−
x and r′ − TR in polynomial time such that

gT (s−Ml)−xhr′−TR = 1 mod p.

So with an overwhelmingly large probability

T (s−Ml)− x = 0 mod q

Otherwise, with an overwhelmingly large probability the prover can calculate
logg h = (TR − r′)/(T (s−Ml) − x) mod q in polynomial time, which is a con-
tradiction. As y > 1, x = 0 mod q and so with an overwhelmingly large prob-
ability s −Ml = 0 mod q. Therefore, with an overwhelmingly large probability
s = Ml mod q. �

Proof of Theorem 3: If the prover passes the verification in the new exclusion
proof with a non-negligible probability while m ∈ S and c = gmhr mod p, a
contradiction can be found as follows. As the prover passes the verification in the
new exclusion proof with a non-negligible probability, he must have successfully
proved validity of e1, e2, . . . , ek−1 with a non-negligible probability. As proof of
validity of e1, e2, . . . , ek−1 is based on proof of knowledge of discrete logarithm
in [27] and proof of equality of discrete logarithms in [6], whose soundness is
formally proved when they are proposed, it is guaranteed with a non-negligible
probability that the prover can calculate integersm, r and γi for i = 1, 2, . . . , k−1
in polynomial time such that

c = gmhr mod p (8)
ei = em

i−1h
γi mod p for i = 1, 2, . . . , k − 1 (9)

where e0 = c.
(8) and (9) imply that with a non-negligible probability∏k−1

i=0 e
bl,i+1
i =

∏k−1
i=0 g

bl,i+1mi+1
hbl,i+1Γi+1

= g
∑k−1

i=0 bl,i+1mi+1
h
∑k−1

i=0 bl,i+1Γi+1 mod p (10)

As m ∈ S, there must exist l ∈ {1, 2, . . . , t} such that m ∈ Sl. As⎛⎜⎜⎜⎜⎝
sl,1 s
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and Sl = {sl,1, sl,2, . . . , sl,k}, m satisfies∑k
i=1 bl,im

i = s mod q. (11)

As ωl =
∏k−1

i=0 e
bl,i+1
i , (10) and (11) imply that with a non-negligible probability

ωl = gsh
∑k−1

i=0 bl,i+1Γi+1 mod p

and thus s is committed to by the prover in ωl with a non-negligible probability.
As the prover passes the verification in the new exclusion proof with a non-

negligible probability, he must have successfully passed the t instances of proof
of uncommitment with a non-negligible probability, say P1. So according to
Lemma 1, it is guaranteed with a probability P1P2 that s is not committed to
by the prover in ωl for any l in {1, 2, . . . , t} where P2 is an overwhelmingly large
probability. As P1P2 is non-negligible, it is guaranteed with an non-negligible
probability that s is not committed to by the prover in ωl for any l in {1, 2, . . . , t}.
So a contradiction is found. Therefore, the probability that a prover can pass
the exclusion proof is negligible if m ∈ S. �

5 Efficiency Optimisation

The cost of the new inclusion proof and exclusion proof includes communica-
tional cost and computational cost. In communication, 3k + 3t+ 2 integers are
transfered in the new inclusion proof and 3k + 6t+ 2 integers are transfered in
the new exclusion proof. Their computational cost is measured in terms of the
number of exponentiations. When estimating their computational cost, we have
an observation: exponentiations with small (in comparison with q) exponents
like si

ρ with 1 ≤ i ≤ k is much less costly than an exponentiation with an ex-
ponent chosen from Zq. Actually, the k − 1 exponentiations s2ρ, s3ρ, . . . , sk

ρ can
be calculated in a batch using k − 1 multiplications. So, in efficiency analysis of
cryptographic protocols (e.g. threshold secret sharing [17,28]), an exponentiation
used in Lagrange Interpolation is usually not counted like an exponentiation with
a full-length exponent as its exponent is usually much smaller. So the number of
exponentiations needed in the new inclusion proof is 3k + 4t− 3 for the prover
and 4k+n+2t for a verifier, while the number of exponentiations needed in the
new exclusion proof is 3k + 6t− 3 for the prover and 3k + n+ 6t for a verifier.

Efficiency of general inclusion proof and exclusion proof has been greatly
improved in our work as O(k) + O(t) is actually O(

√
n). For the first time,

communicational cost of general inclusion proof and general exclusion proof in a
set with cardinality n is reduced to O(

√
n). Computational cost of the prover is

O(
√
n) exponentiations as well, the most efficient in publicly verifiable general

solutions to inclusion proof and exclusion proof. However, computational cost
of a verifier still includes n exponentiations, which are needed to calculate ωl =∏k−1

i=0 e
bl,i+1
i for l = 1, 2, . . . , t. Those n exponentiations is the bottleneck in

efficiency of the new inclusion proof and exclusion proof technique.
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To overcome this bottleneck, we exploit a special phenomenon in the new
inclusion proof and the new exclusion proof, which does not happen in the exist-
ing solutions to inclusion proof or exclusion proof. That is in the t instances of
calculation of ωl the same k bases e0, e1, . . . , ek−1 are used. Although directly cal-
culating ω1, ω2, . . . , ωt is costly for a verifier, verification of validity of them can
be efficient if someone else knows (e.g. using some other more efficient method)
and publishes them. In the the new inclusion proof and the new exclusion proof
the prover can calculate each ωl using no more than 2 exponentiations. So if he
publishes ω1, ω2, . . . , ωt a verifier only needs to verify validity of them. Therefore,
calculation of ω1, ω2, . . . , ωt by a verifier in the new inclusion proof and the new
exclusion proof can be optimised as follows.

1. The prover calculates and publishes for l = 1, 2, . . . , t

ωl =

{
gsh
∑k

i=1 bl,iΓi mod p if m ∈ Sl

g
∑k

i=1 bl,im
i

h
∑k

i=1 bl,iΓi mod p if m /∈ Sl

2. A verifier randomly chooses integers θ1, θ2, . . . , θt from Zτ where τ is a se-
curity parameter smaller than q.

3. The verifier checks∏t
l=1 ω

θl

l =
∏k−1

i=0 e
∑ t

l=1 θlbl,i+1
i mod p. (12)

He accepts validity of ω1, ω2, . . . , ωt iff (12) holds.

This method only transfers t integers and costs t+ k exponentiations, while as
illustrated in Theorem 4, ωl is guaranteed to be

∏k−1
i=0 e

bl,i+1
i for l = 1, 2, . . . , t if

(12) is satisfied with a non-negligible probability.

Theorem 4. If (12) is satisfied with a probability larger than 1/τ , then it is
guaranteed that ωl =

∏k−1
i=0 e

bl,i+1
i for l = 1, 2, . . . , t.

Proof: For any integer L in {1, 2, . . . , t} there must exist integers
θ1, θ2, . . . , θL−1, θL+1, . . . , θt in zτ and two different integers θL and θ̂L in Zτ

such that ∏t
l=1 ω

θl

l =
∏k−1

i=0 e
∑ t

l=1 θlbl,i+1
i mod p (13)

(
∏L−1

l=1 ω
θl

l )ωθ̂L

L

∏t
l=L+1 ω

θl

l (14)

=
∏k−1

i=0 e
(
∑L−1

l=1 θlbl,i+1)+θ̂LbL,i+1+
∑ t

l=L+1 θlbl,i+1

i mod p

Otherwise, with this L for any combination of θ1, θ2, . . . , θL−1, θL+1, . . . , θt there
is at most one θL to satisfy (12) among the τ possible choices of θL, which leads
to a contradiction: the probability that (12) is satisfied is no larger than 1/τ .
(13)/(14) yields

ωθL−θ̂L

L =
∏k−1

i=0 e
(θL−θ̂L)bL,i+1
i mod p
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As θL, θ̂L < τ < q and q is prime, (θL − θ̂L)−1 mod q exists. So

ωL =
∏k−1

i=0 e
bL,i+1
i mod p

Note that L can be any integer in {1, 2, . . . , t}. Therefore,

ωl =
∏k−1

i=0 e
bl,i+1
i for l = 1, 2, . . . , t. �

6 Comparison and Conclusion

The new inclusion proof protocol and the new exclusion protocol are compared
with the existing solutions to inclusion proof and exclusion proof in Table 1,
which clearly demonstrates the advantages of the new scheme in both security
and efficiency. As stated in Section 1, we focus on proof techniques to especially
designed to handle inclusion proof and exclusion proof in this paper. Communi-
cational cost is estimated in terms of the number of transferred integers. Compu-
tational cost is estimated in terms of the number of exponentiations with bases
in G (or similar large cyclic groups) and exponents in Zq (or a similar large
range as wide as the order of a large cyclic group). The simple exclusion proof is
assumed to employ ZK proof of inequality of discrete logarithm in [4]. Our new
solution costs O(

√
n) and is more efficient than all the existing general solutions

including the simple inclusion proof, the simple exclusion proof and the inclu-
sion proof protocol in [5], while the inclusion proof protocol and exclusion proof
protocols in [3,14] are only special solutions working under strict conditions.
Moreover, our new technique overcomes the drawbacks of the existing solutions.

Table 1. Comparison of inclusion proof and exclusion proof schemes

scheme type public generality & non- communi- computation

verifiability flexibility -interaction -cation prover verifier

simple proof inclusion achieved achieved yes 3n 2n − 1 2n

simple proof exclusion achieved achieved yes 6n 6n 6n

[3] inclusion achieved no and strictly yes 54 46 56

limited

[14] exclusion achieved no and strictly yes 68 56 67

limited

[5] inclusion no achieved no n + 6 for 7 for n + 9

every verifier every verifier

new proof inclusion achieved achieved yes 3k + 4t + 2 3k + 4t − 3 4k + 3t

new proof exclusion achieved achieved yes 3k + 7t + 2 3k + 6t − 3 4k + 7t
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Abstract. The study of non-transferability of digital signatures, such
as confirmer signatures, has enjoyed much interest over the last twenty
years. In PKC ’08, Liskov and Micali noted that all previous construc-
tions of confirmer signatures consider only offline untransferability – non-
transferability is not preserved if the recipient interacts concurrently with
the signer/confirmer and an unexpected verifier. We view this as a re-
sult of all these schemes being interactive in the confirmation step. In
this paper, we introduce the concept of non-interactive confirmer signa-
tures (which can also be interpreted as extractable universal designated-
verifier signatures). Non-interactive confirmer signatures give a neat way
to ensure the online untransferability of signatures. We realize our no-
tion under the “encryption of a signature” paradigm using pairings and
provide a security proof for our construction without random oracles.

Keywords: non-interactive confirmer signature, extractable universal
designated verifier signature, online untransferability.

1 Introduction

Non-transferability of digital signatures is an interesting research problem that
has been investigated in various works over the last twenty years. A canonical
application considers the scenario in which Alice wants to make an offer to Bob,
but does not want Bob to show it to anybody else, so that Bob can not use
Alice’s offer as leverage to negotiate better terms or to gain any advantage. This
covers the scenarios of job offers, contracts, receipt-free elections, and selling of
malware-free software.

1.1 Undeniable Signatures and Confirmer Signatures

To address this problem, Chaum and van Antwerpen [1] introduced the notion
of undeniable signatures which requires the signer’s presence and cooperation
for the recipient to verify the validity of a signature. In this way, the signer
� A major part of the work was done while at New York University.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 49–64, 2011.
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controls when the validity of the signature is being confirmed, and the validity
is unknown without the participation of the signer. With this extra power of
the signer, a basic security requirement is that the signer cannot cheat about
the (in)validity of an undeniable signature when participating in the confirma-
tion/disavowal protocols. However, there is no cryptographic means which can
prevent a signer from refusing to cooperate. If the signer becomes unavailable or
decides to “repudiate” the signature by ignoring any confirmation requests, the
recipient is left with no cryptographic evidence of the signature’s validity.

To overcome this disadvantage and to better ensure non-repudiation, Chaum
[2] introduced a confirmer in this setting, which is a party other than the signer
who can confirm/deny a signature. Now the trust (of willingness to participate
in the protocol) is moved from the signer to the confirmer. Furthermore, this
confirmer can extract an ordinary digital signature that is publicly and non-
interactively verifiable (say when Bob has accepted the offer but Alice denies
making one). This notion is known as designated confirmer signatures. In this
paper, we follow the naming of some recent work and call it confirmer signatures.

Recently, Liskov and Micali [3] pointed out that all constructions of confirmer
signatures provide only offline untransferability, and possibly Bob can “transfer”
the validity of the signature by interacting with Alice and a verifier concurrently.
They propose the notion of online-untransferable signatures to address this prob-
lem. However, their construction is inefficient due to the use of “cut-and-choose”
proofs, i.e., the number of cryptographic operations like encryption and signing
is linear in the security parameter. Also, the confirmer needs to either setup a
public key for each signer, or to use an identity-based encryption (IBE) for the
extraction of a publicly-verifiable signature. Both could be viewed as shortcom-
ings of their construction, or the complexity one needs to pay to achieve online
untransferability in an interactive setting. Lastly, their definitions deviate from
the standard ones due to the absence of the confirmation protocol, which might
be needed if the confirmer has to convince a verifier different from the recip-
ient of a signature (e.g., in cases of checking integrity-critical content as part
of a subscription service [4]). It is fair to say previous constructions either are
inefficient or provide only offline untransferability.

1.2 (Universal) Designated-Verifier Signatures

Shortly after Chaum’s work, Jakobsson et. al. [5] observed that undeniable signa-
tures allow the signer to choose only whether to engage in the confirm/disavowal
protocol but not with whom, i.e., it is possible that the recipient acts as a man-
in-the-middle and executes the confirmation protocol with the signer so as to
convince a third party. Moreover, this puts the signer at risk of being coerced and
forced to participate in the confirmation protocol. To address these problems,
they suggested the idea of designated verifier proofs which allows the prover
(signer) to designate who will be convinced by the proof. If Alice wanted to con-
vince Bob of the validity of a signature, or generally a statement θ, then Alice
would prove to Bob that “either θ is true, or I am Bob”. That would definitely
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convince Bob, but if he tried to transfer the proof to others, it would not imply
anything about the validity of θ simply because the proof came from Bob.

Steinfeld et. al. [6] generalized this notion to universal designated-verifier sig-
natures (UDVS). Unlike the original definition, one does not have to be the
signer in order to convince a designated verifier. Anyone who is in possession of
a regular signature can perform such a proof to a designated verifier V . Their
construction requires the verifiers to register their public/private key pairs with
a key registration authority using the same system parameters as the signature
scheme of the signer. This key registration model is a fairly common requirement
when using public key infrastructure.

The original application of UDVS is motivated by privacy concerns associated
with dissemination of signed digital certificates. An universal designator, which
means any receiver of a certificate, can transfer the validity of the signature
to any designated verifier. There is no mean to extract an ordinary (publicly-
verifiable) signature from a UDVS. One way to do this is to ask the universal
designator to hold the original signature. Alice still needs to trust that the sig-
nature will be kept confidential by this designator, i.e., active collusion with Bob
or attack by Bob would not happen. Bob must ask Alice or the confirmer for
the signature, which means Bob need to place trust on this middle-man too.
In other words, we still need to make trust assumptions which may be implic-
itly made when using confirmer signatures. Simply put, the UDVS may provide
online-untransferability, but not non-repudiation, as also pointed out in [3].

We remark that the universal designated verifier signature proof proposed by
Baek et. al. [7] (which is later renamed to credential ownership proof [8]) does
not has any requirement about whether the verifier cannot convince a third party
that the message has been actually signed by a signer. In their proof systems,
interactive protocols between the signature holder and the designated verifier
are required to avoid the key requirement for the verifiers.

1.3 Related Work

Boyar et. al. [9] introduced the concept of convertible undeniable signatures,
which allows the possibility of converting either a single undeniable signature or
all undeniable signatures ever produced by a signer into an ordinary one. Similar
to traditional undeniable/confirmer signature, confirmation is interactive.

ElAimani revisited in a series of work [10,11] the construction of undeniable
or confirmer signature following the “encryption of a signature” paradigm firstly
studied by Okamoto [12]. These studies identified the minimal security required
for the encryption scheme in the generic constructions of strongly-unforgeable
schemes which can be instantiated by a rather wide class of signature schemes.
Since our scheme is also constructed using the “encryption of a signature” ap-
proach, all these constructions share similarity (except some technical details
such as an ordinary signature1 can be extracted from our scheme since we do
1 By an ordinary signature, we mean that the signature just signs on the message of

interest but includes nothing else. For example, there should be no other auxiliary
information that is only useful for (the security of) the confirmer signature.
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not aim at getting strong unforgebility). We view the merit of our work as a
variation of the traditional paradigm which gives a conceptually simple solution
to the online transferability problem.

1.4 Our Contribution

The research focus of confirmer signatures has been on defining the right model
and constructing efficient schemes. We follow these directions here by introducing
the concept of non-interactive confirmer signatures (NICS) and the first efficient
(non-interactive) confirmer signature scheme with online untransferability. Our
construction is secure in the key registration model without random oracles.
This result can also be interpreted as extractable universal designated-verifier
signatures (xUDVS), i.e., one could extract the underlying regular signature if
in possession of the private extraction key. This extraction key pair is a single key
pair for normal public key encryption, but not an extra key pair generated by a
confirmer for each signer, nor a master public/private key pair for an identity-
based encryption (c.f. [3]). Surprisingly, the works studying confirmer signatures
and designated verifier proofs/signatures have been almost entirely independent
despite both are originating from the same problem.

The correspondences between an NICS and an xUDVS are as follow. Signing
and extraction are the same. Confirmation is done by taking an ordinary signa-
ture as an input and creating a new NICS/xUDVS with respect to any verifier
who asked for a confirmation (in contrast to [3]). This process can be possibly
done by the signer herself, or any holder of an ordinary signature (i.e., a universal
confirmation) At the same time, it is possible to extract an ordinary signature
out of the NICS/xUDVS by using the private key of a third-party.

The benefits of non-interactive confirmation are numerous. It provides non-
transferability of signatures in a natural way and simplifies the traditional way
of “sending an unverifiable signature to the verifier first, then the verifier asks for
the signer/confirmer to confirm/disavow later”. In particular, the disavowal pro-
tocol is not necessary any more. Most importantly, a non-interactive confirmer
signature scheme avoids the problem of the recipient interacting concurrently
with the signer and another verifier. So, the online untransferability is easily
satisfied. We will see shortly that the security definition also becomes neater.

2 Non-interactive Model for Confirmer Signatures

2.1 Notations

Let negl(κ) denote a negligible function in κ where a function ε : N→ R is said
to be negligible if for all c > 0 and sufficiently large κ, ε(κ) ≤ κ−c. For a finite
set S, we denote x ∈R S the sampling of an element x from S uniformly at
random. If A is a PPT algorithm, A(x) denotes the output distribution of A on
input x. We write y ← A(x) to denote the experiment of running A on input x
and assigning the output to the variable y. Also, let

Pr[x1 ← X1; x2 ← X2(x1); . . . ; xn ← Xn(x1, . . . , xn−1) : ρ(x1, . . . , xn)]
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be the probability that the predicate ρ(x1, . . . , xn) is true when x1 is sampled
from the distribution X1; x2 is sampled from the distribution X2(x1) which pos-
sibly depends on x1; x3, . . . , xn−1 are defined similarly; and finally xn is sampled
from distribution Xn(x1, . . . , xn−1) which possibly depends on x1, . . . , xn−1. The
predicate might include execution of probabilistic algorithms.

2.2 Framework

Before describing different algorithms required in a non-interactive confirmer sig-
nature scheme, we first introduce the four kinds of participants involved, namely,
signers, verifiers, adjudicator, and universal confirmer. The role of the former two
are obvious. An adjudicator is mostly a passive entity who is assigned by a signer
(possibly with the consent of the verifier given outside of our protocols) in the
creation of a confirmer signature. A verifier may turn to an adjudicator when
the signer refused to give an ordinary signature afterwards.

The role of a universal confirmer is not the same as a traditional one. For tra-
ditional confirmer/undeniable signatures, the signatures generated by the signer
is ambiguous, i.e., it does not bind to the signer by itself. The job of a confirmer
is to convince the verifier about the validity of a signature, which also means that
the confirmer must maintain some secret information other than the signature
itself, may it be a private key or some random values used by the signer during
signature generation; otherwise anyone can confirm the validity of a signature.

In our setting, the signing process started by generating a regular signature
that is binding to the signer. Consequently, there must be a step which converts
an ordinary signature to an ambiguous one. We include this step as part of the
confirmation. While the signature produced is ambiguous, the confirmation can
still convince the verifier that the signer has signed on a particular message.
Moreover, this can also confirm the fact that an ordinary signature by the signer
on this message can also be extracted by an adjudicator. The confirmer in our
notion is universal, which means that anyone who holds an ordinary signature
can do this job. The confirmer does not need to maintain additional secret state
information. Of course, the signer may perform the confirmation herself as well.

Now we are ready to define a non-interactive confirmer signature scheme with
a global setup. Specifically, this setup decides the security parameter κ, the
cryptographic groups to be used, and possibly a common reference string. All
these will be included in the system parameters param, implicitly required by all
algorithms. Like existing constructions, we require both signers and verifiers to
register a public (verification) key with the key registration authority. One way
to do that is to prove knowledge of the secret key during key registration.

Definition 1 (Non-Interactive Confirmer Signatures). A non-interactive
confirmer signature scheme is a signature scheme (SKGen, Sig,Ver) augmented
with two suites of algorithms: First, for convincing a designated verifier, we have:

– Des({vkS , vkV }, pk, σ,m): takes as inputs an unordered pair of verification
keys (one of the signer and one of the verifier), an adjudicator public key pk,
and a signature/message pair which is valid for any key among {vkS , vkV };
outputs a confirmer signature σ̂.
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– DVer({vk0, vk1}, σ̂,m): takes as inputs an unordered pair of verification keys,
a confirmer signature σ̂ and a message m; outputs 1 if σ̂ is an output of
Des({vk0, vk1}, pk, σ,m), where σ is a signature of m verifiable under vk0 or
vk1; otherwise, outputs 0.

For extracting an ordinary signature for a verifier, we have:

– EKGen(1κ): outputs a private/public key (xk, pk) for the adjudicator.
– Ext(xk, σ̂): takes as inputs the private extraction key and a valid (publicly

verifiable) confirmer signature outputted by Des({vk0, vk1}, pk, σ,m), outputs
an ordinary signature σ and a bit b indicating that σ is given under the
signing key corresponding to vkb.

In the traditional notion of confirmer signatures, the job of our adjudicator
about extracting an ordinary signature is also performed by the confirmer. Here
we distill this task out. As argued before, a confirmer may be absent, as a
designated verifier can “confirm” the signature σ̂ by himself. On the other hand,
any holder of an ordinary signature σ can designate the proof to any verifier,
similar to the functionality of the universal designated verifier signatures.

2.3 Security Requirements

Our model borrows ideas from both confirmer signatures and universal desig-
nated verifier signatures. Compared with traditional confirmer signatures, our
definition is considerably neater since the confirmation and disavowal protocols
are essentially replaced by a single Des algorithm. Most importantly, all previous
constructions are interactive and their security requirements are defined with re-
spect to that. We see that as a reason why all these works can only achieve offline
untransferability and a more complex definition is required to ensure online un-
transferability. We believe that our definition satisfy all fundamental properties
of confirmer signatures. The following requirements should be satisfied for all
system parameters param generated by the global setup.

Definition 2 (Correctness). A non-interactive confirmer signature scheme
(of security parameter κ) is correct if the four conditions below are satisfied
(with overwhelming probability in κ).

– Key-Correctness
We assume it is efficient to check for the validity of all kinds of key pairs
in our system. We denote this check by the predicate Valid(·) which takes as
implicit input the key pair type. Specifically, we require that Valid(sk, vk) = 1
and Valid(xk, pk) = 1 for all (sk, vk)← SKGen(1κ) and (xk, pk)←EKGen(1κ).

– Sign-Correctness
For all messages m, and all (sk, vk)←SKGen(1κ), Ver(vk,m, Sig(sk,m)) = 1.

– Designate-Correctness
For all messages m, all (skS , vkS), (skV , vkV )←SKGen(1κ), and all (xk, pk)←
EKGen(1κ), and all σ̂ ← Des({vkS , vkV }, pk, Sig(skS ,m),m), we expect that
DVer({vkS , vkV }, σ̂,m) = 1, where {vkS , vkV } is ordered lexicographically.
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– Extract-Correctness
For all messages m, all (sk0, vk0), (sk1, vk1) ← SKGen(1κ), all (xk, pk) ←
EKGen(1κ), all b ∈ {0, 1}, all σ ← Sig(skb,m), and finally for all σ̂ ←
Des({vk0, vk1}, pk, σ,m), it is true that Ext(xk, σ̂) = (σ, b).

Privacy. Regarding the privacy requirement of the confirmer signatures, some
existing works consider invisibility, which informally means that an adversary
A with the signing keys and accesses to extraction oracles cannot distinguish
whether a confirmer signature is on which of the two chosen messages m0 or
m1. However, this is more about the messages invisibility but may not protect
the signer if the adversary is interested in knowing if the purported signer has
participated or not instead (say Eve will agree to give Bob a job offer if Alice
does, and how much salary Alice is going to offer Bob does not really matter
to Eve). So here we consider the privacy requirement of the real signer, which
ensures that A cannot distinguish whether a confirmer signature is signed using
a signing key sk0 or sk1.

Definition 3 (Source Privacy)

| Pr[ (xk, pk)←EKGen(1κ); (m, (sk0, vk0), (sk1, vk1), state)← AOE
xk(·)(param, pk);

b← {0, 1};σ∗ ← Sig(skb,m); σ̂∗ ← Des({vk0, vk1}, pk, σ∗,m);
b′ ← AOE

xk(·)(state, σ̂∗) :
b = b′ | Valid(sk0, vk0) ∧ Valid(sk1, vk1)]− 1

2 | < negl(κ)

where OE
xk(·) is an extraction oracle, taking a valid confirmer signature σ̂ = σ̂∗

as an input and returning the output of Ext(xk, σ̂).

One might think at first that the non-interactive confirmer signatures reveal too
much information about the possible signer. However, while the two possible
signers are known, they are equally probable as a real signer.

Note on Indistinguishability: Another way to model the privacy guarantee of the
real signer is based on an indistinguishability notion. Specifically, there is a PPT
algorithm Des′ taking as inputs a message, the verification key of the purported
signer, and possibly the signing and the verification key of a designated verifier,
and outputting a fake/simulated signature such that it looks indistinguishable
as a real signature generated by Des to any adversary A. If the capability of
extracting ordinary signature is present, A is disallowed to win in a trivial way,
such as having the extraction key xk or asking the oracle to use xk to extract
the signature out of the confirmer/designated-verifier signature in question.

We claim that our privacy notion implies indistinguishability. Our privacy no-
tion guarantees that it is difficult to tell which key among {vkS , vkV } is the actual
verification key for the σ in Des({vkS , vkV }, pk, σ,m). A faking/simulation algo-
rithm Des′ under our framework is readily available. We can do that by using the
designated-verifier’s signing key skV to create a signature σ = Sig(skV ,m) and
then create a confirmer signature Des({vkS , vkV }, pk, σ,m). This is exactly how a
signature is created when the roles of the signer and the verifier are interchanged.
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A similar argument is used in [6] to argue for unconditional indistinguishability
in their case. While in our case, we added an encryption of the “real” verification
key, so we can only achieve computational indistinguishability.

Stronger Privacy to Protect All Possible Signers’ Identities: If one insists on hid-
ing the verification keys in the designated-verifier signature, recall that it was
shown in [12] that the notion of confirmer signatures is equivalent to public key
encryption, so one may always add an extra layer of encryption and encrypt the
whole signature under a public key of the designated verifier to achieve stronger
privacy guarantee, without relying on any additional assumption.

Soundness. While privacy protects the signer, the verifier is protected by the
soundness guarantee. Intuitively, the verifier does not want to get a confirmer
signature σ̂ which is valid according to the DVer algorithm, but the extracted
ordinary signature of which cannot pass the Ver algorithm.

Definition 4 (Extraction Soundness)

Pr[ (m, (sk0, vk0), (sk1, vk1), (xk, pk), σ̂)← A(param); (σ, b) = Ext(xk, σ̂) :
DVer({vk0, vk1}, pk, σ̂,m) = 1 ∧ Ver(vkb, σ,m) = 0
∧Valid(sk0, vk0) ∧ Valid(sk1, vk1) ∧ Valid(xk, pk) ] < negl(κ)

The extraction soundness only guarantees that a valid confirmer signature σ̂ can
be extracted to a valid ordinary signature created by either one of the secret
keys. Since the creation of confirmer signature is universal in our scheme, it is
possible that a designated verifier who expects to get someone else’s signature
eventually may end up with getting his own signature! An easy solution to this
problem is to register a key pair which is only for the purpose of designation but
not for signing any message. If a single key pair is used, a user should be cautious
in what signature to accept and what to sign. For the offer scenario, it means
that Bob should protect his private key secretly and refuse to sign any message
similar to “xxx is willing to offer to Bob yyy”, and should never get convinced by
a confirmer signature on a message without mentioning who is agreed to make
the offer, which should be a common practice to follow in checking an offer.

Unforgeability. There are two types of unforgeability to be considered. The
first is the standard notion of unforgeability under chosen message attack. The
second one similarly requires that it is infeasible to compute a confirmer signature
σ̂ on a new message which could be verified using DVer for a pair of verification
keys, the secret keys of which are unknown. Note that Des is a public algorithm
which requires no secret knowledge, so like in the regular unforgeability game
the adversary needs access only to a signing oracle for the unknown signing keys.

Definition 5 (Unforgeability)

Pr[ (sk0, vk0), (sk1, vk1)← SKGen(1κ);
(m∗, σ∗, σ̂∗, (xk, pk))← AOS

sk0
(·),OS

sk1
(·)(param);

ρ = Ver(vk0, σ
∗,m∗); ρ̂ = DVer({vk0, vk1}, pk, σ̂∗,m∗) :

m∗ /∈ {mi} ∧ Valid(xk, pk) ∧ (ρ = 1 ∨ ρ̂ = 1) ] < negl(κ)



Non-interactive Confirmer Signatures 57

where {mi} is the set of messages supplied to OS
sk0

or OS
sk1

which take a message
and output a digital signature signed with the secret key sk0 and sk1, respectively.

Note that extraction soundness “converts” that any forgery of the second type
to a forgery of the first type as the extracted signature has to be verifiable under
one of the verification keys. One may also try to define unforgeability by allowing
the adversary to generate (sk1, vk1) and only considering σ̂∗ is a valid forgery
if one can extract a valid signature under vk0 from σ̂∗. However, this definition
turns out to be equivalent to our unforgeability definition above.

3 Preliminaries

3.1 Number Theoretic Assumptions

Definition 6 (Bilinear Map). Let G and GT be two groups of prime order p.
A bilinear map ê(·, ·) : G×G→ GT satisfies:

– non-degeneracy: ê(g, g) is a generator of GT when g is a generator of G;
– bilinearity: for all x, y ∈ Zp, ê(gx, gy) = ê(g, g)xy.

Definition 7 (Decisional Linear (DLIN) Assumption [13]). The DLIN
assumption holds if for all PPT adversaries, on input a sextuple (u, v, g, ua, vb, gc)
∈ G6, where c = a+ b or c is a random element in Zp with equal probability, the
probability of guessing which is the case correctly over 1

2 is negligible.

Definition 8 (q-Strong Diffie-Hellman (q-SDH) Assumption [14]). The
q-SDH assumption holds if for all PPT adversaries, it is of negligible probability
to find a pair (m, g

1
m+x ) ∈ Zp ×G when given (g, gx, gx2

, . . . , gxq

) ∈ Gq+1.

3.2 Cryptographic Building Blocks

Definition 9 (Collision-Resistant Hash Function (CRHF)). A family of
hash functions H : {0, 1}∗ → {0, 1}l(κ) is said to be collision resistant if for all
PPT adversaries A, we have:

Pr[H ∈R H; x, y ← A(H) : H(x) = H(y)] < negl(κ).

We use a CRHF to compress messages of any length to messages of length l(κ),
where 2l(κ) < p and p is the order of the groups we are working with.

Definition 10 (Signature Schemes). A signature scheme Σ is a triple of
PPT algorithms (SKGen, Sig,Ver) with the following properties:

– SKGen: takes as an input a security parameter 1κ; outputs a signing key sk
and a corresponding verification key vk.

– Sig: takes as inputs a signing key sk and a message m and outputs a signature
σ = Sig(sk,m).
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– Ver: takes as inputs a verification key vk, a message m and a purported
signature σ; outputs either 1 or 0 denoting “accept” or “reject”.

– Correctness: ∀κ ∈ N, (sk, vk)← SKGen(1κ), Ver(vk, Sig(sk,m),m) = 1.

Definition 11 (Strong One-Time Signature Scheme). A signature scheme
Σ is said to be strongly secure one-time signature, if for all PPT adversaries A,

Pr[ (sk, vk)← SKGen(); (m, state)← A(vk);σ ← Sig(sk,m);
(σ∗,m∗)←A(state, σ) : Ver(vk, σ∗,m∗)=1 ∧ (σ∗,m∗) = (σ,m)] < negl(κ).

In our construction, we could use any strong one-time signature scheme, prefer-
ably with security follows from some of the aforementioned assumptions. One
such scheme is described in [15] which is based on the DLIN assumption. This
scheme is also used in [16].

Definition 12 (Weakly-Secure Signatures). A signature scheme Σ is de-
fined to be secure against weak chosen message attack (wEUF-secure) if for all
PPT adversaries A,

Pr[ (m1,m2, . . . ,mq)← A(1κ); (sk, vk)← SKGen();
σi = Sig(sk,mi); (m∗, σ∗)← A(vk, σ1, . . . , σq) :
Ver(vk, σ∗,m∗) = 1 ∧ m∗ /∈ {m1, . . . ,mq} ] < negl(κ).

We use the signature scheme of Boneh and Boyen [14] which is wEUF-secure un-
der the q-SDH assumption. The system parameters are (p,G,GT , g, ê(·, ·), H(·)),
where H is a collision-resistant hash function with range in Zp.

– BB .SKGen(): Pick sk ∈R Z∗
p and compute vk = gsk; output the pair of private

signing key and the public verification key as (sk, vk).
– BB .Sig(sk,m): Output the signature σ = g

1
sk+H(m) . (It fails to sign on m if

H(m) = −sk.)
– BB .Ver(vk, σ,m): Accept if and only if ê(σ, vk · gH(m)) = ê(g, g).

Tag-Based Encryption

Kiltz [17] extended the linear encryption [13] to a tag-based encryption which
is secure against selective-tag weak chosen-ciphertext attacks (CCA), under the
decision linear assumption.

– TBE .EKGen(1κ): The encryption key is (u, v, g0, U, V ) ∈ G5 where ua = vb =
g0, and the decryption key is (a, b).

– TBE .Enc((u, v, g0, U, V ),m, �): To encrypt a message m ∈ G under a tag
(or a label) � ∈ Z∗

p, picks ϕ, ψ ∈R Z∗
p and returns (T1, T2, T3, T4, T5) =

(uϕ, vψ,mgϕ+ψ
0 , (g�

0U)ϕ, (g�
0V )ψ),

– TBE .Dec((a, b), (T1, T2, T3, T4, T5), �): To decrypt (T1, T2, T3, T4, T5), return
T3/(T a

1 · T b
2 ) if ê(u, T4) = ê(T1, g

�
0U) and ê(v, T5) = ê(T2, g

�
0V ) hold. The

latter check can also be done without pairing if the discrete logarithm of
U, V with respect to u, v respectively are kept as part of the private key.

The message space of this encryption scheme is G, which matches with the
signature space as well as the verification key space of the signature scheme BB .
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Non-interactive Proofs for Bilinear Groups

Groth and Sahai [18] developed techniques for proving statements expressed as
equations of certain types. Their proofs are non-interactive and in the com-
mon references string (CRS) model. The proofs have perfect completeness and,
depending on the CRS, perfect soundness or witness indistinguishability / zero-
knowledge. The two types of CRS are computationally indistinguishable. Groth
and Sahai showed how to construct such proofs under various assumptions, one
of which is the decisional linear assumption.

The first type of equations were interested in is linear equations over G (de-
scribed as multi-exponentiation of constants in the one sided case in [18]), of the
form
∏L

j=1 a
χj

j = a0, where χ1, . . . χL are variables and a0, a1, . . . , aL ∈ G are
constants. Such equations allow to prove equality of committed and encrypted
values, with the randomness used to commit and encrypt being the witness (the
assignment of the variables) which satisfies the corresponding equations. The
proofs for this type of equations are zero-knowledge, i.e. valid proofs could be
produced without a witness using the trapdoor of the simulated CRS.

Pairing product equations allow to prove validity of BB signatures without
revealing the signature and/or the verification key, i.e., ê(σ, v · gm) = ê(g, g) for
variables σ and v. The Groth-Sahai proofs for this type of equations are only
witness indistinguishable, which is sufficient for our purposes, though could be
transformed into zero-knowledge proofs if certain requirements are met like in
the case of the above equation.

The last type of equations we need is to assert the plaintext of an encryption
C is one of two publicly known messages m1 and m2. The is the key step for the
designated verification. Rather than using OR-proofs which do not mesh well
with Groth-Sahai proofs, we introduce two additional variables α, β to be used
in the exponent for which we prove α + β = 1, both α and β ∈ {0, 1}, and
the ciphertext C being an encryption of mα

1m
β
2 . The first proof is done using the

linear equation gαgβ = g; α, β ∈ {0, 1} is proven using the technique of Groth et.
al. [19] which constructs a witness-indistinguishable proof for a commitment of
χ ∈ Zp being a commitment of 0 or 1; and that C contains the proper plaintext
is shown using linear equations.

4 Our Construction

4.1 High Level Idea

We present an efficient non-interactive confirmer signature scheme using the
tools we just described. The key property is that our confirmer signature is
publicly verifiable, but its holder cannot tell whether it was produced by the
signer or the designated verifier (unless, of course, in possession of the extraction
key). One elegant way to make this possible is that we create the designated-
verifier signature by proving the statement “θ is a valid signature signed by either
Alice or Bob”. While it is essentially the concept of ring signature [20], it is the
confirmer who performs the designation in our case, but not the signer. We stress
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that, in existing applications of using a 2-user ring signature as a designated
verifier signature, the signer is the one who performs the designation. In other
words, the universal confirmer has the ability to “turn” any ordinary signature
into a 2-user ring signature by involving any designated verifier in the “ring”.

To make this proof efficient and non-interactive, we employ the NIZK/NIWI
proof system proposed by Groth and Sahai [18]. This is a powerful primitive but
the target language is limited. Hence, building blocks for the construction are
chosen so as to be within this limit. For the signature scheme, we combine a
strong one-time signature and a weak BB signature [14] we reviewed earlier, the
latter of which is convenient when constructing efficient non-interactive proofs.
The BB signature is used to sign random messages, i.e., verification keys for
the one-time signature scheme, so security against weak chosen message attack
suffices, we then use the one-time signature scheme to sign on the actual message.

To realize our universal designation, the designation algorithm makes com-
mitments for the verification key and the BB signature, proves those committed
values satisfy the verification equation with the message being the one-time ver-
ification key, and proves that the verification key commitment is either of the
signer’s or of the designated verifier’s verification key.

To achieve extractability of ordinary signature and satisfy our privacy require-
ment, we require a CCA2-secure public-key encryption. The encryption scheme
should be chosen so we could prove equality of committed and encrypted values
using the Groth-Sahai proofs. Two appropriate schemes are the tag-based en-
cryption scheme of Kiltz [17], and Shacham’s Linear Cramer-Shoup [21]. Proving
that the plaintext of an encryption is one of two possible messages require some
extra work as we described in Section 3.2.

To prevent the adversary from massaging the confirmer signature and learn
(partial) information of the real signer or the encrypted signature, we employ
a public key encryption scheme with label and another one-time signature to
ensure the non-malleability of the confirmer signature.

The verification and designated verification are straightforward – simply
checking the validity of the signatures/proofs. The extraction algorithm uses
the secret key of the encryption scheme to decrypt the BB signature and the
verification key from the corresponding ciphertexts.

4.2 Instantiation

– Setup(1κ): This setup algorithm takes up a bit string 1κ, picks groups G,GT

of prime order p with a bilinear map ê(·, ·), where 2κ < p < 2κ+1. This
bilinear map context determines the common reference string (CRS) for
the Groth-Sahai proof system, which in turn determines the Groth-Sahai
commitment function Com(m; r) which commits to m ∈ G or m ∈ Zp using
appropriately sampled randomness vector r. This algorithm also chooses a
collision resistant hash function H(·) : {0, 1}∗ → Zp.

All these parameters are concatenated into a single string param. For
brevity, we omit the inclusion of param in the interface of our algorithms,
which makes some of the algorithms like EKGen() has no explicit input.
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– SKGen(): (sk, vk)← BB.SKGen().
– Sig(skS ,m):

1. (osk, ovk)← OTS .SKGen().
2. If H(ovk) = −skS , repeat step 1.
3. Output σ=(ovk, σbb = BB .Sig(skS , H(ovk)), σots = OTS .Sig(osk,m)).

– Ver(vk, σ=(ovk, σbb, σots),m): Output 1 if and only if BB .Ver(vk, σbb, H(ovk))
and OTS .Ver(ovk, σots,m) both output 1; otherwise, output 0.

– EKGen(): (xk, pk)← TBE .EKGen().
– Des({vkS , vkV }, pk, σ = (ovk, σbb, σots),m):
• Initialization:

1. (osk′, ovk′)← OTS .SKGen().
2. Order {vkS , vkV } lexicographically into (vk0, vk1).

• Commit and encrypt the verification key and prove their well-formedness:
1. Encrypt vkS labelled with ovk′ in Cvk ← TBE .Enc(pk, vkS , r

′,
H(ovk′)).

2. Create πenc which is a proof that Cvk is an encryption of vkS =
vkα

0 vkβ
1 using NIZK proofs for satisfiable linear equations with vari-

ables r′, α, β, with proofs for α+ β = 1 and α, β ∈ {0, 1}.
3. Create a commitment of the verification key by Cvk = Com(vkS ; r).
4. Create πvk which is a proof of equality of the committed/encrypted

values in Cvk and Cvk using NIZK proofs for satisfiable linear equa-
tions with variables r′, r.

• Commit and encrypt the key-certifying signature and prove their well-
formness:
1. Encrypt σbb labelled with ovk′ in Cσ←TBE .Enc(pk, σbb; s′, H(ovk′)).
2. Create a commitment of the signature by Cσ = Com(σbb; s).
3. Create πσ which is a proof of equality of the committed/encrypted

values in Cσ and Cσ using NIZK proofs for satisfiable linear equations
with variables s′, s.

• Linking all pieces together:
1. Create πsgn which is an NIWI proof of validity of the BB signature

for the committed values of Cvk and Cσ; Cvk and Cσ are commitments
produced by the proof system to create πsgn but are given explicitly
in the construction as we require equality of committed values (used
for the proofs) and encrypted ones (used for extraction).

2. During the creation of the above proofs, commitments of the vari-
ables r′, r, s′, s are also created. Let π be this set of the proofs
πenc, πvk, πσ, πsgn and the associated commitments. Also, let m′ =
(ovk′, vk0, vk1, ovk, σots, Cvk, Cσ, π).

3. Sign on the string m′ by σ̂′ ← OTS .Sig(osk′,m′).
4. Output σ̂ = (σ̂′,m′).

– DVer({vk0, vk1}, σ̂ = (σ̂′,m′),m): Verify the one-time signatures σ̂′ on m′

under ovk′ and all the NIZK/NIWI proofs; also check that {vk0, vk1} are
the same verification keys (after ordering them lexicographically) as those
in m′. Finally, verify the one-time signature σots on m under ovk. If any of
the verification is not successful, return 0; otherwise, return 1.
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– Ext(xk, σ̂ = (σ̂′,m′)):
1. Parse m′ as (ovk′, vk0, vk1, ovk, σots, Cvk, Cσ, π).
2. Decrypt Cσ to get σbb = TBE .Dec(xk,Cσ, H(ovk′)).
3. Decrypt Cvk to get vk = TBE .Dec(xk,Cvk, H(ovk′)).
4. If any decryption was rejected or OTS .Ver(ovk′,m′) = 0, output (⊥,⊥).
5. Output ((ovk, σbb, σots), b) where vkb = vk.

In the the full version, we prove the following theorem:

Theorem 13. The described non-interactive confirmer signature scheme is se-
cure under the Decisional Linear assumption and the q-SDH assumption, as-
suming the hash function is collision resistant. That is, the scheme satisfies the
correctness, privacy, soundness, and unforgeability requirements.

4.3 Discussion

All the proofs used in our scheme can be done by variants of the proofs in some
existing cryptosystems involving Groth-Sahai proofs as mentioned in Section
3.2. Basically, our confirmer signature is proving that an encrypted signature
is a valid one under an encrypted public key, where the public key comes from
one of two possibilities. The two possibilities part involves an OR proof as dis-
cussed in Section 3.2. The encryption part involves proving that the plaintext
of the encryption and the committed value in the corresponding commitment
are the same. The proofs of the latter kind for the encryption scheme TBE has
appeared in existing group signature schemes (e.g. [22, Section 7]). With these
proofs, the rest is about proving the signature in the commitment verifies, and
the corresponding proof for the signature scheme BB involves a simple pairing
product equation which can be found in many “privacy-oriented” Groth-Sahai-
proof-based cryptosystems such as anonymous credential (e.g. [23, Section 5])
and group signatures (e.g. [22, Section 7]). Due to the space limitation, we defer
the details on the language or the equation required to the full version.

There is an important difference regarding the usage of the signature scheme
in the aforementioned systems [23,22] and in our scheme. For the latter, the
signature scheme is often used in certifying a user public key by the private key
of the “authority”. Obviously, the verification of a valid credential/signature
would not require the knowledge of the user private key, and hence the signature
is essentially signing on a user private key which is “hidden” in the output of a
certain one-way function. On the other hand, we just use the signature scheme
to sign on a public one-time signature verification key. This is the reason why
we do not consider a possible stronger notion such as F-unforgeability [23].

Regarding efficiency, each signature consists of roughly 100 group elements,
while the scheme of Liskov-Micali [3] produces signatures with O(κ) ciphertexts.

5 Concluding Remarks

We unify the concept of confirmer signatures and designated-verifier signatures.
Specifically, we introduce the notion of non-interactive confirmer signatures,
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which can also be interpreted as extractable universal designated-verifier
signatures. Besides saving in valuable rounds of interaction, we believe a non-
interactive construction of confirmer signatures represents a more natural
instantiation of the primitive. Most importantly, it resolves the problem of on-
line transferability [3] when the recipient is acting as a man-in-the-middle, in a
simple and computationally-efficient way. Our proposed construction is a proof-
of-concept scheme. There are many possibilities for optimization. For examples,
one may improve our construction by picking better underlying primitives, or
try to get rid of using encryption by leveraging the strong unforgeability [24].
Finally, for practical application, one may consider resorting to random oracle
model and propose a possibly more efficient implementation.
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Abstract. In a recent preprint, Vivek et al. propose a compiler to trans-
form a passively secure 3-party key establishment to a passively secure
group key establishment. To achieve active security, they apply this com-
piler to Joux’s protocol and apply a construction by Katz and Yung,
resulting in a 3-round group key establishment.

In this paper we show how Joux’s protocol can be extended to an
actively secure group key establishment with two rounds. The resulting
solution is in the standard model, builds on a bilinear Diffie-Hellman
assumption and offers forward security as well as strong entity authen-
tication. If strong entity authentication is not required, then one half of
the participants does not have to send any message in the second round,
which may be of interest for scenarios where communication efficiency is
a main concern.

Keywords: group key establishment, pairing, standard model.

1 Introduction

Group key establishment protocols enable a set of n ≥ 2 users to establish a
common key over a public communication network. To obtain a constant round
solution, i. e., a protocol where the number of rounds is independent of the num-
ber of participants n, a common technique is to impose a ring topology on the
set of participants and to establish pairwise Diffie-Hellman keys among neigh-
bors first. In view of Joux’s one-round 3-party key establishment [Jou04], it is
natural to ask if this primitive could be used to devise an alternative construc-
tion for group key establishment. Indeed, in [VSDSR09] a compiler is presented
using a three-party key establishment instead of a two-party solution as fun-
damental building block. To achieve active security,1 Vivek et al. suggest to
combine a construction in [VSDSR09] with a well-known compiler by Katz and
Yung [KY03], which relies on the availability of a strongly unforgeable signature
scheme. Overall, a 3-round solution for group key establishment is obtained from
Joux’s protocol.
1 To avoid a possible ambiguity with strong entity authentication, we avoid the term

authenticated group key establishment when discussing security in the presence of an
active adversary.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 65–76, 2011.
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With 2-round solutions for group key establishment being available, one may
ask for the existence of an alternative construction building on Joux’s protocol.
Below we provide such a construction in the standard model using a bilinear
Diffie-Hellman assumption. The protocol is inspired by the 2-round construction
of Bohli et al. [BVS07], but unlike the latter rests on Joux’s 3-party key establish-
ment as basic primitive—rather than a 2-party Diffie-Hellman key establishment.
An interesting feature is that by restricting to the “standard” security guaran-
tee of key secrecy, which does not imply strong entity authentication, half of
the participants have to send only one protocol message. This seems to render
our protocol an interesting candidate for settings where communication is costly.
As a minor technical point, our protocol relies on an existentially unforgeable
signature scheme; strong unforgeability is not needed.

Further related work. After submission of our manuscript we became aware of fur-
ther related work. In particular, Desmedt and Lange’s independent earlier work
in [DL08] presents a passively secure two-round solution similar to our construc-
tion. To achieve active security, they mention the application of a compiler from
[KY03, DLB07], resulting in a 3-round solution. In [CHL04, DWGW03, ZSM06]
pairing-based 2-round solutions in an identity-based setting are suggested, assum-
ing a suitable trusted authority to be available.

2 Technical Preliminaries

In this section we quickly revisit the relevant terminology and definitions from
the literature. No originality is claimed for this section.

2.1 Security Model and Security Goals

The security model we use for our analysis is taken from [BVS07] and includes
strong entity authentication as security goal. This “oracle based” model builds
on work by Bresson et al. [BCP01] and by Katz and Yung [KY03].

Protocol participants. The set of protocol participants is denoted by U and of
size polynomial in the security parameter k. We model each user U ∈ U as
probabilistic polynomial time (ppt) algorithm and each U ∈ U can execute a
polynomial number of protocol instances Πs

U concurrently (s ∈ N). Further, we
assume that all user identities are encoded as bitstrings of identical length and
for the ease of notation will subsequently not distinguish between (the algorithm)
U and the bitstring describing its identity. With each protocol instance Πs

U , the
following seven variables are associated:

accs
U : is set to true if the session key stored in sks

U has been accepted;
pids

U : stores the identities of those users in U with which a key is to be estab-
lished, including U ;

sids
U : stores a session identifier, i. e., a non-secret identifier for the session key
stored in sks

U ;
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sks
U : is initialized with a distinguished null value and after a successful protocol

execution stores the session key;
states

U : stores state information needed for executing the protocol;
terms

U : is set to true if this protocol execution has terminated;
useds

U : indicates if this instance is used, i. e., involved in a protocol run.

Initialization. Before actual protocol executions take place, there is a trusted
initialization phase without adversarial interference. In this phase, for each U ∈
U a (verification key, signing key)-pair (pkU , sk

sig
U ) for an existentially unforgeable

(EUF-CMA secure) signature scheme is generated, sksig
U is given to U only, and

pkU is handed to all users in U and to the adversary.

Adversarial capabilities and communication network. The network is fully asyn-
chronous, allows arbitrary point-to-point connections among users, and it is non-
private. The adversary A is represented as ppt algorithm with full control over
the communication network. More specifically, A’s capabilities are expressed
through the following oracles :

Send(U, s,M) : This oracle serves two purposes.
– The Send oracle enables A to initialize a protocol execution; sending the

special message M = {Ui1 , . . . , Uir} with U ∈ M to an unused instance∏s
U initializes a protocol run among Ui1 , . . . , Uir ∈ U . After such a query,∏s
U sets pids

U := {Ui1 , . . . , Uir}, useds
U := true, and processes the first

step of the protocol.
– The message M is sent to instance Πs

U and the protocol message output
by Πs

U after receiving M is returned.
Reveal(U, s) : returns the session key sks

U if accs
U = true and a null value

otherwise.
Corrupt(U) : for a user U ∈ U this query returns U ’s long term signing key
sksig

U .

Unlike Reveal, Corrupt addresses a user, rather than an individual protocol in-
stance of a user. An adversay with access to all of the above oracles is considered
active. To capture a passive adversary, access to Send can be replaced with ac-
cess to a dedicated Execute oracle, returning a protocol transcript. An active
adversary can simulate such an Execute oracle by means of Send in the obvious
manner, and we therefore do not include Execute.

In addition to the above, there is a Test oracle, and A must submit exactly
one query Test(U, s) with an instance Πs

U that has accepted a session key, i. e.,
accs

U = true has to hold. In response to such a query, a bit b← {0, 1} is chosen
uniformly at random and for b = 0 the value of sks

U , i. e., the established session
key, is returned. For b = 1 the output is a uniformly at random chosen element
from the space of session keys. The idea is that for a secure protocol, no efficient
adversary can distinguish between b = 0 and b = 1. To make this precise we
need some more terminology.
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First, to exclude trivialities, we impose key establishment protocols to be
correct : in the absence of active attacks a common session key is established,
along with common session identifier and matching partner identifier. Next, we
rely on the following notion of partnered instances.

Definition 1 (Partnering). Two instances
∏si

Ui
and
∏sj

Uj
are partnered if

sidsi

Ui
= sid

sj

Uj
, pidsi

Ui
= pid

sj

Uj
and accsi

Ui
= acc

sj

Uj
= true.

Based on this notion of partnering, we can specify what we mean by a fresh
instance, i. e., an instance where the adversary should not know the session key:

Definition 2 (Freshness). An instance
∏si

Ui
is said to be fresh if the adversary

queried neither Corrupt(Uj) for some Uj ∈ pidsi

Ui
before a query of the form

Send(Uk, sk, ∗) with Uk ∈ pidsi

Ui
has taken place, nor Reveal(Uj , sj) for an instance∏sj

Uj
that is partnered with

∏si

Ui
.

It is worth noting that the above definition allows an adversary A to reveal all
secret signing keys without violating freshness, provided A does not send any
messages after having received the signing keys. As a consequence security in
the sense of Definition 3 below implies forward secrecy: We write SuccA for the
event A queries Test with a fresh instance and outputs a correct guess for the
Test oracle’s bit b. By

Advke
A = Advke

A(k) :=
∣∣∣∣Pr[Succ]− 1

2

∣∣∣∣
we denote the advantage of A.

Definition 3 (Semantic security). A key establishment protocol is said to be
(semantically) secure, if Advke

A = Advke
A(k) is negligible for all ppt algorithms A.

In addition to the above standard security goal, we are also interested in integrity
(which may be interpreted a form of “worst case correctness”) and strong entity
authentication:

Definition 4 (Integrity). A key establishment protocol fulfills integrity if with
overwhelming probability for all instances

∏si

Ui
,
∏sj

Uj
of uncorrupted users the

following holds: if accsi

Ui
= acc

sj

Uj
=true and sidsi

Ui
= sid

sj

Uj
, then sksi

Ui
= sk

sj

Uj
and

pidsi

Ui
= pid

sj

Uj
.

Definition 5 (Strong entity authentication). We say that strong entity
authentication to an instance Πsi

Ui
is provided if accsi

Ui
=true implies that for

all uncorrupted Uj ∈ pidsi

Ui
there exists with overwhelming probability an instance

Π
sj

Uj
with sid

sj

Uj
= sidsi

Ui
and Ui ∈ pid

sj

Uj
.

2.2 Common Reference String

In the key derivation of our protocol, we follow the technique used in [ABVS07]
(which in turn goes back to [KS05]) and we refer to [KS05] for a construction as-
suming the existence of a one-way permutation. For this we fix a collision-resistant
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pseudorandom function family F = {F k}k∈N and assume F k = {F k
� }�∈{0,1}l to

be indexed by a (superpolynomial) size set {0, 1}l. In the common reference string
(accessible to the adversary and all users) we encode two values vi = vi(k) such
that no ppt algorithm can compute λ = λ′ satisfying F k

λ (vi) = F k
λ′(vi) (i = 0, 1).

Moreover, we encode in the common reference string also an index into a family
of universal hash functions UH, specifying one UH ∈ UH. This function UH will
be used to translate common key material to an index into the mentioned collision-
resistant pseudorandom function family.

2.3 Bilinear Diffie-Hellman Assumption

On the mathematical side, our main tool is a suitable pairing: Let (G,+), (G′, ·)
be two groups of prime order q, and denote by P a generator of G. We assume q
to be superpolynomial in the security parameter k and that all group operations
in G and G′ can be computed by appropriate ppt algorithms.

Definition 6 (Admissible bilinear map). We say that e : G × G −→ G′ is
an admissible bilinear map if all of the following hold:

– There is a ppt algorithm computing e(P,Q) for all P,Q ∈ G.
– For all P,Q ∈ G and all integers a, b we have e(aP, bQ) = e(P,Q)ab.
– We have e(P, P ) = 1, i. e., e(P, P ) generates G′.

Now consider the following experiment for a ppt algorithm A outputting 0 or 1:
The challenger chooses a, b, c, d ∈ {0, . . . , q− 1} independently and uniformly at
random and in addition flips a random coin δ ∈ {0, 1} uniformly at random. If
δ = 0, the tuple (P, aP, bP, cP, e(P, P )d) is handed to A, whereas for δ = 1 the
tuple (P, aP, bP, cP, e(P, P )abc) is handed to A. Then A wins the game whenever
the guess δ′ it outputs for δ is correct; the advantage of A is denoted by

Advbdh
A :=
∣∣∣∣Pr[δ = δ′]− 1

2

∣∣∣∣ .
The hardness assumption underlying the security analysis of the protocol dis-
cussed in the next section is that no efficient algorithm can win this game with
non-negligible probability:

Definition 7 (Decisional Bilinear Diffie-Hellman assumption)
The Decisional Bilinear Diffie-Hellman assumption (D-BDH) for (G,G′, e)
holds, if the advantage Advbdh

A in the above experiment is negligible for all ppt
algorithms A.

With this, we are in the position to describe our group key establishment.

3 A Pairing-Based Group Key Establishment

To describe our protocol, we write U0, . . . , Un−1 for the protocol participants
who want to establish a common session key. We assume the number n of these
participants to be greater than three and even—if 2 � n, then Un−1 can simulate
an additional (virtual) user Un.
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3.1 Description of the Protocol

We arrange the participants U0, . . . , Un−1 in a circle such that U(i−j) mod n re-
spectively U(i+j) mod n is the participant j positions away from Ui in counter-
clockwise (left) respectively clockwise (right) direction. Figure 1 describes both
rounds of the proposed construction; to simplify notation, we do not explicitly
refer to protocol instances Πsi

i .

Round 1:
Computation Each Ui chooses ui ∈ {0, . . . , q − 1} uniformly at random and

computes uiP . Users Ui with 2 | i in addition compute a signature σI
i on

pidi‖uiP .
Broadcast Each Ui broadcasts uiP (if 2 � i) respectively (uiP, σI

i) (if 2 | i).
Check: Each Ui verifies σI

0, σ
I
2, . . . , σ

I
n−2 (using pidi for the partner identifier).

If any check fails, Ui aborts, otherwise Ui computes⎧⎨⎩
tL
i := e(P,P )u(i−2) mod nu(i−1) mod nui and

tR
i := e(P,P )uiu(i+1) mod nu(i+2) mod n , if i is odd

tM
i := e(P,P )u(i−1) mod nuiu(i+1) mod n , if i is even

.

Round 2:
Computation Each Ui computes confi := (pidi‖u0P‖u1P‖ . . . ‖un−1P ) and{

a signature σII
i on confi‖Ti where Ti := tL

i /tR
i , if i is odd

a signature σII
i on confi , if i is even

Broadcast Each Ui broadcasts (σII
i , Ti) (if 2 � i) respectively σII

i (if 2 | i).
Check Each Ui verifies σII

0 , . . . , σII
n−1 (using the ujP received in Round 1 and

pidi for the partner identifier) and checks if T1 · T3 · T5 . . . Tn−1 = 1 holds. If
any of these checks fails, Ui aborts.

Key derivation: Each Ui recovers the values tR
j for j = 1, 3, . . . , n−1 as follows:

– Ui with 2 � i finds tR
j = tL

i ·
(i−j−2) mod n∏

s=2
2|s

T(j+s) mod n

– Ui with 2 | i finds tR
j = tM

i ·
(i−j−1) mod n∏

s=2
2|s

T(j+s) mod n

Finally, each Ui computes the master key K := (tR
1 , tR

3 , . . . , tR
n−1, pidi), sets

ski := FUH(K)(v0) and sidi := FUH(K)(v1).

Fig. 1. A 2-round group key establishment derived from Joux’s protocol

Thus, in Round 1 users Ui with odd index i perform two executions of Joux’s
protocol, and users with an even index i perform only one such 3-party key es-
tablishment. For the actual key derivation, the messages sent by users with even
index in Round 2 are not really needed, and as shown in Proposition 1, omitting
those messages does not affect the semantic security of the protocol. Strong en-
tity authentication is no longer guaranteed then, however, as an adversary could
simply replay an old message of, say, U0 in Round 1.
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3.2 Security Analysis

The following proposition shows that the protocol in Figure 1 is secure in the
sense of Definition 3 and—if we insist on all Round 2 messages being sent—also
offers strong entity authentication.

Proposition 1. Suppose that the D-BDH assumption holds for (G,G′, e) and
the underlying signature scheme is secure in the sense of EUF-CMA. Then the
following hold:

– The protocol in Figure 1 is semantically secure, fulfills integrity, and strong
entity authentication holds to all involved instances.

– If users Ui with i even do not send their Round 2 messages, the protocol in
Figure 1 is semantically secure and fulfills integrity.

Proof. Let qsend be a polynomial upper bound for the number of queries to the
Send oracle by A and denote by Forge the event that A succeeds in forging a sig-
nature σi in the protocol without having queried Corrupt(Ui). Moreover, denote
by Advuf = Advuf(k) an upper bound for the probability that a ppt adversary
creates a successful forgery for the underlying signature scheme. During the pro-
tocol’s initialization phase, we can assign a challenge verification key to a user
U ∈ U uniformly at random, and with probability at least 1/|U| the event Forge
results in a successful forgery for the challenge verification key. Thus

Pr[Forge] ≤ |U| · Advuf ,

and the event Forge can occur with negligible probability only.

Security. We prove the security of the protocol by “game hopping”, letting
adversary A interact with a simulator. The advantage of A in Game i will be
denoted by AdvGame i

A :

Game 0: This game is identical to the original attack game, with all oracles
of the adversary being simulated faithfully. Consequently,

AdvA = AdvGame 0
A .

Game 1: If the event Forge occurs, we abort the game and count this as a
successful attack. Otherwise the game is identical with Game 0:

|AdvGame 1
A −AdvGame 0

A | ≤ Pr(Forge).

Game 2: In this game we modify the adversary in such a way that at the
beginning she guesses (randomly) which instance Πsi0

i0
will be queried to the

Test oracle as well as two instances of Πsi0
i0

with which Πsi0
i0

will in Round 1
establish a 3-party key tRi0 . Whenever at least one of these guesses turns out
to be wrong, we abort the simulation and consider the adversary to be at
loss. Otherwise the game is identical with Game 1. Consequently,
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1
q3send

·AdvGame 1
A ≤ AdvGame 2

A ,

and as qsend is polynomial in k it will suffice to recognize AdvGame 2
A as

negligible.

Game 3: This game differs from Game 2 in the simulator’s response in Round 2.
Instead of computing tRi0 resp. tMi0 as specified in Round 1, the simulator
replaces tRi0 resp. tMi0 with a uniformly at random chosen element in G′. For
consistency, the corresponding key of the other 2 participants in this 3-party
key establishment is replaced with the same random value.
We have |AdvGame 3

A −AdvGame 2
A | ≤ |Pr(SuccGame 3

A )−Pr(SuccGame 2
A )|, and

to recognize the latter as negligible consider the following algorithm B to
solve the D-BDH problem: B faithfully simulates all parties and oracles as
faced byA in Game 2 with two exceptions. Namely, let (P,aP,bP,cP, e(P, P )x)
be the D-BDH challenge received by B. Then
– in Round 1, B replaces the random value ui0P with aP , and analogously
bP and cP are used as Round 1 message for the other two participants
in the 3-party key establishment with Ui0 ;

– the 3-party key tRi0 resp. tMi0 of these three parties is not computed as
specified in the protocol (in fact, B does not know a, b, c) but replaced
with the value e(P, P )x in the D-BDH challenge.

Whenever A correctly identifies the secret bit of the (simulated) Test oracle,
B outputs a 1, i. e., claims x = abc. By construction we have

Advbdh
B =
∣∣∣∣12 · Pr[SuccGame 2

A ] +
1
2
· (1− Pr[SuccGame 3

A ])]− 1
2

∣∣∣∣
=

1
2
·
∣∣∣Pr[SuccGame 3

A ]− Pr[SuccGame 2
A ]

∣∣∣ ,
and with the D-BDH assumption we recognize |AdvGame 3

A − AdvGame 2
A | as

negligible.

Game 4: In this game the simulation of the Test oracle is modified: instead
of returning with probability 1/2 the correctly computed session key ski0 ,
always a uniformly at random chosen bitstring is returned. As after the
replacement in the previous game one of the entries of the master key
K is a uniformly chosen random value, K has sufficient entropy so that
FUH(K)(v0) is computationally indistinguishable from a random bitstring,

i. e.,
∣∣∣AdvGame 4

A −AdvGame 3
A

∣∣∣ is negligible. With AdvGame 4
A = 0, the se-

mantic security of the protocol in Figure 1 follows. Moreover, we observe
that the proof nowhere relied on the Round 2 messages of parties Ui with
2 | i being sent.
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Integrity. Successful signature verification in Round 1 for Ui with 2 | i and for
Ui with 2 � i in Round 2 implies that the pidi-values of all involved parties are
identical, and integrity follows from the collision-resistance of the underlying
pseudorandom function family.

Entity authentication. Successful verification of the signatures on the Round 2
messages ensures the existence of a used instance for each intended communica-
tion partner and that the respective confi-values are identical. The latter implies
equality of both the pidi- and the sidi-values. ��

3.3 Making Use of a Random Oracle

If one is willing to make a random oracle assumption, the usage of a universal hash
function and a pseudorandom function family in the above protocol is of course
no longer required, and we can compute the session key and session identifier as
ski = H(K ‖ 0) and sidi = H(K ‖ 1), respectively. From an engineering point of
view, working in such an idealized model and using a standard cryptographic hash
function to implement the random oracle H could be attractive. Going further,
with a random oracle H : {0, 1}∗ −→ {0, 1}k we can also replace the values tLi ,
tRi , tMi from Round 1 with their images underH , so that for computing Ti we only
computeH(tLi )⊕H(tRi ), i. e., instead of arithmetic inG′ we can use XOR. Figure 2
shows the relevant changes to the protocol in Figure 1 if a random oracle is used
in this way.

Adapting the above security analysis to this random oracle-based variant is
straightforward—owing to the random oracle the D-BDH assumption can be
replaced with a computational assumption in the usual manner. In the random
oracle formulation, the similarity of our proposal with the 2-round group key
establishment suggested in [BVS07] is quite apparent, and it is worth highlighting
some differences:

– With the main building block in our protocol being Joux’s 3-party key estab-
lishment, we rely on a (computational) bilinear Diffie-Hellman assumption
rather than an ordinary (computational) Diffie-Hellman assumption.

– All protocol participants now have to perform one or two pairing computa-
tions, followed by one or two exponentiations, to compute a 3-party key—
the number of exponentiations depending on the position in the circle being
odd or even. In [BVS07] two exponentiations per participant yield common
(Diffie-Hellman) keys with the clockwise and counter-clockwise neighbor in
the circle.

– In the protocol proposed above, the session key is derived directly from the
tRi -values, whereas the approach in [BVS07] relies on separate key contri-
butions for this, one of them being masked by the tRi -values. These key
contributions (or a hash value of such) are sent in a signed Round 1 mes-
sage, resulting in a total of two signature computations per participant; in
our construction at least those parties Ui with 2 � i sign only one message.

– Bohli et al. compute the session identifier based on the Round 1 messages,
whereas our construction relies on the availability of the Round 2 messages
to do so.
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Round 1:
Computation Each Ui chooses ui ∈ {0, . . . , q − 1} uniformly at random and

computes uiP . Users Ui with 2 | i in addition compute a signature σI
i on

pidi‖uiP .
Broadcast Each Ui broadcasts uiP (if 2 � i) respectively (uiP, σI

i) (if 2 | i).
Check: Each Ui verifies σI

0, σ
I
2, . . . , σ

I
n−2 (using pidi for the partner identifier).

If any check fails, Ui aborts, otherwise Ui computes⎧⎨⎩
tL
i := H(e(P,P )u(i−2) mod nu(i−1) mod nui) and

tR
i := H(e(P,P )uiu(i+1) mod nu(i+2) mod n) , if i is odd

tM
i := H(e(P,P )u(i−1) mod nuiu(i+1) mod n) , if i is even

.

Round 2:
Computation Each Ui computes confi := (pidi‖u0P‖u1P‖ . . . ‖un−1P ) and{

a signature σII
i on confi‖Ti where Ti := tL

i ⊕ tR
i , if i is odd

a signature σII
i on confi , if i is even

Broadcast Each Ui broadcasts (σII
i , Ti) (if 2 � i) respectively σII

i (if 2 | i).
Check Each Ui verifies σII

0 , . . . , σII
n−1 (using the ujP received in Round 1 and

pidi for the partner identifier) and checks if T1 ⊕ T3 ⊕ T5 ⊕ · · · ⊕ Tn−1 = 0
holds. If any of these checks fails, Ui aborts.

Key derivation: Each Ui recovers the values tR
j for j = 1, 3, . . . , n−1 as follows:

– Ui with 2 � i finds tR
j = tL

i ⊕
(i−j−2) mod n⊕

s=2
2|s

T(j+s) mod n

– Ui with 2 | i finds tR
j = tM

i ⊕
(i−j−1) mod n⊕

s=2
2|s

T(j+s) mod n

Finally, each Ui computes the master key K := (tR
1 , tR

3 , . . . , tR
n−1, pidi), sets

ski := H(K‖0) and sidi := H(K‖1).

Fig. 2. Introducing a random oracle H : {0, 1}∗ −→ {0, 1}k in the proposed protocol

– In terms of communication cost the two protocols seem pretty comparable,
if in our approach we send all Round 2 messages:
• Participants in the construction from [BVS07] send in Round 1 a group

element and a short bitstring (either a key contribution or a hash value)
along with a signature on these values; in Round 2 a session identifier
and a bitstring (respectively two for one dedicated participant) are sent
along with a signature.
• Half of the participants in our construction send in Round 1 a group

element, the other half a group element and a signature; in Round 2
all participants in “odd positions” send a signature along with a bit-
string/group element, and if strong entity authentication is desired, all
participants at “even positions” send a signature.
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4 Conclusion

The 2-round group key establishment we presented uses Joux’s protocol as fun-
damental building block—instead of a 2-party Diffie-Hellman key establishment.
In scenarios where semantic security of the session key and forward security are
sufficient, the protocol has the attractive feature that every other participant
has to broadcast only one message. For applications where communication cost
is high, this seems an attractive feature. Even when strong entity authentication
is needed, however, the efficiency of the suggested protocol seems to be quite
acceptable, in particular when allowing the use of a random oracle.
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Abstract. We introduce a new correlation power attack on RSA’s mod-
ular exponentiation implementations, defeating both message blinding
and multiply-always countermeasures. We analyze the correlation be-
tween power measurements of two consecutive modular operations, and
use this to efficiently recover individual key bits. Based upon simula-
tion and practical application on a state-of-the-art smart card we show
the validity of the attack. Further we demonstrate that cross correlation
analysis is efficient on hardware RSA implementations, even in the pres-
ence of message blinding and strong hiding countermeasures.

Keywords: side channel analysis, multiply-always, message blinding,
RSA, correlation.

1 Introduction

Devices can unintentionally leak data via side channels. For example, timing can
reveal parts of a secret, as the time taken by the chip to perform an operation may
depend upon branches in its programming controlled by secret data. Further,
the device’s power consumption and electromagnetic field can be measured and
subsequently related to the operations performed to extract secrets.

In practice, power analysis is one of the most fruitful side channels. Generally,
the power consumed by a chip in any time interval depends on the total number
of bits changed during that time interval. A detailed trace of the power consumed
during an execution can be made using a fast digital oscilloscope in combination
with special interface equipment. This trace can then be examined for patterns
corresponding to the operation performed.

Occasionally, a few traces will already contain sufficient information to extract
the secrets from a chip – this is called Simple Power Analysis (SPA). Otherwise, a
technique known as Differential Power Analysis (DPA) [2] can be applied: several
thousands of traces are made, each one stored along with the data that was input
to the chip for its transaction. Statistical analysis is then performed, essentially
focusing on intermediate cryptographic data depending on hypothetical values
for small parts of the key. By careful application of this technique, the power
consumption can be analyzed to reveal the secret keys.

RSA[1] is a public key cryptographic algorithm which is widely applied in
various systems. The performance of RSA can be a challenge in devices with

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 77–88, 2011.
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little computing power (e.g. smart cards). For this reason several implementation
variants were developed that compete in efficiency. Modern smart cards include
dedicated cryptographic processors to speed up processing time and can often
perform 2048 bit RSA operations in less than a second. Typical applications
are in the payment and identification area, where public key cryptography can
provide strong authentication combined with flexible key management.

RSA was subject to one of the first side channel timing attacks [12], and also
has been subject to SPA attacks [5,6]. DPA attacks target different implemen-
tations such as binary exponentiation [7], or RSA in CRT mode [7,11].

RSA implementations use various countermeasures to defend against side
channel attacks. DPA and SPA attacks can be prevented with message blinding
and the multiply-always exponentiation scheme. Message blinding works by the
multiplying the input message with a random, and after exponentiation remov-
ing the effect of the random value. Exponent blinding is a similar technique,
but applied to the secret exponent. Finally, multiply-always is a countermeasure
that aims to prevent SPA by always having a square and a multiply operation
for each key bit.

In this paper we propose to use a correlation technique that correlates mea-
sured samples only, without considering any intermediate data. In this way the
result becomes independent of any data masking or padding scheme, and we can
focus solely on the comparison of key bits. It targets the modular operations,
whether these are used in a straight RSA or multiply-always implementation.

To demonstrate the strength of this technique we apply it to RSA simulations
and an actual RSA hardware implementation that resists side channel analysis
using multiple countermeasures.

The remainder of this paper is organized as follows. In the next section we
explain some concepts of RSA and review relevant side channel attacks and coun-
termeasures for RSA. Then we introduce the foundation of our new attack and
simulate its application. In the final part of the article we report experimental
results where we demonstrate that a real-life implementation is vulnerable to
this attack.

2 RSA

RSA is based upon modular exponentiation. A signature over a message is com-
puted by raising the message m to a power d modulo n, where the private
exponent d and public modulus n together form the private key. The basic RSA
implementation variant is called ‘binary exponentiation’, a scheme where each
key bit is processed sequentially, either left-to-right, or right-to-left. With bi-
nary exponentiation each key bit is processed with a modular square operation
followed by a conditional modular multiplication. The multiplication is only ex-
ecuted when the associated key bit is equal to one. Algorithm 1 shows this
algorithm for computing a signature s over a message m with private exponent
d: s = md mod n.
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Algorithm 1. Binary exponentiation algorithm
s := 1 // set signature to initial value
for i from |d|-1 down to 0 do: // left-to-right

s := s * s mod n // square
if (di = 1), then s := s * m mod n // multiply

return s

More sophisticated variants that offer improved performance include
Montgomery exponentiation, fixed or sliding window exponentiation, CRT, or
combinations thereof. All variants have in common that the key is processed
sequentially, and in small quantities.

2.1 Side Channel Attacks on RSA

Many side channel analysis attacks on RSA focus on distinguishing square and
multiply operations. With binary exponentiation this may lead to direct retrieval
of the key. With the CRT variant also attacks are possible on the reduction and
recombination phase, but we will not consider those here.

Exponentiation in smart cards is generally supported by a hardware accel-
erator, a dedicated area on the chip that efficiently performs modular opera-
tions. During the exponentiation the CPU and accelerator alternate activity: in
between two modular operations the CPU moves data from and to the crypto-
graphic accelerator. Since the accelerator works on many bits in parallel (e.g.
2048), its power consumption may be higher than that of the CPU that typi-
cally works on much smaller data sizes (e.g. 8 or 32 bits). For this reason it may
be possible to visually recognize modular operations (SPA). If these operations
can be related to respective square or multiply operations, for instance by their
interval time, it is possible to directly read out a key.

Differential power analysis attacks on RSA attempt to establish a significant
correlation between the samples and hypothetical intermediate data. The at-
tacker would repeatedly investigate correlation in between modular operations.

The attacker may for instance try to establish correlation between the input
x and the power traces, just before a modular operation. Any operation that
performs a multiplication with x may result in observable correlation, which
ultimately also yields the key for a straight binary exponentiation scheme [8].

2.2 Countermeasures

Chip and smart card manufacturers generally implement a mix of countermea-
sures to prevent, or complicate, side channel attacks. In the context of RSA
we discuss three popular countermeasures: hiding, masking or blinding, and
multiply-always.

The hiding countermeasure aims at reducing the correlation between the trace
samples and the expected activity or intermediate data. This is typically done
by adding noise, reducing signal leakage, using a variable clock frequency, and
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Algorithm 2. Multiply-always binary exponentiation algorithm
s := 1 // set signature to initial value
for i from |d|-1 down to 0 do: // left-to-right

s := s * s mod n // square
if (di = 1), then

s := s * m mod n // multiply
else

t := s * m mod n // multiply, discard result
return s

introducing random process interrupts (random delays). With RSA this implies
that individual modular operations can no longer be visually identified.

The masking countermeasure aims at breaking the relation between the power
leakage and the intermediate data. The data is masked with random data before
the encryption, and unmasked after the encryption. With RSA this is done
by message blinding. Message blinding works by generating a secret random
number r before each encryption. Then the numbers m1 = re mod n and m2 =
r−1 mod n are computed. Next the input of the encryption is multiplied by
m1 and the output is multiplied by m2. The first mask makes the input of the
encryption unpredictable, while second mask corrects the output to conform to
the expected encryption result. Due to this masking, a first order DPA is no
longer possible [3].

The multiply-always countermeasure aims at preventing SPA and some DPA
attacks by transforming the key dependent operation order into a uniform se-
quence of operation pairs consisting of a square and a multiply operation. The
result of a multiplication is discarded when the pair relates to a key bit set to
‘0’, and propagated when the pair relates to a key bit set to ‘1’; see Algorithm
2. Even when an attacker could distinguish the square and multiply operations,
this would not lead to key compromise [4].

3 Multiply-Always Cross Correlation

The multiply-always algorithm always executes squares and multiplication in
turn, and is therefore resistant to timing or SPA attacks attempting to recover
the key by identifying the different modular operations. However, there is a subtle
relation between consecutive squares and multiplies that relate to the key.

There are four types of consecutive modular operations: square|multiply (SM),
square|multiply|discard (SMd), multiply|square (MS), and multiply|discard|
square (MdS). From the algorithm, it can be seen that SM, SMd, and MS do
not share multiplicands. MdS, however, calculates s×m but does not update s,
and then calculates s× s. These two operations therefore share one operand.

We use the observation that MdS and MS differ by their shared operand to
perform a correlation attack. Because the operations in MdS share an operand,
their power leakage should correlate stronger than MS. We can use this as a
distinguisher for individual key bits.
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3.1 Operation Correlation

Each modular operation multiplies two operands. If two operations have no
operands in common the operations would be trivially independent. However,
if two operations share one operand there is a relation between the two. Data
dependent leakage of multipliers has been shown in [10], a fact which we exploit
below.

Fig. 1. Cross correlation between vectors of samples

Let us define a matrix of n power traces of length m, which can be plotted
as e.g. Figure 1. We also define two vectors u and v, which are columns in the
power matrix representing an MdS sequence.

In our model we assume that the values in the matrix are completely rep-
resented by the product of the hamming weights of the operands. Elements of
the vector u are expressed as ui = hw(xi)hw(yi), where xi and yi are the two
operands of the operation expressed by u. Likewise, elements of the vector v are
expressed as vi = hw(xi)hw(zi), where xi and zi are the two operands of the
operation expressed by v.

The Pearson correlation coefficient between u and v can be computed as:
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A hardware multiplication is typically implemented by a shift-and-add mecha-
nism. For a multiplication of x and y, every bit set to 1 will lead to an addition
of y. This leaks hw(y). for the number of ‘1’ bits of x; i.e. hw(x)hw(y).



82 M.F. Witteman, J.G.J. van Woudenberg, and F. Menarini

For a random number 0 ≤ r ≤ 2k, the average hamming weight is k
2 , so

the sum of hamming weights for a series of n binary numbers is approximately
equal to nk

2 . For a multiplication with two independent operands, the sum of n
multiplied hamming weights will relate to the square of the summed hamming
weight, and approximately to n× k

2 ×
k
2 = nk2

4 .
On the other hand, for a square operation – where the operands are fully

dependent – the sum of the multiplied hamming weights is different. The sum of
the squared hamming weights of all numbers smaller than 2k is

∑2k

x=0(hw(x))2 =∑k
i=0

(
k
i

)
i2 = 2k−2k(k+1), as demonstrated in [9]. The sum of squared hamming

weights for n numbers of k bits therefore will be n×2k−2k(k+1)
2k = n(k2+k)

4 .
The correlation coefficient can therefore be approximated as:
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For typical large numbers used in RSA computations the correlation coefficient
k

2k+1 can be approximated by the value 1
2 .

When correlating two statistically independent vectors the correlation con-
verges to zero. So, for sufficiently large vectors we observe a correlation value
0 for modular operations not sharing operands, and a correlation value 1

2 for
operands that share one operand. As such we can distinguish between MdS and
MS and therefore attack the individual key bits.

3.2 Application to RSA Simulation

To verify our theoretical correlation predictions, we apply the correlation tech-
nique on a simulation of a plain binary exponentiation algorithm, and later show
the multiply-always algorithm is not resistant to this type of analysis.

The traces are generated by simulating Hamming weight leakage of the com-
plete operands for an entire run of RSA, for 1000 traces with random input
messages.

First, we calculate the Pearson correlation estimate C = ρ(T (i, x), T (j, x)) for
each pair of columns i and j in our n by m measurement matrix T . In C we can
determine whether two modular operations have a particular correlation. We
represent C by a graphic where the intensity of each cell represents the strength
of correlation. Over the diagonal the correlation is perfect, as these cells represent
columns correlated with themselves. All other cells represent correlation between
different columns.
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Fig. 2. Cross correlation matrix for simulated plain binary exponentiation

Figure 2 shows C for a simulation of plain RSA binary exponentiation. As
all multiplications share the message m as operand, they all show significant
correlation. From C we can therefore read out for each operation whether it is
a multiplication, and can therefore directly obtain the key.

Fig. 3. Cross correlation matrix for a simulated multiply always exponentiation

Next, we simulate a multiply-always RSA exponentiation, and compute the
cross correlation matrix. Now each pair of columns represents a square and
a subsequent multiplication. In Figure 3 we can still observe the correlation
between multiplication operations, but since they are executed always this does
not provide any useful information.

However, now we reveal redundant multiplications. A square operation di-
rectly following a discarded multiply will work with one of the operands of the
discarded multiply, and reveal the previous hidden zero bit by their correlation:
we can distinguish between MdS and MS and attack the individual key bits
this way.
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The simulation shows that the multiply always countermeasure can be de-
feated. Additionally, since the attack is independent from the processed data it
is clear that data blinding does not prevent this attack.

4 Experimental Results

Our correlation attack requires all samples in one vector to relate to one fixed
modular operation in an exponentiation scheme, and therefore traces should be
compressed such that each modular operation is represented by a single sample.
For performing the correlation analysis on actual implementations of RSA we
focus on the energy consumed by individual modular operations. First, we ac-
quire side channel traces and compress them such that each modular operation
is represented by one sample. When we acquire n traces with m modular opera-
tions, we build a matrix of n rows and m columns, where each sample represents
the energy consumed by one modular operation.

The energy consumed by the modular operations can be measured by record-
ing either the power consumption, or the electro-magnetic emission of the chip.
The first method is often easier to perform, with relatively simple circuitry,
while EM measurements require more complex electronics and tuning the op-
timal measurement position. On the other hand, some chips implement power
analysis countermeasures like current flattening, which do not work against EM
analysis. In that case EM measurement would be the more attractive acquisition
method.

For the attack to work it is important to recognize and distinguish modular
operations. In the next two subsections we show how the compression works for
simple and complex situations.

4.1 Compressing Visually Identifiable Operations

Modular operations in smart card chips are executed by a cryptographic co-
processor that can perform big number multiplications at high speed. Depending
on the key length and the chip technology an individual modular operation may
cost 20 – 500 μs. Typically, a cryptographic processor consumes more power
than the normal CPU as it switches much more bits in parallel.

Figure 4 shows a power trace taken from a smart card where the modular
operations performed by the cryptographic processor can easily be distinguished

Fig. 4. Modular operations interleaved with CPU activity
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from the normal CPU activity. For the analysis we want to retain individual
samples representing the energy consumed by each modular operation. To that
end, we first apply a low pass filter. Then we set a threshold and compute the
surface between the top of the graph and the threshold.

Fig. 5. Simple compression process for modular operations

Figure 5 shows the compression process which is fast and simple. The result
of this process is a trace set with one sample per modular operation, which is fit
for cross correlation analysis.

4.2 Compressing Hidden Operations

Unfortunately the simple compression process cannot so easily be applied to
more advanced smart card chips.

Fig. 6. Modular operations hidden by noise

Figure 6 shows a power trace taken from a chip that uses a strong noise source
to hide the energy consumption difference between CPU and cryptographic pro-
cessor. Even when using a low pass filter it is not possible to identify the modular
operations.

In this case another approach can be used to identify and compress the mod-
ular operations. First the attacker acquires a set of traces and aligns them at the
beginning. Then, an average trace is computed over the trace set. The modular
operations close to the alignment point (left side) will become recognizable as
a distinct pattern. Operations further away from the alignment point get in-
creasingly blurred because of the jitter of the free running internal clock (see
Figure 7).

Next a pattern p representing one modular operation (highlighted in Figure 7)
is used to correlate against a trace t to find starting positions for each modular
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Fig. 7. Average of left aligned modular operations

Fig. 8. Pattern correlation with noisy traces

operation. The result is a trace s that indicates for each position s[i] the calcu-
lated correlation between vectors p and t[i] . . . t[i+ |p|].

The peaks in the correlation graph shown in Figure 8 identify where a selected
pattern has the optimal match. This matching mechanism is essential to find
the occurrence of patterns that are not on equal distances due to clock jitter or
random process interrupts.

Once the modular operations are identified through pattern correlation, they
can be compressed by repeatedly averaging |p| samples starting from each de-
tected peak.

4.3 Bounded Pattern Matching

In order to correctly compute the correlation between adjacent modular opera-
tions it is essential that all operations are recognized and properly represented by
a compressed sample. If some traces would contain errors and incidental modular
operations were skipped this would result in a partly shifted trace set, where the
correlation values would become distorted.

The pattern matching mechanism introduced in the previous section works
well if the distance between the start of two consecutive modular x0 and x1
operations is always less than twice the minimal duration (Δx) of the modular
operation. This would guarantee that each search period contains exactly one
operation.

Figure 9 shows that it is relatively easy to identify the starting point of x1
by always finding the highest pattern correlation peak within a period between
x0 +Δx and x0 + 2Δx.

In order to recognize the end of the exponentiation sequence, a minimal cor-
relation threshold value can be used.
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Fig. 9. Bounded pattern matching

4.4 Key Retrieval

We apply the presented attack techniques on a state-of-the-art smart card, for
which SPA and DPA attempts on RSA were unsuccessful. We acquire 5000 traces
of an RSA 2048 bit signing with a private key. The bounded pattern matching
mechanism revealed that 4096 operations were executed, which can be explained
by the multiply always countermeasure being used.

The resulting trace set yields 4096 samples per trace. Rather than computing
the full cross correlation matrix as in section 3.2, we compute correlation between
adjacent columns in the compressed trace set, and plot the correlation between
samples and their direct neighbors.

Fig. 10. Cross correlation for adjacent modular operations in a hardware RSA imple-
mentation using multiply-always

The resulting graph in Figure 10 allows immediate read out of the entire
private key by associating low correlation values with bit value ‘1’, and high
correlation values (due to re-use of discarded operand) to value bit ‘0’.

5 Conclusion

We conclude that cross correlation analysis enables a new attack on RSA that
attacks the multiply always countermeasure. No intermediates states are calcu-
lated, and as such it is oblivious to message blinding. Further, we have shown
that the attack works on a modern smart card that produces very noisy power
consumption signals.

Although this attack can defeat both message blinding and multiply-always
countermeasures, there are known countermeasures that make it substantially
harder (noise, floating clocks) or to virtually impossible (exponent blinding) to
perform this attack.
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Abstract. In this paper we use a combination of differential techniques
and cache traces to attack the block cipher CLEFIA in less than 214

encryptions on an embedded processor with a cache line size of 32 bytes.
The attack is evaluated on an implementation of CLEFIA on the Pow-
erPC processor present in the SASEBO side channel attack evaluation
board. The paper shows that although obtaining cache access patterns
from the power consumption of the device may be difficult due to the
non-blocking cache architectures of modern processors, still the cache
trace has a distinct signature on the power profiles. Experimental results
have been presented to show that the power consumption of the de-
vice reveal the cache access patterns, which are then used to obtain the
CLEFIA key. Further, a simple low overhead countermeasure is imple-
mented that is guaranteed to prevent cache attacks.

1 Introduction

On microprocessors with cache memory, a cache miss takes more power and time
than a cache hit. A class of cache attacks, known as cache-trace attacks [1,2,4,8,21]
monitor these differences to gain secret information about a cryptographic algo-
rithm. This form of cache-attacks is the most powerful in terms of the number
of encryptions required. Yet, a naive cache-trace attack on Sony’s block cipher
CLEFIA[16] is estimated to have a complexity of more than 240 encryptions[11].
In this paper we demonstrate a cache-trace attack which uses the differential
properties of CLEFIA to reduce the attack complexity to 214 encryptions on the
PowerPC-405 processor.

Most published cache-trace attacks target AES. Bertoni et. al. showed that
cache traces are manifested in the power profiles and reveal secret information
about the cryptographic algorithm being executed [4]. A first round cache-trace
attack on AES was done in [8] and was extended to a two round attack in [2].
A final round attack on AES was also described in [2].

All cache-trace attacks target structures in the cipher such as in Figure 1.
The figure shows two accesses to table S with indices (in0 ⊕ k0) and (in1 ⊕ k1).
In an ideal cache, a cache hit occurs when (in0 ⊕ k0) = (in1 ⊕ k1). This reveals
information about the ex-or of the key bits: (k0 ⊕ k1) = (in0 ⊕ in1). In a real
cache however, a cache miss results in a block of data being loaded from memory.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 89–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Look-up Structure in AES
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Fig. 2. Look-up Structure in CLEFIA

Hence cache attacks cannot distinguish between locations in the same block. If
the cache’s line size is l bytes and the size of each entry in the table is b bytes,
then log2(l/b) lower bits of the ex-or cannot be determined. In reality therefore,
〈k0 ⊕ k1〉 = 〈in0 ⊕ in1〉, where 〈·〉 is the most significant bits.

In CLEFIA, some of the table accesses have a form depicted in Figure 2. A
straight forward adaptation of existing cache-trace attacks is capable of revealing
only the value of 〈k0 ⊕ k1 ⊕ k2〉, thus has more ambiguity about the key value.
This makes cache-trace attacks on CLEFIA more complex than attacking AES.
Zhao and Wang have shown a cache-trace attack on CLEFIA[21] under a strong
assumption of misaligned tables. Misalignment of data generally does not happen
unless it is forced by the programmer or the program is optimized for space. Our
cache-trace attack on CLEFIA considers the standard structure of a program
where the tables are aligned to cache line boundaries.

Except for [4], none of the other publications provide experimental evidence of
the results. In [4] too, results provided were from simulations. A simulated exper-
iment cannot replicate all physical parameters of a real environment. Our attack
on the other hand is demonstrated on actual hardware. We use the SASEBO
side channel attack evaluation board1 as the test platform. We show that ad-
vanced features in the cache architecture such as non-blocking accesses, make
interpretation of power profiles difficult. We then present a method by which the
cache access pattern can still be extracted from the profile.

A countermeasure is proposed that would guarantee protection against all
forms of cache attacks at a lower performance penalty. The countermeasure is
based on the fact that ciphers using tables that fit in a single cache line is
protected from cache attacks. The proposed countermeasure is implemented for
CLEFIA and its performance analyzed.

The outline of the paper is as follows: Section 2 has a brief description of
the block cipher CLEFIA. Section 3 discusses cache attacks based on differen-
tial properties of the cipher and presents the principle of the attack. Section 4
presents the attack on CLEFIA while Section 5 provides experimental results.
A low-overhead countermeasure for protecting CLEFIA against cache attacks is
presented in Section 6. The work is concluded in Section 7.

1 http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
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2 The CLEFIA Block Cipher

CLEFIA is a 128 bit block cipher with a generalized Feistel structure. The spec-
ification [16] defines three key lengths of 128, 192, and 256 bits. For brevity, this
paper considers 128 bit keys though the results are valid for the other key sizes
also. The structure of CLEFIA is shown in Figure 3. The input has 16 bytes, P0
to P15, grouped into four 4 byte words. There are 18 rounds, and in each round,
the first and third words are fed into nonlinear functions F0 and F1 respectively.
The output of F0 and F1 are ex-ored with the second and fourth words. Ad-
ditionally, the second and fourth words are also whitened at the beginning and
end of the encryption. The F functions take 4 input bytes and 4 round keys.
The non-linearity in the F functions are due to two 256 element sboxes S0 and
S1. Matrices M0 and M1 diffuse the outputs of the sboxes. They are defined as
follows:

M0 =

⎛⎜⎜⎝
1 2 4 6
2 1 6 4
4 6 1 2
6 4 2 1

⎞⎟⎟⎠ M1 =

⎛⎜⎜⎝
1 8 2 A
8 1 A 2
2 A 1 8
A 2 8 1

⎞⎟⎟⎠ (1)

The design of the sboxes S0 and S1 differ. S0 is composed of four sboxes SS0,
SS1, SS2, and SS3; each of 16 bytes. The output of S0 is given by :

βl = SS2[SS0[αl]⊕ 2 · SS1[αh]]
βh = SS3[SS1[αh]⊕ 2 · SS0[αl]],

(2)

where β = (βh|βl), α = (αh|αl), and β = S0[α]. The output of S1 for the input
byte α is given by g((f(α))−1), where g and f are affine transforms and the
inverse is found in the field GF (28).

The CLEFIA encryption has 4 whitening keys WK0,WK1,WK2, and WK3;
and 36 round keys RK0, · · · , RK35. Key expansion is a two step process. First
a 128 bit intermediate key L is generated from the secret key K using a GFN
function [16]. From this the round keys and whitening keys are generated as
shown below:

Step 1: WK0|WK1|WK2|WK3 ← K
Step 2: For i ← 0 to 8

T ← L⊕(CON24+4i|CON24+4i+1 |CON24+4i+2 |CON24+4i+3)
L ← Σ(L)
if i is odd: T ← T ⊕ K
RK4i|RK4i + 1|RK4i + 2|RK4i + 3 ← T

The function Σ, known as the double swap function, rearranges the bits of L.

Σ(L)← L(7···63)|L(121···127)|L(0···6)|L(64···120) (3)

From the structure of CLEFIA it is obvious that the knowledge of any set of
4 round keys (RK4i, RK4i+ 1, RK4i+ 2, RK4i+ 3), where i mod 2 = 0, is
sufficient to revert the key expansion process to obtain the secret key. In the
attack on CLEFIA described in this paper, round keys RK0, RK1, RK2, and
RK3 are determined from which K is reversed.
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Fig. 3. CLEFIA Block Diagram

3 Differential Cache-Trace Attacks

Combining conventional cryptanalytic techniques with side channel attacks has
been shown to be a powerful cryptanalytic tool. Most published works use the
algebraic properties of the cipher to reduce the attack’s complexity [6,12,13]. In
this work we use the differential properties of the cipher instead. This section
presents the general principle of what we term as a differential cache-trace attack.

Consider the Feistel structure in Figure 4 with two inputs (in0 and in1) and
two keys k0 and k1 of size n bits. Suppose that in1 is chosen in such a way that
the second sbox access collides with the first, then,

〈in0 ⊕ k0〉 = 〈S[in0 ⊕ k0]⊕ in1 ⊕ k1〉 (4)

From this the uncertainty of the keys k0 and k1 reduces from 22n to 2n+δ, where
2δ is the number of sbox elements that share a cache line. To further reduce this
uncertainty another collision is considered with a different set of inputs in′0 and
in′1. Due to this,

〈in′0 ⊕ k0〉 = 〈S[in′0 ⊕ k0]⊕ in′1 ⊕ k1〉 (5)

Combining Equations (4) and (5) we obtain,

〈in0 ⊕ in1 ⊕ in′0 ⊕ in′1〉 = 〈S[in0 ⊕ k0]⊕ S[in′0 ⊕ k0]〉 (6)

The uncertainty of the key now depends on the differential properties of the
sbox. Let favg be the average number of keys that would satisfy a given input
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Fig. 4. Two Round Feistel Structure

difference-output difference pair for the sbox S. Then, the expected number of
candidate keys is given by

N = 2δ · favg

This set of candidate keys can be reduced by repeating the experiment with
different input pairs and obtaining the intersection between all the sets. If the
number of times the experiment is repeated is r then,

Expected number of candidate keys after r repetitions =
N r

2n(r−1)

Generally favg is small. For S0 and S1 of CLEFIA, favg was found to be 1.28
and 1.007 respectively. So, even with r = 1, the uncertainty of the key is much
lesser than the naive cache-trace attack.

4 Adapting the Differential Cache-Trace Attack to
CLEFIA

Our attack on CLEFIA comprises of three steps. First RK0 and RK1 are deter-
mined, then WK0⊕RK2 and WK1⊕RK3, and finally RK4 and RK5. With
these round keys, CLEFIA’s key expansion algorithm is used to obtain 57 bits of
(RK2|RK3). In all, obtaining the 121 bits of the round keys RK0, RK1, RK2,
and RK3 requires 214 encryptions.

In the attack, we have assumed that there are 8 elements that share a cache
line. Therefore, while accessing the look-up table of CLEFIA consisting of 256
elements, the cache traces do not distinguish between the lowest 3 bits of the
index. Due to this, while searching for a cache hit, it is sufficient to keep the
lowest 3 bits of the plaintext fixed. Thus varying a plaintext byte to find a cache
hit would require 28−3 = 25 encryptions. In the remaining part of the section
the symbol 〈 〉 signifies the 5 most significant bits of a byte.
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4.1 Differential Properties of CLEFIA’s F Functions

Our cache-trace attack uses the following observations on the F functions:

– Matrices M0 and M1 in the F functions do not attain complete diffusion in
all bits of the output. If the 5 most significant bits (MSBs) of the input of
each byte of the matrices M0 and M1 are known then few bits of the output
can be computed (see Figure 3). In particular three MSBs of each byte in
M0’s output and two MSBs of each byte in M1’s output are computable.
Since M0 and M1 are self inverting matrices, the inverse of the above state-
ment also holds. That is, given 5 MSBs of each byte of the output, 3 MSBs
of the input in M0 and 2 MSBs of the input in M1 is computable.

– For a pair of inputs, the non-linearity in the sboxes causes several (60% in
S0 and 50% in S1) of the possible input difference-output difference com-
binations to be invalid. Additionally, for a valid combination, S0 has 1.28
choices on average for the inputs to the sbox, while S1 has 1.007.

If the inputs to an sbox is (pi⊕k) and (pii⊕k), then the ex-or difference is (pi⊕
pii). This is known. Additionally, the trace attack reveals three bit differences
per byte of the output of each sbox of F0. For the remaining 5 bits of each
output, there are 32 possible input difference-output differences for each sbox
resulting in an average of 32 possible key (k) candidates for each byte. Similarly
there are about 64 possible choices for each key byte in F1. We now show how
these differential properties of CLEFIA are used in the recovery of the round
keys.

4.2 Determining RK0 and RK1

The sbox accesses in the first round of CLEFIA have a structure (Figure 1)
favorable for cache attacks. The equations for the indices to the tables in the
first round is given by:

I10
s0 = P0 ⊕RK00 I11

s0 = P2 ⊕RK02
I12

s0 = P9 ⊕RK11 I13
s0 = P11 ⊕RK13

I10
s1 = P1 ⊕RK01 I11

s1 = P3 ⊕RK03
I12

s1 = P8 ⊕RK10 I13
s1 = P10 ⊕RK12,

(7)

where Iαi
sβ denotes the index to the (i+ 1)th access to table sβ in round α.

If we make the assumption that no part of the table is present in cache before
the start of encryption, then the first access to each table, ie. I10

s0 and I10
s1,

results in cache misses. Keeping P0 and P1 fixed and by varying P2 first and
then P3, 2 cache hits in F0 of round 1 can be obtained for some values of P2
and P3. Keeping these values, and varying P8, P9, P10, and P11 independently,
it is possible to obtain a maximum of 6 cache hits in the first encryption round.
Such a state of the cipher is called a 1-round colliding state.
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In the second round, the indices to the tables S0 and S1 in F0 are given by
equations in (8), where P(0···3) indicates the concatenation of P0, P1, P2, and P3.

I20
s0 = P4 ⊕WK00 ⊕ F0(RK0, P(0···3))0 ⊕RK20

I20
s1 = P5 ⊕WK01 ⊕ F0(RK0, P(0···3))1 ⊕RK21

I21
s0 = P6 ⊕WK02 ⊕ F0(RK0, P(0···3))2 ⊕RK22

I21
s1 = P7 ⊕WK03 ⊕ F0(RK0, P(0···3))3 ⊕RK23

(8)

Starting from the 1-round colliding state, four cache hits can be forced in F0 of
round two by varying, independently, theMSBs of P4, P5, P6, and P7 in an order
such that P4 is varied before P6, and P5 is varied before P7. This results in a total
of 5 cache hits in table S0 (3 in the first round and 2 in the second). The MSBs
of the indices to the table are all the same, ie. 〈I10

s0〉 = 〈I11
s0〉 = 〈I20

s0〉 = 〈I21
s0〉.

We therefore get the following equalities:

〈P0 ⊕ P4〉 = 〈F0(RK0, P(0···3))0 ⊕RK00 ⊕WK00 ⊕RK20〉
〈P2 ⊕ P6〉 = 〈F0(RK0, P(0···3))2 ⊕RK02 ⊕WK02 ⊕RK22〉

(9)

Similarly the 5 cache hits in table S1 result in the following equalities:

〈P1 ⊕ P5〉 = 〈F0(RK0, P(0···3))1 ⊕RK01 ⊕WK01 ⊕RK21〉
〈P3 ⊕ P7〉 = 〈F0(RK0, P(0···3))3 ⊕RK03 ⊕WK03 ⊕RK23〉

(10)

For another plaintextQ, with Q0 �= P0 and Q1 �= P1, equations similar to (9) and
(10) can be obtained by tracing cache collisions in the first and second rounds.
These are shown in (11), where 0 ≤ i < 4.

〈Qi ⊕Q4+i〉 = 〈F0(RK0, Q(0···3))i ⊕RK0i ⊕WK0i ⊕RK2i〉 (11)

From (9),(10), and (11), and the fact that 〈P0⊕P2⊕P4⊕P6〉 = 〈Q0⊕Q2⊕Q4⊕
Q6〉, and 〈P1 ⊕ P3 ⊕ P5 ⊕ P7〉 = 〈Q1 ⊕ Q3 ⊕ Q5 ⊕ Q7〉 the following equations
are generated:

〈P0 ⊕ P4 ⊕Q0 ⊕Q4〉 = 〈F0(RK0, P(0···3))0 ⊕ F0(RK0, Q(0···3))0〉
〈P1 ⊕ P5 ⊕Q1 ⊕Q5〉 = 〈F0(RK0, P(0···3))1 ⊕ F0(RK0, Q(0···3))1〉
〈P2 ⊕ P6 ⊕Q2 ⊕Q6〉 = 〈F0(RK0, P(0···3))2 ⊕ F0(RK0, Q(0···3))2〉
〈P3 ⊕ P7 ⊕Q3 ⊕Q7〉 = 〈F0(RK0, P(0···3))3 ⊕ F0(RK0, Q(0···3))3〉

(12)

It is now possible to apply the differential properties of the F functions to derive
possible key candidates. Considering just two blocks of plaintexts, P and Q,
would result in 32 candidate key values (on average) for each byte of RK0.
In order to identify a single key with probability greater than 1/2, cache hits
in 4 plaintexts must be considered, and the intersection between all possible
candidate key sets must be found.

In a similar way round key RK1 can be determined by analyzing cache hits
in F1. The set of equations that should satisfy RK1 is shown below, where
0 ≤ i < 4.

〈P8+i ⊕ P12+i ⊕Q8+i ⊕Q12+i〉 = 〈F1(RK0, P(8···11))i ⊕ F1(RK0, Q(8···11))i〉
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Due to the matrix M1, which only reveals two bits of the difference of outputs
in each sbox, 6 plaintext blocks are required instead of 4.

Analysis: To determine RK0 requires 4 plaintext blocks to be found which would
result in 14 cache hits in the first two rounds. Obtaining each block requires 7
iterations, with each iteration requiring 25 encryptions. Thus 4 · 7 · 25 encryp-
tions are required. By a similar argument, determining RK1 requires 6 · 7 · 25

encryptions.

4.3 Determining WK0 ⊕ RK2 and WK1 ⊕ RK3

A cache hit in the first table accesses in the third round can be found by varying
byte P8 for S0 (and P9 for S1) (Figure 3). The cause of this cache hit could
be collisions with any of the 8 previous accesses to that table. To reduce the
number of ‘causes’ that result in cache hits, the plaintext bytes are chosen in a
way such that the first two rounds have only one cache miss in each table (ie.
the first accesses). Such a state of the cipher is called the 2-round colliding state.
The 2-round colliding state has 14 cache hits in the first two round. Such a state
is obtained by first obtaining the 1-round colliding state and then varying bytes
P4 to P7 and P12 to P15 independently until 8 cache hits in the second round
are also obtained.

The third round first access cache hit caused by changing P8 (or P9) starting
from the 2-round colliding state has 3 causes. The first two causes are due to
collisions with S0 table accesses in F1 in round two. The third cause is due to
collisions with S0 accesses in F0; this is of interest and is estimated to occur once
every 3 collisions. The uninteresting cache hits due to the first two reasons are
caused by the changing P8, which in turn changes Y 1-1 (Figure 3). On obtaining
a cache hit in the first table access in the third round, it is required to identify
whether the hit is interesting. This is done by changing the value of P12 (or P13)
and re-doing the encryption. If a cache hit still occurs in round 3, then with
significant probability it is of interest.

Similar cache hits for the other F0 table accesses in round 3 can be obtained.
With these collisions the following equalities are satisfied for a pair of plaintexts
P and Q.

〈Pi ⊕Qi ⊕ P8+i ⊕Q8+i〉 =〈F0(RK2,WK0⊕ P(4···7) ⊕ Y 0-1P )i

⊕ F0(RK2,WK0⊕Q(4···7) ⊕ Y 0-1Q)i〉,

where 0 ≤ i < 4, and Y 0-1 is as defined in Figure 3. Y 0-1 can be computed
using the RK0 found in the first step of the attack. Differential properties of
the F0 function and 4 plaintext blocks can be used to completely determine
RK2⊕WK0.

Analysis: Finding WK0⊕ RK2, requires plaintext bytes P4 to P7 to be set up
in such a way that there are 4 collisions in the second round. Setting up these
collisions requires 4 ·25 encryptions. Next, to find a single byte of (WK0⊕RK2),
a third round cache hit is required. It takes 25 encryptions to find a hit and an
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additional 25 encryptions to determine if the hit is interesting. In all, finding a
single plaintext that causes the required cache hits in the third round requires
4 · 25 + 4 · 26 encryptions. Four such plaintexts need to be found, therefore the
encryptions required to obtain all bytes of (WK0⊕RK2) is less than 211.

Finding WK1 ⊕ RK3: In a similar manner RK3 ⊕WK1 can be found in less
than 212 encryptions by considering collisions in F1 in round 3 and varying
plaintext bytes P(0···3). The difference equations that is to be satisfied is given
by the following (where 0 ≤ i < 4):

〈Pi ⊕Qi ⊕ P8+i ⊕Q8+i〉 =〈F1(RK3,WK1⊕ P(12···15) ⊕ Y 1-1P )i

⊕ F1(RK3,WK1⊕Q(12···15) ⊕ Y 1-1Q)i〉

4.4 Determining RK4 and RK5

RK4 and RK5 can be determined in 213 encryptions using the same idea as the
second step of the attack. To find RK4, a 2-round colliding state is first obtained
from which cache hits in F0 of the fourth round is forced by varying the 4th word
of the plaintext. RK4 can be determined from this using the equations:

〈Pi ⊕Qi ⊕ P12+i ⊕Q12+i ⊕ Y 1-1P
i ⊕ Y 1-1Q

i 〉
= 〈F0(RK4, X0-3P )i ⊕ F0(RK4, X0-3Q)i〉,

where Y 1-1P , Y 1-1Q, X0-3P , and X0-3Q are computed from previously deter-
mined round keys and 0 ≤ i < 4. Similarly, RK5 is determined by cache hits in
F1 in the 4th round. The equalities for determining RK5 are:

〈P4+i ⊕Q4+i ⊕ P8+i ⊕Q8+i ⊕ Y 0-1P
i ⊕ Y 0-1Q

i 〉
= 〈F1(RK5, X1-3P )i ⊕ F1(RK5, X1-3Q)i〉

4.5 Determining RK2 and RK3

In the key expansion algorithm, if i = 0 then T = (RK0|RK1|RK2|RK3), and
T = L⊕ (CON24|CON25|CON26|CON27). Sixty four bits of the key dependent
constant L can be computed using the values of RK0 and RK1, which were
determined in the first step of the attack.

(L0|L1) = (RK0|RK1)⊕ (CON24|CON25) (13)

The double swap operation on L places 57 known bits of L in the lower bit
positions. This is given by L′

(0···56) = L(7···63). Again, in the key expansion
algorithm, if i = 1, then T = (RK4|RK5|RK6|RK7). This is represented as
T = L′ ⊕ (CON28|CON29|CON30|CON31) ⊕ (WK0|WK1|WK2|WK3).
Therefore,

WK0|WK1(0···24) = L′
(0···56) ⊕ (CON28|CON29(0···24))⊕ (RK4|RK5) (14)
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Using RK4 and RK5, which were determined in the third step of the attack,
the whole of WK0 and 25 bits of WK1 can be determined. Then the result from
the second step of the attack is used to obtain 57 bits of (RK2|RK3). Thus 121
out of the 128 bits of (RK0|RK1|RK2|RK3) is retrieved.

5 Experimental Results

We implemented the entire attack in two steps. First the power consumption of
the attacked implementation is obtained and a binary vector of the cache access
patterns is derived from the profile. A 1 in the binary vector denotes a cache hit
while a 0 denotes a cache miss. The vector is fed into a key extraction program
which reduces the key space using steps mentioned in the above algorithm. In
this section we describe the experimental setup used to obtain the power traces,
and discuss how the cache access patterns can be derived from the traces.

Test Platform: The Xilinx XC2V P30 FPGA[19] on the SASEBO side channel
attack evaluation board[14] was used for the experimentation. The FPGA has
a 300MHz PowerPC-405 core and 16KB two way set associative data cache.
32KB of the FPGA’s block RAM was configured as the processor’s memory.
On a cache miss, eight 32 bit words are loaded from memory into cache by
means of a 100MHz PLB bus. Sony’s reference code for CLEFIA2 was used
in the attack with each sbox element occupying 4 bytes. Before the start of
each encryption, the entire cache is cleaned using the XCache FlushDCacheLine
library function[18]. Power measurements are taken using a current probe across
a 1Ω resistor connected in the FPGA’s supply line.

5.1 Extracting Cache Trace Patterns from Power Profiles

Unlike [4], where a cache miss is easily evident from the simulations, in actual
hardware a single cache miss is not easily distinguishable from a cache hit. More-
over, due to the non-blocking cache in PowerPC [20], it is difficult to pinpoint
the exact memory access that is causing the miss to occur. The non-blocking
cache would allow other memory accesses to proceed in parallel while the miss is
being serviced, provided that there are no data dependencies. Due to the struc-
ture of CLEFIA, the sbox accesses within a single round are not interdependent,
hence the accesses can be performed in any order. However, the sbox accesses
depends on previous round results, therefore the accesses cannot be done until
the previous rounds have completed. What this means is that the power pro-
file for a single round cannot have accesses from any other round, in spite of the
non-blocking cache. Hence the power profile of a single round of the cipher forms
a characteristic signature of the cache access pattern for that round.

The first round of CLEFIA has 8 sbox accesses of which the first two accesses
are compulsory misses. The remaining six accesses results in 64 different power
profile signatures depending on whether an access results in a hit or a miss.
2 Version 1.0 (http://www.sony.net/clefia/.)

(http://www.sony.net/clefia/.)
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Figure 5, shows two power profiles for the first round of CLEFIA. The first
profile is for an encryption that has the maximum of six hits in the first round
(MMHHHHHH), while the second is for an encryption in which the eighth
access is a cache miss (MMHHHHHM). It may be noted that, although there
is just a single difference in the hit-miss pattern between the two encryptions,
the power consumption profile carries a distinct signature.

For the attack, we initially have a learning phase in which all the 64 possible
signature profiles are collected. During the attack phase, the first round power
profile of the unknown key is correlated against the 64 signature profiles. The
pattern with the highest correlation is taken as the cache access pattern for
the round. It was found that power profiles with identical cache access patterns
have a correlation coefficient close to 1, while the correlation with a different
cache access pattern have values around 0.8. With identical cache access profiles,
the high value of correlation coefficient is obtained with just one measurement.
Figure 6, shows that a correlation of 0.997 is obtained from a single measure-
ment. To further strengthen the result, more measurements are made and the
average power profile is determined. With 8 measurements the correlation value
of 0.9995 is obtained. However, the extra measurements increase the total num-
ber of encryptions required for the attack from 214 to 217.

The proposed attack requires cache access patterns of the second, third, and
fourth rounds to be known. This is done in a similar manner by first obtaining
all possible power profile signatures for these rounds. Since there are 8 table
accesses in each round, and each access could be a hit or a miss, therefore a
round has 256 different profile signatures instead of 64.

6 Countermeasures against Cache Attacks

Countermeasures for cache attacks are classified depending on how they are
applied. The countermeasures can be applied in the hardware, operating system,
algorithm, or in the implementation. In this paper we restrict our discussion to
countermeasures applied to the implementation of algorithms as they are the
most applicable to existing systems. Countermeasures also differ in the degree
of security against cache attacks and in the overhead on the performance.
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A common countermeasure is to eliminate key related table look-ups by either
warming[10] or preloading tables into the cache. This increases the difficulty of
attacks but does not completely prevent them[3]. Security is also increased by
adding noise to the encryption profile by dummy accesses or random delays
during encryption. Another potential countermeasure is to dynamically mix the
contents of the table entries or have redundant or alternate look-up tables[17].
Masking of table accesses has also been proposed as a countermeasure, though
not very effective. Although these countermeasures increase security, they do not
guarantee complete prevention against cache attacks.

The most obvious way of guaranteeing complete protection against cache at-
tacks is to either disable cache memory or implement algorithms without any
key related table look-ups. The latter is done by replacing table look-ups with
logical equations for the sbox. Although bit-slicing[5] provides an efficient way
to implement block ciphers without table look-ups, its use is restricted to non-
feedback and non-chaining modes of encryption, which is not the most secured
way of doing the encryption. For the standard encrypting modes, the avail-
able techniques of disabling cache and non-table look up implementations have
tremendous overhead on the performance. For example, disabling the cache is
known to deteriorate performance up to 100 times[17], while 180 logical opera-
tions are required to implement a single AES sbox[7].

Proposed Countermeasure: The proposed countermeasure is based on the fact
that if the entire sbox were to fit in a single cache line, then the first access would
load the complete sbox into cache and all other accesses would result in cache
hits. This simple technique would not only guarantee complete security against
cache attacks but also have a comparatively lower performance overhead. The
countermeasure would work on existing ciphers but for the fact that the size
of sboxes generally exceeds that of a cache line, therefore several cache lines
would be required to completely store the sbox. We therefore propose to use a
combination of logical equations and look-up tables as a countermeasure. The
look-up tables will be made to fit in one cache line, and will be used to reduce
the number of operations required in the sbox equations. This countermeasure
can be applied to any sbox which can be represented by logical equations.

6.1 Cache Attack Countermeasure for CLEFIA

For demonstrating the countermeasure we take a cache line size of 32 bytes. This
is the size of a cache line in PowerPC. The sbox S0 of CLEFIA is built using 4
smaller tables SS0, SS1, SS2, and SS3 (Equation 2). Each of the small tables
occupy 8 bytes in memory. Therefore the four tables would occupy the entire
cache line. Implementing S0 using these 4 tables is simple. In all the small tables
save 129 operations.

Sbox S1 is constructed using an inverse in the field GF (28) with the irre-
ducible polynomial x8 + x4 + x3 + x2 + 1. The inverse computation is preceded
and succeeded by affine transformations. Composite field isomorphism is an effi-
cient method to implement such sboxes[9]. Although this method is well known,
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it has been mainly used to increase the speed and efficiency of hardware imple-
mentations. To the best of our knowledge, this is the first time that this method is
being adapted to prevent cache attacks. We use the composite field GF (((22)2)2)
generated by the irreducible polynomials x2 +x+1, x2 +x+φ, and x2 +x+λ
respectively, where φ = {10}2 and λ = {1100}2 [15]. The use of composite
fields allow the use of small tables for part of the computation. In particular,
lookup-tables are used for the multiplication by constant and inverse in GF (22)2;
and for GF (22) multiplication. This reduces the number of operations required
for the sbox by 75. The mapping and reverse mapping between GF (28) and
GF (((22)2)2) is shown below:

T =

⎛⎜⎜⎝
1 0 1 1 1 0 1 1
0 1 1 1 1 0 0 0
0 0 0 1 0 1 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 0 0 1
0 1 0 1 1 1 0 0
0 1 1 1 1 1 1 0
0 0 0 0 0 1 0 0

⎞⎟⎟⎠ T−1 =

⎛⎜⎜⎝
1 0 1 0 1 0 1 0
0 1 0 1 1 1 1 1
0 1 0 0 0 1 0 1
0 0 1 0 0 0 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 1
0 1 1 1 0 1 1 0

⎞⎟⎟⎠
Using the chosen composite field, sbox S1 can be computed as shown in
Figure 7. The inversion and constant multiplication in GF (22)2 require 8 byte
each. The 16 remaining bytes in the cache line can be used to fit in the GF (22)
multiplication table. With the experimental setup described in Section 5, Sony’s
reference code for CLEFIA took 655μs. The reference implementation modified
to not use any look-up tables took 3.04ms, while an implementation with the
proposed countermeasure took 1.5ms. Also, it was found that the power profile
of an encryption with the proposed countermeasure did not reflect the cache
access patterns, thus the proposed countermeasure prevents cache attacks at a
lesser performance overhead.

7 Conclusion

In this paper we develop a differential cache-trace attack and apply it on CLE-
FIA. The attack exploits the differential properties of the F function and key
expansion. The complexity of the attack in less than 214 encryptions. The at-
tack was performed on Sony’s reference code running on the PowerPC processor
present in the Xilinx FPGA. Each cache access pattern in a round has a distinct
power profile which can be used to identify an unknown cache trace pattern
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from a given power profile. Further, the paper proposes a countermeasure for
cache attacks which would guarantee security, while at the same time has less
performance overhead compared to non-lookup implementations.
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Abstract. To prevent smart card attacks using Differential Power Anal-
ysis (DPA), manufacturers commonly implement DPA countermeasures
that create misalignment in power trace sets and decrease the effective-
ness of DPA. We design and investigate the elastic alignment algorithm
for non-linearly warping trace sets in order to align them. Elastic align-
ment uses FastDTW, originally a method for aligning speech utterances
in speech recognition systems, to obtain so-called warp paths that can
be used to perform alignment. We show on traces obtained from a smart
card with random process interrupts that misalignment is reduced sig-
nificantly, and that even under an unstable clock the algorithm is able
to perform alignment.

Keywords: Differential Power Analysis, unstable clock, random pro-
cess interrupts, Elastic Alignment, time series analysis, dynamic time
warping.

1 Introduction

Modern smart cards are devices designed for secure operation in an environment
outside the control of the issuer. Because of this, they must be protected against
a wide range of attacks, including side channel analysis. A powerful and well-
studied technique is differential power analysis (DPA, [Koch99]). DPA analyzes
the statistics of power measurements on a device while it is performing (a part
of) its security function. Repeated measurements are taken of the same process,
and by relating the power usage and the data values being processed, secret data
may be revealed.

Smart card manufacturers are aware of these issues, and implement various
countermeasures to reduce the effectiveness of attacks such as DPA. Entirely
preventing DPA is often very hard, but a card can be considered secure if the
resources needed for breaking it outweigh the resources an attacker has available.

Countermeasures are typically aimed at breaking the assumptions that under-
lie known attacks. DPA assumes that the cryptographic operations take place at
exactly the same time in each power measurement. By using an internal clock
with varying frequency, or randomly inserting dummy wait states into the execu-
tion of an algorithm, it is no longer time constant. Moreover, the cryptographic
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operations do not take place at the same instant but are shifted in time with
respect to each other. Inducing this misalignment is currently one of the com-
mon countermeasures used in secure devices. Although it does not completely
prevent DPA, it can make it very costly in terms of the number of traces that
need to be processed.

In cryptographic implementations that do not actively induce timing differ-
ences as a countermeasure, misalignment is typically caused by inaccuracies in
triggering the power measurements. This means that traces can be aligned by
determining the duration of the timing inaccuracies, and shifting the traces ac-
cordingly. This process is called static alignment [Mang07].

In contrast, when a cryptographic implementation actively induces random
time delays or varying clock frequencies, static shifting cannot fully align the
traces. Dynamic alignment is a general term for algorithms that match parts of
several traces at different offsets, and perform nonlinear resampling of the traces.
This is done such that afterwards, these parts are located at the same offsets.

The starting point for our work is the observation that there are parallels
between time series analysis, in particular speech recognition techniques, and
alignment of power traces. This paper describes an alignment algorithm called
elastic alignment, which is based on dynamic time warping, a well established
algorithm for time series matching. We also show our algorithm is practically
applicable and can be used to recover secret key leakage from misaligned traces.

1.1 Previous Work

DPA research is focused on performing an analysis that is less sensitive to mis-
alignment. This contrasts our proposed method, which can be considered a pre-
processing step before performing DPA: it directly modifies individual traces
such that they are aligned. This is especially useful for the class of template at-
tacks, which are very powerful given a correctly learned leakage model [Char03].
As the method does not explicitly take into account misalignment, its classi-
fication can be improved if it is applied to n correctly aligned traces versus
n misaligned traces. This can be of significant importance, as in practice n is
bounded. Also, the number of interest points may be lower for a correctly aligned
trace.

There are generally three ways of dealing with misalignment when performing
DPA [Mang07]: running static alignment on just the DPA target area, prepro-
cessing traces (integration of samples, convolutions or FFT), or simply running
DPA on unmodified traces. Note that running DPA on unmodified traces re-
quires a much larger trace set, which may be infeasible.

Integration and other preprocessing methods can yield good results in terms of
increasing the DPA peak; however, the increase can be limited due to the spectral
components of the traces and the choice of algorithm parameters[Mang07].

In [Char05], a method is described to align traces based on the wavelet trans-
form for denoising, and simulated annealing for resynchronization. The wavelet
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transform has the property that each trace can be viewed at different resolu-
tions. It is shown that by performing DPA at lower resolutions, high frequency
noise is reduced and the DPA peaks become stronger. In addition, the simulated
annealing algorithm is used to optimize a resynchronization function that relates
a pair of wavelet-transformed traces. This further improves the DPA peak.

Using wavelets for denoising is in our opinion a viable method; however, as
we are purely considering an alignment algorithm, we do not wish to reduce the
information in a trace.

In [Clav00] a method called sliding window DPA (SW-DPA) is introduced.
SW-DPA targets random process interrupts (RPIs) by replacing each clock cycle
in the original traces with an average of itself and a number of previous cycles.
Its two parameters are the number of cycles to average, and the length of a cycle.
Effectively, SW-DPA integrates leakage spread out over a few clock cycles back
into one place, such that DPA peaks are restored.

There are two aspects of SW-DPA that need to be taken into account: the
clock cycles are assumed be of fixed length, and the number of cycles to average
must be specified carefully based on the number of RPIs. Our aim is to be able
to deal with targets with an unstable clock as well as automatically overcome
RPIs.

1.2 Organization of This Paper

This paper is organized as follows. Section 2 describes the background and design
of the dynamic time warping algorithm and its linear-time successor FastDTW.
In Section 3 we first introduce elastic alignment as our approach to trace set
alignment, and how it is based on the warp paths, a side effect of FastDTW.
Next, we analyze the alignment performance in Section 4. Final conclusions and
ideas for further work are given in Section 5, and supplementary information is
present in Appendix A.

2 Dynamic Time Warping

The dynamic time warping (DTW) algorithm originates from speech recognition
research [Sakh78]. Matching spoken words to a database containing prerecorded
words is a nontrivial problem, as words are always spoken with variances in
timing. Traditionally, calculating distances between two word utterances is per-
formed by using a measure that compares recorded words sample by sample.
These are based on, e.g., the sum of squared differences between the samples or
the correlation of the sample values.

However, in cases where we have two similar utterances with differences in
timing, the distance under such measures will be larger than if the utterances
were ‘aligned’. This follows from the property that these sample-by-sample mea-
sures do not explicitly consider unaligned utterances.
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(a) Traditional distance (b) Warped distance

Fig. 1. Dynamic time warping distance calculation (from [Chu02])

Being confronted with this problem, Sakoe et al. introduced a dynamic pro-
gramming approach to match utterances using nonlinear time paths [Sakh78].
DTW measures the distance between two utterances by ‘elastically’ warping
them in time (see Figure 1), and then measuring the distance. Warping is per-
formed based on the warp path the algorithm produces, which gives the align-
ment under which the signals have a minimum distance. DTW thereby allows
utterances from processes with variable timing to be matched more accurately.

Traditionally, DTW is used for calculating a distance between two speech
utterances. However, we are interested in trace alignment. We note that the
warp path internally produced by DTW for measuring distances represents a
matching between the time axes of two utterances. In this paper we use the
same principle to align measured power traces from smart cards. Note that the
DTW algorithm can only align two traces, so like other alignment algorithms
we will be dependent on a reference trace.

The remainder of this section explains the original DTW algorithm, the
improved FastDTW algorithm and how to apply the algorithm to trace pair
alignment.

2.1 Obtaining the Warp Path

For our alignment we are interested in the warp path. The warp path is a list of
indexes in both traces that represents which samples correspond to each other.
Formally, if we have two traces X and Y , we define a warp path F

F = (c(1), c(2), . . . , c(K)) (1)

with c(k) = (x(k), y(k)) indexes in X and Y respectively. Figure 2 gives an
example of a warp path.

There are several constraints on the warp path:

• Monotonicity: x(k − 1) ≤ x(k) and y(k − 1) ≤ y(k).
• Continuity: x(k)− x(k − 1) ≤ 1 and y(k)− y(k − 1) ≤ 1.
• Boundary: x(1) = y(1) = 1, x(K) = T and y(K) = T , with T the number

of samples in X and Y .
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Fig. 2. Example warp path [Keog99] for traces X and Y . The warp path shows the
optimal matching of the two traces by index pairs i and j.

Combined these constraints restrict the warp path to three possible steps (see
Figure 3):

c(k + 1) = (x(k + 1), y(k + 1)) (2)

=

⎧
⎪⎨

⎪⎩

(x(k), y(k) + 1) or
(x(k) + 1, y(k)) or
(x(k) + 1, y(k) + 1)

(3)

Furthermore, the length of the warp path can be deduced to be bounded by

T ≤ K < 2T (4)

The monotonicity and continuity constraints are a natural choice for our problem
domain: we do not allow going back in time, nor skipping any samples. The choice
for the boundary constraint is based on the assumption that traces start at the
same phase, and end at the same phase of a measured process. Starting at the

Fig. 3. Warp path steps and cost factor w(k)
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same phase can usually be realized in side channel acquisition by timing the
acquisition or static alignment. However, traces are usually of fixed length and,
due to the introduction of time variations, do not necessarily end at the same
phase of a process. This implies that matching the end of two traces can be
difficult. DTW can overcome this by the inherent property that segments found
in only one trace can be ‘skipped’ by matching the entire segment to a one or
few samples in the other trace. Practical experience with the algorithm confirms
the neither beginning nor the end of the traces need to be exactly aligned for
DTW to find a good match.

Cost matrix. In order to find the minimum cost warp path, the DTW algorithm
calculates a cost matrix d. This matrix contains the distances between all samples
of X and Y , and is calculated as

d(i, j) = |X [i]− Y [j]| (5)

The length of a warp path F depends on how the distances between samples
combined with the path through them translate into a distance between X and
Y . The measure L giving the distance for the minimum length warp path is:

L(X,Y ) = 1
2T

min
F

[
K∑

k=1

d(c(k))w(k)

]

(6)

where w(k) is a weighting factor and T the length of the traces. The weighting
factor was introduced to construct a measure with flexible characteristic. We
use the symmetric measure from [Sakh78], which implies w(k) is the number of
steps made in each dimension:

w(k) = [x(k)− x(k − 1)] + [y(k)− y(k − 1)] (7)

So, if we make a step only in X or only in Y then w(k) = 1, for diagonal step
w(k) = 2 (see Figure 3).

Finding the minimum cost path. Having defined the distance L(X,Y ), we
need an algorithm to find the minimum distance path. This corresponds to the
optimized way of warping the two traces such that they are aligned.

A simple dynamic programming algorithm is implied by rewriting L(X,Y ) in
recursive form:

g1(c(1)) = d(c(1)) · w(1) (8)
gk(c(k)) = min

c(k−1)
[gk−1(c(k − 1)) + d(c(k))w(k)] (9)

L(X,Y ) =
1

2T
gK(c(K)) (10)
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If we only apply steps from Eq. (2), substitute for w(k) (Eq. (7)), and drop the
subscript k for simplicity, we obtain:

g(1, 1) = 2d(1, 1) (11)

g(i, j) = min

⎡

⎣
g(i, j − 1) + d(i, j)
g(i− 1, j) + d(i, j)
g(i− 1, j − 1) + 2d(i, j)

⎤

⎦ (12)

L(X,Y ) = 1
2T
g(T, T ) (13)

The algorithm first calculates matrix d, and then starts at (T, T ) to trace the
minimum warp path according to Eq. (12). To avoid boundary problems, we
define d(0, j) = d(i, 0) = ∞. This procedure yields both the distance mea-
sure and the minimum distance warp path. An example calculation is found in
Appendix A.

2.2 FastDTW: Iterative Reduction and Bounding

The time and space complexity of DTW can be restrictive in practice. Calculat-
ing g(i, j) in Eq. (12) requires calculating d(r, s) for all 1 ≤ r ≤ i and 1 ≤ s ≤ j,
and thus the complexity of calculating g(T, T ) is quadratic: O(T 2). There are
several approaches to overcome this problem which abstract the data or restrict
the search space. We can constrain the search for an optimal warp path, but
this should be based on knowledge (or assumptions) about the data. To bal-
ance the rigidity of constraints and algorithm performance, [Salv04] proposes
the FastDTW algorithm.

The FastDTW algorithm restricts the warp path by bounding which elements
of matrix d are calculated. This bounding is determined by the warp path at
different resolutions of the traces, and, if the bounding is not too tight, produces
the same results as DTW but with O(T ) complexity.

FastDTW uses a multilevel approach with three key operations. Coarsening
reduces the size of a trace by averaging adjacent pairs of samples (see Figure 4).

Fig. 4. Iterative DTW warp path refinement in FastDTW [Salv04]. Each iteration the
resolution for both axes is doubled, and a new warp path is determined within the light
gray bounds.
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The resulting trace is a factor of two smaller than the original trace. Coarsening
is performed several times to produce many different resolutions of the trace. At
the lowest resolution, the original DTW algorithm is used to generate a warp
path.

Projection takes a warp path calculated at a lower resolution and determines
what cells the warp path passes through in the next higher resolution traces. This
projected path is then used as a heuristic to bound the warp path at the higher
resolution. Refinement takes this projected path and increases the bounds by a
radius, which controls the space DTW can search beyond the projected path.
Next, it finds the optimal warp path within these extended bounds by executing
a bounded version of DTW. This bounded version of DTW can be understood
as the original DTW, with all elements of d outside the search bounds set to ∞.

The difference between this method and the other approximations to full
DTW is that the FastDTW algorithm does not rigidly determine the bounds
a priori without consulting the data; the bounds are set based on the local
shape of the warp path. This way a much closer approximation to the original
DTW algorithm is achieved. The radius parameter affects the approximation:
the higher the radius parameter, the higher the accuracy of representation of
the original DTW algorithm is, but also the slower FastDTW runs. The radius
parameter should not be set too high: if it is in the order of T the algorithm
reduces to DTW speed, as the bounds always include all cells. Otherwise, [Salv04]
shows FastDTW is in O(T ). In our experiments we need to find a reasonable
value for this parameter.

3 Elastic Alignment Using FastDTW

In this section, we propose the elastic alignment algorithm. By using FastDTW
on two traces, we obtain a sample-by-sample match of these traces. In order to
align the traces, matching samples need to be projected onto new traces. This
implies the warp path F = (c(1), c(2), . . . , c(K)) between two traces X and Y
gives rise to two projections onto aligned traces Ẋ and Ẏ .

Under the restriction not to increase the length of two aligned traces, we use
the following asymmetric projections:

Ẋ[i] = X [i] (14)

Ẏ [j] = 1
|{k | x(k) = j}|

∑

x(k)=j

Y [y(k)] (15)

with the minimal length warping path c(k) = (x(k), y(k)), 1 ≤ k ≤ K, 1 ≤ i ≤ T
and 1 ≤ j ≤ T . These projections can be understood as elastically aligning Y
to X by averaging and duplicating samples of Y based on the minimal length
warping path. The length of the traces remains T .

The projections as described are only capable of aligning pairs of traces. How-
ever, the chosen asymmetric projections allow for a reference trace to be chosen.
This reference trace can be used as a basis to elastically align an entire trace set



112 J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker

Algorithm 1. Elastic Alignment

1. Obtain a reference trace X and a trace set Y; all traces of length T
2. For each trace Y ∈ Y

(a) Calculate warp path c(k) = (x(k), y(k)), for X and Y using FastDTW
(b) Calculate Ẏ [j] for 1 ≤ j ≤ T , output Ẏ

by aligning each trace to this reference trace, as described in Algorithm 1. Note
this reference trace can be included in the trace set to align, but this is not a
necessity.

The difference between this algorithm and FastDTW is that the latter focuses
on distance calculation between two traces, producing a warp path as byproduct.
Elastic alignment uses this warp path to resynchronize traces.

3.1 Computational Complexity

The complexity of elastic alignment is per trace O(T ) for FastDTW, and O(K)
for the resynchronisation step. Because T ≤ K < 2T , this makes the total
complexity linear in the trace length and the number of traces: O(T · |Y|).

FastDTW has a radius parameter that trades off computation time and time
series matching optimality. For DPA this means it is possible to tune the align-
ment quality and the computation time. The radius has an optimum value at
which increasing it does not affect the alignment, but only increases the compu-
tation time. This is the point at which the optimal warp path is fully contained
within the radius for each FastDTW iteration.

As this optimal value depends on the characteristics of the traces under anal-
ysis, it is non-trivial to give a general formula for the exact value. By starting
with a low radius, and continuously increasing it until the alignment of a pair of
traces becomes stable, we usually find the optimal radius value lies between 100
and 150.

3.2 Usage for DPA

One of the more practical problems encountered when performing DPA, is that
of misalignment due to unstable clocks and random process interrupts. Because
of the continous trace matching, elastic alignment synchronizes to the reference
clock and process. Unstable clocks are therefore automatically accounted for.

However, random process interrupts (RPIs), an active countermeasure intro-
ducing misalignment, can also be overcome. If the RPI is present in the reference
trace, the other trace can be stretched in order to ‘skip’ the RPI. Conversely, if
the RPI is present in the other trace, it can be compressed down to a one or a
few samples. An example of the effect of elastic alignment is shown in Figure 5.

Continuous synchronisation is important when a DPA attack on multiple seri-
ally executed targets is mounted. In e.g. an AES software implementation, there
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Fig. 5. Two traces with random length interrupt aligned by elastic alignment

are 16 consecutive S-box lookups that need to be targeted. With elastic align-
ment, a trace set with an unstable clock needs to be aligned only once, whereas
with static alignment 16 different alignments need to be performed.

3.3 Elastic Alignment Considerations

Although appointing one trace from a set as reference trace seems arbitrary,
in practice reference traces (or parts thereof) are used for trace alignment. We
have experimented with elastically aligning trace sets without a reference trace
by using a hierarchical alignment scheme that iterates trace pair alignment us-
ing symmetric projections. We found that even though the alignment works,
the (linearly bounded) increase in trace length implied by this method is less
practical and does not necessarily outperform elastic alignment with a reference
trace.

We choose not to dispose of samples, but to merely compress or stretch areas.
This is because we cannot say which amount of local misalignment is actually an
RPI that can be disposed of, and which misalignment is caused by an unstable
clock or slightly differing instruction paths. By not disposing any samples, we
decrease the possibility of removing interesting information.

4 Experiments

In our experiments we test to what degree elastic alignment increases the ef-
fectiveness of a power attack when countermeasures are present that induce
misalignment: random process interrupts, and an unstable clock. We compare
elastic alignment with sliding window DPA (SW-DPA,[Clav00]), a technique
that targets RPIs.

We target a smart card on which we implement the first round of the DES
cipher in software, and introduce random process interrupts. These interrupts
randomly halt the card for 0 or 1 cycles, before each of the 8 S-box lookups.
This process causes misalignment in the acquired traces.

Unstable clocks are typical for cards with an internal clock. Our sample does
not have an internal clock, and we are unaware of programmable cards with
an internal clock that are vulnerable to DPA within a few thousand traces.
Therefore, we choose to process the obtained traces and introduce an unstable
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clock by duplicating or removing a sample at the end of only a small fraction of
clock cycles. This is the second set of traces we will be analysing.

Note that in our set with a stable clock, SW-DPA can exactly average consec-
utive cycles. With the unstable clock, it is not possible for SW-DPA to correctly
average clock cycles, as it assumes a fixed clock length. We therefore expect
SW-DPA to perform better with the stable clock than with the unstable clock.
Elastic alignment should be able to deal with both scenarios, as it automatically
synchronizes to the clock.

4.1 Measuring DPA Success Rate

To analyze the results, we perform correlation power analysis (CPA, [Brie04])
on trace sets of different number of traces, and calculate the first order success
rate graph [Stan08]. This graph displays for increasing trace set size what the
estimated probability is of finding the correct key as first candidate.

We know our target implementation strongly leaks the Hamming weight of the
processed intermediates. For CPA, we therefore use the Hamming weight power
model and correlate with the output of the DES S-boxes. We are targeting the
first round of DES for efficiency reasons. Because of this, the total key we recover
has 48 bits. As elastic alignment and SW-DPA are signal processing techniques,
there is no reason to assume they perform differently if more rounds or even
another cryptographic algorithm is used.

4.2 Trace Acquisition and Processing

We acquire one set of 100000 traces. All traces are acquired by measuring the
instantaneous power consumption of the card by an oscilloscope sampling at
50MHz, using an analog low pass filter at 11MHz. The clock of the card runs at
4MHz, and we compress the traces by averaging consecutive samples resulting
in one sample per clock period. The number of samples per trace is 5600.

From this original trace set we generate two derived trace sets: one with a
stable cycle, and one with an unstable cycle. From Fourier transforms of mea-
surements on various cards with unstable clocks we know the clock to be strongly
centered around its base frequency, with a sharp dropoff in both tails. This sharp
dropoff indicates the instability to be small, and we therefore choose to create the
derived trace sets such that the instability is small as well: the stable cycle has
5 samples per clock, and the unstable cycle length is determined by a rounded
Gaussian distribution: �L+ 0.5� , L ∼ N(5, 0.2), which yields about 98.7% cycles
of 5 samples, and only 1.3% cycles of 4 or 6 samples. Each cycle is represented by
one sample with the measured value, followed by samples that are the average
of the previous sample and the minimum sample value of the trace. This corre-
sponds with the observation that leakage is typically concentrated in a specific
peak of the cycle.

For the experiments with elastic alignment, we set the radius parameter to
110. This is an experimentally derived value that balances computational per-
formance and output quality. We start with a low value and increase it until
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Fig. 6. CPA success rate for stable cycle length

it does not significantly improve the alignment quality. With this value for the
radius parameter, aligning each trace takes about 2 seconds on a current 2.4GHz
processor.

For SW-DPA, we choose to use the average length of a clock cycle in our
measurements as the distance parameter, in these measurements 5 samples. The
number of consecutive cycles to average is set to 200, which is the experimentally
determined width of the distribution of the widest CPA peak (for the last S-Box
in the calculation).

4.3 Results

For the experiments with fixed cycle length (Figure 6) we first see that the
random process interrupts thwart DPA with static alignment: at about 1400
traces we only obtain a success rate around 0.5. For SW-DPA, we observe the
effect of a perfect match between countermeasure and analysis technique: the
averaging of fixed length clock cycles has restored the DPA peak in the face of
random process interrupts. A success rate of close to 1 is already obtained at
160 traces.

Elastic alignment shows the same success rate around 270 traces. This is likely
due to the fact that elastic alignment is an adaptive method, and noise may be
affecting the matching of trace sections. However, compared with ordinary DPA
it is within the same order of magnitude as SW-DPA.

The results become very different when unstable clocks are introduced. The
success rate of SW-DPA, seen in Figure 7, goes to 0 for all experimented trace
set sizes up to 1000. The same holds true for static alignment. In fact, we have
attempted to perform DPA using this set at 100000 traces, and with SW-DPA
the key could not be found; with static alignment it was found at around 67000
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traces. So, even at 1.3% cycles with a different length than average, SW-DPA
gets desynchronized and harms the correlation peak.

We have been able to get SW-DPA somewhat back by tweaking the param-
eters: setting the clock cycle length to 1 and setting the number of clocks to
average to 100, we could get a 50% success rate at about 1150 traces, as seen
in Figure 7. Note SW-DPA then acts more like a moving average filter: it does
not have the ‘comb’ effect normally used to accumulate specific samples within
a clock cycle.

Elastic alignment is by design able to overcome these desynchronized traces.
The results shows that it is relatively unaffected by the unstable clock: the small-
est trace set size with a success rate close to 1 increases marginally. Preliminary
experiments show this also holds for a wider distribution of 2.5%, 47.5%, 47.5%
and 2.5% cycles of length 2, 3, 4 and 5 respectively.

These experiments show that elastic alignment is able to deal with random
process interrupts, and is very suited to dealing with unstable clocks due to
its ability to continuously adapt alignment to the reference trace. This adapta-
tiveness does imply it may also ‘adapt’ to noise that is present. We have some
ideas and preliminary experiments showing how to overcome this, as described
in section 5.1.

5 Conclusions

In this paper we described and experimented with elastic alignment, an algorithm
for aligning trace sets when misalignment is present. The elastic alignment is
designed to be applicable practically in the context of performing side channel
analysis in the presence of random process interrupts and unstable clocks.
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We use FastDTW, a linear complexity variant of the dynamic time warping
algorithm, for alignment. Dynamic time warping measures the distance between
two traces and produces a warp path that describes a nonlinear time matching
of the two. We use this warp path to align a pair of traces. By selecting one trace
as a reference, we can thereby iterate this process to elastically align an entire
trace set.

By design, elastic alignment attempts to globally optimize the alignment. This
implies that at every resolution, be it process, instruction, clock or sub-clock,
a good alignment can be found. For side channel analysis this is helpful as the
traces may be analyzed at different resolutions.

The only parameter input to the algorithm is the FastDTW radius, which acts
as a speed versus quality trade-off. This contrasts sliding window DPA, which
requires knowledge of two target specific parameters: the clock cycle length, and
the spread of the DPA peak over different clock cycles. Having fewer and easily
selectable parameters makes the effectiveness of the side channel analysis less
dependent on the user performing it.

Experiments were done based on traces obtained from a card with a fixed clock
and the random process interrupt countermeasure enabled. These show sliding
window DPA is moderately better than elastic alignment at dealing with only
RPIs as countermeasure. This is probably due to noise affecting the dynamic
adaptation of elastic alignment. However, as soon as even a slightly unstable
clock is introduced, elastic alignment is much better at recovering the DPA peak
due to its dynamic synchronization with the reference trace.

The experiments conform with our experiences on other cards, which are
mostly implementations with hardware DES engines. Unfortunately we do not
fully control these implementations, and they are therefore less suitable for struc-
tured experimentation. Elastic alignment also appears to work when traces are
compressed down to the frequency of the internal clock, and, with proper signal
integration, also on EM traces. In a number of cases, elastic alignment has played
a key role in breaking a card using CPA within a bounded number of traces.

5.1 Discussion and Future Work

Besides the basic elastic alignment algorithm as presented in this paper, we have
implemented a number of other experimental features. One is the possibility of
decoupling warp path detection and application: we allow detecting the warp
paths on one set of traces, and applying them to another set of traces. If the
other set of traces has a different number of samples, the warp path is scaled to
accommodate this. This allows us to e.g. calculate an alignment at the level of one
sample per clock, while repairing misalignment in traces with multiple samples
per clock. The experiments and results are preliminary, but show interesting
potential.

When performing elastic alignment, we implicitly violate the preconditions
that the first and last samples of the trace pair are aligned. Elastic alignment
can accommodate for this by matching the initial or final part of one trace
to only a few samples in the other; however, we envision the alignment can be



118 J.G.J. van Woudenberg, M.F. Witteman, and B. Bakker

improved if both the first and last samples of the trace pair are aligned. This can
be implemented by allowing variable length traces and using pattern matches to
find the locations of the first and last samples.

A way to reduce the effect of noise on the alignment is to change the way
FastDTW measures the distance between individual samples. Now this is done
by their absolute difference, but one could consider taking more samples into
account. This is accomplished by for instance using the weighted average distance
of neighboring samples, or by correlation of trace fragments. This effectively
‘smoothes’ the distance function and potentially cancels some of the effects of
noise in the individual samples.
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A DTW Calculation Example

Traces

X 1 1 2 3 4
Y 1 2 3 4 4

d(i, j)

i ↑

3 3 2 1 0
3 3 2 1 0
2 2 1 0 1
1 1 0 1 2
0 0 1 2 3

j →

g(i, j)

i ↑

9 9 5 2 0
6 6 3 1 0
3 3 1 0 1
1 1 0 1 3
0 0 1 3 6

j →

Warp path

F = ((1, 1), (2, 1), (3, 2), (4, 3)(5, 4), (5, 5))

http://cs.fit.edu/~pkc/FastDTW/FastDTW.zip
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Abstract. 38 years ago, NIST put out a call for submissions of candi-
dates for data encryption standard to address the needs of encryption for
the commercial world. Of the submissions, the IBM submission stood out
as arguably the best candidate. However, before the algorithm was ready
to be chosen as the Data Encryption Standard (DES), some changes were
required. The National Security Agency (NSA) worked with IBM on the
modification of the submitted algorithm. This talk will discuss what role
NSA played in this effort, the rationale for the changes that were made,
and the impact that DES had at that time.
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Abstract. We investigate a sufficient condition for constructing authen-
ticated key exchange (AKE) protocols which satisfy security in the ex-
tended Canetti-Krawczyk (eCK) model proposed by LaMacchia, Lauter
and Mityagin. To the best of our knowledge, this is the first approach for
providing secure protocols based on the condition. With this condition,
we propose a construction of two-pass AKE protocols, and the result-
ing two-pass AKE protocols are constructed with a single static key and
a single ephemeral. In addition, the security proof does not require the
Forking Lemma, which degrades the security of a protocol relative to the
security of the underlying problem where it is used in the security proof.
Therefore, these imply that the protocols constructed with the condition
have an advantage in efficiency such as sizes of storage and communi-
cation data. The security of the resulting protocols is proved under the
gap Diffie-Hellman assumption in the random oracle model.

Keywords: authenticated key exchange, eCK model, gap Diffie-Hellman
assumption.

1 Introduction

In network security, one of the most important techniques is to establish secure
channels. Secure channels provide secrecy and authenticity for both communi-
cation parties. When the parties can share information via a public communi-
cation channel, secure channels are constructed on (symmetric key) encryptions
and message authentication codes with the shared information as keys. A key
exchange protocol, called authenticated key exchange (AKE), provides a solu-
tion for sharing a key via a public communication channel, and both parties are
assured that only their intended peers can derive the session key.

In AKE, each party has public information, called static public key, and the
corresponding secret information, called static secret key. The static public key is
expected to be certified with the party’s identity by a system such as a public key
infrastructure (PKI). A user who wants to share a key with some entity exchanges
informations several times and then computes the shared key. In two-pass AKE,
the user generates ephemeral public keys and the corresponding ephemeral secret
keys, and sends the ephemeral public keys to the peer, and the receiving peer
also generates ephemeral public keys and the corresponding ephemeral secret

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 121–141, 2011.
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keys and returns the ephemeral public keys to the sender. Both parties compute
shared values from their static public keys, the corresponding static secret keys,
the exchanged ephemeral public keys, and the corresponding ephemeral secret
keys, and then derive a session key from these values including the shared values.
The session key is computed with a function called key derivation function, and
in most cases, the key derivation function is a hash function regarded as a random
oracle, where security is proved in the random oracle model [5].

The security model and definition for AKE were first proposed by Bellare and
Rogaway [4]. They defined AKE’s security based on an indistinguishability game,
where an adversary is required to differentiate between a random key and a ses-
sion key. After their investigation, several variations have been proposed, Canetti
and Krawczyk proposed the Canetti-Krawczyk (CK) model to capture the desir-
able security notion [7], and recently, the CK model was extended by LaMacchia,
Lauter, and Mityagin, the extended Canetti-Krawczyk (eCK) model [14], which
is one of the most significant models since the adversary in this model is allowed
to access the secret information of either the static or ephemeral keys in the
test session. Although the eCK-secure AKE protocols satisfy a strong security
requirement, the security proofs are difficult and complex.

We propose a construction of two-pass AKE protocols, and give a sufficient
condition for constructing eCK-secure protocols under the gap Diffie-Hellman
(GDH) assumption [25]. The resulting AKE protocols are constructed with a
single static key, a single ephemeral key, and several shared values using a single
hash function. We give requirements regarding the exponents of shared values
computed as the intermediate value in the protocols.

In an original Diffie-Hellman protocol [9], a party uses a single key to compute
a shared value, that is Y x from x and Y , and the peer also computes Xy from y
and X , where X = gx, Y = gy, and g is a generator of a cyclic group where it is
generated by primitive element g. We extend this exponent of the shared value
to weighted inner product of two-dimensional vectors related to the exponents of
the static and ephemeral public keys. For two vectors u = (u0, u1), v = (v0, v1)
and two-dimensional square matrix C, the shared value is computed as guCvT

,
where T is a transposition operation. Then, the exponent of the shared value is
given as a quadratic polynomial of u0, u1, v0, and v1. We introduce admissible
polynomials, and when the exponents of the share value in an AKE protocol are
expressed by admissible polynomials, we can construct a reduction algorithm,
which interacts with the adversary and solves a computational Diffie-Hellman
(CDH) problem with the help of a decisional Diffie-Hellman (DDH) oracle. The
algorithm simulates all queries the adversary requires and extracts the answer
of the CDH instance. The resulting AKE protocols based on admissible polyno-
mials contain not only the existing efficient protocols but also new eCK-secure
protocols. That is, our sufficient condition is useful for constructing two-pass
AKE protocols.

Roughly speaking, the CDH problem is to compute the CDH value, gxy, from
X (= gx) and Y (= gy) in a cyclic group where it is generated by primitive
element g [9]. The DDH problem is to decide whether Z is random or the CDH
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value of X and Y given X , Y , and Z, and the GDH problem is to solve the
CDH problem with the help of the DDH oracle. The GDH (CDH) assumption is
that the GDH (CDH) problem is assumed to be difficult for any polynomial-time
algorithm to solve.

To the best of our knowledge, this is the first approach for providing secure
protocols based on a sufficient condition. Once the exponents of the share values
in an AKE protocol are expressed by admissible polynomials, the AKE protocol
is eCK-secure. It is required only to confirm that the exponents are expressed by
admissible polynomials, and this confirmation is an easier task than the proof
of eCK-security.

Although the security of the protocols constructed under the proposed con-
dition is proved in the random oracle model, its security proof is done without
the Forking Lemma [26]. Notice that in the case of using the Forking Lemma,
the security parameter in the protocols must be bigger than the expected one in
the underlying problem since the security degrades according to the number of
hash queries. Thus, the protocols need longer key-length to meet the security pa-
rameter and they may loose the advantage in efficiency. The resulting protocols
have an advantage in efficiency as number of the static keys and the ephemeral
keys are related to the sizes of storage and communication data in the system,
respectively.

The eCK-secure protocols using a single hash function were proposed as
SMEN− [30], Kim-Fujioka-Ustaoğlu’s Protocol 1 [11] (denoted as KFU1), and
Kim-Fujioka-Ustaoğlu’s Protocol 2 [11] (denoted as KFU2), but these protocols
need not only two static keys but also two ephemeral keys or more shared values.
Thus, they are less efficient regarding storage size or communication data size.
It is an interesting question to construct an eCK-secure protocol with a single
static key and a single ephemeral key using a single hash function.

Organization. In Section 2, the eCK model for AKE is reviewed, and we
propose a construction of two-pass AKE protocols, and discuss security argu-
ments in Section 3. In Section 4, we compare protocols based on the proposed
sufficient condition with other relevant protocols, and then, conclude the paper
in Section 5. A discussion on security is given in the Appendix.

2 eCK-Security Model

In this section, we review the eCK-security model for two-pass PKI-based AKEs
by the LaMacchia, Lauter, and Mityagin [14].

We denote a user as Ui, and user Ui and other parties are modeled as prob-
abilistic polynomial-time Turing machines w.r.t. security parameter κ. For user
Ui, we denote the static secret (public) key as si (Si) and ephemeral secret
(public) key as xi (Xi, respectively).

Session. An invocation of a protocol is called a session. Session activation is
done by an incoming message of the form (Π, I, UA, UB) or (Π,R, UB, UA, XA),
where we equate Π with a protocol identifier, I and R with role identifiers, and
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UA and UB with user identifiers. If UA was activated with (Π, I, UA, UB), then
UA is called the session initiator. If UB was activated with (Π,R, UB, UA, XA),
then UB is called the session responder. The initiator UA outputs XA, then
may receive an incoming message of the form (Π, I, UA, UB, XA, XB) from the
responder UB, and computes the session key K if UA received the message. On
the other hand, responder UB outputs XB and computes the session key K.

If UA is the initiator of a session, the session is identified as sid = (Π, I, UA,
UB, XA) or sid = (Π, I, UA, UB, XA, XB). If UB is the responder of a session,
the session is identified as sid = (Π,R, UB , UA, XA, XB). We say that UA is the
owner of session sid if the 3-rd coordinate of session sid is UA, and that UA is
the peer of session sid if the 4-th coordinate of session sid is UA. We say that a
session is completed if its owner computes the session key. The matching session
of (Π, I, UA, UB, XA, XB) is a session with identifier (Π,R, UB, UA, XA, XB)
and vice versa.

Adversary. The adversary A, which is modeled as a probabilistic polynomial-
time Turing machine, controls all communications between parties, including
session activation, by performing the following adversary query.

– Send(message): The message has one of the following forms: (Π, I, UA, UB),
(Π,R, UB, UA, XA), or (Π, I, UA, UB, XA, XB). Adversary A obtains the re-
sponse from the user.

To capture leakage of secret information, adversary A is allowed to issue the
following queries.

– SessionKeyReveal(sid): AdversaryA obtains the session keyK for the session
sid if the session is completed.

– EphemeralKeyReveal(sid): Adversary A obtains the ephemeral secret key x
of owner of the session sid.

– StaticKeyReveal(Ui): Adversary A obtains the static secret key si of user Ui.
– EstablishParty(Ui, Si): This query allows adversary A to register the static

public key Ui on behalf of the party Ui and adversary A totally controls
that party. If a party is established by EstablishParty(Ui, Si) query issued by
adversaryA, then we call party Ui dishonest. If not, we call the party honest.

Freshness. For the security definition, we need a notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π, I, UA, UB, XA, XB) or (Π,R, UA,
UB, XB, XA) be a completed session between honest user UA and UB. If a match-
ing session exists, then let sid∗ be the matching session of sid∗. We say session
sid∗ is fresh if none of the following conditions hold:

1. Adversary A issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if
sid∗ exists,
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2. sid∗ exists and adversary A makes either of the following queries
– both StaticKeyReveal(UA) and EphemeralKeyReveal(sid∗), or
– both StaticKeyReveal(UB) and EphemeralKeyReveal(sid∗),

3. sid∗ does not exist and adversary A makes either of the following queries
– both StaticKeyReveal(UA) and EphemeralKeyReveal(sid∗), or
– StaticKeyReveal(UB).

Security Experiment. For the security definition, we describe the following
security experiment. Initially, adversary A is given a set of honest users and
makes any sequence of the queries described above. During the experiment,
adversary A makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈U {0, 1},
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until adversary A makes a guess b′. Adversary A wins
the game if the test session sid∗ is still fresh and if the guess of adversary A is
correct, i.e., b′ = b. The advantage of adversary A in the AKE experiment with
the PKI-based AKE protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins]− 1

2
.

We define the security as follows.

Definition 2 (Security). We say that a PKI-based AKE protocol Π is secure
in the eCK model if the following conditions hold:

1. If two honest parties complete matching sessions then, except with negligible
probability, they both compute the same session key.

2. For any probabilistic polynomial-time bounded adversary A, AdvAKE
Π (A) is

negligible in security parameter κ.

3 Proposed AKE Protocol

In this section, we first define the notion of admissible polynomials and then
provide the proposed AKE protocol based on the admissible polynomials. The
proposed AKE protocol is a natural extension of the Diffie-Hellman key ex-
change, where shared value gxy is computed w.r.t. ephemeral public keys gx of
user UA and gy of user UB. The protocol is a two-dimensional generalization of
the Diffie-Hellman key exchange, i.e., shared value gp(u,v) is computed w.r.t. the
static and ephemeral public keys (ga, gx) of user UA and the static and ephemeral
public keys (gb, gy) of user UB, where

p(u, v) =
(
a x
)( c0,0 c0,1

c1,0 c1,1

)(
b
y

)
is a weighted inner product of vectors v = (a, x) and v = (b, y) of secret keys.
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3.1 Admissible Polynomials

We define the notion of admissible polynomials over Zq, where Zq is the additive
group with prime modulus q.

Definition 3 (Admissible Polynomials). We say m polynomials pi ∈ Zq[u0,
u1, v0, v1] (i = 1, ...,m) are admissible if the following conditions are satisfied.

1. pi(u0, u1, v0, v1) = ci,0,0u0v0 + ci,0,1u0v1 + ci,1,0u1v0 + ci,1,1u1v1.
2. For any f (= 0, 1), there exist i, j (1 ≤ i, j ≤ m), s.t.

(ci,f,0, ci,f,1) and (cj,f,0, cj,f,1)

are linearly independent, and for any f ′ = 0, 1, there exist i, j (1 ≤ i, j ≤ m),
s.t.

(ci,0,f ′ , ci,1,f ′) and (cj,0,f ′ , cj,1,f ′)

are linearly independent.
3. For any i (= 1, ...,m), either of the following conditions holds: a) pi(u0, u1, v0,
v1) is expressed as a product of �i(u0, u1) and �′i(v0, v1), where �i(u0, u1) and
�′i(v0, v1) are linear combinations of u0, u1 and v0, v1, respectively, s.t.

pi(u0, u1, v0, v1) = �i(u0, u1)�′i(v0, v1).

Or b) for any f (= 0, 1), ci,f,0ufv0 + ci,f,1ufv1 is expressed as a product of
�i,f,∗(u0, u1) and �′i,f,∗(v0, v1), where �i,f,∗(u0, u1) and �′i,f,∗(v0, v1) are linear
combinations of u0, u1 and v0, v1, respectively, s.t.

ci,f,0ufv0 + ci,f,1ufv1 = �i,f,∗(u0, u1)�′i,f,∗(v0, v1),

and for any f ′ (= 0, 1), ci,0,f ′u0vf ′ + ci,1,f ′u1vf ′ is expressed as a product
of �i,∗,f ′(u0, u1) and �′i,∗,f ′(v0, v1), where �i,∗,f ′(u0, u1) and �′i,∗,f ′(v0, v1) are
linear combinations of u0, u1 and v0, v1, respectively, s.t.

ci,0,f ′u0vf ′ + ci,1,f ′u1vf ′ = �i,∗,f ′(u0, u1)�′i,∗,f ′(v0, v1).

From admissible polynomials pi (i = 1, ...,m), we construct an AKE protocol,
where m shared values Zi = gpi(u0,u1,v0,v1) are computed w.r.t. the static and
ephemeral public keys (gu0 , gu1) of user UA and the static and ephemeral public
keys (gv0 , gv1) of user UB. We denote the AKE protocol as Πp1,...,pm . It may be
worth noting that pi(u0, u1, v0, v1) is expressed by using a matrix as

pi(u0, u1, v0, v1) =
(
u0 u1
)( ci,0,0 ci,0,1

ci,1,0 ci,1,1

)(
v0
v1

)
.

From the first condition, both users can compute the shared values. From the
second condition, the simulator can extract the answer of a GDH instance in
the security proof. From the third condition, the simulator can check that the
shared values are correctly formed w.r.t. static and ephemeral public keys in the
security proof. See sketch of the proof of Theorem 1 in Appendix A for details.
We provide examples of admissible polynomials below.
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Example 1. The first example of admissible polynomials is

m = 2, p1(a, x, b, y) = (a+ x)(b + y), p2(a, x, b, y) = ay + xb.

We show that the example satisfies the conditions of the definition. The first
condition is satisfied since we have

p1(a, x, b, y) = (a+ x)(b + y) =
(
a x
)(1 1

1 1

)(
b
y

)
,

p2(a, x, b, y) = ay + xb =
(
a x
)(0 1

1 0

)(
b
y

)
.

The second condition is satisfied since there exist i = 1 and j = 2, s.t.

(ci,0,0, ci,0,1) = (1, 1) and (cj,0,0, cj,0,1) = (0, 1),

(ci,1,0, ci,1,1) = (1, 1) and (cj,1,0, cj,1,1) = (1, 0),

(ci,0,0, ci,1,0) = (1, 1) and (cj,0,0, cj,1,0) = (0, 1),

(ci,0,1, ci,1,1) = (1, 1) and (cj,0,1, cj,1,1) = (1, 0)

are linearly independent.
The third condition is satisfied since we have

p1(a, x, b, y) = �i�
′
i, where �i = a+ x, �′i = b + y

for i = 1, and we have

c2,0,0ab+ c2,0,1ay = �2,0,∗�
′
2,0,∗, where �2,0,∗ = a, �′2,0,∗ = y,

c2,1,0xb+ c2,1,1xy = �2,1,∗�
′
2,1,∗, where �2,1,∗ = x, �′2,1,∗ = b,

c2,0,0ab+ c2,1,0xb = �2,∗,0�
′
2,∗,0, where �2,∗,0 = x, �′2,∗,0 = b,

c2,0,1ay + c2,1,1xy = �2,∗,1�
′
2,∗,1, where �2,∗,1 = a, �′2,∗,1 = y,

for i = 2.
The AKE protocol Π(a+x)(b+y),ay+xb constructed from these admissible poly-

nomials requires 3 exponential operations (excluding the exponentiation for the
ephemeral public key) and 2 shared values.

Example 2. The second example of admissible polynomials is

m = 2, p1(a, x, b, y) = (a+ x)(b + y), p2(a, x, b, y) = (ca+ x)(cb+ y),

where c is a small integer not equal to 1, e.g., c = −1, 2, 3.
The AKE protocol, Π(a+x)(b+y),(ca+x)(cb+y), constructed from these admis-

sible polynomials requires 2 exponential operations (excluding the exponen-
tiation for the ephemeral public key) and 2 shared values. Furthermore, the
AKE protocol, Π(a+x)(b+y),(−a+x)(−b+y), where c = −1, is suitable for an ellip-
tic curve where the inverse operation is efficiently performed, the AKE proto-
col, Π(a+x)(b+y),(2a+x)(2b+y), where c = 2, is suitable for an elliptic curve over
F2n where the square operation is efficiently performed, and the AKE protocol,
Π(a+x)(b+y),(3a+x)(3b+y), where c = 3, is suitable for an elliptic curve over F3n

where the cubic operation is efficiently performed.
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Example 3. The third example of admissible polynomials is

m = 4, p1(a, x, b, y) = ab, p2(a, x, b, y) = ay, p3(a, x, b, y) = xb, p4(a, x, b, y) = xy.

The AKE protocol, Πab,ay,xb,xy, constructed from these admissible polynomials
requires 4 exponential operations (excluding the exponentiation for the ephemeral
public key) and 4 shared values.

Example 4. The fourth example of admissible polynomials is

m = 2, p1(a, x, b, y) = ab+ xy, p2(a, x, b, y) = ay + xb.

The AKE protocol, Πab+xy,ay+xb, constructed from these admissible polyno-
mials requires 4 exponential operations (excluding the exponentiation for the
ephemeral public key) and 2 shared values.

3.2 Proposed AKE Protocol

We describe the proposed AKE protocol using admissible polynomials pi (i =
1, ...,m). For each set of admissible polynomials pi (i = 1, ...,m), we have con-
crete instance Πp1,...,pm of an AKE protocol.

Let κ be the security parameter, G be a cyclic group with generator g and
order a κ-bit prime q, andH : {0, 1}∗ → {0, 1}κ be a cryptographic hash function
modeled as a random oracle. Let pi (i = 1, ...,m) be admissible polynomials. We
denote the protocol identifier of the AKE protocol Πp1,...,pm as Π . These are
provided as part of the system parameters.

User I’s static private and public keys are a ∈U Zq and A = ga ∈ G. Similarly,
user R’s static private and public keys are b ∈U Zq and A = gb ∈ G.

In the description, user I is the session initiator and user R is the session
responder.

1. I selects a random ephemeral private key x ∈U Zq, computes the ephemeral
public key X = gx, and sends (Π,R, I,X) to R.

2. Upon receiving (Π,R, I,X), R selects a random ephemeral private key y ∈U

Zq, computes the ephemeral public key Y = gy, and sends (Π, I,R,X, Y ) to
I.

R computes m shared values

Zi = Aci,0,0b+ci,0,1yXci,1,0b+ci,1,1y (i = 1, ...,m),

computes the session key K = H(Z1, ..., Zm, Π, I, R,X, Y ), and completes
the session.

3. Upon receiving (Π, I,R,X, Y ), I checks if I has sent (Π,R, I,X) to R or
not, and aborts the session if not.

I computes m shared values

Zi = Bci,0,0a+ci,1,0xY ci,0,1a+ci,1,1x (i = 1, ...,m),

computes the session key K = H(Z1, ..., Zm, Π, I, R,X, Y ), and completes
the session.
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Both parties compute the same shared values Zi = gpi(a,x,b,y) (i = 1, ...,m) and
compute the same session key K.

The proposed AKE protocol requires 2m exponential operations (excluding
the exponentiation for the ephemeral public key) and m shared values.

3.3 Security

We need the gap Diffie-Hellman (GDH) assumption, where one tries to compute
CDH(U, V ) by accessing the DDH oracle. We denote CDH(U, V ) = glog U log V ,
and the DDH oracle on input (gu, gv, gx) returns bit 1 if uv = x, or bit 0
otherwise.

The proposed AKE protocol is secure in the eCK-security model under the
GDH assumption and in the random oracle model.

Theorem 1. If G is a group where the GDH assumption holds and H is a
random oracle, the proposed AKE protocol is secure in the eCK model described
in Section 2.

The proof is provided in Appendix A. We provide a rough discussion here.
From the first condition of admissible polynomials, both users can compute

the shared values as follows. User I, who knows secret keys a, x, can compute

(
si ti
)

=
(
a x
)( ci,0,0 ci,0,1

ci,1,0 ci,1,1

)
and shared values as Zi = gpi(a,x,b,y) = BsiY ti . User R, who knows secret keys
b, y, can compute (

s′i
t′i

)
=
(
ci,0,0 ci,0,1
ci,1,0 ci,1,1

)(
b
y

)
and shared values as Zi = gpi(a,x,b,y) = As′

iXt′i .
The GDH solver S extracts the answer guv of an instance (U = gu, V = gv) of

the GDH problem using adversary A. For instance, we assume that test session
sid∗ has no matching session sid∗, adversary A queries StaticKeyReveal(I), and
adversary A does not query EphemeralKeyReveal(sid∗) and StaticKeyReveal(R)
from the condition of freshness. In this case, solver S embeds the instance as
X = U (= gu) and B = V (= gv) and extracts guv from the shared values
Zi = gpi (i = 1, ...,m). Solver S randomly selects static private key a ∈U Zq and
computes static public key A = ga ∈ G.

From the second condition of admissible polynomials, solver S can extract the
answer of the GDH instance as follows. From the second condition, there exist
i, j (1 ≤ i, j ≤ m), s.t. (ci,1,0, ci,1,1) and (cj,1,0, cj,1,1) are linearly independent.
Using static private key a, solver S can compute

Z ′
i = gci,1,0xb+ci,1,1xy = Zi/(Bci,0,0aY ci,0,1a),

Z ′
j = gcj,1,0xb+cj,1,1xy = Zj/(Bcj,0,0aY cj,0,1a).
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Solver S can compute the answer guv of the GDH instance from Z ′
i, Z

′
j as

(Z ′cj,1,1
i /Z ′ci,1,1

j )1/(ci,1,0cj,1,1−cj,1,0ci,1,1) = gxb = guv

since (ci,1,0, ci,1,1) and (cj,1,0, cj,1,1) are linearly independent.
From the third condition of admissible polynomials, solver S can check if the

shared values are correctly formed w.r.t. the static and ephemeral public keys,
and can simulate H and SessionKeyReveal queries consistently, i.e., in the simu-
lation of the H(Z1, ..., Zm, Π, I, R,X, Y ) query, solver S needs to check that the
shared values Zi (i = 1, ...,m) are correctly formed, and if so return session keyK
being consistent with the previously answered SessionKeyReveal(Π, I, I, R,X, Y )
and SessionKeyReveal(Π,R, R, I,X, Y ) queries. For all i (= 1, ...,m), solver S
performs the following procedure. If condition a) of the third condition holds,
pi(u0, u1, v0, v1) = �i(u0, u1)�′i(v0, v1), where �i(u0, u1) and �′i(v0, v1) are linear
combinations of u0, u1 and v0, v1, respectively. Then, solver S can check if shared
value Zi is correctly formed w.r.t. the static and ephemeral public keys by veri-
fying

DDH(g�i(a,x), g�′i(b,y), Zi) = 1.

Here solver S can compute g�i(a,x) = AdaXdx , g�′i(b,y) = BdbY dy since �i(a, x),
�′i(b, y) are linear, that is, they are expressed as �i(a, x) = daa+ dxx, �′i(b, y) =
dbb + dyy. Otherwise, from condition b) of the third condition, ci,f,0ufv0 +
ci,f,1ufv1 = �i,f,∗(u0, u1)�′i,f,∗(v0, v1), where �i,f,∗(u0, u1) and �′i,f,∗(v0, v1) are
linear combinations of u0, u1 and v0, v1, respectively. Using static private key a,
solver S can compute

Z ′
i = gci,1,0xb+ci,1,1xy = Zi/(Bci,0,0aY ci,0,1a).

Then, solver S can check if shared value Z ′
i is correctly formed w.r.t. the static

and ephemeral public keys, by verifying

DDH(g�i,1,∗(a,x), g�′i,1,∗(b,y), Z ′
i) = 1,

and this implies Zi is correctly formed. Here solver S can compute g�i,1,∗(a,x) =
AdaXdx , g�′i,1,∗(b,y) = BdbY dy since �i,1,∗(a, x), �′i,1,∗(b, y) are linear, that is, they
are expressed as �i,1,∗(a, x) = daa+ dxx, �′i,1,∗(b, y) = dbb+ dyy.

4 Comparison

In this section, we compare instantiations on our construction with other related
PKI-based two-pass AKE protocols in terms of efficiency and security. In Table 1,
the comparisons from the points of computational and storage efficiency are
provided. In the table, the number #Hash of hash functions, the number #sPK
of static public keys in terms of group elements, the number #ePK of ephemeral
public keys in terms of group elements, the number #SV of shared values in
terms of group elements, and the number #Exp of exponentiation in the cyclic
group are described.
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Table 1. Protocol Comparison (Efficiency)

Protocol #Hash #sPK #ePK #SV #Exp

HMQV [12] 2 1 1 1 2.5 (2.17)
CMQV [28] 3 1 1 1 3 (2.17)

FHMQV [27] 2 1 1 1 3 (2.17)
NAXOS [14] 2 1 1 3 4 (3.17)
NETS [17] 2 1 1 2 3
UP [29] 2 1 1 2 3.5 (3.17)

SMEN− [30] 1 2 2 1 6 (2.46)
KFU1 [11] 1 2 1 2 3

Πp1,...,pm 1 1 1 m 2m + 1 (1.17m + 1)
Π(a+x)(b+y),ay+xb 1 1 1 2 4 (3.17)

Π(a+x)(b+y),(ca+x)(cb+y) 1 1 1 2 3

NAXOS+ [16] 2 1 1 4 5 (3.34)
HC [10] 2 2 1 4 5 (4.17)

KFU2 [11] 1 2 1 4 5 (3.34)

Okamoto [24] 3 2 3 1 8 (4.14)
MO [23] 2 6 3 1 12 (5.51)

Table 2. Protocol Comparison (Security)

Protocol Security Model Forking Lemma Assumption

HMQV [12] CK+KCI+wPFS+LEP required KEA1, GDH, RO
CMQV [28] eCK required GDH, RO

FHMQV [27] eCK required GDH, RO
NAXOS [14] eCK not required GDH, RO
NETS [17] eCK not required GDH, RO
UP [29] eCK not required GDH, RO

SMEN− [30] eCK not required GDH, RO
KFU1 [11] eCK not required GDH, RO

Πp1,...,pm eCK not required GDH, RO
Π(a+x)(b+y),ay+xb eCK not required GDH, RO

Π(a+x)(b+y),(ca+x)(cb+y) eCK not required GDH, RO

NAXOS+ [16] eCK not required CDH, RO
HC [10] eCK not required CDH, RO

KFU2 [11] eCK not required CDH, RO

Okamoto [24] eCK not required DDH, πPRF
MO [23] eCK not required DDH, πPRF
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The number #Exp of exponentiation includes the exponentiation to com-
pute the ephemeral public key. For instance, in the protocol Π(a+x)(b+y),ay+xb,
four exponentiations are needed, which includes one exponentiation for the
ephemeral public key Y = gy, one exponentiation for shared value (AX)b+y =
g(a+x)(b+y), and two exponentiations for shared value AyXb = gay+xb. Besides
the naive group exponentiations count, the numbers in parentheses reflect ex-
ponentiations using speedup techniques from [18, §2.3] and [20, Alg. 14.88]. The
reduced numbers for (i) HMQV [12], CMQV [28], FHMQV [27], Okamoto’s pro-
tocol [24], MO [23], UP [29], Πp1,...,pm , and Π(a+x)(b+y),ay+xb can result by ap-
plying simultaneous exponentiation [20, Alg. 14.88]; and for (ii) NAXOS [14],
NAXOS+ [16], HC [10], and KFU2 [11], which have the same base, can re-
sult by applying the Right-to-Left binary method. For instance, in the protocol
Π(a+x)(b+y),ay+xb, 3.17 exponentiations are needed, which includes one exponen-
tiation for the ephemeral public key Y = gy, one exponentiation for shared value
(AX)b+y = g(a+x)(b+y), 1.17 exponentiations for shared value AyXb = gay+xb

using speedup techniques.
We do not take public-key validation into account, since it is a necessary

procedure for all protocols to prevent potential leakage of secret information,
similar to invalid-curve attacks [1] and small subgroup attacks [15], see also
[19,21]. Okamoto’s protocol [24] and MO [23] are secure in the standard model,
and the proof depends on a rather strong assumption of the existence of the
πPRF family. That is, they use πPRFs instead of random oracles, and we add
the number of πPRFs to #Hash.

In Table 2, the security properties of the protocols are provided. When the
security proof requires the Forking Lemma [26] in the protocol, “required” is
indicated in the entry, if not, “not required” is. All protocols are eCK-secure
except for HMQV [12], which is a modification of MQV [13]. HMQV is also
secure in a modified CK [7] model and has additional security properties such
as resistance to KCI attack, wPFS, and LEP under the GDH and Knowledge of
Exponent assumptions (KEA1) [3].

In each security proof of HMQV, CMQV, and FHMQV, the reduction argu-
ment is less tight since the Forking Lemma is essential for the arguments. In com-
parison, the rest of the protocols in Table 2, includingΠp1,...,pm ,Π(a+x)(b+y),ay+xb,
and Π(a+x)(b+y),(ca+x)(cb+y), have tighter security reductions without the Forking
Lemma, and so can use shorter keys.

From the view point of the number of static and ephemeral keys, which affect
the size of storage and communicated massage, our protocols Π(a+x)(b+y),ay+xb

and Π(a+x)(b+y),(ca+x)(cb+y) require one static key and one ephemeral key, which
is comparable with the best existing protocols.

Moreover, our protocolsΠ(a+x)(b+y),ay+xb and Π(a+x)(b+y),(ca+x)(cb+y) require
two shared values and one hash function, which is comparable with existing pro-
tocols. The number of shared values affects the computational cost for the key
derivation hash function, and the number of the hash functions affects imple-
mentation and computational costs for hash functions.
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It is easy to see that all protocols eCK-secure under the CDH assumption
and all protocols eCK-secure in the standard model need several hash functions
or several static keys. In addition, they require much computation rather than
other protocols.

In UP [29], the shared values are computed as Z1 = (Y B)(x+a) and Z2 =
(Y BE)(x+Da), where D = H ′(X), E = H ′(Y ), and H ′ is a hash function.
Therefore, Π(a+x)(b+y),(ca+x)(cb+y) can be regarded as a constant version of UP,
where the output of the hash function H ′ is a constant c. When c = −1, it is
suitable for the protocol constructed on a group where the inversion is easily
computed in the group. An additive group over an elliptic curve is an example
of such a group as the inversion operation is done with changing the sign of
the y-coordinate. When c = 2, it is suitable for the protocol constructed on a
group where doubling is easily computed in the group. A multiplicative group
on a finite field is an example of such a group as the doubling operation is done
with one multiplication. It is worth noting that Π(a+x)(b+y),ay+xb seems not to
be regarded as a constant version of UP.

It is worthy to note that the security of UP is proved in the model which
is an extension of the eCK model for timing attack [22]. In the timing attack,
the adversary is additionally allowed to issue a query to obtain the ephemeral
public key that will be used in next session. Our protocols are also expected to
be secure in the model since the GDH solver can simulates the added queries
with a ephemeral key list prepared in advance and all other queries as shown in
the case of the eCK model.

Like other AKE protocols under the CDH assumption, such as NAXOS+ [16],
HC [10], and KFU2 [11], it would be possible to modify our protocols to be
secure under the CDH assumption by using the twin Diffie-Hellman technique [8].
Although this modification may bring about more keys, more shared values or
more computation, the protocol would be practical.

5 Conclusion

We presented a sufficient condition for constructing eCK-secure two-pass AKE
protocols with a single static key and a single ephemeral key using a single hash
function. The constructed protocols consist of several two-dimensional versions
of the DH protocols, and their security proofs do not depend on the Forking
Lemma. As a result, our protocols provide strong security assurances without
compromising too much on efficiency.
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A Proof of Theorem 1

We need the gap Diffie-Hellman (GDH) assumption in groupG with generator g,
where one tries to compute CDH(U, V ) accessing the DDH oracle. Here, we de-
note CDH(U, V ) = glog U log V , and the DDH oracle on input (gu, gv, gx) returns
bit 1 if uv = x, or bit 0 otherwise. We also need a variant of the GDH as-
sumption where one tries to compute CDH(U,U) instead of CDH(U, V ). We
call the variant as the square GDH assumption, which is equivalent to the
GDH assumption if group G has prime order q [2] as follows. Given a chal-
lenge U of the square GDH assumption, one sets V = Us for random integers
s ∈R [1, q− 1] and can compute CDH(U,U) = CDH(U, V )1/s. Given a challenge
U, V of the GDH assumption, one sets U1 = UV,U2 = UV −1 and can compute
CDH(U, V ) = (CDH(U1, U1)/CDH(U2, U2))1/4.

We show that if polynomially bounded adversaryA can distinguish the session
key of a fresh session from a randomly chosen session key, we can solve the GDH
problem. Let κ denote the security parameter, and let A be a polynomial-time
bounded adversary w.r.t. security parameter κ. We use adversaryA to construct
the GDH solver S that succeeds with non-negligible probability. Adversary A
is said to be successful with non-negligible probability if adversary A wins the
distinguishing game with probability 1

2 +f(κ), where f(κ) is non-negligible, and
the event M denotes a successful adversary A.
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Let the test session be sid∗ = (Π, I, UA, UB, XA, XB) or (Π,R, UB, UA, XA,
XB), which is a completed session between honest users UA and UB, where
user UA is the initiator and user UB is the responder of the test session sid∗.
Let H∗ be the event that adversary A queries (Z1, ..., Zm, Π,XA, XB) to H .
Let H∗ be the complement of event H∗. Let sid be any completed session
owned by an honest user such that sid �= sid∗ and sid is non-matching to
sid∗. Since sid and sid∗ are distinct and non-matching, the inputs to the key
derivation function H are different for sid and sid∗. Since H is a random oracle,
adversary A cannot obtain any information about the test session key from the
session keys of non-matching sessions. Hence, Pr(M ∧ H∗) ≤ 1

2 and Pr(M) =
Pr(M ∧ H∗) + Pr(M ∧ H∗) ≤ Pr(M ∧ H∗) + 1

2 , whence f(κ) ≤ Pr(M ∧ H∗).
Henceforth, the event M ∧H∗ is denoted by M∗.

We denote a user as Ui, and user Ui and other parties are modeled as prob-
abilistic polynomial-time Turing machines w.r.t. security parameter κ. For user
Ui, we denote static secret (public) keys as si (Si) and ephemeral secret (public)
keys as xi (Xi, respectively). We also denote the session key as K. Assume that
adversary A succeeds in an environment with n users and activates at most s
sessions within a user.

We consider the non-exclusive classification of all possible events in Tables 3
and 4. Here, users UA and UB are initiator and responder of the test session sid∗,
respectively. We denote the static and ephemeral keys as a = sA, A = SA, x =
xA, X = XA, b = sB, B = SB, y = xB , Y = XB for the test session sid∗. Table 3
classifies events when static public keys A,B are distinct, and Table 4 classifies
events when static public keys A = B are the same. In these tables, “ok” means
the static key is not revealed, or the matching session exists and the ephemeral
key is not revealed. “r” means the static or ephemeral key may be revealed. “n”
means no matching session exists. The “instance embedding” row shows how
the simulator embeds an instance of the GDH problem. The “succ. prob.” row

Table 3. Classification of attacks when static public keys A,B are distinct. “ok” means
the static key is not revealed, or the matching session exists and the ephemeral key
is not revealed. “r” means the static or ephemeral key may be revealed. “n” means
no matching session exists. The “instance embedding” row shows how the simulator
embeds an instance of the GDH problem. The “succ. prob.” row shows the probability
of success of the simulator, where pi = Pr(Ei ∧ M∗) and n and s are the numbers of
parties and sessions.

a = sA x = xA b = sB y = xB instance embedding succ. prob.
E1 r ok ok n X = U, B = V p1/n2s

E2 ok r ok n A = U, B = V p2/n2

E3 r ok ok r X = U, B = V p3/n2s

E4 ok r ok r A = U, B = V p4/n2

E5 r ok r ok X = U, Y = V p5/n2s2

E6 ok r r ok A = U, Y = V p6/n2s
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Table 4. Classification of attacks when static public keys A = B are the same

a = sA x = xA a = sA y = xB instance embedding succ. prob.
E′

2 ok r ok n A = B = U p2/n2

E′
4 ok r ok r A = B = U p4/n2

E′
5 r ok r ok X = U, Y = V p5/n2s2

shows the probability of success of the simulator, where pi = Pr(Ei ∧M∗) and
n and s are the numbers of parties and sessions.

Since the classification covers all possible events, at least one event Ei ∧M∗

in the tables occurs with non-negligible probability if event M∗ occurs with non-
negligible probability. Thus, the GDH problem can be solved with non-negligible
probability, which means that the proposed protocol is secure under the GDH
assumption. We investigate each of these events in the following subsections.

A.1 Event E1 ∧ M∗

In event E1, test session sid∗ has no matching session, adversary A may query
StaticKeyReveal(UA), and adversaryA does not query either EphemeralKeyReveal
(sid∗) or StaticKeyReveal(UB). We embed the instance as X = U (= gu) and
B = V (= gv) and extract guv from Zi = gpi (i = 1, ...,m). In event E1 ∧M∗,
solver S performs the following steps.

Setup. The GDH solver S establishes n honest users U1, ..., Un, randomly selects
static secret key si ∈U Zq, computes static public key Si = gsi ∈ G, and assigns
static secret and public keys (si, Si) to user Ui. In addition to the above steps,
solver S embeds instance (U = gu, V = gv) of the GDH problem as follows.

Solver S randomly selects two users UA and UB and integer t ∈R [1, s], which
is a guess of the test session with probability 1/n2s. Solver S sets the ephemeral
public key of t-th session of user UA as X = U (= gu), and sets the static public
key of user UB as B = V (= gv), Solver S randomly selects static secret key
a ∈U Zq and computes static public key A = ga ∈ G.

Solver S activates adversary A on this set of users and awaits the actions of
adversary A. We next describe the actions of S in response to user activations
and oracle queries.

Simulation. Solver S maintains a list LH that contains queries and answers of
H oracle, and a list LS that contains queries and answers of SessionKeyReveal.
Solver S simulates oracle queries as follows.
1. Send(Π, I, Ui, Uj): S selects ephemeral secret key x ∈U Zq, computes

ephemeral public key Xi honestly, records (Π,Ui, Uj, Xi), and returns it.
2. Send(Π,R, Uj , Ui, Xi): S selects ephemeral secret key y ∈U Zq, computes

ephemeral public key Xj honestly, records (Π,Ui, Uj , Xi, Xj). and returns
it.

3. Send(Π, I, Ui, Uj, Xi, Xj): If (Π,Ui, Uj, Xi) is not recorded, S records the
session (Π, I, Ui, Uj, Xi, Xj) as not completed. Otherwise, S records the
session as completed.



138 A. Fujioka and K. Suzuki

4. H(Z1, ..., Zm, Π, Ui, Uj , Xi, Xj):
(a) If (Z1, ..., Zm, Π, Ui, Uj, Xi, Xj) is recorded in list LH , then return

recorded value K.
(b) Else if the session (Π, I, Ui, Uj , Xi, Xj) or (Π,R, Uj , Ui, Xi, Xj) is

recorded in list LS, then S checks that the shared values Zi (i = 1, ...,m)
are correctly formed w.r.t. static and ephemeral public keys Si, Sj , Xi, Xj

using knowledge of secret keys si or xi by the procedure Check described
below.

If the shared values are correctly formed, then return recorded value
K and record it in list LH .

(c) Else if i = A, j = B, and the session is t-th session of user UA, then S
checks that the shared values Zi (i = 1, ...,m) are correctly formed w.r.t.
static and ephemeral public keys A,B,X, Y using knowledge of secret
key a by the procedure Check described below.
If the shared values are correctly formed, then S computes the answer of
the GDH instance from the shared values and public keys using knowl-
edge of secret key a by the procedure Extract described below, and is
successful by outputting the answer.

(d) Otherwise, S returns random value K and records it in list LH .
5. SessionKeyReveal((Π, I, Ui, Uj , Xi, Xj) or (Π,R, Uj , Ui, Xi, Xj)):

(a) If the session (Π, I, Ui, Uj , Xi, Xj) or (Π,R, Uj , Ui, Xi, Xj) (= sid) is
not completed, return error.

(b) Else if sid is recorded in list LS, then return recorded value K.
(c) Else if (Z1, ..., Zm, Π, Ui, Uj, Xi, Xj) is recorded in list LH , then S checks

that the shared values Zi (i = 1, ...,m) are correctly formed w.r.t. static
and ephemeral public keys Si, Sj , Xi, Xj using knowledge of secret keys
si or xi by the procedure Check described below.

If the shared values are correctly formed, then return recorded value
K and record it in list LS.

(d) Otherwise, S returns random value K and records it in list LS .
6. EphemeralKeyReveal(sid): If the ephemeral public key X of the session sid

is U , then S aborts with failure. Otherwise, S returns ephemeral secret key
x selected in Setup.

7. StaticKeyReveal(Ui): If i = B, then S aborts with failure. Otherwise, S
returns ephemeral secret key s selected in Setup.

8. EstablishParty(Ui, Si): S responds to the query faithfully.
9. Test(sid): If ephemeral public key X is not U or static public key B is not
V in session sid, then S aborts with failure. Otherwise, S responds to the
query faithfully.

10. If adversary A outputs a guess γ, S aborts with failure.

Extract : The procedure Extract computes guf v0 from the shared values Zi =
gpi(u0,u1,v0,v1) (i = 1, ...,m) and public keys U0 = gu0 , U1 = gu1 , V0 = gv0 , V1 =
gv1 using knowledge of secret key uf as follows.
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From the second condition of admissible polynomials, there exist i, j (1 ≤
i, j ≤ m), s.t. (ci,f,0, ci,f,1) and (cj,f,0, cj,f,1) are linearly independent. Using uf ,
the procedure Extract computes

Z ′
i = gci,f,0uf v0+ci,f,1uf v1 = Zi/(V

ci,f,0uf

0 V
ci,f,1uf

1 ),

Z ′
j = gcj,f,0uf v0+cj,f,1uf v1 = Zj/(V

cj,f,0uf

0 V
cj,f,1uf

1 ).

The procedure Extract computes guf v0 from Z ′
i, Z

′
j as

(Z ′cj,f,1
i /Z ′ci,f,1

j )1/(ci,f,0cj,f,1−cj,f,0ci,f,1) = guf v0

since (ci,f ,0, ci,f,1) and (cj,f,0, cj,f,1) are linearly independent.
The procedure Extract can compute guf v1 using knowledge of secret key uf

same as above. The procedure Extract can compute guf v
f′ (f = 0, 1) using

knowledge of secret key uf ′ same as above.

Check : The procedure Check checks that the shared values Zi = gpi(u0,u1,v0,v1)

(i = 1, ...,m) are correctly formed w.r.t. public keys U0 = gu0 , U1 = gu1 , V0 =
gv0 , V1 = gv1 using knowledge of secret key uf as follows.

For all i (= 1, ...,m), the procedure Check performs the following. If con-
dition a) of the second condition of admissible polynomials holds, there exist
linear combination �i(u0, u1) of u0, u1 and linear combination �′i(v0, v1) of v0, v1,
s.t. pi(u0, u1, v0, v1) = �i(u0, u1)�′i(v0, v1). Then, the procedure Check checks if
shared value Zi is correctly formed w.r.t. public keys by verifying

DDH(g�i(u0,u1), g�′i(v0,v1), Zi) = 1.

Here, we can compute g�i(u0,u1) = U
du0
0 U

du1
1 , g�′i(v0,v1) = V

dv0
0 V

dv1
1 since

�i(u0, u1) and �′i(v0, v1) are expressed as �i(u0, u1) = du0u0 + du1u1 and
�′i(v0, v1) = dv0v0 + dv1v1.

Otherwise, from condition b) of the second condition of admissible polynomi-
als, there exist linear combination �i,f,∗(u0, u1) of u0, u1 and linear combination
�′
i,f,∗(v0, v1) of v0, v1, s.t. ci,f,0ufv0 + ci,f,1ufv1 = �i,f,∗(u0, u1)�′i,f,∗(v0, v1). Us-

ing knowledge of secret key uf , the procedure Check computes

Z ′
i = gci,f,0uf v0+ci,f,1uf v1 = Zi/(V

ci,f,0uf

0 V
ci,f,1uf

1 ).

Then, the procedure Check checks that shared value Z ′
i is correctly formed w.r.t.

public keys by verifying

DDH(g�i,f,∗(u0,u1), g
�′

i,f,∗(v0,v1), Z ′
i) = 1,

and this implies that shared value Zi is correctly formed w.r.t. public keys.
Here, we can compute g�i,f,∗(u0,u1) = U

du0
0 U

du1
1 , g

�′
i,f,∗(v0,v1) = V

dv0
0 V

dv1
1 since

�i,f,∗(u0, u1) and �′
i,f,∗(v0, v1) are expressed as �i,f,∗(u0, u1) = du0u0+du1u1 and

�′
i,f,∗(v0, v1) = dv0v0 + dv1v1.

The procedure Check can check that the shared values Zi = gpi(u0,u1,v0,v1)

(i = 1, ...,m) are correctly formed w.r.t. public keys U0 = gu0 , U1 = gu1 , V0 =
gv0 , V1 = gv1 using knowledge of secret key vf same as above.
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Analysis. The simulation of the environment for adversary A is perfect except
with negligible probability. The probability that adversary A selects the session,
where ephemeral public key X is U and static public key B is V , as the test
session sid∗ is at least 1

n2s . Suppose this is indeed the case, solver S does not
abort in Step 9.

Suppose event E1 occurs, solver S does not abort in Steps 6 and 7.
Suppose event M∗ occurs, adversary A queries correctly formed Z1, ..., Zm to

H . Therefore, solver S is successful as described in Step 4c, and does not abort
as in Step 10.

Hence, solver S is successful with probability Pr(S) ≥ p1
n2s , where p1 is prob-

ability that E1 ∧M∗ occurs.

A.2 Event E2 ∧ M∗

In event E2, test session sid∗ has no matching session (sid∗), adversary A
may query EphemeralKeyReveal(sid∗), and adversary A does not query either
StaticKeyReveal(UA) or StaticKeyReveal(UB). Solver S performs the same reduc-
tion as in event E1 ∧M∗ in Subsection A.1, except the following points.

In Setup, solver S embeds GDH instance (U, V ) as A = U,B = V , solver S
randomly selects static secret key x ∈U Zq and computes ephemeral public key
X = gx ∈ G.

In Simulation, using knowledge of x, solver S extracts the answer of the GDH
instance and checks if the shared values are correctly formed.

A.3 Event E3 ∧ M∗

In event E3, test session sid∗ has the matching session, sid∗, adversary A
may query StaticKeyReveal(UA) and EphemeralKeyReveal(sid∗), and adversaryA
does not query either EphemeralKeyReveal(sid∗) or StaticKeyReveal(UB). Solver
S performs the same reduction as in event E1 ∧M∗ in Subsection A.1, except
the following points.

In Setup, solver S embeds GDH instance (U, V ) as X = U,B = V , solver
S randomly selects static secret key a ∈U Zq and computes static public key
A = ga ∈ G.

In Simulation, using knowledge of a, solver S extracts the answer of the GDH
instance and checks if the shared values are correctly formed.

A.4 Event E4 ∧ M∗

In event E4, test session sid∗ has the matching session, sid∗, adversary A may
query EphemeralKeyReveal(sid∗) and EphemeralKeyReveal(sid∗), and adversary
A does not query either StaticKeyReveal(UA) or StaticKeyReveal(UB). Solver S
performs the same reduction as in event E1 ∧M∗ in Subsection A.1, except the
following points.

In Setup, solver S embeds GDH instance (U, V ) as A = U,B = V , solver S
randomly selects static secret key x ∈U Zq and computes ephemeral public key
X = gx ∈ G.
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In Simulation, using knowledge of x, solver S extracts the answer of the GDH
instance and checks if the shared values are correctly formed.

A.5 Event E5 ∧ M∗

In event E5, test session sid∗ has the matching session, sid∗, adversary A may
query StaticKeyReveal(UA) and StaticKeyReveal(UB), and adversary A does not
query either EphemeralKeyReveal(sid∗) or EphemeralKeyReveal(sid∗). Solver S
performs the same reduction as in event E1 ∧M∗ in Subsection A.1, except the
following points.

In Setup, solver S embeds GDH instance (U, V ) as X = U, Y = V , solver
S randomly selects static secret key a ∈U Zq and computes static public key
A = ga ∈ G.

In Simulation, using knowledge of a, solver S extracts the answer of the GDH
instance and checks if the shared values are correctly formed.

A.6 Event E6 ∧ M∗

In event E6, test session sid∗ has the matching session, sid∗, adversary A
may query EphemeralKeyReveal(sid∗) and StaticKeyReveal(UB), and adversary
A does not query either StaticKeyReveal(UA) or EphemeralKeyReveal(sid∗).
Solver S performs the same reduction as in event E1 ∧M∗ in Subsection A.1,
except the following points.

In Setup, solver S embeds GDH instance (U, V ) as A = U, Y = V , solver S
randomly selects static secret key x ∈U Zq and computes ephemeral public key
X = gx ∈ G.

In Simulation, using knowledge of x, solver S extracts the answer of the GDH
instance and checks if the shared values are correctly formed.

A.7 Other Cases

Events E′
2, E

′
4 in Table 4 can be handled the same as events E2, E4 in Table 3,

with condition A = B under the square GDH assumption, which is equivalent
to the GDH assumption.

Event E′
5 in Table 4 can be handled the same as event E5 in Table 3, with

condition A = B under the GDH assumption.
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Abstract. Password-based authenticated group key exchange allows
any group of users in possession of a low-entropy secret key to establish
a common session key even in the presence of adversaries. In this paper,
we propose a new generic construction of password-authenticated group
key exchange protocol from any two-party password-authenticated key
exchange with explicit authentication. Our new construction has several
advantages when compared to existing solutions. First, our construction
only assumes a common reference string and does not rely on any ideal-
ized models. Second, our scheme enjoys a simple and intuitive security
proof in the universally composable framework and is optimal in the
sense that it allows at most one password test per user instance. Third,
our scheme also achieves a strong notion of security against insiders in
that the adversary cannot bias the distribution of the session key as long
as one of the players involved in the protocol is honest. Finally, we show
how to easily extend our protocol to the dynamic case in a way that
the costs of establishing a common key between two existing groups is
significantly smaller than computing a common key from scratch.

1 Introduction

Password-authenticated key exchange (PAKE) allows any two parties in pos-
session of a short (i.e., low-entropy) secret key to establish a common session
key even in the presence of an adversary. Since its introduction by Bellovin
and Merritt [14], PAKE has become an important cryptographic primitive due
to its simplicity and ease of use, which does not rely on expensive public-key
infrastructures or high-entropy secret keys.

In the universally composable (UC) framework [18], the authors of [20] show
how their new model (based on the ideal functionality FpwKE) relates to previous
PAKE models, such as [12] or [8]. In particular, they show that any protocol that
realizes FpwKE is also a secure password-authenticated key-exchange protocol in
the model of [12]. Other works in the UC framework include [24] and [26], where
the authors study static corruptions without random oracles as well.
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In this paper, we consider password-authenticated key exchange in the group
setting (GPAKE) where the number of users involved in the computation of a
common session key can be large. With few exceptions (e.g., [1]), most proto-
cols in this setting are built from scratch and are quite complex. Among these
protocols, we can clearly identify two types of protocols: constant-round proto-
cols (e.g., [9,15,5]) and those whose number of communication rounds depends
on the number of users involved in the protocol execution (e.g., [16]). Since
constant-round protocols are generally easier to implement and less suscepti-
ble to synchronization problems when the number of user increases, we focus
our attention on these protocols. More precisely, we build upon the works of
Abdalla, Catalano, Chevalier, and Pointcheval [5] and Abdalla, Bohli, González
Vasco, and Steinwandt [1] and propose a new generic compiler which converts
any two-party password-authenticated key exchange protocol into a password-
authenticated group key exchange protocol. Like [1], our protocol relies on a
common reference string (CRS) which seems to be a reasonable assumption
when one uses a public software, that is somewhat “trusted”. This is also a nec-
essary assumption for realizing PAKE schemes in the UC framework as shown
by [20]. Like [5], our protocol achieves a strong notion of contributiveness in the
UC framework. In particular, even if it can control all the network communica-
tions, the adversary cannot bias the key as long as one of the players involved
in the protocol is honest. We indeed assume that all the communications are
public, and such a network can be seen as a (non-reliable) broadcast channel,
controlled by the adversary: the latter can delay, block, alter and/or replay mes-
sages. Players thus do not necessarily all receive the same messages. Since the
adversary can block messages, we have to assume timeouts for each round. As
a consequence, denial-of-service attacks are possible, but these are out of the
scope of this paper.

Contributions. There are three main contributions in this paper. The first
one regards the optimality of the security, which only allows one password test
per subgroup. As mentioned in [5] and in Barak et al. [10], without any strong
authentication mechanisms, which is the case in the password-based scenario, the
adversary can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each subgroup, playing the role of
the other players. As a result, an adversary can always use each one of these
partitions to test the passwords used by each subgroup. Since this attack is
unavoidable, this is the best security guarantee that we can hope for. In contrast,
the protocol in [5] required an additional password test for each user in the group.

The second contribution is the construction itself, which astutely combines
several techniques: it applies the Burmester-Desmedt technique [17] to any se-
cure two-party PAKE achieving (mutual) explicit authentication in the UC
framework. The key idea used by our protocol is that, in addition to establish-
ing pairwise keys between any pair of users in the ring, each user also chooses
an additional random secret value to be used in the session key generation. In
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order to achieve the contributiveness property, our protocol enforces these ran-
dom secret values to be chosen independently so that the final session key will
be uniformly distributed as long as one of the players is honest. In order to prove
our protocol secure in the UC framework, we also make use of a particular ran-
domness extractor, which possesses a type of partial invertibility property which
we use in the proof. The proof of security assumes the existence of a common
reference string and does not rely on any idealized model. We note that UC-
secure authenticated group key exchange protocols with contributiveness were
already known [25,5], but they either relied on idealized models [5] or were not
applicable to the password-based scenario [25].

Our final contribution is to show how to extend our protocol to the dynamic
case, with forward-secrecy, so that the cost of merging two subgroups is relatively
small in comparison to generating a new and independent common group key
from scratch. This is because given two subgroups, each with its own subgroup
key, we only need to execute two instances of the PAKE protocol in order to
merge these two groups and generate a new group key. Note that, if one were
to compute a common group key from scratch, the number of PAKE executions
would be proportional to the number of users in the group. Since the PAKE
execution is the most computationally expensive part of the protocol, our new
merge protocol significantly improves upon the trivial solution.

2 UC Two-Party PAKE

Notations and Security Model. We denote by k the security parameter. An
event is said to be negligible if it happens with probability less than the inverse
of any polynomial in k. If X is a finite set, x R← X indicates the process of
selecting x uniformly and at random in X (we thus implicitly assume that X
can be sampled efficiently).

Throughout this paper, we assume basic familiarity with the universal com-
posability framework. The interested reader is referred to [18,20] for details. The
model considered in this paper is the UC framework with joint state proposed
by Canetti and Rabin [21] (the CRS will be in the joint state).

In this paper, we consider adaptive adversaries which are allowed to arbitrarily
corrupt players at any moment during the execution of the protocol, thus getting
complete access to their internal memory. In a real execution of the protocol,
this is modeled by letting the adversary A obtain the password and the internal
state of the corrupted player. Moreover, A can arbitrarily modify the player’s
strategy. In an ideal execution of the protocol, the simulator S gets the corrupted
player’s password and has to simulate its internal state in a way that remains
consistent to what was already provided to the environment.

Split Functionalities. Without any strong authentication mechanisms, the
adversary can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each subgroup, playing the role of the
other players. Such an attack is unavoidable since players cannot distinguish the
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Given a functionality F , the split functionality sF proceeds as follows:
Initialization:

– Upon receiving (Init, sid) from party Pi, send (Init, sid, Pi) to the adversary.
– Upon receiving a message (Init, sid, Pi, G, H, sidH) from A, where H ⊂ G are

sets of party identities, check that Pi has already sent (Init, sid) and that for all
recorded (H ′, sidH′), either H = H ′ and sidH = sidH′ or H and H ′ are disjoint
and sidH �= sidH′ . If so, record the pair (H,sidH), send (Init, sid, sidH) to Pi,
and invoke a new functionality (F , sidH) denoted as FH on the group G and
with set of initially honest parties H .

Computation:

– Upon receiving (Input, sid, m) from party Pi, find the set H such that Pi ∈ H
and forward m to FH .

– Upon receiving (Input, sid, Pj , H,m) from A, such that Pj /∈ H , forward m to FH

as if coming from Pj (it will be ignored if Pj �∈ G for the functionality FH).
– When FH generates an output m for party Pi ∈ H , send m to Pi. If the output

is for Pj /∈ H or for the adversary, send m to the adversary.

Fig. 1. Split Functionality sF

case in which they interact with each other from the case where they interact
with the adversary. The authors of [10] addressed this issue by proposing a new
model based on split functionalities which guarantees that this attack is the only
one available to the adversary.

The split functionality is a generic construction based upon an ideal function-
ality. The original definition was for protocols with a fixed set of participants.
Since our goal is to deal with dynamic groups, not known in advance, we let the
adversary not only split the honest players into subsets H in each execution of
the protocol, but also specify the players it will control. The functionality will
thus start with the actual list of players in G, where H is the subgroup of the
honest players in this execution. Note that H is the subset of the initially honest
players, which can later get corrupted in case we consider adaptive adversaries.
The restriction of the split functionality is to have disjoint setsH , since it models
the fact that the adversary splits the honest players in several concurrent but
independent executions of the protocol. The new description can be found on
Figure 1. In the initialization stage, the adversary adaptively chooses disjoint
subsets H of the honest parties (with a unique session identifier that is fixed for
the duration of the protocol) together with the lists G of the players for each
execution. More precisely, the protocol starts with a session identifier sid. Then,
the initialization stage generates some random values which, combined together
and with sid, create the new session identifier sid′, shared by all parties which
have received the same values – that is, the parties of the disjoint subsets. The
important point here is that the subsets create a partition of the declared honest
players, thus forbidding communication among the subsets. During the compu-
tation, each subset H activates a separate instance of the functionality F on
the group G. All these functionality instances are independent: The executions
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of the protocol for each subset H can only be related in the way the adversary
chooses the inputs of the players it controls. The parties Pi ∈ H provide their
own inputs and receive their own outputs (see the first item of “computation”
in Figure 1), whereas the adversary plays the role of all the parties Pj /∈ H , but
in G (see the second item).

UC 2-PAKE Protocols. Canetti et al. first proposed in [20] the ideal func-
tionality for universally composable two-party password-based key exchange (2-
PAKE), along with the first protocol to achieve such a level of security. This
protocol is based on the Gennaro-Lindell extension of the KOY protocol [27,23],
and is not known to achieve adaptive security.

Later on, Abdalla et al. proposed in [4] an improvement of the ideal func-
tionality, adding client authentication, which provides a guarantee to the server
that when it accepts a key, the latter is actually known to the expected client.
They also give a protocol realizing this functionality, and secure against adaptive
corruptions, in the random oracle model. More recently, they presented another
protocol in [7], based on the Gennaro-Lindell protocol, secure against adaptive
corruptions in the standard model, but with no explicit authentication.

Mutual Authentication. Our generic compiler from a 2-PAKE to a GPAKE,
that we present in Section 4, achieves security against static (resp. adaptive)
adversaries, depending on the level of security achieved by the underlying 2-
PAKE. Furthermore, the 2-PAKE needs to achieve mutual authentication. For
the sake of completeness, we give here the modifications of the ideal functionality
to capture this property: both client authentication and server authentication.
Furthermore, to be compatible with the GPAKE functionality, we use the split
functionality model. For the 2-PAKE, this model is equivalent to the use of
TestPwd queries in the functionality. They both allow the adversary to test the
password of a player (a dictionary attack) either by explicitly asking a TestPwd
query, or by playing with this player. More precisely, an adversary willing to
test the password of a player will play on behalf of its partner, with the trial
password: If the execution succeeds, the password is correct. Finally, the 2-PAKE
functionality with mutual authentication FMA

PAKE, presented in Figure 2, is very
close to the GPAKE functionality, see Section 3. As in the GPAKE one, we
added the contributiveness property. Note that the protocols mentioned earlier
can realize this functionality given very small modifications.

3 UC Group PAKE

We give here a slightly modified version of the ideal functionality for GPAKE
presented in [5], by suppressing the TestPwd queries, which was left as an open
problem in [5], since their protocol could not be proven without them. Our new
functionality thus models the optimal security level: the adversary can test only
one password per subgroup (split functionality). This is the same improvement
as done in another context between [2] and [3]. Furthermore, the players in [5]
were assumed to share the same passwords. We consider here a more general
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The functionality FMA
PAKE is parameterized by a security parameter k, and the pa-

rameter t ∈ {1, 2} of the contributiveness. It maintains a list L initially empty of
values of the form ((sid, Pk, Pl, pw, role), ∗) and interacts with an adversary S and
dynamically determined parties Pi and Pj via the following queries:

– Initialization.
Upon receiving a query (NewSession, sid, Pi, pw, role) from Pi ∈ H:
• Send (NewSession, sid, Pi, role) to S .
• If this is the first NewSession query, or if it is the second one and

there is a record ((sid, Pj , Pi, pw
′, role), fresh) ∈ L, then record ((sid, Pi, Pj ,

pw, role), fresh) in L. If it is the second NewSession query, record the tuple
(sid, ready).

– Key Generation. Upon receiving a message (sid, ok, sk) from S where there
exists a recorded tuple (sid, ready), then, denote by nc the number of corrupted
players, and
• If Pi and Pj have the same password and nc < t, choose sk′ ∈

{0, 1}k uniformly at random and store (sid, sk′). Next, mark the records
((sid, Pi, Pj , pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) complete.

• If Pi and Pj have the same passwords and nc ≥ t, store (sid, sk). Next, mark
the records ((sid, Pi, Pj , pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) complete.

• In any other case, store (sid, error) and mark the records ((sid, Pi, Pj ,
pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) error.

When the key is set, report the result (either error or complete) to S .
– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S , then if

Pi ∈ H and there is a recorded tuple (sid, α) where α ∈ {0, 1}k ∪ {error}, send
(sid, α) to Pi if b equals yes or (sid, error) if b equals no.

– Player Corruption. If S corrupts Pi ∈ H where there is a recorded tuple
((sid, Pi, Pj , pwi, role), ∗), then reveal pwi to S . If there also is a recorded tuple
(sid, sk), that has not yet been sent to Pi, then send (sid, sk) to S .

Fig. 2. Functionality FM A
PAKE

scenario where each user Pi owns a pair of passwords (pwL
i , pw

R
i ), each one

shared with one of his neighbors, Pi−1 and Pi+1, when players are organized
around a ring. This is a quite general scenario since it covers the case of a
unique common password: for each user, we set pwL

i = pwR
i . The ring structure

is also general enough since a centralized case could be converted into a ring,
where the center is duplicated between the users. Recall that thanks to the use of
the split functionality, the GPAKE functionality invoked knows the group of the
players, as well as the order among them. The following description is strongly
based on that of [5].

Contributory Protocols. As in [5], we consider a stronger corruption model
against insiders than the one proposed by Katz and Shin in [28]: in the lat-
ter model, one allows the adversary to choose the session key as soon as there
is one corruption; as in the former case, in this paper we consider the notion
of contributiveness, which guarantees the distribution of the session keys to
be random as long as there are enough honest participants in the session: the
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adversary cannot bias the distribution unless it controls a large number of play-
ers. Namely, this notion formally defines the difference between a key distribution
system and a key agreement protocol. More precisely, a protocol is said to be
(t, n)-contributory if the group consists of n people and if the adversary can-
not bias the key as long as it has corrupted (strictly) less than t players. The
authors of [5] achieved (n/2, n)-contributiveness in an efficient way, and even
(n − 1, n)-contributiveness by running parallel executions of the protocol. We
claim that our proposed protocol directly achieves (n, n)-contributiveness (or
full-contributiveness), which means that the adversary cannot bias the key as
long as there is at least one honest player in the group. Note that this definition
remains very general: letting t = 1, we get back to the case in which A can set
the key when it controls at least one player, as in [20].

Ideal Functionality for GPAKE with Mutual Authentication. We as-
sume that every player owns two passwords (pwL

i , pw
R
i ), and that for all i,

pwR
i = pwL

i−1. Our functionality builds upon that presented in [5]. In partic-
ular, note that the functionality is not in charge of providing the passwords to
the participants. Rather we let the environment do this. As already pointed out
in [20], such an approach allows to model, for example, the case where some users
may use the same password for different protocols and, more generally, the case
where passwords are chosen according to some arbitrary distribution (i.e., not
necessarily the uniform one). Moreover, notice that allowing the environment to
choose the passwords guarantees forward secrecy, basically for free. More gen-
erally, this approach allows to preserve security1 even in those situations where
the password is used (by the same environment) for other purposes.

Since we consider the (improved) split functionality model, the functionality
is parameterized by an ordered group Pid = {P1, . . . , Pn}, dynamically defined,
consisting of all the players involved in the execution (be they real players or
players controlled by the adversary). Thus, we note that it is unnecessary to
impose that the players give this value Pid when notifying their interest to join
an execution via a NewSession query, as was done in [5]. This additional simpli-
fication has some interest in practice, since the players do not always know the
exact number of players involved, but rather a common characteristic (such as
a Facebook group).

We thus denote by n the number of players involved (that is, the size of Pid)
and assume that every player starts a new session of the protocol with input
(NewSession, sid, Pi, (pwL

i , pw
R
i )), where Pi is the identity of the player and

(pwL
i , pw

R
i ) its passwords. Once all the players in Pid, sharing the same sid, have

sent their notification message, FGPAKE informs the adversary that it is ready to
start a new session of the protocol.

In principle, after the initialization stage is over, all the players are ready to
receive the session key. However the functionality waits for S to send an “ok”
message before proceeding. This allows S to decide the exact moment when
the key should be sent to the players and, in particular, it allows S to choose
1 By “preserved” here we mean that the probability of breaking the scheme is basically

the same as the probability of guessing the password.
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the exact moment when corruptions should occur (for instance S may decide to
corrupt some party Pi before the key is sent but after Pi decided to participate
to a given session of the protocol, see [28]). One could imagine to get rid of this
query and ask the functionality to generate the session key when the adversary
asks the first delivery query, but it is easier to deal with the corruptions with the
choice made here (which is the same as in [28]). Once the functionality receives
a message (sid, ok, sk) from S, it proceeds to the key generation phase. This is
done as in [5], except that, instead of checking whether the players all share the
same passwords, FGPAKE checks whether the neighbors (the group is assumed to
be ordered) share the same password. If all the players share the same passwords
as their neighbors and less than t players are corrupted, FGPAKE chooses a key sk′

uniformly and at random in the appropriate key space. If all the players share
the same passwords as their neighbors but t or more players are corrupted, then
the functionality allows S to fully determine the key by letting sk′ = sk. In all
the remaining cases no key is established.

This definition of the FGPAKE functionality deals with corruptions of players
in a way quite similar to that of FGPAKE in [28], in the sense that if the adversary
has corrupted some participants, it may determine the session key, but here only
if there are enough corrupted players. Notice however that S is given such power
only before the key is actually established. Once the key is set, corruptions allow
the adversary to know the key but not to choose it.

In any case, after the key generation, the functionality informs the adversary
about the result, meaning that the adversary is informed on whether a key was
actually established or not. In particular, this means that the adversary is also
informed on whether the players use compatible passwords or not: in practice, the
adversary can learn whether the protocol succeeded or not by simply monitoring
its execution (if the players follow the communication or stop it). Finally the key
is sent to the players according to the schedule chosen by S. This is formally
modeled by means of key delivery queries. We assume that, as always in the UC
framework, once S asks to deliver the key to a player, the key is sent immediately.

Notice that, the mutual authentication indeed means that if one of the players
terminates with a session key (not an error), then all players share the key
material; but, it doesn’t mean that they all successfully terminated. Indeed,
we cannot assume that all the flows are correctly forwarded by the adversary:
it can modify just one flow, or at least omit to deliver one flow. This attack,
called denial of service, is modeled in the functionality by the key delivery: the
adversary can choose whether it wants the player to receive or not the good
key/messages simply with the help of the keyword b set to yes or no.

4 Scheme

Intuition. The main idea of our protocol is to apply the Burmester-Desmedt
technique [17] to any secure two-party PAKE achieving (mutual) explicit au-
thentication in the UC framework. More precisely, the players execute such a
protocol in flows (2a) and (2b) (see Figure 4) and use the obtained value in
flows (3) and (4) as in a classical Burmester-Desmedt-based protocol.
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The functionality FGPAKE is parameterized by a security parameter k, and the pa-
rameter t of the contributiveness. It interacts with an adversary S and an ordered
set of parties Pid = {P1, . . . , Pn} via the following queries:
– Initialization. Upon receiving (NewSession, sid, Pi, (pwL

i , pwR
i )) from player Pi

for the first time, record (sid, Pi, (pwL
i , pwR

i )), mark it fresh, and send (sid, Pi)
to S .
If there are already n − 1 recorded tuples (sid, Pj , (pwL

j , pwR
j )) for players

Pj ∈ Pid \ {Pi}, then record (sid, ready) and send it to S .
– Key Generation. Upon receiving a message (sid, ok, sk) from S where there

exists a recorded tuple (sid, ready), then, denote by nc the number of corrupted
players, and
• If for all i, pwR

i = pwL
i+1 and nc < t, choose sk′ ∈ {0, 1}k uniformly

at random and store (sid, sk′). Next, for all Pi ∈ Pid mark the record
(sid, Pi, (pwL

i , pwR
i )) complete.

• If for all i, pwR
i = pwL

i+1 and nc ≥ t, store (sid, sk). Next, for all Pi ∈ Pid

mark (sid, Pi, (pwL
i , pwR

i )) complete.
• In any other case, store (sid, error). For all Pi ∈ Pid mark the record

(sid, Pi, (pwL
i , pwR

i )) error.
When the key is set, report the result (either error or complete) to S .

– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S , then if
Pi ∈ Pid and there is a recorded tuple (sid, α) where α ∈ {0, 1}k ∪ {error}, send
(sid, α) to Pi if b equals yes or (sid, error) if b equals no.

– Player Corruption. If S corrupts Pi ∈ Pid where there is a recorded tuple
(sid, Pi, (pwL

i , pwR
i )), then reveal (pwL

i , pwR
i ) to S . If there also is a recorded

tuple (sid, sk), that has not yet been sent to Pi, then send (sid, sk) to S .

Fig. 3. Functionality FGPAKE

The split functionality is emulated thanks to the first flow, where the players
engage in their signature verification key, as well as the elements used for the
splitting part of the two-party protocols. They are then (after the dotted line
in the figure) partitioned according to the values they received during this first
round.

Finally, the contributiveness is ensured by the following trick: In addition
to establishing pairwise keys between any two pair of neighbors, the players
also choose on their own a random secret value Ki, which will also be used in
the session key generation. An important point is that these values are chosen
independently thanks to the commitment between flows (2a) and (2b). This will
ensure the session key to be uniformly distributed as long as at least one player
is honest.

Building Blocks. We assume to be given a universally composable two-party
password-based authenticated key exchange with mutual authentication 2PAKE,
achieving or not security against adaptive corruptions. This key exchange is as-
sumed (as defined by the ideal functionality) to give as output a uniformly dis-
tributed random string. Due to the mutual authentication, this protocol results
in an error message in case it does not succeed: Either the two players end with
the same key, or they end with an error. Note, however, that one player can have
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(1) (VKi, SKi) ← SKG
sL

i = split2PAKE(ssid; Pi−1, pw
R
i−1; Pi, pw

L
i )

sR
i = split2PAKE(ssid; Pi−1, pw

R
i−1; Pi, pw

L
i )

(VKi, s
L
i , sR

i )
−−−−−−−−−−−→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
After this point, the session identifier becomes

ssid′ = ssid‖VK1‖sL
1 ‖sR

1 ‖. . . ‖VKn‖sL
n‖sR

n .

(2a) executes 2PAKE(ssid′; Pi−1, pw
R
i−1; Pi, pw

L
i ),

obtaining KL
i = KR

i−1 shared with Pi−1
. . .−−−−−−−−−−−→

executes 2PAKE(ssid′; Pi, pw
R
i ; Pi+1, pw

L
i+1),

obtaining KR
i = KL

i+1 shared with Pi+1
. . .−−−−−−−−−−−→

chooses at random Ki
$← {0, 1}k

computes XL
i = KL

i ⊕ Ki and XR
i = Ki ⊕ KR

i

computes and sends ci = com(ssid′, i, XL
i , XR

i ) ci−−−−−−−−−−−→

(2b) opens XL
i , XR

i

XL
i , XR

i−−−−−−−−−−−→

(3) checks cj = com(ssid′, j, XL
j , XR

j ) ∀j �= i and XL
1 ⊕ XR

1 ⊕ · · · ⊕ XL
n ⊕ XR

n = 0
and aborts if one of these values is incorrect

computes KL
j+1 = XR

j ⊕ Kj , Kj+1 = XL
j+1 ⊕ KL

j+1 ∀j = i, . . . , n + i − 1 (mod n)
computes sk0‖sk1 = f(K1, . . . , Kn), Authi = Mac(sk1; ssid′, i, {XL

j , XR
j }j),

and σi = Sign(SKi; ssid′, i, Authi, {XL
j , XR

j }j)
Authi, σi−−−−−−−−−−−→

(4) checks Ver(sk1; ssid′, j, {XL
k , XR

k }k;Authj)
and Verify(VKj ; ssid′, Authj , {XL

k , XR
k }k; σj) ∀j �= i

If they are correct, then marks the session as complete and sets ski = sk0.
Otherwise, sets ski = error.

Fig. 4. Description of the protocol for player Pi, with index i and passwords pwL
i

and pwR
i

a key while the other is still waiting since the adversary can retain a message:
This is a denial-of-service attack, since a timeout will stop the execution of the
protocol. Mutual authentication guarantees that the players cannot end with
two different keys.

Let (SKG, Sign,Verify) be a one-time signature scheme, SKG being the sig-
nature key generation, Sign the signing algorithm and Verify the verifying al-
gorithm. Note that we do not require a strong one-time signature: Here, the
adversary is allowed to query the signing oracle at most once, and should not be
able to forge a signature on a new message.

Let (Mac,Ver) be a message authentication code scheme, Mac being the au-
thenticating algorithm and Ver the verifying algorithm. A pseudo-random func-
tion could be used, since this is a secure MAC [11].

As usual, we will need a randomness extractor, in order to generate the final
session key, as well as an authentication key (for the key confirmation round,
guaranteed by a Mac computation). But because of the UC framework, and the
definition of the functionality, in the case of a corrupted player, the adversary
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will learn all the inputs of the extractor, chosen by the players, and the session
key chosen by the functionality as well. We will thus have to be able to choose
the inputs for the honest players so that they lead to the expected output. We
thus use a specific randomness extractor, with a kind of partial invertibility: we
consider a finite field F = Fq. The function

f : (F∗ × . . .× F∗) × (F× . . .× F)→ F
(α1, . . . , αn ; h1, . . . , hn) →

∑
αihi

is a randomness extractor from tuples (h1, . . . , hn) ∈ Fn where at least one hi

is uniformly distributed and independent of the others. Since it can be shown
as a universal hash function, using similar techniques to [22], if we consider any
distribution Di on Fn, for which the distribution {hi|(h1, . . . , hn) ← Di} is the
uniform distribution in F, then the distributions

(α1, . . . , αn, f(α1, . . . , αn;h1, . . . , hn)), (α1, . . . , αn) $← F∗n, (h1, . . . , hn)← Di

(α1, . . . , αn, U), (α1, . . . , αn) $← F∗n, U
$← F

are perfectly indistinguishable. The tuple (α1, . . . , αn) is the public key of the
randomness extractor, and it is well-known that it can be fixed in the CRS [29],
with a loss of security linear in the number of queries. Since n might not be fixed
in advance, we can use a pseudo-random generator that generates the sequence
α1,. . . , from a key k in the CRS. Anyway, we generically use f as the variable
input-length randomness extractor in the following. As said above, we will have
to invert f to adapt the input of an honest user to the expected session key: for a
fixed key, some fixed inputs Ii = (h1, . . . , ĥi . . . , hn) ∈ Fn−1 (possibly all but one,
here hi), and the output U , the function gi(Ii, U) completes the input so that the
output by f is U . With our function f , we have gi(Ii, U) = (U −

∑
j �=i αjhj)/αi.

Finally, we will also need a commitment scheme. In addition to being hiding
and binding, we will require it to be extractable, equivocable and non-malleable,
such as those of [19,1,7]. Even if this latter commitment is only conditionally ex-
tractable, this will not matter here since the commitment will be opened later:
The user cannot try to cheat otherwise the protocol stops. Note that the ex-
tractable property allows the simulator to obtain the values committed to by
the adversary, the equivocable property allows him to open his values to some-
thing consistent with them, and the non-malleable property ensures that when
A sees a commitment, he is not able to construct another one with a related
distribution. Because of extractability and equivocability, both the hiding and
the binding properties are computational only.

Description of the Protocol. For the sake of completeness, we describe the
case where each player owns two different passwords (pwL

i and pwR
i ), and each

pair of neighbors (while the ring is set) shares a common password (pwR
i =

pwL
i+1). The case where the players all share the same password is easily derived

from here, by letting pwL
i = pwR

i . Note that both cases will UC-emulate the
GPAKE functionality presented earlier.
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We do not assume that the members of the actual group are known in advance.
Then one has to imagine a system of timeouts after which the participants
consider that no one else will notify its interest in participating to the protocol,
and continue the execution. Once the players are known, we order them using a
public pre-determined technique (e.g., the alphabetical order on the first flow).
Then, for the sake of simplicity we rename the players actually participating
P1, . . . , Pn according to this order.

Furthermore, such timeouts will also be useful in Flow (2a) in case a player
has aborted earlier, in order to avoid other players to wait for it indefinitely.
After a certain amount of time has elapsed, the participants should consider
that the protocol has failed and abort. Such a synchronization step is useful for
the contributiveness, see later on.

Informally, and omitting the details, the algorithm (see Figure 4) can be
described as follows: First, each player applies SKG to generate a pair (SKi,VKi)
of signature keys, and sends the value VKi. They also engage in two two-party
key exchange protocols with each of their neighbors: We denote split2PAKE the
corresponding first flow of this protocol, used for the split functionality. The
players will be split after this round according to the values received. At this
point, the session identifier becomes ssid′ = ssid‖VK1‖sL

1 ‖sR
1 ‖. . . ‖VKn‖sL

n‖sR
n

(more details follow). We stress that the round (2a) does not begin until all
commitments have been received. In this round, the players open to the values
committed.

In round (2a), the players check the commitments received (and abort if one
of them is incorrect). Next, player Pi chooses at random a bitstring Ki. It also
gets involved into two 2PAKE protocols, with each of its neighbors Pi−1 and
Pi+1, and the passwords pwL

i and pwR
i , respectively. This creates two random

strings: KL
i = 2PAKE(ssid′;Pi−1, pw

R
i−1;Pi, pw

L
i ), shared with Pi−1, and KR

i =
2PAKE(ssid′;Pi, pw

R
i ;Pi+1, pw

L
i+1), shared with Pi+1. It finally computes XL

i =
KL

i ⊕ Ki and XR
i = Ki ⊕ KR

i and commits to these values. Pictorially, the
situation can be summarized as follows:

Pi−1(pwR
i−1) Pi(pwL

i ) Pi(pwR
i ) Pi+1(pwL

i+1)

KR
i−1 = KL

i Ki
$← {0, 1}k KR

i = KL
i+1

XR
i−1 XL

i = KL
i ⊕ Ki XR

i = Ki ⊕ KR
i XL

i+1

whereXR
i−1 = Ki−1⊕KR

i−1 = Ki−1⊕KL
i and XL

i+1 = KL
i+1⊕Ki+1 = KR

i ⊕Ki+1.
Once Pi has received all these commitments (again, we stress that no player

begins this round before having received all the commitments previously sent),
it opens to the values committed (round (2b)).

In round (3), the players check the commitments received (and abort if one
of them is incorrect). Next, player Pi iteratively computes all the Kj ’s re-
quired to compute the session keys sk0‖sk1 and the key confirmation Authi =
Mac(sk1; ssid′, i, {XL

j , X
R
j }j). It also signs this authenticator along with all the

commitments received in the previous flow.
Finally, in round (4), after having checked the authenticators and the signa-

tures, the players mark their session as complete (or abort if one of these values
is incorrect) and set their session key ski = sk0.
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Remarks. As soon as a value received by Pi doesn’t match with the expected
value, it aborts, setting the key ski = error. In particular, every player checks
the commitments cj = com(ssid′, j,XL

j , X
R
j ), the signatures σj = Sign(SKj ; ssid′,

Authj , {XL
k , X

R
k }k), and finally the key confirmations Authj = Mac(sk1; ssid′, j,

{XL
k , X

R
k }k). This enables the protocol to achieve mutual authentication.

The protocol also realizes the split functionality due to the two following facts:
First, the players are partitioned according to the values VKj and split2PAKE
they received during the first round (i.e., before the dotted line in Figure 4).
All the VKi are shared among them and their session identifier becomes ssid′ =
ssid‖VK1‖sL

1 ‖sR
1 ‖. . . ‖VKn‖sL

n‖sR
n . Furthermore, in round 3, the signature added

to the authentication flow prevents the adversary from being able to change an
XL

i or XR
i to another value. Since the session identifier ssid′ is included in all

the commitments, and in the latter signature, only players in the same subset
can accept and conclude with a common key.

Then, the contributory property is ensured by the following trick: At the
beginning of each flow, the players wait until they have received all the other
values of the previous flow before sending their new one. This is particularly
important between (2a) and (2b). Thanks to the commitments sent in this flow,
it is impossible for a player to compute its values XL

i and XR
i once it has seen

the others: Every player has to commit its values at the same time as the others,
and cannot make them depend on the other values sent by the players (recall
that the commitment is non-malleable). This disables it from being able to bias
the key (more details can be found in the proof, see the full version [6]).

Finally we point out that, in our proof of security, we don’t need to assume
that the players erase any ephemeral value before the end of the computation of
the session key.

Our Main Theorem. Let ŝFGPAKE be the multi-session extension of the split
functionality sFGPAKE.

Theorem 1. Assuming that the protocol 2PAKE is a universally composable
two-party password-based authenticated key exchange with mutual authentication
secure against adaptive ( resp. static) corruptions, (SKG, Sign,Verify) a one-time
signature scheme, com a non-malleable, extractable and equivocable commitment
scheme, (Mac,Ver) a message authentication code scheme, and f a randomness
extractor as defined earlier, the protocol presented in Figure 4 securely realizes
ŝFGPAKE in the CRS model, in the presence of adaptive ( resp. static) adver-
saries, and is fully-contributory.

5 Merging Two Groups

Since the case in which a single user joins an existing group is a particular
case of merging two groups, we concentrate on the latter more general case. Let
G = {P1, . . . , Pn} and G′ = {P ′

1, . . . , P
′
m} be two groups which have already

created two group session keys via the protocol described in Section 4. Using
the same notations, we assume that each player Pk in G has kept in memory
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its own private value Kk as well as all the public values {XL
1 , X

R
1 , . . . , X

L
n , X

R
n }.

Similarly, assume that each player P ′
� in G′ has kept in memory its own private

value K ′
� as well as all the public values {X ′L

1 , X
′R
1 , . . . , X ′L

m , X
′R
m }.

In other words, we ask each player to keep in memory all the values necessary
to the computation of the group’s session key. Remarkably, note that they only
have to keep a single private value, and that all the other values are public, and
can be kept publicly in a single place accessible to the players.

The goal of our dynamic merge protocol is to allow the computation of a joint
group session key betweenG andG′, without asking the whole new groupG∪G′ to
start a key-exchange protocol from scratch. In addition, the protocol we describe
here has two nice properties: First, it does not increase the memory requirements
of each player. Second, it is done in such a way that the situation of each player
after the merge protocol is the same as its situation before it. That way, future
join or merge protocols can easily take place iteratively without any change.

For sake of simplicity, we first describe a basic version of our protocol, in
which only one representative of each group participates in the new exchange of
messages between the two groups. Clearly, this version is not fully contributory
since only two participants take place in the protocol. We then show how to
extend it into a fully contributory protocol, in which all n+m participants will
take part in the message exchange.

Basic Version. Let Pi and P ′
j denote the particular members of G and G′ that

are acting as the representative of these groups. Only these two participants will
take part in the merge protocol. In order to construct a session key for the new
group, these two players are assumed to share a common password, denoted as
pw for Pi and pw′ for P ′

j . The situation is summarized in Figure 5, where the
upper part (1) represents the former second group, with the values computed
during the execution of the GPAKE protocol, and the lower part (2) represents
the former first group, with the values computed during the execution of the
GPAKE protocol. The hatched lines represent the abandoned “links”. Indeed,
both Pi and P ′

j will erase their values Ki and K ′
j and create two new connections

between them, thus creating the new group
G′′ = {P1, . . . , Pi−1, Pi, P

′
j , P

′
j+1, . . . , P

′
m, P

′
1, . . . , P

′
j−1, P

′
j , Pi, Pi+1, . . . , Pn}

These connections are represented vertically in the middle part (2) of the figure.
We stress that during the merge protocol, no value is computed in parts (1)
and (2). The core of the protocol is part (3).

For lack of space, we refer the interested reader to the full version [6] for the
precise description of the protocol. Informally, the merge protocol consists in
the execution of a simplified GPAKE protocol with the whole group G”, but
the interesting point is that only Pi and P ′

j participate and exchange messages,
executing two 2PAKE protocols, instead of the n+m−1 that would be necessary
for an execution from scratch with this new group. Merging two groups is thus
much more efficient. The two executions are performed once for the left part
of (3) in Figure 5, and once for the right part. For Pi and P ′

j , the steps are
similar to those of a normal GPAKE protocol execution. Additionnaly, Pi and
P ′

j have to broadcast the necessary (old) values XL
k , X

R
k and X ′L

l , X
′R
l to the
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(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Fig. 5. Merging two Groups: (1) represents the former group (P ′
1, P

′
2, . . . , P

′
m); (2) rep-

resents the former group (P1, P2, . . . , Pn); (3) is the proper merge protocol, between
the inviter Pi and the invited P ′

j

other members of each subgroup, to enable them derive the new key. These other
players only participate passively, listening to broadcasts so as to learn the values
needed to compute the new key of the merged group.

This merge protocol is thus only partially contributory since Pi and P ′
j are

the only players participating and exchanging messages. Furthermore, it is not
forward-secure since the players of both groups become able to compute the
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former key of the other group thanks to the values broadcasted by Pi and P ′
j .

Also note that we could simplify this protocol by merging the commitments,
signatures and MACs, doing only one for each player. But we chose to keep the
protocol symmetric, the values x̃ representing roughly the unnecessary values
(of the vanishing players, see the next paragraph) and the values x representing
roughly the needed values.

We claim that after this execution, the players will find themselves in a similar
situation than after a normal GPAKE protocol. For the moment, this is not the
case since Pi and P ′

j appear twice in the ring (see Figure 5). For both of them,
we have to get rid of one instance of the player. To this aim, once this protocol is
executed, Pi “vanishes” on the left part of (3) in Figure 5, letting the player Pi−1

with a new value XR
i−1 equal to XR

i−1 ⊕ X̃L
i and the player P ′

j with a new value

X ′L
j equal to X ′L

j ⊕ X̃R
i . The new 2PAKE-value shared between them is K̃i. The

same thing happens on the right part of (3) in Figure 5: P ′
j vanishes, letting the

player P ′
j−1 with the new value X ′R

j−1 equal to X ′R
j−1 ⊕ X̃ ′L

j and Pi with the new

value XL
i equal to X̃ ′R

j ⊕XL
i . The new 2PAKE-value shared between them is K̃ ′

j .
This way, it is as if the players Pi and P ′

j had only participated once in the new
protocol: Pi between P ′

j−1 and Pi+1, and P ′
j between Pi−1 and P ′

j+1. Finally,
we will only need to keep the following values: K ′

j secretly for P ′
j , Ki secretly

for Pi, and XR
i−1 = XR

i−1 ⊕ X̃L
i , X ′L

j = X ′L
j ⊕ X̃R

i , X ′R
j−1 = X ′R

j−1 ⊕ X̃ ′L
j and

XL
i = X̃ ′R

j ⊕XL
i publicly. The values of the rest of the group remain unchanged.

This will allow to do another join of merge iteratively.
Pictorially, this leads to the new following situation. First, the left part of (3)

in Figure 5 without Pi:

Pi−1(pwR
i−1) P ′

j(pw′L
j ) P ′

j(pw
′R
j ) P ′

j+1(pw
′L
j+1)

K̃i K′
j K′R

j = K′L
j+1

XR
i−1 ⊕ X̃L

i = Ki−1 ⊕ K̃i X ′L
j ⊕ X̃R

i = K̃i ⊕ K′
j X ′R

j X ′L
j+1

with K̃i,K ′
j

$← {0, 1}k, X ′R
j = K ′

j ⊕K ′R
j and X ′L

j+1 = K ′L
j+1 ⊕K ′

j+1. Then, the

right part of (3) in Figure 5 without P ′
j (with K̃ ′

j,Ki
$← {0, 1}k, XR

i = Ki⊕KR
i

and XL
i+1 = KL

i+1 ⊕Ki+1):

P ′
j−1(pw

′R
j−1) Pi(pwL

i ) Pi(pwR
i ) Pi+1(pwL

i+1)
K̃′

j Ki KR
i = KL

i+1

X ′R
j−1 ⊕ X̃ ′R

j = K′
j−1 ⊕ K̃′

j XL
i ⊕ X̃ ′R

j = Ki ⊕ K̃′
j XR

i XL
i+1

Again, all the other values of the rest of the group remain unchanged.

Forward-Secure Fully-Contributory Protocol. The scheme presented in
the previous section does not provide forward secrecy since the players in one
group learn enough information to compute the previous key of the other group.
It is also not fully contributory because Pi and P ′

j are the only players to actively
participate in the merge protocol: they have full control over the value of the
new group session key. In order to achieve these goals, we make two significant
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changes to the above protocol. These changes, presented in the full version [6]
for lack of space, are two-fold: First, to obtain the contributiveness, we impose
to each player of both groups to participate in the later phases of the protocol,
issuing a new fresh value Kk or K ′

�; Second, in order to achieve forward secrecy,
we change the way in which we compute the local key values (all the K’s used by
a user) by using the initial ones as the seed or state of a forward-secure stateful
pseudorandom generator [13] and then use this state to generate the actual K’s
values, as well as the next state.

6 Implementation Considerations

The protocols that have been described above were designed for their security
properties, and for the quality of the proof of security. When it comes to practical
implementations, some additional considerations have to be made.

Definition of the Group. We will consider a use case where the participants
to the GPAKE are already members of a chat room, which is the communication
means used to broadcast messages. The protocol has to be resistant to the fact
that some members of the chat room are idle and will not participate to the
GPAKE, and also that some members of the chat room might have difficulties
to participate because of connectivity issues: this is thus a nice property the
functionality (granted the split functionality) does not need to know the list of
participants in advance.

Therefore, instead of ending the initialization phase when a number n of
participants is reached (as in previous protocols), we end the initialization phase
at the initiative of any of the participants or a timeout. From a practical point of
view, it means that in the algorithm of Figure 4, going to step (2a) does not need
that all commitments are received, on the opposite, these commitments will be
used to dynamically define the group after a certain time, possibly defined by a
timeout: the members of the chat room that have sent their commitments.

Another practical issue is the ordering on the ring, which defines the neighbors
of each participant. Since the group is not known in advance, this ordering will
be defined from the commitments sent in (1): e.g., the alphabetical order.

Authentication within the Group. As explained in the description of the
protocol, is accepted as a member of the group anyone that shares a password
with another member of the group. This is the best authentication that can be
achieved for a GPAKE because a unique shared key is generated for the group.
But after the protocol execution, each user owns a pair (SKi, V Ki) of
signing/verification key. It can be used by each participant to sign his/her own
messages, to avoid that one participant impersonates another. But then, a (multi-
time) signature scheme has to be used, with some formatting constraint to avoid
collisions between the use for the GPAKE protocol and the signature of a message.

Removal of one Participant. This protocol provides the functionality of
adding members to the group in the full version [6], but does not provide the
functionality of removing members. Indeed, while there is a possibility of telling
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two participants apart (cf. previous paragraph) there is no possibility of truly
authenticating a participant. Only the alias (the signing keys) is known.

A functionality that could be implemented is the ban of a participant identified
by his/her alias, e.g., because this participant has sent inappropriate messages.
However, because all the random Ki are known at step (3), it is necessary to
generate new random values that are not known by the banned participant.
Therefore, the recommended way to remove one participant from a group is to
start again the GPAKE protocol with shared passwords that are not known by
this participant.
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Abstract. Many real-world protocols, such as SSL�TLS, SSH, IPsec, DNSSEC,
IEEE 802.11i, and Kerberos, derive new keys from other keys. To be able to an-
alyze such protocols in a composable way, in this paper we extend an ideal func-
tionality for symmetric and public-key encryption proposed in previous work by
a mechanism for key derivation. We also equip this functionality with message
authentication codes (MACs), digital signatures, and ideal nonce generation. We
show that the resulting ideal functionality can be realized based on standard cryp-
tographic assumptions and constructions, hence, providing a solid foundation for
faithful, composable cryptographic analysis of real-world security protocols.

Based on this new functionality, we identify suÆcient criteria for protocols to
provide universally composable key exchange and secure channels. Since these
criteria are based on the new ideal functionality, checking the criteria requires
merely information-theoretic or even only syntactical arguments, rather than in-
volved reduction arguments.

As a case study, we use our method to analyze two central protocols of the
IEEE 802.11i standard, namely the 4-Way Handshake Protocol and the CCM
Protocol, proving composable security properties. As to the best of our knowl-
edge, this constitutes the first rigorous cryptographic analysis of these protocols.

Keywords: security protocols, compositional analysis, simulation-based
security.

1 Introduction

Security protocols employed in practice, such as SSL�TLS, SSH, IPsec, DNSSEC,
IEEE 802.11i, and Kerberos, are very complex, and hence, hard to analyze. In order
to tame this complexity, a viable approach is composable security analysis based on the
framework of simulation-based security, in particular universal composability�reactive
simulatability [8,30]: Higher-level components of a protocol are designed and analyzed
based on lower-level idealized components, called ideal functionalities. Composition
theorems then allow to replace the ideal functionalities by their realizations, altogether
resulting in a system without idealized components. Typically, the higher-level compo-
nents are shown to realize idealized functionalities themselves. Hence, they can be used
as low-level idealized components in even more complex systems.
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This appealing approach has so far, however, been only rarely applied to real-world
protocols (see the related work). One crucial obstacle has been the lack of suitable ide-
alized functionalities and corresponding realizations for the most basic cryptographic
primitives. While functionalities for public-key encryption and digital signatures have
been proposed early on [8,30,23], only recently a functionality for symmetric encryp-
tion, which we denote by�enc here, was proposed [25]. This functionality allows parties
to generate symmetric and public�private keys and to use these keys for ideal encryption
and decryption. The encrypted messages may contain symmetric keys and parties are
given the actual ciphertexts, as bit strings. To bootstrap encryption with symmetric keys,
�enc also enables parties to generate and use pre-shared keys as well as public�private
key pairs.

However, by itself �enc is still insuÆcient for the analysis of many real-world pro-
tocols. The main goal of our work is therefore to augment this functionality (and its
realization) with further primitives employed in real-word protocols and to develop
suitable proof techniques in order to be able to carry out manageable, composable, yet
faithful analysis of such protocols.

Contribution of this Paper. The first main contribution of this paper is to extend �enc

by a mechanism for key derivation, which is employed in virtually every real-word secu-
rity protocol, as well as by MACs, digital signatures, and nonce generation; we call the
new functionality �crypto. We show that, for a reasonable class of environments, �crypto

can be realized based on standard cryptographic assumptions and constructions: IND-
CCA secure or authenticated encryption, UF-CMA secure MACs and digital signatures,
and pseudo-random functions for key derivation, which are common also in implemen-
tations of real-world protocols. To prove this result, we extend the hybrid argument for
�enc in [25]. Since �crypto is a rather low-level ideal functionality and its realization is
based on standard cryptographic assumptions and constructions, it is widely applica-
ble (see below and [25,24]) and allows for a precise modeling of real-word security
protocols, including precise modeling of message formats on the bit level.

The second main contribution of our paper are criteria for protocols to provide uni-
versally composable key exchange and secure channels. These criteria are based on our
ideal functionality �crypto, and therefore, can be checked merely using information-
theoretic arguments, rather than much more involved and harder to manage reduc-
tion proofs; often even purely syntactical arguments suÆce, without reasoning about
probabilities. Indeed, the use of �crypto tremendously simplifies proofs in the context
of real-world security protocols, as demonstrated by our case study (see below), and
in other contexts (see, e.g., [25,24]). Without �crypto, such proofs quickly become
unmanageable.

The third main contribution of this paper is a case study in which we analyze cen-
tral components of the wireless networking protocol WPA2, which implements the
standard IEEE 802.11i [20]. More precisely, we analyze the 4-Way Handshake pro-
tocol (4WHS) for key exchange and the CCM Protocol (CCMP) of the pre-shared key
mode of WPA2 (WPA2-PSK) for secure channels. Based on �crypto and our criteria,
we show that 4WHS realizes a universally composable key exchange functionality and
that 4WHS with CCMP realizes a universally composable secure channel functional-
ity; we note that 4WHS with TKIP (instead of CCMP) has recently been shown to be
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insecure [32,29]. Since we use standard cryptographic assumptions and constructions,
our modeling of 4WHS and CCMP, including the message formats, is very close to
the actual protocol. As to the best of our knowledge, this constitutes the first rigorous
cryptographic analysis of these protocols. The framework presented in this paper would
also allow us to analyze other real-world security protocols in a similar way, including
several modes of Kerberos, SSL�TLS, DNSSEC, and EAP.

Structure of this Paper. In Section 2, we first recall the model for simulation-based
security that we use. The functionality �crypto and its realization are presented in Sec-
tion 3. The criteria for secure key exchange and secure channel protocols are established
in Section 4. Our case study is presented in Section 5. We conclude with related work
in Section 6. Further details and all proofs are provided in our technical report [26].

2 Simulation-Based Security

In this section, we briefly recall the IITM model for simulation-based security (see
[22] for details). In this model, security notions and composition theorems are formal-
ized based on a relatively simple, but expressive general computational model in which
IITMs (inexhaustible interactive Turing machines) and systems of IITMs are defined.
While being in the spirit of Canetti’s UC model [10], the IITM model has several ad-
vantages over the UC model and avoids some technical problems, as demonstrated and
discussed in [22,23,25,19].

2.1 The General Computational Model

The general computational model is defined in terms of systems of IITMs. An in-
exhaustible interactive Turing machine (IITM) M is a probabilistic polynomial-time
Turing machine with named input and output tapes. The names determine how di�er-
ent IITMs are connected in a system of IITMs. An IITM runs in one of two modes,
CheckAddress and Compute. The CheckAddress mode is used as a generic mecha-
nism for addressing copies of IITMs in a system of IITMs, as explained below. The
runtime of an IITM may depend on the length of the input received so far and in ev-
ery activation an IITM may perform a polynomial-time computation; this is why these
ITMs are called inexhaustible. However, in this extended abstract we omit the details of
the definition of IITMs, as these details are not necessary to be able to follow the rest
of the paper.

A system � of IITMs is of the form � � M1 � � � � � Mk � !M�
1 � � � � � !M�

k�
where the Mi

and M�
j are IITMs such that the names of input tapes of di�erent IITMs in the system are

disjoint. We say that the machines M�
j are in the scope of a bang operator. This operator

indicates that in a run of a system an unbounded number of (fresh) copies of a machine
may be generated. Conversely, machines which are not in the scope of a bang operator
may not be copied. Systems in which multiple copies of machines may be generated
are often needed, e.g., in case of multi-party protocols or in case a system describes the
concurrent execution of multiple instances of a protocol.

In a run of a system � at any time only one IITM is active and all other IITMs
wait for new input; the first IITM to be activated in a run of � is the so-called master
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IITM, of which a system has at most one. To illustrate runs of systems, consider, for
example, the system � � M1 � !M2 and assume that M1 has an output tape named c,
M2 has an input tape named c, and M1 is the master IITM. (There may be other tapes
connecting M1 and M2.) Assume that in the run of � executed so far, one copy of M2,
say M�

2, has been generated and that M1 just sent a message m on tape c. This message
is delivered to M�

2 (as the first, and, in this case, only copy of M2). First, M�
2 runs in the

CheckAddress mode with input m; this is a deterministic computation which outputs
“accept” or “reject”. If M�

2 accepts m, then M�
2 gets to process m and could, for example,

send a message back to M1. Otherwise, a new copy M��
2 of M2 with fresh randomness is

generated and M��
2 runs in CheckAddress mode with input m. If M��

2 accepts m, then M��
2

gets to process m. Otherwise, M��
2 is removed again, the message m is dropped, and the

master IITM is activated, in this case M1, and so on. The master IITM is also activated
if the currently active IITM does not produce output, i.e., stops in this activation without
writing to any output tape. A run stops if the master IITM does not produce output (and
hence, does not trigger another machine) or an IITM outputs a message on a tape named
decision. Such a message is considered to be the overall output of the system.

We will consider so-called well-formed systems, which satisfy a simple syntactic
condition that guarantees polynomial runtime of a system.

Two systems � and � are called indistinguishable (� � �) i� the di�erence between
the probability that � outputs 1 (on the decision tape) and the probability that � outputs
1 (on the decision tape) is negligible in the security parameter.

2.2 Notions of Simulation-Based Security

We need the following terminology. For a system �, the input�output tapes of IITMs
in � that do not have a matching output�input tape are called external. These tapes
are grouped into I�O and network tapes. We consider three di�erent types of systems,
modeling i) real and ideal protocols�functionalities, ii) adversaries and simulators, and
iii) environments: Protocol systems and environmental systems are systems which have
an I�O and network interface, i.e., they may have I�O and network tapes. Adversarial
systems only have a network interface. Environmental systems may contain a master
IITM. We can now define strong simulatability; other equivalent security notions, such
as black-box simulatability and (dummy) UC can be defined in a similar way [22].

Definition 1 ([22]). Let � and � be protocol systems with the same I�O interface, the
real and the ideal protocol, respectively. Then, � realizes � (� � � ) i� there exists
an adversarial system � (a simulator or ideal adversary) such that the systems � and
� � � have the same external interface and for all environmental systems 	, connecting
only to the external interface of � (and hence, � � � ) it holds that 	 �� � 	 � � � � .

2.3 Composition Theorems

We restate the composition theorems from [22]. The first composition theorem handles
concurrent composition of a fixed number of protocol systems. The second one guaran-
tees secure composition of an unbounded number of copies of a protocol system. These
theorems can be applied iteratively to construct more and more complex systems.
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Theorem 1 ([22]). Let �1��2��1��2 be protocol systems such that �1 and �2 as well
as �1 and �2 only connect via their I�O interfaces, �1 � �2 and �1 � �2 are well-formed,
and �i � �i, for i 
 �1� 2�. Then, �1 � �2 � �1 � �2.

In the following theorem, � and � are the so-called session versions of � and �,
which allow an environment to address di�erent sessions of � and �, respectively, in
the multi-session versions !� and !� of � and �.

Theorem 2 ([22]). Let ��� be protocol systems such that � � � . Then, !� � !� .

3 Our Crypto Functionality

In this section, we describe our ideal crypto functionality�crypto and show that it can be
realized under standard cryptographic assumptions (see [26] for details).

As mentioned in the introduction, �crypto extends �enc, proposed in [25], by key
derivation, MACs, digital signatures, and ideal nonce generation; also pre-shared keys
can now be used just as other symmetric keys. More precisely, parties can use �crypto

i) to generate symmetric keys, including pre-shared keys, ii) to generate public�private
keys, iii) to derive symmetric keys from other symmetric keys, iv) to encrypt and de-
crypt bit strings (public-key encryption and both unauthenticated and authenticated
symmetric encryption is supported), v) to compute and verify MACs and digital sig-
natures, and vi) to generate fresh nonces, where all the above operations are done in an
ideal way. All symmetric and public keys can be part of plaintexts to be encrypted un-
der other symmetric and public keys. We emphasize that derived keys can be used just
as other symmetric keys. We also note that the functionality can handle an unbounded
number of commands for an unbounded number of parties with the messages, cipher-
texts, MACs, etc. being arbitrary bit strings of arbitrary length. We leave it up to the
protocol that uses �crypto how to interpret (parts of) bit strings, e.g., as length fields,
nonces, ciphertexts, MACs, non-interactive zero-knowledge proofs etc. Since users of
�crypto are provided with actual bit strings, �crypto can be combined with other func-
tionalities too, including those of interest for real-word protocols, e.g., certification of
public keys (see, e.g., [9]).

3.1 The Ideal Crypto Functionality

The ideal crypto functionality �crypto is parametrized by what we call a leakage al-
gorithm L, a probabilistic polynomial time algorithm which takes as input a security
parameter � and a message m, and returns the information that may be leaked about m.
Typical examples are i) L(1��m) � 0�m� and ii) the algorithm that returns a random bit
string of length �m�. Both leakage algorithms leak exactly the length of m. The function-
ality �crypto is also parameterized by a number n which defines the number of roles in
a protocol that uses �crypto (e.g., n � 3 for protocols with initiator, responder, and key
distribution server); �crypto has one I�O input and output tape for each role.

In �crypto, symmetric keys are equipped with types. Keys that may be used for au-
thenticated encryption have type authenc-key, those for unauthenticated encryption
have type unauthenc-key. We have the types mac-key for MAC keys and pre-key for
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keys from which new keys can be derived. All types are disjoint, i.e., a key can only
have one type, reflecting common practice that a symmetric key only serves one pur-
pose. For example, a MAC key is not used for encryption and keys from which other
keys are derived are typically not used as encryption�MAC keys.

While users of �crypto, and its realization, are provided with the actual public keys
generated within �crypto (the corresponding private keys remain in �crypto), they do not
get their hands on the actual symmetric keys stored in the functionality, but only on
pointers to these keys, since otherwise no security guarantees could be provided. These
pointers may be part of the messages given to �crypto for encryption. Before a mes-
sage is actually encrypted, the pointers are replaced by the keys they refer to. Upon
decryption of a ciphertext, keys embedded in the plaintext are first turned into pointers
before the plaintext is given to the user. In order to be able to identify pointers�keys,
we assume pointers�keys in plaintexts to be tagged according to their types. We speak
of well-tagged messages. For real-world protocols, including those mentioned in the
introduction, it is typically possible to define tagging in such a way that the message
formats used in these protocols is captured precisely on the bit level, as demonstrated
by our case study in Section 5.

A user of �crypto is identified, within �crypto, by the tuple (p� lsid� r), where p is a
party name, r � n a role, and lsid a local session ID (LSID), which is chosen and
managed by the party itself. In particular, on the tape for role r, �crypto expects requests
to be prefixed by tuples of the form (p� lsid), and conversely �crypto prefixes answers
with (p� lsid).

The functionality �crypto keeps track of which user has access to which symmetric
keys (via pointers) and which keys are known to the environment�adversary, i.e., have
been corrupted or have been encrypted under a known key, and as a result became
known. For this purpose, among others, �crypto maintains a set  of all symmetric keys
stored within �crypto, a set known �  of known keys, and a set unknown :�  �known

of unknown keys.
Before any cryptographic operation can be performed,�crypto expects to receive (de-

scriptions of) algorithms from the ideal adversary for symmetric and public-key encryp-
tion�decryption as well as the generation and verification of MACs and digital signa-
tures. Also, �crypto expects to receive public�private key pairs for encryption�decryption
and signing�verification for every party from the adversary. The adversary may decide to
statically corrupt a public�private key of a party at the moment she provides it to �crypto.
In this case �crypto records the public�private key of this party as corrupted. We do not
put any restrictions on these algorithms and keys; all security guarantees that �crypto

provides are made explicit within �crypto without relying on specific properties of these
algorithms. As a result, when using �crypto in the analysis of systems, one can abstract
from these algorithms entirely. We now sketch the operations that �crypto provides.

Generating fresh, symmetric keys [(New� t)]. A user (p� lsid� r) can ask �crypto to
generate a new key of type t 
 �authenc-key� unauthenc-key�mac-key� pre-key�. The
request is forwarded to the adversary who is supposed to provide such a key, say the
bit string k. The adversary can decide to corrupt k right away, in which case k is added
to known, and otherwise k is added to unknown. However, if k is uncorrupted, before
adding k to unknown, �crypto verifies that k is fresh, i.e., k does not belong to  . If k is
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corrupted, before adding k to known, �crypto verifies that k does not belong to unknown.
If �crypto accepts k, a new pointer ptr to k is created (by increasing a counter) and re-
turned to (p� lsid� r). We emphasize that the di�erence between known and unknown is
not whether or not the adversary knows the value of a key (it provides these values any-
way). The point is that operations performed with unknown keys are ideal (see below).
In the realization of �crypto, however, keys in unknown will of course not be known to
the adversary.

Establishing pre-shared keys [(GetPSK� t� name)]. This request is similar to (New� t).
However, if �crypto already recorded a key under (t� name), a new pointer to this key is
returned. In particular, if di�erent users invoke this command with the same name and
type, they are provided with pointers to the same key. This allows users to establish
shared keys: For example, for WPA (see Section 5), requests of suppliers (e.g., laptops)
and authenticators (e.g., access points) are of the form (GetPSK� t� kid), where kid is a
key ID (instances of) suppliers and authenticators obtain from the environment (e.g., a
system administrator) upon initialization.

Key derivation [(Derive� ptr� t� s)]. A user (p� lsid� r) can ask to derive a key of type
t 
 �authenc-key� unauthenc-key� mac-key� pre-key� from a seed s (an arbitrary bit
string) and a key, say k, of type pre-key the pointer ptr, which has to belong to the user,
points to. If there already exists a key derived from k and s—a fact that �crypto keeps
track of—, a new pointer to this key is returned. Otherwise, a new key, similarly to the
request (New� t) is generated. However, the adversary may not corrupt this key; it is
considered to be unknown if and only if k is unknown.

Encryption [(Enc� ptr� x)] and decryption [(Dec� ptr� �)]. We concentrate on authen-
ticated encryption and decryption (see [26] for unauthenticated and public-key encryp-
tion and decryption). A user (p� lsid� r) can ask to encrypt a well-tagged message x
using a pointer ptr that has to belong to the user and points to a key, say k, of type
authenc-key. We first consider the case that k 
 unknown. First, all pointers in x, which
again have to belong to the user, are replaced by the actual keys, resulting in a message
x�. Then, the leakage x � L(1�� x�) of x� is encrypted under k using the encryption al-
gorithm previously provided by the adversary (see above). The resulting ciphertext �
(if any) is returned to the user and (x�� �) is stored by �crypto for later decryption of �
under k. Decryption of a ciphertext �, an arbitrary bit string, under a key k (as above),
in fact only succeeds if for � exactly one pair of the form (x�� �) is stored in �crypto. If
k 
 known, the encryption and decryption algorithms provided by the adversary are
applied to x� (rather than to x � L(1�� x�)) and �, respectively.

Computing and verifying MACs [(Mac� ptr� x) and (MacVerify� ptr� x� �)]. A user
(p� lsid� r) can ask �crypto to MAC an arbitrary (uninterpreted) bit string x using a
pointer ptr that has to belong to the user and points to a key, say k, of type mac-key.
Then, �crypto computes the MAC of x under k using the MAC algorithm previously
provided by the adversary. The resulting MAC � (if any) is returned to the user. If
k 
 unknown, �crypto records x for later verification with k; � is not recorded since we
allow an adversary to derive a new MAC from a given one on the same message.
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For verification, �crypto runs the MAC verification algorithm previously provided by
the adversary on x, �, and k. If k 
 known, �crypto returns the result of the verification
to the user. If k 
 unknown, this is done too, but success is only returned if x previously
has been recorded for k.

Generating fresh nonces [(NewNonce)]. Similarly to generating fresh keys, nonces
can be generated by users, where uncorrupted nonces are guaranteed to not collide.

Further operations. For further operations, including computing and verifying digital
signatures, requests to obtain public keys, storing and retrieving of symmetric keys,
checking the corruption status of keys, and checking whether two pointers point to the
same key, we refer the reader to [26].

As illustrated by our case study,�crypto is a convenient and easy to use tool for analyzing
(real-world) security protocols. We note that, as explained above, corruption is modeled
on a per key basis. This allows to model many types of corruption, including corruption
of single sessions and of complete parties (see Section 5 for an example).

3.2 Realizing the Ideal Crypto Functionality

Let �unauthenc, �authenc, �pub be schemes for symmetric and public-key encryption, re-
spectively, �mac be a MAC scheme, �sig be a digital signature scheme, and F � �F�����
be a family of pseudo-random functions with F� : �0� 1����0� 1�� � �0� 1�� for all � 
 �.
For simplicity of presentation, we assume keys to be chosen uniformly at random from
�0� 1��.

These schemes induce a realization �crypto of �crypto in the obvious way: The real-
ization �crypto maintains keys and pointers to keys in the same way as �crypto does, but
it does not maintain the sets known and unknown. However, it is recorded whether a
key is corrupted. Uncorrupted keys are honestly generated within �crypto whereas cor-
rupted keys are provided by the adversary. All ideal operations are replaced by their real
counterparts in the natural way. Key derivation for a key k and a seed s is realized by
computing F� on k and s.

One cannot prove that �crypto realizes �crypto for standard assumptions about the
symmetric encryption schemes �unauthenc and �authenc, namely IND-CCA security and
authenticated encryption (IND-CPA and INT-CTXT security), respectively, because it
is easy to see that such a theorem does not hold in the presence of environments that
may produce so-called key cycles (see, e.g., [6,2]) or cause the so-called commitment
problem (see, e.g., [2]). Therefore, similar to [25] and [2], we restrict the class of en-
vironments that we consider basically to those environments that do not produce key
cycles or cause the commitment problem. More precisely, to formulate such a class of
environments that captures what is typically encountered in applications, we observe,
as was first pointed in [2], that once a key has been used in a protocol to encrypt a
message, this key is typically not encrypted anymore in the rest of the protocol. Let us
call these protocols standard; for example, WPA can trivially be seen to be standard
(see Section 5). This observation can be generalized to used-order respecting environ-
ments, which we formulate based on �crypto: An environment 	 (for �crypto) is called
used-order respecting if it happens only with negligible probability that, in a run of
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	 � �crypto, an unknown key k (i.e., k is marked unknown in �crypto) which has been used
at some point (for encryption or key derivation, in case of keys of type unauthenc-key
also for decryption) is encrypted itself by an unknown key k� used for the first time later
than k. Clearly, such environments do not produce key cycles among unknown keys,
with overwhelming probability. (We do not need to prevent key cycles among known
keys.) We say that an environment 	 does not cause the commitment problem (is non-
committing), if it happens only with negligible probability that, in a run of 	 � �crypto,
after an unknown key k has been used to encrypt a message or to derive a new key, k
becomes known later on in the run, i.e., is marked known by �crypto. It is easy to see that
for standard protocols, as introduced above, the commitment problem does not occur.

We can now state the theorem, which shows that �crypto exactly captures IND-CCA
security, authenticated encryption, and UF-CMA security. In the theorem, instead of
explicitly restricting the class of environments introduced above, we use a functionality
� � that provides exactly the same I�O interface as �crypto (and hence,�crypto), but before
forwarding requests to �crypto��crypto checks whether the used-order is still respected
and the commitment problem is not caused. Otherwise, � � raises an error flag and from
then on blocks all messages, i.e., e�ectively stops the run.

Theorem 3. Let �unauthenc� �authenc� �pub be encryption schemes as above, where the do-
main of plaintexts is the set of well-tagged bit strings. Let �mac be a MAC scheme, �sig be
a digital signature scheme, and F be a pseudo-random function family as above. Let L
be a leakage algorithm which leaks exactly the length of a message. Then, � � � �crypto �

� � � �crypto if and only if �unauthenc and �pub are IND-CCA, �authenc is IND-CPA and INT-
CTXT, and �mac and �sig are UF-CMA secure. (The direction from right to left holds for
any plaintext domains of the encryption schemes.)

Since derived keys can be encrypted and used as encryption keys, the security of en-
cryption depends on the security of key derivation and vice versa. Therefore, in the
proof of the above theorem we need to carry out a single hybrid argument, intertwining
both encryption and key derivation (see [26] for details).

The following corollary shows that if a protocol system � that uses �crypto is
non-committing and used-order respecting, i.e., 	 �� is a non-committing, used-order
respecting environment for all environment systems 	, then � � can be omitted. As
mentioned above, most protocols, including standard protocols, have this property and
this can typically be easily checked by inspection of the protocol (see Section 5 for an
example).

Corollary 1. Let �unauthenc, �authenc, �pub, �mac, �sig, F, and L be given as in Theorem 3.
Let � be a non-committing, used-order respecting protocol system. Then, � ��crypto �

� � �crypto if �unauthenc and �pub are IND-CCA, �authenc is IND-CPA and INT-CTXT, and
�mac and �sig are UF-CMA secure.

As demonstrated in the following sections, using Theorem 3 and Corollary 1 protocols
can first be analyzed based on �crypto and then �crypto can be replaced by its realization
�crypto. We note that the joint state composition theorems for public-key encryption and
symmetric encryption under pre-shared keys in [25] carry over to �crypto. That is, we
can prove that a—so called—joint state realization of �crypto realizes the multi-session
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version of �crypto. However, as explained in Section 4, we do not use composition with
joint state in this paper.

4 Applications to Key Exchange and Secure Channels

In this section, we consider a general class of key exchange and secure channel pro-
tocols which use the functionality �crypto (or its realization �crypto) and develop crite-
ria to prove universally composable security for such protocols. Since our criteria are
based on �crypto, proving the criteria merely requires information-theoretic arguments
or purely syntactical arguments (without reasoning about probabilities), rather than in-
volved cryptographic reduction proofs.

Our criteria are formulated w.r.t. multiple protocol sessions. Alternatively, we could
formulate them for single sessions and then extend them to the multi-session case by
joint state theorems [13,23,25]. However, in order for our models to be very close to
the actual (real-world) protocols, in this paper, we avoid these theorems: First, they rely
on the setup assumption that the parties participating in a session already agreed upon
a unique session identifier (SID). Real-world protocols do not rely on this assumption.
Second, in joint state realizations, SIDs are explicitly added to messages before encryp-
tion, signing, and MACing, i.e., in a session with SID sid, instead of the actual message,
say m, the message (sid�m) is encrypted, signed, or MACed. While this is a good design
principle, it modifies the actual protocols.

4.1 A Criterion for Universally Composable Key Exchange

We define an ideal functionality for (multi-session) key exchange �ke, formulate a gen-
eral class of key exchange protocols that use �crypto for cryptographic operations, and
present a criterion which allows us to prove that a key exchange protocol in this class
realizes �ke.

The Ideal Key Exchange Functionality. The basic idea of an ideal functionality for
key exchange �ke, see, e.g., [10], is that parties can send requests to �ke to exchange a
key with other parties and then, in response, receive a session key which is generated
by �ke and guaranteed to be i) the same for every party in the same session and ii) only
known to these parties. As mentioned above and unlike other formulations, our func-
tionality directly allows to handle an unbounded number of sessions between arbitrary
parties.

More precisely, similarly to �crypto, our ideal key exchange functionality �ke is
parametrized by a number n which specifies the number of roles, e.g., n � 2 in case
of a two-party key exchange protocol. To address multiple sessions of a party, the par-
ties identify themselves to �ke as a user (similarly to �crypto), represented by a tuple
(p� lsid� r), where p is the PID of the party, lsid a local session ID chosen and managed
by the party itself, and the role r 
 �1� � � � � n�. For every user a corresponding local
session is managed in �ke, which contains the state of the key exchange for this user.
To initiate a key exchange, a user, say (p� lsid� r), can send a session-start message of
the form (Start� p1� � � � � pn), with p � pr, to �ke, where the PIDs p1� � � � � pn are the
desired partners of p in the n roles for the key exchange. Upon such a request, �ke
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records this session-start message as a local session for user (p� lsid� r) and informs the
(ideal) adversary about this request by forwarding it to her. The adversary determines
(at some point) to which global session local sessions belong, by sending a session-
create message of the form (Create� (p1� lsid1� 1)� � � � � (pn� lsidn� n)) to �ke, containing
one local session for every role. The functionality �ke only accepts such a message if it
is consistent with the local sessions: The mentioned local sessions all exist, are uncor-
rupted (see below) and are not already part of another global session, and the desired
partners in the local sessions correspond to each other. For a global session, �ke creates
a fresh key—called the session key—according to some probability distribution. For a
local session (p� lsid� r) which is part of a global session in �ke, the adversary can send
a session-finish message of the form (Finish� (p� lsid� r)) to �ke, upon which �ke sends
a session-key-output message of the form (SessionKey� k) to the user (p� lsid� r), which
contains the session key k for this session.

The adversary can corrupt a local session (p� lsid� r) which is not already part of a
global session by sending a corrupt message of the form (Corrupt� (p� lsid� r)) to �ke.
For a corrupted local session, the adversary may determine the session key by sending a
session-finish message of the form (Finish� (p� lsid� r)� k) to �ke, upon which �ke sends
a session-key-output message of the form (SessionKey� k) to the user (p� lsid� r), which
contains the session key k chosen by the adversary. As usual, the environment can ask
whether a local session is corrupted or not.

Key Exchange Protocols. An �crypto-key exchange protocol (�crypto-KE protocol),
which is meant to realize �ke, is a protocol system � which connects to the I�O in-
terface of �crypto such that � ��crypto has the same I�O interface as �ke. The system �

is of the form � � !M1 � � � � � !Mn for some n and machines (IITMs) M1� � � � � Mn. For
every user (p� lsid� r), there is one instance of Mr; intuitively, such an instance is meant
to realize a local session in �ke. Every instance of Mr may arbitrarily communicate with
the adversary (the network) and may use �crypto in the name of the corresponding user.1

Analogously to �ke, a user (p� lsid� r) initiates a key exchange by sending a session-start
message to (its instance of) Mr. At some point, every instance of Mr may return a ses-
sion-key-pointer-output message of the form (SessionKeyPointer� ptr) to its user which
contains a pointer ptr, called the session key pointer, to the actual session key stored in
�crypto; so, unlike �ke, only a pointer to the session key, rather than the actual key, is
output (see below for a variant of � in which, similar to �ke, the actual session key is
given to the user). This instance then provides its user with an interface to �crypto where
initially only the session key pointer ptr may be used (but subsequently other pointers
can be generated). More precisely, the user (p� lsid� r) may send any request for �crypto

to Mr, such as encryption, decryption, and key derivation requests. Upon such a request,
Mr forwards this request to �crypto and waits for receiving an answer from�crypto, which
is then forwarded to the user (p� lsid� r). However, we require that all pointers in such
a request have been output by Mr to this user before and that the session key pointer
is never encrypted or explicitly revealed by a retrieve command (see below for an ex-
ample). Before forwarding requests to �crypto, Mr checks whether this requirement is
satisfied; if the check fails, Mr returns an error message to the user (p� lsid� r).

1 We note that an environment of � � �crypto cannot directly access the I�O interface of �crypto, but
only via the IITMs M1� � � � � Mn.
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For example, after having received (SessionKeyPointer� ptr) from Mr , the user
(p� lsid� r) might send the request (New� t) to Mr upon which Mr will forward it to
�crypto. Then, �crypto will return a new pointer ptr� to Mr which is forwarded by Mr to
the user (p� lsid� r). To encrypt a message m which contains the pointer ptr� (and no other
pointer, say) under the session key pointer ptr, (p� lsid� r) sends the request (Enc� ptr�m)
to Mr. Then, Mr will forward this message to �crypto because all pointers in this request,
i.e., ptr and ptr�, have been output to this user before. Finally, the ciphertext returned
by �crypto is forwarded to the user (p� lsid� r).

We do not fix a special form of corruption but leave the modeling of corruption to
the definition of the protocol �, up to the following conditions: i) the environment can
ask about the corruption status of instances of Mr (this corresponds to the environment
asking �ke whether a local session is corrupted), ii) once an instance of Mr is corrupted,
it stays corrupted, and iii) an instance of Mr cannot be corrupted after it has returned a
session-key-pointer-output message. (See our case study in Section 5 for an example.)

We also consider a variant �� of an �crypto-KE protocol � defined as follows: Instead
of sending session-key-pointer-output messages, �� sends session-key-output messages
(as �ke) which contain the actual key the session key pointer refers to. This key is
obtained using the retrieve command (Retrieve� ptr) of �crypto. Furthermore, in contrast
to �, �� does not provide the environment with an interface to �crypto, i.e., �� does not

forward requests to �crypto. We note that the protocol �� is meant to realize �ke (see
below). The advantage of � over �� is that a session key pointer can still be used for
ideal cryptographic operations, e.g., ideal encryption or even to establish an ideal secure
channel (see below).

We note that in [26] we consider a more general form of �crypto-KE protocols: We
allow � and �� to use (arbitrary) ideal functionalities �1 � � � � � �l in addition to �crypto.
These functionalities can provide additional cryptographic operations, such as public-
key certification. As shown in [26], our criteria and all results obtained in this paper
remain unchanged and carry over to these generalized �crypto-KE protocols.

Criterion for Secure Key Exchange Protocols. We now present a suÆcient criterion
for an �crypto-KE protocol to realize �ke, and hence, to provide universally composable
key exchange. The criterion is based on partnering functions.2

A partnering function � for an �crypto-KE protocol � is a polynomial-time com-
putable function that maps a sequence of configurations of � ��crypto to a set of tuples
of the form (s1� � � � � sn), where sr is of the form (p� lsid� r), i.e., sr refers to an instance
of Mr, for all r � n. We say that the instances s1� � � � � sn form a (global) session ac-
cording to �. We call � valid for � if for any environment 	 for � ��crypto and any run
of 	 �� � �crypto the following holds, where � operates on the projection of the runs to
configurations of � ��crypto: i) All instances occur in at most one session (according to
�). ii) Instances in one session agree on the PIDs of the desired partners. iii) � is mono-
tonic, i.e., once a session has been established according to �, it continues to exist. Now,
we are ready to state our criterion.

2 We note that partnering functions have been used in game-based security definitions (e.g., [4]).
However, their use has been criticized in subsequent work (e.g., [3,21]). We emphasize that
here, partnering functions are only part of our criterion but not part of the security definition.
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Definition 2. We say that an �crypto-KE protocol � is strongly �crypto-secure (with type
t0 of a key) if there exists a valid partnering function � for � such that for every en-
vironment 	 for � ��crypto the following holds with overwhelming probability, where
the probability is over runs of 	 �� � �crypto: For every uncorrupted instance of Mr, say
(p� lsid� r), which has output a session key pointer to say the key k in �crypto it holds that:

i) The local session (p� lsid� r) belongs to some global session (according to �) which
contains only uncorrupted local sessions.

ii) The key k is of type t0 and marked unknown in �crypto.
iii) The key k has never been used in �crypto as a key for encryption, key derivation, or

to compute a MAC by any user, except through the interface to �crypto provided to
the environment after a session-key-pointer-output message.

iv) Session key pointers (if any) of other instances point to the same key k if and only
if they belong to the same session as (p� lsid� r) (according to �).

The following theorem states that this criterion is indeed suÆcient for an �crypto-KE
protocol to realize the ideal key exchange functionality �ke.

Theorem 4. Let � be an �crypto-KE protocol. If � is strongly �crypto-secure and �� is

used-order respecting and non-committing, then �� ��crypto � �ke.

4.2 Applications to Secure Channels

A secure channel, see, e.g., [12], between two parties provides confidentiality and au-
thenticity of the messages sent over the channel and prevents rearrangement and replay
of messages. Some secure channels also prevent message loss. In this section, we only
briefly sketch our results; see [26] for details.

We define two ideal functionalities for secure channels �sc and � �

sc, where, unlike
�sc, � �

sc prevents message loss. Just as �ke and in contrast to previous formulations,
our functionalities directly allow to handle an unbounded number of sessions between
arbitrary parties.

We consider two generic realizations of �sc and � �

sc , namely �sc and ��

sc, respec-
tively, which use an �crypto-key exchange protocol � as a sub-protocol. Every session
of �sc (analogously for ��

sc) runs a session of � to exchange a session key. This session
key is then used to establish secure channels between the parties of the session, one
channel for each pair of parties in that session. For this purpose, before a message is en-
crypted (using authenticated encryption) under the session key, the PIDs of the sender
and receiver are added to the plaintexts as well as a counter.

We provide a criterion for �crypto-KE protocols and show that �sc and ��

sc realize
�sc and � �

sc , respectively, if the underlying �crypto-KE protocol � satisfies this crite-
rion. While we could use “strongly �crypto-secure” as our criterion, a weaker criterion
in fact suÆces, which we call �-�crypto-secure. Unlike strong �crypto-security, �-�crypto-
security allows that session keys are used in the key exchange protocol (e.g., for key
confirmation), i.e., condition iii) in Definition 2 is dropped. But then, messages en-
crypted under these keys in the key exchange protocol should not interfere with mes-
sages sent over the secure channel. Instead of condition iii), we therefore consider a
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set � of messages and require that only messages in � are encrypted under the session
key in the key exchange protocol. We note that strongly �crypto-secure protocols are
�-�crypto-secure.

The following theorem states that �-�crypto-security is a suÆcient condition for the
generic secure channels protocols to realize the ideal secure channel functionalities,
provided that plaintexts sent over the secure channel do not belong to �. Usually, the
key exchange and the secure channel protocol use di�erent message formats such that
the messages cannot be confused, e.g., because of tagging with di�erent protocol iden-
tifiers. In this case, an appropriate � can easily be defined.

Theorem 5. Let � be an �crypto-KE protocol and � be a set of messages as above such
that it does not contain any plaintext that is potentially encrypted by �sc (or ��

sc). If �
is �-�crypto-secure, then �sc � � � �crypto � �sc and ��

sc � � � �crypto � � �

sc .

5 Security Analysis of IEEE 802.11i

Using our results and methods developed in the previous sections, we now analyze
two central protocols of WPA2-PSK (IEEE 802.11i) [20], namely the 4-Way Hand-
shake (4WHS) protocol and the CCM Protocol (CCMP), with more details provided
in [26]. We prove that 4WHS provides universally composable key exchange and that
4WHS with CCMP provides universally composable secure channels. Without �crypto,
our modular approach, and our criteria, the proof would be considerably more com-
plex and would involve non-trivial reduction proofs. In particular, due to �crypto, our
proofs only require syntactic arguments and they illustrate that �crypto can be used in an
intuitive and easy way for the analysis of real-world security protocols.

5.1 The 4-Way Handshake Protocol

Description of the 4WHS Protocol. The 4-Way Handshake (4WHS) protocol consists
of two roles, an authenticator A, e.g., an access point, and a supplicant S , e.g., a lap-
top, which share a Pairwise Master Key (PMK). The authenticator may communicate
with several supplicants using the same PMK, which in WPA2-PSK is a pre-shared key
(PSK). On an abstract level, the message exchange between an authenticator A and a
supplicant S is shown in Figure 1, where pA and pS are the names (Media Access Con-
trol (MAC) addresses) of A and S , respectively, nA and nS are nonces generated by A and
S , respectively, and c1� � � � � c4 are pairwise distinct constants used to indicate di�erent
messages. From the PMK, A and S derive a Pairwise Transient Key PTK by computing
PTK � F(PMK� “Pairwise key expansion” � min(pA� pS ) � max(pA� pS ) � min(nA� nS )
� max(nA� nS ))), where F is an HMAC, which according to the IEEE 802.11i standard
is assumed to be pseudo-random. The PTK is then split into the Key Confirmation Key
(KCK), the Key Encryption Key (KEK), and the Temporary Key (TK), where TK is
used in CCMP to establish a secure channel between A and S (see below).

Modeling the 4WHS Protocol. Modeling the 4WHS protocol as an �crypto-KE proto-
col is straightforward. We emphasize that, since �crypto provides a low-level interface
to basic cryptographic primitives with a very liberal use of tagging, our modeling of
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1. A � S : pA� nA� c1

2. S � A: pS � nS � c2� MACKCK(nS � c2)
3. A � S : pA� nA� c3� MACKCK(nA� c3)
4. S � A: pS � c4� MACKCK(c4)

Fig. 1. The 4-Way Handshake Protocol of IEEE 802.11i

the 4WHS protocol, including message formats, the use of cryptographic primitives,
and cryptographic assumptions, is quite close to the actual standard. We note that in
our modeling of 4WHS parties may not play both the role of an authenticator and a
supplicant with the same pre-shared key. Otherwise, 4WHS would be insecure. Indeed,
a reflection attack would be possible [17], and our security proofs would fail.

The adversary can (statically) corrupt an instance of A or S , i.e., a local session, by
sending a special corrupt message to it. This has to be the first message this instance
receives from the adversary. A corrupted instance grants the adversary full control over
its interface, including the interface it has to �crypto. If the instance is corrupted, all keys
it has should be corrupted as well. We therefore require that the adversary corrupts all
keys a corrupted instance creates using �crypto. A corrupted instance always checks (by
asking �crypto) if its keys created in �crypto indeed have been corrupted by the adversary
and terminates if they have not been corrupted. Note that since keys in �crypto of a
corrupted instance are known, it is not a problem if the adversary generates key cycles or
causes the commit problem with those keys. Conversely, uncorrupted instances always
check that the key, PSK, and the nonce, nA or nS , they have created using �crypto are
uncorrupted at the time of their creation.

In the literature, (static) corruption is often modeled on a per party basis, i.e., if a
party is corrupted, then all its keys are corrupted and the adversary is in full control of
that party. We note that this is a special case of our modeling of corruption because the
adversary can decide to corrupt all keys and local sessions of a corrupted party.

Security Analysis. We first show that 4WHS is strongly �crypto-secure.

Theorem 6. The protocol 4WHS is strongly �crypto-secure with type authenc-key.

Proof. First, we define a partnering function � for 4WHS: Two instances are defined to
form a session if a) they have di�erent roles, namely A and S , respectively, b) they are
both uncorrupted, c) the party names of the desired partner correspond to each other, d)
they use the same pre-shared key, e) the values of the nonces correspond to each other,
and f) one of them has already output a session key pointer. Because �crypto guarantees
that (uncorrupted) nonces are unique for every instance, there are at most two such
instances, and hence, it is easy to see that � is a valid partnering function for 4WHS.

It remains to show that 4WHS is strongly �crypto-secure w.r.t. � and every environ-
ment 	 of 4WHS � �crypto: Let 	 be a run of 	 � 4WHS � �crypto and let (p� lsid� r) be some
uncorrupted instance (i.e., an instance of Mr) in 	 which has output a session key pointer
to a key, say k, in �crypto, and which established the pre-shared key PSK and derived
KCK and TK from it in �crypto.

First, we observe that, by our corruption model, since (p� lsid� r) is uncorrupted, PSK
is uncorrupted (in �crypto). Also, every other instance that established PSK must be
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uncorrupted as well since keys created by corrupted instances are required to be cor-
rupted. In uncorrupted instances, PSK is only used to derive keys, hence, PSK is always
marked unknown in �crypto. In particular, no corrupted local session has a pointer to
PSK. Now, by definition of �crypto, KCK and TK can only be derived by instances that
have a pointer to PSK, leaving only uncorrupted instances. Moreover, again by �crypto,
these uncorrupted instances have to use the same seed s as (p� lsid� r), which contains
the party names, p and p� say, and two nonces. Since uncorrupted nonces generated
by �crypto are guaranteed to be unique, by the construction of s, it follows that besides
(p� lsid� r) at most one other (uncorrupted) instance (p�� lsid�� r�), for some p�, lsid�, and
r�, uses s, and hence, has a pointer to KCK and TK by derivation. By the definition
of the protocol, uncorrupted instances only use KCK for MACing and TK is at most
used after being output in a session-key-pointer-output message, but then TK may not
be encrypted or retrieved. By definition of �crypto, it follows that KCK and TK are al-
ways marked unknown in �crypto and only (p� lsid� r) and, if present, (p�� lsid�� r�) have
pointers to KCK and TK.

We now show that (p�� lsid�� r�) exists and that (p� lsid� r) and (p�� lsid�� r�) belong to
the same session (according to �), which implies i) of Definition 2: We assume that
r � A; the proof for r � S is similar. The instance (p� lsid� r) verified a MAC in
a message of the form p�� n��� c2�MACKCK(n��� c2). Since r � A and the constants c2

and c3 are distinct, (p� lsid� r) has not created such a MAC. By definition of �crypto,
MACKCK(n��� c2) can only have been created by some instance that has a pointer to
KCK, which must be the (uncorrupted) instance (p�� lsid�� r�) from above. It follows
that r� � S since an uncorrupted instance with r� � A would not create a MAC of
such a form. By our assumption that a party does not play both the role of A and S
with the same pre-shared key, it follows that p�

� p. (Our assumption, and the implied
fact, p�

� p, is crucial; without it the proof would fail and in fact a reflection attack
would be possible [17].) We can now show that (p� lsid� r) and (p�� lsid�� r�) belong to
the same session according to �: We already know that conditions a), b), d), and f) for
� (as defined above) are satisfied. Since p � p�, it follows that the intended partner of
(p�� lsid�� r�) is p, since, by definition of �crypto and KCK, otherwise (p�� lsid�� r�) could
not have derived KCK. So c) is satisfied. (Without our assumption mentioned above,
this could not be concluded.) Similarly, condition e) is satisfied since otherwise the two
instances would not have derived the same KCK.

We already know that TK (� k) is marked unknown in �crypto. This key is of type
authenc-key because, by definition of the protocol, it has been derived as a key of this
type. So ii) of Definition 2 follows.

We also know that only (p� lsid� r) and (p�� lsid�� r�) have a pointer to TK in �crypto.
Hence, iv) of Definition 2 follows. Since both instances are uncorrupted, by the defini-
tion of the protocol, iii) follows as well. ��

Trivially, �4WHS (recall that �4WHS outputs the session key instead of a pointer to it)
is a standard protocol (as defined in Section 3), hence, it is used-order respecting and
non-committing. Using Theorem 4 and 6, we immediately obtain that �4WHS � �crypto is
a universally composable secure key exchange protocol.

Corollary 2. �4WHS � �crypto � �ke.
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5.2 The CCM Protocol

WPA2-PSK uses CCMP with the Temporal Key (TK), exchanged by running the 4WHS
protocol, to establish a secure channel between the authenticator and the supplicant.
CCMP can be modeled faithfully by �sc (see Section 4.2). By Theorem 5 and 6 we
obtain that CCMP using 4WHS and �crypto is a universally composable secure chan-
nel protocol. Moreover, it is easy to see that CCMP � 4WHS is a standard protocol (as
defined in Section 3), and hence, it is used-order respecting and non-committing. By
Corollary 1, we then obtain:

Corollary 3. CCMP � 4WHS � �crypto � �sc and CCMP � 4WHS � �crypto � �sc.

6 Related Work

Backes et al. (see, e.g., [2]) proposed a Dolev-Yao style cryptographic library. The main
purpose of the library is to provide a Dolev-Yao style abstraction to the user, in the spirit
of computational soundness results [27,15,1,24]. In contrast, our functionality provides
a much lower-level idealization, aiming at wide applicability and faithful treatment of
cryptographic primitives. More specifically, unlike �crypto, based on the Dolev-Yao li-
brary only those protocols can be analyzed which merely use operations provided by
the library (since the user, except for payload data, only gets his�her hands on pointers
to Dolev-Yao terms in the library, rather than on the actual bit strings, internally every-
thing is represented as terms too) and these protocols can only be shown to be secure
w.r.t. non-standard encryption schemes (since, e.g., extra randomness and tagging with
key identifiers is assumed for encryption schemes) and assuming specific message for-
mats (all types of messages—nonces, ciphertexts, pairs of messages etc.—, are tagged
in the realization). While the Dolev-Yao library considers symmetric encryption (key
derivation is not considered at all) [2], it is an open problem whether there is a rea-
sonable realization; the original proof of the realization of the crypto library in [2] is
flawed, as examples presented in [14] illustrate (see also [25]).

Our criteria for secure key exchange and secure channel protocols presented in
Section 4 are related to the concept of secretive protocols proposed by Roy et al. [31]
(see also [25]). However, unlike our criteria, which can be checked based on information-
theoretic�syntactical arguments, checking whether a protocol is secretive requires in-
volved cryptographic reduction proofs. Also, Roy et al. do not prove implications for
composable security and they do not consider secure channels.

The only work we are aware of that attempts to perform a cryptographic analysis of
the 4-Way Handshake protocol of IEEE 802.11i is [33]; secure channels are not consid-
ered. However, this work is quite preliminary: The security assumptions and theorems
are not formulated precisely and no security proofs or proof sketches are available. In
He et al. [18], the first symbolic analysis of IEEE 802.11i has been presented, based
on their Protocol Composition Logic (PCL). There are only a few other papers on the
analysis of real-world protocols that involve key derivation: The Internet Key-Exchange
(IKE) protocol (which is part of IPsec) was analyzed in [11]. (Fragments of) TLS were
analyzed in [16,28,5], assuming session identifiers in ciphertexts [16] or the random
oracle for key derivation [28,5]. Cryptographic analysis of Kerberos was carried out for
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example in [7], where key derivation is modeled by pseudo-random functions within
CryptoVerif. However, this analysis considers more abstract message formats and does
not yield composable security guarantees.
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Abstract. OAEP is a widely used public-key encryption scheme based
on trapdoor permutations. Its security proof has been scrutinized and
amended repeatedly. Fifteen years after the introduction of OAEP, we
present a machine-checked proof of its security against adaptive chosen-
ciphertext attacks under the assumption that the underlying permuta-
tion is partial-domain one-way. The proof can be independently verified
by running a small and trustworthy proof checker and fixes minor glitches
that have subsisted in published proofs. We provide an overview of the
proof, highlight the differences with earlier works, and explain in some
detail a crucial step in the reduction: the elimination of indirect queries
made by the adversary to random oracles via the decryption oracle. We
also provide—within the limits of a conference paper—a broader per-
spective on independently verifiable security proofs.

1 Introduction

Optimal Asymmetric Encryption Padding (OAEP) [9] is a prominent public-
key encryption scheme based on trapdoor permutations, most commonly used
in combination with the RSA [29] and Rabin [28] functions. OAEP is widely
deployed; many variants of OAEP are recommended by several standards, in-
cluding IEEE P1363, PKCS, ISO 18033-2, ANSI X9, CRYPTREC and SET.
Yet, the history of OAEP security is fraught with difficulties. The original 1994
paper of Bellare and Rogaway [9] proves that, under the hypothesis that the un-
derlying trapdoor permutation family is one-way, OAEP is semantically secure
under chosen-ciphertext attacks. Shoup [30] subsequently discovered in 2000 that
this proof only established the security of OAEP against non-adaptive chosen-
ciphertext attacks, and not (as was believed at that time) against the stronger
version of IND-CCA that allows the adversary to adaptively obtain the decryp-
tion of ciphertexts of its choice. Shoup suggested a modified scheme, OAEP+,
secure against adaptive attacks under the one-wayness of the underlying permu-
tation, and gave a proof of the adaptive IND-CCA security of the original scheme
when it is used in combination with RSA with public exponent e = 3. Simul-
taneously, Fujisaki, Okamoto, Pointcheval and Stern [15] proved that OAEP in
its original formulation is indeed secure against adaptive attacks, but under the
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assumption that the underlying permutation family is partial-domain one-way.
Since for the particular case of RSA this latter assumption is no stronger than
(full-domain) one-wayness, this finally established the adaptive IND-CCA secu-
rity of RSA-OAEP. In 2004, Pointcheval [27] gave a different proof of the same
result; this new proof fills several gaps in the reduction of [15], which results in a
weaker bound than originally stated. Nonetheless, the inaccurate bound of [15]
remains the reference bound used in practical analyses of OAEP, see e.g. [13].
Finally, Bellare, Hofheinz and Kiltz [8], recently pointed out some ambiguities
in the definition of IND-CCA, leading to four possible formulations (all of them
used in the literature), and question which definition is used in the statements
and proofs of OAEP.

This paper reports on a machine-checked proof that OAEP is IND-CCA secure
against adaptive attacks. For the sake of definitional clarity, we identify IND-
CCA with the strongest definition in the taxonomy of [8], IND-CCA-SE. Let us
first give a formal definition of OAEP:

Definition 1 (OAEP encryption scheme). Let (Kf , f, f
−1) be a family of

trapdoor permutations on {0, 1}k, and

G : {0, 1}k0 → {0, 1}k−k0 H : {0, 1}k−k0 → {0, 1}k0

two hash functions, with k = n+ k0 + k1. The Optimal Asymmetric Encryption
Padding (OAEP) scheme is composed of the following triple of algorithms:

K(η) def
= (pk, sk)← Kf (η); return (pk, sk)

E(pk,m) def
= r $← {0, 1}k0; s← G(r) ⊕ (m‖0k1); t← H(s)⊕ r;

return f(pk, s‖ t)
D(sk, c) def

= (s‖ t)← f−1(sk, c); r ← t⊕H(s); m← s⊕G(r);
if [m]k1 = 0k1 then return [m]n else return ⊥

where [x]n (resp. [x]n) denotes the n least (resp. most) significant bits of x.

Our main result is:

Theorem 1 (IND-CCA security of OAEP). Let A be an adversary against
the adaptive IND-CCA security of OAEP that makes at most qG and qH queries to
the hash oracles G and H, respectively, and at most qD queries to the decryption
oracle D. Suppose this adversary achieves an IND-CCA advantage ε within time t.
Then, there exists an inverter I that finds a partial preimage (the most significant
k − k0 bits) of an element uniformly drawn from the domain of the underlying
permutation f with probability ε′ within time t′, where

ε′ ≥ 1
qH

(
ε

2
− 3qDqG + q2D + 4qD + qG

2k0
− 2qD

2k1

)
t′ ≤ t+ qD qG qH (Tf +O(1))

and where Tf is an upper bound on the time needed to compute the image of
a bitstring under f . Moreover, if the underlying permutation family is partial-
domain one-way and adversary A runs in probabilistic polynomial-time (on some
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security parameter η), then the advantage of A is negligible, provided parameters
k0, k1 are at least linear on η.

The formal statement is given in Fig. 1. The proof is built using CertiCrypt [6],
a general framework for building game-based cryptographic proofs in the Coq
proof assistant [32], and yields an independently verifiable certificate. Said oth-
erwise, an external verifier can examine the statement to convince herself that it
faithfully captures the definitions of OAEP and IND-CCA security and can del-
egate the verification of the proof to an automated checker. Our exact security
bound unveils minor glitches in the proof of [27], and marginally improves on its
exact security bound by performing an aggressive analysis of oracle queries ear-
lier in the sequence of games. Beyond its individual merits, the proof is highly
emblematic and provides tangible evidence of the onset of tools to build and
verify cryptographic proofs.

2 A Primer on Formal Proofs

Proof assistants are programs designed to support interactive construction and
automatic verification of mathematical statements (understood in a broad sense).
Initially developed by logicians to experiment with the expressive power of their
foundational formalisms, proof assistants are now emerging as a mature tech-
nology that can be used effectively for verifying intricate mathematical proofs,
such as the Four Color theorem [16] or the Kepler conjecture [18,19], or complex
software systems, such as operating systems [21], virtual machines [22] and opti-
mizing compilers [24]. In the realm of cryptography, proof assistants have been
used to formally verify secrecy and authenticity properties of protocols [26].

Proof assistants rely on expressive specification languages that allow formaliz-
ing arbitrary mathematical notions, and that provide a formal representation of
proofs as proof objects. Their architecture is organized into two layers: a kernel,
and a proof engine.

– The kernel is the cornerstone for correctness. Its central component is a
checker for verifying the consistency of formal theories, including definitions
and proofs. In particular, the checker guarantees that definitions and proofs
are well-typed, that there are no missing cases or undefined notions in defi-
nitions, and that all proofs are built from valid elementary logical steps and
make a correct use of assumptions.

– In contrast, the proof engine helps proof construction. The proof engine
embraces a variety of tools. The primary tools are a set of pre-defined tactics,
and a language for writing user-defined tactics. Tactics allow to reduce a
proof goal to simpler ones. When invoked on a proof goal A, a tactic will
compute a new set of goals A1 . . . An, and a proof that A1 ∧ . . .∧An =⇒ A.
At the end of each demonstration, the proof engine outputs a proof object.

Proof objects are independently checked by the kernel. Therefore, the proof
engine need not be trusted, and the validity of a formal proof—beyond the
accuracy of the statement itself—only depends on the correctness of the kernel.
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Pleasingly, kernels are extremely reliable programs with restricted functionalities
and solid logical foundations.

As with any other mathematical activity, formal proofs strive for elegance and
conciseness. In our experience, they also provide a natural setting for improving
proofs—in the case of cryptography, improvement can be measured by comparing
exact security bounds. Yet, what matters most about a formal proof is that
it provides a nearly absolute degree of assurance, without requiring expensive
human verification.

3 The Statement

The formal statement of the exact IND-CCA security of OAEP is displayed in Fig-
ure 1; it comprises the definition of the IND-CCA game and the simulation that
reduces security to the partial-domain one-wayness of the trapdoor permutation.
The security result is expressed as a lower bound on the success probability of
the reduction in terms of the success probability of an IND-CCA adversary. Both
probabilities are captured formally by expressions of the form Pr[G : E], where
G is a game and E an event. The definition of probabilities is taken from Au-
debaud and Paulin’s library [2], whereas the definition of games and events is
taken from the CertiCrypt framework [6]. In essence, games are probabilistic pro-
grams with calls to adversaries; formally, a game is given by a main command
and an environment that provides the code of algorithms and oracles—in con-
trast, adversaries are formalized as procedures with unknown code. Games have
a probabilistic semantics: given an interpretation of adversaries as probabilistic
programs, a game G is interpreted as a function �G� from initial states to dis-
tributions of final states. The semantics of games is taken from [6]. Events are
merely predicates over final states, and Pr[G : E] is simply the probability of E
in the distribution induced by �G� starting from an empty initial state.

The IND-CCA game involves an adversary A (modeled by procedures A1 and
A2), defines algorithms K for key generation and E for encryption, and gives the
adversary access to a decryption oracleD and to random oraclesG andH . We fol-
low the convention of typesetting global variables in boldface. The first line of the
main command initializes oracle memories; the lists LG and LH are used to sim-
ulate the random oraclesG andH , whereas the list LD is a ghost variable used to
track decryption queries and exclude invalid adversaries that query the decryp-
tion oracle with the challenge ciphertext during the second phase of the game.
The remainder of the game is standard; note that we set a flag ĉdef just before
giving the challenge ciphertext to the adversary in order to distinguish decryp-
tion queries made in the second phase of the game from those made in the first
phase. The code of the decryption oracle and the encryption and key generation
algorithms is a direct transcription of the informal definitions and is omitted.

The code of the game is complemented by a variable policy that declares which
variables are accessible to adversaries:A cannot read nor modify the values of sk,
LD, LG, LH , ĉdef , and ĉ, and cannot modify the value of pk; on the other hand,
the procedures representing the two phases of the adversary can communicate
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Game GIND-CCA :
LG, LH , LD ← nil;
(pk, sk) ← K(η);
(m0, m1) ← A1(pk);
b $← {0, 1};
ĉ ← E(mb);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

g $← {0, 1}n+k1 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
LD ← (ĉdef , c) :: LD;
(s, t) ← f−1(sk, c);
h ← H(s);
r ← t ⊕ h;
g ← G(r);
if [s ⊕ g]k1 = 0k1 then

return [s ⊕ g]n

else return ⊥

Game Gset-PD-OW :
(pk, sk) ← Kf (η);
s $← {0, 1}n+k1 ;
t $← {0, 1}k0 ;
S ← I(pk, f(pk, s‖ t))

Adversary I(pk, y) :
LG, LH ← nil;
pk ← pk;
(m0, m1) ← A1(pk);
ĉ ← y;
ĉdef ← true;
b ← A2(pk, ĉ);
return dom(LH)

Oracle G(r) :
if r �∈ dom(LG) then

g $← {0, 1}n+k1 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if ∃(s, h) ∈ LH , (r, g) ∈ LG.
c = f(pk, s‖ (r ⊕ h)) ∧
[s ⊕ g]k1 = 0k1

then return [s ⊕ g]n

else return ⊥

WF(A) ∧ Pr[GIND-CCA : |LG| ≤ qG + qD + 1 ∧ |LD| ≤ qD ∧ (true, ĉ) �∈ LD] = 1 =⇒

Pr
[
GIND-CCA : b = b

]
− 1

2
≤ Pr[Gset-PD-OW : s ∈ S] +

3qDqG + q2
D + 4qD + qG

2k0
+

2qD
2k1

Fig. 1. Formal statement of IND-CCA security of OAEP

through shared variables. An adversary A respecting the variable policy is said
to be well-formed; this is noted as WF(A).

The security statement itself takes the form of an implication, whose premise
fixes the class of adversaries considered. The statement considers well-formed ad-
versaries that make at most qD and qG queries to the decryption and G oracles
respectively1, and that do not query the decryption oracle with the challenge
ciphertext in the second phase of the game. Given an IND-CCA adversary A,
we show how to construct an inverter I that uses A as a subroutine to par-
tially invert the underlying trapdoor permutation. The success probability of
the inverter is given by Pr[Gset-PD-OW : s ∈ S], and is lower bounded by:

1
2

AdvIND-CCA
A − 3qDqG + q2D + 4qD + qG

2k0
− 2qD

2k1

where the IND-CCA advantage AdvIND-CCA
A of A is defined as usual as

2 Pr
[
GIND-CCA : b = b

]
− 1

1 The formal statement slightly relaxes this condition; it requires the length of LG

be at most qG + qD + 1 (the 1 accounting for the call to G needed to compute the
challenge ciphertext), so that the adversary could trade calls to D for calls to G.
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One additional remark is needed to relate the formal statement to the statement
of Theorem 1. Strictly, the formal statement reduces the security of OAEP not to
the partial-domain one-wayness of the permutation, but to its set partial-domain
one-wayness. Both notions are closely related (cf. [15]). We could have formally
proven the reduction to the former problem using basically the same argument,
but making the inverter return a value uniformly chosen from the domain of
LH instead; this accounts for the multiplicative factor q−1

H in Theorem 1. The
reduction from partial-domain one-wayness to set partial-domain one-wayness is
inessential to the presentation and can be proven independently and generically
for any inverter I.

4 The Proof

One claimed virtue of verifiable security is that there is no need to understand
its proof (only its statement) to trust the correctness of a result. Obviously, it
remains of interest to understand the thrust of the proof, and if one intends
to reproduce the proof—perhaps in a slightly different setting, or for a different
scheme, or with a different framework—its ultimate details. This section provides
an overview of the techniques used to conduct the proof and delves into the
details of one significant proof step, namely eliminating fresh oracle calls to G
in the decryption oracle. The code of the proof and all the infrastructure needed
to independently verify may be obtained from the authors upon simple request.

Tools. The proof makes an extensive use of the techniques provided by the
CertiCrypt framework, as reported in [6], and the additional techniques described
in [7]. The unifying formalism used by CertiCrypt to justify transitions between
games is a Relational Hoare Logic, whose judgments are of the form � G1 ∼ G2 :
Ψ ⇒ Φ, relating two games G1 and G2 w.r.t. two relations Ψ and Φ on states.
Such a judgment means that for any initial memories m1 and m2 satisfying the
precondition m1 Ψ m2, the distributions �G1� m1 and �G2� m2 are related by
the lifting of Φ to distributions2. Relational Hoare Logic subsumes observational
equivalence � G1 ∼X

Y G2, which is obtained by setting Ψ and Φ to =X and =Y ,
where X (resp. Y ) is a set of variables and =X (resp. =Y ) relates memories that
coincide on all variables in X (resp. Y ).

Both Relational Hoare Logic and observational equivalence statements allow
to express that two games perfectly simulate each other. Proofs can be conducted
using proof rules à la Hoare Logic—i.e., there is a rule for each construction of the
programming language and structural rules—or certified tactics that automate
program transformations such as dead code elimination, constant folding and
propagation, or procedure call inlining.

2 In the general case, we adopt the definition of lifting from probabilistic process al-
gebra, which is formulated in terms of a max-flow min-cut problem and involves
an existential quantification over distributions. For partial equivalence relations, the
definition coincides with the usual approach that requires the probability of equiva-
lence classes be the same.
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We use the logic of swapping statements of [7] to prove independence of values
from adversary’s view. We say that a value is independent from adversary’s view
at some point in a game if it can be resampled without modifying the mean-
ing of the game. The logic for swapping statements deals with Relational Hoare
judgments of the form � S; G1 ∼X

Y G2;S, where the games S; G1 and G2;S are re-
spectively obtained from games G1 and G2 by prefixing and postfixing some code
fragment S. Typically, S just resamples part of the state of the game; moreover,
the code of oracles in G1 and G2 may also differ in the random samplings they
perform. In general, the logic of swapping statements can be used to justify eager
and lazy sampling transformations—overcoming limitations in [6]. An example
of its application is given below.

In addition to Relational Hoare Logic, CertiCrypt formalizes the Fundamental
Lemma of Game-Playing [20,10,31], which is used to justify “lossy” steps where
two consecutive games in a proof structured as a sequence of games only diverge
when a failure event occurs. The Failure Event Lemma of [7] complements the
Fundamental Lemma of Game-Playing and allows to bound the probability of
a failure event triggered inside an oracle by a function of the number of calls
made to the oracle. There exist several specialized versions of this lemma; the
simplest instance focuses on games in which the failure event F is triggered by
an oracle O with a probability bounded by a constant ε, independent from the
argument with which it is called and of any previous calls. In this case, the
Failure Event Lemma bounds the probability of event F by qO ε, where qO is
a bound on the number of calls to O. While this instance of the Failure Event
Lemma suffices to justify most lossy transformations in the proof of OAEP, we
also needed to resort to the full generality of the lemma on two occasions; one
of them is outlined below.

Proof outline. Figure 2 outlines the structure of the proof; the first step from
GIND-CCA to G1 and the final step from G5 to Gset-PD-OW are not displayed. The
reduction successively eliminates all situations in which the plaintext extractor
used by the inverter to simulate decryption may fail.

Starting from game GIND-CCA, we use the logic of swapping statements to
fix the hash ĝ that G gives in response to the random seed in the challenge
ciphertext; the computation of the challenge ciphertext unfolds to:

r̂ $← {0, 1}k0; ŝ← ĝ ⊕ (mb ‖0k1); ĥ← H(ŝ); t̂← ĥ⊕ r̂; ĉ← f(pk, ŝ‖ t̂)
where ĝ is sampled from {0, 1}k−k0 before the first call to A. We then make
G respond to an adversary query r̂ with a freshly sampled value instead of ĝ;
this only makes a difference if flag bad is set in game G1. Since at this point ĝ
is uniformly distributed and independent from the adversary’s view, the value
ŝ computed as ĝ ⊕ (mb ‖ 0k1) is as well uniformly distributed and independent
from the adversary’s view. This removes the dependence of the adversary output
on the hidden bit b, and thus the probability of a correct guess is exactly 1/2.
Using the Fundamental Lemma we obtain the bound:

Pr
[
GIND-CCA : b = b

]
− Pr
[
G1 : b = b

]
= Pr
[
GIND-CCA : b = b

]
− 1

2
(1)

≤ Pr[G1 : bad] (2)
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Pr[G1 : bad] ≤ Pr[G2 : bad] +
q2
D + qDqG + qD

2k0
+

qD
2k1

Inline G and case analysis on whether
s ∈ dom(LH) in D.
Reject ciphertexts with a fresh g or h

Pr[G2 : bad] ≤ Pr[G3 : bad] +
qD
2k1

Eliminate assignments to LG in D
Update D to enforce new bound on LG

Game G1 :
LG, LH , LD ← nil;
(pk, sk) ← Kf ();
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
(m0, m1) ← A1(pk);
b $← {0, 1};
ĥ ← H(ŝ);
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true;

g $← {0, 1}k−k0 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD| ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD ;
(s, t) ← f−1(sk, c);
r ← t ⊕ H(s);
g ← G(r);
if [s⊕g]k1 = 0k1 then return [s⊕g]n else return ⊥

Game G2 :
LG, LH , LD ← nil;
(pk, sk) ← Kf ();
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
(m0, m1) ← A1(pk);
b $← {0, 1};
ĥ ← H(ŝ);
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true;

g $← {0, 1}k−k0 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD| ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD ;
(s, t) ← f−1(sk, c);
if s ∈ dom(LH) then

r ← t ⊕ H(s);
if r ∈ dom(LG) then

g ← LG[r];
if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else

if r = r̂ then bad ← true;
g $← {0, 1}k−k0 ; LG[r] ← g; return ⊥

else
r ← t ⊕ H(s);
if r /∈ dom(LG) then

g $← {0, 1}k−k0 ; LG[r] ← g
return ⊥

Game G3 :
LG, LH , LD ← nil;
(pk, sk) ← Kf ();
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
(m0, m1) ← A1(pk);
b $← {0, 1};
ĥ ← H(ŝ);
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true;

g $← {0, 1}k−k0 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD| ∨ qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD ;
(s, t) ← f−1(sk, c);
if s ∈ dom(LH) then

r ← t ⊕ H(s);
if r ∈ dom(LG) then

g ← LG[r];
if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else

if r = r̂ then bad ← true;
return ⊥

else
r ← t ⊕ H(s); return ⊥

Fig. 2. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.
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Pr[G3 : bad] ≤ Pr[G4 : bad] +
qDqG + qD

2k0

Inline calls to H in D
Eliminate assignments to LH in D

Pr[G4 : bad] ≤ Pr[G5 : badH ] +
qDqG + 2qD + qG

2k0

Eagerly sample the value of ĥ
Introduce badH in H
Bound bad in terms of badH

Game G4 :
LG, LH , LD ← nil;
(pk, sk) ← Kf ();
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
(m0, m1) ← A1(pk);
b $← {0, 1};
ĥ ← H(ŝ);
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true;

g $← {0, 1}k−k0 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD| ∨ qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD ;
(s, t) ← f−1(sk, c);
if s ∈ dom(LH) then

h ← LH [s]; r ← t ⊕ h;
if r ∈ dom(LG) then

g ← LG[r];
if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else

if r = r̂ then bad ← true;
return ⊥

else return ⊥

Game G5 :
LG, LH , LD ← nil;
(pk, sk) ← Kf ();
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
(m0, m1) ← A1(pk);
b $← {0, 1};
ĥ $← {0, 1}k0 ;
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true;

g $← {0, 1}k−k0 ;
LG[r] ← g

else g ← LG[r]
return g

Oracle H(s) :
if s �∈ dom(LH ) then

if s = ŝ then
badH ← true;

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD| ∨ qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD ;
(s, t) ← f−1(sk, c);
if s ∈ dom(LH) then

h ← LH [s]; r ← t ⊕ h;
if r ∈ dom(LG) then

g ← LG[r];
if [s⊕g]k1 = 0k1 then return [s⊕g]n

else return ⊥
else return ⊥

else return ⊥

Fig. 2. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.

The transition from G1 to G2 modifies the decryption oracle successively by
inlining the call to G, and by applying the Fundamental and Failure Event
lemmas to reject the ciphertext when there is a small chance it matches the
padding. Overall, we prove:

Pr[G1 : bad] ≤ Pr[G2 : bad] +
q2D + qDqG + qD

2k0
+
qD
2k1

(3)

Next, we eliminate fresh calls to G in the decryption oracle. These calls cor-
respond to the two assignments LG[r] ← g, since calls to G have been inlined
previously. We perform an aggressive elimination and remove both calls. As a
result, in game G3 the length of list LG (i.e. the number of calls to G) is bounded
by qG rather than qD + qG. This is the key to improve on the security bound



Beyond Provable Security Verifiable IND-CCA Security of OAEP 189

of Pointcheval [27], who only removes the second call. The proof relies on the
logic of swapping statements to show that values of discarded calls are “uniformly
distributed and independent from the adversary’s view”. Details appear in next
paragraph. Overall, we prove:

Pr[G2 : bad] ≤ Pr[G3 : bad] +
qD
2k1

(4)

Likewise, we eliminate calls to H in D, yielding a new game G4 in which the
decryption oracle does not add any new values to the memories of G and H .
Using the Fundamental and Failure Event lemmas, we obtain:

Pr[G3 : bad] ≤ Pr[G4 : bad] +
qDqG + qD

2k0
(5)

We next fix the value ĥ that oracle H gives in response to ŝ, and then make
H return a freshly sampled value instead of ĥ. This allows us to bound the
probability of bad in terms of the probability of a newly introduced event badH ,
that indicates whether the adversary queried the value of H(ŝ). The proof uses
the hypothesis that A2 cannot query the decryption oracle with the challenge
ciphertext, and yields:

Pr[G4 : bad] ≤ Pr[G5 : badH ] +
qDqG + 2qD + qG

2k0
(6)

Finally, we prove that the probability of badH in G5 is upper bounded by the
probability that the inverter I in Figure 1 succeeds in partially inverting the
permutation f . The proof uses the (standard, non-relational) invariant on G5:

badH =⇒ ŝ ∈ dom(LH)

The inverter I that we build (shown in Fig. 1) gives its own challenge y as the
challenge ciphertext to the IND-CCA adversary A. The task of the inverter is
to return a list of values containing the partial preimage of its challenge which,
stated in terms of the variables of game G5, is ŝ. Thus:

Pr[G5 : badH ] ≤ Pr[G5 : ŝ ∈ dom(LH)] = Pr[Gset-PD-OW : s ∈ S] (7)

Where the last equality follows from an algebraic equivalence that we prove as
a lemma:

ĥ $← {0, 1}k0; t̂← ĥ⊕ r̂ ∼{r̂}
{ĥ,t̂,r̂} t̂ $← {0, 1}k0; ĥ← t̂⊕ r̂

Putting together Equations (1)–(7) concludes the proof of the statement in
Figure 1.

Detailed proof of the transition from G2 to G3. We use the five intermediate
games shown in Figure 3. The first transition from G2 to G1

2 consists in adding
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Game G1
2 G2

2 :
LG, LH , LD ← nil;
(pk, sk) ← Kf ();
(m0, m1) ← A1(pk);
b $← {0, 1};
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
ĥ ← H(ŝ);
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true

g $← {0, 1}k−k0 ;
LG[r] ← (false, g)

else
(d, g) ← LG[r];
LG[r] ← (false, g)

return g

Oracle H(s) :
if s /∈ dom(LH) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD; (s, t) ← f−1(sk, c);
if s ∈ dom(LH ) then

r ← t ⊕ H(s);
if r ∈ dom(LG) then

(d, g) ← LG[r];
if d = true then

if [s ⊕ g]k1 = 0k1 then
bad1 ← true;
return [s ⊕ g]n return ⊥

else return ⊥
else

if [s ⊕ g]k1 = 0k1 then return [s ⊕ g]n

else return ⊥
else

if r = r̂ then bad ← true;
g $← {0, 1}k−k0 ; LG[r] ← (true, g);
return ⊥

else
r ← t ⊕ H(s);
if r �∈ dom(LG) then

g $← {0, 1}k−k0 ; LG[r] ← (true, g);
return ⊥

Game G3
2 G4

2 G5
2 :

LG, LH , LD ← nil;
(pk, sk) ← Kf ();
(m0, m1) ← A1(pk);
b $← {0, 1};
r̂ $← {0, 1}k0 ;
ŝ $← {0, 1}k−k0 ;
ĥ ← H(ŝ);
t̂ ← ĥ ⊕ r̂;
ĉ ← f(pk, ŝ‖ t̂);
ĉdef ← true;
b ← A2(pk, ĉ)
L ← LG;
while L �= nil do

(r, (b, g)) ← head(L);
if b = true then

g $← {0, 1}k−k0 ;
LG[r] ← (true, g)

L ← tail(L)

Oracle G(r) :
if r �∈ dom(LG) then

if r = r̂ then
bad ← true

g $← {0, 1}k−k0 ;
LG[r] ← (false, g)

else
(d, g) ← LG[r];
if d = true then

g $← {0, 1}k−k0 ;

g $← {0, 1}k−k0 ;
LG[r] ← (false, g);
bad2 ← P (g, r)

return g

Oracle H(s) :
if s /∈ dom(LH) then

h $← {0, 1}k0 ;
LH [s] ← h

else h ← LH [s]
return h

Oracle D(c) :
if (ĉdef ∧ ĉ = c) ∨ qD < |LD | ∨ qD + qG < |LG|
then return ⊥
else

LD ← (ĉdef , c) :: LD; (s, t) ← f−1(sk, c);
if s ∈ dom(LH ) then

r ← t ⊕ H(s);
if r ∈ dom(LG) then

(d, g) ← LG[r];
if d = true then return ⊥
else

if [s ⊕ g]k1 = 0k1 then return [s ⊕ g]n

else return ⊥
else

if r = r̂ then bad ← true;
g $← {0, 1}k−k0 ; LG[r] ← (true, g);
return ⊥

else
r ← t ⊕ H(s);
if r �∈ dom(LG) then

g $← {0, 1}k−k0 ; LG[r] ← (true, g);
return ⊥

P (g, r) def= ∃(d, c) ∈ LD . let (s, t) = f−1(sk, c) in s ∈ dom(LH ) ∧ r = t ⊕ LH [s] ∧ [s ⊕ g]k1 = 0k1

Fig. 3. Games in the transition from G2 to G3. Fragments of code inside a box appear
only in the game whose name is surrounded by the matching box.

a Boolean flag in the memory of G that will be used to record whether a query
originated directly from the adversary or from the decryption oracle. The de-
cryption oracle tests this tag when accessing the memory of G: if the ciphertext
queried is valid and its random seed appeared in a previous decryption query,
but not yet in a direct query to G, the decryption oracle raises a flag bad1.
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We show that this can happen with probability 2−k1 for any single query, since
the random seed is uniformly distributed and independent from the adversary’s
view. In this case, the decryption oracle can safely reject the ciphertext, as done
in game G2

2. The proof proceeds in two steps. We first show that game G2 is
observationally equivalent to game G1

2 using the relational invariant

LG〈1〉 = map (λ(r, (b, g)).(r, g)) LG〈2〉

where e〈1〉 (resp. e〈2〉) denotes the value that an expression e takes in the left
hand side (resp. right-hand side) program in an equivalence. Therefore,

Pr[G2 : bad] = Pr
[
G1

2 : bad
]

Game G2
2 is identical to G1

2, except that it rejects ciphertexts that raise the bad1
flag. Applying the Fundamental Lemma, we show that

Pr
[
G1

2 : bad
]
≤ Pr
[
G2

2 : bad
]
+ Pr
[
G2

2 : bad1
]

Our next goal is to show that answers to queries tagged as true can be resampled.
However, one cannot directly apply the logic of swapping statements at this stage
to resample these answers in G because flag bad1 is set on D and depends on
them. The solution is to introduce a new game G3

2 that sets another flag bad2
in the code of G instead of setting bad1 in the decryption oracle3. Flag bad2
is raised whenever the adversary queries G with the random seed of a valid
ciphertext previously submitted to the decryption oracle. We prove that games
G2

2 and G3
2 satisfy the relational invariant:

bad1〈1〉 =⇒ (bad2 ∨ φ)〈2〉

where the predicate φ is defined as

∃(d, c) ∈ LD. let (s, t) = f−1(sk, c), r = t⊕LH [s] in
r ∈ dom(LG) ∧ s ∈ dom(LH) ∧ fst(LG[r]) = false ∧ [s⊕ snd(LG[r])]k1 = 0k1

Therefore:

Pr
[
G2

2 : bad
]
+ Pr
[
G2

2 : bad1
]
≤ Pr
[
G3

2 : bad
]
+ Pr
[
G3

2 : bad2 ∨ φ
]

We now consider game G4
2 where oracle G resamples the answers to queries

previously sampled in the decryption oracle. As such answers are uniformly
distributed and independent from the adversary’s view, the logic for swapping
statements can be used to establish that this transformation preserves semantics.
Hence:

Pr
[
G3

2 : bad
]
+ Pr
[
G3

2 : bad2 ∨ φ
]

= Pr
[
G4

2 : bad
]
+ Pr
[
G4

2 : bad2 ∨ φ
]

3 As bad1 is not set anymore, we simplify the code of D by coalescing branches in the
innermost conditional.
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Note that in order to prove semantic equivalence we need to resample the values
in LG associated to queries tagged as true—made by the D—at the end of the
game. Using the Failure Event Lemma of [7], we upper bound the probability of
bad2 ∨ φ in G4

2:
Pr
[
G4

2 : bad2 ∨ φ
]
≤ qD

2k1

We are now only interested in bounding bad, so we can remove as dead code the
fragment of code at the end of G4

2 that resamples values in LG, obtaining G5
2,

and prove that
Pr
[
G4

2 : bad
]

= Pr
[
G5

2 : bad
]

We finally prove that game G5
2 is observationally equivalent to G3, in which the

code for the oracle G is reverted to its original form and the decryption oracle
no longer tampers with the memory of G. Thus,

Pr[G2 : bad] ≤ Pr
[
G5

2 : bad
]
+
qD
2k1

= Pr[G3 : bad] +
qD
2k1

��

Comparison with the security bound in [27]. Pointcheval obtains a slightly dif-
ferent bound:

ε′ ≥
(
ε

2
− 4qDqG + 2q2D + 4qD + 8qG

2k0
− 3qD

2k1

)
We marginally improve on this bound by reducing the coefficients. As previously
mentioned, the improvement stems from the transition from G2 to G3, where we
eliminate both calls to G, whereas only the second call is eliminated in [27].
In fact, eliminating both calls is not only useful to give a better bound, but
also essential for the correctness of the proof. Indeed, the transition from G3

to G4 would not be possible if D modified the memory of G. Concretely, the
justification of Equation (27) in [27] contains two minor glitches: firstly, the
remark “which just cancels r′ from LG” oversees the possibility of this removal
having an impact on future queries. Secondly, “the probability for r′ to be in LG

is less than qG/2k0” oversees that the length of LG is upper bounded by qG + qD
rather than qG, as the decryption oracle still adds values to LG; a correct bound
for this probability in [27] is (qG + qD)/2k0 .

5 Perspectives

The CertiCrypt framework consists of over 30,000 lines of Coq. Less than 5%
of the development is part of the trusted base, covering the definition of the
semantics, of well-formed adversaries, and of probabilistic polynomial-time pro-
grams. The remaining 95% consist of proof tools, including the mechanization of
common program transformations, of observational equivalence and Relational
Hoare Logic, and of the Fundamental Lemma of Game-Playing. The logic of
swapping statements, and the Failure Event Lemma, that have been developed
specifically for the purpose of this proof, account for about 1,300 and 500 lines
of Coq, respectively.
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The verifiable proof is over 10,000 lines of Coq scripts, and can be checked fully
automatically using Coq version 8.2pl1, the latest, as yet unreleased, version of
Audebaud and Paulin’s library of probabilities, and the current implementation
of the CertiCrypt framework. Most importantly, less than 1% of the verifiable
proof needs to be trusted, namely the formal statement of Figure 1.

The structure of the formal proof is more fine grained than the outline of
Figure 2, and contains about 30 games. For example, just the transition from
GIND-CCA to G1 overviewed in Section 4 accounts for 10 games. Decomposing
transitions into intermediate games is mostly a matter of taste, but common
wisdom in formal proofs is to introduce many intermediate lemmas with short
proofs rather than a few lemmas with intricate proofs.

The overall proof was completed within about 6 man-months. While substan-
tial, and perhaps even a bit discouraging for a scientist without experience in
formal proofs, the effort required to complete the proof is reasonable in compari-
son with other large-scale formalization projects. Moreover, a significant amount
of work was devoted to pinpoint the details of the proof, and to find a means
to capture formally “independence from the adversary’s view”. We expect that
formalizing related proofs in the line of [4,13] would now be significantly faster.

Still, the time and expertise required for developing formal proofs currently
make verifiable security an exclusive option that might be considered for proving
standards, but that is otherwise too costly for cryptographers to use in their
own research. In an attempt to make verifiable security a reasonable (and we
believe profitable) alternative for the working cryptographer, we are building
dedicated proof engines to which most of the construction of a verifiable proof
could be delegated. Preliminary experiments suggest that most formalizations in
CertiCrypt, including our proof of OAEP and the proofs in [6,33], rely on relational
invariants that fall in a decidable fragment of predicate logic, and that can be
established through simple heuristics. We are currently developing a front-end
to CertiCrypt that extracts verifiable proofs from a proof sketch submitted by the
user consisting of a sequence of games and statements that justify transitions,
including relational invariants.

6 Related Work

The motivations behind verifiable security appear in Bellare and Rogaway’s sem-
inal article on code-based game-playing proofs [10], and in Halevi’s manifesto for
computer-aided cryptographic proofs [20]. However, the most extensive realiza-
tion of verifiable security to date is CertiCrypt [6], which has been used previously
to build verifiable security proofs of the existential unforgeability of FDH signa-
tures (both for the conventional and optimal bounds) and of semantic security
of OAEP. CertiCrypt is particularly suitable for formalizing proofs involving alge-
braic and number-theoretic reasoning, since in addition to automating common
techniques used in game-based cryptographic proofs, it gives access to the full
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expressive power of the logic of Coq and to the many available libraries and
theories developed using it. There is a leap in complexity between the proof of
IND-CPA security of OAEP and the proof of IND-CCA security presented here.
Specifically, tools such as the Failure Event Lemma and the logic of swapping
statements were developed to tackle difficulties arising in some transitions in
the latter proof. In another attempt to build a system that supports verifiable
security, Backes, Berg and Unruh [3] formalize a language for games in the
Isabelle proof assistant, and prove the Fundamental Lemma; however, no specific
example is reported. Nowak [25], and Affeldt, Marti and Tanaka [1] also report
on preliminary experiments with machine-checked proofs.

CryptoVerif [11] is a prover for exact security of cryptographic schemes and
protocols in the computational model; it has been used to verify Kerberos [12]
and the conventional bound of FDH [11]. CryptoVerif trades off generality for
automation, and consequently adopts a non-standard axiomatization of crypto-
graphic primitives based on term rewriting. As a result, sequences of games can
sometimes be inferred automatically; yet, at the same time, the connection be-
tween CryptoVerif proofs and standard cryptographic proofs is not as strong as
one would desire. Finally, CryptoVerif in its current form acts more like a proof
engine than a proof checker, and thus does not comply with the objective of
verifiable security—see however [17] for preliminary work on certifying success-
ful runs of CryptoVerif. Courant et al. [14] have also developed an automated
prover for proving asymptotic security of encryption schemes based on one-way
functions. Their prover is able to handle many schemes from the literature, but
it cannot handle OAEP. As CryptoVerif, their tool is a proof engine and does
not generate verifiable proofs. More recently, Barthe et al. [5] propose a com-
putationally sound logic to reason about cryptographic primitives. Their logic
captures many common reasoning steps in cryptographic proofs and has been
used to prove the exact security of PSS. There is no tool support for this logic.

Somehow surprisingly, Koblitz [23] recently published an article that vehe-
mently dismisses relying on computer-assisted proof building and proof check-
ing. While Koblitz rightfully points to some weaknesses of existing tools—e.g.
lack of automation and unduly verbosity—a closer look at the article reveals a
fragmentary knowledge of the state-of-the-art in machine-checked proofs, and a
profound misconception on the role of formal verification.

7 Conclusion

Verifiable security goes beyond provable security by providing independently ver-
ifiable evidence that proofs are correct. We used the Coq proof assistant to build
the first verifiable proof of IND-CCA security of OAEP. Our proof is a strong
indicator that proof assistants are mature enough to support the construction
of cryptographic proofs, and gives strong empirical evidence that dedicated tac-
tics could improve automation and reduce the length and development time of
formal proofs. Making verifiable security an appealing alternative for working
cryptographers is the next objective.
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6. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)
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Abstract. This paper uses new types of local collisions named one-
message-word local collisions to construct meet-in-the-middle preimage
attacks on two double-branch hash functions RIPEMD and RIPEMD-
128, and obtains the following results.

1) A pseudo-preimage and second preimage attacks on the first 47 steps
of RIPEMD (full version: 48 steps) are proposed with complexities
of 2119 and 2124.5 compression function computations, respectively.
The number of the attacked steps is greatly increased from previous
preimage attacks on the first 33 steps and intermediate 35 steps.

2) A pseudo-preimage and preimage attacks on intermediate 36 steps of
RIPEMD-128 (full version: 64 steps) are proposed with complexities
of 2123 and 2126.5 compression function computations, respectively,
while previous attacks can work at most intermediate 35 steps.

Keywords:RIPEMD,RIPEMD-128,Meet-in-the-Middle,One-Message-
Word Local Collision.

1 Introduction

Cryptographic hash function is one of the most basic primitives in modern cryp-
tography which supports the security of various systems. Traditionally, hash
functions producing n-bit digests are required to have (second) preimage resis-
tance up to 2n computations.

Recently cryptanalysts are paying a lot of attentions to evaluating preimage
resistance of dedicated hash functions. Several hash functions such as MD4,
MD5 and Tiger have been broken in the sense of preimage resistance [10,13,7].
Step-reduced variants of other hash functions such as SHA-0, SHA-1 and SHA-2
have been found weakness in the sense of preimage resistance [4,2]. Among these
preimage attack results, most follow a framework named Meet-in-the-Middle
Preimage Attack, which is devised by Aoki and Sasaki [3] and works efficiently
on narrow-pipe Merkle-Damg̊ard hash functions such as MD4-family.
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However, this framework seems to have a limitation on its applicability to a
double-branch Merkle-Damg̊ard hash function, whose compression function com-
putes two branches of transformations and generates the output by mixing the
results of the two branches. Because the internal state size of such a compression
function becomes 2n bits, a trivial meet-in-the-middle pseudo-preimage attack
on it costs at least 2n computations, which has no advantage compared to the
brute force attack. Thus it is difficult to apply the meet-in-the-middle preimage
attack framework on double-branch hash functions.

This paper will deal with preimage resistance of two famous double-branch
hash functions RIPEMD [6] and RIPEMD-128 [5]. RIPEMD-128 has been stan-
dardized by ISO/IEC. Using several new observations found by us, we will show
how to make it more feasible to tailor the meet-in-the-middle preimage attack
framework to attack these two hash functions.

Related works. Wang et al. proposed the first preimage attack on RIPEMD
at ISPEC2009 [15], and claimed preimage attacks on the first 26 steps and in-
termediate 29 steps of RIPEMD1. Later at ACISP2009, Sasaki et al. firstly tried
to apply the meet-in-the-middle preimage attack framework on RIPEMD [14],
and found improved preimage attacks on the first 33 steps and intermediate
35 steps of RIPEMD with complexities of 2125.5 and 2113 compression function
computations, respectively.

Independently from our work, recently Ohtahara et al. published preimage at-
tacks on RIPEMD-128 at INSCRYPT2010 [11]. They proposed preimage attacks
on the first 33 steps and intermediate 35 steps of RIPEMD-128 with complexities
of 2124.5 and 2121 compression function computations, respectively.

We notice that a preimage attack on a 4-branch hash function named FORK-
256 was published [12] at INDOCRYPT2007. This attack is based on a particular
weakness of the message schedule algorithm of FORK-256. It seems hard to apply
the same attack approach to RIPEMD or RIPEMD-128.

Our contributions. This paper will propose improved preimage attacks on
RIPEMD and RIPEMD-128. First of all, we will revisit Sasaki et al.’s strategies
on applying the meet-in-the-middle preimage attack framework to double-branch
hash functions [14], and reveal two underlying restrictions which limit the num-
ber of the attacked steps. Then we will present new observations to relax these
two restrictions. More precisely, our new observations are constructing local col-
lisions by using only one message word, which are named one-message-word
local collisions in this paper. We will use two types of one-message-word local
collisions: 1) one-message-word local collisions in a single branch; and 2) one-
message-word local collisions spanning the first several steps of the two branches.
Finally we succeed to increase the number of the attacked steps. The results of
our attacks and a comparison with previous attacks are summarized in Table 1.
1 Their attacks seem to contain a small flaw: they used a message-word order exactly

the same as that of MD4, whereas RIPEMD uses different one. If the correct message-
word order is used, their attack seems to work on more steps of RIPEMD; the first
31 steps instead of 26 steps.
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Table 1. A Comparison with Previous Preimage Attacks

Hash Function #Steps Pseudo-Preimage (Second) Preimage Memory Reference
Attacks Attacks

RIPEMD 26 2110 2115.2 223 [15]
29 (*)
33 2121 2125.5 210 [14]
35 (*) 296 2113 235

47 (s) 2119 2124.5 210.5 Ours
RIPEMD-128 33 2119 2124.5 212 [11]

35 (*) 2112 2121 216

36 (*) 2123 2126.5 26.5 Ours

‘*’ means that the attacked steps start from some intermediate step.
‘s’ means that the attack can only be applied to find second preimages.

2 Specifications and Related Works

2.1 RIPEMD Hash Function

RIPEMD [6] is a Merkle-Damg̊ard hash function using a double-branch compres-
sion function. We will give a brief description. For the completed specification,
refer to [6].

To produce a RIPEMD digest for a message M , first pad M to be a multiple
of 512 bits long following the standard padding method of the Merkle-Damg̊ard
mode. Then divide the padded message into 512-bit blocks M1||M2|| · · · ||Mt.
Finally hash these blocks by iterating a compression function (CF ): hi ←−
CF (hi−1,Mi), where h0 is a public constant. ht will be a RIPEMD digest of M .
All his (0 ≤ i ≤ t) are 128 bits long.

RIPEMD compression function. First divide hi−1 and Mi into 32-bit vari-
ables Q−3||Q0||Q−1||Q−2 and X0||X1|| · · · ||X15 respectively. Then process them
through two branches of MD4-compression-function-like transformations. Each
branch updates Q−3||Q0||Q−1||Q−2 by three round functions, each round func-
tion iterates a step function sixteen times, and each step function updates one
internal state word Qi by using one message word Xj . The step function is

Qi = (Qi−4 + F (Qi−1, Qi−2, Qi−3) +Xj +Ki) ≪ Si,

where Ki and Si are public constants, ≪ Si is a cyclic rotation to left by Si

bits, and F is a public Boolean function. The two branches differ in the values
of the constants {Ki}. In the rest of this paper, we will denote by Ki and K ′

i

the constants in the left branch and in the right branch respectively. Similarly
we denote by Qi and Q′

i the internal state words in the left branch and in the
right branch respectively.2 Finally mix Q−3||Q0||Q−1||Q−2, Q45||Q48||Q47||Q46
and Q′

45||Q′
48||Q′

47||Q′
46 to produce hi as follows.

2 In order to show that the two branches share the same initial state words, we will
still use the notation Q−3||Q0||Q−1||Q−2 as the initial state in the right branch.
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Table 2. Parameters of RIPEMD Compression Function

j of Xj 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13 , 14, 15
First Round Ki (K′

i) 0x00000000 (0x50a28be6)
F (Qi−1 ∧ Qi−2) ∨ (¬Qi−1 ∧ Qi−3)
Si 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8

j of Xj 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 14, 2, 11, 8
Second Round Ki (K′

i) 0x5a827999 (0x00000000)
F (Qi−1 ∧ Qi−2) ∨ (Qi−2 ∧ Qi−3) ∨ (Qi−1 ∧ Qi−3)
Si 7, 6, 8, 13, 11, 9, 7, 15, , 7, 12, 15, 9, 7, 11, 13, 12

j of Xj 3, 10, 2, 4, 9, 15, 8, 1, 14, 7, 0, 6, 11, 13, 5, 12
Third Round Ki (K′

i) 0x6ed9eba1 (0x5c4dd124)
F Qi−1 ⊕ Qi−2 ⊕ Qi−3

Si 11, 13, 14, 7, 14, 9, 13, 15, 6, 8, 13, 6, 12, 5, 7, 5

hi = (Q0+Q47+Q′
46)||(Q−1+Q46+Q′

45)||(Q−2+Q45+Q′
48)||(Q−3+Q48+Q′

47).

The details of Ki, Si, F and Xj are shown in Table 2.

2.2 RIPEMD-128 Hash Function

RIPEMD-128 [5] follows the same design framework with RIPEMD. The differ-
ences between RIPEMD-128 and RIPEMD exist in the number of rounds and
the instantiation of the parameters in every round. The parameters in every
round of RIPEMD-128 are detailed in Appendix A.

2.3 Meet-in-the-Middle Preimage Attack Framework

We briefly describe the framework of the meet-in-the-middle preimage attack.
For a completed description, refer to [3]. First the attacker builds a pseudo-
preimage attack on compression function, and then extends it to a preimage
attack on hash function.

Pseudo-preimage attack on a compression function. The attacker divides
the computation of a compression function into two independent computations,
and then searches a pseudo-preimage by matching the outputs of the two in-
dependent computations. Such a strategy transforms the problem of finding a
pseudo-preimage to another problem of finding a collision between the two inde-
pendent computations. Thus the complexity can be reduced, and the attack is
faster than the brute force attack. Suppose that each independent computation
has l free bits. The complexity of finding a pseudo-preimage will become 2n−l.

Usually the attacker will separate a compression function into two parts so
that one part will not involve a message word Xi, and the other part will not
involve a message word Xj (i �= j). Xi and Xj are named neutral message words.
These two parts can be independently computed as follows: fix all the message
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words except Xi and Xj , and compute the former part by randomly choosing
the value of Xj and the latter part by randomly choosing the value of Xi.

Preimage attacks on a hash function. The attacker first generates several
pseudo-preimages {(hi,M i)} of the target digest, and then links h0 to the values
of {hi} exhaustively. If a message linking h0 to one hi is successfully found, a
preimage of the target digest has been generated. If finding a pseudo-preimage
needs 2n−l computations, the complexity of preimage attack will be 2n− l

2+1.

Overall, the existence of at least 2 well-positioned message words is essential for
applying the meet-in-the-middle preimage attack framework. When l > 2 holds,
the meet-in-the-middle preimage attack will be faster than the brute force attack.

2.4 Revisit Sasaki et al.’s Meet-in-the-Middle Preimage Attack
Strategies on Double-Branch Hash Functions [14]

This section will mainly revisit one of Sasaki et al.’s attack strategies, which is
illustrated in Figure 1. They used the technique Local Collision (LC).3

Loosely speaking, a local collision between steps i and j means that the values
of the message words, which are used between steps i and j, can be adaptively
modified without influencing the values of the internal states right before step i
and at step j. As shown in Figure 1, Sasaki et al. use two message words Xi and
Xt to construct a local collision in a single branch, e.g. the left branch. Thanks
to this local collision, the value of the initial state h will be a constant. Thus the
two computations are independent.

Fixed

Fixed

LC
Xi

Xt

h

Xj

h

start2 match?

const

const

Fixed

start1

Xi

Xt

Xj

�

Fig. 1. Sasaki et al.’s Attack Strategy [14]

Xi Xi

Xj

Xj

Xi Xi

Xj

Xj

h

h (depend on Xi)

LC1

Fixed Fixed

LC2

Fixed

start2

match?

start1

�

h

Fig. 2. Our Attack Strategy

3 LC is the terminology named by [14]. The technique Tunnel proposed by Klima [9]
can play the same role.
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There are two restrictions on the power of their attack strategy, which are
detailed below.

Restriction I. Using two-message-word local collisions limits the candidate
space of the potential neutral message words. As we can see, three message
words (Xi, Xt) and Xj are used as the neutral message words. Thus the
attacker must find three well-positioned message words in order to apply the
meet-in-the-middle preimage attack framework.

Restriction II. Typically a message word will be used in every round in each
branch. So it is obvious that the number of the attacked steps cannot bypass
two rounds if the attack target is from the first step. Otherwise, the message
words Xi and Xt will surely appear in the computation related to Xj .

3 New Observations

This section will use several new observations to relax the two restrictions on
Sasaki et al.’s attack strategy detailed in Section 2.4.

3.1 Relax Restriction I: One-Message-Word Local Collision in a
Single Branch

In order to enlarge the candidate space of the potential neutral message words,
we introduce a new type of local collisions: one-message-word local collision in
a single branch.

Suppose that a message word Xi is used at steps ii and i2 (i1 < i2) in a
branch. If the value of Xi can be adaptively modified without influencing the
values of the internal states right before step i1 and at step i2, we will call that
Xi constructs a one-message-word local collision between steps i1 and i2 in that
branch (Refer to Section 4.1 for a concrete example).

As we can see, using such one-message-word local collisions, the attacker only
needs to find two well-positioned neutral message words, which is not covered by
previous Sasaki et al.’s attack strategy. Therefore we can enlarge the candidate
space of the potential neutral message words.

Efficiency of such local collisions. We will use a toy example to show both
the feasibility and the freedom degree of such a one-message-word local collision.
We stress that a general case can be easily derived from this example. Suppose
that a message wordXj is used at steps i and i+4 in the left branch of RIPEMD.
How to construct a one-message-word local collision using Xj is detailed as
below.

Step i− 1. Set the value of the internal state at this step as a constant satisfying
Qi−4 + F (Qi−1, Qi−2, Qi−3) +Ki = 0x00000000.

Step i. The internal state wordQi is computed as (Qi−4+F (Qi−1, Qi−2, Qi−3)+
Ki +Xj) ≪ Si = Xj ≪ Si.
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Step i+ 1. Use the absorption properties of F to keep the internal state word
Qi+1 as a constant, namely independent from the value of Qi.

Step i+ 2. Similarly to step i+ 1, Qi+2 is a constant.
Step i+ 3. Similarly to step i+ 1, Qi+3 is a constant.
Step i+ 4. From Qi+4 = (Qi +Xj + F (Qi+1, Qi+2, Qi+3) +Ki+4) ≪ Si+4, if

the value of Xj can be adaptively modified without changing the value of
Qi+Xj , Qi+4 will be a constant, which means the internal state at step i+4
Qi+1||Qi+4||Qi+3||Qi+2 is a constant. Thus a local collision between steps i
and i+ 4 is constructed.

Another concern is about the freedom degree of Xj on keeping Xj + Qi, more
precisely Xj + (Xj ≪ Si), as a constant. We point out that the freedom degree
of Xj is related to the value of gcd(32, Si). Denote gcd(32, Si) mod 32 by g.
The freedom degree of Xj should be 2g to make the value of Xj + (Xj ≪ Si)
be the constant 0xffffffff. This can be easily verified. Note that g may be
1, 2, 4, 8 or 16. Pick Si = 24 and g = 8 as an example.4 Divide Xj into four
bytes Xj,3||Xj,2||Xj,1||Xj,0. From Xj + (Xj ≪ 24) = (Xj,3||Xj,2||Xj,1||Xj,0) +
(Xj,0||Xj,3||Xj,2||Xj,1) = 0xffffffff, we can derive the following relations:
Xj,1 = 0xff−Xj,0; Xj,2 = 0xff−Xj,1 = Xj,0; and Xj,3 = 0xff−Xj,2 = 0xff−
Xj,0. If we adaptively choose the values of Xj,3, Xj,2 and Xj,1 with the value
of Xj,0 following these relations, (Xj,3||Xj,2||Xj,1||Xj,0)+(Xj,0||Xj,3||Xj,2||Xj,1)
will always be 0xffffffff no matter what the value of Xj,0 is. So the freedom
degree of Xj for the local collision is at least 28. We stress that the other cases of
g can also be easily verified. Due to the limited space, we will omit the details.

3.2 Relax Restriction II: One-Message-Word Local Collisions
Spanning the Two Branches

This section will propose another type of one-message-word local collisions which
span the first several steps of the two branches.

Suppose that a message word Xi is used at step t in both branches. If adap-
tively modifying the value ofXi will not influence the values of the internal states
at step t in both branches, we will call that Xi constructs a one-message-word
local collision spanning the first t steps of the two branches.

Efficiency of such local collisions. We also use an example to show both the
feasibility and freedom degree of such a local collision. In RIPEMD, X0 is used
at step 1 in both the left and the right branches. The computation is as follows.

Q1 = (X0 +Q−3 + F (Q0, Q−1, Q−2) +K0) ≪ 11;
Q′

1 = (X0 +Q−3 + F (Q0, Q−1, Q−2) +K ′
0) ≪ 11;

As long as the values of X0 +Q−3, Q0, Q−1 and Q−2 are kept as a constant, the
values of the internal states after step 1 in both branches will be constants. So
4 This example is actually used in our attack on RIPEMD, which is described in

Section 4.1.
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we will adaptively modify the values of X0 and Q−3 to construct a one-message-
word local collision spanning the first step of the two branches. The freedom
degree of X0 in this local collision is obviously 232.

In next section, we will show how exactly to use such a one-message-word
local collision to make the number of the attacked steps bypass two rounds even
when the target is from the first step.

3.3 Our Attack Strategy

This section describes our attack strategy using the two types of one-message-
word local collisions.

As shown in Figure 2, Xj and Xi are chosen as the neutral message words.
Denote the two steps, where Xj is used, as steps j1 and j2 (j1 < j2). Similarly
denote the two steps, where Xi is used, as steps i1 and i2 (i1 < i2).
Xj will construct a one-message-word local collision LC1 between steps j1

and j2 in a single branch, e.g. the left branch, following the technique in Section
3.1. Xi will construct another one-message-word local collision LC2 spanning
the first i1 steps of the two branches, following the technique in Section 3.2.

We are able to carry out two independent computations: 1) one computation
starts from step j1 until step i2 − 1 in the right branch, which depends on Xj

but is independent from Xi; 2) the other computation starts with a forward
computation from step i2 in the left branch, then goes through the feed-forward
operation, and finally ends with a backward computation until step i2 in the right
branch, which depends on Xi but is independent from Xj . As we can see, these
two computations are independent, and can be matched in the right branch.

We stress that each of Xi and Xj appears at least twice in either the left or
the right branches. Thus the number of the attacked steps in our attack strategy
will bypass two rounds, even when the target is from the first step.

4 Our Attacks on 47-Step RIPEMD

This section presents our pseudo-preimage attack on 47-step RIPEMD compres-
sion function, which can be converted to a second preimage attack on 47-step
RIPEMD hash function. The neutral message words we use are X0 and X12.
The overview of our pseudo-preimage attack is given in Figure 3. Note that our
attack target is the first 47 steps, so the last step is erased. X12 constructs LC1
(the same notation as Figure 2) in the left branch, which is detailed in Section
4.1. X0 constructs LC2 (the same notation as Figure 2), which is detailed in
Section 4.2.

4.1 The Details of LC1

X12 locates at steps 13 and 25 in each branch of RIPEMD. In order to construct
LC1, we will use the absorption properties of the Boolean function to control
the influence of modifying X12 to the internal state words between steps 13 and
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Fig. 3. Overview of Our Pseudo-Preimage Attack on RIPEMD

Table 3. All the Conditions for LC1

Step Index i i + 1 i + 2
i = 14 Q12 = Q11; Q14 = 0x00000000; Q15 = 0xffffffff;
i = 18 Q16 = Q15; Q18 = Q16; Q19 = Q18;
i = 22 Q20 = Q19; Q22 = Q20; Q23 = Q22;

25, which is shown in Figure 4. More precisely, we will set conditions on the
internal state words, which are independent from X12 between steps 13 and 25.
All the conditions are listed in Table 3. Here we pick step 14 as an example to
show how we set conditions. All the other conditions can be similarly and easily
derived. At step 14, Q13 will change with X12, and we want to keep Q14 as a
constant, namely independent from X12. The Boolean function F at this step is
(Q13 ∧Q12) ∨ (¬Q13 ∧Q11). We can see that by setting a condition Q12 = Q11,
the output of F will always be equal to Q12. Thus Q14 will be a constant and
independent from X12.

Set up LC1. We will explain how to exactly set up the local collision LC1
for our attack. Set the related internal state words satisfy the conditions in
Table 3. More precisely, Q14 is fixed as 0x00000000, and all the state words
{Q15, Q16, Q18, Q19, Q20, Q22, Q23} are fixed as 0xffffffff. These conditions
will at the same time fix the values of several message words X4, X13, X1, X6
and X15 at steps 18, 19, 20, 22 and 23, respectively. As an example, X13 can be
computed at step 19 as (Q19 ≫ 8)− F (Q18, Q17, Q16)−Q15 −K19. Moreover,
two message words X13 and X15 are used twice in this local collision, which have
been fixed at steps 19 and 23 respectively. Then at step 16,Q12 will be computed.
At step 15, because of the condition Q11 = Q12, X14 will deterministically be
computed. At step 14, Q10 will also be computed.
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Fig. 4. One-Message-Word Local Collision LC1

032 and 132 are 0x00000000 and 0xffffffff respectively

So far, we have successfully controlled the influence of modifying X12 to the
internal state words exactly the same as shown in Figure 4. The next question
is that how much freedom degree X12 has in LC1.

This paper will present a method to make the freedom degree of X12 be 28

in LC1. More precisely, set conditions on Q9, X7 and X10 at steps 13, 17 and
21, respectively. We will explain the details one step by one step. At step 13,
choose the value of Q9 to make Q9 + F (Q12, Q11, Q10) + K13 be 0x00000000.
So Q13 will be equal to X12 ≪ 6. Then at step 17, choose the value of X7 to
make X7 + F (Q16, Q15, Q14) +K17 be 0x00000000. So the value of Q17 will be
equal to Q13 ≪ 7 (= X12 ≪ 13). Then at step 21, choose the value of X10
to make X10 + F (Q20, Q19, Q18) +K21 be 0x00000000. So the value of Q21 will
be equal to Q21 ≪ 11 (= X12 ≪ 24). Finally at step 25, Q21 +X12 becomes
(X12 ≪ 24) +X12. Following the example in Section 3.1, when fixing the value
of X12 + (X12 ≪ 24) as 0xffffffff, the freedom degree of X12 will be 28. We
recall that our method will fix the values of Q9, X7 and X10. Moreover, at step
25 since the value of Q21 +X12 is fixed as 0xffffffff, the values of both Q24
and Q25 will only depend on the value of X3.

Remark. Each of the message words X13 and X15 are used twice in LC1. We
stress that it will not cause a contradiction in LC1. X15 is used at steps 16 and
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23. At step 16, the condition on X15 is that the value of Q12+X15 is fixed. But
neither the value of Q12 nor the value of X15 are fixed at this step so far. Thus
for any value of X15, we can adaptively choose a value for Q12 without causing a
contradiction at step 16. So we will first compute the value of X15 fixed at step
23, and then adaptively choose the value of Q12 at step 16. No contradiction
will occur. Similarly for X13, we will first compute its value fixed at step 19 and
then adaptively choose the value of Q10 at step 14.

Summarization. Setting up LC1 determines the values of the message words
X1, X4, X6, X7, X10, X13, X14 and X15, and the internal state words from Q9
until Q23. The values of Q24 and Q25 depend on the value of X3. The freedom
degree of X12 in LC1 is 28.

4.2 The Details of LC2

We will use X0 to construct LC2. This is exactly the example we explained in
Section 3.2. We will only recall that the freedom degree of X0 is 232.

4.3 Our Pseudo-preimage Attack Procedure

This section describes the procedure of our pseudo-preimage attacks on 47-step
RIPEMD compression function.

1. Set up LC1 in the left branch, which has been illustrated in Section 4.1. Set
a randomly chosen value to X3 and compute the values of Q24 and Q25. The
internal states Q9||Q12||Q11||Q10 at step 12 and Q22||Q25||Q24||Q23 at step
25 have been fixed.

2. Set randomly chosen values to X2, X5, X8 and X9.
3. Compute from step 12 in the backward direction in the left branch until the

initial state. The values of Q0, Q−1 and Q−2 are computed. And the value
of (Q1 ≫ 11)−K1 − F (Q0, Q−1, Q−2), denoted as C, is also computed.

4. Compute the value of Q′
1 as (C +F (Q0, Q−1, Q−2)+K ′

1) ≪ 11 in the right
branch . So the internal state at step 1 in the right branch is obtained.

5. Compute from step 2 in the forward direction in the right branch until step
12 to obtain the value of the internal state Q′

9||Q′
12||Q′

11||Q′
10.

6. For all the 28 candidate values of X12, compute from step 13 until step 25
in the right branch. Memorize the values of (X12, Q

′
22||Q′

25||Q′
24||Q′

23) in a
Table T .

7. For all the 232 candidate values of X0,
(a) Compute the value of Q−3; Q−3 = C −X0.
(b) Compute from step 26 until step 47 in the left branch to obtain the value

of Q44||Q47||Q46||Q45.
(c) Compute the corresponding value of Q′

44||Q′
47||Q′

46||Q′
45 according to the

given target digest.
(d) Compute from step 47 until step 25 in the backward direction in the

right branch to obtain the value of Q′
22||Q′

25||Q′
24||Q′

23.
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(e) Match the obtained value of Q′
22||Q′

25||Q′
24||Q′

23 at STEP 7(d)5 with the
elements in Table T . If it matches, a pseudo-preimage has been found.

8. If no pseudo-preimage is found, change the values of the message words in
STEP 2, and repeat STEPs 3− 7.

Recall the freedom degree of X0 and X12 is 232 and 28 respectively. So one
execution of STEPs 6 and 7 will contribute to 240(=8×32) pairs. In total 2128

pairs are necessary, therefore the execution from STEP 2 until STEP 7 will be
repeated 288(=128−40) times. We stress that the freedom degree at STEP 2 is
2128, which guarantees the success of the attack.

4.4 Complexity Evaluation

We count one 47-step compression function computation as a unit. Correspond-
ingly one step function computation is regarded as 1

94(=47×2) computation.

STEP 1. 13
94

computation.
STEP 2. Negligible.
STEP 3. 288 × 12

94
computations.

STEP 4. 288 × 1
94

computations.
STEP 5. 288 × 12

94
computations.

STEP 6. 288 × 28 × 13
94

computations.
STEP 7(a). 288 × 232 × 1

94
computations.

STEP 7(b). 288 × 232 × 22
94

computations.
STEP 7(c). 288 × 232 × 1

94
computations.

STEP 7(d). 288 × 232 × 22
94

computations.
STEP 8. Negligible.

The overall complexity is less than 2119 computations. The dominant memory
requirement is STEP 6. The memory requirement is less than 210.5 words.

4.5 Impact on 47-Step RIPEMD Hash Function

Our pseudo-preimage attack on 47-step RIPEMD compression function can be
converted to a second preimage attack on 47-step RIPEMD hash function fol-
lowing the method in Section 2.3. The complexity is 2124.5 compression function
computations and the memory requirement is 210.5 words. Our second preimage
attack can succeed as long as the original message has more than 2 blocks. The
complexity is fixed, and not related to the block length of the original message.

Comparison with generic attacks. Several generic second-preimage attacks
have been published on the Merkle-Damg̊ard hash functions [8,1]. The com-
plexities of these generic attacks are related to the block length of the original
message. Suppose that the original message has t blocks. Loosely speaking, the
5 This paper refers to “STEP” as the steps of the attack procedure and refers to “step”

as the step functions of hash functions.
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complexity of generic attacks is around 2128/(t− log2t). Thus as long as t < 16,
our attack will be faster than these generic attacks.

We will present another generic second-preimage attack, which works effi-
ciently on short original messages. We will construct an expandable message
with variable block length from 1 until t− 1 as follows:

1. Choose a random message block M0, and compute h1 = CF (h0,M0).
2. For i = 2, . . . , t − 1, generate a pair of messages Mi−1 and M ′

i−1 such that
hi = CF (hi−1,Mi−1) =CF (h0,M

′
i−1) by the birthday attack.

This expandable message can produce messages, linking h0 to ht−1, with blocks
varying from 1 until t−1. A 1-block messageM ′

t−2 links h0 to ht−1. A (t−1)-block
message M0||M1|| · · · ||Mt−2 links h0 to ht−1. A s-block message (1 < s < t− 1)
M ′

t−1−s||Mt−s || · · · ||Mt−2 links h0 to ht−1.
Finally we will exhaustively link ht−1 to any one of (t− 1) intermediate hash

values of the original message for producing a second preimage. The total com-
plexity will be 2128/(t− 1), when t is small. Compared with our generic attack,
our second preimage attack is faster when the original message is no longer than
12 blocks.

5 Our Attacks on Intermediate 36-Step RIPEMD-128

This section will apply our attack strategy to evaluate preimage resistance of
RIPEMD-128, and propose a preimage attack on intermediate 36-step RIPEMD-
128, more precisely from steps 23 until 58.

We will use X2 and X13 as the neutral message words. X2 will construct a
one-message-word local collision from step 32 until step 44 in the right branch,
following the technique in Section 3.1. The overview of our pseudo-preimage
attack is detailed in Figure 5.

We will briefly describe the one-message-word local collision in the right
branch. We will set conditions on the internal state words to control the in-
fluence of modifying X2. All the conditions are listed in Table 4. The influenced
internal state words are only Q′

32, Q
′
36 and Q′

40. Similarly to our attack on
RIPEMD, we will adjust the values of the message words X2, X3 and X9 at
steps 32, 36 and 40 to obtain the following relations: Q′

32 = X2 ≪ 11 (at step
32); Q′

36 = Q′
32 ≪ 11 (at step 36); and Q′

40 = Q′
36 ≪ 14 (at step 40). Finally

at step 44, the value of X2 +Q′
40 is X2 + (X2 ≪ 36)). As explained in Section

3.2, the freedom degree of X2 to make X2 + (X2 ≪ 36) be 0xffffffff should
be 24. Luckily, each message word involved in this local collision is used only
once, so we can trivially set up the local collision.

There are another two issues we will address. Firstly, we stress that there are
enough freedom degree to carry out the pseudo-preimage attacks. More precisely
the values of X0, X4, X10 and X12 can be freely chosen. Secondly, even though
X15 is involved in the local collision, but its value is not fixed and can be chosen
by the attacker. Thus the pseudo-preimage attack can be converted to a preimage
attack on the hash function.
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Fig. 5. Overview of Our Pseudo-Preimage Attacks on RIPEMD-128

Table 4. The Conditions for the Local Collision of Our Attack on RIPEMD-128

Step Index i i + 1 i + 2
i = 33 Q′

31 = Q′
30 Q′

33 = 0x00000000 Q′
34 = 0xffffffff

i = 37 Q′
35 = Q′

34 Q′
37 = 0x00000000 Q′

38 = 0xffffffff

i = 41 Q′
39 = Q′

38 Q′
41 = 0x00000000 Q′

42 = 0xffffffff

The complexity of the pseudo-preimage attack is 2123 computations. The
memory requirement is 26.5 words. The pseudo-preimage attack can be converted
into a preimage attack on step-reduced RIPEMD-128 following the method in
Section 2.3. The complexity of preimage attack is 2126.5 computations.

6 Conclusion

This paper have proposed a pseudo-preimage and second preimage attacks on
47-step RIPEMD with complexities of 2119 and 2124.5 compression function com-
putations, respectively. Moreover we also have proposed a pseudo-preimage and
preimage attacks on intermediate 36-step RIPEMD-128 with complexities of 2123

and 2126.5 compression function computations, respectively.
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A Parameters of RIPEMD-128

Table 5. Parameters of RIPEMD-128 Compression Function

The left branch
j of Xj 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 13 , 14, 15

First Round Ki 0x00000000

F Qi−1 ⊕ Qi−2 ⊕ Qi−3

Si 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8

j of Xj 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
Second Round Ki Ki = 0x5A827999

F (Qi−1 ∧ Qi−2) ∨ (¬Qi−1 ∧ Qi−3)
Si 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12

j of Xj 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
Third Round Ki 0x6ED9EBA1

F (Qi−1 ∨ ¬Qi−2) ⊕ Qi−3

Si 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
j of Xj 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2

Fourth round Ki 0x8F1BBCDC

F (Qi−1 ∧ Qi−3) ∨ (Qi−2 ∧ ¬Qi−3)
Si 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2

The right branch
j of Xj 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12

First round K′
i 0x50A28BE6

F (Q′
i−1 ∧ Q′

i−3) ∨ (Q′
i−2 ∧ ¬Q′

i−3)
S′

i 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6

j of Xj 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2
Second round K′

i 0x5C4DD124

F (Q′
i−1 ∨ ¬Q′

i−2) ⊕ Q′
i−3

S′
i 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11

j of Xj 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
Third round K′

i 0x6D703EF3

F (Q′
i−1 ∧ Q′

i−2) ∨ (¬Q′
i−1 ∧ Q′

i−3)
S′

i 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5

j of Xj 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
Fourth round K′

i 0x00000000

F Q′
i−1 ⊕ Q′

i−2 ⊕ Q′
i−3

S′
i 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
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Abstract. In this paper, we introduce a new class of double-block-
length hash functions. In the ideal cipher model (for n-bit blocks), we
prove that these hash functions, dubbed MJH, are provably collision re-
sistant up to O(2

2n
3 −log n) queries in the iteration.

When based on n-bit key blockciphers, our construction provides bet-
ter provable security than MDC-2, the only known construction of a
rate-1/2 double-length hash function based on an n-bit key blockcipher
with non-trivial provable security. Moreover, since key scheduling is per-
formed only once per message block for MJH, our proposal significantly
outperforms MDC-2 in efficiency.

When based on a 2n-bit key blockcipher, we can use the extra n bits
of key to increase the amount of payload accordingly. Thus we get a
rate-1 hash function that is much faster than existing proposals, such
as Tandem-DM, at the expense of (for the moment) reduced provable
security.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns
a bit string of fixed length. The most common way of hashing variable length
messages is to iterate a fixed-size compression function (e.g. according to the
Merkle–Damg̊ard paradigm [10, 27]). The underlying compression function can
either be constructed from scratch, or be built upon off-the-shelf cryptographic
primitives such as blockciphers. Recently, blockcipher-based constructions have
attracted renewed interest as many dedicated hash functions, including those
most common in practical applications, have started to exhibit serious security
weaknesses [2, 9, 24, 26, 35, 40, 41, 42]. By instantiating a blockcipher-based con-
struction with an extensively studied (and fully trusted) blockcipher, one can
conveniently transfer the trust in the existing blockcipher to the hash function1.
This approach is particularly useful in highly constrained environments such as
RFID systems, since a single implementation of a blockcipher can be used for
� This author’s research was performed while at LACAL, EPFL, Switzerland.
1 Since our proof will be in the ideal cipher model, the usual caveats related to instan-

tiating ideal primitives apply.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 213–236, 2011.
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both a blockcipher and a hash function. Compared to blockciphers, most dedi-
cated hash functions require significant amounts of state and the operations in
their designs are not always as hardware friendly [6].

Compression functions based on blockciphers have been widely studied [4, 5,
14, 15, 16, 17, 20, 30, 31, 32, 33, 34, 36, 37, 38, 39]. The most common approach is to
construct a 2n-to-n bit compression function using a single call to an n-bit block-
cipher. However, such a function, called a single-block-length (SBL) compression
function, might be vulnerable to collision attacks due to its short output length.
For example, one could successfully mount a birthday attack on a compression
function based on AES-128 using approximately 264 queries. This observation mo-
tivated substantial research on double-block-length (DBL) hash functions, where
the output length is twice the block length of the underlying blockcipher(s).

An important distinction can be made on whether the underlying n-bit blockci-
pher hasn-bit or 2n-bit keys.Whereas for the latter scenario several proposalswith
good provable security are known, the construction of a double-length hash func-
tion based on an n-bit-key blockcipher remains elusive. Currently the only known
candidate providing both efficiency and a reasonable level of provable security is
MDC-2 [8, 28], which makes two calls to an n-bit key blockcipher to compress a
single message block (thus its rate, the ratio of message blocks hashed per block-
cipher calls, equals 1/2). In 2007, 20 years after its original proposal, Steinberger
was the first to provide a non-trivial bound on the collision resistance of MDC-2
in the ideal cipher model [39]. In particular, he showed that an adversary asking
fewer than 23n/5−ε queries (for any fixed ε > 0) has only a negligible chance of find-
ing a collision. The best attack against MDC-2 however still requires Ω(2n−log n)
queries [19], leaving a considerable gap.

Our contribution. We propose a new construction, dubbed MJH, that signif-
icantly outperforms MDC-2 both in terms of efficiency and what can currently
be proven about it. Figures 1(a) and 1(b) depict our proposed compression func-
tion and the MDC-2 compression function, respectively. A formal definition of
MJH will follow in Section 3.1. From a high level, we first construct a 2n-bit to
2n-bit function by concatenating the output of two parallel blockcipher calls run
in Davies–Meyer mode. Here we use Hirose’s trick [17] of an involution without
fixed points to achieve implicit domain separation so we can use the same block-
cipher for both strains. The resulting, reasonably random looking function is
subsequently used as primitive for the JH construction [43], creating a 3n-bit to
2n-bit compression function. Iterating it using the Merkle–Damg̊ard transform,
we obtain a hash function.

Efficiency comparison. Per message block, the MJH construction makes two calls
to a blockcipher with the same key. In addition, there are four n-bit xors (since
the last two xors on the right strain can be merged) and the operations σ and θ.
For the involution σ it suffices to toggle a single bit. The nonzero constant θ can
be efficiently implemented by an n-bit wise shift (corresponding to multiplication
by x in polynomial representation of the field) followed by a conditional xor of
a mask (corresponding to reduction modulo the minimal polynomial).
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Message
block

xL xR

E E

F[ ]
yL yR

F[ ]

(a) MJH compression function

Message
block

E E

(b) MDC-2 compression function

Fig. 1. The MJH compression function defined by an involution σ and a constant
θ ∈ F2n\F2 and the MDC-2 compression function. If the dotted box in (a) is regarded
as a 2n-bit permutation, it represents the JH compression function.

MDC-2 on the other hand has two calls to a blockcipher with distinct keys, but
it only needs two n-bit xors and a swap to complete evaluation of the compres-
sion function. Depending on platform and implementation (and without AES
instruction set), AES-128 key scheduling takes up around 25% to 35% (of the
cycles) of a single call to the blockcipher. This translates into a speedup of about
10% to 15% of MJH over MDC-2 (the extra processing is not an issue here). We
also note that due to recent related-key attacks [3] future blockciphers can be
expected to have key scheduling algorithms that are even costlier than current
ones; this would tilt the balance even further in our advantage.

On hardware we again obtain an advantage if the blockciphers is implemented
twice (to increase throughput) since the key scheduling circuit can be shared.
Our construction does need an extra feedforward in comparison to MDC-2 (2
vs. 1), which is a disadvantage [6].2

Security results. In the ideal cipher model, we can prove that our MJH hash
functions are collision resistant up to O(2

2n
3 −log n) queries in the iteration. Like

prior works dealing with collision resistance in the iteration [25,38], in the proof
we consider a graph whose nodes correspond to chaining variables and where
edges are drawn whenever an adversary has asked the “correct” queries to con-
nect two chaining variables.

As a first observation, note that queries to the blockcipher are paired by the
involution σ (just as in Hirose’s scheme); we will call such a pair a query-response
cycle. A challenge presents itself in that any query-response cycle typically adds
2 While Figure 1(a) contains four feedforward wires, a simple inspection shows that

in fact forwarding xL and the message block suffices.
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Table 1. Best known upper bounds on Advcoll
MDC-2(q) and Advcoll

MJH(q) for n = 128
(m1 and m2 are parameters appearing in Theorem 1)

q Advcoll
MDC-2(q) ≤ Advcoll

MJH(q) ≤ (m1, m2)

264 7.57 × 10−7 6.68 × 10−9 (226, 3)

274.91 1/2 5.46 × 10−4 (231, 3)

275.21 1 7.54 × 10−4 (231, 3)

280.36 1 1/2 (236.31, 3)

2n+1 edges to the graph due to the JH structure. Our core observation is that
any pair of query-response cycles can only be connected in four possible ways
(the use of σ introduces the not-quite-uniqueness), which in turn allows us to
put even more stringent bounds on the number of triplets of connected query-
response cycles. This suffices to bound the probability of two largish components
being connected in the graph; bounding the actual probability of constructing a
collision still involves a considerable amount of additional case analysis.

Though far from optimal, our bound is the best one known for rate-1/2 n-bit
key blockcipher-based DBL hash functions. As an example, a numerical com-
parison between Steinberger’s bound for MDC-2 and ours for MJH in case of
n = 128 is given in Table 1. As is the case for MDC-2, we believe that our bound
can be improved considerably. We will comment on the expected increase in the
amount of cases to get improved bounds in Appendix C.

Our analysis of MJH also opens up the possibility to get comparable bounds
for JH itself. To the best of our knowledge, currently the best (published) bounds
for JH appeared in [1] showing indifferentiability up to roughly 2n/6 queries
(where n is the internal JH state size), whereas a straightforward mapping of
our bounds would get closer to 2n/3. Unfortunately, for JH itself dealing with
inverse (permutation) queries creates difficulties that we could avoid for MJH
(by internally using Davies–Meyer, which would be meaningless for JH).

Variants. So far we have concentrated on building a DBL hash function based
on a κ-bit key blockcipher with κ = n. However, our construction and its cor-
responding security proofs are sufficiently general to allow any κ-bit key block-
cipher with κ ≥ n. If κ > n, the surplus n − κ bits can be used to carry extra
message bits, so we compress κ bits of message per invocation of the MJH com-
pression function (i.e. per two blockcipher calls). Thus, if we would use a 2n-bit
key blockcipher as underlying primitive, we obtain a rate-1 compression function
natively supporting parallelism.

Related work. While many DBL compression functions of rate-1 have been
proposed, unfortunately it turned out that a large class do not provide security
in terms of collision resistance and preimage resistance beyond that already
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offered by single-block-length constructions [14,15,18]. This holds true both for
constructions based on blockciphers with n-bit keys or 2n-bit keys.

In the latter category, Lucks recently proposed the first DBL hash function
of rate-1 with (almost) optimal security in the iteration [25, 30]. Later, an al-
ternative rate-1 secure DBL compression function was given by Stam [38] and
generalized by Lee and Steinberger [22]. However, both constructions use full
finite field multiplications, significantly degrading their efficiency.

Classical DBL compression functions of rate below 1 include MDC-2, MDC-4,
Tandem-DM and Abreast-DM [8,20]. We have already discussed MDC-2 and
the remarkable results obtained by Steinberger [39]. MDC-4 also uses an n-bit
key blockcipher, but it is twice as inefficient (and curiously no proof of security
is known for it).

Both Tandem-DM and Abreast-DM [8,20] are rate-1/2 hash functions based
on a blockcipher with 2n-bit key. The main challenge providing a proof is the
fact that the same blockcipher is called twice, but recently Lee, Stam, and Stein-
berger [23] proved the security of Tandem-DM (correcting [11]). As in the case
of MDC-2, the security bound obtained is parameterized: optimizing the param-
eter gives collision resistance of Tandem-DM up to the birthday bound. The
collision resistance of Abreast-DM was independently proved in [12] and [21].

While the design of hash functions based on 2n-bit key blockciphers is consid-
erably easier than that based on n-bit key blockciphers, the former—while more
robust with respect to for instance preimage resistance—are typically less effi-
cient even at the same “rate”. Indeed, a blockcipher with 2n-bit keys is required
to provide 2n-bit security as opposed to n-bit security for the smaller n-bit key
blockcipher. For example, AES-256 consists of 14 rounds, 4 rounds more than
AES-128. So as a first rough estimate (ignoring key scheduling) one expects
AES-256 to be about 40% slower than AES-128. (See also [7] for a compre-
hensive comparison of the software performance of various AES/Rijndael-based
DBL hash functions). As an aside, the recent related-key attacks on AES-256
by Biryukov and Khovratovich [3], suggest that instantiating blockcipher-based
hash functions with AES-256 might not guarantee a sufficient level of security.

2 Preliminaries

General notation. Let F2n denote a finite field of order 2n. Throughout our
work, we will identify F2n and {0, 1}n, assuming a fixed mapping between the
two sets. For two bitstrings x and y, x||y denotes the concatenation of x and
y. For a bitstring x ∈ {0, 1}2n, xL and xR denote the unique n-bit strings such
that x = xL||xR. For an event E, E denotes its complement.

The ideal cipher model. For positive integers κ and n, let BC(κ, n) be the
set of all blockciphers with n-bit blocks and κ-bit keys. In the ideal cipher model,
a (κ, n)-blockcipher E is chosen from BC(κ, n) uniformly at random. It allows
for two types of oracle queries E(K,X) and E−1(K,Y ) for X,Y ∈ {0, 1}n and
K ∈ {0, 1}κ. The response to an inverse query E−1(K,Y ) is X ∈ {0, 1}n such
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that E(K,X) = Y . Here, X , Y and K are called plaintext, ciphertext, and key,
respectively. In this paper, we only consider κ ≥ n with an emphasis on the case
κ = n.

Collision resistance. We review the definition of collision resistance in the
information-theoretic model. Given a function H = H [P ] and an IT adversary
A both with oracle access to an ideal primitive P , the collision resistance of H
against A is estimated by the Expcoll

H A experiment.

Experiment Expcoll
H (A)

AP updates Q
if ∃ M �= M ′ and u such that u = HQ(M) = HQ(M ′) then

output 1
else

output 0

This experiment records every query-response pair that A obtains by oracle
queries into a query history Q. We write u = HQ(M) if Q contains all the query-
response pairs required to compute u = H(M). At the end of the experiment,
A would like to find two distinct evaluations yielding a collision. The collision-
finding advantage of A is defined to be

Advcoll
H (A) = Pr

[
Expcoll

H (A) = 1
]
.

The probability is taken over the random choice of P and A’s coins (if any). For
q > 0, we define Advcoll

H (q) as the maximum of Advcoll
H (A) over all adversaries

A making at most q queries.

The Merkle–Damg̊ard transform. For convenience, we recall the Merkle–
Damg̊ard transform as it will be applied to our (double-block-length) construc-
tion. Let pad : {0, 1}∗ →

⋃∞
i=1{0, 1}κi be an injective padding. With this padding

scheme and a predetermined constant IV ∈ {0, 1}2n, the Merkle–Damg̊ard trans-
form produces a variable-input-length functionMD[F ] : {0, 1}∗ → {0, 1}2n from
a fixed-input-length function F : {0, 1}2n × {0, 1}κ → {0, 1}2n. For M ∈ {0, 1}∗
such that |pad(M)| = lκ, MD[F ](M) is computed as follows.

Function MD[F ](M)
u[0]← IV
Break pad(M) into κ-bit blocks, pad(M) = M [1]|| . . . ||M [l]
for i← 1 to l do

u[i]← F (u[i− 1],M [i])
return u[l]

Since the padding is injective, we can simplify our collision analysis by assuming
that the domain of a MD-iterated hash function is

⋃∞
i=1{0, 1}κi. Consequently,

in the analysis of the MJH hash function we ignore the padding scheme.
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The JH hash function. As said, our construction is motivated by JH, a
second-round candidate of the SHA3 competition [29]. Given a noncompressing
primitive F : {0, 1}2n → {0, 1}2n, let

F̃ : {0, 1}2n × {0, 1}n −→ {0, 1}2n

(u, z) −→ F (u+ (z||0)) + (0||z).
(1)

be its JH transform (a compression function). Then the JH hash function JH [F ]
associated with F is defined to be MD[F̃ ], the Merkle–Damg̊ard transform of F̃ .
(In this paper, we only consider the “full” version of JH without any truncation
of the final output.)

3 The MJH Hash Functions and Their Security

3.1 The MJH Construction

Let σ be an involution on {0, 1}2n with no fixed point, and let θ �= 0, 1 be a
constant in F2n . Then (σ, θ) defines a noncompressing function F [σ, θ] based on
an n-bit key blockcipher E as follows.

F [σ, θ] : {0, 1}2n −→ {0, 1}2n

(xL||xR) −→ (yL||yR),

where yL = E(K,X) +X and yR = θ (E(K,σ(X)) + σ(X)) +X for (X ||K) =
(xL||xR). By applying the JH transform, we arrive at the compression function
F̃ [σ, θ], as depicted in Figure 1(a). The compression function is subsequently
fed to the Merkle–Damg̊ard mechanism. Thus, the MJH hash function H [σ, θ]
associated with (σ, θ) is defined by MD[F̃ [σ, θ]] = JH [F [σ, θ]].

While the above variant (with κ = n) acts as the main proposal of our paper,
we can actually prove a slight generalization where κ ≥ n. Here we simply use the
extra κ− n bits of key to compress extra message bits. Since we want to ensure
that both blockcipher calls are keyed identically, this allows κ− n extra bits of
message. Altogether, given a blockcipher E ∈ BC(κ, n) we obtain a compression
function {0, 1}2n × {0, 1}κ → {0, 1}2n by

G[σ, θ] : {0, 1}2n × {0, 1}n × {0, 1}κ−n −→ {0, 1}2n

(uL||uR, z, z
′) −→ (vL||vR),

where vL = E(K,X) + X and vR = θ (E(K,σ(X)) + σ(X)) + X + z for X =
(uL + z) and K = (uR||z′). Note that if κ = n we indeed get G[σ, θ] = F̃ [σ, θ].
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3.2 Query-Response Cycles and a Modified Adversary

Let H = H [σ, θ] be the MJH hash function defined by (σ, θ), and let A be an
information-theoretic adversary with oracle access to E and E−1. Note that A
records a triple (X,K, Y ) into the query history Q if A asks for E(K,X) and
gets back Y , or if it asks for E−1(K,Y ) and gets backX . Since σ is an involution,
it holds that Xσ = σ(X) iff X = σ(Xσ). In other words, σ induces a natural
way to pair queries: for (X,K, Y ) and (Xσ,K, Yσ) in Q with Xσ = σ(X) we call

Δ = ((X,K, Y ), (Xσ,K, Yσ))

a query-response cycle (or simply a cycle) and the corresponding queries each
other’s conjugates.

We can now transform A into an adversary B that records its query history
QΔ in terms of query-response cycles as described in Figure 2. If A makes at
most q queries, then the corresponding adversary B makes at most 2q queries,
and records at most q query-response cycles. Since

Advcoll
H (A) ≤ Advcoll

H (B),

it suffices to consider the security of H against a modified adversary that records
exactly q query-response cycles.

Henceforth, the i-th query-response cycle is denoted

Δi =
(
(X i,Ki, Y i), (X i

σ,K
i, Y i

σ)
)
.

If we want to distinguish between the two query-responses within a single cycle,
we will refer with i+ to the first triple and with i− to the second, where we
assume that (X i,Ki, Y i) was obtained before (X i

σ,K
i, Y i

σ). Additionally, we
will write [1, q] = {1, . . . , q}, N = 2n and N ′ = N − 2q assuming N ′ > N/2.

3.3 Graph Representation of the Adversary’s Endeavors

Each query-response cycle Δi =
(
(X i,Ki, Y i), (X i

σ,K
i, Y i

σ)
)
∈ QΔ determines

two evaluations

F [σ, θ] : (X i||Ki) −→
(
(X i + Y i) || (θ(X i

σ + Y i
σ) +X i)

)
(2)

and
F [σ, θ] : (X i

σ||Ki) −→
(
(X i

σ + Y i
σ) || (θ(X i + Y i) +X i

σ)
)
. (3)

Moreover, each evaluation F [σ, θ] : x → y determines evaluations

F̃ [σ, θ] : (xL + z, xR, z) → (yL, yR + z),

for every z ∈ {0, 1}n.
We now define a directed graph G on {0, 1}2n where the nodes correspond to

chaining variables and edges are added depending on the evaluations of F̃ [σ, θ]
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Algorithm BE,E−1

QΔ ← ∅
Run A
if A makes a fresh query for E(K, X) then

Make queries for Y = E(K, X) and Yσ = E(K, Xσ) for Xσ = σ(X)
QΔ ← QΔ ∪ {Δ}, where Δ = ((X, K, Y ), (Xσ, K, Yσ))
Return Y to A

else if A makes a fresh query for E−1(K, Y ) then
Make queries for X = E−1(K, Y ) and Yσ = E(K, Xσ) for Xσ = σ(X)
QΔ ← QΔ ∪ {Δ}, where Δ = ((X, K, Y ), (Xσ, K, Yσ))
Return X to A

else
Return the response using query history QΔ

Fig. 2. The modified adversary B. A query is called “fresh” if its response cannot be
obtained from B’s query history.

the adversary can make given the available query-response cycles. In other words,
a directed edge from u to v labelled i is added to G when the i-th query-response
cycle determines an evaluation F̃ [σ, θ](u, z) = v for some z ∈ {0, 1}n. Such a
connection is denoted by u i→ v. More specifically, we write u i+→ v (resp. u i−→ v)
when the evaluation of F [σ, θ] is obtained by (2) (resp. (3)).

3.4 Main Handle and Intuition

In this section, we present one formal lemma limiting the number of chains of
length two in the graph G. This relatively clean lemma is the main handle for
our proof of collision resistance, as we will explain after the lemma. We hope
this helps to develop intuition for the formal proof of collision resistance and the
more involved lemmas on the graph G that proceed it.

Lemma 1. Each ordered pair (i, j) ∈ [1, q]2 determines four (not necessarily

distinct) triplets (u, v, w) of nodes in G such that u i→ v
j→ w as follows.

u =
(
(xi

L + yi
R + xj

R) ||xi
R

)
, v =
(
yi

L ||x
j
R

)
, w =
(
yj

L || (yi
L + xj

L + yj
R)
)
,

where

(xi
L, x

i
R, y

i
L, y

i
R) ∈ {(X i,Ki, X i + Y i, θ(X i

σ + Y i
σ) +X i),

(X i
σ,K

i, X i
σ + Y i

σ , θ(X
i + Y i) +X i

σ)},

(xj
L, x

j
R, y

j
L, y

j
R) ∈ {(Xj,Kj , Xj + Y j , θ(Xj

σ + Y j
σ ) +Xj),

(Xj
σ,K

j, Xj
σ + Y j

σ , θ(X
j + Y j) +Xj

σ)},

for Δi =
(
(X i,Ki, Y i), (X i

σ,K
i, Y i

σ)
)

and Δj =
(
(Xj,Kj , Y j), (Xj

σ,K
j, Y j

σ )
)
.
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yi
L xj

Lyi
R xj

R+ +

vL xj
Lyi

L yjxiu wvL

vR

F
xj

L

xj
R

y L

yi
R

yj
L

yj
R

x L

xi
R

uL

uR

wL

wR

F

Fig. 3. Path determined by a pair of query-response cycles

Proof. The proof is straightforward as shown in Figure 3. ��

Intuitively, when an adversary obtains a triplet u i→ v
j→ w, he has full control

over uR and vR (corresponding to the keys of the blockcipher calls for cycle i and
j, respectively), yet little to no control over the remaining variables uL, vL, wL,
and wR. Suppose these values are truly random, then the probability of many
of them having the same wR is small. Indeed, as a rule of thumb after q query-
response cycles one would expect each possible value to occur roughly 4q2/N
times (the 4 due to σ).

This already allows bounding the number of quadruplets u i→ v
j→ w

j′→ w′

since the key of the blockcipher used for cycle j′ needs to correspond to wR: any
j′ thus connects to about 8q2/N triplets (again an extra factor 2 due to σ) for
a total of roughly 8q3/N quadruplets.

With these tentative bounds in hand, we can also look at the probability
that with a single query-response cycle a triplet is connected to a quadruplet.
Again, the cycle itself determines the wR of the triplet and results in 8q2/N new
quadruplets with more or less random new end points. For the desired connection
the end point of the new quadruplet should coincide with one of the 8q3/N known
start points of the existing quadruplets. This happens with probability 64q5/N4

(assuming each new end point has probability 1/N2 of occurring). Since there are
q cycles in total, a union bound shows that the event “connecting a triplet with
a quadruplet” ever happening can be (informally) upper bounded by 64q6/N4.

If we accept that an adversary needs to ask Ω(22n/3) to cause the event above,
we can still wonder whether collisions might be found faster. However, it turns
out that if an adversary wants to find a collision, it needs to cause an event
similar to the one above (where two larger components are merged), or else it
needs to cause a collision “locally” (for instance u i→ v

i← w with u �= w). The
possible ways to create a local collision can be easily enumerated and successfully
bounded (and typically Ω(2n) queries are needed to cause such a local event).

In the next section we will provide a formal security proof making the in-
tuition above rigorous. Lemma 2 deals with the distribution of wR in triplets
(bounding the probability of exceeding some threshold) and Lemma 3 bounds
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various other distributions (all related to configurations involving a pair of query-
response cycles only). Lemma 4 subsequently bounds the number of quadruplets
and similar configurations, conditional on the thresholds from Lemmas 2 and
3 not being violated. Finally, Lemma 5 exhausts all the possible cases (events
of which at least one needs to occur to cause a collision) which allows us to
conclude with Theorem 1 where we bound the probabilities of the events for
all the cases involved. Since the theorem statement is not very transparent, we
provide Corollary 1 demonstrating its asymptotic behavior. Note that for the
lemmas and the theorem we occasionally allowed ourselves some slack if this
would not affect the targeted asymptotic behavior (of collision resistance up to
O(2

2n
3 −log n) queries).

While our proof shares some obvious similarities with Steinberger’s MDC-2
proof (lots of case-analysis and the use of 2-chains), there are notable differences.
For MDC-2 after q queries one can roughly evaluate the compression function for
q2 values, whereas for MJH it allows q2n evaluations. It is only when we consider
2-chains that we bring this down to O(q2). In our case analysis we subsequently
need to consider longer chains, whereas Steinberger does not. The type of case
analysis is also rather distinct: Steinberger only looks at the place where the
collision happens, whereas we take a more global approach (making it closer to
a refinement of the BRS Type-II proof [38]).

4 Formal Collision Resistance Proof

4.1 Bounding Small Components

The following lemma, whose proof is given in Appendix A, states that if we look
at the set of all nodes w that are either IV , or a child of IV , or reachable by
a chain of length two, then the probability of many of them having the same
wR is small (by appropriately setting parameters m1 and m2). This is relevant
since later we would like to upper bound the number of “reachable” nodes that
the i-th query-response cycle can connect to. Note that posing the i-th query
specifies the key used, corresponding to the wR part.

Lemma 2. For each z ∈ {0, 1}n and i ∈ [1, q], let

Ri(z) = {IV }∪{
w ∈ {0, 1}2n : wR = z and (∃ IV i1→ w or ∃ u i2→ v

i1→ w for i1, i2 ≤ i)
}
.

For integer parameters m1,m2 > 0, let m = 2m1m2 and M = 8m + 1. Define
event

Mult(M)⇔ max
z∈{0,1}n

|Rq(z)| > M.

Then we have

Pr [Mult(M)] ≤ 2N
(

12q
mN ′

)m

+N
(

12q2

mN ′

)m

+N
(

6q
m2N ′

)m2

+N
(

12q2

m1N ′

)m1

.
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Now we would like to upper bound the number of nodes that are reachable by
“3-chains”. We will show in Lemma 4 that the number of such nodes is small
without the occurrence of certain events. The following lemma defines these
events and states that they occur only with small probability.

Lemma 3. For integer parameters M,m > 0, define events

E1(M)⇔
∣∣∣{(i, j) ∈ [1, q]2 : i �= j ∧ ∃u i→ v

j→ w such that uL = wL

}∣∣∣ > M,

E2(M)⇔
∣∣∣{(i, j) ∈ [1, q]2 : i �= j ∧ ∃u i→ w

j← v
}∣∣∣ > M,

E3(m)⇔
∣∣∣{(i, j) ∈ [1, q]2 : i �= j ∧ ∃u i→ w

j← v such that uL = vL

}∣∣∣ > m,

E4(4m2)⇔ max
w∈{0,1}2n

∣∣∣{u ∈ {0, 1}2n : ∃ u i→ v
j→ w
}∣∣∣ > 4m2.

Then we have

Pr [E1(M)] ≤ 4q2

MN ′ , Pr [E2(M)] ≤ 4q2

MN ′ ,

Pr [E3(m)] ≤ 4q2

m(N ′)2
, Pr

[
E4(4m2)

]
≤ N
(

6q
mN ′

)m

.

Proof. Fix a pair (i, j) ∈ [1, q]2 such that i �= j. If there exists u i→ v
j→ w such

that uL = wL, then we have

uL + wL = (xi
L + yi

R + xj
R) + yj

L = 0,

where xi
L+yi

R ∈ {X i+Y i, X i
σ+Y i

σ} and xj
R+yj

L ∈ {Kj+Xj+Y j ,Kj+Xj
σ+Y j

σ }.
If Si,j denotes the event that the above equation holds, then we have Pr [Si,j] ≤

4/N ′. If

a(Q) =
∣∣∣{(i, j) ∈ [1, q]2 : i �= j ∧ ∃u i→ v

j→ w such that uL = wL

}∣∣∣ ,
then we have

E [a(Q)] =
∑

(i,j)∈[1,q]2,i�=j

E [Si,j ] ≤
4q2

N ′ .

Using Markov’s inequality, we have

Pr [E1(M)] = Pr [a(Q) > M)] ≤ 4q2

MN ′ ,

for any positive number M . The second and the third inequality are proved
similarly.

In order to prove the final inequality, define event

Ex(m)⇔ max
z∈{0,1}n

∣∣∣{j ∈ [1, q] : yj
L = z
}∣∣∣ > m,



MJH: A Faster Alternative to MDC-2 225

where yj
L ∈ {Xj + Y j , Xj

σ + Y j
σ }. Then we have

Pr [Ex(m)] ≤ N
(
q

m

)(
2
N ′

)m

≤ N
(

6q
mN ′

)m

.

Fix w = w∗ ∈ {0, 1}2n. If there exists an edge v
j→ w∗, then it should be the case

that yj
L = w∗

L. Each such index j determines at most two values of the starting
node v. Therefore, without the occurrence of event Ex(m), the number of nodes

v such that there exists an edge v
j→ w∗ for some j is at most 2m. Again, for

each such node v, there are at most 2m nodes u for which there exists an edge
u

i→ v (for some i). To summarize, without the occurrence of event Ex(m), there

are at most 4m2 nodes u such that there exists a path u i→ v
j→ w∗ for some i

and j. This means Ex(m) ⊂ E4(4m2) or

Pr
[
E4(4m2)

]
≤ Pr [Ex(m)] ≤ N

(
6q
mN ′

)m

. ��

Lemma 4. For each i ∈ [1, q], let

Si
1 = {w ∈ {0, 1}2n : (w = IV ) ∨ (∃ IV i1→ w)

∨ (∃ IV i2→ v
i1→ w) ∨ (∃ u′ i3→ u

i2→ v
i1→ w) for i1, i2, i3 ≤ i},

Si
2 = {w ∈ {0, 1}2n : (∃ IV i1← w) ∨ (∃ IV i2→ v

i1← w)

∨ (∃ u′ i3→ u
i2→ v

i1← w) for i1 �= i2, i3 ≤ i},

Si
3 = {w ∈ {0, 1}2n : (∃ IV i2← v

i1← w)

∨ (∃ u′ i3→ u
i2← v

i1← w) for i1, i2 �= i3 ≤ i},

Si
4 =
{
w ∈ {0, 1}2n : ∃ u′ i3← u

i2← v
i1← w for i1, i2, i3 ≤ i

}
.

Then for integer parameters M,m > 0, we have the following properties.

1. Without the occurrence of Mult(M),
∣∣Si

1

∣∣ ≤ |Sq
1 | ≤ 2qM + 1.

2. Without the occurrence of E2(M),
∣∣Si

2

∣∣ ≤ |Sq
2 | ≤ 8qM + 2q + 4M.

3. Without the occurrence of E2(M) ∪ E4(m),
∣∣Si

3

∣∣ ≤ |Sq
3 | ≤ 4qM +m.

4. Without the occurrence of Mult(M) ∪ E4(m),
∣∣Si

4

∣∣ ≤ |Sq
4 | ≤ qMm.

Proof. Since it is obvious that
∣∣Si

α

∣∣ ≤ |Sq
α| for α = 1, 2, 3, 4, we will prove the

properties for i = q.

Property 1: Fix i1 ∈ [1, q]. Then there exist at most M nodes v ∈ {0, 1}2n such
that v ∈ Rq(Ki1). Since v and i1 determine two nodes w such that v i1→ w, we
have |Sq

1 | ≤ 2qM + 1.
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Property 2: There exist at most M pairs (i2, i1) ∈ [1, q]2 such that i1 �= i2

and “ i2→ v
i1←” for some v. Therefore, we have at most 4M nodes w such that

IV
i2→ v

i1← w, and at most 8qM nodes w such that u′ i3→ u
i2→ v

i1← w for some
i3 ∈ [1, q]. Since the number of nodes w such that IV i1← w for some i1 ∈ [1, q] is
not greater than 2q, we have |Sq

2 | ≤ 8qM + 2q + 4M .

Property 3: Without the occurrence of E4(m), we have at most m nodes w such
that IV i2← v

i1← w for some i1, i2 ∈ [1, q]. Without the occurrence of E2(M), we
have at most M pairs (i3, i2) ∈ [1, q]2 such that i2 �= i3 and “ i3→ u

i2←” for some
u. Each i1 ∈ [1, q] is combined with such a pair (i3, i2), yielding 4 nodes w such
that u′ i3→ u

i2← v
i1← w. Therefore we have |Sq

3 | ≤ 4qM +m.

Property 4: Fix i3 ∈ [1, q]. Without the occurrence of Mult(M), we have at most
M nodes u ∈ {0, 1}2n such that u ∈ Rq(Ki3). For each of such nodes u, there
exists at most m nodes w such that u i2← v

i1← w without the occurrence of
E4(m). Therefore we have |Sq

4 | ≤ qMm. ��

4.2 Decomposing a Collision

Let Coll denote the event that B makes a collision of H . We can decompose the
event Coll as follows.

Lemma 5. Let Cα, α = 1, . . . , 12, be events defined as follows.

C1 : ∃ u i→ v
i← w such that u �= w,

C2 : ∃ u i→ v
j← u s.t. j < i,

C3 : ∃ u i+→ v
i−← u,

C4 : ∃ u i→ v
i→ w s.t. u ∈ Ri−1(Ki),

C5 : ∃ u i→ v s.t. u ∈ Ri−1(Ki) and v ∈ Si−1
1 ,

C6 : ∃ u i→ v
j← w

j′← w′ i← w′′, s.t. u ∈ Ri−1(Ki) and j �= j′ < i,

C7 : ∃ u i→ v
j← w

i← w′ s.t. u ∈ Ri−1(Ki) and j < i,

C8 : ∃ u i→ v s.t. u ∈ Ri−1(Ki) and v ∈ Si−1
2 ,

C9 : ∃ u i→ v
j→ w

j′← v′
i← v′′, s.t. u ∈ Ri−1(Ki) and j �= j′ < i,

C10 : ∃ u i→ v s.t. u ∈ Ri−1(Ki) and v ∈ Si−1
3 ,

C11 : ∃ u i→ v
j→ w

i→ w′ s.t. u ∈ Ri−1(Ki) and j < i,

C12 : ∃ u i→ v s.t. u ∈ Ri−1(Ki) and v ∈ Si−1
4 .

Then we have Coll ⊂
⋃12

α=1 Cα.
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Proof. We will show that Coll ∩ (C1 ∪ C2 ∪ C3 ∪ C4) ⊂
⋃12

α=5 Cα. Suppose that
the i∗-th query-response cycle of B completes a collision of H on a certain value
w. Then, for some nonnegative integers s and t, there would exist two paths

P1 : IV
α1→ u[1] α2→ u[2] α3→ · · · αs−1→ u[s− 1] αs→ w,

P2 : IV
β1→ v[1]

β2→ v[2]
β3→ · · · βt−1→ v[t− 1]

βt→ w,

such that α1, . . . , αs, β1, . . . , βt ≤ i∗. Excluding events C1, C2, C3 and C4, we can
assume that

1. u[s− 1] �= v[t− 1] (i.e., w is an earliest possible collision),
2. P1 contains an i∗-labelled edge,
3. βt < i∗.

There might be several edges labelled i∗ in P1. Among such edges, focus on the
“furthest” edge u i∗→ v from IV such that u is contained in Ri∗−1(Ki∗). Then
we can make the following observations.

1. If v is the colliding node, then we have one of the configurations in C5, C6
and C7.

2. If v is one-edge away from the colliding node, then we have one of the con-
figurations in C8 and C9.

3. If v is two-edges away from the colliding node, then we have one of the
configurations in C10 and C11.

4. Otherwise, we have one of the configurations in C11 and C12.

These observations complete the proof. ��

4.3 Putting the Pieces Together

Now we are ready to prove the following theorem.

Theorem 1. Suppose that a modified adversary B records q query-response cy-
cles. Let m = 2m1m2 and M = 8m+ 1 for any integer parameters m1,m2 > 0.
Then,

Advcoll
H (B) ≤ 2N

(
12q

mN ′

)m

+ N

(
12q2

mN ′

)m

+ 2N

(
6q

m2N ′

)m2

+ N

(
12q2

m1N ′

)m1

+
8q2

MN ′ +
4q2

m2(N ′)2
+

1
N ′ (2qMm2 + 18qM + 2q)

+
1

(N ′)2
(
8q3 + 8q2M2m2

2 + 28q2M2 + 16q2M + 2q2 + 16qM2 + 8qMm2
2 + 2qM

)
:= εN (q, m1, m2).
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Proof. Let Dα = Cα∩(Mult(M) ∪ E1(M) ∪ E2(M) ∪ E3(m2) ∪ E4(4m2
2)) for α =

1, . . . , 12. Then, by Lemma 5,

Advcoll
H (B) = Pr [Coll] ≤

12∑
α=1

Pr [Cα] ≤ Pr [Mult(M)] + Pr [E1(M)]

+ Pr [E2(M)] + Pr [E3(m2)] + Pr
[
E4(4m2

2)
]
+

12∑
α=1

Pr [Dα] . (4)

Now we can prove that

Pr [D1] ≤
q

N ′ , Pr [D2] ≤
2q2

(N ′)2
,

Pr [D3] ≤
q

N ′ , Pr [D4] ≤
2qM
N ′ ,

Pr [D5] ≤
2qM(2qM + 1)

(N ′)2
, Pr [D6] ≤

8q(q2 +M2)
(N ′)2

,

Pr [D7] ≤
8q2M
(N ′)2

, Pr [D8] ≤
2qM(8qM + 2q + 4M)

(N ′)2
,

Pr [D9] ≤
2qM(m2 + 8)

N ′ , Pr [D10] ≤
2qM(4qM + 4m2

2)
(N ′)2

,

Pr [D11] ≤
4q2M
(N ′)2

, Pr [D12] ≤
8q2M2m2

2

(N ′)2
.

It is straightforward to prove each inequality. Here we only upper bound Pr [D5]
as one of the dominating terms. The full analysis is given in Appendix B.

In order to upper bound Pr [D5], we fix i ∈ [1, q], u ∈ Ri−1(Ki) and v ∈
Si−1

1 . Then the probability that the i-th query-response cycle Δi completes the
configuration C5 with an edge from u to v is at most 2/(N ′)2. Since

∣∣Ri−1(Ki)
∣∣ ≤

M (without the occurrence of Mult(M)) and
∣∣Si−1

1

∣∣ ≤ 2qM +1 by Lemma 4, we
have Pr [D5] ≤ 2qM(2qM + 1)/(N ′)2.

Now by combining the above inequalities with (4), Lemma 2 and Lemma 3,
we obtain the theorem. ��

Corollary 1. Let N = 2n, q = N2/3

n , m1 = N1/3 and m2 = 3. Then we have

lim
n→∞

εN (q,m1,m2) = 0.

Proof. The proof is straightforward since

εN (q,m1,m2) = εN

(
N2/3

n
,N1/3, 3

)
= O

(
qM

N

)
= O

(
1
n

)
.
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A Proof of Lemma 2

For each z ∈ {0, 1}n, let

R1(z) =
{
w ∈ {0, 1}2n : ∃ IV i→ w such that wR = z

}
,

R2(z) =
{
w ∈ {0, 1}2n : ∃ u i→ v

i→ w such that wR = z
}
,

R3(z) =
{
w ∈ {0, 1}2n : ∃ u j→ v

i→ w such that i > j and wR = z
}
,

R4(z) =
{
w ∈ {0, 1}2n : ∃ u i→ v

j→ w such that i > j and wR = z
}
.

Then we have

Rq(z) = R1(z) ∪R2(z) ∪R3(z) ∪R4(z) ∪ {IV } .

Define events
Multα(2m)⇔ max

z∈{0,1}n
|Rα(z)| > 2m,

for α = 1, . . . , 4. Since M = 8m+ 1, we have

Pr [Mult(M)] ≤
4∑

i=1

Pr [Multi(2m)] . (5)

Event Mult1(2m): If there exists a path IV i→ w such that wR = z for a fixed
z ∈ {0, 1}n, then it should hold that IVL + xi

L + yi
R = z for some

(xi
L, y

i
R) ∈
{
(X i, θ(X i

σ + Y i
σ) +X i), (X i

σ, θ(X
i + Y i) +X i

σ)
}
.

Some rewriting then shows that X i
σ +Y i

σ = θ−1(IVL+z) or X i+Y i = θ−1(IVL+
z) needs to happen (where we used that θ �= 0). Suppose that the (X i,Ki, Y i)
triple arose from a forward query. Since the i−1 query-response cycles can have

http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh.pdf
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resulted in at most 2(i− 1) queries to the blockcipher with key Ki, the current
response Y i is uniform over a set of size at least N − 2(i − 1) ≥ N ′ and as a
consequence the probability of X i +Y i hitting a predetermined value is at most
1/N ′. Almost exactly the same argument holds when the triple arose from an
inverse query or the conjugate query.

The number of indices i satisfying this equation is greater than m with prob-
ability at most

(
q
m

)
(2/N ′)m. Since each index i determines at most two values

of w, we have

Pr [Mult1(2m)] ≤ N
(
q

m

)(
2
N ′

)m

. (6)

Event Mult2(2m): Fix z ∈ {0, 1}n. If there exists a path u i→ v
i→ w such that

wR = z for some u, v and w, then it should hold that yi′
L + xi′′

L + yi′′
R = z, where

yi′
L ∈
{
X i + Y i, X i

σ + Y i
σ

}
,

and
(xi′′

L , y
i′′
R ) ∈
{
(X i, θ(X i

σ + Y i
σ) +X i), (X i

σ, θ(X
i + Y i) +X i

σ)
}
.

The number of indices i satisfying this equation is greater than m with prob-
ability at most

(
q
m

)
(4/N ′)m. Here we additionally use that θ �= 1, for instance

the case yi′
L = X i + Y i and (xi′′

L , y
i′′
R ) = (X i

σ, θ(X
i + Y i) + X i

σ) would require
(θ + 1)(X i + Y i) = z (which we cannot successfully bound for z = 0 if θ = 1).
Since each index i determines at most two values of w, we have

Pr [Mult2(2m)] ≤ N
(
q

m

)(
4
N ′

)m

. (7)

Event Mult3(2m): Fix z ∈ {0, 1}n. For each i ∈ [1, q], the probability that there

exists j < i such that u
j→ v

i→ w and wR = z is not greater than 4q/N ′. Similar
to the above analysis, we have

Pr [Mult3(2m)] ≤ N
(
q

m

)(
4q
N ′

)m

. (8)

Event Mult4(2m): This analysis is rather complicated since for each i, there
might be a multiple number of indices j < i that determine distinct nodes w
such that wR = z. So we would like to limit this number. Define event

Ex(m2)⇔ max
z′∈{0,1}n

∣∣∣{j ∈ [1, q] : xj
L + yj

R = z′
}∣∣∣ > m2,

where

(xj
L, y

j
R) ∈
{
(Xj , θ(Xj

σ + Y j
σ ) +Xj), (Xj

σ, θ(X
j + Y j) +Xj

σ)
}
.
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Then it is easy to prove

Pr [Ex(m2)] ≤ N
(
q

m2

)(
2
N ′

)m2

. (9)

Consider the event Mult4(2m) ∩ Ex(m2). For each yi
L ∈
{
X i + Y i, X i

σ + Y i
σ

}
,

there would be at most m2 indices j < i that determine distinct nodes w such
that wR = yi

L +xj
L +yj

R = z. It means that there should exist at least m1 indices
i such that there exists j < i satisfying wR = yi

L + xj
L + yj

R = z. Since this event
occurs with probability at most

(
q

m1

)
(4q/N ′)m1 , we have

Pr
[
Mult4(2m) ∩ Ex(m2)

]
≤ N
(
q

m1

)(
4q
N ′

)m1

. (10)

From inequalities (5), (6), (7), (8), (9) and (10), we have

Pr [Mult(M)] ≤ 2N

(
12q

mN ′

)m

+N

(
12q2

mN ′

)m

+N

(
6q

m2N ′

)m2

+N

(
12q2

m1N ′

)m1

,

where we use inequality (
q

α

)
≤
(

3q
α

)α

,

for any positive integer α such that α ≤ q.

B Upper Bounding Pr [Dα]

Throughout the following analysis, we will fix i ∈ [1, q] and compute the proba-
bility that the i-th query-response cycle Δi completes each configuration.

Event D1: Since vL ∈
{
X i + Y i, X i

σ + Y i
σ

}
and u �= w, we have X i + Y i =

X i
σ + Y i

σ . Since this equality holds with probability at most 1/N ′, we have

Pr [D1] ≤
q

N ′ .

Event D2: Fix j(< i). Then we have

(vL, uL + vR) ∈
{
(Zi, θZi

σ), (Zi
σ, θZ

i)
}
∩
{
(Zj , θZj

σ), (Zj
σ, θZ

j)
}
,

where Zi = X i + Y i, Zi
σ = X i

σ + Y i
σ , Zj = Xj + Y j and Zj

σ = Xj
σ + Y j

σ . (We
will use these notations in the following events as well.) By checking out all the
possible 2 sets of equations (up to equivalence), we see the probability of the
above inclusion is at most 2/(N ′)2. Therefore, we have

Pr [D2] ≤
2q2

(N ′)2
.
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Event D3: Since vL = Zi = Zi
σ and this equation holds with probability at most

1/N ′, we have
Pr [D3] ≤

q

N ′ .

From now on, we will also fix u ∈ Ri−1(Ki). Note that
∣∣Ri−1(Ki)

∣∣ ≤M without
the occurrence of Mult(M).

Event D4: By Lemma 1, we have uL ∈
{
Ki + θZi,Ki + θZi

σ

}
. Since this inclu-

sion holds with probability at most 2/N ′, we have

Pr [D4] ≤
2qM
N ′ .

Event D5: Fix v ∈ Si−1
1 , where

∣∣Si−1
1

∣∣ ≤ 2qM + 1 by Lemma 4. Since the

probability that the i-th query-response cycle determines u i→ v is at most
2/(N ′)2, we have

Pr [D5] ≤
2qM(2qM + 1)

(N ′)2
.

Event D6: First, consider the case where the two i-labelled edges have the same
sign. In this case, fix a pair of indices (j, j′) such that there exists a configuration

v
j← w

j′← w′ for some v and w′ with vL = w′
L. The number of such pairs is at

mostM without the occurrence of E1(M). Since (j, j′) determines 4 nodes v, and
the probability of u i→ v (for a given u) is at most 2/(N ′)2, the overall probability
of D6 with the i-labelled edges of the same sign is at most 8qM2/(N ′)2.

Next, consider the case where the two i-labelled edges have opposite signs. In
this case, fix a pair (j, j′) ∈ [1, q]2. Then for each pair, four possible pairs (vL, w

′
L)

are determined. For each of these, the probability that either (X+Y,Xσ +Yσ) =
(vL, w

′
L) or (X + Y,Xσ + Yσ) = (w′

L, vL) is at most 2/(N ′)2. Therefore, the
probability of D6 with the i-labelled edges of opposite signs is at most 8q3/(N ′)2.
To summarize, we have

Pr [D6] ≤
8q(q2 +M2)

(N ′)2
.

Event D7: Fix j(< i). Then we have

v ∈
{
(Zi, uL + θZi

σ), (Zi
σ, uL + θZi)

}
∩
{
(Zj , Zi + θZj

σ), (Zj
σ, Z

i + θZj), (Zj , Zi
σ + θZj

σ), (Zj
σ, Z

i
σ + θZj)

}
.

By checking out all the possible 8 sets of equations, we see the probability of the
above inclusion is at most 8/(N ′)2. Therefore, we have

Pr [D7] ≤
8q2M
(N ′)2

.
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Event D8: Fix v ∈ Si−1
2 , where

∣∣Si−1
2

∣∣ ≤ 8qM + 2q + 4M by Lemma 4. Since

the probability that the i-th query-response cycle determines u i→ v is at most
2/(N ′)2, we have

Pr [D8] ≤
2qM(8qM + 2q + 4M)

(N ′)2
.

Event D9: First, consider the case where the two i-labelled edges have the same
sign. In this case, fix a pair of colliding indices (j, j′) such that there exists a

configuration v
j→ w

j′← v′ for some v and v′ with vL = v′L. The number of such
pairs is at most m2 without the occurrence of E3(m2). Since the probability that
vR = Kj ∈

{
uL + θZi, uL + θZi

σ

}
is at most 2/N ′, the probability of D9 with

the i-labelled edges of the same sign is at most 2qMm2/N
′.

Next, consider the case where the two i-labelled edges have opposite signs.
In this case, fix a pair of colliding indices (j, j′). The number of such pairs is at
most M without the occurrence of E2(M). Then for each wR ∈ {0, 1}n, (vL, v

′
L)

is determined with four possibilities. For each possibility, the probability that
either (X + Y,Xσ + Yσ) = (vL, v

′
L) or (X + Y,Xσ + Yσ) = (v′L, vL) is at most

2/(N ′)2. Therefore, the probability of D9 with the i-labelled edges of opposite
signs is at most 8qMN/(N ′)2. To summarize, we have

Pr [D9] ≤
2qMm2

N ′ +
8qMN

(N ′)2
≤ 2qM(m2 + 8)

N ′ .

Event D10: Fix v ∈ Si−1
3 , where

∣∣Si−1
3

∣∣ ≤ 4qM + 4m2
2 by Lemma 4. Since

the probability that the i-th query-response cycle determines u i→ v is at most
2/(N ′)2, we have

Pr [D10] ≤
2qM(4qM + 4m2

2)
(N ′)2

.

Event D11: Fix j(< i). Then we have

(vR, wR) = (Kj,Ki) ∈ {(uL + θZi, Zi
σ + Zj), (uL + θZi, Zi

σ + Zj
σ),

(uL + θZi
σ, Z

i + Zj), (uL + θZi
σ, Z

i + Zj
σ)}.

By checking out all the possible 4 sets of equations, we see the probability of the
above inclusion is at most 4/(N ′)2. Therefore, we have

Pr [D11] ≤
4q2M
(N ′)2

.

Event D12: Fix v ∈ Si−1
4 , where

∣∣Si−1
4

∣∣ ≤ 4qMm2
2 by Lemma 4. Since the

probability that the i-th query-response cycle determines u i→ v is at most
2/(N ′)2, we have

Pr [D12] ≤
8q2M2m2

2

(N ′)2
.
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C Towards Better Bounds

While MJH’s provable collision resistance of up to 2
2n
3 −log n is an unmatched

achievement for hash functions of its kind, we do not believe the result to
be tight and more detailed case analysis might lead to even better bounds.
Grosso modo the 12 cases of Lemma 5 can be divided into three categories: local
aberrations (C1,C2,C3), connecting a size-2 component with a size-3 component
(C5,C8,C10,C12), and connecting from a size-2 component to another component
twice (C4,C6,C7,C9,C11). From the proof, it follows that the aberrations are not
expected to occur until very close to 2n queries have been made. For the remain-
ing cases, the “bad” probabilities are all of the type qM/N ′ or (qM/N ′)2, where

M is related to the maximum occurrence of wR over all 2-chains u i→ v
j→ w.

This implies M > q2/N resulting in an upper bound (on the advantage) polyno-
mial in q3/N2, loosing meaning when q > N2/3 (and it actually happens slightly
sooner).

If we were to consider larger components instead, there is hope that we can
reduce M and the bound accordingly. For instance, the maximum occurrence

of w′
R over all 3-chains u i→ v

j→ w
j′→ w′ is only expected to be q3/N2. If we,

optimistically, plug in this value for M in qM/N , we arrive at q4/N3 indicating
security might be provable up to N3/4 queries using this approach. The problem
is that to formalize this all and make it rigorous is a serious undertaking: without
care the equivalent of Lemma 2 could take on 7 extra cases, all the sets in
Lemma 4 grow and an extra set is likely to be needed, extra cases will need to
be added to Lemma 5, and all added cases tend to be more complicated than
the current ones.
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Abstract. Online ciphers are deterministic length-preserving permu-
tations EK : ({0, 1}n)+ → ({0, 1}n)+ where the i-th block of ciphertext
depends only on the first i blocks of plaintext. Definitions, constructions,
and applications for these objects were first given by Bellare, Boldyreva,
Knudsen, and Namprempre. We simplify and generalize their work, show-
ing that online ciphers are rather trivially constructed from tweakable
blockciphers, a notion of Liskov, Rivest, and Wagner. We go on to show
how to define and achieve online ciphers for settings in which messages
need not be a multiple of n bits.

Keywords: Online ciphers, modes of operation, provable security, sym-
metric encryption, tweakable blockciphers.

1 Introduction

Background. Informally, a cryptographic transform is said to be online if
it can be computed by an algorithm that reads in the (unknown number of)
input bits—in order, one at a time—as it writes out the corresponding output
bits—again in order, one at a time—never using more than a constant amount of
memory or incurring more than a constant amount of latency.1 Most blockcipher
modes of operation are online—for example, modes like CBC, HMAC, and GCM
certainly are. But one kind of transformation is not online, and can never be
online: a general cipher [20], one secure in the customary sense of a PRP (a
pseudorandom permutation). Such objects take a key K and a plaintext M of
unbounded length and produce a ciphertext C of length |M |, doing so in such
a way that the mapping resembles a random permutation. EME2 is a soon-to-
be-standardized example [14]. The reason an online cipher can’t be PRP-secure
is simple: the first bit of output, for example, has got to depend on every bit
of input, else it is trivial to distinguish the cipher from a random permutation.
This requirement makes bounded memory, or latency, an impossibility.

One can weaken PRP security to capture what is possible in the online setting.
Bellare, Boldyreva, Knudsen, and Namprempre (BBKN) were the first to do so,
defining online ciphers [3]. The authors fix a parameter n (likely the blocksize
of some underlying blockcipher). They then demand that the i-th (n-bit) block
of ciphertext depend only on the first i blocks of plaintext (and, of course,
1 For online ciphers, two alternative formulations—one corresponding to the opening

sentence of the abstract, plus one other—will subsequently be described.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 237–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



238 P. Rogaway and H. Zhang

the key).2 BBKN did not explicitly demand that encryption and decryption be
computable with constant memory and latency, but follow-on work by Boldyreva
and Taesombut strengthened BBKN’s definition in a way that ensures this is
so [9].

Like other kinds of ciphers, online ciphers can be secure in either the CPA
(chosen plaintext) or CCA (chosen ciphertext, or “strong”) sense, depending on
whether the adversary is given oracle access to the decryption (or “backwards”)
functionality as well as the encryption (or “forwards”) functionality. For online
ciphers it initially seemed as though CCA-security was harder to achieve than
CPA-security [3], but, at present, the most efficient CCA-secure construction
has essentially the same overhead as the most efficient CPA-secure one, needing
just one extra xor per block [22].

Online ciphers are useful tools. For example, BBKN demonstrate a simple
recipe for turning a CCA-secure online cipher into an authenticated-encryption
scheme (one prepends and appends a random value R ∈ {0, 1}n) [4]; Boldyreva
and Taesombut (following, Fouque Joux, Martinet, and Valette [10]) show how
to turn a CCA-secure online cipher into either an online encryption scheme
secure against “blockwise-adaptive” CCA attacks, or else an online authenticated-
encryption (AE) scheme likewise secure against BA-CCA attacks [9]; and Ama-
natidis, Boldyreva, and O’Neill describe the use of online ciphers to solve a
database-security problem [1].

Our contribution. In this paper we make two contributions. First, we recast
the constructions of BBKN [3,4], plus a subsequent construction by Nandi [21,
22], into the language of tweakable blockciphers, a notion of Liskov, Rivest, and
Wagner [17]. The new starting point yields constructions more general and trans-
parent than those before. See Fig. 1. Second, we show how to relax the notion of
an online cipher to deal with messages that are not a multiple of n bits. Besides
definitions, we provide a simple and efficient construction to handle this set-
ting. Dealing with arbitrary-length inputs is a necessary precursor to practical
schemes, which we also describe.

Discussion. The original BBKN paper had fairly complex schemes and proofs [3].
Nandi found some bugs in these proofs and offered up his own [21, 22]. BBKN
corrected the issues in their proofs, which they regarded as minor, but the proofs
remain complex [4]. BBKN’s modes relied on xor-universal hash functions, and
subsequent work did too, or else doubled the number of blockcipher calls [3,4,21,
22]. Our own constructions are simple, and they are natural generalizations of the
existing schemes. The proofs are simple too. We do not regard this simplicity as a
defect. Without the tweakable-blockcipher abstraction, constructions and proofs
in this domain are not simple, as the above history suggests.

The question of fractional final blocks was earlier asked by Nandi [22, p. 361].
Note that one cannot just say to pad to the next multiple of n (as suggested, for
example, by Bard [2, p. 134]). This doesn’t make sense definitionally, because

2 It follows that the i-th block of plaintext will likewise depend only on the key and
the first i blocks of ciphertext.
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TC1

10 algorithm EK(M)
11 if M �∈({0, 1}n)+ return ⊥
12 m ← |M |/n; T ← 0n

13 for j ← 1 to m do
14 C[j] ← Ẽ T

K(M [j])
15 T ← C[j]
16 return C

EK
~EK

~ EK
~EK

~
0

M [1]

C [1] C [3]C [2] C [4]

M [4]M [3]M [2]

TC2
20 algorithm EK(M)
21 if M �∈({0, 1}n)+ return ⊥
22 m←|M |/n; T ← 02n

23 for j ← 1 to m do

24 C[j] ← Ẽ T
K(M [j])

25 T ← M [j] ‖ C[j]
26 return C

EK
~EK

~ EK
~EK

~0
0

M [1]

C [1] C [3]C [2] C [4]

M [4]M [3]M [2]

TC3

30 algorithm EK(M)
31 if M �∈({0, 1}n)+ return ⊥
32 m←|M |/n; T ← 0n

33 for j ← 1 to m do
34 C[j] ← Ẽ T

K(M [j])
35 T ← M [j] ⊕ C[j]
36 return C

M [1]

C [1]

EK
~EK

~ EK
~EK

~~
0

C [3]C [2] C [4]

M [4]M [3]M [2]

Fig. 1. Modes TC1, TC2, and TC3. The first is a CPA-secure online cipher; the
next two are CCA-secure. Plaintexts must have a length divisible by n. In the diagrams,
the object ẼK is a keyed tweakable blockcipher; the tweak comes in at left, the n-bit
input comes in at the top, and the n-bit output emerges from the bottom. TC1, TC2,
and TC3 simplify and generalize HCBC1 [4, 3], HCBC2 [4], and MHCBC [21, 22],
respectively.

it leaves one without any notion for what it means to have an online-encipher
outside of ({0, 1}n)+, and it doesn’t make sense procedurally, because, if you
did pad and then encipher, you would no longer have a cipher at all (ciphers
preserve length).

Dealing with arbitrary-length inputs is important for efficiency: if we are going
to turn an online cipher into an authenticated-encryption scheme or a blockwise-
adaptive (BA) online encryption scheme, there will be ciphertext expansion if is
forced to pad.

Correctly constructing arbitrary-input-length online ciphers would be difficult
without the tweakable blockcipher abstraction. Liskov, Rivest, and Wagner had
argued that tweakable blockciphers would be useful tools for designing symmetric
protocols [17]. Our results bolster this point of view.
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Joux, Martinet, and Valette [15] implicitly argue that our notion of security
for online ciphers is not strong enough, since it treats the encryption operation as
“atomic,” not attending to attacks that, for example, select the second block of a
plaintext being encrypted based on the encryption of the first. We do not dispute
this insight, but nonetheless prefer not to deal with these blockwise-adaptive ad-
versarial attacks. First, enriching the security notion to allow for them hardly
changes things in the CPA-setting [11, Theorem 8]. Second, “atomic” online
ciphers are already useful for higher-level applications, as described above. Fi-
nally, “true” CCA security becomes impossible in the BA setting, leading to
more subtle definitions for what actually is achievable [9].

2 Preliminaries

Notation. A string is a member of {0, 1}∗. The notation A ‖ B, or just AB,
denotes the concatenation of strings A and B. If X is a string then |X | denotes
its length. The empty string is denoted ε. Throughout this paper we fix a positive
number n called the blocksize. The set ({0, 1}n)+ is the set of all strings having
length jn for some j ≥ 1. If X ∈ ({0, 1}n)+ we let X [i] denotes its ith n-bit
block, soX = X [1] · · ·X [m] wherem = |X |/n. We will later extend this notation
to the case when X is not a multiple of n bits. We write X [i..j] for X [i] · · ·X [j].

Ciphers. A map f : X → X for X ⊆ {0, 1}∗ is a length-preserving function if
|f(x)| = |x| for all x ∈ {0, 1}∗. It is a length-preserving permutation if it is also
a permutation. A cipher is a map Ẽ: K ×M→M where K is a nonempty set
(finite or otherwise endowed with some distribution),M⊆ {0, 1}∗ is a nonempty
set, and EK = E(K, ·) is a length-preserving permutation for all K ∈ K. The
set K is called the key space andM is called the message space. If E : K×M→
M is a cipher then its inverse is the cipher E−1: K × M → M defined by
E−1(K,Y ) = E−1

K (Y ) being the unique point X such that EK(X) = Y .

Blockciphers and tweakable blockciphers. A blockcipher is a function
E: K × {0, 1}n → {0, 1}n where K is a finite nonempty set and EK(·) = E(K, ·)
is a permutation on {0, 1}n for every K ∈ K. Equivalently, a blockcipher is
a cipher with message space M = {0, 1}n. A tweakable blockcipher is a func-
tion Ẽ: K × T × {0, 1}n → {0, 1}n where K is a finite nonempty set and T is
a nonempty set (the tweak space) and ẼT

K(·) = Ẽ(K,T, ·) is a permutation
on {0, 1}n for every K ∈ K, T ∈ T .

Let Perm(n) be the set of all permutations on n bits, Perm(M) be the set of
all length-preserving permutations on the finite setM⊆ {0, 1}∗, and Perm(T , n)
the set of all functions π: T × {0, 1}n → {0, 1}n where πT (·) = π(T, ·) is a per-
mutation for each T ∈ T . We may regard Perm(n), Perm(M), and Perm(T , n)
as blockciphers, ciphers, and tweakable blockciphers, respectively; they are the
ideal blockcipher on n bits, the ideal cipher onM, and the ideal tweakable block-
cipher on n bits and tweak space T . When an adversary A is run with an oracle
O we let AO⇒ 1 denote the event that A outputs 1. Define the prp, ±prp, p̃rp,
and ±p̃rp advantage of A against E or Ẽ by:
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Advprp
E (A) = Pr[K $←K : AEK ⇒ 1]−Pr[π $← Perm(n) : Aπ ⇒ 1]

Adv±prp
E (A) = Pr[K $←K : AEK ,E−1

K ⇒ 1]−Pr[π $← Perm(n) : Aπ,π−1
⇒ 1]

Advp̃rp
Ẽ

(A) = Pr[K $←K : AẼK ⇒ 1]−Pr[π $← Perm(T , n) : Aπ ⇒ 1]

Adv±p̃rp
Ẽ

(A) = Pr[K $←K : AẼK , Ẽ−1
K ⇒ 1]−Pr[π $← Perm(T , n) : Aπ, π−1 ⇒ 1]

Online ciphers. A length-preserving function f : ({0, 1}n)+ → ({0, 1}n)+ is
online if, for all i, f(X)[1..i] depends only on X [1..i]. Here we say that f(X)[1..i]
depends only on X [1..i] if f(XY )[1..i] = f(XY ′)[1..i] for all X ∈ {0, 1}in
and Y, Y ′ ∈ {0, 1}∗ where f(XY ) and f(XY ′) are defined. A cipher E : K ×
({0, 1}n)+ → ({0, 1}n)+ is online if each EK is. Let Online(n): K× ({0, 1}n)+ →
({0, 1}n)+ be the ideal online cipher on n bits: each key names one of the pos-
sible online ciphers, the set being given the uniform distribution in the natural
way. If E : K× ({0, 1}n)+ → ({0, 1}n)+ is an online cipher and A is an adversary
we define:

Advoprp
E (A) = Pr[K $←K : AEK ⇒ 1]−Pr[π $←Online(n) : Aπ ⇒ 1]

Adv±oprp
E (A) = Pr[K $←K : AEK , E−1

K ⇒ 1]−Pr[π $←Online(n) : Aπ, π−1
⇒ 1]

We comment that the definitions allow variable-input-length (VIL) attacks: the
adversary may ask queries of varying lengths. On the other hand, definitions
only countenance ciphers on M = ({0, 1}n)+, and it is not obvious what to do
beyond this domain, Online(n) being quite specific to it.

Discussion. The notion for an online cipher just given, taken from BBKN [3],
can be criticized for not prohibiting, for example, that that computation of
C[m] requires one to retain all of M [1] · · ·M [m]. A stronger notion appears
in Boldyreva and Taesombut [9], the definition asserting that C[i] may only
depend on M [i], M [i− 1], C[i− 1], and the underlying key. We believe that this
requirement does not make for a desirable security definition: the cipher in which
each C[i] is a random permutation of M [i], tweaked by M [i−1]‖C[i−1], ought
not to be regarded ideal, since one can easily do better and still, intuitively, be
“online.” Still, our constructions enjoy the BT-style locality property, ensuring
that they can be implemented with constant latency and memory.

An alternative notion for an online cipher would capture the intuition from
the opening paragraph of this paper, saying that a cipher E : K ×M → M is
Online[m] if it can be implemented by an algorithm that is fed in bits one at a
time, and that retains just m bits of state. This would natively handle ciphers
on arbitrary bit strings. We leave it as an open question to explore these ideas.

3 Online Ciphers Achieving CPA-Security

Let Ẽ: K × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable blockcipher. From this
primitive we define a cipher E =TC1[Ẽ] with key space K and message space
M = ({0, 1}n)+. See Fig. 1. The construction is online CPA-secure, as formalized
below.
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Theorem 1 (TC1 is oprp-secure). Let π̃ = Perm({0, 1}n, n). If A asks
queries having at most σ blocks then Advoprp

TC1[π̃](A) ≤ 1.5 σ2/2n.

We omit the proof because we will in a moment be proving, by analogous but
slightly more involved means, what is essentially a stronger result: online CCA-
security for the equally efficient cipher TC3. The complexity-theoretic analog
for the theorem, using a “real” tweakable PRP Ẽ instead of the ideal tweakable
PRP π̃, follows by standard techniques. One would need Ẽ to be secure in the
prp-sense. We omit the theorem statement, showing later how it would look for
scheme TC3.

Mechanism TC1 is a generalization of BBKN’s mode of operation HCBC1 [4]
(formerly named HCBC [3]); the latter can be realized as a special case of TC1
by selecting the tweakable blockcipher Ẽ: (K1 × K2) × {0, 1}n → {0, 1}n to be
ẼT

K1 K2(X) = EK1(M⊕HK2(T )) where H : K2×{0, 1}n → {0, 1}n is an almost-
xor universal hash function andE is a blockcipher.3 This is in fact the “standard”
construction of a tweakable blockcipher from an ordinary one [17]. Of course one
can instantiate the tweakable blockcipher Ẽ from an ordinary blockcipher E in
a variety of other ways as well. We comment that TC1 can also be regarded as
Liskov, Rivest, and Wagner’s “tweak block chaining” mode [17, Section 4] but
with a zero IV.

Note that TC1 is not a secure online cipher with respect to CCA attacks. A
simple attack is as follows. The adversary makes a decryption query of C ‖C ‖C
for any C ∈ {0, 1}n. The oracle returns M1 ‖M2 ‖M3 as the reply. If M2 = M3,
return 1; otherwise, return 0. Under the TC1 construction, one will always have
that M2 = M3, but with a random on-line cipher this will rarely be true.

4 Online Ciphers Achieving CCA-Security

Let Ẽ: K × {0, 1}2n × {0, 1}n → {0, 1}n be a tweakable blockcipher. From this
primitive we define a cipher E =TC2[Ẽ] with key space K and message space
M = ({0, 1}n)+. Again see Fig. 1. The construction is CCA-secure, as formalized
below.

Theorem 2 (TC2 is ±oprp-secure). Let π̃ = Perm({0, 1}2n, n). If A asks
queries having at most σ blocks then Adv±oprp

TC2[π̃](A) ≤ 1.5 σ2/2n.

We again omit the proof, and the complexity-theoretic analog, which would this
time need the ±p̃rp assumption, preferring, for concision, to do this just for
TC2’s more efficient cousin, TC3.

Mechanism TC2 is a generalization of BBKN’s mode HCBC2 [4] (formerly
named HPCBC), which can be regarded as TC2 with a tweakable blockcipher

3 We recall the definition, due to Krawczyk [16], that H : K2×X → {0, 1}n is ε-almost
XOR universal (ε-AXU) if for all distinct X, X ′ ∈ X and all C ∈ {0, 1}n we have that
Pr[HK(X)⊕HK(X ′) = C] ≤ ε, the probability over K

$←K2. Simple constructions
achieve ε = 2−n, the minimum value possible.
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Ẽ: (K1×K2)×{0, 1}n → {0, 1}n of ẼT
K1 K2(X) = EK1(M⊕HK2(T ))⊕HK2(T )

where H : K2 × {0, 1}2n → {0, 1}n is an almost-xor universal hash function and
E is a blockcipher. This is also the “standard” construction of a strong tweakable
blockcipher from an ordinary one [17].

We are now ready to consider TC3. Let Ẽ: K×{0, 1}n×{0, 1}n → {0, 1}n be a
tweakable blockcipher. From this primitive define the online cipher E =TC3[Ẽ]
with key space K and message space M = ({0, 1}n)+. Again see Fig. 1. The
construction is CCA-secure, as formalized below.

Theorem 3 (TC3 is ±oprp-secure). Let π̃ = Perm({0, 1}n, n). If A asks
queries having at most σ blocks then Adv±oprp

TC3[π̃](A) ≤ 1.5 σ2/2n.

The idea of the proof is to “give up”—regard the adversary as having won—if
we ever generate a “new” tweak that collides with any prior one.

Proof. Without loss of generality we can assume that A is deterministic and
makes queries totaling exactly σ blocks. We can further assume that it never
repeats an encryption query, never repeats a decryption query, never asks a de-
cryption query of a value that it earlier received from an encryption query, and
never asks an encryption query of a value that it earlier received from a decryp-
tion query. For strings X, X1, . . . , XI ∈ ({0, 1}n)∗, let find(X ; X1, . . . , XI) be
the unique pair of numbers (ı, �) for which X and Xı share a common prefix
X [1..�] = Xı[1..�], no Xj (j ∈ [1..I]) shares a longer common prefix with X
(X [1..� + 1] = Xj[1..� + 1]), and ı is the smallest index in [1..I] for which the
above is true. If X = ε define find(X ; X1, . . . , XI) = (0, 0). By way of examples,
if a, b, c ∈ {0, 1}n are distinct blocks then find(abca; abaa, abcb, abcc) = (2, 3),
find(abca; a, abc, abcab) = (3, 4), and find(abca; bbab, cba, b) = (1, 0).

We employ the code-based games [6] shown in Fig. 2. Booleans are silently
initialized to false and integers to 0. The one variable that is a set, T , is silently
initialized to {0n}. (This is done because T will be used to record the set of
tweaks that have been utilized and, in effect, 0n is a tweak that is always used—
it is used in processing each query’s first block.) Partial functions πx (where
x ∈ {0, 1}∗) are, initially, everywhere undefined. As they grow we refer to their
current domain and range by domain(πx) and range(πx). We write codomain(πx)
and corange(πx) for the complements relative to {0, 1}n.

We begin Fig. 2 with game G1, which precisely emulates the TC3 construc-
tion with the ideal tweakable blockcipher Ẽ. We end with game G6, which
precisely emulates the ideal online cipher. Thus we have that Advoprp

Ẽ
(A) =

Pr[GA
1 ⇒ 1] − Pr[GA

6 ⇒ 1]. Games G2, G3, G4, and G5 are hybrid games in
between these two extremes, and we bound the Pr[GA

1 ⇒ 1] − Pr[GA
6 ⇒ 1] as∑

1≤j≤5

(
Pr[GA

j ⇒ 1]− Pr[GA
j+1⇒ 1]

)
.

Passing from games G1 to G2 is just the usual approach of lazy sampling [6];
the games G1 and G2 are adversarially indistinguishable. By the game-playing
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100 procedure E(M)
101 m ← |M|/n; (ı, �) ← find(M ; M1, ..., Mi)
102 C[1..� ] ← Cı[1..� ]
103 for j ← � + 1 to m do
104 if j = 1 then t ← 0n

105 else t ← M [j − 1] ⊕ C[j − 1];
106 C[j] ← πt(M [j])
107 i ← i + 1; (Mi, Ci) ← (M, C)
108 return C

150 procedure D(C)
151 m ← |C|/n; (ı, �) ← find(C; C1, ..., Ci)
152 M [1..� ] ← Mı[1..� ]
153 for j ← � + 1 to m do
154 if j = 1 then t ← 0n

155 else t ← M [j − 1] ⊕ C[j − 1];
156 M [j] ← π−1

t (C[j])
157 i ← i + 1; (Mi, Ci) ← (M, C)
158 return M Game G1

200 procedure E(M)
201 m ← |M|/n; (ı, �) ← find(M ; M1, ..., Mi)
202 C[1..� ] ← Cı[1..� ]
203 for j ← � + 1 to m do
204 if j = 1 then t ← 0n

205 else t ← M [j − 1] ⊕ C[j − 1];
206 x ← M [j]
207 if x ∈ domain(πt) then
208 bad1 ← true;

[
C[j] ← πt(x);next

]
209 y

$← {0, 1}n

210 if y ∈ range(πt) then

211 bad2 ← true;
[

y
$← corange(πt)

]
212 πt(x) ← y; C[j] ← y; t ← x⊕ y
213 if t ∈ T then bad3 ← true
214 T ← T ∪ {t}
215 i ← i + 1; (Mi, Ci) ← (M, C)
216 return C

250 procedure D(C)
251 m ← |C|/n; (ı, �) ← find(C; C1, ..., Ci)
252 M [1..� ] ← Mı[1..� ]
253 for j ← � + 1 to m do
254 if j = 1 then t ← 0n

255 else t ← M [j − 1] ⊕ C[j − 1];
256 y ← C[j]
257 if y ∈ range(πt) then
258 bad1 ← true;

[
M [j] ← π−1

t (y);next
]

259 x
$← {0, 1}n

260 if x ∈ domain(πt) then

261 bad2 ← true;
[

x
$← codomain(πt)

]
262 πt(x) ← y; M [j] ← x; t ← x⊕ y
263 if t ∈ T then bad3 ← true
264 T ← T ∪ {t}
265 i ← i + 1; (Mi, Ci) ← (M, C)

[
Game G2

]
266 return M Game G3

300 procedure E(M)
301 m ← |M|/n; (ı, �) ← find(M ; M1, ..., Mi)
302 C[1..� ] ← Cı[1..� ]

303 for j ← � + 1 to m do C[j] $← {0, 1}n

304 i ← i + 1; (Mi, Ci) ← (M, C)
305 return C

350 procedure D(C)
351 m ← |C|/n; (ı, �) ← find(C; C1, ..., Ci)
352 M [1..� ] ← Mı[1..� ]

353 for j ← � + 1 to m do M [j] $← {0, 1}n

354 i ← i + 1; (Mi, Ci) ← (M, C)
355 return M Game G4

400 procedure E(M)
401 m ← |M|/n; (ı, �) ← find(M ; M1, ..., Mi)
402 C[1..� ] ← Cı[1..� ]
403 for j ← � + 1 to m do

404 P ←M [1..j − 1]; x←M [j]; y
$← {0, 1}n

405 if y ∈ range(πP ) then

406 bad ← true;
[

y
$← corange(πP )

]
407 πP (x) ← y; C[j] ← y
408 i ← i + 1; (Mi, Ci) ← (M, C)
409 return C

450 procedure D(C)
451 m ← |C|/n; (ı, �) ← find(C; C1, ..., Ci)
452 M [1..� ] ← Mı[1..� ]
453 for j ← � + 1 to m do

454 P ← M [1..j − 1]; y ← C[j]; x
$← {0, 1}n

455 if x ∈ domain(πP ) then

456 bad ← true;
[

x
$← codomain(πP )

]
457 πP (x) ← y; M [j] ← x
458 i ← i + 1; (Mi, Ci) ← (M, C) Game G5
459 return M

[
Game G6

]
Fig. 2. Games used in the proof of Theorem 3. Game G2 includes the brack-
eted statements while game G3 does not. Similarly, game G6 includes the bracketed
statements while game G5 does not.

lemma, Pr[GA
2 ⇒1]−Pr[GA

3 ⇒1] is at most the probability that gameA manages
to set one of the badj variables in game G3. The crux of the proof is the following
observation:

Claim: Every execution of game G3 that sets flag bad1 also sets flag bad3.

In fact, flag bad3 was introduced as a trick for bounding the probability that
bad1 gets set. The proof of the claim is as follows. Suppose we are execut-
ing adversary A with game G2 and, at some point in time it happens that,
at line 207, we have x ∈ domain(πt), so that bad1 will get set in the following
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line. Fix the current values M , m, (ı, �), C[1..�], t, and x. Now x belonging to
domain(πt) means that some triple (t, x, y) was already added into the set of
triples that constitute the partial function π (that is, (t, x, y) is “in” π if we
have set πt(x) = y). This triple had to have been added to π at some earlier
execution of line 212 or 262. We distinguish two possibilities: (t, x, y) is the only
triple in π with this t-value; or else there are, already, at least two distinct triples
(t, x, y), (t, x′, y′) with this particular t-value. In the latter case, when we added
the temporally second of these two triples into π we checked, at line 213 or 263,
if t was already in T . It would have been, so bad3 would already have been set.
What remains is the case that (t, x, y) is the only triple in π with the given
value t. Focus on the fact that M [1] · · ·M [�] matches Mı[1] · · ·Mı[�]. Now if the
latter string is all of Mı then there were two prior times that t was generated:
one is when (t, x, y) got added to π, and another is when the final t-value was
generated in response to the ı-th query—that is, when we executed the final
statement at line 212 or 262. The temporally second of these t-producing events
would have resulted in production of a t that was already in T and bad3 would
have been set. If, instead, M [1] · · ·M [�] = Mı[1] · · ·Mı[�] and Mı continues with
at least one nonempty blockMı[�+1], then we know thatM [�+1] �= Mı[�+1] and
the one and only triple in π with the given t-value must be (t,Mı[�+1], Cı[�+1]),
so x = M [�+ 1] �= Mı[�+ 1] could not have caused line 207 to evaluate to true.

The case where bad1 gets set on a decryption query, at line 258, is symmetric
with the paragraph above: again bad3 will already have been set. This completes
the proof of the claim. �

Continuing, we now know that Pr[bad1 ∧bad2∧bad3] = Pr[bad2 ∧bad3], which
is at most Pr[bad2] + Pr[bad3]. The first probability is at most 0.5 σ(σ − 1)/2n

and the second is at most 0.5 σ(σ+1)/2n (recall that T was initially seeded with
a point). We thus have that Pr[GA

2 ⇒ 1]− Pr[GA
3 ⇒ 1] ≤ σ2/2n.

Games G3 and G4 are easily seen to be adversarially indistinguishable; we
have simply eliminated the pointless code. Games G4 and G5 are adversarially
indistinguishable; here we are introducing using lazy sampling. Passing from G5
to G6 can be regarded as a form of the PRP/PRF switching lemma (cf. [4,
Lemma 3.7]) and the probability that bad gets set to true in game G6 is at most
0.5 σ2/2n. The theorem now follows.

The complexity-theoretic analog easily follows. This time, we show how the
theorem looks.

Corollary 1 (TC3 is ±oprp-secure). Let Ẽ: K×{0, 1}n×{0, 1}n → {0, 1}n
be a tweakable blockcipher. Let A be an adversary that runs in time t and asks
queries totaling at most σ blocks. Then there exists an adversary B such that
Advp̃rp

TC3[Ẽ](B) ≥ Advoprp
E (A)− 1.5 σ2/2n. Adversary B runs in time at most

t+ cnσ, for some absolute constant c, and asks at most σ queries.

Mode TC3, beyond being a natural simplification to the generalization to mode
HCBC2 [4], is a generalization of Nandi’s mode MHCBC [22]; the latter can
be realized as a special case of TC3 by selecting the tweakable blockcipher
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Ẽ: (K1 × K2) × {0, 1}n → {0, 1}n to be ẼT
K1 K2(X) = EK1(M ⊕ HK2(T )) ⊕

HK2(T ) where H : K2 × {0, 1}n → {0, 1}n is an almost-xor universal hash
function and E is a blockcipher [17].

5 Online Ciphers for Arbitrary-Length Strings

We start out by extending the notationM [i] so that, for each nonempty stringM
we have that M = M [1] · · ·M [m− 1]M [m] where m = �|M |/n�, |M [i]| = n for
all 1 ≤ i ≤ m − 1, and n ≤ |M [m]| ≤ 2n− 1. In other words, when M is not a
multiple of n bits its final block M [m] is chosen to be long, having between n+1
and 2n− 1 bits. All other blocks remain n-bits in length. With this notation in
hand we define Online∗(n) to be the set of all length-preserving permutations
π : {0, 1}∗ → {0, 1}∗ such that π(M [1] · · ·M [i]) depends only on M [1] · · ·M [i]
(for all i ≥ 1). This set can be regarded as an idealized cipher, just like Perm(n)
and Online(n). Now if E : K × {0, 1}∗ → {0, 1}∗ is an online cipher and A is
an adversary we can extend our prior definitions by using Online∗(n) in our
reference experiment:

Advoprp
E (A) = Pr[K $←K : AEK ⇒ 1]−Pr[π $←Online∗(n) : Aπ ⇒ 1]

Adv±oprp
E (A) = Pr[K $←K : AEK , E−1

K ⇒ 1]−Pr[π $←Online∗(n) : Aπ, π−1 ⇒ 1]

There is an alternative notion of security where, when M is not a multiple of n
bits, the final block is short (having 1 to n−1 bits) instead of long (having n+1
to 2n− 1 bits). There are problems with this alternative notion. First, it is too
weak. If the adversary learns C = EK(X ‖0), where X ∈ ({0, 1}n)+, then it also
knows C′ = EK(X ‖ 1), which is just C with its final bit flipped. Second, despite
this alternative notion being weak, instantiations are hard. This is because it is
not known how to construct from an n-bit blockcipher an efficient and provably-
secure cipher, with good bounds, for arbitrary input lengths less than n; see the
literature on “format-preserving encryption” for a discussion of this problem [5].
While this short-string enciphering problem cannot be avoided if the original
message M has fewer than n bits, there is no need to deal with it when |M | has
more than n bits, which, in applications, is likely to be most or all the time.

Now turning to constructions, let Ẽ: K×{0, 1}n×{0, 1}≤2n−1 → {0, 1}≤2n−1

be a tweakable cipher. From this primitive define the online cipher E = TC3∗[Ẽ]
with key space K and message spaceM = {0, 1}∗. See Fig. 3. The construction
is CCA-secure, as formalized below. We will take up in the next section how one
constructs a tweakable cipher with message space {0, 1}≤2n−1.

Theorem 4 (TC3∗ is ±oprp-secure). Let π̃ = Perm({0, 1}≤2n−1). If A asks
queries having at most σ blocks then Adv±oprp

TC3∗[π̃](A) ≤ 1.5 σ2/2n.

We omit the proof since it is almost the same as that for Theorem 3.
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TC3∗

40 algorithm EK(M)
41 if M = ε then return ε
42 m←�|M |/n�; T ← 0n

43 for j ← 1 to m − 1 do
44 C[j] ← Ẽ T

K(M [j])
45 T ← M [j]⊕C[j]
46 C[m] ← Ẽ T

K(M [m])
47 return C

M [1]

C [1]

EK
~EK

~ EK
~EK

~~
0

C [3]C [2] C [4]

M [4]M [3]M [2]

Fig. 3. Mode TC3∗. The CCA-secure online cipher now takes an input of arbitrary
bit length, but it depends on a richer primitive than does TC3: we start with a cipher
Ẽ: {0, 1}≤2n−1 → {0, 1}≤2n−1. The block input to Ẽ is “usually” n bits, but a single
long-block call (up to 2n − 1 bits) will be used when |M | ≥ n and n doesn’t divide
|M |, while a single short-block call will be needed if |M | < n.

6 Instantiating the Schemes

Let us consider how to instantiate TC3 starting from a conventional (instead of
a tweakable) blockcipher E: {0, 1}k × {0, 1}n → {0, 1}n. The simplest and most
natural solution is to create the tweakable blockcipher by way of Ẽ T

K(X) =
EK1(X ⊕Δ)⊕Δ where Δ = T ·K2 and K = K1 ‖K2 for |K1| = k and |K2| = n.
Here multiplication, T ·K2, is in GF(2n), representing field points as n-bit strings
in the usual way. We know that Ẽ: K × {0, 1}n × {0, 1}n → {0, 1}n will be a
CCA-secure tweakable PRP as long as E is a CCA-secure conventional PRP; this
is the well-known construction from Liskov, Rivest, and Wagner [17, Theorem 2],
together with the fact that multiplication in GF(2n)—that is, HK(X) = K ·X—
is a 2−n-AXU hash function.

The above construction is quite efficient, involving one blockcipher invocation
and one GF(2n) multiply for each message block. This is comparable to the work
involved with the authenticated-encryption scheme GCM [19], which has, for ex-
ample, been implemented by Gueron and Kounavis to run as fast as 3.54 cycles
per byte [13] (on Intel processors supporting AES and PCLMULQDQ assem-
bly instructions). This timing figure, however, would overestimate the expected
speed of TC3, on similar hardware, since the blockcipher chaining in TC3 will
decrease instruction-level parallelism.

Following Boldyreva and Taesombut, TC3 can be augmented, with little over-
head, to provide a solution to the problem of blockwise-adaptive CCA-secure
authenticated-encryption [9]. Doing so would give an AE scheme with efficiency
roughly comparable to GCM but provably achieving a useful security property
that GCM does not achieve.

Instantiating TC3∗ from a conventional blockcipher is more involved than
instantiating TC3, as now we need a map Ẽ : K × {0, 1}n × {0, 1}≤2n−1 →
{0, 1}≤2n−1. Actually our tweakable cipher will not have to deal with messages
having fewer than n bits unless the higher-level construction E is itself asked
to encipher messages of fewer than n bits, so let us put this case aside. Our
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problem then is to create from an ordinary n-bit blockcipher E a VIL-secure
tweakable cipher that can encipher messages of n to 2n − 1 bits. Fortunately
there are some ready solutions to this problem. Four or more rounds of Feistel
would be the classical approach [18]. One would use a blockcipher-based, tweak-
dependent round function. A different possibility is the EME2 cipher (formerly
named EME∗) of Halevi [14]; the mechanism was recently approved as the IEEE
standard P1619.2-2010. The scheme is simple, provably secure, and, using five
blockcipher calls and a modest amount of additional overhead, provides a tweak-
able and VIL cipher over the domain that we need. More efficient still would be
the XLS construction of Ristenpart and Rogaway [24]. This can encipher strings
of n+ 1 to 2n− 1 bits using three blockcipher calls and very little extra work.4

Enciphering strings of fewer than n bits takes special techniques. One proposal
is FFX [7], which uses a conventional, unbalanced, or alternating Feistel network
on these small domains. We note that if one is going to deal with short final blocks
by a patchwork of techniques, one for strings in {0, 1}≤n−1 and one for other
strings that are not a multiple of n bits, it is important to use distinct keys, or
to use other techniques, to provably ensure VIL security.
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Abstract. The block cipher XTEA, designed by Needham and Wheeler,
was published as a technical report in 1997. The cipher was a result of
fixing some weaknesses in the cipher TEA (also designed by Wheeler and
Needham), which was used in Microsoft’s Xbox gaming console. XTEA is
a 64-round Feistel cipher with a block size of 64 bits and a key size of 128
bits. In this paper, we present meet-in-the-middle attacks on twelve vari-
ants of the XTEA block cipher, where each variant consists of 23 rounds.
Two of these require only 18 known plaintexts and a computational ef-
fort equivalent to testing about 2117 keys, with a success probability of
1−2−1025. Under the standard (single-key) setting, there is no attack re-
ported on 23 or more rounds of XTEA, that requires less time and fewer
data than the above. This paper also discusses a variant of the classical
meet-in-the-middle approach. All attacks in this paper are applicable to
XETA as well, a block cipher that has not undergone public analysis yet.
TEA, XTEA and XETA are implemented in the Linux kernel.
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1 Introduction

Timeline: The TEA family of block ciphers
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Wheeler and Needham, it was presented at FSE 1994 [24]. Noted for its
simple design, the cipher was subsequently well studied and came under a
number of attacks.

– 1996. Kelsey et al. established that the effective key size of TEA was 126
bits [12]. This result led to an attack on Microsoft’s Xbox gaming console
where TEA was used as a hash function [23].

– 1997. Kelsey, Schneier and Wagner constructed a related-key attack on TEA
with 223 chosen plaintexts and 232 time [13]. Following these results, TEA
was redesigned by Needham and Wheeler to yield Block TEA and XTEA
(eXtended TEA) [18]. While XTEA has the same block size, key size and
number of rounds as TEA, Block TEA caters to variable block sizes for
it applies the XTEA round function for several iterations. Both TEA and
XTEA are implemented in the Linux kernel.

– 1998. To correct weaknesses in Block TEA, Needham and Wheeler designed
Corrected Block TEA or XXTEA, and published it in a technical report [19].
This cipher uses an unbalanced Feistel network and operates on variable-
length messages. The number of rounds is determined by the block size, but
it is at least six. An attack on the full Block TEA is presented in [20], where
some weaknesses in XXTEA are also detailed.

– 2002–2010. A number of cryptanalysis results on the TEA family were
reported in this period. Table 1 lists the attacks on XTEA and their com-
plexities. In [11], it was shown that an ultra-low power implementation of
XTEA might be better suited for low resource environments than AES. Note
that XTEA’s smaller block size also makes it advantageous if an application
requires fewer than 128 bits of data to be encrypted at a time.

The meet-in-the-middle attack. The meet-in-the-middle attack was first
introduced by Diffie and Hellman in 1977 [5]. Since then, this technique and
its variants have been successfully used against several block ciphers, including
reduced-round DES [4,6] and the full KeeLoq [10]. Unlike Diffie and Hellman’s
original attack, the meet-in-the-middle attacks in this paper1 have negligible
memory requirements.

We denote the message space and the key space byM and K respectively. Now
consider two block ciphers AK , BK :M×K →M and let YK = BK◦AK , where
◦ denotes function composition. In a meet-in-the-middle attack, the adversary
deduces K from a given plaintext-ciphertext pair (p, c), where c = YK(p), by
solving the equation

AK(p) = B−1
K (c) . (1)

Contribution of this paper. This paper presents meet-in-the-middle attacks
on block ciphers with 7, 15 and 23 rounds of XTEA. Our attacks are under
1 The attack presented in Sect. 5 of this paper can also be seen as a meet-in-the-middle

attack, however the (partial) encryptions and decryptions cannot be performed over
all rounds, as the attacker only searches exhaustively over parts of the key. We there-
fore use a technique similar to the partial matching technique of Sasaki and Aoki.
This very recent technique was successfully applied to several hash functions, includ-
ing MD4 [2], MD5 [21], HAS-160 [9] and SHA-2 [1].
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Table 1. Key recovery attacks on XTEA where the time complexities are averages, if
explicitly stated in the original paper, average success probabilities are given as well
(KP: known plaintext, CP: chosen plaintext, RK: in a related-key setting)

Attack Ref. # rounds Time Data Pr(Success)

• Attacks in the standard (single-key) setting

Meet-in-the-middle This paper 7 295.00 2 KPs 1 − 2−33

Impossible differential [17] 14 285 262.5 CPs Not given

Differential [8] 15 2120 259 CPs Not given

Meet-in-the-middle This paper 15 295.00 3 KPs 1 − 2−65

Truncated differential [8] 23 2120.65 220.55 CPs 0.969

Meet-in-the-middle This paper 23 2117.00 18 KPs 1 − 2−1025

• Attacks in a related-key setting

Related-key truncated
differential

[14] 27 2115.15 220.5 RK-CPs 0.969

Related-key rectangle
(for 2108.21 weak keys)

[15] 34 231.94 262 RK-CPs Not given

Related-key rectangle [16] 36 2126.44 264.98 RK-CPs 0.63

Related-key rectangle
(for 2110.67 weak keys)

[16] 36 2104.33 263.83 RK-CPs 0.80

Related-key [3] 37 2125 263 RK-CPs Not given

Related-key (for 2107.5

weak keys)
[3] 51 2123 263 RK-CPs Not given

the standard setting, giving the attacker less freedom than under a related-key
setting. In Table 1, we see that there is no attack on 23 or more rounds of
XTEA, that is better than ours given the standard setting. Furthermore, each of
our attacks requires only a few known plaintexts, whereas every attack listed in
Table 1 requires many chosen plaintexts.

The Linux kernel not only includes XTEA, but also a variant called XETA [7].
The cipher XETA resulted from a bug in the C implementation of XTEA, where
higher precedence was incorrectly given to exclusive-OR over addition in the
round function. From this paper, it is easy to verify that all our results to XTEA
directly apply to XETA as well. This is because our attacks exploit weaknesses
in the key schedule, which is the same for both XTEA and XETA. To the best
of our knowledge, this paper is the first to give cryptanalysis results on XETA.

Organization. This paper is organized as follows. Section 2 lists the notation
and conventions that we follow. The description of XTEA is provided in Sect. 3.
Our main observation is presented in Sect. 4 and it is developed into an attack
on 15-round XTEA in Sect. 5. Here, we also provide other sets of 15 rounds
that could be similarly attacked. Section 6 describes our attack on 23 rounds on
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XTEA and provides other sets of 23 rounds that could be attacked in a similar
way. Section 7 concludes the paper and provides an interesting open problem.
In Appendix A, we show which countermeasures can be introduced to XTEA
to prevent all the attacks in this paper. The 23-round attack is illustrated in
Appendix B.

2 Notation and Conventions

The notation and conventions used in this paper are listed in Table 2.

Table 2. Notation

Symbol / Notation Meaning

� Addition modulo 232

⊕ Exclusive-OR
� Left shift
� Right shift
|| Concatenation
�x� maxy∈Z(y ≤ x), Z is the set of integers
LSB Least significant bit
MSB Most significant bit
[i] Select bit i, i = 0 is the LSB

[j . . . i] Select bits k where j ≥ k ≥ i, k = 0 is the LSB

0k Concatenation of k times the string ‘0’

3 Description of XTEA

The block cipher XTEA has block size of 64 bits and key size of 128 bits. It uses
a 64-round Feistel network (see Fig. 1). The F -function of the Feistel network
(see Fig. 2) takes a 32-bit input x and produces a 32-bit output as:

F (x) = ((x� 4)⊕ (x 5)) + x . (2)

The 128-bit key K of XTEA is divided into four 32-bit subkeys K0, . . . ,K3. At
every round, one of the 4 subkeys is selected according to a key schedule. A
constant δ = �(

√
5− 1) · 231� is defined, derived from the golden ratio. Two bits

from a different multiple of δ are used at every round as the index of the subkey.
The 32-bit subkey αt used in round t, where 1 ≤ t ≤ 64, is chosen from the set
{K0,K1,K2,K3} according to the following rule:

αt ←
{
Kδt[1...0] if t is odd ,

Kδt[12...11] if t is even ,
(3)

where

δt =
⌊
t

2

⌋
δ, 1 ≤ t ≤ 64 . (4)
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The 64-bit input to round t of XTEA consists of two 32-bit parts Lt−1 and Rt−1
(see Fig. 1). For round 1, the plaintext p is used as input: (L0 ‖ R0) ← p. The
input for round t+ 1 is computed recursively from the input to round t as given
by:

Lt ← Rt−1 , (5)
Rt ← Lt−1 � ((δt � αt)⊕ F (Rt−1)) , (6)

where αt is selected according to (3). For reference, we also list the subkeys used
in every round in Table 3.

The ciphertext c of XTEA is produced by concatenating the two parts ob-
tained after the 64th round: c← L64 ‖ R64.

Finally, we note that in the description above by round we mean a Feistel
round. This is not to be confused with the term cycle used in the original proposal
of XTEA [18]. A cycle is equivalent to two Feistel rounds. Therefore XTEA has
64 rounds or 32 cycles.

Table 3. Subkeys used in XTEA

Rounds Subkey used

1, 8, 9, 10, 17, 18, 20, 25, 30, 33, 40, 41, 49, 50, 57, 60 K0

3, 6, 11, 16, 19, 26, 27, 28, 35, 36, 38, 43, 46, 48, 51, 58, 59 K1

4, 5, 13, 14, 21, 24, 29, 34, 37, 44, 45, 53, 54, 56, 61, 64 K2

2, 7, 12, 15, 22, 23, 31, 32, 39, 42, 47, 52, 55, 62, 63 K3

4 Motivational Observation

We begin by observing that the subkey K2 is not used in rounds 6–12. For the
remainder of this section, let K ← (K0,K1, X,K3), where X can be any 32-bit
value, as subkey K2 is irrelevant in the analysis. Given one plaintext-ciphertext
pair (p0, c0), with each key guess, the attacker checks whether

E
(6...12)
K (p0) = c0 , (7)

where E(6...12)
K denotes the 7-round (rounds 6–12) encryption using the keyK. At

first glance, it may appear that 1 KP is sufficient. However, it is to be noted that
the key space (296 keys K) is larger than the ciphertext space (264 ciphertext
blocks).

We now show that obtaining a second KP (p1, c1) is sufficient for an attack
with an average time complexity of 295.00 7-round encryptions and an average
success probability of 1− 2−33. The attacker iterates over the 2k keys K, where
k = 96. For every candidate key K, (7) is tested using the first KP. If this
equality is satisfied, the second KP is used to check

E
(6...12)
K (p1) = c1 . (8)
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Lt+1 Rt+1

Fig. 1. The Feistel structure of XTEA showing two rounds

� 4

F (x) x

� 5

Fig. 2. The function F used in the round function of XTEA

If either (7) or (8) is not satisfied, the candidate key K is incorrect and can be
sieved. The approximate number of plaintext-ciphertext pairs that are needed
can also be estimated from Shannon’s unicity distance [22].

We make the reasonable assumption throughout this paper, that every block
cipher we consider has perfect confusion and diffusion properties [22]. If either the
plaintext or the key, or both are changed, it is assumed that the corresponding
ciphertext will be generated uniformly at random, independent from previously
obtained ciphertexts.

Under this assumption, each of the 64-bit conditions that result from (7) and
(8) is satisfied with probability 2−64. All time complexities are stated as the
number of equivalent encryptions of the reduced-round block cipher.

The average success probability can be calculated as follows. The two 64-bit
conditions are simultaneously satisfied with probability 2−2·64 = 2−128. We can
therefore eliminate a wrong key with probability 1 − 2−128. Assume that key i
is the correct key, where 0 ≤ i < 2k. It will be output by the algorithm if all
previous keys are eliminated. This happens with probability (1 − 2−128)i. The
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Table 4. All 7-round attacks; each attack requires 2 KPs and on average 295.00 7-round
encryptions for an average success probability of 1 − 2−33

Cipher consisting of XTEA rounds Unused subkey

6–12 K2

24–30 K3

42–48 K0

46–52 K2

correct key can be located anywhere among the list of 2k candidate keys with
equal probability. Therefore, the average success probability is

2−k ·
2k−1∑
i=0

(1 − 2−128)i = 2128−k · (1− (1− 2−128)2
k

) ≈ 2128−k · (1 − e−2k−128
)

≈ 1− 2−33 . (9)

The approximations result from using the first and the second order Taylor
approximations of ex around 0. We now calculate the time complexity of the
attack. For a candidate key K to be determined as wrong, the expected number
of trials is 1 + 2−64. This is because for every key, (7) is always checked, and for
2−64 keys (8) is checked as well. If the candidate key is correct, two encryptions
are always performed. As the correct key can be located anywhere in the list of
2k candidates keys with equal probability, the average number of encryptions of
the algorithm is

2−k ·
2k−1∑
i=0

(
i · (1 + 2−64) + 2

)
= 2−1 · (1 + 2−64) · (2k − 1) + 2 ≈ 295.00 . (10)

From Table 3, we obtain several other 7-round block ciphers that can be attacked
in a similar way. Table 4 lists all such ciphers. Finally, we note that for n = 0
and n = 1 respectively, one can replace both (7) and (8) with

E
(6...r−1)
K (pn) = D

(r...12)
K (cn) , (11)

where r ∈ {6, . . . , 12}, E(6...5)
K (pn) = pn, and D

(r...12)
K denotes (13-r)-round

(rounds r–12) decryption using the key K. Therefore, what we essentially con-
structed above can be viewed as meet-in-the-middle attacks. In (11), the value
of r determines the subkeys that are required for encryption and decryption.

5 Attacks on 15 Rounds of XTEA

The attack described in Sect. 4 on rounds 6–12, can be extended to rounds 6–
20 as follows. First, the attacker performs a meet-in-the-middle attack, where
(partial) encryptions and decryptions cannot be performed over all rounds, the
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attacker only exhaustively searches over part of the key. From the remaining
rounds, however, the number of possibilities for the full key is reduced. Only
three known plaintexts (pn, cn), 0 ≤ n < 2 are required for the attack.

Let us now split a reduced-round XTEA block cipher into outer rounds and
inner rounds. In the outer rounds, one particular subkey is not used, whereas
the inner rounds use only this subkey. The attack is described for rounds 6–20.
As can be seen from Table 3, the outer rounds (6–12) and (15–20) do not involve
K2, whereas the two inner rounds (13–14) use only K2.

By encrypting plaintext p0 from round 6 to round 12 (i.e., until the beginning
of round 13) and decrypting the corresponding ciphertext c0 for 6 rounds starting
backwards from round 20, we obtain the subkeys used in the inner rounds.
They are denoted as K

′
2 and K

′′
2 for inner rounds 13 and 14 respectively. Then,

the attacker checks whether K
′
2 = K

′′
2 . This can be understood from Fig. 1.

Therefore, not the ciphertext values (as in Sect. 4), but the key values “meet
in the middle”. To the best of our knowledge, such an approach has not been
described in previous literature.

If K
′
2 �= K

′′
2 , the candidate key of (K0,K1,K3) cannot be correct, and the

attacker proceeds to the next candidate key. Otherwise, the candidate key is
extended to (K0,K1,K2, K3), where K2 = K

′
2 = K

′′
2 . Then, the meet-in-the-

middle attack is performed as described in Sect. 4. That is, a plaintext is en-
crypted with candidate keys (K0,K1,K2, K3), to check which of the computed
ciphertexts agrees with the actual (corresponding) ciphertext. For the 15-round
attack, it is sufficient to use two additional known plaintexts (p1, c1) and (p2, c2).

The average success probability can be calculated as follows. Using (p0, c0) a
32-bit condition is obtained whenK

′
2 = K

′′
2 is checked. Then, (p1, c1) and (p2, c2)

each gives an additional 64-bit condition. A wrong key will pass these tests with
probability2 2−32 ·

(
2−64
)2 = 2−160. Thus, with probability 1 − 2−160, a wrong

key is eliminated. Assume that i is the correct key, where 0 ≤ i < 2k. It will be
output by the algorithm if all previous keys are eliminated. This happens with
probability (1−2−160)i. The correct key can be located anywhere among the list
of 2k candidate keys with equal probability. The average success probability is

2−96 ·
296−1∑
i=0

(1− 2−160)i = 2160−96 · (1− (1− 2−160)2
96

) ≈ 264 · (1− e−264
)

≈ 1− 2−65 . (12)

We now calculate the time complexity of the attack. For a candidate key
(K0,K1,K3) to be determined as wrong, the expected number of trials is 1 +
2−32 + 2−96. This is because for every candidate key (K0,K1,K3), the attacker
always checks whether K

′
2 �= K

′′
2 . For 2−32 and 2−96 candidate keys, the at-

tacker encrypts using the second and third known plaintext respectively. If the
2 If the texts obtained by encrypting p0 and decrypting c0, in the 13 outer rounds,

are uniformly distributed at random, then so are the subkeys K
′
2 and K

′′
2 . This fact,

explained in Appendix C, is explicitly stated here because the assumption of perfect
confusion and diffusion was made for ciphertexts, and not for subkeys.
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candidate key is correct, the equivalent of three encryptions is always performed.
As the correct key can be located anywhere in the list of 296 candidates keys
with equal probability, the average number of (equivalent) encryptions of the
algorithm is

2−96 ·
296−1∑
i=0

(
i · (1 + 2−32 + 2−96) + 3

)
= 2−1 · (1 + 2−32 + 2−96) · (296 − 1) + 3

≈ 295.00 . (13)

Finally, in Table 5, we provide a list of all 15-round block ciphers that can be
attacked with the same complexity.

Table 5. All 15-round attacks; each attack requires 3 KPs and on average 295.00

computations of the 15 rounds for an average success probability of 1 − 2−65

Cipher consisting of XTEA rounds Inner rounds Inner round subkey

6–20 13,14 K2

16–30 22,23 K3

24–38 31,32 K3

34–48 40,41 K0

38–52 44,45 K2

42–56 49,50 K0

6 Attacks on 23 Rounds of XTEA

In this section, we extend the 15-round attack of Sect. 5 to 23 rounds. This 23-
round attack has an average time complexity of 2117.00 (equivalent) encryptions
and an average success probability of 1 − 2−1025. It requires only 18 known
(not chosen) plaintexts and corresponding ciphertexts. For the same number of
rounds, both the time complexity and the data complexity of our attack are
much lower than those in [8]. Our attack is therefore the best attack on 23-
round XTEA so far in the standard setting, and the only attack requiring such
a low number of plaintexts and corresponding ciphertexts. We note that we
have optimized our attack to have the time complexity as low as possible. It is
possible to reduce the number of known plaintexts even further, but not without
increasing the time complexity of the attack.

The technique used is a meet-in-the-middle attack, similar to the attacks in [4].
As in Sect. 5, the reduced-round XTEA block cipher is split into outer rounds
and inner rounds. In the outer rounds, one subkey is not used. The inner rounds
can contain any of the subkeys. Our attack applies to rounds 16–38 of XTEA.
Rounds 16–21 and 33–38 are the outer rounds, and do not involve subkey K3.
The inner rounds are rounds 22–32. The attack is a sieving attack, as the correct
key is found by eliminating keys that lead to contradictions. The attack is given
in Algorithm 1.
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The k-bit key is recovered in two stages. First, the attacker exhaustively
searches over k1 bits of the key K and use m known plaintexts to check a one-
bit condition that each of the m plaintexts yield. These k1 bits consist of K0,
K1, K2, and the 21 least significant bits of K3. This one-bit condition, tested
in test keys 1(K), results from the following observation, also illustrated in
Appendix B. We see that, without using K3[31 . . .21], the attacker can calcu-
late L27[0] ← E

(16...27)
K (p)[0], and L

′
27[0] ← D

(28...38)
K (c)[0]. As L27[0] = L

′
27[0]

always holds if the candidate key K is correct, a wrong key can be discarded if
L27[0] �= L

′
27[0] . Note that only k1 bits of the candidate key K are used to test

this condition, as the remaining k2 bits do not affect this condition.
If none of the m plaintexts cause a key to be discarded, the attacker exhaus-

tively searches over the remaining k2 bits of key K in test keys 2(K). These
k2 bits are the 11 most significant bits of K3. In this stage, � ≤ m of the m plain-
texts are reused. Now, (L27, R27) ← E

(16...27)
K (p) and (L

′
27, R

′
27) ← D

(28...38)
K (c)

are recalculated using the full key K. For efficiency, this calculation is sped up
by using stored values p

n and cn for the outer rounds, and encrypting only the
inner rounds. Equations L27 = R27 and L

′
27 = R

′
27 yield only 63-bit conditions,

as L27[0] = L
′
27[0] was already tested. If both equations are satisfied for all �

plaintexts, the candidate key K is output as the correct key, and the algorithm
halts.

Let us now determine the average time complexity and the average success
probability of Algorithm 1.

The algorithm succeeds if no wrong key K that passes all m + � tests is
encountered before the correct key. How efficiently the attacker searches through
these candidate keysK, does not influence the success probability of Algorithm 1.
We therefore assume that the exhaustive search is over 2k keys, and then both
test keys 1(K) and test keys 2(K) are performed for each of these keys.

Each of the m plaintexts yields a one-bit condition in test keys 1(K), sat-
isfied randomly with a probability of 2−1. When � ≤ m of these plaintexts are
reused in test keys 2(K), there is a condition on the 63 remaining bits, sat-
isfied randomly with a probability of 2−63. A wrong key will be detected if at
least one of the m+ � tests fail. This eliminates a wrong key with a probability
of 1− 2−m · 2−63�. Assume that i is the correct key, where 0 ≤ i < 2k. Then, it
will be output by the algorithm if all previous candidate keys lead to contradic-
tions. This happens with probability (1− 2−m · 2−63�)i. As the correct key can
be located anywhere in the list of 2k candidate keys with equal probability, the
average success probability of the algorithm is

2−k ·
2k−1∑
i=0

(1− 2−m · 2−63�)i = 2m+63�−k · (1− (1− 2−m−63�)2
k

)

≈ 2m+63�−k · (1− e−2k−m−63�

) . (14)

We now calculate the time complexity of the attack. Let i and j (where 0 ≤ i <
2k1 and 0 ≤ j < 2k2) be parts of the correct keyKc where i = (Kc

0,K
c
1,K

c
2 ,K

c
3[20

. . . 0]) and j = Kc
3[31 . . . 21]. Any 117-bit key (K0,K1,K2,K3 [20 . . . 0]), tested
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Algorithm 1. Recovering the key of the 23-round XTEA block cipher consisting
of rounds 16–38; an average 2117.00 (equivalent) encryptions and 18 KPs are
required for an average success probability of 1− 2−1025

Require: m known plaintexts p0 . . . pm−1 and corresponding ciphertexts c0 . . . cm−1 .
Ensure: The output key K (of length k bits) is the correct key with probability

2m+63�−k(1 − e−2k−m−63�

), where � is chosen such that � ≤ m.
1: global p�

0 . . . p�
m−1, c�

0 . . . c�
m−1 .

2: function test key 1(K) do
3: for n ← 0 . . . m − 1 do
4: p�

n ← E
(16...21)
K (pn)

5: c�
n ← D

(33...38)
K (cn)

6: (L27, R27) ← E
(22...27)
K (p�

n)
7: (L′

27, R
′
27) ← D

(28...32)
K (c�

n)
8: if L27[0] �= L′

27[0] then
9: return false

10: return true
11: function test key 2(K) do
12: for n ← 0 . . . � − 1 do
13: (L27, R27) ← E

(22...27)
K (p�

n)
14: (L′

27, R
′
27) ← D

(28...32)
K (c�

n)
15: if L27 �= L′

27 or R27 �= R′
27 then

16: return false
17: return true
18: for (K0, K1, K2) ← (0 . . . 232 − 1, 0 . . . 232 − 1, 0 . . . 232 − 1) do
19: for K3[20 . . . 0] ← 0 . . . 221 − 1 do
20: K ← (K0, K1, K2, 011 ‖ K3[20 . . . 0])†

21: if test key 1(K) then
22: for K3[31 . . . 21] ← 0 . . . 211 − 1 do
23: if test key 2(K) then
24: output K and halt
†Since the 11 bits K3[31 . . . 21] do not affect L27[0] or L′

27[0], one can have any value β from the set
{1, . . . , 211 − 1} in place of 011. We have used 011 for ease of understanding how the attack works.

in test keys 1(K) before the correct key, passes test keys 1(K) with proba-
bility 2−m. Therefore, of the i 117-bit keys tested before the correct key, i · 2−m

keys are expected to pass test keys 1(K). For each of these i · 2−m keys,
test keys 2() is performed 2k2 times. Summarizing,

– the attacker performs an expected i · T1 23-round computations, where T1
is the expected number of 23-round computations for a wrong key under
test keys 1();

– the attacker additionally performs an expected i · 2−m · 2k2 · T2 23-round
computations, where T2 is the expected number of 23-round computations
for a wrong key under test keys 2().
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It is easy to see that

T1 �
m−1∑
i=0

2−i . (15)

To compute T2, note that test keys 2() only encrypts the 11 inner rounds
again, and uses stored values for (partial) encryptions and decryptions of the
outer rounds. This is equivalent to 11/23 encryptions of the 23-round block
cipher and therefore

T2 � 11
23
·

�−1∑
j=0

2−63j . (16)

For the correct (partial) key i, the number of steps under test keys 1() is m.
To determine the remaining part of the correct 128-bit key Kc, the attacker
performs an expected j · T2 + (11/23) · � 23-round computations, where

1. j·T2 is the expected number of 23-round computations, under test keys 2(),
for all the j wrong (partial) keys preceding key j;

2. � is the number of 11-round steps under test keys 2() for the correct
key j.

As the correct key j can take any value in the set {0, . . . , 2k2 − 1}, the average
number of 23-round computations corresponding to the correct key i, is

2−k2 ·
2k2−1∑
j=0

(
j · T2 +

11
23
· �
)

. (17)

As the correct key i can take any value in the set {0, . . . , 2k1 − 1}, the average
number of 23-round computations in total is

2−k1 ·
2k1−1∑

i=0

⎛⎝i · T1 +m+ i · 2−m · 2k2 · T2+2−k2 ·
2k2−1∑
j=0

(
j · T2+

11
23
· �
)⎞⎠(18)

The derivation of (18) will be more clear from Fig. 3 in Appendix B.
We now choose the parameters m and � for the attack on rounds 16–38.

From (18), we find that we cannot lower the average time complexity below
2117.00. Therefore, we choose m and � such that we have the lowest number of
known plaintexts, and the highest success probability for this particular time
complexity. Setting m = � = 18, we find that 18 KPs are sufficient, and that
the corresponding success probability using (14) is 1 − 2−1025. Note that the
success probability of exhaustive search over the full k-bit key using 18 KPs
has the same success probability. This shows that all KPs are optimally used
in our attack from an information theoretic point of view [22]. Note that the
number of KPs can still be lowered further, but then the time complexity must
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increase. This can be done by either increasing � (which would make the second
stage dominate in the attack), or by increasing k1 (and thus perform the meet-
in-the-middle on more than one bit).3 We do not consider such options, as the
number of KPs in our attack is already low enough for a practical attack. The
time complexity, however, is still beyond reach with current hardware. Each of
these attacks requires only negligible memory (about 4 · 64 · 18 = 212.17 bits to
store (pn, cn) and (p

n, c

n) values).

As shown in Table 6, a total of 12 variants of the XTEA block cipher can be
attacked, where each variant consists of 23 rounds. For rounds 34–56, the attack
works in exactly the same way as for 16–38, and has the same complexities. The
10 other attacks require that k1 = 122: the exhaustive search is now over all but
the 6 most significant bits of one subkey in Algorithm 1, in order to obtain a
condition on one bit to perform the meet-in-the-middle. The middle bit involved
in this condition is given as well in Table 6.

Using (18), we calculate the time complexity for the 10 attacks that use 12
or 13 inner rounds. The lowest possible average time complexity for our attack
strategy is 2122.00. For this time complexity, the best parameters arem = � = 13.
We then obtain an average success probability of 1−2−705, using 13 KPs. Again,
each of these attacks requires only negligible memory (about 211.70 bits to store
(pn, cn) and (p

n, c

n) values).

Table 6. All 23-round attacks

Total rounds Inner rounds Middle bit Unused key bits # Inner rounds

16–38 22–32 L27[0] K3[31 . . . 21] 11 rounds
34–56 40–50 L45[0] K0[31 . . . 21] 11 rounds
6–28 13–24 L19[0] K2[31 . . . 26] 12 rounds
8–30 12–23 L18[0] K3[31 . . . 26] 12 rounds
24–46 31–42 L37[0] K3[31 . . . 26] 12 rounds
26–48 30–41 L36[0] K0[31 . . . 26] 12 rounds
30–52 34–45 L40[0] K2[31 . . . 26] 12 rounds
42–64 49–60 L55[0] K0[31 . . . 26] 12 rounds
20–42 26–38 L32[0] K1[31 . . . 26] 13 rounds
38–60 44–56 L50[0] K2[31 . . . 26] 13 rounds
2–24 8–20 L14[0] K0[31 . . . 26] 13 rounds
12–34 16–28 L22[0] K1[31 . . . 26] 13 rounds

7 Conclusions and Open Problems

This paper presented several meet-in-the-middle attacks on 7-, 15- and 23-round
XTEA. The main highlight of our attacks is that they require very few known

3 In the attack, one bit in the middle is independent of 11 key bits. Two bits in the mid-
dle are simultaneously independent of fewer than 11 key bits, thereby corresponding
to a larger k1.
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plaintexts (not more than 18) as opposed to previously reported attacks (the
best of these attacks requires 220 chosen plaintexts). Furthermore, our attacks
use different approaches - the 7- and 23-round attacks use a straightforward
meet-in-the-middle approach; in the 15-round attacks, the meet-in-the-middle
corresponds to inner round subkeys rather than intermediary text values.

Each of our attacks on 23-round XTEA requires less time (2117.00 23-round
computations) than the previously best-known attack on 23 rounds (2120.65 23-
round computations) in the standard setting. The time complexities of the 7-
and 15-round attacks are also significantly better than exhaustive key search,
with each of these attacks requiring about 295 time.

Our attacks apply to XETA as well, a close variant of XTEA that is also
implemented in the Linux kernel. We are unaware of any other published crypt-
analysis results on XETA.

An interesting observation from one of the anonymous reviewers, is that there
is also a 15-round attack on rounds 2–16. In this case, subkey K0 is used con-
secutively in the inner rounds 8, 9 and 10, but not elsewhere. By exhaustively
searching over K1,K2,K3 and six of the least significant bits of K0, we can
perform the same meet-in-the-middle attack that is described in Sect. 6. How-
ever, this attack has a higher time and data complexity than the other 15-round
attacks of Sect. 5, for a comparable success probability.

When constructing the 23-round attack in Sect. 6, we found that for any
number of inner rounds (where all subkeys can be used) up to 16, there is
no corresponding attack on more than 23 rounds. However, if the number of
inner rounds can be increased to 17, this leads to a 29-round attack. All such
29-round attacks are listed in Table 7. We present the cryptanalysis of these
29-round XTEA block ciphers as an interesting open problem.

Table 7. All reduced-round XTEA block ciphers for which a 29-round attack consists
of 17 inner rounds

Total rounds Inner rounds Subkey containing unused key bits

11–39 27–33 K0

15–43 21–37 K2

29–57 35–51 K1

33–61 40–56 K3
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Leurent, Matt Robshaw and Aleksander Wittlin for their useful comments and
suggestions. Part of this work was performed at the Cryptanalysis of Light-
Weight Ciphers Research Meeting, hosted by Katholieke Universiteit Leuven
as an initiative of SymLab-WG2: Lightweight Cryptography of the ECRYPT
II project. The authors would like to thank the anonymous reviewers for their
constructive comments as well.



264 G. Sekar et al.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 578–597. Springer, Heidelberg (2009)

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

3. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Another Look at Com-
plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347–364. Springer, Heidelberg (2010)

4. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of
Rounds: Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)

5. Diffie, W., Hellman, M.E.: Exhaustive Cryptanalysis of the NBS Data Encryption
Standard. Computer 10(6), 74–84 (1977)

6. Dunkelman, O., Sekar, G., Preneel, B.: Improved Meet-in-the-Middle Attacks on
Reduced-Round DES. In: Srinathan, K., Pandu Rangan, C., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007)

7. Grothe, A.: Kernel v2.6.14 tea.c. Linux Headquarters (2004),
http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c

8. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis
of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 402–417. Springer, Heidelberg (2004)

9. Hong, D., Koo, B., Sasaki, Y.: Improved Preimage Attack for 67-Step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

10. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A Practical
Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 1–18. Springer, Heidelberg (2008)

11. Kaps, J.-P.: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 363–375. Springer, Heidelberg (2008)

12. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA,
G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

13. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

14. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.-S.: Related-Key Differential Attacks
on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B.K., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

15. Lee, E., Hong, D., Chang, D., Hong, S., Lim, J.: A Weak Key Class of XTEA for a
Related-Key Rectangle Attack. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS,
vol. 4341, pp. 286–297. Springer, Heidelberg (2006)

16. Lu, J.: Related-key rectangle attack on 36 rounds of the XTEA block
cipher. International Journal of Information Security 8(1), 1–11 (2009),
http://jiqiang.googlepages.com/IJIS8.pdf

17. Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanal-
ysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE
2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

http://www.linuxhq.com/kernel/v2.6/14/crypto/tea.c
http://jiqiang.googlepages.com/IJIS8.pdf


Meet-in-the-Middle Attacks on Reduced-Round XTEA 265

18. Needham, R.M., Wheeler, D.J.: Tea extensions, technical report, Computer Labo-
ratory, University of Cambridge (October 1997),
http://www.cix.co.uk/~klockstone/xtea.pdf

19. Needham, R.M., Wheeler, D.J.: Correction to xtea. Technical report, Computer
Laboratory, University of Cambridge (October 1998),
http://www.movable-type.co.uk/scripts/xxtea.pdf

20. Saarinen, M.-J.: Cryptanalysis of Block TEA, unpublished manuscript
(October 1998),
http://groups.google.com/group/sci.crypt.research/msg/f52a533d1e2fa15e

21. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

22. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical
Journal 28(4), 656–715 (1949)

23. Steil, M.: 17 Mistakes Microsoft Made in the Xbox Security System. In: Chaos
Communication Congress 2005 (2005),
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html

24. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

A Countermeasures

The attacks in this paper are made possible because a particular subkey Ki is
often not used for a large number of rounds. To prevent against the attacks in
this paper, we propose to use each of the subkeys K0,K1,K2,K3 once every
four rounds, in a random order. This countermeasure does not prevent trivial
meet-in-the-middle attacks on 6 rounds. Note that the subkeys cannot repeat in
a cyclic manner, as we want to avoid the possibility of slide attacks.
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B Illustration of the Attack on Rounds 16–38

In Fig. 4, we illustrate the 23-round attack of Sect. 6. The attack is on rounds
16–38, and uses 11 inner rounds (22–32). Grey boxes represent bits that do not
depend on the value of K3[31 . . . 21]. In Fig. 3, we illustrate Algorithm 1 from
the point of view of computation of its time complexity.
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bits that do not depend on the value of K3[31 . . . 21])
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C Randomness of the Inner-Round Subkeys in the
15-Round Attacks

Here, we show that if the texts obtained by encrypting p0 and decrypting c0 in
the 13 outer rounds (of a 15-round attack) are uniformly distributed at random,
then so are the subkeys in the inner rounds. As there are only two inner rounds,
the problem may be viewed as follows. In Fig. 1, if Lt−1||Rt−1 and Lt+1||Rt+1
are uniformly distributed at random, then we need to show that αt and αt+1
are also uniformly distributed at random. Henceforth, the term random means
uniformly distributed at random.

Since F is a bijection, the output of F is random given Rt−1 is random. We
know that modular addition (or subtraction) or exclusive-OR of two random
values results in a random value. Given this, since Rt = Lt+1 and Lt+1||Lt−1 is
random, from Fig. 1 we obtain that δt � αt is random. As δt is a constant, αt is
random. By similar arguments, it is easily seen that αt+1 is also random.
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Abstract. Non-malleability of a cryptographic primitive is a funda-
mental security property which ensures some sort of independence of
cryptographic values. The notion has been extensively studied for com-
mitments, encryption and zero-knowledge proofs, but it was not until
recently that the notion—and its peculiarities—have been considered
for hash functions by Boldyreva et al. (Asiacrypt 2009). They give a
simulation-based definition, basically saying that for any adversary maul-
ing hash values into related ones there is a simulator which is as successful
in producing such hash values, even when not seeing the original hash
values. Their notion, although following previous approaches to non-
malleability, is nonetheless quite unwieldy; it is hard to achieve and, due
to the existential quantification over the simulator, hard to falsify. We
also note that finding an equivalent indistinguishability-based notion is
still open.

Here we take a different, more handy approach to non-malleability of
hash functions. Our definition avoids simulators completely and rather
asks the adversary to maul the hash value and to also specify a trans-
formation φ of the pre-image, taken from a fixed class Φ of admissi-
ble transformations. These transformations are usually determined by
group operations and include such cases such as exclusive-ors (i.e., bit
flips) and modular additions. We then simply demand that the proba-
bility of succeeding is negligible, as long as the original pre-image carries
enough entropy. We continue to show that our notion is useful by prov-
ing that, for example, the strengthened Merkle-Damg̊ard transformation
meets our notion for the case of bit flips, assuming an ideal compression
function. We also improve over the security result by Boldyreva et al.,
showing that our notion of non-malleability suffices for the security of
the Bellare-Rogaway encryption scheme.

Keywords: Hash function, Non-malleability.

1 Introduction

Non-malleability, first treated formally in [18] for commitments, encryption and
zero-knowledge, provides some level of independence between cryptographic val-
ues. That is, a commitment or ciphertext should not help to generate another
commitment or ciphertext of a related message. By this, the adversary should
not be able to produce a meaningful value by flipping some bits in a commitment
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or ciphertext. Several subsequent works considered this notion for the aforemen-
tioned primitives [18,7,35,17,21,16,2,15,32,33,13,31,12,14,23,24,25,29,30].

Non-Malleability of Hash Functions. Non-malleability of hash functions was
scrutinized only recently by Boldyreva et al. [9]. They provide a formal treat-
ment of the primitive and discuss applications to the Bellare-Rogaway encryption
scheme and client puzzles. Other applications of non-malleable hash functions
include security proofs for HMAC [20] and for OAEP [10]. The idea behind non-
malleable hash functions, put forward in [9], is similar to other areas but also
reveals some differences, originating from the fact that, unlike commitments and
encryptions, hash functions do not have secret randomness.

The definition in [9] follows the simulation paradigm: For every adversary
which is able to transform hash values into related ones, there should be a
simulator which outputs such related values but which is denied the original
values. This ensures independency of cryptographic values because given the
value does not facilitate the task. However, the definition in [9] comes with
several deficiencies:

– The requirement is quite strong: the hash function must not for instance leak
individual bits of the input, or else the adversary would gain a significant
advantage over any simulator by learning the hash value. While this seems
to be a desirable goal for commitments and encryption, and possibly for
some hash function applications, in general leaking some bits may not do
harm to the fact that one mauls a hash value into something meaningful.
Hence, it would be preferable to separate the notions of non-malleability and
of pre-image hiding.

– The existential quantification over the simulator makes it hard to falsify
(cf. Naor’s work on cryptographic assumptions [28]) the property for a spe-
cific hash function: one would need to show that for some adversary no
appropriate simulator whatsoever exists. This is contrast to other desirable
hash function properties like collision resistance.

– The definition in [9] covers pathological hash functions like constant func-
tions: since the hash value does not lend any additional power to the
adversary—after all, it is a constant— such a function is trivially non-
malleable. Intuitively, though, for such functions it is easy to find related
hash values and to determine hash values of the pre-image with some bits
flipped. One can rule out such pathological functions by demanding collision-
resistance or unpredictability, but this would introduce another assumption
(which is somewhat unrelated, as we discuss).

– As discussed in [9], finding an alternative indistinguishability-based approach
as for commitments and encryption seems to be hard. Very often, though,
such a notion is easier to work with for proofs where the hash functions are
used within larger schemes.

Non-Malleability goes Handy. We overcome the above problems by reverting to
the core idea behind non-malleability: it should be hard to modify a given hash
value such that the pre-image is affected in a controlled way. In contrast, the
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simulation-based approach somewhat guarantees more than this, by ensuring
that the hash values are absolutely useless for doing so; this is formalized by
having a simulator approximating the adversary’s strategy but without learning
the hash value.

Typically, the simulator in non-malleability proofs for hash functions runs a
copy of the adversary, creates a fake hash value and presents it to the adversary
in order to produce a related output. This, however, inhibits some designs which
may otherwise guarantee the required “mauling resistance”. As an example, if
the hash function leaks a single bit of the input, then this clearly violates the
simulation technique above. Nonetheless, determining a related hash value may
still be hard for the adversary, because of the large unknown input portion. In
fact, since practically designed hash functions should ensure that small changes
in the input affect all output bits (“avalanche effect”) it is likely that most
hash functions would still withstand such mauling attacks: the adversary would
still need to “control” the effect on the other bits. We note that the avalanche
effect, albeit seemingly necessary, is not known to provide our desired level of
non-malleability.1

We formalize the above non-malleability approach following related-key at-
tacks on pseudorandom functions [22,8,5,26]. There, the adversary can query
the pseudorandom function with secret key k on values, but also specify a trans-
formation φ of the key to receive values for related key φ(k). The class Φ of
admissible functions φ is usually restricted, else achieving security in this set-
ting is impossible [4].

In our case, we hand the adversary a hash value y of an unknown pre-image
x and ask her to specify a transformation φ ∈ Φ from a class of admissible
transformations, together with a hash value y∗. The adversary wins if x∗ =
φ(x) hashes to y∗; to avoid trivial copy-attacks, we also demand that x∗ �= x.
Non-malleability now requires that the probability of the adversary winning is
negligible, implying that the (adversarially chosen) distribution of the unknown
pre-image x contains super-logarithmic min-entropy. We denote this notion by
Φ-non-malleability.

Similar to related-key attacks on pseudorandom functions, we cannot hope to
achieve our notion of Φ-non-malleability for arbitrary classes Φ of transforma-
tions. Still, it comprises a large set of interesting transformation. For example, it
contains the important class of all “bit flips”, φδ(x) = x⊕δ for all δ, for which we
denote the notion by ⊕-non-malleability. More generally, one may consider any
operations over groups, like φδ(x) = x+δ mod 2n to capture modular additions.
For a group (G,#) and such group-induced transformations φ�δ (x) = x # δ we
speak of #-non-malleability.

Applying our Non-Malleability Notion. We show that our notion #-non-
malleability is strictly weaker than the simulation-based approach of Boldyreva
1 We also note that the idea of reverting to basic modification attacks does not seem

to be applicable to non-malleable commitments or encryptions in a reasonable way;
the latter primitives are designated to hide the messages, whereas hash functions are
a-priori not meant to provide such a guarantee.
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et al. [9]. This, per se, would not be an interesting result, unless we can prove
that the notion is still useful or enriches the class of suitable hash functions. We
show both.

Clearly, since simulation-based non-malleability implies #-non-malleability,
we can immediately conclude from the construction in [9] that #-non-malleable
(and thus ⊕-non-malleable) hash functions can be derived under standard as-
sumptions in principle. However, one of the ideas behind our notion is to give
more guidance on how to design practical hash functions, and we rather envision
more practical constructions from ⊕-non-malleable hash functions.

As for positive results, we show that the strengthened Merkle-Damg̊ard,
achieves the notion of⊕-non-malleability if we assume an ideal compression func-
tion, emphasizing that restricting the class of admissible transformations allows
to derive non-trivial non-malleability statements. Some of our results are also
negative, though. We show that, due to length extension attacks, (strengthened)
Merkle-Damg̊ard is not Φ-non-malleable for a large class of transformations,
even if we model the compression function as a random oracle. We also indicate
that the Matyas-Meyer-Oseas (MMO) construction where one adds the input
message to the output of a cipher shows some weaknesses when it comes to ⊕-
non-malleability. More precisely, our result says that, if the compression function
can be an arbitrary ⊕-non-malleable function, then MMO may not preserve this
property. However, note that MMO itself assumes that the compression function
is a block cipher, hence our result does not immediately apply to hash functions
built from MMO like Skein [19].

We finally show that ⊕-non-malleability suffices to show the Bellare-Rogaway
(BR) encryption scheme [6] to be chosen-ciphertext secure, where a message is
encrypted via (f(r), G(r) ⊕m,H(r||m)) for trapdoor permutation f , random r
and hash functions G and H . Boldyreva et al. [9] prove that (simulation-based)
non-malleability of H suffices, as long as G is still treated as a random oracle.
To be precise, they also require H to be collision-resistant and perfectly one-way
[11], hiding all information about the pre-image. Here we improve over their
result and show the BR scheme is chosen-ciphertext secure (for random oracle
G), as long as H is ⊕-non-malleable and perfectly one-way. This is an example
where hiding the entire pre-image is now welcome and made explicit.

Other Related Work. “Bit-flipping” attacks have been known for a long time.
It is the achievement of works like [18] to put them into a general and formal
framework and show how to avoid them and how to apply this security prop-
erty. As explained above, our definition of Φ-non-malleability follows this line.
It is inspired by the notion of related-key attacks [8,22,4] and the fact that the
definition of Boldyreva et al. [9] is quite bulky.

It should be mentioned that a similar notion to ⊕-non-malleability appeared
previously in Shoup’s attack on the OAEP proof [36]. Shoup gives an ad-hoc
definition for XOR-malleable trapdoor permutations, i.e., trapdoor permutations
which succumb to such bit-flip attacks, and he shows that OAEP is insecure
when instantiated with such a permutation. His notion, besides demanding the
opposite of non-malleability, is slightly different (and incomparable) to ours in
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the sense that the adversary runs on a given difference δ and is not allowed to
choose the distribution of inputs to the permutation. Our work here provides a
positive, more expedient notion of non-malleable hash functions.

2 Preliminary Definitions

Notations. If x is a bit string then |x| denotes its length and xi the ith bit, whereas
the least significant bit is at position i = 0; a bit position i is modulo |x|. By x||y we
denote the concatenation of two strings x and y and assume that it has the lowest
evaluation priority. We assume (unless indicated otherwise) that all algorithms
run in “probabilistic polynomial-time”. If A is a set, we write a ← A to indicate
that a is picked uniformly at random from this set. The same syntax is used if A
is a distribution (a is then drawn accordingly) and if A(·) is an algorithm, then
a denotes its output. When dealing with a concatenated bit string x0||x1 where
|x0| = |x1|, we often write left-hand (or right-hand) side to refer to x0 (or x1)
and function split(b, x0||x1) returns xb. Functions poly(λ) and negl(λ) denote any
function that is polynomial in λ and negligible in λ, respectively. The security
parameter is denoted by 1λ. All logarithms are base 2.

The following definition captures a very general notion of hash functions,
allowing also probabilistic schemes:

Definition 1 (Hash function). A hash function H = (HK,H,HVf) consists of
algorithms, where HK(1λ) generates and outputs a key K which implicitly defines
a domain D(K), H for inputs K and x ∈ D(K) evaluates to a value y ∈ {0, 1}∗,
and HVf returns a verification decision bit for inputs K,x, y. It is required for
any K ← HK(1λ), any x ∈ D(K), and any y ← H(K,x) that HVf(K,x, y)
outputs 1.

We often require probability distributions to be non-trivial with regard to pre-
dictability. This means that it should be hard to predict which element is drawn
from a given distribution when sampled, even in the presence of additional in-
formation in terms of a hint about the sample. We formalize this requirement as
conditional min-entropy and resort to an equivalent formulation via predictors
by [1].

Definition 2 (Conditional min-entropy). The conditional min-entropy of a
distribution X conditioned on distribution Z is

H̃∞(X|Z) := − logmax
A

Pr [A(Z) = X ]

where the probability is taken over the random coins of A, Z and X .

In our case, the distribution Z often depends on X , e.g., a function of X .

3 Defining Non-malleability

We first present the original definition from Boldyreva et al. [9], before intro-
ducing our notion of Φ-non-malleability and discussing their relationship.
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3.1 Simulation-Based Non-malleability

The idea of simulation-based non-malleability originates from [18], where it has
been defined, among others, for private key encryption. It states, intuitively, that
for given ciphertext C(x) of a message x, it should be computationally hard to
find C(x∗) where x and x∗ are related in some interesting way. In their recent
work Boldyreva et al. [9] provide a simulation-based definition of non-malleable
hash functions. This definition constitutes the natural translation of simulation-
based non-malleable encryption: For given H(x), it should be computationally
hard to find H(x∗) where x and x∗ are meaningfully related, defined via a relation
R form a class of relations R.

As with any simulation-based definition, the hardness of finding x and x∗

is expressed over the probability that an efficient attacker is not significantly
more successful than a simulator in an idealized version of the same task. That
means, it is required that for any efficient attacker there exists a corresponding
simulator that does just as well. In this specific case, both algorithms have to
output x∗ eventually, but the attacker is given H(x) while the simulator does not
have access to H(x). The following definition is almost verbatim from [9] with a
minor change (discussed afterwards):

Definition 3 (NM-Hash). A hash function H = (HK,H,HVf) is called non-
malleable (with respect to probabilistic algorithm hint and relation class R) if for
any PPT algorithm A = (Ad,Ay,Ax) there exists a PPT algorithm S = (Sd,Sx)
such that for every relation R ∈ R the difference

Pr
[
Expnmh-1

H,A (λ) = 1
]
− Pr
[
Expnmh-0

H,S (λ) = 1
]

is negligible, where:

Experiment Expnmh-1
H,A (λ)

K ← HK(1λ)
(X , std)← Ad(K)
x← X (1λ), hx ← hint(K,x)
y ← H(K,x)
(y∗, sty)← Ay(y, hx, std)
(x∗, r)← Ax(x, sty)
Return 1 iff

R(X , x, x∗, r)
∧ (x, y) �= (x∗, y∗)
∧HVf(K,x∗, y∗) = 1

Experiment Expnmh-0
H,S (λ)

K ← HK(1λ)
(X , std)← Sd(K)
x← X (1λ), hx ← hint(K,x)

(x∗, r)← Sx(hx, std)
Return 1 iff

R(X , x, x∗, r)

where X denotes a distribution that is chosen by the attacker Ad or simulator
Sd and st stands for state information passed among the algorithms. H is called
entropically non-malleable if the above only holds for algorithms Ad and Sd that
output distributions X such that H̃∞(X|HK, hint) ∈ ω(logλ).

A wealth of remarks is presented in the original work; we only comment on the
most important details:
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– Both experiments provide the algorithms with a hint hx, which reflects infor-
mation about x that might have been collected from previous actions, such
as other protocol executions that involve x.

– The informal statement that x and x∗ are related in a meaningful way is
represented by quantification over a class of relations R. Ideally, we would
want to allow any relation, but subtle technicalities described in [9] demand
that the set of all possible relations is restricted; the definition becomes
unachievable otherwise. This restriction can be expressed by excluding the
problematic relations from R.

– We introduced a small change concerning the output of Ax and Sx as well
as the relation. In particular, the original definition omits the value r which
gives the attacker a little more control over the relation. By specifying a
parameter r along with x∗, the attacker is effectively able to select a specific
subset of the relation. This can be viewed as a decomposition of a corre-
sponding relation that omits r into subsets where the resulting subsets are
indexed by r. Applying this modification will turn out useful later for our
analysis, and does not affect the results in [9].

– We also define entropically non-malleability as a variant of non-malleability
that requires attackers not to output trivial preimage distributions. This is
useful because the attacker could otherwise attempt to guess the preimage
that the experiment samples from the distribution instead of attacking non-
malleability. The original definition does not formalize this explicitly but
mentions it as a naturally arising condition.

3.2 Game-Based Non-malleability

We avoid the drawbacks of the simulation-based approach mentioned in the
introduction, by proposing an alternative definition that does not rely on a
simulator. Our goal is to provide a definition that is more compact and acces-
sible to both cryptanalysts and practitioners while it still captures the idea of
non-malleability.

The Idea. One candidate realization of our goal is captured by the following
game. After selecting a preimage distribution of inputs to some hash function
h, the attacker is given image H(x) and is required to output H(x∗) along with
a description of how to transform x into x∗ in terms of a function φ. Note that
this does not imply that the attacker knows x or x∗. Consider the following
experiment which outlines this idea.

1. Attacker A outputs a preimage distribution X .
2. A random preimage x is picked according to X . Let y = H(x).
3. On input y, the attacker outputs y∗ along with a function φ which maps

one preimage to another, e.g., φ = φδ may be the function which maps x to
φδ(x) = x⊕ δ.

4. The output of the experiment is defined to be 1 if, and only if, H(φ(x)) = y∗

(and we have φ(x) �= x).
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As a natural consequence for a non-malleability definition, we would require
the probability that this experiment outputs 1 to be negligible in the security
parameter. Modeling the description of how to transform the preimage with a
function also allows the attacker to output modifications like φ(x) := x + 1.
Unfortunately, this broad definition is unachievable. Consider, for example, an
attacker that simply picks x∗ at random from the preimage domain and outputs
the constant function φ(·) := x∗ and y := H(x∗). It succeeds unconditionally in
this experiment since H(φ(x)) = H(x∗) = y∗, regardless of the hash function in
question. This problem occurs whenever the adversary can provide a function
which significantly reduces the size of the resulting range of the transformation
function. We thus restrict the class Φ of functions φ.

Φ-Non-Malleability. Seeing that the above experiment is unachievable, the ques-
tion remains if a weaker—but working—game-based definition exists that still
reflects the intuition of non-malleability. We approach this question with the
following idea: If two related values x and x∗ exist, then there is a difference
δ := x⊕x∗ that essentially describes how to modify one value in order to obtain
the other. Yet, given the difference only, no information in absolute terms about
x (or x∗, separately) can be inferred. We can view an attacker that outputs δ as
a specialization of the experiment above by fixing φ(x) = x ⊕ δ. The practical
impact of this idea would be that an attacker has an understanding of how bit
flips in the output affect bit flips in the input of the function (or vice versa).

It is possible to generalize this concept by allowing any group operation in-
stead of bitwise differences. We note that a similar issue of specifying such a
transformation function has been already used in the formal treatment of related-
key attacks on pseudorandom functions, where the adversary is allowed to pro-
vide a key transformation. Here, Lucks [26] proposes the class of group-induced
transformations, a class which is neither too powerful nor too restrictive: It is
the set of functions which apply the group operation to their argument and a
fixed group element. Subsequent work in the area by Bellare and Cash [3] advo-
cates the use of this class and strengthens our confidence that this is a “natural”
choice for related key attacks. Since the requirements and issues seem to be very
similar, we adopt this class in our definition of non-malleability.

We now turn this idea into a general formal definition that is similar to the
simulation-based experiments. First, HK generates a key K which implicitly
contains the security parameter λ. On input K, the first stage of the attacker
Ad outputs a valid distribution of preimagesX in the sense that it has a sufficient
min-entropy. A random element x is drawn from this distribution and mapped to
image y. The function hint outputs hint hx about x. The attacker in the second
stage then receives image y and hint hx. It is required to output a modified
image y∗ and a preimage transformation function φ ∈ Φ (where Φ is known to
the adversary). The output of the experiment is defined to be 1 if, and only if,
HVf(K,φ(x), y∗) = 1 and φ(x) �= x.
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Definition 4 (Φ-NM-Hash). A hash function H = (HK,H,HVf) is called Φ-
non-malleable (with respect to probabilistic function hint) if for any PPT algo-
rithm A = (Ad,Ay) the probability Pr[ExpΦnm

H,A(λ) = 1] is negligible in λ, where:
Experiment ExpΦnm

H,A(λ)
K ← HK(1λ)
(X , st)← Ad(K)
x← X (1λ), hx ← hint(K,x)
y ← H(K,x)
(y∗, φ)← Ay(y, hx, st)
Return 1 iff

HVf(K,φ(x), y∗) = 1
∧φ(x) �= x

where φ ∈ Φ. It is required that algorithm Ad only outputs efficiently sampleable
distributions X such that H̃∞(X|HK, hint) ∈ ω(logλ).

We require Ad to output a non-trivial distribution X in this experiment that
is not predictable by demanding a conditional min-entropy strictly greater than
logarithmic in λ. This requirement makes sense because, otherwise, an attacker
can choose a distribution such that it succeeds to predict the most likely event
of this distribution with high probability. In the context of our experiment, this
would imply that the attacker guesses x with non-negligible probability and
trivially succeeds.

Group-Induced Non-Malleability. Note that we let the adversary choose from a
set of predetermined transformation functions. From this general version we get
the aforementioned group-induced transformations by letting Φ = {φ�δ : δ ∈ G}
where φ�δ (x) = x # δ for some group (G,#) for which group operations can be
efficiently performed. Although this definition allows us to model even richer
classes of transformation functions (e.g. many different group operations in the
same experiment), one must take care to exclude cases where the definition be-
comes unachievable. In practice, one will likely want to work with one specific
group. In fact, for this paper, we restrict ourselves to group-induced transfor-
mations. The following definition captures two special cases of group-induced
transformations and the ⊕ operation:

Definition 5 ((G,#)-NM-Hash and ⊕-NM-Hash). Let (G,#) denote a
group. A hash function H is called (G,#)-non-malleable if H is Φ�-non-malleable
where Φ� = {φ�δ : δ ∈ G} and φ�δ (x) = x # δ. We omit G if it is clear from
the context. In particular, we call a ({0, 1}∗,⊕)-non-malleable function simply
⊕-non-malleable.

It should be observed that Definition 5 is weaker than the original simulation-
based definition. We discuss this in depth in the next section. Nevertheless,
despite this limitation, we feel that Definition 5 is suitable to capture an essential
aspect of non-malleability and a broad class of transformation functions. The
absence of a simulator makes it relatively easy to work with and relates well to
a practical view of an attacker.



Expedient Non-malleability Notions for Hash Functions 277

3.3 Relations between Simulation-Based and �-Non-malleability

In this section, we show that every simulation-based non-malleable hash function
is also #-non-malleable but #-non-malleable hash functions exist that are not
simulation-based non-malleable.

Simulation-Based Non-malleability ⇒ �-Non-malleability. We show by
black-box reduction that every function which is not #-non-malleable is also not
entropically non-malleable in the simulation-based sense.

Proposition 1. Let R�(X , x, x∗, r) denote any relation that outputs 1 if, and
only if, r = x # x∗. If H is an entropically non-malleable hash function with
respect to arbitrary hint and relation class R $ R�, then H is #-non-malleable
with respect to hint.

Our proof in the full version of the paper shows the equivalent proposition that
if H is not #-non-malleable then H is not entropically non-malleable.

We remark that the implication actually holds in a more general sense, be-
yond group-induced transformations. Namely, assume that for every φ ∈ Φ there
exists φ−1 ∈ Φ such that φ−1(φ(x)) = x for all x. Now define the relation
R−1(X , x, x∗, r) (instead of R�) which outputs 1 if and only if r(x∗) = x for
r ∈ Φ. Then any successful adversary against Φ-non-malleability could still be
turned into a successful adversary against entropical non-malleability, whereas
a simulator could output (x∗, r) predicting r(x∗) = x with negligible probabil-
ity only. As an example consider the class Φ|| of concatenation transformation
consisting of function φδ(x) = x||δ and such that φ−1

δ (x||δ) = x (or equals the
input, in case the input string does not end on δ). This example will be useful
when showing that Merkle-Damg̊ard does not preserve Φ-non-malleability.

Φ-Non-Malleability � Simulation-Based Non-Malleability. We show
that if Φ-non-malleable functions exist, then there is one which is not (simulation-
based) non-malleable. In particular, Construction 1 below is one example for such
a function.

Construction 1. Let F = (FK,F,HVf) denote a hash function. Define G :=
(GK,G,GVf) where GK := FK, G(K,x) := F(K,x)||x1, and GVf(K,x, y) :=
HVf(K,x, y1y2 . . . yn−1) ∧ (yn = x1).

Lemma 1. For any class Φ it holds that, if F is Φ-non-malleable, then G is
Φ-non-malleable.

The proof follows straightforwardly by a black-box reduction as an adversary
against G can simply guess the extra bit and still succeed with non-negligible
probability. The proof appears in the full version of the paper.

Proposition 2. Let R1(X , x, x∗, r) denote any relation that outputs 1 if, and
only if, x1 = x∗1 and X is the uniform distribution. Then Construction 1 is
not (simulation-based) non-malleable with respect to hint = ∅ and relation class
R $ R1.
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For the proof of Proposition 2 we consider the specific relation R1 consisting
of inputs x, x∗ which are equal in the first bit. In addition, this relation rejects
distributions if they are not the uniform distribution. Since an attacker against
Construction 1 is given the first bit as part of the image, it succeeds uncondi-
tionally. On the other hand, the simulator does not have this information and
is forced to guess, but it succeeds only with a probability that makes the dif-
ference non-negligible. To complete the picture we finally note that relation R1
is in the set of relations for which Boldyreva et al. [9] derive (simulation-based)
non-malleable hash functions.

See again the full version for the full proof where we also show that non-
malleability is not implied by collision-resistance or one-wayness.

Finally, we point out that it is an open question to identify precisely how
much weaker Definition 4 is in contrast to the original definition. In particular,
it is unclear if a Φ-non-malleable hash function that also hides all preimage
information is also non-malleable in the simulation-based sense.

4 Constructions

As explained in the introduction, the Merkle-Damg̊ard construction does not
preserve (Φ-)non-malleability because of length-extension attacks, even if the
compression function is modeled as a random oracle. Clearly, this is the case for
the class of transformations Φ|| with φδ(x) = x||δ first appending the padding
and then arbitrary data.2 It follows that Merkle-Damg̊ard is not simulation-
based non-malleable either.

Merkle-Damg̊ard, Random Oracles, and ⊕-Non-Malleability. Somewhat surpris-
ingly, we show that Merkle-Damg̊ard does provide ⊕-non-malleability (for fixed-
length messages) if the compression function is modeled as random oracle. This
again shows the advantage of restricting the class of transformation Φ: while
Merkle-Damg̊ard is not simulation-basednon-malleable and notΦ||-non-malleable
according to the discussion above, it is for another class of transformation which
suffices to show security of the BR encryption schemes (see Section 5).

Construction 2 (MD). Let pad(M) be a padding function which maps mes-
sages to multiples of the block length such that the final 64 bits contain the
message length. Then

MDh
iv(M) = h∗iv(M1|| . . . ||Mk) = h(· · ·h(h(iv,M1),M2) · · · )

where M1|| . . . ||Mk = pad(M).

In the following we usually denote by yi the value h∗iv(M1|| . . . ||Mi), i.e., the i-th
intermediate value when iterating h.

2 Note that an attacker is not even limited to fixed-length preimage distributions,
since the length is polynomial and can simply be guessed.
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Proposition 3. For a random oracle h the hash function MDh in Construc-
tion 2 is ⊕-non-malleable (with respect to arbitrary hint).

Proof. Consider an adversary A against ⊕-non-malleability. Assume that this
adversary for random M ← X and the hash value y = h∗iv(pad(M)) eventually
outputs (y∗, δ). Note that, with overwhelming probability, if the adversary has
not queried all pairs (M∗

i , y
∗
i ) of M∗

1 || . . . ||M∗
k = pad(M ⊕ δ) and intermediate

values y∗i in the hash computations to h, then the final output y∗ does not
constitute a valid hash value. This holds because if the adversary simply copies
y∗ = y this would contradict the collision-resistance for δ �= 0; in any other case
the adversary would otherwise be able to predict random oracle values.

Hence, given that the adversary has queried about all intermediate values,
and since they are unique with overwhelming probability, we can deduce the
adversary’s messageM∗ and together with the output δ thus the original message
M . This, however, would contradict the super-logarithmic min-entropy of X
(because the additional hash value of M can only decrease this entropy by a
logarithmic term for the efficient adversary making at most polynomial many
queries to h). ��

We are not aware if one can show that Merkle-Damg̊ard is ⊕-non-malleable
under standard assumptions. However, we note that ⊕-non-malleability of the
compression function alone is not sufficient, but that collision resistance of the
compression function is necessary. Consider for example a given #-non-malleable
compression function h and modify it into a compression function

h′(w, x) =

{
h(w, x) if x �= 1 . . . 1
h(w, 0 . . . 0) if x = 1 . . . 1

Then h′ inherits #-non-malleability from h because the non-trivial min-entropy
of the input distribution guarantees that x hits 1 . . . 1 and that the adversary
outputs φδ with φδ(x) = x # δ = 1 . . . 1 only with negligible probability. In any
other case breaking non-malleability of h′ requires breaking the non-malleability
of h.

Now consider the MD construction based on h′. It is easy for the adversary
to specify a distribution X which outputs λ message blocks, and each block
consists of 0 . . . 0 or 1 . . . 1 with probability 1/2 each. Clearly, this distribution
has super-logarithmic min-entropy. But, the adversary can now output the same
hash value y∗ = y and δ = (1 . . . 1)λ �= 0 and win the ⊕-non-malleability game
(because x∗ = x⊕ δ maps to the same hash value).

The Matyas-Meyer-Oseas-Construction. A common technique to build hash
functions—more precisely compressions functions—is to start from a block ci-
pher. Preneel et al. [34] discuss 64 such variants which all rely on one call to a
block cipher. One of these variants, proposed earlier by Matyas et al. [27], is the
Matyas-Meyer-Oseas (MMO) scheme given by h(k,m) = C(g(k),m)⊕m where
g an arbitrary function. Amongst others, the SHA-3 candidate hash function
Skein [19] is known to adopt this scheme.
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In this section, we deal with a construction called hash-⊕-composition which
is quite similar to the MMO scheme and show that it does not sustain ⊕-non-
malleability. The difference is that, instead of using a cipher C (and function g),
we substitute this part with an inner function h′, i.e. h(k,m) = h′(k,m) ⊕m.
This may be a hash function or, more general, any compression function. We then
construct a ⊕ non-malleable h′ and show that the overall construction becomes
⊕-malleable. The general idea is presented below; for a full formal treatment see
the full version of the paper.

Consider a hash function u, an ⊕-non-malleable hash function f and define

h′(x0||x1) = (u(x0)⊕ (f(x0)||f(x1)))||(x0 ⊕ x1).

Function h′ is then ⊕-non-malleable under certain assumptions, namely that (a)
an attacker against ⊕-non-malleability outputs only uniform distributions and
(b) function u is modeled as a random oracle. Intuitively, the second assumption
assures that the first half of h′ is padded by true randomness and the first
assumption guarantees that the second half of h′ is uniformly random. These
two properties combined ensure that h′ is ⊕-non-malleable. However, it becomes
completely insecure in the above scheme. Since x1 is canceled out, the attacker
learns x0 and is thus able to recompute u and f for arbitrary new values. It is
easy to see that this breaks (⊕-)non-malleability.

How does the above result affect hash functions constructed by the MMO
paradigm such as Skein? Strictly speaking, it is not applicable, because the MMO
schemes uses a cipher whereas the hash-⊕-composition (and the counterexample
above) assumes a hash function. Yet, we feel that it is not far-fetched to consider
a cipher with unknown key and a hash function functionally similar. For example,
collision resistance is implied by the necessary permutation property of a cipher.
Likewise, one-wayness is closely related to the security of the cipher: If one is
able to invert an “image” of the cipher without knowing its key, then the cipher
is blatantly broken.

5 Application

In this section we revisit the proof in [9] that (simulation-based) non-malleability
of the hash functionH in the Bellare-Rogaway encryption [6] scheme f(r), G(r)⊕
m, H(r||m), together with some form of perfect one-wayness hiding the entire
pre-image, suffices to achieve chosen-ciphertext security (as long as G is still
modeled as a random oracle). Exploiting the fact that the component G(r)⊕m
uses the exclusive-or we show that ⊕-non-malleability (and perfect one-wayness)
is sufficient for H .

Preliminaries. We first recall the BR encryption scheme BRG,H[F ] = (K, E ,D)
and the instantiation of the random oracle H through a hash function H =
(HK,H,HVf) formally. The key generation algorithm K of the encryption scheme
outputs a random F -instance f and its inverse f−1 as the public and secret key,
respectively. It also runs HK to generate a key K ← HK(1k) for a hash function
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and puts K into both the public and secret key. The encryption algorithm E on
inputs f,K and m picks random r in the domain of f and outputs (f(r), G(r) ⊕
m,H(K, r||m)). The decryption algorithm on inputs f−1,K and (y, g, h) first
computes r ← f−1(y), then m← g⊕G(r), and outputs m iff HVf(K, r||m,h) = 1
(and ⊥ otherwise).

We would like to show that the encryption is IND-CCA, meaning that for
any adversary with access to a decryption oracle and receiving the public key as
input, the adversary cannot distinguish encryptions for chosen messages m0,m1
(of equal length) better than by guessing. It is understood that the adversary,
after receiving the challenge ciphertext of mb for random bit b cannot query the
decryption oracle about this ciphertext.

Next, we define the hiding property of the hash function H formally. We start
by recalling the definition of a perfectly one-way hash function [11]:

Definition 6 (POWHF). A hash function P = (POWK,POW,POWVf) is
called a perfectly one-way hash function (with respect to probabilistic function
hint) if for any PPT algorithm B = (Bd,Bb), where Bb has binary output, the
following random variables are computationally indistinguishable:

K ← POWK(1k)
(X , std)← Bd(K) ;x← X (1k)

hx ← hint(K,x) ; y ← POW(K,x)
b← Bb(y, hx, std)
return (K,x, b)

K ← POWK(1k)
(X , std)← Bd(K) ;x← X (1k)
x′ ← X (1k)
hx ← hint(K,x) ; y′ ← POW(K,x′)
b← Bb(y′, hx, std)
return (K,x, b)

Security Proof. As in [9] we also assume for technical reasons that the hash
function H is ⊕-non-malleable when a random instance of F is included with the
key output by HK. LetH = (HKF ,H,HVf) denote the modified hash function for
which key generation outputs a random instance of F together with the original
hash key. Then we can include side information about the sample in terms of
f, i.e., we too need that H is ⊕-non-malleable with respect to the hint function
hintBR((K, f), r||m) = f(r).

Theorem 3. Let F be a trapdoor one-way permutation and H = (HKF ,H,HVf)
be a perfectly one-way hash function with respect to hintBR which is also ⊕-non-
malleable with respect to hintBR. Then BRG,H[F ] = (K, E ,D) for messages of
length � = ω(logλ) is IND-CCA secure (for random oracle G).

The proof in the full version of the paper proceeds in game hops, starting with the
original attack scenario and transforming this into a game where the adversary
has no advantage.
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Abstract. Client puzzles are meant to act as a defense against denial
of service (DoS) attacks by requiring a client to solve some moderately
hard problem before being granted access to a resource. However, recent
client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen et
al., 2009) do not ensure that solving n puzzles is n times harder than
solving one puzzle. Motivated by examples of puzzles where this is the
case, we present stronger definitions of difficulty for client puzzles that
are meaningful in the context of adversaries with more computational
power than required to solve a single puzzle.

A protocol using strong client puzzles may still not be secure against
DoS attacks if the puzzles are not used in a secure manner. We describe
a security model for analyzing the DoS resistance of any protocol in the
context of client puzzles and give a generic technique for combining any
protocol with a strong client puzzle to obtain a DoS-resistant protocol.

Keywords: client puzzles, proof of work, denial of service resistance,
protocols.

1 Introduction

Availability of services is an important security property in a network setting.
Denial of service (DoS) attacks aim to disrupt the availability of servers and
prevent legitimate transactions from taking place. One type of DoS attack is re-
source depletion: an attacker makes many requests trying to exhaust the server’s
resources, such as memory or computational power, leaving the server unavail-
able to service legitimate requests.

Client puzzles, also called proofs of work, can counter resource depletion DoS
attacks. Before a server is willing to perform some expensive operation, it de-
mands that the client commit some of its own resources by solving a puzzle. The
puzzle should be moderately hard to solve – not as hard as a large factoring
problem, for example, but perhaps requiring a few seconds of CPU time. Pro-
vided client puzzles are easy for a server to generate and verify, this creates an
asymmetry between the amount of work done by a client and the work done by
a server.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 284–301, 2011.
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Although many client puzzle constructions have been proposed, there has been
less work in rigourously defining good client puzzles or defining DoS resistance
of protocols. The first model for client puzzles was proposed by Jakobsson and
Juels [18]. More recently, Stebila and Ustaoglu [31] described a security model
for the DoS resistance of key exchange protocols, and Chen et al. [13] proposed
a formalization of client puzzles and puzzle difficulty, using a game between a
single challenger and a single adversary.

1.1 Contributions and Outline

In this work, we motivate and present stronger notions of security for client
puzzles and DoS resistance of protocols and provide several examples satisfying
these new definitions.

An Attack on Previous Difficulty Definitions. The main motivation for our
stronger notion of security is that it should be hard for an adversary to solve
many puzzles, not just one. The existing DoS countermeasure models [18, 13, 31]
address the ability of a runtime-bounded adversary to solve a single puzzle, but
not of solving multiple puzzles: if one puzzle takes time 220 to solve, for example,
will 230 puzzles will take time 250 to solve? This is important in practice, for an
adversary will likely have more power than needed to solve a single puzzle.

In order to demonstrate the inadequacy of existing definitions, in Sect. 2 we
examine how for some puzzles – the generic puzzle construction of Chen et al.
[13], the MicroMint micropayment puzzle scheme [27], and number-theoretic
puzzles such as the recent one of Karame-C̆apkun [20] – it is hard to solve
one instance (satisfying existing definitions [31, 13]), but many instances can be
solved without too much more work. This is a weakness in the context of DoS
resistance, and so a good puzzle difficulty definition should preclude this.

Stronger Client Puzzles. In Sect. 3, we propose two notions of strong difficulty
for client puzzles, one for interactive situations and one for non-interactive sit-
uations. These stronger difficulty definitions capture the notion that solving n
puzzles should cost about n times the cost of solving one puzzle. We then provide
examples of puzzles satisfying these stronger definitions.

DoS-Resistant Protocols. In Sect. 4, we define what it means for a protocol to
be DoS-resistant in a multi-user network setting. A server should not perform
expensive operations unless a client has done the required work. It should be hard
for the work of a legitimate client to be stolen or redirected (avoiding the attack
of Mao and Paterson [23]). This generalizes the work of Stebila and Ustaoglu [31]
on DoS-resistant key exchange protocols, while also accommodating our stronger
notion of security for multiple puzzles as described above. Then, in Sect. 5, we
present a theorem that shows how to transform any protocol into a DoS-resistant
protocol using a strongly-difficult interactive client puzzle.

We conclude and discuss future work in Sect. 6. Due to length restrictions,
proofs of claims appear in the full version [30].
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1.2 Related Work

Client Puzzles. Client puzzles were first proposed for protection against DoS
attacks (in the form of email spam) by Dwork and Naor [16]. Many client puz-
zle constructions have subsequently been proposed. There are two main types
of client puzzles: computation-bound puzzles, which depend on a large number
of CPU cycles to solve, and memory-bound puzzles [1, 15, 17], which depend
on a large number of memory accesses to solve, and which offer more uniform
solving time across different CPU speeds compared to computation-bound puz-
zles. Many computation-bound puzzles are based on the difficulty of inverting a
hash function [6, 19, 18, 4, 7, 13], although other techniques (for example, using
number-theoretic primitives) exist as well [16, 35, 33, 20]. Puzzle-like construc-
tions also appear in other cryptographic contexts [28, 27, 11] but with a focus
on different security properties.

Difficulty of Client Puzzles. Although there have been many puzzle constructions
as noted above, only a few of these use any formal notion of security, and there
has been little work in developing formal definitions of client puzzle difficulty.
The first client puzzle difficulty definition was given by Jakobsson and Juels [18],
and another by Canetti et al. [12]. Some memory-bound puzzles [15, 17] include
proofs of amortized difficulty.

A richer difficulty definition was given by Chen et al. [13], using two security
experiments: unforgeability and puzzle difficulty. Importantly, the difficulty def-
inition only addresses the ability of an adversary to solve a single puzzle. They
describe a basic generic client puzzle protocol Π(CPuz). Finally, they give a
generic client puzzle construction from a pseudorandom function and a one-way
function (essentially a MAC and a hash function).

Our definition of puzzle difficulty starts from the Chen et al. [13] definition,
but with a number of differences. First, we eliminated the unforgeability prop-
erty. The unforgeability property is important for their protocol Π(CPuz), but
is not an essential feature of client puzzles. In fact, to define non-interactive puz-
zles, in which the client can generate the puzzle itself, we must remove unforge-
ability. Next, we strengthened the difficulty definition to consider an adversary
who solves many puzzles, motivated by our attack in Sect. 2. Our DoS resis-
tance model and protocol is significantly stronger than their protocol Π(CPuz),
accommodating multiple users in a network setting.

Multiple Puzzles. Our work is motivated by the difficulty of solving multiple
puzzles which has not been addressed adequately in previous works. Jakobsson
and Juels [18] considered independence of proofs of work, but only in terms
of their solvability, not their difficulty. Canetti et al. [12] addressed hardness
amplification – the difficulty of solving many instances – of weakly verifiable
puzzles (WVPs), which are puzzles that need not be publicly verifiable. The
adversary for WVPs could not see valid puzzle/solution pairs, so Dodis et al.
[14] introduced dynamic WVPs that did allow the adversary to see solutions
and gave a hardness amplification theorem showing that if solving one dynamic
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WVP is hard, then solving an n-wise dynamic WVP is also hard. Still, dynamic
WVPs differ from the difficulty definition of Chen et al. [13] and our definition,
in that dynamic WVPs generate all puzzle challenges at once, independent of
the request, whereas puzzles in the Chen et al. model are generated in response
to, and are dependent upon, client requests.

Modelling DoS Attacks on Protocols. Meadows [25] presented a cost-based frame-
work for identifying DoS attacks in network protocols (e.g., Smith et al.’s DoS
attack [29] on the JFK key exchange protocol [2]), but can only be used to
identify and quantify a DoS attack, not prove that a protocol is DoS-resistant.

Stebila and Ustaoglu [31] gave a provable security model for the DoS resis-
tance of key agreement protocols based on the eCK model for key agreement
security [22]. The model splits key exchange into two portions: a presession for
the DoS countermeasure, and a session for the key exchange. They give an ex-
ample protocol using hash function inversions for the DoS countermeasure and
building on CMQV [34] for the key exchange protocol. One of their main mo-
tivations was to avoid the DoS attack of Mao and Paterson [23] which derived
from an authentication failure where messages could be redirected and accepted.

Our definition of DoS resistance for protocols shares some of these charac-
teristics: it uses a presession for the DoS countermeasure and is suitable for a
multi-user network setting. It can be used to analyze all protocols, not just key
exchange protocols, and it uses a stronger notion of security, considering an ad-
versary who solves many puzzles, not just one. By separating the definition of a
puzzle from the definition of a DoS-resistant protocol, we can perform a modular
analysis of each component separately and then combine them.

2 Weaknesses in Existing Definitions

In a public network setting, a server will be providing service to many clients at a
time. A DoS countermeasure based on client puzzles should require appropriate
work to be done for each client request: it should not be possible to solve many
puzzles easily. While the existing models [18, 31, 13] describe the difficulty of
DoS countermeasures when faced with an adversary trying to solve one puzzle,
these models do not adequately defend against powerful adversaries who can
expend more than the effort required to solve a single puzzle.

In this section, we consider some puzzles where a single instance cannot be
solved easily by an attacker, satisfying existing difficulty definitions, but where
an attacker can solve n puzzles more efficiently than just n times the cost of
solving a single puzzle. This motivates our stronger definition of puzzle difficulty
in Sect. 3.

While the examples in this section focus on the security definition of Chen et
al. [13], they can also be applied to the model of Stebila and Ustaoglu [31].

Generic Puzzle Construction of Chen et al. Chen et al. [13] proposed a generic
client puzzle construction based on a pseudorandom function F and a one-way
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function φ. The challenger selects a secret s ∈ K with |K| = 2k and public
parameters (not relevant to our discussion here), denoted by ∗, to generate a
puzzle. The challenger computes x ← F(s, ∗), where x ∈ X and |X | ≥ |K|, and
then sets y ← φ(x). The solver, given the challenge (y, ∗), has to find a pre-image
z such that φ(z) = y.

This generic construction satisfies the puzzle unforgeability and puzzle diffi-
culty security properties provided certain bounds are met: namely, |X | ≥ |K|
and |φ−1(y)|

|X | ≤ 1
2k , for all y. Suppose we have that |φ−1(y)| ≤ 1 and |X | = 2k.

Then the bounds in the generic construction are satisfied and solving a single
puzzle instance requires approximately 2k searches in X . But to solve n puzzles,
the solver can find the value s with at most 2k searches and then obtain a solu-
tion with one application of F for each puzzle. That is, solving n puzzles would
require 2k + n operations rather than the desired n · 2k computations.

MicroMint-Based Puzzle. The MicroMint micropayment scheme [27] is effec-
tively a client-puzzle-based micropayment scheme. A coin is a collision in a hash
function: it is a pair of values x1, x2 such that H(x1) = H(x2) for a given hash
function H . It is easy to verify the validity of a coin.

Generating coins is harder. If H is a regular (or random) function with �-bit
outputs, then to find a collision one must rely on the “birthday paradox” (c.f.
[32, §4.2.2]): hash approximately 2�/2 distinct values and search for a collision.
This puzzle can be shown to satisfy the puzzle difficulty definition of the Chen
et al. model [13] (see the full version of this paper[30]for details).

However, many collisions can be found without too much more work: n colli-
sions can be found with

√
n ·2�/2 hash function calls, much less than n times the

2�/2 cost of solving a single puzzle. We emphasize this is not an attack on the Mi-
croMint scheme itself: MicroMint was in fact designed so that the amortized cost
of generating multiple coins is smaller. While potentially a desirable property in
a micropayment scheme, this property is not desirable for client puzzles.

Number-Theoretic Puzzles. Many client puzzles based on number-theoretic con-
structions have been presented, including the recent scheme of Karame and
C̆apkun [20], which uses modular exponentiation and argues for security in the
Chen et al. model [13] based on the intractability of the RSA problem. Given
a puzzle consisting of an RSA modulus N , a challenge x, and a large integer
R >> N , the solver must compute xR mod N .

The security argument rests on the assumption that the best known algo-
rithm for this computation requires O(log(R)) modular operations, assuming
that factoring N requires more than O(log(R)) operations. For a common puz-
zle difficulty level of say 220, a 1024-bit modulus N certainly suffices. But in fact
a much smaller N would still suffice and would reduce the computational costs
for the verifier, which is important when puzzles are used at extremely low levels
in the network stack, such as TCP (e.g., as in [24]).

Even with a smaller N , say 500 bits, the cost of solving a puzzle by computing
xR mod N is still cheaper than factoring (220 compared to approximately 249

based on the formulas in [5, §6.2]). However, if the adversary wants to solve 230
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puzzles, the best technique is not to solve all these puzzles independently (at a
cost of 230 ·220 = 250 operations) but to first factor N and then use this trapdoor
to easily generate solutions (at a cost of 249 +230c < 250, for some small c which
is the cost of easily generating solutions).

3 Strong Client Puzzles

The starting point for our definition of strong client puzzles is the model of Chen
et al. [13]. The main differences are as follows.

Firstly, as motivated by Sect. 2, our definition of puzzle difficulty is more
robust in that it considers the number of puzzles solved by powerful adversaries.

Secondly, we omit the unforgeability security notion for client puzzles. Inher-
ently, there is no need for puzzles to be unforgeable: in a game played between
a challenger and an adversary, the challenger can keep track of all the puzzles
issued to detect any forgeries. It is only when using puzzles in network protocol
that unforgeability sometimes becomes relevant. The main purpose of unforge-
ability in Chen et al. [13] was to show the DoS resistance of their client puzzle
protocol construction Π(Puz). We argue in Sect. 4 that a richer notion of DoS
resistance is required for a multi-user network setting.

Thirdly, our puzzle definition ensures that the puzzle’s semantic meaning –
represented by the string str, which may identify the resource the client wishes
to access – is the same for both the solver and the verifier. In the model of Chen
et al. [13], the server’s generation of puz depended on str, but not in a way that
the client could verify: puz was an opaque data structure. Thus, a client solving
puz could not be certain that this would gain access to the str resource; and
similarly, a server receiving a solution for puz could not know that the client
solving puz intended to solve a puzzle related to str. This could allow client’s
work to be stolen by an attacker [31] or redirected [23]. By making a connection
between str and puz more transparent, we can incorporate semantic meaning
from other protocols or applications into a puzzle.

Fourthly, our security experiment allows for non-publicly verifiable puzzles,
as suggested in the notion of weakly verifiable puzzles [12].

Finally, in order to accommodate a variety of puzzle uses, we define two types
of difficulty experiments, one for interactive settings and one for non-interactive
settings. This accommodates asynchronous applications, such as email, where
the client itself generates the puzzle [6, 7]. While the non-interactive definition
is more general, it is often convenient to consider the more limited interactive
definition because of its simplicity and its more natural use in interactive proto-
cols. We provide examples of puzzles satisfying each type, and interactive puzzles
are at the heart of our DoS-resistant protocol construction in Sect. 5.

3.1 Client Puzzles

Definition 1 (Client Puzzle). A client puzzle Puz is a tuple consisting of the
following algorithms:
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– Setup(1k) (p.p.t. setup algorithm):
1. Choose the long-term secret key space sSpace, puzzle difficulty space

diffSpace, string space strSpace, puzzle space puzSpace, and solution space
solnSpace.

2. Set s←R sSpace.
3. Set params ← (sSpace, puzSpace, solnSpace, diffSpace, Π), where Π is

any additional public information, such as a description of puzzle algo-
rithms, required for the client puzzle.

4. Return (params, s).
– GenPuz(s ∈ sSpace, d ∈ diffSpace, str ∈ strSpace) (p.p.t. puzzle generation

algorithm): Return puz ∈ puzSpace.
– FindSoln(str ∈ strSpace, puz ∈ puzSpace, t ∈ N) (probabilistic solution find-

ing algorithm): Return a potential solution soln ∈ solnSpace after running
time at most t.1

– VerSoln(s ∈ sSpace, str ∈ strSpace, puz ∈ puzSpace, soln ∈ solnSpace) (d.p.t.
puzzle solution verification algorithm): Returns true or false.

For correctness, we require that if (params, s) ← Setup(1k) and puz ←
GenPuz(s, d, str), for d ∈ diffSpace and str ∈ strSpace, then there exists t ∈ N
with Pr (VerSoln(s, str, puz, soln) = true : soln← FindSoln(str, puz, t)) = 1.

3.2 Strong Puzzle Difficulty

A puzzle satisfies strong puzzle difficulty if the probability that a runtime-
bounded-adversary can output a list of n fresh, valid puzzle solutions is upper-
bounded by a function of the puzzle difficulty parameter and n. This is formalized
in the following two experiments for the interactive and non-interactive settings.

We first need to define additional helper oracles as follows:

– GetPuz(str): Set puz ← GenPuz(s, d, str) and record (str, puz) in a list.
Return puz.

– GetSoln(str, puz): If (str, puz) was not recorded by GetPuz, then return ⊥.
Otherwise, find soln such that VerSoln(s, str, puz, soln) = true. Record
(str, puz, soln). Return soln.2

– V(str, puz, soln): Return VerSoln(s, str, puz, soln).

Interactive Strong Puzzle Difficulty. In this setting, we imagine a solver
interacting with a challenger: the solver submits a request for a puzzle, the
challenger issues a puzzle, the solver sends a solution to the challenger, and the

1 FindSoln runs in time at most t so that a client can stop searching for a puzzle after
a specified amount of time; the difficulty definitions in Sect. 3.2 yield that a client
must spend at least a certain amount of time to find a valid solution.

2 Note that GetSoln is only obligated to find a solution if puz was actually generated
by the challenger. If A generated puz, then A may need to employ FindSoln to find a
solution. Compared to FindSoln, GetSoln has access to additional secret information
that may allow it to find a solution more easily.
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challenger checks the solution. The solver can only submit solutions to puzzles
that were issued by the challenger: this immediately rules out puzzle forgery or
generation of puzzles by the solver. The challenger also allows the solver, via
queries, to see solutions to other puzzles.

Let k be a security parameter, let d be a difficulty parameter, let n ≥ 1, and
let A be an algorithm. The security experiment Execint-str-diff

A,d,Puz (k) for interactive
strong puzzle difficulty of a puzzle Puz is defined as follows:

– Execint-str-diff

A,n,d,Puz (k):
1. Set (params, s)← Setup(1k).
2. Set {(stri, puzi, solni) : i = 1, . . . , n} ← AGetPuz,GetSoln,V(params).
3. If VerSoln(s, stri, puzi, solni) = true, the tuple (stri, puzi) was recorded

by GetPuz, and (stri, puzi, solni) was not recorded by GetSoln for all
i = 1, . . . , n, then return true, otherwise return false.

Definition 2 (Interactive Strong Puzzle Difficulty). Let εd,k,n(t) be a fam-
ily of functions monotonically increasing in t, where εd,k,n(t) ≤ εd,k,1(t/n) for all
t, n such that εd,k,n(t) ≤ 1. Fix a security parameter k and difficulty parameter
d. Let n ≥ 1. Then Puz is an εd,k,n(·)-strongly-difficult interactive client puzzle
if, for all probabilistic algorithms A running in time at most t,

Pr
(
Execint-str-diff

A,n,d,Puz (k) = true
)
≤ εd,k,n(t) .

In the random oracle model,3 To our knowledge, this is the first formal justifica-
tion for the security of Hashcash. we can define interactive and non-interactive
strong puzzle difficulty in terms of the number of oracle queries made by the
adversary instead of its running time.

Remark 1. The condition that εd,k,n(t) ≤ εd,k,1(t/n), for all t and n such that
εd,k,n(t) ≤ 1, captures the property that solving n puzzles should cost n times
the cost of solving one puzzle, at least until the adversary spends enough time t
to solve n puzzles with probability 1.

Remark 2. This bound is quite abstract; let us consider a concrete function for
εd,k,n(t). For example, suppose each Puz instance should take approximately 2d

steps to solve. Then we might aim for Puz to be a εd,k,n(·)-strongly-difficult
interactive client puzzle, where εd,k,n(t) ≈ t/2dn+ negl(k).

Remark 3. In the security experiment, the adversary is allowed to request many
more than n puzzles using GetPuz. The adversary can then pick which n puzzles
it submits as its allegedly solved puzzles {(stri, puzi, solni) : i = 1, . . . , n}. In
other words, the adversary could request many puzzles and hope to find some
easy-to-solve instances. This means, for example, that puzzles for which 1%
of instances are trivially solved could not be proven secure (with a reasonable
εd,k,n(t)) according to this difficulty definition.

3 In the random oracle model, a hash function is modelled as an ideal random function
accessible to the adversary solely as an oracle. [10].
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Relation to Examples from Sect. 2. The Chen et al. generic puzzle construction in
Sect. 2 does not satisfy our definition of strong puzzle difficulty. From Theorem 2
of [13], we have that the Chen et al. generic construction is εd,k(t)-difficult,
with εd,k(t) � 2νk(t) + (1 + t/(2k−t))γd(t), where νk(t) is the probability of
breaking the pseudorandom function family (with security parameter k) in time
t and γd(t) is the probability of breaking the one-way function (with security
parameter d) in time t. By the argument from Sect. 2, there exists an adversary
that can win the strongly-difficulty interactive puzzle game with probability at
least ε′d,k,n(t) � νk(t) + γd(t)/n, which does not satisfy ε′d,k,n(t) ≤ ε′d,k,1(t/n).

Similarly, the MicroMint puzzle from Sect. 2 does not satisfy Definition 2.
Finding a single �-bit collision (and thus solving a MicroMint puzzle) requires
about 2�/2 hash function calls, but finding n collisions requires only

√
n · 2�/2

calls. Let εk,�,n(q) = q√
n·2�/2 . It is clear that, for n ≥ 2, εk,�,n(q) > εk,�,1(q/n),

and hence MicroMint is not an εk,�,n(·)-strongly difficulty interactive puzzle.

Non-Interactive Strong Puzzle Difficulty. Non-interactive strong puzzle
difficulty models the case of client-generated puzzles. Besides being useful in
their originally proposed setting as an email spam countermeasure [6, 7], they
can be useful in protocols that are inherently asynchronous, such as the Internet
Protocol (IP), or have a fixed message flow, such as the Transport Layer Security
(TLS) protocol.

The technical difference between interactive and non-interactive strongly dif-
ficult puzzles is whether the adversary can return solutions only to puzzles gen-
erated by the challenger (interactive) or can also return solutions to puzzles it
generated itself (non-interactive).

The security experiment Execnint-str-diff

A,n,d,Puz (k) for non-interactive strong puzzle
difficulty is as in the interactive case with a change to line 3 of the experiment:

– Execnint-str-diff

A,n,d,Puz (k):
3. If VerSoln(s, stri, puzi, solni) = true and the tuple (stri, puzi, solni) was

not recorded by GetSoln for all i = 1, . . . , n, then return true, otherwise
return false.

The definition of εd,k,n(·)-strongly-difficult non-interactive client puzzles follows
analogously.

Remark 4. If Puz is an εd,k,n(·)-strongly-difficult non-interactive puzzle, then it
is also εd,k,n(·)-strongly-difficult interactive puzzle.

3.3 A Strongly-Difficult Interactive Client Puzzle Based on Hash
Functions

In this section, we describe a client puzzle based on hash function inversion,
similar to the subpuzzle used by Juels and Brainard [19] or the partial inversion
proof of work of Jakobsson and Juels [18].

Let H : {0, 1}∗ → {0, 1}k be a hash function. Define SPuzH be the following
tuple of algorithms:
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– Setup(1k): Set sSpace ← {⊥}, diffSpace ← {0, 1, . . . , k}, strSpace ← {0, 1}∗,
puzSpace← {0, 1}∗ × {0, 1}k, solnSpace← {0, 1}∗, and s←⊥.

– GenPuz(⊥, d, str): Set x←R {0, 1}k; let x′ be the first d bits of x and x′′ be
the remaining k − d bits of x. Set y ← H(x, d, str). Return puz ← (x′′, y).

– FindSoln(str, (x′′, y), t): For z from 0 to max{t, 2d − 1}: set soln ← z (in
{0, 1}d); if H(soln||x′′, d, str) = y then return soln.

– VerSoln(⊥, str, (x′′, y), soln): IfH(soln||x′′, d, str) = y then return true, oth-
erwise return false.

Theorem 1. Let H be a random oracle. Let εd,k,n(q) =
(

q+n
n2d

)n
. Then SPuzH

is an εd,k,n(q)-strongly-difficult interactive client puzzle, where q is the number
of distinct queries to H.

The proof follows a counting argument and appears in the full version [30].

3.4 Hashcash Is a Strongly-Difficult Non-interactive Client Puzzle

In this section, we show that one of the earliest client puzzles, Hashcash [6, 7],
satisfies the definition of a strongly-difficult non-interactive client puzzle in the
random oracle model.

While Hashcash was originally proposed to reduce email spam, the current
specification (stamp format version 1 [7]) can be applied to any resource. Hash-
cash is non-interactive: the puzzle is generated by the same person who solves
the puzzle. Hence it should be difficult for a client to generate a puzzle that can
be easily solved. Hashcash is based on the difficulty of finding a partial preimage
of a string starting with a certain number of zeros in the SHA-1 hash function.

A Hashcash stamp is a string of the form ver:bits:date:resource:[ext]:
rand:counter. The field bits denotes the “value” of the stamp (the number of
zeros at the start of the output) and counter is the solution to the puzzle. A
stamp is valid if H(stamp)[1...bits] = 0 . . . 0. In the context of real-world email
applications, there may be additional restrictions on the validity of a stamp, such
as whether date is within a reasonable range and whether the email address
(resource) specified is acceptable.

Theorem 2. Let H : {0, 1}∗ → {0, 1}k, where k ≥ d, be a random oracle. Let
εd,k,n(q) = q+n

n2d . Then Hashcash is an εd,k,n(q)-strongly-difficult non-interactive
puzzle, where q is the number of queries made by A to H.

The proof follows a counting argument and appears in the full version [30].

4 Denial-of-Service Resistance of Protocols

Although we have defined what a good client puzzle is, it does not immediately
follow that using a good client puzzle in a protocol yields DoS resistance. In this
section, we describe what it means for a protocol to be DoS-resistant, and in the
subsequent section we give a generic construction for DoS-resistant protocols.



294 D. Stebila et al.

Our approach begins similar to that of Stebila and Ustaoglu [31]. We work
in an adversary-controlled multi-user communication network.4 The adversary’s
goal is to cause a server to commit resources without the adversary itself having
done the work to satisfy the denial of service countermeasure.

Protocol Execution. A protocol is a message-driven interaction, taking place
among disjoint sets of clients Clients and servers Servers, where each party is a
probabilistic polynomial-time Turing machine. An execution of the protocol is
called a presession. During execution, each party Û may have multiple instances
of the protocol running, with each instance indexed by a value i ∈ Z+; these
instances are denoted by Π Û

i . A protocol consists of the following algorithms:

– GlobalSetup(1k) (p.p.t. protocol setup algorithm): Select the long-term secret
key space ρSpace. Choose global public parameters Π of the scheme and
return params← (ρSpace, Π); this is assumed to be an implicit input to all
remaining algorithms.

– ServerSetup(Ŝ ∈ Servers) (p.p.t. party setup algorithm): Select ρŜ ∈ ρSpace.
Perform any additional setup required by params.

– CActionj (Ĉ ∈ Clients, i ∈ Z+,mj−1,M
′
j−1), for j = 1, . . . (p.p.t. protocol

client action algorithm): Instance i of party Ĉ produces its jth protocol
message for the run of the protocol, based on the instance’s previous private
state mj−1 and the received message M ′

j−1. The output (Mj ,mj) consists
of its outgoing message Mj and its new private state mj.

– SActionj (Ŝ ∈ Servers, i ∈ Z+,m
′
j−1,Mj), for j = 1, . . . (p.p.t. protocol server

action algorithm): Instance i of party Ŝ produces its jth protocol message
for this instance, based on Ŝ’s long-term secret, the previous private state
m′

j−1, and the received message Mj . The output (M ′
j ,m

′
j) consists of its

outgoing message M ′
j and its new private state m′

j .

The client is assumed to be the initiator. An instance records its current progress
through the protocol with the value j of the last completed action.

Presessions. After receiving some sequence of SActionj (Ŝ, i, . . . ) calls, a server
instance will either accept or reject ; if it accepts, it outputs a presession identified
by a tuple of the form [Ĉ, Ŝ, τ ], where Ĉ is the partner and τ is a sequence of
messages. The sequence of messages τ is meant to act like a transcript; however,
since in DoS-resistant protocols a server may not store state early in the protocol,
portions of τ could have been forged by an adversary. Accepted presessions
must be unique within a party. Additionally, since the protocol may be used for
another purpose – key agreement, electronic voting, etc. – we do not require that
the protocol terminate after accepting, and indeed expect that it may continue
to perform some additional application-level functionality.

4 It is true that, in an adversary-controlled network, the adversary can deny service
simply by not relaying messages. Our concern, however, is with resource depletion
attacks in which a server is overwhelmed with requests.
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Correctness. A protocol is correct if, for all Ĉ ∈ Clients and Ŝ ∈ Servers who
follow the protocol, there exists a running time t for Ĉ such that, when messages
are relayed faithfully between Ĉ and Ŝ, Ŝ will accept with probability 1. In other
words, clients can eventually do enough work to make connections.5

Denial of Service Countermeasure. To provide DoS resistance, a protocol will
typically include some test so the server can decide, based on the proposed
presession [Ĉ, Ŝ, τ ] and its secret ρ, whether to accept or reject based on some
DoS countermeasure in the protocol. It is the adversary’s goal to cause a server
to accept without the adversary having faithfully followed the protocol.

Adversary’s Powers. The adversary controls all communication links and can
send, create, modify, delay, and erase messages to any participants. Addition-
ally, the adversary can learn private information from parties or cause them to
perform certain actions.

The following queries model how the adversary interacts with the parties:

– Send(Û , i,M): The adversary sends message M to instance i of Û who
performs the appropriate protocol action (either CActionj (Û , i,m,M) or
SActionj (Û , i,m,M) based on the instance’s last completed action j − 1),
updates its state, and returns its outgoing message, if any.

– Expose(Ŝ): The adversary obtains Ŝ’s secret value ρŜ ; mark Ŝ as exposed.

Security Definition. The basic idea of the security definition is as follows: the
amount of credit the adversary gets in terms of accepted presessions should not
be greater than the amount of work the adversary itself did. An important part
of the definition below is solutions from legitimate clients.

An instance Π Ŝ
i that has accepted a presession [Ĉ, Ŝ, τ ] is said to be fresh

provided that Ŝ was not exposed before Ŝ accepted this presession and there
does not exist an instance ΠĈ

j which has a matching conversation [9] for τ .
(Intuitively, a “fresh” instance is an attackable instance, one that has not been
trivially solved by exposing the server’s private information.)

Let k be a security parameter, let n ≥ 1, and let A be a probabilistic algo-
rithm. The security experiment Execdos

A,n,P (k) for DoS resistance of a protocol P
is defined as follows:

– Execdos

A,n,P (k): Run GlobalSetup(k). For each Ŝ ∈ Servers, run ServerSetup(Ŝ).
Run A(params) with oracle access to Send and Expose. If, summing over
all servers, the number of fresh instances accepted is n, then return true,
otherwise return false.

A protocol is DoS-resistant if the probability that an adversary with bounded
runtime can cause a server to accept n fresh presessions is bounded:

Definition 3 (Denial-of-service-resistant Protocol). Let εk,n(t) be a fam-
ily of functions that are monotonically increasing in t, where εk,n(t) ≤ εk,1(t/n)

5 Limits on the amount of work done by the server come later, in Definition 3.
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for all t, n such that εk,n(t) ≤ 1. Fix a security parameter k. Let n ≥ 1. We say
that a protocol P is εk,n(·)-denial-of-service-resistant if

1. for all probabilistic algorithms A running in time at most t,

Pr
(
Execdos

A,n,P (k) = true
)
≤ εk,n(t) + negl(k) , and

2. no call to SActionj P (Ŝ, i,m,M) results in an expensive operation unless Π Ŝ
i

has accepted.

The second aspect addresses the idea that a server should not perform expensive
operations unless the countermeasure has been passed. As the notion of “expen-
sive” can vary from setting to setting, we leave it vague, but it can easily be
formalized, for example by using Meadows’ cost-based framework [25].

Avoiding Client Impersonations. Though a DoS countermeasure does not pro-
vide explicit authentication, we still wish to avoid impersonations. For example,
suppose a client Ĉ sends messages meant to prove its legitimate intentions in
communicating with server Ŝ. It should not be possible for an adversary to easily
use those messages to cause another server Ŝ′ to perform expensive operations,
nor should it be possible for an adversary to easily use those messages to convince
Ŝ that a different client Ĉ′ intended to communicate with Ŝ.

This is prevented by the model since party names are included in the preses-
sion identifiers. If an adversary observed a presession [Ĉ, Ŝ, τ ] and then tried to
use that information to construct a presession [Ĉ′, Ŝ, τ ′] of another user Ĉ′ with
the same server, then this new presession would be unexposed and the adversary
would be prohibited from easily causing a server to accept it by Definition 3.
This in effect requires a binding of values in the DoS countermeasure transcript
τ to the parties – Ĉ and Ŝ – in question.

Avoiding Replay Attacks. We follow the approach of Stebila and Ustaoglu [31]
in dealing with replay attacks, where replay attacks are avoided by uniqueness
of presession identifiers of accepted presessions. This does mean that the server
has to store a table of presession identifiers, but this does not constitute a vector
for a DoS attack because the server only stores a presession identifier after it
accepts a presession, so it is doing an expensive operation only after the DoS
countermeasure has been passed.

5 Building DoS-Resistant Protocols from Client Puzzles

In this section, we present a generic technique that transforms any protocol P
into a DoS-resistant protocol D(P ). Our technique uses strongly-difficult inter-
active client puzzles as a DoS countermeasure and message authentication codes
for integrity of stateless connections [3]. We prove that the combined protocol
D(P ) is a DoS-resistant protocol.
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The client and server each provide nonces and construct the string str using
their names, nonces, and any additional information, such as a timestamp or in-
formation from a higher-level protocol. The server generates a puzzle from str,
authenticates the puzzle using the message authentication code (to avoid storing
state), and sends it to the client. The client solves the puzzle using its own string
str and sends the solution to the server. The server checks the message authenti-
cation code and the correctness of the solution. Finally, the server checks that the
presession is unique and accepts. The messages for the DoS countermeasure are
interleaved, where possible, with the messages of the main protocol, and after the
countermeasure has accepted the main protocol continues as needed.

Specification. Let P be a protocol such that SAction1P does not involve any
expensive operations. Let k be a security parameter. Let MAC : {0, 1}k ×
{0, 1}∗ → {0, 1}k be a family of secure message authentication codes [8]. Let
Puz = (Setup,GenPuz,FindSoln,VerSoln) be a strongly-difficult interactive client
puzzle with long-term secret key space sSpace = {⊥} (there is no long-term se-
cret key for puzzles). Although this may seem restrictive, many puzzles satisfy
this constraint, including the hash-based puzzle in Sect. 3.3. Fix a DoS difficulty
parameter d ∈ diffSpace.

Let D(P )Puz,d,MAC,k be the protocol consisting of the following algorithms:

– GlobalSetup(1k): Set ρSpace← {0, 1}k and NonceSpace← {0, 1}k.
– ServerSetup(Ŝ ∈ Servers): Set mkŜ ←R {0, 1}k and ρŜ ← mkŜ .
– CActionjD(P )(. . . ), SActionj D(P )(. . . ): As specified by the protocol in

Figure 1.

Remark 5. The construction D(P ) requires that SAction1P not involve any ex-
pensive operations, as SAction1P is called by SAction1D(P ) before the server
instance has accepted. If SAction1P does in fact involve expensive operations,
then P would need to be rewritten so that the expensive operation is delayed un-
til SAction2P . In other words, the D(P ) construction may result in an additional
round being added before the P protocol is run; this should not be surprising.

Additionally, SAction1P may result in a private output m′
1 which the server

instance needs to store until the next message is received. If state storage is
considered an expensive operation (as it could be a vector for a resource depletion
DoS attack), then there are two options: use a stateless connection [3] to encrypt
m′

1 and send it to the client who must return it in the following round, or, as
above, rewrite P so as to delay the operation until SAction2P .

Theorem 3. Let P be a protocol such that SAction1P does not involve any ex-
pensive operations. Suppose that Puz is an εd,k,n(t)-strongly-difficult interactive
puzzle with long-term secret key space sSpace = {⊥} and that MAC is a family of
secure message authentication codes. Then D(P )Puz,d,MAC,k is an ε′d,k,n(t)-denial-
of-service-resistant protocol, for ε′k,n(t) = εd,k,n(t+t0qSend)+negl(k), where qSend

is the number of Send queries issued and t0 is a constant depending on the pro-
tocol, assuming t ∈ poly(k).



298 D. Stebila et al.

D(P )Puz,d,MAC,k – Send(Û , i, M) protocol specification
Client Ĉ Server Ŝ

long-term secret: ρŜ = mkŜ

CAction1D(P ):
1. NC ←R NonceSpace

2. (M1, m1) ← CAction1P ()
Ĉ,NC ,M1−−−−−−→ SAction1D(P ):

3. NS ←R NonceSpace
4. (M ′

1, m
′
1) ← SAction1P (M1)

5. str ← (Ĉ, Ŝ, NC , NS, M1, M
′
1)

6. puz ← GenPuz(⊥, d, str)

7. CAction2D(P ):
NS ,M′

1,puz,σ←−−−−−− σ ← MACmk
Ŝ
(str, puz)

8. str ← (Ĉ, Ŝ, NC , NS , M1, M
′
1)

9. soln ← FindSoln(str, puz, t)

10. (M2, m2) ← CAction2P (m1, M
′
1)

str,puz,σ,soln−−−−−−→ SAction2D(P ):
11. reject if σ �= MACmk

Ŝ
(str, puz)

12. reject if ¬VerSoln(⊥, str, puz, soln)
13. τ ← (NC , NS , M1, M

′
1, puz, soln)

14. verify no stored presession [Ĉ, Ŝ, τ ]
15. accept and store presession [Ĉ, Ŝ, τ ]

continue with CActionjP continue with SActionjP

Fig. 1. D(P )Puz,d,MAC,k DoS countermeasure protocol

The proof of Theorem 3 follows by a sequence of games, first replacing the
message authentication code with a MAC challenger, and then replacing the
puzzles with a Puz challenger. Fresh accepted presessions correspond to valid
solutions to the Puz challenger, yielding the bound relating the protocol and the
puzzle. The details appear in the full version [30].

6 Conclusion

Our goal in this work was to improve security definitions for client puzzles and
denial-of-service-resistant protocols. We presented a new, stronger definition of
puzzle difficulty for client puzzles, motivated by examples considering the effects
of an adversary who has enough resources to solve more than one puzzle. This
definition is sufficiently general to be useful for analyzing and proving the diffi-
culty of a wide range of computation- and memory-bound puzzle constructions.

Whereas the client puzzle difficulty definition suffices for a simple game be-
tween a challenger and an adversary, we need something more advanced for a
multi-user network setting. Thus, we introduced a new definition of DoS resis-
tance for network protocols.

Our work can be viewed in part as combining the client puzzles approach
of Chen et al. [13] and the DoS-resistant protocols approach of Stebila and Us-
taoglu, extending both to provide stronger DoS resistance and better modularity.
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To demonstrate the utility of our new definitions, we have included examples
of two hash-based client puzzles (including an analysis of the Hashcash client
puzzle) and given a generic technique for converting any protocol into a DoS-
resistant protocol using an interactive client puzzle.

Future Work. The interactive request-challenge-solution nature of client puzzles
in the Chen et al. definition [13] and our Definition 2 is incompatible with the
definition of dynamic weakly verifiable puzzles [14], so the hardness amplification
theorem from one to many puzzles does not apply. An important theoretical
question arising is the development of a hardness amplification theorem for client
puzzles that is suitable, and avoids the counterexamples from Sect. 2 when going
from the Chen et al. definition [13] to our Definition 3.2.

Key agreement is the most widely deployed cryptographic protocol on the
Internet, and, as a computationally-expensive operation, is a possible attack
vector for DoS attacks. Some Internet key agreement protocols – such as IKEv2
[21], the Host Identity Protocol (HIP) [26], and Just Fast Keying (JFK) [2] –
have been designed with DoS attacks in mind. An important future work to be
undertaken is the formal analysis of the DoS resistance of these protocols using
an approach such as the one we have presented.
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Abstract. We present new constructions of (conventional) public key
and stateful public key encryption schemes which produce ciphertexts of
compact size while providing both efficiency and strong security. Our
public key encryption scheme incurs only one group element cipher-
text expansion (defined as the size of the ciphertext minus the size of
the plaintext message) but compared with the previous scheme in the
literature, its encryption algorithm is more efficient. Our stateful en-
cryption scheme resolves the problem of ciphertext expansion of the ex-
isting schemes in the literature and hence can be served as a favorable
alternative. Both of our schemes do not depend on the external length-
preserving cipher constructed from the expensive strong pseudo random
permutation. We provide security analysis of our schemes against cho-
sen ciphertext attack under the well-known computational assumptions,
in the random oracle model. We envision that our schemes can serve
as efficient public key primitives suitable for implementing on resource-
constrained devices.

1 Introduction

Motivation. As the era of post-desktop computing is advancing, the role of small
devices such as sensors, mobile phones, or PDAs is becoming crucially important.
On the one hand many applications running on those small, inexpensive, and
networked devices can benefit us, but on the other hand they have potential to
create new vulnerabilities that attackers can exploit. However, protecting small
devices by providing cryptographic solutions is not always easy: In tiny devices
like sensors, resources for computations and communications are so constrained
that cryptographic algorithms that need heavy computations and communica-
tions can hardly to be realized. Even in the small devices of moderate size, such
as mobile phones, significant amount of computations for security services should
be prohibited as this is directly related to the battery life.

In this regard, it was believed that public key cryptographic algorithms are
too heavy to be implemented on tiny devices (especially, sensors). In contrast to
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this general belief, more and more public key algorithms [3,26,27] even includ-
ing pairing-based algorithms [25,24] have been implemented on wireless sensors
recently. Although the advance of hardware capacity of the small devices [15]
could be one of the reasons for these successful implementations, the efforts to
optimize the underlying algorithms and/or to create a new framework for con-
structing secure yet efficient public key schemes might be a bigger reason. One
notable example of the latter is Bellare, Kohno and Shoup (BKS)’s [5] stateful
public key encryption (StPKE) scheme, which is to reduce the cost of public
key encryption by allowing a sender to maintain state which is reused across
different sessions.

Based on our experiences and the previous work in the literature, we sum-
marize what requirements public key encryption schemes should satisfy to be
suitable for resource-constrained environments:

– Low communication overhead: As the small devices are lack of sufficient and
frequent supply of energy, reducing communication overhead is as important
as reducing computational overhead. According to [26], power to transmit
one bit in the “Mica2Dot” sensor is equivalent to approx. 2,090 clock cycles
of execution on the microcontroller. In terms of energy consumption, [26]
reports that receiving 1 byte of data using the Mica2Dot [14] sensor takes
28.6 μJ of energy while sending 1 byte of data consumes 59.2 μJ. Hence,
reducing 10 bytes from the data which are to be sent will save significant
energy and, consequently contribute to longer battery life. Therefore, it is
essential to design encryption schemes which produce compact ciphertexts to
keep the “ciphertext expansion” (defined as the size of the ciphertext minus
the size of the plaintext message) as small as possible. As will be discussed in
the next subsection, surprisingly few PKE schemes have minimal ciphertext
expansion without incurring additional computational overhead. We also
note that the StPKE scheme based on DHIES [1] is very efficient in terms
of computation, but has inevitable ciphertext expansion.

– Low computational overhead: On sensors, it is quite common to encrypt short
messages, say, 10-20 bytes in length, such as password, collected environment
data (such as temperature) and so on. If possible, it is preferable to encrypt
the short messages without padding or pre-processing, in order not to cause
additional overhead for computation. For this reason, avoiding ciphertext
expansion by using a length-preserving DEM (Data Encapsulation Mecha-
nism) for KEM (Key Encapsulation Mechanism)/DEM framework [13] is un-
desirable in resource-constrained environment as the PRP (Pseudo Random
Permutation) [19] used to construct such length-preserving DEM is compli-
cated and inefficient [2,10], moreover, it requires the length of plaintext to
exceed certain length.

– Efficient encryption algorithm: Although this seems to be an obvious require-
ment, it should be emphasized that in many situations, efficiency of encryption
may be more important than efficiency of decryption. This is because, it is of-
ten the case that small devices with limited resources encrypt messages and
send the resulting ciphertexts to the base stations with higher computational
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capacity, which will decrypt the ciphertexts upon receiving them. (Note that
this is one of the typical settings in wireless sensor network.)

– Reasonable but reliable security level: The above requirements could triv-
ially be satisfied by weakening security, say, by reducing the key size or/and
security requirements dramatically. We do not consider this as an option to
gain efficiency of cryptographic algorithms. In terms of encryption schemes,
we still require them to be secure against chosen ciphertext attack (CCA)
at least, however, in the random oracle model [7].

Motivated by the above requirements and the current status of providing small
devices with strong security based on public key cryptographic algorithms men-
tioned earlier, in this paper, we focus on designing even more efficient PKE and
StPKE schemes that produce compact ciphertexts. In what follows, we review
the related work on compact PKE schemes.

Related Work. In the literature, there have been several proposals of construct-
ing PKE schemes that produce the reduced length of ciphertexts while providing
security against chosen ciphertext attack, which we call “CCA-security”. Kuro-
sawa and Matsuo [21] presented a variant of DHIES [1], which produces shorter
ciphertexts than DHIES. Their technique is essentially to use the KEM/DEM
framework [13] in which a length-preserving DEM is employed. However, as
Boyen [10] and, Abe, Kiltz and Okamoto (AKO) [2] pointed out, the problem
of using the length-preserving DEM is that the resulting PKE scheme cannot
be very efficient as the length-preserving DEM is constructed from strong PRP
(Pseudo Random Permutation) [19], which is complicated and inefficient and,
importantly, needs the size of plaintext messages to exceed certain length (i.e.,
the length of messages need to have a lower bound). Boyen [10] also provided a
“miniature” encryption scheme which outputs very short ciphertext with tight
security against CCA based on Gap Diffie-Hellman assumption. But this scheme
does not take plaintexts of arbitrary length. Later Cash et al. [12] proposed a
twin Diffie-Hellman KEM scheme which is eventually be reduced to the ordinary
Computational Diffie-Hellman (CDH) assumption for its CCA-security. Com-
pared with Fujisaki and Okamoto’s [18] method, an advantage of this scheme is
that it will produce a PKE scheme that does not incur further ciphertext expan-
sion if it is combined with a length-preserving DEM. But computation cost for
encryption/decryption is increased in this scheme. Abe et al.’s [2] PKE scheme
proposed very recently is the first PKE scheme, which accepts arbitrary length
of plaintext messages and has a ciphertext expansion of one group element. This
scheme is very attractive to be used in resource-constrained environment.

As briefly mentioned before, the stateful public key encryption (StPKE) re-
duces the cost of public key encryption significantly by allowing a sender to
maintain state that is reused across different encryptions. Due to the efficiency
gained from maintaining state, StPKE schemes have potential to be employed in
the settings where computational resources are constrained. However, ciphertext
expansion of BKS’s [5] efficient StPKE scheme based on DHIES [1] is actually
bigger than that of the original DHIES as the underlying data (symmetric)
encryption of the former scheme is required to be randomized and hence the
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random string should be attached to the symmetric part. (Informally speaking,
in StPKE, since the session key (Diffie-Hellman key) becomes deterministic if
the state is not changed, additional randomness should come from the symmet-
ric encryption.) This ciphertext expansion problem in StPKE is mentioned in
[5]. Our aim is to resolve this problem. We note that although there exist other
construction of StPKE, but all suffer from a similar problem [4].

Our Contributions.1 First, we show that AKO’s [2] scheme can be optimized
further by proposing a variant of AKO scheme, which is more efficient than
the original AKO scheme but does not degrade its security. More precisely, our
proposed scheme requires only two exponentiations in encryption (compared
with one single exponentiation plus one multiple exponentiation in the AKO
scheme) but is still proven secure against CCA in the random oracle model
assuming that the Strong Diffie-Hellman (SDH) problem is hard. We also present
a modified version of our scheme to provide CCA-security under the weaker CDH
assumption using the technique from [12].

Second, we propose a StPKE scheme whose ciphertext expansion is smaller
than the most efficient StPKE scheme based on DHIES [5]. Although our scheme
is also based on the Diffie-Hellman primitive like DHIES, it changes the DHIES
structure in a non-trivially way to reduce the size of ciphertext without degrading
security. We show that our StPKE scheme satisfies CCA security in the random
oracle model, assuming that the same SDH problem is hard. As a by-product
of our StPKE construction, we also present a compact stateful identity-based
encryption scheme.

Organization. In the next section, we review the notions of CCA-security for PKE
and StPKE. In Section 3, we describe our new PKE schemes. Subsequently in
Section 4, we describe our StPKE scheme of compact ciphertext. We compare
the proposed schemes with other related ones in the literature in Section 5, which
will be followed by conclusion.

2 Preliminaries

In this section, we review the formal definitions and security notions of PKE
and StPKE against CCA and computational primitives we will need.
Public Key Encryption. We use the usual definitions of PKE. A PKE scheme
consists of three algorithms, “KG (Key Generation)”, “Enc (Encryption)” and
“Dec (Decryption)”. KG generates a public and private key pair and Enc encrypts
a plaintext using the generated public key. Dec decrypts a given ciphertext using
the private key.

Throughout this paper, we assume λ ∈ Z+ is a security parameter. Now, let
Πpke be a PKE scheme. The security against CCA for the scheme Πpke, “IND-
CCA”, is defined as follows. Consider the following game in which an adversary
A interacts with the challenger.
1 Readers are referred to “Design Rationale” of Sections 3 and 4 for more detailed

accounts of the technical contributions each proposed scheme.



306 J. Baek, C.-K. Chu, and J. Zhou

Phase 1: The challenger runs the key generation algorithm providing λ
as input to generate a public/private key pair (pk, sk). Whenever A makes
decryption queries, each of which is denoted by ψ, the challenger runs the
decryption algorithm on input ψ and gives the resulting decryption to A.
Challenge: In this phase, A submits two equal-length plaintexts m0 and
m1. On receiving this, the challenger computes a challenge ciphertext ψ∗

which encrypts mβ where β ∈ {0, 1} is chosen uniformly at random. It gives
ψ∗ to A.
Phase 2: Whenever A makes decryption queries, each of which is denoted
by ψ, with a restriction that ψ �= ψ∗, the challenger runs the decryption
algorithm on input ψ and gives the resulting decryption to A.
Guess: A outputs its guess β′ ∈ {0, 1}.

We define A’s advantage Advind−cca
Πpke,A (λ) to be |Pr[β′ = β]− 1/2|.

Stateful Public Key Encryption. We use the usual definition of StPKE given
in [5]. A StPKE scheme consists of the following algorithms, “Setup (Setup)”,
“KG (Key Generation)”, “PKCk (Public Key Checking)”, “NwSt (New State)”,
“Enc (Encryption)” and “Dec (Decryption)”. Setup generates a system-wide pa-
rameter and KG generates a public and private key pair. PKCk is a public key
verification algorithm that checks the validity of a given public key. NwSt is an
algorithm for generating fresh state. Enc encrypts a plaintext using the gener-
ated public key and the current state. Dec decrypts a given ciphertext using the
private key. Note that like the original paper [5], the validity check required in
this paper is very simple one, for example, checking whether some component of
the given public key belongs to the underlying group, which is already exercised
in practice [20].

Now, let ΠStPKE be a PKE scheme. The security against CCA for the scheme
ΠStPKE , “IND-CCA”, is defined as follows [5]. Consider the following game in
which an adversary A interacts with the game.

Phase 1: The game computes system-wide parameter sp by providing the
security parameter λ as input to Setup. It also generates (pk1, sk1) by running
KG on input sp, and new state st by running NwSt on input sp. Note that
(sk1, pk1) is the private/public key pair of the honest receiver R1. A outputs
public keys pk2, . . . , pkn of receivers R2, . . . , Rn respectively, all of which are
in the range of KG(sp). (Note that A may or may not know the private keys
corresponding to the public keys pk2, . . ., pkn.) The game sends (sp, pk1)
to A. A then issues a number of (but polynomially many) queries, each of
which is responded by the game. The type of each query and the actions
taken by the game are as follows:
• Encryption queries, each of which is denoted by (i,m) where i∈ {1, . . . , n}:

On receiving this, the game computes (ψ, st) = Enc(sp, pki, st, m), where
st denotes current state, and sends ψ to A.

• Decryption queries, each of which is denoted by ψ : On receiving this, the
game computes Dec(sp, sk1, ψ) and sends the resulting decryption to A.
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Challenge: A submits a challenge query (m0,m1) such that |m0| = |m1|:
On receiving this, the game picks β ∈ {0, 1} at random, computes (ψ∗, st) =
Enc(sp, pk1, st,mβ), where st denotes current state, and sends ψ∗ to A.
Phase 2: A continues to issue encryption queries (i,m) and decryption
queries such that ψ �= ψ∗.
Guess: A outputs its guess β′ ∈ {0, 1}.

We define A’s advantage Advind−cca
ΠStP KE ,A(λ) to be |Pr[β′ = β]− 1/2|.

We remark that the above security notion can be considered in the KSK
(Known Secret Key) or the USK (Unknown Secret Key) models [5]. In the KSK
model, it is assumed that A possesses the corresponding private (secret) keys
sk2 . . . , skn of the public keys it outputs in Phase 2 of the attack game. On the
other hand, in the USK model, this assumption is not needed2.
Computational Primitives. Finally we review the computational primitives, which
will be used in the paper.

Let G be a multiplicative group of prime order p ≈ 22λ, where λ is a security
parameter. The Strong Diffie-Hellman (SDH) problem is defined as follows. An
adversary B, given (g, ga, gb) ∈ G3, is to compute gab with the help of a restricted
Decisional Diffie-Hellman oracle DDHg,ga(·, ·), which on input (gb̄, gc̄) outputs 1
if and only if ab̄ = c̄ mod p. We define B’s advantage on solving the SDH problem
to be Advsdh

B (λ).
We can also define GDH assumption [22], a similar but stronger assumption

than the above SDH assumption: An adversary B, given (g, ga, gb) ∈ G3, is to
compute gab with the help of a full Decisional Diffie-Hellman oracle DDHg(·, ·, ·),
which on input (gā, gb̄, gc̄) outputs 1 if and only if āb̄ = c̄ mod p. We define B’s
advantage on solving the GDH problem to be Advsdh

B (λ).

3 Our Compact Public Key Encryption Scheme

In this section, we present our compact PKE scheme, which we denote by
“ΠSDH+”.
Description. As follows is a description of ΠSDH+.

– KG(λ): Generate group parameters (p, g,G), where p ≈ 22λ and g ∈ G is
a generator. Choose hash functions G : G → {0, 1}λk , where λk = 2λ, and
H : {0, 1}∗ → Z∗

p. Then pick x ∈ Z∗
p uniformly at random and compute

y = gx. Return public key pk = (p, g, y,G,H) and private key sk = (pk, x).
– Enc(pk,m): Pick r ∈ Z∗

p at random and compute κ = gr, k = G(κ), v = k⊕m,
and τ = H(v), where m ∈ {0, 1}l for l ≥ 1 is a plaintext. Compute yτr and
then u = κyτr = gryτr. Return a ciphertext ψ = (u, v).

2 In other words, in the KSK model, it may be the case that the trusted third party
(like CA) is required to perform a proof of knowledge protocol to confirm whether
users have corresponding private keys of their public keys while in the USK model,
PKCk should be run to check whether the public keys are valid. Readers are referred
to [5].
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– Dec(sk, ψ): Upon receiving ψ = (u, v), compute

κ = u
1

1+τx ,

where τ = H(v), and return m = v ⊕ k, where k = G(κ).

In the above construction, when l > λk, we expand k to a bit-string k′ using
a pseudo-random generator and use k′ as an xor-based one-time pad. Whereas,
when l ≤ λk (l = |m|), we use the first l-bit of k as an xor-based one-time pad.
Hence the symmetric encryption part v is ”length-preserving [2]”.
Design Rationale. Notice that the efficiency gain in our scheme comes from the
computation of u. By “moving” τ = H(v) from the exponent of g to y, we could
avoid gr is computed again through the multi-exponentiation. In other words, we
can compute u by performing exactly two exponentiations, separately computing
gr and yτr and just multiplying them. However, in the original AKO [2] scheme,
u is computed as (gτy)r while using gr as (encapsulation) key, so two values gr

and gτr should be computed as a sequence of exponentiations and gτr and yr

are multiplied together, or gr and gτryr should be computed separately3. In this
case, gτryr(= (gτy)r) should be computed via multi-exponentiation.) Hence, we
could avoid a multi-exponentiation or a sequence of two exponentiations opera-
tions, whose cost do not exceed two single exponentiations but more than one
exponentiation [8]. (We note that depending on algorithms that can be employed
[16], multi-exponentiation can be conducted very efficiently. However, our argu-
ment here is that one can in fact avoid multi-exponentiation completely when
constructing compact PKE schemes, which is beneficial for lightweight cryp-
tography as some fast algorithms for multi-exponentiation might require much
more memory, for example, Pippenger’s algorithm [8], and/or more involved
implementations.)
Security. Somewhat interestingly, we show that our modification does not de-
grade security at all. Below, we prove that the scheme ΠSDH+ is IND-CCA
secure in the random oracle model, relative to the SDH problem:

Theorem 1. For an IND-CCA adversary A attacking ΠSDH+ with running
time t, there exists an adversary B solving the SDH problem with running time
t+ O(qDqG) such that

Advind−cca
ΠSDH+,A(λ) ≤ 2λkAdvsdh

B (λ) +
qG
p

+
qG + 2qH

2λk
,

where qG and qH denote the number of queries to the random oracles G and H
respectively; qD denotes the number of queries to the decryption oracle.

Sketch of the proof. The main idea of the proof follows that of the original
AKO scheme [2]. However, due to the change of encryption process, we have

3 The latter method was suggested in [2]. The former method takes similar amounts
of computations [8].
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to simulate the public key and challenge ciphertext differently. Basically we set
g = za, y = (zg−1)1/τ∗

, u∗ = zb, v∗ = k∗ ⊕ mβ, and k∗ = G(κ∗) for random
k∗ ∈ {0, 1}λk and β ∈ {0, 1}, where za and zb are the SDH instance. (We do
not know the value κ∗ yet.) The SDH problem will be solved when the IND-
CCA adversary queries G on κ∗ = zab. The validity of each ciphertext (u, v)
is checked as follows: For an entry (κ, k) in the query-answer list for G, check
whether DDHz,g((u/κ(1− τ

τ∗ ))
τ∗
τ , κ) = 1, where τ∗ = H(v∗) and τ = H(v). – Due

to the lack of space, the complete proof will be given in the full version of this
paper.

CDH Variant. Using the twinning technique from [12], our scheme can easily be
modified to provide CCA-security with even the weaker CDH (Computational
Diffie-Hellman) assumption. (Note that the CDH assumption can be defined not
giving the SDH adversary access to the strong DDH oracle.) As follows is the
description of the new scheme, which we denote by “ΠCDH+”.

– KG(λ): Generate group parameters (p, g,G), where p ≈ 22λ and g ∈ G is
a generator. Choose hash functions G : {0, 1}∗ → {0, 1}λk , where λk = 2λ,
and H : {0, 1}∗ → Z∗

p. Then pick x ∈ Zp and z ∈ Zp uniformly at random
and compute y = gx and g̃ = gz. Return public key pk = (p, g, y,G,H) and
private key sk = (pk, x).

– Enc(pk,m): Pick r ∈ Z∗
q at random and subsequently compute κ = gr,

κ̃ = g̃r, k = G(κ, κ̃), v = k ⊕ m, and τ = H(v). Compute yrτ and then
u = κyrτ = gryrτ . Return a ciphertext ψ = (u, v).

– Dec(sk, ψ): Upon receiving ψ = (u, v), compute

κ = u
1

1+τx and κ̃ = u
z

1+τx ,

where τ = H(v), and return m = v ⊕ k, where k = G(κ, κ̃).

We proved that the scheme ΠCDH+ is IND-CCA secure in the random oracle
model, relative to the CDH problem. (The proof will be given in the full version
of the paper.)

4 Our Compact Stateful Public Key Encryption Scheme

In this section, we present our compact StPKE scheme.
Description. As follows is a description of our StPKE scheme, which we denote
by “ΠstDH+”.

– Setup(λ): Generate a multiplicative group G of prime order p ≈ 22λ. Choose
hash functions G : G× {0, 1}λ → {0, 1}λk, where λk = 2λ, and H : G×G×
{0, 1}∗ ×G→ {0, 1}λ. Return system parameter sp = (G, p, g,G,H).

– KG(sp): Pick x ∈ Z∗
p uniformly at random and compute y = gx. Return

public key pk = y and private key sk = x.
– PKCk(sp, pk): Check if y ∈ G. If it is, return 1, and 0 otherwise.
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– NwSt(sp): Pick r ∈ Z∗
p uniformly at random and compute u = gr. Return

state st = (r, u).
– Enc(sp, pk, st,m): Let st = (r, u). Compute κ = yr and pick s ∈ {0, 1}λ

uniformly at random. Then subsequently compute k = G(u, s), v = k ⊕m
for plaintext m ∈ {0, 1}l (l ≥ 1) and w = H(y, u, v, κ)⊕ s. Return ciphertext
ψ = (u, v, w).

– Dec(sp, sk, ψ): Upon receiving ψ = (u, v, w), compute κ = ux and s =
w ⊕ H(y, u, v, κ). Then return m = v ⊕ k, where k = G(u, s).

Like the previous PKE scheme, the symmetric encryption part v is length-
preserving: When l > λk, k is expanded to a bit-string k′ through a pseudo-
random generator k′ will be used as an xor-based one-time pad. When l ≤ λk

(l = |m|), the first l-bit of k will be used as an xor-based one-time pad.
Design Rationale. For the sake of convenience of discussion, we briefly describe
the DHIES-based StPKE scheme from [5], which we denote by ΠstDH : In this
scheme, a plaintext m is encrypted to (gr,Ek(m)), y = gx is public key and
k = H(y, gr, yr) is a session key. Here the random r and gr are served as state,
so gr does not need to be computed each time a new plaintext is encrypted.
(yr can also be a part of state to boost efficiency as suggested in [5] .) Since the
session key k essentially becomes deterministic when the same state is reused, the
symmetric encryption E needs to be strengthened to provide enough randomness.
More precisely, E should not only provide a guarantee that access to decryption
oracle should not give any useful information to adversary but also make sure
that there is sufficient randomness to attain indistinguishability. Consequently,
the symmetric encryption in ΠstDH needs to be fully IND-CCA secure unlike
the case of DHIES whose symmetric encryption needs to be only one-time CCA-
secure [5,13], wihch is weaker. However, cost for strengthening the symmetric
encryption is the expansion of the ciphertext [5].

In contrast, we always randomize the session key (i.e., k in our description) in
our scheme even if the same state is reused. Importantly, the random string used
to randomize the session key is xor-ed with the “authentication tag (the output
produced by the hash function H)” to reduce the size of the whole ciphertext
and to prevent it from revealing. (Unlike the previous scheme [5], the random
string should not be revealed.)

Finally, some readers might wonder why one cannot use AKO’s [2] public
key encryption as a basic primitive to construct compact StPKE. The reason is
that the specific algebraic property of the AKO scheme does not allow us to use
the same state again as stateful version of the AKO scheme is totally insecure:
Suppose that r used to create a ciphertext (u, v) such that u = (gH(v)y)r where
y = gx and v = Ek(m) where k = G(gr) is reused. Then one can get (u′, v′) such
that u′ = (gH(v′)y)r and v′ = Ek(m′). But, in this case the session key material
gr can easily be extracted by computing (u/u′)1/(H(v)−H(v′))!
Security. We prove that in the random oracle and the USK (Unknown Secret
Key) model, the scheme ΠstDH+ is IND-CCA secure assuming the Gap Diffie-
Hellman (GDH) problem is hard:
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Theorem 2. For an IND-CCA adversary A attacking ΠstDH+ with running
time t, there exists an adversary B solving the GDH problem with running time
t+ O(qD(qG + qH)) such that

Advind−cca
ΠstDH+,A(λ) ≤ qG

22λ
+
qH
2λ

+ Advgdh
B (λ),

where λ denotes the security parameter; qG and qH denote the number of queries
to the random oracles G and H respectively; qD denotes the number of queries to
the decryption oracle.

Sketch of the proof. Assuming that (ga, gb) is an instance of the GDH problem,
we set u∗ = ga and y1 = gb, where y1 is an honest receiver’s public key and
u∗ is the current state (which reused throughout the game). By using the IND-
CCA adversary A, we try to find gab, which is set as the session key κ∗ in the
challenge ciphertext. The proof basically uses the programability of the random
oracles to answerA’s queries to the oracles G and H. In particular, upon receiving
queries to H, we use the DDH oracle to “filter” Diffie-Hellman tuples, i.e., tuples
of the form (gā, gb̄, gāb̄). This filtering procedure will play an important role
in answering queries to the decryption oracle (That is, we filter out implicitly
“right ciphertexts”.) Note that for each decryption query, we need to deal with
the query-answer lists for both G and H as the ciphertext components v and w
are inter-related through G and H. Note also that unlike the normal PKE, we
need to answer “encryption queries” under the same state, which can be done
using the programability of G and H. – The full proof is given in Appendix A.

Extension to Stateful Identity-Based Encryption. The technique used in our
StPKE scheme ΠstDH+ can easily be extended to construct a compact stateful
identity-based encryption (StIBE) scheme, whose concept was first introduced
by Phong, Matsuoka and Ogata [23]. Compared with their StIBE scheme based
on Boneh and Franklin’s IBE [9], our scheme will provide shorter ciphertext in
the same way as our StPKE scheme ΠstDH+ does. (Phong et al.’s scheme has
a similar structure of the scheme ΠstDH in [5], so the same degree of cipher-
text expansion will be incurred when the “encrypt-then-mac” construction for
IND-CCA secure symmetric encryption [6] is used.)
Description. As follows is a description of our StIBE scheme, which we denote
by “ΠstBDH+”.

– Setup(λ): Generate two groups G1 and G2 of prime order p ≈ 22λ and a
pairing ê : G1 × G1 → G2. Pick a generator g ∈ G1. Also, pick x ∈ Z∗

p

uniformly at random and compute y = gx. Then, choose a length-preserving
symmetric encryption Πsym = (E,D), and hash functions G : G1×{0, 1}λ→
{0, 1}λk , where λk = 2λ, H1 : {0, 1}∗ → G1 and H2 : G1×G1×{0, 1}∗×G2 →
{0, 1}λ. Return system parameters params = (G, p, g, ê, Πsym,G,H, y) and
master key mk = x.

– Extract(sp,mk, ID): On receiving ID, compute skID = H1(ID)x. Return skID
as a private key associated with ID.

– NwSt(sp): Pick r ∈ Z∗
p uniformly at random and compute u = gr and t = yr.

Return state st = (u, t).
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– Enc(sp, ID, st,m): Let st = (u, t). Compute φID = H1(ID) and κ = ê(φID, t).
Pick s ∈ {0, 1}λ uniformly at random. Then subsequently compute k =
G(u, s), v = Ek(m) for plaintext m ∈ {0, 1}l and w = H2(φID, u, v, κ) ⊕ s.
Return a ciphertext ψ = (u, v, w).

– Dec(sp, skID, ψ): Upon receiving ψ = (u, v, w), compute κ = ê(skID, u) and
s = w⊕H2(φID, u, v, κ), where φID = H1(ID). Then return m = Dk(v), where
k = G(u, s).

The security of the above scheme ΠstBDH+ against CCA (as defined in [23])
can be proven as follows. A basic idea of the proof is to first reduce the CCA-
security of the above scheme in the selective identity model, where a challenge
identity ID∗ is output by adversary beginning of the game, to the security of the
normal StPKE (defined in Section 2) in which a session key can be computed
as κ = ê(φ, yr) where φ is now a fixed point rather than a hash output of some
identity. By using the selective identity model, one can handle the encryption
queries, each of which is denoted by (ID,m) more effectively. Using a similar
technique used in the proof of ΠstDH+, it can be shown that the derived StPKE
scheme is IND-CCA secure assuming that the Bilinear Diffie-Hellman (BDH) [9]
is hard (in the random oracle model). The final step is to convert the selective
identity secure version of the scheme into the fully secure version using the result
of [23]. (The detailed proof will be provided in the full version of this paper.)

5 Comparisons

In Table 1, we summarize the restriction on the size of plaintext, encryption and
decryption cost, ciphertext expansion (bandwidth), and computational assump-
tions for proving CCA-security of our schemes and the related schemes in the
literature.

Table 1. Comparison of our PKE schemes with other schemes. (“λ” denotes a se-
curity parameter. e denotes “exponentiation”. Note that we assume that one multi-
exponentiation equals to 1.5 exponentiation following the general convention [2,8].
“mac” and “hash” denote MAC-ing and hashing of a long message, respectively. “sprp”
denotes cost for a strong PRP (pseudo random permutation) computation.

Scheme Plaintext Encryption Decryption Ciphertext Assumption
size cost cost expansion

DHIES [1] any 2e+mac 1e+mac |G| + |mac| SDH
KM [21] |m| > λ 2e+sprp 1e+sprp |G| SDH
Twin KM [12] |m| > λ 3e+sprp 1.5e+sprp |G| CDH
Boyen [10] |m| > 2λ 2.5e+hash 1.5e+hash |G| GDH
AKO [2] any 2.5e+hash 1e+hash |G| SDH
Twin AKO [2] any 3.5e+hash 2e+hash |G| CDH
ΠSDH+ (Ours) any 2e+hash 1e+hash |G| SDH
ΠCDH+ (Ours) any 3e+hash 2e+hash |G| CDH
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Like the schemes in [2], our schemes accept arbitrary length of plaintexts,
while the KM scheme [21], the Twin KM scheme [12], and Boyen’s scheme [10]
need the length of plaintext to exceed certain length. Note that the KM and
Twin KM scheme are in fact based on the KEM/DEM approach in which a
length-preserving DEM is employed. However, this length-preserving DEM will
bring security problem when a very short message is encrypted. Hence, as noted
in [2], the plaintext length should at least be λ, a security parameter. In terms of
encryption and decryption cost, our schemes are highly efficient, more efficient
than the AKO and Twin AKO schemes, Boyen’s scheme4, and comparable to
DHIES [1] and ElGamal [17]. Our schemes are also more efficient than KM and
Twin KM schemes which need complicated strong PRPs as (length-preserving)
DEM. Summing up, our schemes are most efficient and compact and accept
arbitrary length of plaintexts.

In Table 2 , we summarize the restriction on the size of plaintext, encryption
cost in stateful mode when κ = yr is a part of state, and decryption cost,
ciphertext expansion (bandwidth), and computational assumptions for proving
CCA-security of our scheme ΠstDH+ and the DHIES-based StPKE scheme in
[5], denoted by ΠstDH . As can be seen from this table, our scheme reduces the
ciphertext expansion by up to the size of the random string used in the scheme
ΠstDH [5]. If we use the estimation from [5], the size of ciphertext expansion of
ΠstDH is 4λ while that of our scheme ΠstDH+ is 3λ. Assuming that λ = 128,
one can save 16 bytes per each ciphertext, which could be significant in resource-
constrained computing environment.

Table 2. Comparison of our StPKE scheme with the DHIES-based StPKE scheme in
[5]. (“λ” denotes a security parameter. e denotes “exponentiation”. “mac” and “hash”
denote MAC-ing and hashing, respectively. “rs” denotes random string. “GDH” denotes
Gap Diffie-Hellman assumption.) Note that following the convention of [5], we omit the
initiation exponentiation (one “e” operation) in the encryption cost.

Scheme Plaintext Encryption Decryption Ciphertext Assumption
size cost (stateful) cost expansion

ΠstDH [5] any hash+mac 1e+mac |G| + |mac| + |rs| GDH
ΠstDH+ (Ours) any 2hash 1e+hash |G| + |hash| GDH

6 Conclusion

We presented a compact PKE scheme which is more efficient than the previous
one in the literature [2] and an efficient StPKE scheme which outputs short
ciphertext. We also presented extensions of these schemes. We showed that our

4 Although [2] states that the encryption of Boyen’s scheme needs three exponentia-
tions, we correct it to 2.5 exponentiations since, as claimed in [10], computation cost
for a sequence of exponentiations such as gr and grf can be reduced by reusing gr

for the computation of gfr.
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schemes satisfy CCA security in the random oracle model under the well-known
assumptions, SDH, CDH and GDH respectively. Further reducing the size of
ciphertexts of public key encryption and related schemes for resource-constrained
devices will be interesting future research. (However, we cautiously state that
the PKE scheme in the random oracle model is almost optimized due to AKO’s
scheme [2] and its further optimization presented in this paper.)
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A Proof of Theorem 2

Proof. The proof consists of the following sequence of games.

Game G0: This game is identical to the IND-CCA game played by an attacker
A against the scheme ΠStPKE . We repeat this game to clean up the notations.
Let sp be a system parameter. Let sk1 = x1 and pk1 = y1(= gx1) be private
and public keys of the honest receiver respectively. Let pk2, . . . , pkn be the public
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keys output by A. Let st = (r∗, u∗), where u∗ = gr∗
for random r∗ ∈ Z∗

p, be the
sender’s state, fixed throughout each game. We denote a challenge ciphertext
by ψ∗ = (u∗, v∗, w∗), where v∗ = k∗ ⊕ mβ for random β ∈ {0, 1} such that
k∗ = G(u∗, s∗), and w∗ = σ∗ ⊕ s∗ where s∗ ∈ {0, 1}λ is chosen at random,
σ∗ = H(y1, u∗, v∗, κ∗) and κ∗ = (u∗)x1 .

We denote by S0 the event β′ = β, where β′ is a bit output by A at the end of
the game. (We use a similar notation S1, S2, . . . for all modified games G1, G2, . . .
respectively). Since G0 is the same as the real attack game of IND-CCA, we have

Advind-cca
A,ΠstDH+

(λ) =
∣∣∣Pr[S0]−

1
2

∣∣∣.
Game G1: Starting from this game, we use query-answer lists, EncList and GList
for the encryption oracle and the random oracle G respectively. We also use two
types of lists H0List and H1List for the random oracle H. Basically the H1List will
record queries which consist of group elements which have right Diffie-Hellman
distribution and answers for the queries. H0List will record the list of queries that
do not have right Diffie-Hellman distribution. Note that in these lists, queries
and answers are divided by the symbol “|”.

In this game, if A submits public keys, the game checks the validity of each
public key via running PKCk. We denote the public keys that have passed the
validity test by y2, . . . , yn. Then, add [(u∗, s∗)|k∗] to GList and [(y1, u∗, v∗, κ∗)|σ∗]
to H1List. Whenever A submits encryption queries with regards to the public
keys y1, . . . yn, each of which is denoted by “(i,m)” where i ∈ [1, n], the game
runs the following encryption oracle simulator.

EncSim(i,m)
Pick s ∈ {0, 1}λ and k ∈ {0, 1}λK uniformly at random.
Set k def= G(u∗, s) and add [(u∗, s)|k] to GList.
Compute v = k ⊕m.
Pick σ ∈ {0, 1}λ uniformly at random.
Compute w = σ ⊕ s.
Set σ def= H(yi, u

∗, v, ?) and add [(yi, u
∗, v, ?)|σ] to H1List.

Return (u∗, v, w).

Notice in the above simulation that, since s is chosen freshly at random, there can
be more than one s and hence v that correspond to the same plaintext m. Since
the above encryption oracle simulator perfectly simulates Game G0, we have

Pr[S1] = Pr[S0].

Game G2: In this game, ifA queries some (u∗, s) such that G(u∗, s) = G(u∗, s∗) =
k∗, or some (y1, u∗, v, κ) such that H(y1, u∗, v, κ) = H(y1, u∗, v∗, κ∗) = σ∗ , the
simulator aborts the game. Note that games G0 and G1 are equivalent until such
event happens. Since G and H are assumed as random oracles whose ranges are
{0, 1}λk and {0, 1}λk respectively, and there are up to qG and qH such queries,
we have ∣∣∣Pr[S2]− Pr[S1]

∣∣∣ ≤ qG
2λk

+
qH
2λ
,

where λk = 2λ
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Game G3: In this game, whenever A submits queries to the random oracle G
and H the game runs the following simulators GSim and HSim respectively.

GSim(u, s)

If [(u, s)|k] exists in GList, return k.
Pick k ∈ {0, 1}λk uniformly at random, set k def= G(u, s) and return k.
Add [(u, s)|k] to GList.

HSim(y, u, v, κ)

If [(y, u, v, κ)|σ] exists in H1List or H0List, return σ.
If DDHg(y, u, κ) = 1 do the following:

If u = u∗, v = v∗ and y = y1, extract [(y1, u∗, v∗, κ∗)|σ∗] ∈ H1List and
return σ∗.
Otherwise, do the following:

If [(y, u, v, ?)|σ] or [(y, u, v, κ)|σ] in H1List, return σ. Then replace
the symbol “?” with κ.
Otherwise, pick σ ∈ {0, 1}λ uniformly at random, return σ and add
[(y, u, v, κ)|σ] to H1List.

If DDHg(y, u, κ) �= 1 do the following:
If [(y, u, v, κ)|σ] exists in H0List, return σ. Otherwise, pick σ ∈ {0, 1}λ
uniformly at random, return σ and add [(y, u, v, κ)|σ] to H0List.

Using the random oracle simulators described above, this game answers A’s each
decryption query ψ = (u, v, w) as follows.

DecSim(u, v, w)

If u = u∗ and v = v∗ (and hence w �= w∗), do the following:
Extract [(y1, u∗, v∗, κ∗)|σ∗] from H1List, compute s = w ⊕ σ∗, search
[(u∗, s)|k] ∈ GList. If such entry exists, return m = v⊕ k. Otherwise, run
GSim on input (u, s) to get k and return m = v ⊕ k.

Otherwise, do the following:
If [(y1, u, v, κ)|σ] or [(y1, u, v, ?)|σ] exists in H1List, compute s = w ⊕ σ
and search [(u, s), k] ∈ GList. If such an entry exists in GList, return
m = v⊕ k. Otherwise (such a pair does not exist in GList), run GSim on
input (u, s) to get k and return m = v ⊕ k.
Otherwise, that is, if [(y1, u, v, κ)|σ] exists in H0List or such an entry
simply does not exist, pick σ′ ∈ {0, 1}λ uniformly at random and add
[(y1, u, v, ?)|σ′] to H1List. (That is, if [(y1, u, v, κ)|σ] exists in H0List, the
value σ is ignored.) Then compute s = w ⊕ σ′ and search [(u, s), k] ∈
GList. If such an entry exists in GList, return m = v⊕k. Otherwise (such
a pair does not exist in GList), run GSim on input (u, s) to get k and
return m = v ⊕ k.

Note that the simulators presented above perfectly simulates the random oracles,
challenge ciphertexts and encryption oracle. Hence we have

Pr[S2] = Pr[S1].
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Game G4: In this game, we do not pick up σ∗ and set σ∗ = H(y1, u∗, v∗, κ∗) any
longer. Now, let F be an event that A queries (y1, u∗, v∗, κ∗) (which satisfies
DDHg(y1, u∗, κ∗) = 1) to the random oracle H. Notice that unless F occurs, this
game and the previous game proceed identically. Thus we get

|Pr[S4]− Pr[S3]| ≤ Pr[F ].

Note that one can now construct an attacker B that can solve the GDH problem
using the StPKE attacker A. – B, given (g, ga, gb) and access to the DDH oracle,
sets y1 = gb and u∗ = ga can simulate the random oracles G and H and can
respond to A’s various queries in the exactly the same way as this game does.
Especially, when A queries (y1, u∗, v∗, κ∗) to H, B outputs κ∗(= gab) and halts.
Consequently, we get Pr[F ] ≤ Advgdh

B (λ).
Note also that in this game, the challenge ciphertext ψ∗ = (u∗, v∗, w∗) does

not leak any information on β ∈ {0, 1}. This is because, the value k∗ = G(σ∗⊕w∗)
is used only to “mask” mβ in v∗. (That is, k∗ is used like a perfect one-time
pad.) Hence, we get

Pr[S4] = 1/2.

Thus, we get the bound in the theorem statement.
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Abstract. We analyze the concrete security and key sizes of theoreti-
cally sound lattice-based encryption schemes based on the “learning with
errors” (LWE) problem. Our main contributions are: (1) a new lattice
attack on LWE that combines basis reduction with an enumeration al-
gorithm admitting a time/success tradeoff, which performs better than
the simple distinguishing attack considered in prior analyses; (2) con-
crete parameters and security estimates for an LWE-based cryptosystem
that is more compact and efficient than the well-known schemes from
the literature. Our new key sizes are up to 10 times smaller than prior
examples, while providing even stronger concrete security levels.
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1 Introduction

Recent years have seen significant progress in theoretically sound lattice-based
cryptography, resulting in solutions to many tasks of wide applicability. In the
realm of encryption alone, for example, we now have public-key cryptosystems [3,
32, 33] with chosen-ciphertext security [31, 28], identity-based encryption [17, 13,
1], and a fully homomorphic cryptosystem [16]. Much of this progress has been
greatly aided by the use of simple and flexible average-case problems — namely,
the short integer solution (SIS) introduced by Ajtai [2] and the learning with
errors (LWE) problem of Regev [33] — that are provably as hard as certain
lattice problems in the worst case, and appear to require time exponential in the
main security parameter to solve.

For practical parameters, however, the concrete hardness of the SIS and LWE
problems against algorithmic attacks is still far from a settled issue. This makes
it difficult to assess the actual security and efficiency of cryptographic schemes
that are based on these problems. The purpose of this paper is to shed further
light on this issue, by considering new variants of known schemes and attacks,
and analyzing their consequences in terms of key sizes and estimated security.
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1.1 Our Contributions

We analyze the concrete security and efficiency of modern lattice-based cryp-
tographic schemes, with a focus on LWE and public-key encryption. To start,
we describe an LWE-based cryptosystem that has substantially smaller keys and
ciphertexts than the more well-known systems in the literature (namely, the orig-
inal system of Regev [33] and its more efficient amortized variants [30, 17]). Our
scheme incorporates several techniques and perspectives from recent works; in
particular, it is an instance of an abstract system described by Micciancio [24]
that generalizes all the schemes of [33, 30, 17], and the system’s design and se-
curity proof (under the LWE assumption) combine a variety of techniques from
recent works [6, 25, 21, 29] to yield asymptotic and concrete improvements in
key size. While there are not any new techniques involved, to our knowledge the
literature lacks a full description and analysis of the system, despite it now being
an important target of study.

Our second main contribution is a new and stronger way of using existing
algorithmic attack tools, such as lattice basis reduction and bounded-distance
decoding with preprocessing, to analyze the concrete security of recent lattice-
based cryptosystems. Our attack is directed specifically at the LWE problem, and
exploits some of its structural properties in ways that have not been attempted
before in a cryptanalytic context. (Our attack also does not seem immediately
applicable to other lattice problems, such as the unique shortest vector problem,
that have been used for public-key encryption [3, 32, 4].) Therefore, we believe
that our analysis gives a more accurate assessment of LWE’s concrete hardness
than estimates derived from prior lattice attacks.

Applying our attack to the improved cryptosystem, we then propose concrete
parameters and (conservative) runtime estimates for modern commodity hard-
ware. Despite our improved attacks, the resulting key sizes are still smaller than
prior example parameters by factors as large as 10, even for stronger security
levels. (See Section 6 for full details.) For example, using parameters that can
encrypt a 128-bit payload and appear to be at least as secure as AES-128, we
obtain public key sizes of about 1, 120 kilobits, or about 400 kilobits assuming
a public source of trusted randomness.

Clearly, the above key sizes are still too large for many applications, but this
is a consequence of the quadratic overhead inherent to the use “standard” LWE.
By using the compact “ring-based” variant of LWE and cryptosystem from [22]
(which is related to the heuristic NTRU scheme [18] and the theoretically sound
line of works initiated in [23]), we can immediately shrink the above key sizes
by a factor of at least 200. The resulting sizes of 2-5 kilobits are comparable to
modern recommendations for RSA, and the cryptosystem itself is many times
faster on modern hardware.

Our methodology. Here we briefly summarize our methods and main conclusions.
Our approach involves a dedicated study of basis reduction for a certain family of
random lattices, and a post-reduction decoding algorithm that to our knowledge
have not been considered in prior analyses. (For a discussion of our approach in
relation to prior works, see Section 1.2.)
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Lattice-based cryptosystems in the line of works started by Ajtai [2] involve
a family of so-called q-ary lattices, which are m-dimensional integer lattices that
contain qZm as a sublattice, for some modulus q ≥ 2. We study how basis
reduction performs, in terms of its running time and the global properties of its
output basis, on random lattices from this family. Our experiments yield reliable
and theoretically well-behaved predictions about the basis quality that may be
obtained using various amounts of computational effort.

Complementing our analysis of lattice basis reduction, we describe a new post-
reduction attack on the search version of the LWE problem, and provide precise
trade-offs between time and adversarial advantage (i.e., success probability) in
terms of the given basis quality. Even though we attack the search-LWE problem,
which is not strictly necessary to break the semantic security of most LWE-based
cryptosystems, our full attack turns out to be strictly preferable (for a very wide
range of parameters used in cryptography) to the natural distinguishing attack
on decision-LWE that has been considered in prior analyses [25, 34]. Specifically,
our attack can solve a search-LWE instance, and hence decrypt a ciphertext, with
the same or better advantage than the distinguishing attack, while using lattice
vectors of lower quality and hence much less total runtime. The improvement is
especially pronounced in the high-advantage regime, where the adversary needs
relatively high confidence in the decrypted plaintext, such as might be required
for breaking hybrid encryption.

Our post-reduction attack involves a simple extension of Babai’s “nearest-
plane” algorithm [8] that allows us to trade basis quality against decoding time,
which to our knowledge has not been explored in a cryptanalytic context. The ex-
tension is related to Klein’s (de)randomized algorithm [19] for bounded-distant
decoding, but is simpler and specifically tailored to the known Gaussian distribu-
tion of the error vector. As we have already indicated, the quality/time trade-off
dramatically affects the quality of basis required to solve an LWE instance, and
hence the running time of the attack.

Finally, we note that our analysis is entirely modular, and allows for substitut-
ing improved basis reduction algorithms (and their accompanying runtime and
quality predictions) into the post-reduction attack.

1.2 Related Work

Several papers contain studies of the concrete hardness of lattice problems. Here
we mention the ones most closely related to our work, which are aimed at calcu-
lating secure parameters for lattice-based cryptosystems, and describe the most
important distinctions.

Gama and Nguyen [14] performed a comprehensive study of the behavior of ba-
sis reduction for various families of lattices. Their analysis is primarily focused
on the best obtainable solutions to the Hermite-, Unique-, and Approximate-
Shortest Vector Problems. The Hermite SVP is in particular an important prob-
lem in our work and other cryptanalyses. While Gama and Nguyen did not
attempt to document the behavior of basis reduction on random q-ary lattices
(aside from the closely related Goldstein-Mayer distribution for enormous q),



322 R. Lindner and C. Peikert

our experiments confirmed several of their findings for this family (as did the
experiments in [25]). Gama and Nguyen’s study was aimed mainly at predicting
the behavior of basis reduction, but did not include runtime predictions, nor
did it investigate the use of a reduced basis to solve bounded-distance decoding
problems such as LWE, where additional algorithmic trade-offs are possible.

The survey by Micciancio and Regev [25] proposed example parameters for
various lattice-based schemes from the contemporary literature (which have
larger keys than the one we describe here). Their parameters were derived using
Gama and Nguyen’s conclusions about the (in)feasibility of obtaining various
Hermite factors, and as such do not include concrete estimates of attack run-
times or success probabilities. Their security estimates are calculated using the
natural distinguishing attack on LWE by finding one relatively short vector in an
associated lattice; our attack succeeds with lower-quality vectors, making it even
more effective. (It should be noted that the example parameters given in [25]
were already known to offer moderate security at best.)

Rückert and Schneider [34] recently gave concrete estimates of “symmetric bit
security” for many recent lattice-based schemes, incorporating concrete runtime
estimates for various Hermite factors in random q-ary lattices. Their analysis
uses a permissive form of the distinguishing attack described in [25], in which the
adversarial advantage is about 2−72. This small advantage is not incorporated
into their final bit security estimates, so the estimates are more conservative
than ours, even without taking into account the superior decoding attack on
search-LWE.

Finally, we note that the best distinguishing attack against LWE used in [25,
34] may not always apply to our cryptosystem, because its parameters can be set
so that relatively few LWE samples are published, and thus the attack is forced
to use a suboptimal lattice dimension. We give further details in Sections 5.1
and 6.

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, . . . , k}. The base-2
logarithm is denoted lg. We use bold lower-case letters (e.g., x) to denote vectors
over the real R. We use bold upper-case letters (e.g., B) for ordered sets of vectors,
and identify the set with the matrix having the vectors as its columns. We let
‖B‖ := maxi‖bi‖, where ‖·‖ denotes the Euclidean norm.

For an (ordered) set of linearly independent vectors B = {b1, . . . ,bk} ⊂ Rn,
its Gram-Schmidt orthogonalization B̃ is defined iteratively as b̃1 = b1, and
b̃i is the component of bi orthogonal to span(b1, . . . ,bi−1) for i = 2, . . . , k. In
matrix notation, it corresponds to the (unique) decomposition B = QR, where
the columns of Q ∈ Rn×k are orthonormal (i.e., QtQ = I) and R ∈ Rk×k is
right-triangular with positive diagonal entries; the Gram-Schmidt vectors are
then b̃i = qi · ri,i. For a set of linearly independent vectors B = {b1, . . . ,bk},
its fundamental parallelepiped is P1/2(B) := B · [− 1

2 ,
1
2 )k.

A lattice Λ in Rm is a discrete additive subgroup. In this work we are concerned
only with q-ary integer lattices, which are contained in Zm and contain qZm,
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i.e., qZm ⊆ Λ ⊆ Zm. Such a lattice is generated by a (non-unique) basis B =
{b1, . . . ,bm} ⊂ Zm of linearly independent integer vectors, as Λ = L(B) :=
B ·Zm = {

∑
i∈[m] zi · bi : zi ∈ Z}. The determinant det(Λ) of such a lattice is its

index as a subgroup of Zm, i.e., det(Λ) = |Zm : Λ|. Equivalently, it is |det(B)|
for any basis B of Λ.

Discrete Gaussians. For a lattice Λ and a positive real s > 0, the discrete Gaus-
sian distribution DΛ,s over Λ with parameter s is the probability distribution
having support Λ that assigns a probability proportional to exp(−π‖x‖2/s2) to
each x ∈ Λ. For Λ = Zn, it is easy to see (by orthonormality of its standard
basis) that the discrete Gaussian DZn,s is simply the product distribution of n
independent copies of DZ,s. There are efficient algorithms for sampling from a
distribution within negligible statistical distance of DZ,s, given any s > 0. (See,
e.g., [17]: for arbitrary s there is a rejection sampling algorithm, and for small s
one can compute a close approximation to the cumulative distribution function.).

We will need two tail bounds on discrete Gaussians.

Lemma 1 ([9, Lemma 1.5]). Let c ≥ 1 and C = c · exp(1−c2

2 ) < 1. Then for
any real s > 0 and any integer n ≥ 1, we have

Pr
[
‖DZn,s‖ ≥ c · 1√

2π
· s
√
n
]
≤ Cn.

Lemma 2 ([10, Lemma 2.4]). For any real s > 0 and T > 0, and any x ∈ Rn,
we have

Pr [|〈x, DZn,s〉| ≥ T · s‖x‖] < 2 exp(−π · T 2).

Learning with errors. The learning with errors (LWE) problem was introduced
by Regev [33] as a generalization of the well-known ‘learning parity with noise’
problem, to larger moduli. The problem is parameterized by a dimension n ≥ 1
and an integer modulus q ≥ 2, as well as an error distribution χ over Z (or
its induced distribution over Zq). In this work we will be concerned only with
discrete Gaussian error distributions χ = DZ,s over the integers, where α :=
s/q ∈ (0, 1) is often called the (relative) error rate.

For an s ∈ Zn
q , the LWE distribution As,χ over Zn

q ×Zq is sampled by choosing
a uniformly random a ∈ Zn

q and error term e ← χ, and outputting the pair
(a, t = 〈a, s〉 + e mod q) ∈ Zn

q × Zq. The search version of the LWE problem is,
given any desired number of independent samples (ai, ti)← As,χ, to find s. The
decision version of LWE is to distinguish, with non-negligible advantage, between
any desired number of independent samples (ai, ti) ← As,χ (for a uniformly
random s ∈ Zn

q ), and the same number of independent samples drawn from the
uniform distribution over Zn

q ×Zq. It is often convenient to write these problems
in matrix form as follows: collecting the vectors ai ∈ Zn

q as the columns of a
matrix A ∈ Zn×m

q and the (implicit) error terms ei ∈ Z and values ti ∈ Zq as
the entries of vectors e ∈ Zm, t ∈ Zm

q respectively, we are given the input

A, t = Ats + e mod q
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and are asked to find s, or to distinguish the input from a uniformly random
(A, t). The LWE problem may also be viewed as an average-case ‘bounded-
distance decoding’ problem on a certain family of lattices: for A ∈ Zn×m

q , define
the lattice

Λ(At) = {z ∈ Zm : ∃ s ∈ Zn
q such that z = Ats mod q}.

Then the t component of the LWE input may be seen as a perturbed lattice point
in Λ(At), to be decoded.

Hardness of LWE. We recall several facts from the literature about the prov-
able hardness of LWE. The first is that for error distribution χ = DZ,α·q where
α · q ≥ 2

√
n, the search version of LWE is at least as hard as quantumly approxi-

mating certain worst-case problems on n-dimensional lattices to within Õ(n/α)
factors [33].1 Moreover, for similar parameters and large enough q, search-LWE
is at least as hard as classically approximating the decision shortest vector prob-
lem and variants [28]. For moduli q that are sufficiently ‘smooth’ (i.e., products
of small enough primes), the decision form of LWE is at least as hard as the
search form [33, 28].

A particularly important fact for our purposes is that decision-LWE becomes
no easier to solve even if the secret s is chosen from the error distribution χ,
rather than uniformly at random [25, 7]. This may be seen as follows: given
access to As,χ, we can draw many samples to obtain

At =
[
At

1
At

2

]
, t =

[
t1
t2

]
=
[
At

1
At

2

]
s +
[
e1
e2

]
= Ats + e mod q,

where A2 is uniform, e is drawn from χ, and A1 ∈ Zn×n
q is square and invertible.

(This follows by forming A1 by greedily drawing samples that can form an in-
vertible matrix, and disposing of any others until A1 is complete.) We can then
transform A and t into

Āt := −At
2 ·A−t

1 mod q, t̄ := Ātt1 + t2 = Āte1 + e2 mod q,

where Ā is uniform; therefore, we have effectively replaced s with the error vector
e1. On the other hand, when A, t are uniformly random, then so are Ā, t̄.

In terms of lattices, the above may be interpreted as follows: using the bijection
s → At

1s from Zn
q to itself, we can see that the lattice Λ(At) defined above has

as a basis the matrix

H =
[

I
qI −Āt

]
.

(This basis H is a canonical representation of Λ(At) known as the Hermite nor-
mal form. We have ordered the basis vectors so that the Gram-Schmidt vectors
1 It is important to note that the original hardness result of [33] is for a continuous

Gaussian error distribution, which when rounded naively to the nearest integer does
not produce a true discrete Gaussian. Fortunately, a suitable randomized rounding
method does so [29].
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of H are integer multiples of the standard basis vectors, where the first several
have length q, and the remainder have length 1.) Because Ats mod q ∈ Λ(At),
we have t = Ats + e = e mod H, which is

e−He1 =
[

0
e2 + Āte1

]
=
[
0
t̄

]
mod q.

In conclusion, t̄ = Āte1 + e2 is the unique canonical representative of e modulo
the lattice Λ(At).

Finally, assuming hardness of decision-LWE, a standard hybrid argument over
the columns of E (see, e.g., [31]) shows that (Ā, ĀtE1 +E2) is indistinguishable
from uniform, where the entries of E =

[E1
E2

]
are chosen independently from χ.

3 LWE-Based Encryption

Here we describe an LWE-based cryptosystem that is more space-efficient than
the ones commonly known in the literature. It is an instance of an abstract
system described by Micciancio [24] that generalizes all the schemes of [33, 30,
17], though a full description and analysis of the generalized system has not
appeared in the literature. The security proof combines a number of techniques
and perspectives from recent works [25, 21, 29] for the purpose of improved
efficiency and a tight analysis. An efficient ring-based analogue of the system is
described in the full version of [22].

Despite being a generalization of prior LWE-based cryptosystems, the present
scheme can actually be instantiated to have keys and ciphertexts that are smaller
by a factor of about lg q, while simultaneously improving the concrete security!
The improved security comes from the smaller keys (for given security parame-
ter n), which allows for a relatively larger noise rate that makes the LWE problem
harder. The smaller keys come from a different style of security proof, which is
very similar to the proofs for the coding-based cryptosystem of Alekhnovich [6]
and the subset sum-based cryptosystem of Lyubashevsky, Palacio, and Segev [21].
In brief, the proof uses the LWE assumption twice (first on the public key, and
then again on the ciphertext) to show that the adversary’s view in a passive
attack is indistinguishable from uniformly random. By contrast, the proofs for
prior LWE-based schemes involve a statistical argument on either the public key
or ciphertext, but this requires larger keys. We point out that statistical argu-
ments still appear necessary for many advanced applications of LWE, such as
identity-based encryption [17] and others that use a ‘trapdoor basis,’ and we do
not know whether comparably small keys and ciphertexts can be obtained for
these schemes.

Cryptosystem. The cryptosystem involves a few parameters: an integer modulus
q ≥ 2 and integer dimensions n1, n2 ≥ 1, which relate to the underlying LWE
problems; Gaussian parameters sk and se for key generation and encryption,
respectively; and a message alphabet Σ (for example, Σ = {0, 1}) and message
length � ≥ 1.
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We also require a simple error-tolerant encoder and decoder, given by func-
tions encode : Σ → Zq and decode : Zq → Σ, such that for some large enough
threshold t ≥ 1, decode(encode(m) + e mod q) = m for any integer e ∈ [−t, t).
For example, if Σ = {0, 1}, then we can define encode(m) := m · � q

2�, and
decode(m̄) := 0 if m̄ ∈

[
−� q

4�, �
q
4�
)
⊂ Zq, and 1 otherwise. This method has error

tolerance t = � q
4�. We also extend encode and decode to vectors, component-wise.

To get the smallest public keys, our system makes use of a uniformly random
public matrix Ā ∈ Zn1×n2

q that is generated by a trusted source, and is used by
all parties in the system. If there is no trusted source, then Ā may be chosen by
the user herself as part of key generation, and included in the public key.

– Gen(Ā, 1�): choose R1 ← Dn1×�
Z,sk

and R2 ← Dn2×�
Z,sk

, and let P = R1−Ā·R2 ∈
Zn1×�

q . The public key is P (and Ā, if needed), and the secret key is R2.
In matrix form, the relationship between the public and secret keys is:

[
Ā P
]
·
[
R2
I

]
= R1 mod q. (1)

– Enc(Ā,P,m ∈ Σ�): choose e = (e1, e2, e3) ∈ Zn1 ×Zn2 ×Z� with each entry
drawn independently from DZ,se . Let m̄ = encode(m) ∈ Z�

q, and compute
the ciphertext

ct =
[
ct
1 ct

2
]

=
[
et
1 et

2 et
3 + m̄t

]
·

⎡⎣Ā P
I

I

⎤⎦ ∈ Z1×(n2+�)
q . (2)

– Dec(ct = [ct
1, c

t
2],R2): output decode(ct

1 ·R2 + ct
2)

t ∈ Σ�.
Using Equation (2) followed by Equation (1), we are applying decode to

[
ct
1 ct

2
]
·
[
R2
I

]
= (et +

[
0 0 m̄t

]
) ·

⎡⎣R1
R2
I

⎤⎦ = et ·R + m̄t,

where R =
[R1

R2
I

]
. Therefore, decryption will be correct as long as each

|〈e, rj〉| < t, the error threshold of decode. (We give a formal analysis below.)

For another perspective on this scheme as an (approximate) key-agreement mech-
anism, let � = 1 for simplicity. By the discussion in Section 2, we can interpret
key generation as reducing a Gaussian error vector r modulo a lattice defined
by Ā, and publishing the result Ār2 − r1 mod q. Likewise, we can view encryp-
tion as reducing a Gaussian error vector e modulo the dual of the same lattice,
and publishing the result et

1Ā + et
2 mod q. Using their respective private error

vectors and the other party’s public message, the sender and receiver can both
(approximately) compute et

1Ār2 ∈ Zq, whereas a passive adversary cannot. A
formal proof of security appears below.
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Due to space constraints, we defer the description of an analogous scheme
based on the decision ring-LWE problem [22] to the full version. For messages of
length any � ≤ n = n1 = n2, and using the same values of n and q as above, the
public and secret keys are about an n factor smaller than in the above system,
namely n lg q or 2n lg q bits at most, depending on the availability of a common
trusted string. (The ciphertext size is the same, namely 2n lg q bits.)

Parameters for correctness. Here we give an upper bound on the Gaussian pa-
rameters sk, se in terms of the desired per-symbol error probability δ. For rea-
sonably small values of δ, correctness for the entire message can effectively be
guaranteed by way of a simple error-correcting code.

One small subtlety is that if a portion of the random vector e used for en-
cryption happens to be ‘too long,’ then the probability of decryption error for
every symbol can be unacceptably large. We address this by giving a bound on e,
in Equation (4) below, which is violated with probability at most 2−κ for some
statistical parameter κ (say, κ = 40 for concreteness). We then calculate the
error probabilities assuming that the bound holds; the overall decryption error
probability is then no more than 2−κ larger. One can also modify the Enc algo-
rithm to reject and resample any e that violates Equation (4); the adversary’s
advantage can increase by at most 2−κ.

Lemma 3 (Correctness). In the cryptosystem from Section 3, the error prob-
ability per symbol (over the choice of secret key) is bounded from above by any
desired δ > 0, as long as

sk · se ≤
√

2π
c
· t√

(n1 + n2) · ln(2/δ)
. (3)

Here c ≥ 1 is a value that depends (essentially) only on n1 + n2; representative
values are given in Figure 1.

Proof. As shown above in the specification of the decryption algorithm, the jth
symbol of the message decrypts correctly if |〈e, rj〉| < � q

4�. Recall that the entries
of e ∈ Zn1+n2+� are independent and have distribution DZ,se , and rj ∈ Zn1+n2+�

is the jth column of R =
[R1

R2
I

]
, where the entries of R1 and R2 are drawn

independently from DZ,sk
.

To bound the error probability, let ē ∈ Zn1+n2 consist of the first n1 + n2
entries of e. Then by Lemma 1, there is a c ≥ 1 such that

‖ē‖ ≤ c · 1√
2π
· se

√
n1 + n2 (4)

except with very small probability (concrete values of c are given in Figure 1). For
any fixed ē satisfying the above bound, observe that each 〈e, rj〉 is independent
and distributed essentially as 〈ē, Dn1+n2

Z,sk
〉. By Lemma 2, for any T ≥ 0 we have
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(n1 + n2) c ≥ (sk · se)/t ≤

256 1.35 0.08936
384 1.28 0.07695
512 1.25 0.06824
640 1.22 0.06253

Fig. 1. Bounds on parameters for Lemma 3 using a per-symbol error probability of
δ = 0.01, where c is determined so that the probability of choosing a ‘bad’ encryption
vector e is at most 2−40.

Pr
[∣∣∣〈ē, Dn1+n2

Z,sk
〉
∣∣∣ ≥ T · sk‖ē‖

]
< 2 exp(−π · T 2).

Letting T = t/(sk‖ē‖), where t is the error tolerance of our message encoding,
and using the bound on ‖ē‖ from above, we get the bound on sk · se from the
lemma statement.

Theorem 1. The cryptosystem describe above is CPA-secure, assuming the
hardness of decision-LWE with modulus q for: (i) dimension n2 with error dis-
tribution DZ,sk

, and (ii) dimension n1 with error DZ,se.

Proof. It suffices to show that the entire view of the adversary in an IND-CPA
attack is computationally indistinguishable from uniformly random, for any en-
crypted message m ∈ Σ�. The view consists of (Ā,P, c), where Ā ∈ Zn1×n2

q is
uniformly random, P ← Gen(Ā, 1�), and ct ← Enc(Ā,P,m). First, (Ā,P) is
computationally indistinguishable from uniformly random (Ā,P∗) ∈ Zn1×(n2+�)

q

under assumption (i) in the lemma statement, because P = (Āt)t · (−R2) + R1,
and Āt is uniform while the entries of both −R2 and R1 are drawn from DZ,sk

.
So the adversary’s view is indistinguishable from (A, c) where A = (Ā,P∗) is
uniformly random and c← Enc(A,m). Now (A, c) is also computationally indis-
tinguishable from uniformly random (A, c∗) under assumption (ii) in the lemma
statement, because c = (Ate1 + [ e2

e3 ]) + [ 0
m ], and A is uniform while the entries

of e1, e2, and e3 are drawn from DZ,se .

It should be noted that for some settings of the parameters, one of the two as-
sumptions in Theorem 1 may be true information-theoretically for the number
of LWE samples exposed by the system in an attack. For instance, if n2 ≥ n1 lg q
and sk ≥ ω(

√
logn1), then the public key (Ā,P) is within a negligible (in n1)

statistical distance of uniformly random (by a suitable version of the leftover
hash lemma), whereas the corresponding ciphertexts are statistically far from
uniform. These properties are important in, for example, the ‘dual’ cryptosys-
tem and identity-based encryption scheme of [17]. Conversely, the applications
found in [30, 11, 7] have public keys that are far from uniform, but require
that encryption under a ‘malformed’ (uniformly random) public key produces
a ciphertext that is statistically independent of the encrypted message. These
properties are achieved when n1 ≥ n2 lg q and se ≥ ω(

√
logn2), again by the

leftover hash lemma.
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4 Lattice Decoding Attacks

The most promising practical attacks on the cryptosystem from Section 3, and
more generally on LWE itself, use lattice-basis reduction followed by a decoding
phase using the reduced basis.2 In this section we analyze the performance of
decoding as it relates to the quality of a given reduced basis. Then in Section 5
we analyze the effort required to obtain bases of a desired quality.

Before proceeding, we briefly explain how our decoding attack on LWE differs
from the distinguishing attacks considered in other works [25, 34]. In the latter,
the adversary distinguishes (with some noticeable advantage) an LWE instance
(A, t = Ats+ e) from uniformly random, which is typically enough to break the
semantic security of an LWE-based cryptosystem with the same advantage. To do
this, the adversary finds a short nonzero integral vector v such that Av = 0 mod
q, which may be seen as a short vector in the (scaled) dual of the LWE lattice
Λ(At). (Equivalently, the points of Λ(At) may be partitioned into hyperplanes
orthogonal to v, successively separated by distance q/‖v‖.) The adversary then
simply tests whether the inner product 〈v, t〉 is “close” to zero modulo q. When t
is uniform, the test accepts with probability exactly 1/2, but when t = Ats+e for
Gaussian e with parameter s, we have 〈v, t〉 = 〈v, e〉 mod q, which is essentially
a Gaussian (reduced mod q) with parameter ‖v‖ · s. When this parameter is not
much larger than q, the Gaussian (mod q) can be distinguished from uniform
with advantage very close to exp(−π·(‖v‖·s/q)2). For example, when ‖v‖ = 4q/s
the distinguishing advantage is about 2−72. However, to distinguish (and hence
decrypt a ciphertext) with high confidence, one needs ‖v‖ ≤ q/(2s) or so, which
usually requires a great deal more effort to obtain.

It is customary to include the inverse distinguishing advantage in the total
‘cost’ of an attack, so the computational effort and advantage need to be carefully
balanced. For practical parameters, the optimal total cost of the distinguishing
attack typically involves a very small distinguishing advantage (see Section 6),
which may not be very useful in some settings, such as hybrid encryption.

Our decoding attack is stronger than the distinguishing attack in that it can
actually recover the secret error vector in the LWE instance (and hence decrypt
the ciphertext) with the same or better advantage, while using lower-quality
vectors. For all the parameter settings that we investigated, our attack yields
a better total effort as a ratio of time/advantage, and it is significantly more
efficient in the high-advantage regime. (See Section 6 and Figure 3 in particular
for details.) The attack works by using an entire reduced basis (not just one
vector), and by expending some additional post-reduction effort to find the LWE
solution. We also point out that unlike in basis reduction, the post-reduction
effort is fully parallelizable.

2 There are also purely combinatorial attacks on LWE [12, 38] that may perform asymp-
totically better than lattice reduction, but so far not in practice. Also, these attacks
generally require more LWE samples than our cryptosystem exposes, and an expo-
nentially large amount of space.
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The attack. Recall that an LWE instance (A, t = Ats + e) may be seen as
a bounded-distance decoding problem on a certain lattice Λ = Λ(At), where
Ats ∈ Λ.

The standard method for solving a bounded-distance decoding problem on
lattices is the recursive NearestPlane algorithm of Babai [8]. The input to the
algorithm is some lattice basis B = {b1, . . . ,bk} (which for best results should
be as reduced as possible) and a target point t ∈ Rm, and the output is a lattice
point v ∈ L(B) that is ‘relatively close’ to t. The precise guarantee is that for
any t ∈ span(B), NearestPlane(B, t) returns the unique v ∈ L(B) such that
t ∈ v + P1/2(B̃). In other words, if t = v + e for some v ∈ L(B), the algorithm
outputs v if and only if e happens to lie in P1/2(B̃).

The main drawback of this approach in attacking LWE is that in a reduced
basis B, the last several Gram-Schmidt vectors of B are typically very short,
whereas the first few are relatively long. In such a case, the parallelepiped P1/2(B̃)
is very ‘long and skinny,’ and so the Gaussian error vector e is very unlikely to
land in it, causing NearestPlane to produce an incorrect answer.

We address this issue by giving a generalized algorithm that admits a time/
success tradeoff. It works just as NearestPlane does, except that it can recurse
on some di ≥ 1 distinct planes in the ith level of the recursion. In essence, the
multiple recursion has the effect of making the parallelepiped P1/2(B̃) wider in
the direction of b̃i by a factor of exactly di.3 To capture the most probability
mass of the Gaussian error distribution of e, one should choose the multiples di

so as to maximize mini(di · ‖b̃i‖).4
The input to our NearestPlanes algorithm is a lattice basis B = {b1, . . . ,bk} ⊂

Rm, a vector d = (d1, . . . , dk) ∈ (Z+)k of positive integers, and a target point
t ∈ Rm. It outputs a set of

∏
i∈[k] di distinct lattice vectors in L(B), as follows:

1. If k = 0, return 0. Else, let v be the projection of t onto span(B).
2. Let c1, . . . , cdk

∈ Z be the dk distinct integers closest to 〈b̃k,v〉/〈b̃k, b̃k〉.
3. Return

⋃
i∈[dk]

(ci ·bk +NearestPlanes({b1, . . . ,bk−1}, (d1, . . . , dk−1),v−ci ·bk).

Note that the recursive calls to NearestPlanes can be run entirely in parallel. The
following lemma is an immediate extension of the analysis from [8].

3 The algorithm of Klein [19] also can recurse on more than one plane per iteration.
Klein’s algorithm solves the general bounded-distance decoding problem, and selects
the planes at each stage probabilistically (though it can also be derandomized); its
guarantee is related solely to the shortest Gram-Schmidt vector in the basis. Our
algorithm is tailored specifically to the setting where we know the distribution of
the offset vector; this allows the algorithm to recurse on exactly those planes that
maximize the probability of success (over the choice of the error vector).

4 One could further generalize the algorithm to search within an approximate ball
made up of ‘bricks’ that are copies of P1/2(B̃), thus capturing even more of the
Gaussian without adding much more to the search space. However, this would sig-
nificantly complicate the analysis, and we find that the present approach is already
very effective.
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Lemma 4. For t ∈ span(B), NearestPlanes(B,d, t) returns the set of all v ∈
L(B) such that t ∈ v + P1/2(B̃ ·D), where D = diag(d). The running time is
essentially

∏
i∈[k] di times as large as that of NearestPlane(B, t).

Note that the columns of B̃ ·D from the lemma statement are the orthogonal
vectors di · b̃i, so P1/2(B̃ ·D) is a rectangular parallelepiped with axis lengths
di · ‖b̃i‖.

Success probability of NearestPlanes. When t = v + e for some v ∈ L(B) and
a continuous Gaussian e ← Ds for some s > 0, the probability that v is in the
output set of NearestPlanes(B,d, t) is

m∏
i=1

Pr
[
|〈e, b̃i〉| < di · 〈b̃i, b̃i〉/2

]
=

m∏
i=1

erf

(
di · ‖b̃i‖

√
π

2s

)
, (5)

which follows by the independence of the values 〈e, b̃i〉, due to the orthogonal-
ity of the Gram-Schmidt vectors b̃i. When e is drawn from a sufficiently wide
discrete Gaussian over the integer lattice (in practice, a parameter of 6 or more
suffices), the above is an extremely close approximation to the true probability.

We conclude this section by giving an informal explanation for why the ad-
vantage of the decoding attack can potentially be much larger than that of
the distinguishing attack above, given vectors of the same quality. In the dis-
tinguishing attack, using a vector v of length (say) ‖v‖ ≈ 4q/s implies that
〈v, t〉 mod q is distributed roughly as D4q modulo q, whose statistical distance
is only about 2−72 from uniform. A basis B of Λ(At) of equivalent quality
has ‖b̃m‖ = q/‖v‖ = s/4, because Λ(At) lies in hyperplanes orthogonal to v
and separated by distance q/‖v‖. So even without using multiple recursion in
NearestPlanes (i.e., letting every dm = 1), the corresponding term in Equation (5)
is erf(

√
π/8) ≈ 0.25; moreover, the remaining terms typically approach 1 very

rapidly, since ‖b̃i‖ usually increases quickly as i decreases. Letting di > 1 in-
creases the overall success probability even more at little added cost, and allows
for obtaining a relatively large advantage without needing higher-quality basis
vectors.

5 Basis Reduction and Experiments

In this section we present an analysis of lattice basis reduction on random q-
ary lattices arising from LWE, and results of reduction experiments on various
parameters. Our goal is to predict a conservative, but still useful, lower bound
on the practical runtime of the lattice decoding attack described in Section 4 for
a given set of LWE parameters.

We found that the best practical lattice reduction algorithm currently avail-
able to us is the BKZ algorithm as implemented by Shoup in the NTL library [37],
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so this is what we used in our experiments. The BKZ algorithm is parameterized
by a blocksize k between 2 and the dimension of the lattice to be reduced. As
the blocksize increases, the reduced basis improves in quality (i.e., it contains
shorter lattice vectors, whose Gram-Schmidt lengths are closer together), but
the runtime of BKZ also rapidly increases, becoming practically infeasible for
k ≥ 30 or so.

There has been some recent progress in the development of algorithms for
finding short vectors in lattices, which can be used as subroutines to (or entire
replacements of) BKZ reduction. For example, Gama, Nguyen, and Regev [15]
recently proposed a new method called “Extreme Enum”, which is much faster
than its predecessor, the Schnorr-Euchner enumeration [36]. There are also single-
exponential time algorithms for the Shortest Vector Problem [5, 27, 26], which
can run faster in practice than Schnorr-Euchner enumeration in certain low di-
mensions; however, these algorithms also require exponential space. We were not
able to evaluate the performance and effectiveness of all these approaches, leaving
this for future work. The BKZ implementation we use employs Schnorr-Euchner
enumeration and, since the BKZ framework uses the enumeration subroutine
as a black box, we presume that new algorithms incorporating Extreme Enum
and other approaches will soon be available for evaluation. (For a comparison of
enumeration algorithms in practice, see the open SVP-challenge website.5)

In Section 5.1, we analyze the main properties of BKZ-reduced bases for q-
ary lattices that are relevant to our decoding attack. In Section 5.2, we use our
experiments to estimate the runtime required to obtain bases of a desired quality.
We point out that the rest of our analysis is independent of this estimate, and
can easily be applied with other runtime estimates for BKZ variants or other
approaches.

5.1 Basis Reduction for q-ary Lattices

We begin by reviewing some of the prior work on basis reduction, in particular
as applied to the q-ary lattices that arise from LWE.

The analysis of lattice reduction algorithms by Gama and Nguyen [14] identi-
fied the Hermite factor of the reduced basis as the dominant parameter in the
runtime of the reduction and the quality of the reduced basis. A basis B of an
m-dimensional lattice Λ has Hermite factor δm for δ ≥ 1 if ‖b1‖ = δm ·det(Λ)1/m.
For convenience, we call δ the root-Hermite factor.

Another important concept is the Geometric Series Assumption (GSA), in-
troduced by Schnorr [35]. The GSA says that in a BKZ-reduced basis B, the
lengths ‖b̃i‖ of the Gram-Schmidt vectors decay geometrically with i, namely,
‖b̃i‖ = ‖b1‖ · αi−1 for some 0 < α < 1. Our experiments on random q-ary lat-
tices adhere to the GSA very closely, with the exception that the Gram-Schmidt
lengths are always upper- and lower-bounded by q and 1 respectively, owing to
the special structure of q-ary lattices. (See the full version for details.)

5 http://www.latticechallenge.org/svp-challenge/

http://www.latticechallenge.org/svp-challenge/
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By combining the notion of Hermite factor with the GSA, we can predict the
lengths of all Gram-Schmidt vectors in a basis B (of an m-dimensional lattice
Λ) having root-Hermite factor δ. An easy calculation shows that under the GSA,

det(Λ) =
m∏

i=1

‖b̃i‖ = αm(m−1)/2 · δm2
· det(Λ) =⇒ α = δ−2m/(m−1) ≈ δ−2,

where the approximation holds for large m.
We now turn to q-ary lattices that arise from LWE. Recall that LWE is a

bounded-distance decoding problem on the m-dimensional lattice

Λ(At) = {z ∈ Zm : ∃ s ∈ Zn
q such that z = Ats mod q}

for some A ∈ Zn×m
q with m ≥ n. Because the LWE problem allows us to ignore

some of the rows of At (and the corresponding noisy inner products), a natural
and important question is what ‘subdimension’ m makes a lattice attack most
effective. This question was addressed in [25], where a simple calculation showed
that for a desired root-Hermite factor δ, the subdimensionm =

√
n lg(q)/ lg(δ) is

optimal in the context of the natural distinguishing attack on LWE (as described
at the beginning of Section 4). The analysis of [25] actually applies to the lattice

Λ⊥(A) = {x ∈ Zm : Ax = 0 mod q},

which is the dual of Λ(At) up to scaling by a q factor, and the optimal subdi-
mension m given above minimizes the length of d̃1 = d1 in a reduced basis D of
Λ⊥(A) having root-Hermite factor δ. In our setting, by duality the same choice
of m maximizes ‖b̃m‖ = q/‖d̃1‖, where the basis B of Λ(At) is the dual basis
of D in reverse order.

In our decoding attack (and assuming the GSA), the form of the success
probability given in Equation (5) as a product of erf(·) terms also strongly in-
dicates that we should maximize ‖b̃m‖, and hence use the same subdimension
m =
√
n lg(q)/ lg(δ) as above. We do not have a fully rigorous proof of this claim,

since using a smaller m decreases the number of terms in the product, and hence
could potentially increase the success probability. However, it seems unlikely
that using a smaller m would improve the success probability by much (if at all).
This is because ‖b̃m‖ = q/‖d1‖ decreases rapidly as m decreases (see [25]), and
‖b̃m−i‖ ≈ ‖b̃m‖ · δ2(i−1) is a very close approximation for small i, which are the
Gram-Schmidt vectors that largely determine the success probability. Likewise,
increasing m also appears counterproductive, since it both decreases ‖b̃m‖ and
increases the number of terms in the product.

All of the above assumes that a cryptosystem exposes enough LWE samples
(via its public keys and/or ciphertexts) to use the optimal subdimension. While
this is always true of prior cryptosystems [33, 30, 17], it is not necessarily the
case for our cryptosystem in Section 3, due to its smaller keys and ciphertexts.
In this case, the adversary should use the dimension m corresponding to the
actual number of published samples (this rule applies to some of our parameters
sets given in Section 6).
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5.2 Extrapolating BKZ Runtimes

In order to assign concrete runtimes to the attacks we put forward, we need to
predict the runtime required to achieve a given root-Hermite factor δ in random
q-ary lattices.

Gama and Nguyen [14] observed that on random lattices generated according
to a variety of models, the runtime required to achieve a given root-Hermite fac-
tor δ in large dimensions (exceeding 200 or so) is largely determined by δ alone;
the lattice dimension and determinant contribute only second-order terms. Our
initial experiments confirmed this behavior for random q-ary lattices, and so
we extrapolated runtimes using a fixed set of LWE parameters q and n, for a
variety of values δ that correspond to sufficiently large optimal subdimensions
m =
√
n lg(q)/ lg(δ) ≈ 200. Our experiments were performed on a single 2.3

GHz AMD Opteron machine, using the single-precision floating-point BKZ im-
plementation from the standard NTL library [37]. (Practical attacks on LWE for
parameters beyond toy examples would require using at least quadruple preci-
sion, which would increase the running times by at least some constant factor,
so our extrapolations are somewhat optimistic and hence conservative from a
security point of view.)

Figure 2 shows the results of our experiments and their extrapolations. Using
the rule of thumb that obtaining a 2k approximation to the shortest vector in
an m-dimensional lattice takes time 2Õ(m/k) using BKZ, we conclude that the
logarithm of the runtime should grow roughly linearly in 1/ lg(δ). Our limited
experiments seem consistent with this behavior, though many more would be
needed to confirm it with confidence. Using least-square regression, the best
linear fit to our data for tBKZ(δ) := lg(TBKZ(δ)), the log runtime (in seconds, on
our machine) of BKZ as a function of δ, is tBKZ(δ) = 1.806/ lg(δ)− 91. Since our
experiments were limited by resources and available time, and we expect to see
further improvements in basis reduction techniques (such as those in [15]), for
analyzing concrete hardness we use a conservative lower bound estimate of

tBKZ(δ) := lg(TBKZ(δ)) = 1.8/ lg(δ)− 110. (6)

Note that in this estimate, the 1.8 factor is very slightly smaller, and the −110
constant term is substantially smaller, than their counterparts in the best-fit
function from our experiments. We chose the value 1.8 because our experiments
were limited to relatively small block sizes, and the runtimes needed to achieve
smaller values of δ very quickly became infeasible, so we believe that the true
coefficient on the linear term (even with improved algorithms) is larger than 1.8.
Similarly, our choice of −110 provides for some security margin against special-
purpose hardware. In conclusion, we believe that our lower bound estimate pro-
vides some safety against foreseeable advances in algorithms and hardware, but
in any case, our analysis is entirely modular and can be immediately adapted to
work with any revised estimator.
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Fig. 2. Runtime of BKZ experiments on random q-ary lattices, with parameters n = 72,
q = 1021, and m =

√
n lg(q)/ lg(δ0), i.e., the optimal subdimension with respect to

a desired root-Hermite factor δ0. The vertical axis is tBKZ(δ) := lg(TBKZ(δ)), the loga-
rithmic runtime required to obtain a vector with root-Hermite factor δ when running
BKZ with successively increasing blocksizes. The horizontal axis is 1/ lg(δ) for the ac-
tual root-Hermite factor δ achieved by the reduction. For comparison, the graph shows
the best-fit estimator tBKZ(δ) = 1.086/ lg(δ) − 91, and our conservative lower bound
estimate tBKZ(δ) = 1.8/ lg(δ) − 110.

6 Cryptosystem Parameters

We now estimate the concrete security of, and compute the space requirements
for, the LWE-based cryptosystem from Section 3 on a variety of parameters,
and compare with the example parameters given in [25] for the cryptosystem
described therein (which is essentially due to [30]). Figure 3 provides the security
estimates, and Figure 4 gives key and ciphertext sizes.
Instantiating the parameters. We set the cryptosystem’s parameters as n1 =
n2 = n and sk = se = s for some positive integer n and s > 0, so that the
two LWE hardness assumptions made in Theorem 1 are equivalent. In practice,
though, distinguishing the public key and ciphertext from uniform are not equally
hard, because the public key exposes fewer LWE samples than the ciphertext does.
In particular, the adversary cannot use the optimal subdimension in attacking
the public key, making it quite a bit harder to break. This fact could allow us to
use slightly smaller sk and correspondingly larger se parameters to get slightly
stronger overall security, but we elect not to introduce such complications at
this point. (And arguably, the secret key ought to be better-protected than any
individual ciphertext.)

We choose the modulus q to be just large enough (according to the bounds in
Figure 1) to allow for a Gaussian parameter s ≥ 8, so that the discrete Gaussian
DZm,s approximates the continuous Gaussian Ds extremely well. Increasing the
value of q beyond this threshold appears not to increase the concrete security of
our cryptosystem, and (somewhat paradoxically) may even slightly decrease it!
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Adv. ε (Distinguish) (Decode)
n q s lg(ε) δ lg(secs) δ lg(#enum) lg(secs)

≈ 0 ∗1.0065 83 1.0089 47 32
128 2053 6.77 −32 1.0115 < 0 1.0116 13 < 0

(toy) −64 1.0128 < 0 1.0130 1 < 0

≈ 0 ∗1.0045 168 1.0067 87 78
192 4093 8.87 −32 1.0079 49 1.0083 54 42

(low) −64 1.0087 34 1.0091 44 29

≈ 0 ∗1.0034 258 ∗1.0052 131 132
256 4093 8.35 −32 1.0061 96 1.0063 87 90

(medium) −64 1.0067 77 1.0068 73 75

≈ 0 ∗1.0027 353 ∗1.0042 163 189
320 4093 8.00 −32 1.0049 146 1.0052 138 132

(high) −64 1.0054 122 1.0055 117 119

≈ 0 1.0038 219 1.0071 82 68
136 2003 13.01 −32 1.0088 33 1.0092 42 27

[25] −64 1.0098 18 1.0102 27 14

≈ 0 1.0053 126 1.0078 66 52
214 16381 7.37 −32 1.0091 28 1.0094 39 25

[25] −64 1.0099 17 1.0102 29 14

Fig. 3. Example parameters and attacks for the LWE-based cryptosystem described
in Section 3, for various adversarial advantages. The cryptosystem parameters are
n = n1 = n2, q, s = sk = se, and message length � = 128 bits. For comparison, the
last two parameter settings (n = 136, n = 214) come from the example parameters
of [25]. The columns labelled “Distinguish” refer to a distinguishing (i.e., semantic
security) attack. These give the root-Hermite factors δ needed to obtain the respective
distinguishing advantages (over the random choice of the LWE error vector), and the
corresponding logarithmic runtime (in seconds) according to our optimistic estimator
from Equation (6). The columns labelled “Decode” refer to our decoding (i.e., message
and randomness recovery) attack. These give example root-Hermite factors and number
of NearestPlanes enumerations needed to obtain the respective decoding probability,
and the corresponding estimated runtime of the attack. Other trade-offs between δ
and the number of enumerations are possible (as δ increases, so does #enum); we
chose the largest δ for which the estimated enumeration runtime does not exceed that
of basis reduction. ∗An asterisk on a value of δ indicates that for reduced vectors
of lengths required by the attack, the cryptosystem reveals too few LWE samples to
allow an optimal choice of subdimension and corresponding root-Hermite factor δ. In
such cases, we used the value of δ induced by working with the full dimension m =
n1 + n2 + � = 2n + 128.
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n q s Per-User Full Key Ciphertext Msg
Key (P) (P & Ā) (c) Expansion

128 2053 6.77 1.8 × 105 3.6 × 105 2.8 × 103 22.0
192 4093 8.87 2.9 × 105 7.4 × 105 3.8 × 103 30.0
256 4093 8.35 4.0 × 105 11.2 × 105 4.6 × 103 36.0
320 4093 8.00 4.9 × 105 17.2 × 105 5.4 × 103 42.0

136 2003 13.01 2.8 × 106 5.8 × 106 2.9 × 103 22.6
214 16381 7.37 2.4 × 106 6.4 × 106 4.8 × 103 18.7

Fig. 4. Sizes (in bits) of public keys and ciphertexts for the cryptosystem described in
Section 3; for comparison, the last two rows are for parameters given in [25]. In each
case, the message size is � = 128 bits. The “message expansion” factor is the ratio of
ciphertext size to plaintext size. Recall that in the ring-based system, the public key
sizes are about a factor of n smaller.

This is because the BKZ runtime depends almost entirely on the root-Hermite
factor δ, and by the constraints on our parameters (specifically, sk = se = s =
O(
√
q)), the δ yielding a successful attack on our system grows as qΘ(1/n), which

increases with q (albeit very slowly).
Security estimates and conclusions. We analyze the distinguishing attack and
our decoding attack (both described in Section 4), estimating the total runtimes
for each of a few representative adversarial advantages. The attacks apply to
a single key and ciphertext; by a standard hybrid argument, the advantage in-
creases at most linearly in the number of ciphertexts encrypted under a single
key. Our methodology for choosing the appropriate root-Hermite factor for each
attack follows from the discussion in Section 4; due to space restrictions, we leave
a complete description to the full version.

We highlight a few notable conclusions from our analysis:

1. The decoding attack is always at least as good as the distinguishing attack
for all reasonable advantages, and is vastly superior in the high-advantage
regime. As an extreme example, decoding is more than 2160 times faster
when obtaining a large advantage against the “high security” (n = 320) set.

2. For the “low security” (n = 192) set, our key sizes are about 10 times smaller
than those in [25], while offering somewhat better security, and the “high
security” parameters are approximately 4-5 times smaller. Note also that the
ring-based scheme has key sizes about a factor of n smaller again.

3. For the “medium security” (n = 256) set, the best runtime/advantage ratio
is approximately 2120 seconds, which translates on our machine to about 2150

operations. It seems reasonable to conclude that these parameters currently
offer security levels at least matching those of AES-128. While we elect not
to give precise “symmetric bit security” claims owing to the approximate
nature of our predicted runtimes, rough figures could be derived using the
heuristics of Lenstra and Verheul [20].
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{julien.devigne,marc.joye}@technicolor.com

Abstract. This paper describes the addition law for a new form for
elliptic curves over fields of characteristic 2. Specifically, it presents ex-
plicit formulæ for adding two different points and for doubling points.
The case of differential point addition (that is, point addition with a
known difference) is also addressed. Finally, this paper presents unified
point addition formulæ; i.e., point addition formulæ that can be used for
doublings. Applications to cryptographic implementations are discussed.

Keywords: Elliptic curves, Huff curves, binary fields, cryptography.

1 Introduction

Elliptic curve cryptography, introduced in the mid-eighties [10,15], is a technol-
ogy of choice for the implementation of secure systems. Its main advantage is
the absence of sub-exponential algorithms to solve the underlying hard problem,
the elliptic curve discrete logarithm problem (ECDLP). Elliptic curve cryptosys-
tems therefore feature smaller key sizes, which results in smaller memory and
processor requirements. They are especially well suited to memory-constrained
devices like smart cards.

Two types of finite fields are mainly used to implement elliptic curve cryp-
tosystems: large prime fields and fields of characteristic 2. This paper focuses
on the binary case. Further, to prevent the so-called MOV reduction [14], only
non-supersingular elliptic curves are considered.

An elliptic curve over a field K is a smooth projective algebraic curve of
genus 1 with a specified K-rational point. More explicitly, when K = F2m , a
(non-supersingular) elliptic curve can be written as the locus in the affine plane
of the Weierstraß equation

E/F2m : y2 + xy = x3 + a2x
2 + a6 (a6 �= 0)

together with the extra point at infinity O = (0 : 1 : 0). It is well known that
the points on an elliptic curve given by a Weierstraß equation over any field of
definition form a group under the ‘chord-and-tangent’ addition [19, Chapter III].
The identity element is O. The inverse of a point P0 = (x0, y0) ∈ E \ {O} is
given by −P0 = (x0, y0 + x0). Hence, (0,

√
a6) is a rational point of order 2.

(Remember that square roots always exist and are unique in characteristic two.)

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 340–355, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Now let P1 + P2 = P3 with Pi = (xi, yi) ∈ E \ {O} and P1 �= −P2. Then

x3 = λ2 + λ+ a2 + x1 + x2 and y3 = λ(x1 + x3) + x3 + y1

where ⎧⎪⎨⎪⎩
λ =

y1 + y2
x1 + x2

, if x1 �= x2

λ = x1 +
y1
x1
, if x1 = x2

.

There are other known models to represent elliptic curves (see e.g. [4,5]). Hav-
ing different models at one’s disposal is useful as this gives rise to a different
arithmetic, with different properties. An expected outcome is of course an im-
proved efficiency. This can be observed at different levels: speed, memory and
processor requirements, bandwidth, etc. Another possible benefit, which should
not be overlooked, is the ease of implementation. Of particular interest are the
unified and complete addition laws, which reduce the number of cases to han-
dle. Furthermore, this can help to prevent certain attacks, including those based
on side-channel analysis [11] or exceptional procedure attacks [8]. Yet another
application is batch computing [1].

We study in this paper a special model of elliptic curves known as Huff’s
model and generalizations thereof. More precisely, we detail the arithmetic on
an extension of Huff’s model to binary fields, as recently introduced in [9]. Almost
all formulæ required for implementing modern discrete-log based cryptographic
protocols with state-of-the-art scalar multiplication algorithms are considered:
addition, doubling, special cases of addition, unified point addition formulæ, all
in affine and projective versions, differential point addition. We also present a
generalized form of the curve that allows for more flexibility in choosing the
coefficients — in particular, every ordinary elliptic curve over F2m (m ≥ 4) is
birationally equivalent over F2m to a generalized binary Huff curve.

As a result, we obtain that (generalized) binary Huff curves can even perform
better than binary Edwards curves in some cases, with the only problem that the
unified formulæ do not really apply to all cases, and there are exceptional situ-
ations. Nevertheless, we show that one has complete (i.e., fully unified) addition
formulæ in certain proper subgroups, which can be used for most cryptographic
applications.

The rest of this paper is organized as follows. In the next section, we detail
the group law on binary Huff curves. In Section 3, we provide unified addition
formulæ for doubling and adding points. Section 4 presents differential point
addition formulæ. In Section 5, we propose a generalized model for binary Huff
curves. Finally, we conclude the paper in Section 6.

2 Binary Huff Curves

While studying a diophantine problem, Huff introduced a new model for elliptic
curves [7] (see also [18]). Huff’s model was recently revisited in [9]. The case of
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fields of odd characteristic is fully covered. For binary fields, an extended model
is also proposed but no details are provided. In this section, we fill the gap. In
particular, we specify the group law on binary Huff curves.

We start with the definition.

Definition 1 ([9]). A binary Huff curve is the set of projective points (X : Y :
Z) ∈ P2(F2m) satisfying the equation

E/F2m : aX(Y 2 + Y Z + Z2) = bY (X2 +XZ + Z2) , (1)

where a, b ∈ F∗
2m and a �= b.

There are three points at infinity satisfying the curve equation, namely (a : b : 0),
(1 : 0 : 0), and (0 : 1 : 0). The affine model corresponding to the binary Huff
curve given by Eq. (1) is

ax(y2 + y + 1) = by(x2 + x+ 1) .

As stated in [9, § 3.4], this curve is birationally equivalent to the Weierstraß
elliptic curve

v(v + (a+ b)u) = u(u+ a2)(u+ b2)

under the inverse maps

(x, y)←
(

b(u+a2)
v , a(u+b2)

v+(a+b)u

)
and (u, v)←

(
ab
xy ,

ab(axy+b)
x2y

)
. (2)

The set of points on a binary Huff curve forms a group. The identity element
is o = (0, 0). While the above maps are not line-preserving, the group law on
a binary Huff curve satisfies the chord-and-tangent rule. Let �P ,Q be the line
joining points P and Q. This line intersects the curve in a third point (counting
multiplicities) that we denote by P ∗Q. Let also �R,o be the line through R :=
P ∗Q and o. The addition of P and Q is defined as the third point of intersection
of �R,o with the curve, that is, P + Q = R ∗ o. The correctness follows by
observing that div(�R,o/�P ,Q) = (R ∗ o) + (R) + (o) − (R) − (P ) − (Q) ∼ 0,
which implies (P ) + (Q) ∼ (R ∗ o) + (o).

Point inverse. Identity element o is not an inflection point. The inverse of a
point P is therefore not defined as P ∗o. From the previous description, we have
that −P = P ∗A, where A =

(
b

a+b ,
a

a+b

)
is the third point of intersection of

the tangent line at o with the curve.
Another way to get the inverse is to use the birational equivalence with the

Weierstraß form. Let P = (x1, y1) ∈ E be a finite point. Then, whenever defined,
we so obtain −P = (x̄1, ȳ1) with

x̄1 =
y1(b + ax1y1)
a+ bx1y1

and ȳ1 =
x1(a+ bx1y1)
b+ ax1y1

. (3)

If a + bx1y1 = 0 (i.e., P =
(

a+b
b , a

a+b

)
) then −P = (1 : 0 : 0). If b + ax1y1 = 0

(i.e., P =
(

b
a+b ,

a+b
a

)
) then −P = (0 : 1 : 0).

For the points at infinity, we obtain −(a : b : 0) = (a : b : 0), −(1 : 0 : 0) =
(a+b

b , a
a+b ), and −(0 : 1 : 0) = ( b

a+b ,
a+b

a ). Observe that (a : b : 0) is of order 2.
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Point doubling. Here too, the birational equivalence could be used to derive
the doubling formula. The calculation, however, quickly becomes tricky. We in-
stead directly rely on the geometric interpretation of the addition law.

Let P = (x1, y1) ∈ E be a finite point. The third point of intersection of the
tangent line to the curve at P is S = P ∗ P . Then [2]P = S ∗ o. After some
algebra, whenever defined, we get [2]P = (x3, y3) with

x3 =
(a+ b)x1

2(1 + y1)2

b(1 + x1)2(1 + x1y1)2
and y3 =

(a+ b)y12(1 + x1)2

a(1 + y1)2(1 + x1y1)2
. (4)

If x1 = 1 then [2]P = (1 : 0 : 0). If y1 = 1 then [2]P = (0 : 1 : 0). If x1y1 = 1
(i.e., P = (ζ, ζ−1) with ζ2 + ζ + 1 = 0) then [2]P = (a : b : 0). (Note that (1, 1)
is not a point on E.)

Remark 1. Since a solution to ζ2 + ζ + 1 = 0 is a non-trivial cubic root of unity,
(ζ, ζ−1) is a rational point if and only the curve is defined over a binary extension
field of even degree (i.e., over F2m with m even). Note also that (ζ, ζ−1) is of
order 4.

For the points at infinity, we have [2](a : b : 0) = o (since (a : b : 0) is of order 2)
and [2](1 : 0 : 0) = [2](0 : 1 : 0) = A, where A =

(
b

a+b ,
a

a+b

)
. Indeed, we have

[2](1 : 0 : 0) = −[2]
(

a+b
b , a

a+b

)
= −
(

b3

a2(a+b) ,
a3

b2(a+b)

)
=
(

b
a+b ,

a
a+b

)
. This can also

be seen from div(�o,o/y) = 2(o)+(A)− (o)−2(T1) = (o)+(A)−2(T1) ∼ 0 and
so [2]T1 = A, where �o,o is the tangent line at o, A = o ∗ o and T1 = (1 : 0 : 0).
Similarly, for [2](0 : 1 : 0), the result follows from div(�o,o/x) = (o) + (A) −
2(T2) ∼ 0, where T2 = (0 : 1 : 0).

Dedicated point addition. Let P = (x1, y1) and Q = (x2, y2) ∈ E be two
finite points with P �= Q. As afore explained, the addition of P and Q is given
by P + Q = (P ∗Q) ∗ o. Then, whenever defined, we obtain P + Q = (x3, y3)
with

x3 =
(x1y1 + x2y2)(1 + y1y2)
(y1 + y2)(1 + x1x2y1y2)

and y3 =
(x1y1 + x2y2)(1 + x1x2)
(x1 + x2)(1 + x1x2y1y2)

. (5)

If x1 = x2 then P + Q = (0 : 1 : 0). If y1 = y2 then P + Q = (1 : 0 : 0).
Remark 2. When x1 = x2, we can assume that y1 �= 0 (as otherwise we would
have x1 = x2 = 0 and thus P = Q = o). We then have (x1, y1) +

(
x1,

1
y1

)
= (0 :

1 : 0). Similarly, for x1 �= 0, we have (x1, y1) +
( 1

x1
, y1) = (1 : 0 : 0).

Suppose now x1 �= x2 and y1 �= y2. If x1x2y1y2 = 1 and x1x2 = 1 then P + Q =
[2]P + (a : b : 0). If x1x2y1y2 = 1 and x1x2 �= 1 then P + Q = (a : b : 0).

When P = (x1, y1) is finite and Q is at infinity, whenever defined, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x1, y1) + (a : b : 0) =
(

1
x1
,

1
y1

)
(x1, y1) + (1 : 0 : 0) =

(
a+ bx1y1

y1(b+ ax1y1)
,
x1(a+ bx1y1)
b+ ax1y1

)
(x1, y1) + (0 : 1 : 0) =

(
y1(b+ ax1y1)
a+ bx1y1

,
b+ ax1y1

x1(a+ bx1y1)

) ,
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and similarly when P is at infinity and Q is finite. If x1 = 0 or y1 = 0 (i.e.,
P = o) then (x1, y1) + Q = Q. If a + bx1y1 = 0 (i.e., P =

(
a+b

b , a
a+b

)
) then

(x1, y1) + (0 : 1 : 0) = (a : b : 0). If b + ax1y1 = 0 (i.e., P =
(

b
a+b ,

a+b
a

)
) then

(x1, y1) + (1 : 0 : 0) = (a : b : 0).
We also have (a : b : 0) + (1 : 0 : 0) = (0 : 1 : 0), (a : b : 0) + (0 : 1 : 0) = (1 :

0 : 0), and (1 : 0 : 0) + (0 : 1 : 0) = (a+b
b , a+b

a ).
The correctness of the addition law for the exceptional cases (i.e., when the

addition formula is not defined) is easily verified. We start with the points at
infinity. As before, define A =

(
b

a+b ,
a

a+b

)
, T1 = (1 : 0 : 0), and T2 = (0 : 1 : 0).

Define also T0 = (a : b : 0). From div(x) = (o) + (T2)− (T0)− (T1) ∼ 0, we get
T2 = T0 + T1, that is, (a : b : 0) + (1 : 0 : 0) = (0 : 1 : 0). Since T0 is of order 2,
we also get T1 = T2 − T0 = T0 + T2, that is, (a : b : 0) + (0 : 1 : 0) = (1 : 0 : 0).
Letting �o,o the tangent line at o, since A = o ∗ o, we have div(�o,o) = 2(o) +
(A) − (T0) − (T1) − (T2) ∼ 0, which yields T1 + T2 = A− T0 = A + T0, that
is, (1 : 0 : 0) + (0 : 1 : 0) =

(
b

a+b ,
a

a+b

)
+ (a : b : 0) =

(
a+b

b , a+b
a

)
. The last

equality holds because for a finite point (x1, y1) �= o, we have (x1 : y1 : 1) + (a :
b : 0) = (y1 : x1 : x1y1), that is, (x1, y1) + (a : b : 0) =

( 1
x1
, 1

y1

)
. Furthermore,

for a finite point (x1, y1) �= o,
(

a+b
b , a

a+b

)
, the dedicated addition formula yields(

a+bx1y1
y1(b+ax1y1)

, x1(a+bx1y1)
b+ax1y1

)
− (1 : 0 : 0) =

(
a+bx1y1

y1(b+ax1y1)
, x1(a+bx1y1)

b+ax1y1

)
+
(

a+b
b , a

a+b

)
=

(x1, y1), that is, (x1, y1) + (1 : 0 : 0) =
(

a+bx1y1
y1(b+ax1y1)

, x1(a+bx1y1)
b+ax1y1

)
. The relation

(x1, y1) + (0 : 1 : 0), for a finite point (x1, y1) �= o,
(

b
a+b ,

a+b
a

)
, is obtained from

(x1, y1)+(a : b : 0)+(1 : 0 : 0) =
( 1

x1
, 1

y1

)
+(1 : 0 : 0) =

(y1(b+ax1y1)
a+bx1y1

, b+ax1y1
x1(a+bx1y1)

)
.

If (x1, y1) =
(

a+b
b , a

a+b

)
then (x1, y1) + (1 : 0 : 0) = (a : b : 0) since (x1, y1) =

−T2 = T0 − T1. If (x1, y1) =
(

b
a+b ,

a+b
a

)
then (x1, y1) + (0 : 1 : 0) = (a : b : 0)

since (x1, y1) = −T1 = T0 − T2.
The next cases consider finite points. Suppose that x1 = x2, that is, P =

(x1, y1) and Q = (x1, y2). We can write div((x − x1)/x) = (P ) + (Q) + (T2) −
(o)−2(T2) = (P )+(Q)−(T2)−(o) ∼ 0. Therefore, we get (x1, y1)+(x1, y2) = (0 :
1 : 0). The case y1 = y2 is similar by considering div((y−y1)/y). Lastly, suppose
that P = (x1, y1) and Q = (x2, y2) with x1 �= x2 and y1 �= y2. If x1x2y1y2 = 1
and x1x2 = 1 then y1y2 = 1; we thus have P = (x1, y1) and Q =

( 1
x1
, 1

y1

)
. (Note

that x1x2 = 1 implies P �= o.) As already shown, we then have Q =
( 1

x1
, 1

y1

)
=

(x1, y1)+(a : b : 0). We so obtain P +Q = (x1, y1)+
( 1

x1
, 1

y1

)
= [2]P +(a : b : 0). If

x1x2y1y2 = 1 and x1x2 �= 1 then y1y2 �= 1 and also x1y1 �= x2y2. Indeed, x1y1 =
x2y2 and x1x2y1y2 = 1 would imply x1y1 = x2y2 = 1, that is, P =

(
x1,

1
x1

)
and

Q =
(
x2,

1
x2

)
. This in turn would imply x1 = ζ and x2 = ζ−1 (since P �= Q) and

so x1x2 = 1, a contradiction. Consequently, if x1x2y1y2 = 1 and x1x2 �= 1, the
result follows since then (x1, y1) + (x2, y2) =

(
(x1y1 + x2y2)(1 + y1y2)(x1 + x2) :

(x1y1 + x2y2)(1 + x1x2)(y1 + y2) : 0
)

= (a : b : 0), provided that x1 �= x2
and y1 �= y2.

Projective formulæ. We now present the projective version of the addi-
tion formulæ. It is useful to introduce some notation. When analyzing the
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performance, we will let M and D respectively denote the cost of a multipli-
cation and of a multiplication by a constant, in F2m . The cost of additions and
squarings in F2m will be neglected.

For the point doubling (Eq. (4)) of P = (X1 : Y1 : Z1), we get⎧⎪⎨⎪⎩
X3 = α ·X1

2Z1
2(Y1 + Z1)4

Y3 = β · Y1
2Z1

2(X1 + Z1)4

Z3 = (X1Y1 + Z1
2)2(X1 + Z1)2(Y1 + Z1)2

,

where α = a+b
b and β = a+b

a . In more detail, this can be evaluated as

m1 = X1Y1 + Z1
2, m2 = X1Z1, m3 = Y1Z1,

X3 = α · [m2(Y1 + Z1)2]2, Y3 = β · [m3(X1 + Z1)2]2,

Z3 = [m1(m1 +m2 +m3)]2,

that is, with 6M+ 2D (here 2D represents the cost of the two multiplications by
constants α and β).

For the dedicated point addition (Eq. (5)) of P = (X1 : Y1 : Z1) and Q =
(X2 : Y2 : Z2), we get⎧⎪⎨⎪⎩

X3 = (X1Y1Z2
2 +X2Y2Z1

2)(Y1Y2 + Z1Z2)(X1Z2 +X2Z1)
Y3 = (X1Y1Z2

2 +X2Y2Z1
2)(X1X2 + Z1Z2)(Y1Z2 + Y2Z1)

Z3 = (X1Z2 +X2Z1)(Y1Z2 + Y2Z1)(X1X2Y1Y2 + Z1
2Z2

2)
.

This can be evaluated with 15M as

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2) +m1 +m3, m5 = (Y1 + Z1)(Y2 + Z2) +m2 +m3,

m6 = m4(m2 +m3), m7 = m5(m1 +m3), m8 = m1m2 +m3
2,

m9 = m8 + (X1Y1 + Z1
2)(X2Y2 + Z2

2),
X3 = m6m9, Y3 = m7m9, Z3 = m4m5m8 .

The cost can be reduced to 14M with extended coordinates (Xi, Yi, Zi, Ti) where
Ti = XiYi (i = 1, 2, 3):

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2) +m1 +m3, m5 = (Y1 + Z1)(Y2 + Z2) +m2 +m3,

m6 = m4(m2 +m3), m7 = m5(m1 +m3), m8 = m1m2 +m3
2,

m9 = m8 + (T1 + Z1
2)(T2 + Z2

2),
X3 = m6m9, Y3 = m7m9, Z3 = m4m5m8, T3 = X3Y3 .

3 Unified Point Addition

The formulæ presented in the previous section for evaluating P + Q distinguish
two cases: P = Q (doubling) and P �= Q (dedicated addition). In this section,
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we develop addition formulæ that can be used in both cases. The corresponding
operation is referred to as unified point addition.

The starting point is our formula for the dedicated point addition. Let P =
(x1, y1) and Q = (x2, y2) ∈ E be two finite points, with P �= Q. Equation (5)
says that, whenever defined, P + Q = (x3, y3) where

x3 =
(x1y1 + x2y2)(1 + y1y2)
(y1 + y2)(1 + x1x2y1y2)

and y3 =
(x1y1 + x2y2)(1 + x1x2)
(x1 + x2)(1 + x1x2y1y2)

.

The point addition is defined up to the curve equation. Using the additional
relations axi(yi

2 + yi + 1) = byi(xi
2 + xi + 1), i ∈ {1, 2}, we get after a lengthy

and tedious calculation:⎧⎪⎪⎨⎪⎪⎩
x3 =

b(x1 + x2)(1 + x1x2y1y2) + (a+ b)x1x2(1 + y1y2)
b(1 + x1x2)(1 + x1x2y1y2)

y3 =
a(y1 + y2)(1 + x1x2y1y2) + (a+ b)y1y2(1 + x1x2)

a(1 + y1y2)(1 + x1x2y1y2)

. (6)

The following Sage script [21] verifies that the two formulations for x3 are equiv-
alent. The equivalence for y3 follows by symmetry.

R.<a,b,x1,y1,x2,y2>=GF(2)[]
S=R.quotient([
a*x1*(y1^2+y1+1)+b*y1*(x1^2+x1+1),
a*x2*(y2^2+y2+1)+b*y2*(x2^2+x2+1)

])
verif = b*(x1*y1+x2*y2)*(1+x1*x2)*(1+y1*y2)+

(y1+y2)*((a+b)*x1*x2*(1+y1*y2)+b*(x1+x2)*(1+x1*x2*y1*y2))
0 == S(verif)

Remarkably, this new expression works for doubling a point P = (x1, y1). Indeed,
if we replace (x2, y2) with (x1, y1) in Eq. (6), we obtain

x3 =
(a+ b)x1

2(1 + y1
2)

b(1 + x1
2)(1 + x1

2y12)
and y3 =

(a+ b)y12(1 + x1
2)

a(1 + y12)(1 + x1
2y12)

,

namely, our previous doubling formula (Eq. (4)).
The unified addition law given by Eq. (6) is defined when the denomina-

tors b(1 + x1x2)(1 + x1x2y1y2) and a(1 + y1y2)(1 + x1x2y1y2) are non-zero. If
x1x2y1y2 = 1, x1x2 �= 1 and y1y2 �= 1 then P + Q = (a : b : 0). If x1x2 = 1 or
y1y2 = 1 — namely, P = (x1, y1) (�= o) and Q ∈

{( 1
x1
, y1
)
,
(
x1,

1
y1

)
,
( 1

x1
, 1

y1

)}
,

then

P + Q =

⎧⎪⎨⎪⎩
(1 : 0 : 0) if x1x2 = 1 and y1 = y2

(0 : 1 : 0) if y1y2 = 1 and x1 = x2( b(1+x1
2)(1+x1

2y1
2)

(a+b)x12(1+y12) , a(1+y1
2)(1+x1

2y1
2)

(a+b)y12(1+x12)

)
otherwise

.
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Proof. Observe that since Q = (x2, y2) belongs to the curve so do
( 1

x2
, y2
)
,(

x2,
1
y2

)
, and
( 1

x2
, 1

y2

)
. Suppose first that x1x2 = 1 ⇐⇒ x2 = 1

x1
. Now using

the fact that (x1, y1) and
( 1

x1
, y2
)

are on the curve implies that (y1 + y2)(y1 +
y2 + 1) = (y1 + y2)

(
y1 + 1 + 1

y1

)
⇐⇒ (y1 + y2)( 1

y1
+ y2) = 0. This means that

(x2, y2) ∈
{( 1

x1
, y1
)
,
( 1

x1
, 1

y1

)}
.

Analogously, it can be shown that y1y2 = 1 implies (x1 + x2)
( 1

x1
+ x2
)

= 0,
that is, (x2, y2) ∈

{(
x1,

1
y1

)
,
( 1

x1
, 1

y1

)}
. ��

The cases where the points P and/or Q are at infinity are detailed in the previous
section.

To sum up, noting that the case P = (x1, y1) and Q ∈
{( 1

x1
, y1
)
,
(
x1,

1
y1

)
,( 1

x1
, 1

y1

)}
corresponds to P +Q = (1 : 0 : 0), P +Q = (0 : 1 : 0) or Q = P +(a :

b : 0), we see that the exceptional cases always involve the points at infinity.
This leads to the following result.

Proposition 1. Let E be a binary Huff curve over F2m and let G ⊂ E(F2m)
be a subgroup such that (a : b : 0), (1 : 0 : 0), (0 : 1 : 0) /∈ G. Then the unified
addition formula given by Eq. (6) is complete. ��

In particular, the addition formula is complete in a subgroup of odd order,
provided that (1 : 0 : 0) and (0 : 1 : 0) are both of even order.

Projective version. Here we give the projective version of Eq. (6). For P =
(X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2), we get P + Q = (X3 : Y3 : Z3) with⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X3 = (Z1Z2 + Y1Y2)
(
(X1Z2 +X2Z1)(Z1

2Z2
2 +X1X2Y1Y2) +

αX1X2Z1Z2(Z1Z2 + Y1Y2)
)

Y3 = (Z1Z2 +X1X2)
(
(Y1Z2 + Y2Z1)(Z1

2Z2
2 +X1X2Y1Y2) +

βY1Y2Z1Z2(Z1Z2 +X1X2)
)

Z3 = (Z1Z2 +X1X2)(Z1Z2 + Y1Y2)(Z1
2Z2

2 +X1X2Y1Y2)

(7)

where α = a+b
b and β = a+b

a . This can be evaluated as

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2) +m1 +m3, m5 = (Y1 + Z1)(Y2 + Z2) +m2 +m3

m6 = m1m3, m7 = m2m3, m8 = m1m2 +m3
2,

m9 = m6(m2 +m3)2, m10 = m7(m1 +m3)2,
m11 = m8(m2 +m3), m12 = m8(m1 +m3),

X3 = m4m11 + α ·m9, Y3 = m5m12 + β ·m10, Z3 = m11(m1 +m3),

that is, with 15M + 2D (again 2D represents the cost of the two multiplications
by constants α and β).
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More formulæ. There are other unified addition formulæ similar to Eq. (6).
For instance, whenever defined, we also have⎧⎪⎪⎨⎪⎪⎩

x3 =
(1 + y1y2)

(
b(x1 + x2) + x1x2(a+ b+ ay1 + ay2)

)
b(1 + x1x2)(1 + x1x2y1y2)

y3 =
(1 + x1x2)

(
a(y1 + y2) + y1y2(a+ b+ bx1 + bx2)

)
a(1 + y1y2)(1 + x1x2y1y2)

.

Alternate unified formulæ can be obtained by selecting another neutral ele-
ment. This results in translating the group law. For instance, defining o′ = (a :
b : 0) as the neutral element yields, whenever defined, the following unified point
addition formula:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3 =
b(1 + x1x2)(1 + x1x2y1y2)

b(x1 + x2)(1 + x1x2y1y2) + (a+ b)x1x2(1 + y1y2)

=
b(1 + x1x2)2(1 + x1x2y1y2)y1y2[

b(x1 + x2)(1 + x1x2y1y2) + (a+ b)x1x2(1 + y1y2)
]
(1 + x1x2)y1y2

y3 =
a(1 + y1y2)(1 + x1x2y1y2)

a(y1 + y2)(1 + x1x2y1y2) + (a+ b)y1y2(1 + x1x2)

=
a(1 + y1y2)2(1 + x1x2y1y2)x1x2[

b(x1 + x2)(1 + x1x2y1y2) + (a+ b)x1x2(1 + y1y2)
]
(1 + x1x2)y1y2

.

Advantageously, the corresponding projective version can be evaluated with
13M + 2D as

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2, m4 = m1m2,

m5 = m2m3, m6 = (X1 + Z1)(X2 + Z2) +m1 +m3

X3 = (m1 +m3)(m4 +m5)(m3
2 +m4), Y3 = ρm1(m2 +m3)2(m3

2 +m4),

Z3 = (m4 +m5)
[
(αm1(m3

2 +m5) +m6(m4 +m3
2)
]
,

where α = a+b
b and ρ = a

b .

4 Differential Point Addition

The so-called Montgomery representation was developed in [16] in order to speed
up the implementation of the elliptic curve factoring method (ECM) [12]. It
was subsequently adapted to (ordinary) Weierstraß elliptic curves over binary
fields in [13,20] (see also [6]). The idea stems from the observation that the
x-coordinate of the sum of two points can be evaluated from two x-coordinates
of the input points and the x-coordinate of their difference. More generally, a
differential point addition consists in calculating w(P + Q) from w(P ), w(Q)
and w(Q − P ), for a certain coordinate function w. When such an operation
is available, the value of w([k]P ) can be efficiently computed from the binary
expansion of scalar k, k =

∑�−1
i=0 ki 2i with ki ∈ {0, 1} and k�−1 = 1. Defining

κj =
∑�−1

i=j ki 2i, Pj = [κj ]P , and Qj = Pj + P , we have(
w(P�−1), w(Q�−1)

)
=
(
w(P ), w(P + P )

)
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and (
w(Pj), w(Qj)

)
=

{(
w(Pj+1 + Pj+1), w(Pj+1 + Qj+1)

)
if kj = 0(

w(Pj+1 + Qj+1), w(Qj+1 + Qj+1)
)

if kj = 1
,

for j = �− 2, . . . , 0. Remarking that κ0 = k, the value of w([k]P ) is obtained at
the end of the recursion as w(P0).

As shown in Section 2, the inverse of a point P = (x1, y1) on a binary Huff
curve is given by −P = (x̄1, ȳ1) with x̄1 = y1(b+ax1y1)

a+bx1y1
and ȳ1 = x1(a+bx1y1)

b+ax1y1
. A

natural choice for coordinate function w : P → w(P ) is therefore to define it as
the product of the x- and y-coordinates, or as a function thereof. Doing so, we
see that w(P ) = w(−P ).

Specifically, for a finite point P = (x1, y1), we define w(P ) = x1y1. For
the points at infinity, we define w(1 : 0 : 0) = a

b , w(0 : 1 : 0) = b
a , and

w(a : b : 0) = “∞” = (1 : 0). Hence, for the differential doubling, we immediately
obtain from Eq. (4),

w([2]P ) =
γ · w1

2

(1 + w1)4
with γ = (a+b)2

ab , (8)

and where w1 = w(P ), provided that w1 �= 1. If w1 = 1 then w([2]P ) = (1 : 0).
Let Q be a second point, different from P . We let w1, w2, and w̄ denote the

w-coordinate of P , Q, and Q−P , respectively. In principle, it could be possible
to derive the formula for the differential addition from Eq. (5). A much simpler
way is to rely on the connection between our choice of the w-coordinate and the
birational map with the Weierstraß equation; cf. Eq. (2).

Montgomery representation comes in two flavors: additive method and mul-
tiplicative method. From the additive formula in [13, Lemma 1] (slightly gener-
alized), whenever defined, we get

w(P + Q) =
w̄ · (w1 + w2)2

(w1 + w2)2 + (γw̄) · w1w2
with γ = (a+b)2

ab .

An application of the multiplicative formula in [20, § 3.2] yields after simplifica-
tion

w(P + Q) =
(w1 + w2)2

w̄ · (1 + w1w2)2
, (9)

provided that w1w2 �= 1. (Note that w̄ �= 0 since P �= Q.) The case w1w2 = 1
corresponds to the case x1x2y1y2 = 1; see Section 2. If w1w2 = 1 then w(P +
Q) = (1 : 0).

Projective version. To have projective formulæ, we represent the w-coordinate
of a point P by the pair (W : Z) = (θ w(P ) : θ) if P �= (a : b : 0), and
(W : Z) = (θ : 0) if P = (a : b : 0), for some non-zero θ ∈ F2m . Letting
wi = (Wi : Zi) for i = 1, 2, and w̄ = (W̄ : Z̄), we obtain from Eqs (8) and (9){

W ([2]P ) = γ · (W1Z1)2

Z([2]P ) = (W1 + Z1)4
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and {
W (P + Q) = Z̄(W1Z2 +W2Z1)2

Z(P + Q) = W̄ (W1W2 + Z1Z2)2
.

The differential point doubling requires 1M + 1D (where D is the cost of a mul-
tiplication by γ) and, by computing W1Z2 + W2Z1 as (W1 + Z1)(W2 + Z2) +
(W1W2 + Z1Z2), the differential point addition requires 5M. The cost of the
differential point addition reduces to 4M when Z̄ = 1. Using the above scalar
multiplication algorithm, the computation of w([k]P ) can therefore be evaluated
with 5M + 1D per bit of scalar k. Furthermore, we note that over a binary field
of even extension (i.e., over F2m with m even), selecting the ratio a/b = ζ (with
ζ2 + ζ + 1 = 0) leads to γ = 1 and so reduces the cost of the differential point
doubling to 1M.

5 Generalized Binary Huff Curves

The transformations given by Eq. (2) show how to express any binary Huff curve
as a Weierstraß curve. The reverse direction is however not always possible. Not
all ordinary elliptic curves over F2m can be expressed in the Huff form as defined
by Eq. (1). Worse, none of the NIST-recommended curves [17] can be written in
this model. In this section, we generalize the definition of binary Huff curves to
cover all isomorphism classes of ordinary curves over F2m , for m ≥ 4.

In [9, Section 3], Huff’s model is generalized to axP(y) = byP(x) for some
monic polynomial P ∈ F2m [t], of degree 2, with non-zero discriminant, and such
that P(0) �= 0. Binary Huff curves correspond to the choice P(t) = t2 + t + 1.
We consider below a more general polynomial, namely, P(t) = t2 + ft+ 1 with
f �= 0.

Definition 2. A generalized binary Huff curve is the locus in P2(F2m) of the
equation

aX(Y 2 + fY Z + Z2) = bY (X2 + fXZ + Z2) , (10)

where a, b, f ∈ F∗
2m and a �= b.

Remark 3. There are other suitable generalizations of binary Huff curves, like
P(t) = t2 + t+ e with e �= 0. We selected P(t) = t2 + ft+ 1 since the arithmetic
looked slightly simpler. Note also that polynomial P(t) = t2 + ft + e (with
e, f �= 0) is not more general since the change of variables (x, y)← (

√
e x̄,
√
e ȳ)

transforms the equation ax(y2 +fy+e) = by(x2 +fx+e) into ax̄(ȳ2+f ′ȳ+1) =
bȳ(x̄2 + f ′x̄+ 1) where f ′ = f/

√
e.

The affine model of Eq. (10) is ax(y2+fy+1) = by(x2+fx+1). It is birationally
equivalent to the Weierstraß elliptic curve

v(v + (a+ b)fu) = u(u+ a2)(u + b2)

under the inverse maps

(x, y)←
(

b(u+a2)
v , a(u+b2)

v+(a+b)fu

)
and (u, v)←

(
ab
xy ,

ab(axy+b)
x2y

)
.
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The points at infinity are (a : b : 0), (1 : 0 : 0) and (0 : 1 : 0). Point A,
namely the point of intersection of the tangent line at o with the curve, becomes
A =
(

bf
a+b ,

af
a+b

)
.

Before stating the universality of the generalized model, we summarize some
elementary results on binary fields that are needed to understand the proof.
We let Tr denote the trace function defined as the linear function given by Tr :
F2m → F2, θ →

∑m−1
j=0 θ2

j

. We recall that the quadratic equation x2+Ax+B = 0
with A �= 0 has a solution in F2m if and only if Tr(B/A2) = 0. If x0 is a solution
then the other solution is x0 +A. Finally, it is easy to see that Tr(A2) = Tr(A)
for A ∈ F2m .

Proposition 2. Letm ≥ 4. Each ordinary elliptic curve over F2m is birationally
equivalent over F2m to a generalized binary Huff curve.

Proof. Each ordinary elliptic curve over F2m is isomorphic to v2 + uv = u3 +
a2u

2 + a6 for some a2, a6 ∈ F2m , a6 �= 0. Further, from [19, Proposition 3.1(b)
and Table 1.2], the Weierstraß curves v2 + uv = u3 + a2u

2 + a6 and v(v +
(a + b)fu) = u(u + a2)(u + b2) are isomorphic under the admissible change of
variables (u, v) ← (μ2u, μ3(v + su +

√
a6)) with μ = (a + b)f if and only if the

curve parameters satisfy

s2 + s+ a2 + f−2 = 0 and (a+ b)4f4√a6 = a2b2

for some s. The equation s2 + s + a2 + f−2 = 0 has a solution s ∈ F2m if
and only if Tr(a2 + f−2) = 0 ⇐⇒ Tr(f−1) = Tr(a2). Dividing the second
equation by b4 and letting t = a2

b2 yields t2 + 1
f4√a6

t + 1 = 0, which has a
solution t ∈ F2m if and only if Tr(f8a6) = Tr(f 8

√
a6) = 0. Consequently, given

an ordinary binary elliptic curve v2 + uv = u3 + a2u
2 + a6, one can obtain an

isomorphic curve v(v+ (a+ b)fu) = u(u+ a2)(u+ b2) — and so the birationally
equivalent generalized binary Huff curve ax(y2 + fy + 1) = by(x2 + fx + 1),
by choosing parameter f such that Tr(f−1) = Tr(a2) and Tr(f 8

√
a6) = 0, and

parameters a and b such that a2

b2 is a solution to t2 + 1
f4√a6

t+ 1 = 0.
It remains to show that such an f always exists. The proof proceeds analo-

gously to the one offered in [2, Theorem 4.3]. Fix a2 ∈ F2m and a6 ∈ F∗
2m . For

each δ, ε ∈ F2, define

Dδ,ε = {f ∈ F∗
2m : Tr(f−1) = δ,Tr(f 8

√
a6) = ε} .

We have to show that the set DTr(a2),0 is non-empty.
We have #D0,0 + #D1,0 = 2m−1− 1. Indeed, as f runs through F∗

2m , so does
f 8
√
a6. Hence, #D0,0 +#D1,0 is the number of f ∈ F∗

2m with Tr(f) = 0. We also
have #D1,0 +#D1,1 = 2m−1. Indeed, for the same reason, #D1,0 +#D1,1 is the
number of f ∈ F∗

2m with Tr(f) = 1.
We compute #D0,0 + #D1,1, which is equal to the number of f ∈ F∗

2m with
Tr(f−1 + f 8

√
a6) = 0. For each f with Tr(f−1 + f 8

√
a6) = 0, there are exactly
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two choices of x ∈ F2m such that x2 + x+ f−1 + f 8
√
a6 = 0 ⇐⇒ f2x2 + f2x =

f+f3 8
√
a6, producing two points (f, fx) on the elliptic curve v2+uv = 8

√
a6u

3+u.
Hasse’s theorem says that this curve has 2m + 1 + τ points for some integer τ in
the interval [−2

√
2m, 2

√
2m]. Since all points of this curve but (0, 0) and the point

at infinity appear as (f, fx), it follows that #D0,0 + #D1,1 = 2m−1 + (τ − 1)/2.
Finally, we have 4#D1,0 = 2(#D0,0 + #D1,0) + 2(#D1,0 +D1,1) − 2(#D0,0 +
#D1,1) = 2m − (τ + 1) and 4#D0,0 = 4(2m−1 − 1) − 4#D1,0 = 2m + (τ − 3).
Since τ ∈ [−2

√
2m, 2

√
2m], this implies #D1,0 ≥ 2m−2

√
2m−1

4 and #D0,0 ≥
2m−2

√
2m−3

4 . The result now follows by remarking that 2m − 2
√

2m − 1 > 2m −
2
√

2m− 3 > 0 for m ≥ 4. This is true since (
√

2m− 1)2 ≥ (
√

24− 1)2 > 4, which
yields 2m − 2

√
2m + 1 > 4 ⇐⇒ 2m − 2

√
2m − 3 > 0. ��

The arithmetic on generalized binary Huff curves is easily derived from the
formulæ given in Section 2. Let E† be a generalized binary Huff curve as per
Eq. (10). Let also P = (x1, y1) and Q = (x2, y2) ∈ E† be two finite points.
The formula given by Eq. (3) remains valid for computing the inverse of P . An
alternate expression for −P = (x̄1, ȳ1) is, whenever defined,

x̄1 =
y1(α̂x1 + 1)

β̂y1 + 1
and ȳ1 =

x1(β̂y1 + 1)
α̂x1 + 1

. (11)

where α̂ = a+b
bf and β̂ = a+b

af . The exceptional points of Eq. (11) are P =(
a+b
bf ,

af
a+b

)
, P =
(

bf
a+b ,

af
a+b

)
, P =
(

bf
a+b ,

a+b
af

)
, and P =

(
a+b
bf ,

a+b
af

)
, the inverses

of which are −P = (1 : 0 : 0), −P =
( bf(a+b+af)2

(a+b)(a+b+bf)2 ,
af(a+b+bf)2

(a+b)(a+b+af)2
)
, −P = (0 :

1 : 0), and −P =
( (a+b)(a+b+bf)2

bf(a+b+af)2 , (a+b)(a+b+af)2

af(a+b+bf)2
)
, respectively.

The doubling formula (Eq. (4)) becomes [2]P = (x3, y3) with

x3 =
f(a+ b)x1

2(1 + y1)2

b(1 + x1)2(1 + x1y1)2
and y3 =

f(a+ b)y12(1 + x1)2

a(1 + y1)2(1 + x1y1)2
. (12)

The exceptional cases are handled in the same way as in Section 2. We note that
the condition x1y1 = 1 is only possible when Tr(f−1) = 0.

The formula for dedicated point addition (Eq. (5)) is unchanged. For the
unified point addition, we get, whenever defined, P + Q = (x3, y3) with⎧⎪⎪⎨⎪⎪⎩

x3 =
b(x1 + x2)(1 + x1x2y1y2) + f(a+ b)x1x2(1 + y1y2)

b(1 + x1x2)(1 + x1x2y1y2)

y3 =
a(y1 + y2)(1 + x1x2y1y2) + f(a+ b)y1y2(1 + x1x2)

a(1 + y1y2)(1 + x1x2y1y2)

. (13)

The exceptional cases are the same as for the (regular) binary Huff curves. In
particular, Proposition 1 remains valid for generalized binary Huff curves: unified
addition is complete in any subgroup that does not contain the points at infinity.
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Furthermore, the performance is unchanged. This is easily seen by comparing
the generalized formulæ of this section with the previous ones (i.e., for f =
1). The cost of a point doubling, dedicated point addition, and unified point
addition is of 6M+2D, 15M (or 14M with extended coordinates), and 15M+2D,
respectively. This is better than with binary Edwards curves [5] but, contrary
to Edwards’ form, unified addition is guaranteed to be complete only in certain
proper subgroups.

To sum up, the generalized model presented in this section can be used to
represent any ordinary elliptic curve over a finite field of characteristic two; this
includes all NIST-recommended curves. It offers a competitive arithmetic leading
to efficient implementations. Further, they can be made secure against certain
side-channel attacks [11] for cryptographic applications. When the operations
of point addition and point doubling make use of different formulæ, they may
produce different power traces revealing the secret value of scalar k in the com-
putation of Q = [k]P . There are basically three known approaches to circumvent
the leakage: (i) unifying the addition formulæ, (ii) inserting dummy operations,
and (iii) using regular scalar multiplication algorithms [3, Chapter V]. We note
that with the second approach the resulting implementations become vulnerable
to safe-error attacks [22]. The so-called Montgomery ladder [16] is an example of
a regular scalar multiplication algorithm (third approach). It can be used with
the differential point addition formulæ given in Section 4. Given their connection
with those of the Weierstraß model, the so-obtained, Huff-based, implementa-
tions are equally efficient as the fastest implementations of the Montgomery
ladder. But the main advantage of (generalized) Huff curves is that they are
equipped with unified point addition formulæ: the same formulæ can be used
for doubling or adding points, as required by the first approach against side-
channel leakage. The formulæ are even complete — in a subgroup that does not
contain the points at infinity. Very few models are known to feature a com-
plete addition law. The Edwards model, as introduced by Bernstein et al. in [2],
has a such addition law and without any restriction. But this comes at a price:
18M+7D (or 21M+4D) are needed for the complete addition of two points on a
binary Edwards curve. Therefore, whenever applicable, the (generalized) binary
Huff model should be preferred since it offers faster complete addition formulæ.
Other cryptographic applications of complete addition law include protection
against exceptional procedure attacks [8] and batch computing [1].

6 Conclusion

This paper studied in detail the addition law for a new model for elliptic curves.
While much attention has been paid to elliptic curves over fields of large charac-
teristic, fewer models are known for elliptic curves over binary fields. Our results
add the Huff model to the cryptographer’s toolbox for the implementation of
elliptic curve cryptography in characteristic two. Its distinct arithmetic features
may offer an interesting alternative in a number of applications.
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Abstract. Algebraic cryptanalysis usually requires to find solutions of
several similar polynomial systems. A standard tool to solve this problem
consists of computing the Gröbner bases of the corresponding ideals,
and Faugère’s F4 and F5 are two well-known algorithms for this task.
In this paper, we adapt the “Gröbner trace” method of Traverso to the
context of F4. The resulting variant is a heuristic algorithm, well suited
to algebraic attacks of cryptosystems since it is designed to compute with
high probability Gröbner bases of a set of polynomial systems having the
same shape. It is faster than F4 as it avoids all reductions to zero, but
preserves its simplicity and its efficiency, thus competing with F5.

Keywords: Gröbner basis, Gröbner trace, F4, F5, multivariate cryp-
tography, algebraic cryptanalysis.

1 Introduction

The goal of algebraic cryptanalysis is to break cryptosystems by using math-
ematical tools coming from symbolic computation and modern algebra. More
precisely, an algebraic attack can be decomposed in two steps: first the cryp-
tosystem and its specifics have to be converted into a set of multivariate polyno-
mial equations, then the solutions of the obtained polynomial system have to be
computed. The security of a cryptographic primitive thus strongly relies on the
difficulty of solving the associated polynomial system. These attacks have been
proven to be very efficient for both public key or symmetric cryptosystems and
stream ciphers (see [2] for a thorough introduction to the subject).

In this article, we focus on the polynomial system solving part. It is well
known that this problem is very difficult (NP-hard in general). However, for
many instances coming from algebraic attacks, the resolution is easier than in
the worst-case scenario. Gröbner bases, first introduced in [6], are a fundamental
tool for tackling this problem. Historically, one can distinguish two families of
Gröbner basis computation algorithms: the first one consists of developments of
Buchberger’s original algorithm [8,14,15,19], while the second can be traced back
to the theory of elimination and resultants and relies on Gaussian elimination of
Macaulay matrices [10,24,25,26]. Which algorithm to use depends on the shape
and properties of the cryptosystem and its underlying polynomial system (base
field, degrees of the polynomials, number of variables, symmetries...).

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 356–375, 2011.
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Faugère’s F4 algorithm [14] combines ideas from both families. It is proba-
bly the most efficient installation of Buchberger’s original algorithm, and uses
Gaussian elimination to speed up the time-consuming step of “critical pair”
reductions. It set new records in Gröbner basis computation when it was pub-
lished a decade ago, and its implementation in Magma [5] is still considered as a
major reference today. However, F4 shares the main drawback of Buchberger’s
algorithm: it spends a lot of time computing useless reductions. This issue was
addressed by Faugère’s next algorithm, F5 [15], which first rose to fame with
the cryptanalysis of the HFE Challenge [16]. Since then, it has been successfully
used to break several other cryptosystems (e.g. [4,17]), increasing considerably
the popularity of algebraic attacks. It is often considered as the most efficient al-
gorithm for computing Gröbner bases over finite fields and its performances are
for the main part attributable to the use of an elaborate criterion. Indeed, the
F5 criterion allows to skip much more unnecessary critical pairs than the classi-
cal Buchberger’s criteria [7]; actually it eliminates a priori all reductions to zero
under the mild assumption that the system forms a semi-regular sequence [3].
Nevertheless, this comes at the price of degraded performances in the reduction
step: during the course of the F5 algorithm, many reductions are forbidden for
“signature” compatibility conditions, giving rise to polynomials that are either
redundant (not “top-reduced” [13]), or whose tails are left almost unreduced.

In many instances of algebraic attacks, one has to compute Gröbner bases for
numerous polynomial systems that have the same shape, and whose coefficients
are either random or depend on a relatively small number of parameters. In this
context, one should use specifically-devised algorithms that take this information
into account. A first idea would be to compute a parametric or comprehensive
Gröbner basis [30]; its specializations yield the Gröbner bases of all the ideals
in a parametric polynomial system. However, for the instances arising in crypt-
analysis, the computational cost of a comprehensive Gröbner basis is prohibitive.
Another method was proposed by Traverso in the context of modular computa-
tions of rational Gröbner bases [29]: by storing the trace of an initial execution
of the Buchberger algorithm, one can greatly increase the speed of almost all
subsequent computations. Surprisingly, it seems that this approach was never
applied to cryptanalysis until now.

We present in this paper how a similar method allows to avoid all reductions
to zero in the F4 algorithm after an initial precomputation. A list of relevant
critical pairs is extracted from a first F4 execution, and is used for all follow-
ing computations; the precomputation overhead is largely compensated by the
efficiency of the F4 reduction step, yielding theoretically better performances
than F5. This algorithm is by nature probabilistic: the precomputed list is in
general not valid for all the subsequent systems. One of the main contribution
of this article is to give a complete analysis of this F4 variant and to estimate
its probability of failure, which is usually very small.

The paper is organized as follows. After recalling the basic structure of
Buchberger-type algorithms, we explain in section 2 how to adapt it to the



358 A. Joux and V. Vitse

context of several systems of the same shape. The detailed pseudo-code of our
variant of F4, which consists of the two routines F4Precomp and F4Remake for
the first precomputation and the subsequent iterations respectively, is given in
the appendix. In section 3, we recall the mathematical frame for the otherwise
imprecise notion of “similar looking systems” and derive probability estimates
for the correctness of our algorithm, depending on the type of the system and
the size of the base field. We also compare the complexities of our variant and
of F5, and explain when it is better to use our algorithm. The last section is
devoted to applications: the first example comes from the index calculus method
of [20] and is a typical case where our algorithm outperforms F4 and F5. We
then show how it fits into the hybrid approach of [4] and consider the example
of the cryptanalysis of the UOV signature scheme [22]. The next example is
provided by the Kipnis-Shamir attack on the MinRank problem: we compare
our results to those of [17]. Finally, we evaluate the performances of our F4
variant on the classical Katsura benchmarks. We would like to mention that the
Gröbner trace method has already been applied to Faugère’s algorithms for the
decoding of binary cyclic codes [1]; however, the analysis therein was limited to
this very specific case, and no implementation details nor probability estimates
were given. This idea was then independently rediscovered in [20], where it was
applied to the discrete log problem on elliptic curves.

2 The F4 Variant

2.1 Description of the Algorithm

We begin with the standard characterization of Gröbner bases. The notations
LM and LT stand for the leading monomial and the leading term of a polynomial
and ∨ denotes the least common multiple of two monomials.

Theorem 1 ([8]). A family G = {g1, . . . , gs} in K[X1, . . . , Xn] is a Gröbner
basis if and only if for all 1 ≤ i < j ≤ s, the remainder of S(gi, gj) on division
by G is zero, where S(gi, gj) is the S-polynomial of gi and gj:

S(gi, gj) =
LM(gi) ∨ LM(gj)

LT (gi)
gi −

LM(gi) ∨ LM(gj)
LT (gj)

gj

It is straightforward to adapt this result into the Buchberger’s algorithm [8],
which outputs a Gröbner basis of an ideal I = 〈f1, . . . , fr〉: one computes it-
eratively the remainder by G of every possible S-polynomial and appends this
remainder to G whenever it is different from zero. In the following, we will
rather work with critical pairs instead of S-polynomials: the critical pair of
two polynomials f1 and f2 is defined as the tuple (lcm, u1, f1, u2, f2) where
lcm = LM(f1) ∨ LM(f2) and ui = lcm

LM(fi)
.

The reduction of critical pairs is by far the biggest time-consuming part of the
Buchberger’s algorithm. The main idea of Faugère’s F4 algorithm is to use linear
algebra to simultaneously reduce a large number of pairs. At each iteration step,
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a Macaulay-style matrix is constructed, whose columns correspond to monomials
and rows to polynomials. This matrix contains the products (uifi) coming from
the selected critical pairs (classically, all pairs with the lowest total degree lcm,
but other selection strategies are possible) and also all polynomials involved
in their reductions, which are determined during the preprocessing phase. By
computing the reduced row echelon form of this matrix, we obtain the reduced
S-polynomials of all pairs considered. This algorithm, combined with an efficient
implementation of linear algebra, yields very good results.

As mentioned in the introduction, F4 has the drawback of computing many
useless reductions to zero, even when the classical criteria of Buchberger [7]
are taken into account. But when one has to compute several Gröbner bases of
similar polynomial systems, it is possible to avoid, in most cases, all reductions
to zero by means of a precomputation on the first system.

Here is the outline of our F4 variant:

1. For precomputation purposes, run a standard F4 algorithm on the first sys-
tem, with the following modifications:
– At each iteration, store the list of all polynomial multiples (ui, fi) coming

from the critical pairs.
– During the row echelon computing phase, reductions to zero correspond

to linear dependency relations between the rows of the matrix; for each
such relation, remove a multiple (ui, fi) from the stored list (some care
must be taken in the choice of the multiple, see the appendix for details).

2. For each subsequent system, run a F4 computation with these modifications:
– Do not maintain nor update a queue of untreated pairs.
– At each iteration, instead of selecting pairs from the queue, pick directly

from the previously stored list all the relevant multiples (ui, fi).

We give in the appendix the detailed pseudo-code of the F4Precomp algorithm
which performs the precomputation, and of the F4Remake algorithm which is
used for the subsequent systems.

2.2 Additional Features

For the sake of concision, the pseudo-code of F4Remake given in the appendix
does not contain a test of the correctness of the computation, except for the
basic verification of line 9. More checks could be easily included: for instance,
it is possible to store during the precomputation the leading monomials of the
generators created at each step, and check in F4Remake if the new generators
have the correct LM . In case of a failed computation, proper error handling
would be recommended, e.g. by resuming the computation with the standard
F4. At the end of the execution, a last check would be to verify whether the
result (which is always a basis of the ideal) is indeed a Gröbner basis. This
can be quite expensive, but is usually unnecessary: indeed, the output is al-
ways correct if the sets of leading monomials of the bases returned by F4Remake
and F4Precomp coincide, assuming that the precomputation behaved generically
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(see section 3). Anyway, when the ideal is zero-dimensional with a small degree
(as is often the case in the context of algebraic attacks), a verification is almost
immediate.

It is also possible to store during precomputation all the relevant polynomial
multiples appearing in the matrices M , instead of only those arising from the
critical pairs. This increases greatly the size of F4Precomp’s output, but allows
to skip the preprocessing phase in F4Remake. However, the gain provided by this
optimization is relatively minor, since the cost of the preprocessing is usually
small compared to the computation of the reduced row echelon form. A different
approach is outlined in [1]: instead of recording the information about relevant
polynomials in a file, the precomputation directly outputs a program (in the C
language) containing the instructions for the subsequent computations. Clearly,
this code generating technique is much more complicated, but should be faster
even when the compilation time of the output program is taken into account.

3 Analysis of the Algorithm and Complexity

3.1 Similar Systems

Our algorithm is designed to be applied on many systems of the “same shape”.
If {f1, . . . , fr} and {f ′1, . . . , f ′r} are two similarly-looking polynomial systems,
we want to estimate the probability that our algorithm computes the Gröbner
basis of the second system, the precomputation having been done with the first
system. This requires some more precise definitions.

Definition 2. A generic polynomial F of degree d in n variables X1, . . . , Xn is
a polynomial with coefficients in K[{Yi1,...,in}i1+...+in≤d] of the form

F =
∑

Yi1,...,inX
i1
1 . . . X in

n .

A generic polynomial is thus a polynomial in which each coefficient is a distinct
variable. Such polynomials are interesting to study because a system of random
polynomials f1, . . . , fr (i.e. such that each coefficient is random) of total degree
d1, . . . , dr respectively, is expected to behave like the corresponding system of
generic polynomials.

Let F1, . . . , Fr be a system of generic polynomials. If we consider Fi as an
element of K(Y )[X ], we can compute the Gröbner basis of this system with the
F4 algorithm, at least theoretically (in practice, the rational fraction coefficients
will likely become extremely large). Now let f1, . . . , fr be a random system with
deg(fi) = deg(Fi). We say that f1, . . . , fr behaves generically if we encounter
the same number of iterations as with F1, . . . , Fr during the computation of its
Gröbner basis using F4, and if the same number of new polynomials with the
same leading monomials are generated at each step of the algorithm.

We will now translate this condition algebraically. Assume that the system
f1, . . . , fr behaves generically until the (i− 1)-th step; this implies in particular
that the critical pairs involved at step i for both systems are similar, in the
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following sense: (lcm, u1, p1, u2, p2) is similar to (lcm′, u′1, p
′
1, u

′
2, p

′
2) if LM(p1) =

LM(p′1) and LM(p2) = LM(p′2) (so that ui = u′i and lcm = lcm′). Let Mg be
the matrix of polynomial multiples constructed by F4 at step i for the generic
system, andM be the one for f1, . . . , fr. It is possible that after the preprocessing
M is smaller than Mg, but for the purpose of our discussion, we may assume
that the missing polynomial multiples are added to M ; the corresponding rows
will have no effect whatsoever later in the algorithm. Thus the k-th rows of M
and Mg, seen as polynomials, have identical leading monomial; we note s the
number of distinct leading monomials in M (or Mg). Remark that the matrices
constructed by F4 are usually almost upper triangular, so that s is close to the
number of rows. If we compute the reduced row echelon form of Mg, up to a
well-chosen permutation of columns we obtain the following matrix M̃g where
r = �+ s is the rank of Mg. Using the same transformations on M with adapted
coefficients, we obtain a matrix M̃ where B is a matrix with � columns.

M̃g =
Is 0 Ag,1

0 I� Ag,2
0 0 0

M̃ =
Is B1

0 B B2

Then the system f1, . . . , fr behaves generically at step i if and only if this matrix
B has full column rank. Finally, the condition for generic behavior is that at
each step, the corresponding matrix B has full column rank. Heuristically, since
the system is random, we will assume that these matrices B are random. This
hypothesis will allow us to give estimates for the probability that a system
behaves generically, using the following easy lemma:

Lemma 3. Let M = (mij) ∈ Mn,�(Fq), n ≥ �, be a random matrix, i.e. such
that the coefficients mij are chosen randomly, independently and uniformly in
Fq. Then M has full rank with probability

∏n
i=n−�+1(1 − q−i). This probability

is greater than the limit

c(q) =
∞∏

i=1

(1− q−i) = 1− 1/q + O
q→∞

(1/q2).

Since a system behaves generically if and only if all the matrices B have full
rank, we obtain the probability that our F4 variant works successfully:

Theorem 4. The algorithm F4Remake outputs a Gröbner basis of a random
system f1, . . . , fr ∈ Fq[X] with a probability that is heuristically greater than
c(q)nstep , assuming that the precomputation has been done with F4Precomp in
nstep steps, for a system f0

1 , . . . , f
0
r ∈ Fq[X ] that behaves generically.

This estimate is relevant as soon as the distribution of the matrices B is suffi-
ciently close to the uniform one and the correlation between the steps is small
enough.
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For a system of generic polynomials, it is known that the number of steps
nstep during the execution of F4 (for a degree-graded monomial order) is at
most equal to the degree of regularity dreg of the homogenized system, which
is smaller than the Macaulay bound

∑r
i=1(degFi − 1) + 1 [24]; this bound is

sharp when the system is underdetermined. Since c(q) converges to 1 when q
goes to infinity, for a fixed degree of regularity the probability of success of our
algorithm will be very close to 1 when the base field Fq is sufficiently large.

In practice, it is rather uncommon to deal with completely random polyno-
mials. For many applications, the involved polynomial systems actually depend
on some random parameters, hence a more general framework is the following:

Definition 5. Let V be an algebraic variety in K� and F1, . . . , Fr be polynomials
in K(V )[X], where K(V ) is the function field of V . We call the image of the map
V → K[X]r, y → (F1(y), . . . , Fr(y)) a parametric family (or family for short)
of systems. We call the system (F1, . . . , Fr) the generic parametric system of the
family.

A system of generic polynomials is of course a special case of a generic parametric
system. As above, the F4Remake algorithm will give correct results for systems
f1, . . . , fr in a family that behave like its associated generic parametric system.
The probability for this is difficult to estimate since it obviously depends on the
family considered, but is usually better than for systems of generic polynomials.
An important class of examples is when the highest degree homogeneous part of
the Fi has coefficients in K (instead of K(V )). Then all systems of this parametric
family behave generically until the first fall of degree occurs. As a consequence,
the probability of success of our algorithm can be quite good even when the base
field is relatively small, see section 4.2 for an example.

3.2 Change of Characteristic

Another application of our algorithm is the computation of Gröbner bases of
“random” polynomial systems over a large field, using a precomputation done
over a small finite field. Even for a single system f1, . . . , fr in Fp[X], it is some-
times more advantageous to precompute the Gröbner basis of a system f ′1, . . . , f

′
r

with deg fi = deg f ′i in Fp′ [X] for a small prime p′, and then use F4Remake on
the initial system, than to directly compute the Gröbner basis with F4. The esti-
mated probabilities derived in section 3.1 do not directly apply to this situation,
but a similar analysis can be done.

We recall that for every prime number p, there exists a well-defined reduction
map Q[X]→ Fp[X ], which sends a polynomial P to P̄ = cP mod p, where c ∈ Q
is such that cP belongs to Z[X ] and is primitive (i.e. the gcd of its coefficients
is one). Let I = 〈f1, . . . , fr〉 be an ideal of Q[X], and let Ī = 〈f̄1, . . . , f̄r〉 be the
corresponding ideal in Fp[X ]; we note {g1, . . . , gs} the minimal reduced Gröbner
basis of I. According to [12], we say that p is a “lucky” prime if {ḡ1, . . . , ḡs} is the
minimal reduced Gröbner basis of Ī, and “unlucky” otherwise. There is a weaker,
more useful notion (adapted from [27]) of “F4 (or weak) unlucky prime”: a prime
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number p is called so if the computation of the Gröbner bases of I and Ī with F4
differs. By doing the same analysis as in section 3.1, we can show that p is weakly
unlucky if and only if one of the above-defined matrices B is not of full rank.
As before, these matrices can heuristically be considered as random and thus
we obtain that the probability that a prime p is not weakly unlucky, is bounded
from below by c(p)nstep . So, if we want to compute the Gröbner basis of a system
f1, . . . , fr ∈ Fp[X ] where p is a large prime, we can lift this system to Q[X] and
then reduce it to f ′1, . . . , f ′r ∈ Fp′ [X] where p′ is a small prime number. Then
we execute F4Precomp on the latter system and use the precomputation on the
initial system with F4Remake. This will produce the correct result if p and p′ are
not weakly unlucky, thus p′, while small enough so that the precomputation takes
the least time possible, must be large enough so that the probability c(p′)nstep

is sufficiently close to 1. In practice, this last approach should be used whenever
possible. If one has to compute several Gröbner bases over a large field Fq of
systems of the same parametric family, the precomputation should not be done
over Fq, but rather over a smaller field. We will adopt this strategy in almost all
the applications presented in section 4.

3.3 Precomputation Correctness

The output of F4Precomp is correct if the first system behaves generically; we
have seen that this occurs with a good probability c(q)nstep . We will now consider
what can happen when the precomputation is not correct, and how to detect
it. We can, at least theoretically, run F4Remake on the generic system; following
Traverso’s analysis [29] two cases are then possible:

1. This would produce an error. Then F4Remake will fail for most subsequent
systems, so this situation can be easily detected after very few executions (the
probability of no detection is very low: rough estimates have been given in
[29] for the different characteristic case). More precisely, as soon as an error
occurs with F4Remake, one has to determine whether the precomputation
was incorrect or the current system does not behave generically. This can
be done by looking at the course of the algorithm: if at some step F4Remake
computes more new generators than F4Precomp, or generators with higher
leading monomials, then clearly it is the precomputation which is incorrect.

2. The computation would succeed but the resulting output is not a Gröbner ba-
sis. This situation, while unlikely, is more difficult to detect: one has to check
that the outputs of F4Remake on the first executions are indeed Gröbner
bases. If there is a system for which this is not true, then the precomputa-
tion is incorrect.

Alternatively, one can run F4Precomp on several systems and check that the
outputs coincide. If it is not the case, one should obviously select the most
common output; the probability that a majority of precomputations is similarly
incorrect is extremely low. Of course, if c(q)nstep is sufficiently close to 1, then
the probability of an incorrect precomputation is low enough not to have to
worry about these considerations.
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3.4 Complexity

Generally, it is difficult to obtain good estimates for the complexity of Gröbner
basis computation algorithms, especially of those based on Buchberger’s
approach. However, we can give a broad upper bound of the complexity of
F4Remake, by observing that it can be reduced to the computation of the row
echelon form of a D-Macaulay matrix of the homogenized system, whose use-
less rows would have been removed. In the case of generic systems, D is equal
to the degree of regularity dreg of the homogenized system. Thus we have an
upper-bound for the complexity of our algorithm:

Proposition 6. The number of field operations performed by F4Remake on a
system of random polynomials over K[X1, . . . , Xn] is bounded by

O

((
dreg + n

n

)ω)
where dreg is the degree of regularity of the homogenized system and ω is the
constant of matrix multiplication.

Since there is no reduction to zero as well with F5 (under the assumption that the
system is semi-regular), the same reasoning applies and gives the same upper-
bound, cf [3]. However, we emphasize that these estimates are not really sharp
and do not reflect the difference in performances between the two algorithms.
Indeed, F4Remake has two main advantages over F5: the polynomials it generates
are fully reduced, and it avoids the incremental structure of F5. More precisely,
the F5 criterion relies on the use of a signature or label for each polynomial,
and we have already mentioned in the introduction that signature compatibility
conditions prohibit some reductions; therefore, the polynomials generated by
F5 are not completely reduced, or are even redundant [13]. This incurs either
more costly reductions later in the algorithm or a larger number of critical pairs.
Secondly, the incremental nature of F5 implies that the information provided by
the last system polynomials cannot be used to speed up the first stages of the
computation.

Thus, our F4 variant should be used preferentially as soon as several Gröbner
bases have to be computed and the base field is large enough for this family of
systems. Nevertheless, the F5 algorithm remains irreplaceable when the Gröbner
basis of only one system has to be computed, when the base field is too small
(in particular over F2) or when the systems are so large that a precomputation
would not be realisable.

4 Applications

In all applications, the variant F4Remake is compared with an implementa-
tion of F4 which uses the same primitives and structures (in language C), and
also with the proprietary software Magma (V2.15-15) whose implementation is
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probably the best publicly available for the considered finite fields. Unless oth-
erwise specified, all tests are performed on a 2.6 GHz Intel Core 2 Duo processor
and times are given in seconds.

4.1 Index Calculus

An index calculus method has been recently proposed in [11,18] for the resolution
of discrete logarithm on E(Fqn) where E is an elliptic curve defined over a small
degree extension field. In order to find “relations”, they make use of Semaev’s
idea [28] which allows to convert the relation search into the resolution of a
multivariate polynomial system. A variation of this approach is given in [20],
where relations with a slightly different form are considered: it has the advantage
of leading to overdetermined systems and is thus faster in practical cases. We
focus on the resolution of the polynomial systems arising from this last attack in
the special case of E(Fp5) where p is a prime number. The polynomial systems
in this example fit into the framework of parametric families: the coefficients
polynomially depend on the x-coordinate of a random point R ∈ E(Fp5) (and
also of the equation of the curve E). Our algorithm is particularly relevant for
this example because of the large number of relations to collect, leading to an
average of 4!p2 systems to solve. Moreover, p is large in all applications so the
probability of success of our F4 variant is extremely good.

The systems to solve are composed of 5 equations defined over Fp of total
degree 8 in 4 variables. Degrevlex Gröbner bases of the corresponding ideals over
several prime fields of size 8, 16, 25 and 32 bits are computed. The probabilities
of failure are estimated under the assumption that the systems are random, and
knowing that the computation takes 29 steps.

size of p est. failure probability F4Precomp F4Remake F4 F4/F4Remake F4 Magma

8 bits 0.11 8.963 2.844 5.903 2.1 9.660

16 bits 4.4 × 10−4 (19.07) 3.990 9.758 2.4 9.870

25 bits 2.4 × 10−6 (32.98) 4.942 16.77 3.4 118.8

32 bits 5.8 × 10−9 (44.33) 8.444 24.56 2.9 1046

Step degree F4Remake matrix size F4 matrix size size ratio

14 17 1062 × 3072 1597 × 3207 1.6

15 16 1048 × 2798 1853 × 2999 1.9

16 15 992 × 2462 2001 × 2711 2.2

17 14 903 × 2093 2019 × 2369 2.5

18 13 794 × 1720 1930 × 2000 2.8

Fig. 1. Experimental results on E(Fp5)
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As explained in section 3.2, it is sufficient to execute the precomputation on
the smaller field to get a list of polynomial multiples that works for the other
cases; the timings of F4Precomp over the fields of size 16, 25 and 32 bits are
thus just indicative. The above figures show that the precomputation overhead
is largely compensated as soon as there are more than two subsequent compu-
tations. Note that it would have been hazardous to execute F4Precomp on a
smaller field as the probability of failure increases rapidly. It is mentioned in
[20] that the systems have also been solved with a personal implementation of
F5, and that the size of the Gröbner basis it computes at the last step before
minimization is surprisingly large (17249 labeled polynomials against no more
than 2789 polynomials for both versions of F4). As a consequence, the timings
of F5 obtained for these systems are much worse than those of F4 or its variants.
This shows clearly that on this example, it is much more efficient to apply our
algorithm rather than F5.

4.2 Hybrid Approach

The hybrid approach proposed in [4] relies on a trade-off between exhaustive
search and Gröbner basis computation. The basic idea is that when one wants to
find a solution of a given system f1, . . . , fr ∈ K[X1, . . . , Xn], it is sometimes faster
to try to guess a small number of variables X1, . . . , Xk. For each possible k-tuple
(x1, . . . , xk), one computes the Gröbner basis of the corresponding specialized
system f1(x1, . . . , xk), . . . , fr(x1, . . . , xk) ∈ K[Xk+1, . . . , Xn] until a solution is
found; the advantage is that the specialized systems are much simpler to solve
than the initial one.

The hybrid approach is thus a typical case when many systems of the same
shape have to be solved and fits perfectly into the framework of parametric fam-
ilies we have described in section 3.1. However, this method is most useful when
the search space is reasonably small, which implies in particular that the size of
the base field cannot be too large, so one should be wary of the probability of
success before applying our F4 variant to this context. Note that, when the right
guess is made for the k-tuple (x1, . . . , xk), the corresponding specialized system
does not have a generic behaviour. As soon as this is detected by F4Remake (see
section 2.2), the computation can be continued with e.g. standard F4.

As an example, we consider the cryptanalysis of the Unbalanced Oil and
Vinegar system (UOV, [22]), described in [4]. Briefly, the attack can be reduced
to the resolution of a system of n quadratic equations in n variables over a
finite field K; for the recommended set of parameters, n = 16 and K = F16.
Although the base field is quite small, our F4 variant has rather good results in
this cryptanalysis: this is due to the fact that the quadratic part of the evaluated
polynomials fi(x1, . . . , xk) ∈ K[Xk+1, . . . , Xn] does not depend on the values of
the specialized variablesX1, . . . , Xk, and hence all the systems behave generically
until the first fall of degree.

For instance, for k = 3 the computation with F4 takes 6 steps, and no fall
of degree occurs before the penultimate step, so a heuristic estimation of the
probability of success is c(16)2 ) 0.87. To check this estimate we have performed
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an exhaustive exploration of the search space F3
16 using F4Remake. The measured

probability of success depends of the actual system and varies around 90%, which
shows that our estimate is satisfying.

The timings obtained during this experiment confirm that our variant pro-
vides a non-negligible speed-up. In particular, our timings are better (after a
precomputation of 32.3 sec) than the 9.41 sec of F5 given in [4]; of course, this
comparison is not really meaningful since the implementation of finite field arith-
metic and linear algebra cannot be compared and since different (but similar)
computers have been used.

F4Remake F4 F4 Magma F4/F4Remake

Timing (sec) 5.04 16.77 120.6 3.3

Largest matrix 5913 × 7005 10022 × 8329 10245 × 8552 2.0

Fig. 2. Experimental results on UOV with 3 specialized variables

4.3 MinRank

We briefly recall the MinRank problem: given m+1 matrices M0,M1, . . . ,Mm ∈
Mn(K) and a positive integer r, is there a m-tuple (α1, . . . , αm) ∈ Km such that

Rank

(
m∑

i=1

αiMi −M0

)
≤ r.

We focus on the challenge A proposed in [9]: K = F65521;m = 10;n = 6; r = 3.
The Kipnis-Shamir’s attack converts instances of the MinRank problem into
quadratic multivariate polynomial systems [23]. For the set of parameters from
challenge A, we thus have to solve systems of 18 quadratic equations in 20
variables, and since they are underdetermined, we can specialize two variables
without loss of generality. These systems can be solve either directly or with the
hybrid approach [17]; in the first case, our F4 variant will be relevant only if one
wants to break several different instances of the MinRank problem.

Experiments with F4 and our variant show that, either for the full systems
or the systems with one specialized variable, the matrices involved at different
steps are quite large (up to 39138× 22968) and relatively sparse (less than 5%
non-zero entries). With both types of systems, a lot of reductions to zero occurs;
for example, we have observed that for the full system at the 8th step, 17442
critical pairs among 17739 reduce to zero. This makes it clear that the classic
F4 algorithm is not well suited for these specific systems.

It is difficult to compare our timings with those given in [17] using F5: be-
sides the fact that the experiments were executed on different computers, the
linear algebra used in Faugère’s FGb implementation of F5 (whose source code
is not public) seems to be highly optimized, even more so than in Magma’s
implementation of F4. On this point, our own implementation is clearly not
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competitive: for example, at the 7th step for the full system, Magma’s F4 reduces
a 26723×20223 matrix in 28.95 sec, whereas at the same step our implementation
reduces a slightly smaller matrix of size 25918×19392 in 81.52 sec. Despite these
limitations, we have obtained timings comparable with those of [17], listed in the
table below. This means that with a more elaborate implementation of linear
algebra, our F4 variant would probably be the most efficient for these systems.

F5 F4Remake F4 F4 Magma

full system 30.0 27.87 320.2 116.6

1 specialized variable 1.85 2.605 9.654 3.560

Fig. 3. Experimental results on MinRank

Computations were executed on a Xeon bi-processor 3.2 GHz for F5. The results of
F4Remake have been obtained after a precomputation over F257 of 4682 sec for the full
system and 113 sec for the system with one variable specialized.

4.4 Katsura Benchmarks

To illustrate the approach presented in section 3.2, we have applied our algo-
rithm to the computation of the Gröbner bases of the Katsura11 and Katsura12
systems [21], over two prime fields of size 16 and 32 bits. As already explained,
the idea is to run a precomputation on a small prime field before executing
F4Remake over a large field (actually, for Katsura12 the first prime p = 251 we
chose was weakly unlucky). The timings show that for both systems, the speed
gain on 32 bits compensates the precomputation overhead, contrarily to the 16
bits case.

8 bits 16 bits 32 bits

Precomputation F4Remake F4 F4 Magma F4Remake F4 F4 Magma

Katsura11 27.83 9.050 31.83 19.00 15.50 60.93 84.1

Katsura12 202.5 52.66 215.4 143.3 111.4 578.8 > 5h

Fig. 4. Experimental results on Katsura11 and Katsura12

As a side note, we observed that surprisingly, the matrices created by F4
are quite smaller in our version than in Magma (e.g. 15393 × 19368 versus
20162 × 24137 at step 12 of Katsura12); of course, both version still find the
same new polynomials at each step. This phenomenon was already present in
the previous systems, but not in such a proportion. This seems to indicate that
our implementation of the Simplify subroutine is much more efficient.
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Step degree F4Remake matrix size F4 matrix size size ratio

9 10 14846 × 18928 18913 × 20124 1.4

10 11 15141 × 19235 17469 × 19923 1.2

11 12 8249 × 12344 16044 × 19556 3.1

12 13 2225 × 6320 15393 × 19368 21.2

13 14 − 15229 × 19313 −

(At the 13th step, F4 finds no new generator so this step is skipped by F4Remake)

Fig. 5. Sizes of the matrices involved in the last steps of Katsura12

5 Conclusion

We have presented in this article a variant of the F4 algorithm that provides a
very efficient probabilistic method for computing Gröbner bases; it is especially
designed for the case where many similar polynomial systems have to be solved.
We have given a precise analysis of this context, estimated the probability of
success, and evaluated both theoretically and experimentally the performances
of our algorithm, showing that it is well adapted for algebraic attacks on cryp-
tosystems.

Since Faugère’s F5 algorithm is considered as the most efficient tool for com-
puting Gröbner bases, we have tried as much as possible to compare its perfor-
mances with our F4 variant. Clearly, F5 remains irreplaceable when the Gröbner
basis of only one system has to be computed or when the base field is too small,
in particular over F2. However, our method should be used preferentially as soon
as several Gröbner bases have to be computed and the base field is large enough
for the considered family of systems. The obtained timings support in part this
claim, indicating that with a more elaborate implementation of linear algebra
our algorithm would outperform F5 in most cases.
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A Pseudo-code

A.1 The Precomputation

Given a family of polynomials {f1, . . . , fr}, the F4Precomp algorithm computes
for each iteration step of the classical F4 algorithm, the list of polynomial multi-
ples that will be used by F4Remake on subsequent computations. This algorithm
follows very closely [14], with these additional features:

– A list L of lists of couples is introduced; at the end of the i-th main iteration,
L[i] contains the desired list of polynomial multiples for that step. Each
polynomial multiple is represented by a couple (m,n), wherem is a monomial
and n is the index of the polynomial in a global list G (this list G will be
progressively reconstructed by F4Remake). In the same way, a list Ltmp is
used to temporary store these couples.

– Instead of just computing the reduced row echelon formM ′ of the matrixM ,
we also compute an auxiliary matrix A such that AM = M ′. If reductions
to zero occur, then the bottom part of M ′ is null and the corresponding
bottom part of A gives the linear dependencies between the rows of M . This
information is exploited in lines 21 to 26, in order to remove from the tem-
porary list Ltmp the useless multiples before copy in L[step]. Actually, only
the bottom-left part A′ of A is of interest: it contains the linear dependencies
between the rows of M coming from the critical pairs, modulo those coming
from the preprocessing. It is clear that with each dependency relation, one
polynomial multiple can be removed, but some care must be taken in this
choice. To do so, the row echelon form Ã of A′ is then computed and the
polynomial multiples corresponding to the pivots of Ã are removed. Among
the remaining polynomial multiples, those whose leading monomial is now
unique can also be removed.

Apart from these modifications, the pseudo-code is basically the F4 algorithm
with Gebauer and Möller installation of the Buchberger’s criteria (Update sub-
routine) [19]. The only notable change concerns the implementation of the Sim-
plify procedure: instead of searching through all the former matrices and their
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row echelon forms for the adequate simplification as in [14], we introduce an
array TabSimplify which contains for each polynomial f in the basis a list of
couple of the form (m, g) ∈ T × K[X], meaning that the product mf can be
simplified into the more reduced polynomial g. This array is updated after the
reduced row echelon form is computed (lines 12 to 16 of Postprocessing).

Alg. 1. F4Precomp
Input: f1, . . . , fr ∈ K[X ] Output: a list of lists of couples (m, n) ∈ T × N
1. G ← [ ], Gmin ← ∅, P ← ∅, T abSimplify ← [ ], L ← [ ]
2. for i = 1 to r do
3. G[i] ← fi, TabSimplify[i] ← [(1, fi)], Update(fi)
4. step = 1
5. while P �= ∅ do
6. Psel ← Sel(P )
7. F ← [ ], LM(F ) ← ∅, T (F ) ← ∅, L[step] ← [ ], Ltmp ← [ ]
8. for all pair = (lcm, t1, g1, t2, g2) ∈ Psel do
9. for k = 1 to 2 do

10. ind ← index(gk, G)
11. if (tk, ind) /∈ Ltmp then
12. Append(Ltmp, (tk, ind))
13. f ← Simplify(tk, ind)
14. Append(F,f)
15. LM(F ) ← LM(F ) ∪ {LM(f)}
16. T (F ) ← T (F ) ∪ {m ∈ T : m monomial of f}
17. Preprocessing(F,T (F ), LM(F ))
18. M ← matrix whose rows are the polynomials in F
19. (M ′|A) ← ReducedRowEchelonForm(M |I#F ) (⇒ AM = M ′)
20. rank ← Postprocessing(M ′, LM(F ))
21. if rank < #F then
22. A′ ← A[rank + 1..#F ][1..#Ltmp ]
23. Ã ← ReducedRowEchelonForm(A′)
24. C ← {c ∈ {1, . . . , #Ltmp} : c is not a column number of a pivot in Ã}
25. for j ∈ C do
26. if ∃k ∈ C, k �= j and LM(F [k]) = LM(F [j]) then Append(L[step],Ltmp[j])
27. else L[step] ← Ltmp

28. step ← step + 1
29. return L

In the pseudo-code, some variables are supposed to be global: G, a list of poly-
nomials that forms a basis of 〈f1, . . . , fr〉; Gmin, a set of polynomials which is
the minimized version of G; TabSimplify, an array of lists of couples used for
the simplification of polynomials multiples; P , a queue of yet untreated critical
pairs. The function Sel on line 6 is a selection function, whose expression de-
pends on the chosen strategy; usually, selecting all pairs of lowest total degree
lcm (normal strategy) yields the best performances. The notation index(g,G)
stands for the integer i such that G[i] = g, and the function pair(f1, f2) outputs
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the critical pair (lcm, u1, f1, u2, f2). Finally, ReducedRowEchelonForm com-
putes as expected the reduced row echelon form of its input matrix. We stress
that great care should be taken in the implementation of this last function since
almost all the execution time of the algorithm is spent in it. Note that the test on
line 10 in Update is only necessary during the initialisation phase of F4Precomp
(line 3).

Alg. 2. Update
Input: f ∈ K[X ]
1. for all pair = (lcm, t1, g1, t2, g2) ∈ P do
2. if (LM(f)∨LM(g1) divides strictly lcm) AND (LM(f)∨LM(g2) divides strictly

lcm) then P ← P \ {pair}
3. P0 ← ∅, P1 ← ∅, P2 ← ∅
4. for all g ∈ Gmin do
5. if LM(f) ∧ LM(g) = 1 then P0 ← P0 ∪ pair(f, g) else P1 ← P1 ∪ pair(f, g)
6. for all pair = (lcm, t1, g1, t2, g2) ∈ P1 do
7. P1 ← P1 \ {pair}
8. if �pair′ = (lcm′, t′1, g

′
1, t

′
2, g

′
2) ∈ P0∪P1∪P2 s.t.lcm′|lcm then P2 ← P2∪{pair}

9. P ← P ∪ P2

10. if �g ∈ Gmin such that LM(g)|LM(f) then
11. for all g ∈ Gmin do
12. if LM(f)|LM(g) then Gmin ← Gmin \ {g}
13. Gmin ← Gmin ∪ {f}

Alg. 3. Preprocessing
Input: F, T (F ), LM(F )
1. Done ← LM(F )
2. while T (F ) �= Done do
3. m ← max(T (F ) \ Done)
4. Done ← Done ∪ {m}
5. for all g ∈ Gmin do
6. if LM(g)|m then

7. g′ ← Simplify
(

m
LM(g)

, index(g,G)
)

8. Append(F,g′)
9. LM(F ) ← LM(F ) ∪ {m}

10. T (F ) ← T (F ) ∪ {m′ ∈ T : m′ monomial of g′}
11. break
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Alg. 4. Simplify
Input: t ∈ T, ind ∈ N Output: p ∈ K[X ]
1. for (m,f) ∈ TabSimplify[ind] (from last to first) do
2. if m = t then return f
3. else if m|t then
4. Append

(
TabSimplify[ind],

(
m, t

m
f
))

5. return t
m

f

Alg. 5. Postprocessing
Input: a matrix M in reduced row echelon form with #F lines and an ordered set of

monomials LM(F )
Output: the rank of the matrix M
1. for i = 1 to #F do
2. f ← M [i]
3. if f = 0 then break
4. if LM(f) /∈ LM(F ) then
5. Append(G,f)
6. Update(f)
7. TabSimplify[#G] ← [(1, f)]
8. else
9. for g ∈ Gmin do

10. ind ← index(g,G)
11. if LM(g)|LM(f) then
12. for j = 1 to #TabSimplify[ind] do

13. if TabSimplify[ind][j] =
(

LM(f)
LM(g)

, .
)

then

14. TabSimplify[ind][j] =
(

LM(f)
LM(g)

, f
)

15. break
16. if j > #TabSimplify[ind] then Append

(
TabSimplify[ind],

(
LM(f)
LM(g)

, f
))

17. return i − 1

A.2 F4Remake

The F4Remake algorithm uses the same routines Simplify, Preprocessing and
Postprocessing. Since it no longer uses critical pairs, the subroutine Update
can be greatly simplified and is replaced by Update2.
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Alg. 6. F4Remake
Input: f1, . . . , fr ∈ K[X ], a list L of lists of couples (m,n) ∈ T × N
Output: Gmin, the reduced minimal Gröbner basis of f1, . . . , fr

1. G ← [ ], Gmin ← ∅, T abSimplify ← [ ]
2. for i = 1 to r do
3. G[i] ← fi

4. TabSimplify[i] ← [(1, fi)]
5. Update2(fi)
6. for step = 1 to #L do
7. F ← [ ], LM(F ) ← ∅, T (F ) ← ∅
8. for all (m, n) ∈ L[step] do
9. if n > #G then computation fails ! exit

10. f ← Simplify(m, n), Append(F, f)
11. LM(F ) ← LM(F ) ∪ {LM(f)}
12. T (F ) ← T (F ) ∪ {m ∈ T : m monomial of f}
13. Preprocessing(F,T (F ), LM(F ))
14. M ← matrix whose rows are the polynomials in F
15. M ′ ← ReducedRowEchelonForm(M)
16. Postprocessing(M ′, LM(F ))
17. return InterReduce(Gmin)

Alg. 7. Update2
Input: f ∈ K[X ]
1. if �g ∈ Gmin such that LM(g)|LM(f) then
2. for all g ∈ Gmin do
3. if LM(f)|LM(g) then Gmin ← Gmin \ {g}
4. Gmin ← Gmin ∪ {f}
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Abstract. We introduce Attribute-Based Signatures (ABS), a versatile primitive
that allows a party to sign a message with fine-grained control over identifying
information. In ABS, a signer, who possesses a set of attributes from the authority,
can sign a message with a predicate that is satisfied by his attributes. The signature
reveals no more than the fact that a single user with some set of attributes
satisfying the predicate has attested to the message. In particular, the signature
hides the attributes used to satisfy the predicate and any identifying information
about the signer (that could link multiple signatures as being from the same
signer). Furthermore, users cannot collude to pool their attributes together.

We give a general framework for constructing ABS schemes, and then show
several practical instantiations based on groups with bilinear pairing operations,
under standard assumptions. Further, we give a construction which is secure
even against a malicious attribute authority, but the security for this scheme is
proven in the generic group model. We describe several practical problems that
motivated this work, and how ABS can be used to solve them. Also, we show how
our techniques allow us to extend Groth-Sahai NIZK proofs to be simulation-
extractable and identity-based with low overhead.

1 Introduction

Alice, a finance manager in a big corporation, while going through her company’s
financial records, has learned about a major international scandal. She decides to send
these records to a major newspaper, retaining her anonymity, but with a proof that she
indeed has access to the records in question. It turns out that several people, due to
a combination of reasons, may have access to these records: those in the New York,
London or Tokyo office who are either finance managers associated with project Skam,
or internal auditors. Alice considers using a ring signature [26] to endorse her message
anonymously, but realizes that it is infeasible not only because of the large number of
people involved, but also because she does not know who these people are. She realizes
she cannot use a group signature [14] either, because the set of people Alice needs to
refer to here is idiosyncratic to her purposes, and may not have been already collected
into a group.1 She is also aware of mesh signatures [9], but mesh signatures provide

� Partially supported by NSF grants CNS 07-16626 and CNS 07-47027.
1 Even if a group exists, the group manager could identify Alice as the informant.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 376–392, 2011.
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no way to convince the newspaper that the financial record was endorsed by a single
person, not, say, a programmer in the New York office colluding with an internal auditor
in the Smalltown office.

Alice’s needs in this story reflect the challenges in a system where the roles of
the users depend on the combination of attributes they possess. In such systems,
users obtain multiple attributes from one or more attribute authorities, and a user’s
capabilities in the system (e.g., sending or receiving messages, access to a resource)
depend on their attributes. While offering several advantages, attribute-based systems
also present fundamental cryptographic challenges. For instance, suppose Alice wants
to simply send a message to the above group of people using an “attribute-based
messaging” system; then to provide end-to-end secure communication, it must be
possible for her to encrypt a message using attribute-keys (rather than individual users’
keys). Recently cryptographic tools have emerged to tackle some of these challenges
for encryption [27,16,3,31]. In this work, we provide a solution for authentication,
which among other things, will let Alice in the above example leak the financial records
anonymously, but with the appropriate claim regarding her credentials.

Why Attribute-Based Signatures?

The kind of authentication required in an attribute-based system differs from that of-
fered by digital signatures, in much the same way public-key encryption does not fit
the bill for attribute-based encryption. An attribute-based solution requires a richer se-
mantics, including anonymity requirements, similar to signature variants like group sig-
natures [14], ring signatures [26], and mesh signatures [9]. The common theme in all
these signature primitives is that they provide a guarantees of unforgeability and signer
anonymity. A valid signature can only be generated in particular ways, but the signature
does not reveal any further information about which of those ways was actually used to
generate it.

More specifically, group and ring signatures reveal only the fact that a message was
endorsed by one of a list of possible signers. In a ring signature, the list is public, chosen
by the signer ad hoc, and given explicitly. In a group signature, the group must be
prepared in advance by a group manager, who can revoke the anonymity of any signer.
In mesh signatures, a valid signature describes an access structure and a list of pairs
(mi, vki), where each vki is the verification key of a standard signature scheme. A
valid mesh signature can only be generated by someone in posession of enough standard
signatures σi, each valid under vki, to satisfy the given access structure.

In this work we introduce attribute-based signatures (ABS). Signatures in an ABS
scheme describe a message and a predicate over the universe of attributes. A valid ABS
signature attests to the fact that “a single user, whose attributes satisfy the predicate,
endorsed the message.” We emphasize the word “single” in this informal security
guarantee; ABS signatures, as in most attribute-based systems, require that colluding
parties not be able to pool their attributes together.2 Furthermore, attribute signatures do

2 Note that for attribute-based encryption, if collusion is allowed there are fairly easy solutions;
but for ABS, even after allowing collusion (for instance by considering all users to have the
same identity while generating keys), the residual primitive is essentially a mesh signature,
which is already a non-trivial cryptographic problem.
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not reveal more than the claim being made regarding the attributes, even in the presence
of other signatures.

Ring and group signatures are then comparable to special cases of ABS, in which the
only allowed predicates are disjunctions over the universe of attributes (identities). Only
one attribute is required to satisfy a disjunctive predicate, so in these cases collusion
is not a concern. As in ring signatures, ABS signatures use ad hoc predicates. Mesh
signatures allow more fine-grained predicates, but do not provide hiding of signature
data that would be needed in an ABS scheme. A straight-forward application of mesh
signatures as an ABS scheme would either allow collusion (as in the previous example,
a New York programmer colluding with a Smalltown auditor to satisfy the “New York
auditor” predicate) or allow signatures to be associated with a pseudonym of the signer
(thus linking several signatures as originating from the same signer).

Applications

Attribute-based signatures have natural applications in many systems where users’ ca-
pabilities depend on possibly complex combinations of attributes. ABS is a natural
choice for simple authentication in such systems. One of our motivations for develop-
ing such schemes comes from the authentication requirements in an Attribute-Based
Messaging (ABM) system. In addition to the “leaking secrets” application described
above, in Section 6 we also identify applications in trust negotiation systems.

Overview of Our Results

We introduce the concept of Attribute-Based Signatures (ABS) as a powerful primi-
tive with several applications and several efficient instantiations. Our main technical
contributions in this work are the following:

– A formal security definition for ABS, that includes the guarantees of unforgeabil-
ity (even in the presence of collusion) and privacy for the signer.

– A general framework for constructing ABS schemes. Our framework consists of a
“credential bundle” representing the attributes associated with a single user and a non-
interactive proof of credential ownership that can be bound to a message. The credential
bundle must have the property that multiple users should not be able to collude and
combine their credentials. The proof system must have some zero-knowledge-like
guarantee so that the signature does not leak information about the signer’s identity
or attributes.

We instantiate this framework using Boneh-Boyen [6] or Waters [30] signatures
as the credential bundle, and Groth-Sahai NIZK proofs [18] as the efficient non-
interactive proof system. These instantiations provide practical ABS schemes secure
under standard assumptions in bilinear groups.

– We present a practical ABS scheme suitable for high throughput systems. This
construction deviates from our framework of credential bundles and proof of creden-
tial ownership. In this scheme we do employ a credential bundle scheme (same as
the one in the last item above), but use a novel randomization technique to blind the
actual attributes. This gives the best efficiency among our schemes. Further, this scheme
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remains secure even against a corrupt attribute-authority. However, the security of this
scheme is proven in the heuristic generic-group model (augmented to handle groups
with bilinear pairings).

– One of the most striking features of our construction is that it is very easily
amenable to natural multi-authority settings. We describe practical considerations re-
lated to such a deployment.

– In the full version we show how our techniques of incorporating digital signatures
and non-interactive proofs can be used to add simulation-extractability to the Groth-
Sahai proof system, several orders of magnitude more efficiently than the only other
comparable scheme, constucted by Groth in [17].
Which among the above schemes will suit an application will depend on the specific
efficiency and security requirements in the system. In all these schemes, the privacy
is unconditional, and it is only the unforgeability that depends on computational
assumptions. Within a large enterprise setting (with pre-authenticated users) where the
threat of forgery may be limited but the volume of signatures may be large, the final
scheme may be the most suited. In more susceptible systems with a high security
requirement, one of the schemes based on the Groth-Sahai proof systems maybe
more suitable (at the expense of efficiency). The choice also depends on whether the
application demands high-volume real-time performance (as in a messaging system) or
involves only offline signing and verification (as in leaking a secret).

All of our instantiations depend on expressing the attribute predicate as a monotone-
span program, which is the state of the art for attribute-based cryptography [16,3,31].
We remark that unlike in many constructions of attribute-based encryption schemes, we
achieve “full security” in all our constructions. That is, we do not weaken the definition
in the manner of “selective-ID” security. Nor do we need to limit our construction to a
small universe of attributes. In all our instantiations, attributes can be arbitrary strings:
given a collision-resistant hash function, an a priori unbounded attribute universe can
be used.

Further Related Work

Groups with bilinear pairings have been used to construct identity-based (e.g., [8]) and
attribute-based encryption schemes [27,16,3]. Non-interactive zero-knowledge proofs
(including identity-based proofs) have previously been used in the context of efficient
constructions of signature primitives [1,20,10,17].

Khader [22,21] proposes a notion called attribute-based group signatures. This
primitive hides only the identity of the signer, but reveals which attributes the signer
used to satisfy the predicate. It also allows a group manager to identify the signer of
any signature (which is similar to the semantics of group signatures [14]); in contrast
we require signer privacy to hold against everyone, including all authorities.

Subsequent to a preliminary (unpublished) version of this work, Li and Kim [24]
gave an ABS scheme that supports predicates which are solely conjunctions of at-
tributes (hence privacy is required only for the identity of the signer and not for the
attributes used in satisfying the predicate), and is restricted to a “selective” unforge-
ability definition. Guo and Zeng [19] construct an attribute-based signature scheme,
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although their definition of security did not include any privacy for the signer. Shahan-
dashti and Safavi-Naini [28] and Li et al. [23] construct efficient ABS schemes that
support predicates consisting of a single threshold gate.

Binding a non-interactive proof to a message, as we do, is also a feature of identity-
based proofs [20], in which every proof is bound to some identity, and proofs under
one identity cannot be used to forge any proofs under a different identity. Indeed,
such ID-based proofs have been used to construct signature-like primitives; however
the construction from [20] does not have all the properties we need.

Anonymous credentials [13] is one primitive that has some parallels with ABS, but
with goals that differ from ABS in several important ways. ABS could be considered
as providing some of the functionality of AC as a very special case, but with a weaker
anonymity guarantee. Conversely, some of the techniques used to construct efficient AC
systems bear some resemblance to some of our efficient ABS constructions. In the full
version we discuss these similarities and differences in more detail.

Another related primitive (but much simpler than ABS) is identity-based signatures
(IBS) [29]. It is well-known that a simple scheme using traditional certificates realizes
IBS, but dedicated schemes aimed at achieving better efficiency have been widely
studied. We refer the reader to a comprehensive survey by Bellare et al. [2] for details.

Supporting multiple attribute-authorities is crucial to many attribute-based systems.
Previously, there has been much interest on this aspect for attribute-based encryption
schemes; see Chase et al. [11,12]. The constructions in this paper readily generalize to
the multi-authority setting.

2 Preliminaries

2.1 Groups with Bilinear Pairings

Let G,H,GT be cyclic (multiplicative) groups of order p, where p is a prime. Let g be a
generator of G, and h be a generator of H. Then e : G×H→ GT is a bilinear pairing
if e(g, h) is a generator of GT , and e(ga, hb) = e(g, h)ab for all a, b. We review several
standard cryptographic assumptions in such groups:

Definition 1 (q-SDH assumption [6]). Let G, H, and GT be as above. The q-
Strong Diffie-Hellman (q-SDH) assumption holds in (G,H) if, given the elements
(g, gx, gx2

, . . . , gxq

, h, hx) ∈ Gq+1 × H2, for random choice of x ← Zp and ran-
dom generators g ∈ G, h ∈ H, it is computationally infeasible to compute any pair of
the form

(
c, g

1
x+c

)
∈ Zp ×G.

Definition 2 (SXDH assumption [18]). Let G, H, and GT be as above. The Symmetric
External Diffie-Hellman (SXDH) assumption holds in (G,H) if the standard Decisional
Diffie-Hellman (DDH) assumption holds simultaneously in G and H.

Definition 3 (DLIN assumption [7]). Let G, H, and GT be as above, but with
G = H. The Decision-Linear (DLIN) assumption holds in G if, given the elements
(gx, gy, grx, gsy, gt) ∈ G5, for a random choice of x, y, r, s ← Zp, it is computation-
ally infeasible to determine whether t = r + s or t is random in Zp.
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2.2 Monotone Span Programs

Let Υ : {0, 1}n → {0, 1} be a monotone boolean function. A monotone span program
for Υ over a field F is an �×tmatrix M with entries in F, along with a labeling function
a : [�] → [n] that associates each row of M with an input variable of Υ , that, for every
(x1, . . . , xn) ∈ {0, 1}n, satisfies the following:

Υ (x1, . . . , xn) = 1 ⇐⇒ ∃v ∈ F1×� :vM = [1, 0, 0, . . . , 0]
and (∀i : xa(i) = 0⇒ vi = 0)

In other words, Υ (x1, . . . , xn) = 1 if and only if the rows of M indexed by {i |xa(i) =
1} span the vector [1, 0, 0, . . . , 0].

We call � the length and t the width of the span program, and � + t the size
of the span program. Every monotone boolean function can be represented by some
monotone span program, and a large class do have compact monotone span programs.
In particular, given a circuit expressed using threshold gates, with the i-th gate being
an
(
�i

ti

)
threshold gate, it is easy to recursively construct a monotone span program with

length
∑

i(�i − 1) + 1 and width
∑

i(ti − 1) + 1.

2.3 Non-interactive Proofs

We refer the reader to [18] for detailed definitions of non-interactive witness-
indistinguishable (NIWI) proofs, but give a brief overview of the necessary definitions
here. A NIWI scheme is comprised of the following main algorithms:

– NIWI.Setup: Outputs a reference string crs.
– NIWI.Prove: On input (crs;Φ;x), where Φ is a boolean formula and Φ(x) = 1,

outputs a proof π.
– NIWI.Verify: On input (crs;Φ;π), outputs a boolean.

The completeness requirement is that NIWI.Verify(crs;Φ; NIWI.Prove(crs;Φ;x)) =
1, if Φ(x) = 1 (i.e., x is a witness for Φ). The (perfect) witness indistin-
guishability requirement is that the distributions NIWI.Prove(crs;Φ;x1) and
NIWI.Prove(crs;Φ;x2) are identical when x1 and x2 are witnesses for Φ. For
the soundness/proof of knowledge requirement, we require the following additional
algorithms:

– NIWI.SimSetup: Outputs a simulated reference string crs and trapdoor ψ.
– NIWI.Extract: On input (crs, ψ;Φ;π), outputs a witness x.

We require that the crs output by NIWI.SimSetup is indistinguishable to that of
NIWI.Setup. Further, we require that for every (crs, ψ) ← NIWI.SimSetup, if
NIWI.Verify(crs;Φ;π) = 1 then NIWI.Extract(crs, ψ;Φ;π) outputs a valid witness
for Φ, with overwhelming probability.

3 Attribute-Based Signatures: Definitions and Security

Let A be the universe of possible attributes. A claim-predicate over A is a monotone
boolean function, whose inputs are associated with attributes of A. We say that an
attribute set A ⊆ A satisfies a claim-predicate Υ if Υ (A) = 1 (where an input is
set to be true if its corresponding attribute is present in A).
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Definition 4 (ABS). An Attribute-Based Signature (ABS) scheme is parameterized by
a universe of possible attributes A and message space M, and consists of the following
four algorithms.

– ABS.TSetup (to be run by a signature trustee: Generates public reference infor-
mation TPK .

– ABS.ASetup (to be run by an attribute-issuing authority): generates a key pair
APK,ASK ← ABS.ASetup.

– ABS.AttrGen: On input (ASK,A ⊆ A), outputs a signing key SKA.3

– ABS.Sign: On input (PK = (TPK,APK), SKA,m ∈ M, Υ ), where Υ (A) =
1, outputs a signature σ.

– ABS.Ver: On input (PK = (TPK,APK),m, Υ, σ), outputs a boolean value.

Definition 5 (Correctness). We call an ABS scheme correct if for all TPK ←
ABS.TSetup, all purported APK , all messages m, all attribute sets A, all signing
keys SKA ← ABS.AttrGen(ASK,A), all claim-predicates Υ such that Υ (A) = 1,
and all signatures σ ← ABS.Sign

(
PK = (TPK,APK), SKA,m, Υ

)
, we have

ABS.Ver(PK = (TPK,APK),m, Υ, σ) = 1.

We present two formal definitions that together capture our desired notions of security.
Slightly weaker security requirements may also be useful for most applications, but we
use the stronger ones because our constructions satisfy them and because they are much
easier to work with.

For simplicity, we only present definitions for the simpler case of a single attribute-
issuing authority. The definitions for multiple authorities are analogous, and we discuss
this case in Section 5.

Definition 6 (Perfect Privacy). An ABS scheme is perfectly private if, for all honestly
generated TPK ← ABS.TSetup, all purported APK , all attribute sets A1,A2, all
SK1 ← ABS.AttrGen(ASK,A1), SK2 ← ABS.AttrGen(ASK,A2), all messages
m, and all claim-predicates Υ such that Υ (A1) = Υ (A2) = 1, the distributions
ABS.Sign(PK,SK1,m, Υ ) and ABS.Sign(PK,SK2,m, Υ ) are equal.

In other words, the signer’s privacy relies only on the signature trustee, and not the
attribute-issuing authority. Even a malicious and computationally unbounded attribute-
issuing authority cannot link a signature to a set of attributes or the signing key used to
generate it.

We slightly overload notation and write ABS.Sign(ASK,m, Υ ) (i.e., with the
attribute authority’s private keyASK instead of PK and SKA) to denote the following
procedure: first, run SKA ← ABS.AttrGen(ASK,A) for any arbitrary A satisfying
Υ ; then output the result of ABS.Sign(PK,SKA,m, Υ ). For convenience in the
experiment below we use ABS.Sign(ASK, ·, ·) to generate signatures requested by
the adversary. This is reasonable when the scheme satisfies perfect privacy, since any
other way of letting the adversary obtain signatures will result in the same distribution.

3 For simplicity, we treat the signing key as a monolithic quantity. However, in our construction
the signing key consists of separate components for each attribute in A, and the ABS.Sign
algorithm needs only as much of SKA as is relevant to the claim-predicate.
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Definition 7 (Unforgeability). An ABS scheme is unforgeable if the success probability
of any polynomial-time adversary in the following experiment is negligible:

1. Run TPK ← ABS.TSetup and (APK,ASK) ← ABS.ASetup. Give PK =
(TPK,APK) to the adversary.

2. The adversary is given access to two oracles: ABS.AttrGen(ASK, ·) and
ABS.Sign(ASK, ·, ·).

3. At the end the adversary outputs (m∗, Υ ∗, σ∗).

We say the adversary succeeds if (m∗, Υ ∗) was never queried to the ABS.Sign oracle,
and ABS.Ver(PK,m∗, Υ ∗, σ∗) = 1, and Υ ∗(A) = 0 for all A queried to the
ABS.AttrGen oracle.

Thus any signature which could not have been legitimately made by a single one of
the adversary’s signing keys is considered a forgery. Note that we do not consider it
a forgery if the adversary can produce a different signature on (m,Υ ) than the one he
received from the signing oracle.

4 Constructing ABS Schemes

4.1 Credential Bundles

We introduce a new generic primitive called credential bundles, which we use in our
ABS constructions. Credential bundles model the intuitive requirements of publicly
verifiable attributes that resist collusion.

Definition 8 (Credential bundle scheme). A credential bundle scheme is parameter-
ized by a message space M, and consists of the following three algorithms.

– CB.Setup: Outputs a verification key vk and a secret key sk.
– CB.Gen: On input (sk, {m1, . . . ,mn} ⊆ M), outputs a tag τ and values
σ1, . . . , σn.

– CB.Ver: On input (vk,m, (τ, σ)), outputs a boolean value.

The scheme is correct if, for all (τ, σ1, . . . , σn)← CB.Gen(sk,m1, . . . ,mn), we have
CB.Ver(vk,mi, (τ, σi)) = 1 for all i.

Clearly by excluding some of the σi’s from an existing bundle, one can generate a
new bundle on a subset of attributes. Our main security definition requires that taking a
subset of a single bundle is the only way to obtain a new bundle from existing bundles;
in particular, attributes from several bundles cannot be combined.

Definition 9. A credential bundle scheme is secure if the success probability of any
polynomial-time adversary in the following experiment is negligible:

1. Run (vk, sk)← CB.Setup, and give vk to the adversary.
2. The adversary is given access to an oracle CB.Gen(sk, ·).
3. At the end the adversary outputs (τ∗, (m∗

1, σ
∗
1), . . . , (m∗

n, σ
∗
n)).

We say the adversary succeeds if CB.Ver(vk,m∗
i , (τ

∗, σ∗i )) = 1 for all i ≤ n, and if no
superset of {m∗

1, . . . ,m
∗
n} was ever queried (in a single query) to the CB.Gen oracle.
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From any plain digital signature scheme we can easily construct a credential bundle
scheme in which the bundle is a collection of signatures of messages “τ‖mi”, where
each mi is the name of an attribute and τ is an identifier that is unique to each user
(e.g., an email address). Conversely, when a credential bundle scheme is restricted
to singleton sets of messages, its unforgeability definition is equivalent to normal
digital signature unforgeability. Despite this equivalence under black-box reductions,
the syntax of credential bundles more closely models our desired semantics for ABS.

4.2 A Framework for ABS

Our generic ABS construction for the case of a single attribute authority is given in
Figure 1. The construction generalizes easily to the multiple attribute authority case
(Section 5). At a high level, to sign a message m with claim-predicate Υ , the signer
proves that she possesses either a credential bundle containing either sufficient attributes
to satisfy Υ , or a “pseudo-attribute” identified with the pair (m,Υ ). Only the signature
trustee is capable of generating bundles involving pseudo-attributes (these are verified
against the trustee’s verification key tvk), but it never does so. Thus the proof is
convincing that the signer satisfied Υ . However, in the security reduction, the pseudo-
attribute provides a mechanism to bind the NIWI proof to a message and give simulated
signatures. In the full version we prove the following:

Let A be the desired universe of ABS attributes. Let A′ denote a space of pseudo-attributes,
where A∩A′ = ∅. For every message m and claim-predicate Υ we associate a psuedo-attribute
am,Υ ∈ A′. Let CB be a secure credential bundle scheme, with message space A ∪ A′, and let
NIWI be a perfect NIWI proof of knowledge scheme. Our ABS construction is as follows:

ABS.TSetup: The signature trustee runs crs ← NIWI.Setup as well as (tvk, tsk) ←
CB.Setup and publishes TPK = (crs, tvk).

ABS.ASetup: The attribute-issuing authority runs (avk, ask) ← CB.Setup and publishes
APK = avk and sets ASK = ask.

ABS.AttrGen(ASK,A): Ensure that A contains no pseudo-attributes. Then output the result
of CB.Gen(ask,A).

ABS.Sign(PK, SKA, m, Υ ): Assume that Υ (A) = 1. Parse SKA as (τ, {σa | a ∈ A}). Υ

is a formula over formal variables A. Define Υ̃ := Υ ∨ am,Υ , where am,Υ ∈ A′ is the
pseudo-attribute associated with (m, Υ ). Thus, we still have Υ̃ (A) = 1. Let {a1, . . . , an}
denote the attributes appearing in Υ̃ . Let vki be avk if attribute ai is a pseudo-attribute,
and tvk otherwise. Finally, let Φ[vk, m,Υ ] denote the following boolean expression:

∃ τ, σ1, . . . , σn : Υ̃
({

ai

∣∣ CB.Ver
(
vki, ai, (τ, σi)

)
= 1
})

= 1 (1)

For each i, set σ̂i = σai from SKA if it is present, and to any arbi-
trary value otherwise (since then its value does not matter). Compute π ←
NIWI.Prove

(
crs; Φ[vk, m, Υ ]; (τ, σ̂1, . . . , σ̂n)

)
. Output π as the ABS signature.

ABS.Ver(PK, m, Υ, π): Output the result of NIWI.Verify(crs; Φ[vk, m, Υ ]; π).

Fig. 1. General framework for an ABS scheme
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Theorem 1. Given a NIWI argument of knowledge scheme and any secure credential
bundle scheme (equivalently, any digital signature scheme), the construction in Figure 1
is a secure ABS scheme. Further, if the NIWI argument is perfectly hiding, the ABS
scheme is perfectly private.

4.3 Practical Instantiation 1

Our first practical instantiation uses Groth-Sahai proofs [18] as the NIWI component
and Boneh-Boyen signatures [5] as the credential bundle component. One notable
feature of this choice is that attributes in the scheme are simply Boneh-Boyen signatures
on messages of the form “userid‖attr”.

This instantiation requires cyclic groups of prime order equipped with bilinear
pairings (Section 2.1). The Groth-Sahai system can prove satisfiability of pairing-
product equations in such groups, and the main challenge in this instantiation is
expressing the logic of the claim-predicate and the Boneh-Boyen signature verification
in this limited vocabulary. We identify Z∗

p with the universe of attributes, where p is the
size of the cyclic group used in the scheme.4

Boneh-Boyen signatures. We briefly review the Boneh-Boyen digital signature
scheme [6]. As before, we suppose there is a bilinear pairing e : G × H→ GT , where
G and H have prime order p, and where g is a generator of G, and h is a generator of
H. The scheme, described below, is strongly unforgeable under the q-SDH assumpion
(Definition 1).

DS.KeyGen: Choose random b, c, d ← Zp and compute B = gb, C = gc, D = gd.
The verification key is (B,C,D) ∈ G3, and the signing key is (b, c, d) ∈ (Zp)3.

DS.Sign(sk,m ∈ Zp): Choose random r ← Zp; output σ =
(
h1/(b+cm+dr), t

)
∈

H× Zp.
DS.Ver(vk,m, σ = (S, r)): Output 1 if e(BCmDr, S) = e(g, h), and 0 otherwise.

Expressing the Non-Interactive Proof using Pairing Equations. We use the notation
introduced in Figure 1. We must show how the statement Φ[vk,m, Υ ] (equation 1)
can be efficiently encoded in the Groth-Sahai system when the credential bundles use
Boneh-Boyen signatures.

Groth-Sahai proofs work by first giving a commitment to the values of the witness,
and then proving that the commited values satisfy given pairing equations. Suppose we
commit to a group elementZ (where the group G or H will be clear from context), then
we will let 〈Z〉 denote the formal variable corresponding to that commitment. Thus, we
express the statements to be proven as pairing equations whose formal variables we will
write in the 〈Z〉 notation.

4 More precisely A ∪ A′ ⊆ Z∗
p where A′ is the universe of pseudo-attributes. As is standard,

the universe of (pseudo-)attributes can be extended to {0, 1}∗ by applying a collision-resistant
hash with range Z∗

p.
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Suppose the modified predicate Υ̃ has a canonical monotone span program M of
size � × t, where the ith row corresponds to the a(i)-th attribute mentioned in Υ̃ . To
establish Φ[vk,m, Υ ], we prove the following equation, which implies it:

∃ τ, σ1, . . . , σn, v1, . . . , vn : vM = [1, 0, . . . , 0]

∧
�∧

i=1

[
vi �= 0⇒ CB.Ver(vk, aa(i), (τ, σa(i))) = 1

]
Then, in addition to τ, {σi}, we will have the signer commit to the vector v which can
be canonically computed from his satisfying assignment of Υ̃ .

This new boolean expression is a conjunction of two kinds of clauses: The first has
the form ∃v : vM = [1, . . . , 0]. To prove it, we commit to the values gvi and prove the
following pairing equations (for each j ∈ [t]):

�∏
i=1

e(〈gvi〉 , hMi,j ) =

{
e(g, h) if j = 1
e(g0, h) otherwise

The other clauses have the form ∃ τ, σ, v :
[
v �= 0 ⇒ CB.Ver(vk,m, (τ, σ)) = 1

]
.

When we use Boneh-Boyen signatures as the instantiation of credential bundles, these
clauses can be simplified to

∃ τ, σ, v :
[
v �= 0⇒ DS.Ver(vk, τ‖m,σ) = 1

]
where DS.Ver is the Boneh-Boyen signature verification.

It is crucial that the proof is a proof of knowledge, so the simulator can extract
the credential bundles. Thus we commit to τ and r bitwise, since they are elements
of Zpand could not otherwise be efficiently extracted in the Groth-Sahai scheme. In
this way, the extractor can extract the bits and reconstruct the entire witness τ and
r.5 Let (τ, σ = (S, r), v) be a witness to the above expression. Express τ bitwise as
τ =
∑

i τi2
i. Then τ‖m may be identified with a number m2|τ | +

∑
i τi2

i. Similarly,
interperet r bitwise as r =

∑
i ri2

i.
Using the same notation as before, we can prove satisfiability of the clause as follows.

We commit to each ri and τi in both groups, as gri, hri , gτi , hτi , and then prove that
each is indeed a single bit, using the following pairing equations for all i:

e(〈gri〉 , h) = e(g, 〈hri〉); e(〈gτi〉 , h) = e(g, 〈hτi〉);
e(〈gri〉 , 〈hri〉) = e(〈gri〉 , h); e(〈gτi〉 , 〈hτi〉) = e(〈gτi〉 , h).

Next, observe that the pairing equation e(BCτ‖mDr, Sv) = e(gv, h) is logically
equivalent to the expression v �= 0 ⇒ DS.Ver(vk, τ‖m, (S, r)) = 1, which we
need to prove. However, the prover cannot directly compute BCτ‖mDr or Sv given

5 We remark that the proof need not be a proof of knowledge with respect to v, so it was safe to
use these values directly in Zp.
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the committed values. Thus the prover commits to some additional intermediate values
Sv ∈ H and Cτ , Dr ∈ G, and proves the following equations:

e(〈Dr〉 , h) =
∏

i e(D
2i

, 〈hri〉); e(〈gv〉 , 〈S〉) = e(g, 〈Sv〉);
e(〈Cτ 〉 , h) =

∏
i e(C

2i

, 〈hτi〉);

e(〈gv〉 , h) = e(BC2|τ|m, 〈Sv〉) e(〈Cτ 〉 , 〈Sv〉) e(〈Dr〉 , 〈Sv〉).

Note that since m and |τ | are public, all the coefficients in these equations can be
publicly computed. This completes the description of how we encode the required logic
into the Groth-Sahai proof system.

There are two instantiations of the Groth-Sahai proof system over prime order
groups, based on the DLIN and SXDH assumptions, both of which are suitable for
our purposes. Using these we obtain the following (a more detailed analysis of the
efficiency is given in the full version).

Theorem 2. Under the q-SDH and either DLIN or SXDH assumptions, there is an
ABS scheme supporting claim-predicates represented as monotone span programs, with
signatures consisting ofO(ks) group elements, where s is the size of the monotone span
program.

4.4 Practical Instantiation 2

We can also instantiate our framework using the same approach as above, but with
the signature scheme of Waters [30]. Signatures in Waters’ scheme do not include any
elements of Zp. This fact allows us to avoid the inefficiency of committing to many
components of the Boneh-Boyen signatures in a bitwise fashion. Furthermore, Waters
signatures are secure under the much weaker BDH assumption, which is implied by the
assumptions required for Groth-Sahai proofs. Thus this instantiation does not require
the additional q-SDH assumption. However, as a tradeoff, the Waters instantiation
requires larger public parameters: a linear (in the security parameter) number of group
elements, not the constant number of group elements needed by the Boneh-Boyen
instantiation.

The details of this instantiation follow a similar approach as the previous one,
incorporating the verification equation of the Waters signature. We refer the reader to
the full version for the complete details.

Theorem 3. Under either the DLIN or SXDH assumptions, there is an ABS scheme
supporting claim-predicates represented as monotone span programs, with signatures
consisting of O(k + s) group elements, where s is the size of the monotone span
program.

4.5 Practical Instantiation 3

We now present an ABS scheme which is our most practical. Signatures in the scheme
consist of exactly s + 2 group elements, where s is the size of the claim-predicate’s
monotone span program. This scheme does not use the Groth-Sahai proof system; we
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use our own randomization techniques to blind the attributes that are used in signing.
One additional advantage of avoiding a NIZK proof system is that the privacy of the
signers is provided even against a malicious signature trustee; in contrast the above
NIZK-based constructions rely on the signature trustee to set up a common reference
string honestly.

Our approach is motivated by the construction of mesh signatures [9], but incorpo-
rates the efficient credential bundles of the previous construction, as well as the concept
of “pseudo-attributes” to bind a message to the signature. In the full version we give a
high-level motivation of the details of this scheme. Below we give a description of the
construction:

This construction supports all claim-predicates whose monotone span programs have
width at most tmax, where tmax is an arbitrary parameter. We treat A = Z∗

p as the
universe of attributes, where p is the size of the cyclic group used in the scheme.6

ABS.TSetup: Choose suitable cyclic groupsG andH of prime order p, equipped with
a bilinear pairing e : G × H → GT . Choose a collision-resistant hash function
H : {0, 1}∗ → Z∗

p. Choose random generators: g ← G; h0, . . . htmax ← H.
The trustee public key is TPK = (G,H,H, g, h0, . . . , htmax).

ABS.ASetup: Choose random a0, a, b, c← Z∗
p and set:

C = gc; A0 = ha0
0 ; Aj = ha

j and Bj = hb
j (∀j ∈ [tmax]).

The master key is ASK = (a0, a, b). The public key APK is
(A0, . . . , Atmax , B1, . . . , Btmax , C)

ABS.AttrGen: On input ASK as above and attribute set A ⊆ A, Choose random
generatorKbase ← G. Set:

K0 = K
1/a0
base ; Ku = K

1/(a+bu)
base (∀u ∈ A)

The signing key is then SKA = (Kbase,K0, {Ku | u ∈ A}).
ABS.Sign: On input (PK,SKA,m, Υ ) such that Υ (A) = 1, first convert Υ to its

corresponding monotone span program M ∈ (Zp)�×t, with row labeling u : [�]→
A. Also compute the vector v that corresponds to the satisfying assignment A.
Compute μ = H(m‖Υ ).

Pick random r0 ← Z∗
p and r1, . . . r� ← Zp and compute:

Y = Kr0
base; Si = (Kvi

u(i))
r0 · (Cgμ)ri (∀i ∈ [�]);

W = Kr0
0 ; Pj =

�∏
i=1

(AjB
u(i)
j )Mij ·ri (∀j ∈ [t]).

We note that the signer may not haveKu(i) for every attribute u(i) mentioned in the
claim-predicate. But when this is the case, vi = 0, and so the value is not needed.
The signature is σ = (Y,W, S1, . . . , S�, P1, . . . , Pt).

6 As always, the universe of attributes can be further extended to {0, 1}∗ by applying a
collision-resistant hash having range Z∗

p. For simplicity of presentation, we do not include
this modification.
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ABS.Ver: On input (PK, σ = (Y,W, S1, . . . , S�, P1, . . . , Pt),m, Υ ), first convert Υ
to its corresponding monotone span program M ∈ (Zp)�×t, with row labeling
u : [�] → A. Compute μ = H(m‖Υ ). If Y = 1, then output reject. Otherwise
check the following constraints:

e(W,A0)
?= e(Y, h0)

�∏
i=1

e
(
Si, (AjB

u(i)
j )Mij

)
?=

{
e(Y, h1) e(Cgμ, P1), j = 1
e(Cgμ, Pj), j > 1,

for j ∈ [t]. Return accept if all the above checks succeed, and reject otherwise.
We defer the detailed proof of security (carried out in the generic group model) to the
full version.

Theorem 4. In the generic group model, there is an ABS scheme supporting claim-
predicates represented as monotone span programs, with signatures consisting of s+ 2
group elements, where s is the size of the monotone span program.

5 Multiple Attribute-Authorities

Our first two intantiations of ABS (indeed, our general framework) can be easily
extended for use in an environment with multiple attribute-issuing authorities. Except
in a centralized enterprise setting, a single user would acquire her attributes from
different authorities (e.g., different government agencies, different commercial services
she has subscribed to, different social networks she is registered with and so on). These
different attribute authorities may not trust each other, nor even be aware of each other.
Indeed, some attribute authorities may be untrustworthy, and this should not affect
the trustworthiness of attributes acquired from other authorities, or of ABS signatures
involving trustworthy attributes.

Apart from these mutually distrusting attribute authorities, we still require a (possibly
separate) signature trustee to set up the various public parameters of the ABS signature
scheme itself. A signature trustee does not have to trust any attribute authority. The
attribute authorities use only the public keys from the signature trustee. As long as the
signature trustee is trusted, then the ABS signatures are secure and leak no information
about the identity or attributes of the signer. The only requirement for compatibility
among attribute authorities is that they all have a mechanism for agreeing on a user’s
userid (say, an email address) so that a user’s bundle of credentials may contain
compatible attributes from several authorities.

Finally, the claim-predicate in the ABS signature must carry the identity of the
attribute-authorities who own the various attributes (possibly as meta-data attached
to the attribute description). Given this information, the statement proven in the non-
interactive proof can be modified to refer to the appropriate digital signature verification
keys corresponding to each attribute, including the pseudo-attribute. If one attribute
authority’s signatures are compromised, then an ABS verifier should not give much
importance to attributes from that authority. However, the ABS signatures themselves
are still valid (in that they indeed attest to the given claim-predicate being satisfied) as
long as the trustee is uncorrupted.
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6 Applications

We identify several natural applications of ABS schemes:

Attribute-based messaging. Attribute-Based Messaging, or ABM, (e.g., [4]) provides
an example of a quintessential attribute-based system. In an ABM system, messages
are addressed not by the identities of the recipients, but by a predicate on users’ at-
tributes which the recipients must satisfy. The users need not be aware of each other’s
identities or attributes. To provide end-to-end message privacy (against users whose at-
tributes do not satisfy the sender’s policy), one can use ciphertext-policy attribute-based
encryption, as proposed by Bethencourt, Sahai and Waters [3]. However, there was no
satisfactory way to achieve authentication (i.e., for the receiver to verify that the sender
also satisfied a particular policy) in an ABM system until now. Existing cryptographic
technology, including certificates and mesh signatures, would not provide an adequate
level of anonymity for the senders while simultaneously preventing collusions.

In a typical ABM system, a certain degree of authorization is required to send mes-
sages to certain groups of users. That is, an attribute-based access control mechanism
must decide whether to allow a messaging attempt from a sender, depending on both
the attributes of the sender and the attribute-based address attached to the message.
ABS can be used to authenticate a sender to the ABM system itself (as opposed to
the scenario above, where the sender was authenticating to the message recipient). As
the messaging system can publicly verify the ABS signature, this solution eliminates the
need for the messaging system to query the attribute database to determine the sender’s
authorization. Indeed, the messaging system need not know the sender’s identity at all.

Finally, because our construction is so readily suited for multi-authority settings,
ABS is a natural choice for inter-domain ABM systems. However, there are many
engineering and cryptographic challenges involved in other aspects of a truly inter-
domain ABM system. For example, Chase’s proposal [11] for multi-authority attribute-
based encryption (originally for the schemes in [27,16], but can be extended to the one
in [3]) requires all the attribute-authorities to share secret keys with a central authority,
thereby requiring the central authority to trust all the attribute authorities. In contrast,
our ABS system requires no such trust between the signature trustee and attribute
authorities. As such, ABS is much better suited to practical inter-domain attribute-based
systems than its encryption counterparts.

Attribute-based authentication and trust-negotiation. ABS can also be used as a more
general fine-grained authentication mechanism. For instance, a server can publish its
access policy for a particular resource along with its encryption public key. When a
client wishes to access the resource, the server issues a random challenge string. The
client can then generate a session key for (private-key) communication, generate an
ABS signature of (challenge, sessionkey) under the server’s policy, and send these to
the server encrypted under the server’s public key. Thereafter, the client and server can
communicate using the shared session key. This simple protocol is robust even against
a man in the middle.

This technique can be extended to multiple rounds as a simple trust negotiation pro-
tocol, in which two parties progressively reveal more about their attributes over several
rounds of interaction. Several recent works also consider cryptographic approaches to
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trust negotiation that give more privacy to users than is achieved when they simply take
turns revealing their attributes [25,15]. Instead of these techniques, ABS can provide
a sophisticated way to reveal partial information about one’s attributes that is natural
for this setting. Being able to bind a message to such a proof about one’s attributes,
as ABS permits, also allows one to protect the trust negotiation from outside attack,
using an approach as above. At each step of the negotiation, the active party can choose
an “ephemeral key” for secure (private-key) communication and sign it using ABS.
This approach prevents a man-in-the-middle attacks by an adversary who has enough
attributes to intercept the first few steps of the negotiation.

Leaking secrets. The classical application for which the notion of ring-signatures was
developed by Rivest, Shamir and Tauman [26] is “leaking secrets,” that we used as the
motivating example in the opening of this paper. Ring signatures support only claim-
predicates which are disjunctions. Mesh signatures are an extension of this concept
which allow more sophisticated claim-predicates, but permit multiple parties to pool
their attributes (atomic signatures). This is not necessarily the intended semantics in
natural secret-leaking environment. ABS, on the other hand, provides the semantics
that a single user (not a coalition) whose attributes satisfy the stated predicate attests to
the secret.
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Abstract. Traceable ring signatures, proposed at PKC’07, are a variant
of ring signatures, which allow a signer to anonymously sign a message
with a tag behind a ring, i.e., a group of users chosen by the signer,
unless he signs two messages with the same tag. However, if a signer
signs twice on the same tag, the two signatures will be linked and the
identity of the signer will be revealed when the two signed messages are
different. Traceable ring signatures can be applied to anonymous write-
in voting without any special voting authority and electronic coupon
services. The previous traceable ring signature scheme relies on random
oracles at its security and the signature size is linear in the number of ring
members. This paper proposes the first secure traceable ring signature
schemes without random oracles in the common reference string model.
In addition, the proposed schemes have a signature size of O(

√
N), where

N is the number of users in the ring.

1 Introduction

1.1 Traceable Ring Signatures

Traceable ring signatures [16], initially proposed at PKC’07, are tag-based ring
signatures with the restriction that a signer may sign messages only once per
tag, where a tag consists of a ring, i.e., a group of users chosen by the signer,
and a string, called the issue, that refers to, for instance, a social problem or an
election. Similar to ordinary ring signatures, traceable ring signatures require no
group manager and no special setup protocol. Traceable ring signatures satisfy
the following security requirements.

– Anonymity - As long as a signer observes the rule that they may sign only
once per tag, his anonymity is guaranteed — it is infeasible for an adversary
to determine which (incorrupted) signer in the ring created the signature,
and whether or not two signatures on different tags are generated by the
same signer.

– Tag-Linkability - If a signer breaks the rule and signs twice on the same
tag, the signatures will be publicly verified as linked; in other words, the
total number of (unlinked) signatures on the same tag is guaranteed to be
at most the total number of ring members.

A. Kiayias (Ed.): CT-RSA 2011, LNCS 6558, pp. 393–415, 2011.
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– Public Traceability - If a signer breaks the rule and signs two different
messages with the same tag, his identity will be publicly traced – the trace
can be done without using any secret information.

– Exculpability - As long as a signer observes the rule, he cannot be accused
of being dishonest by breaking the rule, even if every ring member but him
is corrupted.

Traceable ring signatures were inspired by blind signatures and off-line e-cash
systems in terms of anonymity restriction. Tag-linkability is the ring signature
version of one-more unforgeability in the context of blind signatures, while public
traceability is similar to double-spending traceability in off-line e-cash systems.

Traceable ring signatures can be applied to anonymous write-in voting without
any voting authority [16]. Another application of traceable ring signatures is
an anonymous off-line coupon service, where a service provider issues a tag
consisting of customers’ public keys and the name of a coupon service. Customers
use the tag to make purchases at merchants tied with the service provider, by
producing a traceable ring signature on a challenge message from a merchant,
including the shop id and a nonce selected by the merchant. A merchant checks if
the signature is valid on the tag and the message. Later, the merchant sends the
message and signature pairs to the service provider, which searches all signatures
to find linked pairs. If there are linked signatures, they can trace dishonest
customers because every message, containing the shop id and a nonce chosen by
the shop, should be different.

Fujisaki and Suzuki [16] presented the first traceable ring signature in the
random oracle model, where the signature size of the scheme is linear in the
number of ring members.

1.2 Related Work

Traceable ring signatures are a variant of ring signatures. Ring signatures were
introduced by Rivest et al. [23], which allow a signer to sign a message anony-
mously on behalf of a “ring” of the signer’s choice. A verifier can check the
validity of the signature, but cannot know who generated it among all possible
ring members. In addition, two signatures generated by the same signer are un-
linkable. Rivest et al. suggested that this concept can be useful in anonymous
leaking of secrets, such as a high-ranking government official leaking important
information to the media, by preserving anonymity and verifying the source of
information at the same time.

Since [23], this topic has been studied extensively. Chow et al. [13] suggested
the first construction for ring signatures without random oracles. Bender et al. [3]
refined and strengthened security definitions of ring signatures and showed a con-
struction based on general assumptions, using ZAPs for NP, in the setting of the
refined security definitions. Later, Shacham and Waters [24] and Boyen [6] gave
more efficient constructions without random oracles under the refined definitions
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in [3]. Both schemes are based on pairing assumptions and use common
reference strings. Compared to the constructions in [3], the schemes in [24,6]
are more efficient, but the size of these signatures are still linear in the num-
ber of ring members. Although Dodis et al. [14] suggested a scheme with con-
stant signature size independent of ring members, it relies on the random oracle
model. Chandran et al. [10] proposed a sub-linear size ring signature scheme in
the common reference string model under pairing-based assumptions, which, to
our knowledge, is the only known sub-linear size ring signature scheme without
random oracles.

In ring signatures, the signer is anonymous behind the ring. However, it would
be situationally more desirable that anonymity can be flexibly controlled. Link-
able ring signatures [21,27,22,26,1,12] are a kind of ring signature with an addi-
tional property that two signatures are linked if they are generated by the same
signer with respect to the same ring, but it is unnecessary that linked signatures
are capable of tracing a dishonest signer. Early proposed linkable ring signa-
tures [21,27,22,26] did not take into account insider-attacks1. The insider attack
is a practical threat in practical applications, as shown in Appendix D.

Recently, Au et. al [1] revisited the security definitions, in which insider attacks
were considered. Tsang and Wei [26] proposed a short linkable ring signature
scheme whose signature size is independent of the number of ring members, but
their scheme is based on [14] and hence relies on random oracles. In addition,
it requires a very strong new assumption such that, given two distinct RSA
moduli n1 = p1q1 and n2 = p2q2, an adversary cannot distinguish gp1+q1 from
gp2+q2 , where g is in QR(N) for RSA modulus N . Chow et al. [12] suggested a
short identity-based linkable ring signature from bilinear pairings. All proposals
of linkable ring signature schemes in the literature [21,27,22,26,1,12] rely on
random oracles.

Traceable ring signatures imply linkable ring signatures by incorporating a tag
system into linkable ring signatures. The definition set of traceable ring signa-
tures can be applied to that of linkable ring signatures by modifying the tracing
algorithm, so that it may output the symbol “linked” when two linked signatures
on different messages are given (and the definition of exculpability should be
modified accordingly, but this is straightforward). The definitions derived from
traceable ring signatures are similar to the refined definitions of linkable ring sig-
natures [1]. As also stated in [1], the unforgeability defined in the linkable ring
signature is unnecessary because the linkable ring signature version of the ex-
culpability implies unforgeability, as it does in the traceable ring signature. Our
proposed schemes can be considered as the first linkable ring signature schemes
without random oracles (when seeing our scheme as a linkable ring signature, it
can be further simplified by removing Σ, z, and the associated proofs).

1 In an insider attack, an adversary is given a signing key in the target ring and, after
seeing a ring signature on a message created by a honest signer, he forges a ring
signature on a different message so that two signatures are linked. In [21,27,22,26],
unforgeability is only considered, namely the inability of an adversary to forge a
signature with respect to a ring where he is not given any signing key of the ring.



396 E. Fujisaki

Au et. al [2] suggested a revocable-iff-linked ID-based linkable ring signature
scheme, which is somewhat comparable to a traceable ring signature scheme,
but their proposal is cryptoanalyzed by [19].

The reader should not confuse traceable ring signature schemes with the trace-
able signature schemes proposed by Kiayias et. al [20]. Traceable signature is a
kind of group signature with bi-directional traceability, where there is a group
manager who can reveal all signatures of the target users and all signers of the
target signatures by using his master secret key2.

2 Our Results

The traceable ring signature scheme proposed in [16] is proven secure in the
random oracle model. However, as shown in [9], cryptographic protocols proven
secure in the random oracle model are not always secure in the real world. In
addition, the signature size of the proposal in [16] is linear in the number of
ring members. We propose the first traceable ring signature schemes that are se-
cure without random oracles. These schemes have a signature size of O(k

√
N),

which are comparable to the most efficient ring signature schemes without ran-
dom oracles [10], where k is a security parameter and N is the number of ring
members. Security of our first proposal is based on familiar assumptions in the
pairing-based cryptography except for one, the pseudo-random (PR)-DDHI as-
sumption, which is a slightly stronger analogue of the decisional “bilinear” DHI
assumption [15], and can be justified in the generic group model [25]. Our sec-
ond proposal is a tweak of our first proposal. We can replace the PR-DDHI
assumption with a little bit weaker assumption, called the decisional (D)DHI
assumption, but the second proposal instead requires a bulletin board.

3 Definitions: Traceable Ring Signatures

We provide the definitions of traceable ring signatures based on the original
definitions [16]. The main difference from the definitions in [16] is that in our
definition, we incorporate the common reference string generator with a traceable
ring signature scheme to treat the common reference string model. We also refine
the original definitions to improve readability.

We begin by presenting the functional definition of a traceable ring signature
scheme. Let tag = (tag [1], tag[2]) be a pair of strings. We refer to an ordered
list R = (pk1, . . . , pkN) of public keys as a ring. We assume that tag [2] uniquely
defines a ring R = (pk1, . . . , pkN ). We write [N ] for positive integer N to express
set {1, . . . , N}.

A traceable ring signature scheme is a tuple of five probabilistic polynomial-
time algorithms, TRS := (CRSGen,TRKGen,TRSig,TRVrfy,Trace), such that, for
k ∈ N,
2 In a traceable signature scheme a user can also reveal his identity on his arbitrary

signatures without revealing his identity on the other signatures. A traceable ring
signature scheme is also implicitly equipped with this property (from the definition
of exculapbility).
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– CRSGen(1k), where k is a security parameter, outputs a common reference
string crs .

– TRKGen(crs) outputs a public-key/secret-key pair (pk, sk).
– TRSig(i, sk, crs, tag ,m) outputs a signature sig on a message m ∈ {0, 1}∗

with respect to a tag tag under a common reference string crs using the
secret-key sk, which corresponds to pki in tag [2].

– TRVrfy(crs , tag,m, sig) verifies purported signature sig on m with respect
to tag under crs . It outputs accept if accepting the purported signature;
otherwise, outputs reject.

– Trace(crs , tag,m, sig,m′, sig′) outputs accept, reject, linked or a public key in
the ring R = tag [2]. We assume that it always outputs reject if TRVrfy(crs ,
tag , m, sig) = reject or TRVrfy(crs , tag,m′, sig′) = reject. We also assume
that it always outputs accept or a public key in R if m �= m′, TRVrfy(crs ,
tag , m, sig) = accept and TRVrfy(crs , tag,m′, sig′) = accept. We say that
(tag ,m, sig) is independent of (tag,m′, sig ′) if Trace(crs , tag,m, sig,m′, sig′)
= accept.

We require the following two correctness conditions.

Completeness: For any k ∈ N, N ∈ N, I ∈ [N ], any tag [1] ∈ {0, 1}∗, and
m ∈ {0, 1}∗, if crs ← CRSGen(1k), {(pki, ski)}i∈[N ]← TRKGen(crs), and
sig ← TRSig(I, skI , crs , tag, m), where tag [2] := (pk1, . . . , pkN ), TRVrfy
always accepts (tag ,m, sig), where {(pki, ski)}i∈[N ]← TRKGen(crs) denotes
the sequence of the experiments of (pki, ski)← TRKGen(1k) for i = 1, . . . , N .

Public Traceability: For any k ∈ N, l ∈ N, I, J ∈ [N ], tag [1] ∈ {0, 1}∗,
and m ∈ {0, 1}∗, if crs ← CRSGen(1k), {(pki, ski)}i∈[N ]← TRKGen(crs),
sig ← TRSig(I, skI , crs , tag ,m), and sig′ ← TRSig(J, skJ , crs , tag,m′),
where tag [2] := (pk1, . . . , pkN ),

Trace(crs , tag ,m, sig,m′, sig′) =

⎧⎨⎩accept if I �= J,
linked else if m = m′,
pkI otherwise (m �= m′),

with an overwhelming probability in k.

For simplicity, we generally omit the input “crs” to TRSig, TRVrfy, and Trace.
Similarly, we often omit the input “i” to TRSig, to improve readability.

A secure traceable ring signature scheme satisfies the following security re-
quirements, tag-linkability, anonymity, and exculpability. We give the formal def-
initions in Appendix A.

The outputs of Trace can be interpreted as follows: Trace outputs accept if it
has accepted that (tag ,m, sig) and (tag ,m′, sig′) were created by different users.
If it outputs pkI , it means that the algorithm has judged that user I in ring R
created two signatures on the same tag. If it outputs linked, it means that it has
determined that two signatures are linked. Since public traceability is merely a
correctness condition, the decisions given by Trace are not guaranteed in general.
However, if a traceable ring signature scheme satisfies tag-linkability, anonymity,
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and exculpability, the following is guaranteed: If tag-linkability holds true in a
traceable ring signature scheme, it is guaranteed that a pair of two signatures
accepted by Trace are in fact generated by different signers. If tag-linkability and
exculpability both hold true, it is guaranteed that the user traced by Trace is
really a cheater. However, it is not guaranteed that two “linked” signatures are
created by the same signer. If the tracing algorithm outputs linked, there are
two cases: two signatures are created by the same signer on the same tag and
message, or one of the signatures is intentionally created by a malicious user
so that it is linked with the other signature. One could have a stronger variant
of the definitions, such that Trace outputs linked if and only if two signatures
are in fact created by the same signer, except for where two signatures are
identical. However, the weaker definition is not so problematic because if two
signatures are linked on the same message, we can just regard one of them as a
copy of the other. On the contrary, if two signatures are created on two different
messages with the same tag, it is important to be able to distinguish whether
two signatures are created by the same signer or two different signers.

3.1 (Sender-Anonymous) Bulletin Board Model

Our second proposal is secure under a weaker mathematical assumption than
our first proposal, but it instead requires a bulletin board. A bulletin board is
what one expects, on which every party can see the same contents and append a
new content to them, but no one can modify nor erase the contents. The bulletin
board gives only one user “write” permission at the same time, and the contents
on the board can be parsed into an unique ordered list (a1, . . . , an) according
the order of entries, where each content ai is sent by one party at a time and
a new entry a′ is appended to the list as (a1, . . . , an, a

′). We use the board to
convert a tag into a unique tag id τ of a logarithmic length — a signer registers
a tag on the board and in return obtains τ when producing a signature. In the
first scheme, τ is merely a hash value of a tag, i.e., τ = H(tag), and hence a
bulletin board is unnecessary.

We note that the bulletin board model raises another subtle issue. We expect
that ring signature schemes allow a signer to anonymously produce a signature
behind a ring of his choice. However, if an entry of a tag in the bulletin board
is not “sender-anonymous”, anonymity of a signer is not preserved on ad-hoc
tags. Therefore, we should further assume that each party can make sender-
anonymous entries of tags in the bulletin board. However, we take a note that
sender-anonymous entries of tags are not required in anonymous e-voting or
e-coupon service, and hence the “non-sender anonymous” bulletin board model
also makes sense, in which a signer can anonymously produce ring signatures only
on the registered tags. Technically in the non-seder-anonymous bulletin board
model, the anonymity game can be naturally modified such that an adversary
should make an entry of a tag in the bulletin board before he asks the signing
oracles to return a signature on the tag.
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4 Preliminaries

We use the Boneh, Goh and Nissim (BGN) cryptosystem [5], the Boneh-Boyen
(BB) signature scheme [4] adapted to the composite order bilinear group set-
ting, and non-interactive witness indistinguishable proofs, developed by Groth,
Ostrovsky, and Sahai [17], Boyen and Waters [7] and Groth and Sahai [18]. We
also use, as a building block, the sub-linear size ring signature scheme proposed
by Chandran, Groth and Sahai [10].

Let e : G × G → GT be a non-degenerate bilinear map defined over two
(multiplicative) cyclic groups, G and GT , of order n � pq, where p, q are odd
primes. By bilinearity, we have e(xa, yb) = e(x, y)ab for all x, y ∈ G and a, b ∈
Z/nZ. By non-degeneration, e(g, g) is a generator of GT if g is a generator of G.
We require that group operations, group membership, random sampling from
G, and the bilinear map be efficiently computable. We write Gp and Gq for the
unique subgroup of G that have order p and order q, respectively. Note that for
every x ∈ G, xp(� xq) ∈ Gp. We denote by GenBGN the BGN generator that
takes a security parameter 1k and outputs Γ = (G,GT , n, e, g) and (p, q), where
n = pq.

We recall the following assumptions.

Definition 1 (Subgroup Decision Assumption [5]). We say that the sub-
group decision assumption holds if there is a BGN generator GenBGN , such
that for any non-uniform adversary A, |Pr[Γ ← GenBGN(1k); r ←R (Z/nZ)× :
C(Γ, gr) = 1] −Pr[Γ ← GenBGN(1k); r ← (Z/pZ)× : A(Γ, gqr) = 1]| = negl(k).

Definition 2 (Strong Diffie-Hellman Assumption in Gp [4]). Let gp = gq

and Gp = 〈gp〉. The Q-SDH assumption holds in Gp if given (e, p, gp, g
x
p , gx2

p , . . . ,

gxQ

p ), no adversary can output (c, g
1

x+c
p ) ∈ (Z/pZ)× × Gp with a non-negligible

probability. The probability is taken over random x ∈ Z/pZ and random coins of
GenBGN (1k).

We regard the BB signature σx(m) = g1/(x+m) as a pseudo random function. Of
course, due to the bilinear map, σx(m) is distinguishable from a random element
in G if g, gx are both given and hence gx is not given to the adversary.

Definition 3 (Pseudo-Random DDHI Assumption in Gp). Let Γ , gp =
gq, and Gp be mentioned above. Let A be an adversary that takes (Γ, (p, q), gp)

and may have access to the BB signature oracle σx,gp(·) = g
1

x+·
p with queries

in [Q′] = {1, . . . , Q′} or access to a random function rand : [Q′] → Gp, and
finally outputs a single bit to distinguish which oracle he has accessed. We
define the advantage of A as AdvQ′−PRDDHI

Gp
(A)(k) � |p1 − p0|, where p1 =

Pr[Γ ← GenBGN (1k);x ←R Z/nZ : A(e, p, gp)σx,gp (·) = 1], and p0 = Pr[Γ ←
GenBGN (1k) : A(e, p, gp)rand(·) = 1]. We say that the Q’-PR-DDHI assump-
tion holds in Γ if for any non-uniform adversary A, AdvQ′−PR−DDHI

Γ (A)(k) is
negligible in k.
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We also assume a weaker version of the PR-DDHI assumption.

Definition 4 (Decisional Diffie-Hellman Inversion Assumption in Gp).
Let A be an adversary. Let Γ , gp and Gp be mentioned above. Let τ ∈ [Q′]
= {1, . . . , Q′}. We define the advantage of A on τ as AdvQ′−DDHI

Gp
(A, τ)(k) �

|p1 − p0|, where p1 = Pr[Γ ← GenBGN (1k);x ←R Z/pZ : A(e, p, gp, g
1

x+1
p , . . .,

g
1

x+Q′
p ) = 1], and p0 = Pr[Γ ← GenBGN (1k);x ←R Z/pZ; α ← Gp : A(e, p, gp,

g
1

x+1
p , . . ., g

1
x+τ−1
p , α, g

1
x+τ+1
p , . . ., g

1
x+Q′
p ) = 1]. We say that the Q’-DDHI as-

sumption holds in Gp if for any non-uniform probabilistic polynomial-time (in
k) algorithm A and any τ ∈ [Q′], AdvQ′−DDHI

Γ (A, τ)(k) is negligible in k.

This assumption is a tweak of two existing assumptions [15,8]. Dodis and Yam-
polsky [15] proposed an indistinguishability assumption based on bilinear groups,
calledQ′-decisional bilinear DHI assumption, defined as the inability of an adver-
sary to distinguish e(g, g)1/x from a random element in GT , given g, gx, . . . , gxQ′

∈ G. Camenisch, Hohenberger, and Lysyankaya [8] proposed a similar assump-
tion, where gx is given to an adversary but G is not equipped with a bilinear
map.

Although it is obvious that the Q′-PR-DDHI assumption implies the Q′-DDHI
assumption for same Q′, the following is also true:

Theorem 1. The Q′-PR-DDHI assumption holds if the Q′-DDHI assumption
holds, when Q′ = O(poly(k)).

The proof can be provided by a standard hybrid argument and hence omitted.
In the full version, we examine these assumptions in the generic group model [25].

The O(2k)-PR-DDHI assumption is stronger than the O(poly(k))-DDHI assump-
tion, but they are comparable when analyzed in the generic group model.

We note that if the DDHI assumption or the PR-DDHI assumption holds true
in Gp and Gq, it also holds true in G = Gp ×Gq.

4.1 NIWI Proofs

We use the BGN commitment scheme: We say that Γ ∗ = (G,GT , n, e, g, h) is
the BGN commitment public-key, where h (�= g) is a generator of G. To com-
mit to message m ∈ G, we compute c = mhr with randomness r ∈ Z/nZ.
The commitment c perfectly hides m. On the other hand, c uniquely determines
the projection of m on Gp if h is a generator of Gq. We also commit to mes-
sage m ∈ Z/nZ by computing c = gmhr, which perfectly hides m, whereas c
uniquely determines m mod p if h is a generator of Gq. We use non-interactive
witness indistinguishable proofs [7,18,10] based on the BGN commitments de-
scribed above. The public-key Γ ∗ = (n,G,GT , e, g, h) for the perfectly-hiding
commitment scheme is used as the common reference string for these NIWI
proofs.
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We define the following languages: LBB � {(C, v, L) ∈ G × Z/nZ × G | ∃x ∈
Z/nZ s.t. Cp = gx

p ∈ Gp ∧ Lp = g
1

x+v
p ∈ Gp} and L1

N � {(C,R) ∈ G×GN | ∃i ∈
[N ] s.t. Cp = (Yi)p ∈ Gp}, where R = (Y1, . . . , YN ) ∈ GN . As defined above,
we write xp for x ∈ G to denote xq. We use the following NIWI proofs for the
above languages. All the proofs are perfectly witness indistinguishable when h
has order n, whereas perfectly sound if h has order q:

NIWI proof that (C, v, L) ∈ LBB [18]: Common input: (C, v, L) ∈ G×Z/nZ×G.
Witness to the prover: (y, σ, r, s) ∈ G× G× Z/nZ× Z/nZ, such that C = yhr,
L = σhs and e(gvy, σ) = e(g, g). NIWI proof: π = (gvys)Lr. The verifier accepts
if and only if e(gvy, L) = e(g, g) · e(h, π). This protocol is perfectly witness
indistinguishable when h has order n, whereas the protocol is perfectly sound
when h has order q.

NIWI proof that (C,R) ∈ L1
2: Common input: (C,R) where R = (Y1, Y2) ∈ G2.

Witness to the prover: (i, r) ∈ {1, 2} × Z/nZ such that C = Yih
r. NIWI

proof: (α1, πα, πC), which constructed as follows: The prover picks up a ←R

Z/nZ; sets αi = gha and α1−i = h−a; computes πα = (g2i−1ha)a; and πC =
g−rY a

i Y
−a
1−i. The verifier retrieves α2 = gα−1

1 and accepts if e(α1, α2) = e(h, πα)
and e(Y1, α1) · e(Y2, α2) = e(g, C) · e(h, πC). This proof is a special case of the
NIWI proof on L1

N , where N = 2. This protocol is perfectly witness indistin-
guishable when h has order n, whereas the protocol is perfectly sound when h
has order q.

NIWI proof that (C,R) ∈ L1
N [10]: Common input: (C,R) where

R = (Y1, . . . , YN ) ∈ GN . Witness to the prover: (i, Yi, r) ∈ [N ] × Z/nZ such
that C = Yih

r. The O(
√
N) size NIWI proof was proposed by Chandran, Groth

and Sahai [10]. Due to the space limitation, we give this protocol in Appendix B.
This protocol is perfectly witness indistinguishable when h has order n, whereas
the protocol is perfectly sound when h has order q.

5 The First Proposal

In this section, we present a sub-linear size traceable ring signature scheme
without random oracles based on the BGN cryptosystem. The basic idea for our
construction is to incorporate the intersection technique suggested in [16] into
the Chandran-Groth-Sahai (CGS) ring signature [10]. We start by describing the
CGS ring signature [10] and then give a naive construction of a traceable ring
signature to help the reader’s understanding, along with some security problems.
Finally, we show how to fix the problems and provide a full description of our
scheme. Let Γ ∗ = (G,GT , n, e, g, h) be the BGN commitment public-key, where
h (�= g) is a generator of G, as described in Sec. 4. We write S[i] to denote the i-
th entry in the ordered list S = (S[1], . . . , S[i], . . .). We let [N ] denote {1, . . . , N}
for integer N .
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The CGS Ring Signature. Let the BGN commitment public-key Γ ∗ be the
common reference string. Let R = (Y1, . . . , YN ) be a ring of public key Yi = yih

d,
where yi = gxi and i ∈ [N ] (In the original version [10], Yi = gxi , whereas we
use commitment Y = yhd to y(= gx) as a public-key because we later open
the BB signature σx(·) = g

1
x+· and regard it as pseudo random). The CGS ring

signature on message m with secret key (xI , d) of public key YI in ring R is
produced as follows: The signer first generates a pair of verification and signing
keys (vk, sk) of a one-time signature. He then computes the BB signature on
message vk, as σxI (vk). He then commits to yI in commitment C = yI · hr

and similarly to σxI (vk) in Lvk = σxI (vk) · hs. He then creates NIWI proof
πC,vk,Lvk

such that (C, vk, Lvk) ∈ LBB = {(C, v, L) | ∃x ∈ Z/nZ s.t. Cp = gx
p ∈

Gp ∧ Lp = g
1

x+v
p ∈ Gp}. He also produces a NIWI proof, ΠC,R, such that

(C,R) ∈ L1
N = {(C,R) ∈ G × GN | ∃i ∈ [N ] s.t. Cp = (Yi)p ∈ Gp}, where

R = (Y1, . . . , YN ) ∈ GN . The signer finally makes a one-time signature on ev-
erything above, otsig = otSignsk (m, vk,R,C, Lvk, πC,vk,L, ΠC,R), and outputs
(vk, otsig , C, L, πC,vk,L, ΠC,R). The size of this proof is O(

√
N), so is that of

the whole proof. This ring signature scheme is perfectly anonymous when the
common reference string is honestly generated (namely, when the order of g is
n). It is also existentially unforgeable, under the subgroup decision assumption,
the strong Diffie-Hellman assumption, and the assumption that the one-time
signature is unforgeable.

Toward Our Construction. As an intermediate, we consider a naive construc-
tion, which is insecure but makes it easy to understand the concept of our
construction.

Let Γ ∗ be the common reference string as above. Let R = (Y1, . . . , YN ) be a
ring of public keys as above. Let signer I compute a pseudo random function
FxI (tag), where tag is a tag. We view the BB signature as a pseudo random
function, i.e., FxI (tag) = σxI (tag) = g

1
xI+tag ∈ G. Remember that since yI = gxI

is committed to in YI , the bilinear map does not help to distinguish the output
of F from a random element. Let σI = FxI (tag). Let signer I compute Q =
(σI ·g−H(tag,m))I−1

. We let Σ(tag ,m) � {σi|σi = gH(tag,m)Qi for i ∈ [N ]}. Note
that Σ(tag,m) lies on the line uniquely determined by H(tag,m) and σI . What
we want to do next is to let the signer I prove that he has honestly produced σI

in a non-interactive zero-knowledge manner. Apparently, he could do this in the
BGN setting. In fact, he can produce a non-interactive zero-knowledge proof Π ′

such that there exists i ∈ [N ], such that (Yi, tag , σi) ∈ LBB , where Yi = R[i] and
σi = Σ(tag,m)[i]. The proof Π ′ can be constructed as follows: Commit to yI

and σI in commitments, C = yIh
r and L = σIh

s′
, respectively; produce NIWI

proof πC,tag,L such that (C, tag , L) ∈ LBB , as described in Sec. 4.1; produce
NIZK proofs, ΠC,R and ΠL,Σ, such that (C,R) ∈ L1

N and (L,Σ(tag,m)) ∈ L1
N ,

respectively (To convert an NIWI proof in L1
N to an NIZK one, we use the

standard technique, where we append Y0 (resp. σ0) to the common reference
string, make an NIZK proof in L1

N based on an NIWI proof in L1
N+1, and

use the secret of Y0 (resp. σ0) when simulating the protocol); finally, make an
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NIZK proof such that the same I is used in both ΠC,R and ΠL,Σ , which can be
constructed based on the NIWI protocol in Appendix C (End of Π ′). The signer
then produces the CGS ring signature above, except that everything produced
using the intersection technique is added to the message to be signed by the
one-time signature. Namely, otsig = otSignsk (m, vk,R,C, Lvk, πC,vk,L, ΠC,R,
tag, L,Q,Π ′).

This construction has a signature size of O(
√
N) because Σ(tag,m) is

retrieved only from H(tag,m) and Q, and the length of Π ′ is O(
√
N).

The public tracing algorithm outputs I if there is I for Σ(tag,m) and
Σ(tag,m′), with m �= m′, such that σ = σ′ where σ = Σ(tag,m)[I] and
σ′ = Σ(tag ,m′)[I].

This naive construction satisfies anonymity and public traceability: Let
Σ(I, tag, m) = Σ(tag,m) such that Q = g

( 1
xI+tag −H(tag,m))·I−1

. We assume the
BB signature to be pseudo random. Then, Σ(I, tag ,m) is computationally in-
distinguishable from Σ(J, tag ′,m′), roughly if I �= J (i.e., if generated by dif-
ferent signers) or tag �= tag ′ (i.e., if signed on different tags). On one hand, if
signer I honestly signs two different messages, m and m′, with the same tag ,
his identity will be revealed because the lines, Σ(tag,m) and Σ(tag,m′), will
intersect at a unique point, (I, σI), except for the unlikely case of H(tag ,m) =
H(tag,m′). We stress that proof Π ′ should be zero-knowledge instead of witness
indistinguishable, because Σ(I, tag,m) is only computationally indistinguish-
able from Σ(J, tag,m). In general, two witness indistinguishable proofs are not
known indistinguishable when the inputs to the proofs are just computational
indistinguishable.

The naive construction does not satisfy tag-linkability and exculpability, how-
ever. This mainly comes from the following two reasons:

– Proof Π ′ is not sufficient to make a malicious signer honestly generate σI .
Π ′ only proves that, when the order of h is q, the projection of σI on Gp is
the BB signature w.r.t. YI on Gp. Therefore a malicious signer I can make
σI such that σI = g

1
xI+tag hr for random r and show that the projection of

σI on Gp satisfies the statements (on Gp). Therefore, the malicious signer
can make two different tokens, σI = g

1
xI+tag hr and σ′I = g

1
xI+tag hr′

, in two
signatures with respect to the same tag. We cannot trace him with σI and
σ′I , because σI �= σ′I .

– The other problem is how to prevent two malicious signers, say j and k,
with j �= k, from producing the signatures when they collaborate such
that σ(j)

I = σ
(k)
I , where Σ(j, tag,m) = (σ(j)

1 , . . . , σ
(j)
N ) and Σ(k, tag,m′) =

(σ(k)
1 , . . . , σ

(k)
N ). If they can do so, they succeed in trapping I (to break excul-

pability). The original intersection technique in [16] used the unpredictability
of the output of random oracles at this crucial point, but we cannot use the
random oracles.

As for the first issue, it seems difficult to prove that a signer honestly creates
σI . We instead make him generate it in such a way that he can never output
two different σI ’s on the same tag by letting him produce π associated with σ
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such that e(σ, ĥ) = e(g, π), where ĥ is a random element in G, to be appended
to the common reference string3. If a malicious signer can create both (σ, π)
and (σ′, π′), with σ �= σ′ but σq = (σ′)q, he can distinguish whether ĥ has
order n or p because π �= π′ if #〈h〉 = n; otherwise, π = π′, which contradicts
the subgroup-decision assumption. More specifically, we let a signer generate πQ

such that e(Q, ĥ) = e(g, πQ), instead of π such that e(σI , ĥ) = e(g, π), so as not
to reveal the identity of I.

To fix the second problem, we introduce two more tokens, z and στ2 . Let τ0
be a random element in Z/nZ and z = σxI (τ0). Let πz be the proof mentioned
above such that e(z, ĥ) = e(g, πz). We append τ0 to the common reference string.
We replace a public-key Y with pk = (Y, z, πz, π

TRKGen), where πTRKGen is an
NIZK proof for (Y, τ0, z) ∈ LBB. Let τ1 and τ2 be strings such that they are
uniquely determined by tag, such that τ1(tag) �= τ2(tag ′) for every tag and tag ′.
We set σI � σxI (τ1), instead of σxI (tag). We let signer I produce στ2 � σxI (τ2)
along with the associated proofs (to show that στ2 is constructed appropriately),
to append them to the signature. We modify the signature verification as the
verifier rejects a signature w.r.t. ring R if there is z(j) = z(k), j �= k, with
z(j) ∈ pk(j) = R[j] and z(k) ∈ pk(k) = R[k]. We also modify the public tracing
algorithm so that it may regard two signatures as independent if σ(j)

τ2 �= σ
(k)
τ2 ,

regardless of the fact that there is I ∈ [N ] such that σ(j)
I = σ

(k)
I . Now assume

that the malicious signers above, j and k, can create σ(j)
I = σ

(k)
I on the condition

that

– z(j) = σxj (τ0), σ
(j)
j = σxj (τ1), and σ(j)

τ2 = σxj (τ2).

– z(k) = σxk
(τ0), σ

(k)
k = σxk

(τ1), and σ(k)
τ2 = σxk

(τ2).

To break exculpability, they are now additionally required to produce z(j) �= z(k)

and σ(j)
τ2 = σ

(k)
τ2 . We stress that σ(j)

τ2 = σ
(k)
τ2 occurs only if xj = xk (under the

subgroup decision assumption). If so, it leads to z(j) = z(k) and the signatures
do not pass the signature verification test.

5.1 The Full-Fledged Scheme

We now provide the full-fledged scheme.

Common Reference String. CRSGen(1k) does the following: Given 1k, run the
BGN generator GenBGN with 1k to get (G,GT , n, p, q, e, g), where G = 〈g〉 and
n = pq. Pick up randomly hash H : {0, 1}∗ → Z/nZ from collision resistant
hash family Hk. Similarly, pick up randomly hash H ′ : {0, 1}∗ → {0, 1}k−1 from
collision resistant hash family Hk−1. Pick up randomly γ, γ̂ ←R (Z/nZ)× to
set h = gγ and ĥ = gγ̂ , which are also generators of G. Pick up at random
τ0 ←R Z/nZ and Y0, σ0 ←R G. Output as the common reference string, crs =
(Γ ∗, Y0, σ0, ĥ, τ0, H,H

′), where Γ ∗ = (G,GT , n, e, g, h).
3 We note that (σ, π) construct a simulatable verifiable random function [11] with

computational verifiability on public parameter (Γ ∗, ĥ, Y ).
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Key Generation. TRKGen(crs) does the following: Given crs = (Γ, Y0, σ0, τ0,H),
pick up at random x, d ←R Z/nZ to compute y = gx, Y = yhd, z = g

1
x+τ0 ,

and πz = ĥ
1

x+τ0 . Produce (adaptive unbounded) NIZK proof πTRKGen in the
common string crs that proves (Y, τ0, z) ∈ LBB. Output (pk, sk), where pk =
(Y, (z, πz, π

TRKGen)) and sk = (x, d). NIZK proof πTRKGen is constructed as fol-
lows: The prover picks up at random r, s ←R Z/nZ and computes C = Y hr

and L = zhs. Then he produces NIWI proofs such that (C, τ0, L) ∈ LBB ,
(C, (Y0, Y )) ∈ L1

2, and (L, (σ0, z)) ∈ L1
2, respectively. He outputs (C,L) and

these NIWI proofs.

Public Keys and Rings. We let R = (pk1, . . . , pkN ) be an ordered set of public
keys. We write RY to denote (Y1, . . . , YN ), where pki = (Yi, (zi, πzi , π

TRKGen
i )).

Signature Generation. TRSig((xI , dI), crs , tag,m) does the following, where
tag = (issue, R) and YI = gxIhdI ∈ RY :

1. Hash tag = (issue, R) to τ = H ′(tag) of (k−1)-bit length string. Set τ1 = 0||τ
and τ2 = 1||τ (=2k−1 + τ), so that τ1 �= τ2 for every possible τ1, τ2.

2. Generate (vk, sk) ← otGen(1k), which is a pair of verification and signing
keys for a one-time signature scheme.

3. Compute the BB signatures: σvk = g
1

xI+vk , σI = g
1

xI+τ1 , and στ2 = g
1

xI+τ2 .
4. Generate πτ2 = ĥ

1
xI+τ2 , which is the proof that the signer cannot make

another σ′τ2
, such that σ′τ2

�= στ2 ∈ G and (σ′τ2
)q = (στ2)q ∈ Gp.

5. Commit to σvk by computing Lvk = σvkh
svk .

6. Compute Q = (σIg
−H)

1
I ∈ G, where H =H(tag ,m). For every i ∈ [N ], with

i �= I, compute σi := gHQi ∈ G to set an ordered list Σ = (σ1, . . . , σN ).
Note that it holds σi = gHQi for every i ∈ [N ].

7. Compute πQ = ĥχ where χ = ((xI + τ1)−1 − H) · I−1 mod n, where πQ is
the proof that the signer cannot make another Q′ such that Q �= Q′ ∈ G
and Qq = (Q′)q ∈ Gp.

8. Produce a NIZK proof πTRS to prove (RY , vk, τ1, τ2, Lvk, Σ, στ2) ∈ LTRS �

{(RY , (vk, τ1, τ2), Lvk, Σ, στ2)| ∃ i s.t. (Yi, vk, Lvk), (Yi, τ1, σi),
(Yi, τ2, στ2) ∈ LBB},

where the soundness holds when the order of h is q. The proof is constructed
as follows:
– Commit to yI , σI , and στ2 in C, L, and Lτ2, respectively.
– Prove (C, τ1, L), (C, vk, Lvk), (C, τ2, Lτ2) in LBB in a NIWI manner, as

described in Sec. 4.1.
– Set R̂Y as (Y0, Y1, . . . , YN ) and Σ̂(I, tag ,m) as (σ0, σ1, . . . , σN ).
– Then prove that (C, R̂Y ) and (L, Σ̂(I, tag ,m)) in L1

N+1 in a NIWI man-
ner (as described in Sec. 4.1 and Appendix B), by using witness YI′ and
σI , respectively. In fact, I ′ = I if the signer is honest. Finally, prove that
I ′ = I using the NIWI protocol as described in Appendix C.
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9. Produce one-time signature otsig = otSignsk(tag ,m, vk, Lvk, Q, πQ, στ2 , πτ2 ,
πTRS).

10. Output signature sig = (vk, Lvk, Q, πQ, στ2 , πτ2 , πTRS , otsig) on message m
with respect to tag = (issue, R).

Signature Verification. TRVrfy(crs , tag,m, sig) does the following:

1. Retrieve R = (pk1, . . . , pkN ) from tag , where pki = (Yi, (zi, πzi , π
TRKGen
i )).

Reject if there is i ∈ [N ] such that e(zi, ĥ) �= e(g, πzi), or πTRKGen
i is invalid,

or there is i, j ∈ [N ], with i �= j, such that zi = zj .
2. Reject if e(Q, ĥ) �= e(g, πQ) or e(στ2 , ĥ) �= e(g, πτ2).
3. Retrieve Σ = (σ1, . . . , σN ) from Q and H = H(tag,m), by computing σi =
gHQi for every i ∈ [N ].

4. Reject if otVrfyvk((tag ,m, vk, Lvk, Q, πQ, στ2 ,πτ2 , πTRS), otsig) �= accept.
5. Accept if the proof πTRS is valid, otherwise reject.

Public Tracing. Trace(crs , tag ,m, sig,m′, sig ′) does the following:

1. Reject if TRVrfy(tag ,m, sig) �= accept or TRVrfy(tag ,m′, sig ′) �= accept,
otherwise

2. Retrieve vk,Σ = (σ1, . . . , σN ) and στ2 from the first signature, and vk′,
Σ′ = (σ′1, . . . , σ

′
N ) and σ′τ2

from the second signature.
3. Accept if στ2 �= σ′τ2

, or there is no i ∈ [N ] such that σi = σ′i, otherwise,
4. Output linked if m = m′, otherwise
5. Output pki by choosing a random i from a set {i} ⊂ [N ] such that σi = σ′i.

The proposed scheme satisfies the following theorems, whose proofs are given in
the full version.

Theorem 2. The proposed scheme is strongly tag-linkable under the subgroup
decision assumption.

Theorem 3. The proposed scheme is anonymous if the 2k-PR-DDHI assump-
tion holds in Gp and Gq.

Theorem 4. The proposed scheme is exculpable under the subgroup decision
assumption, the strong DH assumption (in Gp), and the unforgeability of one-
time signature.

6 The Second Proposal

Our second proposal is a tweak of our first proposal defined in a slightly dif-
ferent security model. The second scheme requires a unique bulletin board in
which every party can make entries of tags. A tag id τ is an integer determined
automatically in order of entries of tags into the bulletin board. As mentioned in
Sec. 3.1, it is optional whether one can anonymously make an entry of a tag or
not. The second proposal is the same as the first proposal except that a signer
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takes as input not a tag itself but the corresponding tag id, and set τ1 := 2τ and
τ2 := 2τ + 1, when producing a traceable ring signature. Since the total number
of registered tags is at most polynomial in k, we can replace the 2k-PR-DDHI
assumption with the Q′-DDHI assumption, where Q′ is the maximum number
of queries that an (polynomially-bounded) adversary submits to signing oracles
in total.

7 Conclusions

We presented the first two secure traceable ring signature schemes without ran-
dom oracles. The proposed schemes have a signature size of O(

√
N), which is

comparable to the most efficient ring signature schemes without random ora-
cles, where N is the number of the ring members. The assumptions used for
each scheme are well known in the paring-based cryptography, except for one.
The first proposal requires the 2k-PR-DDHI assumption, while the second one
instead assumes the Q′-DDHI assumption for some polynomial Q′, where the
later assumption is an analogue of the Q′-DBDHI assumption [15]. Although the
O(2k)-PR-DDHI assumption is stronger than the O(poly(k))-DDHI assumption
in general, the complexity of breaking the both assumptions are comparable in
generic group attacks [25], which we provide in the full version. In addition, the
second proposal requires a bulletin board.
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A Security Requirements of Traceable Ring Signature

Here we give the formal security definitions of tag-linkability, anonymity, and
exculpability.

Global Setup. In our model, we allow for a global setup by an authority to
produce a common reference string.

Common Setting. We assume there is a global public-key list maintained prop-
erly: A public-key should be referred to only one user. An adversary may append
new public-keys to the global public-key list with dishonest users’ names in any
timing during the games of tag-linkability, anonymity, and exculpability. In the
games, the adversary is basically allowed to choose arbitrary subsets in the global
public-key list and make arbitrary ordered lists as the sub-rings when having ac-
cess to signing oracles, called the adversarially-chosen-key-and-sub-ring attack
due to [3], unless the choices of the subring cause the trivial attacks that the
traceable ring signatures can never avoid.

(Strong) Tag-Linkability. The tag-linkability is to hold the robustness of a trace-
able ring signature scheme. Informally, it is measured as the inability of an ad-
versary to create signatures, each of which are mutually independent, such that
the number of them is more than the number of the signing keys in the ring that
he owns. More precisely, an adversary is given a set of public keys R̂ and allowed
to append a polynomial number of new public keys to the global public-key list
in any timing and may have access to signing oracle TRSig(·, crs , ·, ·) with query
of form (pk, tag ′,m′), where pk ∈ tag[2]∩ R̂. Finally, he outputs a tag with ring
R of N public keys, in which N − k public-keys, 0 ≤ k ≤ N , belongs to R̂, and
also outputs k+1 message/signature pairs, (m(1), sig(1)), . . ., (m(k+1), sig(k+1)),
such that TRVrfy(crs , tag ,m(i), sig(i)) = accept for every i ∈ [k + 1]. We say
that the adversary wins if every signature outputted by him are mutually inde-
pendent and they are also independent of every signature asked to the signing
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oracle. If a traceable ring signature scheme stands the attacks, we say that the
traceable ring signature holds (k,N)-tag-linkability. We say that a traceable ring
signature scheme is strongly tag-linkable if it holds (N,N)-tag-linkability. If a
traceable ring signature scheme holds exculpability, then (k,N)-tag-linkability
implies (k − 1, N)-tag-linkability. We will define a standard unforgeability for a
traceable ring signature later. From the definitions, (0, N)-tag-linkability implies
the unforgeability if exculpability holds. Namely, if a traceable ring signature
holds tag-linkability and exculpability, it also holds the unforgeability, which we
will prove later.

We formally restate the strong tag-linkability. Note that it is unnecessary for
an adversary to take a set of public keys as input and to have access to the
signing oracle in the strong tag-linkability. Let F be an adversary. It takes a
common reference string crs and tries to output tag = (issue, R) and (N + 1)
message/signature pairs, {(m(i),sig(i))}i∈[N+1], where R = (pk1, . . . , pkN ). We
define the advantage of F against TRS to be

Advsforge
TRS (F )(k) � Pr[ExptF (k) = 1]

where ExptF (k) is: crs ← CRSGen(1k); tag, {(m(i), σ(i))}i∈[N+1] ← F (crs); re-
turn 1 iff Trace(tag ,m(i), sig(i),m(j), sig(j)) = accept for all i, j ∈ [N +1], where
i �= j.

Definition 5. We say that TRS is strongly tag-linkable if for any non-uniform
probabilistic polynomial-time (in k) algorithm F , Advsforge

TRS (F )(k) is negligible in
k.

Anonymity and exculpability are to protect honest user(s) from the rest of all
players (plus the authority in the case of the untrusted common reference string
model). In the games of anonymity and exculpability, an adversary is given the
target public key(s) and allowed to append a polynomial number (in total) of
new public keys to the global public-key list in any timing. Possibly, these public-
keys can be related to the given target key(s). The adversary may have access
to signing oracles in the manner of the adversarially-chosen-key-and-sub-ring
attack [3], unless the choices of the subring cause the trivial attacks that the
traceable ring signatures can never avoid.

Anonymity. Let D be an adversary. Let crs be a common reference string gen-
erated by CRSGen. Let pk0, pk1 be the two target public keys, where (pk0, sk0)
and (pk1, sk1) are generated by TRKGen(crs). Let b ∈ {0, 1} be a random hidden
bit. D takes common reference string crs and the target public keys, pk0 and
pk1, and outputs bit b′ after doing the following a polynomial number of times
in an arbitrary order: D may append new public keys to the global public-key
list and have access to two types of signing oracles, chTRSigO and TRSigO, such
that

– chTRSigO(crs , b, sk0, sk1, ·, ·) is the challenge signing oracle that takes query
(tag ,m), where tag = (issue, R), and outputs sig generated by
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TRSig(skb, crs, tag ,m) if pk0, pk1 ∈ tag[2](= R), otherwise outputs ⊥, where
b is the hidden challenge bit.

– TRSigO(crs , sk0, sk1, ·, ·, ·) is the signing oracle that takes query (i, tag ,m),
where i ∈ {0, 1}, and outputs sig generated by TRSig(ski, crs , tag,m) if pki

∈ tag [2](= R), otherwise outputs ⊥.

To avoid the trivial attacks, the following patterns of queries are prohibited:

– D submits two queries of different messages with the same tag, i.e., (tag ,m)
and (tag ,m′), where m �= m′, to chTRSigO.

– D submits (tag , ·) to chTRSigO and (·, tag , ·) to TRSigO.

We define the advantage of D against TRS to be Advanon
TRS (D)(k) � |p1 − p0|,

where p1 =

Pr

⎡⎣ crs ← CRSGen(1k);
(pk0, sk0)← TRKGen(crs); : DchTRSigO(crs,sk1,··· ),TRSigO(crs , pk0, pk1) = 1
(pk1, sk1)← TRKGen(crs)

⎤⎦ ,
and p0 =

Pr

⎡⎣ crs ← CRSGen(1k);
(pk0, sk0)← TRKGen(crs); : DchTRSigO(crs,sk0,··· ),TRSigO(crs , pk0, pk1) = 1
(pk1, sk1)← TRKGen(crs)

⎤⎦ .
Definition 6. We say that TRS is anonymous if, for every non-uniform prob-
abilistic polynomial-time (in k) adversary D, the advantage Advanon

TRS (D)(k) is
negligible in k.

By definition, traceable ring signature schemes do not stand against attribution
and full-key exposure attacks, defined in [3]. In the attribution (resp. full-key
exposure) attacks, all but one secret key (resp. all secrets) in the ring are exposed
to the adversary, which condition is incompatible with public traceability.

Exculpability. Let A be an adversary and let crs be a common reference string
generated by CRSGen. Let pk be the target public key, where (pk, sk) is generated
by TRKGen(crs). A takes crs and the target pk and does the following a poly-
nomial number of times in an arbitrary order. A may append new public keys
to the global public-key list and have access to signing oracle TRSig(sk, crs , ·, ·)
with query ( ˆtag , m̂), where pk ∈ ˆtag . Finally, A outputs two message/signature
pairs with the same tag, (tag ,m, sig) and (tag ,m′, sig ′), such that m �= m′ and
pk ∈ tag . We say that A wins if pk = Trace(tag ,m, sig,m′, sig ′) and at least
one of the two messages, i.e., (tag,m) or (tag ,m′), was not asked to TRSig. The
advantage of A against TRS is defined as Advframe

TRS (A)(k) �

Pr

⎡⎣ crs ← CRSGen(1k);
(pk, sk)← TRKGen(crs); : pk = Trace(tag,m, sig ,m′, sig ′)
(tag ,m, sig,m′, sig ′)← ATRSigsk(crs , pk)

⎤⎦
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Definition 7. We say that TRS is exculpable if, for any non-uniform probabilis-
tic polynomial-time adversary A, Advframe

TRS (A)(k) is negligible in k.

We do not provide any additional security requirement on a traceable ring signa-
ture. One might think that some unforgeability requirement might be necessary.
However, if tag-linkability and exculpability both hold, a reasonable definition of
unforgeability also holds. We define unforgeability on a traceable ring signature
as the inability of an adversary to forge a signature on a fresh message with
respect to a tag such that he is not given any signing key of the tag, after he
was given a set of public keys R̂, he appended new public keys to the global
public-key list, and he had access to the signing oracle with query (i, tag,m) to
get TRSig(ski, tag,m), where pki ∈ R̂, polynomial times, where a message being
fresh means that the it has not been asked to the signing oracle.

Lemma 1. If a traceable ring signature scheme is strongly tag-linkable and ex-
culpable, then it is also unforgeable.

Proof. Suppose for contradiction that there is an adversary A′ against unforge-
ability. Let (tag ,m, sig) be the output of A′, where tag = (issue, R), with
#R = N . Note that if (tag,m, sig) is linkable to some (tag ,m′, sig ′) in the
query/answer list between A′ and the signing oracle, Trace outputs a public
key in tag, because m �= m′. It clearly implies breaking exculpability. Therefore,
(tag ,m, sig) should be independent of any (tag ,m′, sig ′) in the query/answer list.
However, it implies breaking strong tag-linkability or exculpability as follows.

Let F be a breaker of strong tag-linkability. F picks up an appropriate num-
ber of pairs of public and secret keys, more than N , and feeds all the public
keys to A′. If A′ submits (i, tag,m) to the signing oracle, F generates the sig-
nature using ski and replies it to A′. When A′ outputs (tag ,m, sig), F creates
N mutually-independent signatures, {(tag,m(1),sig (1)), . . .,(tag ,m(N),sig (N))},
such that m(i) �= m for all i ∈ [N ]. Finally, F outputs {(tag,m(1),sig(1)),
. . .,(tag ,m(N),sig(N)), (tag ,m, sig)} if they are all mutually independent, other-
wise halts.

Let A be a breaker of exculpability. A is given the target public key pk
and allowed to have access to the signing oracle w.r.t. pk. A picks up an ap-
propriate number of pairs of public and secret keys, and feeds all the public
keys plus the target public key to A′. If A′ submits (i, tag ,m) to the signing
oracle, A generates the signature by himself if i does not indicate the tar-
get public key, otherwise asks the signing oracle. In any case, A′ can reply
to A′. When A′ outputs (tag ,m, sig), A creates N mutually-independent sig-
natures, {(tag ,m(1),sig(1)), . . ., (tag ,m(N),sig(N))}, such that m(i) �= m for all
i ∈ [N ], by using the corresponding secret key or by asking the signing oracle. If
Trace(tag,m(i), sig(i),m, sig) = pk for some i ∈ [N ], A outputs
(tag ,m(i), sig(i),m, sig), otherwise halts.

Since m �= m(i), Trace(tag ,m(i), sig(i),m, sig) outputs accept, or a public key
in the ring for any i ∈ [N ]. Let p be the probability that F breaks strong tag-
linkability of the traceable ring signature. Since the view of A′ in the simulation
of F is identical with that of A, it turns out that the probability that A can
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get some public key in the ring is 1− p. Therefore, A can break exculpability at
least (1− p)/N . Since either p or (1− p)/N is non-negligible, the existence of A′

contradicts strong tag-linkability or exculpability. ��

Corollary 1. If a traceable ring signature scheme is (k,N)-tag-linkable and
exculpable, then it is (k − 1, N)-tag-linkable, for any 1 ≤ k ≤ N .

The proof is omitted because it is substantially equivalent to the proof of
Lemma 1.

B Sub-linear Size NIWI proof for L1
L

The following sub-linear size NIWI proof is an essential protocol in the CGS ring
signature scheme [10]. Let L1

L = {(C,R) ∈ G × GL | ∃i ∈ [L] s.t. Cp = (Yi)p ∈
Gp}, where R = (Y1, . . . , YL) ∈ GL. In the original CGS ring signature scheme,
the form of a public-key is y = gx, whereas we use Y = gxhd as a public-key.
The proof is, however, available for both types of public-keys.
Common Reference String: Γ ∗ = (G,GT , n, e, g, h).
Common Input: (C,R), where R = (Y1, . . . , YL).
Witness to P: (I, r) ∈ [L]× Z/nZ such that C = YIh

r.
What to Prove: (C,R) ∈ L1

L.

Prover P

1. If integer L is not a square number, convert it to the least square number L′

more than L and simply copy Y1 many times to make a new ring R′ of L′

public keys. Since L′ < L + 2
√
L + 1, it does not matter in the complexity

sense. We set L′ as L and R′ as R. Let L = m2.
2. Map i ∈ [L] to (i, j) ∈ [m]× [m] (Regard R as m×m matrix). Let (u, v) be

the correspondence to I.
3. Pick up at random t1, . . . , tm−1 ←R Z/nZ and set tm = −

∑m−1
i=1 ti (mod n).

Set αu = ghtu and αi = hti for every i �= u. Note that
∏m

i=1 αi = g.
4. Produce παu = (ghtu)tu and παi = (g−1hti)ti for every i �= u. These are

NIWI proofs to show that every αi, i ∈ [m] commits to either gp or 1 [17,7].
By
∏m

i=1 αi = g, the verifier can be convinced that exactly one α ∈ α that
contains gp.

5. Pick up at random w1, . . . , wm−1 ←R Z/nZ and set wm = −
∑m−1

j=1 wj

(mod n). Set βv = ghwv and αj = hwj for every j �= v. Note that
∏m

j=1 βj =
g.

6. Produce πβv = (ghwv )wv and πβj = (g−1hwj )wj for every i �= v. These are
also NIWI proofs to show that every βj , j ∈ [m], commits to either gp or
1 [17,7]. By

∏m
j=1 βj = g, the verifier can be convinced that exactly one

β ∈ β that contains gp.
7. For every j ∈ [m], compute Aj = Πm

i=1e(αi, Yi,j) (One can see it as α ·R, in
which the element-wise operation between α and Y is defined as e(α, Y )).
Aj = e(g, Yu,j)e(h,

∏m
i=1 Y

ti

i,j), which means that Aj commits to Yu,j .
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8. Pick up at random λ1, . . . , λm ←R Z/nZ to set Bj = Yu,jh
λj . Let πBj =

g−λj
∏m

i=1 Y
ti,j

i,j . Observe that Aj = e(g,Bj)e(h, πBj ), which means that
the prover can convince the verifier, by showing Bj and πBj , that (Bj)p =
(Yu,j)p ∈ Gp for some unknown u.

9. Compute C′ =
∏m

j=1 e(Bj, βj). Note that C′ = e(g, Yu,v)e(h, gλv
∏m

j=1 B
wj

j )
= e(g, C)e(h, πC), where C = Yu,vh

r and πC = gλv−r
∏m

j=1 B
wj

j . Note that
the prover can convince the verifier, by showing πC , that C′ commits to
(Yu,v)p for unknown (u, v).

10. Output (α, β, (παi)i∈[m], (πβj )j∈[m], A, B, (πBj )j∈[m], πC).

Verifier V

1. For every i ∈ [m], verify that e(αi, g
−1αi) = e(h, παi).

2. For every j ∈ [m], verify that e(βj , g
−1βj) = e(h, πβj).

3. Verify
∏m

i=1 αi =
∏m

j=1 βj = g.
4. For every j ∈ [m], compute Aj = Πm

i=1e(αi, Yi,j) and verify Aj

= e(g,Bj)e(h, πBj ).
5. Compute C′ =

∏m
j=1 e(Bj , βj) and verify C′ = e(g, C)e(h, πC).

6. Accept if all the above steps are verified correctly; otherwise, reject.

C NIWI Protocol Such That Same I Is Used in Two
NIWI Proofs for L(1,l)

Let R = (Y1, . . . , Yl) ∈ Gl and Σ = (σ1, . . . , σl) ∈ Gl, where l = m2. Let
ΠC,R be an NIWI proof for (C,R) ∈ L1

l and let ΠL,Σ be an NIWI proof for
(L,Σ) ∈ L1

l , as described in Appendix B. What we further want to show is that
C = YIh

r and L = σIh
s. More precisely, we want to show Cp = (YI)p ∈ Gp and

Lp = (σI)p ∈ Gp.
Common Reference String: Γ ∗ = (G,GT , n, e, g, h).
Common Input: (C,R,ΠC,R, L,Σ,ΠL,Σ).
Witness to P: t = (t1, . . . , tm), w = (w1, . . . , wm), t′ = (t′1, . . . , t

′
m), and

w′ = (w′
1, . . . , w

′
m), such that

– αu = ghtu , αi = hti for every i �= u, βv = ghwv , and βj = hwj for every
j �= v, where i, j ∈ [m].

– α′
u = ght′u , α′

i = ht′i for every i �= u, β′
v = ghw′

v , and β′
j = hw′

j for every
j �= v, where i, j ∈ [m],

where α, β ∈ ΠC,R and α′, β′ ∈ ΠL,Σ.

Prover P: Set γi = αi

α′
i

and δi = βi

β′
i

for every i ∈ [m]. Compute πγi = gti−t′i

and πδi = gwi−w′
i for every i ∈ [m], which proves that all γi and δi commit to 1.

Output γ and δ.

Verifier V: Verify e(γi, g) = e(h, πγi) and e(δi, g) = e(h, πδi) for every i ∈ [m].
Accept if all the above equations are verified correctly; otherwise, reject.
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D Note: Insider Attacks on Linkable Ring Signature

In an insider attack, an adversary is given signing keys (except for that of a
honest signer) of the target ring and, after seeing a ring signature on message m
created by a honest signer, forges a ring signature on different message m′, with
m′ �= m, so that two signatures are linked. In a traceable ring signature scheme,
it is obvious that this attack is a threat to a honest signer, because of traceability
property. This attack is also problematic for a linkable ring signature scheme.
Let us consider an election using a linkable ring signature scheme, in which a
voter can vote only once for a candidate and the candidates who have collected
votes more than a “borderline” are all elected. The following two ways of vote
pigging are considered.

– A dishonest voter votes for two different candidates, A and B, to increase
both candidates’ votes (Of course, due to linkability, these two votes are
linked).

– A dishonest voter who does not want candidate A to be elected, forges a
signature on a vote for B such that it is intentionally linked with a signature
on a vote for A created by a honest voter. His aim is to void a valid vote for
A submitted by the honest voter.

Let us assume that one cannot distinguish the first case from the second one.
We can achieve such a scheme by slightly modifying an existing scheme [21], and
the modified scheme is still “proven secure” in the sense of the definitions in [21].
This election system is vulnerable. You must remove or accept both votes, but
the intentions of the dishonest voters in the two cases above are opposite and
you cannot see which case has occurred.
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