
Chapter 5
Bed-Load Transport

5.1 General

The transport of sediment in rivers, by which the river morphological changes are
closely related, is an important aspect in fluvial processes. The term load, as often
used to define the sediment transport, refers to the quantity of sediment that is
transported in a stream. More specifically, it is used to define the rate (volume or
weight per unit time and width) at which the sediment is transported.

When the bed shear stress s0 induced by the flow exceeds the threshold bed
shear stress s0c for the initiation of sediment motion, the sediment particles
forming the bed are set in motion. The bed-load transport is the mode of sediment
transport where the sediment particles slide, roll, or travel in succession of low
jumps, termed saltation, but belong close to the bed, from where they may leave
temporarily. The dislodgment of the sediment particles is rather intermittent, as
turbulence (velocity fluctuations) interacts with the bed particles randomly to play
an important role in transporting them. It is, however, convenient to distinguish the
modes of sediment transport as bed load (slide, roll, and saltation) and suspended
load. Figure 5.1 presents a schematic of different modes of sediment transport.

At relatively small excess bed shear stress (s0 - s0c), the bed-load transport
takes place in a sliding and/or rolling mode. It therefore describes a sediment
motion generally in contact with the bed; while individual sediment particles have
intermittent motion, but substantially continuous. The bed-load transport in this
mode is known as contact load. With an increase in excess bed shear stress,
increasingly sediment particles are driven streamwise in a short succession of
jumping or bouncing mode of motion, as the particles lose contact with the bed for
a short while to attain a mean height in water of a number of particle diameters.
The bed-load transport in this mode is called saltation. According to Einstein
(1942, 1950), the bed-load transport is defined as the transport of sediment par-
ticles within a thin layer having a thickness of two particle diameters above the bed
by sliding, rolling, or traveling in succession of jumps with a streamwise distance
of a few particle diameters. On the other hand, Bagnold (1956) defined the
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bed-load transport that takes place by successive contacts of the particles with the
bed being limited by the gravity effect.

With a further increase in excess bed shear stress, the production of turbulence
near the bed and its diffusion in upward direction lift up relatively finer sediment
particles from the bed keeping them in suspension, as they are transported by the
flow. The upward diffusion of turbulence retains the particles in the fluid domain
against the gravity; while relatively coarser particles are still transported as bed
load. In reality, the particles stay occasionally in contact with the bed and are
displaced by making more or less large jumps to remain often surrounded by the
fluid. The sediment transport in suspension mode is termed suspended load.
Bagnold (1956) defined the suspended-load transport that takes place by balancing
submerged weight of the particles with upward diffusion of turbulent eddies. In
both bed-load and suspended-load transports, the sediment transport is established
by the action of gravity on the fluid phase driving the sediment particles by the
induced drag.

It is useful to provide approximate limiting values to separate different modes
of sediment transport:

6 [ ws=u� � 2 contact-load; bed-load ð5:1aÞ

2 [ ws=u� � 0:6 saltation; bed-load ð5:1bÞ

0:6 [ ws=u� suspended-load ð5:1cÞ

where u* is the shear velocity and ws is the settling or terminal velocity of par-
ticles. Generally, the amount of bed load transported through a large deep river is
approximately 5–25 % of the suspended load.

In natural stream, wash load is the portion of sediment that is carried by the
flow such that it always remains close to the free surface. It is in near-permanent
suspension and transported without deposition, essentially passing straight through
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Fig. 5.1 Schematic of different modes of sediment transport
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the stream. It consists of very fine sediment particles, such as silt and clay. The
composition of wash load is distinct because it is almost entirely made up of
particles that are only found in small quantities in the bed. Nevertheless, wash-load
particles are also brought in by the overland flow or from the cohesive stream
banks. As the wash-load particles tend to be very fine, they have a small settling
velocity, being easily kept in suspension by the turbulence in flow. A physical
characterization of the wash load is a difficult proposition, as the wash load, by
definition, cannot be determined by the given flow characteristics of a river.

5.2 Definition of Bed-Load Transport

The term bed-load transport is defined as the sediment particles, such as silt, sand,
gravel, etc., carried by the stream flow in the streamwise direction immediately
above the bed as sliding, rolling, and/or saltating at a velocity less than that of the
stream flow. The bed-load transport rate qb is generally expressed as the solid
volume of sediment transported per unit time and width. It is also expressed as the
weight of sediment transported per unit time and width, denoted by gb, or the
submerged weight of sediment transported per unit time and width, denoted by gbs.
However, in nondimensional form, the bed-load transport rate is designated as
bed-load transport intensity and denoted by Ub. The bed-load transport intensity
Ub is related with qb, gb, and gbs as follows:

Ub ¼
qb

ðDgd3Þ0:5
¼ gb

qsgðDgd3Þ0:5
¼ gbs

DqgðDgd3Þ0:5
ð5:2Þ

where D is the submerged relative density (= s - 1), s is the relative density of
sediment (= qs/q), qs is the mass density of sediment, q is the mass density of
water, g is the acceleration due to gravity, and d is the representative sediment
size, that is the median or weighted mean diameter.

The bed-load transport rate qb can be defined as the product of the particle
velocity ub in streamwise direction, the volumetric concentration C of particles
transported as bed-load, and the thickness db of bed-load transport layer. It is
therefore given by

qb ¼ ubCdb ð5:3Þ

The bed-load transport rate qb can also be defined as the product of the particle
velocity ub in streamwise direction, the number of particles in motion Nb per unit
area, and the volume of particles Vb. It is thus

qb ¼ ubNbVb ð5:4Þ
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Further, by defining the particle velocity ub as the ratio of saltation or step
length ks to saltation or step period te, that is ub = ks/te, Eq. (5.4) can be rewritten
as

qb ¼
ks

te
NbVb ¼ ksEb ¼ ksDb ^ Eb ¼ Db ¼

NbVb

te

ð5:5Þ

where Eb and Db are the degraded or aggraded volume of particles per unit time
and area.

Another way of defining bed-load transport rate is the pickup rate. It is, in fact
basically, defined as the number of particles picked up per unit time and area.
Later, the definition of pickup rate Ep has been modified to the mass of particles
picked up per unit time and area. The nondimensional pickup rate, known as the
sediment pickup function Up, is defined according to Einstein (1950) as

Up ¼
Ep

qsðDgdÞ0:5
ð5:6Þ

Although different researchers studied pickup rate (Einstein 1950; Fernandez
Luque 1974; Yalin 1977; Nakagawa and Tsujimoto 1980; de Ruiter 1982, 1983;
van Rijn 1984b; Dey and Debnath 2001), it, however, remains almost unclear
whether contact load or saltation contributes to pickup rate.

5.3 Bed Shear Stress Concept for Bed-Load Transport

5.3.1 du Boys’ Approach

The pioneering attempt to predict the bed-load transport rate was due to MP du
Boys in 1879, who was a French engineer. His analysis was based on the force
balance between the force applied to the top layer of sediment bed by the flowing
fluid and the frictional resistance between the top layer of sediment particles and
the layers beneath it.

du Boys (1879) assumed that the sediment particles move in series of super-
imposed layers of individual thickness De by the tractive force offered by the
uniform flow as given by the bed shear stress s0 = qghS0 applied to the surface of
the top layer; where h is the flow depth and S0 is the streamwise bed slope. The
mean velocity of the successive layers that are sliding over each other increases
linearly toward the bed surface. It implies that the velocity is highest at the top
layer forming the bed surface and zero (minimum) at the lowest layer at a depth of
De�m; where m is the number of layers. Figure 5.2 illustrates the definition sketch
of du Boys model. Under the equilibrium condition, the top layer is one where
the tractive force balances the frictional resistance force between these layers.
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The coefficient of frictional resistance lf between successive layers is assumed to
be constant, such that the force balance is

s0 ¼ qghS0 ¼ lf � De � mðqs � qÞg ð5:7Þ

The fastest moving layer being the top layer moves with a velocity of (m - 1)us,
where us is the velocity of the second lowest layer. As the layers between the first
and the m-th move according to a linear velocity distribution, the sediment transport
rate (in volume per unit time and width, that is, m3 s-1 m-1) is given by

qb ¼ De � m ðm� 1Þus

2
ð5:8Þ

The threshold condition at which sediment motion is just about to begin can be
obtained by setting m = 1. Then, from Eq. (5.7), threshold bed shear stress s0c can
be determined, and thus, m is obtained as the ratio of applied bed shear stress to
threshold bed shear stress as follows:

s0c ¼ lf � Deðqs � qÞg ) m ¼ s0

s0c

ð5:9Þ

It is introduced into Eq. (5.8) and then

qb ¼
De � us

2s2
0c

� �
s0ðs0 � s0cÞ ð5:10Þ

du Boys referred the first term within the parenthesis in right-hand side of
Eq. (5.10) as a characteristic of sediment coefficient and denoted by v. Thus, the
equation becomes
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Fig. 5.2 Definition sketch of
du Boys’ bed-load model
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qb ¼ vs0ðs0 � s0cÞ ð5:11Þ

The sediment coefficient v was determined from the experimental data obtained
by Schoklitsch (1914). According to Graf (1971), it is

v ¼ 0:54
Dqg

in metric unitsð Þ ð5:12Þ

Straub (1935) related v with the particle size d (in mm) (0.125 \ d \ 4 mm) as

v ¼ 6:89� 10�6

d0:75
in SI unitsð Þ ð5:13Þ

5.3.2 du Boys Type Equations

du Boys equation that is characterized by the excess bed shear stress is one of the
classical equations of bed-load transport. Later, investigators have tried to put
forward improved version of bed-load transport equations, known as du Boys type
equations, based on excess bed shear stress. They are discussed below:

Shields (1936) obtained the threshold bed shear stress that had a value for
which the extrapolated sediment flux (bed-load transport) became zero. Therefore,
he basically studied the flow conditions corresponding to the bed-load transport
rate greater than zero. He obtained an empirical equation of bed load as

qb ¼
10qS0

sD2qgd
ðs0 � s0cÞ ) Ub ¼

10U

sðDgdÞ0:5
ðH�HcÞH ð5:14Þ

where H and Hc are the Shields and threshold Shields parameters, respectively,
q is the flow rate per unit width (= Uh), and U is the depth-averaged flow velocity.
The Shields parameter is given by H = s0/(Dqgd) and Hc corresponds to s0c.

Meyer-Peter and Müller (1948) gave the following equation of bed load
including the effects of particle roughness:

qb ¼
8

Dq1:5g

CR

C0R

� �1:5

s0 � s0c

" #1:5

) Ub ¼ 8ðgCH�HcÞ1:5 ^ gC ¼
CR

C0R

� �1:5

ð5:15Þ

where CR is the total Chézy coefficient due to effective bed roughness ks, that is
18log(12 h/ks) or U/(RbS0)0.5, Rb is the hydraulic radius, and C0R is the Chézy
coefficient due to particle roughness d90, that is 18log(12 h/d90). In Eq. (5.15),
Meyer-Peter and Müller recommended the value of Hc = 0.047. Their formula
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corresponded well with the experimental data for coarse sands and gravels. The gC

was reported to vary from 0.5 to 1 that corresponds to coarse sand and a small form
drag. Considering ks & d90, the gC becomes unity; and the Meyer-Peter and
Müller formula can be simplified to

Ub ¼ 8ðH�HcÞ1:5 ð5:16Þ

Subsequently, Frijlink (1952) proposed a formula that can approximate Meyer-
Peter and Müller formula, but it is not a du Boys type equation. It is

Ub ¼ 5ðgCHcÞ0:5 exp � 0:27
gCH

� �
ð5:17Þ

However, Chien (1954) showed that the Meyer-Peter and Müller formula can
be replaced by

Ub ¼ ð4H� 0:188Þ1:5 ð5:18Þ

Further, Wong and Parker (2006) reanalyzed the experimental data used by
Meyer-Peter and Müller and found a better fitting for the Meyer-Peter and Müller
formula with the following equation:

Ub ¼ 3:97ðH� 0:0495Þ1:5 ð5:19Þ

For the high bed-load transport rate, Wilson (1966) put forward an empirical
equation as

Ub ¼ 12ðH�HcÞ1:5 ð5:20Þ

Chang et al. (1967) suggested that the bed-load transport can be determined
from the following relationship:

Ub ¼ Kt

D
s
� U

ðDgdÞ0:5
ðH�HcÞ ^ Kt ¼ Kb

s

D
� 1
tan /

ð5:21Þ

where Kb is a constant and / is the angle of repose of the sediment. In the above,
Kt represents a constant defining the bed-load transport and can be determined
using Fig. 5.3.

Ashida and Michiue (1972) analyzed micro-mechanical particle collision with
the bed, but not considered the saltation. They obtained the following equation of
bed-load transport intensity for the range of particle size 0.3 B d B 7 mm:
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Ub ¼ 17ðH�HcÞðH0:5 �H0:5
c Þ ð5:22Þ

In the above, Ashida and Michiue recommended the value Hc = 0.05.
Fernandez Luque and van Beek (1976) used laboratory experimental data to

suggest bed-load transport intensity as

Ub ¼ 5:7ðH�HcÞ1:5 ð5:23Þ

They considered a range of Hc within 0.05 B Hc B 0.058 for 0.9 B d B 3.3 mm.
For gravel-bed rivers, Parker (1979) proposed

Ub ¼ 11:2
ðH� 0:03Þ4:5

H3 ð5:24Þ

Smart (1984) measured bed-load transport rate in steep channels
(0.03 B S0 B 0.2) for the gravel sizes 2 B d B 10.5 mm. Based on his data and
the data of Meyer-Peter and Müller, he proposed

Ub ¼ 4
CR

g0:5

d90

d30

� �0:2

S0:6
0 ðH�HcÞH0:5 ð5:25Þ

The bed-load transport intensity equation derived by van Rijn (1984a) for
0.2 B d B 2 mm is
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Fig. 5.3 Variation of Kt with
(U/u*)HS0 for different
sediment sizes (Chang et al.
1967)
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Ub ¼
0:053
D0:3
�

H
Hc

� 1

� �2:1

ð5:26Þ

where D* is the particle parameter, that is d(Dg/t2)1/3, and t is the kinematic
viscosity of water.

Graf and Suszka (1987) gave a bed-load transport intensity formula for steep
bed slopes as

UbðUb� 10�2Þ ¼ 10:4 1� 0:045
H

� �2:5

H1:5 ð5:27aÞ

UbðUb [ 10�2Þ ¼ 10:4H1:5 ð5:27bÞ

Madsen (1991) recommended

Ub ¼ KbðH�HcÞðH0:5 � 0:7H0:5
c Þ ð5:28Þ

where Kb = 8/tan/ for sliding and rolling sand particles, and Kb = 9.5 for sal-
tating sand particles in water. However, Niño and García (1998) proposed a similar
equation with Kb = 12/ld for saltating particles. They determined a dynamic
coefficient of friction ld = 0.23.

Nielsen’s (1992) equation for sand and gravel (0.69 B d B 28.7 mm) transport is

Ub ¼ 12ðH� 0:05ÞH0:5 ð5:29Þ

Damgaard et al. (1997) conducted experiments for the wide variation of
streamwise bed slope (–32� B h B 32�; where h is the streamwise bed angle with
the horizontal). They introduced a correction factor fh to Meyer-Peter and Müller
formula as

Ub ¼ 8ðH�HcÞ1:5fh ð5:30Þ

where

fhð�32�\h� 0Þ ¼ 1þ 0:8
Hc

H

� �0:2

1�Hch

Hc

� �1:5þ H
Hc

fhð0\h� 32�Þ ¼ 1

ð5:31Þ

where Hch is the threshold Shields parameter on streamwise bed slope.
Lajeunesse et al. (2010) suggested

Ub ¼ 10:6ðH�HcÞðH0:5 �H0:5
c þ 0:025Þ ð5:32Þ
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5.3.3 Other Empirical Relationships Involving Bed Shear
Stress

Kalinske (1947) emphasized on the near-bed turbulence that plays an important
role in analyzing bed particle motion. The time-averaged bed-load transport rate qb

was expressed as a product of three quantities: volume of a particle, number of
particles in motion per unit area, and time-averaged particle velocity �ub. It is

qb ¼
pd3

6
� 4pn

pd2
� �ub ð5:33Þ

where pn is the fraction of moving particles. The time-averaged particle velocity �ub

can be obtained as

�ub ¼ c0

Z1

ucr

ðud � ucrÞf ðudÞdud ð5:34Þ

where c0 is the constant of proportionality, ud is the instantaneous flow velocity at
the particle level, ucr is the threshold velocity (at the particle level) for the particle
motion, and f(ud) is the frequency distribution of ud. The f(ud) is given by

f ðudÞ ¼
1

ð2pÞ0:5ru

exp �ðud � �udÞ2

2r2
u

" #
ð5:35Þ

where ru is the standard deviation of ud. Assuming s0c=s0 ¼ ðucr=�udÞ2, where �ud is
the time-averaged value of ud, the following functional relationship is obtained:

�ub

u�
¼ f

s0c

s0

� �
ð5:36Þ

Using Eq. (5.36), Eq. (5.33) can be expressed a functional relationship as

qb

u�d
¼ f1

s0c

s0

� �
ð5:37Þ

Figure 5.4 shows this relationship.
Frijlink (1952) formula, as already given by Eq. (5.17) that can approximate

Meyer-Peter and Müller formula, was one that falls under the category to involve
bed shear stress. Further, the bed-load transport formula that was widely used by
Engelund and Hansen (1967) for sand transport in terms of bed shear stress is
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Ub ¼ 0:05
U2

Dgd
H1:5 ð5:38Þ

In case of weak bed-load transport rate, Paintal (1971) obtained a bed-load
transport formula for 1 B d B 25 mm as

Ubð0:007\H\0:06Þ ¼ 6:56� 1018H16 ð5:39Þ

The relationships proposed by Misri et al. (1984) to involve bed shear stress due
to particle roughness are as follows:

UbðH0 � 0:065Þ ¼ 4:6� 107H08 ð5:40aÞ

UbðH0[ 0:065Þ ¼ 0:85H01:8

ð1þ 5:95� 10�6H0�4:7Þ1:43 ð5:40bÞ

where H0 is the Shields parameter due to particle roughness, that is s00=ðDqgdÞ, and
s00 is the bed shear stress due to particle roughness.

On the other hand, Cheng (2002) gave a relationship for moderate bed-load
transport rate as

Ub ¼ 13H1:5 exp � 0:05

H1:5

� �
ð5:41Þ

The above equation yields results similar to those obtained from Meyer-Peter
and Müller formula for moderate transport rate and Paintal formula for weak
transport rate.
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Fig. 5.4 Variation of s0c/s0

with qb/(u*d) (Kalinske 1947)
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For high bed-load transport rate, Rickenmann (1991) reported that the particles
transport like a sheet flow, when H [ 0.4. Hanes (1986) suggested that under a
sheet flow type transport, the intense bed-load transport can be approximated as

Ub ¼ 6H2:5 ð5:42Þ

5.4 Discharge Concept for Bed-Load Transport

Schoklitsch (1934) was the pioneer to use discharge for the estimation of bed load.
He used the data of Gilbert (1914) with his own to propose a bed-load transport
rate formula for particle size 0.305 B d B 7.02 mm as

gb ¼
7000
d0:5

S1:5
0 ðq� qcÞ ð5:43Þ

where gb is the bed-load transport rate in mass per unit time and width
(kg s-1 m-1), d is in mm, and qc is the discharge per unit width corresponding to

sediment threshold. Schoklitsch determined qc ¼ 1:944� 10�5=S4=3
0 m2 s�1ð Þ by

plotting a curve of bed-load transport rate versus bed slope. He then extrapolated
the curve to zero transport rate (gb = 0) to determine the corresponding value of
q as qc. Schoklitsch later modified the equation for d C 6 mm as

gb ¼ 2500S1:5
0 ðq� qcÞ ð5:44Þ

He redefined the threshold discharge as qc ¼ h5=3
c S0:5

0 =n ¼ 0:26D5=3d1:5=S7=6
0

m3 s�1 m�1ð Þ; where d is in m, n is the Manning coefficient, and hc is the flow
depth corresponding to sediment threshold.

5.5 Velocity Concept for Bed-Load Transport

Donat (1929) used the Chézy equation in Eq. (5.11) and obtained the following
equation of bed-load transport using average flow velocity:

qb ¼ v
ðqgUÞ2

C4
R

ðU2 � U2
crÞ ^ U2 ¼ C2

R

s0

qg
_ U2

cr ¼ C2
R

s0c

qg
ð5:45Þ

where Ucr is the average threshold velocity.
Barekyan (1962) proposed bed-load transport equation using average flow

velocity as

qb ¼ 0:187qsg
qS0

D
U

Ucr

� 1

� �
ð5:46Þ
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Based on the stream power concept, Dou (1964) established an empirical
equation of bed-load transport for sand as

gb ¼ 0:01
s

D
s0ðU � UcrÞ

U

ws

ð5:47Þ

5.6 Bedform Concept for Bed-Load Transport

Bedforms are discussed comprehensively in Chap. 8. Note that the bed load is the
mode of sediment transport in lower flow regime when the bed is covered by
ripples and/or dunes. The particles transport up the face of the mild slope of the
ridge of a bedform and then drop down the steep slope being deposited on
the downstream face and in the trough. As a result of sediment removal from the
upstream and deposition on the downstream slope, the bedforms move down-
stream (Fig. 5.5). The bed-load transport can therefore be calculated directly from
the movement of the bedforms. The continuity equation of sediment transport
resulting in a change of bed level was given by Exner (1925) as

ð1� q0Þ
og
ot
þ oqb

ox
¼ 0 ð5:48Þ

where g is the elevation of the sand-bed with respect to a horizontal reference, t is
the time, x is the horizontal distance from a reference point, and q0 is the porosity
of sediment.

Assuming that the bedforms migrate with a velocity of Ub being independent of
time, the following transformation can be used:

n ¼ x� Ubt ð5:49Þ

By using Eq. (5.49), Eq. (5.48) yields

ð1� q0Þ
og
on
� on
ot
þ oqb

on
� on
ox
¼ 0 ) �ð1� q0ÞUb

og
on
þ oqb

on
¼ 0 ð5:50Þ

Integrating Eq. (5.50) yields

qb ¼ ð1� q0ÞUbgþ A ð5:51Þ

Assuming that the simplified bedforms are triangular shaped with an average
height or pick-to-pick amplitude of am and noting that the constant of integration
A = 0 for the initial boundary condition, Eq. (5.51) becomes

qb ¼ ð1� q0ÞUb

am

2
ð5:52Þ

The above equation can be used to determine the bed-load transport rate from
the information of the bedform migration velocity and its height.
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5.7 Probabilistic Concept for Bed-Load Transport

5.7.1 Einstein’s Approach

Einstein (1942, 1950) was the pioneer to develop a bed-load transport model based
on the probabilistic concept. Primarily, he had two fundamental considerations that
departed from the then earlier concepts. Firstly, the threshold criterion was avoi-
ded, as it is always a difficult proposition to define, if not impossible. Secondly, the
transport of sediment particles was related to the velocity fluctuations instead of
the time-averaged velocity. As a result of which, the beginning and the ceasing
of sediment motion are expressed with probabilistic concept that relates to the ratio
of submerged weight of the particle to instantaneous hydrodynamic lift induced to
the particle. Some of the key issues toward the bed-load transport of sediment
particles, as experimentally observed by Einstein, are as follows:

• A rigorous, but steady, exchange of sediment particles is prevalent between the
bed surface and mobile bed-load layer.

• The particles travel along the bed in a series of quick steps. A particle does not,
however, remain in motion continuously, but temporarily deposited on the bed
after some steps with comparatively long intermediate resting periods.

• The average step, which is always the same and about 100 times the particle
diameter, is simply proportional to the particle diameter and independent of the
hydraulic condition and the transport rate.

• The transport rate is dependent on the average time period between two steps
and the thickness of the mobile bed-load layer.

Einstein’s (1942, 1950) bed-load transport model was based on the aforemen-
tioned aspects. He first presented an empirical relationship in 1942, which was
then replaced by a semitheoretical approach in 1950.

Dynamic equilibrium during the bed-load transport is established by
exchanging the particles from the bed within the bed-load transport layer. Thus,

Sediment removal

z

q
b 

Sediment 
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η(x) 

am 

x

Fig. 5.5 Bed-load transport with migration of bedforms
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the conservation of sediment mass is maintained balancing the number of particles
removal (washed out by the flow) per unit time and area by those deposited (put
down by the flow) per unit time and area.

Rate of deposition: The average traveling distance Lx of a particle is defined
by the distance that a particle travels from its starting point until it is deposited
on the bed. The single step length of a particle having diameter d can be
expressed as ksd and for spherical particles, ks = 100. As a particle travels a step
by a brief jump (Fig. 5.6), it goes down on the bed at a location where a local
lift force exceeds the submerged weight of the particle. Thus, the particle does
not stop moving but travels for a second step and so on until it is temporarily
deposited on the bed with comparatively long intermediate resting periods. In
this way, the sediment particles passing a section (across the flow) per unit time
deposit within a length of the channel that is equal to Lx, regardless from where
they have started to move. If gb represents the bed-load transport rate in dry
weight and ibs is the fraction of bed load to be deposited of a given sediment size
d, then the rate at which the particles of a size d are deposited per unit time and
width is gbibs. Therefore, the number of particles Nd deposited per unit time and
area is given by

Nd ¼
gbibs

Lxðqsgk1d3Þ ð5:53Þ

where k1 is the factor related to particle volume. The term within the parenthesis in
the denominator defines the weight of a particle.

If p is the probability of lift force to exceed the submerged weight of the
particles, then n(1 - p) particles deposit on the bed after traveling a step length,
where n is the number of particles in motion. Thus, only np particles continue to
move. Subsequently, the np(1 - p) more particles deposit and only np2 particles
remain in motion after traveling the second step length, and so on. In this way, all
n particles deposit on the bed after elapsing some time. The average traveling
distance1 can therefore be determined as

Lx ¼
X1
n¼0

ð1� pÞpnðnþ 1Þksd ¼
ksd

1� p
ð5:54Þ

1 The probability of a particle performing (n + 1) number of jumps is (1 - p)pn(n + 1). Then,

X1
n¼0

ð1� pÞpnðnþ 1Þ ¼ 1þ pþ p2 þ p3 þþ pn ¼ ð1� pÞ�1:
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Using Eq. (5.54) into Eq. (5.53), the number of particles deposited per unit time
and area becomes

Nd ¼
gbibsð1� pÞ
ksqsgk1d4

ð5:55Þ

Rate of removal: Depending on the availability of the particles and the flow
conditions, a particle of a given size d is removed. If the fraction of sediment of a
given size d to be removed is ibr, then the number of such particles per unit area
can be given by ibr/(k2d2); where k2 is the factor related to the projected area of the
particle. If p is the probability of a particle to begin to move at any location, then
p/te is the probability of removal per unit time. Here, te is the time consumed by
each exchange. Therefore, the number of particles removed Nr per unit time and
area is given by

Nr ¼
ibr

k2d2
� p

te
ð5:56Þ

The exchange time te or the time for a particle to remove is assumed to be
proportional to the time for a particle to fall a height of one diameter with a
terminal velocity ws in a still water. Thus, it is

te	
d

ws

¼ k3
d

Dg

� �0:5

ð5:57Þ

where k3 is a constant for time scale. Using Eq. (5.57) into Eq. (5.56), the number
of particles removed per unit time and area is

Nr ¼
ibr

k2d2
� p

k3

Dg

d

� �0:5

ð5:58Þ

Equilibrium of bed-load transport: Sediment transport is in equilibrium if the
rate of sediment deposition on the bed is balanced by the rate of sediment removal

Flow direction

1 

λsd λsd λsd λsd 

Fig. 5.6 Sketch of a particle traveling along the bed in a series of steps
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from the bed. Thus, equating Eqs. (5.55) and (5.58), the equation of dynamic
equilibrium is obtained as

Nd ¼ Nr )
gbibsð1� pÞ
ksqsgk1d4

¼ ibr

k2d2
� p

k3

Dg

d

� �0:5

ð5:59Þ

The bed-load transport equation is therefore obtained from Eq. (5.59) as

p

1� p
¼ A�

ibs

ibr

� �
Ub ¼ A�Ub� ^ A� ¼

k2k3

ksk1
_ Ub� ¼

ibs

ibr

� �
Ub ð5:60Þ

The parameter Ub* is called bed-load transport intensity, and the probability
p of rate of sediment removal is given by

p ¼ A�Ub�
1þ A�Ub�

ð5:61Þ

Probability determination: The probability p of a sediment particle removal is a
function of the ratio of submerged weight FG of the particle to instantaneous
hydrodynamic lift FL induced to the particle. The condition of removal is therefore
p(FG/FL) \ 1. It can therefore be expressed as

p ¼ p
FG

FL

� �
¼ p

Dgk1d

CLk2u2
d0
=2

 !
^ FG ¼ Dqgk1d3 _ FL ¼ CL

q
2

k2d2u2
d0

ð5:62Þ

where CL is the lift coefficient and ud0 is the effective instantaneous flow velocity at
the edge of the viscous sublayer. Einstein and El-Samni (1949) observed that for
uniform sediment particles, if the flow velocity at an elevation z = 0.35X is taken
as the effective flow velocity ud0, the distribution of lift force fluctuations follows
the Gaussian distribution with a standard deviation equaling half of the mean value
and the lift coefficient as CL = 0.178 (a constant value). Here, X is the charac-
teristic size of the bed sediment particles. The random function parameter
gt(t) represents the lift force fluctuations with time t being distributed according to
the normal error law, where the standard deviation g0 is a universal constant
having a value g0 = 0.5. Using a nondimensional number g* that represents the lift
force fluctuations, it can be written as gt = g0g*.

The effective instantaneous flow velocity ud0 is expressed as

ud0

u0�
¼ 1

j
ln

0:35X

Dk=30:2

� �
^

X
Dk

d0
� 1:8

� �
¼ 0:77Dk

X
Dk

d0
\1:8

� �
¼ 1:39d0

ð5:63Þ
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where j is the von Kármán constant, Dk is the apparent roughness (= ks/xk), xk is
a correction factor, u0� is the shear velocity due to particle roughness, that is

ðgR0bS0Þ0:5, R0b is the hydraulic radius due to particle roughness, and d0 is the
viscous sublayer thickness ð¼ 11:6t=u0�Þ. Einstein (1950) considered Nikuradse’s
equivalent sand roughness as ks = d65. The correction factor xk can be obtained
from the curve given by Einstein (1950) (Fig. 5.7), and thus, apparent roughness
Dk (= ks/xk) can be determined.

Hence, the lift force can be expressed as

FL ¼ ð1þ g0g�Þ0:178
q
2

k2d2 1
j2

gR0bS0 ln2 10:6X

Dk

� �
ð5:64Þ

The probability p of sediment removal is expressed as the probability of the
ratio of the submerged weight FG to the instantaneous lift FL. The ratio has to be
smaller than unity, that is

1 [
FG

FL

¼ 1
1þ g0g�

� Dd

R0bS0
� 2k1j2

0:178k2
� 1

b2
x

^ bx ¼ ln
10:6X

Dk

� �
ð5:65Þ

Using symbols, Eq. (5.65) can be reduced to

1 [
1

1þ g0g�
�W
0
bB

b2
x

^ W0b ¼
Dd

R0bS0
_ B ¼ 2k1j2

0:178 k2
ð5:66Þ

In the above, W0b is known as flow intensity parameter due to particle roughness,
which is reciprocal of the Shields parameter.

Einstein (1950) proposed two correction factors n and Y termed hiding factor
and lift correction factor, respectively, which were determined experimentally
(Figs. 5.8 and 5.9). Particles in the sediment mass smaller than X likely to hide

0.1 1 10 100

ks /

0

1

2

x k

′�

Fig. 5.7 Variation of
correction factor xk with ks/d0,
where Nikuradse’s equivalent
sand roughness ks = d65
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between larger ones or within the viscous sublayer, as such the lift experienced by
the smaller particles is to be corrected by a factor n-1. Einstein gave a curve for the
hiding factor n as a function of d/X (see Fig. 5.8). The lift correction factor Y takes
care of the change of lift coefficient in the sediment mass due to different
roughness and is expressed as a function of ks/d0 (see Fig. 5.9).

The fluctuations of lift force are caused by the velocity fluctuations. The lift
force is always positive regardless of the velocity fluctuations to be positive or
negative. Thus, the inequality for the lift force can be modified as

g� þ
1
g0

����
����[ B�Wb� ^ B� ¼

B

g0 ln2ð10:6Þ
_ Wb� ¼ W0bnY

ln2ð10:6Þ
b2

x

ð5:67Þ
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Fig. 5.9 Variation of lift
correction factor Y with ks/d0

(Einstein 1950)
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Fig. 5.8 Variation of hiding
factor n with d/X (Einstein
1950)
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Therefore, the threshold condition for the bed particle motion is as follows:2

g� ¼ 
B�Wb� �
1
g0

ð5:68Þ

It implies that between these two values of g*, no sediment transport takes
place. Therefore, the probability p of sediment motion, as the lift force fluctuations
follow Gaussian distribution, is

p ¼ 1� 1
p0:5

ZB�Wb��g�1
0

�B�Wb��g�1
0

expð�t2Þdt ð5:69Þ

Using Eq. (5.69) into Eq. (5.60), Einstein’s bed-load transport equation is

Ub� ¼
1

A�
�

1� 1
p0:5

ZB�Wb��g�1
0

�B�Wb��g�1
0

expð�t2Þdt

1
p0:5

ZB�Wb��g�1
0

�B�Wb��g�1
0

expð�t2Þdt

ð5:70Þ

Einstein experimentally obtained the values of the constants that are g0 = 0.5,
A* = 43.5 and B* = 1/7. The variation of Wb* with Ub* from Eq. (5.70) is shown
in Fig. 5.10.3 The Wb*(Ub*) curve matches well with the experimental data of
Gilbert (1914), Meyer-Peter et al. (1934) and Chien and Wan (1999).

5.7.2 Empirical Refinement of Einstein Formula

Brown (1950) refined the Einstein formula by curve fitting and showed that the
majority of flume data of Gilbert and Meyer-Peter et al. could be expressed by the
following relationships:

2 To minimize the errors, the standard deviation of lift force fluctuations given by Eq. (5.68)
should be small, then B* ? ? as g0 ? ?. Hence,

�B�Wb� �
1
g0
¼ �1 and B�Wb� �

1
g0
6¼ 0

3 The use of Einstein’s Wb*(Ub*) curve as shown in Fig. 5.10 is as follows:
Step 1: From the given bed sediment and flow conditions, compute Wb* from Eq. (5.67). Then,

the correction factors n and Y can be obtained from Figs. 5.8 and 5.9, respectively. The other
parameters required to be computed are B* from Eq. (5.67), Dk = ks/xk, xk from Fig. 5.7,
u0� ¼ ðgR0bS0Þ0:5, d0 ¼ 11:6t=u0�, and Wb and B from Eq. (5.66).

Step 2: From Fig. 5.10, determine Ub* for the computed Wb*. Thus, qb or gb can be obtained
from Eq. (5.2).
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Ubð1:92\Wb� 5:56Þ ¼ 40Kf

1

W3
b

^ Kf ¼
2
3
þ 36t2

Dgd3

� �0:5

� 36t2

Dgd3

� �0:5

ð5:71aÞ

UbðWb [ 5:56Þ ¼ 2:15Kf expð�0:391WbÞ ð5:71bÞ

For the sediment transport at higher Shields parameter (Wb B 1.92), Julien
(1998) suggested

UbðWb� 1:92Þ ¼ 15Kf

1

W1:5
b

ð5:72Þ

In the above equations, the parameter Kf that appears in Rubey (1933) formula
for terminal fall velocity was introduced by Brown to account for the effects of fall
velocity of the sediment particles.

5.7.3 Modified Einstein’s Approach

The derivation of Einstein’s bed-load formula involves some oversimplified
assumptions concerning the step length of a particle, exchange time, and proba-
bility of particle removal. Later, Wang et al. (2008) proposed a modification of the
Einstein formula.

They argued that conceptually, the step length of a particle increases with the
magnitude of the lift force exerted by the flow, but decreases with the submerged
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Einstein (1950)

Wang et al. (2008)

Gilbert (1914)
Meyer-Peter et al. (1934)
Chien and Wan (1999)

Fig. 5.10 Variations of Wb* with Ub* obtained from the models of Einstein (1950) and Wang
et al. (2008)
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weight of the particle. The step length can thus be given by ksd/Wb. The rate of
particle deposition gdep per unit area is obtained as

gdep ¼
gb

Lx
¼ gb

ksd
ð1� pÞWb ^ Lx ¼

ksd

ð1� pÞWb

ð5:73Þ

The number of particles per unit area can be estimated as 1/(k2d2), and their
total weight is k1qsgd3/(k2d2). If p is the probability of a particle to begin to move,
sediment with a total weight of (k1/k2)qsgdp is removed from the bed per unit time
and area.

Based on the finding by Hu and Hui (1996) that the upward velocity of a
particle is approximated by a linear relationship of shear velocity u*, the time for a
particle to be removed from the bed is inversely proportional to u*. Wang et al.,
therefore, suggested that the exchange time te can be expressed as

te	
d

u�
¼ k3

d

u�
ð5:74Þ

The rate of particle removal grem per unit area is obtained as

grem ¼
1
te

� k1

k2
qsgdp ¼ k1

k2k3
qsgpu� ð5:75Þ

Equilibrium is reached when the rate of sediment removal from the bed equals
the rate of deposition on the bed. Equating Eqs. (5.73) and (5.75) yields

p ¼ A�Ub

W�1:5
b þ A�Ub

^ A� ¼
k2k3

ksk1
ð5:76Þ

Wang et al. assumed that a particle is removed only if the lift force exceeds the
submerged weight of the particle, that is

1þ g0g�[ B0Wb ð5:77Þ

where B0 is the coefficient. The probability p of particle removal is given by

p ¼ 1
p0:5

Z1

ðB0Wb�1Þ=g0

expð�t2Þdt ð5:78Þ

Combining Eqs. (5.76) and (5.78) and introducing nonuniformity of sediments,
the following relationship is obtained
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1
p0:5

Z1

ðB0Wb�1Þ=g0

expð�t2Þdt ¼ A�Ub�

W�1:5
b þ A�Ub�

^ Ub� ¼
ibs

ibr

� �
Ub ð5:79Þ

Based on the measured data used by Einstein (1950), the values of the constants
were determined as B0/g0 = 0.07, g0 = 0.5 and A* = 20. The variation of Wb (read
Wb* as Wb) with Ub* obtained from Eq. (5.79) is shown in Fig. 5.10. The Wb(Ub*)
curve departs to some extent from the experimental data plots of Gilbert (1914),
Meyer-Peter et al. (1934) and Chien and Wan (1999), and the curve of Einstein
(1950).

5.7.4 Engelund and Fredsøe’s Approach

Engelund and Fredsøe (1976) developed a bed-load transport model for the flow
conditions close to the threshold of sediment motion. In this type of flow, the
superficial bed particles are only transported. The model is based on the concept of
Fernandez Luque and van Beek (1976), who hypothesized that the transported bed
particles are to reduce the maximum fluid bed shear stress to its threshold value for
the bed particle motion by exerting an average reaction force on the ambient fluid.

If the particles are transported with a mean velocity �ub, when they are in
motion, the hydrodynamic drag force FD acting on a transported particle is given
by

FD ¼
1
2
qCD

p
4

d2ðau� � �ubÞ2 ð5:80Þ

where CD is the drag coefficient and au* is the flow velocity at the bed particle
level. If the particle is at a distance of one to two particle diameters above the
mean bed level, then a = 6–10.

The stabilizing resistance FR on the moving particle is

FR ¼ Dqg
p
6

d3ld ð5:81Þ

where ld is the dynamic coefficient of friction for the bed particles.
At dynamic equilibrium, the hydrodynamic drag force is balanced by the sta-

bilizing resistance (FD = FR). Thus, equating Eqs. (5.80) and (5.81) and then
simplifying yield

�ub

u�
¼ a 1� H0c

H

� �0:5
" #

^ H0c ¼
4ld

3a2CD

ð5:82Þ
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where H0c is the threshold Shields parameter for a particle protruding from the bed
surface. In fact, H0c differs from Hc, which is the conventional threshold Shields
parameter for the initiation of particle motion in a compactly arranged bed. As a
particle lying on the bed is easier to move than a particle within the bed, it implies
that Hc [H0c. From the experimental data, Fernandez Luque and van Beek
(1976) found H0c = 0.5Hc. Thus, Eq. (5.82) becomes

�ub

u�
¼ a 1� 0:7

Hc

H

� �0:5
" #

ð5:83Þ

For a sandy bed, a & 9.3. Engelund and Fredsøe treated sediment particles as
spheres of diameter d, so that the number of spherical particles per unit area of bed
surface is approximately 1/d2. For a given flow intensity, the probability of the
particles on the bed surface to move is p. Hence, the bed-load transport rate gb is

gb ¼
p
6

d3qsg
p

d2
�ub ð5:84Þ

Using Eq. (5.83) into Eq. (5.84) yields

gb ¼ 9:3
p
6

dqsgp 1� 0:7
Hc

H

� �0:5
" #

u� ð5:85Þ

According to Bagnold, the applied bed shear stress s0 by the flow is composed
of dispersive particle bed shear stress s0b and interfacial (intergranular) fluid bed
shear stress s0f. Furthermore, he suggested that during bed-load transport, the
interfacial fluid bed shear stress s0f equals the threshold bed shear stress s0c for the
initiation of particle motion. This phenomenon is further discussed in the fol-
lowing section using a shear stress diagram. The estimation of probability p of
surface bed particle removal is based on the assumption that only s0c of the applied
bed shear stress s0 by the flow is transmitted directly to the immobile-bed particles
as a skin frictional stress; whereas the residual fluid bed shear stress (s0 - s0c) is
directly transmitted to the mobile particles as a drag induced bed shear s0b

(= nFD) and indirectly transmitted to the bed by intermittent surface creep. Hence,

s0 ¼ s0c þ nFD ð5:86Þ

where n is the number of particles moving per unit area of bed surface. As
FD = FR, inserting Eq. (5.81) into Eq. (5.86) leads to an estimation of p as

H ¼ Hc þ
p
6

ldðnd2Þ ¼ Hc þ
p
6

ldp ) p ¼ 6
pld

ðH�HcÞ ^ p ¼ nd2

ð5:87Þ
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Using Eq. (5.87) into Eq. (5.85), the bed-load transport rate, expressed as bed-
load transport intensity Ub, is obtained as follows:

Ub ¼
9:3
ld

ðH�HcÞðH0:5 � 0:7H0:5
c Þ ð5:88Þ

For an intense bed-load transport rate H � Hc, Eq. (5.88) can be approximated
as Ub = 9.3H1.5/ld.

5.8 Deterministic Concept for Bed-Load Transport

5.8.1 Bagnold’s Approach

Bagnold (1954) identified the limitation in Einstein’s approach by revealing an
inconsistency toward the stability criterion of the bed during bed-load transport.
Let it be discussed with an ideal example of the flow over a plane bed formed by
uniform spherical sediment particles. This situation of a streambed leads to an
equal exposure of all the bed particles to the flow; and hence, the stochastic
variations due to turbulence can be ignored. When the applied bed shear stress
exceeds its threshold value for the particle motion, all particles in the uppermost
layer are in motion simultaneously and removed by the flow. As a result, the next
layer of particles comes in contact with the flow and is subsequently also removed
and so on. In this way, all the subsequent underlying layers of particles are
removed and equilibrium toward a stable bed never exits as long as the bed shear
stress exceeds the threshold value. Bagnold, however, argued this inconsistency by
decomposing the applied shear stress s by the flow into the dispersive particle
shear stress sb that is the shear stress transmitted due to exchange of momentum
for the collision of moving particles and the interfacial fluid shear stress sf that is
the shear stress transmitted by the interfacial fluid (Fig. 5.11). The background of
the idea was that the sediment-laden flows are a result of shear that includes shear
between the layers of the particles and that between the sediment and the sur-
rounding fluid. An applied bed shear stress s0 induced by the fluid tractive force
that acts in the streamwise direction to sustain such a shear is developed by the
gravity in the streamwise direction (Fig. 5.11).

The bed shear stress decomposition is therefore

s0 ¼ s0b þ s0f ð5:89Þ

Bagnold further argued that with the removal of a layer of particles, a dispersive
pressure on the subsequent layer of particles is developed as a stabilizing force.
The number of layers to be removed is governed by the interfacial fluid bed shear
stress s0f until it equals the threshold bed shear stress s0c that acts on the first
immobile layer. The applied bed shear stress s0 induced by the fluid tractive force
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is therefore greater than the threshold bed shear stress s0c. Hence, the s0 is partially
transmitted to the moving particle as s0b and rest to the immobile bed as s0c.

Bagnold (1956) assumed that the saltation is the primary mode of bed-load
transport. The momentum component in the streamwise direction when a saltating
particle drops down to the bed is mGu1. Here, mG is the submerged mass of the
particle, and u1 is the velocity component of the particle in the streamwise
direction when it collides with the bed. The particle at the same time is acted on by
a force from the bed particles producing a momentum component mG(–u0)
opposite to the streamwise direction. Here, –u0 is the reduction of particle velocity
component in the streamwise direction due to collision with the bed particles. To
maintain the saltation of a particle, the flowing fluid therefore must act on the
particle to provide a momentum component mGu0 in the time interval Dt between
successive collisions of the saltating particle with the bed particles.

Therefore, the fluid flow exerts a force on the particle with a component in the
streamwise direction as

Fx ¼
mGu0

Dt
¼ FGu0

gDt
ð5:90Þ

If �ub is the average velocity of the particle, then the work done per unit time by
the flowing fluid on the particle is Fx�ub. Also, the energy consumed per unit time
by the flow is FG�ub tan/d; where /d is the dynamic frictional angle. Equating them
and using Eq. (5.90) yield

x

Flow

z

τ

τ

f

τ0b τ0f 

τ0 

τb

Fig. 5.11 Decomposition of applied shear stress into dispersive particle shear stress and
interfacial fluid shear stress
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Fx

FG

¼ tan /d ¼
u0

gDt
ð5:91Þ

The vertical distance zn is the location at which the particle is acted upon by a
force Fx to accelerate the particle from u1 - u0 to u0. If the flow velocity at zn is
�un, then the urð¼ �un � �ubÞ exists at an elevation z = zn. As a number of particles
are in motion along the bed during bed-load transport, then

sbn�ub ¼ FG�ub tan /d ¼ gbs tan /d ð5:92Þ

where sbn is the shear stress for maintaining sediment motion at z = zn. So, the
bed-load transport rate gbs (in submerged weight per unit time and width) is

gbs ¼
sbn

tan /d

ð�un � urÞ ð5:93Þ

Using a coefficient a, the shear stress sbn is given by

sbn ¼ as0 ð5:94Þ

The flow velocity is considered to follow the logarithmic law in the flow region
z C zn, and the velocity at z = 0.4h is considered to be equal to the depth-averaged
flow velocity U. Then,

�un ¼ U � u�
j

ln
0:4h

zn

ð5:95Þ

Using Eqs. (5.94) and (5.95) into Eq. (5.93) yields

gbs ¼
as0

tan /d

U � u�
j

ln
0:4h

zn

� �
� ur

� �
ð5:96Þ

Determination of a: Bagnold argued a = 0 at the threshold condition and
a ? 1 for the high flow velocity corresponding to intense bed-load transport. It is
thus given by

a ¼ u� � u�c
u�

ð5:97Þ

Determination of ur: The hydrodynamic drag force exerted by the flow on a
particle is balanced by the bed resistance. It can be expressed as

Fx ¼
1
2

CDx
p
4

d2qu2
r ¼ FG tan /d ð5:98Þ
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where CDx is the drag coefficient for the drag force acting in the streamwise
direction.

When a particle falls with a terminal fall velocity ws in a still fluid, the drag
force FDz acting on the particle is balanced by the submerged weight FG of the
particle. Then,

FDz ¼
1
2

CDz
p
4

d2qw2
s ¼ FG ð5:99Þ

where CDz is the drag coefficient for a settling particle. From Eqs. (5.98) and
(5.99), the following relationship is obtained:

ur ¼ ws

CDz tan /d

CDx

� �0:5

ð5:100Þ

It was found from the measured data that CDx & CDz and tan0.5/d & 1.
Therefore, Eq. (5.100) becomes

ur ¼ ws ð5:101Þ

Determination of zn: In the absence of any bedforms, the average elevation of
the saltating particles is proportional to their diameter. Thus,

zn ¼ m1d ^ m1 ¼ K1
u�
u�c

� �0:6

ð5:102Þ

where K1 is a coefficient. In laboratory experiments, K1 = 0.4 was found by
Francis (1973); but in rivers, it becomes 2.8 for sands and 7.3–9.1 for gravels
(Bagnold 1977).

Equation of bed-load transport rate: Using Eqs. (5.97), (5.101) and (5.102) into
Eq. (5.96), the equation of bed-load transport rate obtained by Bagnold in terms of
submerged weight is given by

gbs ¼
u� � u�c

u�
� s0U

tan /d

1� 1
j

u�
U

� �
ln

0:4h

m1d

� �
� ws

U

� �� �
ð5:103Þ

Later, Bagnold (1966) simplified the analysis introducing an efficiency factor eb

for the bed-load transport. He balanced the available fraction of flow energy per
unit time and area (that is the stream power) s0Ueb with the work done required to
move the bed-load particles FG�ubtan/dð¼ gbstan/dÞ. Thus, equation of bed-load
transport rate is

gbs ¼
s0U

tan /d

eb ^ gb ¼
s

D
gbs ) gb ¼

s0Us

D tan /d

eb ð5:104Þ
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The variation of bed-load transport efficiency eb with U for different particle
sizes d given by Bagnold is shown in Fig. 5.12. The prediction of eb is possible for
d = 0.01–1 mm.

5.8.2 Yalin’s Approach

Yalin (1977) proposed a bed-load transport model based on the analysis of forces
acting on a sediment particle. The equations of force acting on a moving sediment
particle in the streamwise and normal directions are

Fx ¼ mG

dub

dt
ð5:105aÞ

�Fz � FG ¼ mG

dwb

dt
ð5:105bÞ

where Fx and Fz are the force components of flow acting on a particle in the
streamwise and normal directions, respectively, and ub and wb are the velocity
components of a sediment particle in the streamwise and normal directions,
respectively. The force components Fx and Fz are given by

Fx ¼
p
8

CDxqd2ðud � ubÞ2 ð5:106aÞ

Fz ¼
p
8

CDzqd2w2
b ð5:106bÞ

where ud is the instantaneous streamwise flow velocity at the particle level.
A particle detaches from the bed by the action of hydrodynamic lift force FL.

The difference FL - FG [ 0 near the bed reduces with distance from the bed and
becomes FL - FG = 0 at an elevation where the particle reaches its maximum

0.1 1 10

U (m s   )–1
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e b

d
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Fig. 5.12 Variation of bed-
load transport efficiency eb

with U for different particle
sizes d
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vertical velocity component [wb]max. The [wb]max can be determined from the
following equation:

�Fz � FG þ FL ¼ mG

dwb

dt
ð5:107Þ

Equation (5.107) represents the initial condition of Eq. (5.105b). To solve these
equations, Yalin made the assumptions: (1) The FL/FG ratio decreases with z/d
according to the exponential law, that is FL/FG * exp(–z/d), (2) the drag coeffi-
cients CDx and CDz are constants, and (3) the nondimensional flow velocity
u/u* in the vicinity of the bed is constant.

As a result, he obtained an expression for ub and then its average value �ub over
the time when the particle is in motion. It is given by

�ub ¼ u�C1 1� Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �	 

ð5:108Þ

where a1 ¼ 2:45H0:5
c =s0:4 and C1 is a constant to be determined. He determined the

submerged weight of the bed-load transport per unit area Ws from the dimensional
analysis. It follows

Ws

Dqgd
¼ f1ðH;R�dÞ ð5:109Þ

where H = RbS0/(Dd), Rb is the hydraulic radius, and R*d = u*d/t. Equation
(5.109) can be rewritten as

Ws

Dqgd
¼ f2 H;

Dgd3

t2

� �
^ R�d ¼

Dgd3

t2
H

� �0:5

ð5:110Þ

At the threshold of particle motion, H(Ws = 0) = Hc, and thus

f2 Hc;
Dgd3

t2

� �
¼ 0 ð5:111Þ

Equations (5.110) and (5.111) are combined to

Ws

Dqgd
¼ f2ðH;HcÞ ð5:112Þ

Yalin assumed that the left-hand side of Eq. (5.112) is linearly proportional to
nondimensional excess bed shear stress. Hence,

290 5 Bed-Load Transport



Ws

Dqgd
¼ C2

H
Hc

� 1

� �
ð5:113Þ

where C2 is a constant to be determined.
Substituting Eqs. (5.108) and (5.113) into Eqs. (5.105a, b) and determining the

constants from the measured data, the bed-load transport rate gb in weight per unit
time and width is given by gb ¼ ðs=DÞgbs ¼ ðs=DÞWs�ub. Thus, the bed-load
equation of Yalin is

gb ¼ 0:635qsgdu�
H
Hc

� 1

� �
1� Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �	 

ð5:114Þ

Equation (5.114) can be expressed in nondimensional form as

Ub ¼ 0:635H0:5 H
Hc

� 1

� �
1� Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �	 

ð5:115Þ

For initiation of bed-load transport, H ? Hc and a1[(H/Hc) – 1] & 0. Hence,
one can write

Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �
� 1� 1

2
� a1

H
Hc

� 1

� �
ð5:116Þ

The bed-load transport rate equation, Eq. (5.115), becomes

Ub ¼ 0:635a1
H0:5

2
H
Hc

� 1

� �2

ð5:117Þ

For high intensity bed-load transport rate, H � Hc and (H - Hc) ? ?.
Hence, it is given by

Hc

H�Hc

! 0 ð5:118Þ

The bed-load transport rate equation, Eq. (5.115), then becomes

Ub ¼ 0:635H0:5 H
Hc

� 1

� �
ð5:119Þ
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5.9 Equal Mobility Concept for Bed-Load Transport

Parker et al. (1982) developed a concept of equal mobility assuming that the bed-
load transport of gravels can be accomplished through mobility of the particles
exposed to the flow. The participation of the underneath particles in bed-load
transport can only be possible up to the extent of the degradations that can result in
an exposure of those particles to the flow. They referred coarser surface layer with
bed-load transport as pavement; however, it is different from an armor layer. In
this concept, the particle size distribution of bed load is approximated by that of
underneath particles for all flows capable of mobilizing the majority of available
gravel sizes.

Based on the equal mobility concept, Parker et al. (1982) developed a func-
tional relationship between a bed-load transport function Uþbi and a bed shear stress
parameter Hþi for a gravel size of di. The Uþbi and Hþi are given by

Uþbi ¼
Dgbi

piðghS0Þ0:5hS0

ð5:120aÞ

Hþi ¼
hS0

Ddisþ0i

ð5:120bÞ

where gbi is the bed-load transport rate per unit width for the fractional particle
size di, pi is the fraction by weight of size di, and sþ0i ¼ 0:0875 d50=dið Þ.

Due to equal mobility of all sizes, a specific particle size, termed subpavement
size and denoted by d50, is used to characterize the bed-load transport. Based on
the field data of gravel-bed streams with sizes from 18 to 28 mm, Parker et al.
(1982) proposed

Uþb ð0:95\Hþ50\1:65Þ ¼ 2:5� 10�3 exp½14:2ðHþ50 � 1Þ � 9:28ðHþ50 � 1Þ2
ð5:121aÞ

Uþb ¼ 11:2 1� 0:822

Hþ50

� �4:5

ð5:121bÞ

where Hþ50 is the bed shear stress parameter defined in Eq. (5.120b) corresponding
to subpavement size d50.

5.10 Sediment Pickup Function

Pickup rate, defined as volume rate of sediment removal per unit area, was studied
by different investigators. Although the mode of bed-load transport according to
the concept of pickup is not clear, there are three concepts of sediment pickup. As
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already discussed, Einstein (1950) hypothesized that after a period of rest, a
sediment particle can only be picked up. The period of rest is longer than that of
pickup. In his hypothesis, the total distance between two successive periods of rest
can be traveled by a particle by performing several brief jumps. A particle covers
an average step length of 100d by performing a jump. However, the pickup def-
inition of Yalin (1977) is different from that of Einstein. Yalin hypothesized that a
particle can be picked up when it detaches the bed surface to perform a jump. It
implies that a jump by a particle involves a pickup and then deposition. According
to de Ruiter (1982, 1983), the period of pickup equals the time period required to
travel (from rest) by a particle over a distance of its half the diameter.

The approach of Einstein (1950) was stochastic. He assumed that a sediment
particle is lifted when the instantaneous lift having a Gaussian distribution exceeds
the submerged weight of the particle. His sediment pickup formula is

Up ¼ app ð5:122Þ

where ap is the coefficient and p is pickup or removal probability, that is the time
fraction during which a sediment particle is picked up by the flow, which has
already been discussed in Einstien’s approach.

Fernandez Luque (1974) used experimental data for 0.9 B d B 1.8 mm and
proposed

Upð0:05�H� 0:11Þ ¼ apðH�HcÞ1:5 ð5:123Þ

According to Yalin (1977), the period of pickup is proportional to the ratio of
the particle diameter to shear velocity. Using a stochastic approach, he obtained a
sediment pickup formula as

Up ¼ appH ð5:124Þ

Based on experimental data (3 B d B 13.5 mm), Nakagawa and Tsujimoto
(1980) suggested

Upð0:03�H� 0:2Þ ¼ ap 1� 0:035
H

� �3

H ð5:125Þ

They recommended ap = 0.02 for spherical particles.
According to de Ruiter (1982, 1983), the pickup time period was found to be

much smaller than that of instantaneous bed shear stress exceeding its threshold
value. Based on stochastic approach, he proposed

Up ¼ appp

r0

Dqgd
� tan /

Hc

� �0:5

ð5:126Þ
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where pp is the pickup probability function and r0 is the standard deviation of
instantaneous bed shear stress. The value of coefficient ap, recommended by de
Ruiter, is 0.016.

van Rijn (1984b) conducted experiments with different sand sizes
(0.13 B d B 1.5 mm) and proposed an empirical equation of pickup function as

Up ¼ 3:3� 10�4D0:3
�

H
Hc

� 1

� �1:5

ð5:127Þ

Dey and Debnath (2001) performed experiments with various uniform and
nonuniform sand sizes (0.24 B d B 1.55 mm). Considering the effects of sediment
nonuniformity, they proposed

Up ¼ 6� 10�4D0:24
�

H
Hc

� 1

� �
r1:9

g ð5:128Þ

where rg is the geometric standard deviation of particle size distribution.

5.11 Saltation

5.11.1 Characteristics of Saltation

When the bed shear stress just exceeds the threshold value for the initiation of
particle motion, the particles roll and/or slide in contact with the bed. As the bed
shear stress increases further, the particles move along the bed by a series of short
jumps with approximately same step lengths. This phenomenon is called saltation.
The saltation of a particle is governed by the hydrodynamic drag and lift forces
and also the bed roughness. Due to the gravity, the particle begins to descend and
returns to the bed when it is lifted by the hydrodynamic force to a certain height. In
this way, the particle undergoes a saltation process as shown in Fig. 5.13. Sub-
sequently, a new step of saltation may begin as a result of an impact against the
bed and the lift force. According to the laboratory experimental observations by
Francis (1973) and Abbott and Francis (1977), the characteristics of a saltating
particle are described as follows:

The particle transport in saltation mode is limited to a maximum height of about
ten times the particle diameter. The particle motion is dominated by the gravita-
tional force, although it can be set off by the impulses of velocity fluctuations
(near-bed turbulence agitations) during bursting events or by the effects of wall
shear flow that a particle experiences a shear lift due to the velocity gradient in the
vicinity of the bed. The hydrodynamic pressure and the viscous skin friction can
also be the sources to provide momentum to the particles. In the rising stage of
particle trajectory, the vertical component of the drag force and the gravitational
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force are together directed downwards; while in the falling stage of particle tra-
jectory, the vertical component of drag force being directed upwards opposes the
gravitational force. The lift force is always directed upwards provided the particle
velocity to lag behind the fluid velocity at the saltating particle.

It is observed that some particles move in the form of series of saltations. It
means that after the particles coming back to the bed performing a saltation, they
immediately perform next saltation without any pause on the bed. It is obvious that
the lift force is the main cause of lifting up the particles from the bed. However,
the effects of the bed impact force by no means can be neglected. As a saltating
particle strikes the bed particles, it may either ricochet off the bed particles or
impact against them. During the impact of the particles with the bed particles,
majority of the momentum, that they possess, is transferred to the bed particles in a
succession of horizontal impulses. It may cause to initiate a rolling motion of the
surface particles, termed surface creep. However, a saltating particle may cease
motion, if it falls within one of the local depressions on the bed surface.

5.11.2 Particle Trajectory and Characteristic Parameters
(van Rijn’s Approach)

The forces acting on a saltating particle, as shown in Fig. 5.13, were analyzed by
van Rijn (1984a). In fact, he analyzed the problem deterministically in the context
of estimation of bed-load transport rate. In Fig. 5.13, the forces are the submerged
weight of the particle FG acting downwards and the hydrodynamic force com-
ponents in the form of drag and lift. The direction of drag force FD is opposite to
the direction of the particle velocity vr relative to the fluid flow; whereas the lift
force is in the normal direction.

FL

0.25d
0.6d

FD

FG

vr

hs
0z

•

0x
•

bλ

Fig. 5.13 Schematic of a particle saltation
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Equations of motion: The trajectory of a saltating particle can be determined by
solving the equations of motion. Assuming a spherical saltating particle and the
forces due to fluid accelerations to be of a second order, the equations of motion,
according to White and Schultz (1977), can be written as

ma€x� FL

_z

vr

� �
� FD

�u� _x

vr

� �
¼ 0 ð5:129aÞ

ma€z� FL

�u� _x

vr

� �
þ FD

_z

vr

� �
þ FG ¼ 0 ð5:129bÞ

where ma is the particle mass plus added fluid mass, vr is the particle velocity

relative to the fluid flow, that is ½ð�u� _xÞ2 þ _z20:5, �u is the local time-averaged flow
velocity in x-direction, _x and _z are the streamwise and vertical velocities of par-
ticle, respectively, and €x and €z are the streamwise and vertical accelerations of
particle, respectively.

The added fluid mass or virtual mass is the inertia added to a system. An
accelerating or decelerating particle is to move some volume of surrounding fluid,
as it moves through it, since the particle and fluid cannot occupy the same physical
space simultaneously. For simplicity, this can be assumed as some volume of fluid
moving with the particle, though in reality all the fluid is accelerated to various
degrees. Therefore, the total mass of a spherical particle can be given by

ma ¼
1
6
ðqs þ amqÞpd3 ð5:130Þ

where am is the added mass coefficient. Assuming a potential flow, the added mass
of a sphere is obtained as the half of the fluid mass displaced by the sphere.
However, in real fluid flow, the flow is separated from the sphere and am may be
different from that for a potential flow. The value am = 0.5 was considered by van
Rijn.

The drag force FD, which is resulted from the pressure and the viscous skin
frictional effects, can be expressed as

FD ¼ CD

q
2

v2
r

p
4

d2 ð5:131Þ

The drag coefficient CD can be determined from the empirical expressions given
by Morsi and Alexander (1972).

The lift on a particle in the wall shear layer of flow is induced by two ways.
They are due to (1) velocity gradient in the shear layer and (2) spinning motion of
the particle as a Magnus effect. For a sphere moving in a viscous fluid flow,
Saffman (1968) determined the lift FLs due to shear as
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FLs ¼ CLqt0:5d2vr

o�u

oz

� �0:5

ð5:132Þ

The Magnus lift FLm due to spinning motion in a viscous fluid flow obtained by
Rubinow and Keller (1961) is given by

FLm ¼ CLqd3vrx ð5:133Þ

where x is the angular velocity of the particle. The total lift force FL is therefore

FL ¼ FLs þ FLm ð5:134Þ

The submerged weight of the spherical particle is given by Eq. (4.9). The
velocity distribution in the wall shear layer is assumed to follow the logarithmic
law given by Eq. (4.27), where the zero-velocity level can be considered as z0 =
0.11(t/u*) + 0.03ks.

Boundary conditions and solution scheme: The virtual bed level is assumed to be
at 0.25d below the top of the bed particles, as shown in Fig. 5.13. The initial position
of the particle lying on closely packed bed particles is 0.6d above the virtual bed
level. Here, d is the representative particle size, assumed to be d50. According to the
experimental observations by Francis (1973) and Abbott and Francis (1977),
_x ¼ _z ¼ 2u�. Equations (5.129a, b) were first transformed4 by van Rijn to a system of
ordinary simultaneous differential equations of the first order. Then, he solved them
by a numerical method known as automatic step-change differential equation solver.
The characteristic parameters of saltating particles were computed for the range
u* = 0.04–0.14 m s-1 and d50 = 0.1–2 mm. He assumed ks = 2d50 and calibrated
CL as CL(R*d B 5) = 1.6, CL(5 \ R*d \ 70) = 1.6–20 varying linearly, and
CL(R*d C 70) = 20.

Characteristic parameters of saltating particles: The saltation length kb and
height hs were first computed. Then, they are empirically correlated with the
nondimensional particle parameter D* [= d(Dg/t2)1/3] and the nondimensional
excess bed shear stress (H/Hc) – 1 as follows (van Rijn 1984a):

kb

d50
¼ 3D0:6

�
H
Hc

� 1

� �0:9

ð5:135aÞ

hs

d50
¼ 0:3D0:7

�
H
Hc

� 1

� �0:5

ð5:135bÞ

4 The procedure of transformation of second order differential equation to first order and the
numerical solution methodology of a system of ordinary simultaneous differential equations can
be found in Bose (2009).
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The above equations suggest that the saltation length and height increase with
an increase in particle parameter and excess bed shear stress, but independent of
flow depth. Experimental observations by Poreh et al. (1970) on saltation length
and Williams (1970) on saltation height confirmed that kb & 8d50 for
d50 = 1.35 mm and hs = 5–40d50 for d50 = 1.9 mm. The results obtained from
Eqs. (5.135a, b) are more or less in conformity with these experimental results.
Besides van Rijn’s Eqs. (5.135a, b), Table 5.1 furnishes the formulas of saltation
length kb and height hs proposed by different investigators. It is obvious that their
results are quite varying from one another.

For a saltating particle, van Rijn (1984a) computed the mean velocity �ub as a
function of nondimensional particle parameter and nondimensional bed shear
stress as

�ub

u�
¼ 9þ 2:6 log D� � 8

Hc

H

� �0:5

ð5:136Þ

Further, van Rijn (1984a) approximated Eq. (5.136) in a simpler form as

�ub

ðDgd50Þ0:5
¼ 1:5

H
Hc

� 1

� �0:6

ð5:137Þ

Besides Eqs. (5.136) and (5.137), Table 5.2 furnishes the formulas of mean
velocity �ub of a saltating particle given by different investigators.

Bed-load transport rate: van Rijn (1984a) defined the bed-load transport rate qb

as a product of the particle velocity �ub, the volumetric concentration C of trans-
ported particles, and the saltation height hs. It is therefore given by

Table 5.1 Formulas of saltation length kb and height hs proposed by different investigators

References Saltation length Saltation height

Fernandez Luque and van Beek
(1976)

kb/d50 = 16 –

Abbott and Francis (1977) kb = kb(H) hs = hs(d50, H)
Sekine and Kikkawa (1992) kb/d50 = 3000(u*/ws)

1.5

9 (u* - u*c)/u*

where u*c = threshold shear
velocity

–

Niño et al. (1994) kb/d50 = 2.3H/Hc hs = hs(d50, H/Hc)
Lee and Hsu (1994) kb/d50 = 196.3(H - Hc)

0.788 hs/d50 = 14.3(H
- Hc)

0.575

Hu and Hui (1996) kb/d50 = 27.5 s0.94H0.9 hs/d50 = 1.78 s0.86H0.69

Lajeunesse et al. (2010) kb/d50 = 70(u* - u*c)/ws –
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qb ¼ �ubChs ð5:138Þ

Note that if the saltation height hs is replaced by the thickness db of bed-load
transport layer, then Eq. (5.138) becomes Eq. (5.3). Analysis of the experimental
data by van Rijn (1981) showed that the bed-load concentration C (by volume) can
be represented by

C

C0
¼ 0:18

D�

H
Hc

� 1

� �
ð5:139Þ

where C0 is the maximum bed-load concentration. He determined C0 = 0.65. It is
interesting to note that the bed-load concentration C is inversely proportional to
the nondimensional particle parameter and directly proportional to the nondi-
mensional excess bed shear stress. Using Eqs. (5.135b), (5.137) and (5.139) into
Eq. (5.138), van Rijn (1984a) obtained a bed-load transport equation, which has
already been given as Eq. (5.26) as a du Boys type equation.

5.12 Fractional Bed Load of Nonuniform Sediments

Natural streams are typically made up of nonuniform sediment mixtures, whose
transport phenomenon is therefore of immense importance. Unlike the transport of
uniform sediment, the problems related to fractional nonuniform sediment trans-
port are rather complex, especially when the consideration is given to the shelter–
exposure interactions of bed particles of different sizes. Einstein (1950) was the
pioneer to develop fractional transport rate of nonuniform sediments. Since then,
Ashida and Michiue (1972), Parker et al. (1982), Patel and Ranga Raju (1996), Wu
et al. (2000), and some other investigators put forward different methods to cal-
culate the fractional bed-load transport rate of nonuniform sediments. Besides, Hsu
and Holly (1992) proposed a method to determine the size fractional composition
of nonuniform bed load aided by probability and availability of mobile sediments.
The probabilistic approach by Einstein (1950) and the equal mobility approach by

Table 5.2 Formulas of mean velocity �ub of a saltating particle given by different investigators

References Mean velocity of particle

Fernandez Luque and van Beek (1976) �ub ¼ 11:5 u�� 0:7u�cð Þ
Engelund and Fredsøe (1976) �ub ¼ u�½10� 0:7ðHc=HÞ0:5
Abbott and Francis (1977) �ub ¼ a u��u�cð Þ ^ a ¼ 13:4�14:3
Sekine and Kikkawa (1992) �ub ¼ 8ðu2

� � u2
�cÞ

0:5

Niño et al. (1994) �ub ¼ a u��u�cð Þ ^ a ¼ 6:8�8:5
Lee and Hsu (1994) �ub ¼ 11:53u�ðH�HcÞ0:174

Hu and Hui (1996) �ub ¼ 11:9 u�� 0:44u�cð Þ
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Parker et al. (1982) taking into the fractional transport rate have already been
discussed. Here, some other important methods are introduced.

Ashida and Michiue’s (1972) bed-load transport formula for uniform sediment
is given by Eq. (5.22). This formula was found to overestimate the individual size
fractions of bed-load transport rate when compared with the experimental data for
nonuniform sediment mixtures. They recommended the values of Shields
parameters to be corrected for the fractional size of sediment. Thus, the equation of
fractional bed-load transport intensity is given by

Ubi ¼ 17ðHi �HciÞðH0:5
i �H0:5

ci Þ ^ Ubi ¼
qbi

piðDgd3
i Þ

0:5 _ qbi ¼ ibqb

ð5:140Þ

where Hi and Hci are the Shields parameter and threshold Shields parameter
corresponding to a fraction pi of size di, respectively, and ib is the fraction of bed-
load transport. Equation (5.140) thus can be used to compute total bed-load
transport for the entire range of particle size distribution of the bed sediment.5

Hsu and Holly’s (1992) method begins with the determination of the size
distribution of transported sediment and then ends with the estimation of bed-load
transport rate. The each fractional size di in the transported sediment is hypothe-
sized to be proportional to the joint probability of its mobility under the prevailing
hydraulic condition and its availability on the bed surface within the active layer.
If the flow velocity fluctuations follow the Gaussian probability distribution, the
probability pri of removal of size di is derived as

pri ¼
1

ð2pÞ0:5r~ud

Z1

ðucri=�udÞ�1

exp � ~u2
d

2r2
~ud

 !
d~ud ¼ 0:5� 0:5erf

ðucri=�udÞ � 1
20:5r~ud

� �

ð5:141Þ

5 The procedure of computation of total bed-load transport for the entire range of particle size
distribution of the bed sediment is as follows:

Step 1: Compute Ubi for the fraction pi of sediment size di by using Einstein’s approach or
Ashida and Michiue’s bed-load transport formula or by any other standard method given in this
chapter.

Step 2: Compute ibqb by using Eq. (5.140) as

Ubi ¼
qbi

piðDgd3
i Þ

0:5 ^ qbi ¼ ibqb ) ibqb ¼ Ubi � piðDgd3
i Þ

0:5

Step 3: For each size fraction, the ibqb can be computed in this way. The total bed-load
transport can therefore be obtained by summing up the results over the entire range of
particle size distribution.
Note: In case of a mixture of small size of sediment spread, the size d35 can be

approximated as an effective sediment size for the approximate estimation of total bed-load.
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where ~ud ¼ u0=�ud, u0 is the fluctuations of instantaneous streamwise velocity at the
bed particle level, �ud is the time-averaged streamwise velocity at the bed particle
level, r~ud

is the standard deviation of ~ud, and ucri is the near-bed threshold velocity
for the initiation of motion of sediment size di. They employed Qin’s (1980)
formula given by Eq. (4.160) for the computation of ucri for a given size di, and
used r~ud

¼ 0:2, as suggested by Yen et al. (1988).
The availability of fractional size di is equivalent to its fractional representation

bbi on the bed surface within the active layer. Therefore, the fraction pi of size di in
the transported sediment is

pi ¼
pribbiRdmax

dmin

pribbidd

ð5:142Þ

In this way, the particle size distribution of the transported sediment in bed load
is determined. Then, the weighted mean sediment size dm and mean near-bed
threshold velocity ucrm are estimated. For the estimation of bed-load transport rate
for all fractional sizes, Hsu and Holly used Shamov’s formula (Zhang et al. 1989):

gb ¼ 12:5gd0:5
m �ud � ucrjdmin

� � �ud

ucrm

� �3 dm

h

� �0:25

^ ucrjdmin
¼ ucrðdminÞ ð5:143Þ

Hsu and Holly originally expressed gb in mass of bed-load transport rate per
unit width. The right-hand side of Eq. (5.143) is multiplied by g (acceleration due
to gravity) to convert the unit to N m-1 s-1.

Patel and Ranga Raju (1996) expressed the fractional bed-load transport
intensity Ubi as a function of Hcinb. In fact, they corrected the threshold Shields
parameter Hci corresponding to fractional size di by a factor nb, termed hiding–
exposure correction factor. The estimation of nb is as follows:

nb ¼
0:0713

CmðCsHciÞ0:75144 ^ Hci ¼
s00i

Dqgdi
ð5:144aÞ

CmðM [ 0:38Þ ¼ 1;Cmð0:05\M� 0:38Þ ¼ 0:7092 log M þ 1:293 ð5:144bÞ

log Cs ¼ 0:0644s�3 � 0:1949s�2 � 0:9571s� � 0:1957 ^ s� ¼ log
s00i

s0cg

� �

ð5:144cÞ

where M is the Kramer’s uniformity parameter, s00i ¼ qgR0bS0, R0b ¼ ðUn0=S0:5
0 Þ

1:5,

n0 ¼ d1=6
65 =24, and s0cg is the threshold bed shear stress for the geometric mean size

dg [& (d84.1d15.9)0.5] of the nonuniform sediment mixture as per Shields. The
variation of fractional bed-load transport intensity Ubi with Hcinb obtained by Patel
and Ranga Raju (1996) is illustrated in Fig. 5.14.
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Wu et al. (2000) presented a relationship of fractional bed-load transport
intensity Ubi as a function of nondimensional excess particle bed shear stress. It is

Ubi ¼ 5:3� 10�3 n0

n

� �1:5 s0

s0ci

� �
� 1

" #2:2

ð5:145Þ

where n0 ¼ d1=6
50 =20, s0ci is the threshold bed shear stress corresponding to size di,

s0 = qgRbS0, Rb is the total hydraulic radius, and n is the Manning roughness

coefficient ð¼ R2=3
b S0:5

0 =UÞ.
Note that one can use Meyer-Peter and Müller (1948) formula for the estima-

tion of fractional bed-load transport intensity Ubi (van Rijn 1993). The threshold
bed shear stress is corrected to account for the nonuniformity effect as niHc. Then,

qbi ¼ 8piðDgd3
i Þ

0:5 CR

C0R

� �1:5

Hi � niHc

" #1:5

) Ubi ¼ 8ðgCHi � niHcÞ1:5

ð5:146Þ

In the above, the correction factor ni given by Egiazaroff (1965) is

ni ¼
log2 19

log2ð19di=dmÞ
^ dm ¼

X
pidi ð5:147Þ
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Fig. 5.14 Curve to estimate fractional bed-load transport rate (Patel and Ranga Raju 1996)
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5.13 Sediment Sorting and Streambed Armoring

The time-dependent transport rate of nonuniform sediment mixture is a compli-
cated process due to sorting of a sediment bed in addition to sediment diffusion as
suspension. In a sediment mixture, the resistance to an individual particle motion
depends upon particle size and shape, as well as sheltering and exposure to the
flow. Sediment sorting is defined as a selective transport of different fractional
sizes of sediment particles. When the sediment transport rate of a bed exceeds the
rate of sediment supply by the approaching flow, the sediment bed starts to
degrade. Active layer refers to the surface layer of the sediment bed from which
the sediment can be entrained to the flow. Because of the nonuniformity of the
sediment, typically, exposed finer particles are transported easily at a faster rate
than the coarser ones, and the remaining bed particles are being coarsened. Thus,
the size of particles’ sorting takes place. The weakly entrained or unentrained
coarse particles tend to accumulate in the surface layer, forming a band of coarser
particles. Gradually, this coarsening process stops until a layer of coarse particles
is completely developed to cover the streambed protecting the underneath finer
sediment particles from being transported. Once this process is completed, the
streambed is called armored and the layer of coarsest particles is called the armor
layer (Fig. 5.15).

Due to variable nature of flow condition of a natural streambed, typically one or
more than one layers of armor particles are required to protect the underneath finer
sediment particles (Fig. 5.16). Borah (1989) and Froehlich (1995) reported that the
natural armor-layer thickness is one to three times the armor-particle sizes.
However, the thickness, porosity, and particle size distribution of an armor layer

Original erodible streambed Degraded streambed with armor‐layer

Active‐layer

Armor‐layer

Fig. 5.15 Definition sketch of streambed armoring
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vary with flow and bed evolution. Importantly, fine sediment can still be winnowed
at a very feeble rate through the interstices of armored particles.

Borah et al. (1982) considered an active layer to be homogeneous within itself
at any given time and proposed estimation for the thickness of the active layer ta
from the volumetric consideration as

ta ¼
1Pn

i¼M
pi

� dM

1� q0M
ð5:148Þ

where M is the fraction of the size dM or larger than dM, that cannot be transported
by the flow, dM is the size for the fraction M, and q0M is the porosity for the
fraction M. Thus, the fractional size dM and larger sizes contribute to an armor
layer.

In an active layer, the rate of transport from the bed surface decreases with time
but does not truly go to zero even after a long time (several days). It implies that
the development of an armor layer is an asymptotic process. When the bed shear
stress increases, the finer particles are transported and coarser ones stay in place.
Eventually, an upper limiting condition of the streambed is reached, which is
called the threshold armoring condition. The corresponding bed shear stress is
used to define the threshold bed shear stress for armoring s0ca. Hence, a sediment
mixture has a range of bed shear stress over which its bed surface can be armored.
The armor layer is thus now formed by the near-coarsest particles d90 or even
coarser than d90, which are found in a particle size distribution curve of nonuni-
form sediment. However, for a higher flow rate, when s0 [ s0ca, the armor layer
becomes unstable and subsequently is destroyed. Correia and Graf (1988) sug-
gested the median size of armor particles: d50a & 1.4d50 and d50a B 0.6d90.

Fig. 5.16 Natural streambed armoring. Photograph by the author
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Raudkivi (1990) gave an empirical relationship for the estimation of stability of
particles in an armor layer as

Hca

Hc

¼ 0:4
d50

d50ajmax

� �0:5

þ0:6

" #2

^ Hca ¼
s0ca

Dqgd50ajmax

_ d50ajmax

d100
� 0:55

ð5:149Þ

where Hca is the threshold Shields parameter for the armoring particles and
d50a|max is the maximum size of the armoring particles, being determined by
extrapolating the particle size distribution curve on the basis of last two or three
points. Importantly, no armoring takes place for uniform sediments.

In case of a nonuniform sediment sample with a mixture of fine and large
particles (for example, sand and gravel), Chin et al. (1994) observed that the
stability of individual large particles and their number in the bed govern the
process of formation of a stable armor layer. The removal of finer particles from
the bed surface exposes individual large particles. As a large particle is exposed
considerably to the flow, it leads to the formation of an erosion pit in the front and
a deposition of finer particles at the rear. The large particle may then slide into the
erosion pit, reducing its exposure to the flow and becoming more stable. Medium
and relatively coarse particles may also be accumulated within the scour pit and
finer particles may hide behind and in between the larger ones. Gradually, this
rearrangement of the surface particles leads to the formation of clusters of particles
of various sizes. A cluster may slowly collapse with an erosion of the bed at its
periphery. The anchor large particle may then be moved downstream to another
stable position; and the process of cluster formation may be repeated. Thus, the
formation of an armor layer in a nonuniform sediment mixture with fine and large
particles is a continuous process involving formation and collapse of clusters. In
Sect. 8.6, formation of cluster is further discussed.

5.14 Sediment Entrainment Probability to Bed Load

Determination of sediment entrainment probability to bed load is an essential
prerequisite in developing a probabilistic theory of bed-load transport. Einstein
(1942) laid the foundation of the probabilistic concept to study the bed-load
transport, in which the probability of sediment removal was introduced. The most
innovative development was due to Einstein (1950) to introduce a formula for the
probability of sediment transport [see Eq. (5.70)]. It was based on the probability
of hydrodynamic lift induced by the fluctuating velocity to exceed submerged
particle weight, using the Gaussian distribution, as already discussed. The prob-
ability function p that is given by Eq. (5.69) can be written in a simplified form as
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p ¼ 1� 1
p0:5

Z0:143H�1�2

�0:143H�1�2

expð�t2Þdt ð5:150Þ

Subsequent investigations by other researchers viewed the probability of sed-
iment removal in different ways and put forward formulation for probability in
terms of entrainment or pickup probability function. The entrainment probability
function is a function of Shields parameter H. Engelund and Fredsøe (1976) gave
an empirical formula for the entrainment probability function [see Eq. (5.87)] by
using experimental data of Guy et al. (1966) and Fernandez Luque (1974). The
formula was subsequently modified by Fredsøe and Deigaard (1992) in the form

p ¼ 1þ ldp=6
H�Hc

� �4
" #�0:25

ð5:151Þ

However, following Einstein’s concept of bed-load transport, Cheng and Chiew
(1998) obtained an expression for the entrainment probability function, based on
the assumption of the Gaussian distribution for the streamwise velocity fluctua-
tions. They expressed the sediment entrainment probability in hydraulically rough
flow regime as

p ¼ pðFL [ FGÞ ¼ pðu2
d [ B2Þ ¼ pðud [ BÞ þ pðud\�BÞ ð5:152Þ

where ud is the instantaneous near-bed velocity and B = [4Dgd/(3CL)]0.5. They
estimated the time-averaged near-bed velocity �ud, using the logarithmic law and
fixing the zero-plane displacement level at 0.25d and the zero-velocity level z0 at
ks/30 below the top of the closely packed bed particles. Here, ks was considered as
2d. They assumed that a particle placed in an interstice between two bed particles
is about to move. In this way, they estimated �ud ¼ 5:52u� acting on the particle in
an initial position at z = 0.6d. Quoting Kironoto and Graf (1994), Cheng and

Chiew (1998) assumed
ffiffiffiffiffiffi
u02

p
¼ 2u� and finally obtained the entrainment proba-

bility as

p ¼ 1� 0:5
0:21�

ffiffiffiffiffiffiffiffiffiffi
HCL

p

j0:21�
ffiffiffiffiffiffiffiffiffiffi
HCL

p
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 0:46ffiffiffiffiffiffiffiffiffiffi

HCL

p � 2:2

� �2
" #vuut

� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 0:46ffiffiffiffiffiffiffiffiffiffi

HCL

p þ 2:2

� �2
" #vuut

ð5:153Þ

Cheng and Chiew (1998) selected a value of CL = 0.25 to fit Eq. (5.153) with
the previous experimental data, as shown in Fig. 5.17.
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Later, Wu and Lin (2002) noted that since only positive fluctuations in the
streamwise velocity could cause entrainment of bed particles, a log-normal dis-
tribution could be better suited to derive an expression for the entrainment prob-
ability. They therefore modified the concept of entrainment probability as

p ¼ pðud [ BÞ ¼ pðln ud [ ln BÞ ¼ 1� pð�1\ ln ud\ ln BÞ ð5:154Þ

Wu and Lin (2002) finally expressed the entrainment probability as

p ¼ 0:5� 0:5
lnð0:044H�1C�1

L Þ
j lnð0:044H�1C�1

L Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 2

p
lnð0:044H�1C�1

L Þ
0:724

� �2
( )vuut

ð5:155Þ

Bose and Dey (2013) argued that the Gaussian and the log-normal distributions
primarily occur when there is additive and multiplicative accumulation of errors.
This is, however, not the case of turbulent velocity fluctuations in open channel
flow. Bose–Dey universal probability theory (see Sect. 3.17.1), on the other hand,
gave the Gram–Charlier series expansion of the probability densities based on the
two-sided exponential or Laplace distribution. They explained that the probability
density function (henceforth pdf) pûðûÞ for the nondimensional streamwise
velocity fluctuations û can be given by
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søe and
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Bose and Dey (2013), CL = 0.15

Guy et al. (1966) (dunes)
Fernandez Luque (1974)

Fig. 5.17 Variation of
Shields parameter H with
probability p of sediment
entrainment (Bose and Dey
2013). The H(p) curves
obtained from the approaches
given by Einstein (1950),
Fredsøe and Deigaard (1992)
and Cheng and Chiew (1998),
and the experimental data of
Guy et al. (1966) and
Fernandez Luque (1974) are
shown for the comparison
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pûðûÞ ¼
1
2

1þ 1
2

�
C10û� 1

8
C20ð1þ ûj j � û2Þ � 1

48
C30ûð3þ 3 ûj j � û2Þ

þ 1
384

C40ð9þ 9 ûj j � 3û2 � 6 û3
�� ��þ û4Þ þ � � �

�
expð� ûj jÞ ^ û ¼ u0ffiffiffiffiffiffi

u02
p
ð5:156Þ

Dey et al. (2012) obtained that the coefficients C10 and C30 are of the order of
0.001; while C20 & –0.5 and C40 & 0.6. Thus, it was assumed that C20 & –0.5
and the rest of the coefficients are effectively negligible due to their smallness or
division by a large number, such as 384. Then, Eq. (5.156) reduces to

pûðûÞ ¼
1

32
ð17þ ûj j � û2Þ expð� ûj jÞ ð5:157Þ

The instantaneous near-bed streamwise velocity ud, which can be decomposed
as ud ¼ �ud þ u0, is the cause of an entrainment of particles lying on the bed. Wu
and Lin (2002), following Nelson et al. (1995), argued that the entrainment is only
possible when the velocity fluctuations u0[ 0, for which the pdf according to
Eq. (5.157) becomes the one-sided exponential based Gram–Charlier series.
Therefore,

pu0 ðu0 � 0Þ ¼ 1

16
ffiffiffiffiffiffi
u02

p ð17þ û� û2Þ expð�ûÞ

pu0 ðu0\0Þ ¼ 0

9=
; ð5:158Þ

where pu0(u0) is the pdf for u0. It satisfies the condition

Z1

�1

pu0 ðu0Þdu0 ¼
Z1

0

pu0 ðu0Þdu0 ¼ 1

Following Einstein (1950), a particle placed on the bed is likely to be lifted by
the flowing fluid provided FL [ FG. Importantly, the instantaneous lift force FL

acting on a particle fluctuates in accordance with the velocity fluctuations u0 of the
near-bed velocity ud; while the submerged weight FG of a particle is a constant for
a given particle size. Therefore, FL [ FG implies that ud [ B or u0[ B� �ud,
where B = [4Dgd/(3CL)]0.5. Thus, using Eq. (5.158), the total entrainment prob-
ability p is

p ¼
Z1

B��ud

pu0 ðu0Þdu0 ¼ 1
16
ð16� a� a2Þ expð�aÞ ^ a ¼ B� �udffiffiffiffiffiffi

u02
p ð5:159Þ
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It is pertinent to mention that Dey et al. (2012) found that when the bed
particles move, the von Kármán constant j diminishes from its universal value
0.41, and the zero-plane displacement level and the zero-velocity level move up as
compared to their values in immobile beds [also available in Dey and Raikar
(2007), Gaudio et al. (2010), Dey et al. (2011), and Gaudio and Dey (2012)]. These
modify the estimation of near-bed velocity from the logarithmic law as �ud ¼ 6:4u�,
which was used by Bose and Dey. Quoting Kironoto and Graf (1994), Cheng and

Chiew (1998) estimated
ffiffiffiffiffiffi
u02

p
¼ 2u�. Using these results, the a can be expressed

as

a ¼ B� �udffiffiffiffiffiffi
u02

p ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DgdH
p

ffiffiffiffiffiffiffiffiffiffiffi
4Dgd

3CL

s
� 6:4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DgdH

p !
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

3CLH
p � 3:2 ð5:160Þ

Figure 5.17 depicts the theoretical H(p) curve for CL = 0.15 obtained by
solving Eq. (5.159) using Eq. (5.160). The theoretical curve matches well with the
experimental data of Guy et al. (1966) and Fernandez Luque (1974). The data of
Guy et al. (1966) that correspond to dunes have less agreement, because the
analysis by Bose and Dey (2013) did not include the flow resistance due to bed-
forms. However, the curve obtained by Bose and Dey (2013) corresponds closely
with the curves of Fredsøe and Deigaard (1992) and Cheng and Chiew (1998) for
p \ 0.2. The Shields parameter H for rough flow regime (R* [ 70, where R* is the
shear Reynolds number, u*ks/t) according to Yalin and Karahan’s (1979) diagram
is 0.046, for which the probability of entrainment is 0.1 % as obtained from
Fig. 5.17. It implies that 0.1 % of all the particles on a given bed area are in
motion under the threshold of sediment entrainment.

5.15 Effects of Bed Load on Velocity Distribution

Dey et al. (2012) conducted experiments to measure the velocity distributions and
turbulence parameters in mobile-bed flow with bed-load transport and to compare
them with those in a clear-water (immobile bed) flow. The experimental data for
clear-water flow were used as a reference. For each sediment sample, an experi-
mental set comprised of two different runs, such as clear-water and mobile-bed
flow conditions. Fixed-bed roughness for a clear-water flow was prepared by
gluing sediment on the flume bottom. The mobile-bed experiments were con-
ducted to simulate the bed-load transport at a certain rate corresponding to the
same flow condition as that of the clear-water flow. In mobile-bed experiments, the
same sediment that was glued on the flume bottom was fed in the flow at a uniform
rate to achieve a dynamic equilibrium condition of the mobile bed. A continuous
weak sediment transport (as bed load) was established by the flow in the form of a
thin sediment layer disallowing any bedforms to develop.
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Figure 5.18 shows the vertical distributions of nondimensional time-averaged
streamwise velocity u+ for clear-water and mobile-bed flows. In order to fit the
data points in the inner layer (z B 0.2h) to the universal logarithmic law of wall,
the time-averaged streamwise velocity �u and the vertical distance z are scaled by
u* and d50, such that uþ ¼ �u=u� and z+ = z/d50. For the convenience, the origin of
z-axis is set at the top of the bed particles (that is the bed surface). As the flow
regime was the rough-turbulent flow, it is customary to use d50 to scale z. Dey et al.
used the values of u* that were obtained from the Reynolds shear stress plots by
extrapolating a linear curve fitting onto the bed surface. To plot the experimental
data, they consider the logarithmic law expressed in nondimensional form. It is

uþ ¼ 1
j

ln
zþ þ Dzþ

fþ

� �
ð5:161Þ

where Dz+ = Dz/d50, Dz is the depth of the virtual bed level from the bed surface,
f+ = z0/d50, and z0 is the zero-velocity level. Figure 5.18 describes the logarithmic
law showing the variations of u+ with z+ + Dz+ for the experimental datasets. It is
clear that a prior estimation of Dz+ was an essential prerequisite to plot the data,
and subsequent determination of j and f+ was required to fit the data to the
logarithmic law given by Eq. (5.161). The determination of these parameters was
done independently, as described below:

Step 1: Having obtained u* from the Reynolds shear stress plots by projecting
straight line on the bed surface [see Eq. (3.20) and Fig. 3.11], such that

u� ¼ ð�u0w0Þ0:5
���
z¼0

, the dataset u+(z+) for the range z B 0.2h were

prepared for the data analysis.
Step 2: As an initial trial, considering Dz+ = 0, the values of j and f+ were

determined from Eq. (5.161) by the regression analysis, and then, the
regression coefficient RC was evaluated.

Step 3: The values Dz+ were increased at a regular interval by a small mag-
nitude (say 0.001), and the values of j and f+ were determined in the
same way as in step 2. The values of RC for each value of Dz+ were
checked, till RC became the maximum. Then, the corresponding values
of Dz+, j and f+ were considered as parameters for Eq. (5.161).

The average values of Dz+ = 0.39, j = 0.413, and f+ = 0.034 obtained for
clear-water flow are in agreement with those for the traditional logarithmic law
over rough boundary. Typically, the customary values of these parameters for the
rough beds are Dz+ = 0.25, j = 0.41, and f+ = 0.033 (van Rijn 1984a). Thus, for
clear-water flow, the data collapse well on the average logarithmic law curve
shown by a solid line in Fig. 5.18. On the other hand, the average values of
Dz+ = 0.21, j = 0.37, and f+ = 0.04 obtained for mobile-bed flow suggest the
modified values of the parameters for the logarithmic law over a rough mobile bed.
It is obvious that for mobile-bed flow, the data exhibit some degree of scatter about
the average logarithmic law curve. A comparison of the values of Dz+ and f+ for
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clear-water and mobile-bed flows reveals that the virtual bed and zero-velocity
levels move up in the presence of bed-load transport. Although the data analysis
related to the logarithmic law was done considering the data range z B 0.2h,
Fig. 5.18 displays all the data plots for z B 0.2h and z [ 0.2h. Thus, the data plots
depart from the logarithmic law in the outer layer to some extent. Additionally, the
values of Nikuradse’s equivalent sand roughness ks can be determined from the
relationship of zero-velocity level as ks = 30f+d50. Finally, it can be concluded
that for mobile-bed flow, (1) the von Kármán constant decreases and (2) the virtual
bed and the zero-velocity levels move up.
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Fig. 5.18 Vertical distributions of nondimensional time-averaged streamwise velocity u+ for
clear-water and mobile-bed flows (Dey et al. 2012)
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5.16 Effects of Bed Load on Length Scales of Turbulence

According to Prandtl, the mixing length l, which defines a distance that a fluid
parcel (eddy) keeps its original characteristics before dispersing into the sur-
rounding fluid, is given by

l ¼ ð�u0w0Þ0:5

d�u=dz
ð5:162Þ

To calculate the mixing length l from Eq. (5.162), Dey et al. (2012) used the
measured velocity profiles to determine the velocity gradients d�u/dz by a smooth
curve fitting to the data plots. They obtained the values of �u0w0 directly from the
measured Reynolds shear stress distributions. The variations of nondimensional
mixing length ~l ¼ l=hð Þ with ~z ¼ z=hð Þ for clear-water and mobile-bed flows as
obtained by Dey et al. are shown in Fig. 5.19. Within the wall shear layer
(z B 0.2h), ~l varies linearly with ~z. All the experimental data points for clear-water
and mobile-bed flows collapse reasonably on a single band, which is in conformity
with Prandtl’s mixing length hypothesis. Also, the data points collapse satisfac-

torily on the curves obtained from the theoretical equation of ~l ¼ j~zð1�~zÞ0:5 given
by Nezu and Nakagawa (1993). The slope of the linear portion defining von
Kármán constant jð¼ ~l=~z ¼ l=zÞ for mobile-bed flow is smaller than that for clear-
water flow. It suggests that the traversing length of an eddy decreases with bed-
load transport and increases more rapidly with z in a clear-water flow.
A detailed discussion on nonuniversality of von Kármán constant j is given in next
section.

Studies by Gore and Crowe (1991), Hetsroni (1993), Crowe (1993), Best et al.
(1997) argued that in flow with transported particles, the ratio of the size of
transported particles to the length scale of turbulence is involved in influencing the
enhancement or attenuation of the streamwise turbulence intensity. Taylor
microscale kT, which defines the eddy size in the inertial subrange, is the relevant
length scale of turbulence and is given by

kT ¼
15tu02

e

 !0:5

ð5:163Þ

where e is the turbulent kinetic energy dissipation rate. The estimation of e is done
by using Kolmogorov second hypothesis that predicts the following equality
describing the true inertial subrange (Pope 2001):

k5=3
w Suu ¼ Ce2=3 ð5:164Þ

where kw is the wave number, Suu is the spectral density function for u0, and C is
the constant approximately equaling 0.5 (Monin and Yaglom 2007).
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In Fig. 5.20a, the spectra Suu½¼ ð0:5�u=pÞFuu fð Þ as a function of kw½¼
ð2p=�uÞf  are drawn using the despiked instantaneous velocity data at z = 2 mm
(near-bed point) from the bed surface having d50 = 2.6 mm for clear-water and
mobile-bed flows. For both flow conditions, the depth-averaged flow velocity was
0.851 m s-1 and the flow depth 0.15 m. The bed-load transport rate in mobile-bed
experiment was 7 9 10-3 kg s-1 m-1. The inertial subranges in clear-water and
mobile-bed flows are characterized by Kolmogorov’s –5/3-th power law. It cor-

responds to a subrange of kw, where the average value of k5=3
w Suu is relatively

constant (that is independent of kw), as shown in Fig. 5.20b. Then, the e was
estimated from Eq. (5.164) and kT from Eq. (5.163).

Figure 5.21 shows the variations of the ratio of sediment size to Taylor

microscale, that is k̂d ¼ d50=kT, with ~z obtained by Dey et al. (2012) for the same
flow condition mentioned above (clear-water and mobile-bed cases). Near the bed

(z B 0.1 h), k̂d for mobile-bed flow is smaller than that for a clear-water flow. In

the outer layer, k̂d for both the cases, the variation being almost same decreases
away from the bed. The values of kT near the bed are 2 and 2.44 mm in clear-water
and mobile-bed flows, respectively. Hence, the eddy size close to the bed increases
in the presence of bed-load transport. Other studies on two-phase flows reported

that the range k̂d � 0:2�1:2 corresponds to the turbulence enhancement; while the

range k̂d � 0:2�0:065 corresponds to the turbulence attenuation (Gore and Crowe
1991; Hetsroni 1993; Best et al. 1997).

Figure 5.22 presents the data plots of the ratio of particle size to Taylor micro-

scale, k̂d, for mobile-bed flow as a function of relative difference of streamwise

turbulence intensities Druu½¼ ðu02Þ0:5jmb=ðu02Þ
0:5jcw�1. Here, subscripts ‘‘cw’’ and
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Fig. 5.21 Ratio of particle

size to Taylor microscale k̂d

as a function of
nondimensional vertical
distance ~z for clear-water and
mobile-bed flows (Dey et al.
2012)
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‘‘mb’’ refer to clear-water and mobile-bed flows, respectively. The positive values of
Druuð~z\0:2Þ indicate that the streamwise turbulence intensity in mobile bed is
greater than that in clear-water flow. This is in conformity to the findings of Sumer
et al. (2003), who studied the role of externally induced turbulence fields on bed-load
transport and argued that the sediment transport rate increases considerably with an

increase in streamwise turbulence intensity ðu02Þ0:5.

5.17 Effects of Bed Load on von Kármán Constant j

During bed-load transport, the sediment motion (by rolling, sliding, and saltation)
produces an expansion of the roughness layer. Recking et al. (2008) reported that
the Nikuradse’s equivalent sand roughness ks increases from the particle size d50

for immobile-bed condition to 2.6d50 for intense bed-load transport condition. The
expansion of the roughness layer modifies the logarithmic wall shear layer,
resulting in the variation of von Kármán constant j from its universal value 0.41.
Gaudio et al. (2010) and Gaudio and Dey (2012) reviewed the studies on the
effects of sediment transport on j, which is discussed below:

Gust and Southard (1983) analyzed the velocity data in the wall shear layer
(z/h B 0.2) measured by a hot-wire anemometer. They observed a decrease in j
from its universal value with an increase in bed-load transport rate. After a tran-
sitional regime corresponding to the entrainment threshold of sediment, j adjusted
to a constant value of 0.32 ± 0.04 for all the experiments with bed-load transport,
in which the transport rate varied by a factor 10. Best et al. (1997) used a phase
Doppler anemometer to differentiate the characteristics of the fluid from those of
the sediment particles and to quantify the influence of the sediments on the carrier
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Fig. 5.22 Ratio of particle size to Taylor microscale k̂d for mobile-bed flow as a function of
relative difference of streamwise turbulence intensities Druu between clear-water and mobile-bed
flows (Dey et al. 2012)

5.16 Effects of Bed Load on Length Scales of Turbulence 315



fluid turbulence. They observed that the average value of j was 0.385 in the
presence of bed-load transport. Nikora and Goring (2000) reported a study on the
characteristics of turbulent structure of high Reynolds number in quasi-two-
dimensional flow with fixed and weakly mobile gravel-beds. The flow measure-
ments by an acoustic Doppler velocimeter in an irrigation field canal were carried
out for two bed conditions: fixed and weakly mobile beds. Measurements were first
taken with a weakly mobile-bed flow (WMBF) and then repeated for a fixed-bed
flow (FBF). They obtained j & 0.29 for the WMBF being significantly smaller
than j & 0.4 for the FBF. They argued that the value j & 0.4 with the WMBF
would have been achieved with an adjustment of the virtual bed level if the bed
level was shifted by 30 mm upwards. Since such a shift is physically unjustifiable,
it corroborates that the difference of j values between the WMBF and the FBF is
possible due to the effects of bed-load transport. Bennett and Bridge (1995),
Nikora and Goring (1999), and Gallagher et al. (1999) also revealed an appreciable
decrease in j under bed-load transport. Nikora and Goring (1999) anticipated that
the reduction in j might reflect the special turbulence characteristics within a
narrow range of the Shields parameter when the bed shear stress is approximately
equal to the threshold bed shear stress. In Nikora and Goring (2000), the drag
reduction effects were expressed as decreased values of j. The general concept is
that the drag reduction prevails when the spacing between turbulent bursting
events increases in comparison to the spacing in flow with no sediment
(Tiederman et al. 1985). However, it is revealed that the j reduces when spanwise
(lateral) spacing between bursting events increases; while streamwise spacing
remains unchanged (Hetsroni et al. 1997). Nikora and Goring (2000) found that the
streamwise spacing between bursting events was approximately the same for both
the WMBF and the FBF, referring to an increase in spanwise spacing for the
WMBF. Dey and Raikar (2007) reported the laboratory experimental results on the
turbulent flow characteristics measured by an acoustic Doppler velocimeter. The
primary endeavor was to investigate the response of the turbulent flow field,
having zero-pressure gradient, to the uniform gravel-beds at the near-threshold of
sediment of motion. They observed that the variation of mixing length is con-
siderably linear with the distance from the bed within the wall shear layer, whose
thickness was obtained as 0.23 times the boundary layer thickness; and von
Kármán j was estimated as 0.35.

Gaudio et al. (2011) performed laboratory tests in a narrow flume with sediment
feeding to simulate bed load on a rough bed and measured the velocity within the
wall shear layer (z/h B 0.2) by using a Pitot-Prandtl tube. They obtained a decrease
in j, that j varied from 0.3 with bed load (0.0334 B gb B 0.0649 kg s-1 m-1) to
0.4 with clear-water flow condition. Further, Dey et al. (2012) fitted a logarithmic
law for mobile-bed flow to obtain j = 0.37 for bed-load transport rates
(2 9 10-3 B gb B 7 9 10-3 kg s-1 m-1), as already discussed. Table 5.3 fur-
nishes a summary of the results on j in flow with bed-load transport. The available
experimental data are so limited that the variation of j with bed-load transport rate
(qb or gb) is not so specific, although it has been well-recognized that the j values
with bed-load transport are less than its universal value 0.41.
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5.18 Examples

Example 5.1 The flow velocity in a wide river is 1.65 m s-1, flow depth 3.2 m, and
energy slope 5 9 10-4. The flow is uniform within the measuring reach. The bed
sediment has a median size d50 = 1.5 mm, d65 = 1.8 mm, and d90 = 3 mm, a static
angle of repose of 32�, a dynamic angle of repose of 20�, and a relative density of
2.65. Consider coefficient of kinematic viscosity of water t = 10-6 m2 s-1 and mass
density of water q = 103 kg m-3.

Compute the bed-load transport rate (in volume per unit time and width) by
using formulas/methodologies proposed by du Boys, Shields, Schoklitsch, Meyer-
Peter and Müller, Einstein, Brown/Julien (empirical form of Einstein’s method),
Bagnold, Engelund and Fredsøe, Yalin, and van Rijn.

Also, compute the saltation characteristics of the particle.

Solution

Given data are as follows:
Flow velocity, U = 1.65 m s-1; flow depth, h = 3.2 m; energy slope,
Sf = 5 9 10-4; sediment size, d50 = 1.5 mm, d65 = 1.8 mm, and d90 = 3 mm;
static angle of repose, / = 32�; dynamic angle of repose, /d = 20�; relative
density, s = 2.65; kinematic viscosity of water, t = 10-6 m2 s-1; and mass
density of water, q = 103 kg m-3

For uniform flow, the energy slope equals the streamwise bed slope. Thus,
Sf = S0 = 5 9 10-4

Applied bed shear stress, s0 = qghS0 = 103 9 9.81 9 3.2 9 5 9 10-4

= 15.7 Pa
Shear velocity, u* = (s0/q)0.5 = (15.7/103)0.5 = 0.125 m s-1

Shields parameter, H = s0/(Dqgd50) = 15.7/(1.65 9 103 9 9.81 9 1.5 9 10-3)
= 0.647
Use van Rijn’s empirical formula for the determination of threshold bed shear
stress and threshold shear velocity (see Table 4.1):

Table 5.3 Experimental results on the effects of bed-load transport on j

References d50 (mm) R* gb (kg s-1 m-1) j

Gust and Southard
(1983)

0.16 – 0.15 - 1.5 9 10-5 0.32 ± 12.5 %

Best et al. (1997) 0.22 8.9 9 - 22 9 10-3 0.385
Nikora and Goring

(2000)
6.4 429 0.0138 0.29 ± 10.3 %

Dey and Raikar
(2007)

4.1–14.25 210–1,573 1.23 - 0.09 0.35 ± 0.86 %

Gaudio et al. (2011) 1 101–120 3.34 - 0.0649 0.3 - 0.39 ± 10.7 %
Dey et al. (2012) 0.95, 2.6, 4.1 63–508 2–7 9 10-3 0.35 - 0.42
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Particle parameter, D* = d50(Dg/t2)1/3 = 1.5 9 10-3[1.65 9 9.81/(10-6)2]1/3 =
37.94
Threshold Shields parameter, Hcð20 \D� � 150Þ ¼ 0:013D0:29

� ¼ 0:013�
37:940:29 ¼ 0:037
Threshold bed shear stress, s0c = HcDqgd50 = 0.037 9 1.65 9 103 9 9.81 9

1.5 9 10-3 = 0.898 Pa
Threshold shear velocity, u*c = (s0c/q)0.5 = (0.898/103)0.5 = 0.03 m s-1

Computation of bed load by du Boys formula

v ¼ 6:89� 10�6=1:50:75 ¼ 5:083� 10�6 kg�2 m4 s3

( Eq: 5:13ð Þ Note: d50 is in mmð Þ
qb ¼ 5:083� 10�6 � 15:7 15:7� 0:898ð Þ ¼ 1:181� 10�3 m2 s�1

( Eq: 5:11ð Þ

Computation of bed load by Shields formula

q ¼ Uh ¼ 1:65� 3:2 ¼ 5:28 m2 s�1

qb ¼
10� 5:28� 5� 10�4

2:65� 1:652 � 103 � 9:81� 1:5� 10�3
ð15:7� 0:898Þ

¼ 3:681� 10�3 m2 s�1 ( Eq: 5:14ð Þ

Computation of bed load by Schoklitsch formula

qc ¼ 1:944� 10�5=S4=3
0 ¼ 1:944� 10�5=ð5� 10�4Þ4=3 ¼ 0:49 m2 s�1

gb ¼
7000

ð1:5� 10�3Þ0:5
ð5� 10�4Þ1:5ð5:28� 0:49Þ ¼ 9:679 N s�1m�1 ( Eq: 5:43ð Þ

qb ¼ gb=ðqsgÞ ¼ 9:679=ð2:65� 103 � 9:81Þ ¼ 3:723� 10�4 m2 s�1

Computation of bed load by Meyer-Peter and Müller formula

CR ¼ U= hS0ð Þ0:5¼ 1:65=ð3:2� 5� 10�4Þ0:5 ¼ 41:25 m0:5 s�1

C0R ¼ 18 log 12h=d90ð Þ ¼ 18 log½12� 3:2=ð3� 10�3Þ ¼ 73:93 m0:5 s�1

gC ¼ ðCR=C0RÞ
1:5 ¼ 41:25=73:93ð Þ1:5¼ 0:417

Meyer-Peter and Müller recommended Hc = 0.047 and corresponding
s0c = HcDqgd50 = 0.047 9 1.65 9 103 9 9.81 9 1.5 9 10-3 = 1.14 Pa

qb ¼
8

1:65ð103Þ1:5 � 9:81
ð0:417� 15:7� 1:14Þ1:5 ¼ 1:965� 10�4 m2 s�1

( Eq: 5:15ð Þ
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Computation of bed load by Einstein’s method
Assume R0b ¼ Rb ¼ h ¼ 3:2 m (for the wide channel)

Wb ¼ Dd65=ðR0bS0Þ ¼ 1:65� 1:8� 10�3=ð3:2� 5� 10�4Þ ¼ 1:86

From Fig. 5.10, Ub (Wb = 1.86) = 4

qb ¼ UbðDgd3
50Þ

0:5 ¼ 4½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 0:349� 10�4 m2 s�1

Computation of bed load by empirical form of Einstein’s method
Wb = 1.86 B 1.92; thus, Julien formula, given by Eq. (5.72), is applicable.

Kf ¼
2
3
þ 36ð10�6Þ2

1:65� 9:81ð1:5� 10�3Þ3

" #0:5

� 36ð10�6Þ2

1:65� 9:81ð1:5� 10�3Þ3

" #0:5

¼ 0:791( Eq: 5:71að Þ

UbðWb� 1:92Þ ¼ 15� 0:791� 1
1:861:5

¼ 4:677( Eq: 5:72ð Þ

qb ¼ UbðDgd3
50Þ

0:5 ¼ 4:677½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 1:093� 10�3 m2 s�1

Computation of bed load by Bagnold formula
Assume eb = 0.1

gbs ¼ 15:7� 1:65� 0:1=tan20
� ¼ 7:12 N s�1m�1 ( Eq: 5:104ð Þ

gb ¼ ðs=DÞgbs ¼ 2:65=1:65ð Þ7:12 ¼ 11:44 N s�1m�1

qb ¼ gb=ðqsgÞ ¼ 11:44=ð2:65� 103 � 9:81Þ ¼ 4:4� 10�4 m2 s�1

Computation of bed load by Engelund and Fredsøe formula
Dynamic coefficient of friction, ld = tan 20�

Ub ¼
9:3

tan 20�
ð0:647� 0:037Þð0:6470:5 � 0:7� 0:0370:5Þ ¼ 10:44( Eq: 5:88ð Þ

qb ¼ UbðDgd3
50Þ

0:5 ¼ 10:44½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 2:44� 10�3 m2 s�1

The formula of Engelund and Fredsøe seems to produce a higher estimation.

Computation of bed load by Yalin formula

a1 ¼ 2:45H0:5
c =s0:4 ¼ 2:45� 0:0370:5=2:650:4 ¼ 0:319

ðH=HcÞ�1 ¼ 0:647=0:037ð Þ�1 ¼ 16:49

Ub ¼ 0:635� 0:6470:5 � 16:49 1� 1
0:319� 16:49

lnð1þ 0:319� 16:49Þ
� �

¼ 5:486( Eq: 5:115ð Þ
qb ¼ UbðDgd3

50Þ
0:5 ¼ 5:486½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 1:282� 10�3 m2 s�1
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Computation of bed load by van Rijn formula

Ub ¼ ð5:3� 10�2=37:940:3Þ16:492:1 ¼ 6:41( Eq: 5:26ð Þ
qb ¼ UbðDgd3

50Þ
0:5 ¼ 6:41½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 1:498� 10�3 m2 s�1

Computation of saltation characteristics
By van Rijn formulas:

Saltation length, kb=d50 ¼ 3� 37:940:6 � 16:490:9 ) kb ¼ 0:497 m( Eq: 5:135að Þ
Saltation height, hs=d50 ¼ 0:3� 37:940:7 � 16:490:5 ) hs ¼ 0:023 m( Eq: 5:135bð Þ
Particle velocity, �ub=ðDgd50Þ0:5 ¼ 1:5� 16:490:6 ) �ub ¼ 1:256 m s�1 ( Eq: 5:137ð Þ

Further, estimates of saltation length kb, height hs, and particle velocity �ub by using
the formulas (see Tables 5.1 and 5.2) proposed by different investigators are given
in Table 5.4.

Example 5.2 Water flows with a depth-averaged velocity of 1.5 m s-1 through a
wide channel having a uniform flow depth of 3 m. The channel has a streamwise
bed slope of 8 9 10-4. The size classes of nonuniform sediment obtained from the
sieve analysis are 35 % between 0.1 and 0.5 mm, 30 % between 0.5 and 1 mm,
20 % between 1 and 2 mm, 10 % between 2 and 3 mm, and 5 % between 3 and
4 mm. Relative density of sediment is 2.65; and sediment size, d50 = 0.75 mm
and d90 = 3 mm.

Find the bed-load transport rate by using the methods of (1) Meyer-Peter and
Müller and (2) Ashida and Michiue.

Table 5.4 Saltation length kb, height hs and particle velocity �ub obtained from different formulas

References kb (m) hs (m) �ub (m s-1) Remark

Fernandez Luque and van Beek (1976) 0.024 – 1.196
Engelund and Fredsøe (1976) – – 1.229
Abbott and Francis (1977) – – 1.33 a = 14
Sekine and Kikkawa (1992) 2.55 – 0.971 From Cheng formula,

ws = 0.15 m s-1

(Table 1.3)
Niño et al. (1994) 0.06 – 0.71 a = 7.5
Lee and Hsu (1994) 0.2 0.016 1.322
Hu and Hui (1996) 0.07 0.005 1.33
Lajeunesse et al. (2010) 0.066 – –
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Solution

Given data are as follows:
Flow velocity, U = 1.5 m s-1; flow depth, h = 3 m; bed slope, S0 = 8 9 10-4;
bed sediment size, d50 = 0.75 mm and d90 = 3 mm; and relative density, s = 2.65

1. Meyer-Peter and Müller’s method
Weighted mean size, dm =

P
pidi = 1.06 mm (see Table 5.5)

CR ¼ U= hS0ð Þ0:5¼ 1:5=ð3� 8� 10�4Þ0:5 ¼ 30:62 m0:5 s�1

C0R ¼ 18 log 12h=d90ð Þ ¼ 18 log½12� 3=ð3� 10�3Þ ¼ 73:43 m0:5 s�1

gC ¼ ðCR=C0RÞ
1:5 ¼ 0:269

Applied bed shear stress, s0 = qghS0 = 103 9 9.81 9 3 9 8 9 10-4 =
23.54 Pa

Hi ¼ s0=ðDqgdiÞ ¼ 23:54=ð1:65� 103 � 9:81� diÞ ¼ 1:454� 10�3=di

Threshold Shields parameter, Hc = 0.034 that is obtained from van Rijn’s
empirical formula (Table 4.1) for the sediment size dm = 1.06 mm. Bed-load

transport rate for fractional size di is qbi ¼ 8ðDgÞ0:5pid1:5
i ðgCHi�niHcÞ1:5[see

Eq. ( 5.146)]
Therefore, the total bed-load transport rate for all size fractions, qb = 2.146 9

10-4 m2 s-1 (Table 5.5)
However, one can check the difference in estimation of bed-load transport rate
obtained using the weighted mean size dm.

H ¼ s0=ðDqgdmÞ ¼ 23:54=ð1:65� 103 � 9:81� 1:06� 10�3Þ ¼ 1:372

qb ¼ 8ðDgd3
mÞ

0:5ðgCH�HcÞ1:5 ¼ 8½1:65� 9:81ð1:06� 10�3Þ30:5ð0:269� 1:372�0:034Þ1:5

¼ 2:154� 10�4 m2 s�1

which is almost equaling the estimate of total bed-load transport rate for all size
fractions.

Table 5.5 Calculation by Meyer-Peter and Müller’s method

Size class (mm) di (mm) pi pidi (m) ni gCHi niHc qbi m2 s�1ð Þ
0.1–0.5 0.3 0.35 1.05 9 10-4 3.064 1.304 0.104 7.695 9 10-5

0.5–1 0.75 0.3 2.25 9 10-4 1.284 0.522 0.0437 6.555 9 10-5

1–2 1.5 0.2 3 9 10-4 0.8 0.261 0.0272 4.223 9 10-5

2–3 2.5 0.1 2.5 9 10-4 0.6 0.157 0.0204 2.021 9 10-5

3–4 3.5 0.05 1.75 9 10-4 0.506 0.112 0.0172 9.693 9 10-6P
1:06� 10�3

P
2:146� 10�4
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2. Ashida and Michiue’s method

Bed-load transport rate for fractional size di is qbi ¼ 17ðDgÞ0:5pid1:5
i ðHi�HciÞ

�ðH0:5
i �H0:5

ci Þ [see Eq. (5.140)]
Threshold Shields parameter Hci for the fractional size di can be obtained by
using van Rijn’s empirical formula (Table 4.1) for the size di (Table 5.6).
Therefore, the total bed-load transport rate for all size fractions, qb ¼
3:14� 10�3 m2 s�1 (Table 5.6)
However, one can check the difference in estimation of bed-load transport rate
obtained using the weighted mean size dm.

qb ¼ 17ðDgd3
mÞ

0:5ðH�HcÞðH0:5 �H0:5
c Þ ¼ 17½1:65� 9:81ð1:06� 10�3Þ30:5

� 1:372� 0:034ð Þ 1:3720:5 � 0:0340:5
� 

¼ 3:12� 10�3 m2 s�1

which is very close to the estimate of total bed-load transport rate for all size
fractions.
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